Sample records for dual receptor mechanisms

  1. Blocking NMDA receptors delays death in rats with acute liver failure by dual protective mechanisms in kidney and brain.

    PubMed

    Cauli, Omar; González-Usano, Alba; Cabrera-Pastor, Andrea; Gimenez-Garzó, Carla; López-Larrubia, Pilar; Ruiz-Sauri, Amparo; Hernández-Rabaza, Vicente; Duszczyk, Malgorzata; Malek, Michal; Lazarewicz, Jerzy W; Carratalá, Arturo; Urios, Amparo; Miguel, Alfonso; Torregrosa, Isidro; Carda, Carmen; Montoliu, Carmina; Felipo, Vicente

    2014-06-01

    Treatment of patients with acute liver failure (ALF) is unsatisfactory and mortality remains unacceptably high. Blocking NMDA receptors delays or prevents death of rats with ALF. The underlying mechanisms remain unclear. Clarifying these mechanisms will help to design more efficient treatments to increase patient's survival. The aim of this work was to shed light on the mechanisms by which blocking NMDA receptors delays rat's death in ALF. ALF was induced by galactosamine injection. NMDA receptors were blocked by continuous MK-801 administration. Edema and cerebral blood flow were assessed by magnetic resonance. The time course of ammonia levels in brain, muscle, blood, and urine; of glutamine, lactate, and water content in brain; of glomerular filtration rate and kidney damage; and of hepatic encephalopathy (HE) and intracranial pressure was assessed. ALF reduces kidney glomerular filtration rate (GFR) as reflected by reduced inulin clearance. GFR reduction is due to both reduced renal perfusion and kidney tubular damage as reflected by increased Kim-1 in urine and histological analysis. Blocking NMDA receptors delays kidney damage, allowing transient increased GFR and ammonia elimination which delays hyperammonemia and associated changes in brain. Blocking NMDA receptors does not prevent cerebral edema or blood-brain barrier permeability but reduces or prevents changes in cerebral blood flow and brain lactate. The data show that dual protective effects of MK-801 in kidney and brain delay cerebral alterations, HE, intracranial pressure increase and death. NMDA receptors antagonists may increase survival of patients with ALF by providing additional time for liver transplantation or regeneration.

  2. Botulinum neurotoxin serotype C associates with dual ganglioside receptors to facilitate cell entry.

    PubMed

    Karalewitz, Andrew P-A; Fu, Zhuji; Baldwin, Michael R; Kim, Jung-Ja P; Barbieri, Joseph T

    2012-11-23

    How botulinum neurotoxin serotype C (BoNT/C) enters neurons is unclear. BoNT/C utilizes dual gangliosides as host cell receptors. BoNT/C accesses gangliosides on the plasma membrane. Plasma membrane accessibility of the dual ganglioside receptors suggests synaptic vesicle exocytosis may not be necessary to expose BoNT/C receptors. Botulinum neurotoxins (BoNTs) cleave SNARE proteins in motor neurons that inhibits synaptic vesicle (SV) exocytosis, resulting in flaccid paralysis. There are seven BoNT serotypes (A-G). In current models, BoNTs initially bind gangliosides on resting neurons and upon SV exocytosis associate with the luminal domains of SV-associated proteins as a second receptor. The entry of BoNT/C is less clear. Characterizing the heavy chain receptor binding domain (HCR), BoNT/C was shown to utilize gangliosides as dual host receptors. Crystallographic and biochemical studies showed that the two ganglioside binding sites, termed GBP2 and Sia-1, were independent and utilized unique mechanisms to bind complex gangliosides. The GBP2 binding site recognized gangliosides that contained a sia5 sialic acid, whereas the Sia-1 binding site recognized gangliosides that contained a sia7 sialic acid and sugars within the backbone of the ganglioside. Utilizing gangliosides that uniquely recognized the GBP2 and Sia-1 binding sites, HCR/C entry into Neuro-2A cells required both functional ganglioside binding sites. HCR/C entered cells differently than the HCR of tetanus toxin, which also utilizes dual gangliosides as host receptors. A point-mutated HCR/C that lacked GBP2 binding potential retained the ability to bind and enter Neuro-2A cells. This showed that ganglioside binding at the Sia-1 site was accessible on the plasma membrane, suggesting that SV exocytosis may not be required to expose BoNT/C receptors. These studies highlight the utility of BoNT HCRs as probes to study the role of gangliosides in neurotransmission.

  3. Nuclear Receptor SHP Activates miR-206 Expression via a Cascade Dual Inhibitory Mechanism

    PubMed Central

    Song, Guisheng; Wang, Li

    2009-01-01

    MicroRNAs play a critical role in many essential cellular functions in the mammalian species. However, limited information is available regarding the regulation of miRNAs gene transcription. Microarray profiling and real-time PCR analysis revealed a marked down-regulation of miR-206 in nuclear receptor SHP−/− mice. To understand the regulatory function of SHP with regard to miR-206 gene expression, we determined the putative transcriptional initiation site of miR-206 and also its full length primary transcript using a database mining approach and RACE. We identified the transcription factor AP1 binding sites on the miR-206 promoter and further showed that AP1 (c-Jun and c-Fos) induced miR-206 promoter transactivity and expression which was repressed by YY1. ChIP analysis confirmed the physical association of AP1 (c-Jun) and YY1 with the endogenous miR-206 promoter. In addition, we also identified nuclear receptor ERRγ (NR3B3) binding site on the YY1 promoter and showed that YY1 promoter was transactivated by ERRγ, which was inhibited by SHP (NROB2). ChIP analysis confirmed the ERRγ binding to the YY1 promoter. Forced expression of SHP and AP1 induced miR-206 expression while overexpression of ERRγ and YY1 reduced its expression. The effects of AP1, ERRγ, and YY1 on miR-206 expression were reversed by siRNA knockdown of each gene, respectively. Thus, we propose a novel cascade “dual inhibitory” mechanism governing miR-206 gene transcription by SHP: SHP inhibition of ERRγ led to decreased YY1 expression and the de-repression of YY1 on AP1 activity, ultimately leading to the activation of miR-206. This is the first report to elucidate a cascade regulatory mechanism governing miRNAs gene transcription. PMID:19721712

  4. Control of gravitropic orientation. II. Dual receptor model for gravitropism

    NASA Technical Reports Server (NTRS)

    LaMotte, Clifford E.; Pickard, Barbara G.

    2004-01-01

    Gravitropism of vascular plants has been assumed to require a single gravity receptor mechanism. However, based on the evidence in Part I of this study, we propose that maize roots require two. The first mechanism is without a directional effect and, by itself, cannot give rise to tropism. Its role is quantitative facilitation of the second mechanism, which is directional like the gravitational force itself and provides the impetus for tropic curvature. How closely coupled the two mechanisms may be is, as yet, unclear. The evidence for dual receptors supports a general model for roots. When readiness for gravifacilitation, or gravifacilitation itself, is constitutive, orthogravitropic curvature can go to completion. If not constitutively enabled, gravifacilitation can be weak in the absence of light and water deficit or strong in the presence of light and water deficit. In either case, it can decay and permit roots to assume reproducible non-vertical orientations (plagiogravitropic or plagiotropic orientations) without using non-vertical setpoints. In this way roots are deployed in a large volume of soil. Gravitropic behaviours in shoots are more diverse than in roots, utilising oblique and horizontal as well as vertical setpoints. As a guide to future experiments, we assess how constitutive v. non-constitutive modes of gravifacilitation might contribute to behaviours based on each kind of setpoint.

  5. Dual-Color Luciferase Complementation for Chemokine Receptor Signaling.

    PubMed

    Luker, Kathryn E; Luker, Gary D

    2016-01-01

    Chemokine receptors may share common ligands, setting up potential competition for ligand binding, and association of activated receptors with downstream signaling molecules such as β-arrestin. Determining the "winner" of competition for shared effector molecules is essential for understanding integrated functions of chemokine receptor signaling in normal physiology, disease, and response to therapy. We describe a dual-color click beetle luciferase complementation assay for cell-based analysis of interactions of two different chemokine receptors, CXCR4 and ACKR3, with the intracellular scaffolding protein β-arrestin 2. This assay provides real-time quantification of receptor activation and signaling in response to chemokine CXCL12. More broadly, this general imaging strategy can be applied to quantify interactions of any set of two proteins that interact with a common binding partner. © 2016 Elsevier Inc. All rights reserved.

  6. Comparison of Kinetic Models for Dual-Tracer Receptor Concentration Imaging in Tumors

    PubMed Central

    Hamzei, Nazanin; Samkoe, Kimberley S; Elliott, Jonathan T; Holt, Robert W; Gunn, Jason R; Hasan, Tayyaba; Pogue, Brian W; Tichauer, Kenneth M

    2014-01-01

    Molecular differences between cancerous and healthy tissue have become key targets for novel therapeutics specific to tumor receptors. However, cancer cell receptor expression can vary within and amongst different tumors, making strategies that can quantify receptor concentration in vivo critical for the progression of targeted therapies. Recently a dual-tracer imaging approach capable of providing quantitative measures of receptor concentration in vivo was developed. It relies on the simultaneous injection and imaging of receptor-targeted tracer and an untargeted tracer (to account for non-specific uptake of the targeted tracer). Early implementations of this approach have been structured on existing “reference tissue” imaging methods that have not been optimized for or validated in dual-tracer imaging. Using simulations and mouse tumor model experimental data, the salient findings in this study were that all widely used reference tissue kinetic models can be used for dual-tracer imaging, with the linearized simplified reference tissue model offering a good balance of accuracy and computational efficiency. Moreover, an alternate version of the full two-compartment reference tissue model can be employed accurately by assuming that the K1s of the targeted and untargeted tracers are similar to avoid assuming an instantaneous equilibrium between bound and free states (made by all other models). PMID:25414912

  7. Dynamic dual-tracer MRI-guided fluorescence tomography to quantify receptor density in vivo

    PubMed Central

    Davis, Scott C.; Samkoe, Kimberley S.; Tichauer, Kenneth M.; Sexton, Kristian J.; Gunn, Jason R.; Deharvengt, Sophie J.; Hasan, Tayyaba; Pogue, Brian W.

    2013-01-01

    The up-regulation of cell surface receptors has become a central focus in personalized cancer treatment; however, because of the complex nature of contrast agent pharmacokinetics in tumor tissue, methods to quantify receptor binding in vivo remain elusive. Here, we present a dual-tracer optical technique for noninvasive estimation of specific receptor binding in cancer. A multispectral MRI-coupled fluorescence molecular tomography system was used to image the uptake kinetics of two fluorescent tracers injected simultaneously, one tracer targeted to the receptor of interest and the other tracer a nontargeted reference. These dynamic tracer data were then fit to a dual-tracer compartmental model to estimate the density of receptors available for binding in the tissue. Applying this approach to mice with deep-seated gliomas that overexpress the EGF receptor produced an estimate of available receptor density of 2.3 ± 0.5 nM (n = 5), consistent with values estimated in comparative invasive imaging and ex vivo studies. PMID:23671066

  8. Molecular Docking and Prediction of Pharmacokinetic Properties of Dual Mechanism Drugs that Block MAO-B and Adenosine A2A Receptors for the Treatment of Parkinson's Disease

    PubMed Central

    Azam, Faizul; Madi, Arwa M.; Ali, Hamed I.

    2012-01-01

    Monoamine oxidase B (MAO-B) inhibitory potential of adenosine A2A receptor (AA2AR) antagonists has raised the possibility of designing dual-target–directed drugs that may provide enhanced symptomatic relief and that may also slow the progression of Parkinson's disease (PD) by protecting against further neurodegeneration. To explain the dual inhibition of MAO-B and AA2AR at the molecular level, molecular docking technique was employed. Lamarckian genetic algorithm methodology was used for flexible ligand docking studies. A good correlation (R2= 0.524 and 0.627 for MAO-B and AA2AR, respectively) was established between docking predicted and experimental Ki values, which confirms that the molecular docking approach is reliable to study the mechanism of dual interaction of caffeinyl analogs with MAO-B and AA2AR. Parameters for Lipinski's “Rule-of-Five” were also calculated to estimate the pharmacokinetic properties of dual-target–directed drugs where both MAO-B inhibition and AA2AR antagonism exhibited a positive correlation with calculated LogP having a correlation coefficient R2 of 0.535 and 0.607, respectively. These results provide some beneficial clues in structural modification for designing new inhibitors as dual-target–directed drugs with desired pharmacokinetic properties for the treatment of PD. PMID:23112538

  9. Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0144 TITLE: Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism 5b. GRANT NUMBER W81XWH-13-1-0144 5c...ABSTRACT Autism spectrum disorder (ASD) is a polygenic signaling disorder that may result, in part, from an imbalance in excitatory and inhibitory

  10. Dual-color dual-focus line-scanning FCS for quantitative analysis of receptor-ligand interactions in living specimens.

    PubMed

    Dörlich, René M; Chen, Qing; Niklas Hedde, Per; Schuster, Vittoria; Hippler, Marc; Wesslowski, Janine; Davidson, Gary; Nienhaus, G Ulrich

    2015-05-07

    Cellular communication in multi-cellular organisms is mediated to a large extent by a multitude of cell-surface receptors that bind specific ligands. An in-depth understanding of cell signaling networks requires quantitative information on ligand-receptor interactions within living systems. In principle, fluorescence correlation spectroscopy (FCS) based methods can provide such data, but live-cell applications have proven extremely challenging. Here, we have developed an integrated dual-color dual-focus line-scanning fluorescence correlation spectroscopy (2c2f lsFCS) technique that greatly facilitates live-cell and tissue experiments. Absolute ligand and receptor concentrations and their diffusion coefficients within the cell membrane can be quantified without the need to perform additional calibration experiments. We also determine the concentration of ligands diffusing in the medium outside the cell within the same experiment by using a raster image correlation spectroscopy (RICS) based analysis. We have applied this robust technique to study the interactions of two Wnt antagonists, Dickkopf1 and Dickkopf2 (Dkk1/2), to their cognate receptor, low-density-lipoprotein-receptor related protein 6 (LRP6), in the plasma membrane of living HEK293T cells. We obtained significantly lower affinities than previously reported using in vitro studies, underscoring the need to measure such data on living cells or tissues.

  11. Structure-guided development of dual β2 adrenergic/dopamine D2 receptor agonists.

    PubMed

    Weichert, Dietmar; Stanek, Markus; Hübner, Harald; Gmeiner, Peter

    2016-06-15

    Aiming to discover dual-acting β2 adrenergic/dopamine D2 receptor ligands, a structure-guided approach for the evolution of GPCR agonists that address multiple targets was elaborated. Starting from GPCR crystal structures, we describe the design, synthesis and biological investigation of a defined set of compounds leading to the identification of the benzoxazinone (R)-3, which shows agonist properties at the adrenergic β2 receptor and substantial G protein-promoted activation at the D2 receptor. This directed approach yielded molecular probes with tuned dual activity. The congener desOH-3 devoid of the benzylic hydroxyl function was shown to be a β2 adrenergic antagonist/D2 receptor agonist with Ki values in the low nanomolar range. The compounds may serve as a promising starting point for the investigation and treatment of neurological disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Dual ligands targeting dopamine D2 and serotonin 5-HT1A receptors as new antipsychotical or anti-Parkinsonian agents.

    PubMed

    Ye, Na; Song, Zilan; Zhang, Ao

    2014-01-01

    Psychiatric disorders like schizophrenia and neurodegenerative diseases like Parkinson's disease are associated with poly-factorial pathogenic mechanisms, with several neurotransmitter systems closely involved. In addition to the cerebral dopaminergic (DA) system, the serotoninergic (5-HT) system also plays a crucial role in regulating psychoemotional, cognitive and motor functions in the central nervous system (CNS). Among the large 5-HT receptor family, accumulating data have revealed new insights into the therapeutic benefit of the 5-HT1A receptor in treating various CNS disorders, especially schizophrenia and Parkinson's disease. The present review discusses the advance of dual agents with mixed actions at the dopamine D2 and serotonin 5-HT1A receptors in the treatment of these diseases. Aripiprazole was the only marketed drug with dual D2 and 5-HT1A profile. It is a partial D2 and 5-HT1A receptor agonist and has been prescribed as an atypical antipsychotical drug. Two other drugs Cariprazine and Pardoprunox are being investigated in clinic. Most of the other candidate compounds, including Bifeprunox, Sarizotan, Mazapertine succinate, PF-217830, and Adoprazine were discontinued due to either non-optimal pharmacokinetic properties or insufficient therapeutical efficacy. Although much effort has been done to highlight the advantages of the 5-HT1A and D2 dual approach, it has to be pointed out that many of these drugs showed poly-pharmacological profile by targeting many other receptors and/or transporters besides the D2 and 5-HT1A receptors. In this regard, 'pure' compounds exclusively acting on the D2 and 5-HT1A receptors are highly needed to further validate this approach. Meanwhile, safety concerns and in vivo pharmacokinetic alerts should also be implanted to the drug design art early.

  13. Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor.

    PubMed

    Mulvihill, Mark J; Cooke, Andrew; Rosenfeld-Franklin, Maryland; Buck, Elizabeth; Foreman, Ken; Landfair, Darla; O'Connor, Matthew; Pirritt, Caroline; Sun, Yingchaun; Yao, Yan; Arnold, Lee D; Gibson, Neil W; Ji, Qun-Sheng

    2009-09-01

    The IGF-1 receptor (IGF-1R) has been implicated in the promotion of tumorigenesis, metastasis and resistance to cancer therapies. Therefore, this receptor has become a major focus for the development of anticancer agents. Our lead optimization efforts that blended structure-based design and empirical medicinal chemistry led to the discovery of OSI-906, a novel small-molecule dual IGF-1R/insulin receptor (IR) kinase inhibitor. OSI-906 potently and selectively inhibits autophosphorylation of both human IGF-1R and IR, displays in vitro antiproliferative effects in a variety of tumor cell lines and shows robust in vivo anti-tumor efficacy in an IGF-1R-driven xenograft model when administered orally once daily. OSI-906 is a novel, potent, selective and orally bioavailable dual IGF-1R/IR kinase inhibitor with favorable preclinical drug-like properties, which has demonstrated in vivo efficacy in tumor models and is currently in clinical testing.

  14. Accounting for pharmacokinetic differences in dual-tracer receptor density imaging

    PubMed Central

    Tichauer, K M; Diop, M; Elliott, J T; Samkoe, K S; Hasan, T; St. Lawrence, K; Pogue, B W

    2014-01-01

    Dual-tracer molecular imaging is a powerful approach to quantify receptor expression in a wide range of tissues by using an untargeted tracer to account for any nonspecific uptake of a molecular-targeted tracer. This approach has previously required the pharmacokinetics of the receptor-targeted and untargeted tracers to be identical, requiring careful selection of an ideal untargeted tracer for any given targeted tracer. In this study, methodology capable of correcting for tracer differences in arterial input functions, as well as binding-independent delivery and retention, is derived and evaluated in a mouse U251 glioma xenograft model using an Affibody tracer targeted to epidermal growth factor receptor (EGFR), a cell membrane receptor overexpressed in many cancers. Simulations demonstrated that blood, and to a lesser extent vascular-permeability, pharmacokinetic differences between targeted and untargeted tracers could be quantified by deconvolving the uptakes of the two tracers in a region of interest devoid of targeted tracer binding, and therefore corrected for, by convolving the uptake of the untargeted tracer in all regions of interest by the product of the deconvolution. Using fluorescently labelled, EGFR-targeted and untargeted Affibodies (known to have different blood clearance rates), the average tumor concentration of EGFR in 4 mice was estimated using dual-tracer kinetic modelling to be 3.9 ± 2.4 nM compared to an expected concentration of 2.0 ± 0.4 nM. However, with deconvolution correction a more equivalent EGFR concentration of 2.0 ± 0.4 nM was measured. PMID:24743262

  15. Accounting for pharmacokinetic differences in dual-tracer receptor density imaging.

    PubMed

    Tichauer, K M; Diop, M; Elliott, J T; Samkoe, K S; Hasan, T; St Lawrence, K; Pogue, B W

    2014-05-21

    Dual-tracer molecular imaging is a powerful approach to quantify receptor expression in a wide range of tissues by using an untargeted tracer to account for any nonspecific uptake of a molecular-targeted tracer. This approach has previously required the pharmacokinetics of the receptor-targeted and untargeted tracers to be identical, requiring careful selection of an ideal untargeted tracer for any given targeted tracer. In this study, methodology capable of correcting for tracer differences in arterial input functions, as well as binding-independent delivery and retention, is derived and evaluated in a mouse U251 glioma xenograft model using an Affibody tracer targeted to epidermal growth factor receptor (EGFR), a cell membrane receptor overexpressed in many cancers. Simulations demonstrated that blood, and to a lesser extent vascular-permeability, pharmacokinetic differences between targeted and untargeted tracers could be quantified by deconvolving the uptakes of the two tracers in a region of interest devoid of targeted tracer binding, and therefore corrected for, by convolving the uptake of the untargeted tracer in all regions of interest by the product of the deconvolution. Using fluorescently labeled, EGFR-targeted and untargeted Affibodies (known to have different blood clearance rates), the average tumor concentration of EGFR in four mice was estimated using dual-tracer kinetic modeling to be 3.9 ± 2.4 nM compared to an expected concentration of 2.0 ± 0.4 nM. However, with deconvolution correction a more equivalent EGFR concentration of 2.0 ± 0.4 nM was measured.

  16. Dual Endothelin-A/Endothelin-B Receptor Blockade and Cardiac Remodeling in Heart Failure With Preserved Ejection Fraction

    PubMed Central

    Valero-Munoz, Maria; Li, Shanpeng; Wilson, Richard M.; Boldbaatar, Batbold; Iglarz, Marc; Sam, Flora

    2017-01-01

    Background Despite the increasing prevalence of heart failure with preserved ejection fraction (HFpEF) in humans, there remains no evidence-based therapies for HFpEF. Endothelin-1 (ET-1) antagonists are a possibility because elevated ET-1 levels are associated with adverse cardiovascular effects, such as arterial and pulmonary vasoconstriction, impaired left ventricular (LV) relaxation, and stimulation of LV hypertrophy. LV hypertrophy is a common phenotype in HFpEF, particularly when associated with hypertension. Methods and Results In the present study, we found that ET-1 levels were significantly elevated in patients with chronic stable HFpEF. We then sought to investigate the effects of chronic macitentan, a dual ET-A/ET-B receptor antagonist, on cardiac structure and function in a murine model of HFpEF induced by chronic aldosterone infusion. Macitentan caused LV hypertrophy regression independent of blood pressure changes in HFpEF. Although macitentan did not modulate diastolic dysfunction in HFpEF, it significantly reduced wall thickness and relative wall thickness after 2 weeks of therapy. In vitro studies showed that macitentan decreased the aldosterone-induced cardiomyocyte hypertrophy. These changes were mediated by a reduction in the expression of cardiac myocyte enhancer factor 2a. Moreover, macitentan improved adverse cardiac remodeling, by reducing the stiffer cardiac collagen I and titin n2b expression in the left ventricle of mice with HFpEF. Conclusions These findings indicate that dual ET-A/ET-B receptor inhibition improves HFpEF by abrogating adverse cardiac remodeling via antihypertrophic mechanisms and by reducing stiffness. Additional studies are needed to explore the role of dual ET-1 receptor antagonists in patients with HFpEF. PMID:27810862

  17. Dual Endothelin-A/Endothelin-B Receptor Blockade and Cardiac Remodeling in Heart Failure With Preserved Ejection Fraction.

    PubMed

    Valero-Munoz, Maria; Li, Shanpeng; Wilson, Richard M; Boldbaatar, Batbold; Iglarz, Marc; Sam, Flora

    2016-11-01

    Despite the increasing prevalence of heart failure with preserved ejection fraction (HFpEF) in humans, there remains no evidence-based therapies for HFpEF. Endothelin-1 (ET-1) antagonists are a possibility because elevated ET-1 levels are associated with adverse cardiovascular effects, such as arterial and pulmonary vasoconstriction, impaired left ventricular (LV) relaxation, and stimulation of LV hypertrophy. LV hypertrophy is a common phenotype in HFpEF, particularly when associated with hypertension. In the present study, we found that ET-1 levels were significantly elevated in patients with chronic stable HFpEF. We then sought to investigate the effects of chronic macitentan, a dual ET-A/ET-B receptor antagonist, on cardiac structure and function in a murine model of HFpEF induced by chronic aldosterone infusion. Macitentan caused LV hypertrophy regression independent of blood pressure changes in HFpEF. Although macitentan did not modulate diastolic dysfunction in HFpEF, it significantly reduced wall thickness and relative wall thickness after 2 weeks of therapy. In vitro studies showed that macitentan decreased the aldosterone-induced cardiomyocyte hypertrophy. These changes were mediated by a reduction in the expression of cardiac myocyte enhancer factor 2a. Moreover, macitentan improved adverse cardiac remodeling, by reducing the stiffer cardiac collagen I and titin n2b expression in the left ventricle of mice with HFpEF. These findings indicate that dual ET-A/ET-B receptor inhibition improves HFpEF by abrogating adverse cardiac remodeling via antihypertrophic mechanisms and by reducing stiffness. Additional studies are needed to explore the role of dual ET-1 receptor antagonists in patients with HFpEF. © 2016 American Heart Association, Inc.

  18. Smart dual-functional warhead for folate receptor-specific activatable imaging and photodynamic therapy.

    PubMed

    Kim, Jisu; Tung, Ching-Hsuan; Choi, Yongdoo

    2014-09-21

    A smart dual-targeted theranostic agent becomes highly fluorescent and phototoxic only when its linker is cleaved by tumor-associated lysosomal enzyme cathepsin B after internalization into folate receptor-positive cancer cells.

  19. Cefminox, a Dual Agonist of Prostacyclin Receptor and Peroxisome Proliferator-Activated Receptor-Gamma Identified by Virtual Screening, Has Therapeutic Efficacy against Hypoxia-Induced Pulmonary Hypertension in Rats

    PubMed Central

    Xia, Jingwen; Yang, Li; Dong, Liang; Niu, Mengjie; Zhang, Shengli; Yang, Zhiwei; Wumaier, Gulinuer; Li, Ying; Wei, Xiaomin; Gong, Yi; Zhu, Ning; Li, Shengqing

    2018-01-01

    Prostacyclin receptor (IP) and peroxisome proliferator-activated receptor-gamma (PPARγ) are both potential targets for treatment of pulmonary arterial hypertension (PAH). Expression of IP and PPARγ decreases in PAH, suggesting that screening of dual agonists of IP and PPARγ might be an efficient method for drug discovery. Virtual screening (VS) of potential IP–PPARγ dual-targeting agonists was performed in the ZINC database. Ten of the identified compounds were further screened, and cefminox was found to dramatically inhibit growth of PASMCs with no obvious cytotoxicity. Growth inhibition by cefminox was partially reversed by both the IP antagonist RO113842 and the PPARγ antagonist GW9662. Investigation of the underlying mechanisms of action demonstrated that cefminox inhibits the protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway through up-regulation of the expression of phosphatase and tensin homolog (PTEN, which is inhibited by GW9662), and enhances cyclic adenosine monophosphate (cAMP) production in PASMCs (which is inhibited by RO113842). In a rat model of hypoxia-induced pulmonary hypertension, cefminox displayed therapeutic efficacy not inferior to that of the prostacyclin analog iloprost or the PPARγ agonist rosiglitazone. Our results identified cefminox as a dual agonist of IP and PPARγ that significantly inhibits PASMC proliferation by up-regulation of PTEN and cAMP, suggesting that it has potential for treatment of PAH. PMID:29527168

  20. Improved Dual-Luciferase Reporter Assays for Nuclear Receptors

    PubMed Central

    Paguio, Aileen; Stecha, Pete; Wood, Keith V; Fan, Frank

    2010-01-01

    Nuclear receptors play important roles in many cellular functions through control of gene transcription. It is also a large target class for drug discovery. Luciferase reporter assays are frequently used to study nuclear receptor function because of their wide dynamic range, low endogenous activity, and ease of use. Recent improvements of luciferase genes and vectors have further enhanced their utilities. Here we applied these improvements to two reporter formats for studying nuclear receptors. The first assay contains a Murine Mammary Tumor Virus promoter upstream of a destabilized luciferase. The presence of response elements for nuclear hormone receptor in this promoter allows the studies of endogenous and/or exogenous full length receptors. The second assay contains a ligand binding domain (LBD) of a nuclear receptor fused to the GAL4 DNA binding domain (DBD) on one vector and multiple Gal4 Upstream Activator Sequences (UAS) upstream of luciferase reporter on another vector. We showed that codon optimization of luciferase reporter genes increased expression levels in conjunction with the incorporation of protein destabilizing sequences into luciferase led to a larger assay dynamic range in both formats. The optimum number of UAS to generate the best response was determined. The expression vector for nuclear receptor LBD/GAL4 DBD fusion also constitutively expresses a Renilla luciferase-neoR fusion protein, which provides selection capability (G418 resistance, neoR) as well as an internal control (Renilla luciferase). This dual-luciferase format allowed detecting compound cytotoxicity or off-target change in expression during drug screening, therefore improved data quality. These luciferase reporter assays provided better research and drug discovery tools for studying the functions of full length nuclear receptors and ligand binding domains. PMID:21687560

  1. A Modular Dual-Labeling Scaffold That Retains Agonistic Properties for Somatostatin Receptor Targeting

    PubMed Central

    Ghosh, Sukhen C.; Rodriguez, Melissa; Carmon, Kendra S.; Voss, Julie; Wilganowski, Nathaniel L.; Schonbrunn, Agnes

    2017-01-01

    Fluorescence-guided surgery is an emerging imaging technique that can enhance the ability of surgeons to detect tumors when compared with visual observation. To facilitate characterization, fluorescently labeled probes have been dual-labeled with a radionuclide to enable cross-validation with nuclear imaging. In this study, we selected the somatostatin receptor imaging agent DOTATOC as the foundation for developing a dual-labeled analog. We hypothesized that a customized dual-labeling approach with a multimodality chelation (MMC) scaffold would minimize steric effects of dye conjugation and retain agonist properties. Methods: An MMC conjugate (MMC-TOC) was synthesized on solid-phase and compared with an analog prepared using conventional methods (DA-TOC). Both analogs were conjugated to IRDye 800 using copper-free click chemistry. The resulting compounds, MMC(IR800)-TOC and DA(IR800)-TOC, were labeled with Cu and 64Cu and tested in vitro in somatostatin receptor subtype 2–overexpressing HEK-293 cells to assess agonist properties, and in AR42J rat pancreatic cancer cells to determine receptor binding characteristics. Multimodality imaging was performed in AR42J xenografts. Results: Cu-MMC(IR800)-TOC demonstrated higher potency for cyclic adenosine monophosphate inhibition (half maximal effective concentration [EC50]: 0.21 ± 0.18 vs. 1.38 ± 0.54 nM) and receptor internalization (EC50: 41.9 ± 29.8 vs. 455 ± 299 nM) than Cu-DA(IR800)-TOC. Radioactive uptake studies showed that blocking with octreotide caused a dose-dependent reduction in 64Cu-MMC(IR800)-TOC uptake whereas 64Cu-DA(IR800)-TOC was not affected. In vivo studies revealed higher tumor uptake for 64Cu-MMC(IR800)-TOC than 64Cu-DA(IR800)-TOC (5.2 ± 0.2 vs. 3.6 ± 0.4 percentage injected dose per gram). In vivo blocking studies with octreotide reduced tumor uptake of 64Cu-MMC(IR800)-TOC by 66%. Excretion of 64Cu-MMC(IR800)-TOC was primarily through the liver and spleen whereas 64Cu-DA(IR800)-TOC was

  2. Discovery of Dual-Action Membrane-Anchored Modulators of Incretin Receptors

    PubMed Central

    Fortin, Jean-Philippe; Chinnapen, Daniel; Beinborn, Martin; Lencer, Wayne; Kopin, Alan S.

    2011-01-01

    Background The glucose-dependent insulinotropic polypeptide (GIP) and the glucagon-like peptide-1 (GLP-1) receptors are considered complementary therapeutic targets for type 2 diabetes. Using recombinant membrane-tethered ligand (MTL) technology, the present study focused on defining optimized modulators of these receptors, as well as exploring how local anchoring influences soluble peptide function. Methodology/Principal Findings Serial substitution of residue 7 in membrane-tethered GIP (tGIP) led to a wide range of activities at the GIP receptor, with [G7]tGIP showing enhanced efficacy compared to the wild type construct. In contrast, introduction of G7 into the related ligands, tGLP-1 and tethered exendin-4 (tEXE4), did not affect signaling at the cognate GLP-1 receptor. Both soluble and tethered GIP and GLP-1 were selective activators of their respective receptors. Although soluble EXE4 is highly selective for the GLP-1 receptor, unexpectedly, tethered EXE4 was found to be a potent activator of both the GLP-1 and GIP receptors. Diverging from the pharmacological properties of soluble and tethered GIP, the newly identified GIP-R agonists, (i.e. [G7]tGIP and tEXE4) failed to trigger cognate receptor endocytosis. In an attempt to recapitulate the dual agonism observed with tEXE4, we conjugated soluble EXE4 to a lipid moiety. Not only did this soluble peptide activate both the GLP-1 and GIP receptors but, when added to receptor expressing cells, the activity persists despite serial washes. Conclusions These findings suggest that conversion of a recombinant MTL to a soluble membrane anchored equivalent offers a means to prolong ligand function, as well as to design agonists that can simultaneously act on more than one therapeutic target. PMID:21935440

  3. Discovery of Dual ETA/ETB Receptor Antagonists from Traditional Chinese Herbs through in Silico and in Vitro Screening

    PubMed Central

    Wang, Xing; Zhang, Yuxin; Liu, Qing; Ai, Zhixin; Zhang, Yanling; Xiang, Yuhong; Qiao, Yanjiang

    2016-01-01

    Endothelin-1 receptors (ETAR and ETBR) act as a pivotal regulator in the biological effects of ET-1 and represent a potential drug target for the treatment of multiple cardiovascular diseases. The purpose of the study is to discover dual ETA/ETB receptor antagonists from traditional Chinese herbs. Ligand- and structure-based virtual screening was performed to screen an in-house database of traditional Chinese herbs, followed by a series of in vitro bioassay evaluation. Aristolochic acid A (AAA) was first confirmed to be a dual ETA/ETB receptor antagonist based intracellular calcium influx assay and impedance-based assay. Dose-response curves showed that AAA can block both ETAR and ETBR with IC50 of 7.91 and 7.40 μM, respectively. Target specificity and cytotoxicity bioassay proved that AAA is a selective dual ETA/ETB receptor antagonist and has no significant cytotoxicity on HEK293/ETAR and HEK293/ETBR cells within 24 h. It is a feasible and effective approach to discover bioactive compounds from traditional Chinese herbs using in silico screening combined with in vitro bioassay evaluation. The structural characteristic of AAA for its activity was especially interpreted, which could provide valuable reference for the further structural modification of AAA. PMID:26999111

  4. Understanding Cytokine and Growth Factor Receptor Activation Mechanisms

    PubMed Central

    Atanasova, Mariya; Whitty, Adrian

    2012-01-01

    Our understanding of the detailed mechanism of action of cytokine and growth factor receptors – and particularly our quantitative understanding of the link between structure, mechanism and function – lags significantly behind our knowledge of comparable functional protein classes such as enzymes, G protein-coupled receptors, and ion channels. In particular, it remains controversial whether such receptors are activated by a mechanism of ligand-induced oligomerization, versus a mechanism in which the ligand binds to a pre-associated receptor dimer or oligomer that becomes activated through subsequent conformational rearrangement. A major limitation to progress has been the relative paucity of methods for performing quantitative mechanistic experiments on unmodified receptors expressed at endogenous levels on live cells. In this article we review the current state of knowledge on the activation mechanisms of cytokine and growth factor receptors, critically evaluate the evidence for and against the different proposed mechanisms, and highlight other key questions that remain unanswered. New approaches and techniques have led to rapid recent progress in this area, and the field is poised for major advances in the coming years, which promises to revolutionize our understanding of this large and biologically and medically important class of receptors. PMID:23046381

  5. Selective endothelin ETA and dual ET(A)/ET(B) receptor blockade improve endothelium-dependent vasodilatation in patients with type 2 diabetes and coronary artery disease.

    PubMed

    Rafnsson, Arnar; Shemyakin, Alexey; Pernow, John

    2014-11-24

    Endothelin-1 contributes to endothelial dysfunction in patients with atherosclerosis and type 2 diabetes. In healthy arteries the ETA receptor mediates the main part of the vasoconstriction induced by endothelin-1 whilst the ETB receptor mediates vasodilatation. The ETB receptor expression is upregulated on vascular smooth muscle cells in atherosclerosis and may contribute to the increased vasoconstrictor tone and endothelial dysfunction observed in this condition. Due to these opposing effects of the ETB receptor it remains unclear whether ETB blockade together with ETA blockade may be detrimental or beneficial. The aim was therefore to compare the effects of selective ETA and dual ETA/ETB blockade on endothelial function in patients with type 2 diabetes and coronary artery disease. Forearm endothelium-dependent and endothelium-independent vasodilatation was assessed by venous occlusion plethysmography in 12 patients before and after selective ETA or dual ETA/ETB receptor blockade. Dual ETA/ETB receptor blockade increased baseline forearm blood flow by 30±14% (P<0.01) whereas selective ETA blockade did not (14±8%). Both selective ETA blockade and dual ETA/ETB blockade significantly improved endothelium-dependent vasodilatation. The improvement did not differ between the two treatments. There was also an increase in endothelium-independent vasodilatation with both treatments. Dual ETA/ETB blockade did not significantly increase microvascular flow but improved transcutaneous pO2. Both selective ETA and dual ETA/ETB improve endothelium-dependent vasodilatation in patients with type 2 diabetes and coronary artery disease. ETB blockade increases basal blood flow but does not additionally improve endothelium-dependent vasodilatation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Glycosylated SV2 and Gangliosides as Dual Receptors for Botulinum Neurotoxin Serotype F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Zhuji; Chen, Chen; Barbieri, Joseph T.

    2010-02-22

    Botulinum neurotoxin causes rapid flaccid paralysis through the inhibition of acetylcholine release at the neuromuscular junction. The seven BoNT serotypes (A-G) have been proposed to bind motor neurons via ganglioside-protein dual receptors. To date, the structure-function properties of BoNT/F host receptor interactions have not been resolved. Here, we report the crystal structures of the receptor binding domains (HCR) of BoNT/A and BoNT/F and the characterization of the dual receptors for BoNT/F. The overall polypeptide fold of HCR/A is essentially identical to the receptor binding domain of the BoNT/A holotoxin, and the structure of HCR/F is very similar to that ofmore » HCR/A, except for two regions implicated in neuronal binding. Solid phase array analysis identified two HCR/F binding glycans: ganglioside GD1a and oligosaccharides containing an N-acetyllactosamine core. Using affinity chromatography, HCR/F bound native synaptic vesicle glycoproteins as part of a protein complex. Deglycosylation of glycoproteins using {alpha}(1-3,4)-fucosidase, endo-{beta}-galactosidase, and PNGase F disrupted the interaction with HCR/F, while the binding of HCR/B to its cognate receptor, synaptotagmin I, was unaffected. These data indicate that the HCR/F binds synaptic vesicle glycoproteins through the keratan sulfate moiety of SV2. The interaction of HCR/F with gangliosides was also investigated. HCR/F bound specifically to gangliosides that contain {alpha}2,3-linked sialic acid on the terminal galactose of a neutral saccharide core (binding order GT1b = GD1a GM3; no binding to GD1b and GM1a). Mutations within the putative ganglioside binding pocket of HCR/F decreased binding to gangliosides, synaptic vesicle protein complexes, and primary rat hippocampal neurons. Thus, BoNT/F neuronal discrimination involves the recognition of ganglioside and protein (glycosylated SV2) carbohydrate moieties, providing a structural basis for the high affinity and specificity of BoNT/F for

  7. Identification and mechanism of ABA receptor antagonism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy

    2010-11-11

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2more » to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.« less

  8. Opioid receptor desensitization: mechanisms and its link to tolerance

    PubMed Central

    Allouche, Stéphane; Noble, Florence; Marie, Nicolas

    2014-01-01

    Opioid receptors (OR) are part of the class A of G-protein coupled receptors and the target of the opiates, the most powerful analgesic molecules used in clinic. During a protracted use, a tolerance to analgesic effect develops resulting in a reduction of the effectiveness. So understanding mechanisms of tolerance is a great challenge and may help to find new strategies to tackle this side effect. This review will summarize receptor-related mechanisms that could underlie tolerance especially receptor desensitization. We will focus on the latest data obtained on molecular mechanisms involved in opioid receptor desensitization: phosphorylation, receptor uncoupling, internalization, and post-endocytic fate of the receptor. PMID:25566076

  9. Novel Dual Mitochondrial and CD44 Receptor Targeting Nanoparticles for Redox Stimuli-Triggered Release

    NASA Astrophysics Data System (ADS)

    Wang, Kaili; Qi, Mengjiao; Guo, Chunjing; Yu, Yueming; Wang, Bingjie; Fang, Lei; Liu, Mengna; Wang, Zhen; Fan, Xinxin; Chen, Daquan

    2018-02-01

    In this work, novel mitochondrial and CD44 receptor dual-targeting redox-sensitive multifunctional nanoparticles (micelles) based on oligomeric hyaluronic acid (oHA) were proposed. The amphiphilic nanocarrier was prepared by (5-carboxypentyl)triphenylphosphonium bromide (TPP), oligomeric hyaluronic acid (oHA), disulfide bond, and curcumin (Cur), named as TPP-oHA-S-S-Cur. The TPP targeted the mitochondria, the antitumor drug Cur served as a hydrophobic core, the CD44 receptor targeting oHA worked as a hydrophilic shell, and the disulfide bond acted as a connecting arm. The chemical structure of TPP-oHA-S-S-Cur was characterized by 1HNMR technology. Cur was loaded into the TPP-oHA-S-S-Cur micelles by self-assembly. Some properties, including the preparation of micelles, morphology, redox sensitivity, and mitochondrial targeting, were studied. The results showed that TPP-oHA-S-S-Cur micelles had a mean diameter of 122.4 ± 23.4 nm, zeta potential - 26.55 ± 4.99 mV. In vitro release study and cellular uptake test showed that TPP-oHA-S-S-Cur micelles had redox sensibility, dual targeting to mitochondrial and CD44 receptor. This work provided a promising smart multifunctional nanocarrier platform to enhance the solubility, decrease the side effects, and improve the therapeutic efficacy of anticancer drugs.

  10. The dual orexin receptor antagonist, DORA-22, lowers histamine levels in the lateral hypothalamus and prefrontal cortex without lowering hippocampal acetylcholine.

    PubMed

    Yao, Lihang; Ramirez, Andres D; Roecker, Anthony J; Fox, Steven V; Uslaner, Jason M; Smith, Sean M; Hodgson, Robert; Coleman, Paul J; Renger, John J; Winrow, Christopher J; Gotter, Anthony L

    2017-07-01

    Chronic insomnia is defined as a persistent difficulty with sleep initiation maintenance or non-restorative sleep. The therapeutic standard of care for this condition is treatment with gamma-aminobutyric acid (GABA) A receptor modulators, which promote sleep but are associated with a panoply of side effects, including cognitive and memory impairment. Dual orexin receptor antagonists (DORAs) have recently emerged as an alternative therapeutic approach that acts via a distinct and more selective wake-attenuating mechanism with the potential to be associated with milder side effects. Given their distinct mechanism of action, the current work tested the hypothesis that DORAs and GABA A receptor modulators differentially regulate neurochemical pathways associated with differences in sleep architecture and cognitive performance induced by these pharmacological mechanisms. Our findings showed that DORA-22 suppresses the release of the wake neurotransmitter histamine in the lateral hypothalamus, prefrontal cortex, and hippocampus with no significant alterations in acetylcholine levels. In contrast, eszopiclone, commonly used as a GABA A modulator, inhibited acetylcholine secretion across brain regions with variable effects on histamine release depending on the extent of wakefulness induction. In normal waking rats, eszopiclone only transiently suppressed histamine secretion, whereas this suppression was more obvious under caffeine-induced wakefulness. Compared with the GABA A modulator eszopiclone, DORA-22 elicits a neurotransmitter profile consistent with wake reduction that does not impinge on neurotransmitter levels associated with cognition and rapid eye movement sleep. © 2017 International Society for Neurochemistry.

  11. Mechanics of dual-mode dilative failure in subaqueous sediment deposits

    NASA Astrophysics Data System (ADS)

    You, Yao; Flemings, Peter; Mohrig, David

    2014-07-01

    We introduce dual-mode dilative failure with flume experiments. Dual-mode dilative failure combines slow and steady release of sediments by breaching with periodic sliding, which rapidly releases an internally coherent wedge of sediments. It occurs in dilative sandy deposits. This periodic slope failure results from cyclic evolution of the excess pore pressure in the deposit. Sliding generates large, transient, negative excess pore pressure that strengthens the deposit and allows breaching to occur. During breaching, negative excess pore pressure dissipates, the deposit weakens, and ultimately sliding occurs once again. We show that the sliding frequency is proportional to the coefficient of consolidation. We find that thicker deposits are more susceptible to dual-mode dilative failure. Discovery of dual-mode dilative failure provides a new mechanism to consider when interpreting the sedimentary deposits linked to submarine slope failures.

  12. Synthesis of iboga-like isoquinuclidines: Dual opioid receptors agonists having antinociceptive properties.

    PubMed

    Banerjee, Tuhin Suvro; Paul, Sibasish; Sinha, Surajit; Das, Sumantra

    2014-11-01

    Some novel iboga-analogues consisting of benzofuran moiety and dehydroisoquinuclidine ring connected by -CH2-, (CH2)2 and (CH2)3 linkers have been synthesized with the view to develop potential antinociceptive drugs. The compounds 14 and 21 showed binding at the μ-opioid receptor (MOR), while the compound 11a exhibited dual affinities at both MOR and κ-opioid receptor (KOR). MAP kinase activation indicated all three compounds have opioid agonistic properties. The presence of a double bond and endo-methylcarboxylate group in the dehydroisoquinuclidine ring and the benzofuran and methylene spacer appeared to be essential for opioid receptor binding. Further studies demonstrated 11a caused significant antinociception in mice in the hot-plate test which was comparable to that produced by morphine. The compound 11a was also found to be nontremorigenic unlike various iboga congeners. This study identifies a new pharmacophore which may lead to the development of suitable substitute of morphine in the treatment of pain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Mechanical Properties of a Superalloy Disk with a Dual Grain Structure

    NASA Technical Reports Server (NTRS)

    Gayda, John; Gabb, Timothy; Kantzos, Peter

    2003-01-01

    Mechanical properties from an advanced, nickel-base superalloy disk, with a dual grain structure consisting of a fine grain bore and coarse grain rim, were evaluated. The dual grain structure was produced using NASA's low cost Dual Microstructure Heat Treatment (DMHT) process. The results showed the DMHT disk to have a high strength, fatigue resistant bore comparable to a subsolvus (fine grain) heat treated disk, and a creep resistant rim comparable to a supersolvus (coarse grain) heat treated disk. Additional work on subsolvus solutioning before or after the DMHT conversion appears to be a viable avenue for further improvement in disk properties.

  14. Oxotremorine-M potentiates NMDA receptors by muscarinic receptor dependent and independent mechanisms.

    PubMed

    Zwart, Ruud; Reed, Hannah; Sher, Emanuele

    2018-01-01

    Muscarinic acetylcholine M1 receptors play an important role in synaptic plasticity in the hippocampus and cortex. Potentiation of NMDA receptors as a consequence of muscarinic acetylcholine M1 receptor activation is a crucial event mediating the cholinergic modulation of synaptic plasticity, which is a cellular mechanism for learning and memory. In Alzheimer's disease, the cholinergic input to the hippocampus and cortex is severely degenerated, and agonists or positive allosteric modulators of M1 receptors are therefore thought to be of potential use to treat the deficits in cognitive functions in Alzheimer's disease. In this study we developed a simple system in which muscarinic modulation of NMDA receptors can be studied in vitro. Human M1 receptors and NR1/2B NMDA receptors were co-expressed in Xenopus oocytes and various muscarinic agonists were assessed for their modulatory effects on NMDA receptor-mediated responses. As expected, NMDA receptor-mediated responses were potentiated by oxotremorine-M, oxotremorine or xanomeline when the drugs were applied between subsequent NMDA responses, an effect which was fully blocked by the muscarinic receptor antagonist atropine. However, in oocytes expressing NR1/2B NMDA receptors but not muscarinic M1 receptors, oxotremorine-M co-applied with NMDA also resulted in a potentiation of NMDA currents and this effect was not blocked by atropine, demonstrating that oxotremorine-M is able to directly potentiate NMDA receptors. Oxotremorine, which is a close analogue of oxotremorine-M, and xanomeline, a chemically distinct muscarinic agonist, did not potentiate NMDA receptors by this direct mechanism. Comparing the chemical structures of the three different muscarinic agonists used in this study suggests that the tri-methyl ammonium moiety present in oxotremorine-M is important for the compound's interaction with NMDA receptors. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Distortion of KB estimates of endothelin-1 ETA and ETB receptor antagonists in pulmonary arteries: Possible role of an endothelin-1 clearance mechanism.

    PubMed

    Angus, James A; Hughes, Richard J A; Wright, Christine E

    2017-12-01

    Dual endothelin ET A and ET B receptor antagonists are approved therapy for pulmonary artery hypertension (PAH). We hypothesized that ET B receptor-mediated clearance of endothelin-1 at specific vascular sites may compromise this targeted therapy. Concentration-response curves (CRC) to endothelin-1 or the ET B agonist sarafotoxin S6c were constructed, with endothelin receptor antagonists, in various rat and mouse isolated arteries using wire myography or in rat isolated trachea. In rat small mesenteric arteries, bosentan displaced endothelin-1 CRC competitively indicative of ET A receptor antagonism. In rat small pulmonary arteries, bosentan 10 μmol L -1 left-shifted the endothelin-1 CRC, demonstrating potentiation consistent with antagonism of an ET B receptor-mediated endothelin-1 clearance mechanism. Removal of endothelium or L-NAME did not alter the EC 50 or Emax of endothelin-1 nor increase the antagonism by BQ788. In the presence of BQ788 and L-NAME, bosentan displayed ET A receptor antagonism. In rat trachea (ET B ), bosentan was a competitive ET B antagonist against endothelin-1 or sarafotoxin S6c. Modeling showed the importance of dual receptor antagonism where the potency ratio of ET A to ET B antagonism is close to unity. In conclusion, the rat pulmonary artery is an example of a special vascular bed where the resistance to antagonism of endothelin-1 constriction by ET dual antagonists, such as bosentan or the ET B antagonist BQ788, is possibly due to the competition of potentiation of endothelin-1 by blockade of ET B -mediated endothelin-1 clearance located on smooth muscle and antagonism of ET A - and ET B -mediated contraction. This conclusion may have direct application for the efficacy of endothelin-1 antagonists for treating PAH. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

  16. Identifying the receptor subtype selectivity of retinoid X and retinoic acid receptors via quantum mechanics.

    PubMed

    Tsuji, Motonori; Shudo, Koichi; Kagechika, Hiroyuki

    2017-03-01

    Understanding and identifying the receptor subtype selectivity of a ligand is an important issue in the field of drug discovery. Using a combination of classical molecular mechanics and quantum mechanical calculations, this report assesses the receptor subtype selectivity for the human retinoid X receptor (hRXR) and retinoic acid receptor (hRAR) ligand-binding domains (LBDs) complexed with retinoid ligands. The calculated energies show good correlation with the experimentally reported binding affinities. The technique proposed here is a promising method as it reveals the origin of the receptor subtype selectivity of selective ligands.

  17. Mechanisms of Practice-Related Reductions of Dual-Task Interference with Simple Tasks: Data and Theory

    PubMed Central

    Strobach, Tilo; Torsten, Schubert

    2017-01-01

    In dual-task situations, interference between two simultaneous tasks impairs performance. With practice, however, this impairment can be reduced. To identify mechanisms leading to a practice-related improvement in sensorimotor dual tasks, the present review applied the following general hypothesis: Sources that impair dual-task performance at the beginning of practice are associated with mechanisms for the reduction of dual-task impairment at the end of practice. The following types of processes provide sources for the occurrence of this impairment: (a) capacity-limited processes within the component tasks, such as response-selection or motor response stages, and (b) cognitive control processes independent of these tasks and thus operating outside of component-task performance. Dual-task practice studies show that, under very specific conditions, capacity-limited processes within the component tasks are automatized with practice, reducing the interference between two simultaneous tasks. Further, there is evidence that response-selection stages are shortened with practice. Thus, capacity limitations at these stages are sources for dual-task costs at the beginning of practice and are overcome with practice. However, there is no evidence demonstrating the existence of practice-related mechanisms associated with capacity-limited motor-response stages. Further, during practice, there is an acquisition of executive control skills for an improved allocation of limited attention resources to two tasks as well as some evidence supporting the assumption of improved task coordination. These latter mechanisms are associated with sources of dual-task interference operating outside of component task performance at the beginning of practice and also contribute to the reduction of dual-task interference at its end. PMID:28439319

  18. Mechanism for the activation of glutamate receptors

    Cancer.gov

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  19. Development of dual field magnetic flux leakage (MFL) inspection technology to detect mechanical damage.

    DOT National Transportation Integrated Search

    2013-03-01

    This report details the development and testing of a dual magnetization in-line inspection (ILI) : tool for detecting mechanical damage in operating pipelines, including the first field trials of a : fully operational dual-field magnetic flux leakage...

  20. Excitatory and inhibitory effects of opiates in the rat vas deferens: a dual mechanism of opiate action.

    PubMed

    Jacquet, Y F

    1980-10-03

    Both natural (-)-morphine and its unnatural enantiomer (+)-morphine exert an excitatory action on electrically stimulated contractions of rat vas deferens. Preexposure to (-)-morphine results in cross-tolerance to the inhibitory action of beta-endorphin. (-)-Naloxone and its stereoisomer (+)-naloxone also exert an excitatory action, but only (-)-naloxone bocks the inhibtory action of beta-endorphin. Thus morphine exerts a dual action on a peripheral organ: one an inhibitory action mediated by the stereospecific endorphin receptor that is blocked stereospecifically by naloxone, the other an excitatory action mediated by a nonstereospecific receptor that is not blocked by naloxone. The opiate abstinence syndrome is seen as due to the unmasking of the excitatory action of opiates when its concomitant inhibitory influence is removed by selective blockade by naloxone or weakened by selective tolerance. The view that the rat vas deferens is devoid of morphine receptors is now seen as arising from a reverse example of morphine's dual action: the masking of the inhibitory action of morphine by its concomitant and more potent excitatory action.

  1. Action mechanisms of Liver X Receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabbi, Chiara; Warner, Margaret; Gustafsson, Jan-Åke, E-mail: jgustafs@central.uh.edu

    2014-04-11

    Highlights: • LXRα and LXRβ are ligand-activated nuclear receptors. • They share oxysterol ligands and the same heterodimerization partner, RXR. • LXRs regulate lipid and glucose metabolism, CNS and immune functions, and water transport. - Abstract: The two Liver X Receptors, LXRα and LXRβ, are nuclear receptors belonging to the superfamily of ligand-activated transcription factors. They share more than 78% homology in amino acid sequence, a common profile of oxysterol ligands and the same heterodimerization partner, Retinoid X Receptor. LXRs play crucial roles in several metabolic pathways: lipid metabolism, in particular in preventing cellular cholesterol accumulation; glucose homeostasis; inflammation; centralmore » nervous system functions and water transport. As with all nuclear receptors, the transcriptional activity of LXR is the result of an orchestration of numerous cellular factors including ligand bioavailability, presence of corepressors and coactivators and cellular context i.e., what other pathways are activated in the cell at the time the receptor recognizes its ligand. In this mini-review we summarize the factors regulating the transcriptional activity and the mechanisms of action of these two receptors.« less

  2. Receptor recruitment: A mechanism for interactions between G protein-coupled receptors

    PubMed Central

    Holtbäck, Ulla; Brismar, Hjalmar; DiBona, Gerald F.; Fu, Michael; Greengard, Paul; Aperia, Anita

    1999-01-01

    There is a great deal of evidence for synergistic interactions between G protein-coupled signal transduction pathways in various tissues. As two specific examples, the potent effects of the biogenic amines norepinephrine and dopamine on sodium transporters and natriuresis can be modulated by neuropeptide Y and atrial natriuretic peptide, respectively. Here, we report, using a renal epithelial cell line, that both types of modulation involve recruitment of receptors from the interior of the cell to the plasma membrane. The results indicate that recruitment of G protein-coupled receptors may be a ubiquitous mechanism for receptor sensitization and may play a role in the modulation of signal transduction comparable to that of the well established phenomenon of receptor endocytosis and desensitization. PMID:10377404

  3. Pixel-based absorption correction for dual-tracer fluorescence imaging of receptor binding potential

    PubMed Central

    Kanick, Stephen C.; Tichauer, Kenneth M.; Gunn, Jason; Samkoe, Kimberley S.; Pogue, Brian W.

    2014-01-01

    Ratiometric approaches to quantifying molecular concentrations have been used for decades in microscopy, but have rarely been exploited in vivo until recently. One dual-tracer approach can utilize an untargeted reference tracer to account for non-specific uptake of a receptor-targeted tracer, and ultimately estimate receptor binding potential quantitatively. However, interpretation of the relative dynamic distribution kinetics is confounded by differences in local tissue absorption at the wavelengths used for each tracer. This study simulated the influence of absorption on fluorescence emission intensity and depth sensitivity at typical near-infrared fluorophore wavelength bands near 700 and 800 nm in mouse skin in order to correct for these tissue optical differences in signal detection. Changes in blood volume [1-3%] and hemoglobin oxygen saturation [0-100%] were demonstrated to introduce substantial distortions to receptor binding estimates (error > 30%), whereas sampled depth was relatively insensitive to wavelength (error < 6%). In response, a pixel-by-pixel normalization of tracer inputs immediately post-injection was found to account for spatial heterogeneities in local absorption properties. Application of the pixel-based normalization method to an in vivo imaging study demonstrated significant improvement, as compared with a reference tissue normalization approach. PMID:25360349

  4. [Signal transduction mechanisms of hormones through membrane receptors].

    PubMed

    Yasufuku-Takano, Junko; Takano, Koji

    2002-02-01

    Hormones exert their effect on cells either via membrane receptors or intracellular receptors. This paper aims to review membrane receptors and the intracellular signal transduction mechanisms. Membrane receptors could be classified according to their structural characteristics and the way they initiate the intracellular signal transduction. These include 1) Seven transmembrane(or G-protein coupled) receptors--heterotrimeric G-proteins--effector, system, 2) Receptor tyrosine kinases--protein-protein interaction through SH2, SH3, and PTB domain--MAP kinase cascades and PI3-kinase pathways, 3) Cytokine receptors--JAK--STAT pathways, 4) Receptors of the TGF- beta superfamily--SMAD pathways, 5) Apoptosis-related receptors--caspase pathways, and 6) ligand-gated ion channels. There are growing knowledge of cross-talks between these pathways. It is being recognized that steroid hormones have distinct membrane receptors, which mediate rapid, nongenomic effect.

  5. p-Dimethylaminobenzamide as an ICT dual fluorescent neutral receptor for anions under proton coupled electron transfer sensing mechanism

    NASA Astrophysics Data System (ADS)

    Wu, Fang-Ying; Jiang, Yun-Bao

    2002-04-01

    The intramolecular charge transfer (ICT) dual fluorescence of p-dimethylaminobenzamide (DMABA) in acetonitrile was found to show highly sensitive response to HSO 4- over several other anions such as H 2PO 4-,AcO - and ClO 4-. In the presence of bisulfate anion the dual fluorescence intensity ratio and the total intensity of DMABA decreased while the dual emission band positions remained unchanged. Absorption titration indicated that a 1:1 hydrogen bonding complex was formed between bisulfate anion and DMABA, which gave a binding constant of 2.02×10 4 mol-1 l that is two orders of magnitude higher than those for other anions. The obvious isotopic effect observed in the fluorescence quenching [ K SV( HSO4-)/K SV( DSO4-)=1.63 ] suggests that the hydrogen atom moving is an important reaction coordinate. It was assumed that the dual fluorescence response was due to proton coupled electron transfer mediated by hydrogen bonds within the 1:1 HSO 4--DMABA hydrogen-bonding complex.

  6. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser.

    PubMed

    Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-09-19

    Dual-comb lasers simultaneously generating asynchronous ultrashort pulses could be an intriguing alternative to the current dual-laser comb source. When generated through a common light path, the low common-mode noises and good coherence between the pulse trains could be realized. Here we demonstrate the completely common-path, unidirectional dual-comb lasing using a carbon nanotube saturable absorber with additional pulse narrowing and broadening mechanisms. The interactions between multiple soliton formation mechanisms result in bifurcation into unusual two-pulse states with pulses of four-fold bandwidth difference and tens-of-Hz repetition rate difference. Coherence between the pulses is verified by the asynchronous cross-sampling and dual-comb spectroscopy measurements.

  7. Biaryls as potent, tunable dual neurokinin 1 receptor antagonists and serotonin transporter inhibitors.

    PubMed

    Degnan, Andrew P; Tora, George O; Han, Ying; Rajamani, Ramkumar; Bertekap, Robert; Krause, Rudolph; Davis, Carl D; Hu, Joanna; Morgan, Daniel; Taylor, Sarah J; Krause, Kelly; Li, Yu-Wen; Mattson, Gail; Cunningham, Melissa A; Taber, Matthew T; Lodge, Nicholas J; Bronson, Joanne J; Gillman, Kevin W; Macor, John E

    2015-08-01

    Depression is a serious illness that affects millions of patients. Current treatments are associated with a number of undesirable side effects. Neurokinin 1 receptor (NK1R) antagonists have recently been shown to potentiate the antidepressant effects of serotonin-selective reuptake inhibitors (SSRIs) in a number of animal models. Herein we describe the optimization of a biaryl chemotype to provide a series of potent dual NK1R antagonists/serotonin transporter (SERT) inhibitors. Through the choice of appropriate substituents, the SERT/NK1R ratio could be tuned to afford a range of target selectivity profiles. This effort culminated in the identification of an analog that demonstrated oral bioavailability, favorable brain uptake, and efficacy in the gerbil foot tap model. Ex vivo occupancy studies with compound 58 demonstrated the ability to maintain NK1 receptor saturation (>88% occupancy) while titrating the desired level of SERT occupancy (11-84%) via dose selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Glycine receptor mechanism elucidated by electron cryo-microscopy.

    PubMed

    Du, Juan; Lü, Wei; Wu, Shenping; Cheng, Yifan; Gouaux, Eric

    2015-10-08

    The strychnine-sensitive glycine receptor (GlyR) mediates inhibitory synaptic transmission in the spinal cord and brainstem and is linked to neurological disorders, including autism and hyperekplexia. Understanding of molecular mechanisms and pharmacology of glycine receptors has been hindered by a lack of high-resolution structures. Here we report electron cryo-microscopy structures of the zebrafish α1 GlyR with strychnine, glycine, or glycine and ivermectin (glycine/ivermectin). Strychnine arrests the receptor in an antagonist-bound closed ion channel state, glycine stabilizes the receptor in an agonist-bound open channel state, and the glycine/ivermectin complex adopts a potentially desensitized or partially open state. Relative to the glycine-bound state, strychnine expands the agonist-binding pocket via outward movement of the C loop, promotes rearrangement of the extracellular and transmembrane domain 'wrist' interface, and leads to rotation of the transmembrane domain towards the pore axis, occluding the ion conduction pathway. These structures illuminate the GlyR mechanism and define a rubric to interpret structures of Cys-loop receptors.

  9. Dual specificity of activin type II receptor ActRIIb in dorso-ventral patterning during zebrafish embryogenesis.

    PubMed

    Nagaso, H; Suzuki, A; Tada, M; Ueno, N

    1999-04-01

    Members of the transforming growth factor-beta (TGF-beta) superfamily are thought to regulate specification of a variety of tissue types in early embryogenesis. These effects are mediated through a cell surface receptor complex, consisting of two classes of ser/thr kinase receptor, type I and type II. In the present study, cDNA encoding zebrafish activin type II receptors, ActRIIa and ActRIIb was cloned and characterized. Overexpression of ActRIIb in zebrafish embryos caused dorsalization of embryos, as observed in activin-overexpressing embryos. However, in blastula stage embryos, ActRIIb induced formation of both dorsal and ventro-lateral mesoderm. It has been suggested that these inducing signals from ActRIIb are mediated through each specific type I receptor, TARAM-A and BMPRIA, depending on activin and bone morphogenetic protein (BMP), respectively. In addition, it was shown that a kinase-deleted form of ActRIIb (dnActRIIb) suppressed both activin- and BMP-like signaling pathways. These results suggest that ActRIIb at least has dual roles in both activin and BMP signaling pathways during zebrafish embryogenesis.

  10. Novel spirotetracyclic zwitterionic dual H(1)/5-HT(2A) receptor antagonists for the treatment of sleep disorders.

    PubMed

    Gianotti, Massimo; Botta, Maurizio; Brough, Stephen; Carletti, Renzo; Castiglioni, Emiliano; Corti, Corrado; Dal-Cin, Michele; Delle Fratte, Sonia; Korajac, Denana; Lovric, Marija; Merlo, Giancarlo; Mesic, Milan; Pavone, Francesca; Piccoli, Laura; Rast, Slavko; Roscic, Maja; Sava, Anna; Smehil, Mario; Stasi, Luigi; Togninelli, Andrea; Wigglesworth, Mark J

    2010-11-11

    Histamine H(1) and serotonin 5-HT(2A) receptors mediate two different mechanisms involved in sleep regulation: H(1) antagonists are sleep inducers, while 5-HT(2A) antagonists are sleep maintainers. Starting from 9'a, a novel spirotetracyclic compound endowed with good H(1)/5-HT(2A) potency but poor selectivity, very high Cli, and a poor P450 profile, a specific optimization strategy was set up. In particular, we investigated the possibility of introducing appropriate amino acid moieties to optimize the developability profile of the series. Following this zwitterionic approach, we were able to identify several advanced leads (51, 65, and 73) with potent dual H(1)/5-HT(2A) activity and appropriate developability profiles. These compounds exhibited efficacy as hypnotic agents in a rat telemetric sleep model with minimal effective doses in the range 3-10 mg/kg po.

  11. Primal-dual techniques for online algorithms and mechanisms

    NASA Astrophysics Data System (ADS)

    Liaghat, Vahid

    An offline algorithm is one that knows the entire input in advance. An online algorithm, however, processes its input in a serial fashion. In contrast to offline algorithms, an online algorithm works in a local fashion and has to make irrevocable decisions without having the entire input. Online algorithms are often not optimal since their irrevocable decisions may turn out to be inefficient after receiving the rest of the input. For a given online problem, the goal is to design algorithms which are competitive against the offline optimal solutions. In a classical offline scenario, it is often common to see a dual analysis of problems that can be formulated as a linear or convex program. Primal-dual and dual-fitting techniques have been successfully applied to many such problems. Unfortunately, the usual tricks come short in an online setting since an online algorithm should make decisions without knowing even the whole program. In this thesis, we study the competitive analysis of fundamental problems in the literature such as different variants of online matching and online Steiner connectivity, via online dual techniques. Although there are many generic tools for solving an optimization problem in the offline paradigm, in comparison, much less is known for tackling online problems. The main focus of this work is to design generic techniques for solving integral linear optimization problems where the solution space is restricted via a set of linear constraints. A general family of these problems are online packing/covering problems. Our work shows that for several seemingly unrelated problems, primal-dual techniques can be successfully applied as a unifying approach for analyzing these problems. We believe this leads to generic algorithmic frameworks for solving online problems. In the first part of the thesis, we show the effectiveness of our techniques in the stochastic settings and their applications in Bayesian mechanism design. In particular, we introduce new

  12. Design and evaluation of dual CD44 receptor and folate receptor-targeting double-smart pH-response multifunctional nanocarrier

    NASA Astrophysics Data System (ADS)

    Chen, Daquan; Song, Xiaoyan; Wang, Kaili; Guo, Chunjing; Yu, Yueming; Fan, Huaying; Zhao, Feng

    2017-12-01

    In this article, in order to enhance the bioavailiability and tumor targeting of curcumin (Cur), the oligosaccharides of hyaluronan conjugates, folic acid-oligosaccharides of hyaluronan-acetal-menthone 1,2-glycerol ketal (FA-oHA-Ace-MGK) carried oHA as a ligand to CD44 receptor, double-pH-sensitive Ace-MGK as hydrophobic moieties, and FA as the target of folate receptor. The structure characteristics of this smart response multifunctional dual-targeting nano-sized carrier was measured by fourier-transform infrared (FT-IR) and nuclear magnetic resonance (1H-NMR). Cur, an anticancer drug, was successfully loaded in FA-oHA-Ace-MGK micelles by self-assembly. The measurement results of transmission electron microscopy (TEM) presented that the Cur-loaded micelles were spherical in shape with the average size of 166.3 ± 2.12 nm and zeta potential - 30.07 mV. Much more encapsulated Cur could be released at mildly acidic environments than at pH 7.4, from the Cur-FA-oHA-Ace-MGK micelles. Cytotoxicity assay indicated that non-Cur loaded micelles mostly had no cytotoxicity to MCF-7 cells and A549 cells, and Cur-loaded micelles had significantly lower survival rate than Cur suspension in the same concentration, which proved that the drug-loaded micelles can effectively inhibit tumor cell growth. The targeting of CD44 receptors and folate receptors was proved in vitro cellular uptake assay. These results showed the promising potential of FA-oHA-Ace-MGK as an effective nano-sized carrier for anti-tumor drug delivery.

  13. Structural Analysis of Botulinum Neurotoxin Type G Receptor Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, John; Karalewitz, Andrew; Benefield, Desire A.

    2010-10-19

    Botulinum neurotoxin (BoNT) binds peripheral neurons at the neuromuscular junction through a dual-receptor mechanism that includes interactions with ganglioside and protein receptors. The receptor identities vary depending on BoNT serotype (A-G). BoNT/B and BoNT/G bind the luminal domains of synaptotagmin I and II, homologous synaptic vesicle proteins. We observe conditions under which BoNT/B binds both Syt isoforms, but BoNT/G binds only SytI. Both serotypes bind ganglioside G{sub T1b}. The BoNT/G receptor-binding domain crystal structure provides a context for examining these binding interactions and a platform for understanding the physiological relevance of different Syt receptor isoforms in vivo.

  14. Dual orexin receptor antagonists - promising agents in the treatment of sleep disorders.

    PubMed

    Pałasz, Artur; Lapray, Damien; Peyron, Christelle; Rojczyk-Gołębiewska, Ewa; Skowronek, Rafał; Markowski, Grzegorz; Czajkowska, Beata; Krzystanek, Marek; Wiaderkiewicz, Ryszard

    2014-01-01

    Insomnia is a serious medical and social problem, its prevalence in the general population ranges from 9 to 35% depending on the country and assessment method. Often, patients are subject to inappropriate and therefore dangerous pharmacotherapies that include prolonged administration of hypnotic drugs, benzodiazepines and other GABAA receptor modulators. This usually does not lead to a satisfactory improvement in patients' clinical states and may cause lifelong drug dependence. Brain state transitions require the coordinated activity of numerous neuronal pathways and brain structures. It is thought that orexin-expressing neurons play a crucial role in this process. Due to their interaction with the sleep-wake-regulating neuronal population, they can activate vigilance-promoting regions and prevent unwanted sleep intrusions. Understanding the multiple orexin modulatory effects is crucial in the context of pathogenesis of insomnia and should lead to the development of novel treatments. An important step in this process was the synthesis of dual antagonists of orexin receptors. Crucially, these drugs, as opposed to benzodiazepines, do not change the sleep architecture and have limited side-effects. This new pharmacological approach might be the most appropriate to treat insomnia.

  15. Molecular mechanisms of platelet P2Y(12) receptor regulation.

    PubMed

    Cunningham, Margaret R; Nisar, Shaista P; Mundell, Stuart J

    2013-02-01

    Platelets are critical for haemostasis, however inappropriate activation can lead to the development of arterial thrombosis, which can result in heart attack and stroke. ADP is a key platelet agonist that exerts its actions via stimulation of two surface GPCRs (G-protein-coupled receptors), P2Y(1) and P2Y(12). Similar to most GPCRs, P2Y receptor activity is tightly regulated by a number of complex mechanisms including receptor desensitization, internalization and recycling. In the present article, we review the molecular mechanisms that underlie P2Y(1) and P2Y(12) receptor regulation, with particular emphasis on the structural motifs within the P2Y(12) receptor, which are required to maintain regulatory protein interaction. The implications of these findings for platelet responsiveness are also discussed.

  16. Toward an understanding of the neural mechanisms underlying dual-task performance: Contribution of comparative approaches using animal models.

    PubMed

    Watanabe, Kei; Funahashi, Shintaro

    2018-01-01

    The study of dual-task performance in human subjects has received considerable interest in cognitive neuroscience because it can provide detailed insights into the neural mechanisms underlying higher-order cognitive control. Despite many decades of research, our understanding of the neurobiological basis of dual-task performance is still limited, and some critical questions are still under debate. Recently, behavioral and neurophysiological studies of dual-task performance in animals have begun to provide intriguing evidence regarding how dual-task information is processed in the brain. In this review, we first summarize key evidence in neuroimaging and neuropsychological studies in humans and discuss possible reasons for discrepancies across studies. We then provide a comprehensive review of the literature on dual-task studies in animals and provide a novel working hypothesis that may reconcile the divergent results in human studies toward a unified view of the mechanisms underlying dual-task processing. Finally, we propose possible directions for future dual-task experiments in the framework of comparative cognitive neuroscience. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN.

    PubMed

    Liu, Zhaofei; Yan, Yongjun; Chin, Frederic T; Wang, Fan; Chen, Xiaoyuan

    2009-01-22

    Radiolabeled RGD and bombesin peptides have been extensively investigated for tumor integrin alpha(v)beta(3) and GRPR imaging, respectively. Due to the fact that many tumors are both integrin and GRPR positive, we designed and synthesized a heterodimeric peptide Glu-RGD-BBN, which is expected to be advantageous over the monomeric peptides for dual-receptor targeting. A PEG(3) spacer was attached to the glutamate alpha-amino group of Glu-RGD-BBN to enhance the (18)F labeling yield and to improve the in vivo kinetics. PEG(3)-Glu-RGD-BBN possesses the comparable GRPR and integrin alpha(v)beta(3) receptor-binding affinities as the corresponding monomers, respectively. The dual-receptor targeting properties of (18)F-FB-PEG(3)-Glu-RGD-BBN were observed in PC-3 tumor model. (18)F-FB-PEG(3)-Glu-RGD-BBN with high tumor contrast and favorable pharmacokinetics is a promising PET tracer for dual integrin and GRPR positive tumor imaging. This heterodimer strategy may also be an applicable method to develop other molecules with improved in vitro and in vivo characterizations for tumor diagnosis and therapy.

  18. Glycine receptor mechanism illuminated by electron cryo-microscopy

    PubMed Central

    Du, Juan; Lü, Wei; Wu, Shenping; Cheng, Yifan; Gouaux, Eric

    2015-01-01

    Summary The strychnine-sensitive glycine receptor (GlyR) mediates inhibitory synaptic transmission in the spinal cord and brainstem and is linked to neurological disorders including autism and hyperekplexia. Understanding of molecular mechanisms and pharmacology of GlyRs has been hindered by a dearth of high-resolution structures. Here we report electron cryo-microscopy structures of the α1 GlyR with strychnine, glycine, or glycine/ivermectin. Strychnine arrests the receptor in an antagonist-bound, closed ion channel state, glycine stabilizes the receptor in an agonist-bound open channel state, and the glycine/ivermectin complex adopts a potentially desensitized or partially open state. Relative to the glycine-bound state, strychnine expands the agonist-binding pocket via outward movement of the C loop, promotes rearrangement of the extracellular and transmembrane domain ‘wrist’ interface, and leads to rotation of the transmembrane domain toward the pore axis, occluding the ion conduction pathway. These structures illuminate GlyR mechanism and define a rubric to interpret structures of Cys-loop receptors. PMID:26344198

  19. Vascular Effects of Endothelin Receptor Antagonists Depends on Their Selectivity for ETA Versus ETB Receptors and on the Functionality of Endothelial ETB Receptors.

    PubMed

    Iglarz, Marc; Steiner, Pauline; Wanner, Daniel; Rey, Markus; Hess, Patrick; Clozel, Martine

    2015-10-01

    The goal of this study was to characterize the role of Endothelin (ET) type B receptors (ETB) on vascular function in healthy and diseased conditions and demonstrate how it affects the pharmacological activity of ET receptor antagonists (ERAs). The contribution of the ETB receptor to vascular relaxation or constriction was characterized in isolated arteries from healthy and diseased rats with systemic (Dahl-S) or pulmonary hypertension (monocrotaline). Because the role of ETB receptors is different in pathological vis-à-vis normal conditions, we compared the efficacy of ETA-selective and dual ETA/ETB ERAs on blood pressure in hypertensive rats equipped with telemetry. In healthy vessels, ETB receptors stimulation with sarafotoxin S6c induced vasorelaxation and no vasoconstriction. In contrast, in arteries of rats with systemic or pulmonary hypertension, endothelial ETB-mediated relaxation was lost while vasoconstriction on stimulation by sarafotoxin S6c was observed. In hypertensive rats, administration of the dual ETA/ETB ERA macitentan on top of a maximal effective dose of the ETA-selective ERA ambrisentan further reduced blood pressure, indicating that ETB receptors blockade provides additional benefit. Taken together, these data suggest that in pathology, dual ETA/ETB receptor antagonism can provide superior vascular effects compared with ETA-selective receptor blockade.

  20. In Vitro Mouse and Human Serum Stability of a Heterobivalent Dual-Target Probe That Has Strong Affinity to Gastrin-Releasing Peptide and Neuropeptide Y1 Receptors on Tumor Cells.

    PubMed

    Ghosh, Arijit; Raju, Natarajan; Tweedle, Michael; Kumar, Krishan

    2017-02-01

    Receptor-targeting radiolabeled molecular probes with high affinity and specificity are useful in studying and monitoring biological processes and responses. Dual- or multiple-targeting probes, using radiolabeled metal chelates conjugated to peptides, have potential advantages over single-targeting probes as they can recognize multiple targets leading to better sensitivity for imaging and radiotherapy when target heterogeneity is present. Two natural hormone peptide receptors, gastrin-releasing peptide (GRP) and Y1, are specifically interesting as their expression is upregulated in most breast and prostate cancers. One of our goals has been to develop a dual-target probe that can bind both GRP and Y1 receptors. Consequently, a heterobivalent dual-target probe, t-BBN/BVD15-DO3A (where a GRP targeting ligand J-G-Abz4-QWAVGHLM-NH 2 and Y1 targeting ligand INP-K [ɛ-J-(α-DO3A-ɛ-DGa)-K] YRLRY-NH 2 were coupled), that recognizes both GRP and Y1 receptors was synthesized, purified, and characterized in the past. Competitive displacement cell binding assay studies with the probe demonstrated strong affinity (IC 50 values given in parentheses) for GRP receptors in T-47D cells (18 ± 0.7 nM) and for Y1 receptors in MCF7 cells (80 ± 11 nM). As a further evaluation of the heterobivalent dual-target probe t-BBN/BVD15-DO3A, the objective of this study was to determine its mouse and human serum stability at 37°C. The in vitro metabolic degradation of the dual-target probe in mouse and human serum was studied by using a 153 Gd-labeled t-BBN/BVD15-DO3A and a high-performance liquid chromatography/radioisotope detector analytical method. The half-life (t 1/2 ) of degradation of the dual-target probe in mouse serum was calculated as 7 hours and only ∼20% degradation was seen after 6 hours incubation in human serum. The slow in vitro metabolic degradation of the dual-target probe can be compared with the degradation t 1/2 of the corresponding monomeric probes, BVD15

  1. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer.

    PubMed

    Miller-Kleinhenz, Jasmine; Guo, Xiangxue; Qian, Weiping; Zhou, Hongyu; Bozeman, Erica N; Zhu, Lei; Ji, Xin; Wang, Y Andrew; Styblo, Toncred; O'Regan, Ruth; Mao, Hui; Yang, Lily

    2018-01-01

    Heterogeneous tumor cells, high incidence of tumor recurrence, and decrease in overall survival are the major challenges for the treatment of chemo-resistant breast cancer. Results of our study showed differential chemotherapeutic responses among breast cancer patient derived xenograft (PDX) tumors established from the same patients. All doxorubicin (Dox)-resistant tumors expressed higher levels of cancer stem-like cell biomarkers, including CD44, Wnt and its receptor LRP5/6, relative to Dox-sensitive tumors. To effectively treat resistant tumors, we developed an ultra-small magnetic iron oxide nanoparticle (IONP) drug carrier conjugated with peptides that are dually targeted to Wnt/LRP5/6 and urokinase plasminogen activator receptor (uPAR). Our results showed that simultaneous binding to LRP5/6 and uPAR by the dual receptor targeted IONPs was required to inhibit breast cancer cell invasion. Molecular analysis revealed that the dual receptor targeted IONPs significantly inhibited Wnt/β-catenin signaling and cancer stem-like phenotype of tumor cells, with marked reduction of Wnt ligand, CD44 and uPAR. Systemic administration of the dual targeted IONPs led to nanoparticle-drug delivery into PDX tumors, resulting in stronger tumor growth inhibition compared to non-targeted or single-targeted IONP-Dox in a human breast cancer PDX model. Therefore, co-targeting Wnt/LRP and uPAR using IONP drug carriers is a promising therapeutic approach for effective drug delivery to chemo-resistant breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A fluoride-sensing receptor based on 2,2'-bis(indolyl)methane by dual-function of colorimetry and fluorescence.

    PubMed

    Wei, Wei; Shao, Shi Jun; Guo, Yong

    2015-10-05

    A compound based on 2,2'-bis(indolyl)methane containing nitro group was studied as a new anion receptor. It could recognize selectively F(-) by an increasing fluorescence signal and a visible color change from colorless to blue. The introduction of nitro group induced the spectral dual-function related to the deprotonation of N-H protons. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Discovery of a Series of Imidazo[4,5-b]pyridines with Dual Activity at Angiotensin II Type 1 Receptor and Peroxisome Proliferator-Activated Receptor-[gamma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casimiro-Garcia, Agustin; Filzen, Gary F.; Flynn, Declan

    2013-03-07

    Mining of an in-house collection of angiotensin II type 1 receptor antagonists to identify compounds with activity at the peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) revealed a new series of imidazo[4,5-b]pyridines 2 possessing activity at these two receptors. Early availability of the crystal structure of the lead compound 2a bound to the ligand binding domain of human PPAR{gamma} confirmed the mode of interaction of this scaffold to the nuclear receptor and assisted in the optimization of PPAR{gamma} activity. Among the new compounds, (S)-3-(5-(2-(1H-tetrazol-5-yl)phenyl)-2,3-dihydro-1H-inden-1-yl)-2-ethyl-5-isobutyl-7-methyl-3H-imidazo[4,5-b]pyridine (2l) was identified as a potent angiotensin II type I receptor blocker (IC{sub 50} = 1.6 nM) with partialmore » PPAR{gamma} agonism (EC{sub 50} = 212 nM, 31% max) and oral bioavailability in rat. The dual pharmacology of 2l was demonstrated in animal models of hypertension (SHR) and insulin resistance (ZDF rat). In the SHR, 2l was highly efficacious in lowering blood pressure, while robust lowering of glucose and triglycerides was observed in the male ZDF rat.« less

  4. Chemokine (C-C motif) receptor 5-using envelopes predominate in dual/mixed-tropic HIV from the plasma of drug-naive individuals.

    PubMed

    Irlbeck, David M; Amrine-Madsen, Heather; Kitrinos, Kathryn M; Labranche, Celia C; Demarest, James F

    2008-07-31

    HIV-1 utilizes CD4 and either chemokine (C-C motif) receptor 5 (CCR5) or chemokine (C-X-C motif) receptor 4 (CXCR4) to gain entry into host cells. Small molecule CCR5 antagonists are currently being developed for the treatment of HIV-1 infection. Because HIV-1 may also use CXCR4 for entry, the use of CCR5 entry inhibitors is controversial for patients harboring CCR5-using and CXCR4-using (dual/mixed-tropic) viruses. The goal of the present study was to determine the proportion of CCR5-tropic and CXCR4-tropic viruses in dual/mixed-tropic virus isolates from drug-naïve patients and the phenotypic and genotypic relationships of viruses that use CCR5 or CXCR4 or both. Fourteen antiretroviral-naive HIV-1-infected patients were identified as having population coreceptor tropism readout of dual/mixed-tropic viruses. Intrapatient comparisons of coreceptor tropism and genotype of env clones were conducted on plasma virus from each patient. Population HIV-1 envelope tropism and susceptibility to the CCR5 entry inhibitor, aplaviroc, were performed using the Monogram Biosciences Trofile Assay. Twelve env clones from each patient were analyzed for coreceptor tropism, aplaviroc sensitivity, genotype, and intrapatient phylogenetic relationships. Viral populations from antiretroviral-naive patients with dual/mixed-tropic virus are composed primarily of CCR5-tropic env clones mixed with those that use both coreceptors (R5X4-tropic) and, occasionally, CXCR4-tropic env clones. Interestingly, the efficiency of CXCR4 use by R5X4-tropic env clones varied with their genetic relationships to CCR5-tropic env clones from the same patient. These data show that the majority of viruses in these dual/mixed-tropic populations use CCR5 and suggest that antiretroviral-naive patients may benefit from combination therapy that includes CCR5 entry inhibitors.

  5. Molecular Mechanisms of Opioid Receptor-Dependent Signaling and Behavior

    PubMed Central

    Al-Hasani, Ream; Bruchas, Michael R.

    2013-01-01

    Opioid receptors have been targeted for the treatment of pain and related disorders for thousands of years, and remain the most widely used analgesics in the clinic. Mu (μ), kappa (κ), and delta (δ) opioid receptors represent the originally classified receptor subtypes, with opioid receptor like-1 (ORL1) being the least characterized. All four receptors are G-protein coupled, and activate inhibitory G-proteins. These receptors form homo- and hetereodimeric complexes, signal to kinase cascades, and scaffold a variety of proteins. In this review, we discuss classical mechanisms and developments in understanding opioid tolerance, opioid receptor signaling, and highlight advances in opioid molecular pharmacology, behavioral pharmacology, and human genetics. We put into context how opioid receptor signaling leads to the modulation of behavior with the potential for therapeutic intervention. Finally, we conclude that there is a continued need for more translational work on opioid receptors in vivo. PMID:22020140

  6. Do dual-thread orthodontic mini-implants improve bone/tissue mechanical retention?

    PubMed

    Lin, Yang-Sung; Chang, Yau-Zen; Yu, Jian-Hong; Lin, Chun-Li

    2014-12-01

    The aim of this study was to understand whether the pitch relationship between micro and macro thread designs with a parametrical relationship in a dual-thread mini-implant can improve primary stability. Three types of mini-implants consisting of single-thread (ST) (0.75 mm pitch in whole length), dual-thread A (DTA) with double-start 0.375 mm pitch, and dual-thread B (DTB) with single-start 0.2 mm pitch in upper 2-mm micro thread region for performing insertion and pull-out testing. Histomorphometric analysis was performed in these specimens in evaluating peri-implant bone defects using a non-contact vision measuring system. The maximum inserted torque (Tmax) in type DTA was found to be the smallest significantly, but corresponding values found no significant difference between ST and DTB. The largest pull-out strength (Fmax) in the DTA mini-implant was found significantly greater than that for the ST mini-implant regardless of implant insertion orientation. Mini-implant engaged the cortical bone well as observed in ST and DTA types. Dual-thread mini-implant with correct micro thread pitch (parametrical relationship with macro thread pitch) in the cortical bone region can improve primary stability and enhanced mechanical retention.

  7. The dual boundary element formulation for elastoplastic fracture mechanics

    NASA Astrophysics Data System (ADS)

    Leitao, V.; Aliabadi, M. H.; Rooke, D. P.

    1993-08-01

    The extension of the dual boundary element method (DBEM) to the analysis of elastoplastic fracture mechanics (EPFM) problems is presented. The dual equations of the method are the displacement and the traction boundary integral equations. When the displacement equation is applied to one of the crack surfaces and the traction equation on the other, general mixed-mode crack problems can be solved with a single-region formulation. In order to avoid collocation at crack tips, crack kinks, and crack-edge corners, both crack surfaces are discretized with discontinuous quadratic boundary elements. The elastoplastic behavior is modeled through the use of an approximation for the plastic component of the strain tensor on the region expected to yield. This region is discretized with internal quadratic, quadrilateral, and/or triangular cells. A center-cracked plate and a slant edge-cracked plate subjected to tensile load are analyzed and the results are compared with others available in the literature. J-type integrals are calculated.

  8. Quantitative Electroencephalography Within Sleep/Wake States Differentiates GABAA Modulators Eszopiclone and Zolpidem From Dual Orexin Receptor Antagonists in Rats

    PubMed Central

    Fox, Steven V; Gotter, Anthony L; Tye, Spencer J; Garson, Susan L; Savitz, Alan T; Uslaner, Jason M; Brunner, Joseph I; Tannenbaum, Pamela L; McDonald, Terrence P; Hodgson, Robert; Yao, Lihang; Bowlby, Mark R; Kuduk, Scott D; Coleman, Paul J; Hargreaves, Richard; Winrow, Christopher J; Renger, John J

    2013-01-01

    Dual orexin receptor antagonists (DORAs) induce sleep by blocking orexin 1 and orexin 2 receptor-mediated activities responsible for regulating wakefulness. DORAs represent a potential alternative mechanism to the current standard of care that includes the γ-aminobutyric acid (GABA)A receptor-positive allosteric modulators, eszopiclone and zolpidem. This work uses an innovative method to analyze electroencephalogram (EEG) spectral frequencies within sleep/wake states to differentiate the effects of GABAA modulators from DORA-22, an analog of the DORA MK-6096, in Sprague–Dawley rats. The effects of low, intermediate, and high doses of eszopiclone, zolpidem, and DORA-22 were examined after first defining each compound's ability to promote sleep during active-phase dosing. The EEG spectral frequency power within specific sleep stages was calculated in 1-Hz intervals from 1 to 100 Hz within each sleep/wake state for the first 4 h after the dose. Eszopiclone and zolpidem produced marked, dose-responsive disruptions in sleep stage-specific EEG spectral profiles compared with vehicle treatment. In marked contrast, DORA-22 exhibited marginal changes in the spectral profile, observed only during rapid eye movement sleep, and only at the highest dose tested. Moreover, while eszopiclone- and zolpidem-induced changes were evident in the inactive period, the EEG spectral responses to DORA-22 were absent during this phase. These results suggest that DORA-22 differs from eszopiclone and zolpidem whereby DORA-22 promotes somnolence without altering the neuronal network EEG activity observed during normal sleep. PMID:23722242

  9. Activation of Peroxisome Proliferator-activated Receptor γ (PPARγ) and CD36 Protein Expression: THE DUAL PATHOPHYSIOLOGICAL ROLES OF PROGESTERONE.

    PubMed

    Yang, Xiaoxiao; Zhang, Wenwen; Chen, Yuanli; Li, Yan; Sun, Lei; Liu, Ying; Liu, Mengyang; Yu, Miao; Li, Xiaoju; Han, Jihong; Duan, Yajun

    2016-07-15

    Progesterone or its analog, one of components of hormone replacement therapy, may attenuate the cardioprotective effects of estrogen. However, the underlying mechanisms have not been fully elucidated. Expression of CD36, a receptor for oxidized LDL (oxLDL) that enhances macrophage/foam cell formation, is activated by the transcription factor peroxisome proliferator-activated receptor γ (PPARγ). CD36 also functions as a fatty acid transporter to influence fatty acid metabolism and the pathophysiological status of several diseases. In this study, we determined that progesterone induced macrophage CD36 expression, which is related to progesterone receptor (PR) activity. Progesterone enhanced cellular oxLDL uptake in a CD36-dependent manner. Mechanistically, progesterone increased PPARγ expression and PPARγ promoter activity in a PR-dependent manner and the binding of PR with the progesterone response element in the PPARγ promoter. Specific deletion of macrophage PPARγ (MφPPARγ KO) expression in mice abolished progesterone-induced macrophage CD36 expression and cellular oxLDL accumulation. We also determined that, associated with gestation and increased serum progesterone levels, CD36 and PPARγ expression in mouse adipose tissue, skeletal muscle, and peritoneal macrophages were substantially activated. Taken together, our study demonstrates that progesterone can play dual pathophysiological roles by activating PPARγ expression, in which progesterone increases macrophage CD36 expression and oxLDL accumulation, a negative effect on atherosclerosis, and enhances the PPARγ-CD36 pathway in adipose tissue and skeletal muscle, a protective effect on pregnancy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Dual targeting of glioblastoma with chimeric antigen receptor-engineered natural killer cells overcomes heterogeneity of target antigen expression and enhances antitumor activity and survival.

    PubMed

    Genßler, Sabrina; Burger, Michael C; Zhang, Congcong; Oelsner, Sarah; Mildenberger, Iris; Wagner, Marlies; Steinbach, Joachim P; Wels, Winfried S

    2016-04-01

    Epidermal growth factor receptor (EGFR) and its mutant form EGFRvIII are overexpressed in a large proportion of glioblastomas (GBM). Immunotherapy with an EGFRvIII-specific vaccine has shown efficacy against GBM in clinical studies. However, immune escape by antigen-loss variants and lack of control of EGFR wild-type positive clones limit the usefulness of this approach. Chimeric antigen receptor (CAR)-engineered natural killer (NK) cells may represent an alternative immunotherapeutic strategy. For targeting to GBM, we generated variants of the clinically applicable human NK cell line NK-92 that express CARs carrying a composite CD28-CD3ζ domain for signaling, and scFv antibody fragments for cell binding either recognizing EGFR, EGFRvIII, or an epitope common to both antigens. In vitro analysis revealed high and specific cytotoxicity of EGFR-targeted NK-92 against established and primary human GBM cells, which was dependent on EGFR expression and CAR signaling. EGFRvIII-targeted NK-92 only lysed EGFRvIII-positive GBM cells, while dual-specific NK cells expressing a cetuximab-based CAR were active against both types of tumor cells. In immunodeficient mice carrying intracranial GBM xenografts either expressing EGFR, EGFRvIII or both receptors, local treatment with dual-specific NK cells was superior to treatment with the corresponding monospecific CAR NK cells. This resulted in a marked extension of survival without inducing rapid immune escape as observed upon therapy with monospecific effectors. Our results demonstrate that dual targeting of CAR NK cells reduces the risk of immune escape and suggest that EGFR/EGFRvIII-targeted dual-specific CAR NK cells may have potential for adoptive immunotherapy of glioblastoma.

  11. Synthesis and characterization of a dual kappa-delta opioid receptor agonist analgesic blocking cocaine reward behavior.

    PubMed

    Váradi, András; Marrone, Gina F; Eans, Shainnel O; Ganno, Michelle L; Subrath, Joan J; Le Rouzic, Valerie; Hunkele, Amanda; Pasternak, Gavril W; McLaughlin, Jay P; Majumdar, Susruta

    2015-11-18

    3-Iodobenzoyl naltrexamine (IBNtxA) is a potent analgesic belonging to the pharmacologically diverse 6β-amidoepoxymorphinan group of opioids. We present the synthesis and pharmacological evaluation of five analogs of IBNtxA. The scaffold of IBNtxA was modified by removing the 14-hydroxy group, incorporating a 7,8 double bond and various N-17 alkyl substituents. The structural modifications resulted in analogs with picomolar affinities for opioid receptors. The lead compound (MP1104) was found to exhibit approximately 15-fold greater antinociceptive potency (ED50 = 0.33 mg/kg) compared with morphine, mediated through the activation of kappa- and delta-opioid receptors. Despite its kappa agonism, this lead derivative did not cause place aversion or preference in mice in a place-conditioning assay, even at doses 3 times the analgesic ED50. However, pretreatment with the lead compound prevented the reward behavior associated with cocaine in a conditioned place preference assay. Together, these results suggest the promise of dual acting kappa- and delta-opioid receptor agonists as analgesics and treatments for cocaine addiction.

  12. Methylphenidate enhances NMDA-receptor response in medial prefrontal cortex via sigma-1 receptor: a novel mechanism for methylphenidate action.

    PubMed

    Zhang, Chun-Lei; Feng, Ze-Jun; Liu, Yue; Ji, Xiao-Hua; Peng, Ji-Yun; Zhang, Xue-Han; Zhen, Xue-Chu; Li, Bao-Ming

    2012-01-01

    Methylphenidate (MPH), commercially called Ritalin or Concerta, has been widely used as a drug for Attention Deficit Hyperactivity Disorder (ADHD). Noteworthily, growing numbers of young people using prescribed MPH improperly for pleasurable enhancement, take high risk of addiction. Thus, understanding the mechanism underlying high level of MPH action in the brain becomes an important goal nowadays. As a blocker of catecholamine transporters, its therapeutic effect is explained as being due to proper modulation of D1 and α2A receptor. Here we showed that higher dose of MPH facilitates NMDA-receptor mediated synaptic transmission via a catecholamine-independent mechanism, in layer V∼VI pyramidal cells of the rat medial prefrontal cortex (PFC). To indicate its postsynaptic action, we next found that MPH facilitates NMDA-induced current and such facilitation could be blocked by σ1 but not D1/5 and α2 receptor antagonists. And this MPH eliciting enhancement of NMDA-receptor activity involves PLC, PKC and IP3 receptor mediated intracellular Ca(2+) increase, but does not require PKA and extracellular Ca(2+) influx. Our additional pharmacological studies confirmed that higher dose of MPH increases locomotor activity via interacting with σ1 receptor. Together, the present study demonstrates for the first time that MPH facilitates NMDA-receptor mediated synaptic transmission via σ1 receptor, and such facilitation requires PLC/IP3/PKC signaling pathway. This novel mechanism possibly explains the underlying mechanism for MPH induced addictive potential and other psychiatric side effects.

  13. Methylphenidate Enhances NMDA-Receptor Response in Medial Prefrontal Cortex via Sigma-1 Receptor: A Novel Mechanism for Methylphenidate Action

    PubMed Central

    Liu, Yue; Ji, Xiao-Hua; Peng, Ji-Yun; Zhang, Xue-Han; Zhen, Xue-Chu; Li, Bao-Ming

    2012-01-01

    Methylphenidate (MPH), commercially called Ritalin or Concerta, has been widely used as a drug for Attention Deficit Hyperactivity Disorder (ADHD). Noteworthily, growing numbers of young people using prescribed MPH improperly for pleasurable enhancement, take high risk of addiction. Thus, understanding the mechanism underlying high level of MPH action in the brain becomes an important goal nowadays. As a blocker of catecholamine transporters, its therapeutic effect is explained as being due to proper modulation of D1 and α2A receptor. Here we showed that higher dose of MPH facilitates NMDA-receptor mediated synaptic transmission via a catecholamine-independent mechanism, in layer V∼VI pyramidal cells of the rat medial prefrontal cortex (PFC). To indicate its postsynaptic action, we next found that MPH facilitates NMDA-induced current and such facilitation could be blocked by σ1 but not D1/5 and α2 receptor antagonists. And this MPH eliciting enhancement of NMDA-receptor activity involves PLC, PKC and IP3 receptor mediated intracellular Ca2+ increase, but does not require PKA and extracellular Ca2+ influx. Our additional pharmacological studies confirmed that higher dose of MPH increases locomotor activity via interacting with σ1 receptor. Together, the present study demonstrates for the first time that MPH facilitates NMDA-receptor mediated synaptic transmission via σ1 receptor, and such facilitation requires PLC/IP3/PKC signaling pathway. This novel mechanism possibly explains the underlying mechanism for MPH induced addictive potential and other psychiatric side effects. PMID:23284812

  14. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser

    NASA Astrophysics Data System (ADS)

    Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-09-01

    Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses with four-fold difference in pulsewidths and tens of Hz repetition rate difference is observed. The coherence between these spectral-overlapped, picosecond and femtosecond pulses is further verified by the corresponding asynchronous cross-sampling and dual-comb spectroscopy measurements.

  15. Dual boundary element formulation for elastoplastic fracture mechanics

    NASA Astrophysics Data System (ADS)

    Leitao, V.; Aliabadi, M. H.; Rooke, D. P.

    1995-01-01

    In this paper the extension of the dual boundary element method (DBEM) to the analysis of elastoplastic fracture mechanics (EPFM) problems is presented. The dual equations of the method are the displacement and the traction boundary integral equations. When the displacement equation is applied on one of the crack surfaces and the traction equation on the other, general mixed-mode crack problems can be solved with a single-region formulation. In order to avoid collocation at crack tips, crack kinks and crack-edge corners, both crack surfaces are discretized with discontinuous quadratic boundary elements. The elasto-plastic behavior is modelled through the use of an approximation for the plastic component of the strain tensor on the region expected to yield. This region is discretized with internal quadratic, quadrilateral and/or triangular cells. This formulation was implemented for two-dimensional domains only, although there is no theoretical or numerical limitation to its application to three-dimensional ones. A center-cracked plate and a slant edge-cracked plate subjected to tensile load are analysed and the results are compared with others available in the literature. J-type integrals are calculated.

  16. Novel targeted approaches to treating biliary tract cancer: the dual epidermal growth factor receptor and ErbB-2 tyrosine kinase inhibitor NVP-AEE788 is more efficient than the epidermal growth factor receptor inhibitors gefitinib and erlotinib.

    PubMed

    Wiedmann, Marcus; Feisthammel, Jürgen; Blüthner, Thilo; Tannapfel, Andrea; Kamenz, Thomas; Kluge, Annett; Mössner, Joachim; Caca, Karel

    2006-08-01

    cell lines. Gefitinib, erlotinib and NVP-AEE788 caused a significant growth inhibition in vitro; however, there was a significant difference in efficacy (NVP-AEE788>erlotinib>gefitinib). After 14 days of in-vivo treatment, using the chimeric mouse model, tumors had a significantly reduced volume and mass after NVP-AEE788, but not after erlotinib treatment, as compared with placebo. Reduction of proliferation (signalling via the mitogen-activated protein kinase pathway), induction of apoptosis and inhibition of angiogenesis were the main mechanisms of drug action. No significant reduction of anti-apoptotic AKT phosphorylation, however, occurred, which may be a possible counter mechanism of the tumor. Epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 expression was detectable in biliary tract cancer, and receptor inhibition exerts marked effects on tumor growth in vitro and in vivo, which was strongest for the dual EGFR/ErbB-2 inhibitor NVP-AEE788. Therefore, further clinical evaluation of this new drug for the treatment of biliary tract cancer is recommended.

  17. Mechanisms of ErbB receptor negative regulation and relevance in cancer

    PubMed Central

    Fry, William H.D.; Kotelawala, Lakmal; Sweeney, Colleen; Carraway, Kermit L.

    2009-01-01

    The ErbB family of receptor tyrosine kinases engages a wide variety of signaling pathways that collectively direct transcriptional programs controlling organogenesis during development and tissue maintenance in the adult. These receptors are also frequently found overexpressed or aberrantly activated in various cancers, suggesting that ErbB receptor signaling activity must be very tightly regulated. Sufficient levels of ErbB signaling are necessary to mediate tissue homeostasis, for example, but over-signaling can trigger cellular processes that contribute to cancer initiation or progression. Efforts over the last quarter century have led to a thorough understanding of the signaling pathways that are activated by these receptors and the mechanisms by which ErbB receptors engage these pathways. However, the compensatory negative regulatory mechanisms responsible for attenuating receptor activation have only more recently begun to be explored. Here we review the different known mechanisms of ErbB negative regulation, with particular emphasis on those proteins that exhibit some specificity for the ErbB family. We also describe how loss or suppression of ErbB negative regulators may contribute to tumor development, and discuss how restoration or augmentation of these pathways may represent a novel avenue for the development of ErbB-targeted therapies. PMID:18706412

  18. Design optimization of dual-axis driving mechanism for satellite antenna with two planar revolute clearance joints

    NASA Astrophysics Data System (ADS)

    Bai, Zheng Feng; Zhao, Ji Jun; Chen, Jun; Zhao, Yang

    2018-03-01

    In the dynamic analysis of satellite antenna dual-axis driving mechanism, it is usually assumed that the joints are ideal or perfect without clearances. However, in reality, clearances in joints are unavoidable due to assemblage, manufacturing errors and wear. When clearance is introduced to the mechanism, it will lead to poor dynamic performances and undesirable vibrations due to impact forces in clearance joint. In this paper, a design optimization method is presented to reduce the undesirable vibrations of satellite antenna considering clearance joints in dual-axis driving mechanism. The contact force model in clearance joint is established using a nonlinear spring-damper model and the friction effect is considered using a modified Coulomb friction model. Firstly, the effects of clearances on dynamic responses of satellite antenna are investigated. Then the optimization method for dynamic design of the dual-axis driving mechanism with clearance is presented. The objective of the optimization is to minimize the maximum absolute vibration peak of antenna acceleration by reducing the impact forces in clearance joint. The main consideration here is to optimize the contact parameters of the joint elements. The contact stiffness coefficient, damping coefficient and the dynamic friction coefficient for clearance joint elements are taken as the optimization variables. A Generalized Reduced Gradient (GRG) algorithm is used to solve this highly nonlinear optimization problem for dual-axis driving mechanism with clearance joints. The results show that the acceleration peaks of satellite antenna and contact forces in clearance joints are reduced obviously after design optimization, which contributes to a better performance of the satellite antenna. Also, the application and limitation of the proposed optimization method are discussed.

  19. Selective improvement of pulmonary arterial hypertension with a dual ETA/ETB receptors antagonist in the apolipoprotein E-/- model of PAH and atherosclerosis.

    PubMed

    Renshall, Lewis; Arnold, Nadine; West, Laura; Braithwaite, Adam; Pickworth, Josephine; Walker, Rachel; Alfaidi, Mabruka; Chamberlain, Janet; Casbolt, Helen; Thompson, A A Roger; Holt, Cathy; Iglarz, Marc; Francis, Sheila; Lawrie, Allan

    2018-01-01

    Idiopathic pulmonary arterial hypertension (IPAH) is increasingly diagnosed in elderly patients who also have an increased risk of co-morbid atherosclerosis. Apolipoprotein E-deficient (ApoE -/- ) mice develop atherosclerosis with severe PAH when fed a high-fat diet (HFD) and have increased levels of endothelin (ET)-1. ET-1 receptor antagonists (ERAs) are used for the treatment of PAH but less is known about whether ERAs are beneficial in atherosclerosis. We therefore examined whether treatment of HFD-ApoE -/- mice with macitentan, a dual ET A /ET B receptor antagonist, would have any effect on both atherosclerosis and PAH. ApoE -/- mice were fed chow or HFD for eight weeks. After four weeks of HFD, mice were randomized to a four-week treatment of macitentan by food (30 mg/kg/day dual ET A /ET B antagonist), or placebo groups. Echocardiography and closed-chest right heart catheterization were used to determine PAH phenotype and serum samples were collected for cytokine analysis. Thoracic aortas were harvested to assess vascular reactivity using wire myography, and histological analyses were performed on the brachiocephalic artery and aortic root to assess atherosclerotic burden. Macitentan treatment of HFD-fed ApoE -/- mice was associated with a beneficial effect on the PAH phenotype and led to an increase in endothelial-dependent relaxation in thoracic aortae. Macitentan treatment was also associated with a significant reduction in interleukin 6 (IL-6) concentration but there was no significant effect on atherosclerotic burden. Dual blockade of ET A /ET B receptors improves endothelial function and improves experimental PAH but had no significant effect on atherosclerosis.

  20. Clinical assessment of drug-drug interactions of tasimelteon, a novel dual melatonin receptor agonist.

    PubMed

    Ogilvie, Brian W; Torres, Rosarelis; Dressman, Marlene A; Kramer, William G; Baroldi, Paolo

    2015-09-01

    Tasimelteon ([1R-trans]-N-[(2-[2,3-dihydro-4-benzofuranyl] cyclopropyl) methyl] propanamide), a novel dual melatonin receptor agonist that demonstrates specificity and high affinity for melatonin receptor types 1 and 2 (MT1 and MT2 receptors), is the first treatment approved by the US Food and Drug Administration for Non-24-Hour Sleep-Wake Disorder. Tasimelteon is rapidly absorbed, with a mean absolute bioavailability of approximately 38%, and is extensively metabolized primarily by oxidation at multiple sites, mainly by cytochrome P450 (CYP) 1A2 and CYP3A4/5, as initially demonstrated by in vitro studies and confirmed by the results of clinical drug-drug interactions presented here. The effects of strong inhibitors and moderate or strong inducers of CYP1A2 and CYP3A4/5 on the pharmacokinetics of tasimelteon were evaluated in humans. Coadministration with fluvoxamine resulted in an approximately 6.5-fold increase in tasimelteon's area under the curve (AUC), whereas cigarette smoking decreased tasimelteon's exposure by approximately 40%. Coadministration with ketoconazole resulted in an approximately 54% increase in tasimelteon's AUC, whereas rifampin pretreatment resulted in a decrease in tasimelteon's exposure of approximately 89%. © 2015 The Authors. The Journal of Clinical Pharmacology published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.

  1. Spatiotemporal Targeting of a Dual-Ligand Nanoparticle to Cancer Metastasis.

    PubMed

    Doolittle, Elizabeth; Peiris, Pubudu M; Doron, Gilad; Goldberg, Amy; Tucci, Samantha; Rao, Swetha; Shah, Shruti; Sylvestre, Meilyn; Govender, Priya; Turan, Oguz; Lee, Zhenghong; Schiemann, William P; Karathanasis, Efstathios

    2015-08-25

    Various targeting strategies and ligands have been employed to direct nanoparticles to tumors that upregulate specific cell-surface molecules. However, tumors display a dynamic, heterogeneous microenvironment, which undergoes spatiotemporal changes including the expression of targetable cell-surface biomarkers. Here, we investigated a dual-ligand nanoparticle to effectively target two receptors overexpressed in aggressive tumors. By using two different chemical specificities, the dual-ligand strategy considered the spatiotemporal alterations in the expression patterns of the receptors in cancer sites. As a case study, we used two mouse models of metastasis of triple-negative breast cancer using the MDA-MB-231 and 4T1 cells. The dual-ligand system utilized two peptides targeting P-selectin and αvβ3 integrin, which are functionally linked to different stages of the development of metastatic disease at a distal site. Using in vivo multimodal imaging and post mortem histological analyses, this study shows that the dual-ligand nanoparticle effectively targeted metastatic disease that was otherwise missed by single-ligand strategies. The dual-ligand nanoparticle was capable of capturing different metastatic sites within the same animal that overexpressed either receptor or both of them. Furthermore, the highly efficient targeting resulted in 22% of the injected dual-ligand nanoparticles being deposited in early-stage metastases within 2 h after injection.

  2. Endothelin ETA Receptor Blockade, by Activating ETB Receptors, Increases Vascular Permeability and Induces Exaggerated Fluid Retention.

    PubMed

    Vercauteren, Magali; Trensz, Frederic; Pasquali, Anne; Cattaneo, Christophe; Strasser, Daniel S; Hess, Patrick; Iglarz, Marc; Clozel, Martine

    2017-05-01

    Endothelin (ET) receptor antagonists have been associated with fluid retention. It has been suggested that, of the two endothelin receptor subtypes, ET B receptors should not be blocked, because of their involvement in natriuresis and diuresis. Surprisingly, clinical data suggest that ET A -selective antagonists pose a greater risk of fluid overload than dual antagonists. The purpose of this study was to evaluate the contribution of each endothelin receptor to fluid retention and vascular permeability in rats. Sitaxentan and ambrisentan as ET A -selective antagonists and bosentan and macitentan as dual antagonists were used as representatives of each class, respectively. ET A -selective antagonism caused a dose-dependent hematocrit/hemoglobin decrease that was prevented by ET B -selective receptor antagonism. ET A -selective antagonism led to a significant blood pressure reduction, plasma volume expansion, and a greater increase in vascular permeability than dual antagonism. Isolated vessel experiments showed that ET A -selective antagonism increased vascular permeability via ET B receptor overstimulation. Acutely, ET A -selective but not dual antagonism activated sympathetic activity and increased plasma arginine vasopressin and aldosterone concentrations. The hematocrit/hemoglobin decrease induced by ET A -selective antagonism was reduced in Brattleboro rats and in Wistar rats treated with an arginine vasopressin receptor antagonist. Finally, the decrease in hematocrit/hemoglobin was larger in the venous than in the arterial side, suggesting fluid redistribution. In conclusion, by activating ET B receptors, endothelin receptor antagonists (particularly ET A -selective antagonists) favor edema formation by causing: 1) fluid retention resulting from arginine vasopressin and aldosterone activation secondary to vasodilation, and 2) increased vascular permeability. Plasma volume redistribution may explain the clinical observation of a hematocrit/hemoglobin decrease

  3. Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene.

    PubMed

    Hadjighassem, Mahmoud R; Galaraga, Kimberly; Albert, Paul R

    2011-01-01

    The serotonin-1A (5-HT1A) receptor functions as a pre-synaptic autoreceptor in serotonin neurons that regulates their activity, and is also widely expressed on non-serotonergic neurons as a post-synaptic heteroreceptor to mediate serotonin action. The 5-HT1A receptor gene is strongly repressed by a dual repressor element (DRE), which is recognized by two proteins: Freud-1/CC2D1A and another unknown protein. Here we identify mouse Freud-2/CC2D1B as the second repressor of the 5-HT1A-DRE. Freud-2 shares 50% amino acid identity with Freud-1, and contains conserved structural domains. Mouse Freud-2 bound specifically to the rat 5-HT1A-DRE adjacent to, and partially overlapping, the Freud-1 binding site. By supershift assay using nuclear extracts from L6 myoblasts, Freud-2-DRE complexes were distinguished from Freud-1-DRE complexes. Freud-2 mRNA and protein were detected throughout mouse brain and peripheral tissues. Freud-2 repressed 5-HT1A promoter-reporter constructs in a DRE-dependent manner in non-neuronal (L6) or 5-HT1A-expressing neuronal (NG108-15, RN46A) cell models. In NG108-15 cells, knockdown of Freud-2 using a specific short-interfering RNA reduced endogenous Freud-2 protein levels and decreased Freud-2 bound to the 5-HT1A-DRE as detected by chromatin immunoprecipitation assay, but increased 5-HT1A promoter activity and 5-HT1A protein levels. Taken together, these data show that Freud-2 is the second component that, with Freud-1, mediates dual repression of the 5-HT1A receptor gene at the DRE. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  4. The action of chemical and mechanical stresses on single and dual species biofilm removal of drinking water bacteria.

    PubMed

    Gomes, I B; Lemos, M; Mathieu, L; Simões, M; Simões, L C

    2018-08-01

    The presence of biofilms in drinking water distribution systems (DWDS) is a global public health concern as they can harbor pathogenic microorganisms. Sodium hypochlorite (NaOCl) is the most commonly used disinfectant for microbial growth control in DWDS. However, its effect on biofilm removal is still unclear. This work aims to evaluate the effects of the combination of chemical (NaOCl) and mechanical stresses on the removal of single and dual species biofilms of two bacteria isolated from DWDS and considered opportunistic, Acinectobacter calcoaceticus and Stenotrophomonas maltophilia. A rotating cylinder reactor was successfully used for the first time in drinking water biofilm studies with polyvinyl chloride as substratum. The single and dual species biofilms presented different characteristics in terms of metabolic activity, mass, density, thickness and content of proteins and polysaccharides. Their complete removal was not achieved even when a high NaOCl concentrations and an increasing series of shear stresses (from 2 to 23Pa) were applied. In general, NaOCl pre-treatment did not improve the impact of mechanical stress on biofilm removal. Dual species biofilms were colonized mostly by S. maltophilia and were more susceptible to chemical and mechanical stresses than these single species. The most efficient treatment (93% biofilm removal) was the combination of NaOCl at 175mg·l -1 with mechanical stress against dual species biofilms. Of concern was the high tolerance of S. maltophilia to chemical and mechanical stresses in both single and dual species biofilms. The overall results demonstrate the inefficacy of NaOCl on biofilm removal even when combined with high shear stresses. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Dual Agonist Surrobody Simultaneously Activates Death Receptors DR4 and DR5 to Induce Cancer Cell Death.

    PubMed

    Milutinovic, Snezana; Kashyap, Arun K; Yanagi, Teruki; Wimer, Carina; Zhou, Sihong; O'Neil, Ryann; Kurtzman, Aaron L; Faynboym, Alexsandr; Xu, Li; Hannum, Charles H; Diaz, Paul W; Matsuzawa, Shu-ichi; Horowitz, Michael; Horowitz, Lawrence; Bhatt, Ramesh R; Reed, John C

    2016-01-01

    Death receptors of the TNF family are found on the surface of most cancer cells and their activation typically kills cancer cells through the stimulation of the extrinsic apoptotic pathway. The endogenous ligand for death receptors 4 and 5 (DR4 and DR5) is TNF-related apoptosis-inducing ligand, TRAIL (Apo2L). As most untransformed cells are not susceptible to TRAIL-induced apoptosis, death receptor activators have emerged as promising cancer therapeutic agents. One strategy to stimulate death receptors in cancer patients is to use soluble human recombinant TRAIL protein, but this agent has limitations of a short half-life and decoy receptor sequestration. Another strategy that attempted to evade decoy receptor sequestration and to provide improved pharmacokinetic properties was to generate DR4 or DR5 agonist antibodies. The resulting monoclonal agonist antibodies overcame the limitations of short half-life and avoided decoy receptor sequestration, but are limited by activating only one of the two death receptors. Here, we describe a DR4 and DR5 dual agonist produced using Surrobody technology that activates both DR4 and DR5 to induce apoptotic death of cancer cells in vitro and in vivo and also avoids decoy receptor sequestration. This fully human anti-DR4/DR5 Surrobody displays superior potency to DR4- and DR5-specific antibodies, even when combined with TRAIL-sensitizing proapoptotic agents. Moreover, cancer cells were less likely to acquire resistance to Surrobody than either anti-DR4 or anti-DR5 monospecific antibodies. Taken together, Surrobody shows promising preclinical proapoptotic activity against cancer cells, meriting further exploration of its potential as a novel cancer therapeutic agent. ©2015 American Association for Cancer Research.

  6. Dual agonist Surrobody™ simultaneously activates death receptors DR4 and DR5 to induce cancer cell death

    PubMed Central

    Milutinovic, Snezana; Kashyap, Arun K.; Yanagi, Teruki; Wimer, Carina; Zhou, Sihong; O' Neil, Ryann; Kurtzman, Aaron L.; Faynboym, Alexsandr; Xu, Li; Hannum, Charles H.; Diaz, Paul W.; Matsuzawa, Shu-ichi; Horowitz, Michael; Horowitz, Lawrence; Bhatt, Ramesh R.; Reed, John C.

    2015-01-01

    Death receptors of the Tumor Necrosis Factor (TNF) family are found on surface of most cancer cells and their activation typically kills cancer cells through the stimulation of the extrinsic apoptotic pathway. The endogenous ligand for death receptors-4 and -5 (DR4 and DR5) is Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand, TRAIL (Apo2L). Since most untransformed cells are not susceptible to TRAIL-induced apoptosis, death receptor activators have emerged as promising cancer therapeutic agents. One strategy to stimulate death receptors in cancer patients is to use soluble human recombinant TRAIL protein, but this agent has limitations of a short half-life and decoy receptor sequestration. Another strategy that attempted to evade decoy receptor sequestration and to provide improved pharmacokinetic properties was to generate DR4 or DR5 agonist antibodies. The resulting monoclonal agonist antibodies overcame the limitations of short half-life and avoided decoy receptor sequestration, but are limited by activating only one of the two death receptors. Here, we describe a DR4 and DR5 dual agonist produced using Surrobody™ technology that activates both DR4 and DR5 to induce apoptotic death of cancer cells in vitro and in vivo and also avoids decoy receptor sequestration. This fully human anti-DR4/DR5 Surrobody displays superior potency to DR4- and DR5-specific antibodies, even when combined with TRAIL-sensitizing pro-apoptotic agents. Moreover, cancer cells were less likely to acquire resistance to Surrobody than either anti-DR4 or anti-DR5 mono-specific antibodies. Taken together, Surrobody shows promising preclinical pro-apoptotic activity against cancer cells, meriting further exploration of its potential as a novel cancer therapeutic agent. PMID:26516157

  7. A dual closed-loop control system for mechanical ventilation.

    PubMed

    Tehrani, Fleur; Rogers, Mark; Lo, Takkin; Malinowski, Thomas; Afuwape, Samuel; Lum, Michael; Grundl, Brett; Terry, Michael

    2004-04-01

    Closed-loop mechanical ventilation has the potential to provide more effective ventilatory support to patients with less complexity than conventional ventilation. The purpose of this study was to investigate the effectiveness of an automatic technique for mechanical ventilation. Two closed-loop control systems for mechanical ventilation are combined in this study. In one of the control systems several physiological data are used to automatically adjust the frequency and tidal volume of breaths of a patient. This method, which is patented under US Patent number 4986268, uses the criterion of minimal respiratory work rate to provide the patient with a natural pattern of breathing. The inputs to the system include data representing CO2 and O2 levels of the patient as well as respiratory compliance and airway resistance. The I:E ratio is adjusted on the basis of the respiratory time constant to allow for effective emptying of the lungs in expiration and to avoid intrinsic positive end expiratory pressure (PEEP). This system is combined with another closed-loop control system for automatic adjustment of the inspired fraction of oxygen of the patient. This controller uses the feedback of arterial oxygen saturation of the patient and combines a rapid stepwise control procedure with a proportional-integral-derivative (PID) control algorithm to automatically adjust the oxygen concentration in the patient's inspired gas. The dual closed-loop control system has been examined by using mechanical lung studies, computer simulations and animal experiments. In the mechanical lung studies, the ventilation controller adjusted the breathing frequency and tidal volume in a clinically appropriate manner in response to changes in respiratory mechanics. The results of computer simulations and animal studies under induced disturbances showed that blood gases were returned to the normal physiologic range in less than 25 s by the control system. In the animal experiments understeady

  8. The double crush syndrome revisited--a Delphi study to reveal current expert views on mechanisms underlying dual nerve disorders.

    PubMed

    Schmid, Annina B; Coppieters, Michel W

    2011-12-01

    A high prevalence of dual nerve disorders is frequently reported. How a secondary nerve disorder may develop following a primary nerve disorder remains largely unknown. Although still frequently cited, most explanatory theories were formulated many years ago. Considering recent advances in neuroscience, it is uncertain whether these theories still reflect current expert opinion. A Delphi study was conducted to update views on potential mechanisms underlying dual nerve disorders. In three rounds, seventeen international experts in the field of peripheral nerve disorders were asked to list possible mechanisms and rate their plausibility. Mechanisms with a median plausibility rating of ≥7 out of 10 were considered highly plausible. The experts identified fourteen mechanisms associated with a first nerve disorder that may predispose to the development of another nerve disorder. Of these fourteen mechanisms, nine have not previously been linked to double crush. Four mechanisms were considered highly plausible (impaired axonal transport, ion channel up or downregulation, inflammation in the dorsal root ganglia and neuroma-in-continuity). Eight additional mechanisms were listed which are not triggered by a primary nerve disorder, but may render the nervous system more vulnerable to multiple nerve disorders, such as systemic diseases and neurotoxic medication. Even though many mechanisms were classified as plausible or highly plausible, overall plausibility ratings varied widely. Experts indicated that a wide range of mechanisms has to be considered to better understand dual nerve disorders. Previously listed theories cannot be discarded, but may be insufficient to explain the high prevalence of dual nerve disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology.

    PubMed

    Pin, Jean-Philippe; Acher, Francine

    2002-06-01

    The metabotropic glutamate receptors are G-protein coupled receptors (GPCR) involved in the regulation of many synapses, including most glutamatergic fast excitatory synapses. Eight subtypes have been identified that can be classified into three groups. The molecular characterization of these receptors revealed proteins much more complex than any other GPCRs. They are composed of a Venus Flytrap (VFT) module where glutamate binds, connected to a heptahelical domain responsible for G-protein coupling. Recent data including the structure of the VFT module determined with and without glutamate, indicate that these receptors function as dimers. Moreover a number of intracellular proteins can regulate their targeting and transduction mechanism. Such structural features of mGlu receptors offer multiple possibilities for synthetic compounds to modulate their activity. In addition to agonists and competitive antagonists acting at the glutamate binding site, a number of non-competitive antagonists with inverse agonist activity, and positive allosteric modulators have been discovered. These later compounds share specific properties that make them good candidates for therapeutic applications. First, their non-amino acid structure makes them pass more easily the blood brain barrier. Second, they are much more selective than any other compound identified so far, being the first subtype selective molecules. Third, for the negative modulators, their non competitive mechanism of action makes them relatively unaffected by high concentrations of glutamate that may be present in disease states (e.g. stroke, epilepsy, neuropathic pain, etc.). Fourth, like the benzodiazepines acting at the GABA(A) receptors, the positive modulators offer a new way to increase the activity of these receptors in vivo, with a low risk of inducing their desensitization. The present review article focuses on the specific structural features of these receptors and highlights the various possibilities these

  10. Vapor plume oscillation mechanisms in transient keyhole during tandem dual beam fiber laser welding

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Zhang, Xiaosi; Pang, Shengyong; Hu, Renzhi; Xiao, Jianzhong

    2018-01-01

    Vapor plume oscillations are common physical phenomena that have an important influence on the welding process in dual beam laser welding. However, until now, the oscillation mechanisms of vapor plumes remain unclear. This is primarily because mesoscale vapor plume dynamics inside a millimeter-scale, invisible, and time-dependent keyhole are difficult to quantitatively observe. In this paper, based on a developed three-dimensional (3D) comprehensive model, the vapor plume evolutions in a dynamical keyhole are directly simulated in tandem dual beam, short-wavelength laser welding. Combined with the vapor plume behaviors outside the keyhole observed by high-speed imaging, the vapor plume oscillations in dynamical keyholes at different inter-beam distances are the first, to our knowledge, to be quantitatively analyzed. It is found that vapor plume oscillations outside the keyhole mainly result from vapor plume instabilities inside the keyhole. The ejection velocity at the keyhole opening and dynamical behaviors outside the keyhole of a vapor plume both violently oscillate with the same order of magnitude of high frequency (several kHz). Furthermore, the ejection speed at the keyhole opening and ejection area outside the keyhole both decrease as the beam distance increases, while the degree of vapor plume instability first decreases and then increases with increasing beam distance from 0.6 to 1.0 mm. Moreover, the oscillation mechanisms of a vapor plume inside the dynamical keyhole irradiated by dual laser beams are investigated by thoroughly analyzing the vapor plume occurrence and flow process. The vapor plume oscillations in the dynamical keyhole are found to mainly result from violent local evaporations and severe keyhole geometry variations. In short, the quantitative method and these findings can serve as a reference for further understanding of the physical mechanisms in dual beam laser welding and of processing optimizations in industrial applications.

  11. Differences in the binding mechanism of RU486 and progesterone to the progesterone receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skafar, D.F.

    1991-11-12

    The binding mechanism of the antagonist RU486 to the progesterone receptor was compared with that of the agonists progesterone and R5020. Both progesterone and RU486 bound to the receptor with a Hill coefficient of 1.2, indicating the binding of each ligand is positive cooperative. However, when each ligand was used to compete with ({sup 3}H)progesterone for binding to the receptor at receptor concentrations near 8 nM, at which the receptor is likely a dimer, the competition curve for RU486 was significantly steeper than the curves for progesterone and R5020. This indicated that a difference in the binding mechanism of RU486more » and progesterone can be detected when both ligands are present. In contrast, at receptor concentrations near 1 nM, at which the receptor is likely a monomer, the competition curves for all three ligands were indistinguishable. These results indicate that RU486 and agonists have different binding mechanisms for the receptor and further suggest that this difference may be related to site-site interactions within the receptor.« less

  12. END-PLATE ACETYLCHOLINE RECEPTOR: STRUCTURE, MECHANISM, PHARMACOLOGY, AND DISEASE

    PubMed Central

    Sine, Steven M.

    2012-01-01

    The synapse is a localized neurohumoral contact between a neuron and an effector cell and may be considered the quantum of fast intercellular communication. Analogously, the postsynaptic neurotransmitter receptor may be considered the quantum of fast chemical to electrical transduction. Our understanding of postsynaptic receptors began to develop about a hundred years ago with the demonstration that electrical stimulation of the vagus nerve released acetylcholine and slowed the heart beat. During the past 50 years, advances in understanding postsynaptic receptors increased at a rapid pace, owing largely to studies of the acetylcholine receptor (AChR) at the motor endplate. The endplate AChR belongs to a large superfamily of neurotransmitter receptors, called Cys-loop receptors, and has served as an exemplar receptor for probing fundamental structures and mechanisms that underlie fast synaptic transmission in the central and peripheral nervous systems. Recent studies provide an increasingly detailed picture of the structure of the AChR and the symphony of molecular motions that underpin its remarkably fast and efficient chemoelectrical transduction. PMID:22811427

  13. Spatiotemporal Targeting of a Dual-Ligand Nanoparticle to Cancer Metastasis

    PubMed Central

    Doolittle, Elizabeth; Peiris, Pubudu M.; Doron, Gilad; Goldberg, Amy; Tucci, Samantha; Rao, Swetha; Shah, Shruti; Sylvestre, Meilyn; Govender, Priya; Turan, Oguz; Lee, Zhenghong; Schiemann, William P.; Karathanasis, Efstathios

    2015-01-01

    Various targeting strategies and ligands have been employed to direct nanoparticles to tumors that upregulate specific cell-surface molecules. However, tumors display a dynamic, heterogeneous microenvironment, which undergoes spatiotemporal changes including the expression of targetable cell-surface biomarkers. Here, we investigated a dual-ligand nanoparticle to effectively target two receptors overexpressed in aggressive tumors. By using two different chemical specificities, the dual-ligand strategy considered the spatiotemporal alterations in the expression patterns of the receptors in cancer sites. As a case study, we used two mouse models of metastasis of triple-negative breast cancer using the MDA-MB-231 and 4T1 cells. The dual-ligand system utilized two peptides targeting P-selectin and αvβ3 integrin, which are functionally linked to different stages of the development of metastatic disease at a distal site. Using in vivo multimodal imaging and post mortem histological analyses, this study shows that the dual-ligand nanoparticle effectively targeted metastatic disease that was otherwise missed by single-ligand strategies. The dual-ligand nanoparticle was capable of capturing different metastatic sites within the same animal that overexpressed either receptor or both of them. Furthermore, the highly efficient targeting resulted in 22% of the injected dual-ligand nanoparticles being deposited in early-stage metastases within 2 h after injection. PMID:26203676

  14. Structure and assembly mechanism for heteromeric kainate receptors.

    PubMed

    Kumar, Janesh; Schuck, Peter; Mayer, Mark L

    2011-07-28

    Native glutamate receptor ion channels are tetrameric assemblies containing two or more different subunits. NMDA receptors are obligate heteromers formed by coassembly of two or three divergent gene families. While some AMPA and kainate receptors can form functional homomeric ion channels, the KA1 and KA2 subunits are obligate heteromers which function only in combination with GluR5-7. The mechanisms controlling glutamate receptor assembly involve an initial step in which the amino terminal domains (ATD) assemble as dimers. Here, we establish by sedimentation velocity that the ATDs of GluR6 and KA2 coassemble as a heterodimer of K(d) 11 nM, 32,000-fold lower than the K(d) for homodimer formation by KA2; we solve crystal structures for the GluR6/KA2 ATD heterodimer and heterotetramer assemblies. Using these structures as a guide, we perform a mutant cycle analysis to probe the energetics of assembly and show that high-affinity ATD interactions are required for biosynthesis of functional heteromeric receptors. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. An analytical study of the dual mass mechanical system stability

    NASA Astrophysics Data System (ADS)

    Nikolov, Svetoslav; Sinapov, Petko; Kralov, Ivan; Ignatov, Ignat

    2011-12-01

    In this paper an autonomous, nonlinear model of five ordinary differential equations modeling the motion of a dual mass mechanical system with universal joint is studied. The model is investigated qualitatively. On the base of the stability analysis performed, we obtain that the system is: i) in an equilibrium state, or ii) in a structurally unstable behavior when equilibrium states disappear. In case (i) the system is in a normal technical condition and in case (ii) hard break-downs take place.

  16. Hyaluronic acid and Arg-Gly-Asp peptide modified Graphene oxide with dual receptor-targeting function for cancer therapy.

    PubMed

    Guo, Yufeng; Xu, Haixing; Li, Yiping; Wu, Fengzheng; Li, Yixuan; Bao, Yun; Yan, Xiumei; Huang, Zhijun; Xu, Peihu

    2017-07-01

    Graphene oxide (GO) modified with hyaluronic acid (HA) and Arg-gly-asp peptide (RGD) was designed as a dual-receptor targeting drug delivery system to enhance the specificity and efficiency of anticancer drug delivery. Firstly, GO-HA-RGD conjugate was characterized to reveal its structure and morphology. Whereafter, doxorubicin (Dox) as a model drug was loaded on GO-HA-RGD carrier, which displayed a high loading rate (72.9%, GO:Dox (w/w) = 1:1), pH-response and sustained drug release behavior. Cytotoxicity experiments showed that GO-HA-RGD possessed excellent biocompatibility towards SKOV-3 and HOSEpiC cells. Additionally, the GO-HA-RGD/Dox had a stronger cytotoxicity for SKOV-3 cells than either GO-HA/Dox (single receptor) or GO/Dox (no receptor). Moreover, celluar uptake studies illustrated that GO-HA-RGD conjugate could be effectively taken up by SKOV-3 cells via a synergic effect of CD44-HA and integrin-RGD mediated endocytosis. Hence, GO-HA-RGD nanocarrier is able to be a promising platform for targeted cancer therapeutic.

  17. Actions of the dual FAAH/MAGL inhibitor JZL195 in a murine neuropathic pain model

    PubMed Central

    Adamson Barnes, Nicholas S.; Mitchell, Vanessa A.; Kazantzis, Nicholas P.

    2015-01-01

    Background and Purpose While cannabinoids have been proposed as a potential treatment for neuropathic pain, they have limitations. Cannabinoid receptor agonists have good efficacy in animal models of neuropathic pain; they have a poor therapeutic window. Conversely, selective fatty acid amide hydrolase (FAAH) inhibitors that enhance the endocannabinoid system have a better therapeutic window, but lesser efficacy. We examined whether JZL195, a dual inhibitor of FAAH and monacylglycerol lipase (MAGL), could overcome these limitations. Experimental Approach C57BL/6 mice underwent the chronic constriction injury (CCI) model of neuropathic pain. Mechanical and cold allodynia, plus cannabinoid side effects, were assessed in response to systemic drug application. Key Results JZL195 and the cannabinoid receptor agonist WIN55212 produced dose‐dependent reductions in CCI‐induced mechanical and cold allodynia, plus side effects including motor incoordination, catalepsy and sedation. JZL195 reduced allodynia with an ED50 at least four times less than that at which it produced side effects. By contrast, WIN55212 reduced allodynia and produce side effects with similar ED50s. The maximal anti‐allodynic effect of JZL195 was greater than that produced by selective FAAH, or MAGL inhibitors. The JZL195‐induced anti‐allodynia was maintained during repeated treatment. Conclusions and Implications These findings suggest that JZL195 has greater anti‐allodynic efficacy than selective FAAH, or MAGL inhibitors, plus a greater therapeutic window than a cannabinoid receptor agonist. Thus, dual FAAH/MAGL inhibition may have greater potential in alleviating neuropathic pain, compared with selective FAAH and MAGL inhibitors, or cannabinoid receptor agonists. PMID:26398331

  18. The transient receptor potential ankyrin-1 mediates mechanical hyperalgesia induced by the activation of B1 receptor in mice.

    PubMed

    Meotti, Flavia Carla; Figueiredo, Cláudia Pinto; Manjavachi, Marianne; Calixto, João B

    2017-02-01

    The kinin receptor B 1 and the transient receptor potential ankyrin 1 (TRPA1) work as initiators and gatekeepers of nociception and inflammation. This study reports that the nociceptive transmission induced by activation of B 1 receptor is dependent on TRPA1 ion channel. The mechanical hyperalgesia was induced by intrathecal (i.t.) injection of B 1 agonist des-Arginine 9 -bradykinin (DABK) or TRPA1 agonist cinnamaldehyde and was evaluated by the withdrawal response after von Frey Hair application in the hind paw. After behavioral experiments, lumbar spinal cord and dorsal root ganglia (DRG) were harvested to assess protein expression and mRNA by immunohistochemistry and real time-PCR, respectively. The pharmacological antagonism (HC030031) or the down-regulation of TRPA1 greatly inhibited the mechanical hyperalgesia induced by DABK. Intrathecal injection of DABK up regulated the ionized calcium binding adaptor molecule (Iba-1) in lumbar spinal cord (L5-L6); TRPA1 protein and mRNA in lumbar spinal cord; and B 1 receptor mRNA in both lumbar spinal cord and DRG. The knockdown of TRPA1 prevented microglia activation induced by DABK. Furthermore, the mechanical hyperalgesia induced by either DABK or by cinnamaldehyde was significantly reduced by inhibition of cyclooxygenase (COX), protein kinase C (PKC) or phospholipase C (PLC). In summary, this study revealed that TRPA1 positively modulates the mechanical hyperalgesia induced by B 1 receptor activation in the spinal cord and that the classical GPCR downstream molecules PLC, diacylglycerol (DAG), 3,4,5-inositide phosphate (IP 3 ) and PKC are involved in the nociceptive transmission triggered by these two receptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Dual-Pitch Processing Mechanisms in Primate Auditory Cortex

    PubMed Central

    Bendor, Daniel; Osmanski, Michael S.

    2012-01-01

    Pitch, our perception of how high or low a sound is on a musical scale, is a fundamental perceptual attribute of sounds and is important for both music and speech. After more than a century of research, the exact mechanisms used by the auditory system to extract pitch are still being debated. Theoretically, pitch can be computed using either spectral or temporal acoustic features of a sound. We have investigated how cues derived from the temporal envelope and spectrum of an acoustic signal are used for pitch extraction in the common marmoset (Callithrix jacchus), a vocal primate species, by measuring pitch discrimination behaviorally and examining pitch-selective neuronal responses in auditory cortex. We find that pitch is extracted by marmosets using temporal envelope cues for lower pitch sounds composed of higher-order harmonics, whereas spectral cues are used for higher pitch sounds with lower-order harmonics. Our data support dual-pitch processing mechanisms, originally proposed by psychophysicists based on human studies, whereby pitch is extracted using a combination of temporal envelope and spectral cues. PMID:23152599

  20. The mechanisms behind decreased internalization of angiotensin II type 1 receptor.

    PubMed

    Bian, Jingwei; Zhang, Suli; Yi, Ming; Yue, Mingming; Liu, Huirong

    2018-04-01

    The internalization of angiotensin II type 1 receptor (AT 1 R) plays an important role in maintaining cardiovascular homeostasis. Decreased receptor internalization is closely related to cardiovascular diseases induced by the abnormal activation of AT 1 R, such as hypertension. However, the mechanism behind reduced AT 1 R internalization is not fully understood. This review focuses on four parts of the receptor internalization process (the combination of agonists and receptors, receptor phosphorylation, endocytosis, and recycling) and summarizes the possible mechanisms by which AT 1 R internalization is reduced based on these four parts of the process. (1) The agonist has a large molecular weight or a stronger ability to hydrolyze phosphatidylinositol 4,5-bisphosphate (PtdIns (4,5) P 2 ), which can increase the consumption of PtdIns (4,5) P 2 . (2) AT 1 R phosphorylation is weakened because of an abnormal function of phosphorylated kinase or changes in phospho-barcoding and GPCR-β-arrestin complex conformation. (3) The abnormal formation of vesicles or AT 1 R heterodimers with fewer endocytic receptors results in less AT 1 R endocytosis. (4) The enhanced activity and upregulated expression of small GTP-binding protein 4 (Rab4) and 11 (Rab11), which regulate receptor recycling, and phosphatidylinositol 3-kinase increase AT 1 R recycling. In addition, lower expression of AT 1 R-associated protein (ATRAP) or higher expression of AT 1 R-associated protein 1 (ARAP1) can reduce receptor internalization. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Receptor binding mode and pharmacological characterization of a potent and selective dual CXCR1/CXCR2 non-competitive allosteric inhibitor

    PubMed Central

    Bertini, R; Barcelos, LS; Beccari, AR; Cavalieri, B; Moriconi, A; Bizzarri, C; Di Benedetto, P; Di Giacinto, C; Gloaguen, I; Galliera, E; Corsi, MM; Russo, RC; Andrade, SP; Cesta, MC; Nano, G; Aramini, A; Cutrin, JC; Locati, M; Allegretti, M; Teixeira, MM

    2012-01-01

    BACKGROUND AND PURPOSE DF 2156A is a new dual inhibitor of IL-8 receptors CXCR1 and CXCR2 with an optimal pharmacokinetic profile. We characterized its binding mode, molecular mechanism of action and selectivity, and evaluated its therapeutic potential. EXPERIMENTAL APPROACH The binding mode, molecular mechanism of action and selectivity were investigated using chemotaxis of L1.2 transfectants and human leucocytes, in addition to radioligand and [35S]-GTPγS binding approaches. The therapeutic potential of DF 2156A was evaluated in acute (liver ischaemia and reperfusion) and chronic (sponge-induced angiogenesis) experimental models of inflammation. KEY RESULTS A network of polar interactions stabilized by a direct ionic bond between DF 2156A and Lys99 on CXCR1 and the non-conserved residue Asp293 on CXCR2 are the key determinants of DF 2156A binding. DF 2156A acted as a non-competitive allosteric inhibitor blocking the signal transduction leading to chemotaxis without altering the binding affinity of natural ligands. DF 2156A effectively and selectively inhibited CXCR1/CXCR2-mediated chemotaxis of L1.2 transfectants and leucocytes. In a murine model of sponge-induced angiogenesis, DF 2156A reduced leucocyte influx, TNF-α production and neovessel formation. In vitro, DF 2156A prevented proliferation, migration and capillary-like organization of HUVECs in response to human IL-8. In a rat model of liver ischaemia and reperfusion (I/R) injury, DF 2156A decreased PMN and monocyte-macrophage infiltration and associated hepatocellular injury. CONCLUSION AND IMPLICATIONS DF 2156A is a non-competitive allosteric inhibitor of both IL-8 receptors CXCR1 and CXCR2. It prevented experimental angiogenesis and hepatic I/R injury in vivo and, therefore, has therapeutic potential for acute and chronic inflammatory diseases. PMID:21718305

  2. Analysis of a dual domain phosphoglycosyl transferase reveals a ping-pong mechanism with a covalent enzyme intermediate

    PubMed Central

    Das, Debasis; Kuzmic, Petr

    2017-01-01

    Phosphoglycosyl transferases (PGTs) are integral membrane proteins with diverse architectures that catalyze the formation of polyprenol diphosphate-linked glycans via phosphosugar transfer from a nucleotide diphosphate-sugar to a polyprenol phosphate. There are two PGT superfamilies that differ significantly in overall structure and topology. The polytopic PGT superfamily, represented by MraY and WecA, has been the subject of many studies because of its roles in peptidoglycan and O-antigen biosynthesis. In contrast, less is known about a second, extensive superfamily of PGTs that reveals a core structure with dual domain architecture featuring a C-terminal soluble globular domain and a predicted N-terminal membrane-associated domain. Representative members of this superfamily are the Campylobacter PglCs, which initiate N-linked glycoprotein biosynthesis and are implicated in virulence and pathogenicity. Despite the prevalence of dual domain PGTs, their mechanism of action is unknown. Here, we present the mechanistic analysis of PglC, a prototypic dual domain PGT from Campylobacter concisus. Using a luminescence-based assay, together with substrate labeling and kinetics-based approaches, complementary experiments were carried out that support a ping-pong mechanism involving a covalent phosphosugar intermediate for PglC. Significantly, mass spectrometry-based approaches identified Asp93, which is part of a highly conserved AspGlu dyad found in all dual domain PGTs, as the active-site nucleophile of the enzyme involved in the formation of the covalent adduct. The existence of a covalent phosphosugar intermediate provides strong support for a ping-pong mechanism of PglC, differing fundamentally from the ternary complex mechanisms of representative polytopic PGTs. PMID:28630348

  3. Quantification of cell surface receptor expression in live tissue culture media using a dual-tracer stain and rinse approach

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochun; Sinha, Lagnojita; Singh, Aparna; Yang, Cynthia; Xiang, Jialing; Tichauer, Kenneth M.

    2015-03-01

    Immunofluorescence staining is a robust way to visualize the distribution of targeted biomolecules invasively in in fixed tissues and tissue culture. Despite the fact that these methods has been a well-established method in fixed tissue imaging for over 70 years, quantification of receptor concentration still simply assumes that the signal from the targeted fluorescent marker after incubation and sufficient rinsing is directly proportional to the concentration of targeted biomolecules, thus neglecting the experimental inconsistencies in incubation and rinsing procedures and assuming no, nonspecific binding of the fluorescent markers. This work presents the first imaging approach capable of quantifying the concentration of cell surface receptor on cancer cells grown in vitro based on compartment modeling in a nondestructive way. The approach utilizes a dual-tracer protocol where any non-specific retention or variability in incubation and rinsing of a receptor-targeted imaging agent is corrected by simultaneously imaging the retention of a chemically similar, "untargeted" imaging agent. Various different compartment models were used to analyze the data in order to find the optimal procedure for extracting estimates of epidermal growth factor receptor (EGFR) concentration (a receptor overexpressed in many cancers and a key target for emerging molecular therapies) in tissue cultures with varying concentrations of human glioma cells (U251). Preliminary results demonstrated a need to model nonspecific binding of both the targeted and untargeted imaging agents used. The approach could be used to carry out the first repeated measures of cell surface receptor dynamics during 3D tumor mass development, in addition to the receptor response to therapies.

  4. Mechanism of Positive Allosteric Modulators Acting on AMPA Receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin,R.; Clark, S.; Weeks, A.

    2005-01-01

    Ligand-gated ion channels involved in the modulation of synaptic strength are the AMPA, kainate, and NMDA glutamate receptors. Small molecules that potentiate AMPA receptor currents relieve cognitive deficits caused by neurodegenerative diseases such as Alzheimer's disease and show promise in the treatment of depression. Previously, there has been limited understanding of the molecular mechanism of action for AMPA receptor potentiators. Here we present cocrystal structures of the glutamate receptor GluR2 S1S2 ligand-binding domain in complex with aniracetam [1-(4-methoxybenzoyl)-2-pyrrolidinone] or CX614 (pyrrolidino-1, 3-oxazino benzo-1, 4-dioxan-10-one), two AMPA receptor potentiators that preferentially slow AMPA receptor deactivation. Both potentiators bind within the dimermore » interface of the nondesensitized receptor at a common site located on the twofold axis of molecular symmetry. Importantly, the potentiator binding site is adjacent to the 'hinge' in the ligand-binding core 'clamshell' that undergoes conformational rearrangement after glutamate binding. Using rapid solution exchange, patch-clamp electrophysiology experiments, we show that point mutations of residues that interact with potentiators in the cocrystal disrupt potentiator function. We suggest that the potentiators slow deactivation by stabilizing the clamshell in its closed-cleft, glutamate-bound conformation.« less

  5. Bisphenol A affects androgen receptor function via multiple mechanisms.

    PubMed

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B Alex; Jetten, Anton M; Austin, Christopher P; Tice, Raymond R

    2013-05-25

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR. Published by Elsevier Ireland Ltd.

  6. Psychotropic and nonpsychotropic cannabis derivatives inhibit human 5-HT(3A) receptors through a receptor desensitization-dependent mechanism.

    PubMed

    Xiong, W; Koo, B-N; Morton, R; Zhang, L

    2011-06-16

    Δ⁹ tetrahydrocannabinol (THC) and cannabidiol (CBD) are the principal psychoactive and nonpsychoactive components of cannabis. While most THC-induced behavioral effects are thought to depend on endogenous cannabinoid 1 (CB1) receptors, the molecular targets for CBD remain unclear. Here, we report that CBD and THC inhibited the function of human 5-HT(3A) receptors (h5-HT(3A)Rs) expressed in HEK 293 cells. The magnitude of THC and CBD inhibition was maximal 5 min after a continuous incubation with cannabinoids. The EC₅₀ values for CBD and THC-induced inhibition were 110 nM and 322 nM, respectively in HEK 293 cells expressing h5-HT(3A)Rs. In these cells, CBD and THC did not stimulate specific [³⁵S]-GTP-γs binding in membranes, suggesting that the inhibition by cannabinoids is unlikely mediated by a G-protein dependent mechanism. On the other hand, both CBD and THC accelerated receptor desensitization kinetics without significantly changing activation time. The extent of cannabinoid inhibition appeared to depend on receptor desensitization. Reducing receptor desensitization by nocodazole, 5-hydroxyindole and a point-mutation in the large cytoplasmic domain of the receptor significantly decreased CBD-induced inhibition. Similarly, the magnitude of THC and CBD-induced inhibition varied with the apparent desensitization rate of h5-HT(3A)Rs expressed in Xenopus oocytes. For instance, with increasing amount of h5-HT(3A)R cRNA injected into the oocytes, the receptor desensitization rate at steady state decreased. THC and CBD-induced inhibition was correlated with the change in the receptor desensitization rate. Thus, CBD and THC inhibit h5-HT(3A) receptors through a mechanism that is dependent on receptor desensitization. Published by Elsevier Ltd.

  7. Psychotropic and Nonpsychotropic Cannabis Derivatives Inhibit Human 5-HT3A receptors through a Receptor Desensitization-Dependent Mechanism

    PubMed Central

    Xiong, Wei; Koo, Bon-Nyeo; Morton, Russell; Zhang, Li

    2011-01-01

    Δ9 tetrahydrocannabinol (THC) and cannabidiol (CBD) are the principal psychoactive and non-psychoactive components of cannabis. While most THC-induced behavioral effects are thought to depend on endogenous cannabinoid 1 (CB1) receptors, the molecular targets for CBD remain unclear. Here, we report that CBD and THC inhibited the function of human 5-HT3A receptors (h5-HT3ARs) expressed in HEK 293 cells. The magnitude of THC and CBD inhibition was maximal 5 min after a continuous incubation with cannabinoids. The EC50 values for CBD and THC-induced inhibition were 110 nM and 322 nM respectively in HEK 293 cells expressing h5-HT3ARs. In these cells, CBD and THC did not stimulate specific [35S]-GTP-γs binding in membranes, suggesting that the inhibition by cannabinoids is unlikely mediated by a G-protein dependent mechanism. On the other hand, both CBD and THC accelerated receptor desensitization kinetics without significantly changing activation time. The extent of cannabinoid inhibition appeared to depend on receptor desensitization. Reducing receptor desensitization by nocodazole, 5-hydroxyindole and a point-mutation in the large cytoplasmic domain of the receptor significantly decreased CBD-induced inhibition. Similarly, the magnitude of THC and CBD-induced inhibition varied with the apparent desensitization rate of h5-HT3ARs expressed in Xenopus oocytes. For instance, with increasing amount of h5-HT3AR cRNA injected into the oocytes, the receptor desensitization rate at steady state decreased. THC and CBD-induced inhibition was correlated with the change in the receptor desensitization rate. Thus, CBD and THC inhibit h5-HT3A receptors through a mechanism that is dependent on receptor desensitization. PMID:21477640

  8. Dual GPCR and GAG mimicry by the M3 chemokine decoy receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander-Brett, Jennifer M.; Fremont, Daved H.

    2008-09-23

    Viruses have evolved a myriad of evasion strategies focused on undermining chemokine-mediated immune surveillance, exemplified by the mouse {gamma}-herpesvirus 68 M3 decoy receptor. Crystal structures of M3 in complex with C chemokine ligand 1/lymphotactin and CC chemokine ligand 2/monocyte chemoattractant protein 1 reveal that invariant chemokine features associated with G protein-coupled receptor binding are primarily recognized by the decoy C-terminal domain, whereas the N-terminal domain (NTD) reconfigures to engage divergent basic residue clusters on the surface of chemokines. Favorable electrostatic forces dramatically enhance the association kinetics of chemokine binding by M3, with a primary role ascribed to acidic NTD regionsmore » that effectively mimic glycosaminoglycan interactions. Thus, M3 employs two distinct mechanisms of chemical imitation to potently sequester chemokines, thereby inhibiting chemokine receptor binding events as well as the formation of chemotactic gradients necessary for directed leukocyte trafficking.« less

  9. Dual ACE-inhibition and angiotensin II AT1 receptor antagonism with curcumin attenuate maladaptive cardiac repair and improve ventricular systolic function after myocardial infarctionin rat heart.

    PubMed

    Pang, Xue-Fen; Zhang, Li-Hui; Bai, Feng; Wang, Ning-Ping; Ijaz Shah, Ahmed; Garner, Ron; Zhao, Zhi-Qing

    2015-01-05

    Curcumin has been shown to improve cardiac function by reducing degradation of extracellular matrix and inhibiting synthesis of collagen after ischemia. This study tested the hypothesis that attenuation of maladaptive cardiac repair with curcumin is associated with a dual ACE-inhibition and angiotensin II AT1 receptor antagonism after myocardial infarction. Sprague-Dawley rats were subjected to 45min ischemia followed by 7 and 42 days of reperfusion, respectively. Curcumin was fed orally at a dose of 150mg/kg/day only during reperfusion. Relative to the control animals, dietary treatment with curcumin significantly reduced levels of ACE and AT1 receptor protein as determined by Western blot assay, coincident with less locally-expressed ACE and AT1 receptor in myocardium and coronary vessels as identified by immunohistochemistry. Along with this inhibition, curcumin significantly increased protein level of AT2 receptor and its expression compared with the control. As evidenced by less collagen deposition in fibrotic myocardium, curcumin also reduced the extent of collagen-rich scar and increased mass of viable myocardium detected by Masson׳s trichrome staining. Echocardiography showed that the wall thickness of the infarcted anterior septum in the curcumin group was significantly greater than that in the control group. Cardiac contractile function was improved in the curcumin treated animals as measured by fraction shortening and ejection fraction. In cultured cardiac muscle cells, curcumin inhibited oxidant-induced AT1 receptor expression and promoted cell survival. These results suggest that curcumin attenuates maladaptive cardiac repair and enhances cardiac function, primarily mediated by a dual ACE-inhibition and AT1 receptor antagonism after myocardial infarction. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Midazolam inhibits hippocampal long-term potentiation and learning through dual central and peripheral benzodiazepine receptor activation and neurosteroidogenesis

    PubMed Central

    Tokuda, Kazuhiro; O’Dell, Kazuko A.; Izumi, Yukitoshi; Zorumski, Charles F.

    2010-01-01

    Benzodiazepines (BDZs) enhance γ-aminobutyric acid-A (GABAA) receptor inhibition by direct actions on central BDZ receptors (CBRs). Although some BDZs also bind mitochondrial receptors (translocator protein 18kDa, TSPO) and promote the synthesis of GABA-enhancing neurosteroids, the role of neurosteroids in the clinical effects of BDZs is unknown. In rat hippocampal slices, we compared midazolam, an anesthetic BDZ with clonazepam, an anticonvulsant/anxiolytic BDZ that activates CBRs selectively. Midazolam, but not clonazepam, increased neurosteroid levels in CA1 pyramidal neurons without changing TSPO immunostaining. Midazolam, but not clonazepam, also augmented a form of spike inhibition following stimulation adjacent to the pyramidal cell layer and inhibited induction of long-term potentiation. These effects were prevented by finasteride, an inhibitor of neurosteroid synthesis, or 17PA (17-phenyl-(3α, 5α)-androst-16-en-3-ol), a blocker of neurosteroid effects on GABAA receptors. Moreover, the synaptic effects were mimicked by a combination of clonazepam with FGIN, a selective TSPO agonist, or a combination of clonazepam with exogenous allopregnanolone. Consistent with these in vitro results, finasteride abolished the effects of midazolam on contextual fear learning when administrated one day prior to midazolam injection. Thus, dual activation of CBRs and TSPO appears to result in unique actions of clinically-important BDZs. Furthermore, endogenous neurosteroids are shown to be important regulators of pyramidal neuron function and synaptic plasticity. PMID:21159950

  11. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects

    PubMed Central

    Dehkhoda, Farhad; Lee, Christine M. M.; Medina, Johan; Brooks, Andrew J.

    2018-01-01

    The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK–STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling. PMID:29487568

  12. Dual mechanism of integrin αIIbβ3 closure in procoagulant platelets.

    PubMed

    Mattheij, Nadine J A; Gilio, Karen; van Kruchten, Roger; Jobe, Shawn M; Wieschhaus, Adam J; Chishti, Athar H; Collins, Peter; Heemskerk, Johan W M; Cosemans, Judith M E M

    2013-05-10

    Inactivation of integrin αIIbβ3 reverses platelet aggregate formation upon coagulation. Platelets from patient (Scott) and mouse (Capn1(-/-) and Ppif(-/-)) blood reveal a dual mechanism of αIIbβ3 inactivation: by calpain-2 cleavage of integrin-associated proteins and by cyclophilin D/TMEM16F-dependent phospholipid scrambling. These data provide novel insight into the switch mechanisms from aggregating to procoagulant platelets. Aggregation of platelets via activated integrin αIIbβ3 is a prerequisite for thrombus formation. Phosphatidylserine-exposing platelets with a key role in the coagulation process disconnect from a thrombus by integrin inactivation via an unknown mechanism. Here we show that αIIbβ3 inactivation in procoagulant platelets relies on a sustained high intracellular Ca(2+), stimulating intracellular cleavage of the β3 chain, talin, and Src kinase. Inhibition of calpain activity abolished protein cleavage, but only partly suppressed αIIbβ3 inactivation. Integrin αIIbβ3 inactivation was unchanged in platelets from Capn1(-/-) mice, suggesting a role of the calpain-2 isoform. Scott syndrome platelets, lacking the transmembrane protein TMEM16F and having low phosphatidylserine exposure, displayed reduced αIIbβ3 inactivation with the remaining activity fully dependent on calpain. In platelets from Ppif(-/-) mice, lacking mitochondrial permeability transition pore (mPTP) formation, agonist-induced phosphatidylserine exposure and αIIbβ3 inactivation were reduced. Treatment of human platelets with cyclosporin A gave a similar phenotype. Together, these data point to a dual mechanism of αIIbβ3 inactivation via calpain(-2) cleavage of integrin-associated proteins and via TMEM16F-dependent phospholipid scrambling with an assistant role of mPTP formation.

  13. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Gang; Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang; Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation,more » whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.« less

  14. Mechanism of allosteric regulation of β2-adrenergic receptor by cholesterol

    PubMed Central

    Manna, Moutusi; Niemelä, Miia; Tynkkynen, Joona; Javanainen, Matti; Kulig, Waldemar; Müller, Daniel J; Rog, Tomasz; Vattulainen, Ilpo

    2016-01-01

    There is evidence that lipids can be allosteric regulators of membrane protein structure and activation. However, there are no data showing how exactly the regulation emerges from specific lipid-protein interactions. Here we show in atomistic detail how the human β2-adrenergic receptor (β2AR) – a prototypical G protein-coupled receptor – is modulated by cholesterol in an allosteric fashion. Extensive atomistic simulations show that cholesterol regulates β2AR by limiting its conformational variability. The mechanism of action is based on the binding of cholesterol at specific high-affinity sites located near the transmembrane helices 5–7 of the receptor. The alternative mechanism, where the β2AR conformation would be modulated by membrane-mediated interactions, plays only a minor role. Cholesterol analogues also bind to cholesterol binding sites and impede the structural flexibility of β2AR, however cholesterol generates the strongest effect. The results highlight the capacity of lipids to regulate the conformation of membrane receptors through specific interactions. DOI: http://dx.doi.org/10.7554/eLife.18432.001 PMID:27897972

  15. Discovery of Indazoles as Potent, Orally Active Dual Neurokinin 1 Receptor Antagonists and Serotonin Transporter Inhibitors for the Treatment of Depression.

    PubMed

    Degnan, Andrew P; Tora, George O; Huang, Hong; Conlon, David A; Davis, Carl D; Hanumegowda, Umesh M; Hou, Xiaoping; Hsiao, Yi; Hu, Joanna; Krause, Rudolph; Li, Yu-Wen; Newton, Amy E; Pieschl, Rick L; Raybon, Joseph; Rosner, Thorsten; Sun, Jung-Hui; Taber, Matthew T; Taylor, Sarah J; Wong, Michael K; Zhang, Huiping; Lodge, Nicholas J; Bronson, Joanne J; Macor, John E; Gillman, Kevin W

    2016-12-21

    Combination studies of neurokinin 1 (NK1) receptor antagonists and serotonin-selective reuptake inhibitors (SSRIs) have shown promise in preclinical models of depression. Such a combination may offer important advantages over the current standard of care. Herein we describe the discovery and optimization of an indazole-based chemotype to provide a series of potent dual NK1 receptor antagonists/serotonin transporter (SERT) inhibitors to overcome issues of ion channel blockade. This effort culminated in the identification of compound 9, an analogue that demonstrated favorable oral bioavailability, excellent brain uptake, and robust in vivo efficacy in a validated depression model. Over the course of this work, a novel heterocycle-directed asymmetric hydrogenation was developed to facilitate installation of the key stereogenic center.

  16. Mechanisms of inverse agonist action at D2 dopamine receptors

    PubMed Central

    Roberts, David J; Strange, Philip G

    2005-01-01

    Mechanisms of inverse agonist action at the D2(short) dopamine receptor have been examined. Discrimination of G-protein-coupled and -uncoupled forms of the receptor by inverse agonists was examined in competition ligand-binding studies versus the agonist [3H]NPA at a concentration labelling both G-protein-coupled and -uncoupled receptors. Competition of inverse agonists versus [3H]NPA gave data that were fitted best by a two-binding site model in the absence of GTP but by a one-binding site model in the presence of GTP. Ki values were derived from the competition data for binding of the inverse agonists to G-protein-uncoupled and -coupled receptors. Kcoupled and Kuncoupled were statistically different for the set of compounds tested (ANOVA) but the individual values were different in a post hoc test only for (+)-butaclamol. These observations were supported by simulations of these competition experiments according to the extended ternary complex model. Inverse agonist efficacy of the ligands was assessed from their ability to reduce agonist-independent [35S]GTPγS binding to varying degrees in concentration–response curves. Inverse agonism by (+)-butaclamol and spiperone occurred at higher potency when GDP was added to assays, whereas the potency of (−)-sulpiride was unaffected. These data show that some inverse agonists ((+)-butaclamol, spiperone) achieve inverse agonism by stabilising the uncoupled form of the receptor at the expense of the coupled form. For other compounds tested, we were unable to define the mechanism. PMID:15735658

  17. Mechanisms of the adenosine A2A receptor-induced sensitization of esophageal C fibers

    PubMed Central

    Brozmanova, M.; Mazurova, L.; Ru, F.; Tatar, M.; Hu, Y.; Yu, S.

    2015-01-01

    Clinical studies indicate that adenosine contributes to esophageal mechanical hypersensitivity in some patients with pain originating in the esophagus. We have previously reported that the esophageal vagal nodose C fibers express the adenosine A2A receptor. Here we addressed the hypothesis that stimulation of the adenosine A2A receptor induces mechanical sensitization of esophageal C fibers by a mechanism involving transient receptor potential A1 (TRPA1). Extracellular single fiber recordings of activity originating in C-fiber terminals were made in the ex vivo vagally innervated guinea pig esophagus. The adenosine A2A receptor-selective agonist CGS21680 induced robust, reversible sensitization of the response to esophageal distention (10–60 mmHg) in a concentration-dependent fashion (1–100 nM). At the half-maximally effective concentration (EC50: ≈3 nM), CGS21680 induced an approximately twofold increase in the mechanical response without causing an overt activation. This sensitization was abolished by the selective A2A antagonist SCH58261. The adenylyl cyclase activator forskolin mimicked while the nonselective protein kinase inhibitor H89 inhibited mechanical sensitization by CGS21680. CGS21680 did not enhance the response to the purinergic P2X receptor agonist α,β-methylene-ATP, indicating that CGS21680 does not nonspecifically sensitize to all stimuli. Mechanical sensitization by CGS21680 was abolished by pretreatment with two structurally different TRPA1 antagonists AP18 and HC030031. Single cell RT-PCR and whole cell patch-clamp studies in isolated esophagus-specific nodose neurons revealed the expression of TRPA1 in A2A-positive C-fiber neurons and demonstrated that CGS21682 potentiated TRPA1 currents evoked by allylisothiocyanate. We conclude that stimulation of the adenosine A2A receptor induces mechanical sensitization of nodose C fibers by a mechanism sensitive to TRPA1 antagonists indicating the involvement of TRPA1. PMID:26564719

  18. Structure of dual receptor binding to botulinum neurotoxin B.

    PubMed

    Berntsson, Ronnie P-A; Peng, Lisheng; Dong, Min; Stenmark, Pål

    2013-01-01

    Botulinum neurotoxins are highly toxic, and bind two receptors to achieve their high affinity and specificity for neurons. Here we present the first structure of a botulinum neurotoxin bound to both its receptors. We determine the 2.3-Å structure of a ternary complex of botulinum neurotoxin type B bound to both its protein receptor synaptotagmin II and its ganglioside receptor GD1a. We show that there is no direct contact between the two receptors, and that the binding affinity towards synaptotagmin II is not influenced by the presence of GD1a. The interactions of botulinum neurotoxin type B with the sialic acid 5 moiety of GD1a are important for the ganglioside selectivity. The structure demonstrates that the protein receptor and the ganglioside receptor occupy nearby but separate binding sites, thus providing two independent anchoring points.

  19. Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism.

    PubMed

    Aleksandrova, Lily R; Phillips, Anthony G; Wang, Yu Tian

    2017-06-01

    The molecular mechanisms underlying major depressive disorder remain poorly understood, and current antidepressant treatments have many shortcomings. The recent discovery that a single intravenous infusion of ketamine at a subanesthetic dose had robust, rapid and sustained antidepressant effects in individuals with treatment-resistant depression inspired tremendous interest in investigating the molecular mechanisms mediating ketamine's clinical efficacy as well as increased efforts to identify new targets for antidepressant action. We review the clinical utility of ketamine and recent insights into its mechanism of action as an antidepressant, including the roles of N -methyl-D-aspartate receptor inhibition, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor upregulation, activation of downstream synaptogenic signalling pathways and the production of an active ketamine metabolite, hydroxynorketamine. Emerging knowledge of the molecular mechanisms underlying both ketamine's positive therapeutic and detrimental side effects will aid the development of a new generation of much-needed superior antidepressant agents.

  20. Dual orexin receptor antagonist 12 inhibits expression of proteins in neurons and glia implicated in peripheral and central sensitization.

    PubMed

    Cady, R J; Denson, J E; Sullivan, L Q; Durham, P L

    2014-06-06

    Sensitization and activation of trigeminal nociceptors is implicated in prevalent and debilitating orofacial pain conditions including temporomandibular joint (TMJ) disorders. Orexins are excitatory neuropeptides that function to regulate many physiological processes and are reported to modulate nociception. To determine the role of orexins in an inflammatory model of trigeminal activation, the effects of a dual orexin receptor antagonist (DORA-12) on levels of proteins that promote peripheral and central sensitization and changes in nocifensive responses were investigated. In adult male Sprague-Dawley rats, mRNA for orexin receptor 1 (OX₁R) and receptor 2 (OX₂R) were detected in trigeminal ganglia and spinal trigeminal nucleus (STN). OX₁R immunoreactivity was localized primarily in neuronal cell bodies in the V3 region of the ganglion and in laminas I-II of the STN. Animals injected bilaterally with complete Freund's adjuvant (CFA) in the TMJ capsule exhibited increased expression of P-p38, P-ERK, and lba1 in trigeminal ganglia and P-ERK and lba1 in the STN at 2 days post injection. However, levels of each of these proteins in rats receiving daily oral DORA-12 were inhibited to near basal levels. Similarly, administration of DORA-12 on days 3 and 4 post CFA injection in the TMJ effectively inhibited the prolonged stimulated expression of protein kinase A, NFkB, and Iba1 in the STN on day 5 post injection. While injection of CFA mediated a nocifensive response to mechanical stimulation of the orofacial region at 2h and 3 and 5 days post injection, treatment with DORA-12 suppressed the nocifensive response on day 5. Somewhat surprisingly, nocifensive responses were again observed on day 10 post CFA stimulation in the absence of daily DORA-12 administration. Our results provide evidence that DORA-12 can inhibit CFA-induced stimulation of trigeminal sensory neurons by inhibiting expression of proteins associated with sensitization of peripheral and central

  1. Method and system for dual resolution translation stage

    DOEpatents

    Halpin, John Michael

    2014-04-22

    A dual resolution translation stage includes a stage assembly operable to receive an optical element and a low resolution adjustment device mechanically coupled to the stage assembly. The dual resolution stage also includes an adjustable pivot block mechanically coupled to the stage assembly. The adjustable pivot block includes a pivot shaft. The dual resolution stage further includes a lever arm mechanically coupled to the adjustable pivot block. The lever arm is operable to pivot about the pivot shaft. The dual resolution stage additionally includes a high resolution adjustment device mechanically coupled to the lever arm and the stage assembly.

  2. Mucus clearance from the pulmonary system by mechanical means: a dual-excitation approach.

    PubMed

    Ignagni, Mario; O'Dea, Thomas

    2013-01-01

    A dual-excitation approach to mechanical clearance of mucus from the pulmonary system is described. The approach employs independently controlled vibratory and constrictive pressure stimulations to the thorax. Patient cooperative efforts are integrated into the therapy regimen as a means of enhancing the efficacy of the treatment. An engineering model that demonstrates the capability to generate vibratory and constrictive pressure variations at specified levels is described.

  3. Effect of inclination and anteversion angles on kinematics and contact mechanics of dual mobility hip implants.

    PubMed

    Gao, Yongchang; Chen, Zhenxian; Zhang, Zhifeng; Chen, Shibin; Jin, Zhongmin

    2018-06-12

    Steep inclination and excessive anteversion angles of acetabular cups could result in adverse edge-loading. This, in turn, increases contact pressure and impingement risk for traditional artificial hip joints. However, the influence of high inclination and anteversion angles on both the kinematics and contact mechanics of dual mobility hip implants has rarely been examined. This study focuses on investigating both the kinematics and contact mechanics of a dual mobility hip implant under different inclination and anteversion angles using a dynamic explicit finite element method developed in a previous study. The results showed that an inclination angle of both the back shell and liner ranging from 30° to 70° had little influence on the maximum contact pressure and the accumulated sliding distance of inner and outer surfaces of the liner under normal walking gait. The same results were obtained for an anteversion angle of the liner varying between -20° and +20°. However, when the anteversion angle of the liner was beyond this range, the contact between the femoral neck and the inner rim of the liner occurred. Consequently, this caused a relative rotation at the outer articulation. This suggests that both inclination and modest anteversion angles have little influence on the kinematics and contact mechanics of dual mobility hip implants. However, too excessive anteversion angle could result in a rotation for this kind of hip implant at both articulations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Insight into structural requirements for selective and/or dual CXCR3 and CXCR4 allosteric modulators.

    PubMed

    Kolarič, Anja; Švajger, Urban; Tomašič, Tihomir; Brox, Regine; Frank, Theresa; Minovski, Nikola; Tschammer, Nuska; Anderluh, Marko

    2018-05-11

    Based on the previously published pyrazolopyridine-based hit compound for which negative allosteric modulation of both CXCR3 and CXCR4 receptors was disclosed, we designed, synthesized and biologically evaluated a set of novel, not only negative, but also positive allosteric modulators with preserved pyrazolopyridine core. Compound 9e is a dual negative modulator, inhibiting G protein activity of both receptors. For CXCR4 receptor para-substituted aromatic group of compounds distinguishes between negative and positive modulation. Para-methoxy substitution leads to functional antagonism, while para-chloro triggers agonism. Additionally, we discovered that chemotaxis is not completely correlated with G protein pathways. This is the first work in which we have on a series of compounds successfully demonstrated that it is possible to produce selective as well as dual-acting modulators of chemokine receptors, which is very promising for future research in the field of discovery of selective or dual modulators of chemokine receptors. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Midazolam inhibits hippocampal long-term potentiation and learning through dual central and peripheral benzodiazepine receptor activation and neurosteroidogenesis.

    PubMed

    Tokuda, Kazuhiro; O'Dell, Kazuko A; Izumi, Yukitoshi; Zorumski, Charles F

    2010-12-15

    Benzodiazepines (BDZs) enhance GABA(A) receptor inhibition by direct actions on central BDZ receptors (CBRs). Although some BDZs also bind mitochondrial receptors [translocator protein (18 kDa) (TSPO)] and promote the synthesis of GABA-enhancing neurosteroids, the role of neurosteroids in the clinical effects of BDZs is unknown. In rat hippocampal slices, we compared midazolam, an anesthetic BDZ, with clonazepam, an anticonvulsant/anxiolytic BDZ that activates CBRs selectively. Midazolam, but not clonazepam, increased neurosteroid levels in CA1 pyramidal neurons without changing TSPO immunostaining. Midazolam, but not clonazepam, also augmented a form of spike inhibition after stimulation adjacent to the pyramidal cell layer and inhibited induction of long-term potentiation. These effects were prevented by finasteride, an inhibitor of neurosteroid synthesis, or 17PA [17-phenyl-(3α,5α)-androst-16-en-3-ol], a blocker of neurosteroid effects on GABA(A) receptors. Moreover, the synaptic effects were mimicked by a combination of clonazepam with FGIN (2-[2-(4-fluorophenyl)-1H-indol-3-yl]-N,N-dihexylacetamide), a selective TSPO agonist, or a combination of clonazepam with exogenous allopregnanolone. Consistent with these in vitro results, finasteride abolished the effects of midazolam on contextual fear learning when administrated 1 d before midazolam injection. Thus, dual activation of CBRs and TSPO appears to result in unique actions of clinically important BDZs. Furthermore, endogenous neurosteroids are shown to be important regulators of pyramidal neuron function and synaptic plasticity.

  6. Potassium-Based Dual Ion Battery with Dual-Graphite Electrode.

    PubMed

    Fan, Ling; Liu, Qian; Chen, Suhua; Lin, Kairui; Xu, Zhi; Lu, Bingan

    2017-08-01

    A potassium ion battery has potential applications for large scale electric energy storage systems due to the abundance and low cost of potassium resources. Dual graphite batteries, with graphite as both anode and cathode, eliminate the use of transition metal compounds and greatly lower the overall cost. Herein, combining the merits of the potassium ion battery and dual graphite battery, a potassium-based dual ion battery with dual-graphite electrode is developed. It delivers a reversible capacity of 62 mA h g -1 and medium discharge voltage of ≈3.96 V. The intercalation/deintercalation mechanism of K + and PF 6 - into/from graphite is proposed and discussed in detail, with various characterizations to support. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Calcitonin and Amylin Receptor Peptide Interaction Mechanisms

    PubMed Central

    Lee, Sang-Min; Hay, Debbie L.; Pioszak, Augen A.

    2016-01-01

    Receptor activity-modifying proteins (RAMP1–3) determine the selectivity of the class B G protein-coupled calcitonin receptor (CTR) and the CTR-like receptor (CLR) for calcitonin (CT), amylin (Amy), calcitonin gene-related peptide (CGRP), and adrenomedullin (AM) peptides. RAMP1/2 alter CLR selectivity for CGRP/AM in part by RAMP1 Trp-84 or RAMP2 Glu-101 contacting the distinct CGRP/AM C-terminal residues. It is unclear whether RAMPs use a similar mechanism to modulate CTR affinity for CT and Amy, analogs of which are therapeutics for bone disorders and diabetes, respectively. Here, we reproduced the peptide selectivity of intact CTR, AMY1 (CTR·RAMP1), and AMY2 (CTR·RAMP2) receptors using purified CTR extracellular domain (ECD) and tethered RAMP1- and RAMP2-CTR ECD fusion proteins and antagonist peptides. All three proteins bound salmon calcitonin (sCT). Tethering RAMPs to CTR enhanced binding of rAmy, CGRP, and the AMY antagonist AC413. Peptide alanine-scanning mutagenesis and modeling of receptor-bound sCT and AC413 supported a shared non-helical CGRP-like conformation for their TN(T/V)G motif prior to the C terminus. After this motif, the peptides diverged; the sCT C-terminal Pro was crucial for receptor binding, whereas the AC413/rAmy C-terminal Tyr had little or no influence on binding. Accordingly, mutant RAMP1 W84A- and RAMP2 E101A-CTR ECD retained AC413/rAmy binding. ECD binding and cell-based signaling assays with antagonist sCT/AC413/rAmy variants with C-terminal residue swaps indicated that the C-terminal sCT/rAmy residue identity affects affinity more than selectivity. rAmy(8–37) Y37P exhibited enhanced antagonism of AMY1 while retaining selectivity. These results reveal unexpected differences in how RAMPs determine CTR and CLR peptide selectivity and support the hypothesis that RAMPs allosterically modulate CTR peptide affinity. PMID:26895962

  8. Atypical Opioid Mechanisms of Control of Injury-Induced Cutaneous Pain by Delta Receptors

    DTIC Science & Technology

    2017-07-01

    AWARD NUMBER: W81XWH-15-1-0076 TITLE: Atypical Opioid Mechanisms of Control of Injury-Induced Cutaneous Pain by Delta Receptors PRINCIPAL...subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT...SUBTITLE Atypical Opioid Mechanisms of Control of Injury-Induced 5a. CONTRACT NUMBER Cutaneous Pain by Delta Receptors 5b. GRANT NUMBER 5c. PROGRAM

  9. Inhibition of the renin-angiotensin-aldosterone system: is there room for dual blockade in the cardiorenal continuum?

    PubMed

    Volpe, Massimo; Danser, A H Jan; Menard, Joël; Waeber, Bernard; Mueller, Dominik N; Maggioni, Aldo P; Ruilope, Luis M

    2012-04-01

    Antagonism of renin-angiotensin-aldosterone system is exerted through angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, renin inhibitors and mineralocorticoid receptor antagonists. These drugs have been successfully tested in numerous trials and in different clinical settings. The original indications of renin-angiotensin-aldosterone system blockers have progressively expanded from the advanced stages to the earlier stages of cardiorenal continuum. To optimize the degree of blockade of renin-angiotensin-aldosterone system, dose uptitrations of angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists or the use of a dual blockade, initially identified with the combination of angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists, have been proposed. The data from the Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial (ONTARGET) study do not support this specific dual blockade approach. However, the dual blockade of angiotensin-converting enzyme inhibitors/angiotensin receptor antagonists with direct renin inhibitors is currently under investigation while that based on an aldosterone blocker with any of the previous three drugs requires more evidence beyond heart failure. In this review, we revisited potential advantages of dual blockade of renin-angiotensin-aldosterone system in arterial hypertension and diabetes.

  10. ``Lock and key mechanism'' for ligand binding with adrenergic receptors and the arising mechanical effects on the cell membrane

    NASA Astrophysics Data System (ADS)

    Lunghi, Laura; Deseri, Luca

    2013-03-01

    Chemicals hitting the surface of cell aggregates are known to give arise to cyclic Adenosine Mono Phosphate (cAMP), a second messenger that transduces inside the cell the effects of species that cannot get through the cell membrane. Ligands bind to a specific receptor following the so called ``lock and key mechanism'' (beta)-adrenergic receptors are proteins embedded in the lipid bilayer characterized by seven transmembrane helices. Thinning and thickening in cell membranes may be initiated by conformational changes of some of three of the seven domains above. The cell response is linked to the coupling of chemical, conformational and mechanical effects. Part of the cAMP remains intracellular, whereas the remaining fractions migrates outside the cell due to membrane transporters. A new Helmholtz free energy, accounting for receptor and transporter densities, receptor conformation field and membrane elasticity is investigated. It is shown how the density of active receptors is directly related to the conformation field and it enters the resulting balance equation for the membrane stress. Balance laws for fluxes of transporters and receptors, coupled with the former because of the outgoing cAMP flux caused by the transporters, as well as for the diffusive powers must be supplied. The Center for Nonlinear Analysis through the NSF Grant No. DMS-0635983 is gratefully acknowledged.

  11. CD134/CD137 Dual Costimulation-Elicited IFN-γ Maximizes Effector T Cell Function but Limits Treg Expansion

    PubMed Central

    Rose, Marie-Clare St.; Taylor, Roslyn A.; Bandyopadhyay, Suman; Qui, Harry Z.; Hagymasi, Adam T.; Vella, Anthony T.; Adler, Adam J.

    2012-01-01

    T cell tolerance to tumor antigens represents a major hurdle in generating tumor immunity. Combined administration of agonistic monoclonal antibodies to the costimulatory receptors CD134 plus CD137 can program T cells responding to tolerogenic antigen to undergo expansion and effector T cell differentiation, and also elicits tumor immunity. Nevertheless, CD134 and CD137 agonists can also engage inhibitory immune components. To understand how immune stimulatory versus inhibitory components are regulated during CD134 plus CD137 dual costimulation, the current study utilized a model where dual costimulation programs T cells encountering a highly tolerogenic self-antigen to undergo effector differentiation. IFN-γ was found to play a pivotal role in maximizing the function of effector T cells while simultaneously limiting the expansion of CD4+CD25+Foxp3+ Tregs. In antigen-responding effector T cells, IFN-γ operates via a direct cell-intrinsic mechanism to cooperate with IL-2 to program maximal expression of granzyme B. Simultaneously, IFN-γ limits expression of the IL-2 receptor alpha chain (CD25) and IL-2 signaling through a mechanism that does not involve T-bet-mediated repression of IL-2. IFN-γ also limited CD25 and Foxp3 expression on bystanding CD4+Foxp3+ Tregs, and limited the potential of these Tregs to expand. These effects could not be explained by the ability of IFN-γ to limit IL-2 availability. Taken together, during dual costimulation IFN-γ interacts with IL-2 through distinct mechanisms to program maximal expression of effector molecules in antigen-responding T cells while simultaneously limiting Treg expansion. PMID:23295363

  12. Novel strategy for a bispecific antibody: induction of dual target internalization and degradation.

    PubMed

    Lee, J M; Lee, S H; Hwang, J-W; Oh, S J; Kim, B; Jung, S; Shim, S-H; Lin, P W; Lee, S B; Cho, M-Y; Koh, Y J; Kim, S Y; Ahn, S; Lee, J; Kim, K-M; Cheong, K H; Choi, J; Kim, K-A

    2016-08-25

    Activation of the extensive cross-talk among the receptor tyrosine kinases (RTKs), particularly ErbB family-Met cross-talk, has emerged as a likely source of drug resistance. Notwithstanding brilliant successes were attained while using small-molecule inhibitors or antibody therapeutics against specific RTKs in multiple cancers over recent decades, a high recurrence rate remains unsolved in patients treated with these targeted inhibitors. It is well aligned with multifaceted properties of cancer and cross-talk and convergence of signaling pathways of RTKs. Thereby many therapeutic interventions have been actively developed to overcome inherent or acquired resistance. To date, no bispecific antibody (BsAb) showed complete depletion of dual RTKs from the plasma membrane and efficient dual degradation. In this manuscript, we report the first findings of a target-specific dual internalization and degradation of membrane RTKs induced by designed BsAbs based on the internalizing monoclonal antibodies and the therapeutic values of these BsAbs. Leveraging the anti-Met mAb able to internalize and degrade by a unique mechanism, we generated the BsAbs for Met/epidermal growth factor receptor (EGFR) and Met/HER2 to induce an efficient EGFR or HER2 internalization and degradation in the presence of Met that is frequently overexpressed in the invasive tumors and involved in the resistance against EGFR- or HER2-targeted therapies. We found that Met/EGFR BsAb ME22S induces dissociation of the Met-EGFR complex from Hsp90, followed by significant degradation of Met and EGFR. By employing patient-derived tumor models we demonstrate therapeutic potential of the BsAb-mediated dual degradation in various cancers.

  13. Structural mechanism of ligand activation in human calcium-sensing receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Yong; Mosyak, Lidia; Kurinov, Igor

    2016-07-19

    Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor (GPCR) that maintains extracellular Ca 2+homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich domain, and seven-helix transmembrane region. Here, we present the crystal structures of the entire extracellular domain of CaSR in the resting and active conformations. We provide direct evidence that L-amino acids are agonists of the receptor. In the active structure, L-Trp occupies the orthosteric agonist-binding site at the interdomain cleft and is primarily responsible for inducing extracellular domain closure to initiate receptor activation.more » Our structures reveal multiple binding sites for Ca 2+and PO 4 3-ions. Both ions are crucial for structural integrity of the receptor. While Ca 2+ions stabilize the active state, PO 4 3-ions reinforce the inactive conformation. The activation mechanism of CaSR involves the formation of a novel dimer interface between subunits.« less

  14. Dual path mechanism in the thermal reduction of graphene oxide.

    PubMed

    Larciprete, Rosanna; Fabris, Stefano; Sun, Tao; Lacovig, Paolo; Baraldi, Alessandro; Lizzit, Silvano

    2011-11-02

    Graphene is easily produced by thermally reducing graphene oxide. However, defect formation in the C network during deoxygenation compromises the charge carrier mobility in the reduced material. Understanding the mechanisms of the thermal reactions is essential for defining alternative routes able to limit the density of defects generated by carbon evolution. Here, we identify a dual path mechanism in the thermal reduction of graphene oxide driven by the oxygen coverage: at low surface density, the O atoms adsorbed as epoxy groups evolve as O(2) leaving the C network unmodified. At higher coverage, the formation of other O-containing species opens competing reaction channels, which consume the C backbone. We combined spectroscopic tools and ab initio calculations to probe the species residing on the surface and those released in the gas phase during heating and to identify reaction pathways and rate-limiting steps. Our results illuminate the current puzzling scenario of the low temperature gasification of graphene oxide.

  15. Design and Functional Validation of a Mechanism for Dual-Spinning CubeSats

    NASA Technical Reports Server (NTRS)

    Peters, Eric; Dave, Pratik; Kingsbury, Ryan; Marinan, Anne; Wise, Evan; Pong, Chris; Prinkey, Meghan; Cahoy, Kerri; Miller, David W.; Sklair, Devon

    2014-01-01

    The mission of the Micro-sized Microwave Atmospheric Satellite (MicroMAS) is to collect useful atmospheric images using a miniature passive microwave radiometer payload hosted on a low-cost CubeSat platform. In order to collect this data, the microwave radiometer payload must rotate to scan the ground-track perpendicular to the satellite's direction of travel. A custom motor assembly was developed to facilitate the rotation of the payload while allowing the spacecraft bus to remained fixed in the local-vertical, local-horizontal (LVLH) frame for increased pointing accuracy. This paper describes the mechanism used to enable this dual-spinning operation for CubeSats, and the lessons learned during the design, fabrication, integration, and testing phases of the mechanism's development lifecycle.

  16. Desensitization of GABAergic receptors as a mechanism of zolpidem-induced somnambulism.

    PubMed

    Juszczak, Grzegorz R

    2011-08-01

    Sleepwalking is a frequently reported side effect of zolpidem which is a short-acting hypnotic drug potentiating activity of GABA(A) receptors. Paradoxically, the most commonly used medications for somnambulism are benzodiazepines, especially clonazepam, which also potentiate activity of GABA(A) receptors. It is proposed that zolpidem-induced sleepwalking can be explained by the desensitization of GABAergic receptors located on serotonergic neurons. According to the proposed model, the delay between desensitization of GABA receptors and a compensatory decrease in serotonin release constitutes the time window for parasomnias. The occurrence of sleepwalking depends on individual differences in receptor desensitization, autoregulation of serotonin release and drug pharmacokinetics. The proposed mechanism of interaction between GABAergic and serotonergic systems can be also relevant for zolpidem abuse and zolpidem-induced hallucinations. It is therefore suggested that special care should be taken when zolpidem is used in patients taking at the same time selective serotonin reuptake inhibitors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Mechanism of HSV infection through soluble adapter-mediated virus bridging to the EGF receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakano, Kenji, E-mail: kenakano@med.kyushu-u.ac.j; Kobayashi, Masatoshi; Nakamura, Kei-ichiro

    2011-04-25

    Herpes simplex virus entry into cells requires the binding of envelope glycoprotein D (gD) to an entry receptor. Depending on the cell, entry occurs by different mechanisms, including fusion at the cell surface or endocytosis. Here we examined the entry mechanism through a non-HSV receptor mediated by a soluble bi-specific adapter protein composed of recognition elements for gD and the EGF receptor (EGFR). Virus entered into endosomes using either EGF or an EGFR-specific single chain antibody (scFv) for receptor recognition. Infection was less efficient with the EGF adapter which could be attributed to its weaker binding to a viral gD.more » Infection mediated by the scFv adapter was pH sensitive, indicating that gD-EGFR bridging alone was insufficient for capsid release from endosomes. We also show that the scFv adapter enhanced infection of EGFR-expressing tumor tissue in vivo. Our results indicate that adapters may retarget HSV infection without drastically changing the entry mechanism.« less

  18. Discovery of dual orexin receptor antagonists with rat sleep efficacy enabled by expansion of the acetonitrile-assisted/diphosgene-mediated 2,4-dichloropyrimidine synthesis.

    PubMed

    Roecker, Anthony J; Mercer, Swati P; Harrell, C Meacham; Garson, Susan L; Fox, Steven V; Gotter, Anthony L; Prueksaritanont, Thomayant; Cabalu, Tamara D; Cui, Donghui; Lemaire, Wei; Winrow, Christopher J; Renger, John J; Coleman, Paul J

    2014-05-01

    Recent clinical studies have demonstrated that dual orexin receptor antagonists (OX1R and OX2R antagonists or DORAs) represent a novel treatment option for insomnia patients. Previously we have disclosed several compounds in the diazepane amide DORA series with excellent potency and both preclinical and clinical sleep efficacy. Additional SAR studies in this series were enabled by the expansion of the acetonitrile-assisted, diphosgene-mediated 2,4-dichloropyrimidine synthesis to novel substrates providing an array of Western heterocycles. These heterocycles were utilized to synthesize analogs in short order with high levels of potency on orexin 1 and orexin 2 receptors as well as in vivo sleep efficacy in the rat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Polycythaemia-inducing mutations in the erythropoietin receptor (EPOR): mechanism and function as elucidated by epidermal growth factor receptor-EPOR chimeras.

    PubMed

    Gross, Mor; Ben-Califa, Nathalie; McMullin, Mary F; Percy, Melanie J; Bento, Celeste; Cario, Holger; Minkov, Milen; Neumann, Drorit

    2014-05-01

    Primary familial and congenital polycythaemia (PFCP) is a disease characterized by increased red blood cell mass, and can be associated with mutations in the intracellular region of the erythropoietin (EPO) receptor (EPOR). Here we explore the mechanisms by which EPOR mutations induce PFCP, using an experimental system based on chimeric receptors between epidermal growth factor receptor (EGFR) and EPOR. The design of the chimeras enabled EPOR signalling to be triggered by EGF binding. Using this system we analysed three novel EPOR mutations discovered in PFCP patients: a deletion mutation (Del1377-1411), a nonsense mutation (C1370A) and a missense mutation (G1445A). Three different chimeras, bearing these mutations in the cytosolic, EPOR region were generated; Hence, the differences in the chimera-related effects are specifically attributed to the mutations. The results show that the different mutations affect various aspects related to the signalling and metabolism of the chimeric receptors. These include slower degradation rate, higher levels of glycan-mature chimeric receptors, increased sensitivity to low levels of EGF (replacing EPO in this system) and extended signalling cascades. This study provides a novel experimental system to study polycythaemia-inducing mutations in the EPOR, and sheds new light on underlying mechanisms of EPOR over-activation in PFCP patients. © 2014 John Wiley & Sons Ltd.

  20. A dual agonist of farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5, INT-767, reverses age-related kidney disease in mice.

    PubMed

    Wang, Xiaoxin X; Luo, Yuhuan; Wang, Dong; Adorini, Luciano; Pruzanski, Mark; Dobrinskikh, Evgenia; Levi, Moshe

    2017-07-21

    Even in healthy individuals, renal function gradually declines during aging. However, an observed variation in the rate of this decline has raised the possibility of slowing or delaying age-related kidney disease. One of the most successful interventional measures that slows down and delays age-related kidney disease is caloric restriction. We undertook the present studies to search for potential factors that are regulated by caloric restriction and act as caloric restriction mimetics. Based on our prior studies with the bile acid-activated nuclear hormone receptor farnesoid X receptor (FXR) and G protein-coupled membrane receptor TGR5 that demonstrated beneficial effects of FXR and TGR5 activation in the kidney, we reasoned that FXR and TGR5 could be excellent candidates. We therefore determined the effects of aging and caloric restriction on the expression of FXR and TGR5 in the kidney. We found that FXR and TGR5 expression levels are decreased in the aging kidney and that caloric restriction prevents these age-related decreases. Interestingly, in long-lived Ames dwarf mice, renal FXR and TGR5 expression levels were also increased. A 2-month treatment of 22-month-old C57BL/6J mice with the FXR-TGR5 dual agonist INT-767 induced caloric restriction-like effects and reversed age-related increases in proteinuria, podocyte injury, fibronectin accumulation, TGF-β expression, and, most notably, age-related impairments in mitochondrial biogenesis and mitochondrial function. Furthermore, in podocytes cultured in serum obtained from old mice, INT-767 prevented the increases in the proinflammatory markers TNF-α, toll-like receptor 2 (TLR2), and TLR4. In summary, our results indicate that FXR and TGR5 may play an important role in modulation of age-related kidney disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Acute Mechanisms Underlying Antibody Effects in Anti–N-Methyl-D-Aspartate Receptor Encephalitis

    PubMed Central

    Moscato, Emilia H; Peng, Xiaoyu; Jain, Ankit; Parsons, Thomas D; Dalmau, Josep; Balice-Gordon, Rita J

    2014-01-01

    Objective A severe but treatable form of immune-mediated encephalitis is associated with antibodies in serum and cerebrospinal fluid (CSF) against the GluN1 subunit of the N-methyl-D-aspartate receptor (NMDAR). Prolonged exposure of hippocampal neurons to antibodies from patients with anti-NMDAR encephalitis caused a reversible decrease in the synaptic localization and function of NMDARs. However, acute effects of the antibodies, fate of the internalized receptors, type of neurons affected, and whether neurons develop compensatory homeostatic mechanisms were unknown and are the focus of this study. Methods Dissociated hippocampal neuron cultures and rodent brain sections were used for immunocytochemical, physiological, and molecular studies. Results Patient antibodies bind to NMDARs throughout the rodent brain, and decrease NMDAR cluster density in both excitatory and inhibitory hippocampal neurons. They rapidly increase the internalization rate of surface NMDAR clusters, independent of receptor activity. This internalization likely accounts for the observed decrease in NMDAR-mediated currents, as no evidence of direct blockade was detected. Once internalized, antibody-bound NMDARs traffic through both recycling endosomes and lysosomes, similar to pharmacologically induced NMDAR endocytosis. The antibodies are responsible for receptor internalization, as their depletion from CSF abrogates these effects in hippocampal neurons. We find that although anti-NMDAR antibodies do not induce compensatory changes in glutamate receptor gene expression, they cause a decrease in inhibitory synapse density onto excitatory hippocampal neurons. Interpretation Our data support an antibody-mediated mechanism of disease pathogenesis driven by immunoglobulin-induced receptor internalization. Antibody-mediated downregulation of surface NMDARs engages homeostatic synaptic plasticity mechanisms, which may inadvertently contribute to disease progression. Ann Neurol 2014;76:108–119 PMID

  2. Therapeutic antibody targeting of individual Notch receptors.

    PubMed

    Wu, Yan; Cain-Hom, Carol; Choy, Lisa; Hagenbeek, Thijs J; de Leon, Gladys P; Chen, Yongmei; Finkle, David; Venook, Rayna; Wu, Xiumin; Ridgway, John; Schahin-Reed, Dorreyah; Dow, Graham J; Shelton, Amy; Stawicki, Scott; Watts, Ryan J; Zhang, Jeff; Choy, Robert; Howard, Peter; Kadyk, Lisa; Yan, Minhong; Zha, Jiping; Callahan, Christopher A; Hymowitz, Sarah G; Siebel, Christian W

    2010-04-15

    The four receptors of the Notch family are widely expressed transmembrane proteins that function as key conduits through which mammalian cells communicate to regulate cell fate and growth. Ligand binding triggers a conformational change in the receptor negative regulatory region (NRR) that enables ADAM protease cleavage at a juxtamembrane site that otherwise lies buried within the quiescent NRR. Subsequent intramembrane proteolysis catalysed by the gamma-secretase complex liberates the intracellular domain (ICD) to initiate the downstream Notch transcriptional program. Aberrant signalling through each receptor has been linked to numerous diseases, particularly cancer, making the Notch pathway a compelling target for new drugs. Although gamma-secretase inhibitors (GSIs) have progressed into the clinic, GSIs fail to distinguish individual Notch receptors, inhibit other signalling pathways and cause intestinal toxicity, attributed to dual inhibition of Notch1 and 2 (ref. 11). To elucidate the discrete functions of Notch1 and Notch2 and develop clinically relevant inhibitors that reduce intestinal toxicity, we used phage display technology to generate highly specialized antibodies that specifically antagonize each receptor paralogue and yet cross-react with the human and mouse sequences, enabling the discrimination of Notch1 versus Notch2 function in human patients and rodent models. Our co-crystal structure shows that the inhibitory mechanism relies on stabilizing NRR quiescence. Selective blocking of Notch1 inhibits tumour growth in pre-clinical models through two mechanisms: inhibition of cancer cell growth and deregulation of angiogenesis. Whereas inhibition of Notch1 plus Notch2 causes severe intestinal toxicity, inhibition of either receptor alone reduces or avoids this effect, demonstrating a clear advantage over pan-Notch inhibitors. Our studies emphasize the value of paralogue-specific antagonists in dissecting the contributions of distinct Notch receptors to

  3. Have we fallen off target with concerns surrounding dual RAAS blockade?

    PubMed

    Lattanzio, Michael R; Weir, Matthew R

    2010-09-01

    A misinterpretation of the results from ONTARGET (Ongoing Telmisartan alone and in combination with ramipril Global Endpoint Trial) has sparked both efficacy and safety concerns within the nephrology community regarding the utilization of dual RAAS blockade to achieve more desirable renal outcomes. Two important considerations are requisite prior to interpreting these results, specifically: the context of the cohort studied (non-proteinuric CKD patients at low risk of progression) and the inadequate power of the study to assess renal outcomes. The cardiac and renal protection afforded from dual RAAS blockade in select populations, particularly proteinuric CKD and CHF, is supported by literature. Moreover, the response to dual RAAS blockade involving different combinations of ACE inhibitors, angiotensin receptor blockers, mineralocorticoid receptor antagonists, and direct renin inhibitors, may not be uniform amongst all patient populations. Will we continue to withhold the appropriate medical therapy from certain individuals based on misconstrued data? The proceedings provide a critical analysis of the ONTARGET study and an evidence-based substantiation for the utilization of various forms of dual RAAS blockade in proteinuric kidney disease and beyond.

  4. Qualification of a High Accuracy Dual-Axis Antenna Deployment and Trimming Mechanism

    NASA Technical Reports Server (NTRS)

    Gossant, Alain; Morichon, Francois

    2010-01-01

    The Antenna Deployment and Trimming Mechanism Mark 2 (ADTM Mk2) has been developed to answer today's need for a generic antenna deployment and high accuracy pointing mechanism, allowing RF sensing applications and easier dual deployments configurations. This paper presents the design and evolution from its predecessor, the experience of the design team from kick off to qualification and batch manufacture, as well as some lessons learned from ramping up "mass-production" capabilities while implementing customer driven changes. Astrium has manufactured and flown ADTM units for the past 20 years, from an initial deployment-only mechanism developed for the Orion program to today's Eurostar E3000 ADTM family. The Antenna ADTM Mk2 is an evolution of the original ADTM Mk1. Although it uses Mk1 building blocks to minimize risks associated with the development of a new product, it incorporates major evolutions and is the new baseline for Astrium latest generation of Eurostar E3000 telecom satellites.

  5. Ombuin-3-O-β-D-glucopyranoside from Gynostemma pentaphyllum is a dual agonistic ligand of peroxisome proliferator-activated receptors α and δ/β

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malek, Mastura Abd; Hoang, Minh-Hien; Jia, Yaoyao

    Highlights: ► Ombuin-3-O-β-D-glucopyranoside is a dual ligand for PPARα and δ/β. ► Ombuin-3-O-β-D-glucopyranoside reduces cellular lipid levels in multiple cell types. ► Cells stimulated with ombuine up-regulated target genes in cholesterol efflux. ► Cells stimulated with ombuine regulated target fatty acid β-oxidation and synthesis. ► Ombuin-3-O-β-D-glucopyranoside could ameliorate hyperlipidemia and hepatic steatosis. -- Abstract: We demonstrated that ombuin-3-O-β-D-glucopyranoside (ombuine), a flavonoid from Gynostemma pentaphyllum, is a dual agonist for peroxisome proliferator-activated receptors (PPARs) α and δ/β. Using surface plasmon resonance (SPR), time-resolved fluorescence resonance energy transfer (FRET) analyses, and reporter gene assays, we showed that ombuine bound directly to PPARαmore » and δ/β but not to PPARγ or liver X receptors (LXRs). Cultured HepG2 hepatocytes stimulated with ombuine significantly reduced intracellular concentrations of triglyceride and cholesterol and downregulated the expression of lipogenic genes, including sterol regulatory element binding protein-1c (SREBP1c) and stearoyl-CoA desaturase-1 (SCD-1), with activation of PPARα and δ/β. Activation of LXRs by ombuine was confirmed by reporter gene assays, however, SPR and cell-based FRET assays showed no direct binding of ombuine to either of the LXRs suggesting LXR activation by ombuine may be operated via PPARα stimulation. Ombuine-stimulated macrophages showed significantly induced transcription of ATP binding cassette cholesterol transporter A1 (ABCA1) and G1 (ABCG1), the key genes in reverse cholesterol transport, which led to reduced cellular cholesterol concentrations. These results suggest that ombuine is a dual PPAR ligand for PPARα and δ/β with the ability to decrease lipid concentrations by reducing lipogenic gene expression in hepatocytes and inducing genes involved in cholesterol efflux in macrophages.« less

  6. Novel mechanisms of G-protein-coupled receptors functions: AT1 angiotensin receptor acts as a signaling hub and focal point of receptor cross-talk.

    PubMed

    Tóth, András D; Turu, Gábor; Hunyady, László; Balla, András

    2018-04-01

    AT 1 angiotensin receptor (AT 1 R), a prototypical G protein-coupled receptor (GPCR), is the main receptor, which mediates the effects of the renin-angiotensin system (RAS). AT 1 R plays a crucial role in the regulation of blood pressure and salt-water homeostasis, and in the development of pathological conditions, such as hypertension, heart failure, cardiovascular remodeling, renal fibrosis, inflammation, and metabolic disorders. Stimulation of AT 1 R leads to pleiotropic signal transduction pathways generating arrays of complex cellular responses. Growing amount of evidence shows that AT 1 R is a versatile GPCR, which has multiple unique faces with distinct conformations and signaling properties providing new opportunities for functionally selective pharmacological targeting of the receptor. Biased ligands of AT 1 R have been developed to selectively activate the β-arrestin pathway, which may have therapeutic benefits compared to the conventional angiotensin converting enzyme inhibitors and angiotensin receptor blockers. In this review, we provide a summary about the most recent findings and novel aspects of the AT 1 R function, signaling, regulation, dimerization or oligomerization and its cross-talk with other receptors, including epidermal growth factor (EGF) receptor, adrenergic receptors and CB 1 cannabinoid receptor. Better understanding of the mechanisms and structural aspects of AT 1 R activation and cross-talk can lead to the development of novel type of drugs for the treatment of cardiovascular and other diseases. Copyright © 2018. Published by Elsevier Ltd.

  7. A novel glucagon-like peptide 1/glucagon receptor dual agonist improves steatohepatitis and liver regeneration in mice.

    PubMed

    Valdecantos, M Pilar; Pardo, Virginia; Ruiz, Laura; Castro-Sánchez, Luis; Lanzón, Borja; Fernández-Millán, Elisa; García-Monzón, Carmelo; Arroba, Ana I; González-Rodríguez, Águeda; Escrivá, Fernando; Álvarez, Carmen; Rupérez, Francisco J; Barbas, Coral; Konkar, Anish; Naylor, Jacqui; Hornigold, David; Santos, Ana Dos; Bednarek, Maria; Grimsby, Joseph; Rondinone, Cristina M; Valverde, Ángela M

    2017-03-01

    Because nonalcoholic steatohepatitis (NASH) is associated with impaired liver regeneration, we investigated the effects of G49, a dual glucagon-like peptide-1/glucagon receptor agonist, on NASH and hepatic regeneration. C57Bl/6 mice fed chow or a methionine and choline-deficient (MCD) diet for 1 week were divided into 4 groups: control (chow diet), MCD diet, chow diet plus G49, and M+G49 (MCD diet plus G49). Mice fed a high-fat diet (HFD) for 10 weeks were divided into groups: HFD and H+G49 (HFD plus G49). Following 2 (MCD groups) or 3 (HFD groups) weeks of treatment with G49, partial hepatectomy (PH) was performed, and all mice were maintained on the same treatment schedule for 2 additional weeks. Analysis of liver function, hepatic regeneration, and comprehensive genomic and metabolic profiling were conducted. NASH was ameliorated in the M+G49 group, manifested by reduced inflammation, steatosis, oxidative stress, and apoptosis and increased mitochondrial biogenesis. G49 treatment was also associated with replenishment of intrahepatic glucose due to enhanced gluconeogenesis and reduced glucose use through the pentose phosphate cycle and oxidative metabolism. Following PH, G49 treatment increased survival, restored the cytokine-mediated priming phase, and enhanced the proliferative capacity and hepatic regeneration ratio in mice on the MCD diet. NASH markers remained decreased in M+G49 mice after PH, and glucose use was shifted to the pentose phosphate cycle and oxidative metabolism. G49 administered immediately after PH was also effective at alleviating the pathological changes induced by the MCD diet. Benefits in terms of liver regeneration were also found in mice fed HFD and treated with G49. Dual-acting glucagon-like peptide-1/glucagon receptor agonists such as G49 represent a novel therapeutic approach for patients with NASH and particularly those requiring PH. (Hepatology 2017;65:950-968). © 2016 by the American Association for the Study of Liver Diseases.

  8. The formation mechanism of binary semiconductor nanomaterials: shared by single-source and dual-source precursor approaches.

    PubMed

    Yu, Kui; Liu, Xiangyang; Zeng, Qun; Yang, Mingli; Ouyang, Jianying; Wang, Xinqin; Tao, Ye

    2013-10-11

    One thing in common: The formation of binary colloidal semiconductor nanocrystals from single- (M(EEPPh2 )n ) and dual-source precursors (metal carboxylates M(OOCR)n and phosphine chalcogenides such as E=PHPh2 ) is found to proceed through a common mechanism. For CdSe as a model system (31) P NMR spectroscopy and DFT calculations support a reaction mechanism which includes numerous metathesis equilibriums and Se exchange reactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Dual-Mechanism and Multimotion Soft Actuators Based on Commercial Plastic Film.

    PubMed

    Li, Linpeng; Meng, Junxing; Hou, Chengyi; Zhang, Qinghong; Li, Yaogang; Yu, Hao; Wang, Hongzhi

    2018-05-02

    Soft actuators have attracted a lot of attention owing to their biomimetic performance. However, the development of soft actuators that are easily prepared from readily available raw materials, conveniently utilized, and cost-efficient is still a challenge. Here, we present a simple method to fabricate a polyethylene-based soft actuator. It has controllable anisotropic structure and can realize multiple motions, including bidirectional bending and twisting based on dual mechanisms, which is a rare phenomenon. Especially, the soft actuators can response at a very small temperature difference (Δ T ≥ 2.3 °C); therefore, even skin touch can quickly drive the actuator, which greatly broadens its applications in daily life. The soft actuator could demonstrate a curvature up to 7.8 cm -1 accompanied by powerful actuation. We have shown that it can lift an object 27 times its own weight. We also demonstrate the application of this actuator as intelligent mechanical devices.

  10. Untangling ciliary access and enrichment of two rhodopsin-like receptors using quantitative fluorescence microscopy reveals cell-specific sorting pathways

    PubMed Central

    Geneva, Ivayla I.; Tan, Han Yen; Calvert, Peter D.

    2017-01-01

    Resolution limitations of optical systems are major obstacles for determining whether proteins are enriched within cell compartments. Here we use an approach to determine the degree of membrane protein ciliary enrichment that quantitatively accounts for the differences in sampling of the ciliary and apical membranes inherent to confocal microscopes. Theory shows that cilia will appear more than threefold brighter than the surrounding apical membrane when the densities of fluorescently labeled proteins are the same, thus providing a benchmark for ciliary enrichment. Using this benchmark, we examined the ciliary enrichment signals of two G protein–coupled receptors (GPCRs)—the somatostatin receptor 3 and rhodopsin. Remarkably, we found that the C-terminal VxPx motif, required for efficient enrichment of rhodopsin within rod photoreceptor sensory cilia, inhibited enrichment of the somatostatin receptor in primary cilia. Similarly, VxPx inhibited primary cilium enrichment of a chimera of rhodopsin and somatostatin receptor 3, where the dual Ax(S/A)xQ ciliary targeting motifs within the third intracellular loop of the somatostatin receptor replaced the third intracellular loop of rhodopsin. Rhodopsin was depleted from primary cilia but gained access, without being enriched, with the dual Ax(S/A)xQ motifs. Ciliary enrichment of these GPCRs thus operates via distinct mechanisms in different cells. PMID:27974638

  11. Exploring Molecular Mechanisms of Ligand Recognition by Opioid Receptors with Metadynamics†

    PubMed Central

    Provasi, Davide; Bortolato, Andrea; Filizola, Marta

    2009-01-01

    Opioid receptors are G protein-coupled receptors (GPCRs) of utmost significance in the development of potent analgesic drugs for the treatment of severe pain. An accurate evaluation at the molecular level of the ligand binding pathways into these receptors may play a key role in the design of new molecules with more desirable properties and reduced side effects. The recent characterization of high-resolution X-ray crystal structures of non-rhodopsin GPCRs for diffusible hormones and neurotransmitters presents an unprecedented opportunity to build improved homology models of opioid receptors, and to study in more detail their molecular mechanisms of ligand recognition. In this study, possible entry pathways of the non-selective antagonist naloxone (NLX) from the water environment into the well-accepted alkaloid binding pocket of a delta opioid receptor (DOR) molecular model based on the β2-adrenergic receptor crystal structure are explored using microsecond-scale well-tempered metadynamics simulations. Using as collective variables distances that account for the position of NLX and of the receptor extracellular loop 2 in relation to the DOR binding pocket, we were able to distinguish between the different states visited by the ligand (i.e., docked, undocked, and metastable bound intermediates), and to predict a free energy of binding close to experimental values after correcting for possible drawbacks of the sampling approach. The strategy employed herein holds promise for its application to the docking of diverse ligands to the opioid receptors as well as to other GPCRs. PMID:19785461

  12. Exploring molecular mechanisms of ligand recognition by opioid receptors with metadynamics.

    PubMed

    Provasi, Davide; Bortolato, Andrea; Filizola, Marta

    2009-10-27

    Opioid receptors are G protein-coupled receptors (GPCRs) of utmost significance in the development of potent analgesic drugs for the treatment of severe pain. An accurate evaluation at the molecular level of the ligand binding pathways into these receptors may play a key role in the design of new molecules with more desirable properties and reduced side effects. The recent characterization of high-resolution X-ray crystal structures of non-rhodopsin GPCRs for diffusible hormones and neurotransmitters presents an unprecedented opportunity to build improved homology models of opioid receptors, and to study in more detail their molecular mechanisms of ligand recognition. In this study, possible pathways for entry of the nonselective antagonist naloxone (NLX) from the water environment into the well-accepted alkaloid binding pocket of a delta opioid receptor (DOR) molecular model based on the beta2-adrenergic receptor crystal structure are explored using microsecond-scale well-tempered metadynamics simulations. Using as collective variables distances that account for the position of NLX and of the receptor extracellular loop 2 in relation to the DOR binding pocket, we were able to distinguish between the different states visited by the ligand (i.e., docked, undocked, and metastable bound intermediates) and to predict a free energy of binding close to experimental values after correcting for possible drawbacks of the sampling approach. The strategy employed herein holds promise for its application to the docking of diverse ligands to the opioid receptors as well as to other GPCRs.

  13. Industrial dual arm robot manipulator for precise assembly of mechanical parts

    NASA Astrophysics Data System (ADS)

    Park, Chanhun; Kim, Doohyung; Park, Kyoungtaik; Choi, Youngjin

    2007-12-01

    A new structure of dual arm robot manipulator which consists of two industrial 6-DOF arms and one 2-DOF Torso is introduced. Each industrial 6-DOF arm is able to be used as a stand-alone industrial 6-DOF robot manipulator and as a part of dual arm manipulator at the same time. These structures help the robot maker which is willing to succeed in the emerging dual arm robot market in order to have high competition for the current industrial robot market at same time. Self-collision detection algorithm for multi-arm robot and kinematics algorithms for the developed dual arm robot manipulator which are implemented in our controller are introduced.

  14. Post-traumatic stress disorder and head injury as a dual diagnosis: "islands" of memory as a mechanism.

    PubMed

    King, N S

    1997-01-01

    This case study describes post-traumatic stress disorder (PTSD) and head injury after a road traffic accident involving a pedestrian. Previous studies have proposed two mechanisms by which this dual diagnosis may occur: (1) when post-traumatic amnesia and retrograde amnesia are small or non-existent and (2) when non-declarative memory systems for the traumatic event are in operation. This case study demonstrates a third mechanism--"islands" of memory within post-traumatic amnesia.

  15. Charge transport model in nanodielectric composites based on quantum tunneling mechanism and dual-level traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guochang; Chen, George, E-mail: gc@ecs.soton.ac.uk, E-mail: sli@mail.xjtu.edu.cn; School of Electronic and Computer Science, University of Southampton, Southampton SO17 1BJ

    Charge transport properties in nanodielectrics present different tendencies for different loading concentrations. The exact mechanisms that are responsible for charge transport in nanodielectrics are not detailed, especially for high loading concentration. A charge transport model in nanodielectrics has been proposed based on quantum tunneling mechanism and dual-level traps. In the model, the thermally assisted hopping (TAH) process for the shallow traps and the tunnelling process for the deep traps are considered. For different loading concentrations, the dominant charge transport mechanisms are different. The quantum tunneling mechanism plays a major role in determining the charge conduction in nanodielectrics with high loadingmore » concentrations. While for low loading concentrations, the thermal hopping mechanism will dominate the charge conduction process. The model can explain the observed conductivity property in nanodielectrics with different loading concentrations.« less

  16. Mechanisms Underlying Tolerance after Long-Term Benzodiazepine Use: A Future for Subtype-Selective GABAA Receptor Modulators?

    PubMed Central

    Vinkers, Christiaan H.; Olivier, Berend

    2012-01-01

    Despite decades of basic and clinical research, our understanding of how benzodiazepines tend to lose their efficacy over time (tolerance) is at least incomplete. In appears that tolerance develops relatively quickly for the sedative and anticonvulsant actions of benzodiazepines, whereas tolerance to anxiolytic and amnesic effects probably does not develop at all. In light of this evidence, we review the current evidence for the neuroadaptive mechanisms underlying benzodiazepine tolerance, including changes of (i) the GABAA receptor (subunit expression and receptor coupling), (ii) intracellular changes stemming from transcriptional and neurotrophic factors, (iii) ionotropic glutamate receptors, (iv) other neurotransmitters (serotonin, dopamine, and acetylcholine systems), and (v) the neurosteroid system. From the large variance in the studies, it appears that either different (simultaneous) tolerance mechanisms occur depending on the benzodiazepine effect, or that the tolerance-inducing mechanism depends on the activated GABAA receptor subtypes. Importantly, there is no convincing evidence that tolerance occurs with α subunit subtype-selective compounds acting at the benzodiazepine site. PMID:22536226

  17. Design, synthesis, and evaluation of a novel series of alpha-substituted phenylpropanoic acid derivatives as human peroxisome proliferator-activated receptor (PPAR) alpha/delta dual agonists for the treatment of metabolic syndrome.

    PubMed

    Kasuga, Jun-ichi; Yamasaki, Daisuke; Araya, Yoko; Nakagawa, Aya; Makishima, Makoto; Doi, Takefumi; Hashimoto, Yuichi; Miyachi, Hiroyuki

    2006-12-15

    A series of alpha-alkyl-substituted phenylpropanoic acids was prepared as dual agonists of peroxisome proliferator-activated receptors alpha and delta (PPARalpha/delta). Structure-activity relationship studies indicated that the shape of the linking group and the shape of the substituent at the distal benzene ring play key roles in determining the potency and the selectivity of PPAR subtype transactivation. Structure-activity relationships among the amide series (10) and the reversed amide series (13) are similar, but not identical, especially in the case of the compounds bearing a bulky hydrophobic substituent at the distal benzene ring, indicating that the hydrophobic tail part of the molecules in these two series binds at somewhat different positions in the large binding pocket of PPAR. alpha-Alkyl-substituted phenylpropanoic acids of (S)-configuration were identified as potent human PPARalpha/delta dual agonists. Representative compounds exhibited marked nuclear receptor selectivity for PPARalpha and PPARdelta. Subtype-selective PPAR activation was also examined by analysis of the mRNA expression of PPAR-regulated genes.

  18. Normal T lymphocytes can express two different T cell receptor beta chains: implications for the mechanism of allelic exclusion

    PubMed Central

    1995-01-01

    We have examined the extent of allelic exclusion at the T cell receptor (TCR) beta locus using monoclonal antibodies specific for V beta products. A small proportion (approximately 1%) of human peripheral blood T cells express two V beta as determined by flow cytometric analysis, isolation of representative clones, and sequencing of the corresponding V beta chains. Dual beta T cells are present in both the CD45R0+ and CD45R0- subset. These results indicate that dual beta expression is compatible with both central and peripheral selection. They also suggest that the substantial degree of TCR beta allelic exclusion is dependent only on asynchronous rearrangements at the beta locus, whereas the role of the pre-TCR is limited to signaling the presence of at least one functional beta protein. PMID:7699339

  19. The Receptor Binding Domain of Botulinum Neurotoxin Stereotype C Binds Phosphoinositides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanfeng; Varnum, Susan M.

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD50 of {approx} 1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a 'dual receptor' mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Here, using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro. BoNT/C-HCR was foundmore » to bind negatively charged phospholipids, preferentially phosphoinositides. Additional interactions to phosphoinositides may help BoNT/C bind membrane more tightly and transduct signals for subsequent steps of intoxication. Our results provide new insights into the mechanisms of host cell membrane recognition by BoNTs.« less

  20. Post-traumatic stress disorder and head injury as a dual diagnosis: "islands" of memory as a mechanism.

    PubMed Central

    King, N S

    1997-01-01

    This case study describes post-traumatic stress disorder (PTSD) and head injury after a road traffic accident involving a pedestrian. Previous studies have proposed two mechanisms by which this dual diagnosis may occur: (1) when post-traumatic amnesia and retrograde amnesia are small or non-existent and (2) when non-declarative memory systems for the traumatic event are in operation. This case study demonstrates a third mechanism--"islands" of memory within post-traumatic amnesia. PMID:9010405

  1. Effect of curing mode on the micro-mechanical properties of dual-cured self-adhesive resin cements.

    PubMed

    Ilie, Nicoleta; Simon, Alexander

    2012-04-01

    Light supplying to luting resin cements is impeded in several clinical situations, causing us to question whether materials can properly be cured to achieve adequately (or adequate) mechanical properties. The aim of this study was therefore to analyse the effect of light on the micro-mechanical properties of eight popular dual-cured self-adhesive resin cements by comparing them with two conventional, also dual-cured, resin cements. Four different curing procedures were applied: auto-polymerisation (dark curing) and light curing (LED unit, Freelight 2, 20 s) by applying the unit directly on the samples' surface, at a distance of 5 and 10 mm. Twenty minutes after curing, the samples were stored for 1 week at 37°C in a water-saturated atmosphere. The micro-mechanical properties-Vickers hardness, modulus of elasticity, creep and elastic/plastic deformation-were measured. Data were analysed with multivariate ANOVA followed by Tukey's test and partial eta-squared statistics (p < 0.05). A very strong influence of the material as well as filler volume and weight on the micro-mechanical properties was measured, whereas the influence of the curing procedure and type of cement-conventional or self-adhesive-was generally low. The influence of light on the polymerisation process was material dependent, with four different behaviour patterns to be distinguished. As a material category, significantly higher micro-mechanical properties were measured for the conventional compared to the self-adhesive resin cements, although this difference was low. Within the self-adhesive resin cements group, the variation in micro-mechanical properties was high. The selection of suitable resin cements should be done by considering, besides its adhesive properties, its micro-mechanical properties and curing behaviour also.

  2. Receptor-mediated protein kinase activation and the mechanism of transmembrane signaling in bacterial chemotaxis.

    PubMed Central

    Liu, Y; Levit, M; Lurz, R; Surette, M G; Stock, J B

    1997-01-01

    Chemotaxis responses of Escherichia coli and Salmonella are mediated by type I membrane receptors with N-terminal extracytoplasmic sensing domains connected by transmembrane helices to C-terminal signaling domains in the cytoplasm. Receptor signaling involves regulation of an associated protein kinase, CheA. Here we show that kinase activation by a soluble signaling domain construct involves the formation of a large complex, with approximately 14 receptor signaling domains per CheA dimer. Electron microscopic examination of these active complexes indicates a well defined bundle composed of numerous receptor filaments. Our findings suggest a mechanism for transmembrane signaling whereby stimulus-induced changes in lateral packing interactions within an array of receptor-sensing domains at the cell surface perturb an equilibrium between active and inactive receptor-kinase complexes within the cytoplasm. PMID:9405352

  3. Cannabidiol inhibits human glioma cell migration through a cannabinoid receptor-independent mechanism

    PubMed Central

    Vaccani, Angelo; Massi, Paola; Colombo, Arianna; Rubino, Tiziana; Parolaro, Daniela

    2005-01-01

    We evaluated the ability of cannabidiol (CBD) to impair the migration of tumor cells stimulated by conditioned medium. CBD caused concentration-dependent inhibition of the migration of U87 glioma cells, quantified in a Boyden chamber. Since these cells express both cannabinoid CB1 and CB2 receptors in the membrane, we also evaluated their engagement in the antimigratory effect of CBD. The inhibition of cell was not antagonized either by the selective cannabinoid receptor antagonists SR141716 (CB1) and SR144528 (CB2) or by pretreatment with pertussis toxin, indicating no involvement of classical cannabinoid receptors and/or receptors coupled to Gi/o proteins. These results reinforce the evidence of antitumoral properties of CBD, demonstrating its ability to limit tumor invasion, although the mechanism of its pharmacological effects remains to be clarified. PMID:15700028

  4. Identification of Global and Ligand-Specific Calcium Sensing Receptor Activation Mechanisms.

    PubMed

    Keller, Andrew N; Kufareva, Irina; Josephs, Tracy M; Diao, Jiayin; Mai, Vyvyan T; Conigrave, Arthur D; Christopoulos, Arthur; Gregory, Karen J; Leach, Katie

    2018-06-01

    Calcium sensing receptor (CaSR) positive allosteric modulators (PAMs) are therapeutically important. However, few are approved for clinical use, in part due to complexities in assessing allostery at a receptor where the endogenous agonist (extracellular calcium) is present in all biologic fluids. Such complexity impedes efforts to quantify and optimize allosteric drug parameters (affinity, cooperativity, and efficacy) that dictate PAM structure-activity relationships (SARs). Furthermore, an underappreciation of the structural mechanisms underlying CaSR activation hinders predictions of how PAM SAR relates to in vitro and in vivo activity. Herein, we combined site-directed mutagenesis and calcium mobilization assays with analytical pharmacology to compare modes of PAM binding, positive modulation, and agonism. We demonstrate that 3-(2-chlorophenyl)- N -((1 R )-1-(3-methoxyphenyl)ethyl)-1-propanamine (NPS R568) binds to a 7 transmembrane domain (7TM) cavity common to class C G protein-coupled receptors and used by ( αR )-(-)- α -methyl- N -[3-[3-[trifluoromethylphenyl]propyl]-1-napthalenemethanamine (cinacalcet) and 1-benzothiazol-2-yl-1-(2,4-dimethylphenyl)-ethanol (AC265347); however, there are subtle distinctions in the contribution of select residues to the binding and transmission of cooperativity by PAMs. Furthermore, we reveal some common activation mechanisms used by different CaSR activators, but also demonstrate some differential contributions of residues within the 7TM bundle and extracellular loops to the efficacy of the PAM-agonist, AC265347, versus cooperativity. Finally, we show that PAMS potentiate the affinity of divalent cations. Our results support the existence of both global and ligand-specific CaSR activation mechanisms and reveal that allosteric agonism is mediated in part via distinct mechanisms to positive modulation. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Synergistic inhibition with a dual epidermal growth factor receptor/HER-2/neu tyrosine kinase inhibitor and a disintegrin and metalloprotease inhibitor.

    PubMed

    Witters, Lois; Scherle, Peggy; Friedman, Steven; Fridman, Jordan; Caulder, Eian; Newton, Robert; Lipton, Allan

    2008-09-01

    The ErbB family of receptors is overexpressed in numerous human tumors. Overexpression correlates with poor prognosis and resistance to therapy. Use of ErbB-specific antibodies to the receptors (Herceptin or Erbitux) or ErbB-specific small-molecule inhibitors of the receptor tyrosine kinase activity (Iressa or Tarceva) has shown clinical efficacy in several solid tumors. An alternative method of affecting ErbB-initiated tumor growth and survival is to block sheddase activity. Sheddase activity is responsible for cleavage of multiple ErbB ligands and receptors, a necessary step in availability of the soluble, active form of the ligand and a constitutively activated ligand-independent receptor. This sheddase activity is attributed to the ADAM (a disintegrin and metalloprotease) family of proteins. ADAM 10 is the main sheddase of epidermal growth factor (EGF) and HER-2/neu cleavage, whereas ADAM17 is required for cleavage of additional EGF receptor (EGFR) ligands (transforming growth factor-alpha, amphiregulin, heregulin, heparin binding EGF-like ligand). This study has shown that addition of INCB3619, a potent inhibitor of ADAM10 and ADAM17, reduces in vitro HER-2/neu and amphiregulin shedding, confirming that it interferes with both HER-2/neu and EGFR ligand cleavage. Combining INCB3619 with a lapatinib-like dual inhibitor of EGFR and HER-2/neu kinases resulted in synergistic growth inhibition in MCF-7 and HER-2/neu-transfected MCF-7 human breast cancer cells. Combining the INCB7839 second-generation sheddase inhibitor with lapatinib prevented the growth of HER-2/neu-positive BT474-SC1 human breast cancer xenografts in vivo. These results suggest that there may be an additional clinical benefit of combining agents that target the ErbB pathways at multiple points.

  6. Explaining reaction mechanisms using the dual descriptor: a complementary tool to the molecular electrostatic potential.

    PubMed

    Martínez-Araya, Jorge Ignacio

    2013-07-01

    The intrinsic reactivity of cyanide when interacting with a silver cation was rationalized using the dual descriptor (DD) as a complement to the molecular electrostatic potential (MEP) in order to predict interactions at the local level. It was found that DD accurately explains covalent interactions that cannot be explained by MEP, which focuses on essentially ionic interactions. This allowed the rationalization of the reaction mechanism that yields silver cyanide in the gas phase. Other similar reaction mechanisms involving a silver cation interacting with water, ammonia, and thiosulfate were also explained by the combination of MEP and DD. This analysis provides another example of the usefulness of DD as a tool for gaining a deeper understanding of any reaction mechanism that is mainly governed by covalent interactions.

  7. Dual pH/redox responsive and CD44 receptor targeting hybrid nano-chrysalis based on new oligosaccharides of hyaluronan conjugates.

    PubMed

    Chen, Daquan; Dong, Xue; Qi, Mengjiao; Song, Xiaoyan; Sun, Jingfang

    2017-02-10

    A smart hybrid microenvironment-mediated dual pH/redox-responsive polymeric nanoparticles combined with inorganic calcium phosphate (CaP) was fabricated, which we term as armored nano-chrysalis inspired by butterfly pupa. The nano-chrysalis has an inner core composed of specially designed oligosaccharides of hyaluronan (oHA) targeting CD44 receptor. The inner core has two functions, i.e., the dual pH/redox responsive polymeric conjugate and the fluorescent curcumin-prodrug function. The prepared nano-chrysalis possessed a smaller size (102.5±4.6nm) than the unarmored nano-chrysalis (122.5±6.6nm). Interestingly, while the nano-chrysalis were stable under pH 7.4, when incubated under the tumor acidic conditions (pH 6.5) the outer CaP armor would dissolve in a pH-dependent, sustained manner. Moreover, nano-chrysalis was demonstrated to present the most effective antitumor efficacy than other formulations. This study provides a promising smart nano-carrier platform to enhance the stability, decrease the side effects, and improve the therapeutic efficacy of anticancer drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Analysis of Phosphorylation of the Receptor-Like Protein Kinase HAESA during Arabidopsis Floral Abscission

    PubMed Central

    Taylor, Isaiah; Wang, Ying; Seitz, Kati; Baer, John; Bennewitz, Stefan; Mooney, Brian P.; Walker, John C.

    2016-01-01

    Receptor-like protein kinases (RLKs) are the largest family of plant transmembrane signaling proteins. Here we present functional analysis of HAESA, an RLK that regulates floral organ abscission in Arabidopsis. Through in vitro and in vivo analysis of HAE phosphorylation, we provide evidence that a conserved phosphorylation site on a region of the HAE protein kinase domain known as the activation segment positively regulates HAE activity. Additional analysis has identified another putative activation segment phosphorylation site common to multiple RLKs that potentially modulates HAE activity. Comparative analysis suggests that phosphorylation of this second activation segment residue is an RLK specific adaptation that may regulate protein kinase activity and substrate specificity. A growing number of RLKs have been shown to exhibit biologically relevant dual specificity toward serine/threonine and tyrosine residues, but the mechanisms underlying dual specificity of RLKs are not well understood. We show that a phospho-mimetic mutant of both HAE activation segment residues exhibits enhanced tyrosine auto-phosphorylation in vitro, indicating phosphorylation of this residue may contribute to dual specificity of HAE. These results add to an emerging framework for understanding the mechanisms and evolution of regulation of RLK activity and substrate specificity. PMID:26784444

  9. Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family

    PubMed Central

    Shakeel, Samina N.; Wang, Xiaomin; Binder, Brad M.; Schaller, G. Eric

    2013-01-01

    The plant hormone ethylene regulates growth and development as well as responses to biotic and abiotic stresses. Over the last few decades, key elements involved in ethylene signal transduction have been identified through genetic approaches, these elements defining a pathway that extends from initial ethylene perception at the endoplasmic reticulum to changes in transcriptional regulation within the nucleus. Here, we present our current understanding of ethylene signal transduction, focusing on recent developments that support a model with overlapping and non-overlapping roles for members of the ethylene receptor family. We consider the evidence supporting this model for sub-functionalization within the receptor family, and then discuss mechanisms by which such a sub-functionalization may occur. To this end, we consider the importance of receptor interactions in modulating their signal output and how such interactions vary in the receptor family. In addition, we consider evidence indicating that ethylene signal output by the receptors involves both phosphorylation-dependent and phosphorylation-independent mechanisms. We conclude with a current model for signalling by the ethylene receptors placed within the overall context of ethylene signal transduction. PMID:23543258

  10. The Use of Physiology-Based Pharmacokinetic and Pharmacodynamic Modeling in the Discovery of the Dual Orexin Receptor Antagonist ACT-541468.

    PubMed

    Treiber, Alexander; de Kanter, Ruben; Roch, Catherine; Gatfield, John; Boss, Christoph; von Raumer, Markus; Schindelholz, Benno; Muehlan, Clemens; van Gerven, Joop; Jenck, Francois

    2017-09-01

    The identification of new sleep drugs poses particular challenges in drug discovery owing to disease-specific requirements such as rapid onset of action, sleep maintenance throughout major parts of the night, and absence of residual next-day effects. Robust tools to estimate drug levels in human brain are therefore key for a successful discovery program. Animal models constitute an appropriate choice for drugs without species differences in receptor pharmacology or pharmacokinetics. Translation to man becomes more challenging when interspecies differences are prominent. This report describes the discovery of the dual orexin receptor 1 and 2 (OX 1 and OX 2 ) antagonist ACT-541468 out of a class of structurally related compounds, by use of physiology-based pharmacokinetic and pharmacodynamic (PBPK-PD) modeling applied early in drug discovery. Although all drug candidates exhibited similar target receptor potencies and efficacy in a rat sleep model, they exhibited large interspecies differences in key factors determining their pharmacokinetic profile. Human PK models were built on the basis of in vitro metabolism and physicochemical data and were then used to predict the time course of OX 2 receptor occupancy in brain. An active ACT-541468 dose of 25 mg was estimated on the basis of OX 2 receptor occupancy thresholds of about 65% derived from clinical data for two other orexin antagonists, almorexant and suvorexant. Modeling predictions for ACT-541468 in man were largely confirmed in a single-ascending dose trial in healthy subjects. PBPK-PD modeling applied early in drug discovery, therefore, has great potential to assist in the identification of drug molecules when specific pharmacokinetic and pharmacodynamic requirements need to be met. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  11. NMR investigations of the dual targeting peptide of Thr-tRNA synthetase and its interaction with the mitochondrial Tom20 receptor in Arabidopsis thaliana.

    PubMed

    Ye, Weihua; Spånning, Erika; Unnerståle, Sofia; Gotthold, David; Glaser, Elzbieta; Mäler, Lena

    2012-10-01

    Most mitochondrial proteins are synthesized in the cytosol as precursor proteins containing an N-terminal targeting peptide and are imported into mitochondria through the import machineries, the translocase of the outer mitochondrial membrane (TOM) and the translocase of the inner mitochondrial membrane (TIM). The N-terminal targeting peptide of precursor proteins destined for the mitochondrial matrix is recognized by the Tom20 receptor and plays an important role in the import process. Protein import is usually organelle specific, but several plant proteins are dually targeted into mitochondria and chloroplasts using an ambiguous dual targeting peptide. We present NMR studies of the dual targeting peptide of Thr-tRNA synthetase and its interaction with Tom20 in Arabidopsis thaliana. Our findings show that the targeting peptide is mostly unstructured in buffer, with a propensity to form α-helical structure in one region, S6-F27, and a very weak β-strand propensity for Q34-Q38. The α-helical structured region has an amphiphilic character and a φχχφφ motif, both of which have previously been shown to be important for mitochondrial import. Using NMR we have mapped out two regions in the peptide that are important for Tom20 recognition: one of them, F9-V28, overlaps with the amphiphilic region, and the other comprises residues L30-Q39. Our results show that the targeting peptide may interact with Tom20 in several ways. Furthermore, our results indicate a weak, dynamic interaction. The results provide for the first time molecular details on the interaction of the Tom20 receptor with a dual targeting peptide. © 2012 The Authors Journal compilation © 2012 FEBS.

  12. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression*

    PubMed Central

    Coke, Christopher J.; Scarlett, Kisha A.; Chetram, Mahandranauth A.; Jones, Kia J.; Sandifer, Brittney J.; Davis, Ahriea S.; Marcus, Adam I.

    2016-01-01

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression. PMID:26841863

  13. Dual function of MG53 in membrane repair and insulin signaling

    PubMed Central

    Tan, Tao; Ko, Young-Gyu; Ma, Jianjie

    2016-01-01

    MG53 is a member of the TRIM-family protein that acts as a key component of the cell membrane repair machinery. MG53 is also an E3-ligase that ubiquinates insulin receptor substrate-1 and controls insulin signaling in skeletal muscle cells. Since its discovery in 2009, research efforts have been devoted to translate this basic discovery into clinical applications in human degenerative and metabolic diseases. This review article highlights the dual function of MG53 in cell membrane repair and insulin signaling, the mechanism that underlies the control of MG53 function, and the therapeutic value of targeting MG53 function in regenerative medicine. [BMB Reports 2016; 49(8): 414-423] PMID:27174502

  14. The antihypertensive effectiveness and safety of dual RAAS blockade with aliskiren and valsartan.

    PubMed

    Chrysant, Steven G

    2010-03-01

    The renin-angiotensin-aldosterone system (RAAS) is a major factor for the development and maintenance of hypertension and a major cause for cardiovascular remodeling and cardiovascular complications through its active peptide angiotensin (Ang) II. Blockade of RAAS with ACE inhibitors (ACEIs) results in suppression of Ang II levels, which eventually return to baseline levels after prolonged ACEI administration. This leads to an escape phenomenon through generation of Ang II from enzymes other than ACE and led to the hypothesis that dual blockade of RAAS with an ACEI/Ang receptor blocker (ARB) combination could lead to total blockade of RAAS, since ARBs block the action of Ang II at the AT1 receptor level, irrespective of the mechanism of Ang II generation and will have an additive blood pressure (BP)-lowering effect. However, this hypothesis has not materialized clinically, as the ACEI/ARB combination produces modest BP reductions that are not significantly greater than monotherapy with the component drugs, and is frequently associated with higher incidence of side effects. A new dual RAAS blockade with the direct renin inhibitor aliskiren and the ARB valsartan produces greater BP reductions than monotherapy with the component drugs and is safe and well tolerated. The combination of aliskiren with valsartan, and with other antihypertensive drugs is discussed. Copyright 2010 Prous Science, S.A.U. or its licensors. All rights reserved.

  15. A second trigeminal CGRP receptor: function and expression of the AMY1 receptor

    PubMed Central

    Walker, Christopher S; Eftekhari, Sajedeh; Bower, Rebekah L; Wilderman, Andrea; Insel, Paul A; Edvinsson, Lars; Waldvogel, Henry J; Jamaluddin, Muhammad A; Russo, Andrew F; Hay, Debbie L

    2015-01-01

    Objective The trigeminovascular system plays a central role in migraine, a condition in need of new treatments. The neuropeptide, calcitonin gene-related peptide (CGRP), is proposed as causative in migraine and is the subject of intensive drug discovery efforts. This study explores the expression and functionality of two CGRP receptor candidates in the sensory trigeminal system. Methods Receptor expression was determined using Taqman G protein-coupled receptor arrays and immunohistochemistry in trigeminal ganglia (TG) and the spinal trigeminal complex of the brainstem in rat and human. Receptor pharmacology was quantified using sensitive signaling assays in primary rat TG neurons. Results mRNA and histological expression analysis in rat and human samples revealed the presence of two CGRP-responsive receptors (AMY1: calcitonin receptor/receptor activity-modifying protein 1 [RAMP1]) and the CGRP receptor (calcitonin receptor-like receptor/RAMP1). In support of this finding, quantification of agonist and antagonist potencies revealed a dual population of functional CGRP-responsive receptors in primary rat TG neurons. Interpretation The unexpected presence of a functional non-canonical CGRP receptor (AMY1) at neural sites important for craniofacial pain has important implications for targeting the CGRP axis in migraine. PMID:26125036

  16. Dual host specificity of phage SP6 is facilitated by tailspike rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Jiagang

    Bacteriophage SP6 exhibits dual-host adsorption specificity. The SP6 tailspikes are recognized as important in host range determination but the mechanisms underlying dual host specificity are unknown. Cryo-electron tomography and sub-tomogram classification were used to analyze the SP6 virion with a particular focus on the interaction of tailspikes with host membranes. The SP6 tail is surrounded by six V-shaped structures that interconnect in forming a hand-over-hand hexameric garland. Each V-shaped structure consists of two trimeric tailspike proteins: gp46 and gp47, connected through the adaptor protein gp37. SP6 infection of Salmonella enterica serovars Typhimurium and Newport results in distinguishable changes in tailspikemore » orientation, providing the first direct demonstration how tailspikes can confer dual host adsorption specificity. SP6 also infects S. Typhimurium strains lacking O antigen; in these infections tailspikes have no apparent specific role and the phage tail must therefore interact with a distinct host receptor to allow infection. - Highlights: •Cryo-electron tomography reveals the structural basis for dual host specificity. •Sub-tomogram classification reveals distinct orientations of the tailspikes during infection of different hosts. •Tailspike-adaptor modules rotate as they bind different O antigens. •In the absence of any O antigen, tailspikes bind weakly and without specificity to LPS. •Interaction of the phage tail with LPS is essential for infection.« less

  17. A feedback mechanism controlling SCRAMBLED receptor accumulation and cell-type pattern in Arabidopsis.

    PubMed

    Kwak, Su-Hwan; Schiefelbein, John

    2008-12-23

    Cellular pattern formation in the root epidermis of Arabidopsis occurs in a position-dependent manner, generating root-hair (H) cells contacting two underlying cortical cells and nonhair (N) cells contacting one cortical cell. SCRAMBLED (SCM), a leucine-rich repeat receptor-like kinase (LRR-RLK), mediates this process through its effect on a downstream transcription factor regulatory network. After perception of a positional cue, the SCM signaling pathway is proposed to preferentially repress WEREWOLF (WER) transcription factor expression in H cells and thereby bias the outcome of mutual lateral inhibition acting between H and N cells. However, the molecular mechanism responsible for this preferential SCM signaling is unknown. Here, we analyze the distribution of the SCM receptor and the biological effect of altering its accumulation pattern. We find that SCM expression and accumulation in the epidermal cell layer is necessary and sufficient to direct the cell-type pattern. Further, SCM preferentially accumulates in H cells, and this accumulation pattern is dependent on the downstream transcription factors. Thus, SCM participates in an autoregulatory feedback loop, enabling cells engaged in SCM signaling to maintain high levels of SCM receptor, which provides a simple mechanism for reinforcing a bias in receptor-mediated signaling to ensure robust pattern formation.

  18. Does anesthetic additivity imply a similar molecular mechanism of anesthetic action at N-methyl-D-aspartate receptors?

    PubMed

    Brosnan, Robert J; Pham, Trung L

    2011-03-01

    Isoflurane and carbon dioxide (CO(2)) negatively modulate N-methyl-d-aspartate (NMDA) receptors, but via different mechanisms. Isoflurane is a competitive antagonist at the NMDA receptor glycine binding site, whereas CO(2) inhibits NMDA receptor current through extracellular acidification. Isoflurane and CO(2) exhibit additive minimum alveolar concentration effects in rats, but we hypothesized that they would not additively inhibit NMDA receptor currents in vitro because they act at different molecular sites. NMDA receptors were expressed in frog oocytes and studied using 2-electrode voltage clamp techniques. A glycine concentration response for NMDA was measured in the presence and absence of CO(2). Concentration-response curves for isoflurane, H(+), CO(2), and ketamine as a function of NMDA inhibition were measured, and a Hill equation was used to calculate the EC(50) for each compound. Binary drug combinations containing ½ EC(50) were additive if NMDA current inhibition was not statistically different from 50%. The ½ EC(50) binary drug combinations decreased the percentage baseline NMDA receptor current as follows (mean ± SD, n = 5 to 6 oocytes each): CO(2)+ H(+) (51% ± 5%), CO(2 )+ isoflurane (54% ± 5%), H(+) + isoflurane (51% ± 3%), CO(2)+ ketamine (67% ± 8%), and H(+) + ketamine (64% ± 2%). In contrast to our hypothesis, NMDA receptor inhibition by CO(2) and isoflurane is additive. Possibly, CO(2) acidification modulates a pH-sensitive loop on the NMDA receptor that in turn alters glycine binding affinity on the GluN1 subunit. However, ketamine plus either CO(2) or H(+) synergistically inhibits NMDA receptor currents. Drugs acting via different mechanisms can thus exhibit additive or synergistic receptor effects. Additivity may not robustly indicate commonality between molecular anesthetic mechanisms.

  19. Charge trapping and current-conduction mechanisms of metal-oxide-semiconductor capacitors with La xTa y dual-doped HfON dielectrics

    NASA Astrophysics Data System (ADS)

    Cheng, Chin-Lung; Horng, Jeng-Haur; Chang-Liao, Kuei-Shu; Jeng, Jin-Tsong; Tsai, Hung-Yang

    2010-10-01

    Charge trapping and related current-conduction mechanisms in metal-oxide-semiconductor (MOS) capacitors with La xTa y dual-doped HfON dielectrics have been investigated under various post-deposition annealing (PDA). The results indicate that by La xTa y incorporation into HfON dielectric enhances electrical and reliability characteristics, including equivalent-oxide-thickness (EOT), stress-induced leakage current (SILC), and trap energy level. The mechanisms related to larger positive charge generation in the gate dielectric bulk can be attributed to La xTa y dual-doped HfON dielectric. The results of C- V measurement indicate that more negative charges are induced with increasing PDA temperature for the La xTa y dual-doped HfON dielectric. The charge current transport mechanisms through various dielectrics have been analyzed with current-voltage ( I- V) measurements under various temperatures. The current-conduction mechanisms of HfLaTaON dielectric at the low-, medium-, and high-electrical fields were dominated by Schottky emission (SE), Frenkel-Poole emission (F-P), and Fowler-Nordheim (F-N), respectively. A low trap energy level ( Φ trap) involved in Frenkel-Pool conduction in an HfLaTaON dielectric was estimated to be around 0.142 eV. Although a larger amount of positive charges generated in the HfLaTaON dielectric was obtained, the Φ trap of these positive charges in the HfLaTaON dielectric are shallow compared with HfON dielectric.

  20. G Protein-Coupled Estrogen Receptor (GPER) Agonist Dual Binding Mode Analyses toward Understanding of its Activation Mechanism: A Comparative Homology Modeling Approach.

    PubMed

    Arnatt, Christopher K; Zhang, Yan

    2013-07-01

    G protein-coupled estrogen receptor (GPER) has been shown to be important in several disease states such as estrogen sensitive cancers. While several selective ligands have been identified for the receptor, little is known about how they interact with GPER and how their structures influence their activity. Specifically, within one series of ligands, whose structure varied only at one position, the replacement of a hydrogen atom with an acetyl group changed a potent antagonist into a potent agonist. In this study, two GPER homology models were constructed based on the x-ray crystal structures of both the active and inactive β 2 -adrenergic receptors (β 2 AR) in an effort to characterize the differences of binding modes between agonists and antagonists to the receptor, and to understand their activity in relation to their structures. The knowledge attained in this study is expected to provide valuable information on GPER ligands structure activity relationship to benefit future rational design of potent agonists and antagonists of the receptor for potential therapeutic applications.

  1. G Protein-Coupled Estrogen Receptor (GPER) Agonist Dual Binding Mode Analyses toward Understanding of its Activation Mechanism: A Comparative Homology Modeling Approach

    PubMed Central

    Arnatt, Christopher K.; Zhang, Yan

    2015-01-01

    G protein-coupled estrogen receptor (GPER) has been shown to be important in several disease states such as estrogen sensitive cancers. While several selective ligands have been identified for the receptor, little is known about how they interact with GPER and how their structures influence their activity. Specifically, within one series of ligands, whose structure varied only at one position, the replacement of a hydrogen atom with an acetyl group changed a potent antagonist into a potent agonist. In this study, two GPER homology models were constructed based on the x-ray crystal structures of both the active and inactive β2-adrenergic receptors (β2AR) in an effort to characterize the differences of binding modes between agonists and antagonists to the receptor, and to understand their activity in relation to their structures. The knowledge attained in this study is expected to provide valuable information on GPER ligands structure activity relationship to benefit future rational design of potent agonists and antagonists of the receptor for potential therapeutic applications. PMID:26229572

  2. Mechanisms of resistance to anti-human epidermal growth factor receptor 2 agents in breast cancer.

    PubMed

    Mukohara, Toru

    2011-01-01

    Approximately 20% of breast cancers are characterized by overexpression of human epidermal growth factor receptor 2 (HER2) protein and associated gene amplification, and the receptor tyrosine kinase is believed to play a critical role in the pathogenesis of these tumors. The development and implementation of trastuzumab, a humanized monoclonal antibody against the extracellular domain of HER2 protein, has significantly improved treatment outcomes in patients with HER2-overexpressing breast cancer. However, despite this clinical usefulness, unmet needs for better prediction of trastuzumab's response and overcoming primary and acquired resistance remain. In this review, we discuss several potential mechanisms of resistance to trastuzumab that have been closely studied over the last decade. Briefly, these mechanisms include: impaired access of trastuzumab to HER2 by expression of extracellular domain-truncated HER2 (p95 HER2) or overexpression of MUC4; alternative signaling from insulin-like growth factor-1 receptor, other epidermal growth factor receptor family members, or MET; aberrant downstream signaling caused by loss of phosphatase and tensin homologs deleted from chromosome 10 (PTEN), PIK3CA mutation, or downregulation of p27; or FCGR3A polymorphisms. In addition, we discuss potential strategies for overcoming resistance to trastuzumab. Specifically, the epidermal growth factor receptor/HER2 tyrosine kinase inhibitor lapatinib partially overcame trastuzumab resistance in a clinical setting, so its efficacy results and limited data regarding potential mechanisms of resistance to the drug are also discussed. © 2010 Japanese Cancer Association.

  3. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions

    PubMed Central

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul

    2015-01-01

    ABSTRACT HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. IMPORTANCE Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1

  4. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions.

    PubMed

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul; Melikyan, Gregory B

    2015-09-01

    HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1 receptor antagonist, NF

  5. The mechanism of enhanced defecation caused by the ghrelin receptor agonist, ulimorelin.

    PubMed

    Pustovit, R V; Callaghan, B; Kosari, S; Rivera, L R; Thomas, H; Brock, J A; Furness, J B

    2014-02-01

    Discovery of adequate pharmacological treatments for constipation has proven elusive. Increased numbers of bowel movements were reported as a side-effect of ulimorelin treatment of gastroparesis, but there has been no investigation of the site of action. Anesthetized rats were used to investigate sites and mechanisms of action of ulimorelin. Intravenous ulimorelin (1-5 mg/kg) caused a substantial and prolonged (~1 h) increase in colorectal propulsive activity and expulsion of colonic contents. This was prevented by cutting the nerves emerging from the lumbosacral cord, by the nicotinic receptor antagonist hexamethonium and by antagonists of the ghrelin receptor. The effect of intravenous ulimorelin was mimicked by direct application of ulimorelin (5 μg) to the lumbosacral spinal cord. Ulimorelin is a potent prokinetic that causes propulsive contractions of the colorectum by activating ghrelin receptors of the lumbosacral defecation centers. Its effects are long-lasting, in contrast with other colokinetics that target ghrelin receptors. © 2013 John Wiley & Sons Ltd.

  6. Studies of lipid vesicle mechanics using an optical fiber dual-beam trap

    NASA Astrophysics Data System (ADS)

    Pinon, Tessa M.; Hirst, Linda S.; Sharping, Jay E.

    2011-03-01

    Fiber-based optical traps can be used for manipulating micron-sized dielectric particles such as microspheres and biological cells. Here we study the mechanics of giant unilamellar vesicles (GUVs) which are held and stretched by light forces in a fiber-based dual-beam optical trap. Our GUVs are suspended in a buffer solution and encapsulate various concentrations and molecular weights of poly(ethylene glycol) (PEG) polymer yielding a range of refractive index contrasts and trapping conditions. We find that we can trap GUVs in solution with index contrasts of less than 0.01. We explore the mechanical response of the GUV membrane to a range of forces which are proportional to laser power and refractive index contrast. Our trapping system is a compact and inexpensive platform and trapping is viewed in real time under a microscope. We hypothesize that forces within the high-tension regime will induce a linear response in vesicle surface area. This project sets the stage for membrane mechanics and lipid phase change studies. Grant: NSF award #DMR 0852791, ``CAREER: Self-Assembly of Polyunsaturated Lipids and Cholesterol in the Cell Membrane.''

  7. Mechanisms of Host Receptor Adaptation by Severe Acute Respiratory Syndrome Coronavirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kailang; Peng, Guiqing; Wilken, Matthew

    The severe acute respiratory syndrome coronavirus (SARS-CoV) from palm civets has twice evolved the capacity to infect humans by gaining binding affinity for human receptor angiotensin-converting enzyme 2 (ACE2). Numerous mutations have been identified in the receptor-binding domain (RBD) of different SARS-CoV strains isolated from humans or civets. Why these mutations were naturally selected or how SARS-CoV evolved to adapt to different host receptors has been poorly understood, presenting evolutionary and epidemic conundrums. In this study, we investigated the impact of these mutations on receptor recognition, an important determinant of SARS-CoV infection and pathogenesis. Using a combination of biochemical, functional,more » and crystallographic approaches, we elucidated the molecular and structural mechanisms of each of these naturally selected RBD mutations. These mutations either strengthen favorable interactions or reduce unfavorable interactions with two virus-binding hot spots on ACE2, and by doing so, they enhance viral interactions with either human (hACE2) or civet (cACE2) ACE2. Therefore, these mutations were viral adaptations to either hACE2 or cACE2. To corroborate the above analysis, we designed and characterized two optimized RBDs. The human-optimized RBD contains all of the hACE2-adapted residues (Phe-442, Phe-472, Asn-479, Asp-480, and Thr-487) and possesses exceptionally high affinity for hACE2 but relative low affinity for cACE2. The civet-optimized RBD contains all of the cACE2-adapted residues (Tyr-442, Pro-472, Arg-479, Gly-480, and Thr-487) and possesses exceptionally high affinity for cACE2 and also substantial affinity for hACE2. These results not only illustrate the detailed mechanisms of host receptor adaptation by SARS-CoV but also provide a molecular and structural basis for tracking future SARS-CoV evolution in animals.« less

  8. Mechanisms of Host Receptor Adaptation by Severe Acute Respiratory Syndrome Coronavirus*

    PubMed Central

    Wu, Kailang; Peng, Guiqing; Wilken, Matthew; Geraghty, Robert J.; Li, Fang

    2012-01-01

    The severe acute respiratory syndrome coronavirus (SARS-CoV) from palm civets has twice evolved the capacity to infect humans by gaining binding affinity for human receptor angiotensin-converting enzyme 2 (ACE2). Numerous mutations have been identified in the receptor-binding domain (RBD) of different SARS-CoV strains isolated from humans or civets. Why these mutations were naturally selected or how SARS-CoV evolved to adapt to different host receptors has been poorly understood, presenting evolutionary and epidemic conundrums. In this study, we investigated the impact of these mutations on receptor recognition, an important determinant of SARS-CoV infection and pathogenesis. Using a combination of biochemical, functional, and crystallographic approaches, we elucidated the molecular and structural mechanisms of each of these naturally selected RBD mutations. These mutations either strengthen favorable interactions or reduce unfavorable interactions with two virus-binding hot spots on ACE2, and by doing so, they enhance viral interactions with either human (hACE2) or civet (cACE2) ACE2. Therefore, these mutations were viral adaptations to either hACE2 or cACE2. To corroborate the above analysis, we designed and characterized two optimized RBDs. The human-optimized RBD contains all of the hACE2-adapted residues (Phe-442, Phe-472, Asn-479, Asp-480, and Thr-487) and possesses exceptionally high affinity for hACE2 but relative low affinity for cACE2. The civet-optimized RBD contains all of the cACE2-adapted residues (Tyr-442, Pro-472, Arg-479, Gly-480, and Thr-487) and possesses exceptionally high affinity for cACE2 and also substantial affinity for hACE2. These results not only illustrate the detailed mechanisms of host receptor adaptation by SARS-CoV but also provide a molecular and structural basis for tracking future SARS-CoV evolution in animals. PMID:22291007

  9. Effects of the antitumor drug OSI-906, a dual inhibitor of IGF-1 receptor and insulin receptor, on the glycemic control, β-cell functions, and β-cell proliferation in male mice.

    PubMed

    Shirakawa, Jun; Okuyama, Tomoko; Yoshida, Eiko; Shimizu, Mari; Horigome, Yuka; Tuno, Takayuki; Hayasaka, Moe; Abe, Shiori; Fuse, Masahiro; Togashi, Yu; Terauchi, Yasuo

    2014-06-01

    The IGF-1 receptor has become a therapeutic target for the treatment of cancer. The efficacy of OSI-906 (linstinib), a dual inhibitor of IGF-1 receptor and insulin receptor, for solid cancers has been examined in clinical trials. The effects of OSI-906, however, on the blood glucose levels and pancreatic β-cell functions have not yet been reported. We investigated the impact of OSI-906 on glycemic control, insulin secretion, β-cell mass, and β-cell proliferation in male mice. Oral administration of OSI-906 worsened glucose tolerance in a dose-dependent manner in the wild-type mice. OSI-906 at a dose equivalent to the clinical daily dose (7.5 mg/kg) transiently evoked glucose intolerance and hyperinsulinemia. Insulin receptor substrate (IRS)-2-deficient mice and mice with diet-induced obesity, both models of peripheral insulin resistance, exhibited more severe glucose intolerance after OSI-906 administration than glucokinase-haploinsufficient mice, a model of impaired insulin secretion. Phloridzin improved the hyperglycemia induced by OSI-906 in mice. In vitro, OSI-906 showed no effect on insulin secretion from isolated islets. After daily administration of OSI-906 for a week to mice, the β-cell mass and β-cell proliferation rate were significantly increased. The insulin signals in the β-cells were apparently unaffected in those mice. Taken together, the results suggest that OSI-906 could exacerbate diabetes, especially in patients with insulin resistance. On the other hand, the results suggest that the β-cell mass may expand in response to chemotherapy with this drug.

  10. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression.

    PubMed

    Coke, Christopher J; Scarlett, Kisha A; Chetram, Mahandranauth A; Jones, Kia J; Sandifer, Brittney J; Davis, Ahriea S; Marcus, Adam I; Hinton, Cimona V

    2016-05-06

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melcher, Karsten; Ng, Ley-Moy; Zhou, X Edward

    2010-01-12

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved β-loopsmore » that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling.« less

  12. Structural basis for selectivity and diversity in angiotensin II receptors

    DOE PAGES

    Zhang, Haitao; Han, Gye Won; Batyuk, Alexander; ...

    2017-04-20

    The angiotensin II receptors AT 1R and AT 2R serve as key components of the renin–angiotensin–aldosterone system. AT 1R has a central role in the regulation of blood pressure, but the function of AT 2R is unclear and it has a variety of reported effects. To identify the mechanisms that underlie the differences in function and ligand selectivity between these receptors, here we report crystal structures of human AT 2R bound to an AT 2R-selective ligand and to an AT 1R/AT 2R dual ligand, capturing the receptor in an active-like conformation. Unexpectedly, helix VIII was found in a non-canonical position,more » stabilizing the active-like state, but at the same time preventing the recruitment of G proteins or β-arrestins, in agreement with the lack of signalling responses in standard cellular assays. Structure–activity relationship, docking and mutagenesis studies revealed the crucial interactions for ligand binding and selectivity. Finally, our results thus provide insights into the structural basis of the distinct functions of the angiotensin receptors, and may guide the design of new selective ligands.« less

  13. Structural basis for selectivity and diversity in angiotensin II receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haitao; Han, Gye Won; Batyuk, Alexander

    The angiotensin II receptors AT 1R and AT 2R serve as key components of the renin–angiotensin–aldosterone system. AT 1R has a central role in the regulation of blood pressure, but the function of AT 2R is unclear and it has a variety of reported effects. To identify the mechanisms that underlie the differences in function and ligand selectivity between these receptors, here we report crystal structures of human AT 2R bound to an AT 2R-selective ligand and to an AT 1R/AT 2R dual ligand, capturing the receptor in an active-like conformation. Unexpectedly, helix VIII was found in a non-canonical position,more » stabilizing the active-like state, but at the same time preventing the recruitment of G proteins or β-arrestins, in agreement with the lack of signalling responses in standard cellular assays. Structure–activity relationship, docking and mutagenesis studies revealed the crucial interactions for ligand binding and selectivity. Finally, our results thus provide insights into the structural basis of the distinct functions of the angiotensin receptors, and may guide the design of new selective ligands.« less

  14. Rational Design of Dual Agonist-Antibody Fusions as Long-acting Therapeutic Hormones.

    PubMed

    Liu, Yan; Wang, Ying; Zhang, Yong; Liu, Tao; Jia, Haiqun; Zou, Huafei; Fu, Qiangwei; Zhang, Yuhan; Lu, Lucy; Chao, Elizabeth; Parker, Holly; Nguyen-Tran, Van; Shen, Weijun; Wang, Danling; Schultz, Peter G; Wang, Feng

    2016-11-18

    Recent studies have suggested that modulation of two or more signaling pathways can achieve substantial weight loss and glycemic stability. We have developed an approach to the generation of bifunctional antibody agonists that activate leptin receptor and GLP-1 receptor. Leptin was fused into the complementarity determining region 3 loop of the light chain alone, or in combination with exendin-4 (EX4) fused at the N-terminus of the heavy chain of Herceptin. The antibody fusions exhibit similar or increased in vitro activities on their cognate receptors, but 50-100-fold longer circulating half-lives in rodents compared to the corresponding native peptides/proteins. The efficacy of the leptin/EX4 dual antibody fusion on weight loss, especially fat mass loss, was enhanced in ob/ob mice and DIO mice compared to the antibody fusion of either EX4 or leptin alone. This work demonstrates the versatility of this combinatorial fusion strategy for generating dual antibody agonists with long half-lives.

  15. Suvorexant: a dual orexin receptor antagonist for the treatment of sleep onset and sleep maintenance insomnia.

    PubMed

    Patel, Kunal V; Aspesi, Anthony V; Evoy, Kirk E

    2015-04-01

    To review the efficacy, safety, and pharmacology data available for suvorexant and determine its role in therapy as compared with other agents available for the treatment of insomnia. A PubMed search using the terms suvorexant and MK-4305 (the original name given to suvorexant during early trials) was conducted in December 2014 to identify initial literature sources. No time frame was used for exclusion of older trials. Animal studies and trials written in a language other than English were excluded. Abstracts of the remaining trials were evaluated for determination of relevance to this review. References from these studies along with suvorexant prescriber information were used to identify additional literature. Three randomized, double-blind, placebo-controlled clinical trials were identified showing suvorexant to be safe, effective, and tolerable for the treatment of insomnia. After 4 weeks of therapy, relative to placebo, the 10- and 20-mg doses improved subjective total sleep time (22.3 and 49.9 minutes, respectively), wake after sleep onset (-21.4 and -28.1 minutes), and latency to persistent sleep (-2.3 and -22.3 minutes). Suvorexant is the first dual orexin receptor antagonist approved for the treatment of insomnia. Clinical trials have shown that it is relatively safe and effective for the treatment of both sleep onset and sleep maintenance at doses of 20 mg or less. Higher doses were studied but not approved because of concerns for next-day somnolence and effects on driving. Further studies are needed to assess this medication in patients with a history of addiction, because they were excluded from clinical trials, as well as to compare suvorexant with other insomnia medications available because no head-to-head studies have yet been conducted. However, its novel mechanism of action and theoretically lower addiction liability make suvorexant an appealing new option. © The Author(s) 2015.

  16. Proteinase-activated receptors (PARs) – focus on receptor-receptor-interactions and their physiological and pathophysiological impact

    PubMed Central

    2013-01-01

    Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease. PMID:24215724

  17. Potent neutralization of hepatitis A virus reveals a receptor mimic mechanism and the receptor recognition site.

    PubMed

    Wang, Xiangxi; Zhu, Ling; Dang, Minghao; Hu, Zhongyu; Gao, Qiang; Yuan, Shuai; Sun, Yao; Zhang, Bo; Ren, Jingshan; Kotecha, Abhay; Walter, Thomas S; Wang, Junzhi; Fry, Elizabeth E; Stuart, David I; Rao, Zihe

    2017-01-24

    Hepatitis A virus (HAV) infects ∼1.4 million people annually and, although there is a vaccine, there are no licensed therapeutic drugs. HAV is unusually stable (making disinfection problematic) and little is known of how it enters cells and releases its RNA. Here we report a potent HAV-specific monoclonal antibody, R10, which neutralizes HAV infection by blocking attachment to the host cell. High-resolution cryo-EM structures of HAV full and empty particles and of the complex of HAV with R10 Fab reveal the atomic details of antibody binding and point to a receptor recognition site at the pentamer interface. These results, together with our observation that the R10 Fab destabilizes the capsid, suggest the use of a receptor mimic mechanism to neutralize virus infection, providing new opportunities for therapeutic intervention.

  18. A competing, dual mechanism for catalytic direct benzene hydroxylation from combined experimental-DFT studies.

    PubMed

    Vilella, Laia; Conde, Ana; Balcells, David; Díaz-Requejo, M Mar; Lledós, Agustí; Pérez, Pedro J

    2017-12-01

    A dual mechanism for direct benzene catalytic hydroxylation is described. Experimental studies and DFT calculations have provided a mechanistic explanation for the acid-free, Tp x Cu-catalyzed hydroxylation of benzene with hydrogen peroxide (Tp x = hydrotrispyrazolylborate ligand). In contrast with other catalytic systems that promote this transformation through Fenton-like pathways, this system operates through a copper-oxyl intermediate that may interact with the arene ring following two different, competitive routes: (a) electrophilic aromatic substitution, with the copper-oxyl species acting as the formal electrophile, and (b) the so-called rebound mechanism, in which the hydrogen is abstracted by the Cu-O moiety prior to the C-O bond formation. Both pathways contribute to the global transformation albeit to different extents, the electrophilic substitution route seeming to be largely favoured.

  19. G-protein-coupled receptors signaling pathways in new antiplatelet drug development.

    PubMed

    Gurbel, Paul A; Kuliopulos, Athan; Tantry, Udaya S

    2015-03-01

    Platelet G-protein-coupled receptors influence platelet function by mediating the response to various agonists, including ADP, thromboxane A2, and thrombin. Blockade of the ADP receptor, P2Y12, in combination with cyclooxygenase-1 inhibition by aspirin has been among the most widely used pharmacological strategies to reduce cardiovascular event occurrence in high-risk patients. The latter dual pathway blockade strategy is one of the greatest advances in the field of cardiovascular medicine. In addition to P2Y12, the platelet thrombin receptor, protease activated receptor-1, has also been recently targeted for inhibition. Blockade of protease activated receptor-1 has been associated with reduced thrombotic event occurrence when added to a strategy using P2Y12 and cyclooxygenase-1 inhibition. At this time, the relative contributions of these G-protein-coupled receptor signaling pathways to in vivo thrombosis remain incompletely defined. The observation of treatment failure in ≈10% of high-risk patients treated with aspirin and potent P2Y12 inhibitors provides the rationale for targeting novel pathways mediating platelet function. Targeting intracellular signaling downstream from G-protein-coupled receptor receptors with phosphotidylionisitol 3-kinase and Gq inhibitors are among the novel strategies under investigation to prevent arterial ischemic event occurrence. Greater understanding of the mechanisms of G-protein-coupled receptor-mediated signaling may allow the tailoring of antiplatelet therapy. © 2015 American Heart Association, Inc.

  20. Peripheral Receptor Mechanisms Underlying Orofacial Muscle Pain and Hyperalgesia

    NASA Astrophysics Data System (ADS)

    Saloman, Jami L.

    Musculoskeletal pain conditions, particularly those associated with temporomandibular joint and muscle disorders (TMD) are severely debilitating and affect approximately 12% of the population. Identifying peripheral nociceptive mechanisms underlying mechanical hyperalgesia, a prominent feature of persistent muscle pain, could contribute to the development of new treatment strategies for the management of TMD and other muscle pain conditions. This study provides evidence of functional interactions between ligand-gated channels, P2X3 and TRPV1/TRPA1, in trigeminal sensory neurons, and proposes that these interactions underlie the development of mechanical hyperalgesia. In the masseter muscle, direct P2X3 activation, via the selective agonist αβmeATP, induced a dose- and time-dependent hyperalgesia. Importantly, the αβmeATP-induced hyperalgesia was prevented by pretreatment of the muscle with a TRPV1 antagonist, AMG9810, or the TRPA1 antagonist, AP18. P2X3 was co-expressed with both TRPV1 and TRPA1 in masseter muscle afferents confirming the possibility for intracellular interactions. Moreover, in a subpopulation of P2X3 /TRPV1 positive neurons, capsaicin-induced Ca2+ transients were significantly potentiated following P2X3 activation. Inhibition of Ca2+-dependent kinases, PKC and CaMKII, prevented P2X3-mechanical hyperalgesia whereas blockade of Ca2+-independent PKA did not. Finally, activation of P2X3 induced phosphorylation of serine, but not threonine, residues in TRPV1 in trigeminal sensory neurons. Significant phosphorylation was observed at 15 minutes, the time point at which behavioral hyperalgesia was prominent. Similar data were obtained regarding another nonselective cation channel, the NMDA receptor (NMDAR). Our data propose P2X3 and NMDARs interact with TRPV1 in a facilitatory manner, which could contribute to the peripheral sensitization underlying masseter hyperalgesia. This study offers novel mechanisms by which individual pro-nociceptive ligand

  1. Ligand-activated epidermal growth factor receptor (EGFR) signaling governs endocytic trafficking of unliganded receptor monomers by non-canonical phosphorylation.

    PubMed

    Tanaka, Tomohiro; Zhou, Yue; Ozawa, Tatsuhiko; Okizono, Ryuya; Banba, Ayako; Yamamura, Tomohiro; Oga, Eiji; Muraguchi, Atsushi; Sakurai, Hiroaki

    2018-02-16

    The canonical description of transmembrane receptor function is initial binding of ligand, followed by initiation of intracellular signaling and then internalization en route to degradation or recycling to the cell surface. It is known that low concentrations of extracellular ligand lead to a higher proportion of receptor that is recycled and that non-canonical mechanisms of receptor activation, including phosphorylation by the kinase p38, can induce internalization and recycling. However, no connections have been made between these pathways; i.e. it has yet to be established what happens to unbound receptors following stimulation with ligand. Here we demonstrate that a minimal level of activation of epidermal growth factor receptor (EGFR) tyrosine kinase by low levels of ligand is sufficient to fully activate downstream mitogen-activated protein kinase (MAPK) pathways, with most of the remaining unbound EGFR molecules being efficiently phosphorylated at intracellular serine/threonine residues by activated mitogen-activated protein kinase. This non-canonical, p38-mediated phosphorylation of the C-tail of EGFR, near Ser-1015, induces the clathrin-mediated endocytosis of the unliganded EGFR monomers, which occurs slightly later than the canonical endocytosis of ligand-bound EGFR dimers via tyrosine autophosphorylation. EGFR endocytosed via the non-canonical pathway is largely recycled back to the plasma membrane as functional receptors, whereas p38-independent populations are mainly sorted for lysosomal degradation. Moreover, ligand concentrations balance these endocytic trafficking pathways. These results demonstrate that ligand-activated EGFR signaling controls unliganded receptors through feedback phosphorylation, identifying a dual-mode regulation of the endocytic trafficking dynamics of EGFR. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Host scavenger receptor SR-BI plays a dual role in the establishment of malaria parasite liver infection.

    PubMed

    Rodrigues, Cristina D; Hannus, Michael; Prudêncio, Miguel; Martin, Cécilie; Gonçalves, Lígia A; Portugal, Sílvia; Epiphanio, Sabrina; Akinc, Akin; Hadwiger, Philipp; Jahn-Hofmann, Kerstin; Röhl, Ingo; van Gemert, Geert-Jan; Franetich, Jean-François; Luty, Adrian J F; Sauerwein, Robert; Mazier, Dominique; Koteliansky, Victor; Vornlocher, Hans-Peter; Echeverri, Christophe J; Mota, Maria M

    2008-09-11

    An obligatory step of malaria parasite infection is Plasmodium sporozoite invasion of host hepatocytes, and host lipoprotein clearance pathways have been linked to Plasmodium liver infection. By using RNA interference to screen lipoprotein-related host factors, we show here that the class B, type I scavenger receptor (SR-BI) is the strongest regulator of Plasmodium infection among these factors. Inhibition of SR-BI function reduced P. berghei infection in Huh7 cells, and overexpression of SR-BI led to increased infection. In vivo silencing of liver SR-BI expression in mice and inhibition of SR-BI activity in human primary hepatocytes reduced infection by P. berghei and by P. falciparum, respectively. Heterozygous SR-BI(+/-) mice displayed reduced P. berghei infection rates correlating with liver SR-BI expression levels. Additional analyses revealed that SR-BI plays a dual role in Plasmodium infection, affecting both sporozoite invasion and intracellular parasite development, and may therefore constitute a good target for malaria prophylaxis.

  3. Treatment of experimental human breast cancer and lung cancer brain metastases in mice by macitentan, a dual antagonist of endothelin receptors, combined with paclitaxel.

    PubMed

    Lee, Ho Jeong; Hanibuchi, Masaki; Kim, Sun-Jin; Yu, Hyunkyung; Kim, Mark Seungwook; He, Junqin; Langley, Robert R; Lehembre, François; Regenass, Urs; Fidler, Isaiah J

    2016-04-01

    We recently demonstrated that brain endothelial cells and astrocytes protect cancer cells from chemotherapy through an endothelin-dependent signaling mechanism. Here, we evaluated the efficacy of macitentan, a dual endothelin receptor (ETAR and ETBR) antagonist, in the treatment of experimental breast and lung cancer brain metastases. The effect of macitentan on astrocyte- and brain endothelial cell-mediated chemoprotective properties was measured in cytotoxic assays. We compared survival of mice bearing established MDA-MB-231 breast cancer or PC-14 non-small cell lung cancer (NSCLC) brain metastases that were treated with vehicle, macitentan, paclitaxel, or macitentan plus paclitaxel. Cell division, apoptosis, tumor vasculature, and expression of survival-related proteins were assessed by immunofluorescent microscopy. Cancer cells and tumor-associated endothelial cells expressed activated forms of AKT and MAPK in vehicle- and paclitaxel-treated groups in both metastasis models, but these proteins were downregulated in metastases of mice that received macitentan. The survival-related proteins Bcl2L1, Gsta5, and Twist1 that localized to cancer cells and tumor-associated endothelial cells in vehicle- and paclitaxel-treated tumors were suppressed by macitentan. Macitentan or paclitaxel alone had no effect on survival. However, when macitentan was combined with paclitaxel, we noted a significant reduction in cancer cell division and marked apoptosis of both cancer cells and tumor-associated endothelial cells. Moreover, macitentan plus paclitaxel therapy significantly increased overall survival by producing complete responses in 35 of 35 mice harboring brain metastases. Dual antagonism of ETAR and ETBR signaling sensitizes experimental brain metastases to paclitaxel and may represent a new therapeutic option for patients with brain metastases. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved

  4. A Genetic Approach to Identifying Signal Transduction Mechanisms Initiated by Receptors for TGF-B-Related Factors.

    DTIC Science & Technology

    1998-10-01

    resistant to TGF-ß-induced growth arrest suggest that both types of receptors are required for signaling (Boyd and Massague, 1989; Laiho et ah, 1990...II in TGF-ß- resistant cell mutants implicates both receptor types in signal transduction. J. Biol. Chem. 265, 18518-18524. Lechleider, R. J., de...I-1 « -J AD GRANT NUMBER DAMD17-94-J-4339 TITLE: A Genetic Approach to Identifying Signal Transduction Mechanisms Initiated by Receptors

  5. Mechanisms of Kappa Opioid Receptor Potentiation of Dopamine D2 Receptor Function in Quinpirole-Induced Locomotor Sensitization in Rats.

    PubMed

    Escobar, Angélica P; González, Marcela P; Meza, Rodrigo C; Noches, Verónica; Henny, Pablo; Gysling, Katia; España, Rodrigo A; Fuentealba, José A; Andrés, María E

    2017-08-01

    Increased locomotor activity in response to the same stimulus is an index of behavioral sensitization observed in preclinical models of drug addiction and compulsive behaviors. Repeated administration of quinpirole, a D2/D3 dopamine agonist, induces locomotor sensitization. This effect is potentiated and accelerated by co-administration of U69593, a kappa opioid receptor agonist. The mechanism underlying kappa opioid receptor potentiation of quinpirole-induced locomotor sensitization remains to be elucidated. Immunofluorescence anatomical studies were undertaken in mice brain slices and rat presynaptic synaptosomes to reveal kappa opioid receptor and D2R pre- and postsynaptic colocalization in the nucleus accumbens. Tonic and phasic dopamine release in the nucleus accumbens of rats repeatedly treated with U69593 and quinpirole was assessed by microdialysis and fast scan cyclic voltammetry. Anatomical data show that kappa opioid receptor and D2R colocalize postsynaptically in medium spiny neurons of the nucleus accumbens and the highest presynaptic colocalization occurs on the same dopamine terminals. Significantly reduced dopamine levels were observed in quinpirole, and U69593-quinpirole treated rats, explaining sensitization of D2R. Presynaptic inhibition induced by kappa opioid receptor and D2R of electrically evoked dopamine release was faster in U69593-quinpirole compared with quinpirole-repeatedly treated rats. Pre- and postsynaptic colocalization of kappa opioid receptor and D2R supports a role for kappa opioid receptor potentiating both the D2R inhibitory autoreceptor function and the inhibitory action of D2R on efferent medium spiny neurons. Kappa opioid receptor co-activation accelerates D2R sensitization by contributing to decrease dopamine release in the nucleus accumbens. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  6. Strain rate effects on the mechanical behavior of two Dual Phase steels in tension

    NASA Astrophysics Data System (ADS)

    Cadoni, E.; Singh, N. K.; Forni, D.; Singha, M. K.; Gupta, N. K.

    2016-05-01

    This paper presents an experimental investigation on the strain rate sensitivity of Dual Phase steel 1200 (DP1200) and Dual Phase steel 1400 (DP1400) under uni-axial tensile loads in the strain rate range from 0.001 s-1 to 600 s-1. These materials are advanced high strength steels (AHSS) having high strength, high capacity to dissipate crash energy and high formability. Flat sheet specimens of the materials having gauge length 10 mm, width 4 mm and thickness 2 mm (DP1200) and 1.25 mm (DP1400), are tested at room temperature (20∘C) on electromechanical universal testing machine to obtain their stress-strain relation under quasi-static condition (0.001 s-1), and on Hydro-Pneumatic machine and modified Hopkinson bar to study their mechanical behavior at medium (3 s-1, and 18 s-1) and high strain rates (200 s-1, 400 s-1, and 600 s-1) respectively. Tests under quasi-static condition are performed at high temperature (200∘C) also, and found that tensile flow stress is a increasing function of temperature. The stress-strain data has been analysed to determine the material parameters of the Cowper-Symonds and the Johnson-Cook models. A simple modification of the Johnson-Cook model has been proposed in order to obtain a better fit of tests at high temperatures. Finally, the fractographs of the broken specimens are taken by scanning electron microscope (SEM) to understand the fracture mechanism of these advanced high strength steels at different strain rates.

  7. Dual-radiotracer translational SPECT neuroimaging. Comparison of three methods for the simultaneous brain imaging of D2/3 and 5-HT2A receptors.

    PubMed

    Tsartsalis, Stergios; Tournier, Benjamin B; Habiby, Selim; Ben Hamadi, Meriem; Barca, Cristina; Ginovart, Nathalie; Millet, Philippe

    2018-04-30

    SPECT imaging with two radiotracers at the same time is feasible if two different radioisotopes are employed, given their distinct energy emission spectra. In the case of 123 I and 125 I, dual SPECT imaging is not straightforward: 123 I emits photons at a principal energy emission spectrum of 143.1-179.9 keV. However, it also emits at a secondary energy spectrum (15-45 keV) that overlaps with the one of 125 I and the resulting cross-talk of emissions impedes the accurate quantification of 125 I. In this paper, we describe three different methods for the correction of this cross-talk and the simultaneous in vivo [ 123 I]IBZM and [ 125 I]R91150 imaging of D 2/3 and 5-HT 2A receptors in the rat brain. Three methods were evaluated for the correction of the effect of cross-talk in a series of simultaneous, [ 123 I]IBZM and [ 125 I]R91150 in vivo and phantom SPECT scans. Method 1 employs a dual-energy window (DEW) approach, in which the cross-talk on 125 I is considered a stable fraction of the energy emitted from 123 I at the principal emission spectrum. The coefficient describing the relationship between the emission of 123 I at the principal and the secondary spectrum was estimated from a series of single-radiotracer [ 123 I]IBZM SPECT studies. In Method 2, spectral factor analysis (FA) is applied to separate the radioactivity from 123 I and 125 I on the basis of their distinct emission patterns across the energy spectrum. Method 3 uses a modified simplified reference tissue model (SRTM C ) to describe the kinetics of [ 125 I]R91150. It includes the coefficient describing the cross-talk on 125 I from 123 I in the model parameters. The results of the correction of cross-talk on [ 125 I]R91150 binding potential (BP ND ) with each of the three methods, using cerebellum as the reference region, were validated against the results of a series of single-radiotracer [ 123 I]R91150 SPECT studies. In addition, the DEW approach (Method 1), considered to be the most

  8. d-Lysergic Acid Diethylamide (LSD) as a Model of Psychosis: Mechanism of Action and Pharmacology.

    PubMed

    De Gregorio, Danilo; Comai, Stefano; Posa, Luca; Gobbi, Gabriella

    2016-11-23

    d-Lysergic Acid Diethylamide (LSD) is known for its hallucinogenic properties and psychotic-like symptoms, especially at high doses. It is indeed used as a pharmacological model of psychosis in preclinical research. The goal of this review was to understand the mechanism of action of psychotic-like effects of LSD. We searched Pubmed, Web of Science, Scopus, Google Scholar and articles' reference lists for preclinical studies regarding the mechanism of action involved in the psychotic-like effects induced by LSD. LSD's mechanism of action is pleiotropic, primarily mediated by the serotonergic system in the Dorsal Raphe, binding the 5-HT 2A receptor as a partial agonist and 5-HT 1A as an agonist. LSD also modulates the Ventral Tegmental Area, at higher doses, by stimulating dopamine D₂, Trace Amine Associate receptor 1 (TAAR₁) and 5-HT 2A . More studies clarifying the mechanism of action of the psychotic-like symptoms or psychosis induced by LSD in humans are needed. LSD's effects are mediated by a pleiotropic mechanism involving serotonergic, dopaminergic, and glutamatergic neurotransmission. Thus, the LSD-induced psychosis is a useful model to test the therapeutic efficacy of potential novel antipsychotic drugs, particularly drugs with dual serotonergic and dopaminergic (DA) mechanism or acting on TAAR₁ receptors.

  9. d-Lysergic Acid Diethylamide (LSD) as a Model of Psychosis: Mechanism of Action and Pharmacology

    PubMed Central

    De Gregorio, Danilo; Comai, Stefano; Posa, Luca; Gobbi, Gabriella

    2016-01-01

    d-Lysergic Acid Diethylamide (LSD) is known for its hallucinogenic properties and psychotic-like symptoms, especially at high doses. It is indeed used as a pharmacological model of psychosis in preclinical research. The goal of this review was to understand the mechanism of action of psychotic-like effects of LSD. We searched Pubmed, Web of Science, Scopus, Google Scholar and articles’ reference lists for preclinical studies regarding the mechanism of action involved in the psychotic-like effects induced by LSD. LSD’s mechanism of action is pleiotropic, primarily mediated by the serotonergic system in the Dorsal Raphe, binding the 5-HT2A receptor as a partial agonist and 5-HT1A as an agonist. LSD also modulates the Ventral Tegmental Area, at higher doses, by stimulating dopamine D2, Trace Amine Associate receptor 1 (TAAR1) and 5-HT2A. More studies clarifying the mechanism of action of the psychotic-like symptoms or psychosis induced by LSD in humans are needed. LSD’s effects are mediated by a pleiotropic mechanism involving serotonergic, dopaminergic, and glutamatergic neurotransmission. Thus, the LSD-induced psychosis is a useful model to test the therapeutic efficacy of potential novel antipsychotic drugs, particularly drugs with dual serotonergic and dopaminergic (DA) mechanism or acting on TAAR1 receptors. PMID:27886063

  10. Tachykinins and Their Receptors: Contributions to Physiological Control and the Mechanisms of Disease

    PubMed Central

    Steinhoff, Martin S.; von Mentzer, Bengt; Geppetti, Pierangelo; Pothoulakis, Charalabos; Bunnett, Nigel W.

    2014-01-01

    The tachykinins, exemplified by substance P, are one of the most intensively studied neuropeptide families. They comprise a series of structurally related peptides that derive from alternate processing of three Tac genes and are expressed throughout the nervous and immune systems. Tachykinins interact with three neurokinin G protein-coupled receptors. The signaling, trafficking, and regulation of neurokinin receptors have also been topics of intense study. Tachykinins participate in important physiological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems, including inflammation, nociception, smooth muscle contractility, epithelial secretion, and proliferation. They contribute to multiple diseases processes, including acute and chronic inflammation and pain, fibrosis, affective and addictive disorders, functional disorders of the intestine and urinary bladder, infection, and cancer. Neurokinin receptor antagonists are selective, potent, and show efficacy in models of disease. In clinical trials there is a singular success: neurokinin 1 receptor antagonists to treat nausea and vomiting. New information about the involvement of tachykinins in infection, fibrosis, and pruritus justifies further trials. A deeper understanding of disease mechanisms is required for the development of more predictive experimental models, and for the design and interpretation of clinical trials. Knowledge of neurokinin receptor structure, and the development of targeting strategies to disrupt disease-relevant subcellular signaling of neurokinin receptors, may refine the next generation of neurokinin receptor antagonists. PMID:24382888

  11. Synthesis and Evaluation of 64Cu-DOTA-NT-Cy5.5 as a Dual-Modality PET/Fluorescence Probe to Image Neurotensin Receptor-Positive Tumor.

    PubMed

    Deng, Huaifu; Wang, Hui; Wang, Mengzhe; Li, Zibo; Wu, Zhanhong

    2015-08-03

    Overexpression of neurotensin receptors (NTRs) has been suggested to play important roles in the growth and survival of a variety of tumor types. The aim of this study is to develop a dual-modality probe (64Cu -DOTA-NT-Cy5.5) for imaging NTR1 expression in vivo with both positron emission tomography (PET) and fluorescence. In this approach, the thiol group and N terminal amino group of neurotensin analogue (Cys-NT) were chemically modified with Cy5.5 dye and DOTA chelator, respectively. After radiolabeling with 64Cu, the resulting probe (64Cu-DOTA-NT-Cy5.5) was evaluated in NTR1 positive HT-29 tumor model. Small animal PET quantification analysis demonstrated that the tumor uptake was 1.91±0.22 and 1.79±0.16%ID/g at 1 and 4 h postinjection (p.i.), respectively. The tumor-to-muscle ratio was 17.44±3.25 at 4 h p.i. based on biodistribution. Receptor specificity was confirmed by the successful blocking experiment at 4 h p.i. (0.42±0.05%ID/g). In parallel with PET experiment, fluorescence imaging was also performed, which demonstrated prominent tumor uptake in HT-29 model. As a proof of concept, an imaging guided surgery was performed to the fluorescent moiety of this probe and could provide potential surgery guidance for NTR positive patients. In summary, our results clearly indicated that the dual-modality probe, 64Cu-DOTA-NT-Cy5.5, could serve as a promising agent to image NTR positive tumors in vivo.

  12. Resolving dual binding conformations of cellulosome cohesin-dockerin complexes using single-molecule force spectroscopy.

    PubMed

    Jobst, Markus A; Milles, Lukas F; Schoeler, Constantin; Ott, Wolfgang; Fried, Daniel B; Bayer, Edward A; Gaub, Hermann E; Nash, Michael A

    2015-10-31

    Receptor-ligand pairs are ordinarily thought to interact through a lock and key mechanism, where a unique molecular conformation is formed upon binding. Contrary to this paradigm, cellulosomal cohesin-dockerin (Coh-Doc) pairs are believed to interact through redundant dual binding modes consisting of two distinct conformations. Here, we combined site-directed mutagenesis and single-molecule force spectroscopy (SMFS) to study the unbinding of Coh:Doc complexes under force. We designed Doc mutations to knock out each binding mode, and compared their single-molecule unfolding patterns as they were dissociated from Coh using an atomic force microscope (AFM) cantilever. Although average bulk measurements were unable to resolve the differences in Doc binding modes due to the similarity of the interactions, with a single-molecule method we were able to discriminate the two modes based on distinct differences in their mechanical properties. We conclude that under native conditions wild-type Doc from Clostridium thermocellum exocellulase Cel48S populates both binding modes with similar probabilities. Given the vast number of Doc domains with predicted dual binding modes across multiple bacterial species, our approach opens up new possibilities for understanding assembly and catalytic properties of a broad range of multi-enzyme complexes.

  13. Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis.

    PubMed

    Besschetnova, Tatiana Y; Ichimura, Takaharu; Katebi, Negin; St Croix, Brad; Bonventre, Joseph V; Olsen, Bjorn R

    2015-03-01

    It is well known that angiogenesis is linked to fibrotic processes in fibroproliferative diseases, but insights into pathophysiological processes are limited, due to lack of understanding of molecular mechanisms controlling endothelial and fibroblastic homeostasis. We demonstrate here that the matrix receptor anthrax toxin receptor 1 (ANTXR1), also known as tumor endothelial marker 8 (TEM8), is an essential component of these mechanisms. Loss of TEM8 function in mice causes reduced synthesis of endothelial basement membrane components and hyperproliferative and leaky blood vessels in skin. In addition, endothelial cell alterations in mutants are almost identical to those of endothelial cells in infantile hemangioma lesions, including activated VEGF receptor signaling in endothelial cells, increased expression of the downstream targets VEGF and CXCL12, and increased numbers of macrophages and mast cells. In contrast, loss of TEM8 in fibroblasts leads to increased rates of synthesis of fiber-forming collagens, resulting in progressive fibrosis in skin and other organs. Compromised interactions between TEM8-deficient endothelial and fibroblastic cells cause dramatic reduction in the activity of the matrix-degrading enzyme MMP2. In addition to insights into mechanisms of connective tissue homeostasis, our data provide molecular explanations for vascular and connective tissue abnormalities in GAPO syndrome, caused by loss-of-function mutations in ANTXR1. Furthermore, the loss of MMP2 activity suggests that fibrotic skin abnormalities in GAPO syndrome are, in part, the consequence of pathophysiological mechanisms underlying syndromes (NAO, Torg and Winchester) with multicentric skin nodulosis and osteolysis caused by homozygous loss-of-function mutations in MMP2. Copyright © 2014 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  14. Mechanism-Based Tumor-Targeting Drug Delivery System. Validation of Efficient Vitamin Receptor-Mediated Endocytosis and Drug Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.; Wong, S.; Zhao, X.

    An efficient mechanism-based tumor-targeting drug delivery system, based on tumor-specific vitamin-receptor mediated endocytosis, has been developed. The tumor-targeting drug delivery system is a conjugate of a tumor-targeting molecule (biotin: vitamin H or vitamin B-7), a mechanism-based self-immolative linker and a second-generation taxoid (SB-T-1214) as the cytotoxic agent. This conjugate (1) is designed to be (i) specific to the vitamin receptors overexpressed on tumor cell surface and (ii) internalized efficiently through receptor-mediated endocytosis, followed by smooth drug release via glutathione-triggered self-immolation of the linker. In order to monitor and validate the sequence of events hypothesized, i.e., receptor-mediated endocytosis of the conjugate,more » drug release, and drug-binding to the target protein (microtubules), three fluorescent/fluorogenic molecular probes (2, 3, and 4) were designed and synthesized. The actual occurrence of these processes was unambiguously confirmed by means of confocal fluorescence microscopy (CFM) and flow cytometry using L1210FR leukemia cells, overexpressing biotin receptors. The molecular probe 4, bearing the taxoid linked to fluorescein, was also used to examine the cell specificity (i.e., efficacy of receptor-based cell targeting) for three cell lines, L1210FR (biotin receptors overexpressed), L1210 (biotin receptors not overexpressed), and WI38 (normal human lung fibroblast, biotin receptor negative). As anticipated, the molecular probe 4 exhibited high specificity only to L1210FR. To confirm the direct correlation between the cell-specific drug delivery and anticancer activity of the probe 4, its cytotoxicity against these three cell lines was also examined. The results clearly showed a good correlation between the two methods. In the same manner, excellent cell-specific cytotoxicity of the conjugate 1 (without fluorescein attachment to the taxoid) against the same three cell lines was confirmed. This

  15. Mechanism and the origins of stereospecificity in copper-catalyzed ring expansion of vinyl oxiranes: a traceless dual transition-metal-mediated process.

    PubMed

    Mustard, Thomas J L; Mack, Daniel J; Njardarson, Jon T; Cheong, Paul Ha-Yeon

    2013-01-30

    Density functional theory computations of the Cu-catalyzed ring expansion of vinyloxiranes is mediated by a traceless dual Cu(I)-catalyst mechanism. Overall, the reaction involves a monomeric Cu(I)-catalyst, but a single key step, the Cu migration, requires two Cu(I)-catalysts for the transformation. This dual-Cu step is found to be a true double Cu(I) transition state rather than a single Cu(I) transition state in the presence of an adventitious, spectator Cu(I). Both Cu(I) catalysts are involved in the bond forming and breaking process. The single Cu(I) transition state is not a stationary point on the potential energy surface. Interestingly, the reductive elimination is rate-determining for the major diastereomeric product, while the Cu(I) migration step is rate-determining for the minor. Thus, while the reaction requires dual Cu(I) activation to proceed, kinetically, the presence of the dual-Cu(I) step is untraceable. The diastereospecificity of this reaction is controlled by the Cu migration step. Suprafacial migration is favored over antarafacial migration due to the distorted Cu π-allyl in the latter.

  16. A Common Molecular Motif Characterizes Extracellular Allosteric Enhancers of GPCR Aminergic Receptors and Suggests Enhancer Mechanism of Action

    PubMed Central

    Bernstein, Robert Root; Dillon, Patrick F

    2014-01-01

    Several classes of compounds that have no intrinsic activity on aminergic systems nonetheless enhance the potency of aminergic receptor ligands three-fold or more while significantly increasing their duration of activity, preventing tachyphylaxis and reversing fade. Enhancer compounds include ascorbic acid, ethylenediaminetetraacetic acid, cortico-steroids, opioid peptides, opiates and opiate antagonists. This paper provides the first review of aminergic enhancement, demonstrating that all enhancers have a common, inobvious molecular motif and work through a common mechanism that is manifested by three common characteristics. First, aminergic enhancers bind directly to the amines they enhance, suggesting that the common structural motif is reflected in common binding targets. Second, one common target is the first extracellular loop of aminergic receptors. Third, at least some enhancers are antiphosphodiesterases. These observations suggest that aminergic enhancers act on the extracellular surface of aminergic receptors to keep the receptor in its high affinity state, trapping the ligand inside the receptor. Enhancer binding produces allosteric modifications of the receptor structure that interfere with phosphorylation of the receptor, thereby inhibiting down-regulation of the receptor. The mechanism explains how enhancers potentiate aminergic activity and increase duration of activity and makes testable predictions about additional compounds that should act as aminergic enhancers. PMID:25174918

  17. Novel Mechanisms in the Regulation of G Protein-coupled Receptor Trafficking to the Plasma Membrane*

    PubMed Central

    Tholanikunnel, Baby G.; Joseph, Kusumam; Kandasamy, Karthikeyan; Baldys, Aleksander; Raymond, John R.; Luttrell, Louis M.; McDermott, Paul J.; Fernandes, Daniel J.

    2010-01-01

    β2-Adrenergic receptors (β2-AR) are low abundance, integral membrane proteins that mediate the effects of catecholamines at the cell surface. Whereas the processes governing desensitization of activated β2-ARs and their subsequent removal from the cell surface have been characterized in considerable detail, little is known about the mechanisms controlling trafficking of neo-synthesized receptors to the cell surface. Since the discovery of the signal peptide, the targeting of the integral membrane proteins to plasma membrane has been thought to be determined by structural features of the amino acid sequence alone. Here we report that localization of translationally silenced β2-AR mRNA to the peripheral cytoplasmic regions is critical for receptor localization to the plasma membrane. β2-AR mRNA is recognized by the nucleocytoplasmic shuttling RNA-binding protein HuR, which silences translational initiation while chaperoning the mRNA-protein complex to the cell periphery. When HuR expression is down-regulated, β2-AR mRNA translation is initiated prematurely in perinuclear polyribosomes, leading to overproduction of receptors but defective trafficking to the plasma membrane. Our results underscore the importance of the spatiotemporal relationship between β2-AR mRNA localization, translation, and trafficking to the plasma membrane, and establish a novel mechanism whereby G protein-coupled receptor (GPCR) responsiveness is regulated by RNA-based signals. PMID:20739277

  18. Differential Effects of a Dual Orexin Receptor Antagonist (SB-649868) and Zolpidem on Sleep Initiation and Consolidation, SWS, REM Sleep, and EEG Power Spectra in a Model of Situational Insomnia

    PubMed Central

    Bettica, Paolo; Squassante, Lisa; Groeger, John A; Gennery, Brian; Winsky-Sommerer, Raphaelle; Dijk, Derk-Jan

    2012-01-01

    Orexins have a role in sleep regulation, and orexin receptor antagonists are under development for the treatment of insomnia. We conducted a randomised, double-blind, placebo-controlled, four-period crossover study to investigate the effect of single doses of the dual orexin receptor antagonist SB-649868 (10 or 30 mg) and a positive control zolpidem (10 mg), an allosteric modulator of GABAA receptors. Objective and subjective sleep parameters and next-day performance were assessed in 51 healthy male volunteers in a traffic noise model of situational insomnia. Compared with placebo, SB-649868 10 and 30 mg increased total sleep time (TST) by 17 and 31 min (p<0.001), whereas after zolpidem TST was increased by 11.0 min (p=0.012). Wake after sleep onset was reduced significantly by 14.7 min for the SB–6489698 30 mg dose (p<0.001). Latency to persistent sleep was significantly reduced after both doses of SB–6489698 (p=0.003), but not after zolpidem. Slow wave sleep (SWS) and electroencephalogram (EEG) power spectra in non-REM sleep were not affected by either dose of SB-640868, whereas SWS (p< 0.001) and low delta activity (<=1.0 Hz) were increased, and 2.25–11.0 Hz activity decreased after zolpidem. REM sleep duration was increased after SB-649868 30 mg (p=0.002) and reduced after zolpidem (p=0.049). Latency to REM sleep was reduced by 20.1 (p=0.034) and 34.0 min (p<0.001) after 10 and 30 mg of SB-649868. Sleep-onset REM episodes were observed. SB-649868 was well tolerated. This dual orexin receptor antagonist exerts hypnotic activity, with effects on sleep structure and the EEG that are different from those of zolpidem. PMID:22237311

  19. Receptor-Mediated Uptake and Intracellular Sorting of Multivalent Lipid Nanoparticles Against the Epidermal Growth Factor Receptor (EGFR) and the Human EGFR 2 (HER2)

    NASA Astrophysics Data System (ADS)

    Tran, David Tu

    In the area of receptor-targeted lipid nanoparticles for drug delivery, efficiency has been mainly focused on cell-specificity, endocytosis, and subsequently effects on bioactivity such as cell growth inhibition. Aspects of targeted liposomal uptake and intracellular sorting are not well defined. This dissertation assessed a series of ligands as targeted functional groups against HER2 and EGFR for liposomal drug delivery. Receptor-mediated uptake, both mono-targeted and dual-targeted to multiple receptors of different ligand valence, and the intracellular sorting of lipid nanoparticles were investigated to improve the delivery of drugs to cancer cells. Lipid nanoparticles were functionalized through a new sequential micelle transfer---conjugation method, while the micelle transfer method was extended to growth factors. Through a combination of both techniques, anti-HER2 and anti-EGFR dual-targeted immunoliposomes with different combinations of ligand valence were developed for comparative studies. With the array of lipid nanoparticles, the uptake and cytotoxicity of lipid nanoparticles in relationship to ligand valence, both mono-targeting and dual-targeting, were evaluated on a small panel of breast cancer cell lines that express HER2 and EGFR of varying levels. Comparable uptake ratios of ligand to expressed receptor and apparent cooperativity were observed. For cell lines that express both receptors, additive dose-uptake effects were also observed with dual-targeted immunoliposomes, which translated to marginal improvements in cell growth inhibition with doxorubicin delivery. Colocalization analysis revealed that ligand-conjugated lipid nanoparticles settle to endosomal compartments similar to their attached ligands. Pathway transregulation and pathway saturation were also observed to affect trafficking. In the end, liposomes routed to the recycling endosomes were never observed to traffic beyond the endosomes nor to be exocytose like recycled ligands. Based on

  20. Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism.

    PubMed

    Pathak, Preeti; Liu, Hailiang; Boehme, Shannon; Xie, Cen; Krausz, Kristopher W; Gonzalez, Frank; Chiang, John Y L

    2017-06-30

    The bile acid-activated receptors, nuclear farnesoid X receptor (FXR) and the membrane Takeda G-protein receptor 5 (TGR5), are known to improve glucose and insulin sensitivity in obese and diabetic mice. However, the metabolic roles of these two receptors and the underlying mechanisms are incompletely understood. Here, we studied the effects of the dual FXR and TGR5 agonist INT-767 on hepatic bile acid synthesis and intestinal secretion of glucagon-like peptide-1 (GLP-1) in wild-type, Fxr -/- , and Tgr5 -/- mice. INT-767 efficaciously stimulated intracellular Ca 2+ levels, cAMP activity, and GLP-1 secretion and improved glucose and lipid metabolism more than did the FXR-selective obeticholic acid and TGR5-selective INT-777 agonists. Interestingly, INT-767 reduced expression of the genes in the classic bile acid synthesis pathway but induced those in the alternative pathway, which is consistent with decreased taurocholic acid and increased tauromuricholic acids in bile. Furthermore, FXR activation induced expression of FXR target genes, including fibroblast growth factor 15, and unexpectedly Tgr5 and prohormone convertase 1/3 gene expression in the ileum. We identified an FXR-responsive element on the Tgr5 gene promoter. Fxr -/- and Tgr5 -/- mice exhibited reduced GLP-1 secretion, which was stimulated by INT-767 in the Tgr5 -/- mice but not in the Fxr -/- mice. Our findings uncovered a novel mechanism in which INT-767 activation of FXR induces Tgr5 gene expression and increases Ca 2+ levels and cAMP activity to stimulate GLP-1 secretion and improve hepatic glucose and lipid metabolism in high-fat diet-induced obese mice. Activation of both FXR and TGR5 may therefore represent an effective therapy for managing hepatic steatosis, obesity, and diabetes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR

    PubMed Central

    Li, Zhiyuan; Ji, Xinmiao; Wang, Wenchao; Liu, Juanjuan; Liang, Xiaofei; Wu, Hong; Liu, Jing; Eggert, Ulrike S.; Liu, Qingsong

    2016-01-01

    Hyperammonemia is frequently seen in tumor microenvironments as well as in liver diseases where it can lead to severe brain damage or death. Ammonia induces autophagy, a mechanism that tumor cells may use to protect themselves from external stresses. However, how cells sense ammonia has been unclear. Here we show that culture medium alone containing Glutamine can generate milimolar of ammonia at 37 degrees in the absence of cells. In addition, we reveal that ammonia acts through the G protein-coupled receptor DRD3 (Dopamine receptor D3) to induce autophagy. At the same time, ammonia induces DRD3 degradation, which involves PIK3C3/VPS34-dependent pathways. Ammonia inhibits MTOR (mechanistic target of Rapamycin) activity and localization in cells, which is mediated by DRD3. Therefore, ammonia has dual roles in autophagy: one to induce autophagy through DRD3 and MTOR, the other to increase autophagosomal pH to inhibit autophagic flux. Our study not only adds a new sensing and output pathway for DRD3 that bridges ammonia sensing and autophagy induction, but also provides potential mechanisms for the clinical consequences of hyperammonemia in brain damage, neurodegenerative diseases and tumors. PMID:27077655

  2. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.

    PubMed

    Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V

    2007-09-14

    The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.

  3. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolevsky, Alexander I.; Rosconi, Michael P.; Gouaux, Eric

    2010-02-02

    Ionotropic glutamate receptors mediate most excitatory neurotransmission in the central nervous system and function by opening a transmembrane ion channel upon binding of glutamate. Despite their crucial role in neurobiology, the architecture and atomic structure of an intact ionotropic glutamate receptor are unknown. Here we report the crystal structure of the {alpha}-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive, homotetrameric, rat GluA2 receptor at 3.6 {angstrom} resolution in complex with a competitive antagonist. The receptor harbours an overall axis of two-fold symmetry with the extracellular domains organized as pairs of local dimers and with the ion channel domain exhibiting four-fold symmetry. A symmetry mismatchmore » between the extracellular and ion channel domains is mediated by two pairs of conformationally distinct subunits, A/C and B/D. Therefore, the stereochemical manner in which the A/C subunits are coupled to the ion channel gate is different from the B/D subunits. Guided by the GluA2 structure and site-directed cysteine mutagenesis, we suggest that GluN1 and GluN2A NMDA (N-methyl-D-aspartate) receptors have a similar architecture, with subunits arranged in a 1-2-1-2 pattern. We exploit the GluA2 structure to develop mechanisms of ion channel activation, desensitization and inhibition by non-competitive antagonists and pore blockers.« less

  4. Ligand-Receptor Interaction-Mediated Transmembrane Transport of Dendrimer-like Soft Nanoparticles: Mechanisms and Complicated Diffusive Dynamics.

    PubMed

    Liang, Junshi; Chen, Pengyu; Dong, Bojun; Huang, Zihan; Zhao, Kongyin; Yan, Li-Tang

    2016-05-09

    Nearly all nanomedical applications of dendrimer-like soft nanoparticles rely on the functionality of attached ligands. Understanding how the ligands interact with the receptors in cell membrane and its further effect on the cellular uptake of dendrimer-like soft nanoparticles is thereby a key issue for their better application in nanomedicine. However, the essential mechanism and detailed kinetics for the ligand-receptor interaction-mediated transmembrane transport of such unconventional nanoparticles remain poorly elucidated. Here, using coarse-grained simulations, we present the very first study of molecular mechanism and kinetics behaviors for the transmembrane transport of dendrimer-like soft nanoparticles conjugated with ligands. A phase diagram of interaction states is constructed through examining ligand densities and membrane tensions that allows us to identify novel endocytosis mechanisms featured by the direct wrapping and the penetration-extraction vesiculation. The results provide an in-depth insight into the diffusivity of receptors and dendrimer in the membrane plane and demonstrate how the ligand density influences receptor diffusion and uptake kinetics. It is interesting to find that the ligand-conjugated dendrimers present superdiffusive behaviors on a membrane, which is revealed to be driven by the random fluctuation dynamics of the membrane. The findings facilitate our understanding of some recent experimental observations and could establish fundamental principles for the future development of such important nanomaterials for widespread nanomedical applications.

  5. Regulated lysosomal trafficking as a mechanism for regulating GABAA receptor abundance at synapses in Caenorhabditis elegans.

    PubMed

    Davis, Kathleen M; Sturt, Brianne L; Friedmann, Andrew J; Richmond, Janet E; Bessereau, Jean-Louis; Grant, Barth D; Bamber, Bruce A

    2010-08-01

    GABA(A) receptor plasticity is important for both normal brain function and disease progression. We are studying GABA(A) receptor plasticity in Caenorhabditis elegans using a genetic approach. Acute exposure of worms to the GABA(A) agonist muscimol hyperpolarizes postsynaptic cells, causing paralysis. Worms adapt after several hours, but show uncoordinated locomotion consistent with decreased GABA signaling. Using patch-clamp and immunofluorescence approaches, we show that GABA(A) receptors are selectively removed from synapses during adaptation. Subunit mRNA levels were unchanged, suggesting a post-transcriptional mechanism. Mutants with defective lysosome function (cup-5) show elevated GABA(A) receptor levels at synapses prior to muscimol exposure. During adaptation, these receptors are removed more slowly, and accumulate in intracellular organelles positive for the late endosome marker GFP-RAB-7. These findings suggest that chronic agonist exposure increases endocytosis and lysosomal trafficking of GABA(A) receptors, leading to reduced levels of synaptic GABA(A) receptors and reduced postsynaptic GABA sensitivity.

  6. Molecular mechanisms of the antiproliferative activity of somatostatin receptors (SSTRs) in neuroendocrine tumors.

    PubMed

    Florio, Tullio

    2008-01-01

    The current treatment of neuroendocrine tumors include the use of somatostatin (SST) agonists. These compounds are able to control most of the symptoms caused by the hypersecretory activity of the tumor cells, and for this reason, they provide a significant improvement in the well-being of the patients. Although, several reports also showed a possible direct antiproliferative activity of SST agonists in different neuroendocrine tumors, the therapeutic potential of an in vivo antiproliferative activity mediated by SST receptors is still debated. In recent years, there has been great insights on understanding the molecular basis of the antitumoral activity of SST that appears to be exerted via both direct and indirect mechanisms. Direct mechanisms require the activation of SST receptors in tumor cells and the induction of cell cycle arrest or apoptosis, mainly through the regulation of phosphotyrosine phosphatase (PTP) and MAP kinase activities. The indirect mechanisms involve the inhibition of tumor angiogenesis and the inhibition of the secretion of factors which are required for tumor growth. Here, we will review the molecular mechanisms which are implicated in the antiproliferative activity of SST. Such an understanding is necessary for improving the antitumoral efficacy of SSTR agonists as well as for the development of novel therapeutic strategies.

  7. MECHANISMS OF ZN-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)

    EPA Science Inventory

    MECHANISMS OF Zn-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)
    James M. Samet*, Lee M. Graves? and Weidong Wu?. *Human Studies Division, NHEERL, ORD, Research Triangle Park, NC 27711, and ?Center for Environmental Medicine, University of North C...

  8. A dual positive and negative regulation of monocyte activation by leukocyte Ig-like receptor B4 depends on the position of the tyrosine residues in its ITIMs.

    PubMed

    Park, Mijeong; Liu, Robert W; An, Hongyan; Geczy, Carolyn L; Thomas, Paul S; Tedla, Nicodemus

    2017-05-01

    The leukocyte Ig-like receptor B4 (LILRB4) is an inhibitory cell surface receptor, primarily expressed on mono-myeloid cells. It contains 2 C-type Ig-like extracellular domains and a long cytoplasmic domain that contains three intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Data suggest that LILRB4 suppresses Fc receptor-dependent monocyte functions via its ITIMs, but relative contributions of the three ITIMs are not characterised. To address this, tyrosine (Tyr) residues at positions 337, 389 and 419 were single, double or triple mutated to phenylalanine and stably transfected into a human monocytic cell line, THP-1. Intact Tyr 389 was sufficient to maximally inhibit FcγRI-mediated TNF-α production in THP-1 cells, but, paradoxically, Tyr 337 significantly enhanced TNF-α production. In contrast, bactericidal activity was significantly enhanced in mutants containing Tyr 419 , while Tyr 337 markedly inhibited bacteria killing. Taken together, these results indicate that LILRB4 might have dual inhibitory and activating functions, depending on the position of the functional tyrosine residues in its ITIMs and/or the nature of the stimuli.

  9. Structural analysis of the receptor binding domain of botulinum neurotoxin serotype D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanfeng; Buchko, Garry W.; Qin, Lin

    2010-10-28

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65 Å resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences aremore » located at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10 Å relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.« less

  10. Structural Analysis of the Receptor Binding Domain of Botulinum Neurotoxin Serotype D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Zhang; G Buchko; L Qin

    2011-12-31

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65{angstrom} resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences are locatedmore » at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10{angstrom} relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.« less

  11. Iodine Extravasation Quantification on Dual-Energy CT of the Brain Performed after Mechanical Thrombectomy for Acute Ischemic Stroke Can Predict Hemorrhagic Complications.

    PubMed

    Bonatti, M; Lombardo, F; Zamboni, G A; Vittadello, F; Currò Dossi, R; Bonetti, B; Pozzi Mucelli, R; Bonatti, G

    2018-01-18

    Intracerebral hemorrhage represents a potentially severe complication of revascularization of acute ischemic stroke. The aim of our study was to assess the capability of iodine extravasation quantification on dual-energy CT performed immediately after mechanical thrombectomy to predict hemorrhagic complications. Because this was a retrospective study, the need for informed consent was waived. Eighty-five consecutive patients who underwent brain dual-energy CT immediately after mechanical thrombectomy for acute ischemic stroke between August 2013 and January 2017 were included. Two radiologists independently evaluated dual-energy CT images for the presence of parenchymal hyperdensity, iodine extravasation, and hemorrhage. Maximum iodine concentration was measured. Follow-up CT examinations performed until patient discharge were reviewed for intracerebral hemorrhage development. The correlation between dual-energy CT parameters and intracerebral hemorrhage development was analyzed by the Mann-Whitney U test and Fisher exact test. Receiver operating characteristic curves were generated for continuous variables. Thirteen of 85 patients (15.3%) developed hemorrhage. On postoperative dual-energy CT, parenchymal hyperdensities and iodine extravasation were present in 100% of the patients who developed intracerebral hemorrhage and in 56.3% of the patients who did not ( P = .002 for both). Signs of bleeding were present in 35.7% of the patients who developed intracerebral hemorrhage and in none of the patients who did not ( P < .001). Median maximum iodine concentration was 2.63 mg/mL in the patients who developed intracerebral hemorrhage and 1.4 mg/mL in the patients who did not ( P < .001). Maximum iodine concentration showed an area under the curve of 0.89 for identifying patients developing intracerebral hemorrhage. The presence of parenchymal hyperdensity with a maximum iodine concentration of >1.35 mg/mL may identify patients developing intracerebral hemorrhage with

  12. Mechanism of action of the insecticides, lindane and fipronil, on glycine receptor chloride channels

    PubMed Central

    Islam, Robiul; Lynch, Joseph W

    2012-01-01

    BACKGROUND AND PURPOSE Docking studies predict that the insecticides, lindane and fipronil, block GABAA receptors by binding to 6′ pore-lining residues. However, this has never been tested at any Cys-loop receptor. The neurotoxic effects of these insecticides are also thought to be mediated by GABAA receptors, although a recent morphological study suggested glycine receptors mediated fipronil toxicity in zebrafish. Here we investigated whether human α1, α1β, α2 and α3 glycine receptors were sufficiently sensitive to block by either compound as to represent possible neurotoxicity targets. We also investigated the mechanisms by which lindane and fipronil inhibit α1 glycine receptors. EXPERIMENTAL APPROACH Glycine receptors were recombinantly expressed in HEK293 cells and insecticide effects were studied using patch-clamp electrophysiology. KEY RESULTS Both compounds completely inhibited all tested glycine receptor subtypes with IC50 values ranging from 0.2–2 µM, similar to their potencies at vertebrate GABAA receptors. Consistent with molecular docking predictions, both lindane and fipronil interacted with 6′ threonine residues via hydrophobic interactions and hydrogen bonds. In contrast with predictions, we found no evidence for lindane interacting at the 2′ level. We present evidence for fipronil binding in a non-blocking mode in the anaesthetic binding pocket, and for lindane as an excellent pharmacological tool for identifying the presence of β subunits in αβ heteromeric glycine receptors. CONCLUSIONS AND IMPLICATIONS This study implicates glycine receptors as novel vertebrate toxicity targets for fipronil and lindane. Furthermore, lindane interacted with pore-lining 6′ threonine residues, whereas fipronil may have both pore and non-pore binding sites. PMID:22035056

  13. Mechanism of action of the insecticides, lindane and fipronil, on glycine receptor chloride channels.

    PubMed

    Islam, Robiul; Lynch, Joseph W

    2012-04-01

    Docking studies predict that the insecticides, lindane and fipronil, block GABA(A) receptors by binding to 6' pore-lining residues. However, this has never been tested at any Cys-loop receptor. The neurotoxic effects of these insecticides are also thought to be mediated by GABA(A) receptors, although a recent morphological study suggested glycine receptors mediated fipronil toxicity in zebrafish. Here we investigated whether human α1, α1β, α2 and α3 glycine receptors were sufficiently sensitive to block by either compound as to represent possible neurotoxicity targets. We also investigated the mechanisms by which lindane and fipronil inhibit α1 glycine receptors. Glycine receptors were recombinantly expressed in HEK293 cells and insecticide effects were studied using patch-clamp electrophysiology. Both compounds completely inhibited all tested glycine receptor subtypes with IC(50) values ranging from 0.2-2 µM, similar to their potencies at vertebrate GABA(A) receptors. Consistent with molecular docking predictions, both lindane and fipronil interacted with 6' threonine residues via hydrophobic interactions and hydrogen bonds. In contrast with predictions, we found no evidence for lindane interacting at the 2' level. We present evidence for fipronil binding in a non-blocking mode in the anaesthetic binding pocket, and for lindane as an excellent pharmacological tool for identifying the presence of β subunits in αβ heteromeric glycine receptors. This study implicates glycine receptors as novel vertebrate toxicity targets for fipronil and lindane. Furthermore, lindane interacted with pore-lining 6' threonine residues, whereas fipronil may have both pore and non-pore binding sites. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  14. Effect of mutation of Phe 2436.44 of the histamine H2 receptor on cimetidine and ranitidine mechanism of action.

    PubMed

    Granja-Galeano, Gina; Zappia, Carlos Daniel; Fabián, Lucas; Davio, Carlos; Shayo, Carina; Fernández, Natalia; Monczor, Federico

    2017-12-15

    Despite the pivotal role GPCRs play in cellular signaling, it is only in the recent years that structural biology has begun to elucidate how GPCRs function and to provide a platform for structure-based drug design. It is postulated that GPCR activation involves the movement of transmembrane helices. The finding that many residues, which have been shown to be critical for receptor activation and are highly conserved among different GPCRs, are clustered in particular positions of transmembrane helices suggests that activation of GPCRs may involve common molecular mechanisms. In particular, phenylalanine 6.44, located in the upper half of TMVI, is highly conserved among almost all GPCRs. We generated Phe 243 6.44 Ala/Ser mutants of histamine H 2 receptor and found that while the substitutions do not affect receptor expression or ligand signaling, are able to specifically alter cimetidine and ranitidine mechanisms of action from simply inactivating the receptor to produce a ligand-induced G-protein sequestering conformation, that interferes with the signaling of β2-adrenoceptor. Taking advantage of the cubic ternary complex model, and mathematically modeling our results, we hypothesize that this alteration in ligand mechanism of action is consequence of a change in ligand-induced conformational rearrangement of receptor and its effect on G-protein coupling. Our results show that receptor point mutations can not only alter receptor behavior, as shown for activating/inactivating mutations, but also can have more subtle effects changing ligand mechanism of action. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Change in pharmacological effect of endothelin receptor antagonists in rats with pulmonary hypertension: Role of ETB-receptor expression levels

    PubMed Central

    Sauvageau, Stéphanie; Thorin, Eric; Villeneuve, Louis; Dupuis, Jocelyn

    2013-01-01

    Background and purpose The endothelin (ET) system is activated in pulmonary arterial hypertension (PAH). The therapeutic value of pharmacological blockade of ET receptors has been demonstrated in various animal models and led to the current approval and continued development of these drugs for the therapy of human PAH. However, we currently incompletely comprehend what local modifications of this system occur as a consequence of PAH, particularly in small resistance arteries, and how this could affect the pharmacological response to ET receptor antagonists with various selectivities for the receptor subtypes. Therefore, the purposes of this study were to evaluate potential modifications of the pharmacology of the ET system in rat pulmonary resistance arteries from monocrotaline (MCT)-induced pulmonary arterial hypertension. Experimental approach ET-1 levels were quantified by ELISA. PreproET-1, ETA and ETB receptor mRNA expressions were quantified in pulmonary resistance arteries using Q-PCR, while protein expression was evaluated by Western blots. Reactivity to ET-1 of isolated pulmonary resistance arteries was measured in the presence of ETA (A-147627), ETB (A-192621) and dual ETA/B (bosentan) receptor antagonists. Key results In rats with PAH, plasma ET-1 increased (p < 0.001) while pulmonary levels were reduced (p < 0.05). In PAH arteries, preproET-1 (p < 0.05) and ETB receptor (p < 0.001) gene expressions were reduced, as were ETB receptor protein levels (p < 0.05). ET-1 induced similar vasoconstrictions in both groups. In arteries from sham animals, neither bosentan nor the ETA or the ETB receptor antagonists modified the response. In arteries from PAH rats, however, bosentan and the ETA receptor antagonist potently reduced the maximal contraction, while bosentan also reduced sensitivity (p < 0.01). Conclusions and implications The effectiveness of both selective ETA and dual ETA/B receptor antagonists is markedly increased in PAH. Down-regulation of

  16. Cannabidiol prevents infarction via the non-CB1 cannabinoid receptor mechanism.

    PubMed

    Hayakawa, Kazuhide; Mishima, Kenichi; Abe, Kohji; Hasebe, Nobuyoshi; Takamatsu, Fumie; Yasuda, Hiromi; Ikeda, Tomoaki; Inui, Keiichiro; Egashira, Nobuaki; Iwasaki, Katsunori; Fujiwara, Michihiro

    2004-10-25

    Cannabidiol, a non-psychoactive constituent of cannabis, has been reported as a neuroprotectant. Cannabidiol and Delta(9)-tetrahydrocannabinol, the primary psychoactive constituent of cannabis, significantly decreased the infarct volume at 4 h in the mouse middle cerebral artery occlusion model. The neuroprotective effects of Delta(9)-tetrahydrocannabinol but not cannabidiol were inhibited by SR141716, a cannabinoid CB1 receptor antagonist, and were abolished by warming of the animals to the levels observed in the controls. Delta(9)-Tetrahydrocannabinol significantly decreased the rectal temperature, and the hypothermic effect was inhibited by SR141716. These results surely show that the neuroprotective effect of Delta(9)-tetrahydrocannabinol are via a CB1 receptor and temperature-dependent mechanisms whereas the neuroprotective effects of cannabidiol are independent of CB1 blockade and of hypothermia.

  17. Structural Basis for Iloprost as a Dual Peroxisome Proliferator-activated Receptor [alpha/delta] Agonist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Lihua; Lin, Shengchen; Rong, Hui

    2012-03-15

    Iloprost is a prostacyclin analog that has been used to treat many vascular conditions. Peroxisome proliferator-activated receptors (PPARs) are ligand-regulated transcription factors with various important biological effects such as metabolic and cardiovascular physiology. Here, we report the crystal structures of the PPAR{alpha} ligand-binding domain and PPAR{delta} ligand-binding domain bound to iloprost, thus providing unambiguous evidence for the direct interaction between iloprost and PPARs and a structural basis for the recognition of PPAR{alpha}/{delta} by this prostacyclin analog. In addition to conserved contacts for all PPAR{alpha} ligands, iloprost also initiates several specific interactions with PPARs using its unique structural groups. Structural andmore » functional studies of receptor-ligand interactions reveal strong functional correlations of the iloprost-PPAR{alpha}/{delta} interactions as well as the molecular basis of PPAR subtype selectivity toward iloprost ligand. As such, the structural mechanism may provide a more rational template for designing novel compounds targeting PPARs with more favorable pharmacologic impact based on existing iloprost drugs.« less

  18. Cell-intrinsic mechanisms of temperature compensation in a grasshopper sensory receptor neuron

    PubMed Central

    Roemschied, Frederic A; Eberhard, Monika JB; Schleimer, Jan-Hendrik; Ronacher, Bernhard; Schreiber, Susanne

    2014-01-01

    Changes in temperature affect biochemical reaction rates and, consequently, neural processing. The nervous systems of poikilothermic animals must have evolved mechanisms enabling them to retain their functionality under varying temperatures. Auditory receptor neurons of grasshoppers respond to sound in a surprisingly temperature-compensated manner: firing rates depend moderately on temperature, with average Q10 values around 1.5. Analysis of conductance-based neuron models reveals that temperature compensation of spike generation can be achieved solely relying on cell-intrinsic processes and despite a strong dependence of ion conductances on temperature. Remarkably, this type of temperature compensation need not come at an additional metabolic cost of spike generation. Firing rate-based information transfer is likely to increase with temperature and we derive predictions for an optimal temperature dependence of the tympanal transduction process fostering temperature compensation. The example of auditory receptor neurons demonstrates how neurons may exploit single-cell mechanisms to cope with multiple constraints in parallel. DOI: http://dx.doi.org/10.7554/eLife.02078.001 PMID:24843016

  19. Endothelial nuclear lamina is not required for glucocorticoid receptor nuclear import but does affect receptor-mediated transcription activation.

    PubMed

    Nayebosadri, Arman; Ji, Julie Y

    2013-08-01

    The lamina serves to maintain the nuclear structure and stiffness while acting as a scaffold for heterochromatin and many transcriptional proteins. Its role in endothelial mechanotransduction, specifically how nuclear mechanics impact gene regulation under shear stress, is not fully understood. In this study, we successfully silenced lamin A/C in bovine aortic endothelial cells to determine its role in both glucocorticoid receptor (GR) nuclear translocation and glucocorticoid response element (GRE) transcriptional activation in response to dexamethasone and shear stress. Nuclear translocation of GR, an anti-inflammatory nuclear receptor, in response to dexamethasone or shear stress (5, 10, and 25 dyn/cm(2)) was observed via time-lapse cell imaging and quantified using a Bayesian image analysis algorithm. Transcriptional activity of the GRE promoter was assessed using a dual-luciferase reporter plasmid. We found no dependence on nuclear lamina for GR translocation from the cytoplasm into the nucleus. However, the absence of lamin A/C led to significantly increased expression of luciferase under dexamethasone and shear stress induction as well as changes in histone protein function. PCR results for NF-κB inhibitor alpha (NF-κBIA) and dual specificity phosphatase 1 (DUSP1) genes further supported our luciferase data with increased expression in the absence of lamin. Our results suggest that absence of lamin A/C does not hinder passage of GR into the nucleus, but nuclear lamina is important to properly regulate GRE transcription. Nuclear lamina, rather than histone deacetylase (HDAC), is a more significant mediator of shear stress-induced transcriptional activity, while dexamethasone-initiated transcription is more HDAC dependent. Our findings provide more insights into the molecular pathways involved in nuclear mechanotransduction.

  20. Endothelial nuclear lamina is not required for glucocorticoid receptor nuclear import but does affect receptor-mediated transcription activation

    PubMed Central

    Nayebosadri, Arman

    2013-01-01

    The lamina serves to maintain the nuclear structure and stiffness while acting as a scaffold for heterochromatin and many transcriptional proteins. Its role in endothelial mechanotransduction, specifically how nuclear mechanics impact gene regulation under shear stress, is not fully understood. In this study, we successfully silenced lamin A/C in bovine aortic endothelial cells to determine its role in both glucocorticoid receptor (GR) nuclear translocation and glucocorticoid response element (GRE) transcriptional activation in response to dexamethasone and shear stress. Nuclear translocation of GR, an anti-inflammatory nuclear receptor, in response to dexamethasone or shear stress (5, 10, and 25 dyn/cm2) was observed via time-lapse cell imaging and quantified using a Bayesian image analysis algorithm. Transcriptional activity of the GRE promoter was assessed using a dual-luciferase reporter plasmid. We found no dependence on nuclear lamina for GR translocation from the cytoplasm into the nucleus. However, the absence of lamin A/C led to significantly increased expression of luciferase under dexamethasone and shear stress induction as well as changes in histone protein function. PCR results for NF-κB inhibitor alpha (NF-κBIA) and dual specificity phosphatase 1 (DUSP1) genes further supported our luciferase data with increased expression in the absence of lamin. Our results suggest that absence of lamin A/C does not hinder passage of GR into the nucleus, but nuclear lamina is important to properly regulate GRE transcription. Nuclear lamina, rather than histone deacetylase (HDAC), is a more significant mediator of shear stress-induced transcriptional activity, while dexamethasone-initiated transcription is more HDAC dependent. Our findings provide more insights into the molecular pathways involved in nuclear mechanotransduction. PMID:23703529

  1. Mechanism of Tacrine Block at Adult Human Muscle Nicotinic Acetylcholine Receptors

    PubMed Central

    Prince, Richard J.; Pennington, Richard A.; Sine, Steven M.

    2002-01-01

    We used single-channel kinetic analysis to study the inhibitory effects of tacrine on human adult nicotinic receptors (nAChRs) transiently expressed in HEK 293 cells. Single channel recording from cell-attached patches revealed concentration- and voltage-dependent decreases in mean channel open probability produced by tacrine (IC50 4.6 μM at −70 mV, 1.6 μM at −150 mV). Two main effects of tacrine were apparent in the open- and closed-time distributions. First, the mean channel open time decreased with increasing tacrine concentration in a voltage-dependent manner, strongly suggesting that tacrine acts as an open-channel blocker. Second, tacrine produced a new class of closings whose duration increased with increasing tacrine concentration. Concentration dependence of closed-times is not predicted by sequential models of channel block, suggesting that tacrine blocks the nAChR by an unusual mechanism. To probe tacrine's mechanism of action we fitted a series of kinetic models to our data using maximum likelihood techniques. Models incorporating two tacrine binding sites in the open receptor channel gave dramatically improved fits to our data compared with the classic sequential model, which contains one site. Improved fits relative to the sequential model were also obtained with schemes incorporating a binding site in the closed channel, but only if it is assumed that the channel cannot gate with tacrine bound. Overall, the best description of our data was obtained with a model that combined two binding sites in the open channel with a single site in the closed state of the receptor. PMID:12198092

  2. Characterization of inhibitory anti-insulin-like growth factor receptor antibodies with different epitope specificity and ligand-blocking properties: implications for mechanism of action in vivo.

    PubMed

    Doern, Adam; Cao, Xianjun; Sereno, Arlene; Reyes, Christopher L; Altshuler, Angelina; Huang, Flora; Hession, Cathy; Flavier, Albert; Favis, Michael; Tran, Hon; Ailor, Eric; Levesque, Melissa; Murphy, Tracey; Berquist, Lisa; Tamraz, Susan; Snipas, Tracey; Garber, Ellen; Shestowsky, William S; Rennard, Rachel; Graff, Christilyn P; Wu, Xiufeng; Snyder, William; Cole, Lindsay; Gregson, David; Shields, Michael; Ho, Steffan N; Reff, Mitchell E; Glaser, Scott M; Dong, Jianying; Demarest, Stephen J; Hariharan, Kandasamy

    2009-04-10

    Therapeutic antibodies directed against the type 1 insulin-like growth factor receptor (IGF-1R) have recently gained significant momentum in the clinic because of preliminary data generated in human patients with cancer. These antibodies inhibit ligand-mediated activation of IGF-1R and the resulting down-stream signaling cascade. Here we generated a panel of antibodies against IGF-1R and screened them for their ability to block the binding of both IGF-1 and IGF-2 at escalating ligand concentrations (>1 microm) to investigate allosteric versus competitive blocking mechanisms. Four distinct inhibitory classes were found as follows: 1) allosteric IGF-1 blockers, 2) allosteric IGF-2 blockers, 3) allosteric IGF-1 and IGF-2 blockers, and 4) competitive IGF-1 and IGF-2 blockers. The epitopes of representative antibodies from each of these classes were mapped using a purified IGF-1R library containing 64 mutations. Most of these antibodies bound overlapping surfaces on the cysteine-rich repeat and L2 domains. One class of allosteric IGF-1 and IGF-2 blocker was identified that bound a separate epitope on the outer surface of the FnIII-1 domain. Using various biophysical techniques, we show that the dual IGF blockers inhibit ligand binding using a spectrum of mechanisms ranging from highly allosteric to purely competitive. Binding of IGF-1 or the inhibitory antibodies was associated with conformational changes in IGF-1R, linked to the ordering of dynamic or unstructured regions of the receptor. These results suggest IGF-1R uses disorder/order within its polypeptide sequence to regulate its activity. Interestingly, the activity of representative allosteric and competitive inhibitors on H322M tumor cell growth in vitro was reflective of their individual ligand-blocking properties. Many of the antibodies in the clinic likely adopt one of the inhibitory mechanisms described here, and the outcome of future clinical studies may reveal whether a particular inhibitory mechanism

  3. Mechanics of receptor-mediated endocytosis

    NASA Astrophysics Data System (ADS)

    Gao, Huajian; Shi, Wendong; Freund, Lambert B.

    2005-07-01

    Most viruses and bioparticles endocytosed by cells have characteristic sizes in the range of tens to hundreds of nanometers. The process of viruses entering and leaving animal cells is mediated by the binding interaction between ligand molecules on the viral capid and their receptor molecules on the cell membrane. How does the size of a bioparticle affect receptor-mediated endocytosis? Here, we study how a cell membrane containing diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle. It is shown that particles in the size range of tens to hundreds of nanometers can enter or exit cells via wrapping even in the absence of clathrin or caveolin coats, and an optimal particles size exists for the smallest wrapping time. This model can also be extended to include the effect of clathrin coat. The results seem to show broad agreement with experimental observations. Author contributions: H.G. and L.B.F. designed research; H.G., W.S., and L.B.F. performed research; and H.G., W.S., and L.B.F. wrote the paper.Abbreviations: CNT, carbon nanotube; SWNT, single-walled nanotube.

  4. Mechanism of action of a nanomolar potent, allosteric antagonist of the thyroid-stimulating hormone receptor

    PubMed Central

    van Koppen, Chris J; de Gooyer, Marcel E; Karstens, Willem-Jan; Plate, Ralf; Conti, Paolo GM; van Achterberg, Tanja AE; van Amstel, Monique GA; Brands, Jolanda HGM; Wat, Jesse; Berg, Rob JW; Lane, J Robert D; Miltenburg, Andre MM; Timmers, C Marco

    2012-01-01

    BACKGROUND AND PURPOSE Graves' disease (GD) is an autoimmune disease in which the thyroid is overactive, producing excessive amounts of thyroid hormones, caused by thyroid-stimulating hormone (TSH) receptor-stimulating immunoglobulins (TSIs). Many GD patients also suffer from thyroid eye disease (Graves' ophthalmopathy or GO), as TSIs also activate TSH receptors in orbital tissue. We recently developed low molecular weight (LMW) TSH receptor antagonists as a novel therapeutic strategy for the treatment of GD and GO. Here, we determined the molecular pharmacology of a prototypic, nanomolar potent LMW TSH receptor antagonist, Org 274179-0. EXPERIMENTAL APPROACH Using CHO cells heterogeneously expressing human TSH receptors and rat FRTL-5 cells endogenously expressing rat TSH receptors, we determined the potency and efficacy of Org 274179-0 at antagonizing TSH- and TSI-induced TSH receptor signalling and its cross-reactivity at related follicle-stimulating hormone and luteinizing hormone receptors. We analysed the allosteric mode of interaction of Org 274179-0 and determined whether it is an inverse agonist at five naturally occurring, constitutively active TSH receptor mutants. KEY RESULTS Nanomolar concentrations of Org 274179-0 completely inhibited TSH (and TSI)-mediated TSH receptor activation with little effect on the potency of TSH, in accordance with an allosteric mechanism of action. Conversely, increasing levels of TSH receptor stimulation only marginally reduced the antagonist potency of Org 274179-0. Org 274179-0 fully blocked the increased basal activity of all the constitutively active TSH receptor mutants tested with nanomolar potencies. CONCLUSIONS AND IMPLICATIONS Nanomolar potent TSH receptor antagonists like Org 274179-0 have therapeutic potential for the treatment of GD and GO. PMID:22014107

  5. Mechanically Stacked Dual-Junction and Triple-Junction III-V/Si-IBC Cells with Efficiencies Exceeding 31.5% and 35.4%: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnabel, Manuel; Tamboli, Adele C; Warren, Emily L

    Despite steady advancements in the efficiency of crystalline Silicon (c-Si) photovoltaics (PV) within the last decades, the theoretical efficiency limit of 29.4 percent depicts an insurmountable barrier for silicon-based single-junction solar cells. Combining the Si cell with a second absorber material on top in a dual junction tandem or triple junction solar cell is an attractive option to surpass this limit significantly. We demonstrate a mechanically stacked GaInP/Si dual-junction cell with an in-house measured efficiency of 31.5 percent and a GaInP/GaAs/Si triple-junction cell with a certified efficiency of 35.4 percent.

  6. Downregulation of adenosine and adenosine 1 receptor contributes to neuropathic pain in resiniferatoxin neuropathy.

    PubMed

    Kan, Hung-Wei; Chang, Chin-Hong; Lin, Chih-Lung; Lee, Yi-Chen; Hsieh, Sung-Tsang; Hsieh, Yu-Lin

    2018-04-16

    The neurochemical effects of adenosine signaling in small-fiber neuropathy leading to neuropathic pain are yet to be explored in a direct manner. This study examined this system at the level of ligand (via the ectonucleotidase activity of prostatic acid phosphatase, PAP) and adenosine A1 receptors (A1Rs) in resiniferatoxin (RTX) neuropathy, a peripheral neurodegenerative disorder which specifically affects nociceptive nerves expressing transient receptor potential vanilloid type 1 (TRPV1). We conducted immunohistochemistry on dorsal root ganglion neurons (DRG), high-performance liquid chromatography (HPLC) for functional assays, and pharmacological interventions to alter PAP and A1Rs in mice with RTX neuropathy. In DRG of RTX neuropathy, PAP(+) neurons were reduced compared with vehicle-treated mice (P = 0.002) . Functionally, PAP ectonucleotidase activity was consequently reduced (i.e., the content of adenosine in DRG, P = 0.012). PAP(+) neuronal density was correlated with the degree of mechanical allodynia, which was reversed by intrathecal lumbar puncture (i.t.) injection of recombinant PAP with a dose-dependent effect. Furthermore, A1Rs were downregulated (P = 0.002), and this downregulation was colocalized with the TRPV1 receptor (31.0% ± 2.8%). Mechanical allodynia was attenuated in a dose-dependent response by i.t. injection of the A1R ligand, adenosine; however, no analgesia was evident when an exogenous adenosine was blocked by A1R antagonist. This study demonstrated dual mechanisms of neuropathic pain in TRPV1-induced neuropathy, involving a reduced adenosine system at both the ligand (adenosine) and receptor (A1Rs) levels.

  7. Kainate receptor pore‐forming and auxiliary subunits regulate channel block by a novel mechanism

    PubMed Central

    Brown, Patricia M. G. E.; Aurousseau, Mark R. P.; Musgaard, Maria; Biggin, Philip C.

    2016-01-01

    Key points Kainate receptor heteromerization and auxiliary subunits, Neto1 and Neto2, attenuate polyamine ion‐channel block by facilitating blocker permeation.Relief of polyamine block in GluK2/GluK5 heteromers results from a key proline residue that produces architectural changes in the channel pore α‐helical region.Auxiliary subunits exert an additive effect to heteromerization, and thus relief of polyamine block is due to a different mechanism.Our findings have broad implications for work on polyamine block of other cation‐selective ion channels. Abstract Channel block and permeation by cytoplasmic polyamines is a common feature of many cation‐selective ion channels. Although the channel block mechanism has been studied extensively, polyamine permeation has been considered less significant as it occurs at extreme positive membrane potentials. Here, we show that kainate receptor (KAR) heteromerization and association with auxiliary proteins, Neto1 and Neto2, attenuate polyamine block by enhancing blocker permeation. Consequently, polyamine permeation and unblock occur at more negative and physiologically relevant membrane potentials. In GluK2/GluK5 heteromers, enhanced permeation is due to a single proline residue in GluK5 that alters the dynamics of the α‐helical region of the selectivity filter. The effect of auxiliary proteins is additive, and therefore the structural basis of polyamine permeation and unblock is through a different mechanism. As native receptors are thought to assemble as heteromers in complex with auxiliary proteins, our data identify an unappreciated impact of polyamine permeation in shaping the signalling properties of neuronal KARs and point to a structural mechanism that may be shared amongst other cation‐selective ion channels. PMID:26682513

  8. Study on mechanism of amplitude fluctuation of dual-frequency beat in microchip Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Tan, Yidong; Zhang, Shulian; Sun, Liqun

    2017-01-01

    In the laser heterodyne interferometry based on the microchip Nd:YAG dual-frequency laser, the amplitude of the beat note periodically fluctuates in time domain, which leads to the instability of the measurement. On the frequency spectrums of the two mono-frequency components of the laser and their beat note, several weak sideband signals are observed on both sides of the beat note. It is proved that the sideband frequencies are associated with the relaxation oscillation frequencies of the laser. The mechanism for the relaxation oscillations inducing the occurrence of the sideband signals is theoretically analyzed, and the quantitative relationship between the intensity ratio of the beat note to the sideband signal and the level of the amplitude fluctuation is simulated with the derived mathematical model. The results demonstrate that the periodical amplitude fluctuation of the beat note is actually induced by the relaxation oscillation. And the level of the amplitude fluctuation is lower than 10% when the intensity ratio is greater than 32 dB. These conclusions are beneficial to reduce the amplitude fluctuation of the microchip Nd:YAG dual-frequency laser and improve the stability of the heterodyne interferometry.

  9. Mechanical stress activates NMDA receptors in the absence of agonists.

    PubMed

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K; Sachs, Frederick; Hua, Susan Z

    2017-01-03

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca 2+ entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca 2+ influx. Extracellular Mg 2+ at 2 mM did not significantly affect the shear induced Ca 2+ influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI.

  10. Novel Mechanism for Regulation of Epidermal Growth Factor Receptor Endocytosis Revealed by Protein Kinase A Inhibition

    PubMed Central

    Salazar, Gloria; González, Alfonso

    2002-01-01

    Current models put forward that the epidermal growth factor receptor (EGFR) is efficiently internalized via clathrin-coated pits only in response to ligand-induced activation of its intrinsic tyrosine kinase and is subsequently directed into a lysosomal-proteasomal degradation pathway by mechanisms that include receptor tyrosine phosphorylation and ubiquitylation. Herein, we report a novel mechanism of EGFR internalization that does not require ligand binding, receptor kinase activity, or ubiquitylation and does not direct the receptor into a degradative pathway. Inhibition of basal protein kinase A (PKA) activity by H89 and the cell-permeable substrate peptide Myr-PKI induced internalization of 40–60% unoccupied, inactive EGFR, and its accumulation into early endosomes without affecting endocytosis of transferrin and μ-opioid receptors. This effect was abrogated by interfering with clathrin function. Thus, the predominant distribution of inactive EGFR at the plasma membrane is not simply by default but involves a PKA-dependent restrictive condition resulting in receptor avoidance of endocytosis until it is stimulated by ligand. Furthermore, PKA inhibition may contribute to ligand-induced EGFR endocytosis because epidermal growth factor inhibited 26% of PKA basal activity. On the other hand, H89 did not alter ligand-induced internalization of EGFR but doubled its half-time of down-regulation by retarding its segregation into degradative compartments, seemingly due to a delay in the receptor tyrosine phosphorylation and ubiquitylation. Our results reveal that PKA basal activity controls EGFR function at two levels: 1) residence time of inactive EGFR at the cell surface by a process of “endocytic evasion,” modulating the accessibility of receptors to stimuli; and 2) sorting events leading to the down-regulation pathway of ligand-activated EGFR, determining the length of its intracellular signaling. They add a new dimension to the fine-tuning of EGFR function

  11. Effect of Mas-related gene (Mrg) receptors on hyperalgesia in rats with CFA-induced inflammation via direct and indirect mechanisms.

    PubMed

    Jiang, Jianping; Wang, Dongmei; Zhou, Xiaolong; Huo, Yuping; Chen, Tingjun; Hu, Fenjuan; Quirion, Rémi; Hong, Yanguo

    2013-11-01

    Mas oncogene-related gene (Mrg) receptors are exclusively distributed in small-sized neurons in trigeminal and dorsal root ganglia (DRG). We investigated the effects of MrgC receptor activation on inflammatory hyperalgesia and its mechanisms. A selective MrgC receptor agonist, bovine adrenal medulla peptide 8-22 (BAM8-22) or melanocyte-stimulating hormone (MSH) or the μ-opioid receptor (MOR) antagonist CTAP was administered intrathecally (i.t.) in rats injected with complete Freund's adjuvant (CFA) in one hindpaw. Thermal and mechanical nociceptive responses were assessed. Neurochemicals were measured by immunocytochemistry, Western blot, ELISA and RT-PCR. CFA injection increased mRNA for MrgC receptors in lumbar DRG. BAM8-22 or MSH, given i.t., generated instant short and delayed long-lasting attenuations of CFA-induced thermal hyperalgesia, but not mechanical allodynia. These effects were associated with decreased up-regulation of neuronal NOS (nNOS), CGRP and c-Fos expression in the spinal dorsal horn and/or DRG. However, i.t. administration of CTAP blocked the induction by BAM8-22 of delayed anti-hyperalgesia and inhibition of nNOS and CGRP expression in DRG. BAM8-22 also increased mRNA for MORs and pro-opiomelanocortin, along with β-endorphin content in the lumbar spinal cord and/or DRG. MrgC receptors and nNOS were co-localized in DRG neurons. Activation of MrgC receptors suppressed up-regulation of pronociceptive mediators and consequently inhibited inflammatory pain, because of the activation of up-regulated MrgC receptors and subsequent endogenous activity at MORs. The uniquely distributed MrgC receptors could be a novel target for relieving inflammatory pain. © 2013 The British Pharmacological Society.

  12. δ-Opioid Mechanisms for ADL5747 and ADL5859 Effects in Mice: Analgesia, Locomotion, and Receptor Internalization

    PubMed Central

    Nozaki, Chihiro; Le Bourdonnec, Bertrand; Reiss, David; Windh, Rolf T.; Little, Patrick J.; Dolle, Roland E.; Gavériaux-Ruff, Claire

    2012-01-01

    N,N-diethyl-4-(5-hydroxyspiro[chromene-2,4′-piperidine]-4-yl) benzamide (ADL5859) and N,N-diethyl-3-hydroxy-4-(spiro[chromene-2,4′-piperidine]-4-yl)benzamide (ADL5747) are novel δ-opioid agonists that show good oral bioavailability and analgesic and antidepressive effects in the rat and represent potential drugs for chronic pain treatment. Here, we used genetic approaches to investigate molecular mechanisms underlying their analgesic effects in the mouse. We tested analgesic effects of ADL5859 and ADL5747 in mice by using mechanical sensitivity measures in both complete Freund's adjuvant and sciatic nerve ligation pain models. We examined their analgesic effects in δ-opioid receptor constitutive knockout (KO) mice and mice with a conditional deletion of δ-receptor in peripheral voltage-gated sodium channel (Nav)1.8-expressing neurons (cKO mice). Both ADL5859 and ADL5747, and the prototypical δ agonist 4-[(R)-[(2S,5R)-4-allyl-2,5-dimethyl-piperazin-1-yl]-(3-methoxyphenyl)methyl]-N,N-diethyl-benzamide (SNC80) as a control, significantly reduced inflammatory and neuropathic pain. The antiallodynic effects of all three δ-opioid agonists were abolished in constitutive δ-receptor KO mice and strongly diminished in δ-receptor cKO mice. We also measured two other well described effects of δ agonists, increase in locomotor activity and agonist-induced receptor internalization by using knock-in mice expressing enhanced green fluorescence protein-tagged δ receptors. In contrast to SNC80, ADL5859 and ADL5747 did not induce either hyperlocomotion or receptor internalization in vivo. In conclusion, both ADL5859 and ADL5747 showed efficient pain-reducing properties in the two models of chronic pain. Their effects were mediated by δ-opioid receptors, with a main contribution of receptors expressed on peripheral Nav1.8-positive neurons. The lack of in vivo receptor internalization and locomotor activation, typically induced by SNC80, suggests agonist-biased activity

  13. Structural studies of the natriuretic peptide receptor: a novel hormone-induced rotation mechanism for transmembrane signal transduction.

    PubMed

    Misono, Kunio S; Ogawa, Haruo; Qiu, Yue; Ogata, Craig M

    2005-06-01

    The atrial natriuretic peptide (ANP) receptor is a single-span transmembrane receptor that is coupled to its intrinsic intracellular guanylate cyclase (GCase) catalytic activity. To investigate the mechanisms of hormone binding and signal transduction, we have expressed the extracellular hormone-binding domain of the ANP receptor (ANPR) and characterized its structure and function. The disulfide-bond structure, state of glycosylation, binding-site residues, chloride-dependence of ANP binding, dimerization, and binding stoichiometry have been determined. More recently, the crystal structures of both the apoANPR dimer and ANP-bound complex have been determined. The structural comparison between the two has shown that, upon ANP binding, two ANPR molecules in the dimer undergo an inter-molecular twist with little intra-molecular conformational change. This motion produces a Ferris wheel-like translocation of two juxtamembrane domains with essentially no change in the inter-domain distance. This movement alters the relative orientation of the two domains equivalent to counter-clockwise rotation of each by 24 degrees . These results suggest that transmembrane signaling by the ANP receptor is mediated by a novel hormone-induced rotation mechanism.

  14. Unraveling the mechanisms underlying the rapid vascular effects of steroids: sorting out the receptors and the pathways.

    PubMed

    Feldman, Ross D; Gros, Robert

    2011-07-01

    Aldosterone, oestrogens and other vasoactive steroids are important physiological and pathophysiological regulators of cardiovascular and metabolic function. The traditional view of the cardiovascular actions of these vasoactive steroids has focused on their roles as regulators of transcription via activation of their 'classical' receptors [mineralocorticoid receptors (MR) and oestrogen receptors (ER)]. However, based on a series of observations going back more than half a century, scientists have speculated that a range of steroids, including oestrogen and aldosterone, might have effects on regulation of smooth muscle contractility, cell growth and differentiation that are too rapid to be accounted for by transcriptional regulation. Recent studies performed in our laboratories (and those of others) have begun to elucidate the mechanism of rapid steroid-mediated cardiometabolic regulation. GPR30, now designated as GPER-1 (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=22), a newly characterized 'orphan receptor', has been implicated in mediating the rapid effects of estradiol and most recently those of aldosterone. Studies to date have taught us that to understand the rapid vascular mechanisms of steroids, one must (i) know which vascular 'compartment' the steroid is acting; (ii) know which receptor the steroid hormone is activating; and (iii) not assume the receptor specificity of a steroid receptor ligand based solely on its selectivity for its traditional 'transcriptional' steroid receptor. Our newfound appreciation of the rapid effects of steroids such as aldosterone and oestrogens opens up a new vista for advancing our understanding of the biology and pathobiology of vascular regulation. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  15. Microresonator soliton dual-comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Suh, Myoung-Gyun; Yang, Qi-Fan; Yang, Ki Youl; Yi, Xu; Vahala, Kerry J.

    2016-11-01

    Measurement of optical and vibrational spectra with high resolution provides a way to identify chemical species in cluttered environments and is of general importance in many fields. Dual-comb spectroscopy has emerged as a powerful approach for acquiring nearly instantaneous Raman and optical spectra with unprecedented resolution. Spectra are generated directly in the electrical domain, without the need for bulky mechanical spectrometers. We demonstrate a miniature soliton-based dual-comb system that can potentially transfer the approach to a chip platform. These devices achieve high-coherence pulsed mode locking. They also feature broad, reproducible spectral envelopes, an essential feature for dual-comb spectroscopy. Our work shows the potential for integrated spectroscopy with high signal-to-noise ratios and fast acquisition rates.

  16. Receptor-Targeted, Magneto-Mechanical Stimulation of Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    Hu, Bin; El Haj, Alicia J; Dobson, Jon

    2013-01-01

    Mechanical cues are employed to promote stem cell differentiation and functional tissue formation in tissue engineering and regenerative medicine. We have developed a Magnetic Force Bioreactor (MFB) that delivers highly targeted local forces to cells at a pico-newton level, utilizing magnetic micro- and nano-particles to target cell surface receptors. In this study, we investigated the effects of magnetically targeting and actuating specific two mechanical-sensitive cell membrane receptors—platelet-derived growth factor receptor α (PDGFRα) and integrin ανβ3. It was found that a higher mineral-to-matrix ratio was obtained after three weeks of magneto-mechanical stimulation coupled with osteogenic medium culture by initially targeting PDGFRα compared with targeting integrin ανβ3 and non-treated controls. Moreover, different initiation sites caused a differentiated response profile when using a 2-day-lagged magneto-mechanical stimulation over culture periods of 7 and 12 days). However, both resulted in statistically higher osteogenic marker genes expression compared with immediate magneto-mechanical stimulation. These results provide insights into important parameters for designing appropriate protocols for ex vivo induced bone formation via magneto-mechanical actuation. PMID:24065106

  17. Prediction of Continuous Cooling Transformation Diagrams for Dual-Phase Steels from the Intercritical Region

    NASA Astrophysics Data System (ADS)

    Colla, V.; Desanctis, M.; Dimatteo, A.; Lovicu, G.; Valentini, R.

    2011-09-01

    The purpose of the present work is the implementation and validation of a model able to predict the microstructure changes and the mechanical properties in the modern high-strength dual-phase steels after the continuous annealing process line (CAPL) and galvanizing (Galv) process. Experimental continuous cooling transformation (CCT) diagrams for 13 differently alloying dual-phase steels were measured by dilatometry from the intercritical range and were used to tune the parameters of the microstructural prediction module of the model. Mechanical properties and microstructural features were measured for more than 400 dual-phase steels simulating the CAPL and Galv industrial process, and the results were used to construct the mechanical model that predicts mechanical properties from microstructural features, chemistry, and process parameters. The model was validated and proved its efficiency in reproducing the transformation kinetic and mechanical properties of dual-phase steels produced by typical industrial process. Although it is limited to the dual-phase grades and chemical compositions explored, this model will constitute a useful tool for the steel industry.

  18. Dopamine D2-receptor blockade enhances decoding of prefrontal signals in humans.

    PubMed

    Kahnt, Thorsten; Weber, Susanna C; Haker, Helene; Robbins, Trevor W; Tobler, Philippe N

    2015-03-04

    The prefrontal cortex houses representations critical for ongoing and future behavior expressed in the form of patterns of neural activity. Dopamine has long been suggested to play a key role in the integrity of such representations, with D2-receptor activation rendering them flexible but weak. However, it is currently unknown whether and how D2-receptor activation affects prefrontal representations in humans. In the current study, we use dopamine receptor-specific pharmacology and multivoxel pattern-based functional magnetic resonance imaging to test the hypothesis that blocking D2-receptor activation enhances prefrontal representations. Human subjects performed a simple reward prediction task after double-blind and placebo controlled administration of the D2-receptor antagonist amisulpride. Using a whole-brain searchlight decoding approach we show that D2-receptor blockade enhances decoding of reward signals in the medial orbitofrontal cortex. Examination of activity patterns suggests that amisulpride increases the separation of activity patterns related to reward versus no reward. Moreover, consistent with the cortical distribution of D2 receptors, post hoc analyses showed enhanced decoding of motor signals in motor cortex, but not of visual signals in visual cortex. These results suggest that D2-receptor blockade enhances content-specific representations in frontal cortex, presumably by a dopamine-mediated increase in pattern separation. These findings are in line with a dual-state model of prefrontal dopamine, and provide new insights into the potential mechanism of action of dopaminergic drugs. Copyright © 2015 the authors 0270-6474/15/354104-08$15.00/0.

  19. Mechanical stress-induced interleukin-1beta expression through adenosine triphosphate/P2X7 receptor activation in human periodontal ligament cells.

    PubMed

    Kanjanamekanant, K; Luckprom, P; Pavasant, P

    2013-04-01

    Mechanical stress is an important factor in maintaining homeostasis of the periodontium. Interleukin-1beta (IL-1β) and adenosine triphosphate (ATP) are considered potent inflammatory mediators. In macrophages, ATP-activated P2X7 receptor is involved in IL-1β processing and release. Our previous works demonstrated mechanical stress-induced expression of osteopontin and RANKL through the ATP/P2Y1 receptor in human periodontal ligament (HPDL) cells. This study was designed to examine the effect of mechanical stress on IL-1β expression in HPDL cells, as well as the mechanism and involvement of ATP and the P2 purinergic receptor. Cultured HPDL cells were treated with continuous compressive loading. IL-1β expression was analyzed at both mRNA and protein levels, using RT-PCR and ELISA, respectively. Cell viability was examined using the MTT assay. ATP was also used to stimulate HPDL cells. Inhibitors, antagonists and the small interfering RNA (siRNA) technique were used to investigate the role of ATP and the specific P2 subtypes responsible for IL-1β induction along with the intracellular mechanism. Mechanical stress could up-regulate IL-1β expression through the release of ATP in HPDL cells. ATP alone was also capable of increasing IL-1β expression. The induction of IL-1β was markedly inhibited by inhibitors and by siRNA targeting the P2X7 receptor. ATP-stimulated IL-1β expression was also diminished by intracellular calcium inhibitors. Our work clearly indicates the capability of HPDL cells to respond directly to mechanical stimulation. The results signified the important roles of ATP/P2 purinergic receptors, as well as intracellular calcium signaling, in mechanical stress-induced inflammation via up-regulation of the proinflammatory cytokine, IL-1β, in HPDL cells. © 2012 John Wiley & Sons A/S.

  20. Calcitonin and Amylin Receptor Peptide Interaction Mechanisms: INSIGHTS INTO PEPTIDE-BINDING MODES AND ALLOSTERIC MODULATION OF THE CALCITONIN RECEPTOR BY RECEPTOR ACTIVITY-MODIFYING PROTEINS.

    PubMed

    Lee, Sang-Min; Hay, Debbie L; Pioszak, Augen A

    2016-04-15

    Receptor activity-modifying proteins (RAMP1-3) determine the selectivity of the class B G protein-coupled calcitonin receptor (CTR) and the CTR-like receptor (CLR) for calcitonin (CT), amylin (Amy), calcitonin gene-related peptide (CGRP), and adrenomedullin (AM) peptides. RAMP1/2 alter CLR selectivity for CGRP/AM in part by RAMP1 Trp-84 or RAMP2 Glu-101 contacting the distinct CGRP/AM C-terminal residues. It is unclear whether RAMPs use a similar mechanism to modulate CTR affinity for CT and Amy, analogs of which are therapeutics for bone disorders and diabetes, respectively. Here, we reproduced the peptide selectivity of intact CTR, AMY1 (CTR·RAMP1), and AMY2 (CTR·RAMP2) receptors using purified CTR extracellular domain (ECD) and tethered RAMP1- and RAMP2-CTR ECD fusion proteins and antagonist peptides. All three proteins bound salmon calcitonin (sCT). Tethering RAMPs to CTR enhanced binding of rAmy, CGRP, and the AMY antagonist AC413. Peptide alanine-scanning mutagenesis and modeling of receptor-bound sCT and AC413 supported a shared non-helical CGRP-like conformation for their TN(T/V)G motif prior to the C terminus. After this motif, the peptides diverged; the sCT C-terminal Pro was crucial for receptor binding, whereas the AC413/rAmy C-terminal Tyr had little or no influence on binding. Accordingly, mutant RAMP1 W84A- and RAMP2 E101A-CTR ECD retained AC413/rAmy binding. ECD binding and cell-based signaling assays with antagonist sCT/AC413/rAmy variants with C-terminal residue swaps indicated that the C-terminal sCT/rAmy residue identity affects affinity more than selectivity. rAmy(8-37) Y37P exhibited enhanced antagonism of AMY1 while retaining selectivity. These results reveal unexpected differences in how RAMPs determine CTR and CLR peptide selectivity and support the hypothesis that RAMPs allosterically modulate CTR peptide affinity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Multi-scale invertigation of the relationship between the microstructure and mechanical properties in dual phase steels

    NASA Astrophysics Data System (ADS)

    Zhang, Fan

    Dual phase steel alloys belong to the first generation of advanced high strength steels that are widely used in the automotive industry to form body structure and closure panels of vehicles. A deeper understanding of the microstructural features, such as phase orientation and morphology are needed in order to establish their effect on the mechanical performance and to design a material with optimized attributes. In this work, our goal is to establish what kind of relationship exist between the mechanical properties and the microstructural representation of dual phase steels obtained from experimental observations. Microstructure in different specimens are characterized with advanced experimental techniques as optical microscopy, scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction pattern, scanning probe microscopy, and nanoindentation. Nanoindentation, Vickers hardness and tensile testing are conducted to reveal a multi-scale mechanical performance on original material and also specimens under a variety combinations of temperatures, cooling rates, and rolling conditions. To quantify the single phase properties in each sample, an inverse method is adopted using experimental nanoindentation load-depth curves to obtain tensile stress-strain curves for each phase, and the inverse results were verified with the true stress-strain curves from tensile tests. This work also provides the insight on spatial phase distribution of different phases through a 2-point correlation statistical methodology and relate to material strength and formability. The microstructure information is correlated with the results of mechanical tests. The broken surfaces from tensile testing are analyzed to discover the fracture mechanism in relation to martensite morphology and distribuion. Viscoplastic self-consistent fast Fourier Transformation simulations is also used to compute efficiently the local and the homogenized viscoplastic response of the

  2. Effects of (-)-OSU6162 and ACR16 on motor activity in rats, indicating a unique mechanism of dopaminergic stabilization.

    PubMed

    Rung, Johan P; Rung, Emilia; Helgeson, Lisa; Johansson, Anette M; Svensson, Kjell; Carlsson, Arvid; Carlsson, Maria L

    2008-06-01

    Dopaminergic stabilizers can be defined as drugs that stimulate or inhibit dopaminergic signalling depending on the dopaminergic tone. (-)-OSU6162 and ACR16 appear to possess such a profile. They have been proposed to act as partial dopamine receptor agonists or as antagonists with preferential action on dopaminergic autoreceptors. Previous studies have shown either stimulation or inhibition of behaviour in response to (-)-OSU6162 and ACR16, which has been suggested to reflect their dual effects on dopaminergic signalling. The aims of the present work are to (1) examine the relation between behavioural response to these drugs and activity baseline, and (2) test the suggested mechanisms of action by means of close comparisons with the known partial D2-receptor agonists (-)-3-PPP and aripiprazole, and the D2 autoreceptor preferring antagonist amisulpride with respect to effects on behaviour. From the results of these experiments it can be concluded that: (1) The direction of the response to (-)-OSU6162 and ACR16 is dependent on activity baseline, which in turn, under physiological conditions, is determined primarily by test arena size of and degree of habituation to the environment. (2) The effects of (-)-OSU6162 and ACR16 cannot be explained on the basis of either partial dopamine receptor agonism or preferential dopamine autoreceptor antagonism. Nevertheless, the current data suggest at least two different D2-receptor-associated targets which mediate opposite effects on activity. This result fits in with a mechanism proposed from a recent in vitro study, according to which (-)-OSU6162 has a dual action on dopamine D2 receptors, (a) an allosteric effect causing an enhanced response to dopamine, and (b) the previously proposed orthosteric effect antagonizing the action of dopamine.

  3. Use of CRISPR/Cas9-engineered INS-1 pancreatic β cells to define the pharmacology of dual GIPR/GLP-1R agonists.

    PubMed

    Naylor, Jacqueline; Suckow, Arthur T; Seth, Asha; Baker, David J; Sermadiras, Isabelle; Ravn, Peter; Howes, Rob; Li, Jianliang; Snaith, Mike R; Coghlan, Matthew P; Hornigold, David C

    2016-09-15

    Dual-agonist molecules combining glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) activity represent an exciting therapeutic strategy for diabetes treatment. Although challenging due to shared downstream signalling pathways, determining the relative activity of dual agonists at each receptor is essential when developing potential novel therapeutics. The challenge is exacerbated in physiologically relevant cell systems expressing both receptors. To this end, either GIP receptors (GIPR) or GLP-1 receptors (GLP-1R) were ablated via RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 endonucleases in the INS-1 pancreatic β-cell line. Multiple clonal cell lines harbouring gene disruptions for each receptor were isolated and assayed for receptor activity to identify functional knockouts (KOs). cAMP production in response to GIPR or GLP-1R activation was abolished and GIP- or GLP-1-induced potentiation of glucose-stimulated insulin secretion (GSIS) was attenuated in the cognate KO cell lines. The contributions of individual receptors derived from cAMP and GSIS assays were confirmed in vivo using GLP-1R KO mice in combination with a monoclonal antibody antagonist of GIPR. We have successfully applied CRISPR/Cas9-engineered cell lines to determining selectivity and relative potency contributions of dual-agonist molecules targeting receptors with overlapping native expression profiles and downstream signalling pathways. Specifically, we have characterised molecules as biased towards GIPR or GLP-1R, or with relatively balanced potency in a physiologically relevant β-cell system. This demonstrates the broad utility of CRISPR/Cas9 when applied to native expression systems for the development of drugs that target multiple receptors, particularly where the balance of receptor activity is critical. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  4. Analgesic effects of the novel semicarbazide-sensitive amine oxidase inhibitor SZV 1287 in mouse pain models with neuropathic mechanisms: Involvement of transient receptor potential vanilloid 1 and ankyrin 1 receptors.

    PubMed

    Horváth, Ádám; Tékus, Valéria; Bencze, Noémi; Szentes, Nikolett; Scheich, Bálint; Bölcskei, Kata; Szőke, Éva; Mócsai, Attila; Tóth-Sarudy, Éva; Mátyus, Péter; Pintér, Erika; Helyes, Zsuzsanna

    2018-05-01

    Semicarbazide-sensitive amine oxidase (SSAO) produces tissue irritants by deamination of primary amines, which activate transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors expressed predominantly on nociceptors. Since there are no data about its functions in pain, we studied the effects and mechanisms of action of our novel SSAO inhibitor and dual TRPA1/TRPV1 antagonist multi-target drug SZV 1287 in different pain models. Acute chemonociception was induced by TRPV1 and TRPA1 activation (resiniferatoxin and formalin, respectively), chronic arthritis by K/BxN serum transfer, traumatic mononeuropathy by sciatic nerve ligation. SZV 1287 (20 mg/kg i.p.) was investigated in C57BL/6J wildtype (WT), TRPA1- (TRPA1 -/- ) and TRPV1-deficient (TRPV1 -/- ) mice. Paw mechanonociception was measured by aesthesiometry, thermonociception by hot plate, nocifensive behavior by licking duration, volume by plethysmometry, myeloperoxidase activity by luminescence and plasma extravasation by fluorescence imaging, glia activation in pain-related brain regions by immunohistochemistry. SZV 1287 significantly inhibited both TRPA1 and TRPV1 activation-induced acute chemonociception and hyperalgesia. In K/BxN arthritis, daily SZV 1287 injections significantly decreased hyperalgesia, L4-L6 spinal dorsal horn microgliosis, edema and myeloperoxidase activity. SZV 1287-evoked antihyperalgesic and anti-edema effects were absent in TRPV1 -/- , and remarkably reduced in TRPA1 -/- mice. In contrast, myeloperoxidase-inhibitory effect was absent in TRPA1 -/-, but not in TRPV1 -/- animals. Acute SZV 1287 administration resulted in approximately 50% significant reduction of neuropathic hyperalgesia 7 days after nerve ligation, which was not observed in either TRPA1 -/- or TRPV1 -/- mice. SZV 1287 inhibits chronic inflammatory and neuropathic pain via TRPV1 and TRPA1/TRPV1 activation, respectively, highlighting its drug developmental potential. Copyright © 2018 Elsevier

  5. First implementation of burrowing motions in dual-reciprocating drilling using an integrated actuation mechanism

    NASA Astrophysics Data System (ADS)

    Pitcher, Craig; Gao, Yang

    2017-03-01

    The dual-reciprocating drill (DRD) is a biologically-inspired low-mass alternative to traditional drilling techniques, using backwards-facing teethed halves to grip the surrounding substrate, generating a traction force that reduces the required overhead penetration force. Previous experiments using a proof-of-concept test bench have provided evidence as to the significant role of sideways movements and lateral forces in improving drilling performance. The system is also progressing to a first system prototype concept, in which an actuation mechanism is integrated within the drill heads. To experimentally determine the effect of lateral motions, a new internal actuation mechanism was developed to allow the inclusion of controlled sideways movements, resulting in the creation of the circular and diagonal burrowing motions. This paper presents an investigation into the performance of the reciprocation and burrowing motions by testing them in a planetary regolith simulant. Analysis of force sensor measurements has shown a relationship between the penetration and traction forces and the internal friction of the mechanism and depth achieved. These tests have also experimentally demonstrated the benefit of lateral motions in drilling performance, with both the burrowing mechanisms and drilling tests performed at an angle able to penetrate further than traditional vertical reciprocation, leading to the proposition of new burrowing and diagonal drilling mechanics. From this, a new fully integrated system prototype can be developed which incorporates lateral motions that can optimise the drilling performance.

  6. A Lever Coupling Mechanism in Dual-Mass Micro-Gyroscopes for Improving the Shock Resistance along the Driving Direction.

    PubMed

    Gao, Yang; Li, Hongsheng; Huang, Libin; Sun, Hui

    2017-04-30

    This paper presents the design and application of a lever coupling mechanism to improve the shock resistance of a dual-mass silicon micro-gyroscope with drive mode coupled along the driving direction without sacrificing the mechanical sensitivity. Firstly, the mechanical sensitivity and the shock response of the micro-gyroscope are theoretically analyzed. In the mechanical design, a novel lever coupling mechanism is proposed to change the modal order and to improve the frequency separation. The micro-gyroscope with the lever coupling mechanism optimizes the drive mode order, increasing the in-phase mode frequency to be much larger than the anti-phase one. Shock analysis results show that the micro-gyroscope structure with the designed lever coupling mechanism can notably reduce the magnitudes of the shock response and cut down the stress produced in the shock process compared with the traditional elastic coupled one. Simulations reveal that the shock resistance along the drive direction is greatly increased. Consequently, the lever coupling mechanism can change the gyroscope's modal order and improve the frequency separation by structurally offering a higher stiffness difference ratio. The shock resistance along the driving direction is tremendously enhanced without loss of the mechanical sensitivity.

  7. A Lever Coupling Mechanism in Dual-Mass Micro-Gyroscopes for Improving the Shock Resistance along the Driving Direction

    PubMed Central

    Gao, Yang; Li, Hongsheng; Huang, Libin; Sun, Hui

    2017-01-01

    This paper presents the design and application of a lever coupling mechanism to improve the shock resistance of a dual-mass silicon micro-gyroscope with drive mode coupled along the driving direction without sacrificing the mechanical sensitivity. Firstly, the mechanical sensitivity and the shock response of the micro-gyroscope are theoretically analyzed. In the mechanical design, a novel lever coupling mechanism is proposed to change the modal order and to improve the frequency separation. The micro-gyroscope with the lever coupling mechanism optimizes the drive mode order, increasing the in-phase mode frequency to be much larger than the anti-phase one. Shock analysis results show that the micro-gyroscope structure with the designed lever coupling mechanism can notably reduce the magnitudes of the shock response and cut down the stress produced in the shock process compared with the traditional elastic coupled one. Simulations reveal that the shock resistance along the drive direction is greatly increased. Consequently, the lever coupling mechanism can change the gyroscope’s modal order and improve the frequency separation by structurally offering a higher stiffness difference ratio. The shock resistance along the driving direction is tremendously enhanced without loss of the mechanical sensitivity. PMID:28468288

  8. Untangling ciliary access and enrichment of two rhodopsin-like receptors using quantitative fluorescence microscopy reveals cell-specific sorting pathways.

    PubMed

    Geneva, Ivayla I; Tan, Han Yen; Calvert, Peter D

    2017-02-15

    Resolution limitations of optical systems are major obstacles for determining whether proteins are enriched within cell compartments. Here we use an approach to determine the degree of membrane protein ciliary enrichment that quantitatively accounts for the differences in sampling of the ciliary and apical membranes inherent to confocal microscopes. Theory shows that cilia will appear more than threefold brighter than the surrounding apical membrane when the densities of fluorescently labeled proteins are the same, thus providing a benchmark for ciliary enrichment. Using this benchmark, we examined the ciliary enrichment signals of two G protein-coupled receptors (GPCRs)-the somatostatin receptor 3 and rhodopsin. Remarkably, we found that the C-terminal VxPx motif, required for efficient enrichment of rhodopsin within rod photoreceptor sensory cilia, inhibited enrichment of the somatostatin receptor in primary cilia. Similarly, VxPx inhibited primary cilium enrichment of a chimera of rhodopsin and somatostatin receptor 3, where the dual Ax(S/A)xQ ciliary targeting motifs within the third intracellular loop of the somatostatin receptor replaced the third intracellular loop of rhodopsin. Rhodopsin was depleted from primary cilia but gained access, without being enriched, with the dual Ax(S/A)xQ motifs. Ciliary enrichment of these GPCRs thus operates via distinct mechanisms in different cells. © 2017 Geneva et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Mechanical design of SST-GATE, a dual-mirror telescope for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dournaux, Jean-Laurent; Huet, Jean-Michel; Amans, Jean-Philippe; Dumas, Delphine; Laporte, Philippe; Sol, Hélène; Blake, Simon

    2014-07-01

    The Cherenkov Telescope Array (CTA) project aims to create the next generation Very High Energy (VHE) gamma-ray telescope array. It will be devoted to the observation of gamma rays over a wide band of energy, from a few tens of GeV to more than 100 TeV. Two sites are foreseen to view the whole sky where about 100 telescopes, composed of three different classes, related to the specific energy region to be investigated, will be installed. Among these, the Small Size class of Telescopes, SSTs, are devoted to the highest energy region, to beyond 100 TeV. Due to the large number of SSTs, their unit cost is an important parameter. At the Observatoire de Paris, we have designed a prototype of a Small Size Telescope named SST-GATE, based on the dual-mirror Schwarzschild-Couder optical formula, which has never before been implemented in the design of a telescope. Over the last two years, we developed a mechanical design for SST-GATE from the optical and preliminary mechanical designs made by the University of Durham. The integration of this telescope is currently in progress. Since the early stages of mechanical design of SST-GATE, finite element method has been used employing shape and topology optimization techniques to help design several elements of the telescope. This allowed optimization of the mechanical stiffness/mass ratio, leading to a lightweight and less expensive mechanical structure. These techniques and the resulting mechanical design are detailed in this paper. We will also describe the finite element analyses carried out to calculate the mechanical deformations and the stresses in the structure under observing and survival conditions.

  10. Modality-specific peripheral antinociceptive effects of μ-opioid agonists on heat and mechanical stimuli: Contribution of sigma-1 receptors.

    PubMed

    Montilla-García, Ángeles; Perazzoli, Gloria; Tejada, Miguel Á; González-Cano, Rafael; Sánchez-Fernández, Cristina; Cobos, Enrique J; Baeyens, José M

    2018-06-01

    Morphine induces peripherally μ-opioid-mediated antinociception to heat but not to mechanical stimulation. Peripheral sigma-1 receptors tonically inhibit μ-opioid antinociception to mechanical stimuli, but it is unknown whether they modulate μ-opioid heat antinociception. We hypothesized that sigma-1 receptors might play a role in the modality-specific peripheral antinociceptive effects of morphine and other clinically relevant μ-opioid agonists. Mechanical nociception was assessed in mice with the paw pressure test (450 g), and heat nociception with the unilateral hot plate (55 °C) test. Local peripheral (intraplantar) administration of morphine, buprenorphine or oxycodone did not induce antinociception to mechanical stimulation but had dose-dependent antinociceptive effects on heat stimuli. Local sigma-1 antagonism unmasked peripheral antinociception by μ-opioid agonists to mechanical stimuli, but did not modify their effects on heat stimulation. TRPV1+ and IB4+ cells are segregated populations of small neurons in the dorsal root ganglia (DRG) and the density of sigma-1 receptors was higher in IB4+ cells than in the rest of small nociceptive neurons. The in vivo ablation of TRPV1-expressing neurons with resiniferatoxin did not alter IB4+ neurons in the DRG, mechanical nociception, or the effects of sigma-1 antagonism on local morphine antinociception in this type of stimulus. However, it impaired the responses to heat stimuli and the effect of local morphine on heat nociception. In conclusion, peripheral opioid antinociception to mechanical stimuli is limited by sigma-1 tonic inhibitory actions, whereas peripheral opioid antinociception to heat stimuli (produced in TRPV1-expressing neurons) is not. Therefore, sigma-1 receptors contribute to the modality-specific peripheral effects of opioid analgesics. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. The changing world of G protein-coupled receptors: from monomers to dimers and receptor mosaics with allosteric receptor-receptor interactions.

    PubMed

    Fuxe, Kjell; Marcellino, Daniel; Borroto-Escuela, Dasiel Oscar; Frankowska, Malgorzata; Ferraro, Luca; Guidolin, Diego; Ciruela, Francisco; Agnati, Luigi F

    2010-10-01

    Based on indications of direct physical interactions between neuropeptide and monoamine receptors in the early 1980s, the term receptor-receptor interactions was introduced and later on the term receptor heteromerization in the early 1990s. Allosteric mechanisms allow an integrative activity to emerge either intramolecularly in G protein-coupled receptor (GPCR) monomers or intermolecularly via receptor-receptor interactions in GPCR homodimers, heterodimers, and receptor mosaics. Stable heteromers of Class A receptors may be formed that involve strong high energy arginine-phosphate electrostatic interactions. These receptor-receptor interactions markedly increase the repertoire of GPCR recognition, signaling and trafficking in which the minimal signaling unit in the GPCR homomers appears to be one receptor and one G protein. GPCR homomers and GPCR assemblies are not isolated but also directly interact with other proteins to form horizontal molecular networks at the plasma membrane.

  12. Effect of endothelin-1 and endothelin receptor blockade on the release of microparticles.

    PubMed

    Jung, Christian; Lichtenauer, Michael; Wernly, Bernhard; Franz, Marcus; Goebel, Bjoern; Rafnsson, Arnar; Figulla, Hans-Reiner; Pernow, John

    2016-08-01

    Increased levels of endothelial cell microparticles (EMP) are known to reflect endothelial dysfunction (ED). In diabetes mellitus type 2 (T2DM), the expression of endothelin (ET)-1 is increased. As treatment with an ET-1 antagonist significantly inhibited atherosclerosis in animal models, we sought to investigate whether treatment with ET-1 antagonists affects EMP levels in vitro and in vivo in patients with T2DM. In vitro study: Human umbilical vein endothelial cells (HUVEC) were stimulated with ET-1 alone and ET-1 in combination with a dual ET-A and ET-B endothelin receptor blocker. In vivo study: Patients with T2DM were randomized to treatment with the ET receptor antagonist bosentan or placebo. After 4 weeks, the patients were re-examined and blood samples were obtained. EMP counts in supernatants and plasma samples were determined using flow cytometry. In vitro study: In supernatants of ET-1-stimulated HUVECs, the increased release of EMP was reduced significantly by co-incubation with an ET-1 receptor antagonist (e.g. CD31+/CD42b-EMP decreased from 37·1% ± 2·8 to 31·5% ± 2·8 SEM, P = 0·0078). In vivo study: No changes in EMP levels in blood samples of patients with T2DM were found after 4 weeks of bosentan treatment (n = 36, P = ns). Our in vitro results suggest that ET-1 stimulates the release of EMP from HUVECs via a receptor-dependent mechanism. Co-incubation with an endothelin receptor blocker abolished ET-1-dependent EMP release. However, treatment with bosentan for 4 weeks failed to alter EMP levels in patients with T2DM. Other factors seem to have influenced EMP release in patients with T2DM independent of ET-1 receptor-mediated mechanisms. © 2016 Stichting European Society for Clinical Investigation Journal Foundation.

  13. Involvement of endothelin and ET(A) endothelin receptor in mechanical allodynia in mice given orthotopic melanoma inoculation.

    PubMed

    Fujita, Masahide; Andoh, Tsugunobu; Saiki, Ikuo; Kuraishi, Yasushi

    2008-02-01

    We investigated whether endothelin (ET) would be involved in skin cancer pain in mice. Orthotopic inoculation of B16-BL6 melanoma cells into the plantar region of the hind paw produced marked mechanical allodynia in C57BL/6 mice. Intraplantar injections of the ET(A)-receptor antagonist BQ-123 (0.3 - 3 nmol/site), but not the ET(B)-receptor antagonist BQ-788 (1 and 3 nmol/site), inhibited mechanical allodynia in mice with grown melanoma. In naive mice, an intraplantar injection of tumor extract (1 and 3 mg/site), which was prepared from the grown melanoma in the paw, produced mechanical allodynia, which was inhibited by BQ-123 and BQ-788 at doses of 3 and 10 nmol/site. An intraplantar injection of ET-1 (1 and 10 pmol/site) elicited licking behavior, which was increased in the melanoma-bearing hind paw. BQ-123 (3 and 10 nmol/site) inhibited licking induced by ET-1 (10 pmol/site). The level of mRNA of ET(A), but not ET(B), receptor, was significantly increased in the dorsal root ganglia on the inoculated side. Cultured B16-BL6 cells contained ET, and the melanoma mass increased the concentration of ET as it grew bigger. These results suggest that ET-1 and ET(A) receptor are at least partly involved in the induction of pain induced by melanoma cell inoculation.

  14. Decreases in cocaine self-administration with dual inhibition of the dopamine transporter and σ receptors.

    PubMed

    Hiranita, Takato; Soto, Paul L; Kohut, Stephen J; Kopajtic, Theresa; Cao, Jianjing; Newman, Amy H; Tanda, Gianluigi; Katz, Jonathan L

    2011-11-01

    Sigma receptor (σR) antagonists attenuate many behavioral effects of cocaine but typically not its reinforcing effects in self-administration procedures. However, the σR antagonist rimcazole and its N-propylphenyl analogs, [3-(cis-3,5-dimethyl-4-[3-phenylpropyl]-1-piperazinyl)-propyl]diphenylamine hydrochloride (SH 3-24) and 9-[3-(cis-3,5-dimethyl-4-[3-phenylpropyl]-1-piperazinyl)-propyl]carbazole hydrobromide (SH 3-28), dose-dependently decreased the maximal rates of cocaine self-administration without affecting comparable responding maintained by food reinforcement. In contrast, a variety of σR antagonists [N-phenethylpiperidine oxalate (AC927), N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine dihydrobromide (BD 1008), N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino) ethylamine dihydrobromide (BD 1047), N-[2-(3,4-dichlorophenyl) ethyl]-4-methylpiperazine dihydrochloride (BD 1063), and N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]-ethylamine monohydrochloride (NE-100)] had no effect on cocaine self-administration across the range of doses that decreased rates of food-maintained responding. Rimcazole analogs differed from selective σR antagonists in their dual affinities for σRs and the dopamine transporter (DAT) assessed with radioligand binding. Selective DAT inhibitors and σR antagonists were studied alone and in combination on cocaine self-administration to determine whether actions at both σRs and the DAT were sufficient to reproduce the effects of rimcazole analogs. Typical DAT inhibitors [2β-carbomethoxy-3β-(4-fluorophenyl)tropane (WIN 35,428), methylphenidate, and nomifensine] dose-dependently shifted the cocaine dose-effect curve leftward. Combinations of DAT inhibitor and σR antagonist doses that were behaviorally inactive alone decreased cocaine self-administration without effects on food-maintained responding. In addition, whereas the DAT inhibitors were self-administered at rates similar to those of

  15. Decreases in Cocaine Self-Administration with Dual Inhibition of the Dopamine Transporter and σ Receptors

    PubMed Central

    Hiranita, Takato; Soto, Paul L.; Kohut, Stephen J.; Kopajtic, Theresa; Cao, Jianjing; Newman, Amy H.; Tanda, Gianluigi

    2011-01-01

    Sigma receptor (σR) antagonists attenuate many behavioral effects of cocaine but typically not its reinforcing effects in self-administration procedures. However, the σR antagonist rimcazole and its N-propylphenyl analogs, [3-(cis-3,5-dimethyl-4-[3-phenylpropyl]-1-piperazinyl)-propyl]diphenylamine hydrochloride (SH 3-24) and 9-[3-(cis-3,5-dimethyl-4-[3-phenylpropyl]-1-piperazinyl)-propyl]carbazole hydrobromide (SH 3-28), dose-dependently decreased the maximal rates of cocaine self-administration without affecting comparable responding maintained by food reinforcement. In contrast, a variety of σR antagonists [N-phenethylpiperidine oxalate (AC927), N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine dihydrobromide (BD 1008), N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino) ethylamine dihydrobromide (BD 1047), N-[2-(3,4-dichlorophenyl) ethyl]-4-methylpiperazine dihydrochloride (BD 1063), and N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]-ethylamine monohydrochloride (NE-100)] had no effect on cocaine self-administration across the range of doses that decreased rates of food-maintained responding. Rimcazole analogs differed from selective σR antagonists in their dual affinities for σRs and the dopamine transporter (DAT) assessed with radioligand binding. Selective DAT inhibitors and σR antagonists were studied alone and in combination on cocaine self-administration to determine whether actions at both σRs and the DAT were sufficient to reproduce the effects of rimcazole analogs. Typical DAT inhibitors [2β-carbomethoxy-3β-(4-fluorophenyl)tropane (WIN 35,428), methylphenidate, and nomifensine] dose-dependently shifted the cocaine dose-effect curve leftward. Combinations of DAT inhibitor and σR antagonist doses that were behaviorally inactive alone decreased cocaine self-administration without effects on food-maintained responding. In addition, whereas the DAT inhibitors were self-administered at rates similar to those of

  16. Mechanical stress activates NMDA receptors in the absence of agonists

    PubMed Central

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K.; Sachs, Frederick; Hua, Susan Z.

    2017-01-01

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca2+ entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca2+ influx. Extracellular Mg2+ at 2 mM did not significantly affect the shear induced Ca2+ influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI. PMID:28045032

  17. Synthesis, biological evaluation, and computational studies of Tri- and tetracyclic nitrogen-bridgehead compounds as potent dual-acting AChE inhibitors and hH3 receptor antagonists.

    PubMed

    Darras, Fouad H; Pockes, Steffen; Huang, Guozheng; Wehle, Sarah; Strasser, Andrea; Wittmann, Hans-Joachim; Nimczick, Martin; Sotriffer, Christoph A; Decker, Michael

    2014-03-19

    Combination of AChE inhibiting and histamine H3 receptor antagonizing properties in a single molecule might show synergistic effects to improve cognitive deficits in Alzheimer's disease, since both pharmacological actions are able to enhance cholinergic neurotransmission in the cortex. However, whereas AChE inhibitors prevent hydrolysis of acetylcholine also peripherally, histamine H3 antagonists will raise acetylcholine levels mostly in the brain due to predominant occurrence of the receptor in the central nervous system. In this work, we designed and synthesized two novel classes of tri- and tetracyclic nitrogen-bridgehead compounds acting as dual AChE inhibitors and histamine H3 antagonists by combining the nitrogen-bridgehead moiety of novel AChE inhibitors with a second N-basic fragment based on the piperidinylpropoxy pharmacophore with different spacer lengths. Intensive structure-activity relationships (SARs) with regard to both biological targets led to compound 41 which showed balanced affinities as hAChE inhibitor with IC50 = 33.9 nM, and hH3R antagonism with Ki = 76.2 nM with greater than 200-fold selectivity over the other histamine receptor subtypes. Molecular docking studies were performed to explain the potent AChE inhibition of the target compounds and molecular dynamics studies to explain high affinity at the hH3R.

  18. Discovery of [(2R,5R)-5-{[(5-fluoropyridin-2-yl)oxy]methyl}-2-methylpiperidin-1-yl][5-methyl-2-(pyrimidin-2-yl)phenyl]methanone (MK-6096): a dual orexin receptor antagonist with potent sleep-promoting properties.

    PubMed

    Coleman, Paul J; Schreier, John D; Cox, Christopher D; Breslin, Michael J; Whitman, David B; Bogusky, Michael J; McGaughey, Georgia B; Bednar, Rodney A; Lemaire, Wei; Doran, Scott M; Fox, Steven V; Garson, Susan L; Gotter, Anthony L; Harrell, C Meacham; Reiss, Duane R; Cabalu, Tamara D; Cui, Donghui; Prueksaritanont, Thomayant; Stevens, Joanne; Tannenbaum, Pamela L; Ball, Richard G; Stellabott, Joyce; Young, Steven D; Hartman, George D; Winrow, Christopher J; Renger, John J

    2012-03-05

    Insomnia is a common disorder that can be comorbid with other physical and psychological illnesses. Traditional management of insomnia relies on general central nervous system (CNS) suppression using GABA modulators. Many of these agents fail to meet patient needs with respect to sleep onset, maintenance, and next-day residual effects and have issues related to tolerance, memory disturbances, and balance. Orexin neuropeptides are central regulators of wakefulness, and orexin antagonism has been identified as a novel mechanism for treating insomnia with clinical proof of concept. Herein we describe the discovery of a series of α-methylpiperidine carboxamide dual orexin 1 and orexin 2 receptor (OX(1) R/OX(2) R) antagonists (DORAs). The design of these molecules was inspired by earlier work from this laboratory in understanding preferred conformational properties for potent orexin receptor binding. Minimization of 1,3-allylic strain interactions was used as a design principle to synthesize 2,5-disubstituted piperidine carboxamides with axially oriented substituents including DORA 28. DORA 28 (MK-6096) has exceptional in vivo activity in preclinical sleep models, and has advanced into phase II clinical trials for the treatment of insomnia. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mechanism of the cardiovascular effects of the GABAA receptors of the ventral tegmental area of the rat brain.

    PubMed

    Yeganeh, Fahimeh; Ranjbar, Afsaneh; Hatam, Masoumeh; Nasimi, Ali

    2015-07-23

    The ventral tegmental area (VTA) contains GABA terminals involved in the regulation of the cardiovascular system. Previously, we demonstrated that blocking GABAA but not GABAB receptors produced a pressor response accompanied by marked bradycardia. This study was performed to find the possible mechanisms involved in these responses by blocking ganglionic nicotinic receptors, peripheral muscarinic receptors or peripheral V1 vasopressin receptors. Experiments were performed on urethane anesthetized male Wistar rats. Drugs were microinjected unilaterally into the VTA (100 nl). The average changes in mean arterial pressure (MAP) and heart rate (HR) were compared between pre- and post-treatment using paired t-test. Injection of bicuculline methiodide (BMI), a GABAA antagonist, into the VTA caused a significant increase in MAP and a decrease in HR. Administration (i.v.) of the nicotinic receptor blocker, hexamethonium, enhanced the pressor response but abolished the bradycardic response to BMI, which ruled out involvement of the sympathetic nervous system. Blockade of the peripheral muscarinic receptors by homatropine (i.v.) abolished the bradycardic effect of BMI, but had no effect on the pressor response, indicating that bradycardia was produced by the parasympathetic outflow to the heart. Both the pressor and bradycardic responses to BMI were blocked by V1 receptor antagonist (i.v.), indicating that administration of BMI in the VTA disinhibited the release of vasopressin into the circulation. In conclusion, we demonstrated that GABAergic mechanism of the VTA exerts a tonic inhibition on vasopressin release through activation of GABAA receptors. The sympathetic system is not involved in the decrease of blood pressure by GABA of the VTA. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Cannabinoids Modulate Neuronal Activity and Cancer by CB1 and CB2 Receptor-Independent Mechanisms

    PubMed Central

    Soderstrom, Ken; Soliman, Eman; Van Dross, Rukiyah

    2017-01-01

    Cannabinoids include the active constituents of Cannabis or are molecules that mimic the structure and/or function of these Cannabis-derived molecules. Cannabinoids produce many of their cellular and organ system effects by interacting with the well-characterized CB1 and CB2 receptors. However, it has become clear that not all effects of cannabinoid drugs are attributable to their interaction with CB1 and CB2 receptors. Evidence now demonstrates that cannabinoid agents produce effects by modulating activity of the entire array of cellular macromolecules targeted by other drug classes, including: other receptor types; ion channels; transporters; enzymes, and protein- and non-protein cellular structures. This review summarizes evidence for these interactions in the CNS and in cancer, and is organized according to the cellular targets involved. The CNS represents a well-studied area and cancer is emerging in terms of understanding mechanisms by which cannabinoids modulate their activity. Considering the CNS and cancer together allow identification of non-cannabinoid receptor targets that are shared and divergent in both systems. This comparative approach allows the identified targets to be compared and contrasted, suggesting potential new areas of investigation. It also provides insight into the diverse sources of efficacy employed by this interesting class of drugs. Obtaining a comprehensive understanding of the diverse mechanisms of cannabinoid action may lead to the design and development of therapeutic agents with greater efficacy and specificity for their cellular targets. PMID:29066974

  1. Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misono, K. S.; Philo, J. S.; Arakawa, T.

    2011-06-01

    Atrial natriuretic peptide (ANP) and the homologous B-type natriuretic peptide are cardiac hormones that dilate blood vessels and stimulate natriuresis and diuresis, thereby lowering blood pressure and blood volume. ANP and B-type natriuretic peptide counterbalance the actions of the renin-angiotensin-aldosterone and neurohormonal systems, and play a central role in cardiovascular regulation. These activities are mediated by natriuretic peptide receptor-A (NPRA), a single transmembrane segment, guanylyl cyclase (GC)-linked receptor that occurs as a homodimer. Here, we present an overview of the structure, possible chloride-mediated regulation and signaling mechanism of NPRA and other receptor GCs. Earlier, we determined the crystal structures ofmore » the NPRA extracellular domain with and without bound ANP. Their structural comparison has revealed a novel ANP-induced rotation mechanism occurring in the juxtamembrane region that apparently triggers transmembrane signal transduction. More recently, the crystal structures of the dimerized catalytic domain of green algae GC Cyg12 and that of cyanobacterium GC Cya2 have been reported. These structures closely resemble that of the adenylyl cyclase catalytic domain, consisting of a C1 and C2 subdomain heterodimer. Adenylyl cyclase is activated by binding of G{sub s}{alpha} to C2 and the ensuing 7{sup o} rotation of C1 around an axis parallel to the central cleft, thereby inducing the heterodimer to adopt a catalytically active conformation. We speculate that, in NPRA, the ANP-induced rotation of the juxtamembrane domains, transmitted across the transmembrane helices, may induce a similar rotation in each of the dimerized GC catalytic domains, leading to the stimulation of the GC catalytic activity.« less

  2. AT1 receptor blocker losartan protects against mechanical ventilation-induced diaphragmatic dysfunction

    PubMed Central

    Kwon, Oh Sung; Smuder, Ashley J.; Wiggs, Michael P.; Hall, Stephanie E.; Sollanek, Kurt J.; Morton, Aaron B.; Talbert, Erin E.; Toklu, Hale Z.; Tumer, Nihal

    2015-01-01

    Mechanical ventilation is a life-saving intervention for patients in respiratory failure. Unfortunately, prolonged ventilator support results in diaphragmatic atrophy and contractile dysfunction leading to diaphragm weakness, which is predicted to contribute to problems in weaning patients from the ventilator. While it is established that ventilator-induced oxidative stress is required for the development of ventilator-induced diaphragm weakness, the signaling pathway(s) that trigger oxidant production remain unknown. However, recent evidence reveals that increased plasma levels of angiotensin II (ANG II) result in oxidative stress and atrophy in limb skeletal muscles. Using a well-established animal model of mechanical ventilation, we tested the hypothesis that increased circulating levels of ANG II are required for both ventilator-induced diaphragmatic oxidative stress and diaphragm weakness. Cause and effect was determined by administering an angiotensin-converting enzyme inhibitor (enalapril) to prevent ventilator-induced increases in plasma ANG II levels, and the ANG II type 1 receptor antagonist (losartan) was provided to prevent the activation of ANG II type 1 receptors. Enalapril prevented the increase in plasma ANG II levels but did not protect against ventilator-induced diaphragmatic oxidative stress or diaphragm weakness. In contrast, losartan attenuated both ventilator-induced oxidative stress and diaphragm weakness. These findings indicate that circulating ANG II is not essential for the development of ventilator-induced diaphragm weakness but that activation of ANG II type 1 receptors appears to be a requirement for ventilator-induced diaphragm weakness. Importantly, these experiments provide the first evidence that the Food and Drug Administration-approved drug losartan may have clinical benefits to protect against ventilator-induced diaphragm weakness in humans. PMID:26359481

  3. A Superconducting Dual-Channel Photonic Switch.

    PubMed

    Srivastava, Yogesh Kumar; Manjappa, Manukumara; Cong, Longqing; Krishnamoorthy, Harish N S; Savinov, Vassili; Pitchappa, Prakash; Singh, Ranjan

    2018-06-05

    The mechanism of Cooper pair formation and its underlying physics has long occupied the investigation into high temperature (high-T c ) cuprate superconductors. One of the ways to unravel this is to observe the ultrafast response present in the charge carrier dynamics of a photoexcited specimen. This results in an interesting approach to exploit the dissipation-less dynamic features of superconductors to be utilized for designing high-performance active subwavelength photonic devices with extremely low-loss operation. Here, dual-channel, ultrafast, all-optical switching and modulation between the resistive and the superconducting quantum mechanical phase is experimentally demonstrated. The ultrafast phase switching is demonstrated via modulation of sharp Fano resonance of a high-T c yttrium barium copper oxide (YBCO) superconducting metamaterial device. Upon photoexcitation by femtosecond light pulses, the ultrasensitive cuprate superconductor undergoes dual dissociation-relaxation dynamics, with restoration of superconductivity within a cycle, and thereby establishes the existence of dual switching windows within a timescale of 80 ps. Pathways are explored to engineer the secondary dissociation channel which provides unprecedented control over the switching speed. Most importantly, the results envision new ways to accomplish low-loss, ultrafast, and ultrasensitive dual-channel switching applications that are inaccessible through conventional metallic and dielectric based metamaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A plausible mechanism of biosorption in dual symbioses by vesicular-arbuscular mycorrhizal in plants.

    PubMed

    Azmat, Rafia; Hamid, Neelofer

    2015-03-01

    Dual symbioses of vesicular-arbuscular mycorrhizal (VAM) fungi with growth of Momordica charantia were elucidated in terms of plausible mechanism of biosorption in this article. The experiment was conducted in green house and mixed inoculum of the VAM fungi was used in the three replicates. Results demonstrated that the starch contents were the main source of C for the VAM to builds their hyphae. The increased plant height and leaves surface area were explained in relation with an increase in the photosynthetic rates to produce rapid sugar contents for the survival of plants. A decreased in protein, and amino acid contents and increased proline and protease activity in VAM plants suggested that these contents were the main bio-indicators of the plants under biotic stress. The decline in protein may be due to the degradation of these contents, which later on converted into dextrose where it can easily be absorbed by for the period of symbioses. A mechanism of C chemisorption in relation with physiology and morphology of plant was discussed.

  5. Mu opioid receptor stimulation activates c-Jun N-terminal kinase 2 by distinct arrestin-dependent and independent mechanisms.

    PubMed

    Kuhar, Jamie Rose; Bedini, Andrea; Melief, Erica J; Chiu, Yen-Chen; Striegel, Heather N; Chavkin, Charles

    2015-09-01

    G protein-coupled receptor desensitization is typically mediated by receptor phosphorylation by G protein-coupled receptor kinase (GRK) and subsequent arrestin binding; morphine, however, was previously found to activate a c-Jun N-terminal kinase (JNK)-dependent, GRK/arrestin-independent pathway to produce mu opioid receptor (MOR) inactivation in spinally-mediated, acute anti-nociceptive responses [Melief et al.] [1]. In the current study, we determined that JNK2 was also required for centrally-mediated analgesic tolerance to morphine using the hotplate assay. We compared JNK activation by morphine and fentanyl in JNK1(-/-), JNK2(-/-), JNK3(-/-), and GRK3(-/-) mice and found that both compounds specifically activate JNK2 in vivo; however, fentanyl activation of JNK2 was GRK3-dependent, whereas morphine activation of JNK2 was GRK3-independent. In MOR-GFP expressing HEK293 cells, treatment with either arrestin siRNA, the Src family kinase inhibitor PP2, or the protein kinase C (PKC) inhibitor Gö6976 indicated that morphine activated JNK2 through an arrestin-independent Src- and PKC-dependent mechanism, whereas fentanyl activated JNK2 through a Src-GRK3/arrestin-2-dependent and PKC-independent mechanism. This study resolves distinct ligand-directed mechanisms of JNK activation by mu opioid agonists and understanding ligand-directed signaling at MOR may improve opioid therapeutics. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Dual Vector Spaces and Physical Singularities

    NASA Astrophysics Data System (ADS)

    Rowlands, Peter

    Though we often refer to 3-D vector space as constructed from points, there is no mechanism from within its definition for doing this. In particular, space, on its own, cannot accommodate the singularities that we call fundamental particles. This requires a commutative combination of space as we know it with another 3-D vector space, which is dual to the first (in a physical sense). The combination of the two spaces generates a nilpotent quantum mechanics/quantum field theory, which incorporates exact supersymmetry and ultimately removes the anomalies due to self-interaction. Among the many natural consequences of the dual space formalism are half-integral spin for fermions, zitterbewegung, Berry phase and a zero norm Berwald-Moor metric for fermionic states.

  7. Protein kinase A is part of a mechanism that regulates nuclear reimport of the nuclear tRNA export receptors Los1p and Msn5p.

    PubMed

    Pierce, Jacqueline B; van der Merwe, George; Mangroo, Dev

    2014-02-01

    The two main signal transduction mechanisms that allow eukaryotes to sense and respond to changes in glucose availability in the environment are the cyclic AMP (cAMP)/protein kinase A (PKA) and AMP-activated protein kinase (AMPK)/Snf1 kinase-dependent pathways. Previous studies have shown that the nuclear tRNA export process is inhibited in Saccharomyces cerevisiae deprived of glucose. However, the signal transduction pathway involved and the mechanism by which glucose availability regulates nuclear-cytoplasmic tRNA trafficking are not understood. Here, we show that inhibition of nuclear tRNA export is caused by a block in nuclear reimport of the tRNA export receptors during glucose deprivation. Cytoplasmic accumulation of the tRNA export receptors during glucose deprivation is not caused by activation of Snf1p. Evidence obtained suggests that PKA is part of the mechanism that regulates nuclear reimport of the tRNA export receptors in response to glucose availability. This mechanism does not appear to involve phosphorylation of the nuclear tRNA export receptors by PKA. The block in nuclear reimport of the tRNA export receptors appears to be caused by activation of an unidentified mechanism when PKA is turned off during glucose deprivation. Taken together, the data suggest that PKA facilitates return of the tRNA export receptors to the nucleus by inhibiting an unidentified activity that facilitates cytoplasmic accumulation of the tRNA export receptors when glucose in the environment is limiting. A PKA-independent mechanism was also found to regulate nuclear tRNA export in response to glucose availability. This mechanism, however, does not regulate nuclear reimport of the tRNA export receptors.

  8. Protein Kinase A Is Part of a Mechanism That Regulates Nuclear Reimport of the Nuclear tRNA Export Receptors Los1p and Msn5p

    PubMed Central

    Pierce, Jacqueline B.; van der Merwe, George

    2014-01-01

    The two main signal transduction mechanisms that allow eukaryotes to sense and respond to changes in glucose availability in the environment are the cyclic AMP (cAMP)/protein kinase A (PKA) and AMP-activated protein kinase (AMPK)/Snf1 kinase-dependent pathways. Previous studies have shown that the nuclear tRNA export process is inhibited in Saccharomyces cerevisiae deprived of glucose. However, the signal transduction pathway involved and the mechanism by which glucose availability regulates nuclear-cytoplasmic tRNA trafficking are not understood. Here, we show that inhibition of nuclear tRNA export is caused by a block in nuclear reimport of the tRNA export receptors during glucose deprivation. Cytoplasmic accumulation of the tRNA export receptors during glucose deprivation is not caused by activation of Snf1p. Evidence obtained suggests that PKA is part of the mechanism that regulates nuclear reimport of the tRNA export receptors in response to glucose availability. This mechanism does not appear to involve phosphorylation of the nuclear tRNA export receptors by PKA. The block in nuclear reimport of the tRNA export receptors appears to be caused by activation of an unidentified mechanism when PKA is turned off during glucose deprivation. Taken together, the data suggest that PKA facilitates return of the tRNA export receptors to the nucleus by inhibiting an unidentified activity that facilitates cytoplasmic accumulation of the tRNA export receptors when glucose in the environment is limiting. A PKA-independent mechanism was also found to regulate nuclear tRNA export in response to glucose availability. This mechanism, however, does not regulate nuclear reimport of the tRNA export receptors. PMID:24297441

  9. ACPA and JWH-133 modulate the vascular tone of superior mesenteric arteries through cannabinoid receptors, BKCa channels, and nitric oxide dependent mechanisms.

    PubMed

    López-Dyck, Evelyn; Andrade-Urzúa, Felipa; Elizalde, Alejandro; Ferrer-Villada, Tania; Dagnino-Acosta, Adan; Huerta, Miguel; Osuna-Calleros, Zyanya; Rangel-Sandoval, Cinthia; Sánchez-Pastor, Enrique

    2017-12-01

    Some cannabinoids, a family of compounds derived from Cannabis sativa (marijuana), have previously shown vasodilator effects in several studies, a feature that makes them suitable for the generation of a potential treatment for hypertension. The mechanism underlying this vasodilator effect in arteries is still controversial. In this report, we explored how the synthetic cannabinoids ACPA (CB 1 -selective agonist) and JWH-133 (CB 2 -selective agonist) regulate the vascular tone of rat superior mesenteric arteries. To screen the expression of CB 1 (Cannabinoid receptor 1) and CB 2 (Cannabinoid receptor 2) receptors in arterial rings or isolated smooth muscle cells obtained from the artery, immunocytochemistry, immunohistochemistry, and confocal microscopy were performed. In addition, the effects on vascular tone induced by the two cannabinoids were tested in isometric tension experiments in rings obtained from superior mesenteric arteries. The participation of voltage and calcium-activated potassium channel of big conductance (BK Ca ) and the role of nitric oxide (NO) release on the vascular effects induced by ACPA and JWH-133 were tested. CB 1 and CB 2 receptors were highly expressed in the rat superior mesenteric artery, in both smooth muscle and endothelium. The vasodilation effect shown by ACPA was endothelium-dependent through a mechanism involving CB 1 receptors, BK Ca channel activation, and NO release; meanwhile, the vasodilator effect of JWH-133 was induced by the activation of CB 2 receptors located in smooth muscle and by a CB 2 receptor-independent mechanism inducing NO release. CB 1 and CB 2 receptor activation in superior mesenteric artery causes vasorelaxation by mechanisms involving BK Ca channels and NO release. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. Confirmation of translatability and functionality certifies the dual endothelin1/VEGFsp receptor (DEspR) protein.

    PubMed

    Herrera, Victoria L M; Steffen, Martin; Moran, Ann Marie; Tan, Glaiza A; Pasion, Khristine A; Rivera, Keith; Pappin, Darryl J; Ruiz-Opazo, Nelson

    2016-06-14

    In contrast to rat and mouse databases, the NCBI gene database lists the human dual-endothelin1/VEGFsp receptor (DEspR, formerly Dear) as a unitary transcribed pseudogene due to a stop [TGA]-codon at codon#14 in automated DNA and RNA sequences. However, re-analysis is needed given prior single gene studies detected a tryptophan [TGG]-codon#14 by manual Sanger sequencing, demonstrated DEspR translatability and functionality, and since the demonstration of actual non-translatability through expression studies, the standard-of-excellence for pseudogene designation, has not been performed. Re-analysis must meet UNIPROT criteria for demonstration of a protein's existence at the highest (protein) level, which a priori, would override DNA- or RNA-based deductions. To dissect the nucleotide sequence discrepancy, we performed Maxam-Gilbert sequencing and reviewed 727 RNA-seq entries. To comply with the highest level multiple UNIPROT criteria for determining DEspR's existence, we performed various experiments using multiple anti-DEspR monoclonal antibodies (mAbs) targeting distinct DEspR epitopes with one spanning the contested tryptophan [TGG]-codon#14, assessing: (a) DEspR protein expression, (b) predicted full-length protein size, (c) sequence-predicted protein-specific properties beyond codon#14: receptor glycosylation and internalization, (d) protein-partner interactions, and (e) DEspR functionality via DEspR-inhibition effects. Maxam-Gilbert sequencing and some RNA-seq entries demonstrate two guanines, hence a tryptophan [TGG]-codon#14 within a compression site spanning an error-prone compression sequence motif. Western blot analysis using anti-DEspR mAbs targeting distinct DEspR epitopes detect the identical glycosylated 17.5 kDa pull-down protein. Decrease in DEspR-protein size after PNGase-F digest demonstrates post-translational glycosylation, concordant with the consensus-glycosylation site beyond codon#14. Like other small single-transmembrane proteins, mass

  11. Continuous 1052, 1064 nm dual-wavelength Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Wang, Xiaozhong; Yuan, Haiyang; Wang, Mingshan; Huang, Wencai

    2016-10-01

    Dual-wavelength lasers are usually obtained through balancing the net gain of the two oscillating lines. Competition between transitions 1052 nm, 1061 nm and 1064 nm is utilized to realize a continuous wave 1052 and 1064 nm dual-wavelength Nd:YAG laser firstly in this paper. A specially designed Fabry-Perot band-pass filter is exploited as output coupler to control the thresholds of the oscillating wavelengths. The maximum power of the dual-wavelength laser is 1.6 W and the slope efficiency is about 10%. The power instability of the output dual-wavelength laser is smaller than ±4% in half an hour. The mechanism presented in this paper may provide a new way to obtain dual-wavelength lasers.

  12. Mechanism of Activation of Enteric Nociceptive Neurons via Interaction of TLR4 and TRPV1 Receptors.

    PubMed

    Filippova, L V; Fedorova, A V; Nozdrachev, A D

    2018-03-01

    Evidence obtained by immunohistochemical double labeling and confocal laser scanning microscopy suggests that capsaicin, a ligand of the TRPV1 nociceptive vanilloid receptor, increases the number of TLR4-positive neurons in the rat colon myenteric plexus. In colitis caused by trinitrobenzene sulfonate, an increase in TRPV1 expression was more significant in both plexuses. Specific inhibitor of the TLR4 (C34) pattern-recognition receptor reduces TRPV1 expression in enteric neurons of both intact rats and rats with induced acute colitis. Thus, stimulation of nociceptive neurons by means of direct activation of their receptors of innate immunity (TLR4) is one of the possible mechanisms underlying the visceral pain in bacterial invasion and inflammatory bowel diseases.

  13. VEGF-Iron Oxide Conjugate for Dual MR and PET Imaging of Breast Cancer Angiogenesis

    DTIC Science & Technology

    2007-09-01

    with both VEGF121 and PET isotope 64Cu (t1/2 = 12.7 h) and test the dual probe in vitro. Aim 2: To test the PET and mMRI efficacy of the dual...iron oxide nanoparticles conjugated with macrocyclic chelating agent DOTA for 64Cu -labeling and cyclic RGD peptide for integrin alpha(v)beta(3...radionuclide 64Cu without loss of receptor affinity and functional activity of the protein. 64Cu -VEGF is also able to delineate small tumors that are

  14. The study on mechanism of holographic recording in photopolymer with dual monomer

    NASA Astrophysics Data System (ADS)

    Zhai, Qianli; Tao, Shiquan; Wang, Dayong

    2010-06-01

    In this paper we study the dynamics of refractive index modulation in a dual-monomer photopolymer through grating growth under different experiment stages. By using different sets of parameters for vinyl monomers (NVC) and acrylate monomers (POEA) respectively, a composite dual-monomer model, extended from the uniform post-exposure (UPE) model for single monomer photopolymer, is proposed and fitted with the experiment data very well. Further discussions indicate that the dominant contribution to the total index modulation is made by NVC monomers, and a brief explanation of the function of POEA monomers is given.

  15. Phase III, Randomized Study of Dual Human Epidermal Growth Factor Receptor 2 (HER2) Blockade With Lapatinib Plus Trastuzumab in Combination With an Aromatase Inhibitor in Postmenopausal Women With HER2-Positive, Hormone Receptor-Positive Metastatic Breast Cancer: ALTERNATIVE.

    PubMed

    Johnston, Stephen R D; Hegg, Roberto; Im, Seock-Ah; Park, In Hae; Burdaeva, Olga; Kurteva, Galina; Press, Michael F; Tjulandin, Sergei; Iwata, Hiroji; Simon, Sergio D; Kenny, Sarah; Sarp, Severine; Izquierdo, Miguel A; Williams, Lisa S; Gradishar, William J

    2018-03-10

    Purpose Human epidermal growth factor receptor 2 (HER2) targeting plus endocrine therapy (ET) improved clinical benefit in HER2-positive, hormone receptor (HR)-positive metastatic breast cancer (MBC) versus ET alone. Dual HER2 blockade enhances clinical benefit versus single HER2 blockade. The ALTERNATIVE study evaluated the efficacy and safety of dual HER2 blockade plus aromatase inhibitor (AI) in postmenopausal women with HER2-positive/HR-positive MBC who received prior ET and prior neo(adjuvant)/first-line trastuzumab (TRAS) plus chemotherapy. Methods Patients were randomly assigned (1:1:1) to receive lapatinib (LAP) + TRAS + AI, TRAS + AI, or LAP + AI. Patients for whom chemotherapy was intended were excluded. The primary end point was progression-free survival (PFS; investigator assessed) with LAP + TRAS + AI versus TRAS + AI. Secondary end points were PFS (comparison of other arms), overall survival, overall response rate, clinical benefit rate, and safety. Results Three hundred fifty-five patients were included in this analysis: LAP + TRAS + AI (n = 120), TRAS + AI (n = 117), and LAP + AI (n = 118). Baseline characteristics were balanced. The study met its primary end point; superior PFS was observed with LAP + TRAS + AI versus TRAS + AI (median PFS, 11 v 5.7 months; hazard ratio, 0.62; 95% CI, 0.45 to 0.88; P = .0064). Consistent PFS benefit was observed in predefined subgroups. Overall response rate, clinical benefit rate, and overall survival also favored LAP + TRAS + AI. The median PFS with LAP + AI versus TRAS + AI was 8.3 versus 5.7 months (hazard ratio, 0.71; 95% CI, 0.51 to 0.98; P = .0361). Common adverse events (AEs; ≥ 15%) with LAP + TRAS + AI, TRAS + AI, and LAP + AI were diarrhea (69%, 9%, and 51%, respectively), rash (36%, 2%, and 28%, respectively), nausea (22%, 9%, and 22%, respectively), and paronychia (30%, 0%, and 15%, respectively), mostly grade 1 or 2. Serious AEs were reported similarly across the three groups, and AEs leading to

  16. Trans−cis Switching Mechanisms in Proline Analogues and Their Relevance for the Gating of the 5-HT3 Receptor

    PubMed Central

    2009-01-01

    Trans−cis isomerization of a proline peptide bond is a potential mechanism to open the channel of the 5-HT3 receptor. Here, we have used the metadynamics method to theoretically explore such a mechanism. We have determined the free energy surfaces in aqueous solution of a series of dipeptides of proline analogues and evaluated the free energy difference between the cis and trans isomers. These theoretical results were then compared with data from mutagenesis experiments, in which the response of the 5-HT3 receptor was measured when the proline at the apex of the M2-M3 transmembrane domain loop was mutated. The strong correlation between the experimental and the theoretical data supports the existence of a trans−cis proline switch for opening the 5-HT3 receptor ion channel. PMID:19663504

  17. Trans-cis switching mechanisms in proline analogues and their relevance for the gating of the 5-HT3 receptor.

    PubMed

    Melis, Claudio; Bussi, Giovanni; Lummis, Sarah C R; Molteni, Carla

    2009-09-03

    Trans-cis isomerization of a proline peptide bond is a potential mechanism to open the channel of the 5-HT(3) receptor. Here, we have used the metadynamics method to theoretically explore such a mechanism. We have determined the free energy surfaces in aqueous solution of a series of dipeptides of proline analogues and evaluated the free energy difference between the cis and trans isomers. These theoretical results were then compared with data from mutagenesis experiments, in which the response of the 5-HT(3) receptor was measured when the proline at the apex of the M2-M3 transmembrane domain loop was mutated. The strong correlation between the experimental and the theoretical data supports the existence of a trans-cis proline switch for opening the 5-HT(3) receptor ion channel.

  18. Toll-like receptor ligands sensitize B-cell receptor signalling by reducing actin-dependent spatial confinement of the receptor.

    PubMed

    Freeman, Spencer A; Jaumouillé, Valentin; Choi, Kate; Hsu, Brian E; Wong, Harikesh S; Abraham, Libin; Graves, Marcia L; Coombs, Daniel; Roskelley, Calvin D; Das, Raibatak; Grinstein, Sergio; Gold, Michael R

    2015-02-03

    Integrating signals from multiple receptors allows cells to interpret the physiological context in which a signal is received. Here we describe a mechanism for receptor crosstalk in which receptor-induced increases in actin dynamics lower the threshold for signalling by another receptor. We show that the Toll-like receptor ligands lipopolysaccharide and CpG DNA, which are conserved microbial molecules, enhance signalling by the B-cell antigen receptor (BCR) by activating the actin-severing protein cofilin. Single-particle tracking reveals that increased severing of actin filaments reduces the spatial confinement of the BCR within the plasma membrane and increases BCR mobility. This allows more frequent collisions between BCRs and greater signalling in response to low densities of membrane-bound antigen. These findings implicate actin dynamics as a means of tuning receptor signalling and as a mechanism by which B cells distinguish inert antigens from those that are accompanied by indicators of microbial infection.

  19. Toll-like receptor ligands sensitize B-cell receptor signalling by reducing actin-dependent spatial confinement of the receptor

    PubMed Central

    Freeman, Spencer A.; Jaumouillé, Valentin; Choi, Kate; Hsu, Brian E.; Wong, Harikesh S.; Abraham, Libin; Graves, Marcia L.; Coombs, Daniel; Roskelley, Calvin D.; Das, Raibatak; Grinstein, Sergio; Gold, Michael R.

    2015-01-01

    Integrating signals from multiple receptors allows cells to interpret the physiological context in which a signal is received. Here we describe a mechanism for receptor crosstalk in which receptor-induced increases in actin dynamics lower the threshold for signalling by another receptor. We show that the Toll-like receptor ligands lipopolysaccharide and CpG DNA, which are conserved microbial molecules, enhance signalling by the B-cell antigen receptor (BCR) by activating the actin-severing protein cofilin. Single-particle tracking reveals that increased severing of actin filaments reduces the spatial confinement of the BCR within the plasma membrane and increases BCR mobility. This allows more frequent collisions between BCRs and greater signalling in response to low densities of membrane-bound antigen. These findings implicate actin dynamics as a means of tuning receptor signalling and as a mechanism by which B cells distinguish inert antigens from those that are accompanied by indicators of microbial infection. PMID:25644899

  20. A dual model of entertainment-based and community-based mechanisms to explore continued participation in online entertainment communities.

    PubMed

    Deng, Yun; Hou, Jinghui; Ma, Xiao; Cai, Shuqin

    2013-05-01

    Online entertainment communities have exploded in popularity and drawn attention from researchers. However, few studies have investigated what leads people to remain active in such communities at the postadoption stage. We proposed and tested a dual model of entertainment-based and community-based mechanisms to examine the factors that affect individuals' continued participation in online entertainment communities. Survival analysis was employed on a longitudinal dataset of 2,302 users collected over 2 years from an online game community. Our results were highly consistent with the theoretical model. Specifically, under the entertainment-based mechanism, our findings showed that the intensities of initial use and frequent use were positive predictors of players' activity lifespan. Under the community-based mechanism, the results demonstrated that the number of guilds a player was affiliated with and the average number of days of being a guild member positively predict players' lifespan in the game. Overall, our study suggests that the entertainment-based mechanism and community-based mechanism are two key drivers that determinate individuals' continued participation in online entertainment communities.

  1. Genetic and pharmacological antagonism of NK1 receptor prevents opiate abuse potential.

    PubMed

    Sandweiss, A J; McIntosh, M I; Moutal, A; Davidson-Knapp, R; Hu, J; Giri, A K; Yamamoto, T; Hruby, V J; Khanna, R; Largent-Milnes, T M; Vanderah, T W

    2017-05-09

    Development of an efficacious, non-addicting analgesic has been challenging. Discovery of novel mechanisms underlying addiction may present a solution. Here we target the neurokinin system, which is involved in both pain and addiction. Morphine exerts its rewarding actions, at least in part, by inhibiting GABAergic input onto substance P (SP) neurons in the ventral tegmental area (VTA), subsequently increasing SP release onto dopaminergic neurons. Genome editing of the neurokinin 1 receptor (NK 1 R) in the VTA renders morphine non-rewarding. Complementing our genetic approach, we demonstrate utility of a bivalent pharmacophore with dual activity as a μ/δ opioid agonist and NK 1 R antagonist in inhibiting nociception in an animal model of acute pain while lacking any positive reinforcement. These data indicate that dual targeting of the dopaminergic reward circuitry and pain pathways with a multifunctional opioid agonist-NK 1 R antagonist may be an efficacious strategy in developing future analgesics that lack abuse potential.Molecular Psychiatry advance online publication, 9 May 2017; doi:10.1038/mp.2017.102.

  2. Ionic mechanisms and receptor properties underlying the responses of molluscan neurones to 5-hydroxytryptamine

    PubMed Central

    Gerschenfeld, H. M.; Tritsch, Danièle Paupardin

    1974-01-01

    1. Molluscan neurones have been found to show six different types of response (three excitatory and three inhibitory) to the iontophoretic application of 5-hydroxytryptamine (5-HT). The pharmacological properties of the receptors and the ionic mechanisms associated with these responses have been analysed. 2. Four of the responses to 5-HT (named A, A′, B and C) are consequent upon an increase in membrane conductance whereas the other two (named α and β) are caused by a decrease in membrane conductance. 3. The A-response to 5-HT consists of a `fast' depolarization due to an increase mainly in Na+-conductance; the A′-response is a `slow' depolarization also associated with a Na+-conductance increase. Receptors mediating the A- and A′-depolarizations have different pharmacological properties and may exist side by side on the same neurone. 4. Both the B- and C-responses are inhibitory. The B-response is a `slow' hyperpolarization due to an increase in K+-conductance, the C-response is a fast hyperpolarization associated with an increase in Cl--conductance. 5. The α-response to 5-HT is a depolarization which becomes reduced in amplitude with cell hyperpolarization and reverses at -75 mV; it is caused by a decrease in K+-conductance. The β-response is an hyperpolarization which increases in amplitude with cell hyperpolarization and reverses at -20/-30 mV. It results from a decrease in conductance to both Na+ and K+ ions. 6. The receptors involved in the 5-HT responses associated with a conductance increase may be recognized by the action of specific antagonists: 7-methyltryptamine blocks only the A-receptors, 5-methoxygramine only the B-receptors and neostigmine only the C-receptors. Curare blocks the A- and C-receptors and bufotenine, the A-, A′- and B-receptors. No specific antagonists have yet been found for the 5-HT responses caused by a conductance decrease. 7. The significance of the multiplicity of receptors is discussed. Their functional significance

  3. Worsening respiratory function in mechanically ventilated intensive care patients: feasibility and value of xenon-enhanced dual energy CT.

    PubMed

    Hoegl, Sandra; Meinel, Felix G; Thieme, Sven F; Johnson, Thorsten R C; Eickelberg, Oliver; Zwissler, Bernhard; Nikolaou, Konstantin

    2013-03-01

    To evaluate the feasibility and incremental diagnostic value of xenon-enhanced dual-energy CT in mechanically ventilated intensive care patients with worsening respiratory function. The study was performed in 13 mechanically ventilated patients with severe pulmonary conditions (acute respiratory distress syndrome (ARDS), n=5; status post lung transplantation, n=5; other, n=3) and declining respiratory function. CT scans were performed using a dual-source CT scanner at an expiratory xenon concentration of 30%. Both ventilation images (Xe-DECT) and standard CT images were reconstructed from a single CT scan. Findings were recorded for Xe-DECT and standard CT images separately. Ventilation defects on xenon images were matched to morphological findings on standard CT images and incremental diagnostic information of xenon ventilation images was recorded if present. Mean xenon consumption was 2.95 l per patient. No adverse events occurred under xenon inhalation. In the visual CT analysis, the Xe-DECT ventilation defects matched with pathologic changes in lung parenchyma seen in the standard CT images in all patients. Xe-DECT provided additional diagnostic findings in 4/13 patients. These included preserved ventilation despite early pneumonia (n=1), more confident discrimination between a large bulla and pneumothorax (n=1), detection of an airway-to-pneumothorax fistula (n=1) and exclusion of a suspected airway-to-mediastinum fistula (n=1). In all 4 patients, the additional findings had a substantial impact on patients' management. Xenon-enhanced DECT is safely feasible and can add relevant diagnostic information in mechanically ventilated intensive care patients with worsening respiratory function. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattori, Motoyuki; Gouaux, Eric

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure ofmore » the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.« less

  5. Aberrant Receptor Internalization and Enhanced FRS2-dependent Signaling Contribute to the Transforming Activity of the Fibroblast Growth Factor Receptor 2 IIIb C3 Isoform*

    PubMed Central

    Cha, Jiyoung Y.; Maddileti, Savitri; Mitin, Natalia; Harden, T. Kendall; Der, Channing J.

    2009-01-01

    Alternative splice variants of fibroblast growth factor receptor 2 (FGFR2) IIIb, designated C1, C2, and C3, possess progressive reduction in their cytoplasmic carboxyl termini (822, 788, and 769 residues, respectively), with preferential expression of the C2 and C3 isoforms in human cancers. We determined that the progressive deletion of carboxyl-terminal sequences correlated with increasing transforming potency. The highly transforming C3 variant lacks five tyrosine residues present in C1, and we determined that the loss of Tyr-770 alone enhanced FGFR2 IIIb C1 transforming activity. Because Tyr-770 may compose a putative YXXL sorting motif, we hypothesized that loss of Tyr-770 in the 770YXXL motif may cause disruption of FGFR2 IIIb C1 internalization and enhance transforming activity. Surprisingly, we found that mutation of Leu-773 but not Tyr-770 impaired receptor internalization and increased receptor stability and activation. Interestingly, concurrent mutations of Tyr-770 and Leu-773 caused 2-fold higher transforming activity than caused by the Y770F or L773A single mutations, suggesting loss of Tyr and Leu residues of the 770YXXL773 motif enhances FGFR2 IIIb transforming activity by distinct mechanisms. We also determined that loss of Tyr-770 caused persistent activation of FRS2 by enhancing FRS2 binding to FGFR2 IIIb. Furthermore, we found that FRS2 binding to FGFR2 IIIb is required for increased FRS2 tyrosine phosphorylation and enhanced transforming activity by Y770F mutation. Our data support a dual mechanism where deletion of the 770YXXL773 motif promotes FGFR2 IIIb C3 transforming activity by causing aberrant receptor recycling and stability and persistent FRS2-dependent signaling. PMID:19103595

  6. Genomic variation in the MMP-1 promoter influences estrogen receptor mediated activity in a mechanically activated environment: potential implications for microgravity risk assessment

    NASA Astrophysics Data System (ADS)

    Thaler, John; Myers, Ken; Lu, Ting; Hart, David

    examine the potential impact of the 1G/2G SNP on the cellular response to mechanical loading. HIG-82 cells are estrogen receptor (ER) negative and were transiently transfected with SV40 expression vectors for either ER-α or ER-β isoforms. Cells grown on glass slides were also co-transfected with either a 1G or 2G MMP-1 promoter-luciferase construct. Transfected cells were subjected to dynamic shear stress in a Flexcell Streamer Shear Stress Device. The dynamic loading regime was 0.5 Hz, 10 dyn/cm2 shear for 1 minute followed by 14 minutes rest and repeated for 8 hrs. A Promega Dual Luciferase Reporter Assay System was used to assess MMP-1 promoter activity. Results: Shear stress loading increased both 1G and 2G MMP-1 promoter activity compared to unloaded controls, however the 2G promoter had significantly higher rates of expression than the 1G promoter across all loading regimes and ER co-transfections. Transfection with ER-β resulted in higher MMP-1 promoter activity than that in cells expressing ER-α or in ER-neg cells. Conclusions: Specific genomic variations can lead to differences in cellular responses to changes in mechanical loading environments such as are encountered in microgravity environments or earth-based analogs. These genomic differences may predispose individuals to greater risk of bone loss. It is important to understand the combined effects of mechanical loading, genetic variation and sex hormones on bone maintenance so that risks can be identified for microgravity or analog environments, and specific interventions developed to counteract such risk or even exclude some individuals from prolonged space environments due to the extent of the risk.

  7. Chronic Exposure to Anabolic Androgenic Steroids Alters Neuronal Function in the Mammalian Forebrain via Androgen Receptor- and Estrogen Receptor-Mediated Mechanisms

    PubMed Central

    Penatti, Carlos A A; Porter, Donna M; Henderson, Leslie P

    2009-01-01

    Anabolic androgenic steroids (AAS) can promote detrimental effects on social behaviors for which γ-aminobutyric acid type A (GABAA) receptor-mediated circuits in the forebrain play a critical role. While all AAS bind to androgen receptors (AR), they may also be aromatized to estrogens and thus potentially impart effects via estrogen receptors (ER). Chronic exposure of wild type male mice to a combination of chemically distinct AAS increased action potential (AP) frequency, selective GABAA receptor subunit mRNAs, and GABAergic synaptic current decay in the medial preoptic area (mPOA). Experiments performed with pharmacological agents and in AR-deficient Tfm mutant mice suggest that the AAS-dependent enhancement of GABAergic transmission in wild type mice is AR-mediated. In AR-deficient mice, the AAS elicited dramatically different effects, decreasing AP frequency, sIPSC amplitude and frequency and the expression of selective GABAA receptor subunit mRNAs. Surprisingly, in the absence of AR signaling, the data indicate that the AAS do not act as ER agonists, but rather suggest a novel in vivo action in which the AAS inhibit aromatase and impair endogenous ER signaling. These results show that the AAS have the capacity to alter neuronal function in the forebrain via multiple steroid signaling mechanisms and suggest that effects of these steroids in the brain will depend not only on the balance of AR- vs. ER-mediated regulation for different target genes, but also on the ability of these drugs to alter steroid metabolism and thus the endogenous steroid milieu. PMID:19812324

  8. Lipoic acid stimulates cAMP production via G protein coupled receptor dependent and independent mechanisms

    PubMed Central

    Salinthone, Sonemany; Schillace, Robynn V.; Tsang, Catherine; Regan, John W.; Bourdette, Dennis N.; Carr, Daniel W.

    2010-01-01

    Lipoic acid (LA) is a naturally occurring fatty acid that exhibits anti-oxidant and anti-inflammatory properties and is being pursued as a therapeutic for many diseases including multiple sclerosis, diabetic polyneuropathy and Alzheimer’s disease. We previously reported on the novel finding that racemic LA (50:50 mixture of R and S LA) stimulates cAMP production, activates prostanoid EP2 and EP4 receptors and adenylyl cyclases (AC), and suppresses activation and cytotoxicity in NK cells. In this study we present evidence that furthers our understanding of the mechanisms of action of LA. Using various LA derivatives, dihydrolipoic acid (DHLA), S,S-dimethyl lipoic acid (DMLA) and lipoamide (LPM), we discovered that only LA is capable of stimulating cAMP production in NK cells. Furthermore, there is no difference in cAMP production after stimulation with either R-LA, S-LA or racemic LA. Competition and synergistic studies indicate that LA may also activate AC independent of the EP2 and EP4 receptors. Pretreatment of PBMCc with KH7 (a specific peptide inhibitor of soluble AC) and the calcium inhibitor (Bapta) prior to LA treatment resulted in reduced cAMP levels, suggesting that soluble AC and calcium signaling mediate LA stimulation of cAMP production. In addition, pharmacological inhibitor studies demonstrate that LA also activates other G- protein coupled receptors, including histamine and adenosine, but not the beta adrenergic receptors. These novel findings provide information to better understand the mechanisms of action of LA, which can help facilitate the use of LA as a therapeutic for various diseases. PMID:21036588

  9. Molecular modeling of ligand-receptor interactions in the OR5 olfactory receptor.

    PubMed

    Singer, M S; Shepherd, G M

    1994-06-02

    Olfactory receptors belong to the superfamily of seven transmembrane domain, G protein-coupled receptors. In order to begin analysis of mechanisms of receptor activation, a computer model of the OR5 olfactory receptor has been constructed and compared with other members of this superfamily. We have tested docking of the odor molecule lyral, which is known to activate the OR5 receptor. The results point to specific ligand-binding residues on helices III through VII that form a binding pocket in the receptor. Some of these residues occupy sequence positions identical to ligand-binding residues conserved among other superfamily members. The results provide new insights into possible molecular mechanisms of odor recognition and suggest hypotheses to guide future experimental studies using site-directed mutagenesis.

  10. Bidirectional modulation of hippocampal synaptic plasticity by Dopaminergic D4-receptors in the CA1 area of hippocampus.

    PubMed

    Navakkode, Sheeja; Chew, Katherine C M; Tay, Sabrina Jia Ning; Lin, Qingshu; Behnisch, Thomas; Soong, Tuck Wah

    2017-11-14

    Long-term potentiation (LTP) is the persistent increase in the strength of the synapses. However, the neural networks would become saturated if there is only synaptic strenghthening. Synaptic weakening could be facilitated by active processes like long-term depression (LTD). Molecular mechanisms that facilitate the weakening of synapses and thereby stabilize the synapses are also important in learning and memory. Here we show that blockade of dopaminergic D4 receptors (D4R) promoted the formation of late-LTP and transformed early-LTP into late-LTP. This effect was dependent on protein synthesis, activation of NMDA-receptors and CaMKII. We also show that GABA A -receptor mediated mechanisms are involved in the enhancement of late-LTP. We could show that short-term plasticity and baseline synaptic transmission were unaffected by D4R inhibition. On the other hand, antagonizing D4R prevented both early and late forms of LTD, showing that activation of D4Rs triggered a dual function. Synaptic tagging experiments on LTD showed that D4Rs act as plasticity related proteins rather than the setting of synaptic tags. D4R activation by PD 168077 induced a slow-onset depression that was protein synthesis, NMDAR and CaMKII dependent. The D4 receptors, thus exert a bidirectional modulation of CA1 pyramidal neurons by restricting synaptic strengthening and facilitating synaptic weakening.

  11. The lectin-like oxidized low-density lipoprotein receptor-1 as therapeutic target for atherosclerosis, inflammatory conditions and longevity.

    PubMed

    Ulrich-Merzenich, Gudrun; Zeitler, Heike

    2013-08-01

    The lectin-like oxidized LDL receptor-1 (LOX-1) is a scavenger receptor and is regarded as a central element in the initiation of endothelial dysfunction and its further progression to atherosclerosis. Increasing numbers of studies suggest that therapeutic strategies to modulate LOX-1 will have a broad spectrum of applications ranging from cardiovascular diseases to longevity. The dual role of LOX-1 as a culprit molecule in the process of atherosclerosis and as a danger signal in various tissues is introduced. The structure of the receptor, its ligands and its modulation by known drugs, by natural products (e.g., statins, imipramine, salicylate-based drugs, procyanidins, curcumin) and by new strategies (antisenseRNA, miRNA, pyrrole-imidazol-polyamides, LOX-1 antibodies, lipid apheresis) are described. Therapeutic approaches via transcript regulation, allowing a modulation of LOX-1, may be an easier and safer strategy than a blockade of the receptor. Considering the wide distribution of LOX-1 on different tissues, research on the mechanisms of LOX-1 modulation by drugs and natural products applying "omic"-technologies will not only allow a better understanding of the role of LOX-1 in the processes of atherosclerosis, inflammation and longevity but also support the development of specific LOX-1 modulators, avoiding the initiation of molecular mechanisms which lead to adverse events.

  12. The p75 neurotrophin receptor localization in blood-CSF barrier: expression in choroid plexus epithelium.

    PubMed

    Spuch, Carlos; Carro, Eva

    2011-05-11

    The presence of neurotrophins and their receptors Trk family has been reported in the choroid plexus. High levels of Nerve Growth Factor (NGF), Neurotrophin-4 (NT-4) and TrkB receptor were detected, while nothing was know about p75 neurotrophin receptor (p75NTR) in the choroid plexus epithelial cells. In neurons, p75NTR receptor has a dual function: promoting survival together with TrkA in response to NGF, and inducing apoptotic signaling through p75NTR. We postulated that p75NTR may also affect the survival pathways in the choroid plexus and also undergoes regulated proteolysis with metalloproteases. Here, we demonstrated the presence of p75NTR receptor in the choroid plexus epithelial cells. The p75NTR receptor would be involved in cell death mechanisms and in the damaged induced by amyloid beta (Aβ) in the choroid plexus and finally, we propose an essential role of p75NTR in the Aβ transcytosis through out choroid plexus barrier. The presence analysis reveals the new localization of p75NTR in the choroid plexus and, the distribution mainly in the cytoplasm and cerebrospinal fluid (CSF) side of the epithelial cells. We propose that p75NTR receptor plays a role in the survival pathways and Aβ-induced cell death. These data suggest that p75NTR dysfunction play an important role in the pathogenesis of brain diseases. The importance and novelty of this expression expands a new role of p75NTR.

  13. Cannabinoid receptor-specific mechanisms to alleviate pain in sickle cell anemia via inhibition of mast cell activation and neurogenic inflammation.

    PubMed

    Vincent, Lucile; Vang, Derek; Nguyen, Julia; Benson, Barbara; Lei, Jianxun; Gupta, Kalpna

    2016-05-01

    Sickle cell anemia is a manifestation of a single point mutation in hemoglobin, but inflammation and pain are the insignia of this disease which can start in infancy and continue throughout life. Earlier studies showed that mast cell activation contributes to neurogenic inflammation and pain in sickle mice. Morphine is the common analgesic treatment but also remains a major challenge due to its side effects and ability to activate mast cells. We, therefore, examined cannabinoid receptor-specific mechanisms to mitigate mast cell activation, neurogenic inflammation and hyperalgesia, using HbSS-BERK sickle and cannabinoid receptor-2-deleted sickle mice. We show that cannabinoids mitigate mast cell activation, inflammation and neurogenic inflammation in sickle mice via both cannabinoid receptors 1 and 2. Thus, cannabinoids influence systemic and neural mechanisms, ameliorating the disease pathobiology and hyperalgesia in sickle mice. This study provides 'proof of principle' for the potential of cannabinoid/cannabinoid receptor-based therapeutics to treat several manifestations of sickle cell anemia. Copyright© Ferrata Storti Foundation.

  14. Novel regulatory mechanisms for generation of the soluble leptin receptor: implications for leptin action.

    PubMed

    Schaab, Michael; Kausch, Henriette; Klammt, Juergen; Nowicki, Marcin; Anderegg, Ulf; Gebhardt, Rolf; Rose-John, Stefan; Scheller, Juergen; Thiery, Joachim; Kratzsch, Juergen

    2012-01-01

    The adipokine leptin realizes signal transduction via four different membrane-anchored leptin receptor (Ob-R) isoforms in humans. However, the amount of functionally active Ob-R is affected by constitutive shedding of the extracellular domain via a so far unknown mechanism. The product of the cleavage process the so-called soluble leptin receptor (sOb-R) is the main binding protein for leptin in human blood and modulates its bioavailability. sOb-R levels are differentially regulated in metabolic disorders like type 1 diabetes mellitus or obesity and can, therefore, enhance or reduce leptin sensitivity. To describe mechanisms of Ob-R cleavage and to investigate the functional significance of differential sOb-R levels we established a model of HEK293 cells transiently transfected with different human Ob-R isoforms. Using siRNA knockdown experiments we identified ADAM10 (A Disintegrin And Metalloproteinase 10) as a major protease for constitutive and activated Ob-R cleavage. Additionally, the induction of lipotoxicity and apoptosis led to enhanced shedding shown by increased levels of the soluble leptin receptor (sOb-R) in cell supernatants. Conversely, high leptin concentrations and ER stress reduced sOb-R levels. Decreased amounts of sOb-R due to ER stress were accompanied by impaired leptin signaling and reduced leptin binding. Lipotoxicity and apoptosis increased Ob-R cleavage via ADAM10-dependent mechanisms. In contrast high leptin levels and ER stress led to reduced sOb-R levels. While increased sOb-R concentrations seem to directly block leptin action, reduced amounts of sOb-R may reflect decreased membrane expression of Ob-R. These findings could explain changes of leptin sensitivity which are associated with variations of serum sOb-R levels in metabolic diseases.

  15. Novel Regulatory Mechanisms for Generation of the Soluble Leptin Receptor: Implications for Leptin Action

    PubMed Central

    Schaab, Michael; Kausch, Henriette; Klammt, Juergen; Nowicki, Marcin; Anderegg, Ulf; Gebhardt, Rolf; Rose-John, Stefan; Scheller, Juergen; Thiery, Joachim; Kratzsch, Juergen

    2012-01-01

    Background The adipokine leptin realizes signal transduction via four different membrane-anchored leptin receptor (Ob-R) isoforms in humans. However, the amount of functionally active Ob-R is affected by constitutive shedding of the extracellular domain via a so far unknown mechanism. The product of the cleavage process the so-called soluble leptin receptor (sOb-R) is the main binding protein for leptin in human blood and modulates its bioavailability. sOb-R levels are differentially regulated in metabolic disorders like type 1 diabetes mellitus or obesity and can, therefore, enhance or reduce leptin sensitivity. Methodology/Principal Findings To describe mechanisms of Ob-R cleavage and to investigate the functional significance of differential sOb-R levels we established a model of HEK293 cells transiently transfected with different human Ob-R isoforms. Using siRNA knockdown experiments we identified ADAM10 (A Disintegrin And Metalloproteinase 10) as a major protease for constitutive and activated Ob-R cleavage. Additionally, the induction of lipotoxicity and apoptosis led to enhanced shedding shown by increased levels of the soluble leptin receptor (sOb-R) in cell supernatants. Conversely, high leptin concentrations and ER stress reduced sOb-R levels. Decreased amounts of sOb-R due to ER stress were accompanied by impaired leptin signaling and reduced leptin binding. Conclusions Lipotoxicity and apoptosis increased Ob-R cleavage via ADAM10-dependent mechanisms. In contrast high leptin levels and ER stress led to reduced sOb-R levels. While increased sOb-R concentrations seem to directly block leptin action, reduced amounts of sOb-R may reflect decreased membrane expression of Ob-R. These findings could explain changes of leptin sensitivity which are associated with variations of serum sOb-R levels in metabolic diseases. PMID:22545089

  16. The LDL receptor.

    PubMed

    Goldstein, Joseph L; Brown, Michael S

    2009-04-01

    In this article, the history of the LDL receptor is recounted by its codiscoverers. Their early work on the LDL receptor explained a genetic cause of heart attacks and led to new ways of thinking about cholesterol metabolism. The LDL receptor discovery also introduced three general concepts to cell biology: receptor-mediated endocytosis, receptor recycling, and feedback regulation of receptors. The latter concept provides the mechanism by which statins selectively lower plasma LDL, reducing heart attacks and prolonging life.

  17. An electrostatic selection mechanism controls sequential kinase signaling downstream of the T cell receptor

    PubMed Central

    Shah, Neel H; Wang, Qi; Yan, Qingrong; Karandur, Deepti; Kadlecek, Theresa A; Fallahee, Ian R; Russ, William P; Ranganathan, Rama; Weiss, Arthur; Kuriyan, John

    2016-01-01

    The sequence of events that initiates T cell signaling is dictated by the specificities and order of activation of the tyrosine kinases that signal downstream of the T cell receptor. Using a platform that combines exhaustive point-mutagenesis of peptide substrates, bacterial surface-display, cell sorting, and deep sequencing, we have defined the specificities of the first two kinases in this pathway, Lck and ZAP-70, for the T cell receptor ζ chain and the scaffold proteins LAT and SLP-76. We find that ZAP-70 selects its substrates by utilizing an electrostatic mechanism that excludes substrates with positively-charged residues and favors LAT and SLP-76 phosphosites that are surrounded by negatively-charged residues. This mechanism prevents ZAP-70 from phosphorylating its own activation loop, thereby enforcing its strict dependence on Lck for activation. The sequence features in ZAP-70, LAT, and SLP-76 that underlie electrostatic selectivity likely contribute to the specific response of T cells to foreign antigens. DOI: http://dx.doi.org/10.7554/eLife.20105.001 PMID:27700984

  18. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity.

    PubMed

    Davenport, A J; Cross, R S; Watson, K A; Liao, Y; Shi, W; Prince, H M; Beavis, P A; Trapani, J A; Kershaw, M H; Ritchie, D S; Darcy, P K; Neeson, P J; Jenkins, M R

    2018-02-27

    Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell. Copyright © 2018 the Author(s). Published by PNAS.

  19. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity

    PubMed Central

    Davenport, A. J.; Cross, R. S.; Watson, K. A.; Liao, Y.; Shi, W.; Prince, H. M.; Beavis, P. A.; Trapani, J. A.; Kershaw, M. H.; Ritchie, D. S.; Darcy, P. K.; Jenkins, M. R.

    2018-01-01

    Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell. PMID:29440406

  20. Mechanical loading increases detection of estrogen receptor-alpha in osteocytes and osteoblasts despite chronic energy restriction.

    PubMed

    Swift, Sibyl N; Swift, Joshua M; Bloomfield, Susan A

    2014-12-01

    Estrogen receptor-α (ER-α) is an important mediator of the bone response to mechanical loading. We sought to determine whether restricting dietary energy intake by 40% limits the bone formation rate (BFR) response to mechanical loading (LOAD) by downregulating ER-α-expressing osteocytes, or osteoblasts, or both. Female rats (n = 48, 7 mo old) were randomized to ADLIB-SHAM and ADLIB-LOAD groups fed AIN-93M purified diet ad libitum or to ER40-SHAM and ER40-LOAD groups fed modified AIN-93M with 40% less energy (100% of all other nutrients). After 12 wk, LOAD rats were subjected to a muscle contraction protocol three times every third day. ER40 produced lower proximal tibia bone volume (-22%), trabecular thickness (-14%), and higher trabecular separation (+127%) in SHAM but not LOAD rats. ER40 rats exhibited reductions in mineral apposition rate, but not percent mineralizing surface or BFR. LOAD induced similar relative increases in these kinetic measures of osteoblast activity/recruitment in both diet groups., but absolute values for ER40 LOAD rats were lower vs. ADLIB-LOAD. There were fourfold and eightfold increases in proportion of estrogen receptor-α protein-positive osteoblast and osteocytes, respectively, in LOAD vs. SHAM rats, with no effect of ER40. These data suggest that a brief period of mechanical loading significantly affects estrogen receptor-α in cancellous bone osteoblasts and osteocytes. Chronic energy restriction does result in lower absolute values in indices of osteoblast activity after mechanical loading, but not by a smaller increment relative to unloaded bones; this change is not explained by an associated downregulation of ER-α in osteoblasts or osteocytes.

  1. B cell Toll-like receptors and immunoglobulin class-switch DNA recombination

    PubMed Central

    Pone, Egest J.; Xu, Zhenming; White, Clayton A.; Zan, Hong; Casali, Paolo

    2014-01-01

    Toll-like receptors (TLRs) are a family of conserved pattern recognition receptors (PRRs). Engagement of TLRs in B cells by microbe-associated molecular patterns (MAMPs) induces T-independent (TI) antibody responses and plays an important role in the early stages of T-dependent (TD) antibody responses before specific T cell help becomes available, in part by facilitating B cell entry into the germinal center reaction. The role of B cell TLRs in the antibody response is magnified by the synergy of B cell receptor (BCR) crosslinking and TLR engagement in promoting B cell proliferation and efficiently inducing immunoglobulin (Ig) class switch DNA recombination (CSR), which crucially diversifies the antibody biological effector functions. Dual engagement of TLRs and BCR can be mediated by complex MAMPs such as lipopolysaccharides (LPS), which engages TLR4 through its lipid A moiety and crosslinks the BCR through its polysaccharidic moiety (O-antigen). Dual BCR/TLR engagement induces CSR to all Ig isotypes, as directed by different cytokines, while engagement of any TLR alone induces only marginal CSR. Integration of BCR and TLR signaling results in activation of the canonical and non-canonical NF-κB pathways, induction of activation-induced cytidine deaminase (AID) and germline transcription of switch (S) regions in the IgH locus. The last two are essential events for CSR to unfold. A critical role of dual BCR/TLR engagement in induction of CSR and generation of neutralizing antibodies is emphasized by the emergence of TLR ligands as integral components of vaccines that greatly boost humoral immunity in a B cell-intrinsic fashion. Further, dual BCR/TLR engagement by complex self-antigens will result in dysregulation of AID expression and CSR in autoreactive B cells, leading to generation of isotype-switched pathogenic autoantibodies. Finally, an important aspect of dual BCR/TLR engagement is the boosting of specific antibody response to tumor antigens, as suggested by

  2. Cooperation of neurotrophin receptor TrkB and Her2 in breast cancer cells facilitates brain metastases.

    PubMed

    Choy, Cecilia; Ansari, Khairul I; Neman, Josh; Hsu, Sarah; Duenas, Matthew J; Li, Hubert; Vaidehi, Nagarajan; Jandial, Rahul

    2017-04-26

    Patients with primary breast cancer that is positive for human epidermal growth factor receptor 2 (Her2+) have a high risk of developing metastases in the brain. Despite gains with systemic control of Her2+ disease using molecular therapies, brain metastases remain recalcitrant to therapeutic discovery. The clinical predilection of Her2+ breast cancer cells to colonize the brain likely relies on paracrine mechanisms. The neural niche poses unique selection pressures, and neoplastic cells that utilize the brain microenvironment may have a survival advantage. Tropomyosin-related kinase B (TrkB), Her2, and downstream targets were analyzed in primary breast cancer, breast-to-brain metastasis (BBM) tissues, and tumor-derived cell lines using quantitative real-time PCR, western blot, and immunohistochemical assessment. TrkB function on BBM was confirmed with intracranial, intracardiac, or mammary fat pad xenografts in non-obese diabetic/severe combined immunodeficiency mice. The function of brain-derived neurotrophic factor (BDNF) on cell proliferation and TrkB/Her2 signaling and interactions were confirmed using selective shRNA knockdown and selective inhibitors. The physical interaction of Her2-TrkB was analyzed using electron microscopy, co-immunoprecipitation, and in silico analysis. Dual targeting of Her2 and TrkB was analyzed using clinically utilized treatments. We observed that patient tissues and cell lines derived from Her2+ human BBM displayed increased activation of TrkB, a neurotrophin receptor. BDNF, an extracellular neurotrophin, with roles in neuronal maturation and homeostasis, specifically binds to TrkB. TrkB knockdown in breast cancer cells led to decreased frequency and growth of brain metastasis in animal models, suggesting that circulating breast cancer cells entering the brain may take advantage of paracrine BDNF-TrkB signaling for colonization. In addition, we investigated a possible interaction between TrkB and Her2 receptors on brain metastatic

  3. CD3ζ-based chimeric antigen receptors mediate T cell activation via cis- and trans-signalling mechanisms: implications for optimization of receptor structure for adoptive cell therapy

    PubMed Central

    Bridgeman, J S; Ladell, K; Sheard, V E; Miners, K; Hawkins, R E; Price, D A; Gilham, D E

    2014-01-01

    Chimeric antigen receptors (CARs) can mediate redirected lysis of tumour cells in a major histocompatibility complex (MHC)-independent manner, thereby enabling autologous adoptive T cell therapy for a variety of malignant neoplasms. Currently, most CARs incorporate the T cell receptor (TCR) CD3ζ signalling chain; however, the precise mechanisms responsible for CAR-mediated T cell activation are unclear. In this study, we used a series of immunoreceptor tyrosine-based activation motif (ITAM)-mutant and transmembrane-modified receptors to demonstrate that CARs activate T cells both directly via the antigen-ligated signalling chain and indirectly via associated chains within the TCR complex. These observations allowed us to generate new receptors capable of eliciting polyfunctional responses in primary human T cells. This work increases our understanding of CAR function and identifies new avenues for the optimization of CAR-based therapeutic interventions. PMID:24116999

  4. Olfactory receptor antagonism between odorants

    PubMed Central

    Oka, Yuki; Omura, Masayo; Kataoka, Hiroshi; Touhara, Kazushige

    2004-01-01

    The detection of thousands of volatile odorants is mediated by several hundreds of different G protein-coupled olfactory receptors (ORs). The main strategy in encoding odorant identities is a combinatorial receptor code scheme in that different odorants are recognized by different sets of ORs. Despite increasing information on agonist–OR combinations, little is known about the antagonism of ORs in the mammalian olfactory system. Here we show that odorants inhibit odorant responses of OR(s), evidence of antagonism between odorants at the receptor level. The antagonism was demonstrated in a heterologous OR-expression system and in single olfactory neurons that expressed a given OR, and was also visualized at the level of the olfactory epithelium. Dual functions of odorants as an agonist and an antagonist to ORs indicate a new aspect in the receptor code determination for odorant mixtures that often give rise to novel perceptual qualities that are not present in each component. The current study also provides insight into strategies to modulate perceived odorant quality. PMID:14685265

  5. From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists.

    PubMed

    Fakhfouri, Gohar; Mousavizadeh, Kazem; Mehr, Sharam Ejtemaei; Dehpour, Ahmad Reza; Zirak, Mohammad Reza; Ghia, Jean-Eric; Rahimian, Reza

    2015-12-01

    5-HT3 receptor antagonists are extensively used as efficacious agents in counteracting chemotherapy-induced emesis. Recent investigations have shed light on other potential effects (analgesic, anxiolytic, and anti-psychotic). Some studies have reported neuroprotective properties for the 5-HT3 receptor antagonists in vitro and in vivo. When administered to Aβ-challenged rat cortical neurons, 5-HT3 receptor antagonists substantially abated apoptosis, elevation of cytosolic Ca(2), glutamate release, reactive oxygen species (ROS) generation, and caspase-3 activity. In addition, in vivo studies show that 5-HT3 receptor antagonists possess, alongside their anti-emetic effects, notable immunomodulatory properties in CNS. We found that pretreatment with tropisetron significantly improved neurological deficits and diminished leukocyte transmigration into the brain, TNF-α level, and brain infarction in a murine model of embolic stroke. Our recent investigation revealed that tropisetron protects against Aβ-induced neurotoxicity in vivo through both 5-HT3 receptor-dependent and -independent pathways. Tropisetron, in vitro, was found to be an efficacious inhibitor of the signaling pathway leading to the activation of pro-inflammatory NF-κB, a transcription factor pivotal to the upregulation of several neuroinflammatory mediators in brain. This mini review summarizes novel evidence concerning effects of 5-HT3 antagonists and their possible mechanisms of action in ameliorating neurodegenerative diseases including Alzheimer, multiple sclerosis, and stroke. Further, we discuss some newly synthesized 5-HT3 receptor antagonists with dual properties of 5-HT3 receptor blockade/alpha-7 nicotinic receptor activator and their potential in management of memory impairment. Since 5-HT3 receptor antagonists possess a large therapeutic window, they can constitute a scaffold for design and synthesis of new neuroprotective medications.

  6. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    NASA Technical Reports Server (NTRS)

    Blanco, Mario (Inventor); West, William C. (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  7. Synthesis of Novel 1,4- Dihydropyridine Derivatives Bearing Biphenyl-2'-Tetrazole Substitution as Potential Dual Angiotensin II Receptors and Calcium Channel Blockers

    PubMed Central

    Shahbazi Mojarrad, Javid; Zamani, Zahra; Nazemiyeh, Hossein; Ghasemi, Saeed; Asgari, Davoud

    2011-01-01

    Introduction: We report the synthesis of novel 1,4-dihydropyridine derivatives containing biphenyl-2'-tetrazole moieties. We hypothesized that merging the key structural elements present in an AT1 receptor antagonist with key structural elements in 1,4-dihydropyridine calcium channel blockers would yield novel analogs with potential dual activity for both receptors. This strategy led to the design and synthesis of dialkyl 1,4-dihydro-2,6-dimethyl-4-[2-n-alkyl-1-[2΄-(1H-tetrazole-5-yl) biphenyl -4-yl] methyl] imidazole-4(or 5)-yl]- 3, 5-pyridinedicarboxylate analogs. Methods: These compounds were obtained by two methods starting from biphenyltetrazolyl-4-(or 5)-imidazolecarboxaldehyde intermediates employing in classical Hantzsch condensation reaction. In the first method, triphenylmethyl protecting group of 4- or 5-carboxaldehyde intermediate was first removed in acidic media and then classical Hantzsch reaction was employed in order to obtain the final products. In the second method, without further deprotection process, protected 4- or 5-carboxaldehyde intermediate directly was used in Hantzsch reaction. Results: The second method was more efficient than the first method since the deprotection and ring closure reaction occurs simultaneously in one pot. Conclusion: Eight novel dihydropridines analogs were synthesized using classic Hantzsch condensation reaction. Chemical structures of the compounds were characterized by 1H NMR, infrared and mass spectroscopy. PMID:24312750

  8. Dual-fuel, dual-throat engine preliminary analysis

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.

    1979-01-01

    A propulsion system analysis of the dual fuel, dual throat engine for launch vehicle applications was conducted. Basic dual throat engine characterization data were obtained to allow vehicle optimization studies to be conducted. A preliminary baseline engine system was defined.

  9. Disposition and metabolism of [14C]lemborexant, a novel dual orexin receptor antagonist, in rats and monkeys.

    PubMed

    Ueno, Takashi; Ishida, Tomomi; Kusano, Kazutomi

    2018-05-28

    1. The disposition and metabolism of lemborexant, a novel dual orexin receptor antagonist currently under development as a therapeutic agent for insomnia disorder, were evaluated after a single oral administration of [ 14 C]lemborexant in Sprague-Dawley rats (10 mg/kg) and cynomolgus monkeys (3 mg/kg). 2. In both species, [ 14 C]lemborexant was rapidly absorbed: radioactivity concentration in blood peaked at 0.83-1.8 h, and decreased with elimination half-life of 110 h. The radioactivity administered was excreted primarily into faeces, with relatively little excreted into urine. 3. Lemborexant was not detected in bile, urine, or faeces, indicating that lemborexant administered orally was completely absorbed from the gastrointestinal tract and that the main elimination pathway was metabolism in both species. 4. In rats, lemborexant was found to be minor in plasma (≤5.2% of total radioactivity), and M9 (hydroxylated form) was the major circulating metabolite. In monkeys, the major circulating components were lemborexant, M4 (N-oxide metabolite), M13 (di-oxidised form), M14 (di-oxidised form), and M16 (glucuronide of mono-oxidised form). 5. In both species, lemborexant was metabolised to various metabolites by multiple pathways, the primary of which was oxidation of the dimethylpyrimidine or fluorophenyl moiety.

  10. A new insight in chimeric antigen receptor-engineered T cells for cancer immunotherapy.

    PubMed

    Zhang, Erhao; Xu, Hanmei

    2017-01-03

    Adoptive cell therapy using chimeric antigen receptor (CAR)-engineered T cells has emerged as a very promising approach to combating cancer. Despite its ability to eliminate tumors shown in some clinical trials, CAR-T cell therapy involves some significant safety challenges, such as cytokine release syndrome (CRS) and "on-target, off-tumor" toxicity, which is related to poor control of the dose, location, and timing of T cell activity. In the past few years, some strategies to avoid the side effects of CAR-T cell therapy have been reported, including suicide gene, inhibitory CAR, dual-antigen receptor, and the use of exogenous molecules as switches to control the CAR-T cell functions. Because of the advances of the CAR paradigm and other forms of cancer immunotherapy, the most effective means of defeating the cancer has become the integration therapy with the combinatorial control system of switchable dual-receptor CAR-T cell and immune checkpoint blockade.

  11. Microstructure Evolution and Mechanical Behavior of a Hot-Rolled High-Manganese Dual-Phase Transformation-Induced Plasticity/Twinning-Induced Plasticity Steel

    NASA Astrophysics Data System (ADS)

    Fu, Liming; Shan, Mokun; Zhang, Daoda; Wang, Huanrong; Wang, Wei; Shan, Aidang

    2017-05-01

    The microstructures and deformation behavior were studied in a high-temperature annealed high-manganese dual-phase (28 vol pct δ-ferrite and 72 vol pct γ-austenite) transformation-induced plasticity/twinning-induced plasticity (TRIP/TWIP) steel. The results showed that the steel exhibits a special Lüders-like yielding phenomenon at room temperature (RT) and 348 K (75 °C), while it shows continuous yielding at 423 K, 573 K and 673 K (150 °C, 300 °C and 400 °C) deformation. A significant TRIP effect takes place during Lüders-like deformation at RT and 348 K (75 °C) temperatures. Semiquantitative analysis of the TRIP effect on the Lüders-like yield phenomenon proves that a softening effect of the strain energy consumption of strain-induced transformation is mainly responsible for this Lüders-like phenomenon. The TWIP mechanism dominates the 423 K (150 °C) deformation process, while the dislocation glide controls the plasticity at 573 K (300 °C) deformation. The delta-ferrite, as a hard phase in annealed dual-phase steel, greatly affects the mechanical stability of austenite due to the heterogeneous strain distribution between the two phases during deformation. A delta-ferrite-aided TRIP effect, i.e., martensite transformation induced by localized strain concentration of the hard delta-ferrite, is proposed to explain this kind of Lüders-like phenomenon. Moreover, the tensile curve at RT exhibits an upward curved behavior in the middle deformation stage, which is principally attributed to the deformation twinning of austenite retained after Lüders-like deformation. The combination of the TRIP effect during Lüders-like deformation and the subsequent TWIP effect greatly enhances the ductility in this annealed high-manganese dual-phase TRIP/TWIP steel.

  12. Mechanisms regulating cell membrane localization of the chemokine receptor CXCR4 in human hepatocarcinoma cells.

    PubMed

    Cepeda, Edgar B; Dediulia, Tatjana; Fernando, Joan; Bertran, Esther; Egea, Gustavo; Navarro, Estanislao; Fabregat, Isabel

    2015-05-01

    Hepatocellular carcinoma (HCC) cells with a mesenchymal phenotype show an asymmetric subcellular distribution of the chemokine receptor CXCR4, which is required for cell migration and invasion. In this work we examine the mechanisms that regulate the intracellular trafficking of CXCR4 in HCC cells. Results indicate that HCC cells present CXCR4 at the cell surface, but most of this protein is in endomembranes colocalizing with markers of the Golgi apparatus and recycling endosomes. The presence of high protein levels of CXCR4 present at the cell surface correlates with a mesenchymal-like phenotype and a high autocrine activation of the Transforming Growth Factor-beta (TGF-β) pathway. CXCR4 traffics along the Golgi/exocyst/plasma membrane pathway and requires EXOC4 (Sec8) component of the exocyst complex. HCC cells use distinct mechanisms for the CXCR4 internalization such as dynamin-dependent endocytosis and macropinocytosis. Regardless of the endocytic mechanisms, colocalization of CXCR4 and Rab11 is observed, which could be involved not only in receptor recycling but also in its post-Golgi transport. In summary, this work highlights membrane trafficking pathways whose pharmacological targeting could subsequently result in the inactivation of one of the main guiding mechanisms used by metastatic cells to colonize secondary organs and tissues. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Dual- and triple-acting agents for treating core and co-morbid symptoms of major depression: novel concepts, new drugs.

    PubMed

    Millan, Mark J

    2009-01-01

    The past decade of efforts to find improved treatment for major depression has been dominated by genome-driven programs of rational drug discovery directed toward highly selective ligands for nonmonoaminergic agents. Selective drugs may prove beneficial for specific symptoms, for certain patient subpopulations, or both. However, network analyses of the brain and its dysfunction suggest that agents with multiple and complementary modes of action are more likely to show broad-based efficacy against core and comorbid symptoms of depression. Strategies for improved multitarget exploitation of monoaminergic mechanisms include triple inhibitors of dopamine, serotonin (5-HT) and noradrenaline reuptake, and drugs interfering with feedback actions of monoamines at inhibitory 5-HT(1A), 5-HT(1B) and possibly 5-HT(5A) and 5-HT(7) receptors. Specific subsets of postsynaptic 5-HT receptors mediating antidepressant actions are under study (e.g., 5-HT(4) and 5-HT(6)). Association of a clinically characterized antidepressant mechanism with a nonmonoaminergic component of activity is an attractive strategy. For example, agomelatine (a melatonin agonist/5-HT(2C) antagonist) has clinically proven activity in major depression. Dual neurokinin(1) antagonists/5-HT reuptake inhibitors (SRIs) and melanocortin(4) antagonists/SRIs should display advantages over their selective counterparts, and histamine H(3) antagonists/SRIs, GABA(B) antagonists/SRIs, glutamatergic/SRIs, and cholinergic agents/SRIs may counter the compromised cognitive function of depression. Finally, drugs that suppress 5-HT reuptake and blunt hypothalamo-pituitary-adrenocorticotrophic axis overdrive, or that act at intracellular proteins such as GSK-3beta, may abrogate the negative effects of chronic stress on mood and neuronal integrity. This review discusses the discovery and development of dual- and triple-acting antidepressants, focusing on novel concepts and new drugs disclosed over the last 2 to 3 years.

  14. Site and mechanism of the colokinetic action of the ghrelin receptor agonist, HM01.

    PubMed

    Naitou, K; Mamerto, T P; Pustovit, R V; Callaghan, B; Rivera, L R; Chan, A J; Ringuet, M T; Pietra, C; Furness, J B

    2015-12-01

    It has been recently demonstrated that the ghrelin receptor agonist, HM01, caused defecation in rats that were treated to provide a model for the constipation of Parkinson's disease. HM01 significantly increased fecal output and increased Fos activity in neurons of the hypothalamus and hindbrain, but not in the spinal defecation center. Other ghrelin agonists act on the defecation center. Receptor pharmacology was examined in ghrelin receptor (GHSR1a) transfected cells. Anesthetized rats were used to investigate sites and mechanisms of action. HM01 activated rat GHSR1a at nanomolar concentrations and was antagonized by the GHSR1a antagonist, YIL781. HM01, intravenous, was potent to activate propulsive colorectal contractions. This was prevented by pelvic nerve section and by intravenous YIL781, but not by spinal cord section rostral to the defecation centers. Direct intrathecal application of HM01 to the defecation center at spinal level L6-S1 initiated propulsive contractions of the colorectum. HM01 stimulates GHSR1a receptors on neurons in the lumbosacral defecation centers to cause propulsive contractions and emptying of the colorectum. It has greater potency when given systemically, compared with other GHSR1a agonists. © 2015 John Wiley & Sons Ltd.

  15. Effects and mechanism of dual-frequency power ultrasound on the molecular weight distribution of corn gluten meal hydrolysates.

    PubMed

    Jin, Jian; Ma, Haile; Wang, Bei; Yagoub, Abu El-Gasim A; Wang, Kai; He, Ronghai; Zhou, Cunshan

    2016-05-01

    The impact of dual-frequency power ultrasound (DPU) on the molecular weight distribution (MWD) of corn gluten meal (CGM) hydrolysates and its mechanism were investigated in the present study. The mechanism was studied from aspects of structural and nano-mechanical characteristics of the major protein fractions of CGM, viz. zein and glutelin. The results of molecular weight distribution indicated that DPU pretreatment of CGM was beneficial to the preparation of peptides with molecular weights of 200-1000Da. Moreover, FTIR spectral analysis and atomic force microscopy characterization showed that the DPU pretreatment changed the contents of secondary structure of proteins, decreased the particle height and surface roughness of glutelin, reduced the Young's modulus and stiffness of zein while increased its adhesion force. In conclusion, DPU pretreatment of proteins before proteolysis is an efficient alternative method to produce short-chain peptides because of its positive effects originating from acoustic cavitation on the molecular conformation, nano-structures and nano-mechanical properties of proteins as well. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Synthesis and biological evaluation of a series of aminoalkyl-tetralones and tetralols as dual dopamine/serotonin ligands.

    PubMed

    Carro, Laura; Torrado, María; Raviña, Enrique; Masaguer, Christian F; Lage, Sonia; Brea, José; Loza, María I

    2014-01-01

    A series of novel α-tetralone and α-tetralol derivatives was synthesized, and their binding affinities for 5-HT(2A) and D₂ receptors, the most important targets implicated in the anti-schizophrenia drug action, were evaluated to elucidate how substitutions in the aromatic ring of the pharmacophore affect to the affinity or selectivity for these receptors. The replacement of the H-7 in the tetrahydronaphthalene system by an amino group resulted in privileged 5-HT(2A) affinity of the 6-fluorobenzo[d]isoxazol derivative 36 and the alcohol 25 both showing a pK(i) value for 5-HT(2A) higher than 8.3 and good binding affinities for D₂ receptor leading to a Meltzer's ratio characteristic of an atypical antipsychotic profile. Additionally, a small collection of 3-aminomethyltetralone derivatives was prepared and examined here for their affinities and selectivities as 5-HT(2A)/D₂ dual ligands. Compound 11 shows the best profile with good pKi values for 5-HT(2A) and D₂ receptors leading to a Meltzer's ratio characteristic of a typical antipsychotic behaviour. These three compounds behaved as competitive antagonists of both 5-HT(2A) and D₂ receptors, and might be promising pharmacological tools for the investigation of the dual function of the 5HT(2A)-D₂ ligands. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. CONTAMINANT INTERACTIONS WITH STEROID RECEPTORS: EVIDENCE FOR RECEPTOR BINDING.

    EPA Science Inventory

    Steroid receptors are important determinants of endocrine disrupter consequences. As the most frequently proposed mechanism of endocrine-disrupting contaminant (EDC) action, steroid receptors are not only targets of natural steroids but are also commonly sites of nonsteroidal com...

  18. Find novel dual-agonist drugs for treating type 2 diabetes by means of cheminformatics.

    PubMed

    Liu, Lei; Ma, Ying; Wang, Run-Ling; Xu, Wei-Ren; Wang, Shu-Qing; Chou, Kuo-Chen

    2013-01-01

    The high prevalence of type 2 diabetes mellitus in the world as well as the increasing reports about the adverse side effects of the existing diabetes treatment drugs have made developing new and effective drugs against the disease a very high priority. In this study, we report ten novel compounds found by targeting peroxisome proliferator-activated receptors (PPARs) using virtual screening and core hopping approaches. PPARs have drawn increasing attention for developing novel drugs to treat diabetes due to their unique functions in regulating glucose, lipid, and cholesterol metabolism. The reported compounds are featured with dual functions, and hence belong to the category of dual agonists. Compared with the single PPAR agonists, the dual PPAR agonists, formed by combining the lipid benefit of PPARα agonists (such as fibrates) and the glycemic advantages of the PPARγ agonists (such as thiazolidinediones), are much more powerful in treating diabetes because they can enhance metabolic effects while minimizing the side effects. This was observed in the studies on molecular dynamics simulations, as well as on absorption, distribution, metabolism, and excretion, that these novel dual agonists not only possessed the same function as ragaglitazar (an investigational drug developed by Novo Nordisk for treating type 2 diabetes) did in activating PPARα and PPARγ, but they also had more favorable conformation for binding to the two receptors. Moreover, the residues involved in forming the binding pockets of PPARα and PPARγ among the top ten compounds are explicitly presented, and this will be very useful for the in-depth conduction of mutagenesis experiments. It is anticipated that the ten compounds may become potential drug candidates, or at the very least, the findings reported here may stimulate new strategies or provide useful insights for designing new and more powerful dual-agonist drugs for treating type 2 diabetes.

  19. Dual wire weld feed proportioner

    NASA Technical Reports Server (NTRS)

    Nugent, R. E.

    1968-01-01

    Dual feed mechanism enables proportioning of two different weld feed wires during automated TIG welding to produce a weld alloy deposit of the desired composition. The wires are fed into the weld simultaneously. The relative feed rates of the wires and the wire diameters determine the weld deposit composition.

  20. Epidermal Growth Factor Receptor (EGFR) and its Cross-Talks with Topoisomerases: Challenges and Opportunities for Multi-Target Anticancer Drugs.

    PubMed

    Chauhan, Monika; Sharma, Gourav; Joshi, Gaurav; Kumar, Raj

    2016-01-01

    The interactions of Epidermal Growth Factor Receptor (EGFR) and topoisomerases have been seen in various cancer including brain, breast, ovarian, colorectal, gastric, etc. The studies in adenocarcinoma patients, chromogenic in situ hybridization, western blotting, receptor binding assay and electromobility shift assays, etc. threw light on the biophysical and biochemical features of EGFR and Topoisomerase cross-talks. It has been revealed that both the isomers of topoisomerase (Topo I and Topo II) interact via different mechanisms with EGFR. Topo II and HER2 share the same location i.e. 17q12-21 regions which could be a possible cause of predominant interactions seen between them. Topo I and EGFR interactions are mechanically related to the nucleolar translocation of heparenase by EGF and c-Jun. We compiled literature findings including the mechanistic interventions, signaling pathways, patents, in vitro and in vivo data of tested inhibitors and combinations in clinical trials, which provide convincing confirmations for the interactions of EGFR and topoisomerases. These interactions may be used for deriving a consistent route of mechanism, design and development of standard drug combinations and dual or multi inhibitors.

  1. Novel thrombopoietin mimetic peptides bind c-Mpl receptor: Synthesis, biological evaluation and molecular modeling.

    PubMed

    Liu, Yaquan; Tian, Fang; Zhi, Dejuan; Wang, Haiqing; Zhao, Chunyan; Li, Hongyu

    2017-02-01

    Thrombopoietin (TPO) acts in promoting the proliferation of hematopoietic stem cells and by initiating specific maturation events in megakaryocytes. Now, TPO-mimetic peptides with amino acid sequences unrelated to TPO are of considerable pharmaceutical interest. In the present paper, four new TPO mimetic peptides that bind and activate c-Mpl receptor have been identified, synthesized and tested by Dual-Luciferase reporter gene assay for biological activities. The molecular modeling research was also approached to understand key molecular mechanisms and structural features responsible for peptide binding with c-Mpl receptor. The results presented that three of four mimetic peptides showed significant activities. In addition, the molecular modeling approaches proved hydrophobic interactions were the driven positive forces for binding behavior between peptides and c-Mpl receptor. TPO peptide residues in P7, P13 and P7' positions were identified by the analysis of hydrogen bonds and energy decompositions as the key ones for benefiting better biological activities. Our data suggested the synthesized peptides have considerable potential for the future development of stable and highly active TPO mimetic peptides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. AMPA receptors control fear extinction through an Arc-dependent mechanism.

    PubMed

    Trent, Simon; Barnes, Philip; Hall, Jeremy; Thomas, Kerrie L

    2017-08-01

    Activity-regulated cytoskeleton-associated protein (Arc) supports fear memory through synaptic plasticity events requiring actin cytoskeleton rearrangements. We have previously shown that reducing hippocampal Arc levels through antisense knockdown leads to the premature extinction of contextual fear. Here we show that the AMPA receptor antagonist CNQX elevates hippocampal Arc levels during extinction and blocks extinction that can be rescued by reducing Arc. Increasing Arc levels with CNQX also overcomes the actin-destabilizing properties of cytochalasin D and promotes extinction. Therefore, extinction is dependent on AMPA-mediated reductions of Arc via a mechanism consistent with a role for Arc in stabilizing the actin cytoskeleton to constrain extinction. © 2017 Trent et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Abolished thermal and mechanical antinociception but retained visceral chemical antinociception induced by butorphanol in μ-opioid receptor knockout mice

    PubMed Central

    Ide, Soichiro; Minami, Masabumi; Ishihara, Kumatoshi; Uhl, George R.; Satoh, Masamichi; Sora, Ichiro; Ikeda, Kazutaka

    2012-01-01

    Butorphanol is hypothesized to induce analgesia via opioid pathways, although the precise mechanisms for its effects remain unknown. In this study, we investigated the role of the μ-opioid receptor (MOP) in thermal, mechanical, and visceral chemical antinociception induced by butorphanol using MOP knockout (KO) mice. Butorphanol-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice compared with wildtype mice. The results obtained from our butorphanol-induced mechanical antinociception experiments, assessed by the Randall-Selitto test, were similar to the results obtained from the thermal antinociception experiments in these mice. Interestingly, however, butorphanol retained its ability to induce significant visceral chemical antinociception, assessed by the writhing test, in homozygous MOP-KO mice. The butorphanol-induced visceral chemical antinociception that was retained in homozygous MOP-KO mice was completely blocked by pretreatment with nor-binaltorphimine, a κ-opioid receptor (KOP) antagonist. In vitro binding and cyclic adenosine monophosphate assays also showed that butorphanol possessed higher affinity for KOPs and MOPs than for δ-opioid receptors. These results molecular pharmacologically confirmed previous studies implicating MOPs, and partially KOPs, in mediating butorphanol-induced analgesia. PMID:18417173

  4. Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics

    NASA Astrophysics Data System (ADS)

    Jeong, Sinyoung; Kim, Yong-Il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong

    2015-03-01

    Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.

  5. Methylphenidate Exerts Dose-Dependent Effects on Glutamate Receptors and Behaviors

    PubMed Central

    Cheng, Jia; Xiong, Zhe; Duffney, Lara J.; Wei, Jing; Liu, Aiyi; Liu, Sihang; Chen, Guo-Jun; Yan, Zhen

    2014-01-01

    Background Methylphenidate (MPH), a psychostimulant drug for the treatment of attention-deficit hyperactivity disorder (ADHD), produces the effects of increasing alertness and improving attention, while its misuse has been associated with an increased risk of aggression and psychosis. In this study, we sought to determine the molecular mechanism underlying the complex actions of MPH. Methods Adolescent (4-week-old) rats were given one injection of MPH at different doses. The impact of MPH on glutamatergic signaling in pyramidal neurons of prefrontal cortex (PFC) was measured. MPH-induced behavioral changes were also examined in parallel. Results We found that administration of low-dose (0.5 mg/kg) MPH selectively potentiated NMDAR-mediated excitatory synaptic currents (EPSCs) via adrenergic receptor activation, while the high-dose (10 mg/kg) MPH suppressed both NMDAR- and AMPAR-EPSCs. The dual effects of MPH on EPSCs were associated with bi-directional changes in the surface level of glutamate receptor subunits. Behavioral tests also indicated that low-dose MPH facilitated the PFC-mediated temporal order recognition memory (TORM) and attention, while animals injected with high-dose MPH exhibited significantly elevated locomotive activity. Inhibiting the function of SNAP-25, a key SNARE proteins involved in NMDAR exocytosis, blocked the increase of NMDAR-EPSC by low-dose MPH. In animals exposed to repeated stress, administration of low-dose MPH effectively restored NMDAR function and TORM via a mechanism dependent on SNAP-25. Conclusions Our results have provided a potential mechanism underlying the cognitive enhancing effects of low-dose MPH, as well as the psychosis-inducing effects of high-dose MPH. PMID:24832867

  6. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.

    PubMed

    Miao, Yinglong; McCammon, J Andrew

    2018-03-20

    Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M 2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M 2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.

  7. Dual-specificity phosphatase 3 deficiency or inhibition limits platelet activation and arterial thrombosis.

    PubMed

    Musumeci, Lucia; Kuijpers, Marijke J; Gilio, Karen; Hego, Alexandre; Théâtre, Emilie; Maurissen, Lisbeth; Vandereyken, Maud; Diogo, Catia V; Lecut, Christelle; Guilmain, William; Bobkova, Ekaterina V; Eble, Johannes A; Dahl, Russell; Drion, Pierre; Rascon, Justin; Mostofi, Yalda; Yuan, Hongbin; Sergienko, Eduard; Chung, Thomas D Y; Thiry, Marc; Senis, Yotis; Moutschen, Michel; Mustelin, Tomas; Lancellotti, Patrizio; Heemskerk, Johan W M; Tautz, Lutz; Oury, Cécile; Rahmouni, Souad

    2015-02-17

    A limitation of current antiplatelet therapies is their inability to separate thrombotic events from bleeding occurrences. A better understanding of the molecular mechanisms leading to platelet activation is important for the development of improved therapies. Recently, protein tyrosine phosphatases have emerged as critical regulators of platelet function. This is the first report implicating the dual-specificity phosphatase 3 (DUSP3) in platelet signaling and thrombosis. This phosphatase is highly expressed in human and mouse platelets. Platelets from DUSP3-deficient mice displayed a selective impairment of aggregation and granule secretion mediated by the collagen receptor glycoprotein VI and the C-type lectin-like receptor 2. DUSP3-deficient mice were more resistant to collagen- and epinephrine-induced thromboembolism compared with wild-type mice and showed severely impaired thrombus formation on ferric chloride-induced carotid artery injury. Intriguingly, bleeding times were not altered in DUSP3-deficient mice. At the molecular level, DUSP3 deficiency impaired Syk tyrosine phosphorylation, subsequently reducing phosphorylation of phospholipase Cγ2 and calcium fluxes. To investigate DUSP3 function in human platelets, a novel small-molecule inhibitor of DUSP3 was developed. This compound specifically inhibited collagen- and C-type lectin-like receptor 2-induced human platelet aggregation, thereby phenocopying the effect of DUSP3 deficiency in murine cells. DUSP3 plays a selective and essential role in collagen- and C-type lectin-like receptor 2-mediated platelet activation and thrombus formation in vivo. Inhibition of DUSP3 may prove therapeutic for arterial thrombosis. This is the first time a protein tyrosine phosphatase, implicated in platelet signaling, has been targeted with a small-molecule drug. © 2014 American Heart Association, Inc.

  8. Musical expertise has minimal impact on dual task performance.

    PubMed

    Cocchini, Gianna; Filardi, Maria Serena; Crhonkova, Marcela; Halpern, Andrea R

    2017-05-01

    Studies investigating effect of practice on dual task performance have yielded conflicting findings, thus supporting different theoretical accounts about the organisation of attentional resources when tasks are performed simultaneously. Because practice has been proven to reduce the demand of attention for the trained task, the impact of long-lasting training on one task is an ideal way to better understand the mechanisms underlying dual task decline in performance. Our study compared performance during dual task execution in expert musicians compared to controls with little if any musical experience. Participants performed a music recognition task and a visuo-spatial task separately (single task) or simultaneously (dual task). Both groups showed a significant but similar performance decline during dual tasks. In addition, the two groups showed a similar decline of dual task performance during encoding and retrieval of the musical information, mainly attributed to a decline in sensitivity. Our results suggest that attention during dual tasks is similarly distributed by expert and non-experts. These findings are in line with previous studies showing a lack of sensitivity to difficulty and lack of practice effect during dual tasks, supporting the idea that different tasks may rely on different and not-sharable attentional resources.

  9. Low-threshold mechanoreceptors play a frequency-dependent dual role in subjective ratings of mechanical allodynia.

    PubMed

    Löken, Line S; Duff, Eugene P; Tracey, Irene

    2017-12-01

    In the setting of injury, myelinated primary afferent fibers that normally signal light touch are thought to switch modality and instead signal pain. In the absence of injury, touch is perceived as more intense when firing rates of Aβ afferents increase. However, it is not known if varying the firing rates of Aβ afferents have any consequence to the perception of dynamic mechanical allodynia (DMA). We hypothesized that, in the setting of injury, the unpleasantness of DMA would be intensified as the firing rates of Aβ afferents increase. Using a stimulus-response protocol established in normal skin, where an increase in brush velocity results in an increase of Aβ afferent firing rates, we tested if brush velocity modulated the unpleasantness of capsaicin-induced DMA. We analyzed how changes in estimated low-threshold mechanoreceptor firing activity influenced perception and brain activity (functional MRI) of DMA. Brushing on normal skin was perceived as pleasant, but brushing on sensitized skin produced both painful and pleasant sensations. Surprisingly, there was an inverse relationship between Aβ firing rates and unpleasantness such that brush stimuli that produced low firing rates were most painful and those that elicited high firing rates were rated as pleasant. Concurrently to this, we found increased cortical activity in response to low Aβ firing rates in regions previously implicated in pain processing during brushing of sensitized skin, but not normal skin. We suggest that Aβ signals do not merely switch modality to signal pain during injury. Instead, they exert a high- and low-frequency-dependent dual role in the injured state, with respectively both pleasant and unpleasant consequences. NEW & NOTEWORTHY We suggest that Aβ signals do not simply switch modality to signal pain during injury but play a frequency-dependent and dual role in the injured state with both pleasant and unpleasant consequences. These results provide a framework to resolve the

  10. SOFI of GABAB neurotransmitter receptors in hippocampal neurons elucidates intracellular receptor trafficking and assembly

    NASA Astrophysics Data System (ADS)

    Huss, Anja; Ramírez, Omar; Santibáñez, Felipe; Couve, Andrés.; Härtel, Steffen; Enderlein, Jörg

    2013-02-01

    The synaptic efficacy of neurons depends on the number of neurotransmitter receptors in the plasma membrane. The availability of these receptors is controlled by their specific intracellular trafficking routes. γ-Aminobutyric acid type B receptors (GABABRs) are heteromeric proteins consisting of GABABR1 and GABABR2 subunits. These receptors are found at the plasma membrane of somatodendritic postsynaptic sites and in axons. It is unknown whether the assembly of the subunits occurs directly in the somatic endoplasmic reticulum (ER) followed by vesicular transport, or whether the assembly occurs after the separate transport of the subunits to the dendritic ER compartment. To address this question we have studied the assembly of the GABABRs in hippocampal neurons with dual-color, 3D super-resolution optical fluctuation imaging (SOFI). SOFI is a fluorescence imaging modality which yields superresolved spatial resolution, 3D-sectioning and high image contrast. We will use the SOFI images to quantify the distribution of the GABABR subunits in the plasma membrane and in the dendritic intracellular compartments. Finally, we want to apply quantitative co-localization analysis to determine the compartments in which the assembly of the GABABR subunits occurs.

  11. Estrogen promotes megakaryocyte polyploidization via estrogen receptor beta-mediated transcription of GATA1.

    PubMed

    Du, C; Xu, Y; Yang, K; Chen, S; Wang, X; Wang, S; Wang, C; Shen, M; Chen, F; Chen, M; Zeng, D; Li, F; Wang, T; Wang, F; Zhao, J; Ai, G; Cheng, T; Su, Y; Wang, J

    2017-04-01

    Estrogen is reported to be involved in thrombopoiesis and the disruption of its signaling may cause myeloproliferative disease, yet the underlying mechanisms remain largely unknown. GATA-binding factor 1 (GATA1) is a key regulator of megakaryocyte (MK) differentiation and its deficiency will lead to megakaryoblastic leukemia. Here we show that estrogen can dose-dependently promote MK polyploidization and maturation via activation of estrogen receptor beta (ERβ), accompanied by a significant upregulation of GATA1. Chromatin immunoprecipitation and a dual luciferase assay demonstrate that ERβ can directly bind the promoter region of GATA1 and activate its transcription. Steroid receptor coactivator 3 (SRC3) is involved in ERβ-mediated GATA1 transcription. The deficiency of ERβ or SRC3, similar to the inhibition of GATA1, leads to the impediment of estrogen-induced MK polyploidization and platelet production. Further investigations reveal that signal transducer and activator of transcription 1 signaling pathway downstream of GATA1 has a crucial role in estrogen-induced MK polyploidization, and ERβ-mediated GATA1 upregulation subsequently enhances nuclear factor erythroid-derived 2 expression, thereby promoting proplatelet formation and platelet release. Our study provides a deep insight into the molecular mechanisms of estrogen signaling in regulating thrombopoiesis and the pathogenesis of ER deficiency-related leukemia.

  12. Mechanisms of Toll-like receptor 4 endocytosis reveal a common immune-evasion strategy used by pathogenic and commensal bacteria

    PubMed Central

    Tan, Yunhao; Zanoni, Ivan; Cullen, Thomas W.; Goodman, Andrew L.; Kagan, Jonathan C.

    2015-01-01

    Microbe-induced receptor trafficking has emerged as an essential means to promote innate immune signal transduction. Upon detection of bacterial lipopolysaccharides (LPS), CD14 induces an inflammatory endocytosis pathway that delivers Toll-like Receptor 4 (TLR4) to endosomes. Although several regulators of CD14-dependent TLR4 endocytosis have been identified, the cargo selection mechanism during this process remains unknown. We reveal that, in contrast to classic cytosolic interactions that promoted the endocytosis of transmembrane receptors, TLR4 was selected as cargo for inflammatory endocytosis entirely through extracellular interactions. Mechanistically, the extracellular protein MD-2 bound to and dimerized TLR4 in order to promote this endocytic event. Our analysis of LPS variants from human pathogens and gut commensals revealed a common mechanism by which bacteria prevent inflammatory endocytosis. We suggest that evasion of CD14-dependent endocytosis is an attribute that transcends the concept of pathogenesis, and may be a fundamental feature of bacteria that inhabit eukaryotic hosts. PMID:26546281

  13. Microstructure and Mechanical Characterization of Friction-Stir-Welded Dual-Phase Brass

    NASA Astrophysics Data System (ADS)

    Ramesh, R.; Dinaharan, I.; Akinlabi, E. T.; Murugan, N.

    2018-03-01

    Friction stir welding (FSW) is an ideal process to join brass to avoid the evaporation of zinc. In the present investigation, 6-mm-thick dual-phase brass plates were joined efficiently using FSW at various tool rotational speeds. The microstructures were studied using optical microscopy, electron backscattered diffraction and transmission electron microscopy. The optical micrographs revealed the evolution of various zones across the joint line. The microstructure of the heat-affected zone was similar to that of base metal. The weld zone exhibited finer grains due to dynamic recrystallization. The recrystallization was inhomogeneous and the inhomogeneity reduced with increased tool rotational speed. The dual phase was preserved in the weld zone due to the retention of zinc. The severe plastic deformation created a lot of dislocations in the weld zone. The weld zone was strengthened after welding. The role of tool rotational speed on the joint strength is further reported.

  14. Capillary permeability induced by intravenous neurokinins. Receptor characterization and mechanism of action.

    PubMed

    Jacques, L; Couture, R; Drapeau, G; Regoli, D

    1989-08-01

    (5-HT1 and 5-HT2 receptors), histamine (H1 receptors) and kinins (B2 receptors) in the response to SP and indicate that the two positively charged amino acids (Arg, Lys) at the N-terminal end of the SP molecule are essential to trigger the release of prostaglandins from mast cells. This mechanism is responsible for the indirect effect of SP and related peptides on capillary permeability and does not appear to be mediated by a selective SP receptor. In addition, neurokinins may increase capillary permeability by direct activation of a NK-1 receptor type on the vascular endothelium.

  15. Novel synergistic mechanism for sst2 somatostatin and TNFalpha receptors to induce apoptosis: crosstalk between NF-kappaB and JNK pathways.

    PubMed

    Guillermet-Guibert, J; Saint-Laurent, N; Davenne, L; Rochaix, P; Cuvillier, O; Culler, M D; Pradayrol, L; Buscail, L; Susini, C; Bousquet, C

    2007-02-01

    Somatostatin is a multifunctional hormone that modulates cell proliferation, differentiation and apoptosis. Mechanisms for somatostatin-induced apoptosis are at present mostly unsolved. Therefore, we investigated whether somatostatin receptor subtype 2 (sst2) induces apoptosis in the nontransformed murine fibroblastic NIH3T3 cells. Somatostatin receptor subtype 2 expression induced an executioner caspase-mediated apoptosis through a tyrosine phosphatase SHP-1 (Src homology domain phosphatase-1)-dependent stimulation of nuclear factor kappa B (NF-kappaB) activity and subsequent inhibition of the mitogen-activated protein kinase JNK. Tumor necrosis factor alpha (TNFalpha) stimulated both NF-kappaB and c-Jun NH2-terminal kinase (JNK) activities, which had opposite action on cell survival. Importantly, sst2 sensitized NIH3T3 cells to TNFalpha-induced apoptosis by (1) upregulating TNFalpha receptor protein expression, and sensitizing to TNFalpha-induced caspase-8 activation; (2) enhancing TNFalpha-mediated activation of NF-kappaB, resulting in JNK inhibition and subsequent executioner caspase activation and cell death. We have here unraveled a novel signaling mechanism for a G protein-coupled receptor, which directly triggers apoptosis and crosstalks with a death receptor to enhance death ligand-induced apoptosis.

  16. Differential Mechanisms of Activation of the Ang Peptide Receptors AT1, AT2, and MAS: Using In Silico Techniques to Differentiate the Three Receptors

    PubMed Central

    Prokop, Jeremy W.; Santos, Robson A. S.; Milsted, Amy

    2013-01-01

    The renin-angiotensin system is involved in multiple conditions ranging from cardiovascular disorders to cancer. Components of the pathway, including ACE, renin and angiotensin receptors are targets for disease treatment. This study addresses three receptors of the pathway: AT1, AT2, and MAS and how the receptors are similar and differ in activation by angiotensin peptides. Combining biochemical and amino acid variation data with multiple species sequence alignments, structural models, and docking site predictions allows for visualization of how angiotensin peptides may bind and activate the receptors; allowing identification of conserved and variant mechanisms in the receptors. MAS differs from AT1 favoring Ang-(1–7) and not Ang II binding, while AT2 recently has been suggested to preferentially bind Ang III. A new model of Ang peptide binding to AT1 and AT2 is proposed that correlates data from site directed mutagenesis and photolabled experiments that were previously considered conflicting. Ang II binds AT1 and AT2 through a conserved initial binding mode involving amino acids 111 (consensus 325) of AT1 (Asn) interacting with Tyr (4) of Ang II and 199 and 256 (consensus 512 and 621, a Lys and His respectively) interacting with Phe (8) of Ang II. In MAS these sites are not conserved, leading to differential binding and activation by Ang-(1–7). In both AT1 and AT2, the Ang II peptide may internalize through Phe (8) of Ang II propagating through the receptors’ conserved aromatic amino acids to the final photolabled positioning relative to either AT1 (amino acid 294, Asn, consensus 725) or AT2 (138, Leu, consensus 336). Understanding receptor activation provides valuable information for drug design and identification of other receptors that can potentially bind Ang peptides. PMID:23755216

  17. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive α4 nicotinic receptors via a cholinergic-dependent mechanism

    PubMed Central

    Zhao-Shea, Rubing; Cohen, Bruce N.; Just, Herwig; McClure-Begley, Tristan; Whiteaker, Paul; Grady, Sharon R.; Salminen, Outi; Gardner, Paul D.; Lester, Henry A.; Tapper, Andrew R.

    2010-01-01

    Recent studies suggest that high-affinity neuronal nicotinic acetylcholine receptors (nAChRs) containing α4 and β2 subunits (α4β2*) functionally interact with G-protein-coupled dopamine (DA) D2 receptors in basal ganglia. We hypothesized that if a functional interaction between these receptors exists, then mice expressing an M2 point mutation (Leu9′Ala) rendering α4 nAChRs hypersensitive to ACh may exhibit altered sensitivity to a D2-receptor agonist. When challenged with the D2R agonist, quinpirole (0.5–10 mg/kg), Leu9′Ala mice, but not wild-type (WT) littermates, developed severe, reversible motor impairment characterized by rigidity, catalepsy, akinesia, and tremor. While striatal DA tissue content, baseline release, and quinpirole-induced DA depletion did not differ between Leu9′Ala and WT mice, quinpirole dramatically increased activity of cholinergic striatal interneurons only in mutant animals, as measured by increased c-Fos expression in choline acetyltransferase (ChAT)-positive interneurons. Highlighting the importance of the cholinergic system in this mouse model, inhibiting the effects of ACh by blocking muscarinic receptors, or by selectively activating hypersensitive nAChRs with nicotine, rescued motor symptoms. This novel mouse model mimics the imbalance between striatal DA/ACh function associated with severe motor impairment in disorders such as Parkinson’s disease, and the data suggest that a D2R–α4*-nAChR functional interaction regulates cholinergic interneuron activity.—Zhao-Shea, R., Cohen, B. N., Just, H., McClure-Begley, T., Whiteaker, P., Grady, S. R., Salminen, O., Gardner, P. D., Lester, H. A., Tapper, A. R. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive α4 nicotinic receptors via a cholinergic-dependent mechanism. PMID:19720621

  18. Dual-spin attitude control for outer planet missions

    NASA Technical Reports Server (NTRS)

    Ward, R. S.; Tauke, G. J.

    1977-01-01

    The applicability of dual-spin technology to a Jupiter orbiter with probe mission was investigated. Basic mission and system level attitude control requirements were established and preliminary mechanization and control concepts developed. A comprehensive 18-degree-of-freedom digital simulation was utilized extensively to establish control laws, study dynamic interactions, and determined key sensitivities. Fundamental system/subsystem constraints were identified, and the applicability of dual-spin technology to a Jupiter orbiter with probe mission was validated.

  19. Quantitative in vivo immunohistochemistry of epidermal growth factor receptor using a receptor concentration imaging approach

    PubMed Central

    Samkoe, Kimberley S.; Tichauer, Kenneth M.; Gunn, Jason R.; Wells, Wendy A.; Hasan, Tayyaba; Pogue, Brian W.

    2014-01-01

    As receptor-targeted therapeutics become increasingly used in clinical oncology, the ability to quantify protein expression and pharmacokinetics in vivo is imperative to ensure successful individualized treatment plans. Current standards for receptor analysis are performed on extracted tissues. These measurements are static and often physiologically irrelevant, therefore, only a partial picture of available receptors for drug targeting in vivo is provided. Until recently, in vivo measurements were limited by the inability to separate delivery, binding, and retention effects but this can be circumvented by a dual-tracer approach for referencing the detected signal. We hypothesized that in vivo receptor concentration imaging (RCI) would be superior to ex vivo immunohistochemistry. Using multiple xenograft tumor models with varying epidermal growth factor receptor (EGFR) expression, we determined the EGFR concentration in each model using a novel targeted agent (anti-EGFR affibody-IRDye800CW conjugate) along with a simultaneously delivered reference agent (control affibody-IRDye680RD conjugate). The RCI-calculated in vivo receptor concentration was strongly correlated with ex vivo pathologist-scored immunohistochemistry and computer-quantified ex vivo immunofluorescence. In contrast, no correlation was observed with ex vivo Western blot or in vitro flow cytometry assays. Overall, our results argue that in vivo RCI provides a robust measure of receptor expression equivalent to ex vivo immuno-staining, with implications for use in non-invasive monitoring of therapy or therapeutic guidance during surgery. PMID:25344226

  20. Dual Targeting of Insulin Receptor and KIT in Imatinib-Resistant Gastrointestinal Stromal Tumors.

    PubMed

    Chen, Weicai; Kuang, Ye; Qiu, Hai-Bo; Cao, Zhifa; Tu, Yuqing; Sheng, Qing; Eilers, Grant; He, Quan; Li, Hai-Long; Zhu, Meijun; Wang, Yuexiang; Zhang, Rongqing; Wu, Yeqing; Meng, Fanguo; Fletcher, Jonathan A; Ou, Wen-Bin

    2017-09-15

    Oncogenic KIT or PDGFRA receptor tyrosine kinase (RTK) mutations are compelling therapeutic targets in gastrointestinal stromal tumors (GIST), and treatment with the KIT/PDGFRA inhibitor imatinib is the standard of care for patients with metastatic GIST. Most GISTs eventually acquire imatinib resistance due to secondary mutations in the KIT kinase domain, but it is unclear whether these genomic resistance mechanisms require other cellular adaptations to create a clinically meaningful imatinib-resistant state. Using phospho-RTK and immunoblot assays, we demonstrate activation of KIT and insulin receptor (IR) in imatinib-resistant GIST cell lines (GIST430 and GIST48) and biopsies with acquisition of KIT secondary mutations, but not in imatinib-sensitive GIST cells (GIST882 and GIST-T1). Treatment with linsitinib, a specific IR inhibitor, inhibited IR and downstream intermediates AKT, MAPK, and S6 in GIST430 and GIST48, but not in GIST882, exerting minimal effect on KIT phosphorylation in these cell lines. Additive effects showing increased apoptosis, antiproliferative effects, cell-cycle arrest, and decreased pAKT and pS6 expression, tumor growth, migration, and invasiveness were observed in imatinib-resistant GIST cells with IR activation after coordinated inhibition of IR and KIT by linsitinib (or IR shRNA) and imatinib, respectively, compared with either intervention alone. IGF2 overexpression was responsible for IR activation in imatinib-resistant GIST cells, whereas IR activation did not result from IR amplification, IR mutation, or KIT phosphorylation. Our findings suggest that combinatorial inhibition of IR and KIT warrants clinical evaluation as a novel therapeutic strategy in imatinib-resistant GISTs. Cancer Res; 77(18); 5107-17. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms.

    PubMed

    Ries, Jonas; Yu, Shuizi Rachel; Burkhardt, Markus; Brand, Michael; Schwille, Petra

    2009-09-01

    Analysis of receptor-ligand interactions in vivo is key to biology but poses a considerable challenge to quantitative microscopy. Here we combine static-volume, two-focus and dual-color scanning fluorescence correlation spectroscopy to solve this task at cellular resolution in complex biological environments. We quantified the mobility of fibroblast growth factor receptors Fgfr1 and Fgfr4 in cell membranes of living zebrafish embryos and determined their in vivo binding affinities to their ligand Fgf8.

  2. Molecular mechanism of peroxisome proliferator-activated receptor α activation by WY14643: a new mode of ligand recognition and receptor stabilization.

    PubMed

    Bernardes, Amanda; Souza, Paulo C T; Muniz, João R C; Ricci, Clarisse G; Ayers, Stephen D; Parekh, Nili M; Godoy, André S; Trivella, Daniela B B; Reinach, Peter; Webb, Paul; Skaf, Munir S; Polikarpov, Igor

    2013-08-23

    Peroxisome proliferator-activated receptors (PPARs) are members of a superfamily of nuclear transcription factors. They are involved in mediating numerous physiological effects in humans, including glucose and lipid metabolism. PPARα ligands effectively treat dyslipidemia and have significant antiinflammatory and anti-atherosclerotic activities. These effects and their ligand-dependent activity make nuclear receptors obvious targets for drug design. Here, we present the structure of the human PPARα in complex with WY14643, a member of fibrate class of drug, and a widely used PPAR activator. The crystal structure of this complex suggests that WY14643 induces activation of PPARα in an unusual bipartite mechanism involving conventional direct helix 12 stabilization and an alternative mode that involves a second ligand in the pocket. We present structural observations, molecular dynamics and activity assays that support the importance of the second site in WY14643 action. The unique binding mode of WY14643 reveals a new pattern of nuclear receptor ligand recognition and suggests a novel basis for ligand design, offering clues for improving the binding affinity and selectivity of ligand. We show that binding of WY14643 to PPARα was associated with antiinflammatory disease in a human corneal cell model, suggesting possible applications for PPARα ligands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Regulated endocytosis of opioid receptors: cellular mechanisms and proposed roles in physiological adaptation to opiate drugs.

    PubMed

    von Zastrow, Mark; Svingos, Adena; Haberstock-Debic, Helena; Evans, Chris

    2003-06-01

    Opiate drugs such as morphine and heroin are among the most effective analgesics known. Prolonged or repeated administration of opiates produces adaptive changes in the nervous system that lead to reduced drug potency or efficacy (tolerance), as well as physiological withdrawal symptoms and behavioral manifestations such as craving when drug use is terminated (dependence). These adaptations limit the therapeutic utility of opiate drugs, particularly in the treatment of chronically painful conditions, and are thought to contribute to the highly addictive nature of opiates. For many years it has been proposed that physiological tolerance to opiate drugs is associated with a modification of the number or functional activity of opioid receptors in specific neurons. We now understand certain mechanisms of opioid receptor desensitization and endocytosis in considerable detail. However, the functional roles that these mechanisms play in the complex physiological adaptation of the intact nervous system to opiates are only beginning to be explored.

  4. Dual inhibition of Met kinase and angiogenesis to overcome HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer.

    PubMed

    Takeuchi, Shinji; Wang, Wei; Li, Qi; Yamada, Tadaaki; Kita, Kenji; Donev, Ivan S; Nakamura, Takahiro; Matsumoto, Kunio; Shimizu, Eiji; Nishioka, Yasuhiko; Sone, Saburo; Nakagawa, Takayuki; Uenaka, Toshimitsu; Yano, Seiji

    2012-09-01

    Acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is a serious problem in the management of EGFR mutant lung cancer. We recently reported that hepatocyte growth factor (HGF) induces resistance to EGFR-TKIs by activating the Met/PI3K pathway. HGF is also known to induce angiogenesis in cooperation with vascular endothelial growth factor (VEGF), which is an important therapeutic target in lung cancer. Therefore, we hypothesized that dual inhibition of HGF and VEGF may be therapeutically useful for controlling HGF-induced EGFR-TKI-resistant lung cancer. We found that a dual Met/VEGF receptor 2 kinase inhibitor, E7050, circumvented HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer cell lines by inhibiting the Met/Gab1/PI3K/Akt pathway in vitro. HGF stimulated VEGF production by activation of the Met/Gab1 signaling pathway in EGFR mutant lung cancer cell lines, and E7050 showed an inhibitory effect. In a xenograft model, tumors produced by HGF-transfected Ma-1 (Ma-1/HGF) cells were more angiogenic than vector control tumors and showed resistance to gefitinib. E7050 alone inhibited angiogenesis and retarded growth of Ma-1/HGF tumors. E7050 combined with gefitinib induced marked regression of tumor growth. Moreover, dual inhibition of HGF and VEGF by neutralizing antibodies combined with gefitinib also markedly regressed tumor growth. These results indicate the therapeutic rationale of dual targeting of HGF-Met and VEGF-VEGF receptor 2 for overcoming HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Dual-band polarization-/angle-insensitive metamaterial absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Han; Chongqing University, College of Communication Engineering, Chongqing, 400044; Zhong, Lin-Lin

    A dual-band metamaterial absorber (MA) based on triangular resonators is designed and investigated in this paper. It is composed of a two-dimensional periodic metal-dielectric-metal sandwiches array on a dielectric substrate. The simulation results clearly show that this absorber has two absorption peaks at 14.9 and 18.9 GHz, respectively, and experiments are conducted to verify the proposed designs effectively. For each polarization, the dual-band absorber is insensitive to the incident angle (up to 60°) and the absorption peaks remain high for both transverse electric (TE) and transverse magnetic (TM) radiation. To study the physical mechanism of power loss, the current distributionmore » at the dual absorption peaks is given. The MA proposed in this paper has potential applications in many scientific and martial fields.« less

  6. Dual Credit/Dual Enrollment and Data Driven Policy Implementation

    ERIC Educational Resources Information Center

    Lichtenberger, Eric; Witt, M. Allison; Blankenberger, Bob; Franklin, Doug

    2014-01-01

    The use of dual credit has been expanding rapidly. Dual credit is a college course taken by a high school student for which both college and high school credit is given. Previous studies provided limited quantitative evidence that dual credit/dual enrollment is directly connected to positive student outcomes. In this study, predictive statistics…

  7. Coping with the Dual-Income Lifestyle.

    ERIC Educational Resources Information Center

    Paden, Shelley L.; Buehler, Cheryl

    1995-01-01

    The direct and moderating effects of coping mechanisms used by 314 spouses in dual-income marriages were examined. The direct effects of coping on well-being were minimal; however, coping moderated several effects of role conflict and role overload on spouse's well-being. (JPS)

  8. Acetylcholinesterase Inhibitors and Drugs Acting on Muscarinic Receptors- Potential Crosstalk of Cholinergic Mechanisms During Pharmacological Treatment

    PubMed Central

    Soukup, Ondrej; Winder, Michael; Killi, Uday Kumar; Wsol, Vladimir; Jun, Daniel; Kuca, Kamil; Tobin, Gunnar

    2017-01-01

    Background Pharmaceuticals with targets in the cholinergic transmission have been used for decades and are still fundamental treatments in many diseases and conditions today. Both the transmission and the effects of the somatomotoric and the parasympathetic nervous systems may be targeted by such treatments. Irrespective of the knowledge that the effects of neuronal signalling in the nervous systems may include a number of different receptor subtypes of both the nicotinic and the muscarinic receptors, this complexity is generally overlooked when assessing the mechanisms of action of pharmaceuticals. Methods We have search of bibliographic databases for peer-reviewed research literature focused on the cholinergic system. Also, we have taken advantage of our expertise in this field to deduce the conclusions of this study. Results Presently, the life cycle of acetylcholine, muscarinic receptors and their effects are reviewed in the major organ systems of the body. Neuronal and non-neuronal sources of acetylcholine are elucidated. Examples of pharmaceuticals, in particular cholinesterase inhibitors, affecting these systems are discussed. The review focuses on salivary glands, the respiratory tract and the lower urinary tract, since the complexity of the interplay of different muscarinic receptor subtypes is of significance for physiological, pharmacological and toxicological effects in these organs. Conclusion Most pharmaceuticals targeting muscarinic receptors are employed at such large doses that no selectivity can be expected. However, some differences in the adverse effect profile of muscarinic antagonists may still be explained by the variation of expression of muscarinic receptor subtypes in different organs. However, a complex pattern of interactions between muscarinic receptor subtypes occurs and needs to be considered when searching for selective pharmaceuticals. In the development of new entities for the treatment of for instance pesticide intoxication, the

  9. Dual roles for hepatic lectin receptors in the clearance of chilled platelets.

    PubMed

    Rumjantseva, Viktoria; Grewal, Prabhjit K; Wandall, Hans H; Josefsson, Emma C; Sørensen, Anne Louise; Larson, Göran; Marth, Jamey D; Hartwig, John H; Hoffmeister, Karin M

    2009-11-01

    Rapid chilling causes glycoprotein-Ib (GPIb) receptors to cluster on blood platelets. Hepatic macrophage beta(2) integrin binding to beta-N-acetylglucosamine (beta-GlcNAc) residues in the clusters leads to rapid clearance of acutely chilled platelets after transfusion. Although capping the beta-GlcNAc moieties by galactosylation prevents clearance of short-term-cooled platelets, this strategy is ineffective after prolonged refrigeration. We report here that prolonged refrigeration increased the density and concentration of exposed galactose residues on platelets such that hepatocytes, through Ashwell-Morell receptor binding, become increasingly involved in platelet removal. Macrophages rapidly removed a large fraction of transfused platelets independent of their storage conditions. With prolonged platelet chilling, hepatocyte-dependent clearance further diminishes platelet recovery and survival after transfusion. Inhibition of chilled platelet clearance by both beta(2) integrin and Ashwell-Morell receptors may afford a potentially simple method for storing platelets in the cold.

  10. Dual-targeting hybrid nanoparticles for the delivery of SN38 to Her2 and CD44 overexpressed human gastric cancer

    NASA Astrophysics Data System (ADS)

    Yang, Zhe; Luo, Huiyan; Cao, Zhong; Chen, Ya; Gao, Jinbiao; Li, Yingqin; Jiang, Qing; Xu, Ruihua; Liu, Jie

    2016-06-01

    Gastric cancer (GC), particularly of the type with high expression of both human epidermal growth factor receptor 2 (Her2) and cluster determinant 44 (CD44), is one of the most malignant human tumors which causes a high mortality rate due to rapid tumor growth and metastasis. To develop effective therapeutic treatments, a dual-targeting hybrid nanoparticle (NP) system was designed and constructed to deliver the SN38 agent specifically to human solid gastric tumors bearing excessive Her2 and CD44. The hybrid NPs consist of a particle core made of the biodegradable polymer PLGA and a lipoid shell prepared by conjugating the AHNP peptides and n-hexadecylamine (HDA) to the carboxyl groups of hyaluronic acid (HA). Upon encapsulation of the SN38 agent in the NPs, the AHNP peptides and HA on the NP surface allow preferential delivery of the drug to gastric cancer cells (e.g., HGC27 cells) by targeting Her2 and CD44. Cellular uptake and in vivo biodistribution experiments verified the active targeting and prolonged in vivo circulation properties of the dual-targeting hybrid NPs, leading to enhanced accumulation of the drug in tumors. Furthermore, the anti-proliferation mechanism studies revealed that the inhibition of the growth and invasive activity of HGC27 cells was not only attributed to the enhanced cellular uptake of dual-targeting NPs, but also benefited from the suppression of CD44 and Her2 expression by HA and AHNP moieties. Finally, intravenous administration of the SN38-loaded dual-targeting hybrid NPs induced significant growth inhibition of HGC27 tumor xenografted in nude mice compared with a clinical antitumor agent, Irinotecan (CPT-11), and the other NP formulations. These results demonstrate that the designed dual-targeting hybrid NPs are promising for targeted anti-cancer drug delivery to treat human gastric tumors over-expressing Her2 and CD44.Gastric cancer (GC), particularly of the type with high expression of both human epidermal growth factor receptor

  11. In vitro study of histamine and histamine receptor ligands influence on the adhesion of purified human eosinophils to endothelium.

    PubMed

    Grosicki, Marek; Wójcik, Tomasz; Chlopicki, Stefan; Kieć-Kononowicz, Katarzyna

    2016-04-15

    It is a well-known fact that histamine is involved in eosinophil-dependent inflammatory responses including cellular chemotaxis and migration. Nevertheless, the relative role of histamine receptors in the mechanisms of eosinophils adhesion to endothelial cells is not known. Therefore the aim of presented study was to examine the effect of selective histamine receptors ligands on eosinophils adhesion to endothelium. For that purpose the highly purified human eosinophils have been isolated from the peripheral blood. The viability and functional integrity of isolated eosinophils have been validated in several tests. Histamine as well as 4-methylhistamine (selective H4 agonist) in concentration-dependent manner significantly increased number of eosinophils that adhere to endothelium. Among the selective histamine receptors antagonist or H1 inverse agonist only JNJ7777120 (histamine H4 antagonist) and thioperamide (dual histamine H3/H4 antagonist) had direct effect on eosinophils adhesion to endothelial cells. Antagonists of H1 (diphenhydramine, mepyramine) H2 (ranitidine and famotidine) and H3 (pitolisant) histamine receptors were ineffective. To the best of our knowledge, this is the first study to demonstrate that histamine receptor H4 plays a dominant role in histamine-induced eosinophils adhesion to endothelium. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Caenorhabditis elegans reveals a FxNPxY-independent low-density lipoprotein receptor internalization mechanism mediated by epsin1

    PubMed Central

    Kang, Yuan-Lin; Yochem, John; Bell, Leslie; Sorensen, Erika B.; Chen, Lihsia; Conner, Sean D.

    2013-01-01

    Low-density lipoprotein receptor (LDLR) internalization clears cholesterol-laden LDL particles from circulation in humans. Defects in clathrin-dependent LDLR endocytosis promote elevated serum cholesterol levels and can lead to atherosclerosis. However, our understanding of the mechanisms that control LDLR uptake remains incomplete. To identify factors critical to LDLR uptake, we pursued a genome-wide RNA interference screen using Caenorhabditis elegans LRP-1/megalin as a model for LDLR transport. In doing so, we discovered an unanticipated requirement for the clathrin-binding endocytic adaptor epsin1 in LDLR endocytosis. Epsin1 depletion reduced LDLR internalization rates in mammalian cells, similar to the reduction observed following clathrin depletion. Genetic and biochemical analyses of epsin in C. elegans and mammalian cells uncovered a requirement for the ubiquitin-interaction motif (UIM) as critical for receptor transport. As the epsin UIM promotes the internalization of some ubiquitinated receptors, we predicted LDLR ubiquitination as necessary for endocytosis. However, engineered ubiquitination-impaired LDLR mutants showed modest internalization defects that were further enhanced with epsin1 depletion, demonstrating epsin1-mediated LDLR endocytosis is independent of receptor ubiquitination. Finally, we provide evidence that epsin1-mediated LDLR uptake occurs independently of either of the two documented internalization motifs (FxNPxY or HIC) encoded within the LDLR cytoplasmic tail, indicating an additional internalization mechanism for LDLR. PMID:23242996

  13. 17β-Estradiol and Agonism of G-protein-Coupled Estrogen Receptor Enhance Hippocampal Memory via Different Cell-Signaling Mechanisms

    PubMed Central

    Kim, Jaekyoon; Szinte, Julia S.; Boulware, Marissa I.

    2016-01-01

    The ability of 17β-estradiol (E2) to enhance hippocampal object recognition and spatial memory depends on rapid activation of extracellular signal-regulated kinase (ERK) in the dorsal hippocampus (DH). Although this activation can be mediated by the intracellular estrogen receptors ERα and ERβ, little is known about the role that the membrane estrogen receptor GPER plays in regulating ERK or E2-mediated memory formation. In this study, post-training DH infusion of the GPER agonist G-1 enhanced object recognition and spatial memory in ovariectomized female mice, whereas the GPER antagonist G-15 impaired memory, suggesting that GPER activation, like E2, promotes hippocampal memory formation. However, unlike E2, G-1 did not increase ERK phosphorylation, but instead significantly increased phosphorylation of c-Jun N-terminal kinase (JNK) in the DH. Moreover, DH infusion of the JNK inhibitor SP600125 prevented G-1 from enhancing object recognition and spatial memory, but the ERK inhibitor U0126 did not. These data suggest that GPER enhances memory via different cell-signaling mechanisms than E2. This conclusion was supported by data showing that the ability of E2 to facilitate memory and activate ERK signaling was not blocked by G-15 or SP600125, which demonstrates that the memory-enhancing effects of E2 are not dependent on JNK or GPER activation in the DH. Together, these data indicate that GPER regulates memory independently from ERα and ERβ by activating JNK signaling, rather than ERK signaling. Thus, the findings suggest that GPER in the DH may not function as an estrogen receptor to regulate object recognition and spatial memory. SIGNIFICANCE STATEMENT Although 17β-estradiol has long been known to regulate memory function, the molecular mechanisms underlying estrogenic memory modulation remain largely unknown. Here, we examined whether the putative membrane estrogen receptor GPER acts like the classical estrogen receptors, ERα and ERβ, to facilitate

  14. Channel-Opening Kinetic Mechanism of Wild-Type GluK1 Kainate Receptors and a C-Terminal Mutant

    PubMed Central

    Han, Yan; Wang, Congzhou; Park, Jae Seon; Niu, Li

    2012-01-01

    GluK1 is a kainate receptor subunit in the ionotropic glutamate receptor family and can form functional channels when expressed, for instance, in HEK-293 cells. However, the channel-opening mechanism of GluK1 is poorly understood. One major challenge to studying the GluK1 channel is its apparent low surface expression, which results in a low whole-cell current response even to a saturating concentration of agonist. The low surface expression is thought to be contributed by an endoplasmic reticulum (ER) retention signal sequence. When this sequence motif is present as in the wild-type GluK1-2b C-terminus, the receptor is significantly retained in the ER. Conversely, when this sequence is lacking, as in wild-type GluK1-2a (i.e., a different alternatively spliced isoform at the C-terminus) and in a GluK1-2b mutant (i.e., R896A, R897A, R900A and K901A) that disrupts the ER retention signal, there is higher surface expression and greater whole-cell current response. Here we characterize the channel-opening kinetic mechanism for these three GluK1 receptors expressed in HEK-293 cells by using a laser-pulse photolysis technique. Our results show that the wild-type GluK1-2a, wild-type GluK1-2b and the mutant GluK1-2b have identical channel-opening and channel-closing rate constants. These results indicate that the C-terminal ER retention signal sequence, which affects receptor trafficking/expression, does not affect channel-gating properties. Furthermore, as compared with the GluK2 kainate receptor, the GluK1 channel is faster to open, close, and desensitize by at least two-fold, yet the EC50 value of GluK1 is similar to that of GluK2. PMID:22191429

  15. Receptor-mediated cell mechanosensing

    PubMed Central

    Chen, Yunfeng; Ju, Lining; Rushdi, Muaz; Ge, Chenghao; Zhu, Cheng

    2017-01-01

    Mechanosensing describes the ability of a cell to sense mechanical cues of its microenvironment, including not only all components of force, stress, and strain but also substrate rigidity, topology, and adhesiveness. This ability is crucial for the cell to respond to the surrounding mechanical cues and adapt to the changing environment. Examples of responses and adaptation include (de)activation, proliferation/apoptosis, and (de)differentiation. Receptor-mediated cell mechanosensing is a multistep process that is initiated by binding of cell surface receptors to their ligands on the extracellular matrix or the surface of adjacent cells. Mechanical cues are presented by the ligand and received by the receptor at the binding interface; but their transmission over space and time and their conversion into biochemical signals may involve other domains and additional molecules. In this review, a four-step model is described for the receptor-mediated cell mechanosensing process. Platelet glycoprotein Ib, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process. PMID:28954860

  16. Mechanical stress regulates insulin sensitivity through integrin-dependent control of insulin receptor localization.

    PubMed

    Kim, Jung; Bilder, David; Neufeld, Thomas P

    2018-01-15

    Insulin resistance, the failure to activate insulin signaling in the presence of ligand, leads to metabolic diseases, including type 2 diabetes. Physical activity and mechanical stress have been shown to protect against insulin resistance, but the molecular mechanisms remain unclear. Here, we address this relationship in the Drosophila larval fat body, an insulin-sensitive organ analogous to vertebrate adipose tissue and livers. We found that insulin signaling in Drosophila fat body cells is abolished in the absence of physical activity and mechanical stress even when excess insulin is present. Physical movement is required for insulin sensitivity in both intact larvae and fat bodies cultured ex vivo. Interestingly, the insulin receptor and other downstream components are recruited to the plasma membrane in response to mechanical stress, and this membrane localization is rapidly lost upon disruption of larval or tissue movement. Sensing of mechanical stimuli is mediated in part by integrins, whose activation is necessary and sufficient for mechanical stress-dependent insulin signaling. Insulin resistance develops naturally during the transition from the active larval stage to the immotile pupal stage, suggesting that regulation of insulin sensitivity by mechanical stress may help coordinate developmental programming with metabolism. © 2018 Kim et al.; Published by Cold Spring Harbor Laboratory Press.

  17. N-methyl-d-aspartate receptors, learning and memory: chronic intraventricular infusion of the NMDA receptor antagonist d-AP5 interacts directly with the neural mechanisms of spatial learning.

    PubMed

    Morris, R G M; Steele, R J; Bell, J E; Martin, S J

    2013-03-01

    Three experiments were conducted to contrast the hypothesis that hippocampal N-methyl-d-aspartate (NMDA) receptors participate directly in the mechanisms of hippocampus-dependent learning with an alternative view that apparent impairments of learning induced by NMDA receptor antagonists arise because of drug-induced neuropathological and/or sensorimotor disturbances. In experiment 1, rats given a chronic i.c.v. infusion of d-AP5 (30 mm) at 0.5 μL/h were selectively impaired, relative to aCSF-infused animals, in place but not cued navigation learning when they were trained during the 14-day drug infusion period, but were unimpaired on both tasks if trained 11 days after the minipumps were exhausted. d-AP5 caused sensorimotor disturbances in the spatial task, but these gradually worsened as the animals failed to learn. Histological assessment of potential neuropathological changes revealed no abnormalities in d-AP5-treated rats whether killed during or after chronic drug infusion. In experiment 2, a deficit in spatial learning was also apparent in d-AP5-treated rats trained on a spatial reference memory task involving two identical but visible platforms, a task chosen and shown to minimise sensorimotor disturbances. HPLC was used to identify the presence of d-AP5 in selected brain areas. In Experiment 3, rats treated with d-AP5 showed a delay-dependent deficit in spatial memory in the delayed matching-to-place protocol for the water maze. These data are discussed with respect to the learning mechanism and sensorimotor accounts of the impact of NMDA receptor antagonists on brain function. We argue that NMDA receptor mechanisms participate directly in spatial learning. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  18. Mechanisms of Disease: the first kiss-a crucial role for kisspeptin-1 and its receptor, G-protein-coupled receptor 54, in puberty and reproduction.

    PubMed

    Seminara, Stephanie B

    2006-06-01

    Although the hypothalamic secretion of gonadotropin-releasing hormone (GnRH) is the defining hormonal event of puberty, the physiologic mechanisms that drive secretion of GnRH at the time of sexual maturation have been difficult to identify. After puberty is initiated, the factors that modulate the frequency and amplitude of GnRH secretion in rapidly changing sex-steroid environments (i.e. the female menstrual cycle) also remain unknown. The discovery that, in both humans and mouse models, loss-of-function mutations in the gene that encodes G-protein-coupled receptor 54 result in phenotypes of hypogonadotropic hypogonadism with an absence of pubertal development has unearthed a novel pathway regulating GnRH secretion. Ligands for G-protein-coupled receptor 54 (KiSS-1R), including metastin (derived from the parent compound, kisspeptin-1) and metastin's C-terminal peptide fragments, have been shown to be powerful stimulants for GnRH release in vivo via their stimulation of G-protein-coupled receptor 54. This article reviews the discovery of the GPR54 gene, places it into the appropriate biological context, and explores the data from in vitro and in vivo studies that point to this ligand-receptor system as a major driver of GnRH secretion.

  19. A novel muscarinic receptor-independent mechanism of KCNQ2/3 potassium channel blockade by Oxotremorine-M.

    PubMed

    Zwart, Ruud; Reed, Hannah; Clarke, Sophie; Sher, Emanuele

    2016-11-15

    Inhibition of KCNQ (Kv7) potassium channels by activation of muscarinic acetylcholine receptors has been well established, and the ion currents through these channels have been long known as M-currents. We found that this cross-talk can be reconstituted in Xenopus oocytes by co-transfection of human recombinant muscarinic M1 receptors and KCNQ2/3 potassium channels. Application of the muscarinic acetylcholine receptor agonist Oxotremorine-methiodide (Oxo-M) between voltage pulses to activate KCNQ2/3 channels caused inhibition of the subsequent KCNQ2/3 responses. This effect of Oxo-M was blocked by the muscarinic acetylcholine receptor antagonist atropine. We also found that KCNQ2/3 currents were inhibited when Oxo-M was applied during an ongoing KCNQ2/3 response, an effect that was not blocked by atropine, suggesting that Oxo-M inhibits KCNQ2/3 channels directly. Indeed, also in oocytes that were transfected with only KCNQ2/3 channels, but not with muscarinic M1 receptors, Oxo-M inhibited the KCNQ2/3 response. These results show that besides the usual muscarinic acetylcholine receptor-mediated inhibition, Oxo-M also inhibits KCNQ2/3 channels by a direct mechanism. We subsequently tested xanomeline, which is a chemically distinct muscarinic acetylcholine receptor agonist, and oxotremorine, which is a close analogue of Oxo-M. Both compounds inhibited KCNQ2/3 currents via activation of M1 muscarinic acetylcholine receptors but, in contrast to Oxo-M, they did not directly inhibit KCNQ2/3 channels. Xanomeline and oxotremorine do not contain a positively charged trimethylammonium moiety that is present in Oxo-M, suggesting that such a charged moiety could be a crucial component mediating this newly described direct inhibition of KCNQ2/3 channels. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Constructing dual-defense mechanisms on membrane surfaces by synergy of PFSA and SiO2 nanoparticles for persistent antifouling performance

    NASA Astrophysics Data System (ADS)

    Zhou, Linjie; Gao, Kang; Jiao, Zhiwei; Wu, Mengyuan; He, Mingrui; Su, Yanlei; Jiang, Zhongyi

    2018-05-01

    Synthetic antifouling membrane surfaces with dual-defense mechanisms (fouling-resistant and fouling-release mechanism) were constructed through the synergy of perfluorosulfonic acid (PFSA) and SiO2 nanoparticles. During the nonsolvent induced phase separation (NIPS) process, the amphiphilic PFSA polymers spontaneously segregated to membrane surfaces and catalyzed the hydrolysis-polycondensation of tetraethyl orthosilicate (TEOS) to generate hydrophilic SiO2 nanoparticles (NPs). The resulting PVDF/PFSA/SiO2 hybrid membranes were characterized by contact angle measurements, FTIR, XPS, SEM, AFM, TGA, and TEM. The hydrophilic microdomains and low surface energy microdomains of amphiphilic PFSA polymers respectively endowed membrane surfaces with fouling-resistant mechanism and fouling-release mechanism, while the hydrophilic SiO2 NPs intensified the fouling-resistant mechanism. When the addition of TEOS reached 3 wt%, the hybrid membrane with optimal synergy of PFSA and SiO2 NPs displayed low flux decline (17.4% DRt) and high flux recovery (99.8% FRR) during the filtration of oil-in-water emulsion. Meanwhile, the long-time stability test verified that the hybrid membrane possessed persistent antifouling performance.

  1. The application of drug dose equivalence in the quantitative analysis of receptor occupation and drug combinations

    PubMed Central

    Tallarida, Ronald J.; Raffa, Robert B.

    2014-01-01

    In this review we show that the concept of dose equivalence for two drugs, the theoretical basis of the isobologram, has a wider use in the analysis of pharmacological data derived from single and combination drug use. In both its application to drug combination analysis with isoboles and certain other actions, listed below, the determination of doses, or receptor occupancies, that yield equal effects provide useful metrics that can be used to obtain quantitative information on drug actions without postulating any intimate mechanism of action. These other drug actions discussed here include (1) combinations of agonists that produce opposite effects, (2) analysis of inverted U-shaped dose effect curves of single agents, (3) analysis on the effect scale as an alternative to isoboles and (4) the use of occupation isoboles to examine competitive antagonism in the dual receptor case. New formulas derived to assess the statistical variance for additive combinations are included, and the more detailed mathematical topics are included in the appendix. PMID:20546783

  2. An Eph receptor sperm-sensing control mechanism for oocyte meiotic maturation in Caenorhabditis elegans.

    PubMed

    Miller, Michael A; Ruest, Paul J; Kosinski, Mary; Hanks, Steven K; Greenstein, David

    2003-01-15

    During sexual reproduction in most animals, oocytes arrest in meiotic prophase and resume meiosis (meiotic maturation) in response to sperm or somatic cell signals. Despite progress in delineating mitogen-activated protein kinase (MAPK) and CDK/cyclin activation pathways involved in meiotic maturation, it is less clear how these pathways are regulated at the cell surface. The Caenorhabditis elegans major sperm protein (MSP) signals oocytes, which are arrested in meiotic prophase, to resume meiosis and ovulate. We used DNA microarray data and an in situ binding assay to identify the VAB-1 Eph receptor protein-tyrosine kinase as an MSP receptor. We show that VAB-1 and a somatic gonadal sheath cell-dependent pathway, defined by the CEH-18 POU-class homeoprotein, negatively regulate meiotic maturation and MAPK activation. MSP antagonizes these inhibitory signaling circuits, in part by binding VAB-1 on oocytes and sheath cells. Our results define a sperm-sensing control mechanism that inhibits oocyte maturation, MAPK activation, and ovulation when sperm are unavailable for fertilization. MSP-domain proteins are found in diverse animal taxa, where they may regulate contact-dependent Eph receptor signaling pathways.

  3. Mechanisms controlling nucleic acid-sensing Toll-like receptors.

    PubMed

    Miyake, Kensuke; Shibata, Takuma; Ohto, Umeharu; Shimizu, Toshiyuki; Saitoh, Shin-Ichiroh; Fukui, Ryutaro; Murakami, Yusuke

    2018-03-08

    Nucleic acid (NA)-sensing Toll-like receptors (TLRs) respond to DNA/RNA derived from pathogens and dead cells. Structural studies have revealed a variety of molecular mechanisms by which TLRs sense NAs. Double-stranded RNA and single-stranded DNA directly bind to TLR3 and TLR9, respectively, whereas TLR7 and TLR8 bind to nucleosides and oligoribonucleotides derived from RNAs. Activation of ligand-bound TLRs is influenced by the functional status of TLRs. Proteolytic cleavage of NA-sensing TLRs enables ligand-dependent TLR dimerization. Trafficking of ligand-activated TLRs in endosomal and lysosomal compartments is requisite for production of type I interferons. Activation of NA-sensing TLRs is required for the control of viruses such as herpes simplex virus and endogenous retroviruses. On the other hand, excessive activation of NA-sensing TLRs drives disease progression in a variety of inflammatory diseases including systemic lupus erythematosus, heart failure, arthritis and non-alcoholic steatohepatitis. NA-sensing TLRs are targets for therapeutic intervention in these diseases. We here focus on our recent progresses in our understanding of NA-sensing TLRs.

  4. The Transient Receptor Potential Vanilloid 1 Antagonist Capsazepine Improves the Impaired Lung Mechanics during Endotoxemia.

    PubMed

    Cabral, Layla D M; Giusti-Paiva, Alexandre

    2016-11-01

    Acute lung injury (ALI) caused by systemic inflammatory response remains a leading cause of morbidity and mortality in critically ill patients. Management of patients with sepsis is largely limited to supportive therapies, reflecting an incomplete understanding of the underlying pathophysiology. Furthermore, there have been limited advances in the treatments for ALI. In this study, lung function and a histological analysis were performed to evaluate the impact of transient receptor potential vanilloid-1 receptor (TRPV1) antagonist (capsazepine; CPZ) on the lipopolysaccharide (LPS)-induced lung injury in mice. For this, adult mice pre-treated with CPZ or vehicle received intraperitoneal injections of LPS or saline and 24 hr after, the mice were anaesthetized, and lung mechanics was evaluated. The LPS-challenged mice exhibited substantial mechanical impairment, characterized by increases in respiratory system resistance, respiratory system elastance, tissue damping and tissue elastance. The pre-treatment with CPZ prevented the increase in respiratory system resistance and decreased the increase in tissue damping during endotoxemia. In addition, mice pre-treated with CPZ had an attenuated lung injury evidenced by reduction on collapsed area of the lung parenchyma induced by LPS. This suggests that the TRPV1 antagonist capsazepine has a protective effect on lung mechanics in ALI during endotoxemia and that it may be a target for enhanced therapeutic efficacy in ALI. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  5. High-accuracy self-calibration method for dual-axis rotation-modulating RLG-INS

    NASA Astrophysics Data System (ADS)

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Long, Xingwu

    2017-05-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Dual-axis rotation modulation can completely eliminate the inertial elements constant errors of the three axes to improve the system accuracy. But the error caused by the misalignment angles and the scale factor error cannot be eliminated through dual-axis rotation modulation. And discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed the effect of calibration error during one modulated period and presented a new systematic self-calibration method for dual-axis rotation-modulating RLG-INS. Procedure for self-calibration of dual-axis rotation-modulating RLG-INS has been designed. The results of self-calibration simulation experiment proved that: this scheme can estimate all the errors in the calibration error model, the calibration precision of the inertial sensors scale factor error is less than 1ppm and the misalignment is less than 5″. These results have validated the systematic self-calibration method and proved its importance for accuracy improvement of dual -axis rotation inertial navigation system with mechanically dithered ring laser gyroscope.

  6. Reversible Intercalation of Fluoride-Anion Receptor Complexes in Graphite

    NASA Technical Reports Server (NTRS)

    West, William C.; Whitacre, Jay F.; Leifer, Nicole; Greenbaum, Steve; Smart, Marshall; Bugga, Ratnakumar; Blanco, Mario; Narayanan, S. R.

    2007-01-01

    We have demonstrated a route to reversibly intercalate fluoride-anion receptor complexes in graphite via a nonaqueous electrochemical process. This approach may find application for a rechargeable lithium-fluoride dual-ion intercalating battery with high specific energy. The cell chemistry presented here uses graphite cathodes with LiF dissolved in a nonaqueous solvent through the aid of anion receptors. Cells have been demonstrated with reversible cathode specific capacity of approximately 80 mAh/g at discharge plateaus of upward of 4.8 V, with graphite staging of the intercalant observed via in situ synchrotron X-ray diffraction during charging. Electrochemical impedance spectroscopy and B-11 nuclear magnetic resonance studies suggest that cointercalation of the anion receptor with the fluoride occurs during charging, which likely limits the cathode specific capacity. The anion receptor type dictates the extent of graphite fluorination, and must be further optimized to realize high theoretical fluorination levels. To find these optimal anion receptors, we have designed an ab initio calculations-based scheme aimed at identifying receptors with favorable fluoride binding and release properties.

  7. G protein-coupled estrogen receptor 1 (GPER1)/GPR30 increases ERK1/2 activity through PDZ motif-dependent and -independent mechanisms.

    PubMed

    Gonzalez de Valdivia, Ernesto; Broselid, Stefan; Kahn, Robin; Olde, Björn; Leeb-Lundberg, L M Fredrik

    2017-06-16

    G protein-coupled receptor 30 (GPR30), also called G protein-coupled estrogen receptor 1 (GPER1), is thought to play important roles in breast cancer and cardiometabolic regulation, but many questions remain about ligand activation, effector coupling, and subcellular localization. We showed recently that GPR30 interacts through the C-terminal type I PDZ motif with SAP97 and protein kinase A (PKA)-anchoring protein (AKAP) 5, which anchor the receptor in the plasma membrane and mediate an apparently constitutive decrease in cAMP production independently of G i/o Here, we show that GPR30 also constitutively increases ERK1/2 activity. Removing the receptor PDZ motif or knocking down specifically AKAP5 inhibited the increase, showing that this increase also requires the PDZ interaction. However, the increase was inhibited by pertussis toxin as well as by wortmannin but not by AG1478, indicating that G i/o and phosphoinositide 3-kinase (PI3K) mediate the increase independently of epidermal growth factor receptor transactivation. FK506 and okadaic acid also inhibited the increase, implying that a protein phosphatase is involved. The proposed GPR30 agonist G-1 also increased ERK1/2 activity, but this increase was only observed at a level of receptor expression below that required for the constitutive increase. Furthermore, deleting the PDZ motif did not inhibit the G-1-stimulated increase. Based on these results, we propose that GPR30 increases ERK1/2 activity via two G i/o -mediated mechanisms, a PDZ-dependent, apparently constitutive mechanism and a PDZ-independent G-1-stimulated mechanism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Progesterone modulates the LPS-induced nitric oxide production by a progesterone-receptor independent mechanism.

    PubMed

    Wolfson, Manuel Luis; Schander, Julieta Aylen; Bariani, María Victoria; Correa, Fernando; Franchi, Ana María

    2015-12-15

    Genital tract infections caused by Gram-negative bacteria induce miscarriage and are one of the most common complications of human pregnancy. LPS administration to 7-day pregnant mice induces embryo resorption after 24h, with nitric oxide playing a fundamental role in this process. We have previously shown that progesterone exerts protective effects on the embryo by modulating the inflammatory reaction triggered by LPS. Here we sought to investigate whether the in vivo administration of progesterone modulated the LPS-induced nitric oxide production from peripheral blood mononuclear cells from pregnant and non-pregnant mice. We found that progesterone downregulated LPS-induced nitric oxide production by a progesterone receptor-independent mechanism. Moreover, our results suggest a possible participation of glucocorticoid receptors in at least some of the anti-inflammatory effects of progesterone. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) as a Target for Concurrent Management of Diabetes and Obesity-Related Cancer.

    PubMed

    Wang, Qingqing; Imam, Mustapha Umar; Yida, Zhang; Wang, Fudi

    2017-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the nuclear receptor superfamily of ligand-inducible transcription factors that regulate adipogenesis, lipid metabolism, cell proliferation, inflammation and insulin sensitization. Abnormalities in PPARγ signaling have been associated with obesity, diabetes and cancer. The use of agonists to manage these diseases has been limited by their side effects. Accordingly, dual or pan agonists targeting the PPARα or PPARα and PPARδ, respectively, in addition to the PPARγ have been developed to overcome these side effects. This review details the shared PPARγ-dependent mechanisms between obesity-related cancers and diabetes and their potential therapeutic values. We performed a systematic literature search through pubmed, Scopus and google scholar for articles on PPARγ-dependent signaling in diabetes or cancer. There is growing co-occurrence of obesity-related cancers and diabetes, necessitating the use of effective therapies with the least amount of side effects for concurrent management of these diseases, by targeting potentially shared PPARγ-dependent mechanisms including abnormalities of the wnt/β-catenin, lysosomal acid lipase, inflammatory and cell cycle pathways, and the plasminogen activator system. Taking advantage of the multiple docking sites of the PPARγ and the pleiotropic nature of its signaling, structure-activity relationship and molecular docking studies have provided insights into designer PPARγ agonists or dual PPARα/γ agonists that modulate PPARγ signaling and negate side effects of full PPARγ agonists. Effective therapies, possibly devoid of side effects, for concurrent management of obesity-related cancers and diabetes can be developed through diligent structure-activity and molecular docking studies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Short-term memory and dual task performance

    NASA Technical Reports Server (NTRS)

    Regan, J. E.

    1982-01-01

    Two hypotheses concerning the way in which short-term memory interacts with another task in a dual task situation are considered. It is noted that when two tasks are combined, the activity of controlling and organizing performance on both tasks simultaneously may compete with either task for a resource; this resource may be space in a central mechanism or general processing capacity or it may be some task-specific resource. If a special relationship exists between short-term memory and control, especially if there is an identity relationship between short-term and a central controlling mechanism, then short-term memory performance should show a decrement in a dual task situation. Even if short-term memory does not have any particular identity with a controlling mechanism, but both tasks draw on some common resource or resources, then a tradeoff between the two tasks in allocating resources is possible and could be reflected in performance. The persistent concurrence cost in memory performance in these experiments suggests that short-term memory may have a unique status in the information processing system.

  11. MECHANICAL VIBRATION INHIBITS OSTEOCLAST FORMATION BY REDUCING DC-STAMP RECEPTOR EXPRESSION IN OSTEOCLAST PRECURSOR CELLS

    PubMed Central

    Kulkarni, R.N.; Voglewede, P.A.; Liu, D.

    2014-01-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP), and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20 ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1 hour of mechanical vibration with 20 µm displacement at a frequency of 4 Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5 days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells were determined after 1 hour mechanical vibration, while protein production of the DC-STAMP was determined after 6 hours of post incubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduce DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation. PMID:23994170

  12. Dual p38/JNK Mitogen Activated Protein Kinase Inhibitors Prevent Ozone-Induced Airway Hyperreactivity in Guinea Pigs

    PubMed Central

    Verhein, Kirsten C.; Salituro, Francesco G.; Ledeboer, Mark W.; Fryer, Allison D.; Jacoby, David B.

    2013-01-01

    Ozone exposure causes airway hyperreactivity and increases hospitalizations resulting from pulmonary complications. Ozone reacts with the epithelial lining fluid and airway epithelium to produce reactive oxygen species and lipid peroxidation products, which then activate cell signaling pathways, including the mitogen activated protein kinase (MAPK) pathway. Both p38 and c-Jun NH2 terminal kinase (JNK) are MAPK family members that are activated by cellular stress and inflammation. To test the contribution of both p38 and JNK MAPK to ozone-induced airway hyperreactivity, guinea pigs were pretreated with dual p38 and JNK MAPK inhibitors (30 mg/kg, ip) 60 minutes before exposure to 2 ppm ozone or filtered air for 4 hours. One day later airway reactivity was measured in anesthetized animals. Ozone caused airway hyperreactivity one day post-exposure, and blocking p38 and JNK MAPK completely prevented ozone-induced airway hyperreactivity. Blocking p38 and JNK MAPK also suppressed parasympathetic nerve activity in air exposed animals, suggesting p38 and JNK MAPK contribute to acetylcholine release by airway parasympathetic nerves. Ozone inhibited neuronal M2 muscarinic receptors and blocking both p38 and JNK prevented M2 receptor dysfunction. Neutrophil influx into bronchoalveolar lavage was not affected by MAPK inhibitors. Thus p38 and JNK MAPK mediate ozone-induced airway hyperreactivity through multiple mechanisms including prevention of neuronal M2 receptor dysfunction. PMID:24058677

  13. Neurotrophin receptor structure and interactions.

    PubMed

    Yano, H; Chao, M V

    2000-03-01

    Although ligand-induced dimerization or oligomerization of receptors is a well established mechanism of growth factor signaling, increasing evidence indicates that biological responses are often mediated by receptor trans-signaling mechanisms involving two or more receptor systems. These include G protein-coupled receptors, cytokine, growth factor and trophic factor receptors. Greater flexibility is provided when different signaling pathways are merged through multiple receptor signaling systems. Trophic factors exemplified by NGF and its family members, ciliary neurotrophic factor (CNTF) and glial derived neurotrophic factor (GDNF) all utilize increased tyrosine phosphorylation of cellular substrates to mediate neuronal cell survival. Actions of the NGF family of neurotrophins are not only dictated by ras activation through the Trk family of receptor tyrosine kinases, but also a survival pathway defined by phosphatidylinositol-3-kinase activity (Yao and Cooper, 1995), which gives rise to phosphoinositide intermediates that activate the serine/threonine kinase Akt/PKB (Dudek et al., 1997). Induction of the serine-threonine kinase activity is critical for cell survival, as well as cell proliferation. Hence, for many trophic factors, multiple proteins constitute a functional multisubunit receptor complex that activates ras-dependent and ras-independent intracellular signaling. The NGF receptors provide an example of bidirectional crosstalk. In the presence of TrkA receptors, p75 can participate in the formation of high affinity binding sites and enhanced neurotrophin responsiveness leading to a survival or differentiation signal. In the absence of TrkA receptors, p75 can generate, in only specific cell populations, a death signal. These activities include the induction of NF kappa B (Carter et al., 1996); the hydrolysis of sphingomyelin to ceramide (Dobrowsky et al., 1995); and the pro-apoptotic functions attributed to p75. Receptors are generally drawn and viewed as

  14. Oxyntomodulin analogue increases energy expenditure via the glucagon receptor.

    PubMed

    Scott, R; Minnion, J; Tan, T; Bloom, S R

    2018-06-01

    The gut hormone oxyntomodulin (OXM) causes weight loss by reducing appetite and increasing energy expenditure. Several analogues are being developed to treat obesity. Exactly how oxyntomodulin works, however, remains controversial. OXM can activate both glucagon and GLP-1 receptors but no specific receptor has been identified. It is thought that the anorectic effect occurs predominantly through GLP-1 receptor activation but, to date, it has not been formally confirmed which receptor is responsible for the increased energy expenditure. We developed OX-SR, a sustained-release OXM analogue. It produces a significant and sustained increase in energy expenditure in rats as measured by indirect calorimetry. We now show that this increase in energy expenditure occurs via activation of the glucagon receptor. Blockade of the GLP-1 receptor with Exendin 9-39 does not block the increase in oxygen consumption caused by OX-SR. However, when activity at the glucagon receptor is lost, there is no increase in energy expenditure. Glucagon receptor activity therefore appears to be essential for OX-SR's effects on energy expenditure. The development of future 'dual agonist' analogues will require careful balancing of GLP-1 and glucagon receptor activities to obtain optimal effects. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Odontoblasts as sensory receptors: transient receptor potential channels, pannexin-1, and ionotropic ATP receptors mediate intercellular odontoblast-neuron signal transduction.

    PubMed

    Shibukawa, Yoshiyuki; Sato, Masaki; Kimura, Maki; Sobhan, Ubaidus; Shimada, Miyuki; Nishiyama, Akihiro; Kawaguchi, Aya; Soya, Manabu; Kuroda, Hidetaka; Katakura, Akira; Ichinohe, Tatsuya; Tazaki, Masakazu

    2015-04-01

    Various stimuli induce pain when applied to the surface of exposed dentin. However, the mechanisms underlying dentinal pain remain unclear. We investigated intercellular signal transduction between odontoblasts and trigeminal ganglion (TG) neurons following direct mechanical stimulation of odontoblasts. Mechanical stimulation of single odontoblasts increased the intracellular free calcium concentration ([Ca(2+)]i) by activating the mechanosensitive-transient receptor potential (TRP) channels TRPV1, TRPV2, TRPV4, and TRPA1, but not TRPM8 channels. In cocultures of odontoblasts and TG neurons, increases in [Ca(2+)]i were observed not only in mechanically stimulated odontoblasts, but also in neighboring odontoblasts and TG neurons. These increases in [Ca(2+)]i were abolished in the absence of extracellular Ca(2+) and in the presence of mechanosensitive TRP channel antagonists. A pannexin-1 (ATP-permeable channel) inhibitor and ATP-degrading enzyme abolished the increases in [Ca(2+)]i in neighboring odontoblasts and TG neurons, but not in the stimulated odontoblasts. G-protein-coupled P2Y nucleotide receptor antagonists also inhibited the increases in [Ca(2+)]i. An ionotropic ATP (P2X3) receptor antagonist inhibited the increase in [Ca(2+)]i in neighboring TG neurons, but not in stimulated or neighboring odontoblasts. During mechanical stimulation of single odontoblasts, a connexin-43 blocker did not have any effects on the [Ca(2+)]i responses observed in any of the cells. These results indicate that ATP, released from mechanically stimulated odontoblasts via pannexin-1 in response to TRP channel activation, transmits a signal to P2X3 receptors on TG neurons. We suggest that odontoblasts are sensory receptor cells and that ATP released from odontoblasts functions as a neurotransmitter in the sensory transduction sequence for dentinal pain.

  16. Muscarinic Acetylcholine Receptors in Macaque V1 Are Most Frequently Expressed by Parvalbumin-Immunoreactive Neurons

    PubMed Central

    Disney, Anita A.; Aoki, Chiye

    2010-01-01

    Acetylcholine (ACh) is believed to underlie mechanisms of arousal and attention in mammals. ACh also has a demonstrated functional effect in visual cortex that is both diverse and profound. We have reported previously that cholinergic modulation in V1 of the macaque monkey is strongly targeted toward GABAergic interneurons. Here we examine the localization of m1 and m2 muscarinic receptor subtypes across subpopulations of GABAergic interneurons—identified by their expression of the calcium-binding proteins parvalbumin, calbindin, and calretinin—using dual-immunofluorescence confocal microscopy in V1 of the macaque monkey. In doing so, we find that the vast majority (87%) of parvalbumin-immunoreactive neurons express m1-type muscarinic ACh receptors. m1 receptors are also expressed by 60% of calbindin-immunoreactive neurons and 40% of calretinin-immunoreactive neurons. m2 AChRs, on the other hand, are expressed by only 31% of parvalbumin neurons, 23% of calbindin neurons, and 25% of calretinin neurons. Parvalbumin-immunoreactive cells comprise ≈75% of the inhibitory neuronal population in V1 and included in this large subpopulation are neurons known to veto and regulate the synchrony of principal cell spiking. Through the expression of m1 ACh receptors on nearly all of these PV cells, the cholinergic system avails itself of powerful control of information flow through and processing within the network of principal cells in the cortical circuit. PMID:18265004

  17. Direct generation of 128-fs Gaussian pulses from a compensation-free fiber laser using dual mode-locking mechanisms

    NASA Astrophysics Data System (ADS)

    Peng, Junsong; Zhan, Li; Gu, Zhaochang; Qian, Kai; Luo, Shouyu; Shen, Qishun

    2012-03-01

    We have experimentally demonstrated the direct generation of 128-fs pulses in an all-anomalous-dispersion all-fiber mode-locked laser. The laser is free of dispersion compensation in the cavity based on standard single mode fiber (SMF). The time-bandwidth product is 0.536. The laser is achieved by using two mode-lockers, one is nonlinear polarization rotation (NPR), and the other is nonlinear amplifying loop mirror. The coexistence of dual mode-locking mechanisms can decrease the cavity length to 12-m, and also results in producing high-quality pulses with a Gaussian shape both on the pulse profile and spectrum, but without Kelly sidebands.

  18. A kinome-wide screen identifies the Insulin/IGF-1 receptor pathway as a mechanism of escape from hormone dependence in breast cancer

    PubMed Central

    Fox, Emily M.; Miller, Todd W.; Balko, Justin M.; Kuba, Maria G.; Sánchez, Violeta; Smith, R. Adam; Liu, Shuying; González-Angulo, Ana María; Mills, Gordon B.; Ye, Fei; Shyr, Yu; Manning, H. Charles; Buck, Elizabeth; Arteaga, Carlos L.

    2011-01-01

    Estrogen receptor α (ER)-positive breast cancers adapt to hormone deprivation and become resistant to antiestrogens. In this study, we sought to identify kinases essential for growth of ER+ breast cancer cells resistant to long term estrogen deprivation (LTED). A kinome-wide siRNA screen showed that the insulin receptor (InsR) is required for growth of MCF7/LTED cells. Knockdown of InsR and/or insulin-like growth factor-1 receptor (IGF-1R) inhibited growth of 3/4 LTED cell lines. Inhibition of InsR and IGF-1R with the dual tyrosine kinase inhibitor OSI-906 prevented the emergence of hormone-independent cells and tumors in vivo, inhibited parental and LTED cell growth and PI3K/AKT signaling, and suppressed growth of established MCF-7 xenografts in ovariectomized mice, whereas treatment with the neutralizing IGF-1R monoclonal antibody MAB391 was ineffective. Combined treatment with OSI-906 and the ER downregulator fulvestrant more effectively suppressed hormone-independent tumor growth than either drug alone. Finally, an insulin/IGF-1 gene expression signature predicted recurrence-free survival in patients with ER+ breast cancer treated with the antiestrogen tamoxifen. We conclude that therapeutic targeting of both InsR and IGF-1R should be more effective than targeting IGF-1R alone in abrogating resistance to endocrine therapy in breast cancer. PMID:21908557

  19. Mechanisms of anabolic androgenic steroid inhibition of mammalian ɛ-subunit-containing GABAA receptors

    PubMed Central

    Jones, Brian L; Whiting, Paul J; Henderson, Leslie P

    2006-01-01

    GABAergic transmission regulates the activity of gonadotrophin-releasing hormone (GnRH) neurons in the preoptic area/hypothalamus that control the onset of puberty and the expression of reproductive behaviours. One of the hallmarks of illicit use of anabolic androgenic steroids (AAS) is disruption of behaviours under neuroendocrine control. GnRH neurons are among a limited population of cells that express high levels of the ɛ-subunit of the GABAA receptor. To better understand the actions of AAS on neuroendocrine mechanisms, we have characterized modulation of GABAA receptor-mediated currents in mouse native GnRH neurons and in heterologous cells expressing recombinant α2β3ɛ-receptors. GnRH neurons exhibited robust currents in response to millimolar concentrations of GABA and a picrotoxin (PTX)-sensitive, bicuculline-insensitive current that probably arises from spontaneous openings of GABAA receptors. The AAS 17α-methyltestosterone (17α-MeT) inhibited spontaneous and GABA-evoked currents in GnRH neurons. For recombinant α2β3ɛ-receptors, 17α-MeT inhibited phasic and tonic GABA-elicited responses, accelerated desensitization and slowed paired pulse response recovery. Single channel analysis indicated that GABA-evoked events could be described by three open dwell components and that 17α-MeT enhanced residence in the intermediate dwell state. This AAS also inhibited a PTX-sensitive, spontaneous current (open probability, ∼0.15–0.2) in a concentration-dependent fashion (IC50 ≈ 9 μm). Kinetic modelling indicated that the inhibition induced by 17α-MeT occurs by an allosteric block in which the AAS interacts preferentially with a closed state and promotes accumulation in that state. Finally, studies with a G302S mutant ɛ-subunit suggest that this residue within the transmembrane domain TM2 plays a role in mediating AAS binding and modulation. In sum, our results indicate that inclusion of the ɛ-subunit significantly alters the profile of AAS

  20. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling.

    PubMed

    Zhang, Xiaowei; Dong, Wentao; Sun, Jongho; Feng, Feng; Deng, Yiwen; He, Zuhua; Oldroyd, Giles E D; Wang, Ertao

    2015-01-01

    The establishment of symbiotic interactions between mycorrhizal fungi, rhizobial bacteria and their legume hosts involves a common symbiosis signalling pathway. This signalling pathway is activated by Nod factors produced by rhizobia and these are recognised by the Nod factor receptors NFR1/LYK3 and NFR5/NFP. Mycorrhizal fungi produce lipochitooligosaccharides (LCOs) similar to Nod factors, as well as short-chain chitin oligomers (CO4/5), implying commonalities in signalling during mycorrhizal and rhizobial associations. Here we show that NFR1/LYK3, but not NFR5/NFP, is required for the establishment of the mycorrhizal interaction in legumes. NFR1/LYK3 is necessary for the recognition of mycorrhizal fungi and the activation of the symbiosis signalling pathway leading to induction of calcium oscillations and gene expression. Chitin oligosaccharides also act as microbe associated molecular patterns that promote plant immunity via similar LysM receptor-like kinases. CERK1 in rice has the highest homology to NFR1 and we show that this gene is also necessary for the establishment of the mycorrhizal interaction as well as for resistance to the rice blast fungus. Our results demonstrate that NFR1/LYK3/OsCERK1 represents a common receptor for chitooligosaccharide-based signals produced by mycorrhizal fungi, rhizobial bacteria (in legumes) and fungal pathogens. It would appear that mycorrhizal recognition has been conserved in multiple receptors across plant species, but additional diversification in certain plant species has defined other signals that this class of receptors can perceive. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  1. The Neurocognitive Basis for Impaired Dual-Task Performance in Senior Fallers.

    PubMed

    Nagamatsu, Lindsay S; Hsu, C Liang; Voss, Michelle W; Chan, Alison; Bolandzadeh, Niousha; Handy, Todd C; Graf, Peter; Beattie, B Lynn; Liu-Ambrose, Teresa

    2016-01-01

    Falls are a major health-care concern, and while dual-task performance is widely recognized as being impaired in those at-risk for falls, the underlying neurocognitive mechanisms remain unknown. A better understanding of the underlying mechanisms could lead to the refinement and development of behavioral, cognitive, or neuropharmacological interventions for falls prevention. Therefore, we conducted a cross-sectional study with community-dwelling older adults aged 70-80 years with a history of falls (i.e., two or more falls in the past 12 months) or no history of falls (i.e., zero falls in the past 12 months); n = 28 per group. We compared functional activation during cognitive-based dual-task performance between fallers and non-fallers using functional magnetic resonance imaging (fMRI). Executive cognitive functioning was assessed via Stroop, Trail Making, and Digit Span. Mobility was assessed via the Timed Up and Go test (TUG). We found that non-fallers exhibited significantly greater functional activation compared with fallers during dual-task performance in key regions responsible for resolving dual-task interference, including precentral, postcentral, and lingual gyri. Further, we report slower reaction times during dual-task performance in fallers and significant correlations between level of functional activation and independent measures of executive cognitive functioning and mobility. Our study is the first neuroimaging study to examine dual-task performance in fallers, and supports the notion that fallers have reduced functional brain activation compared with non-fallers. Given that dual-task performance-and the underlying neural concomitants-appears to be malleable with relevant training, our study serves as a launching point for promising strategies to reduce falls in the future.

  2. Preparation and Imaging Investigation of Dual-targeted C3F8-filled PLGA Nanobubbles as a Novel Ultrasound Contrast Agent for Breast Cancer.

    PubMed

    Du, Jing; Li, Xiao-Yu; Hu, He; Xu, Li; Yang, Shi-Ping; Li, Feng-Hua

    2018-03-01

    Molecularly-targeted contrast enhanced ultrasound (US) imaging is a promising imaging strategy with large potential for improving diagnostic accuracy of conventional US imaging in breast cancer detection. Therefore, we constructed a novel dual-targeted nanosized US contrast agent (UCA) directed at both vascular endothelial growth factor receptor 2 (VEGFR2) and human epidermal growth factor receptor 2 (HER2) based on perfluoropropane (C 3 F 8 )-filled poly(lactic-co-glycolic acid) (PLGA) (NBs) for breast cancer detection. In vitro, single- or dual-targeted PLGA NBs showed high target specificities and better effects of target enhancement in VEGFR2 or HER2-positive cells. In vivo, US imaging signal in the murine breast cancer model was significantly higher (P < 0.01) for dual-targeted NBs than single-targeted and non-targeted NBs. Small animal fluorescence imaging further confirmed the special affinity of the dual-targeted nanosized contrast agent to both VEGFR2 and HER2. Immunofluorescence and immunohistochemistry staining confirmed the expressions of VEGFR2 and HER2 on tumor neovasculature and tumor cells of breast cancer. In conclusions, the feasibility of using dual-targeted PLGA NBs to enhance ultrasonic images is demonstrated in vitro and in vivo. This may be a promising approach to target biomarkers of breast cancer for two site-specific US molecular imaging.

  3. Dual ETA/ETB blockade with macitentan improves both vascular remodeling and angiogenesis in pulmonary arterial hypertension

    PubMed Central

    Nadeau, Valerie; Potus, Francois; Boucherat, Olivier; Paradis, Renee; Tremblay, Eve; Iglarz, Marc; Paulin, Roxane; Bonnet, Sebastien

    2017-01-01

    Dysregulated metabolism and rarefaction of the capillary network play a critical role in pulmonary arterial hypertension (PAH) etiology. They are associated with a decrease in perfusion of the lungs, skeletal muscles, and right ventricle (RV). Previous studies suggested that endothelin-1 (ET-1) modulates both metabolism and angiogenesis. We hypothesized that dual ETA/ETB receptors blockade improves PAH by improving cell metabolism and promoting angiogenesis. Five weeks after disease induction, Sugen/hypoxic rats presented severe PAH with pulmonary artery (PA) remodeling, RV hypertrophy and capillary rarefaction in the lungs, RV, and skeletal muscles (microCT angiogram, lectin perfusion, CD31 staining). Two-week treatment with dual ETA/ETB receptors antagonist macitentan (30 mg/kg/d) significantly improved pulmonary hemodynamics, PA vascular remodeling, and RV function and hypertrophy compared to vehicle-treated animals (all P = 0.05). Moreover, macitentan markedly increased lung, RV and quadriceps perfusion, and microvascular density (all P = 0.05). In vitro, these effects were associated with increases in oxidative phosphorylation (oxPhox) and markedly reduced cell proliferation of PAH-PA smooth muscle cells (PASMCs) treated with macitentan without affecting apoptosis. While macitentan did not affect oxPhox, proliferation, and apoptosis of PAH–PA endothelial cells (PAECs), it significantly improved their angiogenic capacity (tube formation assay). Exposure of control PASMC and PAEC to ET-1 fully mimicked the PAH cells phenotype, thus confirming that ET-1 is implicated in both metabolism and angiogenesis abnormalities in PAH. Dual ETA/ETB receptor blockade improved the metabolic changes involved in PAH-PASMCs’ proliferation and the angiogenic capacity of PAH-PAEC leading to an increased capillary density in lungs, RV, and skeletal muscles. PMID:29064353

  4. Discrimination of ethanol-nicotine drug mixtures in mice: dual interactive mechanisms of overshadowing and potentiation

    PubMed Central

    Ford, Matthew M.; McCracken, Aubrey D.; Davis, Natalie L.; Ryabinin, Andrey E.; Grant, Kathleen A.

    2012-01-01

    Rationale One possible basis for the proclivity of ethanol and nicotine co-abuse is an interaction between the discriminative stimulus (SD) effects of each drug. Objectives The current work sought to assess the discriminative control of ethanol and nicotine cues in mice trained with drug mixtures and to determine whether interactive mechanisms of overshadowing and potentiation occur. Methods Male C57BL/6J mice were trained to discriminate ethanol (1.5 g/kg) alone or ethanol plus nicotine (0.4, 0.8 or 1.2 mg/kg base) in experiment 1, and nicotine (0.8 mg/kg) alone or nicotine plus ethanol (0.5, 1.0 or 2.0 g/kg) in experiment 2. Stimulus generalization of the training mixtures to ethanol, nicotine and the drug combination were assessed. Results Ethanol (1.5 g/kg) retained discriminative control despite the inclusion of a progressively larger nicotine dose within the training mixtures in experiment 1. Although the nicotine SD was overshadowed by ethanol training doses > 0.5 g/kg in experiment 2, nicotine did potentiate the effects of low dose ethanol. Conclusions These findings are suggestive of dual mechanisms whereby ethanol (>0.5 g/kg) overshadows the SD effects of nicotine, and at lower doses (< 1 g/kg) the salience of ethanol’s SD effects is potentiated by nicotine. These mechanisms may contribute to the escalation of concurrent drinking and smoking in a binge-like fashion. PMID:22763667

  5. Mechanism of partial agonism in AMPA-type glutamate receptors

    PubMed Central

    Salazar, Hector; Eibl, Clarissa; Chebli, Miriam; Plested, Andrew

    2017-01-01

    Neurotransmitters trigger synaptic currents by activating ligand-gated ion channel receptors. Whereas most neurotransmitters are efficacious agonists, molecules that activate receptors more weakly—partial agonists—also exist. Whether these partial agonists have weak activity because they stabilize less active forms, sustain active states for a lesser fraction of the time or both, remains an open question. Here we describe the crystal structure of an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) ligand binding domain (LBD) tetramer in complex with the partial agonist 5-fluorowillardiine (FW). We validate this structure, and others of different geometry, using engineered intersubunit bridges. We establish an inverse relation between the efficacy of an agonist and its promiscuity to drive the LBD layer into different conformations. These results suggest that partial agonists of the AMPAR are weak activators of the receptor because they stabilize multiple non-conducting conformations, indicating that agonism is a function of both the space and time domains. PMID:28211453

  6. 17β-Estradiol and Agonism of G-protein-Coupled Estrogen Receptor Enhance Hippocampal Memory via Different Cell-Signaling Mechanisms.

    PubMed

    Kim, Jaekyoon; Szinte, Julia S; Boulware, Marissa I; Frick, Karyn M

    2016-03-16

    The ability of 17β-estradiol (E2) to enhance hippocampal object recognition and spatial memory depends on rapid activation of extracellular signal-regulated kinase (ERK) in the dorsal hippocampus (DH). Although this activation can be mediated by the intracellular estrogen receptors ERα and ERβ, little is known about the role that the membrane estrogen receptor GPER plays in regulating ERK or E2-mediated memory formation. In this study, post-training DH infusion of the GPER agonist G-1 enhanced object recognition and spatial memory in ovariectomized female mice, whereas the GPER antagonist G-15 impaired memory, suggesting that GPER activation, like E2, promotes hippocampal memory formation. However, unlike E2, G-1 did not increase ERK phosphorylation, but instead significantly increased phosphorylation of c-Jun N-terminal kinase (JNK) in the DH. Moreover, DH infusion of the JNK inhibitor SP600125 prevented G-1 from enhancing object recognition and spatial memory, but the ERK inhibitor U0126 did not. These data suggest that GPER enhances memory via different cell-signaling mechanisms than E2. This conclusion was supported by data showing that the ability of E2 to facilitate memory and activate ERK signaling was not blocked by G-15 or SP600125, which demonstrates that the memory-enhancing effects of E2 are not dependent on JNK or GPER activation in the DH. Together, these data indicate that GPER regulates memory independently from ERα and ERβ by activating JNK signaling, rather than ERK signaling. Thus, the findings suggest that GPER in the DH may not function as an estrogen receptor to regulate object recognition and spatial memory. Although 17β-estradiol has long been known to regulate memory function, the molecular mechanisms underlying estrogenic memory modulation remain largely unknown. Here, we examined whether the putative membrane estrogen receptor GPER acts like the classical estrogen receptors, ERα and ERβ, to facilitate hippocampal memory in female

  7. Low concentrations of bisphenol a suppress thyroid hormone receptor transcription through a nongenomic mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Zhi-Guo; Tang, Yuan; Liu, Yu-Xiang

    Bisphenol (BPA) is one of the highest-volume chemicals produced worldwide, and human exposure to BPA is thought to be ubiquitous. Various rodent and in vitro studies have shown that thyroid hormone (TH) function can be impaired by BPA. However, it is still unknown if low concentrations of BPA can suppress the thyroid hormone receptor (TR) transcription. The present study aims to investigate the possible suppressing effects of low concentrations of BPA on TR transcription and the involved mechanism(s) in CV-1 cells derived from cercopithecus aethiops monkey kidneys. Using gene reporter assays, BPA at concentrations as low as 10{sup −9} Mmore » suppresses TR or steroid receptor coactivator-1(SRC-1)-enhanced TR transcription, but not reducing TR/SRC-1 interaction in mammalian two-hybrid and glutathione S-transferase pull-down studies. It has been further shown that both nuclear receptor co-repressor (N-CoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) are recruited to the TR-β1 by BPA in the presence of physiologic concentrations of T3 or T4. However, the overexpression of β3 integrin or c-Src significantly reduces BPA-induced recruitment of N-CoR/SMRT to TR or suppression of TR transcription. Furthermore, BPA inhibits the T3/T4-mediated interassociation of the β3 integrin/c-Src/MAPK/TR-β1 pathways by the co-immunoprecipitation. These results indicate that low concentrations of BPA suppress the TR transcription by disrupting physiologic concentrations of T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways, followed by recruiting N-CoR/SMRT to TR-β1, providing a novel insight regarding the TH disruption effects of low concentration BPA. -- Highlights: ► Environmentally relevant concentrations of BPA suppress TR transcription. ► BPA recruits the N-CoR/SMRT to TR under the physiologic concentrations of T3/T4. ► BPA disrupts T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways.« less

  8. Sugar and pH dual-responsive mesoporous silica nanocontainers based on competitive binding mechanisms

    NASA Astrophysics Data System (ADS)

    Yilmaz, M. Deniz; Xue, Min; Ambrogio, Michael W.; Buyukcakir, Onur; Wu, Yilei; Frasconi, Marco; Chen, Xinqi; Nassar, Majed S.; Stoddart, J. Fraser; Zink, Jeffrey I.

    2014-12-01

    A sugar and pH dual-responsive controlled release system, which is highly specific towards molecular stimuli, has been developed based on the binding between catechol and boronic acid on a platform of mesoporous silica nanoparticles (MSNs). By grafting phenylboronic acid stalks onto the silica surface, catechol-containing β-cyclodextrins can be attached to the orifices of the MSNs' nanopores through formation of boronate esters which block access to the nanopores. These esters are stable enough to prevent cargo molecules from escaping. The boronate esters disassociate in the presence of sugars, enabling the molecule-specific controlled-release feature of this hybrid system. The rate of release has been found to be tunable by varying both the structures and the concentrations of sugars, as a result of the competitive binding nature associated with the mechanism of its operation. Acidification also induces the release of cargo molecules. Further investigations show that the presence of both a low pH and sugar molecules provides cooperative effects which together control the rate of release.A sugar and pH dual-responsive controlled release system, which is highly specific towards molecular stimuli, has been developed based on the binding between catechol and boronic acid on a platform of mesoporous silica nanoparticles (MSNs). By grafting phenylboronic acid stalks onto the silica surface, catechol-containing β-cyclodextrins can be attached to the orifices of the MSNs' nanopores through formation of boronate esters which block access to the nanopores. These esters are stable enough to prevent cargo molecules from escaping. The boronate esters disassociate in the presence of sugars, enabling the molecule-specific controlled-release feature of this hybrid system. The rate of release has been found to be tunable by varying both the structures and the concentrations of sugars, as a result of the competitive binding nature associated with the mechanism of its operation

  9. Development of a Dual Tracer PET Method for Imaging Dopaminergic Neuromodulation

    NASA Astrophysics Data System (ADS)

    Converse, Alexander K.; Dejesus, Onofre T.; Flores, Leo G.; Holden, James E.; Kelley, Ann E.; Moirano, Jeffrey M.; Nickles, Robert J.; Oakes, Terrence R.; Roberts, Andrew D.; Ruth, Thomas J.; Vandehey, Nicholas T.; Davidson, Richard J.

    2006-04-01

    The modulatory neurotransmittor dopamine (DA) is involved in movement and reward behaviors, and malfunctions in the dopamine system are implicated in a variety of prevalent and debilitating pathologies including Parkinson's disease, attention deficit/hyperactivity disorder, schizophrenia, and addiction. Positron emission tomography (PET) has been used to separately measure changes in DA receptor occupancy and blood flow in response to various interventions. Here we describe a dual tracer PET method to simultaneously measure both responses with the aim of comparing DA release in particular areas of the brain and associated alterations in neural activity throughout the brain. Significant correlations between reductions in DA receptor occupancy and blood flow alterations would be potential signs of dopaminergic modulation, i.e. modifications in signal processing due to increased levels of extracellular DA. Methodological development has begun with rats undergoing an amphetamine challenge while being scanned with the blood flow tracer [17F]fluoromethane and the dopamine D2 receptor tracer [18F]desmethoxyfallypride.

  10. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor: a study based on biosensor technology.

    PubMed

    List, K; Høyer-Hansen, G; Rønne, E; Danø, K; Behrendt, N

    1999-01-01

    Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or interference with conformational properties of the receptor critical for ligand binding. This distinction is central when employing the antibodies as tools in the elucidation of the structure-function relationship of the protein in question. We have studied the effect of monoclonal antibodies against the urokinase plasminogen activator receptor (uPAR), a protein located on the surface of various types of malignant and normal cells which is involved in the direction of proteolytic degradation reactions in the extracellular matrix. We show that surface plasmon resonance/biomolecular interaction analysis (BIA) can be employed as a highly useful tool to characterize the inhibitory mechanism of specific antagonist antibodies. Two inhibitory antibodies against uPAR, mAb R3 and mAb R5, were shown to exhibit competitive and non-competitive inhibition, respectively, of ligand binding to the receptor. The former antibody efficiently blocked the receptor against subsequent ligand binding but was unable to promote the dissociation of a preformed receptor-ligand complex. The latter antibody was capable of binding the preformed complex, forming a transient trimolecular assembly, and promoting the dissociation of the uPA/uPAR complex. The continuous recording of binding and dissociation, obtained in BIA, is central in characterizing these phenomena. The identification of a non-competitive inhibitory mechanism against this receptor reveals the presence of a determinant which influences the binding properties of a remote site in the molecular structure and which could be an important target for a putative synthetic antagonist.

  11. N-terminal dual lipidation-coupled molecular targeting into the primary cilium.

    PubMed

    Kumeta, Masahiro; Panina, Yulia; Yamazaki, Hiroya; Takeyasu, Kunio; Yoshimura, Shige H

    2018-06-13

    The primary cilium functions as an "antenna" for cell signaling, studded with characteristic transmembrane receptors and soluble protein factors, raised above the cell surface. In contrast to the transmembrane proteins, targeting mechanisms of nontransmembrane ciliary proteins are poorly understood. We focused on a pathogenic mutation that abolishes ciliary localization of retinitis pigmentosa 2 protein and revealed a dual acylation-dependent ciliary targeting pathway. Short N-terminal sequences which contain myristoylation and palmitoylation sites are sufficient to target a marker protein into the cilium in a palmitoylation-dependent manner. A Golgi-localized palmitoyltransferase DHHC-21 was identified as the key enzyme controlling this targeting pathway. Rapid turnover of the targeted protein was ensured by cholesterol-dependent membrane fluidity, which balances highly and less-mobile populations of the molecules within the cilium. This targeting signal was found in a set of signal transduction molecules, suggesting a general role of this pathway in proper ciliary organization, and dysfunction in ciliary disorders. © 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  12. Dual nozzle aerodynamic and cooling analysis study. [dual throat and dual expander nozzles

    NASA Technical Reports Server (NTRS)

    Meagher, G. M.

    1980-01-01

    Geometric, aerodynamic flow field, performance prediction, and heat transfer analyses are considered for two advanced chamber nozzle concepts applicable to Earth-to-orbit engine systems. Topics covered include improvements to the dual throat aerodynamic and performance prediction program; geometric and flow field analyses of the dual expander concept; heat transfer analysis of both concepts, and engineering analysis of data from the NASA/MSFC hot-fire testing of a dual throat thruster model thrust chamber assembly. Preliminary results obtained are presented in graphs.

  13. Hypothesis driven single cell dual oscillator mathematical model of circadian rhythms

    PubMed Central

    S, Shiju

    2017-01-01

    Molecular mechanisms responsible for 24 h circadian oscillations, entrainment to external cues, encoding of day length and the time-of-day effects have been well studied experimentally. However, it is still debated from the molecular network point of view whether each cell in suprachiasmatic nuclei harbors two molecular oscillators, where one tracks dawn and the other tracks dusk activities. A single cell dual morning and evening oscillator was proposed by Daan et al., based on the molecular network that has two sets of similar non-redundant per1/cry1 and per2/cry2 circadian genes and each can independently maintain their endogenous oscillations. Understanding of dual oscillator dynamics in a single cell at molecular level may provide insight about the circadian mechanisms that encodes day length variations and its response to external zeitgebers. We present here a realistic dual oscillator model of circadian rhythms based on the series of hypotheses proposed by Daan et al., in which they conjectured that the circadian genes per1/cry1 track dawn while per2/cry2 tracks dusk and they together constitute the morning and evening oscillators (dual oscillator). Their hypothesis also provides explanations about the encoding of day length in terms of molecular mechanisms of per/cry expression. We frame a minimal mathematical model with the assumption that per1 acts a morning oscillator and per2 acts as an evening oscillator and to support and interpret this assumption we fit the model to the experimental data of per1/per2 circadian temporal dynamics, phase response curves (PRC's), and entrainment phenomena under various light-dark conditions. We also capture different patterns of splitting phenomena by coupling two single cell dual oscillators with neuropeptides vasoactive intestinal polypeptide (VIP) and arginine vasopressin (AVP) as the coupling agents and provide interpretation for the occurrence of splitting in terms of ME oscillators, though they are not required to

  14. Hypothesis driven single cell dual oscillator mathematical model of circadian rhythms.

    PubMed

    S, Shiju; Sriram, K

    2017-01-01

    Molecular mechanisms responsible for 24 h circadian oscillations, entrainment to external cues, encoding of day length and the time-of-day effects have been well studied experimentally. However, it is still debated from the molecular network point of view whether each cell in suprachiasmatic nuclei harbors two molecular oscillators, where one tracks dawn and the other tracks dusk activities. A single cell dual morning and evening oscillator was proposed by Daan et al., based on the molecular network that has two sets of similar non-redundant per1/cry1 and per2/cry2 circadian genes and each can independently maintain their endogenous oscillations. Understanding of dual oscillator dynamics in a single cell at molecular level may provide insight about the circadian mechanisms that encodes day length variations and its response to external zeitgebers. We present here a realistic dual oscillator model of circadian rhythms based on the series of hypotheses proposed by Daan et al., in which they conjectured that the circadian genes per1/cry1 track dawn while per2/cry2 tracks dusk and they together constitute the morning and evening oscillators (dual oscillator). Their hypothesis also provides explanations about the encoding of day length in terms of molecular mechanisms of per/cry expression. We frame a minimal mathematical model with the assumption that per1 acts a morning oscillator and per2 acts as an evening oscillator and to support and interpret this assumption we fit the model to the experimental data of per1/per2 circadian temporal dynamics, phase response curves (PRC's), and entrainment phenomena under various light-dark conditions. We also capture different patterns of splitting phenomena by coupling two single cell dual oscillators with neuropeptides vasoactive intestinal polypeptide (VIP) and arginine vasopressin (AVP) as the coupling agents and provide interpretation for the occurrence of splitting in terms of ME oscillators, though they are not required to

  15. Genetics of Taste Receptors

    PubMed Central

    Bachmanov, Alexander A.; Bosak, Natalia P.; Lin, Cailu; Matsumoto, Ichiro; Ohmoto, Makoto; Reed, Danielle R.; Nelson, Theodore M.

    2016-01-01

    Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical “tastes” as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications. PMID:23886383

  16. Sigma receptor antagonists attenuate acute methamphetamine-induced hyperthermia by a mechanism independent of IL-1β mRNA expression in the hypothalamus

    PubMed Central

    Seminerio, Michael J.; Robson, Matthew J.; McCurdy, Christopher R.; Matsumoto, Rae R.

    2013-01-01

    Methamphetamine is currently one of the most widely abused drugs worldwide, with hyperthermia being a leading cause of death in methamphetamine overdose situations. Methamphetamine-induced hyperthermia involves a variety of cellular mechanisms, including increases in hypothalamic interleukin-1 beta (IL-1β) expression. Methamphetamine also interacts with sigma receptors and previous studies have shown that sigma receptor antagonists mitigate many of the behavioral and physiological effects of methamphetamine, including hyperthermia. The purpose of the current study was to determine if the attenuation of methamphetamine-induced hyperthermia by the sigma receptor antagonists, AZ66 and SN79, is associated with a concomitant attenuation of IL-1β mRNA expression, particularly in the hypothalamus. Methamphetamine produced doseand time-dependent increases in core body temperature and IL-1β mRNA expression in the hypothalamus, striatum, and cortex in male, Swiss Webster mice. Pretreatment with the sigma receptor antagonists, AZ66 and SN79, significantly attenuated methamphetamine-induced hyperthermia, but further potentiated IL-1β mRNA in the mouse hypothalamus when compared to animals treated with methamphetamine alone. These findings suggest sigma receptor antagonists attenuate methamphetamine-induced hyperthermia through a different mechanism from that involved in the modulation of hypothalamic IL-1β mRNA expression. PMID:22820108

  17. Improved Glucose Control and Reduced Body Weight in Rodents with Dual Mechanism of Action Peptide Hybrids

    PubMed Central

    Trevaskis, James L.; Mack, Christine M.; Sun, Chengzao; Soares, Christopher J.; D’Souza, Lawrence J.; Levy, Odile E.; Lewis, Diane Y.; Jodka, Carolyn M.; Tatarkiewicz, Krystyna; Gedulin, Bronislava; Gupta, Swati; Wittmer, Carrie; Hanley, Michael; Forood, Bruce; Parkes, David G.; Ghosh, Soumitra S.

    2013-01-01

    Combination therapy is being increasingly used as a treatment paradigm for metabolic diseases such as diabetes and obesity. In the peptide therapeutics realm, recent work has highlighted the therapeutic potential of chimeric peptides that act on two distinct receptors, thereby harnessing parallel complementary mechanisms to induce additive or synergistic benefit compared to monotherapy. Here, we extend this hypothesis by linking a known anti-diabetic peptide with an anti-obesity peptide into a novel peptide hybrid, which we termed a phybrid. We report on the synthesis and biological activity of two such phybrids (AC164204 and AC164209), comprised of a glucagon-like peptide-1 receptor (GLP1-R) agonist, and exenatide analog, AC3082, covalently linked to a second generation amylin analog, davalintide. Both molecules acted as full agonists at their cognate receptors in vitro, albeit with reduced potency at the calcitonin receptor indicating slightly perturbed amylin agonism. In obese diabetic Lepob/Lep ob mice sustained infusion of AC164204 and AC164209 reduced glucose and glycated haemoglobin (HbA1c) equivalently but induced greater weight loss relative to exenatide administration alone. Weight loss was similar to that induced by combined administration of exenatide and davalintide. In diet-induced obese rats, both phybrids dose-dependently reduced food intake and body weight to a greater extent than exenatide or davalintide alone, and equal to co-infusion of exenatide and davalintide. Phybrid-mediated and exenatide + davalintide-mediated weight loss was associated with reduced adiposity and preservation of lean mass. These data are the first to provide in vivo proof-of-concept for multi-pathway targeting in metabolic disease via a peptide hybrid, demonstrating that this approach is as effective as co-administration of individual peptides. PMID:24167604

  18. Asperosaponin VI promotes progesterone receptor expression in decidual cells via the notch signaling pathway.

    PubMed

    Gao, Jie; Zhou, Chun; Li, Yadi; Gao, Feixia; Wu, Haiwang; Yang, Lilin; Qiu, Weiyu; Zhu, Lin; Du, Xin; Lin, Weixian; Huang, Dandan; Liu, Haibin; Liang, Chun; Luo, Songping

    2016-09-01

    Recurrent spontaneous abortion (RSA) is a common clinical condition, but its reasons remain unknown in 37-79% of the affected women. The steroid hormone progesterone (P4) is an integral mediator of early pregnancy events, exerting its effects via the progesterone receptor (PR). Dipsaci Radix (DR) has long been used for treating gynecological diseases in Chinese medicine, while its molecular mechanisms and active ingredients are still unclear. We report here the progesterone-like effects of the alcohol extraction and Asperosaponin VI from DR in primary decidual cells and HeLa cell line. We first determined the safe concentration of Asperosaponin VI in the cells with MTT assay and then found by using dual luciferase reporter and Western blotting that Asperosaponin VI significantly increased PR expression. Moreover, we explored the mechanisms of action of the DR extracts and Asperosaponin VI, and the results showed that they could activate Notch signaling, suggesting that they may function by promoting decidualization. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Isolating the Neural Mechanisms of Interference During Continuous Multisensory Dual-task Performance

    DTIC Science & Technology

    2014-01-01

    sion accuracy in each task, the signal detection theory sensitivity measure of d0 was used (Macmillan & Creelman , 1991; Green & Swets, 1966). First...J. (1998). Sources of dual-task interference: Evidence from human electrophysiology. Psychological Science, 9, 223–227. Macmillan, N. A., & Creelman

  20. [Molecular receptors of taste agents].

    PubMed

    Giliarov, D A; Sakharova, T A; Buzdin, A A

    2009-01-01

    All representatives of higher eukaryotes can probably differentially perceive nutrients and poisonous substances. Molecular mechanisms of transduction of taste information have been best studied for mammals and for the fruit fly Drosophila. Here, we consider receptor mechanisms and conjugated primary signal processes of stimulation of taste receptor cells by stimuli of various taste modalities.

  1. Identification of a µ opiate receptor signaling mechanism in human placenta.

    PubMed

    Mantione, Kirk J; Angert, Robert M; Cadet, Patrick; Kream, Richard M; Stefano, George B

    2010-11-01

    Previous studies report that genes in the morphine biosynthetic pathway have been found in placental tissue. Prior researchers have shown that kappa opioid receptors are present in human placenta. We determined if a µ opiate receptor was present and which subtype was expressed in human placenta. We also sought to demonstrate a functional µ opiate receptor in human placenta. Polymerase chain reactions as well as DNA sequencing were performed to identify the µ opiate receptor subtypes present in human placenta. The functionality of the receptor was demonstrated by real time amperometric measurements of morphine induced NO release. The µ4 opiate receptor sequence was present as well as the µ1 opioid receptor transcript. The addition of morphine to placental tissue resulted in immediate nitric oxide release and this effect was blocked by naloxone. In the present study, an intact morphine signaling system has been demonstrated in human placenta. Morphine signaling in human placenta probably functions to regulate the immune, vascular, and endocrine functions of this organ via NO.

  2. Mechanisms of Inhibition and Potentiation of α4β2 Nicotinic Acetylcholine Receptors by Members of the Ly6 Protein Family*

    PubMed Central

    Wu, Meilin; Puddifoot, Clare A.; Taylor, Palmer; Joiner, William J.

    2015-01-01

    α4β2 nicotinic acetylcholine receptors (nAChRs) are abundantly expressed throughout the central nervous system and are thought to be the primary target of nicotine, the main addictive substance in cigarette smoking. Understanding the mechanisms by which these receptors are regulated may assist in developing compounds to selectively interfere with nicotine addiction. Here we report previously unrecognized modulatory properties of members of the Ly6 protein family on α4β2 nAChRs. Using a FRET-based Ca2+ flux assay, we found that the maximum response of α4β2 receptors to agonist was strongly inhibited by Ly6h and Lynx2 but potentiated by Ly6g6e. The mechanisms underlying these opposing effects appear to be fundamentally distinct. Receptor inhibition by Lynx2 was accompanied by suppression of α4β2 expression at the cell surface, even when assays were preceded by chronic exposure of cells to an established chaperone, nicotine. Receptor inhibition by Lynx2 also was resistant to pretreatment with extracellular phospholipase C, which cleaves lipid moieties like those that attach Ly6 proteins to the plasma membrane. In contrast, potentiation of α4β2 activity by Ly6g6e was readily reversible by pretreatment with phospholipase C. Potentiation was also accompanied by slowing of receptor desensitization and an increase in peak currents. Collectively our data support roles for Lynx2 and Ly6g6e in intracellular trafficking and allosteric potentiation of α4β2 nAChRs, respectively. PMID:26276394

  3. Mechanisms underlying the inhibitory effects of tachykinin receptor antagonists on eosinophil recruitment in an allergic pleurisy model in mice

    PubMed Central

    Alessandri, Ana Letícia; Pinho, Vanessa; Souza, Danielle G; Castro, Maria Salete de A; Klein, André; Teixeira, Mauro M

    2003-01-01

    The activation of tachykinin NK receptors by neuropeptides may induce the recruitment of eosinophils in vivo. The aim of the present study was to investigate the effects and underlying mechanism(s) of the action of tachykinin receptor antagonists on eosinophil recruitment in a model of allergic pleurisy in mice. Pretreatment of immunized mice with capsaicin partially prevented the recruitment of eosinophils after antigen challenge, suggesting the potential contribution of sensory nerves for the recruitment of eosinophils Local (10–50 nmol per pleural cavity) or systemic (100–300 nmol per animal) pretreatment with the tachykinin NK1 receptor antagonist SR140333 prevented the recruitment of eosinophils induced by antigen challenge of immunized mice. Neither tachykinin NK2 nor NK3 receptor antagonists suppressed eosinophil recruitment. Pretreatment with SR140333 failed to prevent the antigen-induced increase of interleukin-5 concentrations in the pleural cavity. Similarly, SR140333 failed to affect the bone marrow eosinophilia observed at 48 h after antigen challenge of immunized mice. SR140333 induced a significant increase in the concentrations of antigen-induced eotaxin at 6 h after challenge. Antigen challenge of immunized mice induced a significant increase of Leucotriene B4 (LTB4) concentrations at 6 h after challenge. Pretreatment with SR140333 prevented the antigen-induced increase of LTB4 concentrations. Our data suggest an important role for NK1 receptor activation with consequent LTB4 release and eosinophil recruitment in a model of allergic pleurisy in the mouse. Tachykinins appear to be released mainly from peripheral endings of capsaicin-sensitive sensory neurons and may act on mast cells to facilitate antigen-driven release of LTB4. PMID:14585802

  4. Investigation of Inhibition Mechanism of Chemokine Receptor CCR5 by Micro-second Molecular Dynamics Simulations.

    PubMed

    Salmas, Ramin Ekhteiari; Yurtsever, Mine; Durdagi, Serdar

    2015-08-24

    Chemokine receptor 5 (CCR5) belongs to G protein coupled receptors (GPCRs) and plays an important role in treatment of human immunodeficiency virus (HIV) infection since HIV uses CCR5 protein as a co-receptor. Recently, the crystal structure of CCR5-bound complex with an approved anti-retroviral drug (maroviroc) was resolved. During the crystallization procedure, amino acid residues (i.e., Cys224, Arg225, Asn226 and Glu227) at the third intra-cellular loop were replaced by the rubredoxin for stability reasons. In the current study, we aimed to understand the impact of the incorporated rubredoxin on the conformations of TM domains of the target protein. For this reason, rubredoxin was deleted from the crystal structure and the missing amino acids were engineered. The resultant structure was subjected to long (μs) molecular dynamics (MD) simulations to shed light into the inhibitory mechanism. The derived model structure displayed a significant deviation in the cytoplasmic domain of TM5 and IC3 in the absence of rubredoxin. The principal component analyses (PCA) and MD trajectory analyses revealed important structural and dynamical differences at apo and holo forms of the CCR5.

  5. Further investigation into the mechanism of tachykinin NK(2) receptor-triggered serotonin release from guinea-pig proximal colon.

    PubMed

    Kojima, Shu-Ichi; Ikeda, Masashi; Kamikawa, Yuichiro

    2009-05-01

    The effects of the monoamine oxidase A (MAO-A) inhibitor clorgyline, the L-type calcium-channel blocker nicardipine, the syntaxin inhibitor botulinum toxin type C, and the potent thiol-oxidant phenylarsine oxide (PAO) on the selective tachykinin NK(2)-receptor agonist [beta-Ala(8)]-neurokinin A(4-10) [betaAla-NKA-(4-10)]-evoked 5-hydroxytryptamine (5-HT) outflow from colonic enterochromaffin (EC) cells was investigated in vitro using isolated guinea-pig proximal colon. The betaAla-NKA-(4-10)-evoked outflow of 5-HT from clorgyline-treated colonic strips was markedly higher than that from clorgyline-untreated colonic strips. The betaAla-NKA-(4-10)-evoked 5-HT outflow from the clorgyline-treated colonic strips was sensitive to nicardipine or botulinum toxin type C. Moreover, PAO concentration-dependently suppressed the betaAla-NKA-(4-10)-evoked 5-HT outflow from the clorgyline-treated colonic strips. The suppressant action of PAO was reversed by the reducing agent dithiothrietol, but was not blocked by the protein tyrosine kinase inhibitor genistein. These results suggest that the tachykinin NK(2) receptor-triggered 5-HT release from guinea-pig colonic EC cells is mediated by syntaxin-related exocytosis mechanisms and that colonic mucosa MAO-A activity has the important function of modulating the tachykinin NK(2) receptor-triggered 5-HT release. It also appears that PAO-mediated sulfhydryl oxidation plays a role in modulating the tachykinin NK(2) receptor-triggered 5-HT release through a mechanism independent of inhibition of protein tyrosine phosphatase activity.

  6. Dual-band plasmonic resonator based on Jerusalem cross-shaped nanoapertures

    NASA Astrophysics Data System (ADS)

    Cetin, Arif E.; Kaya, Sabri; Mertiri, Alket; Aslan, Ekin; Erramilli, Shyamsunder; Altug, Hatice; Turkmen, Mustafa

    2015-06-01

    In this paper, we both experimentally and numerically introduce a dual-resonant metamaterial based on subwavelength Jerusalem cross-shaped apertures. We numerically investigate the physical origin of the dual-resonant behavior, originating from the constituting aperture elements, through finite difference time domain calculations. Our numerical calculations show that at the dual-resonances, the aperture system supports large and easily accessible local electromagnetic fields. In order to experimentally realize the aperture system, we utilize a high-precision and lift-off free fabrication method based on electron-beam lithography. We also introduce a fine-tuning mechanism for controlling the dual-resonant spectral response through geometrical device parameters. Finally, we show the aperture system's highly advantageous far- and near-field characteristics through numerical calculations on refractive index sensitivity. The quantitative analyses on the availability of the local fields supported by the aperture system are employed to explain the grounds behind the sensitivity of each spectral feature within the dual-resonant behavior. Possessing dual-resonances with large and accessible electromagnetic fields, Jerusalem cross-shaped apertures can be highly advantageous for wide range of applications demanding multiple spectral features with strong nearfield characteristics.

  7. Wound healing effects of noni (Morinda citrifolia L.) leaves: a mechanism involving its PDGF/A2A receptor ligand binding and promotion of wound closure.

    PubMed

    Palu, Afa; Su, Chen; Zhou, Bing-Nan; West, Brett; Jensen, Jarakae

    2010-10-01

    Morinda citrifolia L. (Rubiaceae) commonly known as noni, has been used in Polynesia by traditional healers for the treatment of cuts, bruises and wounds. Our objective was to investigate the wound-healing mechanisms of the noni leaf. The investigations of its wound-healing mechanisms were carried out using fresh noni leaf juice (NLJ), noni leaf ethanol extract (NLEE) and its methanol (MFEE) and hexane (HFEE) fractions on the PDGF and A(2A) receptors in vitro and topically in mice. Fresh noni leaf juice showed significant affinity to PDGF receptors, and displayed 166% binding inhibition of the ligand binding to its receptors, while at the same concentration, it only had 7% inhibition of the ligand binding to the A(2A) receptors. NLEE, HFEE and MFEE showed significant affinity to A(2A) receptors, concentration dependently, with IC(50) values of 34.1, 42.9 and 86.7 μg/mL, respectively. However, MFEE significantly increased wound closure and reduced the half closure time in mice with a CT(50) of 5.4 ± 0.2 days compared with control (p < 0.05). These results suggest that noni leaf significantly accelerated wound healing in mice via its ligand binding to the PDGF and A(2A) receptors as its probable mechanisms of wound-healing and also support its traditional usage for wound-healing in Polynesia. Copyright © 2010 John Wiley & Sons, Ltd.

  8. Distinct Mu, Delta, and Kappa Opioid Receptor Mechanisms Underlie Low Sociability and Depressive-Like Behaviors During Heroin Abstinence

    PubMed Central

    Lutz, Pierre-Eric; Ayranci, Gulebru; Chu-Sin-Chung, Paul; Matifas, Audrey; Koebel, Pascale; Filliol, Dominique; Befort, Katia; Ouagazzal, Abdel-Mouttalib; Kieffer, Brigitte L

    2014-01-01

    Addiction is a chronic disorder involving recurring intoxication, withdrawal, and craving episodes. Escaping this vicious cycle requires maintenance of abstinence for extended periods of time and is a true challenge for addicted individuals. The emergence of depressive symptoms, including social withdrawal, is considered a main cause for relapse, but underlying mechanisms are poorly understood. Here we establish a mouse model of protracted abstinence to heroin, a major abused opiate, where both emotional and working memory deficits unfold. We show that delta and kappa opioid receptor (DOR and KOR, respectively) knockout mice develop either stronger or reduced emotional disruption during heroin abstinence, establishing DOR and KOR activities as protective and vulnerability factors, respectively, that regulate the severity of abstinence. Further, we found that chronic treatment with the antidepressant drug fluoxetine prevents emergence of low sociability, with no impact on the working memory deficit, implicating serotonergic mechanisms predominantly in emotional aspects of abstinence symptoms. Finally, targeting the main serotonergic brain structure, we show that gene knockout of mu opioid receptors (MORs) in the dorsal raphe nucleus (DRN) before heroin exposure abolishes the development of social withdrawal. This is the first result demonstrating that intermittent chronic MOR activation at the level of DRN represents an essential mechanism contributing to low sociability during protracted heroin abstinence. Altogether, our findings reveal crucial and distinct roles for all three opioid receptors in the development of emotional alterations that follow a history of heroin exposure and open the way towards understanding opioid system-mediated serotonin homeostasis in heroin abuse. PMID:24874714

  9. Hyodeoxycholic acid derivatives as liver X receptor α and G-protein-coupled bile acid receptor agonists

    NASA Astrophysics Data System (ADS)

    de Marino, Simona; Carino, Adriana; Masullo, Dario; Finamore, Claudia; Marchianò, Silvia; Cipriani, Sabrina; di Leva, Francesco Saverio; Catalanotti, Bruno; Novellino, Ettore; Limongelli, Vittorio; Fiorucci, Stefano; Zampella, Angela

    2017-02-01

    Bile acids are extensively investigated for their potential in the treatment of human disorders. The liver X receptors (LXRs), activated by oxysterols and by a secondary bile acid named hyodeoxycholic acid (HDCA), have been found essential in the regulation of lipid homeostasis in mammals. Unfortunately, LXRα activates lipogenic enzymes causing accumulation of lipid in the liver. In addition to LXRs, HDCA has been also shown to function as ligand for GPBAR1, a G protein coupled receptor for secondary bile acids whose activation represents a promising approach to liver steatosis. In the present study, we report a library of HDCA derivatives endowed with modulatory activity on the two receptors. The lead optimization of HDCA moiety was rationally driven by the structural information on the binding site of the two targets and results from pharmacological characterization allowed the identification of hyodeoxycholane derivatives with selective agonistic activity toward LXRα and GPBAR1 and notably to the identification of the first example of potent dual LXRα/GPBAR1 agonists. The new chemical entities might hold utility in the treatment of dyslipidemic disorders.

  10. Tunable metamaterial dual-band terahertz absorber

    NASA Astrophysics Data System (ADS)

    Luo, C. Y.; Li, Z. Z.; Guo, Z. H.; Yue, J.; Luo, Q.; Yao, G.; Ji, J.; Rao, Y. K.; Li, R. K.; Li, D.; Wang, H. X.; Yao, J. Q.; Ling, F. R.

    2015-11-01

    We report a design of a temperature controlled tunable dual band terahertz absorber. The compact single unit cell consists of two nested closed square ring resonators and a layer metallic separated by a substrate strontium titanate (STO) dielectric layer. It is found that the absorber has two distinctive absorption peaks at frequencies 0.096 THz and 0.137 THz, whose peaks are attained 97% and 75%. Cooling the absorber from 400 K to 250 K causes about 25% and 27% shift compared to the resonance frequency of room temperature, when we cooling the temperature to 150 K, we could attained both the two tunabilities exceeding 53%. The frequency tunability is owing to the variation of the dielectric constant of the low-temperature co-fired ceramic (LTCC) substrate. The mechanism of the dual band absorber is attributed to the overlapping of dual resonance frequencies, and could be demonstrated by the distributions of the electric field. The method opens up avenues for designing tunable terahertz devices in detection, imaging, and stealth technology.

  11. A calixpyrrole derivative acts as an antagonist to GPER, a G-protein coupled receptor: mechanisms and models

    PubMed Central

    Lappano, Rosamaria; Rosano, Camillo; Pisano, Assunta; Santolla, Maria Francesca; De Francesco, Ernestina Marianna; De Marco, Paola; Dolce, Vincenza; Ponassi, Marco; Felli, Lamberto; Cafeo, Grazia; Kohnke, Franz Heinrich; Abonante, Sergio; Maggiolini, Marcello

    2015-01-01

    ABSTRACT Estrogens regulate numerous pathophysiological processes, mainly by binding to and activating estrogen receptor (ER)α and ERβ. Increasing amounts of evidence have recently demonstrated that G-protein coupled receptor 30 (GPR30; also known as GPER) is also involved in diverse biological responses to estrogens both in normal and cancer cells. The classical ER and GPER share several features, including the ability to bind to identical compounds; nevertheless, some ligands exhibit opposed activity through these receptors. It is worth noting that, owing to the availability of selective agonists and antagonists of GPER for research, certain differential roles elicited by GPER compared with ER have been identified. Here, we provide evidence on the molecular mechanisms through which a calixpyrrole derivative acts as a GPER antagonist in different model systems, such as breast tumor cells and cancer-associated fibroblasts (CAFs) obtained from breast cancer patients. Our data might open new perspectives toward the development of a further class of selective GPER ligands in order to better dissect the role exerted by this receptor in different pathophysiological conditions. Moreover, calixpyrrole derivatives could be considered in future anticancer strategies targeting GPER in cancer cells. PMID:26183213

  12. A calixpyrrole derivative acts as an antagonist to GPER, a G-protein coupled receptor: mechanisms and models.

    PubMed

    Lappano, Rosamaria; Rosano, Camillo; Pisano, Assunta; Santolla, Maria Francesca; De Francesco, Ernestina Marianna; De Marco, Paola; Dolce, Vincenza; Ponassi, Marco; Felli, Lamberto; Cafeo, Grazia; Kohnke, Franz Heinrich; Abonante, Sergio; Maggiolini, Marcello

    2015-10-01

    Estrogens regulate numerous pathophysiological processes, mainly by binding to and activating estrogen receptor (ER)α and ERβ. Increasing amounts of evidence have recently demonstrated that G-protein coupled receptor 30 (GPR30; also known as GPER) is also involved in diverse biological responses to estrogens both in normal and cancer cells. The classical ER and GPER share several features, including the ability to bind to identical compounds; nevertheless, some ligands exhibit opposed activity through these receptors. It is worth noting that, owing to the availability of selective agonists and antagonists of GPER for research, certain differential roles elicited by GPER compared with ER have been identified. Here, we provide evidence on the molecular mechanisms through which a calixpyrrole derivative acts as a GPER antagonist in different model systems, such as breast tumor cells and cancer-associated fibroblasts (CAFs) obtained from breast cancer patients. Our data might open new perspectives toward the development of a further class of selective GPER ligands in order to better dissect the role exerted by this receptor in different pathophysiological conditions. Moreover, calixpyrrole derivatives could be considered in future anticancer strategies targeting GPER in cancer cells. © 2015. Published by The Company of Biologists Ltd.

  13. Theoretical and Computational Studies of Peptides and Receptors of the Insulin Family

    PubMed Central

    Vashisth, Harish

    2015-01-01

    Synergistic interactions among peptides and receptors of the insulin family are required for glucose homeostasis, normal cellular growth and development, proliferation, differentiation and other metabolic processes. The peptides of the insulin family are disulfide-linked single or dual-chain proteins, while receptors are ligand-activated transmembrane glycoproteins of the receptor tyrosine kinase (RTK) superfamily. Binding of ligands to the extracellular domains of receptors is known to initiate signaling via activation of intracellular kinase domains. While the structure of insulin has been known since 1969, recent decades have seen remarkable progress on the structural biology of apo and liganded receptor fragments. Here, we review how this useful structural information (on ligands and receptors) has enabled large-scale atomically-resolved simulations to elucidate the conformational dynamics of these biomolecules. Particularly, applications of molecular dynamics (MD) and Monte Carlo (MC) simulation methods are discussed in various contexts, including studies of isolated ligands, apo-receptors, ligand/receptor complexes and intracellular kinase domains. The review concludes with a brief overview and future outlook for modeling and computational studies in this family of proteins. PMID:25680077

  14. Magnesium inhibition of ryanodine-receptor calcium channels: evidence for two independent mechanisms.

    PubMed

    Laver, D R; Baynes, T M; Dulhunty, A F

    1997-04-01

    The gating of ryanodine receptor calcium release channels (RyRs) depends on myoplasmic Ca2+ and Mg2+ concentrations. RyRs from skeletal and cardiac muscle are activated by microm Ca2+ and inhibited by mm Ca2+ and Mg2+. 45Ca2+ release from skeletal SR vesicles suggests two mechanisms for Mg2+-inhibition (Meissner, Darling & Eveleth, 1986, Biochemistry 25:236-244). The present study investigates the nature of these mechanisms using measurements of single-channel activity from cardiac- and skeletal RyRs incorporated into planar lipid bilayers. Our measurements of Mg2+- and Ca2+-dependent gating kinetics confirm that there are two mechanisms for Mg2+ inhibition (Type I and II inhibition) in skeletal and cardiac RyRs. The mechanisms operate concurrently, are independent and are associated with different parts of the channel protein. Mg2+ reduces Po by competing with Ca2+ for the activation site (Type-I) or binding to more than one, and probably two low affinity inhibition sites which do not discriminate between Ca2+ and Mg2+ (Type-II). The relative contributions of the two inhibition mechanisms to the total Mg2+ effect depend on cytoplasmic [Ca2+] in such a way that Mg2+ inhibition has the properties of Types-I and II inhibition at low and high [Ca2+] respectively. Both mechanisms are equally important when [Ca2+] = 10 microm in cardiac RyRs or 1 microm in skeletal RyRs. We show that Type-I inhibition is not the sole mechanism responsible for Mg2+ inhibition, as is often assumed, and we discuss the physiological implications of this finding.

  15. Pharmacological significance of the interplay between angiotensin receptors: MAS receptors as putative final mediators of the effects elicited by angiotensin AT1 receptors antagonists.

    PubMed

    Pernomian, Larissa; Pernomian, Laena; Gomes, Mayara S; da Silva, Carlos H T P

    2015-12-15

    The interplay between angiotensin AT1 receptors and MAS receptors relies on several inward regulatory mechanisms from renin-angiotensin system (RAS) including the functional crosstalk between angiotensin II and angiotensin-(1-7), the competitive AT1 antagonism exhibited by angiotensin-(1-7), the antagonist feature assigned to AT1/MAS heterodimerization on AT1 signaling and the AT1-mediated downregulation of angiotensin-converting enzyme 2 (ACE2). Recently, such interplay has acquired an important significance to RAS Pharmacology since a few studies have supporting strong evidences that MAS receptors mediate the effects elicited by AT1 antagonists. The present Perspective provides an overview of the regulatory mechanisms involving AT1 and MAS receptors, their significance to RAS Pharmacology and the future directions on the interplay between angiotensin receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Discovery of Tertiary Sulfonamides as Potent Liver X Receptor Antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuercher, William J.; Buckholz†, Richard G.; Campobasso, Nino

    2010-08-12

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  17. Discovery of tertiary sulfonamides as potent liver X receptor antagonists.

    PubMed

    Zuercher, William J; Buckholz, Richard G; Campobasso, Nino; Collins, Jon L; Galardi, Cristin M; Gampe, Robert T; Hyatt, Stephen M; Merrihew, Susan L; Moore, John T; Oplinger, Jeffrey A; Reid, Paul R; Spearing, Paul K; Stanley, Thomas B; Stewart, Eugene L; Willson, Timothy M

    2010-04-22

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  18. Minding the Calcium Store: Ryanodine Receptor Activation as a Convergent Mechanism of PCB Toxicity

    PubMed Central

    Pessah, Isaac N.; Cherednichenko, Gennady; Lein, Pamela J.

    2009-01-01

    Chronic low level polychlorinated biphenyls (PCB) exposures remain a significant public health concern since results from epidemiological studies indicate PCB burden is associated with immune system dysfunction, cardiovascular disease, and impairment of the developing nervous system. Of these various adverse health effects, developmental neurotoxicity has emerged as a particularly vulnerable endpoint in PCB toxicity. Arguably the most pervasive biological effects of PCBs could be mediated by their ability to alter the spatial and temporal fidelity of Ca2+ signals through one or more receptor mediated processes. This review will focus on our current knowledge of the structure and function of ryanodine receptors (RyRs) in muscle and nerve cells and how PCBs and related non-coplanar structures alter these functions. The molecular and cellular mechanisms by which non-coplanar PCBs and related structures alter local and global Ca2+ signaling properties and the possible short and long-term consequences of these perturbations on neurodevelopment and neurodegeneration are reviewed. PMID:19931307

  19. New functions and signaling mechanisms for the class of adhesion G protein–coupled receptors

    PubMed Central

    Liebscher, Ines; Ackley, Brian; Araç, Demet; Ariestanti, Donna M.; Aust, Gabriela; Bae, Byoung-il; Bista, Bigyan R.; Bridges, James P.; Duman, Joseph G.; Engel, Felix B.; Giera, Stefanie; Goffinet, André M.; Hall, Randy A.; Hamann, Jörg; Hartmann, Nicole; Lin, Hsi-Hsien; Liu, Mingyao; Luo, Rong; Mogha, Amit; Monk, Kelly R.; Peeters, Miriam C.; Prömel, Simone; Ressl, Susanne; Schiöth, Helgi B.; Sigoillot, Séverine M.; Song, Helen; Talbot, William S.; Tall, Gregory G.; White, James P.; Wolfrum, Uwe; Xu, Lei; Piao, Xianhua

    2014-01-01

    The class of adhesion G protein–coupled receptors (aGPCRs), with 33 human homologs, is the second largest family of GPCRs. In addition to a seven-transmembrane α-helix—a structural feature of all GPCRs—the class of aGPCRs is characterized by the presence of a large N-terminal extracellular region. In addition, all aGPCRs but one (GPR123) contain a GPCR autoproteolysis–inducing (GAIN) domain that mediates autoproteolytic cleavage at the GPCR autoproteolysis site (GPS) motif to generate N- and a C-terminal fragments (NTF and CTF, respectively) during protein maturation. Subsequently, the NTF and CTF are associated non-covalently as a heterodimer at the plasma membrane. While the biological function of the GAIN domain–mediated autocleavage is not fully understood, mounting evidence suggests that the NTF and CTF possess distinct biological activities in addition to their function as a receptor unit. We discuss recent advances in understanding the biological functions, signaling mechanisms, and disease associations of the aGPCRs. PMID:25424900

  20. Odorant receptors can mediate axonal identity and gene choice via cAMP-independent mechanisms

    PubMed Central

    Grosmaitre, Xavier; Feinstein, Paul

    2016-01-01

    Odorant receptors (ORs) control several aspects of cell fate in olfactory sensory neurons (OSNs), including singular gene choice and axonal identity. The mechanisms of OR-induced axon guidance have been suggested to principally rely on G-protein signalling. Here, we report that for a subset of OSNs, deleting G proteins or altering their levels of signalling does not affect axonal identity. Signalling-deficient ORs or surrogate receptors that are unable to couple to Gs/Golf still provide axons with distinct identities and the anterior–posterior targeting of axons does not correlate with the levels of cAMP produced by genetic modifications. In addition, we refine the models of negative feedback by showing that ectopic ORs can be robustly expressed without suppressing endogenous gene choice. In conclusion, our results uncover a new feature of ORs, showing that they can instruct axonal identity and regulate olfactory map formation independent of canonical G-protein signalling and cAMP production. PMID:27466441

  1. Evaluation of dual γ-ray imager with active collimator using various types of scintillators.

    PubMed

    Lee, Wonho; Lee, Taewoong; Jeong, Manhee; Kim, Ho Kyung

    2011-10-01

    The performance of a specialized dual γ-ray imager using both mechanical and electronic collimation was evaluated by Monte Carlo simulation (MCNP5). The dual imager consisted of an active collimator and a planar detector that were made from scintillators. The active collimator served not only as a coded aperture for mechanical collimation but also as a first detector for electronic collimation. Therefore, a single system contained both mechanical and electronic collimation. Various types of scintillators were tested and compared with each other in terms of their angular resolution, efficiency, and background noise. In general, a BGO active collimator had the best mechanical collimation performance, and an LaCl₃(Ce) active collimator provided the best electronic collimation performance. However, for low radiation energies, the mechanical collimation images made from both scintillators showed the same quality, and, for high radiation energies, electronic collimation images made from both scintillators also show similar quality. Therefore, if mechanical collimation is used to detect low-energy radiation and electronic collimation is applied to reconstruct a high-energy source, either LaCl₃(Ce) or BGO would be appropriate for the active collimator of a dual γ-ray imager. These results broaden the choice of scintillators for the active collimator of the dual γ-ray imager, which makes it possible to consider other factors, such as machinability and cost, in making the imager. As a planar detector, BGO showed better performance than other scintillators since its radiation detection efficiency was highest of all. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Dual fluidized bed design for the fast pyrolysis of biomass

    USDA-ARS?s Scientific Manuscript database

    A mechanism for the transport of solids between fluidised beds in dual fluidised bed systems for the fast pyrolysis of biomass process was selected. This mechanism makes use of an overflow standpipe to transport solids from the fluidised bed used for the combustion reactions to a second fluidised be...

  3. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock.

    PubMed

    Van Amersfoort, Edwin S; Van Berkel, Theo J C; Kuiper, Johan

    2003-07-01

    Bacterial sepsis and septic shock result from the overproduction of inflammatory mediators as a consequence of the interaction of the immune system with bacteria and bacterial wall constituents in the body. Bacterial cell wall constituents such as lipopolysaccharide, peptidoglycans, and lipoteichoic acid are particularly responsible for the deleterious effects of bacteria. These constituents interact in the body with a large number of proteins and receptors, and this interaction determines the eventual inflammatory effect of the compounds. Within the circulation bacterial constituents interact with proteins such as plasma lipoproteins and lipopolysaccharide binding protein. The interaction of the bacterial constituents with receptors on the surface of mononuclear cells is mainly responsible for the induction of proinflammatory mediators by the bacterial constituents. The role of individual receptors such as the toll-like receptors and CD14 in the induction of proinflammatory cytokines and adhesion molecules is discussed in detail. In addition, the roles of a number of other receptors that bind bacterial compounds such as scavenger receptors and their modulating role in inflammation are described. Finally, the therapies for the treatment of bacterial sepsis and septic shock are discussed in relation to the action of the aforementioned receptors and proteins.

  4. Effect of artemisinin on neuropathic pain mediated by P2X4 receptor in dorsal root ganglia.

    PubMed

    Ying, Mofeng; Liu, Hui; Zhang, Tengling; Jiang, Chenxu; Gong, Yingxin; Wu, Bing; Zou, Lifang; Yi, Zhihua; Rao, Shenqiang; Li, Guilin; Zhang, Chunping; Jia, Tianyu; Zhao, Shanhong; Yuan, Huilong; Shi, Liran; Li, Lin; Liang, Shangdong; Liu, Shuangmei

    2017-09-01

    Neuropathic pain is a type of chronic pain caused by nervous system damage and dysfunction. The pathogenesis of chronic pain is complicated, and there are no effective therapies for neuropathic pain. Studies show that the P2X 4 receptor expressed in the satellite glial cells (SGCs) of dorsal root ganglia (DRG) is related to neuropathic pain. Artemisinin is a monomeric component extracted from traditional Chinese medicine and has a variety of important pharmacological effects and potential applications. This study observed the effect of artemisinin on neuropathic pain and delineated its possible mechanism. The chronic constriction injury (CCI) rat model was used in this study. The results demonstrated that artemisinin relieved pain behaviors in the CCI rats, inhibited the expression of P2X 4 receptor in the DRG, and decreased the ATP-activated currents in HEK293 cells transfected with P2X 4 plasmid. Dual-labeling immunofluorescence showed that the coexpression of P2X 4 receptor and glial fibrillary acidic protein (GFAP) in the DRG of CCI rats was increased compared to control rats. After CCI rats were treated with artemisinin, the coexpression of P2X 4 receptor and GFAP in the DRG was significantly decreased compared to the CCI group. This finding suggested that artemisinin could inhibit the nociceptive transmission mediated by P2X 4 receptor in the DRG SGCs and thus relieve pain behaviors in the CCI rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Adrenergic signaling mediates mechanical hyperalgesia through activation of P2X3 receptors in primary sensory neurons of rats with chronic pancreatitis.

    PubMed

    Wang, Shusheng; Zhu, Hong-Yan; Jin, Yi; Zhou, Youlang; Hu, Shufen; Liu, Tong; Jiang, Xinghong; Xu, Guang-Yin

    2015-04-15

    The mechanism of pain in chronic pancreatitis (CP) is poorly understood. The aim of this study was designed to investigate roles of norepinephrine (NE) and P2X receptor (P2XR) signaling pathway in the pathogenesis of hyperalgesia in a rat model of CP. CP was induced in male adult rats by intraductal injection of trinitrobenzene sulfonic acid (TNBS). Mechanical hyperalgesia was assessed by referred somatic behaviors to mechanical stimulation of rat abdomen. P2XR-mediated responses of pancreatic dorsal root ganglion (DRG) neurons were measured utilizing calcium imaging and whole cell patch-clamp-recording techniques. Western blot analysis and immunofluorescence were performed to examine protein expression. TNBS injection produced a significant upregulation of P2X3R expression and an increase in ATP-evoked responses of pancreatic DRG neurons. The sensitization of P2X3Rs was reversed by administration of β-adrenergic receptor antagonist propranolol. Incubation of DRG neurons with NE significantly enhanced ATP-induced intracellular calcium signals, which were abolished by propranolol, and partially blocked by protein kinase A inhibitor H-89. Interestingly, TNBS injection led to a significant elevation of NE concentration in DRGs and the pancreas, an upregulation of β2-adrenergic receptor expression in DRGs, and amplification of the NE-induced potentiation of ATP responses. Importantly, pancreatic hyperalgesia was markedly attenuated by administration of purinergic receptor antagonist suramin or A317491 or β2-adrenergic receptor antagonist butoxamine. Sensitization of P2X3Rs, which was likely mediated by adrenergic signaling in primary sensory neurons, contributes to pancreatic pain, thus identifying a potential target for treating pancreatic pain caused by inflammation. Copyright © 2015 the American Physiological Society.

  6. Vascular endothelial cells mediate mechanical stimulation-induced enhancement of endothelin hyperalgesia via activation of P2X2/3 receptors on nociceptors.

    PubMed

    Joseph, Elizabeth K; Green, Paul G; Bogen, Oliver; Alvarez, Pedro; Levine, Jon D

    2013-02-13

    Endothelin-1 (ET-1) is unique among a broad range of hyperalgesic agents in that it induces hyperalgesia in rats that is markedly enhanced by repeated mechanical stimulation at the site of administration. Antagonists to the ET-1 receptors, ET(A) and ET(B), attenuated both initial as well as stimulation-induced enhancement of hyperalgesia (SIEH) by endothelin. However, administering antisense oligodeoxynucleotide to attenuate ET(A) receptor expression on nociceptors attenuated ET-1 hyperalgesia but had no effect on SIEH, suggesting that this is mediated via a non-neuronal cell. Because vascular endothelial cells are both stretch sensitive and express ET(A) and ET(B) receptors, we tested the hypothesis that SIEH is dependent on endothelial cells by impairing vascular endothelial function with octoxynol-9 administration; this procedure eliminated SIEH without attenuating ET-1 hyperalgesia. A role for protein kinase Cε (PKCε), a second messenger implicated in the induction and maintenance of chronic pain, was explored. Intrathecal antisense for PKCε did not inhibit either ET-1 hyperalgesia or SIEH, suggesting no role for neuronal PKCε; however, administration of a PKCε inhibitor at the site of testing selectively attenuated SIEH. Compatible with endothelial cells releasing ATP in response to mechanical stimulation, P2X(2/3) receptor antagonists eliminated SIEH. The endothelium also appears to contribute to hyperalgesia in two ergonomic pain models (eccentric exercise and hindlimb vibration) and in a model of endometriosis. We propose that SIEH is produced by an effect of ET-1 on vascular endothelial cells, sensitizing its release of ATP in response to mechanical stimulation; ATP in turn acts at the nociceptor P2X(2/3) receptor.

  7. Dual roles for hepatic lectin receptors in the clearance of chilled platelets

    PubMed Central

    Rumjantseva, Viktoria; Grewal, Prabhjit K.; Wandall, Hans H.; Josefsson, Emma C.; Sørensen, Anne Louise; Larson, Göran; Marth, Jamey D.; Hartwig, John H.; Hoffmeister, Karin M.

    2015-01-01

    Chilling rapidly (<4 h) clusters Glycoprotein - (GP)Ib receptors on blood platelets, and ß2-integrins of hepatic macrophages bind ßGlcNAc residues in the clusters leading to rapid clearance of acutely chilled platelets following transfusion. Although capping the ßGlcNAc moieties by galactosylation prevents clearance, this strategy is ineffective after prolonged (>24 h) refrigeration. We report here that prolonged refrigeration increases the density/concentration of exposed galactose residues such that hepatocytes become increasingly involved in the removal of platelets using their Ashwell-Morell receptors. Macrophages always rapidly remove a large fraction of transfused platelets (~40%). With platelet cooling, hepatocyte-dependent clearance further diminishes their recoveries following transfusion. PMID:19783995

  8. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes.

    PubMed

    Cervetto, Chiara; Venturini, Arianna; Passalacqua, Mario; Guidolin, Diego; Genedani, Susanna; Fuxe, Kjell; Borroto-Esquela, Dasiel O; Cortelli, Pietro; Woods, Amina; Maura, Guido; Marcoli, Manuela; Agnati, Luigi F

    2017-01-01

    Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders. © 2016 International Society for Neurochemistry.

  9. Passive dual spin misalignment compensators. [gyrostabilized device

    NASA Technical Reports Server (NTRS)

    Donohue, J. H.; Zimmerman, B. G. (Inventor)

    1974-01-01

    A combination dual-spin gyroscopically stabilized device is described having a spinning rotor and a non-spinning platform. Two substantially lossless mechanical resonators, resonant at the spin frequency, are orthogonally positioned on the platform for compensation for the disturbing torque acting on the platform due to rotor misalignment.

  10. Dual activation of Toll-like receptors 7 and 9 impairs the efficacy of antitumor vaccines in murine models of metastatic breast cancer.

    PubMed

    Moreno Ayala, Mariela A; Gottardo, María Florencia; Gori, María Soledad; Nicola Candia, Alejandro Javier; Caruso, Carla; De Laurentiis, Andrea; Imsen, Mercedes; Klein, Slobodanka; Bal de Kier Joffé, Elisa; Salamone, Gabriela; Castro, Maria G; Seilicovich, Adriana; Candolfi, Marianela

    2017-09-01

    Since combination of Toll-like receptor (TLR) ligands could boost antitumor immunity, we evaluated the efficacy of dendritic cell (DC) vaccines upon dual activation of TLR9 and TLR7 in breast cancer models. DCs were generated from mouse bone marrow or peripheral blood from healthy human donors and stimulated with CpG1826 (mouse TLR9 agonist), CpG2006 or IMT504 (human TLR9 agonists) and R848 (TLR7 agonist). Efficacy of antitumor vaccines was evaluated in BALB/c mice bearing metastatic mammary adenocarcinomas. CpG-DCs improved the survival of tumor-bearing mice, reduced the development of lung metastases and generated immunological memory. However, dual activation of TLRs impaired the efficacy of DC vaccines. In vitro, we found that R848 inhibited CpG-mediated maturation of murine DCs. A positive feedback loop in TLR9 mRNA expression was observed upon CpG stimulation that was inhibited in the presence of R848. Impaired activation of NF-κB was detected when TLR9 and TLR7 were simultaneously activated. Blockade of nitric oxide synthase (NOS) and indoleamine-pyrrole-2,3-dioxygenase (IDO) improved the activation of CpG-DCs. When we evaluated the effect of combined activation of TLR9 and TLR7 in human DCs, we found that R848 induced robust DC activation that was inhibited by TLR9 agonists. These observations provide insight in the biology of TLR9 and TLR7 crosstalk and suggest caution in the selection of agonists for multiple TLR stimulation. Blockade of NOS and IDO could improve the maturation of antitumor DC vaccines. R848 could prove a useful adjuvant for DC vaccines in human patients.

  11. Activation of NMDA receptors reduces metabotropic glutamate receptor-induced long-term depression in the nucleus accumbens via a CaMKII-dependent mechanism.

    PubMed

    Huang, Chiung-Chun; Hsu, Kuei-Sen

    2012-12-01

    Glutamate is the major excitatory neurotransmitter in the brain and exerts its actions through two distinct types of receptors, ionotropic and metabotropic glutamate receptors (mGluR). Although functional interplay between ionotropic N-methyl-d-aspartate receptors (NMDAR) and mGluR has been convincingly demonstrated in native and recombinant systems, the mechanism by which NMDAR activation leads to modulation of mGluR function has yet to be elucidated. Using whole-cell patch-clamp recordings in mouse nucleus accumbens (NAc) slices, we found that tetanic stimulation (TS) of excitatory afferents with a naturally occurring frequency (10 min at 13 Hz) reliably induces a mGluR1/5-dependent long-term depression (mGluR1/5-LTD) of excitatory synaptic transmission. Blockade of NMDAR during but not after TS showed enhanced mGluR1/5-LTD induction, which is associated with its antagonism of TS-induced calcium/calmodulin-dependent protein kinase II (CaMKII) activation. The ability of NMDAR antagonists to promote mGluR1/5-LTD induction was mimicked by a selective CaMKII inhibitor KN-62. However, the induction of mGluR1/5-LTD by bath-applied agonist (S)-3,5-dihydrophenylglycine was not affected by NMDAR blockade. We also observed that NMDAR or CaMKII blockade during TS significantly blunted TS-induced increased serine/threonine phosphorylation of the scaffold protein Homer1b/c and resulted in an increased interaction of mGluR5 with the Homer1b/c. These results indicate that synaptically released glutamate during TS of excitatory afferents can activate both NMDAR and mGluR1/5 in NAc neurons concomitantly and that activation of NMDAR may stimulate CaMKII-mediated phosphorylation of Homer1b/c and impair the interaction between mGluR5 and Homer1b/c, thereby attenuating mGluR1/5-LTD induction. This study provides a novel molecular mechanism by which NMDAR could regulate mGluR5 function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. A Novel Mechanism of γ-Irradiation-Induced IL-6 Production Mediated by P2Y11 Receptor in Epidermal Keratinocytes.

    PubMed

    Ohsaki, Airi; Miyano, Yuki; Tanaka, Rei; Tanuma, Sei-Ichi; Kojima, Shuji; Tsukimoto, Mitsutoshi

    2018-06-01

    Skin inflammation is caused by excessive production of cytokines and chemokines in response to an external stimulus, such as radiation, but the mechanisms involved are not completely understood. Here, we report a novel mechanism of γ-irradiation-induced interleukin-6 (IL-6) production mediated by P2Y11 receptors in epidermal cells. After irradiation of HaCaT cells derived from human epidermal keratinocytes with 5 Gy of γ-rays ( 137 Cs: 0.78 Gy/min), IL-6 production was unchanged at 24 h after γ-irradiation, but was increased at 48 h. IL-6 mRNA was increased at 30 h, and IL-6 production was increased at 33 h after irradiation. The production of IL-6 was sustained at least for 4 d after irradiation. P2Y11 receptor antagonist NF157 inhibited IL-6 production in irradiated cells. Treatment with ATP, a ligand of P2Y11 receptor caused IL-6 production within 24 h. ATP-induced IL-6 production was also suppressed by NF157. Extracellular ATP level was increased after irradiation. The p38 mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB (NF-κB) signaling was involved in the production of IL-6 at the downstream of P2Y11 receptor activation. In addition, the cell cycle was arrested at the G2/M phase, and DNA repair foci were not disappeared at 48 h after γ-irradiation. The protein level of histone methylation enzyme G9a, which inhibits IL-6 production, was decreased after γ-irradiation. In conclusion, we suggest that γ-irradiation induces sustained IL-6 production in HaCaT cells from 33 h after irradiation, which is mediated through P2Y11 receptor-p38 MAPK-NF-κB signaling pathway and G9a degradation. This is a novel mechanism of cytokine production in γ-irradiated cells.

  13. Glucocorticoid receptor modulators.

    PubMed

    Meijer, Onno C; Koorneef, Lisa L; Kroon, Jan

    2018-06-01

    The glucocorticoid hormone cortisol acts throughout the body to support circadian processes and adaptation to stress. The glucocorticoid receptor is the target of cortisol and of synthetic glucocorticoids, which are used widely in the clinic. Both agonism and antagonism of the glucocorticoid receptor may be beneficial in disease, but given the wide expression of the receptor and involvement in various processes, beneficial effects are often accompanied by unwanted side effects. Selective glucocorticoid receptor modulators are ligands that induce a receptor conformation that allows activation of only a subset of downstream signaling pathways. Such molecules thereby combine agonistic and antagonistic properties. Here we discuss the mechanisms underlying selective receptor modulation and their promise in treating diseases in several organ systems where cortisol signaling plays a role. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. The interleukin-4 receptor: signal transduction by a hematopoietin receptor.

    PubMed

    Keegan, A D; Pierce, J H

    1994-02-01

    Over the last several years, the receptors for numerous cytokines have been molecularly characterized. Analysis of their amino acid sequences shows that some of these receptors bear certain motifs in their extracellular domains that define a family of receptors called the Hematopoietin receptor superfamily. Significant advances in characterizing the structure, function, and mechanisms of signal transduction have been made for several members of this family. The purpose of this review is to discuss the recent advances made for one of the family members, the interleukin (IL) 4 receptor. Other receptor systems have recently been reviewed elsewhere. The IL-4 receptor consists of, at the minimum, the cloned 140 kDa IL-4-binding chain with the potential for associating with other chains. The IL-4 receptor transduces its signal by activating a tyrosine kinase that phosphorylates cellular substrates, including the receptor itself, and the 170 kDa substrate called 4PS. Phosphorylated 4PS interacts with the SH2 domain of the enzyme PI-3'-kinase and increases its enzymatic activity. These early events in the IL-4 receptor initiated signaling pathway may trigger a series of signals that will ultimately lead to an IL-4 specific biologic outcome.

  15. Spinal α2-adrenergic and muscarinic receptors and the NO release cascade mediate supraspinally produced effectiveness of gabapentin at decreasing mechanical hypersensitivity in mice after partial nerve injury

    PubMed Central

    Takasu, Keiko; Honda, Motoko; Ono, Hideki; Tanabe, Mitsuo

    2006-01-01

    After partial nerve injury, the central analgesic effect of systemically administered gabapentin is mediated by both supraspinal and spinal actions. We further evaluate the mechanisms related to the supraspinally mediated analgesic actions of gabapentin involving the descending noradrenergic system. Intracerebroventricularly (i.c.v.) administered gabapentin (100 μg) decreased thermal and mechanical hypersensitivity in a murine chronic pain model that was prepared by partial ligation of the sciatic nerve. These effects were abolished by intrathecal (i.t.) injection of either yohimbine (3 μg) or idazoxan (3 μg), α2-adrenergic receptor antagonists. Pretreatment with atropine (0.3 mg kg−1, i.p. or 0.1 μg, i.t.), a muscarinic receptor antagonist, completely suppressed the effect of i.c.v.-injected gabapentin on mechanical hypersensitivity, whereas its effect on thermal hypersensitivity remained unchanged. Similar effects were obtained with pirenzepine (0.1 μg, i.t.), a selective M1-muscarinic receptor antagonist, but not with methoctramine (0.1 and 0.3 μg, i.t.), a selective M2-muscarinic receptor antagonist. The cholinesterase inhibitor neostigmine (0.3 ng, i.t.) potentiated only the analgesic effect of i.c.v. gabapentin on mechanical hypersensitivity, confirming spinal acetylcholine release downstream of the supraspinal action of gabapentin. Moreover, the effect of i.c.v. gabapentin on mechanical but not thermal hypersensitivity was reduced by i.t. injection of L-NAME (3 μg) or L-NMMA (10 μg), both of which are nitric oxide (NO) synthase inhibitors. Systemically administered naloxone (10 mg kg−1, i.p.), an opioid receptor antagonist, failed to suppress the analgesic actions of i.c.v. gabapentin, indicating that opioid receptors are not involved in activation of the descending noradrenergic system by gabapentin. Thus, the supraspinally mediated effect of gabapentin on mechanical hypersensitivity involves activation of spinal α2

  16. Non-canonical dynamic mechanisms of interaction between the p66Shc protein and Met receptor

    PubMed Central

    Landry, Mélissa; Pomerleau, Véronique; Saucier, Caroline

    2016-01-01

    Met receptor tyrosine kinase (RTK) is known to bind to the three distinct protein isoforms encoded by the ShcA (Shc) gene. Structure–function studies have unveiled critical roles for p52Shc-dependent signalling pathways in Met-regulated biological functions. The molecular basis of the interaction between the Met and p52Shc proteins is well-defined, but not for the longest protein isoform, p66Shc. In the present study, co-immunoprecipitation assays were performed in human embryonic kidney 293 (HEK293) cells, transiently co-transfected with Met and p66Shc mutants, in order to define the molecular determinants involved in mediating Met–p66Shc interaction. Our results show that p66Shc interacts constitutively with the receptor Met, and the Grb2 (growth factor receptor-bound protein-2) and Gab1 (Grb2-associated binder-1) adaptor proteins. Although its phosphotyrosine-binding domain (PTB) and Src homology 2 (SH2) domains co-ordinate p66Shc binding to non-activated Met receptor, these phosphotyrosine-binding modules, and its collagen homology domain 2 (CH2) region, exert negative constraints. In contrast, p66Shc interaction with the activated Met depends mainly on the integrity of its PTB domain, and to a lesser extent of its SH2 domain. Even though not required for the recruitment of p66Shc, tyrosine phosphorylation of p66Shc by activated Met enhances these interactions by mechanisms not reliant on the integrity of the Met multisubstrate-binding site. In turn, this increases phosphotyrosine-dependent p66Shc–Grb2–Gab1 complex formation away from the receptor, while blocking Grb2 and Gab1 recruitment to activated Met. In conclusion, we identify, for the first time, a novel non-canonical dynamic mode of interaction between Met and the p66 protein isoform of Shc and its effects on rewiring binding effector complexes according to the activation state of the receptor. PMID:27048591

  17. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila

    PubMed Central

    Benton, Richard; Vannice, Kirsten S.; Gomez-Diaz, Carolina; Vosshall, Leslie B.

    2009-01-01

    Summary Ionotropic glutamate receptors (iGluRs) mediate neuronal communication at synapses throughout vertebrate and invertebrate nervous systems. We have characterized a novel family of iGluR-related genes in Drosophila, which we name Ionotropic Receptors (IRs). These receptors do not belong to the well-described Kainate, AMPA, or NMDA classes of iGluRs, and have divergent ligand-binding domains that lack their characteristic glutamate-interacting residues. IRs are expressed in a combinatorial fashion in sensory neurons that respond to many distinct odors but do not express either insect odorant receptors (ORs) or gustatory receptors (GRs). IR proteins accumulate in sensory dendrites and not at synapses. Mis-expression of IRs induces novel odor responses in ectopic neurons. Together, these results lead us to propose that the IRs comprise a novel family of chemosensory receptors. Conservation of IR/iGluR-related proteins in bacteria, plants, and animals suggests that this receptor family represents an evolutionarily ancient mechanism for sensing both internal and external chemical cues. PMID:19135896

  18. Adaptation Mechanism of the Aspartate Receptor: Electrostatics of the Adaptation Subdomain Play a Key Role in Modulating Kinase Activity†

    PubMed Central

    Starrett, Diane J.; Falke, Joseph J.

    2010-01-01

    The aspartate receptor of the Escherichia coli and Salmonella typhimurium chemotaxis pathway generates a transmembrane signal that regulates the activity of the cytoplasmic kinase CheA. Previous studies have identified a region of the cytoplasmic domain that is critical to receptor adaptation and kinase regulation. This region, termed the adaptation subdomain, contains a high density of acidic residues, including specific glutamate residues that serve as receptor adaptation sites. However, the mechanism of signal propagation through this region remains poorly understood. This study uses site-directed mutagenesis to neutralize each acidic residue within the subdomain to probe the hypothesis that electrostatics in this region play a significant role in the mechanism of kinase activation and modulation. Each point mutant was tested for its ability to regulate chemotaxis in vivo and kinase activity in vitro. Four point mutants (D273N, E281Q, D288N, and E477Q) were found to superactivate the kinase relative to the wild-type receptor, and all four of these kinase-activating substitutions are located along the same intersubunit interface as the adaptation sites. These activating substitutions retained the wild-type ability of the attractant-occupied receptor to inhibit kinase activity. When combined in a quadruple mutant (D273N/E281Q/D288N/E477Q), the four charge-neutralizing substitutions locked the receptor in a kinase-superactivating state that could not be fully inactivated by the attractant. Similar lock-on character was observed for a charge reversal substitution, D273R. Together, these results implicate the electrostatic interactions at the intersubunit interface as a major player in signal transduction and kinase regulation. The negative charge in this region destabilizes the local structure in a way that enhances conformational dynamics, as detected by disulfide trapping, and this effect is reversed by charge neutralization of the adaptation sites. Finally, two

  19. Mechanisms of inhibition and potentiation of α4β2 nicotinic acetylcholine receptors by members of the Ly6 protein family.

    PubMed

    Wu, Meilin; Puddifoot, Clare A; Taylor, Palmer; Joiner, William J

    2015-10-02

    α4β2 nicotinic acetylcholine receptors (nAChRs) are abundantly expressed throughout the central nervous system and are thought to be the primary target of nicotine, the main addictive substance in cigarette smoking. Understanding the mechanisms by which these receptors are regulated may assist in developing compounds to selectively interfere with nicotine addiction. Here we report previously unrecognized modulatory properties of members of the Ly6 protein family on α4β2 nAChRs. Using a FRET-based Ca(2+) flux assay, we found that the maximum response of α4β2 receptors to agonist was strongly inhibited by Ly6h and Lynx2 but potentiated by Ly6g6e. The mechanisms underlying these opposing effects appear to be fundamentally distinct. Receptor inhibition by Lynx2 was accompanied by suppression of α4β2 expression at the cell surface, even when assays were preceded by chronic exposure of cells to an established chaperone, nicotine. Receptor inhibition by Lynx2 also was resistant to pretreatment with extracellular phospholipase C, which cleaves lipid moieties like those that attach Ly6 proteins to the plasma membrane. In contrast, potentiation of α4β2 activity by Ly6g6e was readily reversible by pretreatment with phospholipase C. Potentiation was also accompanied by slowing of receptor desensitization and an increase in peak currents. Collectively our data support roles for Lynx2 and Ly6g6e in intracellular trafficking and allosteric potentiation of α4β2 nAChRs, respectively. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Regulation of AMPA receptors by phosphorylation.

    PubMed

    Carvalho, A L; Duarte, C B; Carvalho, A P

    2000-10-01

    The AMPA receptors for glutamate are oligomeric structures that mediate fast excitatory responses in the central nervous system. Phosphorylation of AMPA receptors is an important mechanism for short-term modulation of their function, and is thought to play an important role in synaptic plasticity in different brain regions. Recent studies have shown that phosphorylation of AMPA receptors by cAMP-dependent protein kinase (PKA) and Ca2+- and calmodulin-dependent protein kinase II (CaMKII) potentiates their activity, but phosphorylation of the receptor subunits may also affect their interaction with intracellular proteins, and their expression at the plasma membrane. Phosphorylation of AMPA receptor subunits has also been investigated in relation to processes of synaptic plasticity. This review focuses on recent advances in understanding the molecular mechanisms of regulation of AMPA receptors, and their implications in synaptic plasticity.

  1. A dual physiological character for sexual function: libido and sexual pheromones.

    PubMed

    Motofei, Ion G

    2009-12-01

    Human sexual response is a complex function involving many cerebral, spinal and peripheral aspects; the last are relatively known and benefit from good pharmacological control, as in the case of erectile dysfunction. Spinal cord sexual reflexes also have a good theoretical and experimental description. There is minimal understanding of the cerebral sexual processes (libido, sexual arousal, orgasm). The initial perspective was that the cerebral areas implied in sexuality exert descending stimulatory and inhibitory influences on spinal cord sexual centres/reflexes. This was a wrong supposition, which inhibited progress in this subject, with a considerable impact on a subject's individual and social life. A new approach to sexual function arises from the idea that simple neurological structures can support only simple functions, while a more complex function requires correspondingly complex anatomical structures. For this reason the spinal cord would not be able to realise the integration of multiple (spinal and psychosensorial) stimuli into a unique and coherent ejaculation response. Consequently, all mechanisms implied in human sexuality would be cerebral processes, ejaculation reflexes ascending in evolution to the cerebral level. This new evolutionary concept was developed after 2001 in five distinct articles on the cerebral duality of sexual arousal, sexual hormones, ejaculation and serotonergic receptors. During this period other published results suggested a possible cerebral duality for sexual pheromones and libido in humans. All these dual physiological aspects are integrated in this review into one neurophysiological model, thus trying to further develop the new concepts of sexual function and perhaps relational behaviour. In conclusion, ejaculation is a dual cerebral process with arousal sensation (hormonally modulated) and libido perception (pheromonally modulated) as the afferent part. Two neurophysiological axes could exist in both men and women. In this

  2. Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold naoparticles

    PubMed Central

    Li, Xi; Zhou, Hongyu; Yang, Lei; Du, Guoqing; Pai-Panandiker, Atmaram; Huang, Xuefei; Yan, Bing

    2011-01-01

    A dual-ligand gold nanoparticle (DLGNP) was designed and synthesized to explore the therapeutic benefits of multivalent interactions between gold nanoparticles (GNPs) and cancer cells. DLGNP was tested on human epidermal cancer cells (KB), which had high expression of folate receptor. The cellular uptake of DLGNP was increased by 3.9 and 12.7 folds compared with GNP-folate or GNP-glucose. The enhanced cell recognition was due to multivalent interactions between both ligands on GNPs and cancer cells as shown by the ligand competition experiments. Furthermore, the multivalent interactions increased contrast between cells with high and low expression of folate receptors. The enhanced cell recognition enabled DLGNP to kill KB cells under X-ray irradiation at a dose that was safe to folate receptor low-expression (such as normal) cells. Thus DLGP has the potential to be a cancer-specific nano-theranostic agent. PMID:21232787

  3. Channel opening of gamma-aminobutyric acid receptor from rat brain: molecular mechanisms of the receptor responses.

    PubMed

    Cash, D J; Subbarao, K

    1987-12-01

    The function of gamma-aminobutyric acid (GABA) receptors, which mediate transmembrane chloride flux, can be studied by use of 36Cl- isotope tracer with membrane from mammalian brain by quench-flow technique, with reaction times that allow resolution of the receptor desensitization rates from the ion flux rates. The rates of chloride exchange into the vesicles in the absence and presence of GABA were characterized with membrane from rat cerebral cortex. Unspecific 36Cl- influx was completed in three phases of ca. 3% (t 1/2 = 0.6 s), 56% (t 1/2 = 82 s), and 41% (t 1/2 = 23 min). GABA-mediated, specific chloride exchange occurred with 6.5% of the total vesicular internal volume. The GABA-dependent 36Cl- influx proceeded in two phases, each progressively slowed by desensitization. The measurements supported the presence of two distinguishable active GABA receptors on the same membrane mediating chloride exchange into the vesicles with initial first-order rate constants of 9.5 s-1 and 2.3 s-1 and desensitizing with first-order rate constants of 21 s-1 and 1.4 s-1, respectively, at saturation. The half-response concentrations were similar for both receptors, 150 microM and 114 microM GABA for desensitization and 105 microM and 82 microM for chloride exchange, for the faster and slower desensitizing receptors, respectively. The two receptors were present in the activity ratio of ca. 4/1, similar to the ratio of "low-affinity" to "high-affinity" GABA sites found in ligand binding experiments. The desensitization rates have a different dependence on GABA concentration than the channel-opening equilibria.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. International Union of Pharmacology LVIII: Update on the P2Y G Protein-Coupled Nucleotide Receptors: From Molecular Mechanisms and Pathophysiology to Therapy

    PubMed Central

    ABBRACCHIO, MARIA P.; BURNSTOCK, GEOFFREY; BOEYNAEMS, JEAN-MARIE; BARNARD, ERIC A.; BOYER, JOSÉ L.; KENNEDY, CHARLES; KNIGHT, GILLIAN E.; FUMAGALLI, MARTA; GACHET, CHRISTIAN; JACOBSON, KENNETH A.; WEISMAN, GARY A.

    2012-01-01

    There have been many advances in our knowledge about different aspects of P2Y receptor signaling since the last review published by our International Union of Pharmacology subcommittee. More receptor subtypes have been cloned and characterized and most orphan receptors deorphanized, so that it is now possible to provide a basis for a future subdivision of P2Y receptor subtypes. More is known about the functional elements of the P2Y receptor molecules and the signaling pathways involved, including interactions with ion channels. There have been substantial developments in the design of selective agonists and antagonists to some of the P2Y receptor subtypes. There are new findings about the mechanisms underlying nucleotide release and ectoenzymatic nucleotide breakdown. Interactions between P2Y receptors and receptors to other signaling molecules have been explored as well as P2Y-mediated control of gene transcription. The distribution and roles of P2Y receptor subtypes in many different cell types are better understood and P2Y receptor-related compounds are being explored for therapeutic purposes. These and other advances are discussed in the present review. PMID:16968944

  5. Dual-Targeting of AR and Akt Pathways by Berberine in Castration-Resistant Prostate Cancer

    DTIC Science & Technology

    2013-08-01

    Berberine in Castration-Resistant Prostate Cancer PRINCIPAL INVESTIGATOR: Haitao Zhang CONTRACTING ORGANIZATION: Tulane University...COVERED 19 2012-18 2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-12-1-0275 Dual-Targeting of AR and Akt Pathways by Berberine in Castration...NOTES 14. ABSTRACT We have previously shown berberine , a natural compound, downregulates full-length androgen receptor (AR) and AR splice

  6. Anaerobic reductive dechlorination of tetrachloroethene: how can dual Carbon-Chlorine isotopic measurements help elucidating the underlying reaction mechanism?

    NASA Astrophysics Data System (ADS)

    Badin, Alice; Buttet, Géraldine; Maillard, Julien; Holliger, Christof; Hunkeler, Daniel

    2014-05-01

    Chlorinated ethenes (CEs) such as tetrachloroethene (PCE) are common persistent groundwater contaminants. Among clean-up strategies applied to sites affected by such pollution, bioremediation has been considered with a growing interest as it represents a cost-effective, environmental friendly approach. This technique however sometimes leads to an incomplete and slow biodegradation of CEs resulting in an accumulation of toxic metabolites. Understanding the reaction mechanisms underlying anaerobic reductive dechlorination would thus help assessing PCE biodegradation in polluted sites. Stable isotope analysis can provide insight into reaction mechanisms. For chlorinated hydrocarbons, carbon (C) and chlorine (Cl) isotope data (δ13C and δ37Cl) tend to show a linear correlation with a slope (m ≡ ɛC/ɛCl) characteristic of the reaction mechanism [1]. This study hence aims at exploring the potential of a dual C-Cl isotope approach in the determination of the reaction mechanisms involved in PCE reductive dechlorination. C and Cl isotope fractionation were investigated during anaerobic PCE dechlorination by two bacterial consortia containing members of the Sulfurospirillum genus. The specificity in these consortia resides in the fact that they each conduct PCE reductive dechlorination catalysed by one different reductive dehalogenase, i.e. PceADCE which yields trichloroethene (TCE) and cis-dichloroethene (cDCE), and PceATCE which yields TCE only. The bulk C isotope enrichment factors were -3.6±0.3 o for PceATCE and -0.7±0.1o for PceADCE. The bulk Cl isotope enrichment factors were -1.3±0.2 o for PceATCE and -0.9±0.1 o for PceADCE. When applying the dual isotope approach, two m values of 2.7±0.1 and 0.7±0.2 were obtained for the reductive dehalogenases PceATCE and PceADCE, respectively. These results suggest that PCE can be degraded according to two different mechanisms. Furthermore, despite their highly similar protein sequences, each reductive dehalogenase seems

  7. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses

    PubMed Central

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-01-01

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage. PMID:27021285

  8. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses.

    PubMed

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-03-29

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage.

  9. Cholinesterases: structure of the active site and mechanism of the effect of cholinergic receptor blockers on the rate of interaction with ligands

    NASA Astrophysics Data System (ADS)

    Antokhin, A. M.; Gainullina, E. T.; Taranchenko, V. F.; Ryzhikov, S. B.; Yavaeva, D. K.

    2010-10-01

    Modern views on the structure of cholinesterase active sites and the mechanism of their interaction with organophosphorus inhibitors are considered. The attention is focused on the mechanism of the effect of cholinergic receptor blockers, acetylcholine antagonists, on the rate of interaction of acetylcholine esterase with organophosphorus inhibitors.

  10. PPARbeta/delta agonists modulate platelet function via a mechanism involving PPAR receptors and specific association/repression of PKCalpha--brief report.

    PubMed

    Ali, Ferhana Y; Hall, Matthew G; Desvergne, Béatrice; Warner, Timothy D; Mitchell, Jane A

    2009-11-01

    Peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) is a nuclear receptor found in platelets. PPARbeta/delta agonists acutely inhibit platelet function within a few minutes of addition. As platelets are anucleated, the effects of PPARbeta/delta agonists on platelets must be nongenomic. Currently, the particular role of PPARbeta/delta receptors and their intracellular signaling pathways in platelets are not known. We have used mice lacking PPARbeta/delta (PPARbeta/delta(-/-)) to show the effects of the PPARbeta/delta agonist GW501516 on platelet adhesion and cAMP levels are mediated specifically by PPARbeta/delta, however GW501516 had no PPARbeta/delta-specific effect on platelet aggregation. Studies in human platelets showed that PKCalpha, which can mediate platelet activation, was bound and repressed by PPARbeta/delta after platelets were treated with GW501516. These data provide evidence of a novel mechanism by which PPAR receptors influence platelet activity and thereby thrombotic risk.

  11. Non-classical mechanism of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor channel block by fluoxetine.

    PubMed

    Barygin, Oleg I; Komarova, Margarita S; Tikhonova, Tatiana B; Tikhonov, Denis B

    2015-04-01

    Antidepressants have many targets in the central nervous system. A growing body of data demonstrates the influence of antidepressants on glutamatergic neurotransmission. In the present work, we studied the inhibition of native Ca(2+)-permeable and Ca(2+)-impermeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in rat brain neurons by fluoxetine. The Ca(2+)-impermeable AMPA receptors in CA1 hippocampal pyramidal neurons were weakly affected. The IC50 value for the inhibition of Ca(2+)-permeable AMPA receptors in giant striatal interneurons was 43 ± 7 μM. The inhibition of Ca(2+)-permeable AMPA receptors was voltage dependent, suggesting deep binding in the pore. However, the use dependence of fluoxetine action differed markedly from that of classical AMPA receptor open-channel blockers. Moreover, fluoxetine did not compete with other channel blockers. In contrast to fluoxetine, its membrane-impermeant quaternary analog demonstrated all of the features of channel inhibition typical for open-channel blockers. It is suggested that fluoxetine reaches the binding site through a hydrophobic access pathway. Such a mechanism of block is described for ligands of sodium and calcium channels, but was never found in AMPA receptors. Molecular modeling suggests binding of fluoxetine in the subunit interface; analogous binding was proposed for local anesthetics in closed sodium channels and for benzothiazepines in calcium channels. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Discovery, synthesis, selectivity modulation and DMPK characterization of 5-azaspiro[2.4]heptanes as potent orexin receptor antagonists.

    PubMed

    Stasi, Luigi Piero; Artusi, Roberto; Bovino, Clara; Buzzi, Benedetta; Canciani, Luca; Caselli, Gianfranco; Colace, Fabrizio; Garofalo, Paolo; Giambuzzi, Silvia; Larger, Patrice; Letari, Ornella; Mandelli, Stefano; Perugini, Lorenzo; Pucci, Sabrina; Salvi, Matteo; Toro, PierLuigi

    2013-05-01

    Starting from a orexin 1 receptor selective antagonist 4,4-disubstituted piperidine series a novel potent 5-azaspiro[2.4]heptane dual orexin 1 and orexin 2 receptor antagonist class has been discovered. SAR and Pharmacokinetic optimization of this series is herein disclosed. Lead compound 15 exhibits potent activity against orexin 1 and orexin 2 receptors along with low cytochrome P450 inhibition potential, good brain penetration and oral bioavailability in rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Identification of dual-tropic HIV-1 using evolved neural networks.

    PubMed

    Fogel, Gary B; Lamers, Susanna L; Liu, Enoch S; Salemi, Marco; McGrath, Michael S

    2015-11-01

    Blocking the binding of the envelope HIV-1 protein to immune cells is a popular concept for development of anti-HIV therapeutics. R5 HIV-1 binds CCR5, X4 HIV-1 binds CXCR4, and dual-tropic HIV-1 can bind either coreceptor for cellular entry. R5 viruses are associated with early infection and over time can evolve to X4 viruses that are associated with immune failure. Dual-tropic HIV-1 is less studied; however, it represents functional antigenic intermediates during the transition of R5 to X4 viruses. Viral tropism is linked partly to the HIV-1 envelope V3 domain, where the amino acid sequence helps dictate the receptor a particular virus will target; however, using V3 sequence information to identify dual-tropic HIV-1 isolates has remained difficult. Our goal in this study was to elucidate features of dual-tropic HIV-1 isolates that assist in the biological understanding of dual-tropism and develop an approach for their detection. Over 1559 HIV-1 subtype B sequences with known tropisms were analyzed. Each sequence was represented by 73 structural, biochemical and regional features. These features were provided to an evolved neural network classifier and evaluated using balanced and unbalanced data sets. The study resolved R5X4 viruses from R5 with an accuracy of 81.8% and from X4 with an accuracy of 78.8%. The approach also identified a set of V3 features (hydrophobicity, structural and polarity) that are associated with tropism transitions. The ability to distinguish R5X4 isolates will improve computational tropism decisions for R5 vs. X4 and assist in HIV-1 research and drug development efforts. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. [Functional properties of taste bud cells. Mechanisms of afferent neurotransmission in Type II taste receptor cells].

    PubMed

    Romanov, R A

    2013-01-01

    Taste Bud cells are heterogeneous in their morphology and functionality. These cells are responsible for sensing a wide variety of substances and for associating detected compounds with a different taste: bitter, sweet, salty, sour and umami. Today we know that each of the five basic tastes corresponds to distinct cell populations organized into three basic morpho-functional cell types. In addition, some receptor cells of the taste bud demonstrate glia-related functions. In this article we expand on some properties of these three morphological receptor cell types. Main focus is devoted to the Type II cells and unusual mechanism for afferent neurotransmission in these cells. Taste cells of the Type II consist of three populations detecting bitter, sweet and umami tastes, and, thus, evoke a serious scientific interest.

  15. Development and Acceptance Testing of the Dual Wheel Mechanism for the Tunable Filter Imager Cryogenic Instrument on the JWST

    NASA Technical Reports Server (NTRS)

    Leckie, Martin; Ahmad, Zakir

    2010-01-01

    The James Webb Space Telescope (JWST) will carry four scientific instruments, one of which is the Tunable Filter Imager (TFI), which is an instrument within the Fine Guidance Sensor. The Dual Wheel (DW) mechanism is being designed, built and tested by COM DEV Ltd. under contract from the Canadian Space Agency. The DW mechanism includes a pupil wheel (PW) holding seven coronagraphic masks and two calibration elements and a filter wheel (FW) holding nine blocking filters. The DW mechanism must operate at both room temperature and at 35K. Successful operation at 35K comprises positioning each optical element with the required repeatability, for several thousand occasions over the five year mission. The paper discusses the results of testing geared motors and bearings at the cryogenic temperature. In particular bearing retainer design and PGM-HT material, the effects of temperature gradients across bearings and the problems associated with cooling mechanisms down to cryogenic temperatures. The results of additional bearing tests are described that were employed to investigate an abnormally high initial torque experienced at cryogenic temperatures. The findings of these tests, was that the bearing retainer and the ball/race system could be adversely affected by the large temperature change from room temperature to cryogenic temperature and also the temperature gradient across the bearing. The DW mechanism is now performing successfully at both room temperature and at cryogenic temperature. The life testing of the mechanism is expected to be completed in the first quarter of 2010.

  16. Insights into the conformational switching mechanism of the human vascular endothelial growth factor receptor type 2 kinase domain.

    PubMed

    Chioccioli, Matteo; Marsili, Simone; Bonaccini, Claudia; Procacci, Piero; Gratteri, Paola

    2012-02-27

    Human vascular endothelial growth factor receptor type 2 (h-VEFGR2) is a receptor tyrosine kinase involved in the angiogenesis process and regarded as an interesting target for the design of anticancer drugs. Its activation/inactivation mechanism is related to conformational changes in its cytoplasmatic kinase domain, involving first among all the αC-helix in N-lobe and the A-loop in C-lobe. Affinity of inhibitors for the active or inactive kinase form could dictate the open or closed conformation of the A-loop, thus making the different conformations of the kinase domain receptor (KDR) domain different drug targets in drug discovery. In this view, a detailed knowledge of the conformational landscape of KDR domain is of central relevance to rationalize the efficiency and selectivity of kinase inhibitors. Here, molecular dynamics simulations were used to gain insight into the conformational switching activity of the KDR domain and to identify intermediate conformations between the two limiting active and inactive conformations. Specific energy barriers have been selectively removed to induce, and hence highlight at the atomistic level, the regulation mechanism of the A-loop opening. The proposed strategy allowed to repeatedly observe the escape of the KDR domain from the DFG-out free energy basin and to identify rare intermediate conformations between the DFG-out and the DFG-in structures to be employed in a structure-based drug discovery process.

  17. Endothelin-1 (ET-1) stimulates carboxy terminal Smad2 phosphorylation in vascular endothelial cells by a mechanism dependent on ET receptors and de novo protein synthesis.

    PubMed

    Sharifat, Narges; Mohammad Zadeh, Ghorban; Ghaffari, Mohammad-Ali; Dayati, Parisa; Kamato, Danielle; Little, Peter J; Babaahmadi-Rezaei, Hossein

    2017-01-01

    G protein-coupled receptor (GPCR) agonists through their receptors can transactivate protein tyrosine kinase receptors such as epidermal growth factor receptor and serine/threonine kinase receptors most notably transforming growth factor (TGF)-β receptor (TβRI). This signalling mechanism represents a major expansion in the cellular outcomes attributable to GPCR signalling. This study addressed the role and mechanisms involved in GPCR agonist, endothelin-1 (ET-1)-mediated transactivation of the TβRI in bovine aortic endothelial cells (BAECs). The in-vitro model used BAECs. Signalling intermediate phospho-Smad2 in the carboxy terminal was detected and quantified by Western blotting. ET-1 treatment of BAECs resulted in a time and concentration-dependent increase in pSmad2C. Peak phosphorylation was evident with 100 nm treatment of ET-1 at 4-6 h. TβRI antagonist, SB431542 inhibited ET-1-mediated pSmad2C. In the presence of bosentan, a mixed ET A and ET B receptor antagonist ET-1-mediated pSmad2C levels were inhibited. The ET-mediated pSmad2C was blocked by the protein synthesis inhibitor, cycloheximide. In BAECs, ET-1 via the ETB receptor is involved in transactivation of the TβRI. The transactivation-dependent response is dependent upon de novo protein synthesis. © 2016 Royal Pharmaceutical Society.

  18. Dual Protection and Dual Methods in Women Living with HIV: The Brazilian Context

    PubMed Central

    Barbosa, Regina María; Pinho, Adriana de Araujo

    2013-01-01

    The cooccurrence of HIV and unintended pregnancy has prompted a body of work on dual protection, the simultaneous protection against HIV and unintended pregnancy. This study examines dual protection and dual methods as a risk-reduction strategy for women living with HIV. Data are from a cross-sectional sample of HIV-positive women attended in Specialized STI/AIDS Public Health Service Clinics in 13 municipalities from all five regions of Brazil 2003-2004 (N = 834). Descriptive techniques and logistic regression were used to examine dual protection among women living with HIV. We expand the definition of dual protection to include consistent condom use and reversible/irreversible contraceptive methods, we test the dual methods hypothesis that women who use dual methods will use condoms less consistently than women who use only condoms, and we identify predictors of dual protection. Dual protection is common in our sample. Women who use dual methods have lower odds of consistent condom use than women who only use condoms. Among dual method users, we find that women who use an irreversible method use condoms more consistently than women who use a reversible method. Women on ART and with an HIV-serodiscordant partner have greater odds of consistent condom use than their counterparts. PMID:26316959

  19. Boldine enhances bile production in rats via osmotic and Farnesoid X receptor dependent mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cermanova, Jolana; Kadova, Zuzana; Deparment of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove

    Boldine, the major alkaloid from the Chilean Boldo tree, is used in traditional medicine to support bile production, but evidence to support this function is controversial. We analyzed the choleretic potential of boldine, including its molecular background. The acute- and long-term effects of boldine were evaluated in rats either during intravenous infusion or after 28-day oral treatment. Infusion of boldine instantly increased the bile flow 1.4-fold in healthy rats as well as in animals with Mrp2 deficiency or ethinylestradiol induced cholestasis. This effect was not associated with a corresponding increase in bile acid or glutathione biliary excretion, indicating that themore » effect is not related to stimulation of either bile acid dependent or independent mechanisms of bile formation and points to the osmotic activity of boldine itself. We subsequently analyzed bile production under conditions of changing biliary excretion of boldine after bolus intravenous administration and found strong correlations between both parameters. HPLC analysis showed that bile concentrations of boldine above 10 μM were required for induction of choleresis. Importantly, long-term pretreatment, when the bile collection study was performed 24-h after the last administration of boldine, also accelerated bile formation despite undetectable levels of the compound in bile. The effect paralleled upregulation of the Bsep transporter and increased biliary clearance of its substrates, bile acids. We consequently confirmed the ability of boldine to stimulate the Bsep transcriptional regulator, FXR receptor. In conclusion, our study clarified the mechanisms and circumstances surrounding the choleretic activity of boldine. - Highlights: • Boldine may increase bile production by direct as well as indirect mechanisms. • Biliary concentrations of boldine above 10 μM directly stimulate bile production. • Long-term oral boldine administration increases bile acid (BA) biliary secretion.

  20. Internalisation of the bleomycin molecules responsible for bleomycin toxicity: a receptor-mediated endocytosis mechanism.

    PubMed

    Pron, G; Mahrour, N; Orlowski, S; Tounekti, O; Poddevin, B; Belehradek, J; Mir, L M

    1999-01-01

    Bleomycin (BLM) does not diffuse through the plasma membrane but nevertheless displays cytotoxic activity due to DNA break generation. The aim of the study was to describe the mechanism of BLM internalisation. We previously provided evidence for the existence of BLM-binding sites at the surface of DC-3F Chinese hamster fibroblasts, as well as of their involvement in BLM cytotoxicity on DC-3F cells and related BLM-resistant sublines. Here we report that A253 human cells and their BLM-resistant subline C-10E also possessed a membrane protein of ca. 250 kDa specifically binding BLM. Part of this C-10E cell resistance could be explained by a decrease in the number of BLM-binding sites exposed at the cell surface with respect to A253 cells. The comparison between A253 and DC-3F cells exposing a similar number of BLM-binding sites revealed that the faster the fluid phase endocytosis, the greater the cell sensitivity to BLM. Moreover, the experimental modification of endocytotic vesicle size showed that BLM cytotoxicity was directly correlated with the flux of plasma membrane area engulfed during endocytosis rather than with the fluid phase volume incorporated. Thus, BLM would be internalised by a receptor-mediated endocytosis mechanism which would first require BLM binding to its membrane receptor and then the transfer of the complex into intracellular endocytotic vesicles, followed by BLM entry into the cytosol, probably from a nonacidic compartment.

  1. A camelid single-domain antibody neutralizes botulinum neurotoxin A by blocking host receptor binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Guorui; Lam, Kwok-ho; Weisemann, Jasmin

    Antibody treatment is currently the only available countermeasure for botulism, a fatal illness caused by flaccid paralysis of muscles due to botulinum neurotoxin (BoNT) intoxication. Among the seven major serotypes of BoNT/A-G, BoNT/A poses the most serious threat to humans because of its high potency and long duration of action. Prior to entering neurons and blocking neurotransmitter release, BoNT/A recognizes motoneurons via a dual-receptor binding process in which it engages both the neuron surface polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Previously, we identified a potent neutralizing antitoxin against BoNT/A1 termed ciA-C2, derived from a camelid heavy-chain-only antibody (VHH).more » In this study, we demonstrate that ciA-C2 prevents BoNT/A1 intoxication by inhibiting its binding to neuronal receptor SV2. Furthermore, we determined the crystal structure of ciA-C2 in complex with the receptor-binding domain of BoNT/A1 (HCA1) at 1.68 Å resolution. The structure revealed that ciA-C2 partially occupies the SV2-binding site on H CA1, causing direct interference of HCA1 interaction with both the N-glycan and peptide-moiety of SV2. Interestingly, this neutralization mechanism is similar to that of a monoclonal antibody in clinical trials, despite that ciA-C2 is more than 10-times smaller. Taken together, these results enlighten our understanding of BoNT/A1 interactions with its neuronal receptor, and further demonstrate that inhibiting toxin binding to the host receptor is an efficient countermeasure strategy.« less

  2. Mechanisms of cross-talk between G-protein-coupled receptors resulting in enhanced release of intracellular Ca2+.

    PubMed Central

    Werry, Tim D; Wilkinson, Graeme F; Willars, Gary B

    2003-01-01

    Alteration in [Ca(2+)](i) (the intracellular concentration of Ca(2+)) is a key regulator of many cellular processes. To allow precise regulation of [Ca(2+)](i) and a diversity of signalling by this ion, cells possess many mechanisms by which they are able to control [Ca(2+)](i) both globally and at the subcellular level. Among these are many members of the superfamily of GPCRs (G-protein-coupled receptors), which are characterized by the presence of seven transmembrane domains. Typically, those receptors able to activate PLC (phospholipase C) enzymes cause release of Ca(2+) from intracellular stores and influence Ca(2+) entry across the plasma membrane. It has been well documented that Ca(2+) signalling by one type of GPCR can be influenced by stimulation of a different type of GPCR. Indeed, many studies have demonstrated heterologous desensitization between two different PLC-coupled GPCRs. This is not surprising, given our current understanding of negative-feedback regulation and the likely shared components of the signalling pathway. However, there are also many documented examples of interactions between GPCRs, often coupling preferentially to different signalling pathways, which result in a potentiation of Ca(2+) signalling. Such interactions have important implications for both the control of cell function and the interpretation of in vitro cell-based assays. However, there is currently no single mechanism that adequately accounts for all examples of this type of cross-talk. Indeed, many studies either have not addressed this issue or have been unable to determine the mechanism(s) involved. This review seeks to explore a range of possible mechanisms to convey their potential diversity and to provide a basis for further experimental investigation. PMID:12790797

  3. Transferability of Dual-Task Coordination Skills after Practice with Changing Component Tasks

    PubMed Central

    Schubert, Torsten; Liepelt, Roman; Kübler, Sebastian; Strobach, Tilo

    2017-01-01

    Recent research has demonstrated that dual-task performance with two simultaneously presented tasks can be substantially improved as a result of practice. Among other mechanisms, theories of dual-task practice-relate this improvement to the acquisition of task coordination skills. These skills are assumed (1) to result from dual-task practice, but not from single-task practice, and (2) to be independent from the specific stimulus and response mappings during the practice situation and, therefore, transferable to new dual task situations. The present study is the first that provides an elaborated test of these assumptions in a context with well-controllable practice and transfer situations. To this end, we compared the effects of dual-task and single-task practice with a visual and an auditory sensory-motor component task on the dual-task performance in a subsequent transfer session. Importantly, stimulus and stimulus-response mapping conditions in the two component tasks changed repeatedly during practice sessions, which prevents that automatized stimulus-response associations may be transferred from practice to transfer. Dual-task performance was found to be improved after practice with the dual tasks in contrast to the single-task practice. These findings are consistent with the assumption that coordination skills had been acquired, which can be transferred to other dual-task situations independently on the specific stimulus and response mapping conditions of the practiced component tasks. PMID:28659844

  4. Controllable rotational inversion in nanostructures with dual chirality.

    PubMed

    Dai, Lu; Zhu, Ka-Di; Shen, Wenzhong; Huang, Xiaojiang; Zhang, Li; Goriely, Alain

    2018-04-05

    Chiral structures play an important role in natural sciences due to their great variety and potential applications. A perversion connecting two helices with opposite chirality creates a dual-chirality helical structure. In this paper, we develop a novel model to explore quantitatively the mechanical behavior of normal, binormal and transversely isotropic helical structures with dual chirality and apply these ideas to known nanostructures. It is found that both direction and amplitude of rotation can be finely controlled by designing the cross-sectional shape. A peculiar rotational inversion of overwinding followed by unwinding, observed in some gourd and cucumber tendril perversions, not only exists in transversely isotropic dual-chirality helical nanobelts, but also in the binormal/normal ones when the cross-sectional aspect ratio is close to 1. Beyond this rotational inversion region, the binormal and normal dual-chirality helical nanobelts exhibit a fixed directional rotation of unwinding and overwinding, respectively. Moreover, in the binormal case, the rotation of these helical nanobelts is nearly linear, which is promising as a possible design for linear-to-rotary motion converters. The present work suggests new designs for nanoscale devices.

  5. Regulation of Drosophila transient receptor potential-like (TrpL) channels by phospholipase C-dependent mechanisms.

    PubMed

    Estacion, M; Sinkins, W G; Schilling, W P

    2001-01-01

    Patch clamp and fura-2 fluorescence were employed to characterize receptor-mediated activation of recombinant Drosophila TrpL channels expressed in Sf9 insect cells. TrpL was activated by receptor stimulation and by exogenous application of diacylglycerol (DAG) or poly-unsaturated fatty acids (PUFAs). Activation of TrpL was blocked more than 70% by U73122, suggesting that the effect of these agents was dependent upon phospholipase C (PLC). In fura-2 assays, extracellular application of bacterial phosphatidylinositol (PI)-PLC or phosphatidylcholine (PC)-PLC caused a transient increase in TrpL channel activity, the magnitude of which was significantly less than that observed following receptor stimulation. TrpL channels were also activated in excised inside-out patches by cytoplasmic application of mammalian PLC-b2, bacterial PI-PLC and PC-PLC, but not by phospholipase D (PLD). The phospholipases had little or no effect when examined in either whole-cell or cell-attached configurations.TrpL activity was inhibited by addition of phosphatidylinositol-4,5-bisphosphate (PIP2) to excised inside-out membrane patches exhibiting spontaneous channel activity or to patches pre-activated by treatment with PLC. The effect was reversible, specific for PIP2, and was not observed with phosphatidylethanolamine (PE), PI, PC or phosphatidylserine (PS). However, antibodies against PIP2 consistently failed to activate TrpL in inside-out patches. It is concluded that both the hydrolysis of PIP2 and the generation of DAG are required to rapidly activate TrpL following receptor stimulation, or that some other PLC-dependent mechanism plays a crucial role in the activation process.

  6. A systematic approach to pair secretory cargo receptors with their cargo suggests a mechanism for cargo selection by Erv14.

    PubMed

    Herzig, Yonatan; Sharpe, Hayley J; Elbaz, Yael; Munro, Sean; Schuldiner, Maya

    2012-01-01

    The endoplasmic reticulum (ER) is the site of synthesis of secreted and membrane proteins. To exit the ER, proteins are packaged into COPII vesicles through direct interaction with the COPII coat or aided by specific cargo receptors. Despite the fundamental role of such cargo receptors in protein traffic, only a few have been identified; their cargo spectrum is unknown and the signals they recognize remain poorly understood. We present here an approach we term "PAIRS" (pairing analysis of cargo receptors), which combines systematic genetic manipulations of yeast with automated microscopy screening, to map the spectrum of cargo for a known receptor or to uncover a novel receptor for a particular cargo. Using PAIRS we followed the fate of ∼150 cargos on the background of mutations in nine putative cargo receptors and identified novel cargo for most of these receptors. Deletion of the Erv14 cargo receptor affected the widest range of cargo. Erv14 substrates have a wide array of functions and structures; however, they are all membrane-spanning proteins of the late secretory pathway or plasma membrane. Proteins residing in these organelles have longer transmembrane domains (TMDs). Detailed examination of one cargo supported the hypothesis that Erv14 dependency reflects the length rather than the sequence of the TMD. The PAIRS approach allowed us to uncover new cargo for known cargo receptors and to obtain an unbiased look at specificity in cargo selection. Obtaining the spectrum of cargo for a cargo receptor allows a novel perspective on its mode of action. The rules that appear to guide Erv14 substrate recognition suggest that sorting of membrane proteins at multiple points in the secretory pathway could depend on the physical properties of TMDs. Such a mechanism would allow diverse proteins to utilize a few receptors without the constraints of evolving location-specific sorting motifs.

  7. Active Joint Mechanism Driven by Multiple Actuators Made of Flexible Bags: A Proposal of Dual Structural Actuator

    PubMed Central

    Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input. PMID:24385868

  8. Active joint mechanism driven by multiple actuators made of flexible bags: a proposal of dual structural actuator.

    PubMed

    Kimura, Hitoshi; Matsuzaki, Takuya; Kataoka, Mokutaro; Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input.

  9. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target

    NASA Technical Reports Server (NTRS)

    Beningo, Karen A.; Wang, Yu-li

    2002-01-01

    Phagocytosis is an actin-based process used by macrophages to clear particles greater than 0.5 microm in diameter. In addition to its role in immunological responses, phagocytosis is also necessary for tissue remodeling and repair. To prevent catastrophic autoimmune reactions, phagocytosis must be tightly regulated. It is commonly assumed that the recognition/selection of phagocytic targets is based solely upon receptor-ligand binding. Here we report an important new criterion, that mechanical parameters of the target can dramatically affect the efficiency of phagocytosis. When presented with particles of identical chemical properties but different rigidity, macrophages showed a strong preference to engulf rigid objects. Furthermore, phagocytosis of soft particles can be stimulated with the microinjection of constitutively active Rac1 but not RhoA, and with lysophosphatidic acid, an agent known to activate the small GTP-binding proteins of the Rho family. These data suggest a Rac1-dependent mechanosensory mechanism for phagocytosis, which probably plays an important role in a number of physiological and pathological processes from embryonic development to autoimmune diseases.

  10. Positive selection moments identify potential functional residues in human olfactory receptors

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Weisinger-Lewin, Y.; Lancet, D.; Shepherd, G. M.

    1996-01-01

    Correlated mutation analysis and molecular models of olfactory receptors have provided evidence that residues in the transmembrane domains form a binding pocket for odor ligands. As an independent test of these results, we have calculated positive selection moments for the alpha-helical sixth transmembrane domain (TM6) of human olfactory receptors. The moments can be used to identify residues that have been preferentially affected by positive selection and are thus likely to interact with odor ligands. The results suggest that residue 622, which is commonly a serine or threonine, could form critical H-bonds. In some receptors a dual-serine subsite, formed by residues 622 and 625, could bind hydroxyl determinants on odor ligands. The potential importance of these residues is further supported by site-directed mutagenesis in the beta-adrenergic receptor. The findings should be of practical value for future physiological studies, binding assays, and site-directed mutagenesis.

  11. Sonic hedgehog regulates its own receptor on postcrossing commissural axons in a glypican1-dependent manner.

    PubMed

    Wilson, Nicole H; Stoeckli, Esther T

    2013-08-07

    Upon reaching their intermediate target, the floorplate, commissural axons acquire responsiveness to repulsive guidance cues, allowing the axons to exit the midline and adopt a contralateral, longitudinal trajectory. The molecular mechanisms that regulate this switch from attraction to repulsion remain poorly defined. Here, we show that the heparan sulfate proteoglycan Glypican1 (GPC1) is required as a coreceptor for the Shh-dependent induction of Hedgehog-interacting protein (Hhip) in commissural neurons. In turn, Hhip is required for postcrossing axons to respond to a repulsive anteroposterior Shh gradient. Thus, Shh is a cue with dual function. In precrossing axons it acts as an attractive guidance molecule in a transcription-independent manner. At the same time, Shh binds to GPC1 to induce the expression of its own receptor, Hhip, which mediates the repulsive response of postcrossing axons to Shh. Our study characterizes a molecular mechanism by which navigating axons switch their responsiveness at intermediate targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Formation of Offset and Dual Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Barrows, Scott; Comerford, Julia M.; Greene, Jenny E.

    2018-06-01

    Galaxy mergers are effective mechanisms for triggering accretion onto supermassive black holes (SMBHs) and thereby powering active galactic nuclei (AGN). In the merger scenario, when the SMBH from only one galaxy is accreting we observe a spatially offset AGN, and when the SMBHs from both galaxies are accreting we observe a dual AGN. Understanding the merger conditions that lead to the formation of offset AGN versus dual AGN is fundamental to informing models of hierarchical SMBH growth and the physics leading to the accretion of matter onto SMBHs. However, while the role of galaxy mergers for AGN triggering has been well-studied, the efficiency with which these events trigger offset AGN versus dual AGN is currently unclear. One reason for this gap in knowledge can be attributed to the observational difficulties in distinguishing between offset and dual AGN since doing so requires high spatial resolution, especially in the small separation regime where merger-driven AGN triggering is most likely to occur. To overcome this hurdle, we have utilized the spatial resolution of the Chandra X-ray Observatory to develop a unique sample of AGN hosted by late-stage galaxy mergers. Moreover, we have recently acquired Hubble Space Telescope imaging for a subset of these systems to examine the role that their merger morphologies play in SMBH growth and the formation of offset and dual AGN. We find that offset AGN are predominately found in minor mergers, whereas dual AGN are usually hosted by major mergers and galaxies with large morphological asymmetries. Furthermore, in both offset and dual AGN, the rate of SMBH growth increases toward more major mergers and larger morphological asymmetries. These results are in agreement with numerical simulations predicting that merger morphology is a relevant parameter governing SMBH merger-driven growth, and these results are the first to observationally confirm these trends at small pair separations.

  13. Nuclear receptors and nonalcoholic fatty liver disease1

    PubMed Central

    Cave, Matthew C.; Clair, Heather B.; Hardesty, Josiah E.; Falkner, K. Cameron; Feng, Wenke; Clark, Barbara J.; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A.; McClain, Craig J.; Prough, Russell A.

    2016-01-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic

  14. Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism.

    PubMed

    de Garavilla, L; Vergnolle, N; Young, S H; Ennes, H; Steinhoff, M; Ossovskaya, V S; D'Andrea, M R; Mayer, E A; Wallace, J L; Hollenberg, M D; Andrade-Gordon, P; Bunnett, N W

    2001-08-01

    Thrombin, generated in the circulation during injury, cleaves proteinase-activated receptor 1 (PAR1) to stimulate plasma extravasation and granulocyte infiltration. However, the mechanism of thrombin-induced inflammation in intact tissues is unknown. We hypothesized that thrombin cleaves PAR1 on sensory nerves to release substance P (SP), which interacts with the neurokinin 1 receptor (NK1R) on endothelial cells to cause plasma extravasation. PAR1 was detected in small diameter neurons known to contain SP in rat dorsal root ganglia by immunohistochemistry and in situ hybridization. Thrombin and the PAR1 agonist TFLLR-NH(2) (TF-NH(2)) increased [Ca(2+)](i) >50% of cultured neurons (EC(50)s 24 mu ml(-1) and 1.9 microM, respectively), assessed using Fura-2 AM. The PAR1 agonist completely desensitized responses to thrombin, indicating that thrombin stimulates neurons through PAR1. Injection of TF-NH(2) into the rat paw stimulated a marked and sustained oedema. An NK1R antagonist and ablation of sensory nerves with capsaicin inhibited oedema by 44% at 1 h and completely by 5 h. In wild-type but not PAR1(-/-) mice, TF-NH(2) stimulated Evans blue extravasation in the bladder, oesophagus, stomach, intestine and pancreas by 2 - 8 fold. Extravasation in the bladder, oesophagus and stomach was abolished by an NK1R antagonist. Thus, thrombin cleaves PAR1 on primary spinal afferent neurons to release SP, which activates the NK1R on endothelial cells to stimulate gap formation, extravasation of plasma proteins, and oedema. In intact tissues, neurogenic mechanisms are predominantly responsible for PAR1-induced oedema.

  15. Synthesis of a Fluorescently Labeled 68Ga-DOTA-TOC Analog for Somatostatin Receptor Targeting.

    PubMed

    Ghosh, Sukhen C; Hernandez Vargas, Servando; Rodriguez, Melissa; Kossatz, Susanne; Voss, Julie; Carmon, Kendra S; Reiner, Thomas; Schonbrunn, Agnes; Azhdarinia, Ali

    2017-07-13

    Fluorescently labeled imaging agents can identify surgical margins in real-time to help achieve complete resections and minimize the likelihood of local recurrence. However, photon attenuation limits fluorescence-based imaging to superficial lesions or lesions that are a few millimeters beneath the tissue surface. Contrast agents that are dual-labeled with a radionuclide and fluorescent dye can overcome this limitation and combine quantitative, whole-body nuclear imaging with intraoperative fluorescence imaging. Using a multimodality chelation (MMC) scaffold, IRDye 800CW was conjugated to the clinically used somatostatin analog, 68 Ga-DOTA-TOC, to produce the dual-labeled analog, 68 Ga-MMC(IRDye 800CW)-TOC, with high yield and specific activity. In vitro pharmacological assays demonstrated retention of receptor-targeting properties for the dual-labeled compound with robust internalization that was somatostatin receptor (SSTR) 2-mediated. Biodistribution studies in mice identified the kidneys as the primary excretion route for 68 Ga-MMC(IRDye 800CW)-TOC, along with clearance via the reticuloendothelial system. Higher uptake was observed in most tissues compared to 68 Ga-DOTA-TOC but decreased as a function of time. The combination of excellent specificity for SSTR2-expressing cells and suitable biodistribution indicate potential application of 68 Ga-MMC(IRDye 800CW)-TOC for intraoperative detection of SSTR2-expressing tumors.

  16. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation

    PubMed Central

    Shen, Yang; Zeng, Lin; Novosyadlyy, Ruslan; Forest, Amelie; Zhu, Aiping; Korytko, Andrew; Zhang, Haifan; Eastman, Scott W; Topper, Michael; Hindi, Sagit; Covino, Nicole; Persaud, Kris; Kang, Yun; Burtrum, Douglas; Surguladze, David; Prewett, Marie; Chintharlapalli, Sudhakar; Wroblewski, Victor J; Shen, Juqun; Balderes, Paul; Zhu, Zhenping; Snavely, Marshall; Ludwig, Dale L

    2015-01-01

    Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor – type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique “capture-for-degradation” mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions. PMID:26073904

  17. The natural dual cyclooxygenase and 5-lipoxygenase inhibitor flavocoxid is protective in EAE through effects on Th1/Th17 differentiation and macrophage/microglia activation.

    PubMed

    Kong, Weimin; Hooper, Kirsten M; Ganea, Doina

    2016-03-01

    Prostaglandins and leukotrienes, bioactive mediators generated by cyclooxygenases (COX) and 5-lipoxygenase (5-LO) from arachidonic acid, play an essential role in neuroinflammation. High levels of LTB4 and PGE2 and increased expression of COX and 5-LO, as well as high expression of PGE2 receptors were reported in multiple sclerosis (MS) patients and in experimental autoimmune encephalomyelitis (EAE). Prostaglandins and leukotrienes have an interdependent and compensatory role in EAE, which led to the concept of therapy using dual COX/5-LO inhibitors. The plant derived flavocoxid, a dual COX/5-LO inhibitor with anti-inflammatory and antioxidant properties, manufactured as a prescription pharmaconutrient, was reported to be neuroprotective in models of transient ischemic stroke and brain injury. The present study is the first report on prophylactic and therapeutic effects of flavocoxid in EAE. The beneficial effects correlate with reduced expression of proinflammatory cytokines and of COX2 and 5-LO in spinal cords and spleens of EAE mice. The protective mechanisms include: 1. reduction in expression of MHCII/costimulatory molecules and production of proinflammatory cytokines; 2. promotion of the M2 phenotype including IL-10 expression and release by macrophages and microglia; 3. inhibition of Th1 and Th17 differentiation through direct effects on T cells. The direct inhibitory effect on Th1/Th17 differentiation, and promoting the development of M2 macrophages and microglia, represent novel mechanisms for the flavocoxid anti-inflammatory activity. As a dual COX/5-LO inhibitor with antioxidant properties, flavocoxid might be useful as a potential therapeutic medical food agent in MS patients. Copyright © 2015. Published by Elsevier Inc.

  18. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-null Mice

    PubMed Central

    Roundtree, Harrison M.; Simeone, Timothy A.; Johnson, Chaz; Matthews, Stephanie A.; Samson, Kaeli K.; Simeone, Kristina A.

    2016-01-01

    Study Objective: Comorbid sleep disorders occur in approximately one-third of people with epilepsy. Seizures and sleep disorders have an interdependent relationship where the occurrence of one can exacerbate the other. Orexin, a wake-promoting neuropeptide, is associated with sleep disorder symptoms. Here, we tested the hypothesis that orexin dysregulation plays a role in the comorbid sleep disorder symptoms in the Kcna1-null mouse model of temporal lobe epilepsy. Methods: Rest-activity was assessed using infrared beam actigraphy. Sleep architecture and seizures were assessed using continuous video-electroencephalography-electromyography recordings in Kcna1-null mice treated with vehicle or the dual orexin receptor antagonist, almorexant (100 mg/kg, intraperitoneally). Orexin levels in the lateral hypothalamus/perifornical region (LH/P) and hypothalamic pathology were assessed with immunohistochemistry and oxygen polarography. Results: Kcna1-null mice have increased latency to rapid eye movement (REM) sleep onset, sleep fragmentation, and number of wake epochs. The numbers of REM and non-REM (NREM) sleep epochs are significantly reduced in Kcna1-null mice. Severe seizures propagate to the wake-promoting LH/P where injury is apparent (indicated by astrogliosis, blood-brain barrier permeability, and impaired mitochondrial function). The number of orexin-positive neurons is increased in the LH/P compared to wild-type LH/P. Treatment with a dual orexin receptor antagonist significantly increases the number and duration of NREM sleep epochs and reduces the latency to REM sleep onset. Further, almorexant treatment reduces the incidence of severe seizures and overall seizure burden. Interestingly, we report a significant positive correlation between latency to REM onset and seizure burden in Kcna1-null mice. Conclusion: Dual orexin receptor antagonists may be an effective sleeping aid in epilepsy, and warrants further study on their somnogenic and ant-seizure effects in

  19. Sigma receptors as potential therapeutic targets for neuroprotection.

    PubMed

    Nguyen, Linda; Kaushal, Nidhi; Robson, Matthew J; Matsumoto, Rae R

    2014-11-15

    Sigma receptors comprise a unique family of proteins that have been implicated in the pathophysiology and treatment of many central nervous system disorders, consistent with their high level of expression in the brain and spinal cord. Mounting evidence indicate that targeting sigma receptors may be particularly beneficial in a number of neurodegenerative conditions including Alzheimer׳s disease, Parkinson׳s disease, stroke, methamphetamine neurotoxicity, Huntington׳s disease, amyotrophic lateral sclerosis, and retinal degeneration. In this perspective, a brief overview is given on sigma receptors, followed by a focus on common mechanisms of neurodegeneration that appear amenable to modulation by sigma receptor ligands to convey neuroprotective effects and/or restorative functions. Within each of the major mechanisms discussed herein, the neuroprotective effects of sigma ligands are summarized, and when known, the specific sigma receptor subtype(s) involved are identified. Together, the literature suggests sigma receptors may provide a novel target for combatting neurodegenerative diseases through both neuronal and glial mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Nucleotide excision repair by dual incisions in plants.

    PubMed

    Canturk, Fazile; Karaman, Muhammet; Selby, Christopher P; Kemp, Michael G; Kulaksiz-Erkmen, Gulnihal; Hu, Jinchuan; Li, Wentao; Lindsey-Boltz, Laura A; Sancar, Aziz

    2016-04-26

    Plants use light for photosynthesis and for various signaling purposes. The UV wavelengths in sunlight also introduce DNA damage in the form of cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts [(6-4)PPs] that must be repaired for the survival of the plant. Genome sequencing has revealed the presence of genes for both CPD and (6-4)PP photolyases, as well as genes for nucleotide excision repair in plants, such as Arabidopsis and rice. Plant photolyases have been purified, characterized, and have been shown to play an important role in plant survival. In contrast, even though nucleotide excision repair gene homologs have been found in plants, the mechanism of nucleotide excision repair has not been investigated. Here we used the in vivo excision repair assay developed in our laboratory to demonstrate that Arabidopsis removes CPDs and (6-4)PPs by a dual-incision mechanism that is essentially identical to the mechanism of dual incisions in humans and other eukaryotes, in which oligonucleotides with a mean length of 26-27 nucleotides are removed by incising ∼20 phosphodiester bonds 5' and 5 phosphodiester bonds 3' to the photoproduct.