Science.gov

Sample records for dual receptor mechanisms

  1. Dual mechanism of interleukin-3 receptor blockade by an anti-cancer antibody.

    PubMed

    Broughton, Sophie E; Hercus, Timothy R; Hardy, Matthew P; McClure, Barbara J; Nero, Tracy L; Dottore, Mara; Huynh, Huy; Braley, Hal; Barry, Emma F; Kan, Winnie L; Dhagat, Urmi; Scotney, Pierre; Hartman, Dallas; Busfield, Samantha J; Owczarek, Catherine M; Nash, Andrew D; Wilson, Nicholas J; Parker, Michael W; Lopez, Angel F

    2014-07-24

    Interleukin-3 (IL-3) is an activated T cell product that bridges innate and adaptive immunity and contributes to several immunopathologies. Here, we report the crystal structure of the IL-3 receptor α chain (IL3Rα) in complex with the anti-leukemia antibody CSL362 that reveals the N-terminal domain (NTD), a domain also present in the granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-5, and IL-13 receptors, adopting unique "open" and classical "closed" conformations. Although extensive mutational analyses of the NTD epitope of CSL362 show minor overlap with the IL-3 binding site, CSL362 only inhibits IL-3 binding to the closed conformation, indicating alternative mechanisms for blocking IL-3 signaling. Significantly, whereas "open-like" IL3Rα mutants can simultaneously bind IL-3 and CSL362, CSL362 still prevents the assembly of a higher-order IL-3 receptor-signaling complex. The discovery of open forms of cytokine receptors provides the framework for development of potent antibodies that can achieve a "double hit" cytokine receptor blockade. PMID:25043189

  2. Blocking NMDA receptors delays death in rats with acute liver failure by dual protective mechanisms in kidney and brain.

    PubMed

    Cauli, Omar; González-Usano, Alba; Cabrera-Pastor, Andrea; Gimenez-Garzó, Carla; López-Larrubia, Pilar; Ruiz-Sauri, Amparo; Hernández-Rabaza, Vicente; Duszczyk, Malgorzata; Malek, Michal; Lazarewicz, Jerzy W; Carratalá, Arturo; Urios, Amparo; Miguel, Alfonso; Torregrosa, Isidro; Carda, Carmen; Montoliu, Carmina; Felipo, Vicente

    2014-06-01

    Treatment of patients with acute liver failure (ALF) is unsatisfactory and mortality remains unacceptably high. Blocking NMDA receptors delays or prevents death of rats with ALF. The underlying mechanisms remain unclear. Clarifying these mechanisms will help to design more efficient treatments to increase patient's survival. The aim of this work was to shed light on the mechanisms by which blocking NMDA receptors delays rat's death in ALF. ALF was induced by galactosamine injection. NMDA receptors were blocked by continuous MK-801 administration. Edema and cerebral blood flow were assessed by magnetic resonance. The time course of ammonia levels in brain, muscle, blood, and urine; of glutamine, lactate, and water content in brain; of glomerular filtration rate and kidney damage; and of hepatic encephalopathy (HE) and intracranial pressure was assessed. ALF reduces kidney glomerular filtration rate (GFR) as reflected by reduced inulin clearance. GFR reduction is due to both reduced renal perfusion and kidney tubular damage as reflected by increased Kim-1 in urine and histological analysis. Blocking NMDA receptors delays kidney damage, allowing transient increased GFR and ammonia elimination which delays hyperammonemia and associated changes in brain. Blocking NMDA receptors does not prevent cerebral edema or blood-brain barrier permeability but reduces or prevents changes in cerebral blood flow and brain lactate. The data show that dual protective effects of MK-801 in kidney and brain delay cerebral alterations, HE, intracranial pressure increase and death. NMDA receptors antagonists may increase survival of patients with ALF by providing additional time for liver transplantation or regeneration. PMID:24338618

  3. A dual mechanism for impairment of GABAA receptor activity by NMDA receptor activation in rat cerebellum granule cells.

    PubMed

    Robello, M; Amico, C; Cupello, A

    1997-01-01

    The function of the GABAA receptor has been studied using the whole cell voltage clamp recording technique in rat cerebellum granule cells in culture. Activation of NMDA-type glutamate receptors causes a reduction in the effect of GABA. Full GABAA receptor activity was recovered after washing out NMDA and NMDA action was prevented in a Mg+2 containing medium. The NMDA effect was also absent when extracellular Ca+2 was replaced by Ba+2 and when 10 mM Bapta was present in the intracellular solution. Charge accumulations via voltage activated Ca+2 channels greater than the ones via NMDA receptors do not cause any reduction in GABAA receptor function, suggesting that Ca+2 influx through NMDA receptor channels is critical for the effect. The NMDA effect was reduced by including adenosine-5'-O-3-thiophosphate (ATP-gamma-S) in the internal solution and there was a reduction in the NMDA effect caused by deltamethrin, a calcineurin inhibitor. Part of the NMDA induced GABAA receptor impairment was prevented by prior treatment with L-arginine. Analogously, part of the NMDA effect was prevented by blockage of NO-synthase activity by N omega-nitro-L-arginine. A combination of NO-synthase and calcineurin inhibitors completely eliminated the NMDA action. An analogous result was obtained by combining the NO-synthase inhibitor with the addition of ATP-gamma-S to the pipette medium. The additivity of the prevention of the NMDA impairment of GABAA receptor by blocking the L-arginine/NO pathway and inhibiting calcineurin activity suggests an independent involvement of these two pathways in the interaction between NMDA and the GABAA receptor. On the one hand Ca+2 influx across NMDA channels activates calcineurin and dephosphorylates the GABAA receptor complex directly or dephosphorylates proteins critical for the function of the receptor. On the other hand, Ca+2 influx activates NO-synthase and induces nitric oxide production, which regulates such receptors via protein kinase G

  4. Molecular Mechanism for the Dual Alcohol Modulation of Cys-loop Receptors

    PubMed Central

    Murail, Samuel; Howard, Rebecca J.; Broemstrup, Torben; Bertaccini, Edward J.; Harris, R. Adron; Trudell, James R.; Lindahl, Erik

    2012-01-01

    Cys-loop receptors constitute a superfamily of pentameric ligand-gated ion channels (pLGICs), including receptors for acetylcholine, serotonin, glycine and γ-aminobutyric acid. Several bacterial homologues have been identified that are excellent models for understanding allosteric binding of alcohols and anesthetics in human Cys-loop receptors. Recently, we showed that a single point mutation on a prokaryotic homologue (GLIC) could transform it from a channel weakly potentiated by ethanol into a highly ethanol-sensitive channel. Here, we have employed molecular simulations to study ethanol binding to GLIC, and to elucidate the role of the ethanol-enhancing mutation in GLIC modulation. By performing 1-µs simulations with and without ethanol on wild-type and mutated GLIC, we observed spontaneous binding in both intra-subunit and inter-subunit transmembrane cavities. In contrast to the glycine receptor GlyR, in which we previously observed ethanol binding primarily in an inter-subunit cavity, ethanol primarily occupied an intra-subunit cavity in wild-type GLIC. However, the highly ethanol-sensitive GLIC mutation significantly enhanced ethanol binding in the inter-subunit cavity. These results demonstrate dramatic effects of the F(14′)A mutation on the distribution of ligands, and are consistent with a two-site model of pLGIC inhibition and potentiation. PMID:23055913

  5. A Dual-Sensing Receptor Confers Robust Cellular Homeostasis.

    PubMed

    Schramke, Hannah; Tostevin, Filipe; Heermann, Ralf; Gerland, Ulrich; Jung, Kirsten

    2016-06-28

    Cells have evolved diverse mechanisms that maintain intracellular homeostasis in fluctuating environments. In bacteria, control is often exerted by bifunctional receptors acting as both kinase and phosphatase to regulate gene expression, a design known to provide robustness against noise. Yet how such antagonistic enzymatic activities are balanced as a function of environmental change remains poorly understood. We find that the bifunctional receptor that regulates K(+) uptake in Escherichia coli is a dual sensor, which modulates its autokinase and phosphatase activities in response to both extracellular and intracellular K(+) concentration. Using mathematical modeling, we show that dual sensing is a superior strategy for ensuring homeostasis when both the supply of and demand for a limiting resource fluctuate. By engineering standards, this molecular control system displays a strikingly high degree of functional integration, providing a reference for the vast numbers of receptors for which the sensing strategy remains elusive. PMID:27320909

  6. Dual numbers and supersymmetric mechanics

    NASA Astrophysics Data System (ADS)

    Frydryszak, Andrzej M.

    2005-11-01

    We show that dual numbers, apart from the known practical applications to the description of a rigid body movements in three dimensional space and natural presence in abstract differential algebra, play a role in field theory and are related to supersymmetry as well. Relevant models are considered.

  7. Dual acting slit control mechanism

    NASA Technical Reports Server (NTRS)

    Struthoff, G. L. (Inventor)

    1980-01-01

    A dual acting control system for mass spectrometers is described, which permits adjustment of the collimating slit width and centering of the collimating slit while using only one vacuum penetration. Coaxial shafts, each with independent vacuum bellows are used to independently move the entire collimating assembly or to adjust the slit dimension through a parallelogram linkage.

  8. Control of gravitropic orientation. II. Dual receptor model for gravitropism

    NASA Technical Reports Server (NTRS)

    LaMotte, Clifford E.; Pickard, Barbara G.

    2004-01-01

    Gravitropism of vascular plants has been assumed to require a single gravity receptor mechanism. However, based on the evidence in Part I of this study, we propose that maize roots require two. The first mechanism is without a directional effect and, by itself, cannot give rise to tropism. Its role is quantitative facilitation of the second mechanism, which is directional like the gravitational force itself and provides the impetus for tropic curvature. How closely coupled the two mechanisms may be is, as yet, unclear. The evidence for dual receptors supports a general model for roots. When readiness for gravifacilitation, or gravifacilitation itself, is constitutive, orthogravitropic curvature can go to completion. If not constitutively enabled, gravifacilitation can be weak in the absence of light and water deficit or strong in the presence of light and water deficit. In either case, it can decay and permit roots to assume reproducible non-vertical orientations (plagiogravitropic or plagiotropic orientations) without using non-vertical setpoints. In this way roots are deployed in a large volume of soil. Gravitropic behaviours in shoots are more diverse than in roots, utilising oblique and horizontal as well as vertical setpoints. As a guide to future experiments, we assess how constitutive v. non-constitutive modes of gravifacilitation might contribute to behaviours based on each kind of setpoint.

  9. Tetrathiafulvalene diindolylquinoxaline: a dual signaling anion receptor with phosphate selectivity†

    PubMed Central

    Bejger, Christopher; Park, Jung Su; Silver, Eric S.; Sessler, Jonathan L.

    2011-01-01

    Incorporation of tetrathiafulvalene into the backbone of a known neutral phosphate receptor, diindolylquinoxaline, yields a dual optical-electrochemical chemosensor for dihydrogen phosphate that functions in dichloromethane. This system shows selectivity for dihydrogen phosphate over other small anions and can be used to detect the presence of this analyte via fluorescence quenching or cyclic voltammetry. PMID:20856940

  10. The development of FRET-based dual receptor optical biosensor

    NASA Astrophysics Data System (ADS)

    Xu, Juntao

    The focus of the research presented in this dissertation is the development of a new FRET-based dual receptor sensing method for detecting the human immunodeficiency virus (HIV). The new detection method presented in this dissertation imitates the way HIV infects cells. It utilizes the two receptor-binding event and integrates a chemical transducer system with two unique protein receptors, CD4 and mAb (HIV-1 gp120 monoclonal antibody), which both bind to gp120. The chemical transduction system is based on the distance-dependant principle of fluorescence resonance energy transfer (FRET). The work presented in this dissertation attempts to demonstrate the feasibility of this new sensing method both in solution and on an optical fiber. Appropriate FRET pairs which have high energy transfer efficiency as well as good conjugation properties with receptors were selected and optimized. The two receptors, CD4 and mAb which specifically bind to gp120, were conjugated to one of the optimized FRET fluorophore pairs, AMCA-NHS (succinimidyl-7-amino-4-methylcoumarin-3-acetic acid) and FITC (fluorescein isothiocyanate), respectively. For the solution test, the viral protein gp120, which is the featured protein on the surface of HIV-1, was detected by the mixed solution of the two FRET pair tagged receptors. A spectrofluorometer was used to detect the fluorescent change between AMCA-NHS and FITC peak intensities when the receptors bind to the gp120. Specific binding and non-specific binding gp120 were used to test the selectivity of this method. The results of the solution test indicated that FRET-conjugated receptors can efficiently distinguish the presence of specific and non-specific binding gp120 and proved the feasibility of the FRET-based dual receptor method in detecting the presence of gp120 with a limit of detection of 5ng/ml (0.5nM) in solution. For the optical fiber test, two FRET-conjugated receptors were immobilized onto an optical fiber silica core tip to detect the

  11. Mechanism for the activation of glutamate receptors

    Cancer.gov

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  12. Identification and mechanism of ABA receptor antagonism

    SciTech Connect

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric

    2010-11-11

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.

  13. Molecular Mechanisms of Prolactin and Its Receptor

    PubMed Central

    2012-01-01

    Prolactin and the prolactin receptors are members of a family of hormone/receptor pairs which include GH, erythropoietin, and other ligand/receptor pairs. The mechanisms of these ligand/receptor pairs have broad similarities, including general structures, ligand/receptor stoichiometries, and activation of several common signaling pathways. But significant variations in the structural and mechanistic details are present among these hormones and their type 1 receptors. The prolactin receptor is particularly interesting because it can be activated by three sequence-diverse human hormones: prolactin, GH, and placental lactogen. This system offers a unique opportunity to compare the detailed molecular mechanisms of these related hormone/receptor pairs. This review critically evaluates selected literature that informs these mechanisms, compares the mechanisms of the three lactogenic hormones, compares the mechanism with those of other class 1 ligand/receptor pairs, and identifies information that will be required to resolve mechanistic ambiguities. The literature describes distinct mechanistic differences between the three lactogenic hormones and their interaction with the prolactin receptor and describes more significant differences between the mechanisms by which other related ligands interact with and activate their receptors. PMID:22577091

  14. Mechanism of androgen receptor action.

    PubMed

    Li, Jin; Al-Azzawi, Farook

    2009-06-20

    Recent research provides a much more detailed understanding of the role of the androgen receptor in normal human development and physiology, its structure, and its functioning. This review discusses genomic and non-genomic actions of the androgen receptor, as well as their co-regulators. We also explore several clinically relevant aspects of the molecular biology of the androgen receptor and its co-regulators. PMID:19372015

  15. Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel

    PubMed Central

    Nomura, Yoshiko; Satar, Gul; Hu, Zhaonong; Nauen, Ralf; He, Sheng Yang; Zhorov, Boris S.; Dong, Ke

    2013-01-01

    Pyrethroid insecticides are widely used as one of the most effective control measures in the global fight against agricultural arthropod pests and mosquito-borne diseases, including malaria and dengue. They exert toxic effects by altering the function of voltage-gated sodium channels, which are essential for proper electrical signaling in the nervous system. A major threat to the sustained use of pyrethroids for vector control is the emergence of mosquito resistance to pyrethroids worldwide. Here, we report the successful expression of a sodium channel, AaNav1–1, from Aedes aegypti in Xenopus oocytes, and the functional examination of nine sodium channel mutations that are associated with pyrethroid resistance in various Ae. aegypti and Anopheles gambiae populations around the world. Our analysis shows that five of the nine mutations reduce AaNav1–1 sensitivity to pyrethroids. Computer modeling and further mutational analysis revealed a surprising finding: Although two of the five confirmed mutations map to a previously proposed pyrethroid-receptor site in the house fly sodium channel, the other three mutations are mapped to a second receptor site. Discovery of this second putative receptor site provides a dual-receptor paradigm that could explain much of the molecular mechanisms of pyrethroid action and resistance as well as the high selectivity of pyrethroids on insect vs. mammalian sodium channels. Results from this study could impact future prediction and monitoring of pyrethroid resistance in mosquitoes and other arthropod pests and disease vectors. PMID:23821746

  16. Dual-action expanded-latch mechanism

    NASA Technical Reports Server (NTRS)

    Spencer, R. A.; Tewell, J. R.; Tobey, W. H.

    1978-01-01

    Single drive actuator operates novel mechanism that expands, attaches to object, and withdraws to latch object firmly to another part. Packaging is extremely simple and compact, and eliminates need for machined parts or close tolerances.

  17. Mechanisms of ranolazine's dual protection against atrial and ventricular fibrillation

    PubMed Central

    Verrier, Richard L.; Kumar, Kapil; Nieminen, Tuomo; Belardinelli, Luiz

    2013-01-01

    Coronary artery disease and heart failure carry concurrent risk for atrial fibrillation and life-threatening ventricular arrhythmias. We review evidence indicating that at therapeutic concentrations, ranolazine has potential for dual suppression of these arrhythmias. Mechanisms and clinical implications are discussed. PMID:23220484

  18. Design and synthesis of dual 5-HT1A and 5-HT7 receptor ligands.

    PubMed

    Ofori, Edward; Zhu, Xue Y; Etukala, Jagan R; Peprah, Kwakye; Jordan, Kamanski R; Adkins, Adia A; Bricker, Barbara A; Kang, Hye J; Huang, Xi-Ping; Roth, Bryan L; Ablordeppey, Seth Y

    2016-08-15

    5-HT1A and 5-HT7 receptors have been at the center of discussions recently due in part to their major role in the etiology of major central nervous system diseases such as depression, sleep disorders, and schizophrenia. As part of our search to identify dual targeting ligands for these receptors, we have carried out a systematic modification of a selective 5HT7 receptor ligand culminating in the identification of several dual 5-HT1A and 5-HT7 receptor ligands. Compound 16, a butyrophenone derivative of tetrahydroisoquinoline (THIQ), was identified as the most potent agent with low nanomolar binding affinities to both receptors. Interestingly, compound 16 also displayed moderate affinity to other clinically relevant dopamine receptors. Thus, it is anticipated that compound 16 may serve as a lead for further exploitation in our quest to identify new ligands with the potential to treat diseases of CNS origin. PMID:27312422

  19. APJ acts as a dual receptor in cardiac hypertrophy.

    PubMed

    Scimia, Maria Cecilia; Hurtado, Cecilia; Ray, Saugata; Metzler, Scott; Wei, Ke; Wang, Jianming; Woods, Chris E; Purcell, Nicole H; Catalucci, Daniele; Akasaka, Takeshi; Bueno, Orlando F; Vlasuk, George P; Kaliman, Perla; Bodmer, Rolf; Smith, Layton H; Ashley, Euan; Mercola, Mark; Brown, Joan Heller; Ruiz-Lozano, Pilar

    2012-08-16

    Cardiac hypertrophy is initiated as an adaptive response to sustained overload but progresses pathologically as heart failure ensues. Here we report that genetic loss of APJ, a G-protein-coupled receptor, confers resistance to chronic pressure overload by markedly reducing myocardial hypertrophy and heart failure. In contrast, mice lacking apelin (the endogenous APJ ligand) remain sensitive, suggesting an apelin-independent function of APJ. Freshly isolated APJ-null cardiomyocytes exhibit an attenuated response to stretch, indicating that APJ is a mechanosensor. Activation of APJ by stretch increases cardiomyocyte cell size and induces molecular markers of hypertrophy. Whereas apelin stimulates APJ to activate Gαi and elicits a protective response, stretch signals in an APJ-dependent, G-protein-independent fashion to induce hypertrophy. Stretch-mediated hypertrophy is prevented by knockdown of β-arrestins or by pharmacological doses of apelin acting through Gαi. Taken together, our data indicate that APJ is a bifunctional receptor for both mechanical stretch and the endogenous peptide apelin. By sensing the balance between these stimuli, APJ occupies a pivotal point linking sustained overload to cardiomyocyte hypertrophy. PMID:22810587

  20. Alternative Mechanisms of Immune Receptor Diversity

    PubMed Central

    Litman, Gary W.; Dishaw, Larry J.; Cannon, John P.; Haire, Robert N.; Rast, Jonathan P.

    2007-01-01

    Our views of both innate and adaptive immunity have been significantly modified by recent studies of immune receptors and immunity in protostomes, invertebrate deuterostomes and jawless vertebrates. Extraordinary variation in the means whereby organisms recognize pathogens has been revealed by a series of recent findings, including: novel forms of familiar immune receptors, high genetic polymorphism for new receptor types, germline rearrangement for non-Ig domain receptors, somatic variation of germline-encoded receptors and unusually complex alternative splicing of genes with both immune and non-immune roles. Collectively, these observations underscore pathways in the evolution of immune recognition and suggest universal processes by which immune systems co-opt and integrate existing cellular mechanisms to effect diverse recognition functions. PMID:17703932

  1. Behavioral Analyses of GHB: Receptor Mechanisms

    PubMed Central

    Carter, Lawrence P.; Koek, Wouter; France, Charles P.

    2009-01-01

    GHB is used therapeutically and recreationally, although the precise mechanism of action responsible for its different behavioral effects is not entirely clear. The purpose of this review is to summarize how behavioral procedures, especially drug discrimination procedures, have been used to study the mechanism of action of GHB. More specifically, we will review several different drug discrimination procedures and discuss how they have been used to qualitatively and quantitatively study different components of the complex mechanism of action of GHB. A growing number of studies have provided evidence that the behavioral effects of GHB are mediated predominantly by GABAB receptors. However, there is also evidence that the mechanisms mediating the effects of GHB and the prototypical GABAB receptor agonist baclofen are not identical, and that other mechanisms such as GHB receptors and subtypes of GABAA and GABAB receptors might contribute to the effects of GHB. These findings are consistent with the different behavioral profile, abuse liability, and therapeutic indications of GHB and baclofen. A better understanding of the similarities and differences between GHB and baclofen, as well as the pharmacological mechanisms of action underlying the recreational and therapeutic effects of GHB, could lead to more effective medications with fewer adverse effects. PMID:19010351

  2. Action mechanisms of Liver X Receptors

    SciTech Connect

    Gabbi, Chiara; Warner, Margaret; Gustafsson, Jan-Åke

    2014-04-11

    Highlights: • LXRα and LXRβ are ligand-activated nuclear receptors. • They share oxysterol ligands and the same heterodimerization partner, RXR. • LXRs regulate lipid and glucose metabolism, CNS and immune functions, and water transport. - Abstract: The two Liver X Receptors, LXRα and LXRβ, are nuclear receptors belonging to the superfamily of ligand-activated transcription factors. They share more than 78% homology in amino acid sequence, a common profile of oxysterol ligands and the same heterodimerization partner, Retinoid X Receptor. LXRs play crucial roles in several metabolic pathways: lipid metabolism, in particular in preventing cellular cholesterol accumulation; glucose homeostasis; inflammation; central nervous system functions and water transport. As with all nuclear receptors, the transcriptional activity of LXR is the result of an orchestration of numerous cellular factors including ligand bioavailability, presence of corepressors and coactivators and cellular context i.e., what other pathways are activated in the cell at the time the receptor recognizes its ligand. In this mini-review we summarize the factors regulating the transcriptional activity and the mechanisms of action of these two receptors.

  3. APJ ACTS AS A DUAL RECEPTOR IN CARDIAC HYPERTROPHY

    PubMed Central

    Scimia, Maria Cecilia; Hurtado, Cecilia; Ray, Saugata; Metzler, Scott; Wei, Ke; Wang, Jianming; Woods, Chris E.; Purcell, Nicole H.; Catalucci, Daniele; Akasaka, Takashi; Bueno, Orlando F.; Vlasuk, George P.; Kaliman, Perla; Bodmer, Rolf; Smith, Layton H.; Ashley, Euan; Mercola, Mark; Brown, Joan Heller; Ruiz-Lozano, Pilar

    2012-01-01

    Cardiac hypertrophy is initiated as an adaptive response to sustained overload but progresses pathologically as heart failure ensues1. Here we report that genetic loss of APJ confers resistance to chronic pressure overload by dramatically reducing myocardial hypertrophy and heart failure. In contrast, mice lacking apelin (the endogenous APJ ligand) remain sensitive, suggesting an apelin independent function of APJ. Freshly isolated APJ-null cardiomyocytes exhibit an attenuated response to stretch, indicating that APJ is a mechano-sensor. Activation of APJ by stretch increases cardiomyocyte cell size and induces molecular markers of hypertrophy. Whereas apelin stimulates APJ to activate Gαi and elicits a protective response, stretch signals in an APJ-dependent G-protein-independent fashion to induce hypertrophy. Stretch-mediated hypertrophy is prevented by knockdown of β-arrestins or by pharmacological doses of apelin acting through Gαi. Taken together, our data indicate that APJ is a bifunctional receptor for both mechanical stretch and for the endogenous peptide apelin. By sensing the balance between these stimuli, APJ occupies a pivotal point linking sustained overload to cardiomyocyte hypertrophy. PMID:22810587

  4. Structure-guided development of dual β2 adrenergic/dopamine D2 receptor agonists.

    PubMed

    Weichert, Dietmar; Stanek, Markus; Hübner, Harald; Gmeiner, Peter

    2016-06-15

    Aiming to discover dual-acting β2 adrenergic/dopamine D2 receptor ligands, a structure-guided approach for the evolution of GPCR agonists that address multiple targets was elaborated. Starting from GPCR crystal structures, we describe the design, synthesis and biological investigation of a defined set of compounds leading to the identification of the benzoxazinone (R)-3, which shows agonist properties at the adrenergic β2 receptor and substantial G protein-promoted activation at the D2 receptor. This directed approach yielded molecular probes with tuned dual activity. The congener desOH-3 devoid of the benzylic hydroxyl function was shown to be a β2 adrenergic antagonist/D2 receptor agonist with Ki values in the low nanomolar range. The compounds may serve as a promising starting point for the investigation and treatment of neurological disorders. PMID:27132867

  5. Mechanism of dual specificity kinase activity of DYRK1A.

    PubMed

    Walte, Agnes; Rüben, Katharina; Birner-Gruenberger, Ruth; Preisinger, Christian; Bamberg-Lemper, Simone; Hilz, Nikolaus; Bracher, Franz; Becker, Walter

    2013-09-01

    The function of many protein kinases is controlled by the phosphorylation of a critical tyrosine residue in the activation loop. Dual specificity tyrosine-phosphorylation-regulated kinases (DYRKs) autophosphorylate on this tyrosine residue but phosphorylate substrates on aliphatic amino acids. This study addresses the mechanism of dual specificity kinase activity in DYRK1A and related kinases. Tyrosine autophosphorylation of DYRK1A occurred rapidly during in vitro translation and did not depend on the non-catalytic domains or other proteins. Expression in bacteria as well as in mammalian cells revealed that tyrosine kinase activity of DYRK1A is not restricted to the co-translational autophosphorylation in the activation loop. Moreover, mature DYRK1A was still capable of tyrosine autophosphorylation. Point mutants of DYRK1A and DYRK2 lacking the activation loop tyrosine showed enhanced tyrosine kinase activity. A series of structurally diverse DYRK1A inhibitors was used to pharmacologically distinguish different conformational states of the catalytic domain that are hypothesized to account for the dual specificity kinase activity. All tested compounds inhibited substrate phosphorylation with higher potency than autophosphorylation but none of the tested inhibitors differentially inhibited threonine and tyrosine kinase activity. Finally, the related cyclin-dependent kinase-like kinases (CLKs), which lack the activation loop tyrosine, autophosphorylated on tyrosine both in vitro and in living cells. We propose a model of DYRK autoactivation in which tyrosine autophosphorylation in the activation loop stabilizes a conformation of the catalytic domain with enhanced serine/threonine kinase activity without disabling tyrosine phosphorylation. The mechanism of dual specificity kinase activity probably applies to related serine/threonine kinases that depend on tyrosine autophosphorylation for maturation. PMID:23809146

  6. Dual mechanism of action of the atypical tetracycline chelocardin.

    PubMed

    Stepanek, Jennifer J; Lukežič, Tadeja; Teichert, Ines; Petković, Hrvoje; Bandow, Julia E

    2016-06-01

    Classical tetracyclines targeting the protein biosynthesis machinery are commonly applied in human and veterinary medicine. The development and spread of resistance seriously compromise the successful treatment of bacterial infections. The atypical tetracycline chelocardin holds promise as it retains activity against tetracycline-resistant strains. It has been suggested that chelocardin targets the bacterial membrane, thus differing in mode of action from that of classical tetracyclines. We investigated the mechanism of action of chelocardin using global proteome analysis. The proteome profiles after sublethal chelocardin stress were compared to a reference compendium containing antibiotic response profiles of Bacillus subtilis. This approach revealed a concentration-dependent dual mechanism of action. At low concentrations, like classical tetracyclines, chelocardin induces the proteomic signature for peptidyl transferase inhibition demonstrating that protein biosynthesis inhibition is the dominant physiological challenge. At higher concentrations B. subtilis mainly responds to membrane stress indicating that at clinically relevant concentrations the membrane is the main antibiotic target of chelocardin. Studying the effects on the membrane in more detail, we found that chelocardin causes membrane depolarization but does not lead to formation of large pores. We conclude that at growth inhibiting doses chelocardin not only targets protein biosynthesis but also corrupts the integrity of the bacterial membrane. This dual mechanism of action might prove beneficial in slowing the development of new resistance mechanisms against this atypical tetracycline. PMID:26969785

  7. [Molecular mechanisms for AMPA receptor trafficking].

    PubMed

    Fukata, Masaki; Fukata, Yuko

    2008-06-01

    Finely tuned synaptic transmission in the brain provides the molecular basis for learning and memory. The misregulation of synaptic transmission is involved in the pathogenesis of various neurological disorders like epilepsy. AMPA-typed glutamate receptors (AMPARs) mediate the most prominent form of excitatory neurotransmission in the brain. Dynamic regulation of AMPARs is thought to be a primary mechanism for controlling synaptic strength. We have analyzed the molecular mechanism for AMPAR-trafficking and function by focusing on PSD-95, a major postsynaptic scaffolding protein. Here, we review the novel regulatory mechanisms of AMPARs by 1) the PSD-95 palmitoylating enzyme, which determines the position of PSD-95 at postsynapses, and 2) the epilepsy related ligand/receptor, LGI1/ADAM22, identified as the PSD-95-interacting protein. PMID:18646599

  8. Biophysical mechanisms underlying olfactory receptor neuron dynamics

    PubMed Central

    Nagel, Katherine I.; Wilson, Rachel I.

    2010-01-01

    Odor responses of olfactory receptor neurons (ORNs) exhibit complex dynamics. Using genetics and pharmacology, we show that these dynamics in Drosophila ORNs can be separated into sequential steps, corresponding to transduction and spike generation. Each of these steps contributes distinct dynamics. Transduction dynamics can be largely explained by a simple kinetic model of ligand-receptor interactions, together with an adaptive feedback mechanism that slows transduction onset. Spiking dynamics are well-described by a differentiating linear filter that is stereotyped across odors and cells. Genetic knock-down of sodium channels reshapes this filter, implying that it arises from the regulated balance of intrinsic conductances in ORNs. Complex responses can be understood as a consequence of how the stereotyped spike filter interacts with odor- and receptor-specific transduction dynamics. However, in the presence of rapidly fluctuating natural stimuli, spiking simply increases the speed and sensitivity of encoding. PMID:21217763

  9. Mechanism of FGF receptor dimerization and activation

    NASA Astrophysics Data System (ADS)

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise.

  10. Mechanism of FGF receptor dimerization and activation.

    PubMed

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise. PMID:26725515

  11. Mechanism of FGF receptor dimerization and activation

    PubMed Central

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise. PMID:26725515

  12. Kinetic properties of "dual" orexin receptor antagonists at OX1R and OX2R orexin receptors.

    PubMed

    Callander, Gabrielle E; Olorunda, Morenike; Monna, Dominique; Schuepbach, Edi; Langenegger, Daniel; Betschart, Claudia; Hintermann, Samuel; Behnke, Dirk; Cotesta, Simona; Fendt, Markus; Laue, Grit; Ofner, Silvio; Briard, Emmanuelle; Gee, Christine E; Jacobson, Laura H; Hoyer, Daniel

    2013-01-01

    Orexin receptor antagonists represent attractive targets for the development of drugs for the treatment of insomnia. Both efficacy and safety are crucial in clinical settings and thorough investigations of pharmacokinetics and pharmacodynamics can predict contributing factors such as duration of action and undesirable effects. To this end, we studied the interactions between various "dual" orexin receptor antagonists and the orexin receptors, OX1R and OX2R, over time using saturation and competition radioligand binding with [(3)H]-BBAC ((S)-N-([1,1'-biphenyl]-2-yl)-1-(2-((1-methyl-1H-benzo[d]imidazol-2-yl)thio)acetyl)pyrrolidine-2-carboxamide). In addition, the kinetics of these compounds were investigated in cells expressing human, mouse and rat OX1R and OX2R using FLIPR® assays for calcium accumulation. We demonstrate that almorexant reaches equilibrium very slowly at OX2R, whereas SB-649868, suvorexant, and filorexant may take hours to reach steady state at both orexin receptors. By contrast, compounds such as BBAC or the selective OX2R antagonist IPSU ((2-((1H-Indol-3-yl)methyl)-9-(4-methoxypyrimidin-2-yl)-2,9-diazaspiro[5.5]undecan-1-one) bind rapidly and reach equilibrium very quickly in binding and/or functional assays. Overall, the "dual" antagonists tested here tend to be rather unselective under non-equilibrium conditions and reach equilibrium very slowly. Once equilibrium is reached, each ligand demonstrates a selectivity profile that is however, distinct from the non-equilibrium condition. The slow kinetics of the "dual" antagonists tested suggest that in vitro receptor occupancy may be longer lasting than would be predicted. This raises questions as to whether pharmacokinetic studies measuring plasma or brain levels of these antagonists are accurate reflections of receptor occupancy in vivo. PMID:24376396

  13. Dynamic dual-tracer MRI-guided fluorescence tomography to quantify receptor density in vivo

    PubMed Central

    Davis, Scott C.; Samkoe, Kimberley S.; Tichauer, Kenneth M.; Sexton, Kristian J.; Gunn, Jason R.; Deharvengt, Sophie J.; Hasan, Tayyaba; Pogue, Brian W.

    2013-01-01

    The up-regulation of cell surface receptors has become a central focus in personalized cancer treatment; however, because of the complex nature of contrast agent pharmacokinetics in tumor tissue, methods to quantify receptor binding in vivo remain elusive. Here, we present a dual-tracer optical technique for noninvasive estimation of specific receptor binding in cancer. A multispectral MRI-coupled fluorescence molecular tomography system was used to image the uptake kinetics of two fluorescent tracers injected simultaneously, one tracer targeted to the receptor of interest and the other tracer a nontargeted reference. These dynamic tracer data were then fit to a dual-tracer compartmental model to estimate the density of receptors available for binding in the tissue. Applying this approach to mice with deep-seated gliomas that overexpress the EGF receptor produced an estimate of available receptor density of 2.3 ± 0.5 nM (n = 5), consistent with values estimated in comparative invasive imaging and ex vivo studies. PMID:23671066

  14. Opioid receptor desensitization: mechanisms and its link to tolerance

    PubMed Central

    Allouche, Stéphane; Noble, Florence; Marie, Nicolas

    2014-01-01

    Opioid receptors (OR) are part of the class A of G-protein coupled receptors and the target of the opiates, the most powerful analgesic molecules used in clinic. During a protracted use, a tolerance to analgesic effect develops resulting in a reduction of the effectiveness. So understanding mechanisms of tolerance is a great challenge and may help to find new strategies to tackle this side effect. This review will summarize receptor-related mechanisms that could underlie tolerance especially receptor desensitization. We will focus on the latest data obtained on molecular mechanisms involved in opioid receptor desensitization: phosphorylation, receptor uncoupling, internalization, and post-endocytic fate of the receptor. PMID:25566076

  15. Engagement and control of synchroniser mechanisms in dual clutch transmissions

    NASA Astrophysics Data System (ADS)

    Walker, Paul D.; Zhang, Nong

    2012-01-01

    The study of synchroniser engagements in dual clutch transmissions is undertaken in this paper, identifying limitations to the repeatability of actuation, demonstrating one popular solution for positive synchroniser control and offering an alternate engagement tool. Principally, high wet clutch drag and the synchroniser design have lead to detrimental alignments conditions, where indexing chamfers on sleeve and target gear delay engagement of the mechanism and lead to potential sleeve block out. This paper focuses on the investigation of different control methods for overcoming these detrimental alignment conditions. The application of a closed loop control method to overcome block out related engagements is studied, and, for comparison, a novel engagement tool for overriding all chamfer alignment conditions is introduced and evaluated. Results have demonstrated that both techniques have some limitations, with the novel tool being capable of providing direct control of all chamfer engagements with limited extension of the duration of synchroniser engagements; however, some tuning of mechanism parameters is required for different engagement conditions.

  16. Assembly of AMPA receptors: mechanisms and regulation

    PubMed Central

    Gan, Quan; Salussolia, Catherine L; Wollmuth, Lonnie P

    2015-01-01

    AMPA receptors (AMPARs) play a critical role in excitatory glutamatergic neurotransmission. The number and subunit composition of AMPARs at synapses determines the dynamics of fast glutamatergic signalling. Functional AMPARs on the cell surface are tetramers. Thus tetrameric assembly of AMPARs represents a promising target for modulating AMPAR-mediated signalling in health and disease. Multiple structural domains within the receptor influence AMPAR assembly. In a proposed model for AMPAR assembly, the amino-terminal domain underlies the formation of a dimer pool. The transmembrane domain facilitates the formation and enhances the stability of the tetramer. The ligand-binding domain influences assembly through a process referred to as ‘domain swapping’. We propose that this core AMPAR assembly process could be regulated by neuronal signals and speculate on possible mechanisms for such regulation. PMID:25556786

  17. The Dual Hypocretin Receptor Antagonist Almorexant is Permissive for Activation of Wake-Promoting Systems.

    PubMed

    Parks, Gregory S; Warrier, Deepti R; Dittrich, Lars; Schwartz, Michael D; Palmerston, Jeremiah B; Neylan, Thomas C; Morairty, Stephen R; Kilduff, Thomas S

    2016-03-01

    The dual hypocretin receptor (HcrtR) antagonist almorexant (ALM) may promote sleep through selective disfacilitation of wake-promoting systems, whereas benzodiazepine receptor agonists (BzRAs) such as zolpidem (ZOL) induce sleep through general inhibition of neural activity. Previous studies have indicated that HcrtR antagonists cause less-functional impairment than BzRAs. To gain insight into the mechanisms underlying these differential profiles, we compared the effects of ALM and ZOL on functional activation of wake-promoting systems at doses equipotent for sleep induction. Sprague-Dawley rats, implanted for EEG/EMG recording, were orally administered vehicle (VEH), 100 mg/kg ALM, or 100 mg/kg ZOL during their active phase and either left undisturbed or kept awake for 90 min after which their brains were collected. ZOL-treated rats required more stimulation to maintain wakefulness than VEH- or ALM-treated rats. We measured Fos co-expression with markers for wake-promoting cell groups in the lateral hypothalamus (Hcrt), tuberomammillary nuclei (histamine; HA), basal forebrain (acetylcholine; ACh), dorsal raphe (serotonin; 5HT), and singly labeled Fos(+) cells in the locus coeruleus (LC). Following SD, Fos co-expression in Hcrt, HA, and ACh neurons (but not in 5HT neurons) was consistently elevated in VEH- and ALM-treated rats, whereas Fos expression in these neuronal groups was unaffected by SD in ZOL-treated rats. Surprisingly, Fos expression in the LC was elevated in ZOL- but not in VEH- or ALM-treated SD animals. These results indicate that Hcrt signaling is unnecessary for the activation of Hcrt, HA, or ACh wake-active neurons, which may underlie the milder cognitive impairment produced by HcrtR antagonists compared to ZOL. PMID:26289145

  18. A dual role of transient receptor potential melastatin 2 channel in cytotoxicity induced by silica nanoparticles

    PubMed Central

    Yu, Peilin; Li, Jin; Jiang, Jialin; Zhao, Zunquan; Hui, Zhaoyuan; Zhang, Jun; Zheng, Yifan; Ling, Daishun; Wang, Lie; Jiang, Lin-Hua; Luo, Jianhong; Zhu, Xinqiang; Yang, Wei

    2015-01-01

    Silica nanoparticles (NPs) have remarkable applications. However, accumulating evidence suggests NPs can cause cellular toxicity by inducing ROS production and increasing intracellular Ca2+ ([Ca2+]i), but the underlying molecular mechanism is largely unknown. Transient receptor potential melastatin 2 (TRPM2) channel is known to be a cellular redox potential sensor that provides an important pathway for increasing the [Ca2+]i under oxidative stress. In this study, we examined the role of TRPM2 channel in silica NPs-induced oxidative stress and cell death. By quantitation of cell viability, ROS production, [Ca2+]i, and protein identification, we showed that TRPM2 channel is required for ROS production and Ca2+ increase induced by silica NPs through regulating NADPH oxidase activity in HEK293 cells. Strikingly, HEK293 cells expressing low levels of TRPM2 were more susceptible to silica NPs than those expressing high levels of TRPM2. Macrophages from young mice showed significantly lower TRPM2 expression than those from senescent mice and had significantly lower viability after silica NPs exposure than those from senescent ones. Taken together, these findings demonstrate for the first time that TRPM2 channel acts as an oxidative stress sensor that plays a dual role in silica NPs-induced cytotoxicity by differentially regulating the NADPH oxidase activity and ROS generation. PMID:26656285

  19. Anthranilic acid derivatives as nuclear receptor modulators--development of novel PPAR selective and dual PPAR/FXR ligands.

    PubMed

    Merk, Daniel; Lamers, Christina; Weber, Julia; Flesch, Daniel; Gabler, Matthias; Proschak, Ewgenij; Schubert-Zsilavecz, Manfred

    2015-02-01

    Nuclear receptors, especially the peroxisome proliferator activated receptors (PPARs) and the farnesoid X receptor (FXR) fulfill crucial roles in metabolic balance. Their activation offers valuable therapeutic potential which has high clinical relevance with the fibrates and glitazones as PPAR agonistic drugs. With growing knowledge about the various functions of nuclear receptors in many disorders, new selective or dual ligands of these pharmaceutical targets are however still required. Here we report the class of anthranilic acid derivatives as novel selective PPAR or dual FXR/PPAR ligands. We identified distinct molecular determinants that govern selectivity for each PPAR subtype or FXR as well as the amplitude of activation of the respective receptors. We thereby discovered several lead compounds for further optimization and developed a highly potent dual PPARα/FXR partial agonist that might have a beneficial synergistic effect on lipid homeostasis by simultaneous activation of two nuclear receptors involved in lipid metabolism. PMID:25583100

  20. Common mechanisms activate plant guard receptors and TLR4

    PubMed Central

    Kagan, Jonathan C.

    2014-01-01

    In metazoans, the innate immune system uses Pattern Recognition Receptors to detect conserved microbial products, whereas in plants Guard Receptors detect virulence factors or activities encoded by pathogens. In a recent study, Williams and colleagues report that plant Guard receptors can be activated by a mechanism remarkably similar to that of mammalian Toll-like Receptor 4. PMID:25224694

  1. Dual orexin receptor antagonists show distinct effects on locomotor performance, ethanol interaction and sleep architecture relative to gamma-aminobutyric acid-A receptor modulators

    PubMed Central

    Ramirez, Andres D.; Gotter, Anthony L.; Fox, Steven V.; Tannenbaum, Pamela L.; Yao, Lihang; Tye, Spencer J.; McDonald, Terrence; Brunner, Joseph; Garson, Susan L.; Reiss, Duane R.; Kuduk, Scott D.; Coleman, Paul J.; Uslaner, Jason M.; Hodgson, Robert; Browne, Susan E.; Renger, John J.; Winrow, Christopher J.

    2013-01-01

    Dual orexin receptor antagonists (DORAs) are a potential treatment for insomnia that function by blocking both the orexin 1 and orexin 2 receptors. The objective of the current study was to further confirm the impact of therapeutic mechanisms targeting insomnia on locomotor coordination and ethanol interaction using DORAs and gamma-aminobutyric acid (GABA)-A receptor modulators of distinct chemical structure and pharmacological properties in the context of sleep-promoting potential. The current study compared rat motor co-ordination after administration of DORAs, DORA-12 and almorexant, and GABA-A receptor modulators, zolpidem, eszopiclone, and diazepam, alone or each in combination with ethanol. Motor performance was assessed by measuring time spent walking on a rotarod apparatus. Zolpidem, eszopiclone and diazepam [0.3–30 mg/kg administered orally (PO)] impaired rotarod performance in a dose-dependent manner. Furthermore, all three GABA-A receptor modulators potentiated ethanol- (0.25–1.5 g/kg) induced impairment on the rotarod. By contrast, neither DORA-12 (10–100 mg/kg, PO) nor almorexant (30–300 mg/kg, PO) impaired motor performance alone or in combination with ethanol. In addition, distinct differences in sleep architecture were observed between ethanol, GABA-A receptor modulators (zolpidem, eszopiclone, and diazepam) and DORA-12 in electroencephalogram studies in rats. These findings provide further evidence that orexin receptor antagonists have an improved motor side-effect profile compared with currently available sleep-promoting agents based on preclinical data and strengthen the rationale for further evaluation of these agents in clinical development. PMID:24399926

  2. Design and Synthesis of Norendoxifen Analogues with Dual Aromatase Inhibitory and Estrogen Receptor Modulatory Activities

    PubMed Central

    Lv, Wei; Liu, Jinzhong; Skaar, Todd C.; Flockhart, David A.; Cushman, Mark

    2015-01-01

    Both selective estrogen receptor modulators and aromatase inhibitors are widely used for the treatment of breast cancer. Compounds with both aromatase inhibitory and estrogen receptor modulatory activities could have special advantages for treatment of breast cancer. Our previous efforts led to the discovery of norendoxifen as the first compound with dual aromatase inhibitory and estrogen receptor binding activities. To optimize its efficacy and aromatase selectivity versus other cytochrome P450 enzymes, a series of structurally related norendoxifen analogues were designed and synthesized. The most potent compound, 4'-hydroxynorendoxifen (10), displayed elevated inhibitory potency against aromatase and enhanced affinity for estrogen receptors when compared to norendoxifen. The selectivity of 10 for aromatase versus other cytochrome P450 enzymes was also superior to norendoxifen. 4'-Hydroxynorendoxifen is therefore an interesting lead for further development to obtain new anticancer agents of potential value for the treatment of breast cancer. PMID:25751283

  3. Mechanisms underlying dual effects of serotonin during development of Helisoma trivolvis (Mollusca)

    PubMed Central

    2014-01-01

    Background Serotonin (5-HT) is well known as widely distributed modulator of developmental processes in both vertebrates and invertebrates. It is also the earliest neurotransmitter to appear during neuronal development. In aquatic invertebrates, which have larvae in their life cycle, 5-HT is involved in regulation of stages transition including larval metamorphosis and settlement. However, molecular and cellular mechanisms underlying developmental transition in aquatic invertebrate species are yet poorly understood. Earlier we demonstrated that in larvae of freshwater molluscs and marine polychaetes, endogenous 5-HT released from the neurons of the apical sensory organ (ASO) in response to external stimuli retarded larval development at premetamorphic stages, and accelerated it at metamorphic stages. Here we used a freshwater snail Helisoma trivolvis to study molecular mechanisms underlying these dual developmental effects of 5-HT. Results Larval development of H. trivolvis includes transition from premetamorphic to metamorphic stages and shares the main features of metamorphosis with free-swimming aquatic larvae. Three types of 5-HT receptors (5-HT1-, 5-HT4- and 5-HT7-like) are functionally active at premetamorphic (trochophore, veliger) and metamorphic (veliconcha) stages, and expression patterns of these receptors and respective G proteins undergo coordinated changes during development. Stimulation of these receptors modulated cAMP-dependent regulation of cell divisions. Expression of 5-HT4- and 5-HT7-like receptors and their downstream Gs protein was down-regulated during the transition of pre- to metamorphic stage, while expression of 5-HT1 -like receptor and its downstream Gi protein was upregulated. In accordance with relative amount of these receptors, stimulation of 5-HTRs at premetamorphic stages induces developmental retardation, while their stimulation at metamorphic stages induces developmental acceleration. Conclusions We present a novel molecular

  4. Dual Activation of the Bile Acid Nuclear Receptor FXR and G-Protein-Coupled Receptor TGR5 Protects Mice against Atherosclerosis

    PubMed Central

    Miyazaki-Anzai, Shinobu; Masuda, Masashi; Levi, Moshe; Keenan, Audrey L.; Miyazaki, Makoto

    2014-01-01

    Bile acid signaling is a critical regulator of glucose and energy metabolism, mainly through the nuclear receptor FXR and the G protein-coupled receptor TGR. The purpose of the present study was to investigate whether dual activation of FXR and TGR5 plays a significant role in the prevention of atherosclerosis progression. To evaluate the effects of bile acid signaling in atherogenesis, ApoE−/− mice and LDLR−/− mice were treated with an FXR/TGR5 dual agonist (INT-767). INT-767 treatment drastically reduced serum cholesterol levels. INT-767 treatment significantly reduced atherosclerotic plaque formation in both ApoE−/− and LDLR−/− mice. INT-767 decreased the expression of pro-inflammatory cytokines and chemokines in the aortas of ApoE−/− mice through the inactivation of NF-κB. In addition, J774 macrophages treated with INT-767 had significantly lower levels of active NF-κB, resulting in cytokine production in response to LPS through a PKA dependent mechanism. This study demonstrates that concurrent activation of FXR and TGR5 attenuates atherosclerosis by reducing both circulating lipids and inflammation. PMID:25237811

  5. Dual pH-Mediated Mechanized Hollow Zirconia Nanospheres.

    PubMed

    Wang, MingDong; Gong, GuangCai; Feng, Jing; Wang, Ting; Ding, ChenDi; Zhou, BaoJing; Jiang, Wei; Fu, JiaJun

    2016-09-01

    We demonstrate for the first time how to assemble mechanized hollow zirconia nanospheres (MHzNs), consisting of hollow mesoporous zirconia nanospheres (HMZNs) as nanoscaffolds and supramolecular switches anchored on the exterior surface of HMZNs. The remarkable advantage of substitution of HMZNs for conventional mesoporous silica nanoscaffolds is that HMZNs can suffer the hot alkaline reaction environment, which provides a novel strategy for functionalization and thus achieve dual pH-mediated controlled release functions by simple and practicable assembly procedure. Under neutral solution, cucurbituril[7] (CB[7]) macrocycles complexed with propanone bis(2-aminoethyl)ketal (PBAEK) to form [2]pseudorotaxanes as supramolecular switches, blocking the pore orifices and preventing the undesirable leakage of cargoes. When solution pH was adjusted to alkaline range, CB[7] macrocycles, acting as caps, disassociated from PBAEK stalks and opened the switches due to the dramatic decrease of ion-dipole interactions. While under acidic conditions, PBAEK stalks were broken on account of the cleavage of ketal groups, resulting in the collapse of supramolecular switches and subsequent release of encapsulated cargoes. MHzNs owning dual pH-mediated controlled release characteristic are expected to apply in many fields. In this work, the feasibility of doxorubicin (DOX)-loaded MHzNs as targeted drug delivery systems was evaluated. In vitro cellular studies demonstrate that DOX-loaded MHzNs can be easily taken up by SMMC-7721 cells, can rapidly release DOX intracellularly, and can enhance cytotoxicity against tumor cells, proving their potential for chemotherapy. PMID:27523904

  6. [Receptors involved in the mechanism of action of topical prostaglandines].

    PubMed

    Neacsu, Alina Mihaela

    2009-01-01

    Hypotensive effect to prostaglandins analogs (latanoprost, travoprost, tafluprost) means to increase uveoscleral outflow by action to FP receptors who generated extracellular matrix changes and intermuscular spaces changes. Syntetic prostamides analogs (bimatoprost) have a particulary action with a receptors most and intensive studied. The bimatoprost effect is the consequences to preferated stimulations on the specific receptors who have action only the tissue with prostaglandins activity is important to specify what the bimatoprost have dual effect: to uveoscleral outflow and classic outflow by increase hidraulic conductivity. PMID:19697832

  7. Discovery of Dual-Action Membrane-Anchored Modulators of Incretin Receptors

    PubMed Central

    Fortin, Jean-Philippe; Chinnapen, Daniel; Beinborn, Martin; Lencer, Wayne; Kopin, Alan S.

    2011-01-01

    Background The glucose-dependent insulinotropic polypeptide (GIP) and the glucagon-like peptide-1 (GLP-1) receptors are considered complementary therapeutic targets for type 2 diabetes. Using recombinant membrane-tethered ligand (MTL) technology, the present study focused on defining optimized modulators of these receptors, as well as exploring how local anchoring influences soluble peptide function. Methodology/Principal Findings Serial substitution of residue 7 in membrane-tethered GIP (tGIP) led to a wide range of activities at the GIP receptor, with [G7]tGIP showing enhanced efficacy compared to the wild type construct. In contrast, introduction of G7 into the related ligands, tGLP-1 and tethered exendin-4 (tEXE4), did not affect signaling at the cognate GLP-1 receptor. Both soluble and tethered GIP and GLP-1 were selective activators of their respective receptors. Although soluble EXE4 is highly selective for the GLP-1 receptor, unexpectedly, tethered EXE4 was found to be a potent activator of both the GLP-1 and GIP receptors. Diverging from the pharmacological properties of soluble and tethered GIP, the newly identified GIP-R agonists, (i.e. [G7]tGIP and tEXE4) failed to trigger cognate receptor endocytosis. In an attempt to recapitulate the dual agonism observed with tEXE4, we conjugated soluble EXE4 to a lipid moiety. Not only did this soluble peptide activate both the GLP-1 and GIP receptors but, when added to receptor expressing cells, the activity persists despite serial washes. Conclusions These findings suggest that conversion of a recombinant MTL to a soluble membrane anchored equivalent offers a means to prolong ligand function, as well as to design agonists that can simultaneously act on more than one therapeutic target. PMID:21935440

  8. Pharmacophore modeling of dual angiotensin II and endothelin A receptor antagonists.

    PubMed

    Xue, Wei-Zhe; Lü, Wei; Zhou, Zhi-Ming; Wang, Zhan-Li

    2009-09-01

    Three-dimensional pharmacophore models were generated for AT1 and ET(A) receptors based on highly selective AT1 and ET(A) antagonists using the program Catalyst/HipHop. Both the best pharmacophore model for selective AT1 antagonists (Hypo-AT(1)-7) and ETA antagonists (Hypo-ET(A)-1) were obtained through a careful validation process. All five features contained in Hypo-AT(1)-7 and Hypo-ET(A)-1 (hydrogen-bond acceptor (A), hydrophobic aliphatic (Z), negative ionizable (N), ring aromatic (R), and hydrophobic aromatic (Y)) seem to be essential for antagonists in terms of binding activity. Dual AT1 and ET(A) receptor antagonists (DARAs) can map to both Hypo-AT(1)-7 and Hypo-ET(A)-1, separately. Comparison of Hypo-AT(1)-7 and Hypo-ET(A)-1, not only AT1 and ET(A) antagonist pharmacophore models consist of essential features necessary for compounds to be highly active and selective toward their corresponding receptor, but also have something in common. The results in this study will act as a valuable tool for designing and researching structural relationship of novel dual AT1 and ET(A) receptor antagonists. PMID:20055175

  9. Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism.

    PubMed

    Menzfeld, Christiane; John, Michael; van Rossum, Denise; Regen, Tommy; Scheffel, Jörg; Janova, Hana; Götz, Alexander; Ribes, Sandra; Nau, Roland; Borisch, Angela; Boutin, Philippe; Neumann, Konstantin; Bremes, Vanessa; Wienands, Jürgen; Reichardt, Holger M; Lühder, Fred; Tischner, Denise; Waetzig, Vicky; Herdegen, Thomas; Teismann, Peter; Greig, Iain; Müller, Michael; Pukrop, Tobias; Mildner, Alexander; Kettenmann, Helmut; Brück, Wolfgang; Prinz, Marco; Rotshenker, Shlomo; Weber, Martin S; Hanisch, Uwe-Karsten

    2015-06-01

    The putative protein tyrosine kinase (PTK) inhibitor tyrphostin AG126 has proven beneficial in various models of inflammatory disease. Yet molecular targets and cellular mechanisms remained enigmatic. We demonstrate here that AG126 treatment has beneficial effects in experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. AG126 alleviates the clinical symptoms, diminishes encephalitogenic Th17 differentiation, reduces inflammatory CNS infiltration as well as microglia activation and attenuates myelin damage. We show that AG126 directly inhibits Bruton's tyrosine kinase (BTK), a PTK associated with B cell receptor and Toll-like receptor (TLR) signaling. However, BTK inhibition cannot account for the entire activity spectrum. Effects on TLR-induced proinflammatory cytokine expression in microglia involve AG126 hydrolysis and conversion of its dinitrile side chain to malononitrile (MN). Notably, while liberated MN can subsequently mediate critical AG126 features, full protection in EAE still requires delivery of intact AG126. Its anti-inflammatory potential and especially interference with TLR signaling thus rely on a dual mechanism encompassing BTK and a novel MN-sensitive target. Both principles bear great potential for the therapeutic management of disturbed innate and adaptive immune functions. PMID:25731696

  10. Dual ligand/receptor interactions activate urothelial defenses against uropathogenic E. coli

    PubMed Central

    Liu, Yan; Mémet, Sylvie; Saban, Ricardo; Kong, Xiangpeng; Aprikian, Pavel; Sokurenko, Evgeni; Sun, Tung-Tien; Wu, Xue-Ru

    2015-01-01

    During urinary tract infection (UTI), the second most common bacterial infection, dynamic interactions take place between uropathogenic E. coli (UPEC) and host urothelial cells. While significant strides have been made in the identification of the virulence factors of UPEC, our understanding of how the urothelial cells mobilize innate defenses against the invading UPEC remains rudimentary. Here we show that mouse urothelium responds to the adhesion of type 1-fimbriated UPEC by rapidly activating the canonical NF-κB selectively in terminally differentiated, superficial (umbrella) cells. This activation depends on a dual ligand/receptor system, one between FimH adhesin and uroplakin Ia and another between lipopolysaccharide and Toll-like receptor 4. When activated, all the nuclei (up to 11) of a multinucleated umbrella cell are affected, leading to significant amplification of proinflammatory signals. Intermediate and basal cells of the urothelium undergo NF-κB activation only if the umbrella cells are detached or if the UPEC persistently express type 1-fimbriae. Inhibition of NF-κB prevents the urothelium from clearing the intracellular bacterial communities, leading to prolonged bladder colonization by UPEC. Based on these data, we propose a model of dual ligand/receptor system in innate urothelial defenses against UPEC. PMID:26549759

  11. A Dual Receptor and Reporter for Multi-Modal Cell Surface Engineering.

    PubMed

    Luo, Wei; Westcott, Nathan; Dutta, Debjit; Pulsipher, Abigail; Rogozhnikov, Dmitry; Chen, Jean; Yousaf, Muhammad N

    2015-10-16

    The rapid development of new small molecule drugs, nanomaterials, and genetic tools to modulate cellular function through cell surface manipulation has revolutionized the diagnosis, study, and treatment of disorders in human health. Since the cell membrane is a selective gateway barrier that serves as the first line of defense/offense and communication to its environment, new approaches that molecularly engineer or tailor cell membrane surfaces would allow for a new era in therapeutic design, therapeutic delivery, complex coculture tissue construction, and in situ imaging probe tracking technologies. In order to develop the next generation of multimodal therapies, cell behavior studies, and biotechnologies that focus on cell membrane biology, new tools that intersect the fields of chemistry, biology, and engineering are required. Herein, we develop a liposome fusion and delivery strategy to present a novel dual receptor and reporter system at cell surfaces without the use of molecular biology or metabolic biosynthesis. The cell surface receptor is based on bio-orthogonal functional groups that can conjugate a range of ligands while simultaneously reporting the conjugation through the emission of fluorescence. We demonstrate this dual receptor and reporter system by conjugating and tracking various cell surface ligands for temporal control of cell fluorescent signaling, cell-cell interaction, and tissue assembly construction. PMID:26204094

  12. Dual intracellular signaling pathways mediated by the human cannabinoid CB1 receptor.

    PubMed

    Calandra, B; Portier, M; Kernéis, A; Delpech, M; Carillon, C; Le Fur, G; Ferrara, P; Shire, D

    1999-06-25

    It has long been established that the cannabinoid CB1 receptor transduces signals through a pertussis toxin-sensitive Gi/Go inhibitory pathway. Although there have been reports that the cannabinoid CB1 receptor can also mediate an increase in cyclic AMP levels, in most cases the presence of an adenylyl cyclase costimulant or the use of very high amounts of agonist was necessary. Here, we present evidence for dual coupling of the cannabinoid CB receptor to the classical pathway and to a pertussis toxin-insensitive adenylyl cyclase stimulatory pathway initiated with low quantities of agonist in the absence of any costimulant. Treatment of Chinese hamster ovary (CHO) cells expressing the cannabinoid CB1 receptor with the cannabinoid CP 55,940, {(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hyd roxypropyl) cyclohexan-1-ol} resulted in cyclic AMP accumulation in a dose-response manner, an accumulation blocked by the cannabinoid CB1 receptor-specific antagonist SR 141716A, {N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1H-pyrazole-3-carboxamide hydrochloride}. In CHO cells coexpressing the cannabinoid CB1 receptor and a cyclic AMP response element (CRE)-luciferase reporter gene system, CP 55,940 induced luciferase expression by a pathway blocked by the protein kinase A inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-89). Under the same conditions the peripheral cannabinoid CB2 receptor proved to be incapable of inducing cAMP accumulation or luciferase activity. This incapacity allowed us to study the luciferase activation mediated by CB /CB2 chimeric constructs, from which we determined that the first and second internal loop regions of the cannabinoid CB1 receptor were involved in transducing the pathway leading to luciferase gene expression. PMID:10422789

  13. Molecular Mechanisms of Opioid Receptor-Dependent Signaling and Behavior

    PubMed Central

    Al-Hasani, Ream; Bruchas, Michael R.

    2013-01-01

    Opioid receptors have been targeted for the treatment of pain and related disorders for thousands of years, and remain the most widely used analgesics in the clinic. Mu (μ), kappa (κ), and delta (δ) opioid receptors represent the originally classified receptor subtypes, with opioid receptor like-1 (ORL1) being the least characterized. All four receptors are G-protein coupled, and activate inhibitory G-proteins. These receptors form homo- and hetereodimeric complexes, signal to kinase cascades, and scaffold a variety of proteins. In this review, we discuss classical mechanisms and developments in understanding opioid tolerance, opioid receptor signaling, and highlight advances in opioid molecular pharmacology, behavioral pharmacology, and human genetics. We put into context how opioid receptor signaling leads to the modulation of behavior with the potential for therapeutic intervention. Finally, we conclude that there is a continued need for more translational work on opioid receptors in vivo. PMID:22020140

  14. Activation of Peroxisome Proliferator-activated Receptor γ (PPARγ) and CD36 Protein Expression: THE DUAL PATHOPHYSIOLOGICAL ROLES OF PROGESTERONE.

    PubMed

    Yang, Xiaoxiao; Zhang, Wenwen; Chen, Yuanli; Li, Yan; Sun, Lei; Liu, Ying; Liu, Mengyang; Yu, Miao; Li, Xiaoju; Han, Jihong; Duan, Yajun

    2016-07-15

    Progesterone or its analog, one of components of hormone replacement therapy, may attenuate the cardioprotective effects of estrogen. However, the underlying mechanisms have not been fully elucidated. Expression of CD36, a receptor for oxidized LDL (oxLDL) that enhances macrophage/foam cell formation, is activated by the transcription factor peroxisome proliferator-activated receptor γ (PPARγ). CD36 also functions as a fatty acid transporter to influence fatty acid metabolism and the pathophysiological status of several diseases. In this study, we determined that progesterone induced macrophage CD36 expression, which is related to progesterone receptor (PR) activity. Progesterone enhanced cellular oxLDL uptake in a CD36-dependent manner. Mechanistically, progesterone increased PPARγ expression and PPARγ promoter activity in a PR-dependent manner and the binding of PR with the progesterone response element in the PPARγ promoter. Specific deletion of macrophage PPARγ (MφPPARγ KO) expression in mice abolished progesterone-induced macrophage CD36 expression and cellular oxLDL accumulation. We also determined that, associated with gestation and increased serum progesterone levels, CD36 and PPARγ expression in mouse adipose tissue, skeletal muscle, and peritoneal macrophages were substantially activated. Taken together, our study demonstrates that progesterone can play dual pathophysiological roles by activating PPARγ expression, in which progesterone increases macrophage CD36 expression and oxLDL accumulation, a negative effect on atherosclerosis, and enhances the PPARγ-CD36 pathway in adipose tissue and skeletal muscle, a protective effect on pregnancy. PMID:27226602

  15. Mechanisms and Implications of Dual-Acting Methotrexate in Folate-Targeted Nanotherapeutic Delivery

    PubMed Central

    Wong, Pamela T.; Choi, Seok Ki

    2015-01-01

    The rational design of a nanoplatform in drug delivery plays a crucial role in determining its targeting specificity and efficacy in vivo. A conventional approach relies on the surface conjugation of a nanometer-sized particle with two functionally distinct types of molecules, one as a targeting ligand, and the other as a therapeutic agent to be delivered to the diseased cell. However, an alternative simplified approach can be used, in which a single type of molecule displaying dual function as both a targeting ligand and therapeutic agent is conjugated to the nanoparticle. In this review, we evaluate the validity of this new strategy by using methotrexate, which displays multifunctional mechanisms of action. Methotrexate binds to the folate receptor, a surface biomarker frequently overexpressed in tumor cells, and also inhibits dihydrofolate reductase, an enzyme critical for cell survival and division. Thus we describe a series of fifth generation poly(amido amine) dendrimers conjugated with methotrexate, and discuss several lines of evidence supporting the efficacy of this new platform strategy based on surface plasmon resonance spectroscopy, enzyme activity assays, and cell-based studies with folate receptor (+) KB cancer cells. PMID:25590303

  16. Receptor Recognition Mechanisms of Coronaviruses: a Decade of Structural Studies

    PubMed Central

    2014-01-01

    Receptor recognition by viruses is the first and essential step of viral infections of host cells. It is an important determinant of viral host range and cross-species infection and a primary target for antiviral intervention. Coronaviruses recognize a variety of host receptors, infect many hosts, and are health threats to humans and animals. The receptor-binding S1 subunit of coronavirus spike proteins contains two distinctive domains, the N-terminal domain (S1-NTD) and the C-terminal domain (S1-CTD), both of which can function as receptor-binding domains (RBDs). S1-NTDs and S1-CTDs from three major coronavirus genera recognize at least four protein receptors and three sugar receptors and demonstrate a complex receptor recognition pattern. For example, highly similar coronavirus S1-CTDs within the same genus can recognize different receptors, whereas very different coronavirus S1-CTDs from different genera can recognize the same receptor. Moreover, coronavirus S1-NTDs can recognize either protein or sugar receptors. Structural studies in the past decade have elucidated many of the puzzles associated with coronavirus-receptor interactions. This article reviews the latest knowledge on the receptor recognition mechanisms of coronaviruses and discusses how coronaviruses have evolved their complex receptor recognition pattern. It also summarizes important principles that govern receptor recognition by viruses in general. PMID:25428871

  17. Suvorexant: efficacy and safety profile of a dual orexin receptor antagonist in treating insomnia.

    PubMed

    Owen, R T

    2016-01-01

    Suvorexant is a hypnotic representing the first-in-class of a new group of agents known as dual orexin receptor antagonists. They target cerebral orexin receptors which, when activated, contribute to arousal and wakefulness. Suvorexant was shown to decrease sleep onset times and increase sleep duration, whether assessed objectively by polysomnography or subjectively by sleep diaries in primary insomnia patients. Overall tolerability was good, with somnolence being the commonest adverse event (≤ 7% in 3-month studies). No strong signals for rebound or withdrawal were seen after 1-12 months of treatment and few adverse events suggestive of residual psychomotor or cognitive events have been recorded. Further studies are required in patients with insomnia comorbid with depression and head-to-head studies with established hypnotics such as zolpidem and eszopiclone. Studies augmenting the small number of patients evaluating the initial recommended dose (10 mg) would also be prudent. PMID:26937493

  18. Biaryls as potent, tunable dual neurokinin 1 receptor antagonists and serotonin transporter inhibitors.

    PubMed

    Degnan, Andrew P; Tora, George O; Han, Ying; Rajamani, Ramkumar; Bertekap, Robert; Krause, Rudolph; Davis, Carl D; Hu, Joanna; Morgan, Daniel; Taylor, Sarah J; Krause, Kelly; Li, Yu-Wen; Mattson, Gail; Cunningham, Melissa A; Taber, Matthew T; Lodge, Nicholas J; Bronson, Joanne J; Gillman, Kevin W; Macor, John E

    2015-08-01

    Depression is a serious illness that affects millions of patients. Current treatments are associated with a number of undesirable side effects. Neurokinin 1 receptor (NK1R) antagonists have recently been shown to potentiate the antidepressant effects of serotonin-selective reuptake inhibitors (SSRIs) in a number of animal models. Herein we describe the optimization of a biaryl chemotype to provide a series of potent dual NK1R antagonists/serotonin transporter (SERT) inhibitors. Through the choice of appropriate substituents, the SERT/NK1R ratio could be tuned to afford a range of target selectivity profiles. This effort culminated in the identification of an analog that demonstrated oral bioavailability, favorable brain uptake, and efficacy in the gerbil foot tap model. Ex vivo occupancy studies with compound 58 demonstrated the ability to maintain NK1 receptor saturation (>88% occupancy) while titrating the desired level of SERT occupancy (11-84%) via dose selection. PMID:26048800

  19. Accounting for pharmacokinetic differences in dual-tracer receptor density imaging.

    PubMed

    Tichauer, K M; Diop, M; Elliott, J T; Samkoe, K S; Hasan, T; St Lawrence, K; Pogue, B W

    2014-05-21

    Dual-tracer molecular imaging is a powerful approach to quantify receptor expression in a wide range of tissues by using an untargeted tracer to account for any nonspecific uptake of a molecular-targeted tracer. This approach has previously required the pharmacokinetics of the receptor-targeted and untargeted tracers to be identical, requiring careful selection of an ideal untargeted tracer for any given targeted tracer. In this study, methodology capable of correcting for tracer differences in arterial input functions, as well as binding-independent delivery and retention, is derived and evaluated in a mouse U251 glioma xenograft model using an Affibody tracer targeted to epidermal growth factor receptor (EGFR), a cell membrane receptor overexpressed in many cancers. Simulations demonstrated that blood, and to a lesser extent vascular-permeability, pharmacokinetic differences between targeted and untargeted tracers could be quantified by deconvolving the uptakes of the two tracers in a region of interest devoid of targeted tracer binding, and therefore corrected for, by convolving the uptake of the untargeted tracer in all regions of interest by the product of the deconvolution. Using fluorescently labeled, EGFR-targeted and untargeted Affibodies (known to have different blood clearance rates), the average tumor concentration of EGFR in four mice was estimated using dual-tracer kinetic modeling to be 3.9 ± 2.4 nM compared to an expected concentration of 2.0 ± 0.4 nM. However, with deconvolution correction a more equivalent EGFR concentration of 2.0 ± 0.4 nM was measured. PMID:24743262

  20. Accounting for pharmacokinetic differences in dual-tracer receptor density imaging

    NASA Astrophysics Data System (ADS)

    Tichauer, K. M.; Diop, M.; Elliott, J. T.; Samkoe, K. S.; Hasan, T.; St. Lawrence, K.; Pogue, B. W.

    2014-05-01

    Dual-tracer molecular imaging is a powerful approach to quantify receptor expression in a wide range of tissues by using an untargeted tracer to account for any nonspecific uptake of a molecular-targeted tracer. This approach has previously required the pharmacokinetics of the receptor-targeted and untargeted tracers to be identical, requiring careful selection of an ideal untargeted tracer for any given targeted tracer. In this study, methodology capable of correcting for tracer differences in arterial input functions, as well as binding-independent delivery and retention, is derived and evaluated in a mouse U251 glioma xenograft model using an Affibody tracer targeted to epidermal growth factor receptor (EGFR), a cell membrane receptor overexpressed in many cancers. Simulations demonstrated that blood, and to a lesser extent vascular-permeability, pharmacokinetic differences between targeted and untargeted tracers could be quantified by deconvolving the uptakes of the two tracers in a region of interest devoid of targeted tracer binding, and therefore corrected for, by convolving the uptake of the untargeted tracer in all regions of interest by the product of the deconvolution. Using fluorescently labeled, EGFR-targeted and untargeted Affibodies (known to have different blood clearance rates), the average tumor concentration of EGFR in four mice was estimated using dual-tracer kinetic modeling to be 3.9 ± 2.4 nM compared to an expected concentration of 2.0 ± 0.4 nM. However, with deconvolution correction a more equivalent EGFR concentration of 2.0 ± 0.4 nM was measured.

  1. Arrhythmogenic mechanisms in ryanodine receptor channelopathies.

    PubMed

    Zhao, Yan-Ting; Valdivia, Carmen R; Gurrola, Georgina B; Hernández, Jonathan J; Valdivia, Héctor H

    2015-01-01

    Ryanodine receptors (RyRs) are the calcium release channels of sarcoplasmic reticulum (SR) that provide the majority of calcium ions (Ca(2+)) necessary to induce contraction of cardiac and skeletal muscle cells. In their intracellular environment, RyR channels are regulated by a variety of cytosolic and luminal factors so that their output signal (Ca(2+)) induces finely-graded cell contraction without igniting cellular processes that may lead to aberrant electrical activity (ventricular arrhythmias) or cellular remodeling. The importance of RyR dysfunction has been recently highlighted with the demonstration that point mutations in RYR2, the gene encoding for the cardiac isoform of the RyR (RyR2), are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT), an arrhythmogenic syndrome characterized by the development of adrenergically-mediated ventricular tachycardia in individuals with an apparently normal heart. Here we summarize the state of the field in regards to the main arrhythmogenic mechanisms triggered by RyR2 channels harboring mutations linked to CPVT. Most CPVT mutations characterized to date endow RyR2 channels with a gain of function, resulting in hyperactive channels that release Ca(2+) spontaneously, especially during diastole. The spontaneous Ca(2+) release is extruded by the electrogenic Na(+)/Ca(2+) exchanger, which depolarizes the external membrane (delayed afterdepolarization or DAD) and may trigger untimely action potentials. However, a rare set of CPVT mutations yield RyR2 channels that are intrinsically hypo-active and hypo-responsive to stimuli, and it is unclear whether these channels release Ca(2+) spontaneously during diastole. We discuss novel cellular mechanisms that appear more suitable to explain ventricular arrhythmias due to RyR2 loss-of-function mutations. PMID:25480325

  2. Terminalia Chebula provides protection against dual modes of necroptotic and apoptotic cell death upon death receptor ligation

    PubMed Central

    Lee, Yoonjung; Byun, Hee Sun; Seok, Jeong Ho; Park, Kyeong Ah; Won, Minho; Seo, Wonhyoung; Lee, So-Ra; Kang, Kidong; Sohn, Kyung-Cheol; Lee, Ill Young; Kim, Hyeong-Geug; Son, Chang Gue; Shen, Han-Ming; Hur, Gang Min

    2016-01-01

    Death receptor (DR) ligation elicits two different modes of cell death (necroptosis and apoptosis) depending on the cellular context. By screening a plant extract library from cells undergoing necroptosis or apoptosis, we identified a water extract of Terminalia chebula (WETC) as a novel and potent dual inhibitor of DR-mediated cell death. Investigation of the underlying mechanisms of its anti-necroptotic and anti-apoptotic action revealed that WETC or its constituents (e.g., gallic acid) protected against tumor necrosis factor-induced necroptosis via the suppression of TNF-induced ROS without affecting the upstream signaling events. Surprisingly, WETC also provided protection against DR-mediated apoptosis by inhibition of the caspase cascade. Furthermore, it activated the autophagy pathway via suppression of mTOR. Of the WETC constituents, punicalagin and geraniin appeared to possess the most potent anti-apoptotic and autophagy activation effect. Importantly, blockage of autophagy with pharmacological inhibitors or genetic silencing of Atg5 selectively abolished the anti-apoptotic function of WETC. These results suggest that WETC protects against dual modes of cell death upon DR ligation. Therefore, WETC might serve as a potential treatment for diseases characterized by aberrantly sensitized apoptotic or non-apoptotic signaling cascades. PMID:27117478

  3. Terminalia Chebula provides protection against dual modes of necroptotic and apoptotic cell death upon death receptor ligation.

    PubMed

    Lee, Yoonjung; Byun, Hee Sun; Seok, Jeong Ho; Park, Kyeong Ah; Won, Minho; Seo, Wonhyoung; Lee, So-Ra; Kang, Kidong; Sohn, Kyung-Cheol; Lee, Ill Young; Kim, Hyeong-Geug; Son, Chang Gue; Shen, Han-Ming; Hur, Gang Min

    2016-01-01

    Death receptor (DR) ligation elicits two different modes of cell death (necroptosis and apoptosis) depending on the cellular context. By screening a plant extract library from cells undergoing necroptosis or apoptosis, we identified a water extract of Terminalia chebula (WETC) as a novel and potent dual inhibitor of DR-mediated cell death. Investigation of the underlying mechanisms of its anti-necroptotic and anti-apoptotic action revealed that WETC or its constituents (e.g., gallic acid) protected against tumor necrosis factor-induced necroptosis via the suppression of TNF-induced ROS without affecting the upstream signaling events. Surprisingly, WETC also provided protection against DR-mediated apoptosis by inhibition of the caspase cascade. Furthermore, it activated the autophagy pathway via suppression of mTOR. Of the WETC constituents, punicalagin and geraniin appeared to possess the most potent anti-apoptotic and autophagy activation effect. Importantly, blockage of autophagy with pharmacological inhibitors or genetic silencing of Atg5 selectively abolished the anti-apoptotic function of WETC. These results suggest that WETC protects against dual modes of cell death upon DR ligation. Therefore, WETC might serve as a potential treatment for diseases characterized by aberrantly sensitized apoptotic or non-apoptotic signaling cascades. PMID:27117478

  4. Allosterism at muscarinic receptors: ligands and mechanisms.

    PubMed

    Birdsall, N J M; Lazareno, S

    2005-06-01

    The evaluation of allosteric ligands at muscarinic receptors is discussed in terms of the ability of the experimental data to be interpreted by the allosteric ternary complex model. The compilation of useful SAR information of allosteric ligands is not simple, especially for muscarinic receptors, where there are multiple allosteric sites and complex interactions. PMID:15974931

  5. In Vivo Quantification of Tumor Receptor Binding Potential with Dual-Reporter Molecular Imaging

    PubMed Central

    Tichauer, Kenneth M.; Samkoe, Kimberley S.; Sexton, Kristian J.; Hextrum, Shannon K.; Yang, Harold H.; Klubben, W. Spencer; Gunn, Jason R.; Hasan, Tayyaba; Pogue, Brian W.

    2012-01-01

    Purpose Receptor availability represents a key component of current cancer management. However, no approaches have been adopted to do this clinically, and the current standard of care is invasive tissue biopsy. A dual-reporter methodology capable of quantifying available receptor binding potential of tumors in vivo within a clinically relevant time scale is presented. Procedures To test the methodology, a fluorescence imaging-based adaptation was validated against ex vivo and in vitro measures of epidermal growth factor receptor (EGFR) binding potential in four tumor lines in mice, each line expected to express a different level of EGFR. Results A strong correlation was observed between in vivo and ex vivo measures of binding potential for all tumor lines (r=0.99, p<0.01, slope=1.80±0.48, and intercept=−0.58±0.84) and between in vivo and in vitro for the three lines expressing the least amount of EGFR (r=0.99, p<0.01, slope=0.64±0.32, and intercept=0.47±0.51). Conclusions By providing a fast and robust measure of receptor density in tumors, the presented methodology has powerful implications for improving choices in cancer intervention, evaluation, and monitoring, and can be scaled to the clinic with an imaging modality like SPECT. PMID:22203241

  6. Dual-tracer receptor concentration imaging using tracers with different tissue delivery kinetics

    NASA Astrophysics Data System (ADS)

    Tichauer, Kenneth M.; Diop, Mamadou; Elliott, Jonathan T.; Samkoe, Kimberley S.; Hasan, Tayyaba; St. Lawrence, Keith; Pogue, Brian W.

    2014-03-01

    Simultaneous dynamic fluorescent imaging of a suitable untargeted tracer in conjunction with any molecular targeted fluorescent agent has been shown to be a powerful approach for quantifying cancer-specific cell surface receptors in vivo in the presence of non-specific uptake and tracer delivery variability. The identification of a "suitable" untargeted tracer (i.e., one having equivalent plasma and tissue delivery pharmacokinetics to the targeted tracer) for every targeted tracer, however, may not always be feasible or could require extensive testing. This work presents a "deconvolution" approach capable of correcting for plasma and tissue-delivery pharmacokinetic differences between tracers by quantifying dynamic differences in targeted and untargeted tracer uptake in a receptor-free tissue (one devoid of targeted molecular species) and correcting uptake in all other tissues accordingly. This deconvolution correction approach is evaluated in theoretical models and explored in an in vivo mouse xenograft model of human glioma. In the animal experiments, epidermal growth factor receptor (EGFR: a receptor known to be overexpressed in the investigated glioma cell line) was targeted using a fluorescent tracer with very different plasma pharmacokinetics than a second untargeted fluorescent tracer. Without correcting for these differences, the dual-tracer approach yielded substantially higher estimations of EGFR concentration in all tissues than expected; however, deconvolution correction was able to produce estimates that matched ex vivo validation.

  7. Dual CD44 and folate receptor-targeted nanoparticles for cancer diagnosis and anticancer drug delivery.

    PubMed

    Lee, Jae-Young; Termsarasab, Ubonvan; Park, Ju-Hwan; Lee, Song Yi; Ko, Seung-Hak; Shim, Jae-Seong; Chung, Suk-Jae; Cho, Hyun-Jong; Kim, Dae-Duk

    2016-08-28

    Dual CD44 and folate receptor targetable nanoparticles (NPs) based on hyaluronic acid-ceramide-folic acid (HACE-FA) were fabricated for improving tumor targetability. HACE-FA was synthesized via esterification between the carboxylic group of FA and hydroxyl group of HA. Doxorubicin (DOX)-loaded HACE-FA NPs, with a mean diameter of 120-130nm, narrow size distribution, and negative zeta potential, were prepared. The drug release from HACE-FA NPs were significantly increased in acidic pH (pH5.5) compared with physiological pH (7.4) (p<0.05). The cellular accumulation of the drug in HACE-FA NPs group was higher than that of HACE NPs group in SKOV-3 cells (human ovarian cancer cells; CD44 and folate receptor (FR)-positive cells). Dual targetability of HACE-FA NPs, compared to HACE NPs, was also verified in the SKOV-3 tumor-xenografted mouse model by near-infrared fluorescence (NIRF) imaging. Twenty-four hours after injection, HACE-FA NPs were accumulated mainly in tumor regions and their fluorescence intensity was 4.82-fold higher than that of HACE NPs (p<0.05). These findings suggest successful application of HACE-FA NPs for the accurate delivery of anticancer drugs to ovarian cancer. PMID:27320169

  8. A tale of two receptors: Dual roles for ionotropic acetylcholine receptors in regulating motor neuron excitation and inhibition.

    PubMed

    Philbrook, Alison; Barbagallo, Belinda; Francis, Michael M

    2013-07-01

    Nicotinic or ionotropic acetylcholine receptors (iAChRs) mediate excitatory signaling throughout the nervous system, and the heterogeneity of these receptors contributes to their multifaceted roles. Our recent work has characterized a single iAChR subunit, ACR-12, which contributes to two distinct iAChR subtypes within the C. elegans motor circuit. These two receptor subtypes regulate the coordinated activity of excitatory (cholinergic) and inhibitory (GABAergic) motor neurons. We have shown that the iAChR subunit ACR-12 is differentially expressed in both cholinergic and GABAergic motor neurons within the motor circuit. In cholinergic motor neurons, ACR-12 is incorporated into the previously characterized ACR-2 heteromeric receptor, which shows non-synaptic localization patterns and plays a modulatory role in controlling circuit function.(1) In contrast, a second population of ACR-12-containing receptors in GABAergic motor neurons, ACR-12GABA, shows synaptic expression and regulates inhibitory signaling.(2) Here, we discuss the two ACR-12-containing receptor subtypes, their distinct expression patterns, and functional roles in the C. elegans motor circuit. We anticipate our continuing studies of iAChRs in the C. elegans motor circuit will lead to novel insights into iAChR function in the nervous system as well as mechanisms for their regulation. PMID:24778941

  9. Glycosylated SV2 and Gangliosides as Dual Receptors for Botulinum Neurotoxin Serotype F

    SciTech Connect

    Fu, Zhuji; Chen, Chen; Barbieri, Joseph T.; Kim, Jung-Ja P.; Baldwin, Michael R.

    2010-02-22

    Botulinum neurotoxin causes rapid flaccid paralysis through the inhibition of acetylcholine release at the neuromuscular junction. The seven BoNT serotypes (A-G) have been proposed to bind motor neurons via ganglioside-protein dual receptors. To date, the structure-function properties of BoNT/F host receptor interactions have not been resolved. Here, we report the crystal structures of the receptor binding domains (HCR) of BoNT/A and BoNT/F and the characterization of the dual receptors for BoNT/F. The overall polypeptide fold of HCR/A is essentially identical to the receptor binding domain of the BoNT/A holotoxin, and the structure of HCR/F is very similar to that of HCR/A, except for two regions implicated in neuronal binding. Solid phase array analysis identified two HCR/F binding glycans: ganglioside GD1a and oligosaccharides containing an N-acetyllactosamine core. Using affinity chromatography, HCR/F bound native synaptic vesicle glycoproteins as part of a protein complex. Deglycosylation of glycoproteins using {alpha}(1-3,4)-fucosidase, endo-{beta}-galactosidase, and PNGase F disrupted the interaction with HCR/F, while the binding of HCR/B to its cognate receptor, synaptotagmin I, was unaffected. These data indicate that the HCR/F binds synaptic vesicle glycoproteins through the keratan sulfate moiety of SV2. The interaction of HCR/F with gangliosides was also investigated. HCR/F bound specifically to gangliosides that contain {alpha}2,3-linked sialic acid on the terminal galactose of a neutral saccharide core (binding order GT1b = GD1a GM3; no binding to GD1b and GM1a). Mutations within the putative ganglioside binding pocket of HCR/F decreased binding to gangliosides, synaptic vesicle protein complexes, and primary rat hippocampal neurons. Thus, BoNT/F neuronal discrimination involves the recognition of ganglioside and protein (glycosylated SV2) carbohydrate moieties, providing a structural basis for the high affinity and specificity of BoNT/F for neurons.

  10. Retinal Neuroprotective Effects of Flibanserin, an FDA-Approved Dual Serotonin Receptor Agonist-Antagonist

    PubMed Central

    Ryals, Renee C.; Ku, Cristy A.; Fischer, Cody M.; Patel, Rachel C.; Datta, Shreya; Yang, Paul; Wen, Yuquan; Hen, René; Pennesi, Mark E.

    2016-01-01

    Purpose To assess the neuroprotective effects of flibanserin (formerly BIMT-17), a dual 5-HT1A agonist and 5-HT2A antagonist, in a light-induced retinopathy model. Methods Albino BALB/c mice were injected intraperitoneally with either vehicle or increasing doses of flibanserin ranging from 0.75 to 15 mg/kg flibanserin. To assess 5-HT1A-mediated effects, BALB/c mice were injected with 10 mg/kg WAY 100635, a 5-HT1A antagonist, prior to 6 mg/kg flibanserin and 5-HT1A knockout mice were injected with 6 mg/kg flibanserin. Injections were administered once immediately prior to light exposure or over the course of five days. Light exposure lasted for one hour at an intensity of 10,000 lux. Retinal structure was assessed using spectral domain optical coherence tomography and retinal function was assessed using electroretinography. To investigate the mechanisms of flibanserin-mediated neuroprotection, gene expression, measured by RT-qPCR, was assessed following five days of daily 15 mg/kg flibanserin injections. Results A five-day treatment regimen of 3 to 15 mg/kg of flibanserin significantly preserved outer retinal structure and function in a dose-dependent manner. Additionally, a single-day treatment regimen of 6 to 15 mg/kg of flibanserin still provided significant protection. The action of flibanserin was hindered by the 5-HT1A antagonist, WAY 100635, and was not effective in 5-HT1A knockout mice. Creb, c-Jun, c-Fos, Bcl-2, Cast1, Nqo1, Sod1, and Cat were significantly increased in flibanserin-injected mice versus vehicle-injected mice. Conclusions Intraperitoneal delivery of flibanserin in a light-induced retinopathy mouse model provides retinal neuroprotection. Mechanistic data suggests that this effect is mediated through 5-HT1A receptors and that flibanserin augments the expression of genes capable of reducing mitochondrial dysfunction and oxidative stress. Since flibanserin is already FDA-approved for other indications, the potential to repurpose this drug for

  11. Mechanisms of xenobiotic receptor activation: Direct vs. indirect.

    PubMed

    Mackowiak, Bryan; Wang, Hongbing

    2016-09-01

    The so-called xenobiotic receptors (XRs) have functionally evolved into cellular sensors for both endogenous and exogenous stimuli by regulating the transcription of genes encoding drug-metabolizing enzymes and transporters, as well as those involving energy homeostasis, cell proliferation, and/or immune responses. Unlike prototypical steroid hormone receptors, XRs are activated through both direct ligand-binding and ligand-independent (indirect) mechanisms by a plethora of structurally unrelated chemicals. This review covers research literature that discusses direct vs. indirect activation of XRs. A particular focus is centered on the signaling control of the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), and the aryl hydrocarbon receptor (AhR). We expect that this review will shed light on both the common and distinct mechanisms associated with activation of these three XRs. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:26877237

  12. Dual-color dual-focus line-scanning FCS for quantitative analysis of receptor-ligand interactions in living specimens

    PubMed Central

    Dörlich, René M.; Chen, Qing; Niklas Hedde, Per; Schuster, Vittoria; Hippler, Marc; Wesslowski, Janine; Davidson, Gary; Nienhaus, G. Ulrich

    2015-01-01

    Cellular communication in multi-cellular organisms is mediated to a large extent by a multitude of cell-surface receptors that bind specific ligands. An in-depth understanding of cell signaling networks requires quantitative information on ligand-receptor interactions within living systems. In principle, fluorescence correlation spectroscopy (FCS) based methods can provide such data, but live-cell applications have proven extremely challenging. Here, we have developed an integrated dual-color dual-focus line-scanning fluorescence correlation spectroscopy (2c2f lsFCS) technique that greatly facilitates live-cell and tissue experiments. Absolute ligand and receptor concentrations and their diffusion coefficients within the cell membrane can be quantified without the need to perform additional calibration experiments. We also determine the concentration of ligands diffusing in the medium outside the cell within the same experiment by using a raster image correlation spectroscopy (RICS) based analysis. We have applied this robust technique to study the interactions of two Wnt antagonists, Dickkopf1 and Dickkopf2 (Dkk1/2), to their cognate receptor, low-density-lipoprotein-receptor related protein 6 (LRP6), in the plasma membrane of living HEK293T cells. We obtained significantly lower affinities than previously reported using in vitro studies, underscoring the need to measure such data on living cells or tissues. PMID:25951521

  13. Clinical assessment of drug-drug interactions of tasimelteon, a novel dual melatonin receptor agonist.

    PubMed

    Ogilvie, Brian W; Torres, Rosarelis; Dressman, Marlene A; Kramer, William G; Baroldi, Paolo

    2015-09-01

    Tasimelteon ([1R-trans]-N-[(2-[2,3-dihydro-4-benzofuranyl] cyclopropyl) methyl] propanamide), a novel dual melatonin receptor agonist that demonstrates specificity and high affinity for melatonin receptor types 1 and 2 (MT1 and MT2 receptors), is the first treatment approved by the US Food and Drug Administration for Non-24-Hour Sleep-Wake Disorder. Tasimelteon is rapidly absorbed, with a mean absolute bioavailability of approximately 38%, and is extensively metabolized primarily by oxidation at multiple sites, mainly by cytochrome P450 (CYP) 1A2 and CYP3A4/5, as initially demonstrated by in vitro studies and confirmed by the results of clinical drug-drug interactions presented here. The effects of strong inhibitors and moderate or strong inducers of CYP1A2 and CYP3A4/5 on the pharmacokinetics of tasimelteon were evaluated in humans. Coadministration with fluvoxamine resulted in an approximately 6.5-fold increase in tasimelteon's area under the curve (AUC), whereas cigarette smoking decreased tasimelteon's exposure by approximately 40%. Coadministration with ketoconazole resulted in an approximately 54% increase in tasimelteon's AUC, whereas rifampin pretreatment resulted in a decrease in tasimelteon's exposure of approximately 89%. PMID:25851638

  14. Mechanical Properties of a Superalloy Disk with a Dual Grain Structure

    NASA Technical Reports Server (NTRS)

    Gayda, John; Gabb, Timothy; Kantzos, Peter

    2003-01-01

    Mechanical properties from an advanced, nickel-base superalloy disk, with a dual grain structure consisting of a fine grain bore and coarse grain rim, were evaluated. The dual grain structure was produced using NASA's low cost Dual Microstructure Heat Treatment (DMHT) process. The results showed the DMHT disk to have a high strength, fatigue resistant bore comparable to a subsolvus (fine grain) heat treated disk, and a creep resistant rim comparable to a supersolvus (coarse grain) heat treated disk. Additional work on subsolvus solutioning before or after the DMHT conversion appears to be a viable avenue for further improvement in disk properties.

  15. Interaction of the dual targeting peptide of Thr-tRNA synthetase with the chloroplastic receptor Toc34 in Arabidopsis thaliana

    PubMed Central

    Ye, Weihua; Spånning, Erika; Glaser, Elzbieta; Mäler, Lena

    2015-01-01

    Organellar proteins synthesized in the cytosol are usually selective for only one destination in a cell but some proteins are localized in more than one compartment, for example in both mitochondria and chloroplasts. The mechanism of dual targeting of proteins to mitochondria and chloroplasts is yet poorly understood. Previously, we observed that the dual targeting peptide of threonyl-tRNA synthetase in Arabidopsis thaliana (AtThrRS-dTP) interacts with the mitochondrial receptor AtTom20 mainly through its N-terminal part. Here we report on the interaction of AtThrRS-dTP with the chloroplastic receptor AtToc34, presenting for the first time the mode of interactions of a dual targeting peptide with both Tom20 and Toc34. By NMR spectroscopy we investigated changes in 15N HSQC spectra of AtThrRS-dTP as a function of AtToc34 concentration. Line broadening shows that the interaction with AtToc34 involves residues along the entire sequence, which is not the case for AtTom20. The N-terminal φχχφφ motif, which plays an important role in AtTom20 recognition, shows no specificity for AtToc34. These results are supported by import competition studies into both mitochondria and chloroplasts, in which the effect of peptides corresponding to different segments of AtThrRS-dTP on in vitro import of organelle specific proteins was examined. This demonstrates that the N-terminal A2-Y29 segment of AtThrRS-dTP is essential for import into both organelles, while the C-terminal L30-P60 part is important for chloroplastic import efficiency. In conclusion, we have demonstrated that the recognition of the dual targeting peptide of AtThr-tRNA synthetase is different for the mitochondrial and chloroplastic receptors. PMID:26101739

  16. A dual activation mechanism for Myb-responsive genes in myelomonocytic cells.

    PubMed

    Yamkamon, Vichanan; Ivanova, Olga; Braas, Daniel; Chayka, Olesya; Patmasiriwat, Pimpicha; Klempnauer, Karl-Heinz

    2008-01-01

    The retroviral oncogene v-myb encodes a transcription factor (v-Myb) which is responsible for the transformation of myelomonocytic cells by avian myeloblastosis virus (AMV). v-Myb is thought to exert its biological effects by deregulating the expression of specific target genes. Here we have used DNaseI hypersensitive site mapping and reporter gene assays to study the activation of three Myb target genes--mim-1, the lysozyme gene and the C/EBPbeta gene--all of which are activated by Myb in myelomonocytic cells but not in other hematopoietic lineages. We have found that these genes are activated by Myb via more than one cis-regulatory region. Our data suggest that all three genes are activated by Myb by dual mechanisms involving the promoters as well as enhancers. Using a cell line that expresses an estrogen-inducible v-Myb/estrogen receptor fusion protein we have also determined the effect of Myb on the expression of the C/EBPalpha gene. Our results show that C/EBPalpha expression is down-regulated by v-Myb. Thus, v-Myb affects the expression of two C/EBP family members in opposite directions. PMID:17950008

  17. Discovery of 1H-pyrazolo[3,4-b]pyridines as potent dual orexin receptor antagonists (DORAs).

    PubMed

    Behnke, Dirk; Cotesta, Simona; Hintermann, Samuel; Fendt, Markus; Gee, Christine E; Jacobson, Laura H; Laue, Grit; Meyer, Arndt; Wagner, Trixie; Badiger, Sangamesh; Chaudhari, Vinod; Chebrolu, Murali; Pandit, Chetan; Hoyer, Daniel; Betschart, Claudia

    2015-12-01

    Compound rac-1 was identified by high throughput screening. Here we report SAR studies and MedChem optimization towards the highly potent dual orexin receptor antagonists (S)-2 and (S)-3. Furthermore, strategies to overcome the suboptimal physicochemical properties are highlighted and the pharmacokinetic profiles of representative compounds is presented. PMID:26522950

  18. Molecular mechanisms of platelet P2Y(12) receptor regulation.

    PubMed

    Cunningham, Margaret R; Nisar, Shaista P; Mundell, Stuart J

    2013-02-01

    Platelets are critical for haemostasis, however inappropriate activation can lead to the development of arterial thrombosis, which can result in heart attack and stroke. ADP is a key platelet agonist that exerts its actions via stimulation of two surface GPCRs (G-protein-coupled receptors), P2Y(1) and P2Y(12). Similar to most GPCRs, P2Y receptor activity is tightly regulated by a number of complex mechanisms including receptor desensitization, internalization and recycling. In the present article, we review the molecular mechanisms that underlie P2Y(1) and P2Y(12) receptor regulation, with particular emphasis on the structural motifs within the P2Y(12) receptor, which are required to maintain regulatory protein interaction. The implications of these findings for platelet responsiveness are also discussed. PMID:23356287

  19. Dual Topology of the Melanocortin-2 Receptor Accessory Protein Is Stable

    PubMed Central

    Maben, Zachary J.; Malik, Sundeep; Jiang, Liyi H.; Hinkle, Patricia M.

    2016-01-01

    Melanocortin 2 receptor accessory protein (MRAP) facilitates trafficking of melanocortin 2 (MC2) receptors and is essential for ACTH binding and signaling. MRAP is a single transmembrane domain protein that forms antiparallel homodimers. These studies ask when MRAP first acquires this dual topology, whether MRAP architecture is static or stable, and whether the accessory protein undergoes rapid turnover. To answer these questions, we developed an approach that capitalizes on the specificity of bacterial biotin ligase, which adds biotin to lysine in a short acceptor peptide sequence; the distinct mobility of MRAP protomers of opposite orientations based on their N-linked glycosylation; and the ease of identifying biotin-labeled proteins. We inserted biotin ligase acceptor peptides at the N- or C-terminal ends of MRAP and expressed the modified proteins in mammalian cells together with either cytoplasmic or endoplasmic reticulum-targeted biotin ligase. MRAP assumed dual topology early in biosynthesis in both CHO and OS3 adrenal cells. Once established, MRAP orientation was stable. Despite its conformational stability, MRAP displayed a half-life of under 2 h in CHO cells. The amount of MRAP was increased by the proteasome inhibitor MG132 and MRAP underwent ubiquitylation on lysine and other amino acids. Nonetheless, when protein synthesis was blocked with cycloheximide, MRAP was rapidly degraded even when MG132 was included and all lysines were replaced by arginines, implicating non-proteasomal degradation pathways. The results show that although MRAP does not change orientations during trafficking, its synthesis and degradation are dynamically regulated. PMID:27486435

  20. Melatonin receptors and their regulation: biochemical and structural mechanisms.

    PubMed

    Witt-Enderby, Paula A; Bennett, Jennifer; Jarzynka, Michael J; Firestine, Steven; Melan, Melissa A

    2003-04-01

    There is growing evidence demonstrating the complexity of melatonin's role in modulating a diverse number of physiological processes. This complexity could be attributed to the fact that melatonin receptors belong to two distinct classes of proteins, that is, the G-protein coupled receptor superfamily (MT(1), MT(2)) and the quinone reductase enzyme family (MT(3)) which makes them unique at the molecular level. Also, within the G-protein coupled receptor family of proteins, the MT(1) and MT(2) receptors can couple to multiple and distinct signal transduction cascades whose activation can lead to unique cellular responses. Also, throughout the 24-hour cycle, the receptors' sensitivity to specific cues fluctuates and this sensitivity can be modulated in a homologous fashion, that is, by melatonin itself, and in a heterologous manner, that is, by other cues including the photoperiod or estrogen. This sensitivity of response may reflect changes in melatonin receptor density that also occurs throughout the 24-hour light/dark cycle but out of phase with circulating melatonin levels. The mechanisms that underlie the changes in melatonin receptor density and function are still not well-understood, but data is beginning to show that transcriptional events and G-protein uncoupling may be involved. Even though this area of research is still in its infancy, great strides are being made everyday in elucidating the mechanisms that underlie melatonin receptor function and regulation. The focus of this review is to highlight some of these discoveries in an attempt to reveal the uniqueness of the melatonin receptor family while at the same time provide thought-provoking ideas to further advance this area of research. Thus, a brief overview of each of the mammalian melatonin receptor subtypes and the signal transduction cascades to which they couple will be discussed with a greater emphasis placed on the mechanisms underlying their regulation and the domains within the receptors

  1. Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode.

    PubMed

    Lozano-Torres, Jose L; Wilbers, Ruud H P; Gawronski, Piotr; Boshoven, Jordi C; Finkers-Tomczak, Anna; Cordewener, Jan H G; America, Antoine H P; Overmars, Hein A; Van 't Klooster, John W; Baranowski, Lukasz; Sobczak, Miroslaw; Ilyas, Muhammad; van der Hoorn, Renier A L; Schots, Arjen; de Wit, Pierre J G M; Bakker, Jaap; Goverse, Aska; Smant, Geert

    2012-06-19

    Plants lack the seemingly unlimited receptor diversity of a somatic adaptive immune system as found in vertebrates and rely on only a relatively small set of innate immune receptors to resist a myriad of pathogens. Here, we show that disease-resistant tomato plants use an efficient mechanism to leverage the limited nonself recognition capacity of their innate immune system. We found that the extracellular plant immune receptor protein Cf-2 of the red currant tomato (Solanum pimpinellifolium) has acquired dual resistance specificity by sensing perturbations in a common virulence target of two independently evolved effectors of a fungus and a nematode. The Cf-2 protein, originally identified as a monospecific immune receptor for the leaf mold fungus Cladosporium fulvum, also mediates disease resistance to the root parasitic nematode Globodera rostochiensis pathotype Ro1-Mierenbos. The Cf-2-mediated dual resistance is triggered by effector-induced perturbations of the apoplastic Rcr3(pim) protein of S. pimpinellifolium. Binding of the venom allergen-like effector protein Gr-VAP1 of G. rostochiensis to Rcr3(pim) perturbs the active site of this papain-like cysteine protease. In the absence of the Cf-2 receptor, Rcr3(pim) increases the susceptibility of tomato plants to G. rostochiensis, thus showing its role as a virulence target of these nematodes. Furthermore, both nematode infection and transient expression of Gr-VAP1 in tomato plants harboring Cf-2 and Rcr3(pim) trigger a defense-related programmed cell death in plant cells. Our data demonstrate that monitoring host proteins targeted by multiple pathogens broadens the spectrum of disease resistances mediated by single plant immune receptors. PMID:22675118

  2. A Dual Role for P2X7 Receptor during Porphyromonas gingivalis Infection.

    PubMed

    Ramos-Junior, E S; Morandini, A C; Almeida-da-Silva, C L C; Franco, E J; Potempa, J; Nguyen, K A; Oliveira, A C; Zamboni, D S; Ojcius, D M; Scharfstein, J; Coutinho-Silva, R

    2015-09-01

    Emerging evidence suggests a role for purinergic signaling in the activation of multiprotein intracellular complexes called inflammasomes, which control the release of potent inflammatory cytokines, such as interleukin (IL) -1β and -18. Porphyromonas gingivalis is intimately associated with periodontitis and is currently considered one of the pathogens that can subvert the immune system by limiting the activation of the NLRP3 inflammasome. We recently showed that P. gingivalis can dampen eATP-induced IL-1β secretion by means of its fimbriae in a purinergic P2X7 receptor-dependent manner. Here, we further explore the role of this purinergic receptor during eATP-induced IL-1β processing and secretion by P. gingivalis-infected macrophages. We found that NLRP3 was necessary for eATP-induced IL-1β secretion as well as for caspase 1 activation irrespective of P. gingivalis fimbriae. Additionally, although the secretion of IL-1β from P. gingivalis-infected macrophages was dependent on NLRP3, its adaptor protein ASC, or caspase 1, the cleavage of intracellular pro-IL-1β to the mature form was found to occur independently of NLRP3, its adaptor protein ASC, or caspase 1. Our in vitro findings revealed that P2X7 receptor has a dual role, being critical not only for eATP-induced IL-1β secretion but also for intracellular pro-IL-1β processing. These results were relevant in vivo since P2X7 receptor expression was upregulated in a P. gingivalis oral infection model, and reduced IFN-γ and IL-17 were detected in draining lymph node cells from P2rx7(-/-) mice. Furthermore, we demonstrated that P2X7 receptor and NLRP3 transcription were modulated in human chronic periodontitis. Overall, we conclude that the P2X7 receptor has a role in periodontal immunopathogenesis and suggest that targeting of the P2X7/NLRP3 pathway should be considered in future therapeutic interventions in periodontitis. PMID:26152185

  3. Structural mechanism for signal transduction in RXR nuclear receptor heterodimers

    PubMed Central

    Kojetin, Douglas J.; Matta-Camacho, Edna; Hughes, Travis S.; Srinivasan, Sathish; Nwachukwu, Jerome C.; Cavett, Valerie; Nowak, Jason; Chalmers, Michael J.; Marciano, David P.; Kamenecka, Theodore M.; Shulman, Andrew I.; Rance, Mark; Griffin, Patrick R.; Bruning, John B.; Nettles, Kendall W.

    2015-01-01

    A subset of nuclear receptors (NRs) function as obligate heterodimers with retinoid X receptor (RXR), allowing integration of ligand-dependent signals across the dimer interface via an unknown structural mechanism. Using nuclear magnetic resonance (NMR) spectroscopy, x-ray crystallography and hydrogen/deuterium exchange (HDX) mass spectrometry, here we show an allosteric mechanism through which RXR co-operates with a permissive dimer partner, peroxisome proliferator-activated receptor (PPAR)-γ, while rendered generally unresponsive by a non-permissive dimer partner, thyroid hormone (TR) receptor. Amino acid residues that mediate this allosteric mechanism comprise an evolutionarily conserved network discovered by statistical coupling analysis (SCA). This SCA network acts as a signalling rheostat to integrate signals between dimer partners, ligands and coregulator-binding sites, thereby affecting signal transmission in RXR heterodimers. These findings define rules guiding how NRs integrate two ligand-dependent signalling pathways into RXR heterodimer-specific responses. PMID:26289479

  4. Design, Syntheses, and Biological Evaluation of 14-Heteroaromatic Substituted Naltrexone Derivatives: Pharmacological Profile Switch from Mu Opioid Receptor Selectivity to Mu/Kappa Opioid Receptor Dual Selectivity

    PubMed Central

    Yuan, Yunyun; Zaidi, Saheem A.; Elbegdorj, Orgil; Aschenbach, Lindsey C. K.; Li, Guo; Stevens, David L.; Scoggins, Krista L.; Dewey, William L.; Selley, Dana E.; Zhang, Yan

    2015-01-01

    Based on a mu opioid receptor (MOR) homology model and the “isosterism” concept, three generations of 14-heteroaromatically substituted naltrexone derivatives were designed, synthesized, and evaluated as potential MOR selective ligands. The first generation ligands appeared to be MOR selective, whereas the second and the third generation ones showed MOR/kappa opioid receptor (KOR) dual selectivity. Docking of ligands 2 (MOR selective) and 10 (MOR/KOR dual selective) to the three opioid receptor crystal structures revealed a non-conserved residue facilitated “hydrogen bonding network” that could be responsible for their distinctive selectivity profiles. The MOR/KOR dual selective ligand 10 showed no agonism and acted as a potent antagonist in the tail flick assay. It also produced less severe opioid withdrawal symptoms than naloxone in morphine dependent mice. In conclusion, ligand 10 may serve as a novel lead compound to develop MOR/KOR dual selective ligands, which might possess unique therapeutic value for opioid addiction treatment. PMID:24144240

  5. Diabetes and obesity treatment based on dual incretin receptor activation: 'twincretins'.

    PubMed

    Skow, M A; Bergmann, N C; Knop, F K

    2016-09-01

    The gut incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are secreted after meal ingestion and work in concert to promote postprandial insulin secretion and regulate glucagon secretion. GLP-1 also slows gastric emptying and suppresses appetite, whereas GIP seems to affect lipid metabolism. The introduction of selective GLP-1 receptor (GLP-1R) agonists for the treatment of type 2 diabetes and obesity has increased the scientific and clinical interest in incretins. Combining the body weight-lowering and glucose-lowering effects of GLP-1 with a more potent improvement of β cell function through additional GIP action could potentially offer a more effective treatment of diabetes and obesity, with fewer adverse effects than selective GLP-1R agonists; therefore, new drugs designed to co-activate both the GIP receptor (GIPR) and the GLP-1R simultaneously are under development. In the present review, we address advances in the field of GIPR and GLP-1R co-agonism and review in vitro studies, animal studies and human trials involving co-administration of the two incretins, as well as results from a recently developed GIPR/GLP-1R co-agonist, and highlight promising areas and challenges within the field of incretin dual agonists. PMID:27160961

  6. A dual physiological character for sexual function: the role of serotonergic receptors.

    PubMed

    Motofei, Ion G

    2008-03-01

    Anatomically, sexual reflexes are mixed (somatic-autonomic) circuits, represented by emission (sympathetic centre and somatic afferents), expulsion (parasympathetic centre and somatic efferents) and erection (parasympathetic centre and somatic afferents). Physiologically, ejaculation has a dual autonomic mediation, consisting of two distinct and opposite autonomic centres (emission and expulsion), both with a positive contribution to the respective function. Experimentally, serotonin (5HT) has two distinct, opposite and positive effects on sexual function, with 5HT-(1A) agonists decreasing intravaginal ejaculatory latency and erection, and 5HT-(2C) agonists increasing both erection and ejaculatory latency. In this review I assume that 5HT modulates sexual reflexes, establishing a functional connection between the involved somatic and autonomic structures. The 5HT-(1A) receptors are assumed to make the connection between somatic pathways and sympathetic centres while the 5HT-(2C) receptors could establish the connection between somatic pathways and parasympathetic centres. Further studies will develop the cerebral sexual duality, explaining the implication of psychological factors in sexual function and the role of sexuality in psychosocial behaviour. PMID:17922864

  7. Pharmacokinetics of the Dual Melatonin Receptor Agonist Tasimelteon in Subjects With Hepatic or Renal Impairment

    PubMed Central

    Torres, Rosarelis; Kramer, William G; Baroldi, Paolo

    2015-01-01

    Tasimelteon is a circadian regulator that resets the master clock in the suprachiasmatic nuclei of the hypothalamus by binding to both melatonin MT1 and MT2 receptors making it a dual melatonin receptor agonist. Tasimelteon has been approved by the United States Food and Drug Administration for the treatment of Non-24-Hour Sleep-Wake Disorder (Non-24). Two prospective, single-center, open-label studies evaluated the pharmacokinetics of tasimelteon and its main metabolites after a single 20 mg dose administered to subjects with mild or moderate hepatic impairment or severe renal impairment, including subjects on dialysis compared to healthy controls. In subjects with mild or moderate hepatic impairment, exposure to tasimelteon after a single 20 mg dose, as measured by area under the plasma concentration-time curve to infinity, was increased by approximately 2-fold. There was no apparent relationship between tasimelteon clearance and renal function. No safety concerns were apparent in either study. Based on these results, the changes in the pharmacokinetics of tasimelteon due to mild or moderate hepatic or severe renal impairment are not considered clinically relevant, and no dose adjustment is necessary in these patients. PMID:25450415

  8. Enhanced mechanical energy extraction from transverse galloping using a dual mass system

    NASA Astrophysics Data System (ADS)

    Vicente-Ludlam, D.; Barrero-Gil, A.; Velazquez, A.

    2015-03-01

    This paper offers a theoretical study of energy extraction through transverse galloping using a dual-mass system. To this end, a two-degree-of-freedom model is developed where fluid forces on the galloping body are described resorting to quasi-steady hypothesis; the model is solved approximately by using the Harmonic Balance Method. Three possible configurations of the dual-mass system have been analyzed. Two of them show an improvement in the efficiency of energy extraction with respect to that of the single mass configuration when the mechanical properties of the dual-mass system are appropriately chosen. In addition, the dual-mass system promotes a broadening of the values of the incident flow velocities at which the efficiency is kept high.

  9. Effects of Strain Rates on Mechanical Properties and Fracture Mechanism of DP780 Dual Phase Steel

    NASA Astrophysics Data System (ADS)

    Li, Shengci; Kang, Yonglin; Zhu, Guoming; Kuang, Shuang

    2015-06-01

    The mechanical properties of DP780 dual phase steel were measured by quasi-static and high-speed tensile tests at strain rates between 0.001 and 1000 s-1 at room temperature. The deformation and fracture mechanisms were analyzed by observation of the tensile fracture and microstructure near the fracture. Dynamic factor and feret ratio quantitative methods were applied to study the effect of strain rate on the microstructure and properties of DP780 steel. The constitutive relation was described by a modified Johnson-Cook and Zerilli-Armstrong model. The results showed that the strain rate sensitivity of yield strength is bigger than that of ultimate tensile strength; as strain rate increased, the formation of microcracks and voids at the ferrite/martensite interface can be alleviated; the strain rate effect is unevenly distributed in the plastic deformation region. Moreover, both models can effectively describe the experimental results, while the modified Zerilli-Armstrong model is more accurate because the strain-hardening rate of this model is independent of strain rate.

  10. [Steroid receptors and mechanism of action of sex steroids].

    PubMed

    Guiochon-Mantel, A; Milgrom, E

    1999-01-01

    Steroid hormone receptors define a large family of proteins. Recently, a new estradiol receptor has been identified. This discovery suggests the existence of a previously unrecognized pathway of estrogen signalling. Moreover, it implies important pharmacological consequences. Receptors activation induces the modulation of transcription of specific genes. Proteins involved in this effect have been identified: coactivators, corepressors and cointegrators. Their mechanism of action have been characterized. They modify histone acetylation of the corresponding promotor. Sex steroid receptors are located in the nucleus. This nuclear localization is in fact a dynamic situation, resulting from a continuous shuttling of the receptor between the cytoplasm and the nucleus. Non genomic effects of steroids have also been described. PMID:10542957

  11. Dynamic Regulation of the GABAA Receptor Function by Redox Mechanisms.

    PubMed

    Calvo, Daniel J; González, Andrea N Beltrán

    2016-09-01

    Oxidizing and reducing agents, which are currently involved in cell metabolism and signaling pathways, can regulate fast inhibitory neurotransmission mediated by GABA receptors in the nervous system. A number of in vitro studies have shown that diverse redox compounds, including redox metabolites and reactive oxygen and nitrogen species, modulate phasic and tonic responses mediated by neuronal GABAA receptors through both presynaptic and postsynaptic mechanisms. We review experimental data showing that many redox agents, which are normally present in neurons and glia or are endogenously generated in these cells under physiologic states or during oxidative stress (e.g., hydrogen peroxide, superoxide and hydroxyl radicals, nitric oxide, ascorbic acid, and glutathione), induce potentiating or inhibiting actions on different native and recombinant GABAA receptor subtypes. Based on these results, it is thought that redox signaling might represent a homeostatic mechanism that regulates the function of synaptic and extrasynaptic GABAA receptors in physiologic and pathologic conditions. PMID:27439531

  12. Discovery of Dual ETA/ETB Receptor Antagonists from Traditional Chinese Herbs through in Silico and in Vitro Screening

    PubMed Central

    Wang, Xing; Zhang, Yuxin; Liu, Qing; Ai, Zhixin; Zhang, Yanling; Xiang, Yuhong; Qiao, Yanjiang

    2016-01-01

    Endothelin-1 receptors (ETAR and ETBR) act as a pivotal regulator in the biological effects of ET-1 and represent a potential drug target for the treatment of multiple cardiovascular diseases. The purpose of the study is to discover dual ETA/ETB receptor antagonists from traditional Chinese herbs. Ligand- and structure-based virtual screening was performed to screen an in-house database of traditional Chinese herbs, followed by a series of in vitro bioassay evaluation. Aristolochic acid A (AAA) was first confirmed to be a dual ETA/ETB receptor antagonist based intracellular calcium influx assay and impedance-based assay. Dose-response curves showed that AAA can block both ETAR and ETBR with IC50 of 7.91 and 7.40 μM, respectively. Target specificity and cytotoxicity bioassay proved that AAA is a selective dual ETA/ETB receptor antagonist and has no significant cytotoxicity on HEK293/ETAR and HEK293/ETBR cells within 24 h. It is a feasible and effective approach to discover bioactive compounds from traditional Chinese herbs using in silico screening combined with in vitro bioassay evaluation. The structural characteristic of AAA for its activity was especially interpreted, which could provide valuable reference for the further structural modification of AAA. PMID:26999111

  13. Discovery of Dual ETA/ETB Receptor Antagonists from Traditional Chinese Herbs through in Silico and in Vitro Screening.

    PubMed

    Wang, Xing; Zhang, Yuxin; Liu, Qing; Ai, Zhixin; Zhang, Yanling; Xiang, Yuhong; Qiao, Yanjiang

    2016-01-01

    Endothelin-1 receptors (ETAR and ETBR) act as a pivotal regulator in the biological effects of ET-1 and represent a potential drug target for the treatment of multiple cardiovascular diseases. The purpose of the study is to discover dual ETA/ETB receptor antagonists from traditional Chinese herbs. Ligand- and structure-based virtual screening was performed to screen an in-house database of traditional Chinese herbs, followed by a series of in vitro bioassay evaluation. Aristolochic acid A (AAA) was first confirmed to be a dual ETA/ETB receptor antagonist based intracellular calcium influx assay and impedance-based assay. Dose-response curves showed that AAA can block both ETAR and ETBR with IC50 of 7.91 and 7.40 μM, respectively. Target specificity and cytotoxicity bioassay proved that AAA is a selective dual ETA/ETB receptor antagonist and has no significant cytotoxicity on HEK293/ETAR and HEK293/ETBR cells within 24 h. It is a feasible and effective approach to discover bioactive compounds from traditional Chinese herbs using in silico screening combined with in vitro bioassay evaluation. The structural characteristic of AAA for its activity was especially interpreted, which could provide valuable reference for the further structural modification of AAA. PMID:26999111

  14. Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages

    PubMed Central

    Peterson, Teresa E.; Kirkpatrick, Nathaniel D.; Huang, Yuhui; Farrar, Christian T.; Marijt, Koen A.; Kloepper, Jonas; Datta, Meenal; Amoozgar, Zohreh; Seano, Giorgio; Jung, Keehoon; Kamoun, Walid S.; Vardam, Trupti; Snuderl, Matija; Goveia, Jermaine; Chatterjee, Sampurna; Batista, Ana; Muzikansky, Alona; Leow, Ching Ching; Xu, Lei; Batchelor, Tracy T.; Duda, Dan G.; Fukumura, Dai; Jain, Rakesh K.

    2016-01-01

    Glioblastomas (GBMs) rapidly become refractory to anti-VEGF therapies. We previously demonstrated that ectopic overexpression of angiopoietin-2 (Ang-2) compromises the benefits of anti-VEGF receptor (VEGFR) treatment in murine GBM models and that circulating Ang-2 levels in GBM patients rebound after an initial decrease following cediranib (a pan-VEGFR tyrosine kinase inhibitor) administration. Here we tested whether dual inhibition of VEGFR/Ang-2 could improve survival in two orthotopic models of GBM, Gl261 and U87. Dual therapy using cediranib and MEDI3617 (an anti–Ang-2–neutralizing antibody) improved survival over each therapy alone by delaying Gl261 growth and increasing U87 necrosis, effectively reducing viable tumor burden. Consistent with their vascular-modulating function, the dual therapies enhanced morphological normalization of vessels. Dual therapy also led to changes in tumor-associated macrophages (TAMs). Inhibition of TAM recruitment using an anti–colony-stimulating factor-1 antibody compromised the survival benefit of dual therapy. Thus, dual inhibition of VEGFR/Ang-2 prolongs survival in preclinical GBM models by reducing tumor burden, improving normalization, and altering TAMs. This approach may represent a potential therapeutic strategy to overcome the limitations of anti-VEGFR monotherapy in GBM patients by integrating the complementary effects of anti-Ang2 treatment on vessels and immune cells. PMID:27044097

  15. Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages.

    PubMed

    Peterson, Teresa E; Kirkpatrick, Nathaniel D; Huang, Yuhui; Farrar, Christian T; Marijt, Koen A; Kloepper, Jonas; Datta, Meenal; Amoozgar, Zohreh; Seano, Giorgio; Jung, Keehoon; Kamoun, Walid S; Vardam, Trupti; Snuderl, Matija; Goveia, Jermaine; Chatterjee, Sampurna; Batista, Ana; Muzikansky, Alona; Leow, Ching Ching; Xu, Lei; Batchelor, Tracy T; Duda, Dan G; Fukumura, Dai; Jain, Rakesh K

    2016-04-19

    Glioblastomas (GBMs) rapidly become refractory to anti-VEGF therapies. We previously demonstrated that ectopic overexpression of angiopoietin-2 (Ang-2) compromises the benefits of anti-VEGF receptor (VEGFR) treatment in murine GBM models and that circulating Ang-2 levels in GBM patients rebound after an initial decrease following cediranib (a pan-VEGFR tyrosine kinase inhibitor) administration. Here we tested whether dual inhibition of VEGFR/Ang-2 could improve survival in two orthotopic models of GBM, Gl261 and U87. Dual therapy using cediranib and MEDI3617 (an anti-Ang-2-neutralizing antibody) improved survival over each therapy alone by delaying Gl261 growth and increasing U87 necrosis, effectively reducing viable tumor burden. Consistent with their vascular-modulating function, the dual therapies enhanced morphological normalization of vessels. Dual therapy also led to changes in tumor-associated macrophages (TAMs). Inhibition of TAM recruitment using an anti-colony-stimulating factor-1 antibody compromised the survival benefit of dual therapy. Thus, dual inhibition of VEGFR/Ang-2 prolongs survival in preclinical GBM models by reducing tumor burden, improving normalization, and altering TAMs. This approach may represent a potential therapeutic strategy to overcome the limitations of anti-VEGFR monotherapy in GBM patients by integrating the complementary effects of anti-Ang2 treatment on vessels and immune cells. PMID:27044097

  16. Receptor tyrosine kinases: mechanisms of activation and signaling

    PubMed Central

    Hubbard, Stevan R.; Miller, W. Todd

    2008-01-01

    Receptor tyrosine kinases (RTKs) are essential components of signal transduction pathways that mediate cell-to-cell communication. These single-pass transmembrane receptors, which bind polypeptide ligands — mainly growth factors — play key roles in processes such as cellular growth, differentiation, metabolism and motility. Recent progress has been achieved towards an understanding of the precise (and varied) mechanisms by which RTKs are activated by ligand binding and by which signals are propagated from the activated receptors to downstream targets in the cell. PMID:17306972

  17. Modeling biofilms with dual extracellular electron transfer mechanisms

    PubMed Central

    Renslow, Ryan; Babauta, Jerome; Kuprat, Andrew; Schenk, Jim; Ivory, Cornelius; Fredrickson, Jim; Beyenal, Haluk

    2013-01-01

    Electrochemically active biofilms have a unique form of respiration in which they utilize solid external materials as terminal electron acceptors for their metabolism. Currently, two primary mechanisms have been identified for long-range extracellular electron transfer (EET): a diffusion- and a conduction-based mechanism. Evidence in the literature suggests that some biofilms, particularly Shewanella oneidensis, produce the requisite components for both mechanisms. In this study, a generic model is presented that incorporates the diffusion- and the conduction-based mechanisms and allows electrochemically active biofilms to utilize both simultaneously. The model was applied to S. oneidensis and Geobacter sulfurreducens biofilms using experimentally generated data found in the literature. Our simulation results show that 1) biofilms having both mechanisms available, especially if they can interact, may have a metabolic advantage over biofilms that can use only a single mechanism; 2) the thickness of G. sulfurreducens biofilms is likely not limited by conductivity; 3) accurate intrabiofilm diffusion coefficient values are critical for current generation predictions; and 4) the local biofilm potential and redox potential are two distinct parameters and cannot be assumed to have identical values. Finally, we determined that simulated cyclic and squarewave voltammetry based on our model are currently not capable of determining the specific percentages of extracellular electron transfer mechanisms in a biofilm. The developed model will be a critical tool for designing experiments to explain EET mechanisms. PMID:24113651

  18. Modeling biofilms with dual extracellular electron transfer mechanisms.

    PubMed

    Renslow, Ryan; Babauta, Jerome; Kuprat, Andrew; Schenk, Jim; Ivory, Cornelius; Fredrickson, Jim; Beyenal, Haluk

    2013-11-28

    Electrochemically active biofilms have a unique form of respiration in which they utilize solid external materials as terminal electron acceptors for their metabolism. Currently, two primary mechanisms have been identified for long-range extracellular electron transfer (EET): a diffusion- and a conduction-based mechanism. Evidence in the literature suggests that some biofilms, particularly Shewanella oneidensis, produce the requisite components for both mechanisms. In this study, a generic model is presented that incorporates the diffusion- and the conduction-based mechanisms and allows electrochemically active biofilms to utilize both simultaneously. The model was applied to S. oneidensis and Geobacter sulfurreducens biofilms using experimentally generated data found in the literature. Our simulation results show that (1) biofilms having both mechanisms available, especially if they can interact, may have a metabolic advantage over biofilms that can use only a single mechanism; (2) the thickness of G. sulfurreducens biofilms is likely not limited by conductivity; (3) accurate intrabiofilm diffusion coefficient values are critical for current generation predictions; and (4) the local biofilm potential and redox potential are two distinct parameters and cannot be assumed to have identical values. Finally, we determined that simulated cyclic and squarewave voltammetry based on our model are currently not capable of determining the specific percentages of extracellular electron transfer mechanisms in a biofilm. The developed model will be a critical tool for designing experiments to explain EET mechanisms. PMID:24113651

  19. Modeling biofilms with dual extracellular electron transfer mechanisms

    SciTech Connect

    Renslow, Ryan S.; Babauta, Jerome T.; Kuprat, Andrew P.; Schenk, Jim; Ivory, Cornelius; Fredrickson, Jim K.; Beyenal, Haluk

    2013-11-28

    Electrochemically active biofilms have a unique form of respiration in which they utilize solid external materials as their terminal electron acceptor for metabolism. Currently, two primary mechanisms have been identified for long-range extracellular electron transfer (EET): a diffusion- and a conduction-based mechanism. Evidence in the literature suggests that some biofilms, particularly Shewanella oneidensis, produce components requisite for both mechanisms. In this study, a generic model is presented that incorporates both diffusion- and conduction-based mechanisms and allows electrochemically active biofilms to utilize both simultaneously. The model was applied to Shewanella oneidensis and Geobacter sulfurreducens biofilms using experimentally generated data found the literature. Our simulation results showed that 1) biofilms having both mechanisms available, especially if they can interact, may have metabolic advantage over biofilms that can use only a single mechanism; 2) the thickness of Geobacter sulfurreducens biofilms is likely not limited by conductivity; 3) accurate intrabiofilm diffusion coefficient values are critical for current generation predictions; and 4) the local biofilm potential and redox potential are two distinct measurements and cannot be assumed to have identical values. Finally, we determined that cyclic and squarewave voltammetry are currently not good tools to determine the specific percentage of extracellular electron transfer mechanisms used by biofilms. The developed model will be a critical tool in designing experiments to explain EET mechanisms.

  20. Mechanism of regulation of receptor histidine kinases.

    PubMed

    Ferris, Hedda U; Dunin-Horkawicz, Stanislaw; Hornig, Nora; Hulko, Michael; Martin, Jörg; Schultz, Joachim E; Zeth, Kornelius; Lupas, Andrei N; Coles, Murray

    2012-01-11

    Bacterial transmembrane receptors regulate an intracellular catalytic output in response to extracellular sensory input. To investigate the conformational changes that relay the regulatory signal, we have studied the HAMP domain, a ubiquitous intracellular module connecting input to output domains. HAMP forms a parallel, dimeric, four-helical coiled coil, and rational substitutions in our model domain (Af1503 HAMP) induce a transition in its interhelical packing, characterized by axial rotation of all four helices (the gearbox signaling model). We now illustrate how these conformational changes are propagated to a downstream domain by fusing Af1503 HAMP variants to the DHp domain of EnvZ, a bacterial histidine kinase. Structures of wild-type and mutant constructs are correlated with ligand response in vivo, clearly associating them with distinct signaling states. We propose that altered recognition of the catalytic domain by DHp, rather than a shift in position of the phospho-accepting histidine, forms the basis for regulation of kinase activity. PMID:22244755

  1. Dual effect of trimebutine on contractility of the guinea pig ileum via the opioid receptors.

    PubMed

    Taniyama, K; Sano, I; Nakayama, S; Matsuyama, S; Takeda, K; Yoshihara, C; Tanaka, C

    1991-12-01

    Preparations of longitudinal muscle attached to myenteric plexus from guinea pig ileum were used to observe the effect of trimebutine on intestinal motility. Electrical stimulation at 0.2 Hz and 5 Hz produced contraction mediated by the release of acetylcholine in the preparations. The response to low-frequency stimulation (0.2 Hz) was inhibited by trimebutine (10(-8)-10(-5) mol/L), and the response to high-frequency stimulation (5 Hz) was enhanced by the drug at low concentrations (10(-8)-10(-7) mol/L) and inhibited by high concentrations (10(-6)-10(-5) mol/L). This enhancement was mimicked by [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin, and was antagonized by naloxone but not by MR2266. Enhancement by trimebutine was inhibited by yohimbine. Trimebutine (greater than or equal to 10(-8) mol/L) inhibited stimulation (5 Hz)-evoked release of norepinephrine, and the trimebutine effect was antagonized by naloxone but not by MR2266. Low concentrations of trimebutine inhibit norepinephrine release via the mu-opioid receptor and enhance intestinal motility by preventing the adrenergic inhibition of acetylcholine release. Inhibition by trimebutine was antagonized either by naloxone or MR2266. High concentrations of trimebutine may inhibit acetylcholine release via the mu- and kappa-opioid receptors, after which the intestinal motility is inhibited. Trimebutine at further high concentrations (greater than 10(-5) mol/L) contracted single smooth muscle cells from the circular muscle layers but not from the longitudinal muscle layers. The usual dose of trimebutine may exert dual effect on the intestinal motility indirectly through cholinergic and adrenergic neurons without direct effect on the smooth muscle. PMID:1659547

  2. END-PLATE ACETYLCHOLINE RECEPTOR: STRUCTURE, MECHANISM, PHARMACOLOGY, AND DISEASE

    PubMed Central

    Sine, Steven M.

    2012-01-01

    The synapse is a localized neurohumoral contact between a neuron and an effector cell and may be considered the quantum of fast intercellular communication. Analogously, the postsynaptic neurotransmitter receptor may be considered the quantum of fast chemical to electrical transduction. Our understanding of postsynaptic receptors began to develop about a hundred years ago with the demonstration that electrical stimulation of the vagus nerve released acetylcholine and slowed the heart beat. During the past 50 years, advances in understanding postsynaptic receptors increased at a rapid pace, owing largely to studies of the acetylcholine receptor (AChR) at the motor endplate. The endplate AChR belongs to a large superfamily of neurotransmitter receptors, called Cys-loop receptors, and has served as an exemplar receptor for probing fundamental structures and mechanisms that underlie fast synaptic transmission in the central and peripheral nervous systems. Recent studies provide an increasingly detailed picture of the structure of the AChR and the symphony of molecular motions that underpin its remarkably fast and efficient chemoelectrical transduction. PMID:22811427

  3. Mechanism of Positive Allosteric Modulators Acting on AMPA Receptors

    SciTech Connect

    Jin,R.; Clark, S.; Weeks, A.; Dudman, J.; Gouaux, E.; Partin, K.

    2005-01-01

    Ligand-gated ion channels involved in the modulation of synaptic strength are the AMPA, kainate, and NMDA glutamate receptors. Small molecules that potentiate AMPA receptor currents relieve cognitive deficits caused by neurodegenerative diseases such as Alzheimer's disease and show promise in the treatment of depression. Previously, there has been limited understanding of the molecular mechanism of action for AMPA receptor potentiators. Here we present cocrystal structures of the glutamate receptor GluR2 S1S2 ligand-binding domain in complex with aniracetam [1-(4-methoxybenzoyl)-2-pyrrolidinone] or CX614 (pyrrolidino-1, 3-oxazino benzo-1, 4-dioxan-10-one), two AMPA receptor potentiators that preferentially slow AMPA receptor deactivation. Both potentiators bind within the dimer interface of the nondesensitized receptor at a common site located on the twofold axis of molecular symmetry. Importantly, the potentiator binding site is adjacent to the 'hinge' in the ligand-binding core 'clamshell' that undergoes conformational rearrangement after glutamate binding. Using rapid solution exchange, patch-clamp electrophysiology experiments, we show that point mutations of residues that interact with potentiators in the cocrystal disrupt potentiator function. We suggest that the potentiators slow deactivation by stabilizing the clamshell in its closed-cleft, glutamate-bound conformation.

  4. Target duality in N= 8 superconformal mechanics and the coupling of dual pairs

    SciTech Connect

    Gonzales, Marcelo; Lechtenfeld, Olaf

    2013-07-15

    We couple dual pairs of N= 8 superconformal mechanics with conical targets of dimension d and 8−d. The superconformal coupling generates an oscillator-type potential on each of the two target factors, with a frequency depending on the respective dual coordinates. In the case of the inhomogeneous (3,8,5) model, which entails a monopole background, it is necessary to add an extra supermultiplet of constants for half of the supersymmetry. The N= 4 analog, joining an inhomogeneous (1,4,3) with a (3,4,1) multiplet, is also analyzed in detail.

  5. Novel Aurora/vascular endothelial growth factor receptor dual kinase inhibitor as treatment for hepatocellular carcinoma.

    PubMed

    Nakao, Keisuke; Tanaka, Shinji; Miura, Tomoya; Sato, Kota; Matsumura, Satoshi; Aihara, Arihiro; Mitsunori, Yusuke; Ban, Daisuke; Ochiai, Takanori; Kudo, Atsushi; Arii, Shigeki; Tanabe, Minoru

    2015-08-01

    We previously identified Aurora B kinase as the only independent factor predictive of the aggressive recurrence of hepatocellular carcinoma (HCC). In this preclinical study, JNJ-28841072, a novel Aurora/vascular endothelial growth factor receptor dual kinase inhibitor, was evaluated for treatment of HCC. In vitro and in vivo effects of JNJ-28841072 were analyzed using human HCC cell cultures and xenograft models. An orthotopic liver xenograft model was used for the pharmacobiological effects on Aurora kinase and vascularization in hepatic tumors. JNJ-28841072 suppressed in vitro phosphorylation of histone H3 with induction of cell polyploidy and death in a dose-dependent manner (IC50  = 0.8-1.2 μM). In s.c. human HCC xenografts, remarkable inhibition of tumor growth was observed after JNJ-28841072 treatment (P = 0.0005). In orthotopic liver xenografts, the treatment with JNJ-28841072 significantly suppressed in vivo phosphorylation of histone H3 (P = 0.0008), vessel formation (P = 0.018), normoxic area (P = 0.0001), and hepatoma growth (P = 0.038). Our preclinical studies indicate that JNJ-28841072 is a promising novel therapeutic approach for the treatment of HCC. It might be worthy of evaluation in further studies. PMID:26011703

  6. Absorption, distribution, metabolism, and excretion of macitentan, a dual endothelin receptor antagonist, in humans.

    PubMed

    Bruderer, Shirin; Hopfgartner, Gérard; Seiberling, Michael; Wank, Janine; Sidharta, Patricia N; Treiber, Alexander; Dingemanse, Jasper

    2012-09-01

    Macitentan is a tissue-targeting, dual endothelin receptor antagonist, currently under phase 3 investigation in pulmonary arterial hypertension. In this study the disposition and metabolism of macitentan were investigated following administration of a single oral 10 mg dose of (14)C-macitentan to six healthy male subjects. The total radioactivity in matrices was determined using liquid scintillation counting. The proposed structure of metabolites was based on mass spectrometry characteristics and, when available, confirmed by comparison with reference compounds. Mean (± SD) cumulative recovery of radioactivity from faeces and urine was 73.6% (± 6.2%) of the administered radioactive dose, with 49.7% (± 3.9%) cumulative recovery from urine, and 23.9% (± 4.8%) from faeces. In plasma, in addition to parent macitentan, ACT-132577, a pharmacologically active metabolite elicited by oxidative depropylation and the carboxylic acid metabolite ACT-373898 were identified. In urine, four entities were identified, with the hydrolysis product of ACT-373898 as the most abundant one. In faeces, five entities were identified, with the hydrolysis product of macitentan and ACT-132577 as the most abundant one. Concentrations of total radioactivity in whole blood were lower compared to plasma, which indicates that macitentan and its metabolites poorly bind to or penetrate into erythrocytes. PMID:22458347

  7. Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery.

    PubMed

    Lin, Peng; Ma, Shuanhong; Wang, Xiaolong; Zhou, Feng

    2015-03-25

    A molecularly engineered dual-crosslinked hydrogel with extraordinary mechanical properties is reported. The hydrogel network is formed with both chemical crosslinking and acrylic-Fe(III) coordination; these, respectively, impart the elasticity and enhance the mechanical properties by effectively dissipating energy. The optimal hydrogel achieves a tensile stress of ca. 6 MPa at a large elongation ratio (>7 times), a toughness of 27 MJ m(-3) , and a stiffness of ca. 2 MPa, and has good self-recovery properties. PMID:25677412

  8. Beyond the cell surface: new mechanisms of receptor function.

    PubMed

    Ibáñez, Carlos F

    2010-05-21

    The text book view of cell surface receptors depicts them at the top of a vertical chain of command that starts with ligand binding and proceeds in a lineal fashion towards the cell nucleus. Although pedagogically useful, this view is incomplete and recent findings suggest that the extracellular domain of cell surface receptors can be a transmitter as much as a receiver in intercellular communication. GFRalpha1 is a GPI-anchored receptor for GDNF (glial cell line-derived neurotrophic factor), a neuronal growth factor with widespread functions in the developing and adult nervous system. GFRalpha1 partners with transmembrane proteins, such as the receptor tyrosine kinase RET or the cell adhesion molecule NCAM, for intracellular transmission of the GDNF signal. In addition to this canonical role, GFRalpha1 can also engage in horizontal interactions and thereby modify the function of other cell surface components. GFRalpha1 can also function as a ligand-induced adhesion cell molecule, mediating homophilic cell-cell interactions in response to GDNF. Finally, GFRalpha1 can also be released from the cell surface and act at a distance as a soluble factor together with its ligand. This plethora of unconventional mechanisms is likely to be a feature common to several other receptors and considerably expands our view of cell surface receptor function. PMID:20494105

  9. Glycine receptor mechanism elucidated by electron cryo-microscopy.

    PubMed

    Du, Juan; Lü, Wei; Wu, Shenping; Cheng, Yifan; Gouaux, Eric

    2015-10-01

    The strychnine-sensitive glycine receptor (GlyR) mediates inhibitory synaptic transmission in the spinal cord and brainstem and is linked to neurological disorders, including autism and hyperekplexia. Understanding of molecular mechanisms and pharmacology of glycine receptors has been hindered by a lack of high-resolution structures. Here we report electron cryo-microscopy structures of the zebrafish α1 GlyR with strychnine, glycine, or glycine and ivermectin (glycine/ivermectin). Strychnine arrests the receptor in an antagonist-bound closed ion channel state, glycine stabilizes the receptor in an agonist-bound open channel state, and the glycine/ivermectin complex adopts a potentially desensitized or partially open state. Relative to the glycine-bound state, strychnine expands the agonist-binding pocket via outward movement of the C loop, promotes rearrangement of the extracellular and transmembrane domain 'wrist' interface, and leads to rotation of the transmembrane domain towards the pore axis, occluding the ion conduction pathway. These structures illuminate the GlyR mechanism and define a rubric to interpret structures of Cys-loop receptors. PMID:26344198

  10. Nuclear receptor corepressor complexes in cancer: mechanism, function and regulation

    PubMed Central

    Wong, Madeline M; Guo, Chun; Zhang, Jinsong

    2014-01-01

    Nuclear receptor corepressor (NCoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) function as corepressors for diverse transcription factors including nuclear receptors such as estrogen receptors and androgen receptors. Deregulated functions of NCoR and SMRT have been observed in many types of cancers and leukemias. NCoR and SMRT directly bind to transcription factors and nucleate the formation of stable complexes that include histone deacetylase 3, transducin b-like protein 1/TBL1-related protein 1, and G-protein pathway suppressor 2. These NCoR/SMRT-interacting proteins also show deregulated functions in cancers. In this review, we summarize the literature on the mechanism, regulation, and function of the core components of NCoR/SMRT complexes in the context of their involvement in cancers and leukemias. While the current studies support the view that the corepressors are promising targets for cancer treatment, elucidation of the mechanisms of corepressors involved in individual types of cancers is likely required for effective therapy. PMID:25374920

  11. Dual allosteric activation mechanisms in monomeric human glucokinase

    PubMed Central

    Whittington, A. Carl; Larion, Mioara; Bowler, Joseph M.; Ramsey, Kristen M.; Brüschweiler, Rafael; Miller, Brian G.

    2015-01-01

    Cooperativity in human glucokinase (GCK), the body’s primary glucose sensor and a major determinant of glucose homeostatic diseases, is fundamentally different from textbook models of allostery because GCK is monomeric and contains only one glucose-binding site. Prior work has demonstrated that millisecond timescale order-disorder transitions within the enzyme’s small domain govern cooperativity. Here, using limited proteolysis, we map the site of disorder in unliganded GCK to a 30-residue active-site loop that closes upon glucose binding. Positional randomization of the loop, coupled with genetic selection in a glucokinase-deficient bacterium, uncovers a hyperactive GCK variant with substantially reduced cooperativity. Biochemical and structural analysis of this loop variant and GCK variants associated with hyperinsulinemic hypoglycemia reveal two distinct mechanisms of enzyme activation. In α-type activation, glucose affinity is increased, the proteolytic susceptibility of the active site loop is suppressed and the 1H-13C heteronuclear multiple quantum coherence (HMQC) spectrum of 13C-Ile–labeled enzyme resembles the glucose-bound state. In β-type activation, glucose affinity is largely unchanged, proteolytic susceptibility of the loop is enhanced, and the 1H-13C HMQC spectrum reveals no perturbation in ensemble structure. Leveraging both activation mechanisms, we engineer a fully noncooperative GCK variant, whose functional properties are indistinguishable from other hexokinase isozymes, and which displays a 100-fold increase in catalytic efficiency over wild-type GCK. This work elucidates specific structural features responsible for generating allostery in a monomeric enzyme and suggests a general strategy for engineering cooperativity into proteins that lack the structural framework typical of traditional allosteric systems. PMID:26283387

  12. Bilingualism modulates dual mechanisms of cognitive control: Evidence from ERPs.

    PubMed

    Morales, Julia; Yudes, Carolina; Gómez-Ariza, Carlos J; Bajo, M Teresa

    2015-01-01

    Recent behavioral findings with the AX-Continous Performance Task (AX-CPT; Morales et al., 2013) show that bilinguals only outperform monolinguals under conditions that require the highest adjustment between monitoring (proactive) and inhibitory (reactive) control, which supports the idea that bilingualism modulates the coordination of different control mechanisms. In an ERP experiment we aimed to further investigate the role that bilingualism plays in the dynamic combination of proactive and reactive control in the AX-CPT. Our results strongly indicate that bilingualism facilitates an effective adjustment between both components of cognitive control. First, we replicated previous behavioral results. Second, ERP components indicated that bilingualism influences the conflict monitoring, response inhibition and error monitoring components of control (as indexed by the N2 and P3a elicited by the probe and the error-related negativity following incorrect responses, respectively). Thus, bilinguals exerted higher reactive control than monolinguals but only when they needed to overcome the competing cue-information. These findings join others in suggesting that a better understanding of the cognitive benefits of bilingualism may require consideration of a multi-component perspective. PMID:25448864

  13. An NMDA receptor-dependent mechanism underlies inhibitory synapse development

    PubMed Central

    Gu, Xinglong; Zhou, Liang; Lu, Wei

    2016-01-01

    Summary In the mammalian brain GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here we report that NMDA-type ionotropic glutamate receptors (NMDARs) in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, while GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain. PMID:26774487

  14. Mechanisms of acetylcholine receptor loss in myasthenia gravis.

    PubMed Central

    Drachman, D B; Adams, R N; Stanley, E F; Pestronk, A

    1980-01-01

    The fundamental abnormality affecting the neuromuscular junctions of myasthenic patients is a reduction of available AChRs, due to an autoimmune attack directed against the receptors. Antibodies to AChR are present in most patients, and there is evidence that they have a predominant pathogenic role in the disease, aided by complement. The mechanism of antibody action involves acceleration of the rate of degradation of AChRs, attributable to cross-linking of the receptors. In addition, antibodies may block AChRs, and may participate in producing destructive changes, perhaps in conjunction with complement. The possibility that cell-mediated mechanisms may play a role in the autoimmune responses of some myasthenic patients remains to be explored. Although the target of the autoimmune attack in myasthenic patients is probably always the acetylcholine receptors, it is not yet clear which of these immune mechanisms are most important. It is likely that the relative role of each mechanism varies from patient to patient. One of the goals of future research will be to identify the relative importance of each of these mechanisms in the individual patient, and to tailor specific immunotherapeutic measures to the abnormalities found. PMID:6249894

  15. Receptor mechanisms and circuitry underlying NMDA antagonist neurotoxicity.

    PubMed

    Farber, N B; Kim, S H; Dikranian, K; Jiang, X P; Heinkel, C

    2002-01-01

    NMDA glutamate receptor antagonists are used in clinical anesthesia, and are being developed as therapeutic agents for preventing neurodegeneration in stroke, epilepsy, and brain trauma. However, the ability of these agents to produce neurotoxicity in adult rats and psychosis in adult humans compromises their clinical usefulness. In addition, an NMDA receptor hypofunction (NRHypo) state might play a role in neurodegenerative and psychotic disorders, like Alzheimer's disease and schizophrenia. Thus, understanding the mechanism underlying NRHypo-induced neurotoxicity and psychosis could have significant clinically relevant benefits. NRHypo neurotoxicity can be prevented by several classes of agents (e.g. antimuscarinics, non-NMDA glutamate antagonists, and alpha(2) adrenergic agonists) suggesting that the mechanism of neurotoxicity is complex. In the present study a series of experiments was undertaken to more definitively define the receptors and complex neural circuitry underlying NRHypo neurotoxicity. Injection of either the muscarinic antagonist scopolamine or the non-NMDA antagonist NBQX directly into the cortex prevented NRHypo neurotoxicity. Clonidine, an alpha(2) adrenergic agonist, protected against the neurotoxicity when injected into the basal forebrain. The combined injection of muscarinic and non-NMDA Glu agonists reproduced the neurotoxic reaction. Based on these and other results, we conclude that the mechanism is indirect, and involves a complex network disturbance, whereby blockade of NMDA receptors on inhibitory neurons in multiple subcortical brain regions, disinhibits glutamatergic and cholinergic projections to the cerebral cortex. Simultaneous excitotoxic stimulation of muscarinic (m(3)) and glutamate (AMPA/kainate) receptors on cerebrocortical neurons appears to be the proximal mechanism by which the neurotoxic and psychotomimetic effects of NRHypo are mediated. PMID:11803444

  16. Arcaine uncovers dual interactions of polyamines with the N-methyl-D-aspartate receptor

    SciTech Connect

    Reynolds, I.J. )

    1990-12-01

    This study investigated the interaction between the polyamines spermine and spermidine and the N-methyl-D-aspartate (NMDA) receptor by using (+)-(3H)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-im ine maleate ((3H)MK801) binding to well washed rat brain membranes. The actions of arcaine, agmatine, diethylenetriamine and 1,8-octanediamine as polyamine antagonists were compared to use as tools in this study. Arcaine was found to be the antagonist of choice due to its greater potency. Several divalent cations, including Ba++, Ca++ and Sr++, but not Zn++, decreased the apparent potency of arcaine. These cations enhance (3H)MK801 binding in a similar fashion to spermidine and spermine suggesting that they may share a common site and mechanism of action. Moreover, arcaine competitively reduced the enhancement of (3H)MK801 binding produced by Sr++ did not alter the inhibition produced by higher concentrations of this cation, a phenomenon that also occurs with spermidine. The distinct arcaine sensitivity of the two separate phases of the concentration-response curves of both spermidine and Sr++ suggests two separate mechanisms underlying the action of spermidine-like drugs on the NMDA receptor. Further investigation of the increase in (3H)MK801 binding produced by spermidine revealed that spermidine increased the equilibrium affinity of this ligand by 2-fold without significantly altering the density of binding sites. In contrast, polyamine induced increases in the dissociation of (3H)MK801 required higher polyamine concentrations than necessary to increase ligand binding and were relatively insensitive to arcaine. These findings suggest that polyamines do not activate or promote the activation of the NMDA receptor, but instead enhance (3H)MK801 binding by allosterically increasing ligand affinity.

  17. Mechanical design and force calibration of dual-axis micromechanical probe for friction force microscopy

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Kenji; Terada, Satoshi; Shikida, Mitsuhiro; Amakawa, Hiroaki; Zhang, Hedong; Mitsuya, Yasunaga

    2007-02-01

    A dual-axis micromechanical probe that combines a double cantilever and torsion beams is presented. This probe can reduce the mechanical cross-talk between the lateral and vertical force detections. In addition, dual-axis forces can be detected by measuring the dual-axis displacement of the probe end using the optical lever-based method used in conventional friction force microscopes (FFMs). In this paper, the mechanical design of the probe, the details of the fabrication method, FFM performance, and calibration of the friction force are discussed. The mechanical design and the microfabrication method for probes that can provide a force resolution of the order of 1nN without mechanical cross-talk are presented. Calibration of the lateral force signal is possible by using the relationship between the lateral force and the piezodisplacement at the onset of the probe scanning. The micromechanical probe enables simultaneous and independent detection of atomic and friction forces. This leads to accurate investigation of nanotribological phenomena and visualization of the distribution of the friction properties, which helps the identification of the material properties.

  18. Mechanical design and force calibration of dual-axis micromechanical probe for friction force microscopy

    SciTech Connect

    Fukuzawa, Kenji; Terada, Satoshi; Shikida, Mitsuhiro; Amakawa, Hiroaki; Zhang, Hedong; Mitsuya, Yasunaga

    2007-02-01

    A dual-axis micromechanical probe that combines a double cantilever and torsion beams is presented. This probe can reduce the mechanical cross-talk between the lateral and vertical force detections. In addition, dual-axis forces can be detected by measuring the dual-axis displacement of the probe end using the optical lever-based method used in conventional friction force microscopes (FFMs). In this paper, the mechanical design of the probe, the details of the fabrication method, FFM performance, and calibration of the friction force are discussed. The mechanical design and the microfabrication method for probes that can provide a force resolution of the order of 1 nN without mechanical cross-talk are presented. Calibration of the lateral force signal is possible by using the relationship between the lateral force and the piezodisplacement at the onset of the probe scanning. The micromechanical probe enables simultaneous and independent detection of atomic and friction forces. This leads to accurate investigation of nanotribological phenomena and visualization of the distribution of the friction properties, which helps the identification of the material properties.

  19. Pharmacokinetic and pharmacodynamic interactions between almorexant, a dual orexin receptor antagonist, and desipramine.

    PubMed

    Cruz, Hans G; Hay, Justin L; Hoever, Petra; Alessi, Federica; te Beek, Erik T; van Gerven, Joop M A; Dingemanse, Jasper

    2014-08-01

    Almorexant is a dual orexin receptor antagonist (DORA) with sleep-enabling effects in humans. Insomnia is often associated with mental health problems, including depression. Hence, potential interactions with antidepressants deserve attention. Desipramine was selected as a model drug because it is mainly metabolized by CYP2D6, which is inhibited by almorexant in vitro. A single-center, randomized, placebo-controlled, two-way crossover study in 20 healthy male subjects was conducted to evaluate the pharmacokinetic and pharmacodynamic interactions between almorexant and desipramine. Almorexant 200mg or matching placebo (double-blind) was administered orally once daily in the morning for 10 days, and a single oral dose of 50mg desipramine (open-label) was administered on Day 5. Almorexant increased the exposure to desipramine 3.7-fold, suggesting that almorexant is a moderate inhibitor of desipramine metabolism through inhibition of CYP2D6. Conversely, desipramine showed no relevant effects on the pharmacokinetics of almorexant. Pharmacodynamic evaluations indicated that almorexant alone reduced visuomotor coordination, postural stability, and alertness, and slightly increased calmness. Desipramine induced a reduction in subjective alertness and an increase in pupil/iris ratio. Despite the increase in exposure to desipramine, almorexant and desipramine in combination showed the same pharmacodynamic profile as almorexant alone, except for prolonging reduced alertness and preventing the miotic effect of almorexant. Co-administration also prolonged the mydriatic effect of desipramine. Overall, repeated administration of almorexant alone or with single-dose desipramine was well tolerated. The lack of a relevant interaction with antidepressants, if confirmed for other DORAs, would be a key feature for a safer class of hypnotics. PMID:24880753

  20. Mechanisms of Activation of Receptor Tyrosine Kinases: Monomers or Dimers

    PubMed Central

    Maruyama, Ichiro N.

    2014-01-01

    Receptor tyrosine kinases (RTKs) play essential roles in cellular processes, including metabolism, cell-cycle control, survival, proliferation, motility and differentiation. RTKs are all synthesized as single-pass transmembrane proteins and bind polypeptide ligands, mainly growth factors. It has long been thought that all RTKs, except for the insulin receptor (IR) family, are activated by ligand-induced dimerization of the receptors. An increasing number of diverse studies, however, indicate that RTKs, previously thought to exist as monomers, are present as pre-formed, yet inactive, dimers prior to ligand binding. The non-covalently associated dimeric structures are reminiscent of those of the IR family, which has a disulfide-linked dimeric structure. Furthermore, recent progress in structural studies has provided insight into the underpinnings of conformational changes during the activation of RTKs. In this review, I discuss two mutually exclusive models for the mechanisms of activation of the epidermal growth factor receptor, the neurotrophin receptor and IR families, based on these new insights. PMID:24758840

  1. Structure and Assembly Mechanism for Heteromeric Kainate Receptors

    SciTech Connect

    Kumar, Janesh; Schuck, Peter; Mayer, Mark L.

    2012-10-25

    Native glutamate receptor ion channels are tetrameric assemblies containing two or more different subunits. NMDA receptors are obligate heteromers formed by coassembly of two or three divergent gene families. While some AMPA and kainate receptors can form functional homomeric ion channels, the KA1 and KA2 subunits are obligate heteromers which function only in combination with GluR57. The mechanisms controlling glutamate receptor assembly involve an initial step in which the amino terminal domains (ATD) assemble as dimers. Here, we establish by sedimentation velocity that the ATDs of GluR6 and KA2 coassemble as a heterodimer of K{sub d} 11 nM, 32,000-fold lower than the K{sub d} for homodimer formation by KA2; we solve crystal structures for the GluR6/KA2 ATD heterodimer and heterotetramer assemblies. Using these structures as a guide, we perform a mutant cycle analysis to probe the energetics of assembly and show that high-affinity ATD interactions are required for biosynthesis of functional heteromeric receptors.

  2. Effects of microstructure and notches on the mechanical properties of dual-phase steels

    SciTech Connect

    Bayram, A.; Uguz, A.; Ula, M.

    1999-10-01

    A low-carbon (0.1%) steel has been subjected to three different heat treatments to obtain dual-phase steels with different microstructures. The steel with the intercriticality annealed microstructure of equiaxed ferrite-martensite exhibited the highest tensile strength, the lowest ductility, and intermediate fracture toughness properties. Step quenching also produced an equiaxed ferrite-martensite structure, but the material had the worst mechanical properties of the three different heat-treatment conditions. In contrast to the other two heat-treatment conditions, step annealing produced a fibrous (fine, needle-like) ferrite-plus-martensite structure. This gave rise to a material of intermediate tensile strength but with the highest ductility, notch strength, and fracture toughness. It is argued that optimum mechanical properties in a dual phase steel can best be achieved by obtaining a microstructure containing fine, fibrous needle-like, martensite.

  3. Glycine receptor mechanism illuminated by electron cryo-microscopy

    PubMed Central

    Du, Juan; Lü, Wei; Wu, Shenping; Cheng, Yifan; Gouaux, Eric

    2015-01-01

    Summary The strychnine-sensitive glycine receptor (GlyR) mediates inhibitory synaptic transmission in the spinal cord and brainstem and is linked to neurological disorders including autism and hyperekplexia. Understanding of molecular mechanisms and pharmacology of GlyRs has been hindered by a dearth of high-resolution structures. Here we report electron cryo-microscopy structures of the α1 GlyR with strychnine, glycine, or glycine/ivermectin. Strychnine arrests the receptor in an antagonist-bound, closed ion channel state, glycine stabilizes the receptor in an agonist-bound open channel state, and the glycine/ivermectin complex adopts a potentially desensitized or partially open state. Relative to the glycine-bound state, strychnine expands the agonist-binding pocket via outward movement of the C loop, promotes rearrangement of the extracellular and transmembrane domain ‘wrist’ interface, and leads to rotation of the transmembrane domain toward the pore axis, occluding the ion conduction pathway. These structures illuminate GlyR mechanism and define a rubric to interpret structures of Cys-loop receptors. PMID:26344198

  4. Macitentan, a dual endothelin receptor antagonist, in combination with temozolomide leads to glioblastoma regression and long-term survival in mice

    PubMed Central

    Kim, Sun-Jin; Lee, Ho Jeong; Kim, Mark Seungwook; Choi, Hyun Jin; He, Junqin; Wu, Qiuyu; Aldape, Kenneth; Weinberg, Jeffrey S.; Alfred Yung, W. K.; Conrad, Charles A.; Langley, Robert R.; Lehembre, François; Regenass, Urs; Fidler, Isaiah J.

    2016-01-01

    Purpose The objective of the study was to determine whether astrocytes and brain endothelial cells protect glioma cells from temozolomide (TMZ) through an endothelin-dependent signaling mechanism and to examine the therapeutic efficacy of the dual endothelin receptor antagonist, macitentan, in orthotopic models of human glioblastoma. Experimental Design We evaluated several endothelin receptor antagonists for their ability to inhibit astrocyte- and brain endothelial cell-induced protection of glioma cells from TMZ in chemoprotection assays. We compared survival in nude mice bearing orthotopically implanted LN-229 glioblastomas or TMZ-resistant (LN-229Res and D54Res) glioblastomas that were treated with macitentan, TMZ, or both. Tumor burden was monitored weekly with bioluminescence imaging. The effect of therapy on cell division, apoptosis, tumor-associated vasculature, and pathways associated with cell survival was assessed by immunofluorescent microscopy. Results Only dual endothelin receptor antagonism abolished astrocyte- and brain endothelial cell-mediated protection of glioma cells from TMZ. In five independent survival studies, including TMZ-resistant glioblastomas, 46 of 48 (96%) mice treated with macitentan plus TMZ had no evidence of disease (P<0.0001), whereas all mice in other groups died. In another analysis, macitentan plus TMZ therapy was stopped in 16 mice after other groups had died. Only 3 of 16 mice eventually developed recurrent disease, 2 of which responded to additional cycles of macitentan plus TMZ. Macitentan downregulated proteins associated with cell division and survival in glioma cells and associated endothelial cells, which enhanced their sensitivity to TMZ. Conclusions Macitentan plus TMZ are well tolerated, produce durable responses, and warrant clinical evaluation in glioblastoma patients. PMID:26106074

  5. Dual-task conditions modulate the efficiency of selective attention mechanisms in Alzheimer's disease.

    PubMed

    Festa, Elena K; Heindel, William C; Ott, Brian R

    2010-09-01

    Given previous demonstrations of both selective and divided attention deficits in Alzheimer's disease (AD) patients, understanding how declines in the integrity of component processes of selective attention in these patients interact with impairments to executive processes mediating dual-task performance has both theoretical and practical relevance. To address this issue, healthy elderly and AD patients performed computerized tasks of spatial orienting, Simon response interference, and visual search both in isolation and while simultaneously engaged in a visuomotor tracking task (i.e., maintaining car position within a simulated driving environment). Results from the single-task conditions confirmed previous demonstrations of selective attention deficits in AD. Dual-task conditions produced in AD patients (but not healthy elderly) a change in the efficiency of the selective attention mechanisms themselves, as reflected in differential effects on cue or display conditions within each task. Rather than exacerbating the selective attention deficits observed under single-task conditions, however, dual-task conditions produced an apparent diminution of these deficits. We suggest this diminution is due to the combination of deficient top-down inhibitory processes along with a decrease in the attention-capturing properties of cue information under dual-task conditions in AD patients. These findings not only increase our understanding of the nature of the attentional deficits in AD patients, but also have implications for understanding the processes mediating attention in neurologically intact individuals. PMID:20621109

  6. Analysis method and principle of dual-mode electro-mechanical variable transmission program

    NASA Astrophysics Data System (ADS)

    Li, Hongcai; Yan, Qingdong; Xiang, Changle; Wang, Weida

    2012-05-01

    Automotive industry, as an important pillar of the national economy, has been rapidly developing in recent years. But proplems such as energy comsumption and environmental pollution are posed at the same time. Electro-mechanical variable transmission system is considered one of avilable workarounds. It is brought forward a kind of design methods of dual-mode electro-mechanical variable transmission system rotational speed characteristics and dual-mode drive diagrams. With the motor operating behavior of running in four quadrants and the speed characteristics of the simple internal and external meshing single planetary gear train, four kinds of dual-mode electro-mechanical transmission system scheme are designed. And the velocity, torque and power characteristics of one of the programs are analyzed. The magnitude of the electric split-flow power is an important factor which influences the system performance, so in the parameters matching design, it needs to reduce the power needs under the first mode of the motor. The motor, output rotational speed range and the position of the mode switching point have relationships with the characteristics design of the planetary gear set. The analysis method is to provide a reference for hybrid vehicles' design. As the involved rotational speed and torque relationships are the natural contact of every part of transmission system, a theory basis of system program and performance analysis is provided.

  7. A novel oral dual amylin and calcitonin receptor agonist (KBP-042) exerts antiobesity and antidiabetic effects in rats.

    PubMed

    Andreassen, Kim V; Feigh, Michael; Hjuler, Sara T; Gydesen, Sofie; Henriksen, Jan Erik; Beck-Nielsen, Henning; Christiansen, Claus; Karsdal, Morten A; Henriksen, Kim

    2014-07-01

    The present study investigated a novel oral dual amylin and calcitonin receptor agonist (DACRA), KBP-042, in head-to-head comparison with salmon calcitonin (sCT) with regard to in vitro receptor pharmacology, ex vivo pancreatic islet studies, and in vivo proof of concept studies in diet-induced obese (DIO) and Zucker diabetic fatty (ZDF) rats. In vitro, KBP-042 demonstrated superior binding affinity and activation of amylin and calcitonin receptors, and ex vivo, KBP-042 exerted inhibitory action on stimulated insulin and glucagon release from isolated islets. In vivo, KBP-042 induced a superior and pronounced reduction in food intake in conjunction with a sustained pair-fed corrected weight loss in DIO rats. Concomitantly, KBP-042 improved glucose homeostasis and reduced hyperinsulinemia and hyperleptinemia in conjunction with enhanced insulin sensitivity. In ZDF rats, KBP-042 induced a superior attenuation of diabetic hyperglycemia and alleviated impaired glucose and insulin tolerance. Concomitantly, KBP-042 preserved insulinotropic and induced glucagonostatic action, ultimately preserving pancreatic insulin and glucagon content. In conclusion, oral KBP-042 is a novel DACRA, which exerts antiobesity and antidiabetic efficacy by dual modulation of insulin sensitivity and directly decelerating stress on the pancreatic α- and β-cells. These results could provide the basis for oral KBP-042 as a novel therapeutic agent in type 2 diabetes. PMID:24801386

  8. Mechanisms of NOD-like receptor-associated inflammasome activation.

    PubMed

    Wen, Haitao; Miao, Edward A; Ting, Jenny P-Y

    2013-09-19

    A major function of a subfamily of NLR (nucleotide-binding domain, leucine-rich repeat containing, or NOD-like receptor) proteins is in inflammasome activation, which has been implicated in a multitude of disease models and human diseases. This work will highlight key progress in understanding the mechanisms that activate the best-studied NLRs (NLRP3, NLRC4, NAIP, and NLRP1) and in uncovering inflammasome NLRs. PMID:24054327

  9. Mechanisms of oestrogen receptor (ER) gene regulation in breast cancer.

    PubMed

    Carroll, J S

    2016-07-01

    Most breast cancers are driven by a transcription factor called oestrogen receptor (ER). Understanding the mechanisms of ER activity in breast cancer has been a major research interest and recent genomic advances have revealed extraordinary insights into how ER mediates gene transcription and what occurs during endocrine resistance. This review discusses our current understanding on ER activity, with an emphasis on several evolving, but important areas of ER biology. PMID:26884552

  10. Structural Basis for Iloprost as a Dual Peroxisome Proliferator-activated Receptor [alpha/delta] Agonist

    SciTech Connect

    Jin, Lihua; Lin, Shengchen; Rong, Hui; Zheng, Songyang; Jin, Shikan; Wang, Rui; Li, Yong

    2012-03-15

    Iloprost is a prostacyclin analog that has been used to treat many vascular conditions. Peroxisome proliferator-activated receptors (PPARs) are ligand-regulated transcription factors with various important biological effects such as metabolic and cardiovascular physiology. Here, we report the crystal structures of the PPAR{alpha} ligand-binding domain and PPAR{delta} ligand-binding domain bound to iloprost, thus providing unambiguous evidence for the direct interaction between iloprost and PPARs and a structural basis for the recognition of PPAR{alpha}/{delta} by this prostacyclin analog. In addition to conserved contacts for all PPAR{alpha} ligands, iloprost also initiates several specific interactions with PPARs using its unique structural groups. Structural and functional studies of receptor-ligand interactions reveal strong functional correlations of the iloprost-PPAR{alpha}/{delta} interactions as well as the molecular basis of PPAR subtype selectivity toward iloprost ligand. As such, the structural mechanism may provide a more rational template for designing novel compounds targeting PPARs with more favorable pharmacologic impact based on existing iloprost drugs.

  11. Achieving diverse and monoallelic olfactory receptor selection through dual-objective optimization design.

    PubMed

    Tian, Xiao-Jun; Zhang, Hang; Sannerud, Jens; Xing, Jianhua

    2016-05-24

    Multiple-objective optimization is common in biological systems. In the mammalian olfactory system, each sensory neuron stochastically expresses only one out of up to thousands of olfactory receptor (OR) gene alleles; at the organism level, the types of expressed ORs need to be maximized. Existing models focus only on monoallele activation, and cannot explain recent observations in mutants, especially the reduced global diversity of expressed ORs in G9a/GLP knockouts. In this work we integrated existing information on OR expression, and constructed a comprehensive model that has all its components based on physical interactions. Analyzing the model reveals an evolutionarily optimized three-layer regulation mechanism, which includes zonal segregation, epigenetic barrier crossing coupled to a negative feedback loop that mechanistically differs from previous theoretical proposals, and a previously unidentified enhancer competition step. This model not only recapitulates monoallelic OR expression, but also elucidates how the olfactory system maximizes and maintains the diversity of OR expression, and has multiple predictions validated by existing experimental results. Through making an analogy to a physical system with thermally activated barrier crossing and comparative reverse engineering analyses, the study reveals that the olfactory receptor selection system is optimally designed, and particularly underscores cooperativity and synergy as a general design principle for multiobjective optimization in biology. PMID:27162367

  12. A Single and a Dual-Fractal Analysis of Analyte-Receptor Binding Kinetics for Surface Plasmon Resonance Biosensor Applications.

    PubMed

    Ramakrishnan; Sadana

    1999-05-15

    The diffusion-limited binding kinetics of analyte in solution to either a receptor immobilized on a surface or to a receptorless surface is analyzed within a fractal framework for a surface plasmon resonance biosensor. The data is adequately described by a single- or a dual-fractal analysis. Initially, the data was modeled by a single-fractal analysis. If an inadequate fit was obtained then a dual-fractal analysis was utilized. The regression analysis provided by Sigmaplot (32) was used to determine if a single fractal analysis is sufficient or if a dual-fractal analysis is required. In general, it is of interest to note that the binding rate coefficient and the fractal dimension exhibit changes in the same direction (except for a single example) for the analyte-receptor systems analyzed. Binding rate coefficient expressions as a function of the fractal dimension developed for the analyte-receptor binding systems indicate, in general, the high sensitivity of the binding rate coefficient on the fractal dimension when both a single- and a dual-fractal analysis is used. For example, for a single-fractal analysis and for the binding of human endothelin-1 (ET-1) antibody in solution to ET-115-21.BSA immobilized on a surface plasmon resonance (SPR) surface (33), the order of dependence of the binding rate coefficient, k, on the fractal dimension, Df, is 6.4405. Similarly, for a dual-fractal analysis and for the binding of 10(-6) to 10(-4) M bSA in solution to a receptorless surface (direct binding to SPR surface) (41) the order of dependence of k1 and k2 on Df1 and Df2 were -2.356 and 6.241, respectively. Binding rate coefficient expressions are also developed as a function of the analyte concentration in solution. The binding rate coefficient expressions developed as a function of the fractal dimension(s) are of particular value since they provide a means to better control SPR biosensor performance by linking it to the degree of heterogeneity that exists on the SPR

  13. Mechanisms of inverse agonist action at D2 dopamine receptors.

    PubMed

    Roberts, David J; Strange, Philip G

    2005-05-01

    Mechanisms of inverse agonist action at the D2(short) dopamine receptor have been examined. Discrimination of G-protein-coupled and -uncoupled forms of the receptor by inverse agonists was examined in competition ligand-binding studies versus the agonist [3H]NPA at a concentration labelling both G-protein-coupled and -uncoupled receptors. Competition of inverse agonists versus [3H]NPA gave data that were fitted best by a two-binding site model in the absence of GTP but by a one-binding site model in the presence of GTP. K(i) values were derived from the competition data for binding of the inverse agonists to G-protein-uncoupled and -coupled receptors. K(coupled) and K(uncoupled) were statistically different for the set of compounds tested (ANOVA) but the individual values were different in a post hoc test only for (+)-butaclamol. These observations were supported by simulations of these competition experiments according to the extended ternary complex model. Inverse agonist efficacy of the ligands was assessed from their ability to reduce agonist-independent [35S]GTP gamma S binding to varying degrees in concentration-response curves. Inverse agonism by (+)-butaclamol and spiperone occurred at higher potency when GDP was added to assays, whereas the potency of (-)-sulpiride was unaffected. These data show that some inverse agonists ((+)-butaclamol, spiperone) achieve inverse agonism by stabilising the uncoupled form of the receptor at the expense of the coupled form. For other compounds tested, we were unable to define the mechanism. PMID:15735658

  14. Exploring dual inhibitors for STAT1 and STAT5 receptors utilizing virtual screening and dynamics simulation validation.

    PubMed

    Raj, Utkarsh; Kumar, Himansu; Gupta, Saurabh; Varadwaj, Pritish Kumar

    2016-10-01

    Signal transducer and activator of transcription (STAT) proteins are latent cytoplasmic transcription factors that transduce signals from cytokines and growth factors to the nucleus and thereby regulate the expression of a variety of target genes. Although mutations of STATs have not been reported in human tumors but the activity of several members of the family, such as STAT1 and STAT5, is deregulated in a variety of human carcinoma. STAT1 and STAT5 share a structural similarity with a highly conserved SH2 domain which is responsible for the activation of STAT proteins on interaction with phosphotyrosine motifs for specific STAT-receptor contacts and STAT dimerization. The purpose of this study is to identify domain-specific dual inhibitors for both STAT1 and STAT5 proteins from a database of natural products and natural product-like compounds comprising of over 90,000 compounds. Virtual screening-based molecular docking was performed in order to find novel natural dual inhibitors. Further, the study was supported by the 50-ns molecular dynamics simulation for receptor-ligand complexes (STAT1-STOCK-1N-69677 and STAT5-STOCK-1N-69677). Analysis of molecular interactions in the SH2 domains of both STAT1 and STAT5 proteins with the ligand revealed few conserved amino acid residues which are responsible to stabilize the ligands within the binding pocket through bonded and non-bonded interactions. This study suggested that compound STOCK-1N-69677 might putatively act as a dual inhibitor of STAT1 and STAT5 receptors, through its binding to the SH2 domain. PMID:26471877

  15. Mechanisms and physiological impact of the dual localization of mitochondrial intermembrane space proteins.

    PubMed

    Petrungaro, Carmelina; Riemer, Jan

    2014-08-01

    Eukaryotic cells developed diverse mechanisms to guide proteins to more than one destination within the cell. Recently, the proteome of the IMS (intermembrane space) of mitochondria of yeast cells was identified showing that approximately 20% of all soluble IMS proteins are dually localized to the IMS, as well as to other cellular compartments. Half of these dually localized proteins are important for oxidative stress defence and the other half are involved in energy homoeostasis. In the present review, we discuss the mechanisms leading to the dual localization of IMS proteins and the implications for mitochondrial function. PMID:25109985

  16. Bisphenol A affects androgen receptor function via multiple mechanisms

    PubMed Central

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B. Alex; Jetten, Anton M.; Austin, Christopher, P.; Tice, Raymond R.

    2013-01-01

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR. PMID:23562765

  17. Bisphenol A affects androgen receptor function via multiple mechanisms.

    PubMed

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B Alex; Jetten, Anton M; Austin, Christopher P; Tice, Raymond R

    2013-05-25

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR. PMID:23562765

  18. Computational modeling of mechanical response of dual cross-linked polymer grafted nanoparticle networks

    NASA Astrophysics Data System (ADS)

    v S, Balaji; Yashin, Victor; Salib, Isaac; Kowalewski, Tomasz; Matyjaszewski, Krzystof; Balazs, Anna; Anna Balazs Collaboration; Krzystof Matyjaszewski Collaboration

    2013-03-01

    We develop a hybrid computational model for the behavior of a network of cross-linked polymer-grafted nanoparticles (PGNs). The individual nanoparticles are composed of a rigid core and a corona of grafted polymers that encompass reactive end groups. With the overlap of the coronas on adjacent particles, the reactive end groups can form permanent or labile bonds, which lead to the formation of a ``dual cross-linked'' network. To capture these multi-scale interactions, our approach integrates the essential structural features of the polymer grafted nanoparticles, the interactions between the overlapping coronas, and the kinetics of bond formation and rupture between the reactive groups on the chain ends. We investigate the mechanical response of the dual-cross linked network to an applied tensile deformation. We find that the response depends on the bond energies of the labile bonds, the fraction of permanent bonds in the network, and thickness of the corona. This model provides a powerful tool for the computational design of dual cross-linked PGN's by predicting how the structural features of the system affect the mechanical performance.

  19. Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: the bezafibrate lessons.

    PubMed

    Tenenbaum, Alexander; Motro, Michael; Fisman, Enrique Z

    2005-01-01

    There are three peroxisome proliferator-activated receptors (PPARs) subtypes which are commonly designated PPAR alpha, PPAR gamma and PPAR beta/delta. PPAR alpha activation increases high density lipoprotein (HDL) cholesterol synthesis, stimulates "reverse" cholesterol transport and reduces triglycerides. PPAR gamma activation results in insulin sensitization and antidiabetic action. Until recently, the biological role of PPAR beta/delta remained unclear. However, treatment of obese animals by specific PPAR delta agonists results in normalization of metabolic parameters and reduction of adiposity. Combined treatments with PPAR gamma and alpha agonists may potentially improve insulin resistance and alleviate atherogenic dyslipidemia, whereas PPAR delta properties may prevent the development of overweight which typically accompanies "pure" PPAR gamma ligands. The new generation of dual-action PPARs--the glitazars, which target PPAR-gamma and PPAR-alpha (like muraglitazar and tesaglitazar) are on deck in late-stage clinical trials and may be effective in reducing cardiovascular risk, but their long-term clinical effects are still unknown. A number of glitazars have presented problems at a late stage of clinical trials because of serious side-effects (including ragaglitazar and farglitazar). The old and well known lipid-lowering fibric acid derivative bezafibrate is the first clinically tested pan--(alpha, beta/delta, gamma) PPAR activator. It is the only pan-PPAR activator with more than a quarter of a century of therapeutic experience with a good safety profile. Therefore, bezafibrate could be considered (indeed, as a "post hoc" understanding) as an "archetype" of a clinically tested pan-PPAR ligand. Bezafibrate leads to considerable raising of HDL cholesterol and reduces triglycerides, improves insulin sensitivity and reduces blood glucose level, significantly lowering the incidence of cardiovascular events and new diabetes in patients with features of metabolic

  20. Quantification of cell surface receptor expression in live tissue culture media using a dual-tracer stain and rinse approach

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochun; Sinha, Lagnojita; Singh, Aparna; Yang, Cynthia; Xiang, Jialing; Tichauer, Kenneth M.

    2015-03-01

    Immunofluorescence staining is a robust way to visualize the distribution of targeted biomolecules invasively in in fixed tissues and tissue culture. Despite the fact that these methods has been a well-established method in fixed tissue imaging for over 70 years, quantification of receptor concentration still simply assumes that the signal from the targeted fluorescent marker after incubation and sufficient rinsing is directly proportional to the concentration of targeted biomolecules, thus neglecting the experimental inconsistencies in incubation and rinsing procedures and assuming no, nonspecific binding of the fluorescent markers. This work presents the first imaging approach capable of quantifying the concentration of cell surface receptor on cancer cells grown in vitro based on compartment modeling in a nondestructive way. The approach utilizes a dual-tracer protocol where any non-specific retention or variability in incubation and rinsing of a receptor-targeted imaging agent is corrected by simultaneously imaging the retention of a chemically similar, "untargeted" imaging agent. Various different compartment models were used to analyze the data in order to find the optimal procedure for extracting estimates of epidermal growth factor receptor (EGFR) concentration (a receptor overexpressed in many cancers and a key target for emerging molecular therapies) in tissue cultures with varying concentrations of human glioma cells (U251). Preliminary results demonstrated a need to model nonspecific binding of both the targeted and untargeted imaging agents used. The approach could be used to carry out the first repeated measures of cell surface receptor dynamics during 3D tumor mass development, in addition to the receptor response to therapies.

  1. Molecular Mechanisms of Antiseizure Drug Activity at GABAA Receptors

    PubMed Central

    Greenfield, L. John

    2013-01-01

    The GABAA receptor (GABAAR) is a major target of antiseizure drugs (ASDs). A variety of agents that act at GABAARs s are used to terminate or prevent seizures. Many act at distinct receptor sites determined by the subunit composition of the holoreceptor. For the benzodiazepines, barbiturates, and loreclezole, actions at the GABAAR are the primary or only known mechanism of antiseizure action. For topiramate, felbamate, retigabine, losigamone and stiripentol, GABAAR modulation is one of several possible antiseizure mechanisms. Allopregnanolone, a progesterone metabolite that enhances GABAAR function, led to the development of ganaxolone. Other agents modulate GABAergic “tone” by regulating the synthesis, transport or breakdown of GABA. GABAAR efficacy is also affected by the transmembrane chloride gradient, which changes during development and in chronic epilepsy. This may provide an additional target for “GABAergic” ASDs. GABAAR subunit changes occur both acutely during status epilepticus and in chronic epilepsy, which alter both intrinsic GABAAR function and the response to GABAAR-acting ASDs. Manipulation of subunit expression patterns or novel ASDs targeting the altered receptors may provide a novel approach for seizure prevention. PMID:23683707

  2. High transfection efficiency of quantum dot-antisense oligonucleotide nanoparticles in cancer cells through dual-receptor synergistic targeting.

    PubMed

    Zhang, Ming-Zhen; Li, Cheng; Fang, Bi-Yun; Yao, Ming-Hao; Ren, Qiong-Qiong; Zhang, Lin; Zhao, Yuan-Di

    2014-06-27

    Incorporating ligands with nanoparticle-based carriers for specific delivery of therapeutic nucleic acids (such as antisense oligonucleotides and siRNA) to tumor sites is a promising approach in anti-cancer strategies. However, nanoparticle-based carriers remain insufficient in terms of the selectivity and transfection efficiency. In this paper, we designed a dual receptor-targeted QDs gene carrier QD-(AS-ODN+GE11+c(RGDfK)) which could increase the cellular uptake efficiency and further enhance the transfection efficiency. Here, the targeting ligands used were peptides GE11 and c(RGDfK) which could recognize epidermal growth factor receptors (EGFR) and integrin ανβ3 receptors, respectively. Quantitative flow cytometry and ICP/MS showed that the synergistic effect between EGFR and integrin ανβ3 increased the cellular uptake of QDs carriers. The effects of inhibition agents showed the endocytosis pathway of QD-(AS-ODN+GE11+c(RGDfK)) probe was mainly clathrin-mediated. Western blot confirmed that QD-(AS-ODN+GE11+c(RGDfK)) could further enhance gene silencing efficiency compared to QD-(AS-ODN+GE11) and QD-(AS-ODN+c(RGDfK)), suggesting this dual receptor-targeted gene carrier achieved desired transfection efficiency. In this gene delivery system, QDs could not only be used as a gene vehicle but also as fluorescence probe, allowing for localization and tracking during the delivery process. This transport model is very well referenced for non-viral gene carriers to enhance the targeting ability and transfection efficiency. PMID:24896735

  3. Differences in Gene Regulation by Dual Ligands of Nuclear Receptors Constitutive Androstane Receptor (CAR) and Pregnane X Receptor (PXR) in HepG2 Cells Stably Expressing CAR/PXR.

    PubMed

    Kanno, Yuichiro; Tanuma, Nobuaki; Yazawa, Saki; Zhao, Shuai; Inaba, Miki; Nakamura, Satoshi; Nemoto, Kiyomitsu; Inouye, Yoshio

    2016-08-01

    The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) regulate various genes involved in xenobiotics and drug metabolism. In many cases, CAR/PXR share ligands termed dual ligands of CAR/PXR. It is difficult to investigate the effect of CAR/PXR dual ligands in cell lines because CAR and PXR expression is scarcely detected in cultured cell lines. Here, we established a tetracycline-inducible human CAR and stably human PXR-overexpressing HepG2 cell line (HepTR/hCAR/hPXR) to examine CAR/PXR dual ligands. In the present study, we investigated the regulation of CYP2B6, CYP2C9, CYP3A4, and UDP-glucuronosyl transferase, which are target genes of CAR/PXR, by dual ligands of CAR/PXR in two transfectants. Activation of CAR and PXR in cells treated with a high dose of CITCO [6-(4-chlorophenyl)-imidazo(2,1-b)thiazole-5-carbaldehyde] or cotreated with rifampicin and tetracycline resulted in synergistic enhancement of CYP3A4, but not CYP2B6, CYP2C9, or UGT1A1, mRNA expression in HepTR/hCAR/hPXR cells. In contrast, this synergistic effect was not observed in HepTR/hCAR cells. These observations were also demonstrated in human primary hepatocytes. Taken together, our results suggest that dual ligands of CAR/PXR show distinct gene regulation patterns by cross-talk between CAR and PXR. Furthermore, the two newly established cell lines are useful tools to investigate dual ligands of CAR/PXR. PMID:27197997

  4. Reading in a deep orthography: neuromagnetic evidence for dual-mechanisms.

    PubMed

    Wilson, Tony W; Leuthold, Arthur C; Moran, John E; Pardo, Patricia J; Lewis, Scott M; Georgopoulos, Apostolos P

    2007-06-01

    Despite substantial efforts to connect cognitive-linguistic models with appropriate anatomical correlates, the question of which cognitive model best accounts for the neuropsychological and functional neuroimaging evidence remains open. The two most popular models are grounded in conceptually different bases and thus make quasi-distinct predictions in regard to the patterns of activation that should be observed in imaging investigations of linguistic processing. Dual-mechanism models propose that high-frequency regular and irregular words are processed through a lexicon-based word code, which facilitates their processing and pronunciation latencies relative to pseudowords. In contrast, single-mechanism models suggest the same behavioral effects can be explained through semantic mediation without the existence of a lexicon. In most previous studies, words and pronounceable pseudowords were presented in lexical-decision or word reading paradigms, and hemodynamic techniques were utilized to distinguish involved anatomical areas. The results typically indicated that both word classes activated largely congruent tissues, with a magnitude advantage for pseudowords in most or all activated regions. However, since the dual-mechanism model predicts both word types utilize the entire linguistic network, but that certain operations are merely obligatorily involved, these results do not sharply refute nor clearly support the model's main tenets. In the current study, we approach the dual- versus single-mechanism question differently by focusing on the temporal dynamics of MEG imaged neuronal activity, during performance of an oddball version of continuous lexical-decision, to determine whether the onset latency of any cortical language region shows effects of word class that are indicative of preferential versus obligatory processing pathways. The most remarkable aspect of our results indicated that both words and pseudowords initially activate the left posterior fusiform

  5. Reading in a Deep Orthography: Neuromagnetic Evidence for Dual-Mechanisms

    PubMed Central

    Wilson, Tony W.; Leuthold, Arthur C.; Moran, John E.; Pardo, Patricia J.; Lewis, Scott M.; Georgopoulos, Apostolos P.

    2009-01-01

    Despite substantial efforts to connect cognitive-linguistic models with appropriate anatomical correlates, the question of which cognitive model best accounts for the neuropsychological and functional neuroimaging evidence remains open. The two most popular models are grounded in conceptually different bases and thus make quasi-distinct predictions in regard to the patterns of activation that should be observed in imaging investigations of linguistic processing. Dual-mechanism models propose that high-frequency regular and irregular words are processed through a lexicon-based word code, which facilitates their processing and pronunciation latencies relative to pseudowords. In contrast, single-mechanism models suggest the same behavioral effects can be explained through semantic mediation without the existence of a lexicon. In most previous studies, words and pronounceable pseudowords were presented in lexical-decision or word reading paradigms, and hemodynamic techniques were utilized to distinguish involved anatomical areas. The results typically indicated that both word classes activated largely congruent tissues, with a magnitude advantage for pseudowords in most or all activated regions. However, since the dual-mechanism model predicts both word types utilize the entire linguistic network, but that certain operations are merely obligatorily involved, these results do not sharply refute nor clearly support the model’s main tenets. In the current study, we approach the dual- versus single mechanism question differently by focusing on the temporal dynamics of MEG imaged neuronal activity, during performance of an oddball version of continuous lexical-decision, to determine whether the onset latency of any cortical language region shows effects of word class that are indicative of preferential versus obligatory processing pathways. The most remarkable aspect of our results indicated that both words and pseudowords initially activate the left posterior fusiform

  6. The orexin 1 receptor modulates kappa opioid receptor function via a JNK-dependent mechanism.

    PubMed

    Robinson, James D; McDonald, Patricia H

    2015-07-01

    The orexin 1 receptor (OX1R) and the kappa opioid receptor (KOR) are two G protein-coupled receptors (GPCRs) previously demonstrated to play important roles in modulating the rewarding effects of drugs of abuse such as cocaine. Using cells heterologously expressing both receptors, we investigated whether OX1R can regulate the function of KOR and vice versa. Activation of OX1R was found to attenuate agonist-activated KOR-mediated inhibition of cAMP production. In contrast, agonist-activated KOR-mediated β-arrestin recruitment and p38 activation were enhanced in the presence of activated OX1R. These effects are independent of OX1R internalization but are blocked in the presence of the JNK inhibitor SP-600125. OX1R signaling does not affect ligand binding by KOR. Taken together, these data suggest that OX1R signaling can modulate KOR function in a JNK-dependent manner, promoting preferential signaling of KOR via β-arrestin/p38 rather than Gαi. Conversely, Gαq coupling of OX1R is unaffected by activation of KOR, suggesting that this crosstalk is unidirectional. Given that KOR Gαi-mediated signaling events and β-arrestin-mediated signaling events are thought to promote distinct cellular responses and physiological outcomes downstream of KOR activation, this mechanism may have important implications on the behavioral effects of KOR activity. PMID:25857454

  7. Antitumor activity and immune response induction of a dual agonist of Toll-like receptors 7 and 8.

    PubMed

    Wang, Daqing; Precopio, Melissa; Lan, Tao; Yu, Dong; Tang, Jimmy X; Kandimalla, Ekambar R; Agrawal, Sudhir

    2010-06-01

    Viral and synthetic single-stranded RNAs are the ligands for Toll-like receptors 7 and 8 (TLR7 and TLR8). We have reported a novel class of synthetic oligoribonucleotides, referred to as stabilized immune-modulatory RNA compounds, which act as agonists of TLR7, TLR8, or both TLR7 and TLR8 depending on the sequence composition and the presence of specific chemical modifications. In the present study, we evaluated the antitumor activity of a dual TLR7/8 agonist in tumor-bearing mice with peritoneal disseminated CT26.CL25 colon and 3LL-C75 lung carcinomas. Peritoneal administration of dual TLR7/8 agonist in mice bearing CT26.CL25 colon carcinomas had potent dose-dependent antitumor activity, which was associated with a marked decrease in CD4(+)CD25(+)Foxp3(+) T regulatory cells and a significant increase in tumor antigen-specific IFN-gamma-secreting effector cell responses in splenocytes and local tumor-infiltrating cells. In 3LL-C75 lung carcinoma, dual TLR7/8 agonist induced strong immune responses and antitumor effects in C57BL/6 and TLR9(-/-) mice, but not in TLR7(-/-) and MyD88(-/-) mice, indicating that the agonist induces immune responses via TLR7 and through the MyD88-dependent signaling pathway. TLR8 is not functional in mice. Additionally, s.c. administration of TLR7/8 agonist effectively prevented lung metastasis of tumors in the CT26.CL25 pulmonary metastasis model. These studies show that the dual TLR7/8 agonist induced Th1-type immune responses and potent antitumor activity in mice via TLR7 and through the MyD88-dependent pathway. PMID:20515950

  8. Molecular and Physiological Mechanisms of Membrane Receptor Systems Functioning

    PubMed Central

    Severin, E.S.; Savvateeva, M.V.

    2011-01-01

    Molecular physiology is a new interdisciplinary field of knowledge that looks into how complicated biological systems function. The living cell is a relatively simple, but at the same time very sophisticated biological system. After the sequencing of the human genome, molecular physiology has endeavored to investigate the systems of cellular interactions at a completely new level based on knowledge of the spatial organization and functions of receptors, their ligands, and protein-protein interactions. In recent years, the achievements in molecular physiology have centered on the study of sensor reception mechanisms and intercellular data transfer, as well as the immune system physiology, amongst other processes. PMID:22649671

  9. Mechanism of dimerization of the human melanocortin 1 receptor

    SciTech Connect

    Zanna, Paola T.; Sanchez-Laorden, Berta L.; Perez-Oliva, Ana B.; Turpin, Maria C.; Herraiz, Cecilia; Jimenez-Cervantes, Celia; Garcia-Borron, Jose C.

    2008-04-04

    The melanocortin 1 receptor (MC1R) is a dimeric G protein-coupled receptor expressed in melanocytes, where it regulates the amount and type of melanins produced and determines the tanning response to ultraviolet radiation. We have studied the mechanisms of MC1R dimerization. Normal dimerization of a deleted mutant lacking the seventh transmembrane fragment and the C-terminal cytosolic extension excluded coiled-coil interactions as the basis of dimerization. Conversely, the electrophoretic pattern of wild type receptor and several Cys {yields} Ala mutants showed that four disulfide bonds are established between the monomers. Disruption of any of these bonds abolished MC1R function, but only the one involving Cys35 was essential for traffic to the plasma membrane. A quadruple Cys35-267-273-275Ala mutant migrating as a monomer in SDS-PAGE in the absence of reducing agents was able to dimerize with WT, suggesting that in addition to disulfide bond formation, dimerization involves non-covalent interactions, likely of domain swap type.

  10. Dual functional sensing mechanism in SnO₂-ZnO core-shell nanowires.

    PubMed

    Choi, Sun-Woo; Katoch, Akash; Sun, Gun-Joo; Kim, Jae-Hun; Kim, Soo-Hyun; Kim, Sang Sub

    2014-06-11

    We report a dual functional sensing mechanism for ultrasensitive chemoresistive sensors based on SnO2-ZnO core-shell nanowires (C-S NWs) for detection of trace amounts of reducing gases. C-S NWs were synthesized by a two-step process, in which core SnO2 nanowires were first prepared by vapor-liquid-solid growth and ZnO shell layers were subsequently deposited by atomic layer deposition. The radial modulation of the electron-depleted shell layer was accomplished by controlling its thickness. The sensing capabilities of C-S NWs were investigated in terms of CO, which is a typical reducing gas. At an optimized shell thickness, C-S NWs showed the best CO sensing ability, which was quite superior to that of pure SnO2 nanowires without a shell. The dual functional sensing mechanism is proposed as the sensing mechanism in these nanowires and is based on the combination of the radial modulation effect of the electron-depleted shell and the electric field smearing effect. PMID:24836937

  11. Mechanical Coupling Error Suppression Technology for an Improved Decoupled Dual-Mass Micro-Gyroscope.

    PubMed

    Yang, Bo; Wang, Xingjun; Deng, Yunpeng; Hu, Di

    2016-01-01

    This paper presents technology for the suppression of the mechanical coupling errors for an improved decoupled dual-mass micro-gyroscope (DDMG). The improved micro-gyroscope structure decreases the moment arm of the drive decoupled torque, which benefits the suppression of the non-ideal decoupled error. Quadrature correction electrodes are added to eliminate the residual quadrature error. The structure principle and the quadrature error suppression means of the DDMG are described in detail. ANSYS software is used to simulate the micro-gyroscope structure to verify the mechanical coupling error suppression effect. Compared with the former structure, simulation results demonstrate that the rotational displacements of the sense frame in the improved structure are substantially suppressed in the drive mode. The improved DDMG structure chip is fabricated by the deep dry silicon on glass (DDSOG) process. The feedback control circuits with quadrature control loops are designed to suppress the residual mechanical coupling error. Finally, the system performance of the DDMG prototype is tested. Compared with the former DDMG, the quadrature error in the improved dual-mass micro-gyroscope is decreased 9.66-fold, and the offset error is decreased 6.36-fold. Compared with the open loop sense, the feedback control circuits with quadrature control loop decrease the bias drift by 20.59-fold and the scale factor non-linearity by 2.81-fold in the ±400°/s range. PMID:27070616

  12. Mechanical Coupling Error Suppression Technology for an Improved Decoupled Dual-Mass Micro-Gyroscope

    PubMed Central

    Yang, Bo; Wang, Xingjun; Deng, Yunpeng; Hu, Di

    2016-01-01

    This paper presents technology for the suppression of the mechanical coupling errors for an improved decoupled dual-mass micro-gyroscope (DDMG). The improved micro-gyroscope structure decreases the moment arm of the drive decoupled torque, which benefits the suppression of the non-ideal decoupled error. Quadrature correction electrodes are added to eliminate the residual quadrature error. The structure principle and the quadrature error suppression means of the DDMG are described in detail. ANSYS software is used to simulate the micro-gyroscope structure to verify the mechanical coupling error suppression effect. Compared with the former structure, simulation results demonstrate that the rotational displacements of the sense frame in the improved structure are substantially suppressed in the drive mode. The improved DDMG structure chip is fabricated by the deep dry silicon on glass (DDSOG) process. The feedback control circuits with quadrature control loops are designed to suppress the residual mechanical coupling error. Finally, the system performance of the DDMG prototype is tested. Compared with the former DDMG, the quadrature error in the improved dual-mass micro-gyroscope is decreased 9.66-fold, and the offset error is decreased 6.36-fold. Compared with the open loop sense, the feedback control circuits with quadrature control loop decrease the bias drift by 20.59-fold and the scale factor non-linearity by 2.81-fold in the ±400°/s range. PMID:27070616

  13. Serotonin Receptor 2B Mediates Mechanical Hyperalgesia by Regulating Transient Receptor Potential Vanilloid 1.

    PubMed

    Su, Yeu-Shiuan; Chiu, Yuan-Yi; Lin, Shih-Yuan; Chen, Chih-Cheng; Sun, Wei-Hsin

    2016-05-01

    Serotonin [5-hydroxytryptamine (5-HT)], an inflammatory mediator, contributes to inflammatory pain. The presence of multiple 5-HT subtype receptors on peripheral and central nociceptors complicates the role of 5-HT in pain. Previously, we found that 5-HT2B/2C antagonist could block 5-HT-induced mechanical hyperalgesia. However, the types of neurons or circuits underlying this effect remained unsolved. Here, we demonstrate that the Gq/11-phospholipase Cβ-protein kinase Cε (PKCε) pathway mediated by 5-HT2B is involved in 5-HT-induced mechanical hyperalgesia in mice. Administration of a transient receptor potential vanilloid 1 (TRPV1) antagonist inhibited the 5-HT-induced mechanical hyperalgesia. 5-HT injection enhanced 5-HT- and capsaicin-evoked calcium signals specifically in isolectin B4 (IB4)-negative neurons; signals were inhibited by a 5-HT2B/2C antagonist and PKCε blocker. Thus, 5-HT2B mediates 5-HT-induced mechanical hyperalgesia by regulating TRPV1 function. PMID:26635025

  14. Qualification of a High Accuracy Dual-Axis Antenna Deployment and Trimming Mechanism

    NASA Technical Reports Server (NTRS)

    Gossant, Alain; Morichon, Francois

    2010-01-01

    The Antenna Deployment and Trimming Mechanism Mark 2 (ADTM Mk2) has been developed to answer today's need for a generic antenna deployment and high accuracy pointing mechanism, allowing RF sensing applications and easier dual deployments configurations. This paper presents the design and evolution from its predecessor, the experience of the design team from kick off to qualification and batch manufacture, as well as some lessons learned from ramping up "mass-production" capabilities while implementing customer driven changes. Astrium has manufactured and flown ADTM units for the past 20 years, from an initial deployment-only mechanism developed for the Orion program to today's Eurostar E3000 ADTM family. The Antenna ADTM Mk2 is an evolution of the original ADTM Mk1. Although it uses Mk1 building blocks to minimize risks associated with the development of a new product, it incorporates major evolutions and is the new baseline for Astrium latest generation of Eurostar E3000 telecom satellites.

  15. Dual Receptor Recognizing Cell Penetrating Peptide for Selective Targeting, Efficient Intratumoral Diffusion and Synthesized Anti-Glioma Therapy

    PubMed Central

    Liu, Yayuan; Mei, Ling; Xu, Chaoqun; Yu, Qianwen; Shi, Kairong; Zhang, Li; Wang, Yang; Zhang, Qianyu; Gao, Huile; Zhang, Zhirong; He, Qin

    2016-01-01

    Cell penetrating peptides (CPPs) were widely used for drug delivery to tumor. However, the nonselective in vivo penetration greatly limited the application of CPPs-mediated drug delivery systems. And the treatment of malignant tumors is usually followed by poor prognosis and relapse due to the existence of extravascular core regions of tumor. Thus it is important to endue selective targeting and stronger intratumoral diffusion abilities to CPPs. In this study, an RGD reverse sequence dGR was conjugated to a CPP octa-arginine to form a CendR (R/KXXR/K) motif contained tandem peptide R8-dGR (RRRRRRRRdGR) which could bind to both integrin αvβ3 and neuropilin-1 receptors. The dual receptor recognizing peptide R8-dGR displayed increased cellular uptake and efficient penetration ability into glioma spheroids in vitro. The following in vivo studies indicated the active targeting and intratumoral diffusion capabilities of R8-dGR modified liposomes. When paclitaxel was loaded in the liposomes, PTX-R8-dGR-Lip induced the strongest anti-proliferation effect on both tumor cells and cancer stem cells, and inhibited the formation of vasculogenic mimicry channels in vitro. Finally, the R8-dGR liposomal drug delivery system prolonged the medium survival time of intracranial C6 bearing mice by 2.1-fold compared to the untreated group, and achieved an exhaustive anti-glioma therapy including anti-tumor cells, anti-vasculogenic mimicry and anti-brain cancer stem cells. To sum up, all the results demonstrated that R8-dGR was an ideal dual receptor recognizing CPP with selective glioma targeting and efficient intratumoral diffusion, which could be further used to equip drug delivery system for effective glioma therapy. PMID:26877777

  16. Retinoic acid receptors: from molecular mechanisms to cancer therapy.

    PubMed

    di Masi, Alessandra; Leboffe, Loris; De Marinis, Elisabetta; Pagano, Francesca; Cicconi, Laura; Rochette-Egly, Cécile; Lo-Coco, Francesco; Ascenzi, Paolo; Nervi, Clara

    2015-02-01

    Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported. PMID:25543955

  17. Dual Regulation of R-Type CaV2.3 Channels by M1 Muscarinic Receptors

    PubMed Central

    Jeong, Jin-Young; Kweon, Hae-Jin; Suh, Byung-Chang

    2016-01-01

    Voltage-gated Ca2+ (CaV) channels are dynamically modulated by G protein-coupled receptors (GPCR). The M1 muscarinic receptor stimulation is known to enhance CaV2.3 channel gating through the activation of protein kinase C (PKC). Here, we found that M1 receptors also inhibit CaV2.3 currents when the channels are fully activated by PKC. In whole-cell configuration, the application of phorbol 12-myristate 13-acetate (PMA), a PKC activator, potentiated CaV2.3 currents by ∼two-fold. After the PMA-induced potentiation, stimulation of M1 receptors decreased the CaV2.3 currents by 52 ± 8%. We examined whether the depletion of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is responsible for the muscarinic suppression of CaV2.3 currents by using two methods: the Danio rerio voltage-sensing phosphatase (Dr-VSP) system and the rapamycin-induced translocatable pseudojanin (PJ) system. First, dephosphorylation of PI(4,5)P2 to phosphatidylinositol 4-phosphate (PI(4)P) by Dr-VSP significantly suppressed CaV2.3 currents, by 53 ± 3%. Next, dephosphorylation of both PI(4)P and PI(4,5)P2 to PI by PJ translocation further decreased the current by up to 66 ± 3%. The results suggest that CaV2.3 currents are modulated by the M1 receptor in a dual mode—that is, potentiation through the activation of PKC and suppression by the depletion of membrane PI(4,5)P2. Our results also suggest that there is rapid turnover between PI(4)P and PI(4,5)P2 in the plasma membrane. PMID:26923189

  18. Dual melanocortin-4 receptor and GLP-1 receptor agonism amplifies metabolic benefits in diet-induced obese mice

    PubMed Central

    Clemmensen, Christoffer; Finan, Brian; Fischer, Katrin; Tom, Robby Zachariah; Legutko, Beata; Sehrer, Laura; Heine, Daniela; Grassl, Niklas; Meyer, Carola W; Henderson, Bart; Hofmann, Susanna M; Tschöp, Matthias H; Van der Ploeg, Lex HT; Müller, Timo D

    2015-01-01

    We assessed the efficacy of simultaneous agonism at the glucagon-like peptide-1 receptor (GLP-1R) and the melanocortin-4 receptor (MC4R) for the treatment of obesity and diabetes in rodents. Diet-induced obese (DIO) mice were chronically treated with either the long-acting GLP-1R agonist liraglutide, the MC4R agonist RM-493 or a combination of RM-493 and liraglutide. Co-treatment of DIO mice with RM-493 and liraglutide improves body weight loss and enhances glycemic control and cholesterol metabolism beyond what can be achieved with either mono-therapy. The superior metabolic efficacy of this combination therapy is attributed to the anorectic and glycemic actions of both drugs, along with the ability of RM-493 to increase energy expenditure. Interestingly, compared to mice treated with liraglutide alone, hypothalamic Glp-1r expression was higher in mice treated with the combination therapy after both acute and chronic treatment. Further, RM-493 enhanced hypothalamic Mc4r expression. Hence, co-dosing with MC4R and GLP-1R agonists increases expression of each receptor, indicative of minimized receptor desensitization. Together, these findings suggest potential opportunities for employing combination treatments that comprise parallel MC4R and GLP-1R agonism for the treatment of obesity and diabetes. PMID:25652173

  19. Peripheral Receptor Mechanisms Underlying Orofacial Muscle Pain and Hyperalgesia

    NASA Astrophysics Data System (ADS)

    Saloman, Jami L.

    Musculoskeletal pain conditions, particularly those associated with temporomandibular joint and muscle disorders (TMD) are severely debilitating and affect approximately 12% of the population. Identifying peripheral nociceptive mechanisms underlying mechanical hyperalgesia, a prominent feature of persistent muscle pain, could contribute to the development of new treatment strategies for the management of TMD and other muscle pain conditions. This study provides evidence of functional interactions between ligand-gated channels, P2X3 and TRPV1/TRPA1, in trigeminal sensory neurons, and proposes that these interactions underlie the development of mechanical hyperalgesia. In the masseter muscle, direct P2X3 activation, via the selective agonist αβmeATP, induced a dose- and time-dependent hyperalgesia. Importantly, the αβmeATP-induced hyperalgesia was prevented by pretreatment of the muscle with a TRPV1 antagonist, AMG9810, or the TRPA1 antagonist, AP18. P2X3 was co-expressed with both TRPV1 and TRPA1 in masseter muscle afferents confirming the possibility for intracellular interactions. Moreover, in a subpopulation of P2X3 /TRPV1 positive neurons, capsaicin-induced Ca2+ transients were significantly potentiated following P2X3 activation. Inhibition of Ca2+-dependent kinases, PKC and CaMKII, prevented P2X3-mechanical hyperalgesia whereas blockade of Ca2+-independent PKA did not. Finally, activation of P2X3 induced phosphorylation of serine, but not threonine, residues in TRPV1 in trigeminal sensory neurons. Significant phosphorylation was observed at 15 minutes, the time point at which behavioral hyperalgesia was prominent. Similar data were obtained regarding another nonselective cation channel, the NMDA receptor (NMDAR). Our data propose P2X3 and NMDARs interact with TRPV1 in a facilitatory manner, which could contribute to the peripheral sensitization underlying masseter hyperalgesia. This study offers novel mechanisms by which individual pro-nociceptive ligand

  20. Design and Functional Validation of a Mechanism for Dual-Spinning CubeSats

    NASA Technical Reports Server (NTRS)

    Peters, Eric; Dave, Pratik; Kingsbury, Ryan; Marinan, Anne; Wise, Evan; Pong, Chris; Prinkey, Meghan; Cahoy, Kerri; Miller, David W.; Sklair, Devon

    2014-01-01

    The mission of the Micro-sized Microwave Atmospheric Satellite (MicroMAS) is to collect useful atmospheric images using a miniature passive microwave radiometer payload hosted on a low-cost CubeSat platform. In order to collect this data, the microwave radiometer payload must rotate to scan the ground-track perpendicular to the satellite's direction of travel. A custom motor assembly was developed to facilitate the rotation of the payload while allowing the spacecraft bus to remained fixed in the local-vertical, local-horizontal (LVLH) frame for increased pointing accuracy. This paper describes the mechanism used to enable this dual-spinning operation for CubeSats, and the lessons learned during the design, fabrication, integration, and testing phases of the mechanism's development lifecycle.

  1. Passive and Variable Active Switching Control by Mechanical Energy with Dual Structural Mass Damper

    NASA Astrophysics Data System (ADS)

    Abe, Naoto; Nishioka, Nobuhiro

    Switching vibration control between dynamic absorber and active control has been proposed for the dual structural vibration device on the basis of the kinetic energy as the threshold. For the active control with a fixed feedback gain, the threshold of switching should be set conservative and the effect of the active control was not enough. Therefore, a variable feedback gain control is introduced, which is assumed the mechanical energy as an indicator. It is expected that the actuator moves in a stroke range as possible and the performance will be better than the conventional switching control. In this paper, the effective variable feedback and switching control on the basis of mechanical energy as the two threshold are considered by experimental results.

  2. Investigation of spectroscopy and the dual energy transfer mechanisms of Sm3+-doped telluroborate glasses

    NASA Astrophysics Data System (ADS)

    Van Do, Phan; Tuyen, Vu Phi; Quang, Vu Xuan; Hung, Le Xuan; Thanh, Luong Duy; Ngoc, Tran; Van Tam, Ngo; Huy, Bui The

    2016-05-01

    The absorption, luminescence, Raman spectra and lifetimes of Sm-doped alkali telluroborate glasses (TB glasses) TB:Sm3+ have been investigated. The dual energy transfers including energy transfer between Sm3+ - Sm3+ pairs and Sm3+ - non-bridging oxygen (NBO) intrinsic defects were investigated. The concentration quenching of luminescence intensity was explained by the non-radiative energy transfer between the Sm3+ ions through the cross-relaxation mechanism. The decay curves are single exponentials with low concentrations (lower 0.10 mol%) and become non-exponentials at higher concentrations. The non-exponential decay curves are fitted to the Inokuti and Hirayama model to give the energy transfer parameters between Sm3+ ions. The dominant interaction mechanism for energy transfer process is dipole-dipole interaction. The energy transfer induced Sm3+ photoluminescence enhancement in tellurite glass was experimentally studied and confirmed.

  3. Structural insights into the dual-targeting mechanism of Nutlin-3

    SciTech Connect

    Shin, Jae-Sun; Ha, Ji-Hyang; He, Fahu; Muto, Yutaka; Ryu, Kyoung-Seok; Yoon, Ho Sup; Kang, Sunghyun; Park, Sung Goo; Park, Byoung Chul; Choi, Sang-Un; Chi, Seung-Wook

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Universal binding of Nutlin-3 with diverse anti-apoptotic Bcl-2 family proteins. Black-Right-Pointing-Pointer Nutlin-3 binds to the BH3 peptide-binding grooves of Bcl-2 family proteins. Black-Right-Pointing-Pointer A conserved Bcl-X{sub L} binding mechanism of the Nutlin-3 and BH3-mimetic compounds. Black-Right-Pointing-Pointer A molecular basis for the transcription-independent apoptosis by Nutlin-3. Black-Right-Pointing-Pointer Structural insights into the dual-targeting mechanism of Nutlin-3. -- Abstract: Multi-targeting therapy is an emerging strategy of drug discovery to improve therapeutic efficacy, safety and resistance profiles. In this study, we monitored the binding of a potent MDM2 inhibitor Nutlin-3 with anti-apoptotic Bcl-2 family proteins using NMR spectroscopy. Our results showed the universal binding of Nutlin-3 with diverse anti-apoptotic Bcl-2 family proteins. Taken together with the binding data for Nutlin-3 analogs, the structural model of the Bcl-X{sub L}/Nutlin-3 complex showed that the binding mode of Nutlin-3 resembles that of the Bcl-X{sub L}/Bcl-2 inhibitors, suggesting the molecular mechanism of transcription-independent mitochondrial apoptosis by Nutlin-3. Finally, our structural comparison provides structural insights into the dual-targeting mechanism of how Nutlin-3 can bind to two different target proteins, MDM2 and anti-apoptotic Bcl-2 family proteins in a similar manner.

  4. Methylphenidate Enhances NMDA-Receptor Response in Medial Prefrontal Cortex via Sigma-1 Receptor: A Novel Mechanism for Methylphenidate Action

    PubMed Central

    Liu, Yue; Ji, Xiao-Hua; Peng, Ji-Yun; Zhang, Xue-Han; Zhen, Xue-Chu; Li, Bao-Ming

    2012-01-01

    Methylphenidate (MPH), commercially called Ritalin or Concerta, has been widely used as a drug for Attention Deficit Hyperactivity Disorder (ADHD). Noteworthily, growing numbers of young people using prescribed MPH improperly for pleasurable enhancement, take high risk of addiction. Thus, understanding the mechanism underlying high level of MPH action in the brain becomes an important goal nowadays. As a blocker of catecholamine transporters, its therapeutic effect is explained as being due to proper modulation of D1 and α2A receptor. Here we showed that higher dose of MPH facilitates NMDA-receptor mediated synaptic transmission via a catecholamine-independent mechanism, in layer V∼VI pyramidal cells of the rat medial prefrontal cortex (PFC). To indicate its postsynaptic action, we next found that MPH facilitates NMDA-induced current and such facilitation could be blocked by σ1 but not D1/5 and α2 receptor antagonists. And this MPH eliciting enhancement of NMDA-receptor activity involves PLC, PKC and IP3 receptor mediated intracellular Ca2+ increase, but does not require PKA and extracellular Ca2+ influx. Our additional pharmacological studies confirmed that higher dose of MPH increases locomotor activity via interacting with σ1 receptor. Together, the present study demonstrates for the first time that MPH facilitates NMDA-receptor mediated synaptic transmission via σ1 receptor, and such facilitation requires PLC/IP3/PKC signaling pathway. This novel mechanism possibly explains the underlying mechanism for MPH induced addictive potential and other psychiatric side effects. PMID:23284812

  5. Discovery of substituted lactams as novel dual orexin receptor antagonists. Synthesis, preliminary structure-activity relationship studies and efforts towards improved metabolic stability and pharmacokinetic properties. Part 1.

    PubMed

    Sifferlen, Thierry; Boller, Amandine; Chardonneau, Audrey; Cottreel, Emmanuelle; Hoecker, Johannes; Aissaoui, Hamed; Williams, Jodi T; Brotschi, Christine; Heidmann, Bibia; Siegrist, Romain; Gatfield, John; Treiber, Alexander; Brisbare-Roch, Catherine; Jenck, Francois; Boss, Christoph

    2014-02-15

    Starting from a thiazolidin-4-one HTS hit, a novel series of substituted lactams was identified and developed as dual orexin receptor antagonists. In this Letter, we describe our initial efforts towards the improvement of potency and metabolic stability. These investigations delivered optimized lead compounds with CNS drug-like properties suitable for further optimization. PMID:24447850

  6. Hybrids from 4-anilinoquinazoline and hydroxamic acid as dual inhibitors of vascular endothelial growth factor receptor-2 and histone deacetylase.

    PubMed

    Peng, Fan-Wei; Wu, Ting-Ting; Ren, Zi-Wei; Xue, Jia-Yu; Shi, Lei

    2015-11-15

    A series of hybrids derived from 4-anilinoquinazoline and hydroxamic acid were designed, synthesized, and evaluated as dual inhibitors of vascular endothelia growth factor receptor-2 (VEGFR-2) tyrosine kinase and histone deacetylase (HDAC). Most of these compounds exhibited potent HDAC inhibition and moderate VEGFR-2 inhibition. Among them, compound 6l exhibited the most potent inhibitory activities against VEGFR-2 (IC50=84 nM) and HDAC (IC50=2.8 nM). It also showed the most potent antiproliferative ability against MCF-7, a human breast cancer line, with IC50 of 1.2 μM. Docking simulation supported the initial pharmacophoric hypothesis and suggested a common mode of interaction of compound 6l at the active binding sites of VEGFR-2 and HDAC. PMID:26475519

  7. Multi-functionalized hyaluronic acid nanogels crosslinked with carbon dots as dual receptor-mediated targeting tumor theranostics.

    PubMed

    Jia, Xu; Han, Yu; Pei, Mingliang; Zhao, Xubo; Tian, Kun; Zhou, Tingting; Liu, Peng

    2016-11-01

    Hyaluronic acid (HA)-based theranostic nanogels were designed for the tumor diagnosis and chemotherapy, by crosslinking the folate-terminated poly(ethylene glycol) modified hyaluronic acid (FA-PEG-HA) with carbon dots (CDs) for the first time. Due to the extraordinary fluorescence property of the integrated CDs, the theranostic nanogels could be used for the real-time and noninvasive location tracking to cancer cells. HA could load Doxorubicin (DOX) via electrostatic interaction with a drug-loading capacity (DLC) of 32.5%. The nanogels possessed an ideal release of DOX in the weak acid environment, while it was restrained in the neutral media, demonstrating the pH-responsive controlled release behavior. The cytotoxicity and cellular uptake results clearly illustrated that most DOX was released and accumulated in the cell nuclei and killed the cancer cells efficaciously, due to their dual receptor-mediated targeting characteristics. PMID:27516286

  8. Dual regulation of mast cell degranulation through IgE receptor-mediated modulation of M₂-type pyruvate kinase.

    PubMed

    Zheng, Mei; Cho, Dong-Im; Le, Hang Thi; Cheon, Seung Hoon; Kim, Kyeong-Man

    2014-01-01

    It was reported that mast cell degranulation is inversely related to the enzymatic activity of M₂-type pyruvate kinase (M₂PK). This study shows that activation of high-affinity IgE receptor (FcεRI) evokes a sequential dual regulation of M₂PK, i.e., an immediate decrement followed by slow phase increment of enzymatic activities. Changes in the activities of M₂PK and mast cell degranulation showed similar time course after antigenic stimulation of FcεRI. The immediate inhibition of M₂PK involved tyrosine phosphorylation, and subsequently led to a cellular accumulation of glycolytic intermediates, including fructose 1,6-biphosphate (FBP), a feedforward activator of M₂PK. As the cellular levels of FBP were increased, both the enzymatic acitivity of M₂PK and mast cell degranulation slowly returned to near basal levels. A-Raf, when exogenously introduced into RBL-2H3 cells, phosphorylated M₂PK on the serine residues, elevated enzyme activities of M₂PK, and resulted in the inhibition of degranulation. These results suggest that dual regulation of M₂PK which involves the phosphorylation of M₂PK and accumulation of a feedforward activator of M₂PK plays important roles in the control of mast cell degranulation. PMID:24497038

  9. Structure and mechanism of activity-based inhibition of the EGF-Receptor by Mig6

    PubMed Central

    Ficarro, Scott B.; Zhang, Yi; Lee, Byung Il; Cho, Ahye; Kim, Kihong; Park, Angela K.J.; Park, Woong-Yang; Murray, Bradley; Meyerson, Matthew; Beroukhim, Rameen; Marto, Jarrod A.; Cho, Jeonghee; Eck, Michael J.

    2016-01-01

    Mig6 is a feedback inhibitor that directly binds, inhibits and drives internalization of ErbB-family receptors. Mig6 selectivity targets activated receptors. Here we find that the EGF receptor phosphorylates Mig6 on Tyr394, and that this phosphorylation is primed by prior phosphorylation of an adjacent residue, Tyr395, by Src. Crystal structures of human EGFR–Mig6 complexes reveal the structural basis for enhanced phosphorylation of primed Mig6 and show how Mig6 rearranges after phosphorylation by EGFR to effectively irreversibly inhibit the same receptor that catalyzed its phosphorylation. This dual phosphorylation site allows Mig6 to inactivate EGFR in a manner that requires activation of the target receptor and can be modulated by Src. Loss of Mig6 is a driving event in human cancer; analysis of 1057 gliomas reveals frequent focal deletions of ERRFI, the gene that encodes Mig6, in EGFR-amplified glioblastomas. PMID:26280531

  10. The mechanical design of a high-power, dual frequency, millimeter-wave antenna feed system

    NASA Astrophysics Data System (ADS)

    Moldovan, N.

    1984-03-01

    This paper describes the mechanical design and fabrication of a high power, dual-frequency, millimeter-wave feed system. The feed system consists of a 35 GHz circularly polarized monopulse subsystem and a 95 GHz circularly polarized feed. The 35 GHz feed is designed to handle 5.0 kW average and 50 kW peak power and the 95 GHz 1.2 kW average and 12 kW peak power. A Frequency Selective Surface (FSS) is incorporated to provide dual frequency capability. Each feed is liquid cooled to provide suitable cooling during high power operation. The two feeds and FSS assembly are mounted in a supporting space frame to provide an optically integral assembly ready to be mounted at the vertex of a reflector. The paper addresses three main areas: the general feed design, which includes the manufacturing processes, flange considerations and waveguide cooling; the FSS fabrication; and beam alignment for both the primary and secondary field.

  11. Microstructure evolution and mechanical behavior of a high strength dual-phase steel under monotonic loading

    SciTech Connect

    Nesterova, E.V.; Bouvier, S.; Bacroix, B.

    2015-02-15

    Transmission electron microscopy (TEM) microstructures of a high-strength dual-phase steel DP800 have been examined after moderate plastic deformations in simple shear and uniaxial tension. Special attention has been paid to the effect of the intergranular hard phase (martensite) on the microstructure evolution in the near-grain boundary regions. Quantitative parameters of dislocation patterning have been determined and compared with the similar characteristics of previously examined single-phase steels. The dislocation patterning in the interiors of the ferrite grains in DP800 steel is found to be similar to that already observed in the single-phase IF (Interstitial Free) steel whereas the martensite-affected zones present a delay in patterning and display very high gradients of continuous (gradual) disorientations associated with local internal stresses. The above stresses are shown to control the work-hardening of dual-phase materials at moderate strains for monotonic loading and are assumed to influence their microstructure evolution and mechanical behavior under strain-path changes. - Highlights: • The microstructure evolution has been studied by TEM in a DP800 steel. • It is influenced by both martensite and dislocations in the initial state. • The DP800 steel presents a high work-hardening rate due to internal stresses.

  12. Actin-dependent mechanisms in AMPA receptor trafficking

    PubMed Central

    Hanley, Jonathan G.

    2014-01-01

    The precise regulation of AMPA receptor (AMPAR) number and subtype at the synapse is crucial for the regulation of excitatory neurotransmission, synaptic plasticity and the consequent formation of appropriate neural circuits for learning and memory. AMPAR trafficking involves the dynamic processes of exocytosis, endocytosis and endosomal recycling, all of which involve the actin cytoskeleton. The actin cytoskeleton is highly dynamic and highly regulated by an abundance of actin-binding proteins and upstream signaling pathways that modulate actin polymerization and depolymerization. Actin dynamics generate forces that manipulate membranes in the process of vesicle biogenesis, and also for propelling vesicles through the cytoplasm to reach their destination. In addition, trafficking mechanisms exploit more stable aspects of the actin cytoskeleton by using actin-based motor proteins to traffic vesicular cargo along actin filaments. Numerous studies have shown that actin dynamics are critical for AMPAR localization and function. The identification of actin-binding proteins that physically interact with AMPAR subunits, and research into their mode of action is starting to shed light on the mechanisms involved. Such proteins either regulate actin dynamics to modulate mechanical forces exerted on AMPAR-containing membranes, or associate with actin filaments to target or transport AMPAR-containing vesicles to specific subcellular regions. In addition, actin-regulatory proteins that do not physically interact with AMPARs may influence AMPAR trafficking by regulating the local actin environment in the dendritic spine. PMID:25429259

  13. Leaky ryanodine receptors contribute to diaphragmatic weakness during mechanical ventilation.

    PubMed

    Matecki, Stefan; Dridi, Haikel; Jung, Boris; Saint, Nathalie; Reiken, Steven R; Scheuermann, Valérie; Mrozek, Ségolène; Santulli, Gaetano; Umanskaya, Alisa; Petrof, Basil J; Jaber, Samir; Marks, Andrew R; Lacampagne, Alain

    2016-08-01

    Ventilator-induced diaphragmatic dysfunction (VIDD) refers to the diaphragm muscle weakness that occurs following prolonged controlled mechanical ventilation (MV). The presence of VIDD impedes recovery from respiratory failure. However, the pathophysiological mechanisms accounting for VIDD are still not fully understood. Here, we show in human subjects and a mouse model of VIDD that MV is associated with rapid remodeling of the sarcoplasmic reticulum (SR) Ca(2+) release channel/ryanodine receptor (RyR1) in the diaphragm. The RyR1 macromolecular complex was oxidized, S-nitrosylated, Ser-2844 phosphorylated, and depleted of the stabilizing subunit calstabin1, following MV. These posttranslational modifications of RyR1 were mediated by both oxidative stress mediated by MV and stimulation of adrenergic signaling resulting from the anesthesia. We demonstrate in the murine model that such abnormal resting SR Ca(2+) leak resulted in reduced contractile function and muscle fiber atrophy for longer duration of MV. Treatment with β-adrenergic antagonists or with S107, a small molecule drug that stabilizes the RyR1-calstabin1 interaction, prevented VIDD. Diaphragmatic dysfunction is common in MV patients and is a major cause of failure to wean patients from ventilator support. This study provides the first evidence to our knowledge of RyR1 alterations as a proximal mechanism underlying VIDD (i.e., loss of function, muscle atrophy) and identifies RyR1 as a potential target for therapeutic intervention. PMID:27457930

  14. MOLECULAR TARGETS AND MECHANISMS FOR ETHANOL ACTION IN GLYCINE RECEPTORS

    PubMed Central

    Perkins, Daya I.; Trudell, James R.; Crawford, Daniel K.; Alkana, Ronald L.; Davies, Daryl L.

    2010-01-01

    Glycine receptors (GlyRs) are recognized as the primary mediators of neuronal inhibition in the spinal cord, brain stem and higher brain regions known to be sensitive to ethanol. Building evidence supports the notion that ethanol acting on GlyRs causes at least a subset of its behavioral effects and may be involved in modulating ethanol intake. For over two decades, GlyRs have been studied at the molecular level as targets for ethanol action. Despite the advances in understanding the effects of ethanol in vivo and in vitro, the precise molecular sites and mechanisms of action for ethanol in ligand-gated ion channels in general, and in GlyRs specifically, are just now starting to become understood. The present review focuses on advances in our knowledge produced by using molecular biology, pressure antagonism, electrophysiology and molecular modeling strategies over the last two decades to probe, identify and model the initial molecular sites and mechanisms of ethanol action in GlyRs. The molecular targets on the GlyR are covered on a global perspective, which includes the intracellular, transmembrane and extracellular domains. The latter has received increasing attention in recent years. Recent molecular models of the sites of ethanol action in GlyRs and their implications to our understanding of possible mechanism of ethanol action and novel targets for drug development in GlyRs are discussed. PMID:20399807

  15. Dual Sensing by Simple Heteroditopic Salt Receptors Containing an Anthraquinone Unit.

    PubMed

    Karbarz, Marcin; Romański, Jan

    2016-04-01

    We synthesized simple ion pair receptors consisting of a crown ether cation binding site and an anthraquinone-supported thiourea anion binding domain and studied their anion-, cation-, and salt-binding properties using spectroscopic, spectrophotometric, and electrochemical measurements in acetonitrile solution. Apart from carboxylate anions, which cause deprotonation, all the anions tested were found to associate with receptor 1 more strongly in the presence of sodium cations, whereas in the presence of potassium or ammonium cation the anion binding strength was greatly diminished. A homotopic anion receptor 3, lacking a crown ether unit, was unable to bind sodium salt more strongly than tetrabutylammonium salts. Solution and solid-state X-ray measurements revealed that strong sodium coordination with the cation-binding domain is responsible for the salt-binding enhancement. Electrochemical measurements showed that the addition of anions to the receptor 1 pretreated with sodium cations resulted in greater changes in reduction potentials compared to the addition of anions to receptor 1 in the absence of Na(+). PMID:26981921

  16. 2,4-Diaminopyrimidines as dual ligands at the histamine H1 and H4 receptor-H1/H4-receptor selectivity.

    PubMed

    Hammer, Sebastian G; Gobleder, Susanne; Naporra, Franziska; Wittmann, Hans-Joachim; Elz, Sigurd; Heinrich, Markus R; Strasser, Andrea

    2016-01-15

    Distinct diaminopyrimidines, for example, 4-(4-methylpiperazin-1-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine are histamine H4 receptor (H4R) antagonists and show high affinity to the H4R, but only a moderate affinity to the histamine H1 receptor (H1R). Within previous studies it was shown that an aromatic side chain with a distinct distance to the basic amine and aromatic core is necessary for affinity to the human H1R (hH1R). Thus, a rigid aminopyrimidine with a tricyclic core was used as a lead structure. There, (1) the flexible aromatic side chain was introduced, (2) the substitution pattern of the pyrimidine core was exchanged and (3) rigidity was decreased by opening the tricyclic core. Within the present study, two compounds with similar affinity in the one digit μM range to the human H1R and H4R were identified. While the affinity at the hH1R increased about 4- to 8-fold compared to the parent diaminopyrimidine, the affinity to the hH4R decreased about 5- to 8-fold. In addition to the parent diaminopyrimidine, two selected compounds were docked into the H1R and H4R and molecular dynamic studies were performed to predict the binding mode and explain the experimental results on a molecular level. The two new compounds may be good lead structures for the development of dual H1/H4 receptor ligands with affinities in the same range. PMID:26718844

  17. Receptor binding mode and pharmacological characterization of a potent and selective dual CXCR1/CXCR2 non-competitive allosteric inhibitor

    PubMed Central

    Bertini, R; Barcelos, LS; Beccari, AR; Cavalieri, B; Moriconi, A; Bizzarri, C; Di Benedetto, P; Di Giacinto, C; Gloaguen, I; Galliera, E; Corsi, MM; Russo, RC; Andrade, SP; Cesta, MC; Nano, G; Aramini, A; Cutrin, JC; Locati, M; Allegretti, M; Teixeira, MM

    2012-01-01

    BACKGROUND AND PURPOSE DF 2156A is a new dual inhibitor of IL-8 receptors CXCR1 and CXCR2 with an optimal pharmacokinetic profile. We characterized its binding mode, molecular mechanism of action and selectivity, and evaluated its therapeutic potential. EXPERIMENTAL APPROACH The binding mode, molecular mechanism of action and selectivity were investigated using chemotaxis of L1.2 transfectants and human leucocytes, in addition to radioligand and [35S]-GTPγS binding approaches. The therapeutic potential of DF 2156A was evaluated in acute (liver ischaemia and reperfusion) and chronic (sponge-induced angiogenesis) experimental models of inflammation. KEY RESULTS A network of polar interactions stabilized by a direct ionic bond between DF 2156A and Lys99 on CXCR1 and the non-conserved residue Asp293 on CXCR2 are the key determinants of DF 2156A binding. DF 2156A acted as a non-competitive allosteric inhibitor blocking the signal transduction leading to chemotaxis without altering the binding affinity of natural ligands. DF 2156A effectively and selectively inhibited CXCR1/CXCR2-mediated chemotaxis of L1.2 transfectants and leucocytes. In a murine model of sponge-induced angiogenesis, DF 2156A reduced leucocyte influx, TNF-α production and neovessel formation. In vitro, DF 2156A prevented proliferation, migration and capillary-like organization of HUVECs in response to human IL-8. In a rat model of liver ischaemia and reperfusion (I/R) injury, DF 2156A decreased PMN and monocyte-macrophage infiltration and associated hepatocellular injury. CONCLUSION AND IMPLICATIONS DF 2156A is a non-competitive allosteric inhibitor of both IL-8 receptors CXCR1 and CXCR2. It prevented experimental angiogenesis and hepatic I/R injury in vivo and, therefore, has therapeutic potential for acute and chronic inflammatory diseases. PMID:21718305

  18. Mechanical design of SST-GATE, a dual-mirror telescope for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dournaux, Jean-Laurent; Huet, Jean-Michel; Amans, Jean-Philippe; Dumas, Delphine; Laporte, Philippe; Sol, Hélène; Blake, Simon

    2014-07-01

    The Cherenkov Telescope Array (CTA) project aims to create the next generation Very High Energy (VHE) gamma-ray telescope array. It will be devoted to the observation of gamma rays over a wide band of energy, from a few tens of GeV to more than 100 TeV. Two sites are foreseen to view the whole sky where about 100 telescopes, composed of three different classes, related to the specific energy region to be investigated, will be installed. Among these, the Small Size class of Telescopes, SSTs, are devoted to the highest energy region, to beyond 100 TeV. Due to the large number of SSTs, their unit cost is an important parameter. At the Observatoire de Paris, we have designed a prototype of a Small Size Telescope named SST-GATE, based on the dual-mirror Schwarzschild-Couder optical formula, which has never before been implemented in the design of a telescope. Over the last two years, we developed a mechanical design for SST-GATE from the optical and preliminary mechanical designs made by the University of Durham. The integration of this telescope is currently in progress. Since the early stages of mechanical design of SST-GATE, finite element method has been used employing shape and topology optimization techniques to help design several elements of the telescope. This allowed optimization of the mechanical stiffness/mass ratio, leading to a lightweight and less expensive mechanical structure. These techniques and the resulting mechanical design are detailed in this paper. We will also describe the finite element analyses carried out to calculate the mechanical deformations and the stresses in the structure under observing and survival conditions.

  19. Correlation of Mechanical Properties with Fracture Surface Features in a Newly Developed Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Mazaheri, Y.; Saeidi, N.; Kermanpur, A.; Najafizadeh, A.

    2015-04-01

    Dual-phase (DP) steels were produced by a newly developed method utilizing simple cold-rolling and subsequent short intercritical annealing of a martensite-ferrite duplex starting structure. Tensile testing revealed an excellent strength-elongation balance (UTS × UE ≈ 110-150 J/cm3) for the DP steels in comparison with the commercially used high strength steels. Fracture surfaces of the tensile specimens were studied by scanning electron microscopy analysis and image processing. Mechanical properties were correlated with fracture surface features. It was found that the variation of the total elongation and strength-elongation balance with the martensite volume fraction could be well correlated with the variation of the average dimple area. The variation of the yield strength and dimple areal density with the martensite volume fraction followed the same trend.

  20. Enhancing the Mechanical Properties and Formability of Low Carbon Steel with Dual-Phase Microstructures

    NASA Astrophysics Data System (ADS)

    Habibi, M.; Hashemi, R.; Sadeghi, E.; Fazaeli, A.; Ghazanfari, A.; Lashini, H.

    2016-02-01

    In the present study, a special heat treatment cycle (step quenching) was used to produce a dual-phase (DP) microstructure in low carbon steel. By producing this DP microstructure, the mechanical properties of the investigated steel such as yield stress, tensile strength, and Vickers hardness were increased 14, 55, and 38%, respectively. In order to investigate the effect of heat treatment on formability of the steel, Nakazima forming test was applied and subsequently finite element base modeling was used to predict the outcome on forming limit diagrams. The results show that the DP microstructure also has a positive effect on formability. The results of finite element simulations are in a good agreement with those obtained by the experimental test.

  1. Mechanism-guided library design and dual genetic selection of synthetic OFF riboswitches.

    PubMed

    Muranaka, Norihito; Abe, Koichi; Yokobayashi, Yohei

    2009-09-21

    After the recent discovery of bacterial riboswitches, synthetic riboswitches have been engineered by using natural and artificial RNA aptamers. In contrast to natural riboswitches, the majority of synthetic riboswitches in bacteria reported to date are ON switches that activate gene expression in response to the aptamer ligand. In this study, we adopted a mechanism-guided approach to design libraries predisposed to contain OFF riboswitches that respond to thiamine pyrophosphate (TPP). The first library design exploited a pseudo-Shine-Dalgarno (SD) sequence located near the 3'-end of the TPP aptamer, which would be less accessible to the ribosome when the aptamer is bound to TPP. In the second library, an SD sequence was strategically placed in the aptamer's P1 stem, which is stabilized upon ligand binding. OFF riboswitches were obtained by dual genetic selection of these libraries. The results underscore the importance of effective library design to achieve desired riboswitch functions. PMID:19658147

  2. Solid electrically tunable dual-focus lens using freeform surfaces and microelectro-mechanical-systems actuator.

    PubMed

    Zou, Yongchao; Zhang, Wei; Chau, Fook Siong; Zhou, Guangya

    2016-01-01

    In this Letter, a miniature solid tunable dual-focus (DF) lens, which is designed using freeform optical surfaces and driven by one microelectro-mechanical-systems rotary actuator, is reported. Such a lens consists of two optical elements, each having a flat surface and one freeform surface optimized by ray-tracing technology. By changing the relative rotation angle of the two lens elements, the lens configuration can form double foci with corresponding focal lengths varied simultaneously, resulting in a tunable DF effect. Results show that one of the focal lengths is tuned from about 30 to 20 mm, while the other one is varied from about 30 to 60 mm, with a maximum rotation angle of about 8.2 deg. PMID:26696143

  3. Dual Endothelin Receptor Blockade Abrogates Right Ventricular Remodeling and Biventricular Fibrosis in Isolated Elevated Right Ventricular Afterload

    PubMed Central

    Nielsen, Eva Amalie; Sun, Mei; Honjo, Osami; Hjortdal, Vibeke E.; Redington, Andrew N.; Friedberg, Mark K.

    2016-01-01

    Background Pulmonary arterial hypertension is usually fatal due to right ventricular failure and is frequently associated with co-existing left ventricular dysfunction. Endothelin-1 is a powerful pro-fibrotic mediator and vasoconstrictor that is elevated in pulmonary arterial hypertension. Endothelin receptor blockers are commonly used as pulmonary vasodilators, however their effect on biventricular injury, remodeling and function, despite elevated isolated right ventricular afterload is unknown. Methods Elevated right ventricular afterload was induced by progressive pulmonary artery banding. Seven rabbits underwent pulmonary artery banding without macitentan; 13 received pulmonary artery banding + macitentan; and 5 did not undergo inflation of the pulmonary artery band (sham-operated controls). Results: Right and left ventricular collagen content was increased with pulmonary artery banding compared to sham-operated controls and ameliorated by macitentan. Right ventricular fibrosis signaling (connective tissue growth factor and endothelin-1 protein levels); extra-cellular matrix remodeling (matrix-metalloproteinases 2 and 9), apoptosis and apoptosis-related peptides (caspases 3 and 8) were increased with pulmonary artery banding compared with sham-operated controls and decreased with macitentan. Conclusion Isolated right ventricular afterload causes biventricular fibrosis, right ventricular apoptosis and extra cellular matrix remodeling, mediated by up-regulation of endothelin-1 and connective tissue growth factor signaling. These pathological changes are ameliorated by dual endothelin receptor blockade despite persistent elevated right ventricular afterload. PMID:26765263

  4. Universal expression and dual function of the atypical chemokine receptor D6 on innate-like B cells in mice

    PubMed Central

    Hansell, Chris A. H.; Schiering, Chris; Kinstrie, Ross; Ford, Laura; Bordon, Yvonne; McInnes, Iain B.; Goodyear, Carl S.; Nibbs, Robert J. B.

    2011-01-01

    Mouse innate-like B cells are a heterogeneous collection of multifunctional cells that control infection, play housekeeping roles, contribute to adaptive immunity, and suppress inflammation. We show that, amongst leukocytes, chemokine internalisation by the D6 receptor is a unique and universal feature of all known innate-like B cell populations and, to our knowledge, the most effective unifying marker of these cells. Moreover, we identify novel D6active B1 cell subsets, including those we term B1d, which lack CD5 and CD11b but exhibit typical B1 cell properties, including spontaneous ex vivo production of IgM, interleukin-10, and anti-phosphorylcholine antibody. The unprecedented opportunity to examine D6 on primary cells has allowed us to clarify its ligand specificity and show that, consistent with a scavenging role, D6 internalises chemokines but cannot induce Ca2+ fluxes or chemotaxis. Unexpectedly, however, D6 can also suppress the function of CXCR5, a critical chemokine receptor in innate-like B cell biology. This is associated with a reduction in B1 cells and circulating class-switched anti-phosphorylcholine antibody in D6-deficient mice. Thus, we identify a unifying marker of innate-like B cells; describe novel B1 cell subsets; reveal a dual role for D6; and provide the first evidence of defects in resting D6-deficient mice. PMID:21450903

  5. Synergistic growth inhibitory effects of the dual endothelin-1 receptor antagonist bosentan on pancreatic stellate and cancer cells.

    PubMed

    Fitzner, Brit; Brock, Peter; Holzhüter, Stephanie-Anna; Nizze, Horst; Sparmann, Gisela; Emmrich, Jörg; Liebe, Stefan; Jaster, Robert

    2009-02-01

    Pancreatic stellate cells (PSC) play a key role in pancreatic fibrosis. Activation of PSC occurs in response to pro-fibrogenic stimuli and is maintained by autocrine loops of mediators, such as endothelin (ET)-1. Here, we have evaluated effects of the dual ET receptor antagonist bosentan in models of pancreatic fibrogenesis and cancer. Cell culture studies revealed that PSC and DSL6A pancreatic cancer cells expressed both ET-1 and ET receptors. Bosentan efficiently inhibited proliferation of both cell types and collagen synthesis in PSC. Expression of the myofibroblastic marker alpha-smooth muscle actin, connective tissue growth factor, and ET-1 itself in PSC was reduced, while expression of matrix metalloproteinase-9 was enhanced. Like PSC, DSL6A cells secrete less ET-1 when cultured with bosentan. In a rat model of pancreatic fibrosis, chronic pancreatitis induced by dibutyltin dichloride, a tendency towards a diminished disease progression was observed in a subgroup of rats with less severe disease. Together, our results indicate that bosentan exerts antifibrotic and antitumor effects in vitro. Its efficiency in vivo warrants further investigation. PMID:18612819

  6. Strain rate effects on the mechanical behavior of two Dual Phase steels in tension

    NASA Astrophysics Data System (ADS)

    Cadoni, E.; Singh, N. K.; Forni, D.; Singha, M. K.; Gupta, N. K.

    2016-05-01

    This paper presents an experimental investigation on the strain rate sensitivity of Dual Phase steel 1200 (DP1200) and Dual Phase steel 1400 (DP1400) under uni-axial tensile loads in the strain rate range from 0.001 s-1 to 600 s-1. These materials are advanced high strength steels (AHSS) having high strength, high capacity to dissipate crash energy and high formability. Flat sheet specimens of the materials having gauge length 10 mm, width 4 mm and thickness 2 mm (DP1200) and 1.25 mm (DP1400), are tested at room temperature (20∘C) on electromechanical universal testing machine to obtain their stress-strain relation under quasi-static condition (0.001 s-1), and on Hydro-Pneumatic machine and modified Hopkinson bar to study their mechanical behavior at medium (3 s-1, and 18 s-1) and high strain rates (200 s-1, 400 s-1, and 600 s-1) respectively. Tests under quasi-static condition are performed at high temperature (200∘C) also, and found that tensile flow stress is a increasing function of temperature. The stress-strain data has been analysed to determine the material parameters of the Cowper-Symonds and the Johnson-Cook models. A simple modification of the Johnson-Cook model has been proposed in order to obtain a better fit of tests at high temperatures. Finally, the fractographs of the broken specimens are taken by scanning electron microscope (SEM) to understand the fracture mechanism of these advanced high strength steels at different strain rates.

  7. Strain rate effects on the mechanical behavior of two Dual Phase steels in tension

    NASA Astrophysics Data System (ADS)

    Cadoni, E.; Singh, N. K.; Forni, D.; Singha, M. K.; Gupta, N. K.

    2016-04-01

    This paper presents an experimental investigation on the strain rate sensitivity of Dual Phase steel 1200 (DP1200) and Dual Phase steel 1400 (DP1400) under uni-axial tensile loads in the strain rate range from 0.001 s-1 to 600 s-1. These materials are advanced high strength steels (AHSS) having high strength, high capacity to dissipate crash energy and high formability. Flat sheet specimens of the materials having gauge length 10 mm, width 4 mm and thickness 2 mm (DP1200) and 1.25 mm (DP1400), are tested at room temperature (20∘C) on electromechanical universal testing machine to obtain their stress-strain relation under quasi-static condition (0.001 s-1), and on Hydro-Pneumatic machine and modified Hopkinson bar to study their mechanical behavior at medium (3 s-1, and 18 s-1) and high strain rates (200 s-1, 400 s-1, and 600 s-1) respectively. Tests under quasi-static condition are performed at high temperature (200∘C) also, and found that tensile flow stress is a increasing function of temperature. The stress-strain data has been analysed to determine the material parameters of the Cowper-Symonds and the Johnson-Cook models. A simple modification of the Johnson-Cook model has been proposed in order to obtain a better fit of tests at high temperatures. Finally, the fractographs of the broken specimens are taken by scanning electron microscope (SEM) to understand the fracture mechanism of these advanced high strength steels at different strain rates.

  8. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor-neprilysin inhibitor (ARNi).

    PubMed

    Gu, Jessie; Noe, Adele; Chandra, Priya; Al-Fayoumi, Suliman; Ligueros-Saylan, Monica; Sarangapani, Ramesh; Maahs, Suzanne; Ksander, Gary; Rigel, Dean F; Jeng, Arco Y; Lin, Tsu-Han; Zheng, Weiyi; Dole, William P

    2010-04-01

    Angiotensin receptor blockade and neprilysin (NEP) inhibition together offer potential benefits for the treatment of hypertension and heart failure. LCZ696 is a novel single molecule comprising molecular moieties of valsartan and NEP inhibitor prodrug AHU377 (1:1 ratio). Oral administration of LCZ696 caused dose-dependent increases in atrial natriuretic peptide immunoreactivity (due to NEP inhibition) in Sprague-Dawley rats and provided sustained, dose-dependent blood pressure reductions in hypertensive double-transgenic rats. In healthy participants, a randomized, double-blind, placebo-controlled study (n = 80) of single-dose (200-1200 mg) and multiple-dose (50-900 mg once daily for 14 days) oral administration of LCZ696 showed that peak plasma concentrations were reached rapidly for valsartan (1.6-4.9 hours), AHU377 (0.5-1.1 hours), and its active moiety, LBQ657 (1.8-3.5 hours). LCZ696 treatment was associated with increases in plasma cGMP, renin concentration and activity, and angiotensin II, providing evidence for NEP inhibition and angiotensin receptor blockade. In a randomized, open-label crossover study in healthy participants (n = 56), oral LCZ696 400 mg and valsartan 320 mg were shown to provide similar exposure to valsartan (geometric mean ratio [90% confidence interval]: AUC(0-infinity) 0.90 [0.82-0.99]). LCZ696 was safe and well tolerated. These data support further clinical development of LCZ696, a novel, orally bioavailable, dual-acting angiotensin receptor-NEP inhibitor (ARNi) for hypertension and heart failure. PMID:19934029

  9. A smart pinless ejection mechanism using dual-resonance excitation Langevin piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Jen; Fu, Kuo-Chieh; Wang, Chun-Chieh

    2016-01-01

    This study investigated a smart pinless ejection mechanism comprising two dual-resonance excitation Langevin piezoelectric transducers (DRELPTs) for keeping the injection parts intact and protecting their top and bottom surfaces from scarring during plastic injection molding. The dimensions of each DRELPT were determined using longitudinal vibration models, and an optimization method was used to set the frequency ratio of the first to the second longitudinal mode to 1:2. This concept enables the driving of DRELPT in its two longitudinal modes consistent with the ejection direction in resonant-type smooth impact drive mechanisms. During the ejection process, DRELPT provides an ejection force, which is applied on the sidewalls of the injection parts to protect their top and bottom surfaces from scarring. Considering individual differences in the resonance frequencies of DRELPTs, a resonance frequency tracking circuit based on a phase-locked loop was designed to keep DRELPT actuating in resonance. The ejection velocity of the injection part was estimated using the kinetic models derived from the dynamic behavior of the mold cavity and injection parameters. A characteristic number S was defined to evaluate the average velocity of the injection part during ejection. Proof-of-concept experimental results of the pinless ejection mechanism are presented. The ejection time, that is, the time from triggering the composite wave to the full departure of the injection part from the mold cavity, was 72 ms.

  10. Influence of Martensite Mechanical Properties on Failure Mode and Ductility of Dual Phase Steels

    SciTech Connect

    Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-04-01

    In this paper, the effects of the mechanical properties of the martensite phase on the failure mode and ductility of dual phase (DP) steels are investigated using a micromechanics-based finite element method. Actual microstructures of DP sheet steels obtained from scanning electron microscopy are used as representative volume element (RVE) in two-dimensional plane-stress finite element calculations. Failure is predicted as plastic strain localization in the RVE during deformation. The mechanical properties of the ferrite and martensite phases in a commercial DP 980 steel are obtained based on the in-situ X-ray diffraction measurements of a uniaxial tensile test. Computations are then conducted on the RVE in order to investigate the influence of the martensite mechanical properties and volume fraction on the macroscopic behavior and failure mode of DP steels. The computations show that, as the strength and volume fraction of the martensite phase increase, the ultimate tensile strength (UTS) of DP steels increases but the UTS strain and failure strain decrease. These results agree well with the general experimental observations on DP steels. Additionally, shear dominant failure modes usually develop for DP steels with lower martensite strengths, whereas split failure modes typically develop for DP steels with higher martensite strengths.

  11. Improved glucose control and reduced body weight in rodents with dual mechanism of action peptide hybrids.

    PubMed

    Trevaskis, James L; Mack, Christine M; Sun, Chengzao; Soares, Christopher J; D'Souza, Lawrence J; Levy, Odile E; Lewis, Diane Y; Jodka, Carolyn M; Tatarkiewicz, Krystyna; Gedulin, Bronislava; Gupta, Swati; Wittmer, Carrie; Hanley, Michael; Forood, Bruce; Parkes, David G; Ghosh, Soumitra S

    2013-01-01

    Combination therapy is being increasingly used as a treatment paradigm for metabolic diseases such as diabetes and obesity. In the peptide therapeutics realm, recent work has highlighted the therapeutic potential of chimeric peptides that act on two distinct receptors, thereby harnessing parallel complementary mechanisms to induce additive or synergistic benefit compared to monotherapy. Here, we extend this hypothesis by linking a known anti-diabetic peptide with an anti-obesity peptide into a novel peptide hybrid, which we termed a phybrid. We report on the synthesis and biological activity of two such phybrids (AC164204 and AC164209), comprised of a glucagon-like peptide-1 receptor (GLP1-R) agonist, and exenatide analog, AC3082, covalently linked to a second generation amylin analog, davalintide. Both molecules acted as full agonists at their cognate receptors in vitro, albeit with reduced potency at the calcitonin receptor indicating slightly perturbed amylin agonism. In obese diabetic Lep(ob)/Lep (ob) mice sustained infusion of AC164204 and AC164209 reduced glucose and glycated haemoglobin (HbA1c) equivalently but induced greater weight loss relative to exenatide administration alone. Weight loss was similar to that induced by combined administration of exenatide and davalintide. In diet-induced obese rats, both phybrids dose-dependently reduced food intake and body weight to a greater extent than exenatide or davalintide alone, and equal to co-infusion of exenatide and davalintide. Phybrid-mediated and exenatide + davalintide-mediated weight loss was associated with reduced adiposity and preservation of lean mass. These data are the first to provide in vivo proof-of-concept for multi-pathway targeting in metabolic disease via a peptide hybrid, demonstrating that this approach is as effective as co-administration of individual peptides. PMID:24167604

  12. Improved Glucose Control and Reduced Body Weight in Rodents with Dual Mechanism of Action Peptide Hybrids

    PubMed Central

    Trevaskis, James L.; Mack, Christine M.; Sun, Chengzao; Soares, Christopher J.; D’Souza, Lawrence J.; Levy, Odile E.; Lewis, Diane Y.; Jodka, Carolyn M.; Tatarkiewicz, Krystyna; Gedulin, Bronislava; Gupta, Swati; Wittmer, Carrie; Hanley, Michael; Forood, Bruce; Parkes, David G.; Ghosh, Soumitra S.

    2013-01-01

    Combination therapy is being increasingly used as a treatment paradigm for metabolic diseases such as diabetes and obesity. In the peptide therapeutics realm, recent work has highlighted the therapeutic potential of chimeric peptides that act on two distinct receptors, thereby harnessing parallel complementary mechanisms to induce additive or synergistic benefit compared to monotherapy. Here, we extend this hypothesis by linking a known anti-diabetic peptide with an anti-obesity peptide into a novel peptide hybrid, which we termed a phybrid. We report on the synthesis and biological activity of two such phybrids (AC164204 and AC164209), comprised of a glucagon-like peptide-1 receptor (GLP1-R) agonist, and exenatide analog, AC3082, covalently linked to a second generation amylin analog, davalintide. Both molecules acted as full agonists at their cognate receptors in vitro, albeit with reduced potency at the calcitonin receptor indicating slightly perturbed amylin agonism. In obese diabetic Lepob/Lepob mice sustained infusion of AC164204 and AC164209 reduced glucose and glycated haemoglobin (HbA1c) equivalently but induced greater weight loss relative to exenatide administration alone. Weight loss was similar to that induced by combined administration of exenatide and davalintide. In diet-induced obese rats, both phybrids dose-dependently reduced food intake and body weight to a greater extent than exenatide or davalintide alone, and equal to co-infusion of exenatide and davalintide. Phybrid-mediated and exenatide + davalintide-mediated weight loss was associated with reduced adiposity and preservation of lean mass. These data are the first to provide in vivo proof-of-concept for multi-pathway targeting in metabolic disease via a peptide hybrid, demonstrating that this approach is as effective as co-administration of individual peptides. PMID:24167604

  13. Dual Allosteric Effect in Glycine/NMDA Receptor Antagonism: A Comparative QSAR Approach

    PubMed Central

    Sharma, Manish; Gupta, Vipin B.

    2010-01-01

    A comparative Hansch type QSAR study was conducted using multiple regression analysis on various sets of quinoxalines, quinoxalin-4-ones, quinazoline-2-carboxylates, 4-hydroxyquinolin-2(1H)-ones, 2-carboxytetrahydroquinolines, phenyl-hydroxy-quinolones, nitroquinolones and 4-substituted-3-phenylquinolin-2(1H)-ones as selective glycine/NMDA site antagonists. Ten statistically validated equations were developed, which indicated the importance of CMR, Verloop’s sterimol L1 and ClogP parameters in contributing towards biological activity. Interestingly, normal and inverse parabolic relationships were found with CMR in different series, indicating a dual allosteric binding mode in glycine/NMDA antagonism. Equations reveal an optimum CMR of 10 ± 10% is required for good potency of antagonists. Other equations indicate the presence of anionic functionality at 4-position of quinoline/quinolone ring system is not absolutely required for effective binding. The observations are laterally validated and in accordance with previous studies.

  14. Dual targeting of retinoid X receptor and histone deacetylase with DW22 as a novel antitumor approach

    PubMed Central

    Wang, Lihui; Chen, Guoliang; Chen, Kang; Ren, Yong; Li, Huahuan; Jiang, Xiaorui; Jia, Lina; Fu, Shiyuan; Li, Yi; Liu, Xinwei; Wang, Shuang; Yang, Jingyu; Wu, Chunfu

    2015-01-01

    Retinoid X receptor (RXR) and Histone deacetylase (HDAC) are considered important targets for cancer therapy due to their crucial roles in genetic or epigenetic regulations of cancer development and progression. Here, we evaluated the potential of dual targeting of RXR and HDAC using DW22 as a novel therapeutic approach to cancer treatment. We found that the co-expression of RXR-α and HDAC1 was frequently appeared in lung cancer and breast cancer tissues and cell lines. RXR was activated by DW22 in RXRα and HDAC1 overexpressed A549 and MDA-MB-435 cell lines. Meanwhile, DW22 inhibited the activity of HDAC by decreasing its expression in A549 and MDA-MB-435 cell lines, but not in RXRα and HDAC1 deficient cell lines. Moreover, DW22 suppressed cell growth, induced cell differentiation, prompted cell apoptosis and arrested cell cycle in A549, MDA-MB-435 or HL60 cell lines. Treatment human umbilical vascular endothelial cells (HUVECs) with DW22 suppressed migration, invasion and tube formation through decreasing VEGF expression. The up-regulation of Ac-H3 and p21, and down-regulation of VEGF caused by DW22 was markedly attenuated by silencing of HDAC1. Furthermore, knockdown of RXRα by siRNA completely blocked DW22-induced cell differentiation, but partially attenuated DW22-caused inhibition of cell proliferation, induction of cell apoptosis, and suppression of cell migration, invasion and tube formation. Moreover, intravenous administration of DW22 significantly retarded tumor growth of A549 and MDA-MB-435 xenograft mice models, and induced no substantial weight loss and gross toxicity. In addition, DW22 also reduced cell proliferation, angiogenesis, and induced cell apoptosis in vivo. Collectively, our data demonstrates that dual targeting of RXR and HDAC using DW22 possesses pleiotropic antitumor activities both in vitro and in vivo, providing a novel therapeutic approach for cancer treatment. PMID:25762635

  15. A Dual Role for the S-Locus Receptor Kinase in Self-Incompatibility and Pistil Development Revealed by an Arabidopsis rdr6 Mutation

    PubMed Central

    Tantikanjana, Titima; Rizvi, Noreen; Nasrallah, Mikhail E.; Nasrallah, June B.

    2009-01-01

    The coordinate evolution of self-incompatibility (SI) and stigma-anther separation, two mechanisms that promote cross-pollination in plants, has been a long-standing puzzle in evolution and development. Using a transgenic self-incompatible Arabidopsis thaliana model, we performed screens for mutants exhibiting a modified SI response. A mutation in the RNA-dependent RNA polymerase RDR6, which functions in trans-acting short interfering RNA (ta-siRNA) production, was found that simultaneously enhances SI and causes stigma exsertion, without associated increases in SRK transcript levels. While rdr6 mutants had been previously shown to exhibit stochastic stigma exsertion, our results demonstrate that the S-locus receptor kinase (SRK) gene further enhances pistil elongation and stigma exsertion in this mutant background, a process that requires SRK catalytic activity and correlates with SRK transcript levels. These results suggest that positive regulators or effectors of SI and pistil development are regulated by ta-siRNA(s). By establishing complex connections between SI and stigma exsertion through the sharing of a ta-siRNA–mediated regulatory pathway and the dual role of SRK in SI and pistil development, our study provides a molecular explanation for the coordinate evolution of these processes. PMID:19767457

  16. A light-controlled switch after dual targeting of proliferating tumor cells via the membrane receptor EGFR and the nuclear protein Ki-67

    PubMed Central

    Wang, Sijia; Hüttmann, Gereon; Scholzen, Thomas; Zhang, Zhenxi; Vogel, Alfred; Hasan, Tayyaba; Rahmanzadeh, Ramtin

    2016-01-01

    Using nanotechnology for optical manipulation of molecular processes in cells with high spatial and temporal precision promises new therapeutic options. Especially tumor therapy may profit as it requires a combination of both selectivity and an effective cell killing mechanism. Here we show a dual targeting approach for selective and efficient light-controlled killing of cells which are positive for epidermal growth factor receptor (EGFR) and Ki-67. Liposomes with the covalently linked EGFR antibody Erbitux enabled selective uptake of FITC-labeled Ki-67 antibody TuBB-9 in EGFR-positive cells pre-loaded with the photoactive dye BPD. After irradiation at 690 nm, BPD disrupted the endosomal membranes and delivered the antibodies to the nucleoli of the cells. The second irradiation at 490 nm activated the FITC-labeled TuBB-9, which caused inactivation of the Ki-67 protein and subsequent cell death via apoptosis. Efficient cell killing was possible at nanomolar concentrations of TuBB-9 due to the effective transport by immune liposomes and the high efficacy of the Ki-67 light-inactivation. Delivery of the liposomal constructs and cell destruction correlated well with the EGFR expression pattern of different cell lines (HeLa, OVCAR-5, MCF-7, and human fibroblasts), demonstrating an excellent selectivity. PMID:27246531

  17. A light-controlled switch after dual targeting of proliferating tumor cells via the membrane receptor EGFR and the nuclear protein Ki-67.

    PubMed

    Wang, Sijia; Hüttmann, Gereon; Scholzen, Thomas; Zhang, Zhenxi; Vogel, Alfred; Hasan, Tayyaba; Rahmanzadeh, Ramtin

    2016-01-01

    Using nanotechnology for optical manipulation of molecular processes in cells with high spatial and temporal precision promises new therapeutic options. Especially tumor therapy may profit as it requires a combination of both selectivity and an effective cell killing mechanism. Here we show a dual targeting approach for selective and efficient light-controlled killing of cells which are positive for epidermal growth factor receptor (EGFR) and Ki-67. Liposomes with the covalently linked EGFR antibody Erbitux enabled selective uptake of FITC-labeled Ki-67 antibody TuBB-9 in EGFR-positive cells pre-loaded with the photoactive dye BPD. After irradiation at 690 nm, BPD disrupted the endosomal membranes and delivered the antibodies to the nucleoli of the cells. The second irradiation at 490 nm activated the FITC-labeled TuBB-9, which caused inactivation of the Ki-67 protein and subsequent cell death via apoptosis. Efficient cell killing was possible at nanomolar concentrations of TuBB-9 due to the effective transport by immune liposomes and the high efficacy of the Ki-67 light-inactivation. Delivery of the liposomal constructs and cell destruction correlated well with the EGFR expression pattern of different cell lines (HeLa, OVCAR-5, MCF-7, and human fibroblasts), demonstrating an excellent selectivity. PMID:27246531

  18. A mechanism of intracellular P2X receptor activation.

    PubMed

    Sivaramakrishnan, Venketesh; Fountain, Samuel J

    2012-08-17

    P2X receptors (P2XRs) are ATP-activated calcium-permeable ligand-gated ion channels traditionally viewed as sensors of extracellular ATP during diverse physiological processes including pain, inflammation, and taste. However, in addition to a cell surface residency P2XRs also populate the membranes of intracellular compartments, including mammalian lysosomes, phagosomes, and the contractile vacuole (CV) of the amoeba Dictyostelium. The function of intracellular P2XRs is unclear and represents a major gap in our understanding of ATP signaling. Here, we exploit the genetic versatility of Dictyostelium to investigate the effects of physiological concentrations of ATP on calcium signaling in isolated CVs. Within the CV, an acidic calcium store, P2XRs are orientated to sense luminal ATP. Application of ATP to isolated vacuoles leads to luminal translocation of ATP and release of calcium. Mechanisms of luminal ATP translocation and ATP-evoked calcium release share common pharmacology, suggesting that they are linked processes. The ability of ATP to mobilize stored calcium is reduced in vacuoles isolated from P2X(A)R knock-out amoeba and ablated in cells devoid of P2XRs. Pharmacological inhibition of luminal ATP translocation or depletion of CV calcium attenuates CV function in vivo, manifesting as a loss of regulatory cell volume decrease following osmotic swelling. We propose that intracellular P2XRs regulate vacuole activity by acting as calcium release channels, activated by translocation of ATP into the vacuole lumen. PMID:22736763

  19. Architecture and conformational switch mechanism of the ryanodine receptor.

    PubMed

    Efremov, Rouslan G; Leitner, Alexander; Aebersold, Ruedi; Raunser, Stefan

    2015-01-01

    Muscle contraction is initiated by the release of calcium (Ca(2+)) from the sarcoplasmic reticulum into the cytoplasm of myocytes through ryanodine receptors (RyRs). RyRs are homotetrameric channels with a molecular mass of more than 2.2 megadaltons that are regulated by several factors, including ions, small molecules and proteins. Numerous mutations in RyRs have been associated with human diseases. The molecular mechanism underlying the complex regulation of RyRs is poorly understood. Using electron cryomicroscopy, here we determine the architecture of rabbit RyR1 at a resolution of 6.1 Å. We show that the cytoplasmic moiety of RyR1 contains two large α-solenoid domains and several smaller domains, with folds suggestive of participation in protein-protein interactions. The transmembrane domain represents a chimaera of voltage-gated sodium and pH-activated ion channels. We identify the calcium-binding EF-hand domain and show that it functions as a conformational switch allosterically gating the channel. PMID:25470059

  20. Design, synthesis, and evaluation of imidazo[4,5-c]pyridin-4-one derivatives with dual activity at angiotensin II type 1 receptor and peroxisome proliferator-activated receptor-γ.

    PubMed

    Casimiro-Garcia, Agustin; Heemstra, Ronald J; Bigge, Christopher F; Chen, Jing; Ciske, Fred A; Davis, Jo Ann; Ellis, Teresa; Esmaeil, Nadia; Flynn, Declan; Han, Seungil; Jalaie, Mehran; Ohren, Jeffrey F; Powell, Noel A

    2013-02-01

    Identification of a series of imidazo[4,5-c]pyridin-4-one derivatives that act as dual angiotensin II type 1 (AT1) receptor antagonists and peroxisome proliferator-activated receptor-γ (PPARγ) partial agonists is described. Starting from a known AT1 antagonist template, conformational restriction was introduced by incorporation of an indane ring that when combined with appropriate substitution at the imidazo[4,5-c]pyridin-4-one provided novel series 5 possessing the desired dual activity. The mode of interaction of this series with PPARγ was corroborated through the X-ray crystal structure of 12b bound to the human PPARγ ligand binding domain. Modulation of activity at both receptors through substitution at the pyridone nitrogen led to the identification of potent dual AT1 antagonists/PPARγ partial agonists. Among them, 21b was identified possessing potent dual pharmacology (AT1 IC(50) = 7 nM; PPARγ EC(50) = 295 nM, 27% max) and good ADME properties. PMID:23265881

  1. Effect of Nb on Microstructures and Mechanical Properties of an Ultrafine-Grained Dual Phase Steel

    NASA Astrophysics Data System (ADS)

    Ghatei Kalashami, Ali; Kermanpur, Ahmad; Najafizadeh, Abbas; Mazaheri, Yousef

    2015-08-01

    The effect of Nb addition from 0.06 to 0.18 wt.% on microstructural evolutions, mechanical properties, strain-hardening behavior, and fracture mechanism of an ultrafine-grained dual phase (UFG-DP) steel was investigated. The DP steels were cold rolled up to 80% thickness reduction followed by intercritical annealing at 770 °C for 6 min to form the UFG structures. Results showed that increasing Nb content up to 0.12 wt.% increased the volume fraction of martensite and decreased the average grain size of ferrite; however, lower martensite content with no further grain refinement was detected in the steel containing 0.18 wt.% Nb. The variations of strength, elongation, strain-hardening exponent, and fracture behavior of the Nb-bearing UFG-DP specimens were explained in terms of the microstructural features. The UFG-DP steel containing 0.12 wt.% Nb showed a superior strength-elongation balance (UTS × UE ≈ 116 MPa) compared to both the as-received ferritic-pearlitic and the commercially used DP980 steels.

  2. A plausible mechanism of biosorption in dual symbioses by vesicular-arbuscular mycorrhizal in plants.

    PubMed

    Azmat, Rafia; Hamid, Neelofer

    2015-03-01

    Dual symbioses of vesicular-arbuscular mycorrhizal (VAM) fungi with growth of Momordica charantia were elucidated in terms of plausible mechanism of biosorption in this article. The experiment was conducted in green house and mixed inoculum of the VAM fungi was used in the three replicates. Results demonstrated that the starch contents were the main source of C for the VAM to builds their hyphae. The increased plant height and leaves surface area were explained in relation with an increase in the photosynthetic rates to produce rapid sugar contents for the survival of plants. A decreased in protein, and amino acid contents and increased proline and protease activity in VAM plants suggested that these contents were the main bio-indicators of the plants under biotic stress. The decline in protein may be due to the degradation of these contents, which later on converted into dextrose where it can easily be absorbed by for the period of symbioses. A mechanism of C chemisorption in relation with physiology and morphology of plant was discussed. PMID:25730809

  3. TBC-Domain GAPs for Rab GTPases Accelerate GTP Hydrolysis by a Dual-Finger Mechanism

    SciTech Connect

    Pan,X.; Eathiraj, S.; Lambright, D.

    2006-01-01

    Rab GTPases regulate membrane trafficking by cycling between inactive (GDP-bound) and active (GTP-bound) conformations. The duration of the active state is limited by GTPase-activating proteins (GAPs), which accelerate the slow intrinsic rate of GTP hydrolysis. Proteins containing TBC (Tre-2, Bub2 and Cdc16) domains are broadly conserved in eukaryotic organisms and function as GAPs for Rab GTPases as well as GTPases that control cytokinesis. An exposed arginine residue is a critical determinant of GAP activity in vitro and in vivo. It has been expected that the catalytic mechanism of TBC domains would parallel that of Ras and Rho family GAPs. Here we report crystallographic, mutational and functional analyses of complexes between Rab GTPases and the TBC domain of Gyp1p. In the crystal structure of a TBC-domain-Rab-GTPase-aluminium fluoride complex, which approximates the transition-state intermediate for GTP hydrolysis, the TBC domain supplies two catalytic residues in trans, an arginine finger analogous to Ras/Rho family GAPs and a glutamine finger that substitutes for the glutamine in the DxxGQ motif of the GTPase. The glutamine from the Rab GTPase does not stabilize the transition state as expected but instead interacts with the TBC domain. Strong conservation of both catalytic fingers indicates that most TBC-domain GAPs may accelerate GTP hydrolysis by a similar dual-finger mechanism.

  4. Mechanical and thermoelastic characteristics of optical thin films deposited by dual ion beam sputtering.

    PubMed

    Cetinörgü, Eda; Baloukas, Bill; Zabeida, Oleg; Klemberg-Sapieha, Jolanta E; Martinu, Ludvik

    2009-08-10

    Mechanical and thermoelastic properties of optical films are very important to ensure the performance of optical interference filters and optical coating systems. We systematically study the growth and the mechanical and thermoelastic characteristics of niobium oxide (Nb(2)O(5)), tantalum oxide (Ta(2)O(5)), and silicon dioxide (SiO(2)) thin films prepared by dual ion beam sputtering. First, we investigate the stress (sigma), hardness (H), reduced Young's modulus (E(r)), and scratch resistance. Second, we focus on the methodology and assessment of the coefficient of thermal expansion (CTE) and Poisson's ratio (nu) using the two-substrate method. For the high refractive index films, namely, Nb(2)O(5) (n at 550 nm=2.30) and Ta(2)O(5) (n at 550 nm=2.13), we obtained H approximately 6 GPa, E(r) approximately 125 GPa, CTE=4.9x10(-6) degrees C(-1), nu=0.22, and H approximately 7 GPa, E(r) approximately 133 GPa, CTE=4.4x10(-6) degrees C(-1), and nu=0.27, respectively. In comparison, for SiO(2) (n at 550 nm=1.48), these values are H approximately 9.5 GPa, E(r) approximately 87 GPa, CTE=2.1x10(-6) degrees C(-1), and nu=0.11. Correlations between the growth conditions (secondary beam ion energy and ion current), the microstructure, and the film properties are discussed. PMID:19668268

  5. Dual mechanisms of DNA sequencing based on tunnelling between nitrogen-doped carbon nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Han; Kim, Yong-Hoon

    2013-03-01

    The DNA sequencing approach based on the combination of nanopores and electron tunnelling has seen considerable advances in recent years, and particularly carbon nanomaterials have emerged as promising candidates to replace metal electrodes. Carrying out extensive first-principles calculations, we here show that two distinct DNA sequencing mechanisms can be achieved with different configurations of a single-type nitrogen-doped capped carbon nanotube (CNT) that has significantly enhanced transmission and chemical sensitivity over its pristine counterpart. With a small CNT-CNT gap size that induces face-on nucleobase configurations, we obtain a typical conductance ordering where the largest signal is induced from guanine due to its highest occupied molecular orbital energetic position higher than those of other bases. On the other hand, for a large CNT-CNT gap size that accommodates edge-on nucleobase configurations, we extract a completely different conductance ordering in which thymine results in the largest signal. We find that the latter novel nucleobase sensing mechanism originates from the nature of chemical connectivity between nitrogen-doped CNT caps and nucleobase functional groups that include the thymine methyl group. This work thus demonstrates the feasibility of a tunnelling-based dual-mode approach toward whole genome sequencing applications, detection of DNA base modifications, and single-molecule sensing in general.

  6. Dual targeting of the chemokine receptors CXCR4 and ACKR3 with novel engineered chemokines.

    PubMed

    Hanes, Melinda S; Salanga, Catherina L; Chowdry, Arnab B; Comerford, Iain; McColl, Shaun R; Kufareva, Irina; Handel, Tracy M

    2015-09-11

    The chemokine CXCL12 and its G protein-coupled receptors CXCR4 and ACKR3 are implicated in cancer and inflammatory and autoimmune disorders and are targets of numerous antagonist discovery efforts. Here, we describe a series of novel, high affinity CXCL12-based modulators of CXCR4 and ACKR3 generated by selection of N-terminal CXCL12 phage libraries on live cells expressing the receptors. Twelve of 13 characterized CXCL12 variants are full CXCR4 antagonists, and four have Kd values <5 nm. The new variants also showed high affinity for ACKR3. The variant with the highest affinity for CXCR4, LGGG-CXCL12, showed efficacy in a murine model for multiple sclerosis, demonstrating translational potential. Molecular modeling was used to elucidate the structural basis of binding and antagonism of selected variants and to guide future designs. Together, this work represents an important step toward the development of therapeutics targeting CXCR4 and ACKR3. PMID:26216880

  7. A dual physiological character for cerebral mechanisms of sexuality and cognition: common somatic peripheral afferents.

    PubMed

    Motofei, Ion G

    2011-11-01

    The dual theory of sexuality is a work in progress that tries to put together all the significant physiological aspects described on this subject, the most recent published article discussing about the hormonal and pheromonal neuromodulation of somatic peripheral afferents. But sexuality and cognition shares common somatic peripheral afferents, so that a good understanding of sexual mechanisms supposes also a good knowledge of the essential psychological mechanisms/neuromodulators. Current psychological approaches could be limited to two general tendencies. Some authors consider that cerebral neuronal connexions generate a unitary network substrate that - increasing in its complexity - becomes compatible with our complex mental function. Others suggest that such a complex cerebral function correspond actually to a system based on subsystems, represented by distinct neuronal units (not necessarily complexes) that interact each other. Starting from basic somatic/sexual neurophysiological elements and general accepted psychological aspects, the discussion gave sense to the last point of view, namely that genesis of a new function is the result of cooperation between distinct structural and functional units. Contrary to the classical concepts, this paper sows the fact that mental perception corresponds actually (in term of touch/tangibility) to the internal representation of an external object while sensations realize an internal representation of the external characteristics of environmental object. As a conclusion, sexuality and cognition are two distinct autonomic/dual functions, interrelated at both cerebral and peripheral level. Peripheral interference implies intervention of some specific (mental and sexual) neuromodulators, making external information act as internal mental or internal sexual stimuli. Central cerebral interferences are also clinically and pharmacologically documented, specific neuromodulators being taken into account. Supplementary studies would

  8. Sugar and pH dual-responsive mesoporous silica nanocontainers based on competitive binding mechanisms

    NASA Astrophysics Data System (ADS)

    Yilmaz, M. Deniz; Xue, Min; Ambrogio, Michael W.; Buyukcakir, Onur; Wu, Yilei; Frasconi, Marco; Chen, Xinqi; Nassar, Majed S.; Stoddart, J. Fraser; Zink, Jeffrey I.

    2014-12-01

    A sugar and pH dual-responsive controlled release system, which is highly specific towards molecular stimuli, has been developed based on the binding between catechol and boronic acid on a platform of mesoporous silica nanoparticles (MSNs). By grafting phenylboronic acid stalks onto the silica surface, catechol-containing β-cyclodextrins can be attached to the orifices of the MSNs' nanopores through formation of boronate esters which block access to the nanopores. These esters are stable enough to prevent cargo molecules from escaping. The boronate esters disassociate in the presence of sugars, enabling the molecule-specific controlled-release feature of this hybrid system. The rate of release has been found to be tunable by varying both the structures and the concentrations of sugars, as a result of the competitive binding nature associated with the mechanism of its operation. Acidification also induces the release of cargo molecules. Further investigations show that the presence of both a low pH and sugar molecules provides cooperative effects which together control the rate of release.A sugar and pH dual-responsive controlled release system, which is highly specific towards molecular stimuli, has been developed based on the binding between catechol and boronic acid on a platform of mesoporous silica nanoparticles (MSNs). By grafting phenylboronic acid stalks onto the silica surface, catechol-containing β-cyclodextrins can be attached to the orifices of the MSNs' nanopores through formation of boronate esters which block access to the nanopores. These esters are stable enough to prevent cargo molecules from escaping. The boronate esters disassociate in the presence of sugars, enabling the molecule-specific controlled-release feature of this hybrid system. The rate of release has been found to be tunable by varying both the structures and the concentrations of sugars, as a result of the competitive binding nature associated with the mechanism of its operation

  9. Mechanism study of dual-frequency ultrasound assisted enzymolysis on rapeseed protein by immobilized Alcalase.

    PubMed

    Wang, Bei; Meng, Tingting; Ma, Haile; Zhang, Yanyan; Li, Yunliang; Jin, Jian; Ye, Xiaofei

    2016-09-01

    The mechanism of ultrasound field promoting enzymolysis efficiency is difficult to study, because the reaction system mixes with enzymes, proteins and hydrolysates. Immobilized enzyme is a good option that can be used to investigate the mechanism by separating enzymes out from the system after enzymolysis. The objective of this study was by using immobilized Alcalase to investigate the effects and mechanisms of the promotion of dual-frequency ultrasound (DFU) assisted-enzymolysis on rapeseed protein. Based on single factor experiments, response surface methodology model with three factors - hydrolysis time, power density and solid-liquid ratio at three levels was utilized to optimize the degree of hydrolysis (DH). Circular dichroism (CD) was used to analyze the secondary structure change of the protein, scanning electron microscopy (SEM) was used to analyze the surface microstructure change of the enzyme. The results showed that with DFU assisted-enzymolysis, the DH increased by 74.38% at the optimal levels for power density 57W/L, solid-liquid ratio 5.3g/L and enzymolysis time 76min. After DFU assisted-enzymolysis, the yield of soluble solids content, including protein, peptides and total sugar in hydrolysate increased by 64.61%, 40.88% and 23.60%, respectively. CD analysis showed that after DFU assisted-enzymolysis, the number of α-helix and random coil decreased by 10.7% and 4.5%, β-chain increased by 2.4%. SEM showed that the degree of surface roughness of immobilized Alcalase increased. The above results indicated that the improvement of hydrolysis by DFU assisted-enzymolysis was achieved by enhancing the solid solubility, changing the molecular structure of protein and increased the surface area of immobilized enzyme. PMID:27150775

  10. Structural mechanism of glutamate receptor activation and desensitization.

    PubMed

    Meyerson, Joel R; Kumar, Janesh; Chittori, Sagar; Rao, Prashant; Pierson, Jason; Bartesaghi, Alberto; Mayer, Mark L; Subramaniam, Sriram

    2014-10-16

    Ionotropic glutamate receptors are ligand-gated ion channels that mediate excitatory synaptic transmission in the vertebrate brain. To gain a better understanding of how structural changes gate ion flux across the membrane, we trapped rat AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) and kainate receptor subtypes in their major functional states and analysed the resulting structures using cryo-electron microscopy. We show that transition to the active state involves a 'corkscrew' motion of the receptor assembly, driven by closure of the ligand-binding domain. Desensitization is accompanied by disruption of the amino-terminal domain tetramer in AMPA, but not kainate, receptors with a two-fold to four-fold symmetry transition in the ligand-binding domains in both subtypes. The 7.6 Å structure of a desensitized kainate receptor shows how these changes accommodate channel closing. These findings integrate previous physiological, biochemical and structural analyses of glutamate receptors and provide a molecular explanation for key steps in receptor gating. PMID:25119039

  11. Dual elimination of the glucagon and GLP-1 receptors in mice reveals plasticity in the incretin axis.

    PubMed

    Ali, Safina; Lamont, Benjamin J; Charron, Maureen J; Drucker, Daniel J

    2011-05-01

    Disordered glucagon secretion contributes to the symptoms of diabetes, and reduced glucagon action is known to improve glucose homeostasis. In mice, genetic deletion of the glucagon receptor (Gcgr) results in increased levels of the insulinotropic hormone glucagon-like peptide 1 (GLP-1), which may contribute to the alterations in glucose homeostasis observed in Gcgr-/- mice. Here, we assessed the contribution of GLP-1 receptor (GLP-1R) signaling to the phenotype of Gcgr-/- mice by generating Gcgr-/-Glp1r-/- mice. Although insulin sensitivity was similar in all genotypes, fasting glucose was increased in Gcgr-/-Glp1r-/- mice. Elimination of the Glp1r normalized gastric emptying and impaired intraperitoneal glucose tolerance in Gcgr-/- mice. Unexpectedly, deletion of Glp1r in Gcgr-/- mice did not alter the improved oral glucose tolerance and increased insulin secretion characteristic of that genotype. Although Gcgr-/-Glp1r-/- islets exhibited increased sensitivity to the incretin glucose-dependent insulinotropic polypeptide (GIP), mice lacking both Glp1r and the GIP receptor (Gipr) maintained preservation of the enteroinsular axis following reduction of Gcgr signaling. Moreover, Gcgr-/-Glp1r-/- islets expressed increased levels of the cholecystokinin A receptor (Cckar) and G protein-coupled receptor 119 (Gpr119) mRNA transcripts, and Gcgr-/-Glp1r-/- mice exhibited increased sensitivity to exogenous CCK and the GPR119 agonist AR231453. Our data reveal extensive functional plasticity in the enteroinsular axis via induction of compensatory mechanisms that control nutrient-dependent regulation of insulin secretion. PMID:21540554

  12. Mechanisms of agonist action at D2 dopamine receptors.

    PubMed

    Roberts, David J; Lin, Hong; Strange, Philip G

    2004-12-01

    In this study, we investigated the biochemical mechanisms of agonist action at the G protein-coupled D2 dopamine receptor expressed in Chinese hamster ovary cells. Stimulation of guanosine 5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding by full and partial agonists was determined at different concentrations of [35S]GTPgammaS (0.1 and 10 nM) and in the presence of different concentrations of GDP. At both concentrations of [35S]GTPgammaS, increasing GDP decreased the [35S]GTPgammaS binding observed with maximally stimulating concentrations of agonist, with partial agonists exhibiting greater sensitivity to the effects of GDP than full agonists. The relative efficacy of partial agonists was greater at the lower GDP concentrations. Concentration-response experiments were performed for a range of agonists at the two [35S]GTPgammaS concentrations and with different concentrations of GDP. At 0.1 nM [35S]GTPgammaS, the potency of both full and partial agonists was dependent on the GDP concentration in the assays. At 10 nM [35S]GTPgammaS, the potency of full agonists exhibited a greater dependence on the GDP concentration, whereas the potency of partial agonists was virtually independent of GDP. We concluded that at the lower [35S]GTPgammaS concentration, the rate-determining step in G protein activation is the binding of [35S]GTPgammaS to the G protein. At the higher [35S]GTPgammaS concentration, for full agonists, [35S]GTPgammaS binding remains the slowest step, whereas for partial agonists, another (GDP-independent) step, probably ternary complex breakdown, becomes rate-determining. PMID:15340043

  13. Conformational Changes in the GM-CSF Receptor Suggest a Molecular Mechanism for Affinity Conversion and Receptor Signaling.

    PubMed

    Broughton, Sophie E; Hercus, Timothy R; Nero, Tracy L; Dottore, Mara; McClure, Barbara J; Dhagat, Urmi; Taing, Houng; Gorman, Michael A; King-Scott, Jack; Lopez, Angel F; Parker, Michael W

    2016-08-01

    The GM-CSF, IL-3, and IL-5 receptors constitute the βc family, playing important roles in inflammation, autoimmunity, and cancer. Typical of heterodimeric type I cytokine receptors, signaling requires recruitment of the shared subunit to the initial cytokine:α subunit binary complex through an affinity conversion mechanism. This critical process is poorly understood due to the paucity of crystal structures of both binary and ternary receptor complexes for the same cytokine. We have now solved the structure of the binary GM-CSF:GMRα complex at 2.8-Å resolution and compared it with the structure of the ternary complex, revealing distinct conformational changes. Guided by these differences we performed mutational and functional studies that, importantly, show GMRα interactions playing a major role in receptor signaling while βc interactions control high-affinity binding. These results support the notion that conformational changes underlie the mechanism of GM-CSF receptor activation and also suggest how related type I cytokine receptors signal. PMID:27396825

  14. Isolation and characterization of a dual prenylated Rab and VAMP2 receptor.

    PubMed

    Martincic, I; Peralta, M E; Ngsee, J K

    1997-10-24

    Rab GTPases have been implicated in intracellular vesicle trafficking. Using the yeast two-hybrid screen, we have isolated a rat clone that interacts with Rab3A as well as with Rab1. The gene encodes a 20.6-kDa protein with two extensive hydrophobic domains and is broadly expressed in all tissues. This protein binds to prenylated Rab GTPases but not to other small Ras-like GTPases such as the Rho/Rac family. This prenylated Rab acceptor (PRA1) also binds specifically to the synaptic vesicle protein VAMP2 (or synaptobrevin II) but shows no affinity for VAMP1 or cellubrevin in both the yeast two-hybrid system and in vitro binding assays. This specificity resides, in part, in the proline-rich domain of VAMP2 as a chimera containing this domain of VAMP2 fused to VAMP1 is able to bind to PRA1. The transmembrane domain of VAMP2 is also essential as its deletion abolished binding to PRA1. Replacement of the deleted VAMP2 transmembrane domain by a CAAX prenylation signal can not restore binding to PRA1. This interaction is therefore distinct from that required for VAMP2 binding to either syntaxin or both syntaxin and SNAP-25. Deletion analysis on PRA1 indicates that the critical Rab- and VAMP2-interacting residues reside in two regions: the amino-terminal residues 30-54 and the extreme carboxyl-terminal domain. This dual Rab and VAMP2 binding characteristic suggests that PRA1 may serve to link these two protein families in the control of vesicle docking and fusion. PMID:9341137

  15. First experimental investigation of dual-reciprocating drilling in planetary regoliths: Proposition of penetration mechanics

    NASA Astrophysics Data System (ADS)

    Gouache, Thibault P.; Gao, Yang; Coste, Pierre; Gourinat, Yves

    2011-10-01

    The search for life in the solar system requires sub-surface exploration capabilities of extra-terrestrial bodies like the Moon and Mars. To do so different techniques are being developed: from the classical rotary drilling techniques widely used on Earth to more original techniques like ultrasonic drilling. Dual-reciprocating drilling (DRD) is a bio-mimetic drilling principle inspired by the manner wood-wasps drill into wood to lay its eggs. It was proposed as an efficient extra-terrestrial drilling technique requiring low over-head force. To deepen the understanding of this novel drilling technique, DRD has been tested for the first time in planetary regolith simulants. These experiments are reported here. To do so a new test bench was built and is presented. The soil forces on the drill bit are analysed and the final depth reached by the DRD system is compared to the final depth reached by static penetration. The experiments have shown very high levels of slippage (defined here specifically for DRD). The observations of the surface deformations and the importance of slippage lead to the proposal of DRD penetration mechanics in regoliths. Finally a re-evaluation of previous DRD experiments conducted on low compressive strength rocks also show the high levels of slippage during DRD.

  16. Photoluminescence and doping mechanism of theranostic Eu3+/Fe3+ dual-doped hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Min-Hua; Yoshioka, Tomohiko; Ikoma, Toshiyuki; Hanagata, Nobutaka; Lin, Feng-Huei; Tanaka, Junzo

    2014-10-01

    Theranostic nanoparticles currently have been regarded as an emerging concept of ‘personalized medicine’ with diagnostic and therapeutic dual-functions. Eu3+ doped hydroxyapatite (HAp) has been regarded as a promising fluorescent probe for in vivo imaging applications. Additionally, substitution of Ca2+ with Fe3+ in HAp crystal may endow the capability of producing heat upon exposure to a magnetic field. Here we report a preliminary study of doping mechanism and photoluminescence of Eu3+ and Fe3+ doped HAp nanoparticles (Eu/Fe:HAp). HAp with varied concentration of Eu3+ and Fe3+ doping are presented as Eu(10 mol%):HAp, Eu(7 mol%)-Fe(3 mol%):HAp, Eu(5 mol%)-Fe(5 mol%):HAp, Eu(3 mol%)-Fe(7 mol%):HAp, and Fe(10 mol%):HAp in the study. The results showed that the HAp particles, in nano-size with rod-like morphology, were successfully doped with Eu3+ and Fe3+, and the particles can be well suspended in cell culture medium. Photoluminescence analysis revealed that particles have prominent emissions at 536 nm, 590 nm, 615 nm, 650 nm and 695 nm upon excitation at a wavelength of 397 nm. Moreover, these Eu/Fe:HAp nanoparticles belonged to B-type carbonated HAp, which has been considered an effective biodegradable and biocompatible drug/gene carrier in biological applications.

  17. Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric.

    PubMed

    Walker, Julian; Simons, Hugh; Alikin, Denis O; Turygin, Anton P; Shur, Vladimir Y; Kholkin, Andrei L; Ursic, Hana; Bencan, Andreja; Malic, Barbara; Nagarajan, Valanoor; Rojac, Tadej

    2016-01-01

    Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb)-based ferroelectric ceramics. In the search for Pb-free alternatives, systems with MPBs between polar and non-polar phases have recently been theorized as having great promise. While such an MPB was identified in rare-earth (RE) modified bismuth ferrite (BFO) thin films, synthesis challenges have prevented its realization in ceramics. Overcoming these, we demonstrate a comparable electromechanical response to Pb-based materials at the polar-to-non-polar MPB in Sm modified BFO. This arises from 'dual' strain mechanisms: ferroelectric/ferroelastic switching and a previously unreported electric-field induced transition of an anti-polar intermediate phase. We show that intermediate phases play an important role in the macroscopic strain response, and may have potential to enhance electromechanical properties at polar-to-non-polar MPBs. PMID:26791098

  18. Dual Mechanisms of Ion Uptake in Relation to Vacuolation in Corn Roots

    PubMed Central

    Torii, Kenji; Laties, George G.

    1966-01-01

    Absorption isotherms for chloride and rubidium ions have been determined through a wide concentration range for nonvacuolate root tips, and for vacuolate subapical sections of corn root. In the range 0 to 0.5 mm, chloride absorption is hyperbolic with concentration in both tips and proximal sections. At high concentrations, 1 to 50 mm, a second multiple-hyperbolic isotherm for chloride is noted in vacuolate tissue, while the isotherm for nonvacuolate tips rises exponentially. A linear to exponentially rising isotherm is taken to signify diffusive permeation. The same distinction between tip and subapical tissue characterizes Rb absorption. Rb uptake is indifferent to the nature of the counterion at all concentrations in the tip, while the counterion exerts a predictable influence on Rb absorption in proximal tissue. The effect of a poorly absorbable anion on Rb uptake is greater in the high concentration range. Evidence is presented for the metabolic nature of ion transport into nonvacuolate root tips. Verification is offered that ion uptake is mediated by dual mechanisms, and the thesis is developed that the high-affinity (low Ks) system mediates ion passage through the plasma membrane while the low-affinity (high Ks) system implements transport through the tonoplast. PMID:16656332

  19. Structural Basis and Catalytic Mechanism for the Dual Functional Endo-β-N-Acetylglucosaminidase A

    PubMed Central

    Shaw, Neil; Li, Yang; Song, Jing Katherine; Zhang, Wenpeng; Xia, Chengfeng; Zhang, Rongguang; Joachimiak, Andrzej; Zhang, Hou-Cheng; Wang, Lai-Xi; Liu, Zhi-Jie; Wang, Peng

    2009-01-01

    Endo-β-N-acetylglucosaminidases (ENGases) are dual specificity enzymes with an ability to catalyze hydrolysis and transglycosylation reactions. Recently, these enzymes have become the focus of intense research because of their potential for synthesis of glycopeptides. We have determined the 3D structures of an ENGase from Arthrobacter protophormiae (Endo-A) in 3 forms, one in native form, one in complex with Man3GlcNAc-thiazoline and another in complex with GlcNAc-Asn. The carbohydrate moiety sits above the TIM-barrel in a cleft region surrounded by aromatic residues. The conserved essential catalytic residues – E173, N171 and Y205 are within hydrogen bonding distance of the substrate. W216 and W244 regulate access to the active site during transglycosylation by serving as “gate-keepers”. Interestingly, Y299F mutation resulted in a 3 fold increase in the transglycosylation activity. The structure provides insights into the catalytic mechanism of GH85 family of glycoside hydrolases at molecular level and could assist rational engineering of ENGases. PMID:19252736

  20. [Probable mechanism of recognition of cholinergic ligands by acetylcholine receptors].

    PubMed

    Demushkin, V P; Kotelevtsev, Iu V; Pliashkevich, Iu G; Khramtsov, N V

    1982-01-01

    Dryding's models were used for the conformational analysis of compounds affecting muscarin-specific acetylcholine receptor and nicotin-specific acetylcholine receptor. Ammonium group and ether oxygen (3.6 A apart from the ammonium group) specifically oriented to each other were shown to be necessary structural elements to reveal muscarin-type cholinergic activity. Ammonium group along with carbonyl oxygen or its substituent (5 A distance) are the necessary structural units providing nicotin-type cholinergic activity. The presence of two hydrophobic substituents (one in the ammonium area and the other neighbouring the second active grouping) is the additional factor. The developed principles were justified by the use of a series of synthetic samples. The compounds were obtained likely favouring affinitive modification of acetylcholine receptor (dissociation constants of acetylcholine receptor complexes equalling to 10(-4)--10(-7) M-1). PMID:7070378

  1. Immunolocalization of steroid hormone receptors in normal and tumour cells: mechanisms of their cellular traffic.

    PubMed

    Perrot-Applanat, M; Guiochon-Mantel, A; Milgrom, E

    1992-01-01

    Experimental conditions are described for the detection of steroid receptors in tissue sections or cells at the light microscope level. Current knowledge about the ultrastructural distribution of these receptors is summarized; the mechanisms of their nuclear localization are described. Karyophilic signals involved in nuclear translocation are characterized by means of in vitro mutagenesis of steroid receptor cDNAs. Studies analysing the subcellular distribution of various transfected receptor mutants in energy depleted cells together with fusion experiments provide evidence for nucleoplasmic shuttling of progesterone receptors. We conclude that the "nuclear" location of the wild type progesterone receptor reflects a dynamic equilibrium between active nuclear import and outward diffusion. We also describe the use of immunocytochemistry in pathology, especially for the detection of steroid receptors in hormone dependent tumours. PMID:1423330

  2. Receptors and signalling mechanisms in the procoagulant response of platelets.

    PubMed

    Heemskerk, J W; Siljander, P R; Bevers, E M; Farndale, R W; Lindhout, T

    2000-09-01

    Platelets in an advanced stage of activation change from coagulation-inactive to coagulation-promoting cells. This procoagulant response is characterised by exposure of aminophospholipids, such as phosphatidylserine, to the platelet surface and by formation of microvesicles. Under specific conditions, when both signalling and adhesive platelet receptors are occupied, collagen and also thrombin are able to trigger this response. Thus, platelets express high coagulation-promoting activity only after interacting with multiple receptors. PMID:11083453

  3. Dual HER/VEGF receptor targeting inhibits in vivo ovarian cancer tumor growth.

    PubMed

    Becker, Marc A; Farzan, Thahir; Harrington, Sean C; Krempski, James W; Weroha, S John; Hou, Xiaonan; Kalli, Kimberly R; Wong, Tai W; Haluska, Paul

    2013-12-01

    Ovarian cancer mortality ranks highest among all gynecologic cancers with growth factor pathways playing an integral role in tumorigenesis, metastatic dissemination, and therapeutic resistance. The HER and VEGF receptor (VEGFR) are both overexpressed and/or aberrantly activated in subsets of ovarian tumors. While agents targeting either the HER or VEGF pathways alone have been investigated, the impact of these agents have not led to overall survival benefit in ovarian cancer. We tested the hypothesis that cotargeting HER and VEGFR would maximize antitumor efficacy at tolerable doses. To this end, ovarian cancer xenografts grown intraperitoneally in athymic nude mice were tested in response to AC480 (pan-HER inhibitor, "HERi"), cediranib (pan-VEGFR inhibitor "VEGFRi"), or BMS-690514 (combined HER/VEGFR inhibitor "EVRi"). EVRi was superior to both HERi and VEGFRi in terms of tumor growth, final tumor weight, and progression-free survival. Correlative tumor studies employing phosphoproteomic antibody arrays revealed distinct agent-specific alterations, with EVRi inducing the greatest overall effect on growth factor signaling. These data suggest that simultaneous inhibition of HER and VEGFR may benefit select subsets of ovarian cancer tumors. To this end, we derived a novel HER/VEGF signature that correlated with poor overall survival in high-grade, late stage, serous ovarian cancer patient tumors. PMID:24130056

  4. Signaling Mechanism of Cannabinoid Receptor-2 Activation-Induced β-Endorphin Release.

    PubMed

    Gao, Fang; Zhang, Ling-Hong; Su, Tang-Feng; Li, Lin; Zhou, Rui; Peng, Miao; Wu, Cai-Hua; Yuan, Xiao-Cui; Sun, Ning; Meng, Xian-Fang; Tian, Bo; Shi, Jing; Pan, Hui-Lin; Li, Man

    2016-08-01

    Activation of cannabinoid receptor-2 (CB2) results in β-endorphin release from keratinocytes, which then acts on primary afferent neurons to inhibit nociception. However, the underlying mechanism is still unknown. The CB2 receptor is generally thought to couple to Gi/o to inhibit cAMP production, which cannot explain the peripheral stimulatory effects of CB2 receptor activation. In this study, we found that in a keratinocyte cell line, the Gβγ subunits from Gi/o, but not Gαs, were involved in CB2 receptor activation-induced β-endorphin release. Inhibition of MAPK kinase, but not PLC, abolished CB2 receptor activation-induced β-endorphin release. Also, CB2 receptor activation significantly increased intracellular Ca(2+). Treatment with BAPTA-AM or thapsigargin blocked CB2 receptor activation-induced β-endorphin release. Using a rat model of inflammatory pain, we showed that the MAPK kinase inhibitor PD98059 abolished the peripheral effect of the CB2 receptor agonist on nociception. We thus present a novel mechanism of CB2 receptor activation-induced β-endorphin release through Gi/o-Gβγ-MAPK-Ca(2+) signaling pathway. Our data also suggest that stimulation of MAPK contributes to the peripheral analgesic effect of CB2 receptor agonists. PMID:26108183

  5. Interdicting Gq Activation in Airway Disease by Receptor-Dependent and Receptor-Independent Mechanisms.

    PubMed

    Carr, Richard; Koziol-White, Cynthia; Zhang, Jie; Lam, Hong; An, Steven S; Tall, Gregory G; Panettieri, Reynold A; Benovic, Jeffrey L

    2016-01-01

    Gαqβγ heterotrimer (Gq), an important mediator in the pathology of airway disease, plays a central role in bronchoconstriction and airway remodeling, including airway smooth muscle growth and inflammation. Current therapeutic strategies to treat airway disease include the use of muscarinic and leukotriene receptor antagonists; however, these pharmaceuticals demonstrate a limited clinical efficacy as multiple Gq-coupled receptor subtypes contribute to these pathologies. Thus, broadly inhibiting the activation of Gq may be an advantageous therapeutic approach. Here, we investigated the effects of broadly inhibiting Gq activation in vitro and ex vivo using receptor-dependent and receptor-independent strategies. P4pal-10 is a protease activated receptor 4-derived pepducin that exhibits efficacy toward multiple Gq-coupled receptors. Mechanistic studies demonstrated that P4pal-10 selectively inhibits all G protein coupling to several Gq-coupled receptors, including protease activated receptor 1, muscarinic acetylcholine M3, and histamine H1 receptors, while demonstrating no direct effect on Gq. We also evaluated the ability of FR900359, also known as UBO-QIC, to directly inhibit Gq activation. FR900359 inhibited spontaneous Gαq nucleotide exchange, while having little effect on Gαsβγ, Gαiβγ, or Gα12/13βγ heterotrimer activity. Both P4pal-10 and FR900359 inhibited Gq-mediated intracellular signaling and primary human airway smooth muscle growth, whereas only FR900359 effectively interdicted agonist-promoted airway contraction in human precision cut lung slices. These studies serve as a proof of concept that the broad-based inhibition of Gq activation may be a useful therapeutic approach to treat multiple common pathologies of airway disease. PMID:26464325

  6. Dual functional BAFF receptor aptamers inhibit ligand-induced proliferation and deliver siRNAs to NHL cells

    PubMed Central

    Zhou, Jiehua; Tiemann, Katrin; Chomchan, Pritsana; Alluin, Jessica; Swiderski, Piotr; Burnett, John; Zhang, Xizhe; Forman, Stephen; Chen, Robert; Rossi, John

    2013-01-01

    The B-cell–activating factor (BAFF)-receptor (BAFF-R) is restrictedly expressed on B-cells and is often overexpressed in B-cell malignancies, such as non-Hodgkin’s lymphoma. On binding to its ligand BAFF, proliferation and cell survival are increased, enabling cancer cells to proliferate faster than normal B-cells. Nucleic acid aptamers can bind to target ligands with high specificity and affinity and may offer therapeutic advantages over antibody-based approaches. In this study, we isolated several 2′-F–modified RNA aptamers targeting the B-cell–specific BAFF-R with nanomolar affinity using in vitro SELEX technology. The aptamers efficiently bound to BAFF-R on the surface of B-cells, blocked BAFF-mediated B-cell proliferation and were internalized into B-cells. Furthermore, chimeric molecules between the BAFF-R aptamer and small interfering RNAs (siRNAs) were specifically delivered to BAFF-R expressing cells with a similar efficiency as the aptamer alone. We demonstrate that a signal transducer and activator of transcription 3 (STAT3) siRNA delivered by the BAFF-R aptamer was processed by Dicer and efficiently reduced levels of target mRNA and protein in Jeko-1 and Z138 human B-cell lines. Collectively, our results demonstrate that the dual-functional BAFF-R aptamer–siRNA conjugates are able to deliver siRNAs and block ligand mediated processes, suggesting it might be a promising combinatorial therapeutic agent for B-cell malignancies. PMID:23470998

  7. Elucidation of the metabolic pathways and the resulting multiple metabolites of almorexant, a dual orexin receptor antagonist, in humans.

    PubMed

    Dingemanse, Jasper; Hoever, Petra; Hoch, Matthias; Treiber, Alexander; Wagner-Redeker, Winfried; Miraval, Tommaso; Hopfgartner, Gérard; Shakeri-Nejad, Kasra

    2013-05-01

    Almorexant [(2R)-2-{(1S)-6, 7-dimethoxy-1-[2-(4-trifluoromethyl-phenyl)-ethyl]-3,4-dihydro-1H-isoquinolin-2-yl}-N-methyl-2-phenyl-acetamide], a tetrahydroisoquinoline derivative, is a dual orexin receptor antagonist with sleep-promoting properties in both animals and humans. This study investigated the disposition, metabolism, and elimination of almorexant in humans. After oral administration of a 200-mg dose of ¹⁴C-almorexant, almorexant was rapidly absorbed (Tmax = 0.8 hour), and the apparent terminal half-life (t(1/2)) was 17.8 hours. The radioactive dose was almost completely recovered with 78.0% of the administered radioactive dose found in feces and 13.5% in urine. Unchanged almorexant was not found in urine and represented 10% of the administered dose in feces. In total, 47 metabolites were identified of which 21 were shown to be present in plasma. There are four primary metabolites, the isomeric phenols M3 and M8, formed by demethylation, the aromatic isoquinolinium ion M5, formed by dehydrogenation, and M6, formed by oxidative dealkylation with loss of the phenylglycine moiety. Most of the subsequent products are formed by permutations of these primary metabolic reactions followed by conjugation of the intermediate phenols with glucuronic or sulfonic acid. The percentage of dose excreted in urine or feces for any of the metabolites did not exceed 10% of the administered radioactive dose, nor did any of the metabolites represent more than 10% of the total drug-related exposure. In conclusion, after rapid absorption, almorexant is extensively metabolized, and excretion of metabolites in feces is the predominant route of elimination in humans. PMID:23431113

  8. Effect of cyclosporine and rifampin on the pharmacokinetics of macitentan, a tissue-targeting dual endothelin receptor antagonist.

    PubMed

    Bruderer, Shirin; Aänismaa, Päivi; Homery, Marie-Claude; Häusler, Stephanie; Landskroner, Kyle; Sidharta, Patricia N; Treiber, Alexander; Dingemanse, Jasper

    2012-03-01

    Macitentan is a dual endothelin receptor antagonist under phase 3 investigation in pulmonary arterial hypertension. We investigated the effect of cyclosporine (Cs) and rifampin on the pharmacokinetics of macitentan and its metabolites ACT-132577 and ACT-373898 in healthy male subjects. In addition, in vitro studies were performed to investigate interactions between macitentan and its active metabolite ACT-132577 with human organic anion-transporting polypeptides (OATPs). The clinical study (AC-055-111) was conducted as a two-part, one-sequence, crossover study. Ten subjects in each part received multiple-dose macitentan followed by multiple-dose co-administration of Cs (part A) or rifampin (part B). In the presence of Cs, steady-state area under the plasma concentration-time profiles during a dose interval (AUC(τ)) for macitentan and ACT-373898 increased 10% and 7%, respectively, and decreased 3% for ACT-132577. Steady-state AUC(τ) of macitentan and ACT-373898 in the presence of rifampin decreased 79% and 64%, respectively. For ACT-132577, no relevant difference in AUC(τ) between the two treatments was observed. Macitentan co-administered with Cs or rifampin was well tolerated. The complementary in vitro studies demonstrated no marked differences in uptake rates of macitentan and ACT-132577 between the wild-type and OATP over-expressing cells over the concentration range tested. Concomitant treatment with Cs did not have any clinically relevant effect on the exposure to macitentan or its metabolites, at steady-state. Concomitant treatment with rifampin reduced significantly the exposure to macitentan and its metabolite ACT-373898 at steady-state but did not affect the exposure to the active metabolite ACT-132577 to a clinically relevant extent. PMID:22189899

  9. Effects of ONO-6950, a novel dual cysteinyl leukotriene 1 and 2 receptors antagonist, in a guinea pig model of asthma.

    PubMed

    Yonetomi, Yasuo; Sekioka, Tomohiko; Kadode, Michiaki; Kitamine, Tetsuya; Kamiya, Akihiro; inoue, Atsuto; Nakao, Takafumi; Nomura, Hiroaki; Murata, Masayuki; Nakao, Shintaro; Nambu, Fumio; Fujita, Manabu; Nakade, Shinji; Kawabata, Kazuhito

    2015-10-15

    We assessed in this study the anti-asthmatic effects of ONO-6950, a novel cysteinyl leukotriene 1 (CysLT1) and 2 (CysLT2) receptors dual antagonist, in normal and S-hexyl glutathione (S-hexyl GSH)-treated guinea pigs, and compared these effects to those of montelukast, a CysLT1 selective receptor antagonist. Treatment with S-hexyl GSH reduced animals LTC4 metabolism, allowing practical evaluation of CysLT2 receptor-mediated airway response. ONO-6950 antagonized intracellular calcium signaling via human and guinea pig CysLT1 and CysLT2 receptors with IC50 values of 1.7 and 25 nM, respectively (human receptors) and 6.3 and 8.2 nM, respectively (guinea pig receptors). In normal guinea pigs, both ONO-6950 (1 or 0.3 mg/kg, p.o.) and the CysLT1 receptor antagonist montelukast (0.3 or 0.1 mg/kg, p.o.) fully attenuated CysLT1-mediated bronchoconstriction and airway vascular hyperpermeability induced by LTD4. On the other hand, in S-hexyl GSH-treated guinea pigs ONO-6950 at 3 mg/kg, p.o. or more almost completely inhibited bronchoconstriction and airway vascular hyperpermeability elicited by LTC4, while montelukast showed only partial or negligible inhibition of these airway responses. In ovalbumin sensitized guinea pigs, treatment with S-hexyl GSH on top of pyrilamine and indomethacin rendered antigen-induced bronchoconstriction sensitive to both CysLT1 and CysLT2 receptor antagonists. ONO-6950 strongly inhibited this asthmatic response to the level attained by combination therapy with montelukast and BayCysLT2RA, a selective CysLT2 receptor antagonist. These results clearly demonstrate that ONO-6950 is an orally active dual CysLT1/LT2 receptor antagonist that may provide a novel therapeutic option for patients with asthma. PMID:26318198

  10. Assessing the range of kinase autoinhibition mechanisms in the insulin receptor family

    PubMed Central

    Artim, Stephen C.; Mendrola, Jeannine M.; Lemmon, Mark A.

    2012-01-01

    To investigate the range of autoinhibitory mechanisms used by TKDs (tyrosine kinase domains) from the insulin receptor family of RTKs (receptor tyrosine kinases), we determined crystal structures of TKDs from TrkA (tropomyosin receptor kinase A, a nerve growth factor receptor) and Ror2 (receptor tyrosine kinase-like orphan receptor 2, an unconventional Wnt receptor). TrkA autoinhibition closely resembles that seen for the insulin receptor, relying on projection of an activation loop tyrosine residue into the substrate-binding site and occlusion of the ATP-binding site by the activation loop. Ror2 employs similar mechanisms, but the unusual replacement of the phenylalanine residue in its Asp-Phe-Gly motif with leucine necessitates occlusion of the ATP-binding site by other means. The unusual Asp-Leu-Gly motif in Ror2 is displaced compared with other inactive kinases, allowing the activation loop to interact directly with the TKD's αC helix, in another mode of autoinhibition that is characteristic of the other extreme of this receptor family: ALK (anaplastic lymphoma kinase) and Met. These findings provide insight into the expected range of activating mutations in these TKDs in cancer. We also describe symmetrical dimers of the inactive TrkA TKD resembling those found in other RTKs, possibly reflecting an arrangement of kinase domains in a pre-formed TrkA dimer. PMID:22992069

  11. P2X3 receptors and peripheral pain mechanisms

    PubMed Central

    North, R Alan

    2004-01-01

    ATP released from damaged or inflamed tissues can act at P2X receptors expressed on primary afferent neurones. The resulting depolarization can initiate action potentials that are interpreted centrally as pain. P2X3 subunits are found in a subset of small-diameter, primary afferent neurones, some of which are also sensitive to capsaicin. They can form homo-oligomeric channels, or they can assemble with P2X2 subunits into hetero-oligomers. Studies with antagonists selective for P2X3-containing receptors, experiments with antisense oligonucleotides to reduce P2X3 subunit levels, and behavioural testing of P2X3 knock-out mice, all suggest a role for the P2X2/3 receptor in the signalling of chronic inflammatory pain and some features of neuropathic pain. The availability of such tools and experimental approaches promises to accelerate our understanding of the other physiological roles for P2X receptors on primary afferent neurones. PMID:12832496

  12. MOLECULAR MECHANISMS OF RECEPTOR KINASE ACTION IN BRASSINOSTEROID SIGNAL TRANSDUCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassinosteroids (BRs) regulate multiple aspects of plant growth and development and require an active BRASSINOSTEROID INSENSITIVE 1 (BRI1) and BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) for hormone perception and signal transduction. To examine early events in BR signaling, we used co-immunoprecipita...

  13. Angiotensin II AT1 receptor constitutive activation: from molecular mechanisms to pathophysiology.

    PubMed

    Petrel, Christophe; Clauser, Eric

    2009-04-29

    Mutations activating the angiotensin II AT(1) receptor are important to identify and characterize because they give access to the activation mechanisms of this G protein coupled receptor and help to characterize the signaling pathways and the potential pathophysiology of this receptor. The different constitutively activated mutations of the AT(1) receptor are mostly localized in transmembrane domains (TM) and their characterization demonstrated that release of intramolecular constraints and movements among these TM are a necessary step for receptor activation. These mutations constitutively activate Gq linked signaling pathways, receptor internalization and maybe the G protein-independent signaling pathways. Expression of such mutations in mice is linked to hypertension and cardiovascular diseases, but such natural mutations have not been identified in human pathology. PMID:19061936

  14. Ionic Mechanisms of Neuronal Excitation by Inhibitory GABA_A Receptors

    NASA Astrophysics Data System (ADS)

    Staley, Kevin J.; Soldo, Brandi L.; Proctor, William R.

    1995-08-01

    Gamma-aminobutyric acid A (GABA_A) receptors are the principal mediators of synaptic inhibition, and yet when intensely activated, dendritic GABA_A receptors excite rather than inhibit neurons. The membrane depolarization mediated by GABA_A receptors is a result of the differential, activity-dependent collapse of the opposing concentration gradients of chloride and bicarbonate, the anions that permeate the GABA_A ionophore. Because this depolarization diminishes the voltage-dependent block of the N-methyl-D-aspartate (NMDA) receptor by magnesium, the activity-dependent depolarization mediated by GABA is sufficient to account for frequency modulation of synaptic NMDA receptor activation. Anionic gradient shifts may represent a mechanism whereby the rate and coherence of synaptic activity determine whether dendritic GABA_A receptor activation is excitatory or inhibitory.

  15. Novel roles of nuclear angiotensin receptors and signaling mechanisms.

    PubMed

    Gwathmey, TanYa M; Alzayadneh, Ebaa M; Pendergrass, Karl D; Chappell, Mark C

    2012-03-01

    The renin-angiotensin system (RAS) constitutes an important hormonal system in the physiological regulation of blood pressure. The dysregulation of the RAS is considered a major influence in the development and progression of cardiovascular disease and other pathologies. Indeed, experimental and clinical evidence indicates that blockade of this system with angiotensin-converting enzyme (ACE) inhibitors or angiotensin type 1 receptor (AT1R) antagonists is an effective therapy to attenuate hypertension and diabetic renal injury, and to improve heart failure. Originally defined as a circulating system, multiple tissues express a complete RAS, and compelling evidence now favors an intracellular system involved in cell signaling and function. Within the kidney, intracellular expression of the three predominant ANG receptor subtypes is evident in the nuclear compartment. The ANG type 1 receptor (AT1R) is coupled to the generation of reactive oxygen species (ROS) through the activation of phosphoinositol-3 kinase (PI3K) and PKC. In contrast, both ANG type 2 (AT2R) and ANG-(1-7) (AT7R) receptors stimulate nitric oxide (NO) formation, which may involve nuclear endothelial NO synthase (eNOS). Moreover, blockade of either ACE2-the enzyme that converts ANG II to ANG-(1-7)-or the AT7 receptor exacerbates the ANG II-ROS response on renal nuclei. Finally, in a model of fetal programmed hypertension, the nuclear ROS response to ANG II is enhanced, while both AT2 and AT7 stimulation of NO is attenuated, suggesting that an imbalance in the intracellular RAS may contribute to the development of programming events. We conclude that a functional intracellular or nuclear RAS may have important implications in the therapeutic approaches to cardiovascular disease. PMID:22170620

  16. Dual mechanical behaviour of hydrogen in stressed silicon nitride thin films

    SciTech Connect

    Volpi, F. Braccini, M.; Pasturel, A.; Devos, A.; Raymond, G.; Morin, P.

    2014-07-28

    In the present article, we report a study on the mechanical behaviour displayed by hydrogen atoms and pores in silicon nitride (SiN) films. A simple three-phase model is proposed to relate the physical properties (stiffness, film stress, mass density, etc.) of hydrogenated nanoporous SiN thin films to the volume fractions of hydrogen and pores. This model is then applied to experimental data extracted from films deposited by plasma enhanced chemical vapour deposition, where hydrogen content, stress, and mass densities range widely from 11% to 30%, −2.8 to 1.5 GPa, and 2.0 to 2.8 g/cm{sup 3}, respectively. Starting from the conventional plotting of film's Young's modulus against film porosity, we first propose to correct the conventional calculation of porosity volume fraction with the hydrogen content, thus taking into account both hydrogen mass and concentration. The weight of this hydrogen-correction is found to evolve linearly with hydrogen concentration in tensile films (in accordance with a simple “mass correction” of the film density calculation), but a clear discontinuity is observed toward compressive stresses. Then, the effective volume occupied by hydrogen atoms is calculated taking account of the bond type (N-H or Si-H bonds), thus allowing a precise extraction of the hydrogen volume fraction. These calculations applied to tensile films show that both volume fractions of hydrogen and porosity are similar in magnitude and randomly distributed against Young's modulus. However, the expected linear dependence of the Young's modulus is clearly observed when both volume fractions are added. Finally, we show that the stiffer behaviour of compressive films cannot be only explained on the basis of this (hydrogen + porosity) volume fraction. Indeed this stiffness difference relies on a dual mechanical behaviour displayed by hydrogen atoms against the film stress state: while they participate to the stiffness in compressive films, hydrogen atoms

  17. Kidney branching morphogenesis under the control of a ligand-receptor-based Turing mechanism

    NASA Astrophysics Data System (ADS)

    Menshykau, Denis; Iber, Dagmar

    2013-08-01

    The main signalling proteins that control early kidney branching have been defined. Yet the underlying mechanism is still elusive. We have previously shown that a Schnakenberg-type Turing mechanism can recapitulate the branching and protein expression patterns in wild-type and mutant lungs, but it is unclear whether this mechanism would extend to other branched organs that are regulated by other proteins. Here, we show that the glial cell line-derived neurotrophic factor-RET regulatory interaction gives rise to a Schnakenberg-type Turing model that reproduces the observed budding of the ureteric bud from the Wolffian duct, its invasion into the mesenchyme and the observed branching pattern. The model also recapitulates all relevant protein expression patterns in wild-type and mutant mice. The lung and kidney models are both based on a particular receptor-ligand interaction and require (1) cooperative binding of ligand and receptor, (2) a lower diffusion coefficient for the receptor than for the ligand and (3) an increase in the receptor concentration in response to receptor-ligand binding (by enhanced transcription, more recycling or similar). These conditions are met also by other receptor-ligand systems. We propose that ligand-receptor-based Turing patterns represent a general mechanism to control branching morphogenesis and other developmental processes.

  18. A conserved structural mechanism of NMDA receptor inhibition: A comparison of ifenprodil and zinc

    PubMed Central

    Sirrieh, Rita E.; MacLean, David M.

    2015-01-01

    N-methyl-d-aspartate (NMDA) receptors, one of the three main types of ionotropic glutamate receptors (iGluRs), are involved in excitatory synaptic transmission, and their dysfunction is implicated in various neurological disorders. NMDA receptors, heterotetramers typically composed of GluN1 and GluN2 subunits, are the only members of the iGluR family that bind allosteric modulators at their amino-terminal domains (ATDs). We used luminescence resonance energy transfer to characterize the conformational changes the receptor undergoes upon binding ifenprodil, a synthetic compound that specifically inhibits activation of NMDA receptors containing GluN2B. We found that ifenprodil induced an overall closure of the GluN2B ATD without affecting conformation of the GluN1 ATD or the upper lobes of the ATDs, the same mechanism whereby zinc inhibits GluN2A. These data demonstrate that the conformational changes induced by zinc and ifenprodil represent a conserved mechanism of NMDA receptor inhibition. Additionally, we compared the structural mechanism of zinc inhibition of GluN1–GluN2A receptors to that of ifenprodil inhibition of GluN1–GluN2B. The similarities in the conformational changes induced by inhibitor binding suggest a conserved structural mechanism of inhibition independent of the binding site of the modulator. PMID:26170175

  19. The mechanisms of HAMP-mediated signaling in transmembrane receptors.

    PubMed

    Ferris, Hedda U; Dunin-Horkawicz, Stanislaw; Mondéjar, Laura García; Hulko, Michael; Hantke, Klaus; Martin, Jörg; Schultz, Joachim E; Zeth, Kornelius; Lupas, Andrei N; Coles, Murray

    2011-03-01

    HAMP domains mediate signal transduction in over 7500 enzyme-coupled receptors represented in all kingdoms of life. The HAMP domain of the putative archaeal receptor Af1503 has a parallel, dimeric, four-helical coiled coil structure, but with unusual core packing, related to canonical packing by concerted axial rotation of the helices. This has led to the gearbox model for signal transduction, whereby the alternate packing modes correspond to signaling states. Here we present structures of a series of Af1503 HAMP variants. We show that substitution of a conserved small side chain within the domain core (A291) for larger residues induces a gradual transition in packing mode, involving both changes in helix rotation and bundle shape, which are most prominent at the C-terminal, output end of the domain. These are correlated with activity and ligand response in vitro and in vivo by incorporating Af1503 HAMP into mycobacterial adenylyl cyclase assay systems. PMID:21397188

  20. Radiation and Dual Checkpoint Blockade Activates Non-Redundant Immune Mechanisms in Cancer

    PubMed Central

    Victor, Christina Twyman-Saint; Rech, Andrew J.; Maity, Amit; Rengan, Ramesh; Pauken, Kristen E.; Stelekati, Erietta; Benci, Joseph L.; Xu, Bihui; Dada, Hannah; Odorizzi, Pamela M.; Herati, Ramin S.; Mansfield, Kathleen D.; Patsch, Dana; Amaravadi, Ravi K.; Schuchter, Lynn M.; Ishwaran, Hemant; Mick, Rosemarie; Pryma, Daniel A.; Xu, Xiaowei; Feldman, Michael D.; Gangadhar, Tara C.; Hahn, Stephen M.; Wherry, E. John; Vonderheide, Robert H.; Minn, Andy J.

    2015-01-01

    Immune checkpoint inhibitors1 result in impressive clinical responses2–5 but optimal results will require combination with each other6 and other therapies. This raises fundamental questions about mechanisms of non-redundancy and resistance. Here, we report major tumor regressions in a subset of patients with metastatic melanoma treated with an anti-CTLA4 antibody (anti-CTLA4) and radiation (RT) and reproduced this effect in mouse models. Although combined treatment improved responses in irradiated and unirradiated tumors, resistance was common. Unbiased analyses of mice revealed that resistance was due to upregulation of PD-L1 on melanoma cells and associated with T cell exhaustion. Accordingly, optimal response in melanoma and other cancer types requires RT, anti-CTLA4, and anti-PD-L1/PD-1. Anti-CTLA4 predominantly inhibits T regulatory cells (Tregs) to increase the CD8 T cell to Treg (CD8/Treg) ratio. RT enhances the diversity of the T cell receptor (TCR) repertoire of intratumoral T cells. Together, anti-CTLA4 promotes expansion of T cells, while RT shapes the TCR repertoire of the expanded peripheral clones. Addition of PD-L1 blockade reverses T cell exhaustion to mitigate depression in the CD8/Treg ratio and further encourages oligo-clonal T cell expansion. Similar to results from mice, patients on our clinical trial with melanoma showing high PD-L1 did not respond to RT + anti-CTLA4, demonstrated persistent T cell exhaustion, and rapidly progressed. Thus, PD-L1 on melanoma cells allows tumors to escape anti-CTLA4-based therapy, and the combination of RT, anti-CTLA4, and anti-PD-L1 promotes response and immunity through distinct mechanisms. PMID:25754329

  1. The Molecular Mechanism of P2Y1 Receptor Activation.

    PubMed

    Yuan, Shuguang; Chan, H C Stephen; Vogel, Horst; Filipek, Slawomir; Stevens, Raymond C; Palczewski, Krzysztof

    2016-08-22

    Human purinergic G protein-coupled receptor P2Y1 (P2Y1 R) is activated by adenosine 5'-diphosphate (ADP) to induce platelet activation and thereby serves as an important antithrombotic drug target. Crystal structures of P2Y1 R revealed that one ligand (MRS2500) binds to the extracellular vestibule of this GPCR, whereas another (BPTU) occupies the surface between transmembrane (TM) helices TM2 and TM3. We introduced a total of 20 μs all-atom long-timescale molecular dynamic (MD) simulations to inquire why two molecules in completely different locations both serve as antagonists while ADP activates the receptor. Our results indicate that BPTU acts as an antagonist by stabilizing extracellular helix bundles leading to an increase of the lipid order, whereas MRS2500 blocks signaling by occupying the ligand binding site. Both antagonists stabilize an ionic lock within the receptor. However, binding of ADP breaks this ionic lock, forming a continuous water channel that leads to P2Y1 R activation. PMID:27460867

  2. The Molecular Mechanism of P2Y1 Receptor Activation

    PubMed Central

    Chan, H. C. Stephen; Vogel, Horst; Filipek, Slawomir

    2016-01-01

    Human purinergic G protein-coupled receptor P2Y1 (P2Y1R) is activated by adenosine 5’-diphosphate (ADP) to induce platelet activation and thereby serves as an important antithrombotic drug target. Crystal structures of P2Y1R revealed that one ligand (MRS2500) binds to the extracellular vestibule of this GPCR, whereas another (BPTU) occupies the surface between transmembrane (TM) helices TM2 and TM3. We introduced a total of 20 µs all-atom long-timescale molecular dynamic (MD) simulations to inquire why two molecules in completely different locations both serve as antagonists while ADP activates the receptor. Our results indicate that BPTU acts as an antagonist by stabilizing extracellular helix bundles leading to an increase of the lipid order, whereas MRS2500 blocks signaling by occupying the ligand binding site. Both antagonists stabilize an ionic lock within the receptor. However, binding of ADP breaks this ionic lock, forming a continuous water channel that leads to P2Y1R activation. PMID:27460867

  3. ``Lock and key mechanism'' for ligand binding with adrenergic receptors and the arising mechanical effects on the cell membrane

    NASA Astrophysics Data System (ADS)

    Lunghi, Laura; Deseri, Luca

    2013-03-01

    Chemicals hitting the surface of cell aggregates are known to give arise to cyclic Adenosine Mono Phosphate (cAMP), a second messenger that transduces inside the cell the effects of species that cannot get through the cell membrane. Ligands bind to a specific receptor following the so called ``lock and key mechanism'' (beta)-adrenergic receptors are proteins embedded in the lipid bilayer characterized by seven transmembrane helices. Thinning and thickening in cell membranes may be initiated by conformational changes of some of three of the seven domains above. The cell response is linked to the coupling of chemical, conformational and mechanical effects. Part of the cAMP remains intracellular, whereas the remaining fractions migrates outside the cell due to membrane transporters. A new Helmholtz free energy, accounting for receptor and transporter densities, receptor conformation field and membrane elasticity is investigated. It is shown how the density of active receptors is directly related to the conformation field and it enters the resulting balance equation for the membrane stress. Balance laws for fluxes of transporters and receptors, coupled with the former because of the outgoing cAMP flux caused by the transporters, as well as for the diffusive powers must be supplied. The Center for Nonlinear Analysis through the NSF Grant No. DMS-0635983 is gratefully acknowledged.

  4. Endothelin receptors and their cellular signal transduction mechanism in human cultured prostatic smooth muscle cells.

    PubMed

    Saita, Y; Koizumi, T; Yazawa, H; Morita, T; Takenaka, T; Honda, K

    1997-06-01

    1. Endothelin (ET) receptors, and their cellular signal transduction mechanism, were characterized in a primary culture of human prostatic smooth muscle cells (HP cell). 2. [125I]-ET-1 and [125I]-ET-3 binding studies revealed that both ETA and ETB receptors were present in the HP cells, and the ratio of ETA to ETB receptors was 1.4:1. 3. Analysis of ET receptor mRNA by reverse transcription-polymerase chain reaction also demonstrated that HP cells express both ETA and ETB receptors. 4. ET-1 and ET-3 increased intracellular free Ca2+ concentration ([Ca2+]i) in the HP cells in a concentration-dependent manner. Use of subtype selective antagonists BQ-123 and BQ-788, indicated that both ETA and ETB receptors were coupled to an increase in [Ca2+]i. 5. Pretreatment of the cells with pertussis toxin resulted in a significant but partial attenuation of the [Ca2+]i increase mediated through the ETA and ETB receptors. However, sensitivity to pertussis toxin (PTX) was significantly different between them. 6. In conclusion, HP cells possess ETA and ETB receptors. Further, these two endothelin receptor subtypes evoke an increase in [Ca2+]i possibly via the action of different GTP-binding proteins. PMID:9208135

  5. Endothelin receptors and their cellular signal transduction mechanism in human cultured prostatic smooth muscle cells

    PubMed Central

    Saita, Yuji; Koizumi, Tomonobu; Yazawa, Hidenori; Morita, Takashi; Takenaka, Toichi; Honda, Kazuo

    1997-01-01

    Endothelin (ET) receptors, and their cellular signal transduction mechanism, were characterized in a primary culture of human prostatic smooth muscle cells (HP cell). [125I]-ET-1 and [125I]-ET-3 binding studies revealed that both ETA and ETB receptors were present in the HP cells, and the ratio of ETA to ETB receptors was 1.4:1. Analysis of ET receptor mRNA by reverse transcription-polymerase chain reaction also demonstrated that HP cells express both ETA and ETB receptors. ET-1 and ET-3 increased intracellular free Ca2+ concentration ([Ca2+]i) in the HP cells in a concentration-dependent manner. Use of subtype selective antagonists BQ-123 and BQ-788, indicated that both ETA and ETB receptors were coupled to an increase in [Ca2+]i. Pretreatment of the cells with pertussis toxin resulted in a significant but partial attenuation of the [Ca2+]i increase mediated through the ETA and ETB receptors. However, sensitivity to pertussis toxin (PTX) was significantly different between them. In conclusion, HP cells possess ETA and ETB receptors. Further, these two endothelin receptor subtypes evoke an increase in [Ca2+]i possibly via the action of different GTP-binding proteins. PMID:9208135

  6. Pramipexole inhibits MPTP toxicity in mice by dopamine D3 receptor dependent and independent mechanisms.

    PubMed

    Ramirez, Andres D; Wong, Stephen K-F; Menniti, Frank S

    2003-08-15

    The role of dopamine D3 receptors was investigated in mediating the neuroprotective effect of the dopamine D2/D3 receptor agonist (S)-2-amino-4,5,6,7-tetrahydro-6-propylamine-benzothiazole (pramipexole) in vivo. Pramipexole retained the ability to inhibit 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopamine depletion in mice in which the dopamine D3 receptor had been deleted. However, the neuroprotective efficacy was reduced in the dopamine D3 receptor-deleted mice compared to that in littermates expressing the wildtype receptor. Furthermore, the dopamine D3 receptor selective antagonist 2-(3-[4-(2-tert-butyl-6-trifluoromethyl-4-pyrimidinyl)-1-piperazinyl]propylthio)-4-pyrimidinol (A-437203) partially inhibited the neuroprotective effect of pramipexole in dopamine D3 receptor expressing mice but not in receptor-deleted mice. These results indicate that pramipexole protects dopamine neurons from MPTP-induced toxicity by mechanisms that are both dependent and independent of an interaction with dopamine D3 receptors. PMID:12954356

  7. Coupling characteristics and control of dual mechanical port machine with spoke type permanent magnet arrangement

    NASA Astrophysics Data System (ADS)

    Zhuang, Xingming; Song, Qiang; Wen, Xuhui; Zhao, Feng; Fan, Tao

    2014-11-01

    Dual mechanical port machine(DMPM), as a novel electromechanical energy conversion device, has attracted widespread attention. DMPM with spoke type permanent magnet arrangements(STPM-DMPM), which is one of several types of DMPM, has been of interest recently. The unique coupling characteristics of STPM-DMPM are beneficial to improving system performance, but these same characteristics increase the difficulties of control. Now there has been little research about the control of STPM-DMPM, and this has hindered its practical application. Based on a mathematical model of STPM-DMPM, the coupling characteristics and the merits and demerits of such devices are analyzed as applied to a hybrid system. The control strategies for improving the disadvantages and for utilizing the advantage of coupling are researched. In order to weaken the interaction effect of torque outputs in the inner motor and the outer motor that results from coupling in STPM-DMPM, a decoupling control method based on equivalent current control is proposed, and independent torque control for the inner motor and outer motor is achieved. In order to solve address the problem of adequately utilization of coupling, minimizing the overall copper loss of the inner motor and the outer motor of STPM-DMPM is taken as the optimization objective for optimal control, and the purpose of utilizing the coupling adequately and reasonably is achieved. The verification tests of the proposed decoupling control and optimal control strategies are carried out on a prototype STPM-DMPM, and the experimental results show that the interaction effect of torque outputs in the inner motor and the outer motor can be markedly weakened through use of the control method. The overall copper loss of the inner motor and the outer motor can be markedly reduced through use of the optimal control method, while the power output remains unchanged. A breakthrough in the control problem of STPM-DMPM is accomplished by combining the control

  8. Autophagic Degradation of the 26S Proteasome Is Mediated by the Dual ATG8/Ubiquitin Receptor RPN10 in Arabidopsis.

    PubMed

    Marshall, Richard S; Li, Faqiang; Gemperline, David C; Book, Adam J; Vierstra, Richard D

    2015-06-18

    Autophagic turnover of intracellular constituents is critical for cellular housekeeping, nutrient recycling, and various aspects of growth and development in eukaryotes. Here we show that autophagy impacts the other major degradative route involving the ubiquitin-proteasome system by eliminating 26S proteasomes, a process we termed proteaphagy. Using Arabidopsis proteasomes tagged with GFP, we observed their deposition into vacuoles via a route requiring components of the autophagy machinery. This transport can be initiated separately by nitrogen starvation and chemical or genetic inhibition of the proteasome, implying distinct induction mechanisms. Proteasome inhibition stimulates comprehensive ubiquitylation of the complex, with the ensuing proteaphagy requiring the proteasome subunit RPN10, which can simultaneously bind both ATG8 and ubiquitin. Collectively, we propose that Arabidopsis RPN10 acts as a selective autophagy receptor that targets inactive 26S proteasomes by concurrent interactions with ubiquitylated proteasome subunits/targets and lipidated ATG8 lining the enveloping autophagic membranes. PMID:26004230

  9. Extracellular matrix hyaluronan signals via its CD44 receptor in the increased responsiveness to mechanical stimulation.

    PubMed

    Ferrari, L F; Araldi, D; Bogen, O; Levine, J D

    2016-06-01

    We propose that the extracellular matrix (ECM) signals CD44, a hyaluronan receptor, to increase the responsiveness to mechanical stimulation in the rat hind paw. We report that intradermal injection of hyaluronidase induces mechanical hyperalgesia, that is inhibited by co-administration of a CD44 receptor antagonist, A5G27. The intradermal injection of low (LMWH) but not high (HMWH) molecular weight hyaluronan also induces mechanical hyperalgesia, an effect that was attenuated by pretreatment with HMWH or A5G27. Pretreatment with HMWH also attenuated the hyperalgesia induced by hyaluronidase. Similarly, intradermal injection of A6, a CD44 receptor agonist, produced hyperalgesia that was inhibited by HMWH and A5G27. Inhibitors of protein kinase A (PKA) and Src, but not protein kinase C (PKC), significantly attenuated the hyperalgesia induced by both A6 and LMWH. Finally, to determine if CD44 receptor signaling is involved in a preclinical model of inflammatory pain, we evaluated the effect of A5G27 and HMWH on the mechanical hyperalgesia associated with the inflammation induced by carrageenan. Both A5G27 and HMWH attenuated carrageenan-induced mechanical hyperalgesia. Thus, while LMWH acts at its cognate receptor, CD44, to induce mechanical hyperalgesia, HMWH acts at the same receptor as an antagonist. That the local administration of HMWH or A5G27 inhibits carrageenan-induced hyperalgesia supports the suggestion that carrageenan produces changes in the ECM that contributes to inflammatory pain. These studies define a clinically relevant role for signaling by the hyaluronan receptor, CD44, in increased responsiveness to mechanical stimulation. PMID:26996509

  10. Isolating the neural mechanisms of interference during continuous multisensory dual-task performance.

    PubMed

    Kasper, Ryan W; Cecotti, Hubert; Touryan, Jon; Eckstein, Miguel P; Giesbrecht, Barry

    2014-03-01

    The need to engage in multiple tasks simultaneously is often encountered in everyday experience, but coordinating between two or more tasks can lead to impaired performance. Typical investigations of multitasking impairments have focused on the performance of two tasks presented in close temporal proximity on discrete trials; however, such paradigms do not match well with the continuous performance situations more typically encountered outside the laboratory. As a result, the stages of information processing that are affected during multisensory continuous dual tasks and how these changes in processing relate to behavior remain unclear. To address these issues, participants were presented simultaneous rapid visual and auditory stimulus sequences under three conditions: attend visual only, attend auditory only, and dual attention (attend both visual and auditory). Performance, measured in terms of response time and perceptual sensitivity (d'), revealed dual-task impairments only in the auditory task. Neural activity, measured by the ERP technique, revealed that both early stage sensory processing and later cognitive processing of the auditory task were affected by dual-task performance, but similar stages of processing of the visual task were not. Critically, individual differences in neural activity at both early and late stages of information processing accurately rank-ordered individuals based on the observed difference in behavioral performance between the single and dual attention conditions. These results reveal relationships between behavioral performance and the neural correlates of both early and late stage information processing that provide key insights into the complex interplay between the brain and behavior when multiple tasks are performed continuously. PMID:24047391

  11. Identification of the transmitter and receptor mechanisms responsible for REM sleep paralysis.

    PubMed

    Brooks, Patricia L; Peever, John H

    2012-07-18

    During REM sleep the CNS is intensely active, but the skeletal motor system is paradoxically forced into a state of muscle paralysis. The mechanisms that trigger REM sleep paralysis are a matter of intense debate. Two competing theories argue that it is caused by either active inhibition or reduced excitation of somatic motoneuron activity. Here, we identify the transmitter and receptor mechanisms that function to silence skeletal muscles during REM sleep. We used behavioral, electrophysiological, receptor pharmacology and neuroanatomical approaches to determine how trigeminal motoneurons and masseter muscles are switched off during REM sleep in rats. We show that a powerful GABA and glycine drive triggers REM paralysis by switching off motoneuron activity. This drive inhibits motoneurons by targeting both metabotropic GABA(B) and ionotropic GABA(A)/glycine receptors. REM paralysis is only reversed when motoneurons are cut off from GABA(B), GABA(A) and glycine receptor-mediated inhibition. Neither metabotropic nor ionotropic receptor mechanisms alone are sufficient for generating REM paralysis. These results demonstrate that multiple receptor mechanisms trigger REM sleep paralysis. Breakdown in normal REM inhibition may underlie common sleep motor pathologies such as REM sleep behavior disorder. PMID:22815493

  12. [The mechanisms of prostate cancer progression through androgen receptor].

    PubMed

    Goto, Yusuke; Sakamoto, Shinichi; Ichikawa, Tomohiko

    2016-01-01

    Androgen receptor(AR) has a critical role in prostate cancer(PCa) progression and targeting AR axis signaling by androgen deprivation therapy is a standard treatment for advanced PCa. Recently, the role of AR even in castration-resistant PCa(CRPC) is well recognized and emerging evidence suggests survival advantages of treatment by targeting AR in CRPC. This review outlines AR functions that contribute to PCa progression, AR structural alterations and AR activation via intracrine, co-factors, and kinase pathways in CRPC. Finally, we describe about recently reported bipolar androgen therapy as a novel treatment for CRPC targeting AR. PMID:26793880

  13. Desensitization of GABAergic receptors as a mechanism of zolpidem-induced somnambulism.

    PubMed

    Juszczak, Grzegorz R

    2011-08-01

    Sleepwalking is a frequently reported side effect of zolpidem which is a short-acting hypnotic drug potentiating activity of GABA(A) receptors. Paradoxically, the most commonly used medications for somnambulism are benzodiazepines, especially clonazepam, which also potentiate activity of GABA(A) receptors. It is proposed that zolpidem-induced sleepwalking can be explained by the desensitization of GABAergic receptors located on serotonergic neurons. According to the proposed model, the delay between desensitization of GABA receptors and a compensatory decrease in serotonin release constitutes the time window for parasomnias. The occurrence of sleepwalking depends on individual differences in receptor desensitization, autoregulation of serotonin release and drug pharmacokinetics. The proposed mechanism of interaction between GABAergic and serotonergic systems can be also relevant for zolpidem abuse and zolpidem-induced hallucinations. It is therefore suggested that special care should be taken when zolpidem is used in patients taking at the same time selective serotonin reuptake inhibitors. PMID:21565448

  14. Postendocytic Sorting of Adrenergic and Opioid Receptors: New Mechanisms and Functions.

    PubMed

    Bowman, Shanna L; Puthenveedu, Manojkumar A

    2015-01-01

    The endocytic pathway tightly regulates the activity of G protein-coupled receptors (GPCRs). Much of our understanding of this relationship between GPCR endocytic trafficking and signaling comes from studies done on catecholamine and opioid receptors. After ligand-induced endocytosis, a key sorting step in the endosome determines whether receptors are recycled back to the cell surface, leading to recovery of signaling, or are degraded in the lysosome, leading to desensitization. Recycling of GPCRs, unlike that of many other proteins, is an active process driven by specific sequences on the receptor and proteins that interact with this sequence. Recent data suggest that sequence-dependent recycling plays complex roles in regulating both the timing and location of GPCR signaling. This chapter will describe our current understanding of the mechanisms regulating GPCR sorting in the endosome and discuss emerging ideas on their role in GPCR signaling, focusing on adrenergic and opioid receptors as prototypes. PMID:26055059

  15. Mechanisms of the adenosine A2A receptor-induced sensitization of esophageal C fibers.

    PubMed

    Brozmanova, M; Mazurova, L; Ru, F; Tatar, M; Hu, Y; Yu, S; Kollarik, M

    2016-02-01

    Clinical studies indicate that adenosine contributes to esophageal mechanical hypersensitivity in some patients with pain originating in the esophagus. We have previously reported that the esophageal vagal nodose C fibers express the adenosine A2A receptor. Here we addressed the hypothesis that stimulation of the adenosine A2A receptor induces mechanical sensitization of esophageal C fibers by a mechanism involving transient receptor potential A1 (TRPA1). Extracellular single fiber recordings of activity originating in C-fiber terminals were made in the ex vivo vagally innervated guinea pig esophagus. The adenosine A2A receptor-selective agonist CGS21680 induced robust, reversible sensitization of the response to esophageal distention (10-60 mmHg) in a concentration-dependent fashion (1-100 nM). At the half-maximally effective concentration (EC50: ≈3 nM), CGS21680 induced an approximately twofold increase in the mechanical response without causing an overt activation. This sensitization was abolished by the selective A2A antagonist SCH58261. The adenylyl cyclase activator forskolin mimicked while the nonselective protein kinase inhibitor H89 inhibited mechanical sensitization by CGS21680. CGS21680 did not enhance the response to the purinergic P2X receptor agonist α,β-methylene-ATP, indicating that CGS21680 does not nonspecifically sensitize to all stimuli. Mechanical sensitization by CGS21680 was abolished by pretreatment with two structurally different TRPA1 antagonists AP18 and HC030031. Single cell RT-PCR and whole cell patch-clamp studies in isolated esophagus-specific nodose neurons revealed the expression of TRPA1 in A2A-positive C-fiber neurons and demonstrated that CGS21682 potentiated TRPA1 currents evoked by allylisothiocyanate. We conclude that stimulation of the adenosine A2A receptor induces mechanical sensitization of nodose C fibers by a mechanism sensitive to TRPA1 antagonists indicating the involvement of TRPA1. PMID:26564719

  16. Statistical Mechanics Model for the Interaction between the Neurotransmitter γ-Aminobutyric acid and GABAA Receptors

    NASA Astrophysics Data System (ADS)

    Zafar, Sufi; Saxena, Nina C.; Conrad, Kevin A.; Hussain, Arif

    2004-07-01

    Interactions between the neurotransmitter γ-aminobutyric acid (GABA) and GABAA receptor ion channels play an important role in the central nervous system. A statistical mechanics model is proposed for the interaction between GABA and GABAA receptors. The model provides good fits to the electrophysiology data as well as an estimation of receptor activation energies, and predicts the temperature dependence consistent with measurements. In addition, the model provides insights into single channel conductance measurements. This model is also applicable to other ligand-gated ion channels with similar pentameric structures.

  17. Mechanically tunable organic vertical-cavity surface emitting lasers (VCSELs) for highly sensitive stress probing in dual-modes.

    PubMed

    Yang, Yu; Zhou, Yuan; Liao, Zhifu; Yu, Jiancan; Cui, Yuanjing; Garcia-Moreno, Inmaculada; Wang, Zhiyu; Costela, Angel; Qian, Guodong

    2015-02-23

    Herein, we report a straight forward stress probing method based on mechanically tunable organic VCSELs via dual detecting-modes. By designing the active layer thickness, uploaded stress was measured simultaneously by the laser wavelength and mode separations, facilitating highly sensitive stress detection in broad ranges. Single-mode laser emission with low threshold and narrow line-width was characterized, which could be tuned continuously within 8 nm. The probing sensitivity and resolution were estimated to be 60 Pa and 5.6 nm/KPa respectively, which were ~160-folds higher than previous results. PMID:25836475

  18. Modifications of histamine receptor signaling affect bone mechanical properties in rats.

    PubMed

    Folwarczna, Joanna; Janas, Aleksandra; Pytlik, Maria; Śliwiński, Leszek; Wiercigroch, Marek; Brzęczek, Anna

    2014-02-01

    Histamine receptors are expressed on bone cells and histamine may be involved in regulation of bone metabolism. The aim of the present study was to investigate the effects of loratadine (an H(1) receptor antagonist), ranitidine (an H(2) receptor antagonist) and betahistine (an H(3) receptor antagonist and H(1) receptor agonist) on bone mechanical properties in rats. Loratadine (5 mg/kg/day, po), ranitidine (50 mg/kg/day, po), or betahistine dihydrochloride (5 mg/kg/day, po), were administered for 4 weeks to non-ovariectomized and bilaterally ovariectomized (estrogen-deficient) 3-month-old rats, and their effects were compared with appropriate controls. Serum levels of bone turnover markers, bone mineralization and mechanical properties of the proximal tibial metaphysis, femoral diaphysis and femoral neck were studied. In rats with normal estrogen level, administration of loratadine slightly favorably affected mechanical properties of compact bone, significantly increasing the strength of the femoral neck (p < 0.05), and tending to increase the strength of the femoral diaphysis. Ranitidine did not significantly affect the investigated parameters, and betahistine decreased the strength of the tibial metaphysis (cancellous bone, p < 0.01). There were no significant effects of the drugs on serum bone turnover markers. In estrogen-deficient rats, the drugs did not significantly affect the investigated skeletal parameters. In conclusion, the effects of histamine H(1), H(2) and H(3) receptor antagonists on the skeletal system in rats were differential and dependent on estrogen status. PMID:24905313

  19. Mechanisms of Barbiturate Inhibition of Acetylcholine Receptor Channels

    PubMed Central

    Dilger, James P.; Boguslavsky, Rebecca; Barann, Martin; Katz, Tamir; Vidal, Ana Maria

    1997-01-01

    We used patch clamp techniques to study the inhibitory effects of pentobarbital and barbital on nicotinic acetylcholine receptor channels from BC3H-1 cells. Single channel recording from outside-out patches reveals that both drugs cause acetylcholine-activated channel events to occur in bursts. The mean duration of gaps within bursts is 2 ms for 0.1 mM pentobarbital and 0.05 ms for 1 mM barbital. In addition, 1 mM barbital reduces the apparent single channel current by 15%. Both barbiturates decrease the duration of openings within a burst but have only a small effect on the burst duration. Macroscopic currents were activated by rapid perfusion of 300 μM acetylcholine to outside-out patches. The concentration dependence of peak current inhibition was fit with a Hill function; for pentobarbital, Ki = 32 μM, n = 1.09; for barbital, Ki = 1900 μM, n = 1.24. Inhibition is voltage independent. The kinetics of inhibition by pentobarbital are at least 30 times faster than inhibition by barbital (3 ms vs. <0.1 ms at the Ki). Pentobarbital binds ≥10-fold more tightly to open channels than to closed channels; we could not determine whether the binding of barbital is state dependent. Experiments performed with both barbiturates reveal that they do not compete for a single binding site on the acetylcholine receptor channel protein, but the binding of one barbiturate destabilizes the binding of the other. These results support a kinetic model in which barbiturates bind to both open and closed states of the AChR and block the flow of ions through the channel. An additional, lower-affinity binding site for pentobarbital may explain the effects seen at >100 μM pentobarbital. PMID:9089445

  20. Mechanisms of barbiturate inhibition of acetylcholine receptor channels.

    PubMed

    Dilger, J P; Boguslavsky, R; Barann, M; Katz, T; Vidal, A M

    1997-03-01

    We used patch clamp techniques to study the inhibitory effects of pentobarbital and barbital on nicotinic acetylcholine receptor channels from BC3H-1 cells. Single channel recording from outside-out patches reveals that both drugs cause acetylcholine-activated channel events to occur in bursts. The mean duration of gaps within bursts in 2 ms for 0.1 mM pentobarbital and 0.05 ms for 1 mM barbital. In addition, 1 mM barbital reduces the apparent single channel current by 15%. Both barbiturates decrease the duration of openings within a burst but have only a small effect on the burst duration. Macroscopic currents were activated by rapid perfusion of 300 microM acetylcholine to outside-out patches. The concentration dependence of peak current inhibition was fit with a Hill function; for pentobarbital, Ki = 32 microM, n = 1.09; for barbital, Ki = 1900 microM, n = 1.24. Inhibition is voltage independent. The kinetics of inhibition by pentobarbital are at least 30 times faster than inhibition by barbital (3 ms vs. < 0.1 ms at the Ki). Pentobarbital binds > or = 10-fold more tightly to open channels than to closed channels; we could not determine whether the binding of barbital is state dependent. Experiments performed with both barbiturates reveal that they do not compete for a single binding site on the acetylcholine receptor channel protein, but the binding of one barbiturate destabilizes the binding of the other. These results support a kinetic model in which barbiturates bind to both open and closed states of the AChR and block the flow of ions through the channel. An additional, lower-affinity binding site for pentobarbital may explain the effects seen at > 100 microM pentobarbital. PMID:9089445

  1. Discovery of a Series of Imidazo[4,5-b]pyridines with Dual Activity at Angiotensin II Type 1 Receptor and Peroxisome Proliferator-Activated Receptor-[gamma

    SciTech Connect

    Casimiro-Garcia, Agustin; Filzen, Gary F.; Flynn, Declan; Bigge, Christopher F.; Chen, Jing; Davis, Jo Ann; Dudley, Danette A.; Edmunds, Jeremy J.; Esmaeil, Nadia; Geyer, Andrew; Heemstra, Ronald J.; Jalaie, Mehran; Ohren, Jeffrey F.; Ostroski, Robert; Ellis, Teresa; Schaum, Robert P.; Stoner, Chad

    2013-03-07

    Mining of an in-house collection of angiotensin II type 1 receptor antagonists to identify compounds with activity at the peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) revealed a new series of imidazo[4,5-b]pyridines 2 possessing activity at these two receptors. Early availability of the crystal structure of the lead compound 2a bound to the ligand binding domain of human PPAR{gamma} confirmed the mode of interaction of this scaffold to the nuclear receptor and assisted in the optimization of PPAR{gamma} activity. Among the new compounds, (S)-3-(5-(2-(1H-tetrazol-5-yl)phenyl)-2,3-dihydro-1H-inden-1-yl)-2-ethyl-5-isobutyl-7-methyl-3H-imidazo[4,5-b]pyridine (2l) was identified as a potent angiotensin II type I receptor blocker (IC{sub 50} = 1.6 nM) with partial PPAR{gamma} agonism (EC{sub 50} = 212 nM, 31% max) and oral bioavailability in rat. The dual pharmacology of 2l was demonstrated in animal models of hypertension (SHR) and insulin resistance (ZDF rat). In the SHR, 2l was highly efficacious in lowering blood pressure, while robust lowering of glucose and triglycerides was observed in the male ZDF rat.

  2. Discovery of a series of imidazo[4,5-b]pyridines with dual activity at angiotensin II type 1 receptor and peroxisome proliferator-activated receptor-γ.

    PubMed

    Casimiro-Garcia, Agustin; Filzen, Gary F; Flynn, Declan; Bigge, Christopher F; Chen, Jing; Davis, Jo Ann; Dudley, Danette A; Edmunds, Jeremy J; Esmaeil, Nadia; Geyer, Andrew; Heemstra, Ronald J; Jalaie, Mehran; Ohren, Jeffrey F; Ostroski, Robert; Ellis, Teresa; Schaum, Robert P; Stoner, Chad

    2011-06-23

    Mining of an in-house collection of angiotensin II type 1 receptor antagonists to identify compounds with activity at the peroxisome proliferator-activated receptor-γ (PPARγ) revealed a new series of imidazo[4,5-b]pyridines 2 possessing activity at these two receptors. Early availability of the crystal structure of the lead compound 2a bound to the ligand binding domain of human PPARγ confirmed the mode of interaction of this scaffold to the nuclear receptor and assisted in the optimization of PPARγ activity. Among the new compounds, (S)-3-(5-(2-(1H-tetrazol-5-yl)phenyl)-2,3-dihydro-1H-inden-1-yl)-2-ethyl-5-isobutyl-7-methyl-3H-imidazo[4,5-b]pyridine (2l) was identified as a potent angiotensin II type I receptor blocker (IC(50) = 1.6 nM) with partial PPARγ agonism (EC(50) = 212 nM, 31% max) and oral bioavailability in rat. The dual pharmacology of 2l was demonstrated in animal models of hypertension (SHR) and insulin resistance (ZDF rat). In the SHR, 2l was highly efficacious in lowering blood pressure, while robust lowering of glucose and triglycerides was observed in the male ZDF rat. PMID:21557540

  3. Dual-targeted nanocarrier based on cell surface receptor and intracellular mRNA: an effective strategy for cancer cell imaging and therapy.

    PubMed

    Pan, Wei; Yang, Huijun; Zhang, Tingting; Li, Yanhua; Li, Na; Tang, Bo

    2013-07-16

    Developing efficient methods for targeting cancer cells and encapsulating drugs coupled with activated release holds enormous potential for cancer cell imaging and therapy. Herein, a novel dual-targeted nanocarrier was developed on the basis of gold nanoparticles modified with a dense shell of synthetic oligonucleotides. The folic acid functionalized single-stranded DNA was designed to target the folate receptor on the cancer cell surface, and the molecular beacon was employed as drug carrier for activated release associated with intracellular tumor mRNA. Intracellular experiments indicated that the dual-targeted nanocarrier could be preferentially internalized into cancer cells due to the folate receptor targeting and release Doxorubicin (Dox) selectively in cancer cells because of the activated release with intracellular mRNA. The nanocarrier could reduce the dosage and greatly improve the therapeutic effect of drugs in cancer cells. Moreover, the nanocarrier can identify the changes of the express level of tumor mRNA and release Dox in a controlled manner in cancer cells, which would be beneficial for cancer therapy. PMID:23772649

  4. GR-127935-sensitive mechanism mediating hypotension in anesthetized rats: are 5-HT5B receptors involved?

    PubMed

    Sánchez-Maldonado, Carolina; López-Sánchez, Pedro; Anguiano-Robledo, Liliana; Leopoldo, Marcello; Lacivita, Enza; Terrón, José A

    2015-04-01

    The 5-HT1B/1D receptor antagonist, GR-127935, inhibits hypotensive responses produced by the 5-HT1A, 5-HT1B/1D and 5-HT7 receptor agonist, and 5-HT5A/5B receptor ligand, 5-carboxamidotryptamine (5-CT), in rats. This work further characterized the above mechanism using more selective 5-HT1B and 5-HT1D receptor antagonists. Also, expression of 5-HT5A and 5-HT5B receptor mRNAs in blood vessels was searched by reverse transcription polymerase chain reaction. Decreases in diastolic blood pressure induced by 5-CT (0.001-10 μg/kg, intravenously) were analyzed in anesthetized rats that had received intravenous vehicle (1 mL/kg), SB-224289 (5-HT1B antagonist; 0.3 and 1.0 mg/kg), BRL15572 (5-HT1D antagonist; 0.3 and 1.0 mg/kg), SB-224289 + BRL15572 (0.3 mg/kg, each), or SB-224289 + BRL15572 (0.3 mg/kg, each) + GR-127935 (1 mg/kg). Because only the latter treatment inhibited 5-CT-induced hypotension, suggestive of a mechanism unrelated to 5-HT1B/1D receptors, the effects of antagonists/ligands at 5-HT5A (SB-699551, 1 mg/kg), 5-HT6 (SB-399885, 1 mg/kg), and 5-HT1B/1D/5A/5B/7 receptors (ergotamine, 0.1 mg/kg) on 5-CT-induced hypotension were tested. Interestingly, only ergotamine blocked 5-CT-induced responses; this effect closely paralleled that of SB-224289 + BRL-15572 + GR-127935. Neither did ergotamine nor GR-127935 inhibit hypotensive responses induced by the 5-HT7 receptor agonist, LP-44. Faint but clear bands corresponding to 5-HT5A and 5-HT5B receptor mRNAs in aorta and mesenteric arteries were detected. Results suggest that the GR-127935-sensitive mechanism mediating hypotension in rats is unrelated to 5-HT1B, 5-HT1D, 5-HT5A, 5-HT6, and 5-HT7 receptors. This mechanism, however, resembles putative 5-HT5B receptors. PMID:25502305

  5. Mechanism of phencyclidine binding to the acetylcholine receptor from Torpedo electroplaque.

    PubMed

    Oswald, R E; Bamberger, M J; McLaughlin, J T

    1984-05-01

    The mechanism of phencyclidine binding to Torpedo acetylcholine receptor-rich membranes was investigated. The rate of [3H]phencyclidine association is 10(3)- to 10(4)-fold more rapid when phencyclidine and carbamoylcholine are added simultaneously to acetylcholine receptor-rich membranes than when phencyclidine is added to membranes previously equilibrated with carbamoylcholine or membranes in the absence of carbamoylcholine. The mechanism of binding under conditions in which the slower rate was observed was studied with thermodynamic, viscosity, and kinetic experiments. Association and dissociation rates were highly dependent on temperature with activation energies of 26-30 kcal/mole. Viscosity had no effect on the association rate but increased the dissociation rate. These studies suggest that the binding is not diffusion-controlled but rather is limited by a significant energy barrier. The association rate was determined as a function of the concentration of acetylcholine receptor-rich membranes and the concentration of phencyclidine. In the presence of carbamoylcholine, the association rate was highly dependent upon the concentration of acetylcholine receptor but virtually insensitive to the concentration of phencyclidine. In the absence of carbamoylcholine, the association rate seemed to be a hyperbolic function of both the phencyclidine and the acetylcholine receptor concentration. The minimal model capable of explaining the data is a mechanism by which phencyclidine binds to two conformations of the acetylcholine receptor, one conformation having a higher affinity and constituting a lower percentage of receptors and the other having a lower affinity and constituting a higher percentage. The data are consistent with the possibility that the high-affinity conformation is the open-channel state of the acetylcholine receptor. PMID:6727862

  6. From empirical to mechanism-based discovery of clinically useful Selective Estrogen Receptor Modulators (SERMs)

    PubMed Central

    Wardell, Suzanne E.; Nelson, Erik R.; McDonnell, Donald P.

    2014-01-01

    Our understanding of the molecular mechanisms underlying the pharmacological actions of estrogen receptor (ER) ligands has evolved considerably in recent years. Much of this knowledge has come from a detailed dissection of the mechanism(s) of action of the Selective Estrogen Receptor Modulators (SERMs) tamoxifen and raloxifene, drugs whose estrogen receptor (ER) agonist/antagonist properties are influenced by the cell context in which they operate. These studies have revealed that notwithstanding differences in drug pharmokinetics, the activity of an ER ligand is determined primarily by (a) the impact that a given ligand has on the receptor conformation and (b) the ability of structurally distinct ER-ligand complexes to interact with functionally distinct coregulators. Exploitation of the established relationships between ER structure and activity has led to the development of improved SERMs with more favorable therapeutic properties and of tissue-selective estrogen complexes, drugs in which a SERM and an ER agonist are combined to yield a blended activity that results in distinct clinical profiles. Remarkably, endogenous ligands that exhibit SERM activity have also been identified. One of these ligands, 27-hydroxycholesterol (27HC), has been shown to manifest ER-dependent pathological activities in the cardiovascular system, bone and mammary gland. Whereas the physiological activity of 27HC remains to be determined, its discovery highlights how cells have adopted mechanisms to allow the same receptor ligand complex to manifest different activities in different cells, and also how these processes can be exploited for new drug development. PMID:25084324

  7. Synergistic inhibition with a dual epidermal growth factor receptor/HER-2/neu tyrosine kinase inhibitor and a disintegrin and metalloprotease inhibitor.

    PubMed

    Witters, Lois; Scherle, Peggy; Friedman, Steven; Fridman, Jordan; Caulder, Eian; Newton, Robert; Lipton, Allan

    2008-09-01

    The ErbB family of receptors is overexpressed in numerous human tumors. Overexpression correlates with poor prognosis and resistance to therapy. Use of ErbB-specific antibodies to the receptors (Herceptin or Erbitux) or ErbB-specific small-molecule inhibitors of the receptor tyrosine kinase activity (Iressa or Tarceva) has shown clinical efficacy in several solid tumors. An alternative method of affecting ErbB-initiated tumor growth and survival is to block sheddase activity. Sheddase activity is responsible for cleavage of multiple ErbB ligands and receptors, a necessary step in availability of the soluble, active form of the ligand and a constitutively activated ligand-independent receptor. This sheddase activity is attributed to the ADAM (a disintegrin and metalloprotease) family of proteins. ADAM 10 is the main sheddase of epidermal growth factor (EGF) and HER-2/neu cleavage, whereas ADAM17 is required for cleavage of additional EGF receptor (EGFR) ligands (transforming growth factor-alpha, amphiregulin, heregulin, heparin binding EGF-like ligand). This study has shown that addition of INCB3619, a potent inhibitor of ADAM10 and ADAM17, reduces in vitro HER-2/neu and amphiregulin shedding, confirming that it interferes with both HER-2/neu and EGFR ligand cleavage. Combining INCB3619 with a lapatinib-like dual inhibitor of EGFR and HER-2/neu kinases resulted in synergistic growth inhibition in MCF-7 and HER-2/neu-transfected MCF-7 human breast cancer cells. Combining the INCB7839 second-generation sheddase inhibitor with lapatinib prevented the growth of HER-2/neu-positive BT474-SC1 human breast cancer xenografts in vivo. These results suggest that there may be an additional clinical benefit of combining agents that target the ErbB pathways at multiple points. PMID:18757423

  8. Ombuin-3-O-β-D-glucopyranoside from Gynostemma pentaphyllum is a dual agonistic ligand of peroxisome proliferator-activated receptors α and δ/β

    SciTech Connect

    Malek, Mastura Abd; Hoang, Minh-Hien; Jia, Yaoyao; Lee, Ji Hae; Jun, Hee Jin; Lee, Dong-Ho; Lee, Hak Ju; Lee, Chul; Lee, Myung Koo; Hwang, Bang Yeon; Lee, Sung-Joon

    2013-01-25

    Highlights: ► Ombuin-3-O-β-D-glucopyranoside is a dual ligand for PPARα and δ/β. ► Ombuin-3-O-β-D-glucopyranoside reduces cellular lipid levels in multiple cell types. ► Cells stimulated with ombuine up-regulated target genes in cholesterol efflux. ► Cells stimulated with ombuine regulated target fatty acid β-oxidation and synthesis. ► Ombuin-3-O-β-D-glucopyranoside could ameliorate hyperlipidemia and hepatic steatosis. -- Abstract: We demonstrated that ombuin-3-O-β-D-glucopyranoside (ombuine), a flavonoid from Gynostemma pentaphyllum, is a dual agonist for peroxisome proliferator-activated receptors (PPARs) α and δ/β. Using surface plasmon resonance (SPR), time-resolved fluorescence resonance energy transfer (FRET) analyses, and reporter gene assays, we showed that ombuine bound directly to PPARα and δ/β but not to PPARγ or liver X receptors (LXRs). Cultured HepG2 hepatocytes stimulated with ombuine significantly reduced intracellular concentrations of triglyceride and cholesterol and downregulated the expression of lipogenic genes, including sterol regulatory element binding protein-1c (SREBP1c) and stearoyl-CoA desaturase-1 (SCD-1), with activation of PPARα and δ/β. Activation of LXRs by ombuine was confirmed by reporter gene assays, however, SPR and cell-based FRET assays showed no direct binding of ombuine to either of the LXRs suggesting LXR activation by ombuine may be operated via PPARα stimulation. Ombuine-stimulated macrophages showed significantly induced transcription of ATP binding cassette cholesterol transporter A1 (ABCA1) and G1 (ABCG1), the key genes in reverse cholesterol transport, which led to reduced cellular cholesterol concentrations. These results suggest that ombuine is a dual PPAR ligand for PPARα and δ/β with the ability to decrease lipid concentrations by reducing lipogenic gene expression in hepatocytes and inducing genes involved in cholesterol efflux in macrophages.

  9. Metabolism of a 14C/3H-labeled GABAA receptor partial agonist in rat, dog and human liver microsomes: evaluation of a dual-radiolabel strategy.

    PubMed

    Shaffer, Christopher L; Langer, Connie S

    2007-03-12

    The metabolism of 2-{[2-(3-fluoropyrid-2-yl)-1H-imidazol-1-yl]methyl}-1-propyl-5-cyano-1H-benzimidazole (1), a potent subtype-selective GABA(A) receptor partial agonist, was investigated in rat, dog and human liver microsomes. Due to its significant metabolic cleavage at C(8) observed in preliminary biotransformation studies with non-radiolabeled 1, both [(14)C]1 and [(3)H]1 were synthesized with respective radioisotopes placed on either side of C(8) to determine if all microsomal metabolites formed after C(8)N-dealkylation of 1 (or its core-intact metabolites) could be detected and quantified adequately. Both radiolabeled forms of 1, used separately in mono-radiolabel studies in cross-species microsomes and concomitantly in dual-radiolabel studies in rat microsomes, permitted the detection and quantification of all metabolites of 1, and a combination of radioactive and mass spectral data allowed structural elucidation of its Phase I metabolites. As expected, the sum of (14)C-only metabolites equaled that of (3)H-only metabolites in all incubations. In-line radiometric analysis worked extremely well (and was very reproducible) for quantifying either (14)C- or (3)H-compounds within separate incubations when using mono-radiolabeled 1. However, although the in-line radiodetector provided a comprehensive qualitative metabolic profile using dual-radiolabled 1, its inability to exclude completely (14)C- from (3)H-generated counts caused a degree of ambiguity pertaining to metabolite quantification. Thus, off-line liquid scintillation counting of collected dual-radiolabeled incubation LC-fractions was employed to quantify both (14)C- and (3)H-metabolites simultaneously, while in-line radiodetection was only used for qualitative analyses accompanying MS and MS/MS experiments. These studies demonstrated the analytical feasibility of using a dual-radiolabel approach for subsequent in vivo ADME studies with 1. PMID:17150324

  10. Delineating the molecular mechanisms of tamoxifen's oncolytic actions in estrogen receptor-negative cancers.

    PubMed

    Radin, Daniel P; Patel, Parth

    2016-06-15

    Since its clinical inception, tamoxifen (TAM) has proved to be a powerful tool in treating estrogen receptor-positive breast cancers while exhibiting manageable side effects. Although TAM was synthesized as an estrogen receptor antagonist, reports have found that a significant fraction of women with estrogen receptor-negative cancers have benefitted from TAM treatment, suggesting the possibility of an alternate anti-cancer mechanism. In this paper, we present a review of recent and past literature in an attempt to clarify how TAM inhibits cell proliferation and induces apoptosis in cells lacking the estrogen receptor. Our analysis indicates that micromolar concentrations of TAM selectively elevate intracellular calcium concentrations in malignant cells, possibly by inversely agonizing cannabinoid receptors, producing considerable mitochondrial distress followed by the rapid production of reactive oxygen species. In response, cytoplasmic proteins such as JNK1 are activated, which mediates the activation of caspase-8. Fyn kinase auto phosphorylates in response to increased reactive oxygen species and directs the ubiquitin ligase c-Cbl to tag growth factor receptors for ubiquitination, potentially abrogating constitutively active survival pathways that are hallmarks of cancer progression. We attempt to differentiate the effect that TAM has on purified Protein Kinase C (PKC) compared to that in an intact cell, suggesting that low micromolar concentrations of TAM indirectly inhibit PKC by inducing EGFR destruction and high micromolar concentrations of TAM inhibits PKC through a direct binding mechanism. PMID:27083550

  11. Tachykinins and Their Receptors: Contributions to Physiological Control and the Mechanisms of Disease

    PubMed Central

    Steinhoff, Martin S.; von Mentzer, Bengt; Geppetti, Pierangelo; Pothoulakis, Charalabos; Bunnett, Nigel W.

    2014-01-01

    The tachykinins, exemplified by substance P, are one of the most intensively studied neuropeptide families. They comprise a series of structurally related peptides that derive from alternate processing of three Tac genes and are expressed throughout the nervous and immune systems. Tachykinins interact with three neurokinin G protein-coupled receptors. The signaling, trafficking, and regulation of neurokinin receptors have also been topics of intense study. Tachykinins participate in important physiological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems, including inflammation, nociception, smooth muscle contractility, epithelial secretion, and proliferation. They contribute to multiple diseases processes, including acute and chronic inflammation and pain, fibrosis, affective and addictive disorders, functional disorders of the intestine and urinary bladder, infection, and cancer. Neurokinin receptor antagonists are selective, potent, and show efficacy in models of disease. In clinical trials there is a singular success: neurokinin 1 receptor antagonists to treat nausea and vomiting. New information about the involvement of tachykinins in infection, fibrosis, and pruritus justifies further trials. A deeper understanding of disease mechanisms is required for the development of more predictive experimental models, and for the design and interpretation of clinical trials. Knowledge of neurokinin receptor structure, and the development of targeting strategies to disrupt disease-relevant subcellular signaling of neurokinin receptors, may refine the next generation of neurokinin receptor antagonists. PMID:24382888

  12. Estrogen receptor β in Alzheimer's disease: From mechanisms to therapeutics.

    PubMed

    Zhao, Liqin; Woody, Sarah K; Chhibber, Anindit

    2015-11-01

    Alzheimer's disease (AD) disproportionally affects women and men. The female susceptibility for AD has been largely associated with the loss of ovarian sex hormones during menopause. This review examines the current understanding of the role of estrogen receptor β (ERβ) in the regulation of neurological health and its implication in the development and intervention of AD. Since its discovery in 1996, research conducted over the last 15-20 years has documented a great deal of evidence indicating that ERβ plays a pivotal role in a broad spectrum of brain activities from development to aging. ERβ genetic polymorphisms have been associated with cognitive impairment and increased risk for AD predominantly in women. The role of ERβ in the intervention of AD has been demonstrated by the alteration of AD pathology in response to treatment with ERβ-selective modulators in transgenic models that display pronounced plaque and tangle histopathological presentations as well as learning and memory deficits. Future studies that explore the potential interactions between ERβ signaling and the genetic isoforms of human apolipoprotein E (APOE) in brain aging and development of AD-risk phenotype are critically needed. The current trend of lost-in-translation in AD drug development that has primarily been based on early-onset familial AD (FAD) models underscores the urgent need for novel models that recapitulate the etiology of late-onset sporadic AD (SAD), the most common form of AD representing more than 95% of the current human AD population. Combining the use of FAD-related models that generally have excellent face validity with SAD-related models that hold more reliable construct validity would together increase the predictive validity of preclinical findings for successful translation into humans. PMID:26307455

  13. Dual Requirement of Cytokine and Activation Receptor Triggering for Cytotoxic Control of Murine Cytomegalovirus by NK Cells

    PubMed Central

    Pak-Wittel, Melissa A.; Yang, Liping; Schreiber, Robert D.; Yokoyama, Wayne M.

    2015-01-01

    Natural killer (NK) cells play a critical role in controlling murine cytomegalovirus (MCMV) and can mediate both cytokine production and direct cytotoxicity. The NK cell activation receptor, Ly49H, is responsible for genetic resistance to MCMV in C57BL/6 mice. Recognition of the viral m157 protein by Ly49H is sufficient for effective control of MCMV infection. Additionally, during the host response to infection, distinct immune and non-immune cells elaborate a variety of pleiotropic cytokines which have the potential to impact viral pathogenesis, NK cells, and other immune functions, both directly and indirectly. While the effects of various immune deficiencies have been examined for general antiviral phenotypes, their direct effects on Ly49H-dependent MCMV control are poorly understood. To specifically interrogate Ly49H-dependent functions, herein we employed an in vivo viral competition approach to show Ly49H-dependent MCMV control is specifically mediated through cytotoxicity but not IFNγ production. Whereas m157 induced Ly49H-dependent degranulation, efficient cytotoxicity also required either IL-12 or type I interferon (IFN-I) which acted directly on NK cells to produce granzyme B. These studies demonstrate that both of these distinct NK cell-intrinsic mechanisms are integrated for optimal viral control by NK cells. PMID:26720279

  14. Vitamin A Transport Mechanism of the Multitransmembrane Cell-Surface Receptor STRA6

    PubMed Central

    Kawaguchi, Riki; Zhong, Ming; Kassai, Miki; Ter-Stepanian, Mariam; Sun, Hui

    2015-01-01

    Vitamin A has biological functions as diverse as sensing light for vision, regulating stem cell differentiation, maintaining epithelial integrity, promoting immune competency, regulating learning and memory, and acting as a key developmental morphogen. Vitamin A derivatives have also been used in treating human diseases. If vitamin A is considered a drug that everyone needs to take to survive, evolution has come up with a natural drug delivery system that combines sustained release with precise and controlled delivery to the cells or tissues that depend on it. This “drug delivery system” is mediated by plasma retinol binding protein (RBP), the principle and specific vitamin A carrier protein in the blood, and STRA6, the cell-surface receptor for RBP that mediates cellular vitamin A uptake. The mechanism by which the RBP receptor absorbs vitamin A from the blood is distinct from other known cellular uptake mechanisms. This review summarizes recent progress in elucidating the fundamental molecular mechanism mediated by the RBP receptor and multiple newly discovered catalytic activities of this receptor, and compares this transport system with retinoid transport independent of RBP/STRA6. How to target this new type of transmembrane receptor using small molecules in treating diseases is also discussed. PMID:26343735

  15. The mechansims by which solute nitrogen affects phase transformations and mechanical properties of automotive dual-phase sheet steel

    NASA Astrophysics Data System (ADS)

    Brown, Tyson W.

    Dual-phase steels have seen increased use in automotive applications in recent years, in order to meet the goals of weight reduction and occupant safety. Variations in nitrogen content that may be encountered in steel sourced from a basic oxygen furnace process compared to an electric arc furnace process require that dual-phase steel producers understand the ways that nitrogen affects processing and properties. In the current work, the distribution of nitrogen was investigated in a dual-phase steel with a base chemistry of 0.1 C, 2.0 Mn, 0.2 Cr, 0.2 Mo (wt pct) across a range of nitrogen contents (30-159 ppm) with Al (0.2 and 0.08 wt pct), and Ti (0.02 wt pct) additions used for precipitation control of nitrogen amounts. The distribution of nitrogen amongst trapping sites, including precipitates, grain boundaries, dislocations, and interstitial sites (away from other types of defects) was determined from a combination of electrolytic dissolution, internal friction, and three-dimensional atom probe tomography experiments. Various mechanisms by which different amounts and locations of nitrogen affect phase transformations and mechanical properties were identified from quantitative metallography, dilatometric measurement of phase transformations, tensile testing, and nanoindentation hardness testing. Results indicate nitrogen that is not precipitated with Ti or Al (free nitrogen) partitions to austenite (and thus martensite) during typical intercritical annealing treatments, and is mostly contained in Cottrell atmospheres in martensite. Due to the austenite stabilizing effect of nitrogen, the presence of free nitrogen during intercritical annealing leads to a higher austenite fraction in certain conditions. Thus, the presence of free nitrogen in a dual-phase microstructure will lead to an increase in tensile and yield strengths from both an increase in martensite fraction, and an increase in martensite hardness due to solid solution strengthening. Despite the presence

  16. Dynamic gas slippage: a unique dual-mechanism approach to the flow of gas in tight formations

    SciTech Connect

    Ertekin, T.; King, G.R.; Schwerer, F.C.

    1983-01-01

    A mathematical formulation, applicable to both numeric simulation and transient well analysis, describing the flow of gas in very tight porous media has been developed. Unique to this formulation is the dual- mechanism transport of gas. In this formulation, gas is assumed to be traveling under the influence of 2 fields: a concentration field and a pressure field. Transport through the concentration field is a Knudsen flow process and is modeled with Fick's Law of diffusion. Transport through the pressure field is a laminar process and is modeled with Darcy's Law (inertial-turbulent effects are ignored). The combination of these 2 flow mechanisms rigorously yields a composition, pressure, and saturation dependent slippage factor. 21 references.

  17. Quiver matrix mechanics for IIB string theory II: generic dual tori, fractional matrix membrane and SL(2,Z) duality

    NASA Astrophysics Data System (ADS)

    Dai, Jian; Wu, Yong-Shi

    2005-02-01

    With the deconstruction technique, the geometric information of a torus can be encoded in a sequence of orbifolds. By studying the matrix theory on these orbifolds as quiver mechanics, we present a formulation that (de)constructs the torus of generic shape on which matrix theory is "compactified". The continuum limit of the quiver mechanics gives rise to a (1 + 2)-dimensional SYM. A hidden (fourth) dimension, that was introduced before in the matrix theory literature to argue for the electric-magnetic duality, can be easily identified in our formalism. We construct membrane wrapping states rigorously in terms of Dunford calculus in the context of matrix regularization. Unwanted degeneracy in the spectrum of the wrapping states is eliminated by using SL(2,Z) symmetry and the relations to the FD-string bound states. The dual IIB circle emerges in the continuum limit, constituting a critical evidence for IIB/M duality.

  18. Development and Acceptance Testing of the Dual Wheel Mechanism for the Tunable Filter Imager Cryogenic Instrument on the JWST

    NASA Technical Reports Server (NTRS)

    Leckie, Martin; Ahmad, Zakir

    2010-01-01

    The James Webb Space Telescope (JWST) will carry four scientific instruments, one of which is the Tunable Filter Imager (TFI), which is an instrument within the Fine Guidance Sensor. The Dual Wheel (DW) mechanism is being designed, built and tested by COM DEV Ltd. under contract from the Canadian Space Agency. The DW mechanism includes a pupil wheel (PW) holding seven coronagraphic masks and two calibration elements and a filter wheel (FW) holding nine blocking filters. The DW mechanism must operate at both room temperature and at 35K. Successful operation at 35K comprises positioning each optical element with the required repeatability, for several thousand occasions over the five year mission. The paper discusses the results of testing geared motors and bearings at the cryogenic temperature. In particular bearing retainer design and PGM-HT material, the effects of temperature gradients across bearings and the problems associated with cooling mechanisms down to cryogenic temperatures. The results of additional bearing tests are described that were employed to investigate an abnormally high initial torque experienced at cryogenic temperatures. The findings of these tests, was that the bearing retainer and the ball/race system could be adversely affected by the large temperature change from room temperature to cryogenic temperature and also the temperature gradient across the bearing. The DW mechanism is now performing successfully at both room temperature and at cryogenic temperature. The life testing of the mechanism is expected to be completed in the first quarter of 2010.

  19. Endocrine disrupting chemicals targeting estrogen receptor signaling: Identification and mechanisms of action

    PubMed Central

    Shanle, Erin K.; Xu, Wei

    2011-01-01

    Many endocrine disrupting chemicals (EDCs) adversely impact estrogen signaling by interacting with two estrogen receptors (ERs): ERα and ERβ. Though the receptors have similar ligand binding and DNA binding domains, ERα and ERβ have some unique properties in terms of ligand selectivity and target gene regulation. EDCs that target ER signaling can modify genomic and non-genomic ER activity through direct interactions with ERs, indirectly through transcription factors like the aryl hydrocarbon receptor (AhR), or through modulation of metabolic enzymes that are critical for normal estrogen synthesis and metabolism. Many EDCs act through multiple mechanisms as exemplified by chemicals that bind both AhR and ER, such as 3-methylcholanthrene. Other EDCs that target ER signaling include phytoestrogens, bisphenolics, and organochlorine pesticides and many alter normal ER signaling through multiple mechanisms. EDCs can also display tissue-selective ER agonist and antagonist activities similar to selective estrogen receptor modulators (SERMs) designed for pharmaceutical use. Thus, biological effects of EDCs need to be carefully interpreted because EDCs can act through complex tissue-selective modulation of ERs and other signaling pathways in vivo. Current requirements by the U.S. Environmental Protection Agency require some in vitro and cell-based assays to identify EDCs that target ER signaling through direct and metabolic mechanisms. Additional assays may be useful screens for identifying EDCs that act through alternative mechanisms prior to further in vivo study. PMID:21053929

  20. MECHANISMS OF ZN-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)

    EPA Science Inventory

    MECHANISMS OF Zn-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)
    James M. Samet*, Lee M. Graves? and Weidong Wu?. *Human Studies Division, NHEERL, ORD, Research Triangle Park, NC 27711, and ?Center for Environmental Medicine, University of North C...

  1. Quantification of the binding potential of cell-surface receptors in fresh excised specimens via dual-probe modeling of SERS nanoparticles

    PubMed Central

    Sinha, Lagnojita; Wang, Yu; Yang, Cynthia; Khan, Altaz; Brankov, Jovan G.; Liu, Jonathan T. C.; Tichauer, Kenneth M.

    2015-01-01

    The complete removal of cancerous tissue is a central aim of surgical oncology, but is difficult to achieve in certain cases, especially when the removal of surrounding normal tissues must be minimized. Therefore, when post-operative pathology identifies residual tumor at the surgical margins, re-excision surgeries are often necessary. An intraoperative approach for tumor-margin assessment, insensitive to nonspecific sources of molecular probe accumulation and contrast, is presented employing kinetic-modeling analysis of dual-probe staining using surface-enhanced Raman scattering nanoparticles (SERS NPs). Human glioma (U251) and epidermoid (A431) tumors were implanted subcutaneously in six athymic mice. Fresh resected tissues were stained with an equimolar mixture of epidermal growth factor receptor (EGFR)-targeted and untargeted SERS NPs. The binding potential (BP; proportional to receptor concentration) of EGFR – a cell-surface receptor associated with cancer – was estimated from kinetic modeling of targeted and untargeted NP concentrations in response to serial rinsing. EGFR BPs in healthy, U251, and A431 tissues were 0.06 ± 0.14, 1.13 ± 0.40, and 2.23 ± 0.86, respectively, which agree with flow-cytometry measurements and published reports. The ability of this approach to quantify the BP of cell-surface biomarkers in fresh tissues opens up an accurate new approach to analyze tumor margins intraoperatively. PMID:25716578

  2. Understanding the deposition mechanism of pulsed laser deposited B-C films using dual-targets

    SciTech Connect

    Zhang, Song; He, Zhiqiang; Wang, Chuanbin; Shen, Qiang; Zhang, Lianmeng; Ji, Xiaoli; Lu, Wenzhong

    2014-04-21

    Boron carbide thin films with stoichiometry (boron-carbon atomic ratio) range of 0.1 ∼ 8.9 were fabricated via pulsed laser deposition by using boron-carbon dual-targets. However, this experimental data on stoichiometry were smaller than the computer simulation values. The discrepancy was investigated by studies on composition and microstructure of the thin films and targets by scanning electron microscopy, excitation laser Raman spectroscopy, and X-ray photoelectron spectroscopy. The results indicate that the boron liquid droplets were formed by phase explosion after laser irradiation on boron sector. Part of the boron droplets would be lost via ejection in the direction of laser beam, which is tilted 45° to the surface of substrate.

  3. Synthesis and Anticancer Mechanism Investigation of Dual Hsp27 and Tubulin Inhibitors

    PubMed Central

    Zhong, Bo; Chennamaneni, Snigdha; Lama, Rati; Yi, Xin; Geldenhuys, Werner J.; Pink, John J.; Dowlati, Afshin; Xu, Yan; Zhou, Aimin; Su, Bin

    2013-01-01

    Heat shock protein 27 (Hsp27) is a chaperone protein, and its expression is increased in response to various stress stimuli including anticancer chemotherapy, which allows the cells to survive and causes drug resistance. We previously identified lead compounds that bound to Hsp27 and tubulin via proteomic approaches. Systematic ligand based optimization in the current study significantly increased the cell growth inhibition and apoptosis inducing activities of the compounds. Compared to the lead compounds, one of the new derivatives exhibited much better potency to inhibit tubulin polymerization but a decreased activity to inhibit Hsp27 chaperone function, suggesting that the structural modification dissected the dual targeting effects of the compound. The most potent compounds 20 and 22 exhibited strong cell proliferation inhibitory activities at subnanomolar concentration against 60 human cancer cell lines conducted by Developmental Therapeutic Program at the National Cancer Institute and represented promising candidates for anticancer drug development. PMID:23767669

  4. Neurobiology of microglial action in CNS injuries: receptor-mediated signaling mechanisms and functional roles

    PubMed Central

    Hu, Xiaoming; Liou, Anthony K.F.; Leak, Rehana K.; Xu, Mingyue; An, Chengrui; Suenaga, Jun; Shi, Yejie; Gao, Yanqin; Zheng, Ping; Chen, Jun

    2014-01-01

    Microglia are the first line of immune defense against central nervous system (CNS) injuries and disorders. These highly plastic cells play dualistic roles in neuronal injury and recovery and are known for their ability to assume diverse phenotypes. A broad range of surface receptors are expressed on microglia and mediate microglial ‘On’ or ‘Off’ responses to signals from other host cells as well as invading microorganisms. The integrated actions of these receptors result in tightly regulated biological functions, including cell mobility, phagocytosis, the induction of acquired immunity, and trophic factor/inflammatory mediator release. Over the last few years, significant advances have been made towards deciphering the signaling mechanisms related to these receptors and their specific cellular functions. In this review, we describe the current state of knowledge of the surface receptors involved in microglial activation, with an emphasis on their engagement of distinct functional programs and their roles in CNS injuries. It will become evident from this review that microglial homeostasis is carefully maintained by multiple counterbalanced strategies, including, but not limited to, ‘On’ and ‘Off’ receptor signaling. Specific regulation of theses microglial receptors may be a promising therapeutic strategy against CNS injuries. PMID:24923657

  5. A dual function of V0-ATPase a1 provides an endolysosomal degradation mechanism in Drosophila melanogaster photoreceptors

    PubMed Central

    Williamson, W. Ryan; Wang, Dong; Haberman, Adam S.

    2010-01-01

    The vesicular adenosine triphosphatase (v-ATPase) is a proton pump that acidifies intracellular compartments. In addition, mutations in components of the membrane-bound v-ATPase V0 sector cause acidification-independent defects in yeast, worm, fly, zebrafish, and mouse. In this study, we present a dual function for the neuron-specific V0 subunit a1 orthologue v100 in Drosophila melanogaster. A v100 mutant that selectively disrupts proton translocation rescues a previously characterized synaptic vesicle fusion defect and vesicle fusion with early endosomes. Correspondingly, V100 selectively interacts with syntaxins on the respective target membranes, and neither synaptic vesicles nor early endosomes require v100 for their acidification. In contrast, V100 is required for acidification once endosomes mature into degradative compartments. As a consequence of the complete loss of this neuronal degradation mechanism, photoreceptors undergo slow neurodegeneration, whereas selective rescue of the acidification-independent function accelerates cell death by increasing accumulations in degradation-incompetent compartments. We propose that V100 exerts a temporally integrated dual function that increases neuronal degradative capacity. PMID:20513768

  6. Internalization mechanism of neuropeptide Y bound to its Y1 receptor investigated by high resolution microscopy

    NASA Astrophysics Data System (ADS)

    Kempf, Noémie; Didier, Pascal; Postupalenko, Viktoriia; Bucher, Bernard; Mély, Yves

    2015-06-01

    The neuropeptide Y (NPY) plays numerous biological roles that are mediated by a family of G-protein-coupled receptors. Among the latter, the NPY Y1 subtype receptor undergoes a rapid desensitization following agonist exposure. This desensitization was suggested to result from a rapid clathrin-dependent internalization of Y1 and its recycling at the plasma membrane via sorting/early endosomes (SE/EE) and recycling endosomes (RE). Herein, to validate and quantitatively consolidate the mechanism of NPY internalization, we quantitatively investigated the NPY-induced internalization of the Y1 receptor by direct stochastic optical reconstruction microscopy (dSTORM), a super-resolution imaging technique that can resolve EE and SE, which are below the resolution limit of conventional optical microscopes. Using Cy5-labeled NPY, we could monitor with time the internalization and recycling of NPY on HEK293 cells stably expressing eGFP-labeled Y1 receptors. Furthermore, by discriminating the SE/EE from the larger RE by their sizes and monitoring these two populations as a function of time, we could firmly consolidate the kinetic model describing the internalization mechanism of the Y1 receptors as the basis for their rapid desensitization following agonist exposure.

  7. Molecular mechanisms of interaction between the neuroprotective substance riluzole and GABA(A)-receptors.

    PubMed

    Jahn, K; Schlesinger, F; Jin, L J; Dengler, R; Bufler, J; Krampfl, K

    2008-07-01

    The antiepileptic drug riluzole is used as a therapeutic agent in amyotrophic lateral sclerosis due to its neuroprotective effects. Besides presynaptic inhibition of GABAergic and preferentially glutamatergic transmission, it also potentiates postsynaptic GABA(A)-receptor function. We investigated the postsynaptic effects of riluzole on GABA(A)-receptor channels by use of the patch-clamp technique. Recombinant alpha1beta2gamma(2s) and alpha1beta2 GABA(A) receptors were expressed in HEK 293 cells by transient transfection. Pulses of GABA were applied in combination with different concentrations of riluzole to whole cell or outside-out patches with either alpha1beta2gamma(2s) or alpha1beta2 GABA(A)-receptor channels. Co-application of riluzole led to a slight decrease of absolute peak current amplitudes and steady-state currents in prolonged presence of GABA at saturating concentrations. In the presence of riluzole, enhancement of current amplitudes was observed with lower concentrations of GABA at alpha1beta2gamma(2s) receptors and to a lower extent also at alpha1beta2 receptors. Thus, the potentiating effect of riluzole was shown to be not abolished in the absence of the gamma(2s)-subunit. A further prominent effect of riluzole was a highly significant acceleration of the time course of current decay, most probably pointing to an open-channel block-like mechanism of action. As both receptor subtypes were affected similarly by the block, it could be concluded that the respective binding sites should be assumed within a region of high sequence homology like it is given for the channel-lining M2 domain of GABA(A)-receptor subunits. In conclusion, three different molecular mechanisms of interaction of the neuroprotective compound riluzole were observed at two different subtypes of GABA(A) receptor channels. The results further point to the impact of the inhibitory as well as the excitatory synaptic activity as a pharmacological target to counteract chronic

  8. Open tubular columns containing the immobilized ligand binding domain of peroxisome proliferator-activated receptors α and γ for dual agonists characterization by frontal affinity chromatography with MS detection

    PubMed Central

    Temporini, C.; Pochetti, G.; Fracchiolla, G.; Piemontese, L.; Montanari, R.; Moaddel, R.; Laghezza, A.; Altieri, F.; Cervoni, L.; Ubiali, D.; Prada, E.; Loiodice, F.; Massolini, G.; Calleri, E.

    2013-01-01

    The peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily. In the last years novel PPARs ligands have been identified and these include PPARα/γ dual agonists. To rapidly identify novel PPARs dual ligands, a robust binding assay amenable to high-throughput screening towards PPAR isoforms would be desirable. In this work we describe a parallel assay based on the principles of Frontal Affinity Chromatography coupled to Mass Spectrometry (FAC-MS) that can be used to characterize dual agonists. For this purpose the ligand binding domain of PPARα receptor was immobilized onto the surface of open tubular capillaries to create new PPAR-alpha-OT columns to be used in parallel with PPAR-gamma-OT columns. The two biochromatographic systems were used in both ranking and Kd experiments towards new ureidofibrate-like dual agonists for subtype selectivity ratio determination. In order to validate the system, the Kd values determined by frontal analysis chromatography were compared to the affinity constants obtained by ITC experiments. The results of this study strongly demonstrate the specific nature of the interaction of the ligands with the two immobilized receptor subtypes. PMID:23466198

  9. Dual Receptor-Targeted Theranostic Nanoparticles for Localized Delivery and Activation of Photodynamic Therapy Drug in Glioblastomas

    PubMed Central

    Dixit, Suraj; Miller, Kayla; Zhu, Yun; McKinnon, Emilie; Novak, Thomas; Kenney, Malcolm E.; Broome, Ann-Marie

    2015-01-01

    Targeting gold nanoparticles (AuNPs) with two or more receptor binding peptides has been proposed to address intratumoral heterogeneity of glioblastomas that overexpress multiple cell surface receptors to ultimately improve therapeutic efficacy. AuNPs conjugated with peptides against both the epidermal growth factor and transferrin receptors and loaded with the photosensitizer phthalocyanine 4 (Pc 4) have been designed and compared with monotargeted AuNPs for in vitro and in vivo studies. The (EGFpep+Tfpep)-AuNPs-Pc 4 with a particle size of ~41 nm improved both specificity and worked synergistically to decrease time of maximal accumulation in human glioma cells that overexpressed two cell surface receptors as compared to cells that overexpressed only one. Enhanced cellular association and increased cytotoxicity were achieved. In vivo studies show notable accumulation of these agents in the brain tumor regions. PMID:26198693

  10. Mechanism of HSV infection through soluble adapter-mediated virus bridging to the EGF receptor

    SciTech Connect

    Nakano, Kenji; Kobayashi, Masatoshi; Nakamura, Kei-ichiro; Nakanishi, Takeshi; Asano, Ryutaro; Kumagai, Izumi; Tahara, Hideaki; Kuwano, Michihiko; Cohen, Justus B.; Glorioso, Joseph C.

    2011-04-25

    Herpes simplex virus entry into cells requires the binding of envelope glycoprotein D (gD) to an entry receptor. Depending on the cell, entry occurs by different mechanisms, including fusion at the cell surface or endocytosis. Here we examined the entry mechanism through a non-HSV receptor mediated by a soluble bi-specific adapter protein composed of recognition elements for gD and the EGF receptor (EGFR). Virus entered into endosomes using either EGF or an EGFR-specific single chain antibody (scFv) for receptor recognition. Infection was less efficient with the EGF adapter which could be attributed to its weaker binding to a viral gD. Infection mediated by the scFv adapter was pH sensitive, indicating that gD-EGFR bridging alone was insufficient for capsid release from endosomes. We also show that the scFv adapter enhanced infection of EGFR-expressing tumor tissue in vivo. Our results indicate that adapters may retarget HSV infection without drastically changing the entry mechanism.

  11. Highly Conserved Histidine Plays a Dual Catalytic Role in Protein Splicing: a pKa Shift Mechanism

    PubMed Central

    Du, Zhenming; Shemella, Philip T.; Liu, Yangzhong; McCallum, Scott A.; Pereira, Brian; Nayak, Saroj K.; Belfort, Georges; Belfort, Marlene; Wang, Chunyu

    2009-01-01

    Protein splicing is a precise auto-catalytic process in which an intein excises itself from a precursor with the concomitant ligation of the flanking sequences. Protein splicing occurs through acid-base catalysis in which the ionization states of active site residues are crucial to the reaction mechanism. In inteins, several conserved histidines have been shown to play important roles in protein splicing, including the most conserved “B-block” histidine. In this study, we have combined NMR pKa determination with quantum mechanics/molecular mechanics (QM/MM) modeling to study engineered inteins from Mycobacterium tuberculosis (Mtu) RecA intein. We demonstrate a dramatic pKa shift for the invariant B-block histidine, the most conserved residue among inteins. The B-block histidine has a pKa of 7.3 ± 0.6 in a precursor and a pKa of < 3.5 in a spliced intein. The pKa values and QM/MM data suggest that the B-block histidine has a dual role in the acid-base catalysis of protein splicing. This histidine likely acts as a general base to initiate splicing with an acyl shift and then as a general acid to cause the breakdown of the scissile bond. The proposed pKa shift mechanism accounts for the biochemical data supporting the essential role for the B-block histidine and for the absolute sequence conservation of this residue. PMID:19630416

  12. Effects and mechanism of dual-frequency power ultrasound on the molecular weight distribution of corn gluten meal hydrolysates.

    PubMed

    Jin, Jian; Ma, Haile; Wang, Bei; Yagoub, Abu El-Gasim A; Wang, Kai; He, Ronghai; Zhou, Cunshan

    2016-05-01

    The impact of dual-frequency power ultrasound (DPU) on the molecular weight distribution (MWD) of corn gluten meal (CGM) hydrolysates and its mechanism were investigated in the present study. The mechanism was studied from aspects of structural and nano-mechanical characteristics of the major protein fractions of CGM, viz. zein and glutelin. The results of molecular weight distribution indicated that DPU pretreatment of CGM was beneficial to the preparation of peptides with molecular weights of 200-1000Da. Moreover, FTIR spectral analysis and atomic force microscopy characterization showed that the DPU pretreatment changed the contents of secondary structure of proteins, decreased the particle height and surface roughness of glutelin, reduced the Young's modulus and stiffness of zein while increased its adhesion force. In conclusion, DPU pretreatment of proteins before proteolysis is an efficient alternative method to produce short-chain peptides because of its positive effects originating from acoustic cavitation on the molecular conformation, nano-structures and nano-mechanical properties of proteins as well. PMID:26703201

  13. Therapeutic potential of the dual peroxisome proliferator activated receptor (PPAR)α/γ agonist aleglitazar in attenuating TNF-α-mediated inflammation and insulin resistance in human adipocytes.

    PubMed

    Massaro, Marika; Scoditti, Egeria; Pellegrino, Mariangela; Carluccio, Maria Annunziata; Calabriso, Nadia; Wabitsch, Martin; Storelli, Carlo; Wright, Matthew; De Caterina, Raffaele

    2016-05-01

    Adipose tissue inflammation is a mechanistic link between obesity and its related sequelae, including insulin resistance and type 2 diabetes. Dual ligands of peroxisome proliferator activated receptor (PPAR)α and γ, combining in a single molecule the metabolic and inflammatory-regulatory properties of α and γ agonists, have been proposed as a promising therapeutic strategy to antagonize adipose tissue inflammation. Here we investigated the effects of the dual PPARα/γ agonist aleglitazar on human adipocytes challenged with inflammatory stimuli. Human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were treated with aleglitazar or - for comparison - the selective agonists for PPARα or γ fenofibrate or rosiglitazone, respectively, for 24h before stimulation with TNF-α. Aleglitazar, at concentrations as low as 10nmol/L, providing the half-maximal transcriptional activation of both PPARα and PPARγ, reduced the stimulated expression of several pro-inflammatory mediators including interleukin (IL)-6, the chemokine CXC-L10, and monocyte chemoattractant protein (MCP)-1. Correspondingly, media from adipocytes treated with aleglitazar reduced monocyte migration, consistent with suppression of MCP-1 secretion. Under the same conditions, aleglitazar also reversed the TNF-α-mediated suppression of insulin-stimulated ser473 Akt phosphorylation and decreased the TNF-α-induced ser312 IRS1 phosphorylation, two major switches in insulin-mediated metabolic activities, restoring glucose uptake in insulin-resistant adipocytes. Such effects were similar to those obtainable with a combination of single PPARα and γ agonists. In conclusion, aleglitazar reduces inflammatory activation and dysfunction in insulin signaling in activated adipocytes, properties that may benefit diabetic and obese patients. The effect of aleglitazar was consistent with dual PPARα and γ agonism, but with no evidence of synergism. PMID:26976796

  14. Calcitonin and Amylin Receptor Peptide Interaction Mechanisms: INSIGHTS INTO PEPTIDE-BINDING MODES AND ALLOSTERIC MODULATION OF THE CALCITONIN RECEPTOR BY RECEPTOR ACTIVITY-MODIFYING PROTEINS.

    PubMed

    Lee, Sang-Min; Hay, Debbie L; Pioszak, Augen A

    2016-04-15

    Receptor activity-modifying proteins (RAMP1-3) determine the selectivity of the class B G protein-coupled calcitonin receptor (CTR) and the CTR-like receptor (CLR) for calcitonin (CT), amylin (Amy), calcitonin gene-related peptide (CGRP), and adrenomedullin (AM) peptides. RAMP1/2 alter CLR selectivity for CGRP/AM in part by RAMP1 Trp-84 or RAMP2 Glu-101 contacting the distinct CGRP/AM C-terminal residues. It is unclear whether RAMPs use a similar mechanism to modulate CTR affinity for CT and Amy, analogs of which are therapeutics for bone disorders and diabetes, respectively. Here, we reproduced the peptide selectivity of intact CTR, AMY1 (CTR·RAMP1), and AMY2 (CTR·RAMP2) receptors using purified CTR extracellular domain (ECD) and tethered RAMP1- and RAMP2-CTR ECD fusion proteins and antagonist peptides. All three proteins bound salmon calcitonin (sCT). Tethering RAMPs to CTR enhanced binding of rAmy, CGRP, and the AMY antagonist AC413. Peptide alanine-scanning mutagenesis and modeling of receptor-bound sCT and AC413 supported a shared non-helical CGRP-like conformation for their TN(T/V)G motif prior to the C terminus. After this motif, the peptides diverged; the sCT C-terminal Pro was crucial for receptor binding, whereas the AC413/rAmy C-terminal Tyr had little or no influence on binding. Accordingly, mutant RAMP1 W84A- and RAMP2 E101A-CTR ECD retained AC413/rAmy binding. ECD binding and cell-based signaling assays with antagonist sCT/AC413/rAmy variants with C-terminal residue swaps indicated that the C-terminal sCT/rAmy residue identity affects affinity more than selectivity. rAmy(8-37) Y37P exhibited enhanced antagonism of AMY1 while retaining selectivity. These results reveal unexpected differences in how RAMPs determine CTR and CLR peptide selectivity and support the hypothesis that RAMPs allosterically modulate CTR peptide affinity. PMID:26895962

  15. Proteinase activated receptor-2-mediated dual oxidase-2 up-regulation is involved in enhanced airway reactivity and inflammation in a mouse model of allergic asthma.

    PubMed

    Nadeem, Ahmed; Alharbi, Naif O; Vliagoftis, Harissios; Tyagi, Manoj; Ahmad, Sheikh F; Sayed-Ahmed, Mohamed M

    2015-07-01

    Airway epithelial cells (AECs) express a variety of receptors, which sense danger signals from various aeroallergens/pathogens being inhaled constantly. Proteinase-activated receptor 2 (PAR-2) is one such receptor and is activated by cockroach allergens, which have intrinsic serine proteinase activity. Recently, dual oxidases (DUOX), especially DUOX-2, have been shown to be involved in airway inflammation in response to Toll-like receptor activation. However, the association between PAR-2 and DUOX-2 has not been explored in airways of allergic mice. Therefore, this study investigated the contribution of DUOX-2/reactive oxygen species (ROS) signalling in airway reactivity and inflammation after PAR-2 activation. Mice were sensitized intraperitoneally with intact cockroach allergen extract (CE) in the presence of aluminium hydroxide followed by intranasal challenge with CE. Mice were then assessed for airway reactivity, inflammation, oxidative stress (DUOX-2, ROS, inducible nitric oxide synthase, nitrite, nitrotyrosine and protein carbonyls) and apoptosis (Bax, Bcl-2, caspase-3). Challenge with CE led to up-regulation of DUOX-2 and ROS in AECs with concomitant increases in airway reactivity/inflammation and parameters of oxidative stress, and apoptosis. All of these changes were significantly inhibited by intranasal administration of ENMD-1068, a small molecule antagonist of PAR-2 in allergic mice. Administration of diphenyliodonium to allergic mice also led to improvement of allergic airway responses via inhibition of the DUOX-2/ROS pathway; however, these effects were less pronounced than PAR-2 antagonism. The current study suggests that PAR-2 activation leads to up-regulation of the DUOX-2/ROS pathway in AECs, which is involved in regulation of airway reactivity and inflammation via oxidative stress and apoptosis. PMID:25684443

  16. Incorporation of the purified epstein barr virus/C3d receptor (CR2) into liposomes and demonstration of its dual ligand binding functions

    SciTech Connect

    Mold, C.; Cooper, N.R.; Nemerow, G.R.

    1986-06-01

    The 145-kDA molecule that has been identified as the C3d receptor CR2 was isolated from lysates of Raji cells by affinity chromatography by using the monoclonal antibody (MoAb)HB-5. The purified protein was incorporated into /sup 14/C-phosphatidylcholine liposomes by deoxycholate dialysis followed by flotation on discontinuous sucrose gradients. Incorporation of the receptor was verified by testing the gradient fractions for CR2 by an enzyme-linked immunosorbent assay. Liposomes were shown to be unilamellar vesicles ranging in diameter from 25 to 100 nm by electron microscopy. The external orientation of CR2 in the membranes was demonstrated by immunoelectron microscopy. The functional activities of liposomes containing CR2 and liposomes without protein were compared. CR2 liposomes bound to EC3d, but not to E, and this binding was inhibited by the anti-CR2 MoAb OKB7 and by a MoAb specific for C3d. Control liposomes failed to bind to either E or EC3D. The ability of CR2 to function as a receptor for Epstein Barr virus (EBV) was tested in two ways. First, CR2 liposomes bound to B95-8, a cell line expressing EBV membrane antigens, but not to B95-8 cells treated with the viral DNA polymerase inhibitor phosphonoformic acid. Second, liposomes containing CR2 were shown by ultracentrifugal analyses to bind directly to purified EBV, and this binding was also inhibited by OKB7. Control liposomes did not bind to B95-8 cells or to EBV. These findings show that CR2 purified from detergent extracts of Raji cells can be reconstituted into lipid membranes with maintenance of its dual functions as a receptor for C3d and EBV.

  17. CD44 Antibody Inhibition of Macrophage Phagocytosis Targets Fcγ Receptor- and Complement Receptor 3-Dependent Mechanisms.

    PubMed

    Amash, Alaa; Wang, Lin; Wang, Yawen; Bhakta, Varsha; Fairn, Gregory D; Hou, Ming; Peng, Jun; Sheffield, William P; Lazarus, Alan H

    2016-04-15

    Targeting CD44, a major leukocyte adhesion molecule, using specific Abs has been shown beneficial in several models of autoimmune and inflammatory diseases. The mechanisms contributing to the anti-inflammatory effects of CD44 Abs, however, remain poorly understood. Phagocytosis is a key component of immune system function and can play a pivotal role in autoimmune states where CD44 Abs have shown to be effective. In this study, we show that the well-known anti-inflammatory CD44 Ab IM7 can inhibit murine macrophage phagocytosis of RBCs. We assessed three selected macrophage phagocytic receptor systems: Fcγ receptors (FcγRs), complement receptor 3 (CR3), and dectin-1. Treatment of macrophages with IM7 resulted in significant inhibition of FcγR-mediated phagocytosis of IgG-opsonized RBCs. The inhibition of FcγR-mediated phagocytosis was at an early stage in the phagocytic process involving both inhibition of the binding of the target RBC to the macrophages and postbinding events. This CD44 Ab also inhibited CR3-mediated phagocytosis of C3bi-opsonized RBCs, but it did not affect the phagocytosis of zymosan particles, known to be mediated by the C-type lectin dectin-1. Other CD44 Abs known to have less broad anti-inflammatory activity, including KM114, KM81, and KM201, did not inhibit FcγR-mediated phagocytosis of RBCs. Taken together, these findings demonstrate selective inhibition of FcγR and CR3-mediated phagocytosis by IM7 and suggest that this broadly anti-inflammatory CD44 Ab inhibits these selected macrophage phagocytic pathways. The understanding of the immune-regulatory effects of CD44 Abs is important in the development and optimization of therapeutic strategies for the potential treatment of autoimmune conditions. PMID:26944929

  18. Transmembrane chemokines act as receptors in a novel mechanism termed inverse signaling

    PubMed Central

    Hattermann, Kirsten; Gebhardt, Henrike; Krossa, Sebastian; Ludwig, Andreas; Lucius, Ralph

    2016-01-01

    The transmembrane chemokines CX3CL1/fractalkine and CXCL16 are widely expressed in different types of tumors, often without an appropriate expression of their classical receptors. We observed that receptor-negative cancer cells could be stimulated by the soluble chemokines. Searching for alternative receptors we detected that all cells expressing or transfected with transmembrane chemokine ligands bound the soluble chemokines with high affinity and responded by phosphorylation of intracellular kinases, enhanced proliferation and anti-apoptosis. This activity requires the intracellular domain and apparently the dimerization of the transmembrane chemokine ligand. Thus, shed soluble chemokines can generate auto- or paracrine signals by binding and activating their transmembrane forms. We term this novel mechanism “inverse signaling”. We suppose that inverse signaling is an autocrine feedback and fine-tuning system in the communication between cells that in tumors supports stabilization and proliferation. DOI: http://dx.doi.org/10.7554/eLife.10820.001 PMID:26796342

  19. Mechanisms of diphylline release from dual-solute loaded poly(vinyl alcohol) matrices.

    PubMed

    Hasimi, Albana; Papadokostaki, Kyriaki G; Sanopoulou, Merope

    2014-01-01

    The release kinetics of the model hydrophilic drug, diphylline (DPL), from physically crosslinked poly(vinyl alcohol) (PVA) matrices, is studied in relation to the drug load and the presence of a second solute incorporated in the matrix. The second solute, a gadolinium (III) complex (Gd-DTPA), is a commonly used MRI contrast agent. The water uptake kinetics by the glassy PVA matrix was found to deviate from t(1/2) law and to occur on time scales comparable to those of diphylline release. The corresponding rate of diphylline release was found to be substantially stabilized as compared to a purely diffusion-controlled release process, in line with theoretical predictions under conditions of relaxation-controlled water uptake kinetics. The release rate of DPL was found (i) to increase with increasing DPL load and (ii) for a particular DPL load, to increase in the presence of Gd-DTPA, incorporated in the matrix. The results were interpreted on the basis of the diphylline-induced plasticization of the polymer (evidenced by the depression of Tg) and of the excess hydration of the matrix at high solute loads. The latter effect was found to be additive in the case of dual-solute loaded matrices. PMID:24268271

  20. Molecular Mechanism Underlying the Plant NRT1.1 Dual-Affinity Nitrate Transporter

    PubMed Central

    Sun, Ji; Zheng, Ning

    2015-01-01

    Nitrate (NO3−) is one of the most important sources of mineral nitrogen, which also serves as a key signaling molecule for plant growth and development. To cope with nitrate fluctuation in soil that varies by up to four orders of magnitude, plants have evolved high- and low-affinity nitrate transporter systems, consisting of distinct families of transporters. Interestingly, the first cloned nitrate transporter in Arabidopsis, NRT1.1 functions as a dual-affinity transporter, which can change its affinity for nitrate in response to substrate availability. Phosphorylation of a threonine residue, Thr101, switches NRT1.1 from low- to high-affinity state. Recent structural studies have unveiled that the unmodified NRT1.1 transporter works as homodimers with Thr101 located in close proximity to the dimer interface. Modification on the Thr101 residue is shown to not only decouple the dimer configuration, but also increase structural flexibility, thereby, altering the substrate affinity of NRT1.1. The structure of NRT1.1 helps establish a novel paradigm in which protein oligomerzation and posttranslational modification can synergistically expand the functional capacity of the major facilitator superfamily (MFS) transporters. PMID:26733879

  1. Endocytosis and trafficking of BMP receptors: Regulatory mechanisms for fine-tuning the signaling response in different cellular contexts.

    PubMed

    Ehrlich, Marcelo

    2016-02-01

    Signaling by bone morphogenetic protein (BMP) receptors is regulated at multiple levels in order to ensure proper interpretation of BMP stimuli in different cellular settings. As with other signaling receptors, regulation of the amount of exposed and signaling-competent BMP receptors at the plasma-membrane is predicted to be a key mechanism in governing their signaling output. Currently, the endocytosis of BMP receptors is thought to resemble that of the structurally related transforming growth factor-β (TGF-β) receptors, as BMP receptors are constitutively internalized (independently of ligand binding), with moderate kinetics, and mostly via clathrin-mediated endocytosis. Also similar to TGF-β receptors, BMP receptors are able to signal from the plasma membrane, while internalization to endosomes may have a signal modulating effect. When at the plasma membrane, BMP receptors localize to different membrane domains including cholesterol rich domains and caveolae, suggesting a complex interplay between membrane distribution and internalization. An additional layer of complexity stems from the putative regulatory influence on the signaling and trafficking of BMP receptors exerted by ligand traps and/or co-receptors. Furthermore, the trafficking and signaling of BMP receptors are subject to alterations in cellular context. For example, genetic diseases involving changes in the expression of auxiliary factors of endocytic pathways hamper retrograde BMP signals in neurons, and perturb the regulation of synapse formation. This review summarizes current understanding of the trafficking of BMP receptors and discusses the role of trafficking in regulation of BMP signals. PMID:26776724

  2. Recognition of bacterial signal peptides by mammalian formyl peptide receptors: a new mechanism for sensing pathogens.

    PubMed

    Bufe, Bernd; Schumann, Timo; Kappl, Reinhard; Bogeski, Ivan; Kummerow, Carsten; Podgórska, Marta; Smola, Sigrun; Hoth, Markus; Zufall, Frank

    2015-03-20

    Formyl peptide receptors (FPRs) are G-protein-coupled receptors that function as chemoattractant receptors in innate immune responses. Here we perform systematic structure-function analyses of FPRs from six mammalian species using structurally diverse FPR peptide agonists and identify a common set of conserved agonist properties with typical features of pathogen-associated molecular patterns. Guided by these results, we discover that bacterial signal peptides, normally used to translocate proteins across cytoplasmic membranes, are a vast family of natural FPR agonists. N-terminally formylated signal peptide fragments with variable sequence and length activate human and mouse FPR1 and FPR2 at low nanomolar concentrations, thus establishing FPR1 and FPR2 as sensitive and broad signal peptide receptors. The vomeronasal receptor mFpr-rs1 and its sequence orthologue hFPR3 also react to signal peptides but are much more narrowly tuned in signal peptide recognition. Furthermore, all signal peptides examined here function as potent activators of the innate immune system. They elicit robust, FPR-dependent calcium mobilization in human and mouse leukocytes and trigger a range of classical innate defense mechanisms, such as the production of reactive oxygen species, metalloprotease release, and chemotaxis. Thus, bacterial signal peptides constitute a novel class of immune activators that are likely to contribute to mammalian immune defense against bacteria. This evolutionarily conserved detection mechanism combines structural promiscuity with high specificity and enables discrimination between bacterial and eukaryotic signal sequences. With at least 175,542 predicted sequences, bacterial signal peptides represent the largest and structurally most heterogeneous class of G-protein-coupled receptor agonists currently known for the innate immune system. PMID:25605714

  3. Structural mechanism of ligand activation in human calcium-sensing receptor.

    PubMed

    Geng, Yong; Mosyak, Lidia; Kurinov, Igor; Zuo, Hao; Sturchler, Emmanuel; Cheng, Tat Cheung; Subramanyam, Prakash; Brown, Alice P; Brennan, Sarah C; Mun, Hee-Chang; Bush, Martin; Chen, Yan; Nguyen, Trang X; Cao, Baohua; Chang, Donald D; Quick, Matthias; Conigrave, Arthur D; Colecraft, Henry M; McDonald, Patricia; Fan, Qing R

    2016-01-01

    Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor (GPCR) that maintains extracellular Ca(2+) homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich domain, and seven-helix transmembrane region. Here, we present the crystal structures of the entire extracellular domain of CaSR in the resting and active conformations. We provide direct evidence that L-amino acids are agonists of the receptor. In the active structure, L-Trp occupies the orthosteric agonist-binding site at the interdomain cleft and is primarily responsible for inducing extracellular domain closure to initiate receptor activation. Our structures reveal multiple binding sites for Ca(2+) and PO4(3-) ions. Both ions are crucial for structural integrity of the receptor. While Ca(2+) ions stabilize the active state, PO4(3-) ions reinforce the inactive conformation. The activation mechanism of CaSR involves the formation of a novel dimer interface between subunits. PMID:27434672

  4. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    SciTech Connect

    Melcher, Karsten; Ng, Ley-Moy; Zhou, X Edward; Soon, Fen-Fen; Xu, Yong; Suino-Powell, Kelly M; Park, Sang-Youl; Weiner, Joshua J; Fujii, Hiroaki; Chinnusamy, Viswanathan; Kovach, Amanda; Li, Jun; Wang, Yonghong; Li, Jiayang; Peterson, Francis C; Jensen, Davin R; Yong, Eu-Leong; Volkman, Brian F; Cutler, Sean R; Zhu, Jian-Kang; Xu, H Eric

    2010-01-12

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved β-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling.

  5. Structural mechanism of ligand activation in human calcium-sensing receptor

    PubMed Central

    Geng, Yong; Mosyak, Lidia; Kurinov, Igor; Zuo, Hao; Sturchler, Emmanuel; Cheng, Tat Cheung; Subramanyam, Prakash; Brown, Alice P; Brennan, Sarah C; Mun, Hee-chang; Bush, Martin; Chen, Yan; Nguyen, Trang X; Cao, Baohua; Chang, Donald D; Quick, Matthias; Conigrave, Arthur D; Colecraft, Henry M; McDonald, Patricia; Fan, Qing R

    2016-01-01

    Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor (GPCR) that maintains extracellular Ca2+ homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich domain, and seven-helix transmembrane region. Here, we present the crystal structures of the entire extracellular domain of CaSR in the resting and active conformations. We provide direct evidence that L-amino acids are agonists of the receptor. In the active structure, L-Trp occupies the orthosteric agonist-binding site at the interdomain cleft and is primarily responsible for inducing extracellular domain closure to initiate receptor activation. Our structures reveal multiple binding sites for Ca2+ and PO43- ions. Both ions are crucial for structural integrity of the receptor. While Ca2+ ions stabilize the active state, PO43- ions reinforce the inactive conformation. The activation mechanism of CaSR involves the formation of a novel dimer interface between subunits. DOI: http://dx.doi.org/10.7554/eLife.13662.001 PMID:27434672

  6. Mechanisms of Biased β-Arrestin-Mediated Signaling Downstream from the Cannabinoid 1 Receptor

    PubMed Central

    Delgado-Peraza, Francheska; Ahn, Kwang H.; Nogueras-Ortiz, Carlos; Mungrue, Imran N.; Mackie, Ken; Kendall, Debra A.

    2016-01-01

    Activation of G protein-coupled receptors results in multiple waves of signaling that are mediated by heterotrimeric G proteins and the scaffolding proteins β-arrestin 1/2. Ligands can elicit full or subsets of cellular responses, a concept defined as ligand bias or functional selectivity. However, our current understanding of β-arrestin-mediated signaling is still very limited. Here we provide a comprehensive view of β-arrestin-mediated signaling from the cannabinoid 1 receptor (CB1R). By using a signaling biased receptor, we define the cascades, specific receptor kinases, and molecular mechanism underlying β-arrestin-mediated signaling: We identify the interaction kinetics of CB1R and β-arrestin 1 during their endocytic trafficking as directly proportional to its efficacy. Finally, we demonstrate that signaling results in the control of genes clustered around prosurvival and proapoptotic functions among others. Together, these studies constitute a comprehensive description of β-arrestin-mediated signaling from CB1Rs and suggest modulation of receptor endocytic trafficking as a therapeutic approach to control β-arrestin-mediated signaling. PMID:27009233

  7. Renal mu opioid receptor mechanisms in regulation of renal function in rats.

    PubMed

    Kapusta, D R; Jones, S Y; DiBona, G F

    1991-07-01

    Studies were performed in pentobarbital anesthetized Sprague-Dawley rats to determine whether mu opioid receptor agonists produce changes in renal function via intrarenal mechanisms. Left renal artery infusion of isotonic saline vehicle or the selective mu opioid receptor agonist, dermorphin (0.5 nmol/kg/min), did not alter mean arterial pressure or heart rate. In contrast, left renal artery dermorphin administration produced a significant decrease in left kidney urinary flow rate and sodium excretion without altering glomerular filtration rate or effective renal plasma flow; function of the right kidney was unaffected. Pretreatment of the left kidney with the opioid receptor antagonist naloxone, 50 micrograms/kg into left renal artery, prevented changes in urinary flow rate and sodium excretion induced by subsequent left renal artery dermorphin administration. Prior bilateral renal denervation abolished the antidiuretic and antinatriuretic responses to left renal artery dermorphin administration. These results suggest that mu opioid receptor agonists participate in the process of renal tubular sodium and water reabsorption via an intrarenal action that is dependent on an interaction with renal sympathetic nerves. This may occur via an action of mu opioid receptor agonists to facilitate the nerve terminal release and/or the direct tubular action of norepinephrine to affect renal tubular sodium and water reabsorption. PMID:1677034

  8. Pathogenic mechanism of an autism-associated neuroligin mutation involves altered AMPA-receptor trafficking.

    PubMed

    Chanda, S; Aoto, J; Lee, S-J; Wernig, M; Südhof, T C

    2016-02-01

    Neuroligins are postsynaptic cell-adhesion molecules that bind to presynaptic neurexins. Although the general synaptic role of neuroligins is undisputed, their specific functions at a synapse remain unclear, even controversial. Moreover, many neuroligin gene mutations were associated with autism, but the pathophysiological relevance of these mutations is often unknown, and their mechanisms of action uninvestigated. Here, we examine the synaptic effects of an autism-associated neuroligin-4 substitution (called R704C), which mutates a cytoplasmic arginine residue that is conserved in all neuroligins. We show that the R704C mutation, when introduced into neuroligin-3, enhances the interaction between neuroligin-3 and AMPA receptors, increases AMPA-receptor internalization and decreases postsynaptic AMPA-receptor levels. When introduced into neuroligin-4, conversely, the R704C mutation unexpectedly elevated AMPA-receptor-mediated synaptic responses. These results suggest a general functional link between neuroligins and AMPA receptors, indicate that both neuroligin-3 and -4 act at excitatory synapses but perform surprisingly distinct functions, and demonstrate that the R704C mutation significantly impairs the normal function of neuroligin-4, thereby validating its pathogenicity. PMID:25778475

  9. Mechanisms of Biased β-Arrestin-Mediated Signaling Downstream from the Cannabinoid 1 Receptor.

    PubMed

    Delgado-Peraza, Francheska; Ahn, Kwang H; Nogueras-Ortiz, Carlos; Mungrue, Imran N; Mackie, Ken; Kendall, Debra A; Yudowski, Guillermo A

    2016-06-01

    Activation of G protein-coupled receptors results in multiple waves of signaling that are mediated by heterotrimeric G proteins and the scaffolding proteins β-arrestin 1/2. Ligands can elicit full or subsets of cellular responses, a concept defined as ligand bias or functional selectivity. However, our current understanding of β-arrestin-mediated signaling is still very limited. Here we provide a comprehensive view of β-arrestin-mediated signaling from the cannabinoid 1 receptor (CB1R). By using a signaling biased receptor, we define the cascades, specific receptor kinases, and molecular mechanism underlying β-arrestin-mediated signaling: We identify the interaction kinetics of CB1R and β-arrestin 1 during their endocytic trafficking as directly proportional to its efficacy. Finally, we demonstrate that signaling results in the control of genes clustered around prosurvival and proapoptotic functions among others. Together, these studies constitute a comprehensive description of β-arrestin-mediated signaling from CB1Rs and suggest modulation of receptor endocytic trafficking as a therapeutic approach to control β-arrestin-mediated signaling. PMID:27009233

  10. Possible Mechanisms for Functional Antagonistic Effect of Ferula assafoetida on Muscarinic Receptors in Tracheal Smooth Muscle

    PubMed Central

    Kiyanmehr, Majid; Boskabady, Mohammad Hossein; Khazdair, Mohammad Reza; Hashemzehi, Milad

    2016-01-01

    Background The contribution of histamine (H1) receptors inhibitory and/or β-adrenoceptors stimulatory mechanisms in the relaxant property of Ferula assa-foetida. (F. asafoetida) was examined in the present study. Methods We evaluated the effect of three concentrations of F. asafoetida extract (2.5, 5, and 10 mg/mL), a muscarinic receptors antagonist, and saline on methacholine concentration-response curve in tracheal smooth muscles incubated with β-adrenergic and histamine (H1) (group 1), and only β-adrenergic (group 2) receptors antagonists. Results EC50 values in the presence of atropine, extract (5 and 10 mg/mL) and maximum responses to methacholine due to the 10 mg/mL extract in both groups and 5 mg/mL extract in group 1 were higher than saline (P < 0.0001, P = 0.0477, and P = 0.0008 in group 1 and P < 0.0001, P = 0.0438, and P = 0.0107 in group 2 for atropine, 5 and 10 mg/mL extract, respectively). Values of concentration ratio minus one (CR-1), in the presence of extracts were lower than atropine in both groups (P = 0.0339 for high extract concentration in group 1 and P < 0.0001 for other extract concentrations in both groups). Conclusion Histamine (H1) receptor blockade affects muscarinic receptors inhibitory property of F. asafoetida in tracheal smooth muscle PMID:27540324

  11. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor

    SciTech Connect

    Sobolevsky, Alexander I.; Rosconi, Michael P.; Gouaux, Eric

    2010-02-02

    Ionotropic glutamate receptors mediate most excitatory neurotransmission in the central nervous system and function by opening a transmembrane ion channel upon binding of glutamate. Despite their crucial role in neurobiology, the architecture and atomic structure of an intact ionotropic glutamate receptor are unknown. Here we report the crystal structure of the {alpha}-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive, homotetrameric, rat GluA2 receptor at 3.6 {angstrom} resolution in complex with a competitive antagonist. The receptor harbours an overall axis of two-fold symmetry with the extracellular domains organized as pairs of local dimers and with the ion channel domain exhibiting four-fold symmetry. A symmetry mismatch between the extracellular and ion channel domains is mediated by two pairs of conformationally distinct subunits, A/C and B/D. Therefore, the stereochemical manner in which the A/C subunits are coupled to the ion channel gate is different from the B/D subunits. Guided by the GluA2 structure and site-directed cysteine mutagenesis, we suggest that GluN1 and GluN2A NMDA (N-methyl-D-aspartate) receptors have a similar architecture, with subunits arranged in a 1-2-1-2 pattern. We exploit the GluA2 structure to develop mechanisms of ion channel activation, desensitization and inhibition by non-competitive antagonists and pore blockers.

  12. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    SciTech Connect

    Hattori, Motoyuki; Gouaux, Eric

    2012-10-24

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

  13. Microcontroller Based Proportional Derivative Plus Conditional Integral Controller for Electro-Mechanical Dual Acting Pulley Continuously Variable Transmission Ratio Control

    NASA Astrophysics Data System (ADS)

    Budianto, A.; Tawi, K. B.; Hussein, M.; Supriyo, B.; Ariyono, S.; Che Kob, M. S.; Ezlamy Zulkifli, Mohd; K, Khairuldean A.; Daraoh, Aishah

    2012-09-01

    Electro-Mechanical Dual Acting Pulley (EMDAP) Continuously Variable Transmission (CVT) is a transmission utilized by electro-mechanical actuated system. It has a potential to reduce energy consumption because it only needs power during changing CVT ratio and no power is needed to maintain CVT ratio due to self lock mechanism design. This paper proposed simple proportional derivative plus conditional integral (PDCI) controller to control EMDAP CVT ratio which can be simply implemented on a microcontroller. This proposed controller used Astrom-Hagglund method and Ziegler-Nichols formula to tune PDCI gain. The Proportional Derivative controller is directly activated from the start but Integral controller is only activated when the error value reaches error value setting point. Simulation using Matlab/Simulink software was conducted to evaluate PDCI system performance. The simulation results showed PDCI controller has ability to perform maximum overshoot 0.1%, 0.001 steady state error and 0.5s settling time. For clamping condition, settling time is about 11.46s during changing ratio from 2.0 to 0.7, while for release condition, settling time is about 8.33s during changing ratio from 0.7 to 2.0.

  14. Fibrillin-1 directly regulates osteoclast formation and function by a dual mechanism

    PubMed Central

    Tiedemann, Kerstin; Boraschi-Diaz, Iris; Rajakumar, Irina; Kaur, Jasvir; Roughley, Peter; Reinhardt, Dieter P.; Komarova, Svetlana V.

    2016-01-01

    Summary Mutations in the fibrillin-1 gene give rise to a number of heritable disorders, which are all characterized by various malformations of bone as well as manifestations in other tissues. However, the role of fibrillin-1 in the development and homeostasis of bone is not well understood. Here, we examined the role of fibrillin-1 in regulating osteoclast differentiation from primary bone-marrow-derived precursors and monocytic RAW 264.7 cells. The soluble N-terminal half of fibrillin-1 (rFBN1-N) strongly inhibited osteoclastogenesis, whereas the C-terminal half (rFBN1-C) did not. By contrast, when rFBN1-N was immobilized on calcium phosphate, it did not affect osteoclastogenesis but modulated osteoclast resorptive activity, which was evident by a larger number of smaller resorption pits. Using a panel of recombinant sub-fragments spanning rFBN1-N, we localized an osteoclast inhibitory activity to the 63 kDa subfragment rF23 comprising the N-terminal region of fibrillin-1. Osteoclastic resorption led to the generation of small fibrillin-1 fragments that were similar to those identified in human vertebral bone extracts. rF23, but not rFBN1-N, was found to inhibit the expression of cathepsin K, matrix metalloproteinase 9 and Dcstamp in differentiating osteoclasts. rFBN1-N, but not rF23, exhibited interaction with RANKL. Excess RANKL rescued the inhibition of osteoclastogenesis by rFBN1-N. By contrast, rF23 disrupted RANKL-induced Ca2+ signaling and activation of transcription factor NFATc1. These studies highlight a direct dual inhibitory role of N-terminal fibrillin-1 fragments in osteoclastogenesis, the sequestration of RANKL and the inhibition of NFATc1 signaling, demonstrating that osteoclastic degradation of fibrillin-1 provides a potent negative feedback that limits osteoclast formation and function. PMID:24039232

  15. Stimulation of rat hepatic low density lipoprotein receptors by glucagon. Evidence of a novel regulatory mechanism in vivo.

    PubMed Central

    Rudling, M; Angelin, B

    1993-01-01

    We studied the influence of glucagon on hepatic LDL receptors and plasma lipoproteins in rats. A dose-dependent (maximum, threefold) increase in LDL-receptor binding was evident already at a dose of 2 x 4 micrograms, and detectable 3 h after injection; concomitantly, cholesterol and apolipoprotein (apo) B and apoE within LDL and large HDL decreased in plasma. LDL receptor mRNA levels were however unaltered or reduced. Hepatic microsomal cholesterol was increased and the enzymatic activities of 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol 7 alpha-hydroxylase in hepatic microsomes were reduced. Insulin alone increased receptor binding and receptor mRNA levels twofold, but plasma cholesterol was unchanged and plasma apoE and apoB increased. Administration of insulin to glucagon-treated animals reduced the LDL-receptor binding to control levels and apoB appeared in LDL particles. Estrogen treatment increased LDL-receptor binding and mRNA levels five- and eightfold, respectively. Combined treatment with glucagon and estrogen reduced the stimulation of LDL-receptor mRNA levels by 80% although LDL-receptor binding was unchanged. Immunoblot analysis showed that glucagon increased the number of hepatic LDL receptors. We conclude that glucagon induces the number of hepatic LDL receptors by a mechanism not related to increased mRNA levels, suggesting the presence of a posttranscriptional regulatory mechanism present in the liver in vivo. Images PMID:8514887

  16. Efficacy of bosentan, a dual ETA and ETB endothelin receptor antagonist, in experimental diabetes induced vascular endothelial dysfunction and associated dementia in rats.

    PubMed

    Singh, Gurpreet; Sharma, Bhupesh; Jaggi, Amteshwar Singh; Singh, Nirmal

    2014-09-01

    The study was designed to investigate the efficacy of bosentan a dual endothelin (ETA and ETB) receptor antagonist in experimental diabetes induced vascular endothelial dysfunction and associated dementia. Diabetes was induced in rats by administration of a single dose (50mg/kg, i.p.) of streptozotocin (STZ). Drug treatment was started after 1 month of STZ administration and treatment was continued until the end of the study. Morris water maze (MWM) test was employed for testing spatial learning and memory. Endothelial function was measured on isolated aortic rings using student physiograph. Serum glucose, body weight, serum nitrite/nitrate, brain thiobarbituric acid reactive species (TBARS), reduced glutathione (GSH) levels, and brain acetylcholinesterase activity were also tested. STZ treatment resulted in significant development of cognitive and vascular endothelial deficits, manifested in the terms of endothelial dysfunction, impairment of learning and memory, reduction in body weight and serum nitrite/nitrate levels along with increase in serum glucose, brain acetylcholinesterase activity, TBARS, and decreased GSH levels. Treatment of bosentan attenuated diabetes induced impairment of learning, memory, endothelial function, and various biochemical parameters. It may be concluded that bosentan has shown efficacy in STZ induced cognitive and vascular endothelial deficits. Thus, endothelin receptors can be considered as a potential pharmacological target for the management of experimental diabetes induced vascular endothelial dysfunction and associated dementia. PMID:24836182

  17. NTS adenosine A2a receptors inhibit the cardiopulmonary chemoreflex control of regional sympathetic outputs via a GABAergic mechanism.

    PubMed

    Minic, Zeljka; O'Leary, Donal S; Scislo, Tadeusz J

    2015-07-01

    Adenosine is a powerful central neuromodulator acting via opposing A1 (inhibitor) and A2a (activator) receptors. However, in the nucleus of the solitary tract (NTS), both adenosine receptor subtypes attenuate cardiopulmonary chemoreflex (CCR) sympathoinhibition of renal, adrenal, and lumbar sympathetic nerve activity and attenuate reflex decreases in arterial pressure and heart rate. Adenosine A1 receptors inhibit glutamatergic transmission in the CCR pathway, whereas adenosine A2a receptors most likely facilitate release of an unknown inhibitory neurotransmitter, which, in turn, inhibits the CCR. We hypothesized that adenosine A2a receptors inhibit the CCR via facilitation of GABA release in the NTS. In urethane-chloralose-anesthetized rats (n = 51), we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of the 5-HT3 receptor agonist phenylbiguanide (1-8 μg/kg) before and after selective stimulation of NTS adenosine A2a receptors [microinjections into the NTS of CGS-21680 (20 pmol/50 nl)] preceded by blockade of GABAA or GABAB receptors in the NTS [bicuculline (10 pmol/100 nl) or SCH-50911 (1 nmol/100 nl)]. Blockade of GABAA receptors virtually abolished adenosine A2a receptor-mediated inhibition of the CCR. GABAB receptors had much weaker but significant effects. These effects were similar for the different sympathetic outputs. We conclude that stimulation of NTS adenosine A2a receptors inhibits CCR-evoked hemodynamic and regional sympathetic reflex responses via a GABA-ergic mechanism. PMID:25910812

  18. The dual peroxisome proliferator-activated receptor alpha/delta agonist GFT505 exerts anti-diabetic effects in db/db mice without peroxisome proliferator-activated receptor gamma-associated adverse cardiac effects.

    PubMed

    Hanf, Rémy; Millatt, Lesley J; Cariou, Bertrand; Noel, Benoit; Rigou, Géraldine; Delataille, Philippe; Daix, Valérie; Hum, Dean W; Staels, Bart

    2014-11-01

    We report here the efficacy and safety of GFT505, a novel liver-targeted peroxisome proliferator-activated receptor alpha/delta (PPARα/δ) agonist, in the db/db mouse model of diabetes. Mice were treated with vehicle, GFT505, PPARγ agonist rosiglitazone or dual-PPARα/γ agonist aleglitazar for up to 8 weeks. All compounds comparably reduced fasting glycaemia and HbA1c and improved insulin sensitivity. The glucose-lowering effect of GFT505 was associated with decreased hepatic gluconeogenesis, correlating with reduced expression of gluconeogenic genes. In contrast with the PPARγ-activating drugs, treatment with GFT505 did not affect heart weight and did not increase plasma adiponectin concentrations. This absence of cardiac effects of GFT505 was confirmed after 12 months of administration in cynomolgus monkeys, by the absence of echocardiographic and histological findings. Moreover, long-term GFT505 administration to monkeys induced no change in haematological parameters or in bone marrow differential cell counts. Compared to PPARγ-activating drugs, the dual-PPARα/δ agonist GFT505 therefore shows an improved benefit/risk ratio, treating multiple features of type 2 diabetes without inducing the cardiac side-effects associated with PPARγ activation. PMID:25212694

  19. Effects of the antitumor drug OSI-906, a dual inhibitor of IGF-1 receptor and insulin receptor, on the glycemic control, β-cell functions, and β-cell proliferation in male mice.

    PubMed

    Shirakawa, Jun; Okuyama, Tomoko; Yoshida, Eiko; Shimizu, Mari; Horigome, Yuka; Tuno, Takayuki; Hayasaka, Moe; Abe, Shiori; Fuse, Masahiro; Togashi, Yu; Terauchi, Yasuo

    2014-06-01

    The IGF-1 receptor has become a therapeutic target for the treatment of cancer. The efficacy of OSI-906 (linstinib), a dual inhibitor of IGF-1 receptor and insulin receptor, for solid cancers has been examined in clinical trials. The effects of OSI-906, however, on the blood glucose levels and pancreatic β-cell functions have not yet been reported. We investigated the impact of OSI-906 on glycemic control, insulin secretion, β-cell mass, and β-cell proliferation in male mice. Oral administration of OSI-906 worsened glucose tolerance in a dose-dependent manner in the wild-type mice. OSI-906 at a dose equivalent to the clinical daily dose (7.5 mg/kg) transiently evoked glucose intolerance and hyperinsulinemia. Insulin receptor substrate (IRS)-2-deficient mice and mice with diet-induced obesity, both models of peripheral insulin resistance, exhibited more severe glucose intolerance after OSI-906 administration than glucokinase-haploinsufficient mice, a model of impaired insulin secretion. Phloridzin improved the hyperglycemia induced by OSI-906 in mice. In vitro, OSI-906 showed no effect on insulin secretion from isolated islets. After daily administration of OSI-906 for a week to mice, the β-cell mass and β-cell proliferation rate were significantly increased. The insulin signals in the β-cells were apparently unaffected in those mice. Taken together, the results suggest that OSI-906 could exacerbate diabetes, especially in patients with insulin resistance. On the other hand, the results suggest that the β-cell mass may expand in response to chemotherapy with this drug. PMID:24712877

  20. Unexpected mechanisms of action for a cytokine receptor-blocking antibody

    PubMed Central

    Hercus, Timothy R; Broughton, Sophie E; Hardy, Matthew P; Nero, Tracy L; Wilson, Nicholas J; Parker, Michael W; Lopez, Angel F

    2014-01-01

    CSL362 is a humanized interleukin-3 (IL-3)-neutralizing monoclonal antibody with enhanced effector function that binds the α subunit of the IL-3 receptor (IL3Rα). The crystal structure of an IL3Rα:CSL362 complex shows that IL3Rα adopts “open” and “closed” conformations. CSL362 blocks IL-3 function through both IL3Rα conformations but via distinct and unexpected mechanisms. PMID:27308368

  1. New mechanisms of NOD-like receptor-associated inflammasome activation

    PubMed Central

    Wen, Haitao; Miao, Edward A.; Ting, Jenny P.-Y.

    2013-01-01

    A major function of a subfamily of NLR (nucleotide-binding domain, leucine rich repeat containing or NOD-like receptor) proteins is in inflammasome activation, which has been implicated in a multitude of disease models and human diseases. This work will highlight key progress in understanding the mechanisms which activates the best studied NLRs (NLRP3, NLRC4, NAIP and NLRP1) and in uncovering new inflammasome NLRs. PMID:24054327

  2. Unexpected mechanisms of action for a cytokine receptor-blocking antibody.

    PubMed

    Hercus, Timothy R; Broughton, Sophie E; Hardy, Matthew P; Nero, Tracy L; Wilson, Nicholas J; Parker, Michael W; Lopez, Angel F

    2014-01-01

    CSL362 is a humanized interleukin-3 (IL-3)-neutralizing monoclonal antibody with enhanced effector function that binds the α subunit of the IL-3 receptor (IL3Rα). The crystal structure of an IL3Rα:CSL362 complex shows that IL3Rα adopts "open" and "closed" conformations. CSL362 blocks IL-3 function through both IL3Rα conformations but via distinct and unexpected mechanisms. PMID:27308368

  3. Molecular mechanisms of corticotropin-releasing factor receptor-induced calcium signaling.

    PubMed

    Gutknecht, Eric; Van der Linden, Ilse; Van Kolen, Kristof; Verhoeven, Kim F C; Vauquelin, Georges; Dautzenberg, Frank M

    2009-03-01

    The molecular mechanisms governing calcium signal transduction of corticotropin-releasing factor (CRF) receptors CRF(1) and CRF(2(a)) stably expressed in human embryonic kidney (HEK) 293 cells were investigated. Calcium signaling strictly depended on intracellular calcium sources, and this is the first study to establish a prominent contribution of the three major G-protein families to CRF receptor-mediated calcium signaling. Overexpression of Galpha(q/11) and Galpha(16) led to leftward shifts of the agonist concentration-response curves. Blockade of Galpha(q/11) proteins by the small interfering RNA (siRNA) technology partially reduced agonist-mediated calcium responses in CRF(1)- and CRF(2(a))-expressing HEK293 cells, thereby proving a contribution of the G(q) protein family. A small but significant inhibition of calcium signaling was recorded by pharmacological inhibition of G(i/o) proteins with pertussis toxin treatment. This effect was mediated by direct binding of Gbetagamma subunits to phospholipase C. G(i/o) inhibition also elevated cAMP responses in CRF receptor-overexpressing HEK293 cells and in Y79 retinoblastoma cells endogenously expressing human CRF(1) and CRF(2(a)) receptors, thereby demonstrating natural coupling of G(i) proteins to both CRF receptors. The strongest reduction of CRF receptor-mediated calcium mobilization was noted when blocking the G(s) signaling protein either by cholera toxin or by siRNA. It is noteworthy that simultaneous inhibition of two G-proteins shed light on the additive effects of G(s) and G(q) on the calcium signaling and, hence, that they act in parallel. On the other hand, G(i) coupling required prior G(s) activation. PMID:19098121

  4. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    SciTech Connect

    Liu, Gang; Hitomi, Hirofumi; Hosomi, Naohisa; Lei, Bai; Nakano, Daisuke; Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu; Ma, Hong; Griendling, Kathy K.; Nishiyama, Akira

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  5. Unraveling mechanisms underlying partial agonism in 5-HT3A receptors.

    PubMed

    Corradi, Jeremías; Bouzat, Cecilia

    2014-12-10

    Partial agonists have emerged as attractive therapeutic molecules. 2-Me-5HT and tryptamine have been defined as partial agonists of 5-HT3 receptors on the basis of macroscopic measurements. Because several mechanisms may limit maximal responses, we took advantage of the high-conductance form of the mouse serotonin type 3A (5-HT3A) receptor to understand their molecular actions. Individual 5-HT-bound receptors activate in long episodes of high open probability, consisting of groups of openings in quick succession. The activation pattern is similar for 2-Me-5HT only at very low concentrations since profound channel blockade takes place within the activating concentration range. In contrast, activation episodes are significantly briefer in the presence of tryptamine. Generation of a full activation scheme reveals that the fully occupied receptor overcomes transitions to closed preopen states (primed states) before opening. Reduced priming explains the partial agonism of tryptamine. In contrast, 2-Me-5HT is not a genuine partial agonist since priming is not dramatically affected and its low apparent efficacy is mainly due to channel blockade. The analysis also shows that the first priming step is the rate-limiting step and partial agonists require an increased number of priming steps for activation. Molecular docking suggests that interactions are similar for 5-HT and 2-Me-5HT but slightly different for tryptamine. Our study contributes to understanding 5-HT3A receptor activation, extends the novel concept of partial agonism within the Cys-loop family, reveals novel aspects of partial agonism, and unmasks molecular actions of classically defined partial agonists. Unraveling mechanisms underlying partial responses has implications in the design of therapeutic compounds. PMID:25505338

  6. Mechanisms of Host Receptor Adaptation by Severe Acute Respiratory Syndrome Coronavirus

    SciTech Connect

    Wu, Kailang; Peng, Guiqing; Wilken, Matthew; Geraghty, Robert J.; Li, Fang

    2012-12-10

    The severe acute respiratory syndrome coronavirus (SARS-CoV) from palm civets has twice evolved the capacity to infect humans by gaining binding affinity for human receptor angiotensin-converting enzyme 2 (ACE2). Numerous mutations have been identified in the receptor-binding domain (RBD) of different SARS-CoV strains isolated from humans or civets. Why these mutations were naturally selected or how SARS-CoV evolved to adapt to different host receptors has been poorly understood, presenting evolutionary and epidemic conundrums. In this study, we investigated the impact of these mutations on receptor recognition, an important determinant of SARS-CoV infection and pathogenesis. Using a combination of biochemical, functional, and crystallographic approaches, we elucidated the molecular and structural mechanisms of each of these naturally selected RBD mutations. These mutations either strengthen favorable interactions or reduce unfavorable interactions with two virus-binding hot spots on ACE2, and by doing so, they enhance viral interactions with either human (hACE2) or civet (cACE2) ACE2. Therefore, these mutations were viral adaptations to either hACE2 or cACE2. To corroborate the above analysis, we designed and characterized two optimized RBDs. The human-optimized RBD contains all of the hACE2-adapted residues (Phe-442, Phe-472, Asn-479, Asp-480, and Thr-487) and possesses exceptionally high affinity for hACE2 but relative low affinity for cACE2. The civet-optimized RBD contains all of the cACE2-adapted residues (Tyr-442, Pro-472, Arg-479, Gly-480, and Thr-487) and possesses exceptionally high affinity for cACE2 and also substantial affinity for hACE2. These results not only illustrate the detailed mechanisms of host receptor adaptation by SARS-CoV but also provide a molecular and structural basis for tracking future SARS-CoV evolution in animals.

  7. Molecular mechanisms of Cys-loop ion channel receptor modulation by ivermectin

    PubMed Central

    Lynagh, Timothy; Lynch, Joseph W.

    2012-01-01

    Ivermectin is an anthelmintic drug that works by inhibiting neuronal activity and muscular contractility in arthropods and nematodes. It works by activating glutamate-gated chloride channels (GluClRs) at nanomolar concentrations. These receptors, found exclusively in invertebrates, belong to the pentameric Cys-loop receptor family of ligand-gated ion channels (LGICs). Higher (micromolar) concentrations of ivermectin also activate or modulate vertebrate Cys-loop receptors, including the excitatory nicotinic and the inhibitory GABA type-A and glycine receptors (GlyRs). An X-ray crystal structure of ivermectin complexed with the C. elegans α GluClR demonstrated that ivermectin binds to the transmembrane domain in a cleft at the interface of adjacent subunits. It also identified three hydrogen bonds thought to attach ivermectin to its site. Site-directed mutagenesis and voltage-clamp electrophysiology have also been employed to probe the binding site for ivermectin in α1 GlyRs. These have raised doubts as to whether the hydrogen bonds are essential for high ivermectin potency. Due to its lipophilic nature, it is likely that ivermectin accumulates in the membrane and binds reversibly (i.e., weakly) to its site. Several lines of evidence suggest that ivermectin opens the channel pore via a structural change distinct from that induced by the neurotransmitter agonist. Conformational changes occurring at locations distant from the pore can be probed using voltage-clamp fluorometry (VCF), a technique which involves quantitating agonist-induced fluorescence changes from environmentally sensitive fluorophores covalently attached to receptor domains of interest. This technique has demonstrated that ivermectin induces a global conformational change that propagates from the transmembrane domain to the neurotransmitter binding site, thus suggesting a mechanism by which ivermectin potentiates neurotransmitter-gated currents. Together, this information provides new insights into

  8. A passively tunable mechanism for a dual bimorph energy harvester with variable tip stiffness and axial load

    NASA Astrophysics Data System (ADS)

    Dehghan Niri, E.; Salamone, S.

    2012-12-01

    This paper presents a novel vibration-based piezoelectric energy harvester capable of passively tuning its resonant frequency to a wide range of frequencies. The device comprises a dual bimorph with a mass at its free end. A novel sliding mechanism, consisting of two oblique springs connected to the tip mass, is proposed to widen the resonance frequency of the device even to very low frequencies. The application of two oblique springs results in an additional stiffness and axial load that are introduced within the system, such that the resonance frequency of the device is now a function of both the stiffness and axial load associated with the spring forces. An operator can manually change the resonance frequency of the harvester just by small adjustments of the sliding mechanism. Further, the device allows one to tune the resonance frequency of the beam to match very low frequencies without the requirement of having a large proof mass. The analytical solution of an axially loaded cantilevered piezoelectric energy harvester with tip stiffness, using Euler-Bernoulli beam assumptions, is presented. A parametric case study is presented to demonstrate the performance of the device.

  9. Active Joint Mechanism Driven by Multiple Actuators Made of Flexible Bags: A Proposal of Dual Structural Actuator

    PubMed Central

    Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input. PMID:24385868

  10. Active joint mechanism driven by multiple actuators made of flexible bags: a proposal of dual structural actuator.

    PubMed

    Kimura, Hitoshi; Matsuzaki, Takuya; Kataoka, Mokutaro; Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input. PMID:24385868

  11. Dynamic gas slippage: A unique dual-mechanism approach to the flow of gas in tight formations

    SciTech Connect

    Ertekin; King, G.R.; Schwerer, F.C.

    1983-10-01

    A mathematical formulation, applicable to both numerical simulation and transient well analysis, describing the flow of gas in very tight (k < 0.1 md) porous media has been developed. Unique to this formulation is the dual-mechanism transport of gas. In this formulation gas is assumed to be traveling under the influence of two fields: a concentration field and a pressure field. Transport through the concentration field is a Knudsen flow process and is modeled with Fick's Law of diffusion. Transport through the pressure field is a laminar process and is modeled with Darcy's law (inertial-turbulent effects are ignored). The combination of these two flow mechanisms rigorously yields a composition, pressure and saturation dependent slippage factor. The pressure dependence arises from treating the gas as a real gas. The dynamic slippage derived from this formulation is found to be most applicable in reservoirs with permeabilities less than or equal to 0.01 md. The results from this study indicate that in reservoirs of this type, differences between recoveries after ten years of production using the dynamic slip described in this paper and constant slip approaches were as great as 10% depending on the initial gas saturation. If an economic production rate is considered, differences as great as 30 can be expected.

  12. Dynamic gas slippage: A unique dual-mechanism approach to the flow of gas in tight formations

    SciTech Connect

    Ertekin, T.; King, G.R.; Schwerer, F.C.

    1986-02-01

    A mathematical formulation, applicable to both numerical simulation and transient well analysis that describes the flow of gas in very tight porous media and includes a dual-mechanism transport of gas is developed. Gas is assumed to be traveling under the influence of a concentration field and a pressure field. Transport through the concentration field is a Knudsen flow process and is modeled with Fick's law of diffusion. Transport through the pressure field is a laminar process and is modeled with Darcy's law (inertial/turbulent effects are ignored). The combination of these two flow mechanisms rigorously yields a composition-, pressure-, and saturation-dependent slippage factor. The pressure dependence arises from treating the gas as a real gas. The derived dynamic slippage is most applicable in reservoirs with permeabilities less than or equal to0.01 md. The results indicate that in reservoirs of this type, differences between recoveries after 10 years of production with the dynamic-slip and constant-slip approaches were as great as 10%, depending on the initial gas saturation. If an economic production rate is considered, differences as great as 30% can be expected.

  13. Estrogen receptor transcription and transactivation: Estrogen receptor knockout mice: what their phenotypes reveal about mechanisms of estrogen action.

    PubMed

    Curtis Hewitt, S; Couse, J F; Korach, K S

    2000-01-01

    Natural, synthetic and environmental estrogens have numerous effects on the development and physiology of mammals. Estrogen is primarily known for its role in the development and functioning of the female reproductive system. However, roles for estrogen in male fertility, bone, the circulatory system and immune system have been established by clinical observations regarding sex differences in pathologies, as well as observations following menopause or castration. The primary mechanism of estrogen action is via binding and modulation of activity of the estrogen receptors (ERs), which are ligand-dependent nuclear transcription factors. ERs are found in highest levels in female tissues critical to reproduction, including the ovaries, uterus, cervix, mammary glands and pituitary gland. Since other affected tissues have extremely low levels of ER, indirect effects of estrogen, for example induction of pituitary hormones that affect the bone, have been proposed. The development of transgenic mouse models that lack either estrogen or ER have proven to be valuable tools in defining the mechanisms by which estrogen exerts its effects in various systems. The aim of this article is to review the mouse models with disrupted estrogen signaling and describe the associated phenotypes. PMID:11250727

  14. Anaerobic reductive dechlorination of tetrachloroethene: how can dual Carbon-Chlorine isotopic measurements help elucidating the underlying reaction mechanism?

    NASA Astrophysics Data System (ADS)

    Badin, Alice; Buttet, Géraldine; Maillard, Julien; Holliger, Christof; Hunkeler, Daniel

    2014-05-01

    Chlorinated ethenes (CEs) such as tetrachloroethene (PCE) are common persistent groundwater contaminants. Among clean-up strategies applied to sites affected by such pollution, bioremediation has been considered with a growing interest as it represents a cost-effective, environmental friendly approach. This technique however sometimes leads to an incomplete and slow biodegradation of CEs resulting in an accumulation of toxic metabolites. Understanding the reaction mechanisms underlying anaerobic reductive dechlorination would thus help assessing PCE biodegradation in polluted sites. Stable isotope analysis can provide insight into reaction mechanisms. For chlorinated hydrocarbons, carbon (C) and chlorine (Cl) isotope data (δ13C and δ37Cl) tend to show a linear correlation with a slope (m ≡ ɛC/ɛCl) characteristic of the reaction mechanism [1]. This study hence aims at exploring the potential of a dual C-Cl isotope approach in the determination of the reaction mechanisms involved in PCE reductive dechlorination. C and Cl isotope fractionation were investigated during anaerobic PCE dechlorination by two bacterial consortia containing members of the Sulfurospirillum genus. The specificity in these consortia resides in the fact that they each conduct PCE reductive dechlorination catalysed by one different reductive dehalogenase, i.e. PceADCE which yields trichloroethene (TCE) and cis-dichloroethene (cDCE), and PceATCE which yields TCE only. The bulk C isotope enrichment factors were -3.6±0.3 o for PceATCE and -0.7±0.1o for PceADCE. The bulk Cl isotope enrichment factors were -1.3±0.2 o for PceATCE and -0.9±0.1 o for PceADCE. When applying the dual isotope approach, two m values of 2.7±0.1 and 0.7±0.2 were obtained for the reductive dehalogenases PceATCE and PceADCE, respectively. These results suggest that PCE can be degraded according to two different mechanisms. Furthermore, despite their highly similar protein sequences, each reductive dehalogenase seems

  15. Dual mechanisms regulate ecosystem stability under decade-long warming and hay harvest

    PubMed Central

    Shi, Zheng; Xu, Xia; Souza, Lara; Wilcox, Kevin; Jiang, Lifen; Liang, Junyi; Xia, Jianyang; García-Palacios, Pablo; Luo, Yiqi

    2016-01-01

    Past global change studies have identified changes in species diversity as a major mechanism regulating temporal stability of production, measured as the ratio of the mean to the standard deviation of community biomass. However, the dominant plant functional group can also strongly determine the temporal stability. Here, in a grassland ecosystem subject to 15 years of experimental warming and hay harvest, we reveal that warming increases while hay harvest decreases temporal stability. This corresponds with the biomass of the dominant C4 functional group being higher under warming and lower under hay harvest. As a secondary mechanism, biodiversity also explains part of the variation in temporal stability of production. Structural equation modelling further shows that warming and hay harvest regulate temporal stability through influencing both temporal mean and variation of production. Our findings demonstrate the joint roles that dominant plant functional group and biodiversity play in regulating the temporal stability of an ecosystem under global change. PMID:27302085

  16. Dual mechanisms regulate ecosystem stability under decade-long warming and hay harvest.

    PubMed

    Shi, Zheng; Xu, Xia; Souza, Lara; Wilcox, Kevin; Jiang, Lifen; Liang, Junyi; Xia, Jianyang; García-Palacios, Pablo; Luo, Yiqi

    2016-01-01

    Past global change studies have identified changes in species diversity as a major mechanism regulating temporal stability of production, measured as the ratio of the mean to the standard deviation of community biomass. However, the dominant plant functional group can also strongly determine the temporal stability. Here, in a grassland ecosystem subject to 15 years of experimental warming and hay harvest, we reveal that warming increases while hay harvest decreases temporal stability. This corresponds with the biomass of the dominant C4 functional group being higher under warming and lower under hay harvest. As a secondary mechanism, biodiversity also explains part of the variation in temporal stability of production. Structural equation modelling further shows that warming and hay harvest regulate temporal stability through influencing both temporal mean and variation of production. Our findings demonstrate the joint roles that dominant plant functional group and biodiversity play in regulating the temporal stability of an ecosystem under global change. PMID:27302085

  17. Thermodynamic evidence for a dual transport mechanism in a POT peptide transporter

    PubMed Central

    Parker, Joanne L; Mindell, Joseph A; Newstead, Simon

    2014-01-01

    Peptide transport plays an important role in cellular homeostasis as a key route for nitrogen acquisition in mammalian cells. PepT1 and PepT2, the mammalian proton coupled peptide transporters (POTs), function to assimilate and retain diet-derived peptides and play important roles in drug pharmacokinetics. A key characteristic of the POT family is the mechanism of peptide selectivity, with members able to recognise and transport >8000 different peptides. In this study, we present thermodynamic evidence that in the bacterial POT family transporter PepTSt, from Streptococcus thermophilus, at least two alternative transport mechanisms operate to move peptides into the cell. Whilst tri-peptides are transported with a proton:peptide stoichiometry of 3:1, di-peptides are co-transported with either 4 or 5 protons. This is the first thermodynamic study of proton:peptide stoichiometry in the POT family and reveals that secondary active transporters can evolve different coupling mechanisms to accommodate and transport chemically and physically diverse ligands across the membrane. DOI: http://dx.doi.org/10.7554/eLife.04273.001 PMID:25457052

  18. Dual-Responsive Mechanized Mesoporous Silica Nanoparticles Based on Sulfonatocalixarene Supramolecular Switches.

    PubMed

    Zhou, Ting; Song, Nan; Xu, Shi-Han; Dong, Biao; Yang, Ying-Wei

    2016-06-17

    Mesoporous silica nanoparticles (MSNs) have been functionalized with supramolecular switches, composed of cleavable disulfide bond-containing alkylammonium stalks encircled by water-soluble sulfonatocalix[4,6]arenes, to result in smart mechanized MSNs. Cargo can be encased tightly in the nanopores of these mechanized MSNs in their closed state, but are released efficiently either in response to L-glutathione (GSH), by cleaving the disulfide bonds in the stalks, or in response to pH variation, by turning on the calixarene-based supramolecular switches. The higher concentration of GSH in cancer cell cytosol and the relatively lower pH value of cancer cell lysosome can simultaneously activate the mechanized MSNs, enabling them to release the pre-loaded cargo in place. This sufficient use of the different environment of cancer cells and normal healthy cells can enhance the targeting effect of delivery vehicles and effectively lower the side effects of delivered anti-cancer drugs. In vitro cytotoxicity tests suggest good biocompatibility and low toxicity of these newly developed drug-delivery systems. PMID:26507946

  19. Inhibition of Receptor Dimerization as a Novel Negative Feedback Mechanism of EGFR Signaling

    PubMed Central

    Kluba, Malgorzata; Engelborghs, Yves; Hofkens, Johan; Mizuno, Hideaki

    2015-01-01

    Dimerization of the epidermal growth factor receptor (EGFR) is crucial for initiating signal transduction. We employed raster image correlation spectroscopy to continuously monitor the EGFR monomer-dimer equilibrium in living cells. EGFR dimer formation upon addition of EGF showed oscillatory behavior with a periodicity of about 2.5 min, suggesting the presence of a negative feedback loop to monomerize the receptor. We demonstrated that monomerization of EGFR relies on phospholipase Cγ, protein kinase C, and protein kinase D (PKD), while being independent of Ca2+ signaling and endocytosis. Phosphorylation of the juxtamembrane threonine residues of EGFR (T654/T669) by PKD was identified as the factor that shifts the monomer-dimer equilibrium of ligand bound EGFR towards the monomeric state. The dimerization state of the receptor correlated with the activity of an extracellular signal-regulated kinase, downstream of the EGFR. Based on these observations, we propose a novel, negative feedback mechanism that regulates EGFR signaling via receptor monomerization. PMID:26465157

  20. Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors

    SciTech Connect

    Yao, Yongneng; Harrison, Chris B.; Freddolino, Peter L.; Schulten, Klaus; Mayer, Mark L.

    2008-10-27

    NR3 subtype glutamate receptors have a unique developmental expression profile, but are the least well-characterized members of the NMDA receptor gene family, which have key roles in synaptic plasticity and brain development. Using ligand binding assays, crystallographic analysis, and all atom MD simulations, we investigate mechanisms underlying the binding by NR3A and NR3B of glycine and D-serine, which are candidate neurotransmitters for NMDA receptors containing NR3 subunits. The ligand binding domains of both NR3 subunits adopt a similar extent of domain closure as found in the corresponding NR1 complexes, but have a unique loop 1 structure distinct from that in all other glutamate receptor ion channels. Within their ligand binding pockets, NR3A and NR3B have strikingly different hydrogen bonding networks and solvent structures from those found in NR1, and fail to undergo a conformational rearrangement observed in NR1 upon binding the partial agonist ACPC. MD simulations revealed numerous interdomain contacts, which stabilize the agonist-bound closed-cleft conformation, and a novel twisting motion for the loop 1 helix that is unique in NR3 subunits.

  1. Molecular Mechanisms of Cardiotoxicity Induced by ErbB Receptor Inhibitor Cancer Therapeutics

    PubMed Central

    Hervent, Anne-Sophie; De Keulenaer, Gilles W.

    2012-01-01

    The introduction of the so-called “targeted therapies”, particularly those drugs that inhibit the activity of tyrosine kinases, has represented a remarkable progress in the treatment of cancer. Although these drugs improve survival rates in cancer, significant cardiotoxicity, manifesting as left vertricular dysfunction and/or heart failure, has emerged. The ErbB receptor tyrosine kinases are being pursued as therapeutic targets because of their important roles in normal physiology and in cancer. Besides the fact that the ErbB receptors are indispensable during development and in normal adult physiology, epidermal growth factor (EGFR) and ErbB2 in particular have been implicated in the development of many human cancers. This review focuses on the rationale for targeting members of ErbB receptor family and numerous agents that are in use for inhibiting the pathway. We summarize the current knowledge on the physiological role of ErbB signaling in the ventricle and on structural aspects of ErbB receptor activation in cancer and cardiac cells. We examine the underlying mechanisms that result in on-target or off-target cardiotoxicities of ErbB inhibitors, which can influence the design of future anticancer therapies. PMID:23202898

  2. Cutaneous temperature receptors.

    PubMed

    Spray, D C

    1986-01-01

    Specific thermoreceptors comprise an electrophysiologically distinct class of cutaneous receptors with a morphological substrate (free nerve endings) and plausible transduction mechanism (electrogenic Na pump with or without auxiliary temperature-dependent processes). Because responses to thermal and mechanical stimuli converge along the neural pathway, we have difficulty explaining the purity of cold and warm sensations; participation of dual-modality receptors in sensory discrimination cannot be ruled out. The field is now at a point where a leap in understanding would be achieved by intracellular recordings from the sensory receptor (for which patch clamp studies on isolated neuronal elements may provide the necessary technology) and from continued analysis of what information is lost and what retained in passage from one synapse to the next along the thermal pathway. PMID:3085583

  3. Role of Orexin-1 Receptor Mechanisms on Compulsive Food Consumption in a Model of Binge Eating in Female Rats

    PubMed Central

    Piccoli, Laura; Micioni Di Bonaventura, Maria Vittoria; Cifani, Carlo; Costantini, Vivian J A; Massagrande, Mario; Montanari, Dino; Martinelli, Prisca; Antolini, Marinella; Ciccocioppo, Roberto; Massi, Maurizio; Merlo-Pich, Emilio; Di Fabio, Romano; Corsi, Mauro

    2012-01-01

    Orexins (OX) and their receptors (OXR) modulate feeding, arousal, stress, and drug abuse. Neural systems that motivate and reinforce drug abuse may also underlie compulsive food seeking and intake. Therefore, the effects of GSK1059865 (5-bromo-N-[(2S,5S)-1-(3-fluoro-2-methoxybenzoyl)-5-methylpiperidin-2-yl]methyl-pyridin-2-amine), a selective OX1R antagonist, JNJ-10397049 (N-(2,4-dibromophenyl)-N′-[(4S,5S)-2,2-dimethyl-4-phenyl-1,3-dioxan-5-yl]urea), a selective OX2R antagonist, and SB-649868 (N-[((2S)-1-{[5-(4-fluorophenyl)-2-methyl-1,3-thiazol-4-yl]carbonyl}-2-piperidinyl)methyl]-1-benzofuran-4-carboxamide), a dual OX1/OX2R antagonist were evaluated in a binge eating (BE) model in female rats. BE of highly palatable food (HPF) was evoked by three cycles of food restriction followed by stress, elicited by exposing rats to HPF, but preventing them from having access to it for 15 min. Pharmacokinetic assessments of all compounds were obtained under the same experimental conditions used for the behavioral experiments. Topiramate was used as the reference compound as it selectively blocks BE in rats and humans. Dose-related thresholds for sleep-inducing effects of the OXR antagonists were measured using polysomnography in parallel experiments. SB-649868 and GSK1059865, but not JNJ-10397049, selectively reduced BE for HPF without affecting standard food pellet intake, at doses that did not induce sleep. These results indicate, for the first time, a major role of OX1R mechanisms in BE, suggesting that selective antagonism at OX1R could represent a novel pharmacological treatment for BE and possibly other eating disorders with a compulsive component. PMID:22569505

  4. Evaluation of Thermo-Mechanical Stability of COTS Dual-Axis MEMS Accelerometers for Space Applications

    NASA Technical Reports Server (NTRS)

    Sharma, Ashok K.; Teverovksy, Alexander; Day, John H. (Technical Monitor)

    2000-01-01

    Microelectromechanical systems in MEMS is one of the fastest growing technologies in microelectronics, and is of great interest for military and aerospace applications. Accelerometers are the earliest and most developed representatives of MEMS. First demonstrated in 1979, micromachined accelerometers were used in automobile industry for air bag crash- sensing applications since 1990. In 1999, N4EMS accelerometers were used in NASA-JPL Mars Microprobe. The most developed accelerometers for airbag crash- sensing are rated for a full range of +/- 50 G. The range of sensitivity for accelerometers required for military or aerospace applications is much larger, varying from 20,000 G (to measure acceleration during gun and ballistic munition launches), and to 10(exp -6) G, when used as guidance sensors (to measure attitude and position of a spacecraft). The presence of moving parts on the surface of chip is specific to MEMS, and particularly, to accelerometers. This characteristic brings new reliability issues to micromachined accelerometers, including cyclic fatigue cracking of polysilicon cantilevers and springs, mechanical stresses that are caused by packaging and contamination in the internal cavity of the package. Studies of fatigue cracks initiation and growth in polysilicon showed that the fatigue damage may influence MEMS device performance, and the presence of water vapor significantly enhances crack initiation and growth. Environmentally induced failures, particularly, failures due to thermal cycling and mechanical shock are considered as one of major reliability concerns in MEMS. These environmental conditions are also critical for space applications of the parts. For example, the Mars pathfinder mission had experienced 80 mechanical shock events during the pyrotechnic separation processes.

  5. Hormone- and DNA-binding mechanisms of the recombinant human estrogen receptor.

    PubMed

    Obourn, J D; Koszewski, N J; Notides, A C

    1993-06-22

    We have investigated the hormone- and DNA-binding mechanisms of the wild-type human estrogen receptor (hER) overproduced in insect cells using a baculovirus expression system. The recombinant hER was indistinguishable in size (67 kDa) and immunogenically from the native human estrogen receptor in MCF-7 breast carcinoma cells. The recombinant hER was purified to 70-80% homogeneity with a two-step procedure that included ammonium sulfate precipitation and oligonucleotide affinity chromatography using a unique Teflon affinity matrix. The recombinant hER bound estradiol with a positively cooperative mechanism. At hER concentrations in excess of 13 nM the Hill coefficient reached a maximal value of 1.6, whereas, at lower hER concentrations, the Hill coefficient approached 1.0, suggesting that the hER was dissociated to the monomeric species and site-site interactions were diminished. The hER specifically bound an estrogen responsive element (ERE) from chicken vitellogenin II gene as measured by the gel mobility assay, ethylation, and thymine interference footprinting. Specific interference patterns suggest a two-fold symmetry of the hER binding to the ERE with each monomer of the hER bound in the major groove of the DNA. These data indicate that the recombinant hER is valuable to define the biochemical and structural properties of the native estrogen receptor. PMID:8512933

  6. Loss of the membrane anchor of the target receptor is a mechanism of bioinsecticide resistance.

    PubMed

    Darboux, Isabelle; Pauchet, Yannick; Castella, Claude; Silva-Filha, Maria Helena; Nielsen-LeRoux, Christina; Charles, Jean-François; Pauron, David

    2002-04-30

    The mosquitocidal activity of Bacillus sphaericus is because of a binary toxin (Bin), which binds to Culex pipiens maltase 1 (Cpm1), an alpha-glucosidase present in the midgut of Culex pipiens larvae. In this work, we studied the molecular basis of the resistance to Bin developed by a strain (GEO) of C. pipiens. Immunohistochemical and in situ hybridization experiments showed that Cpm1 was undetectable in the midgut of GEO larvae, although the gene was correctly transcribed. The sequence of the cpm1(GEO) cDNA differs from the sequence we previously reported for a susceptible strain (cpm1(IP)) by seven mutations: six missense mutations and a mutation leading to the premature termination of translation. When produced in insect cells, Cpm1(IP) was attached to the membrane by a glycosylphosphatidylinositol (GPI). In contrast, the premature termination of translation of Cpm1(GEO) resulted in the targeting of the protein to the extracellular compartment because of truncation of the GPI-anchoring site. The interaction between Bin and Cpm1(GEO) and the enzyme activity of the receptor were not affected. Thus, Bin is not toxic to GEO larvae because it cannot interact with the midgut cell membrane, even though its receptor site is unaffected. This mechanism contrasts with other known resistance mechanisms in which point mutations decrease the affinity of binding between the receptor and the toxin. PMID:11983886

  7. Molecular Mechanism for Fungal Cell Wall Recognition by Rice Chitin Receptor OsCEBiP.

    PubMed

    Liu, Simiao; Wang, Jizong; Han, Zhifu; Gong, Xinqi; Zhang, Heqiao; Chai, Jijie

    2016-07-01

    Chitin is the major component of fungal cell wall and serves as a molecular pattern that can be recognized by the receptor OsCEBiP in rice, a lysine motif (LysM) receptor-like protein (RLP), to trigger immune responses. The molecular mechanisms underlying chitin recognition remain elusive. Here we report the crystal structures of the ectodomain of OsCEBiP (OsCEBiP-ECD) in free and chitin-bound forms. The structures reveal that OsCEBiP-ECD contains three tandem LysMs followed by a novel structure fold of cysteine-rich domain. The structures showed that chitin binding induces no striking conformational changes in OsCEBiP. Structural comparison among N-acetylglucosamine (NAG) oligomer-bound LysMs revealed a highly conserved recognition mechanism, which is expected to facilitate study of other LysM-containing proteins for their NAG binding. Modeling study showed that chitin induces OsCEBiP homodimerization in a "sliding mode". Our data provide insights into rice chitin receptor-mediated immunity triggered by fungal cell wall. PMID:27238968

  8. Mechanisms of action of the 5-HT1B/1D receptor agonists.

    PubMed

    Tepper, Stewart J; Rapoport, Alan M; Sheftell, Fred D

    2002-07-01

    Recent studies of the pathophysiology of migraine provide evidence that the headache phase is associated with multiple physiologic actions. These actions include the release of vasoactive neuropeptides by the trigeminovascular system, vasodilation of intracranial extracerebral vessels, and increased nociceptive neurotransmission within the central trigeminocervical complex. The 5-HT(1B/1D) receptor agonists, collectively known as triptans, are a major advance in the treatment of migraine. The beneficial effects of the triptans in patients with migraine are related to their multiple mechanisms of action at sites implicated in the pathophysiology of migraine. These mechanisms are mediated by 5-HT(1B/1D) receptors and include vasoconstriction of painfully dilated cerebral blood vessels, inhibition of the release of vasoactive neuropeptides by trigeminal nerves, and inhibition of nociceptive neurotransmission. The high affinity of the triptans for 5-HT(1B/1D) receptors and their favorable pharmacologic properties contribute to the beneficial effects of these drugs, including rapid onset of action, effective relief of headache and associated symptoms, and low incidence of adverse effects. PMID:12117355

  9. Dual mechanism of action of nicorandil on rabbit corpus cavernosal smooth muscle tone.

    PubMed

    Hsieh, G C; Kolasa, T; Sullivan, J P; Brioni, J D

    2001-08-01

    The potential of ATP-sensitive potassium channel openers (KCOs) for the treatment of male erectile dysfunction has recently been suggested based on positive clinical outcomes following intra-cavernosal administration of pinacidil. Agents that increase the levels of cGMP via elevation of nitric oxide (NO) nitroglycerin, for example, are also effective in improving erectile function preclinically and clinically. The aim of the present study was to determine the effects and mechanism of the action of nicorandil on rabbit corpus cavernosum. The in vitro regulation of smooth muscle tone was assessed in isolated cavernosal tissues pre-contracted with phenylephrine. Nicorandil, but not its major metabolite, relaxed phenylephrine-precontracted cavernosum smooth muscle with an EC(50) of 15 microM. The effects of nicorandil were only partially reversed by the K(ATP) channel blocker glyburide (10 microM) or by a soluble guanylate cyclase (sGC) inhibitor 1H-[1,2,4] oxadiazole [4,3-a] quinoxalin-1-one (ODQ, 3 microM). However, a combination of ODQ and glyburide completely blocked the relaxant effects of nicorandil. The results of the present study indicate that nicorandil can relax rabbit cavernosal tissue in vitro via a mechanism that involves activation of K(ATP) channels and stimulation of soluble guanylate cyclase. PMID:11494082

  10. Mechanisms regulating cell membrane localization of the chemokine receptor CXCR4 in human hepatocarcinoma cells.

    PubMed

    Cepeda, Edgar B; Dediulia, Tatjana; Fernando, Joan; Bertran, Esther; Egea, Gustavo; Navarro, Estanislao; Fabregat, Isabel

    2015-05-01

    Hepatocellular carcinoma (HCC) cells with a mesenchymal phenotype show an asymmetric subcellular distribution of the chemokine receptor CXCR4, which is required for cell migration and invasion. In this work we examine the mechanisms that regulate the intracellular trafficking of CXCR4 in HCC cells. Results indicate that HCC cells present CXCR4 at the cell surface, but most of this protein is in endomembranes colocalizing with markers of the Golgi apparatus and recycling endosomes. The presence of high protein levels of CXCR4 present at the cell surface correlates with a mesenchymal-like phenotype and a high autocrine activation of the Transforming Growth Factor-beta (TGF-β) pathway. CXCR4 traffics along the Golgi/exocyst/plasma membrane pathway and requires EXOC4 (Sec8) component of the exocyst complex. HCC cells use distinct mechanisms for the CXCR4 internalization such as dynamin-dependent endocytosis and macropinocytosis. Regardless of the endocytic mechanisms, colocalization of CXCR4 and Rab11 is observed, which could be involved not only in receptor recycling but also in its post-Golgi transport. In summary, this work highlights membrane trafficking pathways whose pharmacological targeting could subsequently result in the inactivation of one of the main guiding mechanisms used by metastatic cells to colonize secondary organs and tissues. PMID:25704914

  11. A Three-Site Mechanism for Agonist/Antagonist Selective Binding to Vasopressin Receptors.

    PubMed

    Saleh, Noureldin; Saladino, Giorgio; Gervasio, Francesco L; Haensele, Elke; Banting, Lee; Whitley, David C; Sopkova-de Oliveira Santos, Jana; Bureau, Ronan; Clark, Timothy

    2016-07-01

    Molecular-dynamics simulations with metadynamics enhanced sampling reveal three distinct binding sites for arginine vasopressin (AVP) within its V2 -receptor (V2 R). Two of these, the vestibule and intermediate sites, block (antagonize) the receptor, and the third is the orthosteric activation (agonist) site. The contacts found for the orthosteric site satisfy all the requirements deduced from mutagenesis experiments. Metadynamics simulations for V2 R and its V1a R-analog give an excellent correlation with experimental binding free energies by assuming that the most stable binding site in the simulations corresponds to the experimental binding free energy in each case. The resulting three-site mechanism separates agonists from antagonists and explains subtype selectivity. PMID:27184628

  12. Turnover of acetylcholine receptors: Mechanisms of regulation. Final report, 1 August 1985-30 November 1990

    SciTech Connect

    Drachman, D.B.

    1990-12-31

    The synthesis, insertion and degradation of acetylcholine receptors (AChRs) of skeletal muscle cells as closely regulated both by the muscle cells and by the motor nerves that supply them. The goal of this project is to elucidate the mechanisms of regulation of the AChRs, both at the neuromuscular junctional and at extrajunctional regions. The results of our studies on junctional AChRs have shown that: Both stable and rapidly turned over (RTO) AChRs are present at normally innervated neuromuscular junctions` Synthesis and insertion of AChRs at neuromuscular junctions occurs rapidly, at a rate consistent with the rapid rate of turnover of RTOs. RTOs serve as precursors of stable AChRs. Acetylcholine receptors, RA5 Neuromuscular junctions, Motor nerves.

  13. Hydraulic actuator mechanism to control aircraft spoiler movements through dual input commands

    NASA Technical Reports Server (NTRS)

    Irick, S. C. (Inventor)

    1981-01-01

    An aircraft flight spoiler control mechanism is described. The invention enables the conventional, primary spoiler control system to retain its operational characteristics while accommodating a secondary input controlled by a conventional computer system to supplement the settings made by the primary input. This is achieved by interposing springs between the primary input and the spoiler control unit. The springs are selected to have a stiffness intermediate to the greater force applied by the primary control linkage and the lesser resistance offered by the spoiler control unit. Thus, operation of the primary input causes the control unit to yield before the springs, yet, operation of the secondary input, acting directly on the control unit, causes the springs to yield and absorb adjustments before they are transmitted into the primary control system.

  14. Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yakovlev, Vladislav V.

    2016-03-01

    We present a unique confocal microscope capable of measuring the Raman and Brillouin spectra simultaneously from a single spatial location. Raman and Brillouin scattering offer complementary information about a material's chemical and mechanical structure, respectively, and concurrent monitoring of both of these spectra would set a new standard for material characterization. We achieve this by applying recent innovations in Brillouin spectroscopy that reduce the necessary acquisition times to durations comparable to conventional Raman spectroscopy while attaining a high level of spectral accuracy. To demonstrate the potential of the system, we apply this system for imaging melanoma, arteriosclerotic plaque, embryonic development, bones and biomaterials. The developed instrument has the potential for very diverse analytical applications in basic biomedical science and biomedical diagnostics and imaging.

  15. Magnetic anisotropy and reversal mechanisms in dual layer exchanged coupled perpendicular media

    NASA Astrophysics Data System (ADS)

    Thomson, T.; Lengsfield, B.; Do, H.; Terris, B. D.

    2008-04-01

    We report the magnetic properties of perpendicular media with a layered structure in which a high anisotropy, segregated, granular CoCrPt-oxide base layer is capped by a lower anisotropy CoCrPt-based film. Anisotropy field (Hk) data show that for the thickness of oxide media studied here, the measured value of Hk remains constant as cap thickness increases. This provides strong evidence that the anisotropy of the composite grain is controlled by the hard oxide layer and is not a simple average of the anisotropy of the oxide and cap layers. The reversal mechanism is explored by determining the angle dependent switching as a function of cap thickness. In the absence of a cap layer, the media show a Stoner-Wohlfarth-like reversal which becomes more Kondorsky-like [1/cos(θ)] when a critical cap thickness is reach, which we interpret as indicating greater lateral exchange coupling.

  16. Differential effects of the dual orexin receptor antagonist almorexant and the GABA(A)-α1 receptor modulator zolpidem, alone or combined with ethanol, on motor performance in the rat.

    PubMed

    Steiner, Michel A; Lecourt, Hugues; Strasser, Daniel S; Brisbare-Roch, Catherine; Jenck, François

    2011-03-01

    Current insomnia treatments such as γ-aminobutyric acid (GABA) receptor modulators are associated with sedative and muscle-relaxant effects, which increase when drug intake is combined with alcohol. This study compared the novel sleep-enabling compound almorexant (ACT-078573-hydrochloride), a dual orexin receptor antagonist, with the positive GABA(A)-α1 receptor modulator zolpidem. Both compounds were administered alone or in combination with ethanol, and their effects on forced motor performance were determined in Wistar rats upon waking after treatment. To detect substance-induced sedation and myorelaxation, time spent on an accelerating rotating rod (rotarod) and forepaw grip strength were measured. Zolpidem (10, 30, and 100 mg/kg, p.o.) and ethanol (0.32, 1, and 1.5 g/kg, i.p.) dose-dependently decreased rotarod performance and grip strength, whereas almorexant (30, 100, and 300 mg/kg, p.o.) did not. Doses of ethanol (0.32 and 1 g/kg), which were ineffective when administered alone, showed interactions with zolpidem (10 and 30 mg/kg) leading to reduced rotarod performance and grip strength; in contrast, combination of ethanol (0.32 and 1 g/kg) with almorexant (100 and 300 mg/kg) did not reduce performance or grip strength below ethanol alone. We conclude that unlike zolpidem, almorexant does not interfere with forced motor performance or grip strength in the rat, nor does it further increase the sedative effects of ethanol. Our results suggest that the effect of almorexant can be immediately reversed to full alertness like under physiological sleep, and that almorexant is less likely to show strong sedation, excessive myorelaxation, or interaction with alcohol than commonly prescribed hypnotics such as zolpidem. PMID:21150905

  17. Dual Mechanism of Ion Permeation through VDAC Revealed with Inorganic Phosphate Ions and Phosphate Metabolites

    PubMed Central

    Krammer, Eva-Maria; Vu, Giang Thi; Homblé, Fabrice; Prévost, Martine

    2015-01-01

    In the exchange of metabolites and ions between the mitochondrion and the cytosol, the voltage-dependent anion channel (VDAC) is a key element, as it forms the major transport pathway for these compounds through the mitochondrial outer membrane. Numerous experimental studies have promoted the idea that VDAC acts as a regulator of essential mitochondrial functions. In this study, using a combination of molecular dynamics simulations, free-energy calculations, and electrophysiological measurements, we investigated the transport of ions through VDAC, with a focus on phosphate ions and metabolites. We showed that selectivity of VDAC towards small anions including monovalent phosphates arises from short-lived interactions with positively charged residues scattered throughout the pore. In dramatic contrast, permeation of divalent phosphate ions and phosphate metabolites (AMP and ATP) involves binding sites along a specific translocation pathway. This permeation mechanism offers an explanation for the decrease in VDAC conductance measured in the presence of ATP or AMP at physiological salt concentration. The binding sites occur at similar locations for the divalent phosphate ions, AMP and ATP, and contain identical basic residues. ATP features a marked affinity for a central region of the pore lined by two lysines and one arginine of the N-terminal helix. This cluster of residues together with a few other basic amino acids forms a “charged brush” which facilitates the passage of the anionic metabolites through the pore. All of this reveals that VDAC controls the transport of the inorganic phosphates and phosphate metabolites studied here through two different mechanisms. PMID:25860993

  18. Optimization of a dual mechanism gastrofloatable and gastroadhesive delivery system for narrow absorption window drugs.

    PubMed

    Murphy, Caragh; Pillay, Viness; Choonara, Yahya E; du Toit, Lisa C; Ndesendo, Valence M K; Chirwa, Nthato; Kumar, Pradeep

    2012-03-01

    In order to overcome poor bioavailability of narrow absorption window drugs, a gastrosphere system comprising two mechanisms of gastric retention, namely buoyancy and gastroadhesion, has been investigated in this study employing poly(lactic-co-glycolic acid) (PLGA), polyacrylic acid (PAA), alginate, pectin, and a model drug metformin hydrochloride. Fifteen formulations were obtained using a Box-Behnken statistical design. The gastrosphere yield was above 80% in all cases; however, due to the high water solubility of metformin, drug entrapment efficacy was between 18% and 54%. Mean dissolution time and gastroadhesive strength were used as the formulation responses in order to optimize the formulation. Furthermore, the molecular mechanics force field simulations were performed to corroborate the experimental findings. Drug release profiles revealed three different release kinetics, namely, burst, first-order and zero-order release. Varying gastroadhesive results were obtained, and were highly sensitive to changes in polymer concentrations. FTIR revealed that strong bonds of PAA and PLGA were retained within the gastrosphere. Surface area and porosity analysis provided supporting evidence that the lyophilization process resulted in a significant increase in the porosity. Analysis of the surface morphology by SEM revealed that air pockets were spread over the entire surface of the gastrosphere, providing a visual proof of the high porosity and hence low density of the gastrosphere. The spatial disposition and energetic profile of the sterically constrained and geometrically optimized multi-polymeric complex of alginate, pectin, PAA, and PLGA corroborated the experimental results in terms of in vitro drug release and gastroadhesive strength of the fabricated gastrospheres. PMID:22048877

  19. Acid and alkaline dual stimuli-responsive mechanized hollow mesoporous silica nanoparticles as smart nanocontainers for intelligent anticorrosion coatings.

    PubMed

    Fu, JiaJun; Chen, Tao; Wang, MingDong; Yang, NianWang; Li, SuNing; Wang, Ying; Liu, XiaoDong

    2013-12-23

    The present paper introduces an intelligent anticorrosion coating, based on the mechanized hollow mesoporous silica nanoparticles (HMSs) as smart nanocontainers implanted into the self-assembled nanophase particles (SNAP) coating. As the key component, smart nanocontainers assembled by installing supramolecular nanovalves in the form of the bistable pseudorotaxanes on the external surface of HMSs realize pH-responsive controlled release for corrosion inhibitor, caffeine molecules. The smart nanocontainers encapsulate caffeine molecules at neutral pH, and release the molecules either under acidic or alkaline conditions, which make them spontaneously experience the pH excursions arisen from corrosion process and respond quickly. The intelligent anticorrosion coating was deposited on the surface of aluminum alloy AA2024 and investigated by electrochemical impedance spectroscopy and scanning vibrating electrode technique (SVET). Compared with the pure SNAP coating, the well-dispersed smart nanocontainers not only delay the penetration rate of corrosive species but also repair damaged aluminum oxide layer to maintain the long term anticorrosion behavior. From the experimental results of SVET, the smart nanocontainers with the acid and alkaline dual stimuli-responsive characteristics can simultaneously suppress corrosion activities on microanodic and microcathodic regions, demonstrating an excellent self-healing functionality. PMID:24261631

  20. Concurrent Phosphorus Recovery and Energy Generation in Mediator-Less Dual Chamber Microbial Fuel Cells: Mechanisms and Influencing Factors

    PubMed Central

    Almatouq, Abdullah; Babatunde, Akintunde O.

    2016-01-01

    This study investigated the mechanism and key factors influencing concurrent phosphorus (P) recovery and energy generation in microbial fuel cells (MFC) during wastewater treatment. Using a mediator-less dual chamber microbial fuel cell operated for 120 days; P was shown to precipitate as struvite when ammonium and magnesium chloride solutions were added to the cathode chamber. Monitoring data for chemical oxygen demand (COD), pH, oxidation reduction potential (ORP) and aeration flow rate showed that a maximum 38% P recovery was achieved; and this corresponds to 1.5 g/L, pH > 8, −550 ± 10 mV and 50 mL/min respectively, for COD, pHcathode, ORP and cathode aeration flow rate. More importantly, COD and aeration flow rate were shown to be the key influencing factors for the P recovery and energy generation. Results further show that the maximum P recovery corresponds to 72 mW/m2 power density. However, the energy generated at maximum P recovery was not the optimum; this shows that whilst P recovery and energy generation can be concurrently achieved in a microbial fuel cell, neither can be at the optimal value. PMID:27043584

  1. Concurrent Phosphorus Recovery and Energy Generation in Mediator-Less Dual Chamber Microbial Fuel Cells: Mechanisms and Influencing Factors.

    PubMed

    Almatouq, Abdullah; Babatunde, Akintunde O

    2016-04-01

    This study investigated the mechanism and key factors influencing concurrent phosphorus (P) recovery and energy generation in microbial fuel cells (MFC) during wastewater treatment. Using a mediator-less dual chamber microbial fuel cell operated for 120 days; P was shown to precipitate as struvite when ammonium and magnesium chloride solutions were added to the cathode chamber. Monitoring data for chemical oxygen demand (COD), pH, oxidation reduction potential (ORP) and aeration flow rate showed that a maximum 38% P recovery was achieved; and this corresponds to 1.5 g/L, pH > 8, -550 ± 10 mV and 50 mL/min respectively, for COD, pH(cathode), ORP and cathode aeration flow rate. More importantly, COD and aeration flow rate were shown to be the key influencing factors for the P recovery and energy generation. Results further show that the maximum P recovery corresponds to 72 mW/m² power density. However, the energy generated at maximum P recovery was not the optimum; this shows that whilst P recovery and energy generation can be concurrently achieved in a microbial fuel cell, neither can be at the optimal value. PMID:27043584

  2. In vivo evaluation of a mechanically oscillating dual-mode applicator for ultrasound imaging and thermal ablation.

    PubMed

    Owen, Neil R; Bouchoux, Guillaume; Seket, Belhassen; Murillo-Rincon, Adriana; Merouche, Samir; Birer, Alain; Paquet, Christian; Delabrousse, Eric; Chapelon, Jean-Yves; Berriet, Rémi; Fleury, Gérard; Lafon, Cyril

    2010-01-01

    Unresectable liver tumors are often treated with interstitial probes that modify tissue temperature, and efficacious treatment relies on image guidance for tissue targeting and assessment. Here, we report the in vivo evaluation of an interstitial applicator with a mechanically oscillating five-element dual-mode transducer. After thoroughly characterizing the transducer, tissue response to high-intensity ultrasound was numerically calculated to select parameters for experimentation in vivo. Using perfused porcine liver, B-mode sector images were formed before and after a 120-s therapy period, and M-mode imaging monitored the therapy axis during therapy. The time-averaged transducer surface intensity was 21 or 27 W/cm (2). Electroacoustic conversion efficiency was maximally 72 +/- 3% and impulse response length was 295 +/- 1.0 ns at -6 dB. The depth of thermal damage measured by gross histology ranged from 10 to 25 mm for 13 insertion sites. For six sites, M-mode data exhibited a reduction in gray-scale intensity that was interpreted as the temporal variation of coagulation necrosis. Contrast ratio analysis indicated that the gray-scale intensity dropped by 7.8 +/- 3.3 dB, and estimated the final lesion depth to an accuracy of 2.3 +/- 2.4 mm. This paper verified that the applicator could induce coagulation necrosis in perfused liver and demonstrated the feasibility of real-time monitoring. PMID:19497808

  3. Inhibition of CD73 AMP hydrolysis by a therapeutic antibody with a dual, non-competitive mechanism of action.

    PubMed

    Geoghegan, James C; Diedrich, Gundo; Lu, Xiaojun; Rosenthal, Kim; Sachsenmeier, Kris F; Wu, Herren; Dall'Acqua, William F; Damschroder, Melissa M

    2016-01-01

    CD73 (ecto-5'-nucleotidase) has recently been established as a promising immuno-oncology target. Given its role in activating purinergic signaling pathways to elicit immune suppression, antagonizing CD73 (i.e., releasing the brake) offers a complimentary pathway to inducing anti-tumor immune responses. Here, we describe the mechanistic activity of a new clinical therapeutic, MEDI9447, a human monoclonal antibody that non-competitively inhibits CD73 activity. Epitope mapping, structural, and mechanistic studies revealed that MEDI9447 antagonizes CD73 through dual mechanisms of inter-CD73 dimer crosslinking and/or steric blocking that prevent CD73 from adopting a catalytically active conformation. To our knowledge, this is the first report of an antibody that inhibits an enzyme's function through 2 distinct modes of action. These results provide a finely mapped epitope that can be targeted for selective, potent, and non-competitive inhibition of CD73, as well as establish a strategy for inhibiting enzymes that function in both membrane-bound and soluble states. PMID:26854859

  4. Noncanonical Myo9b-RhoGAP Accelerates RhoA GTP Hydrolysis by a Dual-Arginine-Finger Mechanism.

    PubMed

    Yi, Fengshuang; Kong, Ruirui; Ren, Jinqi; Zhu, Li; Lou, Jizhong; Wu, Jane Y; Feng, Wei

    2016-07-31

    The GTP hydrolysis activities of Rho GTPases are stimulated by GTPase-activating proteins (GAPs), which contain a RhoGAP domain equipped with a characteristic arginine finger and an auxiliary asparagine for catalysis. However, the auxiliary asparagine is missing in the RhoGAP domain of Myo9b (Myo9b-RhoGAP), a unique motorized RhoGAP that specifically targets RhoA for controlling cell motility. Here, we determined the structure of Myo9b-RhoGAP in complex with GDP-bound RhoA and magnesium fluoride. Unexpectedly, Myo9b-RhoGAP contains two arginine fingers at its catalytic site. The first arginine finger resembles the one within the canonical RhoGAP domains and inserts into the nucleotide-binding pocket of RhoA, whereas the second arginine finger anchors the Switch I loop of RhoA and interacts with the nucleotide, stabilizing the transition state of GTP hydrolysis and compensating for the lack of the asparagine. Mutating either of the two arginine fingers impaired the catalytic activity of Myo9b-RhoGAP and affected the Myo9b-mediated cell migration. Our data indicate that Myo9b-RhoGAP accelerates RhoA GTP hydrolysis by a previously unknown dual-arginine-finger mechanism, which may be shared by other noncanonical RhoGAP domains lacking the auxiliary asparagine. PMID:27363609

  5. Associative, bidirectional changes in neural signaling utilizing NMDA receptor- and endocannabinoid-dependent mechanisms

    PubMed Central

    Li, Qin; Burrell, Brian D.

    2011-01-01

    Persistent, bidirectional changes in synaptic signaling (that is, potentiation and depression of the synapse) can be induced by the precise timing of individual pre- and postsynaptic action potentials. However, far less attention has been paid to the ability of paired trains of action potentials to elicit persistent potentiation or depression. We examined plasticity following the pairing of spike trains in the touch mechanosensory neuron (T cell) and S interneuron (S cell) in the medicinal leech. Long-term potentiation (LTP) of T to S signaling was elicited when the T-cell spike train preceded the S-cell train. An interval 0 to +1 sec between the T- and S-cell spike trains was required to elicit long-term potentiation (LTP), and this potentiation was NMDA receptor (NMDAR)-dependent. Long-term depression (LTD) was elicited when S-cell activity preceded T-cell activity and the interval between the two spike trains was −0.2 sec to −10 sec. This surprisingly broad temporal window involved two distinct cellular mechanisms; an NMDAR-mediated LTD (NMDAR-LTD) when the pairing interval was relatively brief (<−1 sec) and an endocannabinoid-mediated LTD (eCB-LTD) when longer pairing intervals were used (−1 to −10 sec). This eCB-LTD also required activation of a presynaptic transient receptor potential vanilloid (TRPV)-like receptor, presynaptic Ca2+ release from intracellular stores and activation of voltage-gated Ca2+ channels (VGCCs). These findings demonstrate that the pairing of spike trains elicits timing-dependent forms of LTP and LTD that are supported by a complex set of cellular mechanisms involving NMDARs and endocannabinoid activation of TRPV-like receptors. PMID:21844187

  6. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression.

    PubMed

    Coke, Christopher J; Scarlett, Kisha A; Chetram, Mahandranauth A; Jones, Kia J; Sandifer, Brittney J; Davis, Ahriea S; Marcus, Adam I; Hinton, Cimona V

    2016-05-01

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression. PMID:26841863

  7. Vandetanib (ZD6474), a dual inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) tyrosine kinases: current status and future directions.

    PubMed

    Morabito, Alessandro; Piccirillo, Maria Carmela; Falasconi, Fabiano; De Feo, Gianfranco; Del Giudice, Antonia; Bryce, Jane; Di Maio, Massimo; De Maio, Ermelinda; Normanno, Nicola; Perrone, Francesco

    2009-04-01

    Vandetanib is a novel, orally available inhibitor of different intracellular signaling pathways involved in tumor growth, progression, and angiogenesis: vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and REarranged during Transfection tyrosine kinase activity. Phase I clinical trials have shown that vandetanib is well tolerated as a single agent at daily doses < or =300 mg. In the phase II setting, negative results were observed with vandetanib in small cell lung cancer, metastatic breast cancer, and multiple myeloma. In contrast, three randomized phase II studies showed that vandetanib prolonged the progression-free survival (PFS) time of patients with non-small cell lung cancer (NSCLC) as a single agent when compared with gefitinib or when added to chemotherapy. Rash, diarrhea, hypertension, fatigue, and asymptomatic QTc prolongation were the most common adverse events. Antitumor activity was also observed in medullary thyroid cancer. Four randomized phase III clinical trials in NSCLC are exploring the efficacy of vandetanib in combination with docetaxel, the Zactima in cOmbination with Docetaxel In non-small cell lung Cancer (ZODIAC) trial, or with pemetrexed, the Zactima Efficacy with Alimta in Lung cancer (ZEAL) trial, or as a single agent, the Zactima Efficacy when Studied versus Tarceva (ZEST) and the Zactima Efficacy trial for NSCLC Patients with History of EGFR-TKI chemo-Resistance (ZEPHYR) trials. Based on a press release by the sponsor of these trials, the PFS time was longer with vandetanib in the ZODIAC and ZEAL trials; the ZEST trial was negative for its primary superiority analysis, but was successful according to a preplanned noninferiority analysis of PFS. Ongoing phase II and III clinical trials will better define the appropriate schedule, the optimal setting of evaluation, and the safety of long-term use of vandetanib. PMID:19349511

  8. Dual Inhibition of Epidermal Growth Factor Receptor and Insulin-like Growth Factor Receptor I Reduces Angiogenesis and Tumor Growth in Cutaneous Squamous Cell Carcinoma

    PubMed Central

    Galer, Chad E.; Corey, Christina L.; Wang, Zhuoying; Younes, Maher N.; Gomez-Rivera, Fernando; Jasser, Samar A.; Ludwig, Dale L.; El-Naggar, Adel K.; Weber, Randal S.; Myers, Jeffrey N.

    2010-01-01

    Purpose Cutaneous squamous cell carcinoma (CSCC) is the second most common non-melanoma skin cancer. The majority of the ~250,000 cases occurring annually in the United States are small, non-aggressive, and cured by excision alone. However, a subset of these tumors which are defined by poorly differentiated histology, large tumor size, invasion of adjacent structures and/or regional metastases can prove resistant to treatment despite adjuvant radiotherapy and have increased risk of recurrence and nodal metastasis. Novel therapeutic approaches are necessary to improve outcomes for patients with aggressive CSCC. Experimental Design We analyzed the effect of targeted therapy on the growth and survival of CSCC cell lines using an anti-IGF-IR antibody, A12, alone or in combination with an anti-EGF-R antibody, cetuximab, both in vitro and in vivo in an athymic nude mouse model of CSCC. Results Treatment with A12 and cetuximab inhibited the signaling pathways of IGF-IR and EGFR and inhibited proliferation and induced apoptosis of SCC cell lines in vitro. Immunohistochemical staining revealed decreased proliferating cell nuclear antigen (PCNA) and microvessel density (MVD) as well as increased apoptosis within the treated tumor xenografts. In addition, the administration of A12, alone or in combination with cetuximab inhibited the growth of tumors by 51% and 92% respectively, and significantly enhanced survival in the nude mouse model of CSCC (p = 0.044 and p < 0.001 respectively). Conclusions These data suggest that dual treatment with monoclonal antibodies to the EGFR and IGF-IR may be therapeutically useful in the treatment of CSCC. PMID:20848439

  9. Dimerization of the EphA1 receptor tyrosine kinase transmembrane domain: Insights into the mechanism of receptor activation.

    PubMed

    Chavent, Matthieu; Chetwynd, Alan P; Stansfeld, Phillip J; Sansom, Mark S P

    2014-10-28

    EphA1 is a receptor tyrosine kinase (RTK) that plays a key role in developmental processes, including guidance of the migration of axons and cells in the nervous system. EphA1, in common with other RTKs, contains an N-terminal extracellular domain, a single transmembrane (TM) α-helix, and a C-terminal intracellular kinase domain. The TM helix forms a dimer, as seen in recent NMR studies. We have modeled the EphA1 TM dimer using a multiscale approach combining coarse-grain (CG) and atomistic molecular dynamics (MD) simulations. The one-dimensional potential of mean force (PMF) for this system, based on interhelix separation, has been calculated using CG MD simulations. This provides a view of the free energy landscape for helix-helix interactions of the TM dimer in a lipid bilayer. The resulting PMF profiles suggest two states, consistent with a rotation-coupled activation mechanism. The more stable state corresponds to a right-handed helix dimer interacting via an N-terminal glycine zipper motif, consistent with a recent NMR structure (2K1K). A second metastable state corresponds to a structure in which the glycine zipper motif is not involved. Analysis of unrestrained CG MD simulations based on representative models from the PMF calculations or on the NMR structure reveals possible pathways of interconversion between these two states, involving helix rotations about their long axes. This suggests that the interaction of TM helices in EphA1 dimers may be intrinsically dynamic. This provides a potential mechanism for signaling whereby extracellular events drive a shift in the repopulation of the underlying TM helix dimer energy landscape. PMID:25286141

  10. α-Catenin phosphorylation promotes intercellular adhesion through a dual-kinase mechanism.

    PubMed

    Escobar, David J; Desai, Ridhdhi; Ishiyama, Noboru; Folmsbee, Stephen S; Novak, Megan N; Flozak, Annette S; Daugherty, Rebecca L; Mo, Rigen; Nanavati, Dhaval; Sarpal, Ritu; Leckband, Deborah; Ikura, Mitsu; Tepass, Ulrich; Gottardi, Cara J

    2015-03-15

    The cadherin-catenin adhesion complex is a key contributor to epithelial tissue stability and dynamic cell movements during development and tissue renewal. How this complex is regulated to accomplish these functions is not fully understood. We identified several phosphorylation sites in mammalian αE-catenin (also known as catenin α-1) and Drosophila α-Catenin within a flexible linker located between the middle (M)-region and the carboxy-terminal actin-binding domain. We show that this phospho-linker (P-linker) is the main phosphorylated region of α-catenin in cells and is sequentially modified at casein kinase 2 and 1 consensus sites. In Drosophila, the P-linker is required for normal α-catenin function during development and collective cell migration, although no obvious defects were found in cadherin-catenin complex assembly or adherens junction formation. In mammalian cells, non-phosphorylatable forms of α-catenin showed defects in intercellular adhesion using a mechanical dispersion assay. Epithelial sheets expressing phosphomimetic forms of α-catenin showed faster and more coordinated migrations after scratch wounding. These findings suggest that phosphorylation and dephosphorylation of the α-catenin P-linker are required for normal cadherin-catenin complex function in Drosophila and mammalian cells. PMID:25653389

  11. Effect of grain size on the mechanical properties of dual phase Fe/Si/C steels

    SciTech Connect

    Ahn, J.H.

    1983-08-01

    For an Fe/2Si/0.1C steel with an intermediate quenching heat treatment, it was found that as the prior austenite grain size is refined, significant improvements in total elongation, reduction in area and impact toughness can be achieved, while uniform elongation, yield and tensile strengths are not affected. These improvements are analyzed in terms of microstructure and fracture characteristics. The cleavage cracks propagate nearly straight without deviation at the ferrite/martensite interfaces within the sub-units of the DFM structure, but change their path at high angle sub-unit boundaries. The crack is less likely to be deflected at the ferrite/martensite interface because the interface is coherent. Comparison of optical micrographs and SEM fractographs has shown that there is close agreement between the sub-unit size and cleavage facet size. The observations lead to the conclusion that the sub-unit size is the basic microstructure unit controlling the fracture behavior of DFM steels produced by the intermediate quenching heat treatment. A controlled rolling process was undertaken to obtain grain refined DFM steels. Results showed that this produces micro-duplex structures with attractive mechanical properties in an economicl way.

  12. Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric

    NASA Astrophysics Data System (ADS)

    Walker, Julian; Simons, Hugh; Alikin, Denis O.; Turygin, Anton P.; Shur, Vladimir Y.; Kholkin, Andrei L.; Ursic, Hana; Bencan, Andreja; Malic, Barbara; Nagarajan, Valanoor; Rojac, Tadej

    2016-01-01

    Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb)-based ferroelectric ceramics. In the search for Pb-free alternatives, systems with MPBs between polar and non-polar phases have recently been theorized as having great promise. While such an MPB was identified in rare-earth (RE) modified bismuth ferrite (BFO) thin films, synthesis challenges have prevented its realization in ceramics. Overcoming these, we demonstrate a comparable electromechanical response to Pb-based materials at the polar-to-non-polar MPB in Sm modified BFO. This arises from ‘dual’ strain mechanisms: ferroelectric/ferroelastic switching and a previously unreported electric-field induced transition of an anti-polar intermediate phase. We show that intermediate phases play an important role in the macroscopic strain response, and may have potential to enhance electromechanical properties at polar-to-non-polar MPBs.

  13. Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric

    PubMed Central

    Walker, Julian; Simons, Hugh; Alikin, Denis O.; Turygin, Anton P.; Shur, Vladimir Y.; Kholkin, Andrei L.; Ursic, Hana; Bencan, Andreja; Malic, Barbara; Nagarajan, Valanoor; Rojac, Tadej

    2016-01-01

    Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb)-based ferroelectric ceramics. In the search for Pb-free alternatives, systems with MPBs between polar and non-polar phases have recently been theorized as having great promise. While such an MPB was identified in rare-earth (RE) modified bismuth ferrite (BFO) thin films, synthesis challenges have prevented its realization in ceramics. Overcoming these, we demonstrate a comparable electromechanical response to Pb-based materials at the polar-to-non-polar MPB in Sm modified BFO. This arises from ‘dual’ strain mechanisms: ferroelectric/ferroelastic switching and a previously unreported electric-field induced transition of an anti-polar intermediate phase. We show that intermediate phases play an important role in the macroscopic strain response, and may have potential to enhance electromechanical properties at polar-to-non-polar MPBs. PMID:26791098

  14. 1-Phenyl-3-(2-thiazolyl)-2-thiourea inhibits melanogenesis via a dual-action mechanism.

    PubMed

    Kim, Yong Hyun; Park, Jong Il; Myung, Cheol Hwan; Lee, Ji Eun; Bang, Seunghyun; Chang, Sung Eun; Hwang, Jae Sung

    2016-09-01

    1-Phenyl-3-(2-thiazolyl)-2-thiourea (PTTU) is a well-characterized dopamine β-hydroxylase inhibitor that prevents 6-hydroxydopamine-induced degenerative neuronal disease. However, the effect of PTTU on melanogenesis has not been reported. In this study, we examined the effect of PTTU on melanogenesis and studied its mechanism of action. We found that PTTU decreased melanin biosynthesis in a dose-dependent manner in normal human epidermal melanocytes (NHEMs). PTTU also inhibited tyrosinase catalytic activity in NHEMs. Moreover, PTTU treatment led to reduced protein levels of tyrosinase in NHEMs, while the protein levels of tyrosinase-related protein-1, tyrosinase-related protein-2, and microphthalmia-associated transcription factor were not affected. However, PTTU treatment did not affect the mRNA expression of tyrosinase. We found that PTTU-accelerated tyrosinase degradation via the ubiquitin-dependent proteasome pathway. In summary, we found that PTTU decreased melanin biosynthesis by decreasing the enzymatic activity and stability of tyrosinase. Our results indicate that PTTU could be used as a depigmentation agent for hyperpigmentation disorder. PMID:27278925

  15. Dual Pili Post-translational Modifications Synergize to Mediate Meningococcal Adherence to Platelet Activating Factor Receptor on Human Airway Cells

    PubMed Central

    Schulz, Benjamin L.; Power, Peter M.; Swords, W. Edward; Weiser, Jeffery N.; Apicella, Michael A.; Edwards, Jennifer L.; Jennings, Michael P.

    2013-01-01

    Pili of pathogenic Neisseria are major virulence factors associated with adhesion, twitching motility, auto-aggregation, and DNA transformation. Pili of N. meningitidis are subject to several different post-translational modifications. Among these pilin modifications, the presence of phosphorylcholine (ChoP) and a glycan on the pilin protein are phase-variable (subject to high frequency, reversible on/off switching of expression). In this study we report the location of two ChoP modifications on the C-terminus of N. meningitidis pilin. We show that the surface accessibility of ChoP on pili is affected by phase variable changes to the structure of the pilin-linked glycan. We identify for the first time that the platelet activating factor receptor (PAFr) is a key, early event receptor for meningococcal adherence to human bronchial epithelial cells and tissue, and that synergy between the pilin-linked glycan and ChoP post-translational modifications is required for pili to optimally engage PAFr to mediate adherence to human airway cells. PMID:23696740

  16. Novel 1,4-diarylpiperidine-4-methylureas as anti-hyperlipidemic agents: dual effectors on acyl-CoA:cholesterol O-acyltransferase and low-density lipoprotein receptor expression.

    PubMed

    Asano, Shigehiro; Ban, Hitoshi; Kino, Kouichi; Ioriya, Katsuhisa; Muraoka, Masami

    2009-02-15

    A family of 1,4-diarylpiperidine-4-methylureas were designed and synthesized as novel dual effectors on ACAT and LDL receptor expression. We examined SAR of the synthesized compounds focusing on substitution at the three aromatic parts of the starting compound 1 and succeeded in identifying essential substituents for inhibition of ACAT and up-regulation of hepatic LDL receptor expression. Especially, we found that compound 12f, which can easily be prepared, has biological properties comparable to those of SMP-797, a promising ACAT inhibitor. In addition, the in vitro effects of 12f on lipid metabolism were substantially superior to those of a known ACAT inhibitor, Avasimibe. PMID:19167888

  17. Characterization of inhibitory anti-insulin-like growth factor receptor antibodies with different epitope specificity and ligand-blocking properties: implications for mechanism of action in vivo.

    PubMed

    Doern, Adam; Cao, Xianjun; Sereno, Arlene; Reyes, Christopher L; Altshuler, Angelina; Huang, Flora; Hession, Cathy; Flavier, Albert; Favis, Michael; Tran, Hon; Ailor, Eric; Levesque, Melissa; Murphy, Tracey; Berquist, Lisa; Tamraz, Susan; Snipas, Tracey; Garber, Ellen; Shestowsky, William S; Rennard, Rachel; Graff, Christilyn P; Wu, Xiufeng; Snyder, William; Cole, Lindsay; Gregson, David; Shields, Michael; Ho, Steffan N; Reff, Mitchell E; Glaser, Scott M; Dong, Jianying; Demarest, Stephen J; Hariharan, Kandasamy

    2009-04-10

    Therapeutic antibodies directed against the type 1 insulin-like growth factor receptor (IGF-1R) have recently gained significant momentum in the clinic because of preliminary data generated in human patients with cancer. These antibodies inhibit ligand-mediated activation of IGF-1R and the resulting down-stream signaling cascade. Here we generated a panel of antibodies against IGF-1R and screened them for their ability to block the binding of both IGF-1 and IGF-2 at escalating ligand concentrations (>1 microm) to investigate allosteric versus competitive blocking mechanisms. Four distinct inhibitory classes were found as follows: 1) allosteric IGF-1 blockers, 2) allosteric IGF-2 blockers, 3) allosteric IGF-1 and IGF-2 blockers, and 4) competitive IGF-1 and IGF-2 blockers. The epitopes of representative antibodies from each of these classes were mapped using a purified IGF-1R library containing 64 mutations. Most of these antibodies bound overlapping surfaces on the cysteine-rich repeat and L2 domains. One class of allosteric IGF-1 and IGF-2 blocker was identified that bound a separate epitope on the outer surface of the FnIII-1 domain. Using various biophysical techniques, we show that the dual IGF blockers inhibit ligand binding using a spectrum of mechanisms ranging from highly allosteric to purely competitive. Binding of IGF-1 or the inhibitory antibodies was associated with conformational changes in IGF-1R, linked to the ordering of dynamic or unstructured regions of the receptor. These results suggest IGF-1R uses disorder/order within its polypeptide sequence to regulate its activity. Interestingly, the activity of representative allosteric and competitive inhibitors on H322M tumor cell growth in vitro was reflective of their individual ligand-blocking properties. Many of the antibodies in the clinic likely adopt one of the inhibitory mechanisms described here, and the outcome of future clinical studies may reveal whether a particular inhibitory mechanism

  18. Dual mechanisms of NF-kappaB inhibition in carnosol-treated endothelial cells

    SciTech Connect

    Lian, K.-C.; Chuang, J.-J.; Hsieh, C.-W.; Wung, B.-S.; Huang, G.-D.; Jian, T.-Y.; Sun, Y.-W.

    2010-05-15

    The increased adhesion of monocytes to injured endothelial layers is a critical early event in atherogenesis. Under inflammatory conditions, there is increased expression of specific cell adhesion molecules on activated vascular endothelial cells, which increases monocyte adhesion. In our current study, we demonstrate a putative mechanism for the anti-inflammatory effects of carnosol, a diterpene derived from the herb rosemary. Our results show that both carnosol and rosemary essential oils inhibit the adhesion of TNFalpha-induced monocytes to endothelial cells and suppress the expression of ICAM-1 at the transcriptional level. Moreover, carnosol was found to exert its inhibitory effects by blocking the degradation of the inhibitory protein IkappaBalpha in short term pretreatments but not in 12 h pretreatments. Our data show that carnosol reduces IKK-beta phosphorylation in pretreatments of less than 3 h. In TNFalpha-treated ECs, NF-kappaB nuclear translocation and transcriptional activity was abolished by up to 12 h of carnosol pretreatment and this was blocked by Nrf-2 siRNA. The long-term inhibitory effects of carnosol thus appear to be mediated through its induction of Nrf-2-related genes. The inhibition of ICAM-1 expression and p65 translocation is reversed by HO-1 siRNA. Carnosol also upregulates the Nrf-2-related glutathione synthase gene and thereby increases the GSH levels after 9 h of exposure. Treating ECs with a GSH synthesis inhibitor, BSO, blocks the inhibitory effects of carnosol. In addition, carnosol increases p65 glutathionylation. Hence, our present findings indicate that carnosol suppresses TNFalpha-induced singling pathways through the inhibition of IKK-beta activity or the upregulation of HO-1 expression. The resulting GSH levels are dependent, however, on the length of the carnosol pretreatment period.

  19. New Insights into the Mechanisms of Innate Immune Receptor Signalling in Fibrosis

    PubMed Central

    Lafyatis, Robert; Farina, Alessandra

    2012-01-01

    Recent advances in our understanding of innate immunity and inflammation have direct bearing on how we understand autoimmunity, and fibrosis, and how innate immune sensors might stimulate both of these key features of several fibrotic diseases. Toll-like receptors (TLRs) are the major receptors for recognizing pathogen associated molecular patterns present on bacterial cell walls, such as LPS, and nucleic acids (RNA and DNA). Several intracellular pathways mediate TLR effects and initiate various pro-inflammatory programs. Mechanisms for control of inflammation, matrix remodeling, and ultimately fibrosis are also activated. Transforming growth factor-beta (TGF-β), Interleukin-1 (IL-1), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-13 (IL-13), and interferon (IFNs) appear particularly important in regulating pro-fibrotic aspects of innate immune activation. These mechanisms appear important in fibrotic disease affecting multiple organ-systems, including lung, liver, kidney, and skin. These observations provide new paradigms for understanding the relationship between immunity/inflammation and fibrosis, however, the precise ligand and mechanism linking innate immune sensor(s) to fibrosis remain uncertain in most illnesses. PMID:22802904

  20. Fracture mechanisms in dual phase steels based on the acicular ferrite + martensite/austenite microstructure

    NASA Astrophysics Data System (ADS)

    Poruks, Peter

    The fracture mechanisms of low carbon microalloyed plate steels based on the acicular ferrite + marten site/austenite microstructure (AF + M/A) are investigated. The final microstructure consists of a dispersed phase of submicron equi-axed martensite particles with a bainitic ferrite matrix. A series of plates with M/A volume fractions of 0.076--0.179 are studied. Brittle fracture is investigated by Instrumented Charpy impact testing of samples at -196°C and subsequent metallography. The M/A particles are identified as the crack nucleation sites and the cleavage fracture stress calculated to be 2400 MPa in a complete AF microstrucuture. This value is significantly larger than in steels that contain significant proportions of conventional bainite. Standard Charpy and Instrumented Charpy impact testing is conducted through a temperature range from -80 to + 22°C to study ductile fracture behaviour. The total absorbed energy is separated into energies of crack nucleation and of crack propagation. It is found that the energy of crack nucleation is weakly dependent on the volume fraction of M/A and completely independent of temperature over the range studied. The crack propagation energy varies significantly with both variables, decreasing with increased volume fraction of M/A and with decreasing temperature. The peak load in the instrumented Charpy data is used to calculate the dynamic fracture toughness, KId, which is found to be 105--120 MPa-m1/2. The void nucleation and void growth stages of ductile fracture are studied by metallographic examination of tensile bars. The sites of void nucleation are identified as inclusions and M/A particles. Voids nucleate at the M/A particles by decohesion of the particle-matrix interface. A constant void nucleation strain of epsilon = 0.90 +/- 0.05 is measured for all of the samples independent of the volume fraction of M/A. A stress-based criterion is used to predict void nucleation and the interface strength is determined to be

  1. N-Benzylbenzamides: A Novel Merged Scaffold for Orally Available Dual Soluble Epoxide Hydrolase/Peroxisome Proliferator-Activated Receptor γ Modulators.

    PubMed

    Blöcher, René; Lamers, Christina; Wittmann, Sandra K; Merk, Daniel; Hartmann, Markus; Weizel, Lilia; Diehl, Olaf; Brüggerhoff, Astrid; Boß, Marcel; Kaiser, Astrid; Schader, Tim; Göbel, Tamara; Grundmann, Manuel; Angioni, Carlo; Heering, Jan; Geisslinger, Gerd; Wurglics, Mario; Kostenis, Evi; Brüne, Bernhard; Steinhilber, Dieter; Schubert-Zsilavecz, Manfred; Kahnt, Astrid S; Proschak, Ewgenij

    2016-01-14

    Metabolic syndrome (MetS) is a multifactorial disease cluster that consists of dyslipidemia, cardiovascular disease, type 2 diabetes mellitus, and obesity. MetS patients are strongly exposed to polypharmacy; however, the number of pharmacological compounds required for MetS treatment can be reduced by the application of multitarget compounds. This study describes the design of dual-target ligands that target soluble epoxide hydrolase (sEH) and the peroxisome proliferator-activated receptor type γ (PPARγ). Simultaneous modulation of sEH and PPARγ can improve diabetic conditions and hypertension at once. N-Benzylbenzamide derivatives were determined to fit a merged sEH/PPARγ pharmacophore, and structure-activity relationship studies were performed on both targets, resulting in a submicromolar (sEH IC50 = 0.3 μM/PPARγ EC50 = 0.3 μM) modulator 14c. In vitro and in vivo evaluations revealed good ADME properties qualifying 14c as a pharmacological tool compound for long-term animal models of MetS. PMID:26595749

  2. Dual-purpose linker for alpha helix stabilization and imaging agent conjugation to glucagon-like peptide-1 receptor ligands.

    PubMed

    Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M

    2015-02-18

    Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel α-helix-stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enable this technique to potentially be used as a general method for labeling α helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents. PMID:25594741

  3. The enhanced in vitro hematopoietic activity of leridistim, a chimeric dual G-CSF and IL-3 receptor agonist.

    PubMed

    Abegg, A L; Vickery, L E; Bremer, M E; Donnelly, A M; Doshi, P D; Evans, M L; Thurman, T L; Braford, S R; Caparon, M H; Bauer, S C; Giri, J G; Welply, J K; McKearn, J P; Smith, W G

    2002-03-01

    The in vitro activity of leridistim was characterized for cell proliferation, generation of colony-forming units (CFU) and differentiation of CD34+ cells. In AML-193.1.3 cells, leridistim exhibited a significant increase in potency compared to rhG-CSF, SC-65303 (an IL-3 receptor agonist) or an equimolar combination of rhG-CSF and SC-65303. CFU-GM assays demonstrated that at 50% of the maximum response, the relative potency of leridistim was 12-fold greater than the combination of rhG-CSF and rhIL-3 and 44-fold more potent than rhG-CSF alone. In multi-lineage CFU assays, a combination of erythropoietin (rhEPO) and leridistim resulted in greater numbers of BFU-E, CFU-GEMM and CFU-Mk than rhEPO alone. Ex vivo culture of peripheral blood or bone marrow CD34+ cells with leridistim substantially increased total viable cells over cultures stimulated with rhG-CSF, SC-65303, or a combination of rhG-CSF and SC-65303. Culture with leridistim, resulted in a greater increase in myeloid (CD15+/CD11b+), monocytic (CD41-/CD14+) and megakaryocytic (CD41+/CD14-) precursor cells without depleting the progenitor pool (CD34+/CD15-/CD11b-). These results demonstrate that leridistim is a more potent stimulator of hematopoietic proliferation and differentiation than the single receptor agonists (rhG-CSF and SC-65303) either alone or combined. These unique attributes suggest that leridistim may enhance hematopoietic reconstitution following myelosuppressive chemotherapy. PMID:11896534

  4. Dual role for adenine nucleotides in the regulation of the atrial natriuretic peptide receptor, guanylyl cyclase-A.

    PubMed

    Foster, D C; Garbers, D L

    1998-06-26

    The ability to both sensitize and desensitize a guanylyl cyclase receptor has not been previously accomplished in a broken cell or membrane preparation. The guanylyl cyclase-A (GC-A) receptor is known to require both atrial natriuretic peptide (ANP) and an adenine nucleotide for maximal cyclase activation. When membranes from NIH 3T3 cells stably overexpressing GC-A were incubated with ATP, AMPPNP, or ATPgammaS, only ATPgammaS dramatically potentiated ANP-dependent cyclase activity. When the membranes were incubated with ATPgammaS and then washed, GC-A now became sensitive to ANP/AMPPNP stimulation, suggestive that thiophosphorylation had sensitized GC-A to ligand and adenine nucleotide binding. Consistent with this hypo- thesis, the ATPgammaS effects were both time- and concentration-dependent. Protein phosphatase stability of thiophosphorylation (ATPgammaS) relative to phosphorylation (ATP) appeared to explain the differential effects of the two nucleotides since microcystin, beta-glycerol phosphate, or okadaic acid coincident with ATP or ATPgammaS effectively sensitized GC-A to ligand stimulation over prolonged periods of time in either case. GC-A was phosphorylated in the presence of [gamma32P]ATP, and the magnitude of the phosphorylation was increased by the addition of microcystin. Thus, the phosphorylation of GC-A correlates with the acquisition of ligand sensitivity. The establishment of an in vitro system to sensitize GC-A demonstrates that adenine nucleotides have a daul function in the regulation of GC-A through both phosphorylation of and binding to regulatory sites. PMID:9632692

  5. Mechanics of the trachea and behaviour of its slowly adapting stretch receptors.

    PubMed Central

    Mortola, J P; Sant'Ambrogio, G

    1979-01-01

    1. The trachea is constructed by a series of U-shaped cartilaginous rings supporting a membranous posterior wall. We have studied separately the pressure-volume relationships of the two components. 2. The motion of the membranous posterior wall contributes most to the tracheal volume change caused by any given transmural pressure change; the cartilaginous rings provide a semi-rigid support to the posterior wall and have a far greater compliance with negative than positive transmural pressure. 3. The response of tracheal stretch receptors to transmural pressure can be explained by the mechanical coupling between cartilages and posterior wall. They respond both to positive and negative transmural pressure, they are active at zero transmural pressure and have a point of least activity with small negative transmural pressures. 4. The stress-strain relationship of the posterior wall has been studied in static and dynamic conditions in control situations and after removal of either the tunica fibrosa or the trachealis muscle. Each of these two components contributes to the stiffness of the posterior wall, with the trachealis muscle providing most of its viscosity. 5. The response of tracheal stretch receptors to transverse traction of the posterior membranous wall has been studied in both static and dynamic conditions before and after removal of the tunica fibrosa. The behaviour of these receptors reflects the visco-elastic properties of the trachealis muscle in which they have been localized. PMID:439039

  6. Antiproliferative Effects and Mechanisms of Liver X Receptor Ligands in Pancreatic Ductal Adenocarcinoma Cells

    PubMed Central

    Zheng, Jine; Nguyen-Vu, Trang; Karaboga, Husna; Dey, Prasenjit; Gabbi, Chiara; Vedin, Lise-Lotte; Liu, Ka; Wu, Wanfu; Jonsson, Philip K.; Lin, Jean Z.; Su, Fei; Bollu, Lakshmi Reddy; Hodges, Sally E.; McElhany, Amy L.; Issazadeh, Mehdi A.; Fisher, William E.; Ittmann, Michael M.; Steffensen, Knut R.; Gustafsson, Jan-Åke; Lin, Chin-Yo

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is difficult to detect early and is often resistant to standard chemotherapeutic options, contributing to extremely poor disease outcomes. Members of the nuclear receptor superfamily carry out essential biological functions such as hormone signaling and are successfully targeted in the treatment of endocrine-related malignancies. Liver X receptors (LXRs) are nuclear receptors that regulate cholesterol homeostasis, lipid metabolism, and inflammation, and LXR agonists have been developed to regulate LXR function in these processes. Intriguingly, these compounds also exhibit antiproliferative activity in diverse types of cancer cells. In this study, LXR agonist treatments disrupted proliferation, cell-cycle progression, and colony-formation of PDAC cells. At the molecular level, treatments downregulated expression of proteins involved in cell cycle progression and growth factor signaling. Microarray experiments further revealed changes in expression profiles of multiple gene networks involved in biological processes and pathways essential for cell growth and proliferation following LXR activation. These results establish the antiproliferative effects of LXR agonists and potential mechanisms of action in PDAC cells and provide evidence for their potential application in the prevention and treatment of PDAC. PMID:25184494

  7. Synaptic mechanisms of adenosine A2A receptor-mediated hyperexcitability in the hippocampus.

    PubMed

    Rombo, Diogo M; Newton, Kathryn; Nissen, Wiebke; Badurek, Sylvia; Horn, Jacqueline M; Minichiello, Liliana; Jefferys, John G R; Sebastiao, Ana M; Lamsa, Karri P

    2015-05-01

    Adenosine inhibits excitatory neurons widely in the brain through adenosine A1 receptor, but activation of adenosine A2A receptor (A2A R) has an opposite effect promoting discharge in neuronal networks. In the hippocampus A2A R expression level is low, and the receptor's effect on identified neuronal circuits is unknown. Using optogenetic afferent stimulation and whole-cell recording from identified postsynaptic neurons we show that A2A R facilitates excitatory glutamatergic Schaffer collateral synapses to CA1 pyramidal cells, but not to GABAergic inhibitory interneurons. In addition, A2A R enhances GABAergic inhibitory transmission between CA1 area interneurons leading to disinhibition of pyramidal cells. Adenosine A2A R has no direct modulatory effect on GABAergic synapses to pyramidal cells. As a result adenosine A2A R activation alters the synaptic excitation - inhibition balance in the CA1 area resulting in increased pyramidal cell discharge to glutamatergic Schaffer collateral stimulation. In line with this, we show that A2A R promotes synchronous pyramidal cell firing in hyperexcitable conditions where extracellular potassium is elevated or following high-frequency electrical stimulation. Our results revealed selective synapse- and cell type specific adenosine A2A R effects in hippocampal CA1 area. The uncovered mechanisms help our understanding of A2A R's facilitatory effect on cortical network activity. PMID:25402014

  8. Investigation of Inhibition Mechanism of Chemokine Receptor CCR5 by Micro-second Molecular Dynamics Simulations

    PubMed Central

    Salmas, Ramin Ekhteiari; Yurtsever, Mine; Durdagi, Serdar

    2015-01-01

    Chemokine receptor 5 (CCR5) belongs to G protein coupled receptors (GPCRs) and plays an important role in treatment of human immunodeficiency virus (HIV) infection since HIV uses CCR5 protein as a co-receptor. Recently, the crystal structure of CCR5-bound complex with an approved anti-retroviral drug (maroviroc) was resolved. During the crystallization procedure, amino acid residues (i.e., Cys224, Arg225, Asn226 and Glu227) at the third intra-cellular loop were replaced by the rubredoxin for stability reasons. In the current study, we aimed to understand the impact of the incorporated rubredoxin on the conformations of TM domains of the target protein. For this reason, rubredoxin was deleted from the crystal structure and the missing amino acids were engineered. The resultant structure was subjected to long (μs) molecular dynamics (MD) simulations to shed light into the inhibitory mechanism. The derived model structure displayed a significant deviation in the cytoplasmic domain of TM5 and IC3 in the absence of rubredoxin. The principal component analyses (PCA) and MD trajectory analyses revealed important structural and dynamical differences at apo and holo forms of the CCR5. PMID:26299310

  9. Anti-infective mannose receptor immune mechanism in large yellow croaker (Larimichthys crocea).

    PubMed

    Dong, Xiangli; Li, Jiji; He, Jianyu; Liu, Wei; Jiang, Lihua; Ye, Yingying; Wu, Changwen

    2016-07-01

    Mannose receptor (MR) is a pattern recognition receptor (PRR) that plays a significant role in immunity responses. Its role has been described extensively in mammals, but very rarely in fish. Recently, with the rapid development of an aquaculture industry cultivating large yellow croaker (Larimichthys crocea), infectious diseases caused by viruses, bacteria and parasites are becoming more frequent and more severe, in particular bacterial infections caused by Vibrio anguillarum, resulting in great economical losses. Extensive use of antibiotics as conventional treatment has led to microenvironment imbalances, development of drug-resistant bacteria and deposition of drug residues, which cause environmental pollution and ultimately affect human health. The purpose of this pilot study was to detect the transcriptional levels of C-type mannose receptor genes MRC1 (4710-bp ORF; encoding 1437 aa; a signal peptide, a SMART RICIN domain, a SMART FN2 domain, eight SMART CLECT domain, and a transmembrane helix region) and MRC2 (3996-bp ORF; encoding 1484 aa; a SMART FN2 domain, eight SMART CLECT domains, and a transmembrane region) in the liver, kidney and spleen tissues of L. crocea challenged by V. anguillarum, to explore the effective domain and the molecular response mechanisms of MRC1 and MRC2, and, ultimately, to explore the possibility of developing a vaccine targeting V. anguillarum infections. PMID:27071518

  10. Insulin-like factor regulates neural induction through an IGF1 receptor-independent mechanism

    PubMed Central

    Haramoto, Yoshikazu; Takahashi, Shuji; Oshima, Tomomi; Onuma, Yasuko; Ito, Yuzuru; Asashima, Makoto

    2015-01-01

    Insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) signalling is required for normal embryonic growth and development. Previous reports indicated that the IGF/IGF1R/MAPK pathway contributes to neural induction and the IGF/IGF1R/PI3K/Akt pathway to eye development. Here, we report the isolation of insulin3 encoding a novel insulin-like ligand involved in neural induction. Insulin3 has a similar structure to pro-insulin and mature IGF ligands, but cannot activate the IGF1 receptor. However, similar to IGFs, Insulin3 induced the gene expression of an anterior neural marker, otx2, and enlarged anterior head structures by inhibiting Wnt signalling. Insulin3 are predominantly localised to the endoplasmic reticulum when otx2 is induced by insulin3. Insulin3 reduced extracellular Wnts and cell surface localised Lrp6. These results suggest that Insulin3 is a novel cell-autonomous inhibitor of Wnt signalling. This study provides the first evidence that an insulin-like factor regulates neural induction through an IGF1R-independent mechanism. PMID:26112133

  11. Hyperammonaemia alters the mechanisms by which metabotropic glutamate receptors in nucleus accumbens modulate motor function.

    PubMed

    Cauli, Omar; Mlili, Nisrin; Rodrigo, Regina; Felipo, Vicente

    2007-10-01

    Activation of metabotropic glutamate receptors by injecting (S)3,5-dihydroxyphenylglycine (DHPG) in nucleus accumbens (NAcc) increases motor activity by different mechanisms in control rats and in rats with chronic liver failure due to portacaval shunt. In control rats DHPG increases extracellular dopamine in NAcc and induces locomotion by activating the 'normal' circuit: NAcc-->ventral pallidum-->medial-dorsal thalamus-->prefrontal cortex, which is not activated in portacaval shunt rats. In these rats, DHPG activates an 'alternative' circuit: NAcc-->substantia nigra pars reticulata-->ventro-medial thalamus-->prefrontal cortex, which is not activated in control rats. The reasons by which liver failure leads to activation of this 'alternative' circuit remain unclear. The aim of this work was to assess whether hyperammonaemia could be responsible for the alterations found in chronic liver failure. We injected DHPG in NAcc of control or hyperammonaemic rats and analysed, by in vivo brain microdialysis, the neurochemical responses of the 'normal' and 'alternative' circuits. In hyperammonaemic rats DHPG injection in NAcc activates both the 'normal' and 'alternative' circuits. In hyperammonaemia, activation of the 'alternative' circuit and increased motor response following metabotropic glutamate receptors activation in NAcc seem due to an increase in extracellular glutamate which activates AMPA receptors. PMID:17587309

  12. Cardiac Alpha1-Adrenergic Receptors: Novel Aspects of Expression, Signaling Mechanisms, Physiologic Function, and Clinical Importance

    PubMed Central

    O’Connell, Timothy D.; Jensen, Brian C.; Baker, Anthony J.

    2014-01-01

    Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate “inside-out” signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure. PMID:24368739

  13. Distinct Signaling Mechanisms in Multiple Developmental Pathways by the SCRAMBLED Receptor of Arabidopsis1[OPEN

    PubMed Central

    Kwak, Su-Hwan; Woo, Sooah; Lee, Myeong Min; Schiefelbein, John

    2014-01-01

    SCRAMBLED (SCM), a leucine-rich repeat receptor-like kinase in Arabidopsis (Arabidopsis thaliana), is required for positional signaling in the root epidermis and for tissue/organ development in the shoot. To further understand SCM action, we generated a series of kinase domain variants and analyzed their ability to complement scm mutant defects. We found that the SCM kinase domain, but not kinase activity, is required for its role in root epidermal patterning, supporting the view that SCM is an atypical receptor kinase. We also describe a previously uncharacterized role for SCM in fruit dehiscence, because mature siliques from scm mutants fail to open properly. Interestingly, the kinase domain of SCM appears to be dispensable for this developmental process. Furthermore, we found that most of the SCM kinase domain mutations dramatically inhibit inflorescence development. Because this process is not affected in scm null mutants, it is likely that SCM acts redundantly to regulate inflorescence size. The importance of distinct kinase residues for these three developmental processes provides an explanation for the maintenance of the conserved kinase domain in the SCM protein, and it may generally explain its conservation in other atypical kinases. Furthermore, these results indicate that individual leucine-rich repeat receptor-like kinases may participate in multiple pathways using distinct signaling mechanisms to mediate diverse cellular communication events. PMID:25136062

  14. Interaction of mechanisms involving epoxyeicosatrienoic acids, adenosine receptors, and metabotropic glutamate receptors in neurovascular coupling in rat whisker barrel cortex

    PubMed Central

    Shi, Yanrong; Liu, Xiaoguang; Gebremedhin, Debebe; Falck, John R; Harder, David R; Koehler, Raymond C

    2008-01-01

    Adenosine, astrocyte metabotropic glutamate receptors (mGluRs), and epoxyeicosatrienoic acids (EETs) have been implicated in neurovascular coupling. Although A2A and A2B receptors mediate cerebral vasodilation to adenosine, the role of each receptor in the cerebral blood flow (CBF) response to neural activation remains to be fully elucidated. In addition, adenosine can amplify astrocyte calcium, which may increase arachidonic acid metabolites such as EETs. The interaction of these pathways was investigated by determining if combined treatment with antagonists exerted an additive inhibitory effect on the CBF response. During whisker stimulation of anesthetized rats, the increase in cortical CBF was reduced by approximately half after individual administration of A2B, mGluR and EET antagonists and EET synthesis inhibitors. Combining treatment of either a mGluR antagonist, an EET antagonist, or an EET synthesis inhibitor with an A2B receptor antagonist did not produce an additional decrement in the CBF response. Likewise, the CBF response also remained reduced by ~50% when an EET antagonist was combined with an mGluR antagonist or an mGluR antagonist plus an A2B receptor antagonist. In contrast, A2A and A3 receptor antagonists had no effect on the CBF response to whisker stimulation. We conclude that (1) adenosine A2B receptors, rather than A2A or A3 receptors, play a significant role in coupling cortical CBF to neuronal activity, and (2) the adenosine A2B receptor, mGluR, and EETs signaling pathways are not functionally additive, consistent with the possibility of astrocytic mGluR and adenosine A2B receptor linkage to the synthesis and release of vasodilatory EETs. PMID:17519974

  15. Non-canonical dynamic mechanisms of interaction between the p66Shc protein and Met receptor

    PubMed Central

    Landry, Mélissa; Pomerleau, Véronique; Saucier, Caroline

    2016-01-01

    Met receptor tyrosine kinase (RTK) is known to bind to the three distinct protein isoforms encoded by the ShcA (Shc) gene. Structure–function studies have unveiled critical roles for p52Shc-dependent signalling pathways in Met-regulated biological functions. The molecular basis of the interaction between the Met and p52Shc proteins is well-defined, but not for the longest protein isoform, p66Shc. In the present study, co-immunoprecipitation assays were performed in human embryonic kidney 293 (HEK293) cells, transiently co-transfected with Met and p66Shc mutants, in order to define the molecular determinants involved in mediating Met–p66Shc interaction. Our results show that p66Shc interacts constitutively with the receptor Met, and the Grb2 (growth factor receptor-bound protein-2) and Gab1 (Grb2-associated binder-1) adaptor proteins. Although its phosphotyrosine-binding domain (PTB) and Src homology 2 (SH2) domains co-ordinate p66Shc binding to non-activated Met receptor, these phosphotyrosine-binding modules, and its collagen homology domain 2 (CH2) region, exert negative constraints. In contrast, p66Shc interaction with the activated Met depends mainly on the integrity of its PTB domain, and to a lesser extent of its SH2 domain. Even though not required for the recruitment of p66Shc, tyrosine phosphorylation of p66Shc by activated Met enhances these interactions by mechanisms not reliant on the integrity of the Met multisubstrate-binding site. In turn, this increases phosphotyrosine-dependent p66Shc–Grb2–Gab1 complex formation away from the receptor, while blocking Grb2 and Gab1 recruitment to activated Met. In conclusion, we identify, for the first time, a novel non-canonical dynamic mode of interaction between Met and the p66 protein isoform of Shc and its effects on rewiring binding effector complexes according to the activation state of the receptor. PMID:27048591

  16. Non-canonical dynamic mechanisms of interaction between the p66Shc protein and Met receptor.

    PubMed

    Landry, Mélissa; Pomerleau, Véronique; Saucier, Caroline

    2016-06-01

    Met receptor tyrosine kinase (RTK) is known to bind to the three distinct protein isoforms encoded by the ShcA (Shc) gene. Structure-function studies have unveiled critical roles for p52Shc-dependent signalling pathways in Met-regulated biological functions. The molecular basis of the interaction between the Met and p52Shc proteins is well-defined, but not for the longest protein isoform, p66Shc. In the present study, co-immunoprecipitation assays were performed in human embryonic kidney 293 (HEK293) cells, transiently co-transfected with Met and p66Shc mutants, in order to define the molecular determinants involved in mediating Met-p66Shc interaction. Our results show that p66Shc interacts constitutively with the receptor Met, and the Grb2 (growth factor receptor-bound protein-2) and Gab1 (Grb2-associated binder-1) adaptor proteins. Although its phosphotyrosine-binding domain (PTB) and Src homology 2 (SH2) domains co-ordinate p66Shc binding to non-activated Met receptor, these phosphotyrosine-binding modules, and its collagen homology domain 2 (CH2) region, exert negative constraints. In contrast, p66Shc interaction with the activated Met depends mainly on the integrity of its PTB domain, and to a lesser extent of its SH2 domain. Even though not required for the recruitment of p66Shc, tyrosine phosphorylation of p66Shc by activated Met enhances these interactions by mechanisms not reliant on the integrity of the Met multisubstrate-binding site. In turn, this increases phosphotyrosine-dependent p66Shc-Grb2-Gab1 complex formation away from the receptor, while blocking Grb2 and Gab1 recruitment to activated Met. In conclusion, we identify, for the first time, a novel non-canonical dynamic mode of interaction between Met and the p66 protein isoform of Shc and its effects on rewiring binding effector complexes according to the activation state of the receptor. PMID:27048591

  17. A Common Molecular Motif Characterizes Extracellular Allosteric Enhancers of GPCR Aminergic Receptors and Suggests Enhancer Mechanism of Action

    PubMed Central

    Bernstein, Robert Root; Dillon, Patrick F

    2014-01-01

    Several classes of compounds that have no intrinsic activity on aminergic systems nonetheless enhance the potency of aminergic receptor ligands three-fold or more while significantly increasing their duration of activity, preventing tachyphylaxis and reversing fade. Enhancer compounds include ascorbic acid, ethylenediaminetetraacetic acid, cortico-steroids, opioid peptides, opiates and opiate antagonists. This paper provides the first review of aminergic enhancement, demonstrating that all enhancers have a common, inobvious molecular motif and work through a common mechanism that is manifested by three common characteristics. First, aminergic enhancers bind directly to the amines they enhance, suggesting that the common structural motif is reflected in common binding targets. Second, one common target is the first extracellular loop of aminergic receptors. Third, at least some enhancers are antiphosphodiesterases. These observations suggest that aminergic enhancers act on the extracellular surface of aminergic receptors to keep the receptor in its high affinity state, trapping the ligand inside the receptor. Enhancer binding produces allosteric modifications of the receptor structure that interfere with phosphorylation of the receptor, thereby inhibiting down-regulation of the receptor. The mechanism explains how enhancers potentiate aminergic activity and increase duration of activity and makes testable predictions about additional compounds that should act as aminergic enhancers. PMID:25174918

  18. Molecular Mechanisms of Cross-inhibition Between Nicotinic Acetylcholine Receptors and P2X Receptors in Myenteric Neurons and HEK-293 cells

    PubMed Central

    Decker, Dima A.; Galligan, James J.

    2010-01-01

    Background P2X2 and nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic excitation in the enteric nervous system. P2X receptors and nAChRs are functionally linked. This study examined the mechanisms responsible for interactions between P2X2 and α3β4subunit-containing nAChRs. Methods The function of P2X2 and α3β4 nAChRs expressed by HEK-293 cells and guinea pig ileum myenteric neurons in culture was studied using whole-cell patch clamp techniques. Results In HEK-293 cells expressing α3β4 nAChRs and P2X2 receptors, co-application of ATP and ACh caused inward currents that were 56 ± 7% of the current that should occur if these channels functioned independently (P < 0.05, n = 9); we call this interaction cross-inhibition. Cross-inhibition did not occur in HEK-293 cells expressing α3β4 nAChRs and a C-terminal tail truncated P2X2 receptor (P2X2TR)(P >0.05, n = 8). Intracellular application of the C-terminal tail of the P2X2 receptor blocked nAChR-P2X receptor cross-inhibition in HEK-293 cells and myenteric neurons. In the absence of ATP, P2X2 receptors constitutively inhibited nAChR currents in HEK-293 cells expressing both receptors. Constitutive inhibition did not occur in HEK-293 cells expressing α3β4 nAChRs transfected with P2X2TR. Currents caused by low (≤30 μM), but not high (≥100 μM) concentrations of ATP in cells expressing P2X2 receptors were inhibited by co-expression with α3β4 nAChRs. Conclusions The C-terminal tail of P2X2 receptors mediates cross-inhibition between α3β4 nAChR-P2X2 receptors. The closed state of P2X2 receptors and nAChRs can also cause cross inhibition. These interactions may modulate transmission at enteric synapses that use ATP and acetylcholine as co-transmitters. PMID:20426799

  19. (-)-Pentazocine induces visceral chemical antinociception, but not thermal, mechanical, or somatic chemical antinociception, in μ-opioid receptor knockout mice

    PubMed Central

    2011-01-01

    Background (-)-Pentazocine has been hypothesized to induce analgesia via the κ-opioid (KOP) receptor, although the involvement of other opioid receptor subtypes in the effects of pentazocine remains unknown. In this study, we investigated the role of the μ-opioid (MOP) receptor in thermal, mechanical, and chemical antinociception induced by (-)-pentazocine using MOP receptor knockout (MOP-KO) mice. Results (-)-Pentazocine-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice compared with wildtype mice. The results obtained from the (-)-pentazocine-induced mechanical and somatic chemical antinociception experiments, which used the hind-paw pressure and formalin tests, were similar to the results obtained from the thermal antinociception experiments in these mice. However, (-)-pentazocine retained its ability to induce significant visceral chemical antinociception, assessed by the writhing test, in homozygous MOP-KO mice, an effect that was completely blocked by pretreatment with nor-binaltorphimine, a KOP receptor antagonist. In vitro binding and cyclic adenosine monophosphate assays showed that (-)-pentazocine possessed higher affinity for KOP and MOP receptors than for δ-opioid receptors. Conclusions The present study demonstrated the abolition of the thermal, mechanical, and somatic chemical antinociceptive effects of (-)-pentazocine and retention of the visceral chemical antinociceptive effects of (-)-pentazocine in MOP-KO mice. These results suggest that the MOP receptor plays a pivotal role in thermal, mechanical, and somatic chemical antinociception induced by (-)-pentazocine, whereas the KOP receptor is involved in visceral chemical antinociception induced by (-)-pentazocine. PMID:21477373

  20. Permanent Suppression of Cortical Oscillations in Mice After Adolescent Exposure to Cannabinoids: Receptor Mechanisms

    PubMed Central

    Raver, Sylvina M.; Keller, Asaf

    2014-01-01

    Marijuana use in adolescence, but not adulthood, may permanently impair cognitive functioning and increase the risk of developing schizophrenia. Cortical oscillations are patterns of neural network activity implicated in cognitive processing, and are abnormal in patients with schizophrenia. We have recently reported that cortical oscillations are suppressed in adult mice that were treated, in adolescence but not adulthood, with the cannabinoids WIN55,212-2 (WIN) or Δ9tetrahydrocannabinol (THC). WIN and THC are cannabinoid types 1 and 2 receptor (CB1R & CB2R) agonists, and also have activity at non-cannabinoid receptor targets. However, as acute WIN and THC administration can suppress oscillations through CB1Rs, we hypothesize that a similar mechanism underlies the permanent suppression of oscillations by repeated cannabinoid exposure in adolescence. Here we test the prediction that cannabinoid exposure in adolescence permanently suppresses cortical oscillations by acting through CB1Rs, and that these suppressive effects can be antagonized by a CB1R antagonist. We treated adolescent mice with various cannabinoid compounds, and pharmacologically-evoked oscillations in vitro in adult mice. We find that WIN exposure for six days in early adolescence suppresses oscillations preferentially in adult medial prefrontal cortex (mPFC) via CB1Rs, and that a similar CB1R mechanism accounts for the suppressive effects of long-term (20 day) adolescent THC in adult somatosensory cortex (SCx). Unexpectedly, we also find that CB2Rs may be involved in the suppression of oscillations in both mPFC and SCx by long-term adolescent cannabinoid exposure, and that non-cannabinoid receptors may also contribute to oscillation suppression in adult mPFC. These findings represent a novel attempt to antagonize the effects of adolescent cannabinoid exposure on neural network activity, and reveal the contribution of non-CB1R targets to the suppression of cortical oscillations. PMID:25036610

  1. Structure, signaling mechanism and regulation of natriuretic peptide receptor-guanylate cyclase

    PubMed Central

    Misono, Kunio S.; Philo, John S.; Arakawa, Tsutomu; Ogata, Craig M.; Qiu, Yue; Ogawa, Haruo; Young, Howard S.

    2011-01-01

    Summary Atrial natriuretic peptide (ANP) and homologous B-type natriuretic peptide (BNP) are cardiac hormones that dilate blood vessels and stimulate natriuresis and diuresis, thereby lowering blood pressure and blood volume. ANP and BNP counterbalance the actions of the renin-angiotensin-aldosterone and neurohormonal systems, and play a central role in cardiovascular regulation. These activities are mediated by the A-type natriuretic peptide receptor (NPRA), a single transmembrane segment, guanylate cyclase (GC) linked receptor that occurs as a homodimer. Here we present an overview of the structure, possible chloride-mediated regulation, and signaling mechanism of the NPRA and other receptor-GCs. Earlier, we determined the crystal structures of the NPRA extracellular domain with and without bound ANP. Their structural comparison has revealed a novel ANP-induced rotation mechanism occurring in the juxtamembrane region that apparently triggers transmembrane signal transduction. More recently, the crystal structures of the dimerized catalytic domain of green algae GC Cyg12 and that of cyanobacter GC Cya2 have been reported. These structures closely resemble that of the adenylate cyclase catalytic domain consisting of C1 and C2 subdomain heterodimer. AC is activated by binding of Gsα to C2 and ensuing 7° rotation of C1 around an axis parallel to the central cleft, thereby inducing the heterodimer into a catalytically active conformation. We speculate that, in the NPRA, the ANP-induced rotation of the juxtamembrane domains, transmitted across the transmembrane helices, may induce a similar rotation in each of the dimerized GC catalytic domains, leading to the stimulation of the GC catalytic activity. PMID:21375693

  2. Estrogen receptor independent neurotoxic mechanism of bisphenol A, an environmental estrogen

    PubMed Central

    Lee, Yoot Mo; Seong, Min Jae; Lee, Jae Woong; Lee, Yong Kyung; Kim, Tae Myoung; Nam, Sang-Yoon; Kim, Dae Joong; Yun, Young Won; Kim, Tae Seong; Han, Soon Young

    2007-01-01

    Bisphenol A (BPA), a ubiquitous environmental contaminant, has been shown to cause developmental toxicity and carcinogenic effects. BPA may have physiological activity through estrogen receptor (ER) -α and -β, which are expressed in the central nervous system. We previously found that exposure of BPA to immature mice resulted in behavioral alternation, suggesting that overexposure of BPA could be neurotoxic. In this study, we further investigated the molecular neurotoxic mechanisms of BPA. BPA increased vulnerability (decrease of cell viability and differentiation, and increase of apoptotic cell death) of undifferentiated PC12 cells and cortical neuronal cells isolated from gestation 18 day rat embryos in a concentration-dependent manner (more than 50 µM). The ER antagonists, ICI 182,780, and tamoxifen, did not block these effects. The cell vulnerability against BPA was not significantly different in the PC12 cells overexpressing ER-α and ER-β compared with PC12 cells expressing vector alone. In addition, there was no difference observed between BPA and 17-β estradiol, a well-known agonist of ER receptor in the induction of neurotoxic responses. Further study of the mechanism showed that BPA significantly activated extracellular signal-regulated kinase (ERK) but inhibited anti-apoptotic nuclear factor kappa B (NF-κB) activation. In addition, ERK-specific inhibitor, PD 98,059, reversed BPA-induced cell death and restored NF-κB activity. This study demonstrated that exposure to BPA can cause neuronal cell death which may eventually be related with behavioral alternation in vivo. However, this neurotoxic effect may not be directly mediated through an ER receptor, as an ERK/NF-κB pathway may be more closely involved in BPA-induced neuronal toxicity. PMID:17322771

  3. Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase.

    SciTech Connect

    Misono, K. S.; Philo, J. S.; Arakawa, T.; Ogata, C. M.; Qiu, Y.; Ogawa, H.; Young, H. S.

    2011-06-01

    Atrial natriuretic peptide (ANP) and the homologous B-type natriuretic peptide are cardiac hormones that dilate blood vessels and stimulate natriuresis and diuresis, thereby lowering blood pressure and blood volume. ANP and B-type natriuretic peptide counterbalance the actions of the renin-angiotensin-aldosterone and neurohormonal systems, and play a central role in cardiovascular regulation. These activities are mediated by natriuretic peptide receptor-A (NPRA), a single transmembrane segment, guanylyl cyclase (GC)-linked receptor that occurs as a homodimer. Here, we present an overview of the structure, possible chloride-mediated regulation and signaling mechanism of NPRA and other receptor GCs. Earlier, we determined the crystal structures of the NPRA extracellular domain with and without bound ANP. Their structural comparison has revealed a novel ANP-induced rotation mechanism occurring in the juxtamembrane region that apparently triggers transmembrane signal transduction. More recently, the crystal structures of the dimerized catalytic domain of green algae GC Cyg12 and that of cyanobacterium GC Cya2 have been reported. These structures closely resemble that of the adenylyl cyclase catalytic domain, consisting of a C1 and C2 subdomain heterodimer. Adenylyl cyclase is activated by binding of G{sub s}{alpha} to C2 and the ensuing 7{sup o} rotation of C1 around an axis parallel to the central cleft, thereby inducing the heterodimer to adopt a catalytically active conformation. We speculate that, in NPRA, the ANP-induced rotation of the juxtamembrane domains, transmitted across the transmembrane helices, may induce a similar rotation in each of the dimerized GC catalytic domains, leading to the stimulation of the GC catalytic activity.

  4. The Nicotinic Receptor Alpha7 Impacts the Mouse Lung Response to LPS through Multiple Mechanisms

    PubMed Central

    Enioutina, Elena Y.; Myers, Elizabeth J.; Tvrdik, Petr; Hoidal, John R.; Rogers, Scott W.; Gahring, Lorise C.

    2015-01-01

    The nicotinic acetylcholine receptor alpha7 (α7) is expressed by neuronal and non-neuronal cells throughout the body. We examined the mechanisms of the lung inflammatory response to intranasal (i.n.) lipopolysaccharide (LPS) regulated by α7. This was done in mice using homologous recombination to introduce a point mutation in the α7 receptor that replaces the glutamate residue 260 that lines the pore with alanine (α7E260A), which has been implicated in controlling the exceptional calcium ion conductance of this receptor. The α7E260A mice exhibit normal inflammatory cell recruitment to the blood in response to i.n. LPS administration. This differs from the α7knock-out (α7KO) in which upstream signaling to initiate the recruitment to the blood following i.n. LPS is significantly impaired. While hematopoietic cells are recruited to the bloodstream in the α7E260A mouse, they fail to be recruited efficiently into both the interstitium and alveolar spaces of the lung. Bone marrow reconstitution experiments demonstrate that the responsiveness of both CD45+ and CD45- cells of the α7E260A mouse are impaired. The expression of several pro-inflammatory cytokine and chemokine RNAs including TNFα, IL-1α, Ccl2 and Cxcl10 are decreased in the α7E260A mouse. However, there is a substantial increase in IL-13 expression by CD45- lung interstitial cells in the α7E260A mouse. Our results support the conclusion that α7 functional pleiotropy contributes to modulating the tissue response to an inflammatory insult through impacting upon a variety of mechanisms reflecting the individual cell composition of the lung. PMID:25803612

  5. Protection of salvia miltiorrhiza against aflatoxin-B1-induced hepatocarcinogenesis in Fischer 344 rats dual mechanisms involved.

    PubMed

    Liu, J; Yang, C F; Wasser, S; Shen, H M; Tan, C E; Ong, C N

    2001-06-01

    Extract of Salvia Miltiorrhiza (SM) has been widely used in traditional Chinese medicine for treating liver diseases. Recent experimental evidence indicates that it has anti-tumor potential. In this study, the effect of SM on alfatoxin B1 (AFB1)-induced hepatocarcinogenesis was investigated in male Fischer 344 rats. AFB1 (40 microg/100 g body wt, by gavage) was administered once a week for 24 weeks. In SM treatment group, rats were given SM (0.25g/100g body wt, 5 days/week by gavage) for a total of 28 weeks, including 4 weeks before and 24 weeks during AFB1 exposure. Results showed that the elevation of serum alanine aminotransferase and aspartate aminotransferase activities due to AFB1 dosing was almost completely abolished by the treatment of SM, indicating that SM could prevent AFB1-induced liver cell injury. It was further observed that SM substantially reduced glutathione S-transferase placenta form (GST-P) positive foci formation and GST-P mRNA expression caused by AFB1, which clearly suggests that SM is effective in preventing AFB1-induced hepatocarcinogenesis. Furthermore, the inhibition on AFB1 hepatocarcinigenesis was associated with a corresponding decrease in AFB1-DNA adducts formation as well as AFB1-induced oxidative DNA damage (8-hydroxydeoxyguanosine) in rat liver. Our results also indicate that the protective effect of SM might be mediated through dual mechanisms: (i) the enhancement of AFB1 detoxification pathway, especially the induction of GST-Yc2 mRNA expression, and (ii) the antioxidant property of SM. PMID:11441922

  6. Exploring the Molecular Mechanisms of Glucocorticoid Receptor Action from Sensitivity to Resistance

    PubMed Central

    Ramamoorthy, Sivapriya; Cidlowski, John A.

    2016-01-01

    Glucocorticoids regulate a variety of physiological processes, and are commonly used to treat disorders of inflammation, autoimmune diseases, and cancer. Glucocorticoid action is predominantly mediated through the classic glucocorticoid receptor (GR), but sensitivity to glucocorticoids varies among individuals, and even within different tissues from the same individual. The molecular basis of this phenomenon can be partially explained through understanding the process of generating bioavailable ligand and the molecular heterogeneity of the GR. The molecular mechanisms that regulate glucocorticoid action highlight the dynamic nature of hormone signaling and provide novel insights into genomic glucocorticoid actions and glucocorticoid sensitivity. Although glucocorticoids are highly effective for therapeutic purposes, long-term and/or high-dose glucocorticoid administration often leads to reduced glucocorticoid sensitivity or resistance. Here, we summarize our current understanding of the mechanisms that modulate glucocorticoid sensitivity and resistance with a focus on GR-mediated signaling. PMID:23392094

  7. Emerging Mechanisms of Resistance to Androgen Receptor Inhibitors in Prostate Cancer

    PubMed Central

    Arora, Vivek K.

    2016-01-01

    Preface Over the past ten years, preclinical studies implicating sustained androgen receptor (AR) signaling as the primary driver of castration resistant prostate cancer (CRPC) led to the development of novel agents targeting the AR pathway that are now in widespread clinical use. These drugs prolong survival of patients with late stage prostate cancer but are not curative. In this review, we highlight emerging mechanisms of acquired resistance to these contemporary therapies, which fall into the three broad categories of restored AR signaling, AR bypass signaling and complete AR independence. This diverse spectrum of resistance mechanisms presents new challenges for long term disease control, which may be addressable through early use of combination therapies guided by recent insights from genomic landscape studies of CRPC. PMID:26563462

  8. [The mechanism of progression without androgen receptor interaction in prostate cancer].

    PubMed

    Matsuyama, Hideyasu; Matsumoto, Hiroaki

    2016-01-01

    Recently, new generation androgen receptor (AK) targeted agents enzautamide or abiraterone etc.) has been clinically utilized in patients with castration-resistant prostate cancer (CRPC). However, metastatic CRPC has also AR-independent survival pathway which leads to lethal phenotype by either adaptation or clonal selection resistant mechanism after AR targeted therapy. There are many studies regarding the progression mechanisms without AR signal transduction, such as growth factor, anti-apoptotic factor, and PTEN/mTOR pathway and so on. Also, cancer microenvironment and cancer stem cell is a hot research area for CRPC. It is very important to repress both AR-dependent and -independent signaling pathway to improve the clinical outcome in CRPC patients. Application of the new technology, such as next generation sequencing, would be developing for the prostate cancer research, providing pre-clinical proof-of-principle as a promising approach in CRPC. PMID:26793881

  9. Basolateral EGF receptor sorting regulated by functionally distinct mechanisms in renal epithelial cells.

    PubMed

    Cotton, Calvin U; Hobert, Michael E; Ryan, Sean; Carlin, Cathleen R

    2013-03-01

    Proliferation of epithelial tissues is controlled by polarized distribution of signaling receptors including the EGF receptor (EGFR). In kidney, EGFRs are segregated from soluble ligands present in apical fluid of nephrons by selective targeting to basolateral membranes. We have shown previously that the epithelial-specific clathrin adaptor AP1B mediates basolateral EGFR sorting in established epithelia. Here we show that protein kinase C (PKC)-dependent phosphorylation of Thr654 regulates EGFR polarity as epithelial cells form new cell-cell junctional complexes. The AP1B-dependent pathway does not override a PKC-resistant T654A mutation, and conversely AP1B-defective EGFRs sort basolaterally by a PKC-dependent mechanism, in polarizing cells. Surprisingly, EGFR mutations that interfere with these different sorting pathways also produce very distinct phenotypes in three-dimensional organotypic cultures. Thus EGFRs execute different functions depending on the basolateral sorting route. Many renal disorders have defects in cell polarity and the notion that apically mislocalized EGFRs promote proliferation is still an attractive model to explain many aspects of polycystic kidney disease. Our data suggest EGFR also integrates various aspects of polarity by switching between different basolateral sorting programs in developing epithelial cells. Fundamental knowledge of basic mechanisms governing EGFR sorting therefore provides new insights into pathogenesis and advances drug discovery for these renal disorders. PMID:23205726

  10. Cell-intrinsic mechanisms of temperature compensation in a grasshopper sensory receptor neuron.

    PubMed

    Roemschied, Frederic A; Eberhard, Monika Jb; Schleimer, Jan-Hendrik; Ronacher, Bernhard; Schreiber, Susanne

    2014-01-01

    Changes in temperature affect biochemical reaction rates and, consequently, neural processing. The nervous systems of poikilothermic animals must have evolved mechanisms enabling them to retain their functionality under varying temperatures. Auditory receptor neurons of grasshoppers respond to sound in a surprisingly temperature-compensated manner: firing rates depend moderately on temperature, with average Q10 values around 1.5. Analysis of conductance-based neuron models reveals that temperature compensation of spike generation can be achieved solely relying on cell-intrinsic processes and despite a strong dependence of ion conductances on temperature. Remarkably, this type of temperature compensation need not come at an additional metabolic cost of spike generation. Firing rate-based information transfer is likely to increase with temperature and we derive predictions for an optimal temperature dependence of the tympanal transduction process fostering temperature compensation. The example of auditory receptor neurons demonstrates how neurons may exploit single-cell mechanisms to cope with multiple constraints in parallel.DOI: http://dx.doi.org/10.7554/eLife.02078.001. PMID:24843016

  11. Cell-intrinsic mechanisms of temperature compensation in a grasshopper sensory receptor neuron

    PubMed Central

    Roemschied, Frederic A; Eberhard, Monika JB; Schleimer, Jan-Hendrik; Ronacher, Bernhard; Schreiber, Susanne

    2014-01-01

    Changes in temperature affect biochemical reaction rates and, consequently, neural processing. The nervous systems of poikilothermic animals must have evolved mechanisms enabling them to retain their functionality under varying temperatures. Auditory receptor neurons of grasshoppers respond to sound in a surprisingly temperature-compensated manner: firing rates depend moderately on temperature, with average Q10 values around 1.5. Analysis of conductance-based neuron models reveals that temperature compensation of spike generation can be achieved solely relying on cell-intrinsic processes and despite a strong dependence of ion conductances on temperature. Remarkably, this type of temperature compensation need not come at an additional metabolic cost of spike generation. Firing rate-based information transfer is likely to increase with temperature and we derive predictions for an optimal temperature dependence of the tympanal transduction process fostering temperature compensation. The example of auditory receptor neurons demonstrates how neurons may exploit single-cell mechanisms to cope with multiple constraints in parallel. DOI: http://dx.doi.org/10.7554/eLife.02078.001 PMID:24843016

  12. Basolateral EGF receptor sorting regulated by functionally distinct mechanisms in renal epithelial cells

    PubMed Central

    Cotton, Calvin U.; Hobert, Michael E.; Ryan, Sean; Carlin, Cathleen R.

    2014-01-01

    Proliferation of epithelial tissues is controlled by polarized distribution of signaling receptors including the EGF receptor (EGFR). In kidney, EGFRs are segregated from soluble ligands present in apical fluid of nephrons by selective targeting to basolateral membranes. We have shown previously that the epithelial-specific clathrin adaptor AP1B mediates basolateral EGFR sorting in established epithelia. Here we show that protein kinase C (PKC)-dependent phosphorylation of Thr654 regulates EGFR polarity as epithelial cells form new cell-cell junctional complexes. The AP1B-dependent pathway does not override a PKC-resistant T654A mutation, and conversely AP1B-defective EGFRs sort basolaterally by a PKC-dependent mechanism, in polarizing cells. Surprisingly, EGFR mutations that interfere with these different sorting pathways also produce very distinct phenotypes in three-dimensional organotypic cultures. Thus EGFRs execute different functions depending on the basolateral sorting route. Many renal disorders have defects in cell polarity and the notion that apically mislocalized EGFRs promote proliferation is still an attractive model to explain many aspects of polycystic kidney disease. Our data suggest EGFR also integrates various aspects of polarity by switching between different BL sorting programs in developing epithelial cells. Fundamental knowledge of basic mechanisms governing EGFR sorting therefore provides new insights into pathogenesis and advances drug discovery for these renal disorders. PMID:23205726

  13. Receptor Pre-Clustering and T cell Responses: Insights into Molecular Mechanisms

    PubMed Central

    Castro, Mario; van Santen, Hisse M.; Férez, María; Alarcón, Balbino; Lythe, Grant; Molina-París, Carmen

    2014-01-01

    T cell activation, initiated by T cell receptor (TCR) mediated recognition of pathogen-derived peptides presented by major histocompatibility complex class I or II molecules (pMHC), shows exquisite specificity and sensitivity, even though the TCR–pMHC binding interaction is of low affinity. Recent experimental work suggests that TCR pre-clustering may be a mechanism via which T cells can achieve such high sensitivity. The unresolved stoichiometry of the TCR makes TCR–pMHC binding and TCR triggering, an open question. We formulate a mathematical model to characterize the pre-clustering of T cell receptors (TCRs) on the surface of T cells, motivated by the experimentally observed distribution of TCR clusters on the surface of naive and memory T cells. We extend a recently introduced stochastic criterion to compute the timescales of T cell responses, assuming that ligand-induced cross-linked TCR is the minimum signaling unit. We derive an approximate formula for the mean time to signal initiation. Our results show that pre-clustering reduces the mean activation time. However, additional mechanisms favoring the existence of clusters are required to explain the difference between naive and memory T cell responses. We discuss the biological implications of our results, and both the compatibility and complementarity of our approach with other existing mathematical models. PMID:24817867

  14. Peripheral mechanisms of neuropathic pain – involvement of lysophosphatidic acid receptor-mediated demyelination

    PubMed Central

    Ueda, Hiroshi

    2008-01-01

    Recent advances in pain research provide a clear picture for the molecular mechanisms of acute pain; substantial information concerning plasticity that occurs during neuropathic pain has also become available. The peripheral mechanisms responsible for neuropathic pain are found in the altered gene/protein expression of primary sensory neurons. With damage to peripheral sensory fibers, a variety of changes in pain-related gene expression take place in dorsal root ganglion neurons. These changes, or plasticity, might underlie unique neuropathic pain-specific phenotype modifications – decreased unmyelinated-fiber functions, but increased myelinated A-fiber functions. Another characteristic change is observed in allodynia, the functional change of tactile to nociceptive perception. Throughout a series of studies, using novel nociceptive tests to characterize sensory-fiber or pain modality-specific nociceptive behaviors, it was demonstrated that communication between innocuous and noxious sensory fibers might play a role in allodynia mechanisms. Because neuropathic pain in peripheral and central demyelinating diseases develops as a result of aberrant myelination in experimental animals, demyelination seems to be a key mechanism of plasticity in neuropathic pain. More recently, we discovered that lysophosphatidic acid receptor activation initiates neuropathic pain, as well as possible peripheral mechanims of demyelination after nerve injury. These results lead to further hypotheses of physical communication between innocuous Aβ- and noxious C- or Aδ-fibers to influence the molecular mechanisms of allodynia. PMID:18377664

  15. Pregnane X receptor activation and silencing promote steatosis of human hepatic cells by distinct lipogenic mechanisms.

    PubMed

    Bitter, Andreas; Rümmele, Petra; Klein, Kathrin; Kandel, Benjamin A; Rieger, Jessica K; Nüssler, Andreas K; Zanger, Ulrich M; Trauner, Michael; Schwab, Matthias; Burk, Oliver

    2015-11-01

    In addition to its well-characterized role in the regulation of drug metabolism and transport by xenobiotics, pregnane X receptor (PXR) critically impacts on lipid homeostasis. In mice, both ligand-dependent activation and knockout of PXR were previously shown to promote hepatic steatosis. To elucidate the respective pathways in human liver, we generated clones of human hepatoma HepG2 cells exhibiting different PXR protein levels, and analyzed effects of PXR activation and knockdown on steatosis and expression of lipogenic genes. Ligand-dependent activation as well as knockdown of PXR resulted in increased steatosis in HepG2 cells. Activation of PXR induced the sterol regulatory element-binding protein (SREBP) 1-dependent lipogenic pathway via PXR-dependent induction of SREBP1a, which was confirmed in primary human hepatocytes. Inhibiting SREBP1 activity by blocking the cleavage-dependent maturation of SREBP1 protein impaired the induction of lipogenic SREBP1 target genes and triglyceride accumulation by PXR activation. On the other hand, PXR knockdown resulted in up-regulation of aldo-keto reductase (AKR) 1B10, which enhanced the acetyl-CoA carboxylase (ACC)-catalyzed reaction step of de novo lipogenesis. In a cohort of human liver samples histologically classified for non-alcoholic fatty liver disease, AKR1B10, SREBP1a and SREBP1 lipogenic target genes proved to be up-regulated in steatohepatitis, while PXR protein was reduced. In summary, our data suggest that activation and knockdown of PXR in human hepatic cells promote de novo lipogenesis and steatosis by induction of the SREBP1 pathway and AKR1B10-mediated increase of ACC activity, respectively, thus providing mechanistic explanations for a putative dual role of PXR in the pathogenesis of steatohepatitis. PMID:25182422

  16. Prophylactic effects of the histamine H1 receptor antagonist epinastine and the dual thromboxane A2 receptor and chemoattractant receptor-homologous molecule expressed on Th2 cells antagonist ramatroban on allergic rhinitis model in mice.

    PubMed

    Suzuki, Yuh; Inoue, Toshio; Yamamoto, Atsuki; Sugimoto, Yukio

    2011-01-01

    The prophylactic use of anti-allergic drugs has been proposed to be effective in the treatment of seasonal allergic rhinitis in humans. However, there is little information regarding the prophylactic effect of thromboxane A(2) (TXA(2)) receptor antagonist on allergic rhinitis. Recent studies revealed that a TXA(2) receptor antagonist ramatroban could block the prostaglandin D(2) (PGD(2)) receptor and chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). In the present study, we investigated the prophylactic effects of the histamine H(1) receptor antagonist epinastine and the TXA(2) receptor antagonist ramatroban and seratrodast on mouse models of allergic rhinitis. Female BALB/c mice were sensitized by an intraperitoneal injection of ovalbumin and alum on days 0, 5, 14 and 21. Seven days later, mice were sensitized by intranasal application of ovalbumin thrice a week. Drugs were administered once a day from day 22. The severity of allergic rhinitis was assessed by determining the extent of 2 nasal allergic symptoms (sneezing and nasal rubbing). Histamine sensitivity and eosinophil infiltration into the nasal mucosa were also determined. Epinastine and ramatroban significantly reduced nasal symptoms and the number of eosinophils in the nasal mucosa. Seratrodast showed no effect on nasal symptoms and eosinophil infiltration into the nasal mucosa. In addition, histamine sensitivity was reduced by epinastine and ramatroban. These results indicate that epinastine and ramatroban induce the prophylactic effect on allergic rhinitis. PMID:21467637

  17. Dual Role of the Tyrosine Kinase Syk in Regulation of Toll-Like Receptor Signaling in Plasmacytoid Dendritic Cells

    PubMed Central

    Aouar, Besma; Kovarova, Denisa; Letard, Sebastien; Font-Haro, Albert; Florentin, Jonathan; Weber, Jan; Durantel, David; Chaperot, Laurence; Plumas, Joel; Trejbalova, Katerina; Hejnar, Jiri; Nunès, Jacques A.; Olive, Daniel; Dubreuil, Patrice

    2016-01-01

    Crosslinking of regulatory immunoreceptors (RR), such as BDCA-2 (CD303) or ILT7 (CD85g), of plasmacytoid dendritic cells (pDCs) efficiently suppresses production of type-I interferon (IFN)-α/β and other cytokines in response to Toll-like receptor (TLR) 7/9 ligands. This cytokine-inhibitory pathway is mediated by spleen tyrosine kinase (Syk) associated with the ITAM-containing adapter of RR. Here we demonstrate by pharmacological targeting of Syk that in addition to the negative regulation of TLR7/9 signaling via RR, Syk also positively regulates the TLR7/9 pathway in human pDCs. Novel highly specific Syk inhibitor AB8779 suppressed IFN-α, TNF-α and IL-6 production induced by TLR7/9 agonists in primary pDCs and in the pDC cell line GEN2.2. Triggering of TLR9 or RR signaling induced a differential kinetics of phosphorylation at Y352 and Y525/526 of Syk and a differential sensitivity to AB8779. Consistent with the different roles of Syk in TLR7/9 and RR signaling, a concentration of AB8779 insufficient to block TLR7/9 signaling still released the block of IFN-α production triggered via the RR pathway, including that induced by hepatitis B and C viruses. Thus, pharmacological targeting of Syk partially restored the main pDC function—IFN-α production. Opposing roles of Syk in TLR7/9 and RR pathways may regulate the innate immune response to weaken inflammation reaction. PMID:27258042

  18. Low concentrations of bisphenol a suppress thyroid hormone receptor transcription through a nongenomic mechanism

    SciTech Connect

    Sheng, Zhi-Guo; Tang, Yuan; Liu, Yu-Xiang; Yuan, Ye; Zhao, Bao-Quan; Chao, Xi-Juan; Zhu, Ben-Zhan

    2012-02-15

    Bisphenol (BPA) is one of the highest-volume chemicals produced worldwide, and human exposure to BPA is thought to be ubiquitous. Various rodent and in vitro studies have shown that thyroid hormone (TH) function can be impaired by BPA. However, it is still unknown if low concentrations of BPA can suppress the thyroid hormone receptor (TR) transcription. The present study aims to investigate the possible suppressing effects of low concentrations of BPA on TR transcription and the involved mechanism(s) in CV-1 cells derived from cercopithecus aethiops monkey kidneys. Using gene reporter assays, BPA at concentrations as low as 10{sup −9} M suppresses TR or steroid receptor coactivator-1(SRC-1)-enhanced TR transcription, but not reducing TR/SRC-1 interaction in mammalian two-hybrid and glutathione S-transferase pull-down studies. It has been further shown that both nuclear receptor co-repressor (N-CoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) are recruited to the TR-β1 by BPA in the presence of physiologic concentrations of T3 or T4. However, the overexpression of β3 integrin or c-Src significantly reduces BPA-induced recruitment of N-CoR/SMRT to TR or suppression of TR transcription. Furthermore, BPA inhibits the T3/T4-mediated interassociation of the β3 integrin/c-Src/MAPK/TR-β1 pathways by the co-immunoprecipitation. These results indicate that low concentrations of BPA suppress the TR transcription by disrupting physiologic concentrations of T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways, followed by recruiting N-CoR/SMRT to TR-β1, providing a novel insight regarding the TH disruption effects of low concentration BPA. -- Highlights: ► Environmentally relevant concentrations of BPA suppress TR transcription. ► BPA recruits the N-CoR/SMRT to TR under the physiologic concentrations of T3/T4. ► BPA disrupts T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways.

  19. Uterine Epithelial Estrogen Receptor-α Controls Decidualization via a Paracrine Mechanism.

    PubMed

    Pawar, S; Laws, M J; Bagchi, I C; Bagchi, M K

    2015-09-01

    Steroid hormone-regulated differentiation of uterine stromal cells, known as decidualization, is essential for embryo implantation. The role of the estrogen receptor-α (ESR1) during this differentiation process is unclear. Development of conditional Esr1-null mice showed that deletion of this gene in both epithelial and stromal compartments of the uterus leads to a complete blockade of decidualization, indicating a critical role of ESR1 during this process. To further elucidate the cell type-specific function of ESR1 in the uterus, we created WE(d/d) mice in which Esr1 is ablated in uterine luminal and glandular epithelia but is retained in the stroma. Uteri of WE(d/d) mice failed to undergo decidualization, indicating that epithelial ESR1 contributes to stromal differentiation via a paracrine mechanism. We noted markedly reduced production of the leukemia inhibitory factor (LIF) in WE(d/d) uteri. Supplementation with LIF restored decidualization in WE(d/d) mice. Our study indicated that LIF acts synergistically with progesterone to induce the expression of Indian hedgehog (IHH) in uterine epithelium and its receptor patched homolog 1 in the stroma. IHH then induces the expression of chicken ovalbumin upstream promoter-transcription factor II, a transcription factor that promotes stromal differentiation. To address the mechanism by which LIF induces IHH expression, we used mice lacking uterine epithelial signal transducer and activator of transcription 3, a well-known mediator of LIF signaling. Our study revealed that LIF-mediated induction of IHH occurs without the activation of epithelial signal transducer and activator of transcription 3 but uses an alternate pathway involving the activation of the ERK1/2 kinase. Collectively our results provide unique insights into the paracrine mechanisms by which ESR1 directs epithelial-stromal dialogue during pregnancy establishment. PMID:26241389

  20. Boldine enhances bile production in rats via osmotic and Farnesoid X receptor dependent mechanisms

    SciTech Connect

    Cermanova, Jolana; Kadova, Zuzana; Zagorova, Marie; Hroch, Milos; Tomsik, Pavel; Nachtigal, Petr; Kudlackova, Zdenka; Pavek, Petr; Dubecka, Michaela; Ceckova, Martina; Staud, Frantisek; Laho, Tomas; Micuda, Stanislav

    2015-05-15

    Boldine, the major alkaloid from the Chilean Boldo tree, is used in traditional medicine to support bile production, but evidence to support this function is controversial. We analyzed the choleretic potential of boldine, including its molecular background. The acute- and long-term effects of boldine were evaluated in rats either during intravenous infusion or after 28-day oral treatment. Infusion of boldine instantly increased the bile flow 1.4-fold in healthy rats as well as in animals with Mrp2 deficiency or ethinylestradiol induced cholestasis. This effect was not associated with a corresponding increase in bile acid or glutathione biliary excretion, indicating that the effect is not related to stimulation of either bile acid dependent or independent mechanisms of bile formation and points to the osmotic activity of boldine itself. We subsequently analyzed bile production under conditions of changing biliary excretion of boldine after bolus intravenous administration and found strong correlations between both parameters. HPLC analysis showed that bile concentrations of boldine above 10 μM were required for induction of choleresis. Importantly, long-term pretreatment, when the bile collection study was performed 24-h after the last administration of boldine, also accelerated bile formation despite undetectable levels of the compound in bile. The effect paralleled upregulation of the Bsep transporter and increased biliary clearance of its substrates, bile acids. We consequently confirmed the ability of boldine to stimulate the Bsep transcriptional regulator, FXR receptor. In conclusion, our study clarified the mechanisms and circumstances surrounding the choleretic activity of boldine. - Highlights: • Boldine may increase bile production by direct as well as indirect mechanisms. • Biliary concentrations of boldine above 10 μM directly stimulate bile production. • Long-term oral boldine administration increases bile acid (BA) biliary secretion. • Boldine

  1. Dual effects of daidzein on chicken hepatic vitellogenin II expression and estrogen receptor-mediated transactivation in vitro.

    PubMed

    Ni, Ying-Dong; Hong, Wen-Jie; Zhou, Yu-Chuan; Grossmann, Roland; Zhao, Ru-Qian

    2010-03-01

    Two in vitro systems were employed to delineate the estrogenic activity of daidzein (Da), alone or in combination with high or low concentrations of estrogen in two cell types possessing different estrogen-receptor (ER) isoforms, ERalpha and/or ERbeta: (1) vitellogenin II (VTG), the egg yolk precursor protein and the endpoint biomarker for estrogenicity, in chicken primary hepatocytes, and (2) CHO-K1 cells transiently co-transfected with ERalpha or ERbeta and estrogen-response elements (ERE) linked to a luciferase reporter gene. Da (100 microM) alone induced VTG mRNA expression in chicken hepatocytes, albeit with much less potency compared to estradiol (E(2)). Da exhibited different effects in the presence of 1 microM and 10 microM E(2). At a concentration of 100 microM, Da enhanced 1 microM E(2)-induced VTG transcription by 2.4-fold, but significantly inhibited 10 microM E(2)-induced VTG mRNA expression in a dose-dependent fashion from 1 to 100 microM. Tamoxifen completely blocked the estrogenic effect of daidzein, alone or in combination with 1 microM of E(2), but did not influence its anti-estrogenic effect on 10 microM E(2)-induced VTG mRNA expression. Furthermore, neither E(2) nor daidzein, alone or in combination, affected ERalpha mRNA expression, yet all the treatments significantly up-regulated ERbeta mRNA expression in chicken hepatocytes. E(2) effectively triggered estrogen-response elements (ERE)-driven reporter gene transactivation in CHO-K1 cells expressing ERalpha or ERbeta and showed much greater potency with ERalpha than with ERbeta. In contrast, daidzein was 1000 times more powerful in stimulating ERbeta- over ERalpha-mediated transactivation. Daidzein, in concentrations ranging from 5 nM to 50 microM, did not affect ERbeta-mediated transactivation induced by 1 nM E(2), but it significantly inhibited ERbeta-mediated transactivation induced by 10 nM E(2) at 500 nM. Despite the tremendous difference in sensitivity between the two in vitro systems

  2. Brain-derived neurotrophic factor acutely enhances tyrosine phosphorylation of the AMPA receptor subunit GluR1 via NMDA receptor-dependent mechanisms.

    PubMed

    Wu, Kuo; Len, Guo-Wei; McAuliffe, Geoff; Ma, Chia; Tai, Jessica P; Xu, Fei; Black, Ira B

    2004-11-01

    Brain-derived growth factor (BDNF) acutely regulates synaptic transmission and modulates hippocampal long-term potentiation (LTP) and long-term depression (LTD), cellular models of plasticity associated with learning and memory. Our previous studies revealed that BDNF rapidly increases phosphorylation of NMDA receptor subunits NR1 and NR2B in the postsynaptic density (PSD), potentially linking receptor phosphorylation to synaptic plasticity. To further define molecular mechanisms governing BDNF actions, we examined tyrosine phosphorylation of GluR1, the most well-characterized subunit of AMPA receptors. Initially, we investigated synaptoneurosomes that contain intact pre- and postsynaptic elements. Incubation of synaptoneurosomes with BDNF for 5 min increased tyrosine phosphorylation of GluR1 in a dose-dependent manner, with a maximal, 4-fold enhancement at 10 ng/ml BDNF. NGF had no effects, suggesting the specificity of BDNF actions. Subsequently, we found that BDNF elicited a maximal, 2.5-fold increase in GluR1 phosphorylation in the PSD at 250 ng/ml BDNF within 5 min, suggesting that BDNF enhances the phosphorylation through postsynaptic mechanisms. Activation of trkB receptors was critical as k252-a, an inhibitor of trk receptor tyrosine kinase, blocked the BDNF-activated GluR1 phosphorylation. In addition, AP-5 and MK 801, NMDA receptor antagonists, blocked BDNF enhancement of phosphorylation in synaptoneurosomes or PSDs. Conversely, NMDA, the specific receptor agonist, evoked respective 3.8- and 2-fold increases in phosphorylation in synaptoneurosomes and PSDs within 5 min, mimicking the effects of BDNF. These findings raise the possibility that BDNF modulates GluR1 activity via changes in NMDA receptor function. Moreover, incubation of synaptoneurosomes or PSDs with BDNF and ifenprodil, a specific NR2B antagonist, reproduced the results of AP-5 and MK-801. Finally, coexposure of synaptoneurosomes or PSDs to BDNF and NMDA was not additive, suggesting that

  3. Effect of Annealing Temperature on Microstructure and Mechanical Properties of Bulk 316L Stainless Steel with Nano- and Micro-crystalline Dual Phases

    NASA Astrophysics Data System (ADS)

    La, Peiqing; Wei, Fuan; Lu, Xuefeng; Chu, Chenggang; Wei, Yupeng; Wang, Hongding

    2014-10-01

    Microstructures and mechanical properties of 316L stainless steels with dual phases austenite prepared by an aluminothermic reaction casting were explored. It is found that the steels consist of nano- and micro-crystalline austenite phases, a little δ ferrite and contaminations. Before and after annealing at 1073 K and 1273 K (800 °C and 1000 °C), average grain sizes of the nanocrystalline austenite phase are about 32, 31, 38 nm, respectively. Tensile strength increases first from 371 to 640 MPa and then decreases to 454 MPa. However, elongation ratio increases gradually from 16 to 23 and then 31 pct after annealing. The results illustrate that the steel after annealing at 1073 K (800 °C) has better properties, also indicating that combination of dual nano- and micro-crystalline austenite phase is conductive to improving tensile properties of materials.

  4. Dual modulation of both lipid oxidation and synthesis by peroxisome proliferator-activated receptor-γ coactivator-1α and -1β in cultured myotubes

    PubMed Central

    Espinoza, Daniel O.; Boros, Laszlo G.; Crunkhorn, Sarah; Gami, Hiral; Patti, Mary-Elizabeth

    2010-01-01

    The peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) family is a key regulator of mitochondrial function, and reduced mRNA expression may contribute to muscle lipid accumulation in obesity and type 2 diabetes. To characterize the effects of PGC-1 on lipid metabolism, we overexpressed PGC-1α and PGC-1β in C2C12 myotubes using adenoviral vectors. Both PGC-1α and -1β increased palmitate oxidation [31% (P<0.01) and 26% (P<0.05), respectively] despite reductions in cellular uptake [by 6% (P<0.05) and 21% (P<0.001)]. Moreover, PGC-1α and -1β increased mRNA expression of genes regulating both lipid oxidation (e.g., CPT1b and ACADL/M) and synthesis (FAS, CS, ACC1/2, and DGAT1). To determine the net effect, we assessed lipid composition in PGC-1-expressing cells. Total lipid content decreased by 42% in palmitate-loaded serum-starved cells overexpressing PGC-1α (P<0.05). In contrast, in serum-replete cells, total lipid content was not significantly altered, but fatty acids C14:0, C16:0, C18:0, and C18:1 were increased 2- to 4-fold for PGC-1α/β (P<0.05). Stable isotope-based dynamic metabolic profiling in serum-replete cells labeled with 13C substrates revealed both increased de novo fatty acid synthesis from glucose and increased fatty acid synthesis by chain elongation with either PGC-1α or -1β expression. These results indicate that PGC-1 can promote both lipid oxidation and synthesis, with net balance determined by the nutrient/hormonal environment.—Espinoza, D. O., Boros, L. G., Crunkhorn, S., Gami, H., Patti, M.-E. Dual Modulation of both lipid oxidation and synthesis by peroxisome proliferator-activated receptor-γ coactivator-1α and -1β in cultured myotubes. PMID:19906680

  5. Rapid, Opioid-sensitive Mechanisms Involved in Transient Receptor Potential Vanilloid 1 Sensitization*S⃞

    PubMed Central

    Vetter, Irina; Cheng, Wei; Peiris, Madusha; Wyse, Bruce D.; Roberts-Thomson, Sarah J.; Zheng, Jie; Monteith, Gregory R.; Cabot, Peter J.

    2008-01-01

    TRPV1 is a nociceptive, Ca2+-selective ion channel involved in the development of several painful conditions. Sensitization of TRPV1 responses by cAMP-dependent PKA crucially contributes to the development of inflammatory hyperalgesia. However, the pathways involved in potentiation of TRPV1 responses by cAMP-dependent PKA remain largely unknown. Using HEK cells stably expressing TRPV1 and the μ opioid receptor, we demonstrated that treatment with the adenylate cyclase activator forskolin significantly increased the multimeric TRPV1 species. Pretreatment with the μ opioid receptor agonist morphine reversed this increased TRPV1 multimerization. FRET analysis revealed that treatment with forskolin did not cause multimerization of pre-existing TRPV1 monomers on the plasma membrane and that intracellular pools of TRPV1 exist mostly as monomers in this model. This suggests that increased TRPV1 multimerization occurred from an intracellular store of inactive TRPV1 monomers. Treatment with forskolin also caused an increase in TRPV1 expression on the plasma membrane not resulting from increased TRPV1 expression, and this rapid TRPV1 translocation was inhibited by treatment with morphine. Thus, potentiation of TRPV1 responses by cAMP-dependent PKA involves plasma membrane insertion of functional TRPV1 multimers formed from an intracellular store of inactive TRPV1 monomers. This potentiation occurs rapidly and can be dynamically modulated by activation of the μ opioid receptor under conditions where cAMP levels are raised, such as with inflammation. Increased translocation and multimerization of TRPV1 channels provide a cellular mechanism for finetuning of nociceptive responses that allow for rapid modulation of TRPV1 responses independent of transcriptional changes. PMID:18482991

  6. Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanisms and therapeutic potential.

    PubMed

    Mony, Laetitia; Kew, James N C; Gunthorpe, Martin J; Paoletti, Pierre

    2009-08-01

    N-methyl-D-aspartate receptors (NMDARs) are ion channels gated by glutamate, the major excitatory neurotransmitter in the mammalian central nervous system (CNS). They are widespread in the CNS and are involved in numerous physiological and pathological processes including synaptic plasticity, chronic pain and psychosis. Aberrant NMDAR activity also plays an important role in the neuronal loss associated with ischaemic insults and major degenerative disorders including Parkinson's and Alzheimer's disease. Agents that target and alter NMDAR function may, thus, have therapeutic benefit. Interestingly, NMDARs are endowed with multiple extracellular regulatory sites that recognize ions or small molecule ligands, some of which are likely to regulate receptor function in vivo. These allosteric sites, which differ from agonist-binding and channel-permeation sites, provide means to modulate, either positively or negatively, NMDAR activity. The present review focuses on allosteric modulation of NMDARs containing the NR2B subunit. Indeed, the NR2B subunit confers a particularly rich pharmacology with distinct recognition sites for exogenous and endogenous allosteric ligands. Moreover, NR2B-containing receptors, compared with other NMDAR subtypes, appear to contribute preferentially to pathological processes linked to overexcitation of glutamatergic pathways. The actions of extracellular H+, Mg2+, Zn2+, of polyamines and neurosteroids, and of the synthetic compounds ifenprodil and derivatives ('prodils') are presented. Particular emphasis is put upon the structural determinants and molecular mechanisms that underlie the effects exerted by these agents. A better understanding of how NR2B-containing NMDARs (and NMDARs in general) operate and how they can be modulated should help define new strategies to counteract the deleterious effects of dysregulated NMDAR activity. PMID:19594762

  7. Midazolam Ameliorates the Behavior Deficits of a Rat Posttraumatic Stress Disorder Model through Dual 18 kDa Translocator Protein and Central Benzodiazepine Receptor and Neurosteroidogenesis

    PubMed Central

    Fang, Wei-Wu; Liu, Yan; Liu, Ji; Li, Bao-Wei; Wu, Wei; Li, Yun-Feng

    2014-01-01

    Post-traumatic stress disorder (PTSD) is a debilitating anxiety disorder that may develop after an individual has experienced or witnessed a severe traumatic event. It has been shown that the 18 kDa translocator protein (TSPO) may be correlated with PTSD and that the TSPO ligand improved the behavioral deficits in a mouse model of PTSD. Midazolam, a ligand for TSPO and central benzodiazepine receptor (CBR), induces anxiolytic- and anti-depressant-like effects in animal models. The present study aimed to determine whether midazolam ameliorates PTSD behavior in rats as assessed by the single prolonged stress (SPS) model. The SPS rats received daily Sertraline (Ser) (15 mg/kg, p.o.) and midazolam (0.125, 0.25, 0.5, and 1 mg/kg, p.o.) during the exposure to SPS and behavioral assessments, which included the open field (OF) test, the contextual fear paradigm (CFP), and the elevated plus-maze (EPM). The results showed that, like Ser (15 mg/kg, p.o.), midazolam (0.25 and 0.5 mg/kg, p.o.) significantly reversed the behavioral deficiencies of the SPS rats, including PTSD-associated freezing and anxiety-like behavior but not the effects on spontaneous locomotor activity. In addition, the anti-PTSD effects of midazolam (0.5 mg/kg, p.o.) were antagonized by the TSPO antagonist PK11195 (3 mg/kg, i.p.), the CBR antagonist flumazenil (15 mg/kg, p.o.) and the inhibitor of steroidogenic enzymes finasteride (30 mg/kg, p.o.), which by themselves had no effect on PTSD-associated freezing and anxiety-like behavior. In summary, this study demonstrated that midazolam improves the behavioral deficits in the SPS model through dual TSPO and CBR and neurosteroidogenesis. PMID:24988461

  8. Macitentan, a dual endothelin receptor antagonist for the treatment of pulmonary arterial hypertension, does not affect cardiac repolarization in healthy subjects.

    PubMed

    Lindegger, Nicolas; Sidharta, Patricia N; Reseski, Kathrin; Dingemanse, Jasper

    2014-10-01

    Macitentan is an orally active dual endothelin receptor antagonist, which demonstrated a reduction of the risk of morbidity/mortality events in pulmonary arterial hypertension patients. This double-blind, randomized, placebo- and positive-controlled, four-way crossover thorough QTc study was designed to investigate the effects of therapeutic and supratherapeutic doses of macitentan on cardiac repolarization in healthy male and female subjects. Each subject received the following treatments: moxifloxacin 400 mg, macitentan 10 mg, macitentan 30 mg, and placebo. Each treatment period lasted 9 days and was followed by at least 10 days of washout. The primary endpoint of this study was the baseline-adjusted, placebo-corrected QT interval corrected using the Fridericia method (ΔΔQTcF). Pharmacokinetic (PK), safety, and tolerability assessments were performed during each treatment. A total of 64 subjects were randomized. The upper bound of the 2-sided 90% confidence interval for ΔΔQTcF following macitentan was <10 ms at all time points and no correlation was observed between ΔΔQTcF and PK parameters. Findings in the analysis of the morphological patterns of the ECGs were randomly distributed across all treatments and did not indicate an association with macitentan. Macitentan was well tolerated in this study. Headache and nasopharyngitis were the most frequently reported adverse events. No effects on clinical laboratory and vital signs parameters were observed. In summary, repeated doses of macitentan 10 mg and 30 mg did not indicate any pro-arrhythmic potential. PMID:24813561

  9. EGFRvIII-mediated transactivation of receptor tyrosine kinases in glioma: mechanism and therapeutic implications.

    PubMed

    Greenall, S A; Donoghue, J F; Van Sinderen, M; Dubljevic, V; Budiman, S; Devlin, M; Street, I; Adams, T E; Johns, T G

    2015-10-01

    A truncation mutant of the epidermal growth factor receptor, EGFRvIII, is commonly expressed in glioma, an incurable brain cancer. EGFRvIII is tumorigenic, in part, through its transactivation of other receptor tyrosine kinases (RTKs). Preventing the effects of this transactivation could form part of an effective therapy for glioma; however, the mechanism by which the transactivation occurs is unknown. Focusing on the RTK MET, we show that MET transactivation in U87MG human glioma cells in vitro is proportional to EGFRvIII activity and involves MET heterodimerization associated with a focal adhesion kinase (FAK) scaffold. The transactivation of certain other RTKs was, however, independent of FAK. Simultaneously targeting EGFRvIII (with panitumumab) and the transactivated RTKs themselves (with motesanib) in an intracranial mouse model of glioma resulted in significantly greater survival than with either agent alone, indicating that cotargeting these RTKs has potent antitumor efficacy and providing a strategy for treating EGFRvIII-expressing gliomas, which are usually refractory to treatment. PMID:25659577

  10. Subcellular localization and mechanisms of nucleocytoplasmic trafficking of steroid receptor coactivator-1.

    PubMed

    Amazit, Larbi; Alj, Youssef; Tyagi, Rakesh Kumar; Chauchereau, Anne; Loosfelt, Hugues; Pichon, Christophe; Pantel, Jacques; Foulon-Guinchard, Emmanuelle; Leclerc, Philippe; Milgrom, Edwin; Guiochon-Mantel, Anne

    2003-08-22

    Steroid hormone receptors are ligand-stimulated transcription factors that modulate gene transcription by recruiting coregulators to gene promoters. Subcellular localization and dynamic movements of transcription factors have been shown to be one of the major means of regulating their transcriptional activity. In the present report we describe the subcellular localization and the dynamics of intracellular trafficking of steroid receptor coactivator 1 (SRC-1). After its synthesis in the cytoplasm, SRC-1 is imported into the nucleus, where it activates transcription and is subsequently exported back to the cytoplasm. In both the nucleus and cytoplasm, SRC-1 is localized in speckles. The characterization of SRC-1 nuclear localization sequence reveals that it is a classic bipartite signal localized in the N-terminal region of the protein, between amino acids 18 and 36. This sequence is highly conserved within the other members of the p160 family. Additionally, SRC-1 nuclear export is inhibited by leptomycin B. The region involved in its nuclear export is localized between amino acids 990 and 1038. It is an unusually large domain differing from the classic leucine-rich NES sequences. Thus SRC-1 nuclear export involves either an alternate type of NES or is dependent on the interaction of SRC-1 with a protein, which is exported through the crm1/exportin pathway. Overall, the intracellular trafficking of SRC-1 might be a mechanism to regulate the termination of hormone action, the interaction with other signaling pathways in the cytoplasm and its degradation. PMID:12791702

  11. Odorant receptors can mediate axonal identity and gene choice via cAMP-independent mechanisms

    PubMed Central

    Grosmaitre, Xavier; Feinstein, Paul

    2016-01-01

    Odorant receptors (ORs) control several aspects of cell fate in olfactory sensory neurons (OSNs), including singular gene choice and axonal identity. The mechanisms of OR-induced axon guidance have been suggested to principally rely on G-protein signalling. Here, we report that for a subset of OSNs, deleting G proteins or altering their levels of signalling does not affect axonal identity. Signalling-deficient ORs or surrogate receptors that are unable to couple to Gs/Golf still provide axons with distinct identities and the anterior–posterior targeting of axons does not correlate with the levels of cAMP produced by genetic modifications. In addition, we refine the models of negative feedback by showing that ectopic ORs can be robustly expressed without suppressing endogenous gene choice. In conclusion, our results uncover a new feature of ORs, showing that they can instruct axonal identity and regulate olfactory map formation independent of canonical G-protein signalling and cAMP production. PMID:27466441

  12. Progesterone stimulates respiration through a central nervous system steroid receptor-mediated mechanism in cat.

    PubMed Central

    Bayliss, D A; Millhorn, D E; Gallman, E A; Cidlowski, J A

    1987-01-01

    We have examined the effect on respiration of the steroid hormone progesterone, administered either intravenously or directly into the medulla oblongata in anesthetized and paralyzed male and female cats. The carotid sinus and vagus nerves were cut, and end-tidal PCO2 and temperature were kept constant with servo-controllers. Phrenic nerve activity was used to quantitate central respiratory activity. Repeated doses of progesterone (from 0.1 to 2.0 micrograms/kg, cumulative) caused a sustained (greater than 45 min) facilitation of phrenic nerve activity in female and male cats; however, the response was much more variable in females. Progesterone injected into the region of nucleus tractus solitarii, a respiratory-related area in the medulla oblongata, also caused a prolonged stimulation of respiration. Progesterone administration at high concentration by both routes also caused a substantial hypotension. Identical i.v. doses of other classes of steroid hormones (17 beta-estradiol, testosterone, and cortisol) did not elicit the same respiratory effect. Pretreatment with RU 486, a progesterone-receptor antagonist, blocked the facilitatory effect of progesterone. We conclude that progesterone acts centrally through a steroid receptor-mediated mechanism to facilitate respiration. PMID:3478727

  13. Odorant receptors can mediate axonal identity and gene choice via cAMP-independent mechanisms.

    PubMed

    Movahedi, Kiavash; Grosmaitre, Xavier; Feinstein, Paul

    2016-07-01

    Odorant receptors (ORs) control several aspects of cell fate in olfactory sensory neurons (OSNs), including singular gene choice and axonal identity. The mechanisms of OR-induced axon guidance have been suggested to principally rely on G-protein signalling. Here, we report that for a subset of OSNs, deleting G proteins or altering their levels of signalling does not affect axonal identity. Signalling-deficient ORs or surrogate receptors that are unable to couple to Gs/Golf still provide axons with distinct identities and the anterior-posterior targeting of axons does not correlate with the levels of cAMP produced by genetic modifications. In addition, we refine the models of negative feedback by showing that ectopic ORs can be robustly expressed without suppressing endogenous gene choice. In conclusion, our results uncover a new feature of ORs, showing that they can instruct axonal identity and regulate olfactory map formation independent of canonical G-protein signalling and cAMP production. PMID:27466441

  14. Progesterone stimulates respiration through a central nervous system steroid receptor-mediated mechanism in cat.

    PubMed

    Bayliss, D A; Millhorn, D E; Gallman, E A; Cidlowski, J A

    1987-11-01

    We have examined the effect on respiration of the steroid hormone progesterone, administered either intravenously or directly into the medulla oblongata in anesthetized and paralyzed male and female cats. The carotid sinus and vagus nerves were cut, and end-tidal PCO2 and temperature were kept constant with servo-controllers. Phrenic nerve activity was used to quantitate central respiratory activity. Repeated doses of progesterone (from 0.1 to 2.0 micrograms/kg, cumulative) caused a sustained (greater than 45 min) facilitation of phrenic nerve activity in female and male cats; however, the response was much more variable in females. Progesterone injected into the region of nucleus tractus solitarii, a respiratory-related area in the medulla oblongata, also caused a prolonged stimulation of respiration. Progesterone administration at high concentration by both routes also caused a substantial hypotension. Identical i.v. doses of other classes of steroid hormones (17 beta-estradiol, testosterone, and cortisol) did not elicit the same respiratory effect. Pretreatment with RU 486, a progesterone-receptor antagonist, blocked the facilitatory effect of progesterone. We conclude that progesterone acts centrally through a steroid receptor-mediated mechanism to facilitate respiration. PMID:3478727

  15. Minding the Calcium Store: Ryanodine Receptor Activation as a Convergent Mechanism of PCB Toxicity

    PubMed Central

    Pessah, Isaac N.; Cherednichenko, Gennady; Lein, Pamela J.

    2009-01-01

    Chronic low level polychlorinated biphenyls (PCB) exposures remain a significant public health concern since results from epidemiological studies indicate PCB burden is associated with immune system dysfunction, cardiovascular disease, and impairment of the developing nervous system. Of these various adverse health effects, developmental neurotoxicity has emerged as a particularly vulnerable endpoint in PCB toxicity. Arguably the most pervasive biological effects of PCBs could be mediated by their ability to alter the spatial and temporal fidelity of Ca2+ signals through one or more receptor mediated processes. This review will focus on our current knowledge of the structure and function of ryanodine receptors (RyRs) in muscle and nerve cells and how PCBs and related non-coplanar structures alter these functions. The molecular and cellular mechanisms by which non-coplanar PCBs and related structures alter local and global Ca2+ signaling properties and the possible short and long-term consequences of these perturbations on neurodevelopment and neurodegeneration are reviewed. PMID:19931307

  16. New functions and signaling mechanisms for the class of adhesion G protein–coupled receptors

    PubMed Central

    Liebscher, Ines; Ackley, Brian; Araç, Demet; Ariestanti, Donna M.; Aust, Gabriela; Bae, Byoung-il; Bista, Bigyan R.; Bridges, James P.; Duman, Joseph G.; Engel, Felix B.; Giera, Stefanie; Goffinet, André M.; Hall, Randy A.; Hamann, Jörg; Hartmann, Nicole; Lin, Hsi-Hsien; Liu, Mingyao; Luo, Rong; Mogha, Amit; Monk, Kelly R.; Peeters, Miriam C.; Prömel, Simone; Ressl, Susanne; Schiöth, Helgi B.; Sigoillot, Séverine M.; Song, Helen; Talbot, William S.; Tall, Gregory G.; White, James P.; Wolfrum, Uwe; Xu, Lei; Piao, Xianhua

    2014-01-01

    The class of adhesion G protein–coupled receptors (aGPCRs), with 33 human homologs, is the second largest family of GPCRs. In addition to a seven-transmembrane α-helix—a structural feature of all GPCRs—the class of aGPCRs is characterized by the presence of a large N-terminal extracellular region. In addition, all aGPCRs but one (GPR123) contain a GPCR autoproteolysis–inducing (GAIN) domain that mediates autoproteolytic cleavage at the GPCR autoproteolysis site (GPS) motif to generate N- and a C-terminal fragments (NTF and CTF, respectively) during protein maturation. Subsequently, the NTF and CTF are associated non-covalently as a heterodimer at the plasma membrane. While the biological function of the GAIN domain–mediated autocleavage is not fully understood, mounting evidence suggests that the NTF and CTF possess distinct biological activities in addition to their function as a receptor unit. We discuss recent advances in understanding the biological functions, signaling mechanisms, and disease associations of the aGPCRs. PMID:25424900

  17. Dual isotope plots reflect transformation pathways of pesticides: Potential to assess pesticide fate and elucidate transformation mechanisms

    NASA Astrophysics Data System (ADS)

    Meyer, Armin; Penning, Holger; Sorensen, Sebastian; Aamand, Jens; Elsner, Martin

    2010-05-01

    The degradation of pesticides in deeper soil layers and groundwater is of growing interest, because they have repeatedly been found in drinking water supply wells and may pose a risk to future water resources. Current assessment schemes face a common problem, however: natural degradation often cannot be reliably assessed by concentration measurements alone, since mass balances are difficult to establish and transformation cannot be distinguished from sorption or dilution. Even detection of metabolites may only give an incomplete picture. When several transformation pathways occur, some metabolites may be degraded or form bound residues so that the associated pathways may be missed. Our research shows that dual isotope plots derived from compound specific isotope analysis offer a novel approach to give additional, complementary insight into the natural degradation of pesticides. Detection of metabolites is not required, since the isotope fractionation can be fully observed in the pesticide itself. Specifically, different initial biotransformation reactions of the phenylurea herbicide isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea) in pure culture experiments with bacterial and fungal strains showed strongly pathway-dependent isotope fractionation. When analyzing isotopic changes in different parts of the isoproturon molecule, hydroxylation of the isopropyl group by fungi was found to be associated with C and H isotope fractionation. In contrast, hydrolysis by Arthrobacter globiformis D47 caused strong C and N isotope fractionation, albeit in a different manner than abiotic hydrolysis so that isotope measurements can distinguish between both modes of transformation. Likewise, we observed highly pathway-dependent C and N isotope fractionation of atrazine (1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine). Desalkylation of atrazine by Rhodococcus sp. strain NI86/21 resulted in enrichment of both 13-C and 15-N in atrazine, whereas hydrolysis to hydroxyatrazine

  18. The Activation Mechanism of Glycoprotein Hormone Receptors with Implications in the Cause and Therapy of Endocrine Diseases.

    PubMed

    Brüser, Antje; Schulz, Angela; Rothemund, Sven; Ricken, Albert; Calebiro, Davide; Kleinau, Gunnar; Schöneberg, Torsten

    2016-01-01

    Glycoprotein hormones (GPHs) are the main regulators of the pituitary-thyroid and pituitary-gonadal axes. Selective interaction between GPHs and their cognate G protein-coupled receptors ensure specificity in GPH signaling. The mechanisms of how these hormones activate glycoprotein hormone receptors (GPHRs) or how mutations and autoantibodies can alter receptor function were unclear. Based on the hypothesis that GPHRs contain an internal agonist, we systematically screened peptide libraries derived from the ectodomain for agonistic activity on the receptors. We show that a peptide (p10) derived from a conserved sequence in the C-terminal part of the extracellular N terminus can activate all GPHRs in vitro and in GPHR-expressing tissues. Inactivating mutations in this conserved region or in p10 can inhibit activation of the thyroid-stimulating hormone receptor by autoantibodies. Our data suggest an activation mechanism where, upon extracellular ligand binding, this intramolecular agonist isomerizes and induces structural changes in the 7-transmembrane helix domain, triggering G protein activation. This mechanism can explain the pathophysiology of activating autoantibodies and several mutations causing endocrine dysfunctions such as Graves disease and hypo- and hyperthyroidism. Our findings highlight an evolutionarily conserved activation mechanism of GPHRs and will further promote the development of specific ligands useful to treat Graves disease and other dysfunctions of GPHRs. PMID:26582202

  19. Potential protective mechanisms of aryl hydrocarbon receptor (AHR) signaling in benign prostatic hyperplasia.

    PubMed

    Mehta, Vatsal; Vezina, Chad M

    2011-01-01

    The aryl hydrocarbon receptor (AHR) is an evolutionarily conserved ligand activated transcription factor best known for its role in mediating toxic responses to dioxin-like environmental contaminants. However, AHR signaling has also emerged as an active participant in processes of normal development and disease progression. Here, we review the role of AHR signaling in prostate development and disease processes, with a particular emphasis on benign prostatic hyperplasia (BPH). Inappropriate AHR activation has recently been associated with a decreased risk of symptomatic BPH in humans and has been shown to impair prostate development and disrupt endocrine signaling in rodents. We highlight known physiological responses to AHR activation in prostate and other tissues and discuss potential mechanisms by which it may act in adult human prostate to protect against symptomatic BPH. PMID:21684673

  20. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity

    PubMed Central

    Chater, Thomas E.; Goda, Yukiko

    2014-01-01

    In the mammalian central nervous system, excitatory glutamatergic synapses harness neurotransmission that is mediated by ion flow through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). AMPARs, which are enriched in the postsynaptic membrane on dendritic spines, are highly dynamic, and shuttle in and out of synapses in an activity-dependent manner. Changes in their number, subunit composition, phosphorylation state, and accessory proteins can all regulate AMPARs and thus modify synaptic strength and support cellular forms of learning. Furthermore, dysregulation of AMPAR plasticity has been implicated in various pathological states and has important consequences for mental health. Here we focus on the mechanisms that control AMPAR plasticity, drawing particularly from the extensive studies on hippocampal synapses, and highlight recent advances in the field along with considerations for future directions. PMID:25505875

  1. Mechanisms for the Evolution of a Derived Function in the Ancestral Glucocorticoid Receptor

    SciTech Connect

    Carroll, Sean Michael; Ortlund, Eric A; Thornton, Joseph W.

    2012-03-16

    Understanding the genetic, structural, and biophysical mechanisms that caused protein functions to evolve is a central goal of molecular evolutionary studies. Ancestral sequence reconstruction (ASR) offers an experimental approach to these questions. Here we use ASR to shed light on the earliest functions and evolution of the glucocorticoid receptor (GR), a steroid-activated transcription factor that plays a key role in the regulation of vertebrate physiology. Prior work showed that GR and its paralog, the mineralocorticoid receptor (MR), duplicated from a common ancestor roughly 450 million years ago; the ancestral functions were largely conserved in the MR lineage, but the functions of GRs - reduced sensitivity to all hormones and increased selectivity for glucocorticoids - are derived. Although the mechanisms for the evolution of glucocorticoid specificity have been identified, how reduced sensitivity evolved has not yet been studied. Here we report on the reconstruction of the deepest ancestor in the GR lineage (AncGR1) and demonstrate that GR's reduced sensitivity evolved before the acquisition of restricted hormone specificity, shortly after the GR-MR split. Using site-directed mutagenesis, X-ray crystallography, and computational analyses of protein stability to recapitulate and determine the effects of historical mutations, we show that AncGR1's reduced ligand sensitivity evolved primarily due to three key substitutions. Two large-effect mutations weakened hydrogen bonds and van der Waals interactions within the ancestral protein, reducing its stability. The degenerative effect of these two mutations is extremely strong, but a third permissive substitution, which has no apparent effect on function in the ancestral background and is likely to have occurred first, buffered the effects of the destabilizing mutations. Taken together, our results highlight the potentially creative role of substitutions that partially degrade protein structure and function and

  2. Permanent suppression of cortical oscillations in mice after adolescent exposure to cannabinoids: receptor mechanisms.

    PubMed

    Raver, Sylvina M; Keller, Asaf

    2014-11-01

    Marijuana use in adolescence, but not adulthood, may permanently impair cognitive functioning and increase the risk of developing schizophrenia. Cortical oscillations are patterns of neural network activity implicated in cognitive processing, and are abnormal in patients with schizophrenia. We have recently reported that cortical oscillations are suppressed in adult mice that were treated with the cannabinoids WIN55,212-2 (WIN) or Δ(9)tetrahydrocannabinol (THC) in adolescence, but not adulthood. WIN and THC are cannabinoid-1 (CB1R) and CB2R agonists, and also have activity at non-cannabinoid receptor targets. However, as acute WIN and THC administration can suppress oscillations through CB1Rs, we hypothesize that a similar mechanism underlies the permanent suppression of oscillations by repeated cannabinoid exposure in adolescence. Here we test the prediction that cannabinoid exposure in adolescence permanently suppresses cortical oscillations by acting through CB1Rs, and that these suppressive effects can be antagonized by a CB1R antagonist. We treated adolescent mice with various cannabinoid compounds, and pharmacologically-evoked oscillations in local field potentials (LFPs) in vitro in adults. We find that WIN exposure for six days in early adolescence suppresses oscillations preferentially in adult medial prefrontal cortex (mPFC) via CB1Rs, and that a similar CB1R mechanism accounts for the suppressive effects of long-term (20 day) adolescent THC in adult somatosensory cortex (SCx). Unexpectedly, we also find that CB2Rs may be involved in the suppression of oscillations in both mPFC and SCx by long-term adolescent cannabinoid exposure, and that non-cannabinoid receptors may also contribute to oscillation suppression in adult mPFC. These findings represent a novel attempt to antagonize the effects of adolescent cannabinoid exposure on neural network activity, and reveal the contribution of non-CB1R targets to the suppression of cortical oscillations. PMID

  3. Agonist-selective mechanisms of mu-opioid receptor desensitization in human embryonic kidney 293 cells.

    PubMed

    Johnson, Elizabeth A; Oldfield, Sue; Braksator, Ellen; Gonzalez-Cuello, Ana; Couch, Daniel; Hall, Kellie J; Mundell, Stuart J; Bailey, Chris P; Kelly, Eamonn; Henderson, Graeme

    2006-08-01

    The ability of two opioid agonists, [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) and morphine, to induce mu-opioid receptor (MOR) phosphorylation, desensitization, and internalization was examined in human embryonic kidney (HEK) 293 cells expressing rat MOR1 as well G protein-coupled inwardly rectifying potassium channel (GIRK) channel subunits. Both DAMGO and morphine activated GIRK currents, but the maximum response to DAMGO was greater than that of morphine, indicating that morphine is a partial agonist. The responses to DAMGO and morphine desensitized rapidly in the presence of either drug. Expression of a dominant negative mutant G protein-coupled receptor kinase 2 (GRK2), GRK2-K220R, markedly attenuated the DAMGO-induced desensitization of MOR1, but it had no effect on morphine-induced MOR1 desensitization. In contrast, inhibition of protein kinase C (PKC) either by the PKC inhibitory peptide PKC (19-31) or staurosporine reduced MOR1 desensitization by morphine but not that induced by DAMGO. Morphine and DAMGO enhanced MOR1 phosphorylation over basal. The PKC inhibitor bisindolylmaleimide 1 (GF109203X) inhibited MOR1 phosphorylation under basal conditions and in the presence of morphine, but it did not inhibit DAMGO-induced phosphorylation. DAMGO induced arrestin-2 translocation to the plasma membrane and considerable MOR1 internalization, whereas morphine did not induce arrestin-2 translocation and induced very little MOR1 internalization. Thus, DAMGO and morphine each induce desensitization of MOR1 signaling in HEK293 cells but by different molecular mechanisms; DAMGO-induced desensitization is GRK2-dependent, whereas morphine-induced desensitization is in part PKC-dependent. MORs desensitized by DAMGO activation are then readily internalized by an arrestin-dependent mechanism, whereas those desensitized by morphine are not. These data suggest that opioid agonists induce different conformations of the MOR that are susceptible to different

  4. Phorbol diesters and transferrin modulate lymphoblastoid cell transferrin receptor expression by two different mechanisms

    SciTech Connect

    Alcantara, O.; Phillips, J.L.; Boldt, D.H.

    1986-12-01

    Expression of transferrin receptors (TfR) by activated lymphocytes is necessary for lymphocyte DNA synthesis and proliferation. Regulation of TfR expression, therefore, is a mechanism by which the lymphocyte's proliferative potential may be directed and controlled. The authors studied mechanisms by which lymphoblastoid cells modulate TfR expression during treatment with phorbol diesters or iron transferrin (FeTf), agents which cause downregulation of cell surface TfR. Phorbol diester-induced TfR downregulation occurred rapidly, being detectable at 2 min and reaching maximal decreases of 50% by 15 min. It was inhibited by cold but not by agents that destabilize cytoskeletal elements. Furthermore, this downregulation was reversed rapidly by washing or by treatment with the membrane interactive agent, chlorpromazine. In contrast, FeTf-induced TfR downregulation occurred slowly. Decreased expression of TfR was detectable only after 15 min and maximal downregulation was achieved after 60 min. Although FeTf-induced downregulation also was inhibited by cold, it was inhibited in addition by a group of microtubule destabilizing agents (colchicine, vinblastine, podophyllotoxin) or cytochalasin B, a microfilament inhibitor. Furthermore, FeTf-induced downregulation was not reversed readily by washing or by treatment with chlorpromazine. Phorbol diesters cause TfR downregulation by a cytoskeleton-independent mechanism. These data indicate that TfR expression is regulated by two independent mechanisms in lymphoblastoid cells, and they provide the possibility that downregulation of TfR by different mechanisms may result in different effects in these cells.

  5. Pharmacological Beta-Adrenergic Receptor Activation Attenuates Neutrophil Recruitment by a Mechanism Dependent on Nicotinic Receptor and the Spleen.

    PubMed

    Silva, Rangel L; Castanheira, Fernanda V; Figueiredo, Jozi G; Bassi, Gabriel S; Ferreira, Sérgio H; Cunha, Fernando Q; Cunha, Thiago M; Kanashiro, Alexandre

    2016-08-01

    The aim of this study was to identify the effect of beta-adrenergic receptor activation on neutrophil migration in experimental peritonitis elucidating the neuroimmune components involved such as nicotinic receptors and the spleen. Mice pre-treated with mecamylamine (nicotinic antagonist) and propranolol (beta-adrenergic antagonist) or splenectomized animals were treated with isoproterenol (beta-adrenergic agonist) prior to intraperitoneal injection of carrageenan. After 4 h, the infiltrating neutrophils and the local cytokine/chemokine levels were evaluated in the peritoneal lavage. The effect of isoproterenol on neutrophil chemotaxis was investigated in a Boyden chamber. Isoproterenol inhibited neutrophil trafficking, reducing the cytokine/chemokine release and neutrophil chemotaxis. Surprisingly, the isoproterenol effect on neutrophil migration was totally reverted by splenectomy and mecamylamine pre-treatment. In contrast, the inhibitory effect of nicotine on neutrophil migration was abrogated only by splenectomy but not by propranolol pre-treatment. Collectively, our data show that beta-adrenergic receptor activation regulates the acute neutrophil recruitment via splenic nicotinic receptor. PMID:27262431

  6. Deactivation of the Arabidopsis BRI1 receptor kinase by autophosphorylation within the glycine-rich loop involved in ATP binding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The activity of the dual-specificity brassinosteroid receptor kinase, BRI1, reflects the balance between phosphorylation-dependent activation and several potential mechanisms for deactivation of the receptor. In the present report, we identify regions of the juxtamembrane domain that are essential f...

  7. Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family

    PubMed Central

    Shakeel, Samina N.; Wang, Xiaomin; Binder, Brad M.; Schaller, G. Eric

    2013-01-01

    The plant hormone ethylene regulates growth and development as well as responses to biotic and abiotic stresses. Over the last few decades, key elements involved in ethylene signal transduction have been identified through genetic approaches, these elements defining a pathway that extends from initial ethylene perception at the endoplasmic reticulum to changes in transcriptional regulation within the nucleus. Here, we present our current understanding of ethylene signal transduction, focusing on recent developments that support a model with overlapping and non-overlapping roles for members of the ethylene receptor family. We consider the evidence supporting this model for sub-functionalization within the receptor family, and then discuss mechanisms by which such a sub-functionalization may occur. To this end, we consider the importance of receptor interactions in modulating their signal output and how such interactions vary in the receptor family. In addition, we consider evidence indicating that ethylene signal output by the receptors involves both phosphorylation-dependent and phosphorylation-independent mechanisms. We conclude with a current model for signalling by the ethylene receptors placed within the overall context of ethylene signal transduction. PMID:23543258

  8. Crystal structure of PXY-TDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs

    PubMed Central

    Zhang, Heqiao; Lin, Xiaoya; Han, Zhifu; Qu, Li-Jia; Chai, Jijie

    2016-01-01

    Plants can achieve amazing lifespans because of their continuous and repetitive formation of new organs by stem cells present within meristems. The balance between proliferation and differentiation of meristem cells is largely regulated by the CLAVATA3/ENDOSPERM SURROUNDING REGION (CLE) peptide hormones. One of the well-characterized CLE peptides, CLE41/TDIF (tracheary elements differentiation inhibitory factor), functions to suppress tracheary element differentiation and promote procambial cell proliferation, playing important roles in vascular development and wood formation. The recognition mechanisms of TDIF or other CLE peptides by their respective receptors, however, remain largely elusive. Here we report the crystal structure of TDIF in complex with its receptor PXY, a leucine-rich repeat receptor kinase (LRR-RK). Our structure reveals that TDIF mainly adopts an “Ω”-like conformation binding to the inner surface of the LRR domain of PXY. Interaction between TDIF and PXY is predominately mediated by the relatively conserved amino acids of TDIF. Structure-based sequence alignment showed that the TDIF-interacting motifs are also conserved among other known CLE receptors. Our data provide a structural template for understanding the recognition mechanism of CLE peptides by their receptors, offering an opportunity for the identification of receptors of other uncharacterized CLE peptides. PMID:27055373

  9. Crystal structure of PXY-TDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs.

    PubMed

    Zhang, Heqiao; Lin, Xiaoya; Han, Zhifu; Qu, Li-Jia; Chai, Jijie

    2016-05-01

    Plants can achieve amazing lifespans because of their continuous and repetitive formation of new organs by stem cells present within meristems. The balance between proliferation and differentiation of meristem cells is largely regulated by the CLAVATA3/ENDOSPERM SURROUNDING REGION (CLE) peptide hormones. One of the well-characterized CLE peptides, CLE41/TDIF (tracheary elements differentiation inhibitory factor), functions to suppress tracheary element differentiation and promote procambial cell proliferation, playing important roles in vascular development and wood formation. The recognition mechanisms of TDIF or other CLE peptides by their respective receptors, however, remain largely elusive. Here we report the crystal structure of TDIF in complex with its receptor PXY, a leucine-rich repeat receptor kinase (LRR-RK). Our structure reveals that TDIF mainly adopts an "Ω"-like conformation binding to the inner surface of the LRR domain of PXY. Interaction between TDIF and PXY is predominately mediated by the relatively conserved amino acids of TDIF. Structure-based sequence alignment showed that the TDIF-interacting motifs are also conserved among other known CLE receptors. Our data provide a structural template for understanding the recognition mechanism of CLE peptides by their receptors, offering an opportunity for the identification of receptors of other uncharacterized CLE peptides. PMID:27055373

  10. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells

    PubMed Central

    Veiseh, Mandana; Leith, Sean J.; Tolg, Cornelia; Elhayek, Sallie S.; Bahrami, S. Bahram; Collis, Lisa; Hamilton, Sara; McCarthy, James B.; Bissell, Mina J.; Turley, Eva

    2015-01-01

    The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies. PMID:26528478

  11. Dual blockade of the A1 and A2A adenosine receptor prevents amyloid beta toxicity in neuroblastoma cells exposed to aluminum chloride.

    PubMed

    Giunta, Salvatore; Andriolo, Violetta; Castorina, Alessandro

    2014-09-01

    In a previous work we have shown that exposure to aluminum (Al) chloride (AlCl3) enhanced the neurotoxicity of the amyloid beta(25-35) fragment (Abeta(25-35)) in neuroblastoma cells and affected the expression of Alzheimer's disease (AD)-related genes. Caffein, a compound endowed with beneficial effects against AD, exerts neuroprotection primarily through its antagonist activity on A2A adenosine receptors (A2AR), although it also inhibits A1Rs with similar potency. Still, studies on the specific involvement of these receptors in neuroprotection in a model of combined neurotoxicity (Abeta(25-35)+AlCl3) are missing. To address this issue, cultured SH-SY5Y cells exposed to Abeta(25-35)+AlCl3 were assessed for cell viability, morphology, intracellular ROS activity and expression of apoptosis-, stress- and AD-related proteins. To define the role of A1R and A2ARs, pretreatment with caffein, specific receptor antagonists (DPCPX or SCH58261) or siRNA-mediated gene knockdown were delivered. Results indicate that AlCl3 treatment exacerbated Abeta(25-35) toxicity, increased ROS production, lipid peroxidation, β-secretase-1 (BACE1) and amyloid precursor protein (APP). Interestingly, SCH58261 successfully prevented toxicity associated to Abeta(25-35) only, whereas pretreatment with both DPCPX and SCH58261 was required to fully avert Abeta(25-35)+AlCl3-induced damage, suggesting that A1Rs might also be critically involved in protection during combined toxicity. The effects of caffein were mimicked by both N-acetyl cysteine, an antioxidant, and desferrioxamine, likely acting through distinct mechanisms. Altogether, our data establish a novel protective function associated with A1R inhibition in the setting of combined Abeta(25-35)+AlCl3 neurotoxicity, and expand our current knowledge on the potential beneficial role of caffein to prevent AD progression in subjects environmentally exposed to aluminum. PMID:25058312

  12. Mechanism of the cardiovascular effects of the GABAA receptors of the ventral tegmental area of the rat brain.

    PubMed

    Yeganeh, Fahimeh; Ranjbar, Afsaneh; Hatam, Masoumeh; Nasimi, Ali

    2015-07-23

    The ventral tegmental area (VTA) contains GABA terminals involved in the regulation of the cardiovascular system. Previously, we demonstrated that blocking GABAA but not GABAB receptors produced a pressor response accompanied by marked bradycardia. This study was performed to find the possible mechanisms involved in these responses by blocking ganglionic nicotinic receptors, peripheral muscarinic receptors or peripheral V1 vasopressin receptors. Experiments were performed on urethane anesthetized male Wistar rats. Drugs were microinjected unilaterally into the VTA (100 nl). The average changes in mean arterial pressure (MAP) and heart rate (HR) were compared between pre- and post-treatment using paired t-test. Injection of bicuculline methiodide (BMI), a GABAA antagonist, into the VTA caused a significant increase in MAP and a decrease in HR. Administration (i.v.) of the nicotinic receptor blocker, hexamethonium, enhanced the pressor response but abolished the bradycardic response to BMI, which ruled out involvement of the sympathetic nervous system. Blockade of the peripheral muscarinic receptors by homatropine (i.v.) abolished the bradycardic effect of BMI, but had no effect on the pressor response, indicating that bradycardia was produced by the parasympathetic outflow to the heart. Both the pressor and bradycardic responses to BMI were blocked by V1 receptor antagonist (i.v.), indicating that administration of BMI in the VTA disinhibited the release of vasopressin into the circulation. In conclusion, we demonstrated that GABAergic mechanism of the VTA exerts a tonic inhibition on vasopressin release through activation of GABAA receptors. The sympathetic system is not involved in the decrease of blood pressure by GABA of the VTA. PMID:26079327

  13. Receptor-mediated mechanism for the transport of prolactin from blood to cerebrospinal fluid

    SciTech Connect

    Walsh, R.J.; Slaby, F.J.; Posner, B.I.

    1987-05-01

    Prolactin (PRL) interacts with areas of the central nervous system which reside behind the blood-brain barrier. While vascular PRL does not cross this barrier, it is readily accessible to the cerebrospinal fluid (CSF) from which it may gain access to the PRL-responsive areas of the brain. Studies were undertaken to characterize the mechanism responsible for the translocation of PRL from blood to CSF. Rats were given external jugular vein injections of (/sup 125/-I)iodo-PRL in the presence or absence of an excess of unlabeled ovine PRL (oPRL), human GH, bovine GH, or porcine insulin. CSF and choroid plexus were removed 60 min later. CSF samples were electrophoresed on sodium dodecyl sulfate-polyacrylamide slab gels and resultant autoradiographs were analyzed with quantitative microdensitometry. The data revealed that unlabeled lactogenic hormones, viz. oPRL and human GH, caused a statistically significant inhibition of (/sup 125/I)iodo-PRL transport from blood to CSF. In contrast, nonlactogenic hormones, viz bovine GH and insulin, had no effect on (/sup 125/I)iodo-PRL transport into the CSF. An identical pattern of competition was observed in the binding of hormone to the choroid plexus. Furthermore, vascular injections of (/sup 125/I)iodo-PRL administered with a range of concentrations of unlabeled oPRL revealed a dose-response inhibition in the transport of (/sup 125/I)iodo-PRL from blood to CSF. The study demonstrates that PRL enters the CSF by a specific, PRL receptor-mediated transport mechanism. The data is consistent with the hypothesis that the transport mechanism resides at the choroid plexus. The existence of this transport mechanism reflects the importance of the cerebroventricular system in PRL-brain interactions.

  14. A computational study of the phosphorylation mechanism of the insulin receptor tyrosine kinase.

    PubMed

    Zhou, Baojing; Wong, Chung F

    2009-04-30

    Although various groups have studied the phosphorylation mechanism of the insulin receptor tyrosine kinase (IRK), an unanimous picture has not yet emerged. In this work, we performed a computational study to gain further insights. We first built a structural model of the reactant complex with the guide of several crystal structures and previous computational studies of the cyclic AMP-dependent protein kinase. We then optimized the structure by performing geometry optimization using a quantum mechanical model containing nearly 300 atoms. A reaction path was then traced between the reactant and the product by using a multiple coordinate-driven method. The calculations mapped out a sequence of structural changes depicting the conversion of the reactant to the product. Analysis of the structural changes revealed the formation of a dissociative transition state and the involvement of a proton transfer from the hydroxyl group of the tyrosyl residue of the peptide substrate to a conserved aspartate in the active site of the enzyme. The proton transfer began well before the transition state was reached and finished only shortly before the product was completely formed. In addition, the formation of a hydrogen bonding network among Arg1136, Asp1132, the gamma-phosphate of ATP, and the tyrosine residue of the substrate appeared to hold the latter two in a near-attack position for reaction. The model estimated a reaction barrier of 14 kcal/mol, semiquantitatively in accord with experiment. PMID:19334696

  15. Δ9-Tetrahydrocannabinol targeting estrogen receptor signaling: the possible mechanism of action coupled with endocrine disruption.

    PubMed

    Takeda, Shuso

    2014-01-01

    Δ(9)-Tetrahydrocannabinol (Δ(9)-THC), a biologically active constituent of marijuana, possesses a wide variety of pharmacological and toxicological effects (e.g., analgesia, hypotension, reduction of inflammation, and anti-cancer effects). Among Δ(9)-THC's biological activities, its recognized anti-estrogenic activity has been the subject of investigations. Since Δ(9)-THC is used as both a drug of abuse (marijuana) and as a preventive therapeutic to treat pain and nausea in cancer patients undergoing chemotherapy in the United States and other countries (synthesized Δ(9)-THC; dronabinol), it is important to investigate the mechanistic basis underlying the anti-estrogenic activity of Δ(9)-THC. Since Δ(9)-THC has "no" binding potential for estrogen receptor α (ERα) which can be activated by estrogen (E2), the question of how Δ(9)-THC exerts its inhibitory effect on ERα is not resolved. We have recently reported that ERβ, a second type of ER, is involved in the Δ(9)-THC abrogation of E2/ERα-mediated transcriptional activity. Here we discuss the possible mechanism(s) of the Δ(9)-THC-mediated disruption of E2/ERα signaling by presenting our recent findings as well. PMID:25177025

  16. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target

    NASA Technical Reports Server (NTRS)

    Beningo, Karen A.; Wang, Yu-li

    2002-01-01

    Phagocytosis is an actin-based process used by macrophages to clear particles greater than 0.5 microm in diameter. In addition to its role in immunological responses, phagocytosis is also necessary for tissue remodeling and repair. To prevent catastrophic autoimmune reactions, phagocytosis must be tightly regulated. It is commonly assumed that the recognition/selection of phagocytic targets is based solely upon receptor-ligand binding. Here we report an important new criterion, that mechanical parameters of the target can dramatically affect the efficiency of phagocytosis. When presented with particles of identical chemical properties but different rigidity, macrophages showed a strong preference to engulf rigid objects. Furthermore, phagocytosis of soft particles can be stimulated with the microinjection of constitutively active Rac1 but not RhoA, and with lysophosphatidic acid, an agent known to activate the small GTP-binding proteins of the Rho family. These data suggest a Rac1-dependent mechanosensory mechanism for phagocytosis, which probably plays an important role in a number of physiological and pathological processes from embryonic development to autoimmune diseases.

  17. Mechanism of Androgen Receptor Antagonism by Bicalutamide in the Treatment of Prostate Cancer

    PubMed Central

    Osguthorpe, D.J.; Hagler, A.T.

    2011-01-01

    The androgen receptor (AR) plays a key role in a regulating gene expression in a variety of tissues, including the prostate. In the latter role it is one of the primary targets in the development of new chemotherapeutics for treatment of prostate cancer, as well as being the target of the most widely prescribed current drug, bicalutamide (Bcu), for this disease. In view of it’s importance, and the absence of a crystal structure for any antagonist-AR complex, we have carried out a series of molecular dynamics based simulations of the AR-Bcu complex and quantum mechanical (QM) calculations of Bcu, to elucidate the structural basis for antagonism of this key target. The structures which emerge show that bicalutamide antagonizes AR by accessing an additional binding pocket (B-site) adjacent to the hormone binding site (HBS), induced by displacing helix 12. This distorts the coactivator binding site and results in the inactivation of transcription. An alternative equienergetic conformational state of bicalutamide was found to bind in an expanded hormone pocket without materially perturbing either helix 12 or the coactivator binding site. Thus both the structural basis of antagonism and the mechanism underlying agonist properties displayed by bicalutamide in different environments may be rationalized in terms of these structures. In addition the antagonist structure and especially the induced second site (B-site) provides a structural framework for the design of novel antiandrogens. PMID:21466228

  18. Nicotine alters limbic function in adolescent rat by a 5-HT1A receptor mechanism.

    PubMed

    Dao, Jasmin M; McQuown, Susan C; Loughlin, Sandra E; Belluzzi, James D; Leslie, Frances M

    2011-06-01

    function by both 5-HT1A and non-5-HT1A receptor mechanisms. PMID:21412223

  19. IL-17/IL-17 receptor system in autoimmune disease: mechanisms and therapeutic potential.

    PubMed

    Zhu, Shu; Qian, Youcun

    2012-06-01

    IL-17 (interleukin-17), a hallmark cytokine of Th17 (T-helper 17) cells, plays critical roles in host defence against bacterial and fungal infections, as well as in the pathogenesis of autoimmune diseases. The present review focuses on current knowledge of the regulation, functional mechanisms and targeting strategies of IL-17 in the context of inflammatory autoimmune diseases. Evidence shows that IL-17 is highly up-regulated at sites of inflammatory tissues of autoimmune diseases and amplifies the inflammation through synergy with other cytokines, such as TNF (tumour necrosis factor) α. Although IL-17 was originally thought to be produced mainly by Th17 cells, a newly defined T-cell subset with a specific differentiation programme and tight regulation, several other cell types (especially innate immune cells) are also found as important sources for IL-17 production. Although IL-17 activates common downstream signalling, including NF-κB (nuclear factor κB), MAPKs (mitogen-activated protein kinases), C/EBPs (CCAAT/enhancer-binding proteins) and mRNA stability, the immediate receptor signalling has been shown to be quite unique and tightly regulated. Mouse genetic studies have demonstrated a critical role for IL-17 in the pathogenesis of variety of inflammatory autoimmune diseases, such as RA (rheumatoid arthritis) and MS (multiple sclerosis). Importantly, promising results have been shown in initial clinical trials of monoclonal antibodies against IL-17 or its receptor (IL-17R) to block IL-17-mediated function in treating autoimmune patients with psoriasis, RA and MS. Therefore targeting IL-17/IL-17R, IL-17-producing pathways or IL-17-mediated signalling pathways can be considered for future therapy in autoimmune diseases. PMID:22324470

  20. Mechanism of the tissue-specific action of the selective androgen receptor modulator S-101479.

    PubMed

    Furuya, Kazuyuki; Yamamoto, Noriko; Ohyabu, Yuki; Morikyu, Teruyuki; Ishige, Hirohide; Albers, Michael; Endo, Yasuhisa

    2013-01-01

    Selective androgen receptor modulators (SARMs) comprise a new class of molecules that induce anabolic effects with fewer side effects than those of other anabolic agents. We previously reported that the novel SARM S-101479 had a tissue-selective bone anabolic effect with diminished side effects in female animals. However, the mechanism of its tissue selectivity is not well known. In this report, we show that S-101479 increased alkaline phosphatase activity and androgen receptor (AR) transcriptional activity in osteoblastic cell lines in the same manner as the natural androgen ligand dihydrotestosterone (DHT); conversely, stimulation of AR dimerization was very low compared with that of DHT (34.4%). S-101479 increased bone mineral content in ovariectomized rats without promoting endometrial proliferation. Yeast two-hybrid interaction assays revealed that DHT promoted recruitment of numerous cofactors to AR such as TIF2, SRC1, β-catenin, NCoA3, gelsolin and PROX1 in a dose-dependent manner. SARMs induced recruitment of fewer cofactors than DHT; in particular, S-101479 failed to induce recruitment of canonical p160 coactivators such as SRC1, TIF2 and notably NCoA3 but only stimulated binding of AR to gelsolin and PROX1. The results suggest that a full capability of the AR to dimerize and to effectively and unselectively recruit all canonical cofactors is not a prerequisite for transcriptional activity in osteoblastic cells and resulting anabolic effects in bone tissues. Instead, few relevant cofactors might be sufficient to promote AR activity in these tissues. PMID:23449329

  1. Novel mechanisms for the vitamin D receptor (VDR) in the skin and in skin cancer.

    PubMed

    Bikle, Daniel D; Oda, Yuko; Tu, Chia-Ling; Jiang, Yan

    2015-04-01

    The VDR acting with or without its principal ligand 1,25(OH)2D regulates two central processes in the skin, interfollicular epidermal (IFE) differentiation and hair follicle cycling (HFC). Calcium is an important co-regulator with 1,25(OH)2D at least of epidermal differentiation. Knockout of the calcium sensing receptor (CaSR) in addition to VDR accelerates the development of skin cancer in mice on a low calcium diet. Coactivators such as mediator 1 (aka DRIP205) and steroid receptor coactivator 3 (SRC3) regulate VDR function at different stages of the differentiation process, with Med 1 essential for hair follicle differentiation and early stages of epidermal differentiation and proliferation and SRC3 essential for the latter stages of differentiation including formation of the permeability barrier and innate immunity. The corepressor of VDR, hairless (HR), is essential for hair follicle cycling, although its effect on epidermal differentiation in vivo is minimal. In its regulation of HFC and IFE VDR controls two pathways-wnt/β-catenin and sonic hedgehog (SHH). In the absence of VDR these pathways are overexpressed leading to tumor formation. Whereas, VDR binding to β-catenin may block its activation of TCF/LEF1 sites, β-catenin binding to VDR may enhance its activation of VDREs. 1,25(OH)2D promotes but may not be required for these interactions. Suppression of SHH expression by VDR, on the other hand, requires 1,25(OH)2D. The major point of emphasis is that the role of VDR in the skin involves a number of novel mechanisms, both 1,25(OH)2D dependent and independent, that when disrupted interfere with IFE differentiation and HFC, predisposing to cancer formation. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. PMID:25445917

  2. Heterogeneous estrogen receptor expression in circulating tumor cells suggests diverse mechanisms of fulvestrant resistance.

    PubMed

    Paoletti, Costanza; Larios, Jose M; Muñiz, Maria C; Aung, Kimberly; Cannell, Emily M; Darga, Elizabeth P; Kidwell, Kelley M; Thomas, Dafydd G; Tokudome, Nahomi; Brown, Martha E; Connelly, Mark C; Chianese, David A; Schott, Anne F; Henry, N Lynn; Rae, James M; Hayes, Daniel F

    2016-08-01

    Fulvestrant is a dose dependent selective estrogen receptor (ER) down-regulator (SERD) used in ER-positive metastatic breast cancer (MBC). Nearly all patients develop resistance. We performed molecular analysis of circulating tumor cells (CTC) to gain insight into fulvestrant resistance. Preclinical studies were performed with cultured breast cancer cells spiked into human blood and analyzed on the CellSearch(®) system. Clinical data are limited to a subset of patients with ER-positive MBC from a previously reported pilot trial whose disease was progressing on fulvestrant (N = 7) or aromatase inhibitors (AIs) (N = 10). CTCs were enumerated and phenotyped for ER and B-cell lymphoma (BCL2) using the CellSearch(®) CXC kit. In preclinical modeling, tamoxifen and AIs resulted in stabilized ER expression, whereas fulvestrant eliminated it. Five of seven patients progressing on fulvestrant had ≥5CTC/7.5 ml WB. Two of these five, treated with 500 mg/month fulvestrant, had no detectable CTC-expression of ER and BCL2 (an ER regulated gene). Three patients had heterogeneous CTC-ER and BCL2 expression indicating incomplete degradation of the ER target by fulvestrant. Two of these patients received 250 mg/month whereas the third patient received 500 mg/month fulvestrant. Her cancer harbored a mutation (Y537S) in the estrogen receptor alpha gene (ESR1). All seven ER positive patients progressing on AIs had heterogeneous CTC-ER expression. These results suggest heterogeneous mechanisms of resistance to fulvestrant, including insufficient dosage, ESR1 mutation, or conversion to dependence on non-ER pathways. CTC enumeration, phenotyping, and genotyping might identify patients who would benefit from fulvestrant dose escalation versus switching to alternative therapies. PMID:27178224

  3. INFLUENCE OF CHLORDIMEFORM ON ALPHA-ADRENERGIC RECEPTOR-ASSOCIATED MECHANISMS OF HORMONAL REGULATIONS: PITUITARY AND ADRENOCORTICAL SECRETION

    EPA Science Inventory

    The acaricide chlordimeform (CDF) has been reported to have effects on the central nervous system that appear to involve an interaction with adrenergic receptor mediated mechanisms of neurotransmission. The present study examined the influence of CDF on pituitary-adrenocortical h...

  4. Dual Receptor-Targeting Tc-99m-Labeled Arg-Gly-Asp-Conjugated Alpha-Melanocyte Stimulating Hormone Hybrid Peptides for Human Melanoma Imaging

    PubMed Central

    Xu, Jingli; Yang, Jianquan; Miao, Yubin

    2014-01-01

    Introduction The aim of this study was to examine whether the substitution of the Lys linker with the aminooctanoic acid (Aoc) and polyethylene glycol (PEG) linker could substantially decrease the non-specific renal uptake of 99mTc-labeled Arg-Gly-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) hybrid peptides. Methods The RGD motif {Arg-Gly-Asp-DTyr-Asp} was coupled to [Cys3,4,10, D-Phe7, Arg11]α-MSH3–13 via the Aoc or PEG2 linker to generate RGD-Aoc-(Arg11)CCMSH and RGD-PEG-(Arg11)CCMSH. The biodistribution results of 99mTc-RGD-Aoc-(Arg11)CCMSH and 99mTc-RGD-PEG2-(Arg11)CCMSH were examined in M21 human melanoma-xenografted nude mice. Results The substitution of Lys linker with Aoc and PEG2 linker significantly reduced the renal uptake of 99mTc-RGD-Aoc-(Arg11)CCMSH and 99mTc-RGD-PEG2-(Arg11)CCMSH by 58% and 63% at 2 h post-injection. The renal uptake of 99mTc-RGD-Aoc-(Arg11)CCMSH and 99mTc-RGD-PEG2-(Arg11)CCMSH was 27.93 ± 3.98 and 22.01 ± 9.89% ID/g at 2 h post-injection. 99mTc-RGD-Aoc-(Arg11)CCMSH displayed higher tumor uptake than 99mTc-RGD-PEG2-(Arg11)CCMSH (2.35 ± 0.12 vs. 1.71 ± 0.25% ID/g at 2 h post-injection). The M21 human melanoma lesions could be clearly visualized by SPECT/CT using 99mTc-RGD-Aoc-(Arg11)CCMSH as an imaging probe. Conclusions The favorable effect of Aoc and PEG2 linker in reducing the renal uptake provided a new insight into the design of novel dual receptor-targeting radiolabeled peptides. PMID:25577037

  5. Genomic variation in the MMP-1 promoter influences estrogen receptor mediated activity in a mechanically activated environment: potential implications for microgravity risk assessment

    NASA Astrophysics Data System (ADS)

    Thaler, John; Myers, Ken; Lu, Ting; Hart, David

    examine the potential impact of the 1G/2G SNP on the cellular response to mechanical loading. HIG-82 cells are estrogen receptor (ER) negative and were transiently transfected with SV40 expression vectors for either ER-α or ER-β isoforms. Cells grown on glass slides were also co-transfected with either a 1G or 2G MMP-1 promoter-luciferase construct. Transfected cells were subjected to dynamic shear stress in a Flexcell Streamer Shear Stress Device. The dynamic loading regime was 0.5 Hz, 10 dyn/cm2 shear for 1 minute followed by 14 minutes rest and repeated for 8 hrs. A Promega Dual Luciferase Reporter Assay System was used to assess MMP-1 promoter activity. Results: Shear stress loading increased both 1G and 2G MMP-1 promoter activity compared to unloaded controls, however the 2G promoter had significantly higher rates of expression than the 1G promoter across all loading regimes and ER co-transfections. Transfection with ER-β resulted in higher MMP-1 promoter activity than that in cells expressing ER-α or in ER-neg cells. Conclusions: Specific genomic variations can lead to differences in cellular responses to changes in mechanical loading environments such as are encountered in microgravity environments or earth-based analogs. These genomic differences may predispose individuals to greater risk of bone loss. It is important to understand the combined effects of mechanical loading, genetic variation and sex hormones on bone maintenance so that risks can be identified for microgravity or analog environments, and specific interventions developed to counteract such risk or even exclude some individuals from prolonged space environments due to the extent of the risk.

  6. A Broadly Conserved G-Protein-Coupled Receptor Kinase Phosphorylation Mechanism Controls Drosophila Smoothened Activity

    PubMed Central

    Maier, Dominic; Cheng, Shuofei; Faubert, Denis; Hipfner, David R.

    2014-01-01

    Hedgehog (Hh) signaling is essential for normal growth, patterning, and homeostasis of many tissues in diverse organisms, and is misregulated in a variety of diseases including cancer. Cytoplasmic Hedgehog signaling is activated by multisite phosphorylation of the seven-pass transmembrane protein Smoothened (Smo) in its cytop