Science.gov

Sample records for dual-cured resin luting

  1. Luting of CAD/CAM ceramic inlays: direct composite versus dual-cure luting cement.

    PubMed

    Kameyama, Atsushi; Bonroy, Kim; Elsen, Caroline; Lührs, Anne-Katrin; Suyama, Yuji; Peumans, Marleen; Van Meerbeek, Bart; De Munck, Jan

    2015-01-01

    The aim of this study was to investigate bonding effectiveness in direct restorations. A two-step self-etch adhesive and a light-cure resin composite was compared with luting with a conventional dual-cure resin cement and a two-step etch and rinse adhesive. Class-I box-type cavities were prepared. Identical ceramic inlays were designed and fabricated with a computer-aided design/computer-aided manufacturing (CAD/CAM) device. The inlays were seated with Clearfil SE Bond/Clearfil AP-X (Kuraray Medical) or ExciTE F DSC/Variolink II (Ivoclar Vivadent), each by two operators (five teeth per group). The inlays were stored in water for one week at 37°C, whereafter micro-tensile bond strength testing was conducted. The micro-tensile bond strength of the direct composite was significantly higher than that from conventional luting, and was independent of the operator (P<0.0001). Pre-testing failures were only observed with the conventional method. High-power light-curing of a direct composite may be a viable alternative to luting lithium disilicate glass-ceramic CAD/CAM restorations. PMID:26407114

  2. Influence of glazed zirconia on dual-cure luting agent bond strength.

    PubMed

    Valentino, T A; Borges, G A; Borges, L H; Platt, J A; Correr-Sobrinho, L

    2012-01-01

    The current study evaluated the influence of a novel surface treatment that uses a low-fusing porcelain glaze for promoting a bond between zirconia-based ceramic and a dual-cure resin luting agent. Bond strengths were compared with those from airborne particle abrasion, hydrofluoric acid etching, and silanization-treated surfaces. Twenty-four yttrium-stabilized tetragonal zirconia (Cercon Smart Ceramics, Degudent, Hanau, Germany) discs were fabricated and received eight surface treatments: group 1: 110 μm aluminum oxide air-borne particle abrasion; group 2: 110 μm aluminum oxide airborne particle abrasion and silane; group 3: 50 μm aluminum oxide airborne particle abrasion; group 4: 50 pm aluminum oxide airborne particle abrasion and silane; group 5: glaze and hydrofluoric acid;group 6: glaze, hydrofluoric acid, and silane;group 7: glaze and 50 pm aluminum oxide airborne particle abrasion; and group 8: glaze,50 pm aluminum oxide airborne particle abrasion and silane. After treatment, Enforce resin cement (Dentsply, Caulk, Milford, DE, USA) was used to fill an iris cut from microbore Tygontubing that was put on the ceramic surface to create 30 cylinders of resin cement in each treatment group (n=30). Micro shear bond test-ing was performed at a cross head speed of 0.5mm/min. One-way analysis of variance, and multiple comparisons were made using Tukey's test (p<0.5). The bond strength was affected only by surface treatments other than silanization. The groups that utilized the low-fusing porcelain glaze with airborne particle abrasion or hydrofluoric acid showed bond strength values statistically superior to groups that utilized conventional airborne particle abrasion treatments with 50 or 110 pm aluminum oxide (p<0.001). The treatment that utilized low-fusing porcelain glaze and hydrofluoric acid showed bond strength values statistically superior to remaining groups (p<0.001). Treatment of zirconia ceramic surfaces with a glaze of low-fusing porcelain

  3. Changes on degree of conversion of dual-cure luting light-cured with blue LED

    NASA Astrophysics Data System (ADS)

    Bandéca, M. C.; El-Mowafy, O.; Saade, E. G.; Rastelli, A. N. S.; Bagnato, V. S.; Porto-Neto, S. T.

    2009-05-01

    The indirect adhesive procedures constitute recently a substantial portion of contemporary esthetic restorative treatments. The resin cements have been used to bond tooth substrate and restorative materials. Due to recently introduction of the self-bonding resin luting cement based on a new monomer, filler and initiation technology has become important to study the degree of conversion of these new materials. In the present work the polymerization reaction and the filler content of dual-cured dental resin cements were studied by means of infra-red spectroscopy (FT-IR) and thermogravimetry (TG). Twenty specimens were made in a metallic mold (8 mm diameter × 1 mm thick) from each of 2 cements, Panavia® F2.0 (Kuraray) and RelyX™ Unicem Applicap (3M/ESPE). Each specimen was cured with blue LED with power density of 500 mW/cm2 for 30 s. Immediately after curing, 24 and 48 h, and 7 days DC was determined. For each time interval 5 specimens were pulverized, pressed with KBr and analyzed with FT-IR. The TG measurements were performed in Netzsch TG 209 under oxygen atmosphere and heating rate of 10°C/min from 25 to 700°C. A two-way ANOVA showed DC (%) mean values statistically significance differences between two cements ( p < 0.05). The Tukey’s test showed no significant difference only for the 24 and 48 h after light irradiation for both resin cements ( p > 0.05). The Relx-Y™ Unicem mean values were significantly higher than Panavia® F 2.0. The degree of conversion means values increasing with the storage time and the filler content showed similar for both resin cements.

  4. Comparison of Apical Microleakage of Dual-Curing Resin Cements with Fluid-Filtration and Dye Extraction Techniques

    PubMed Central

    Kaya, Sadullah; Özer, Senem Yiğit; Adigüzel, Özkan; Oruçoğlu, Hasan; Değer, Yalçın; Tümen, Emin Caner; Uysal, İbrahim

    2015-01-01

    Background Endodontically treated teeth with excessive loss of tooth structure are frequently restored using fiber posts. In this in vitro study, the apical leakage of self- and dual-activated curing modes for dual-curing resins cementing a translucent fiber post was evaluated using computerized fluid filtration meter and dye extraction method. Material/Methods One hundred and four extracted human maxillary incisors with single root and canal were used. Experimental samples embedded in a closed system were divided into 4 groups (n=20) according to 2 dual-curing luting systems, with 2 different curing modes (either with self- or light-activation): (1) Panavia F 2.0 with self-cure, (2) Panavia F 2.0 with light-activation, (3) Clearfill SA with self-cure, and (4) Clearfill SA with light activation. Twenty-four teeth served as negative and positive controls. Translucent fiber posts were luted in the roots except in the control groups. Results Statistical analysis indicated no significant difference in leakage among groups (p>0.05) with 4.12×10−4 (Panavia self-cure), 4.55×10−4 (Clearfill SA self-cure), 5.17×10−4 (Panavia dual-cure), and 5.59×10−4 (Clearfill SA dual-cure) in fluid-filtration method. Absorbance values for dye-extraction method were 266 nanometer (nm) (Panavia self-cure), 268 nm (Clearfill SA self-cure), 270 nm (Panavia dual-cure), and 271 nm (Clearfill SA dual-cure), in which difference among the groups were not statistically significant (p>0.05). When comparing the leakage, assessment methods results showed no statistically significant difference between the tested evaluation techniques (p>0.05). Conclusions Light- and self-activation curing modes of Panavia F 2.0 and Clearfill SA perform similar to each other in a closed system. PMID:25824712

  5. Cytotoxicity evaluation of five different dual-cured resin cements used for fiber posts cementation

    PubMed Central

    Dioguardi, M; Perrone, D; Troiano, G; Laino, L; Ardito, F; Lauritano, F; Cicciù, M; Muzio, L Lo

    2015-01-01

    Custom-cast posts and cores are usually used to treat endodontically treated teeth. However, several researches have underlined how these devices may be a much higher elastic modulus than the supporting dentine and the difference in the modulus could lead to stress concentrating in the cement lute, leading to failure. The role of the cement seems to play a fundamental role in order to transfer the strength during the chewing phases. Aim of this research is to record the rate of cytotoxicity of five different dual-cured resin cements used for fiber posts cementation. We tested the cytotoxicity of this five materials on MG63 osteoblast-like cells through two different methods: MTT ([3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide succinate) assay which tests for mitochondrial enzyme activity6 and xCELLigence® system. PMID:26309592

  6. Cytotoxicity evaluation of five different dual-cured resin cements used for fiber posts cementation.

    PubMed

    Dioguardi, M; Perrone, D; Troiano, G; Laino, L; Ardito, F; Lauritano, F; Cicciù, M; Muzio, L Lo

    2015-01-01

    Custom-cast posts and cores are usually used to treat endodontically treated teeth. However, several researches have underlined how these devices may be a much higher elastic modulus than the supporting dentine and the difference in the modulus could lead to stress concentrating in the cement lute, leading to failure. The role of the cement seems to play a fundamental role in order to transfer the strength during the chewing phases. Aim of this research is to record the rate of cytotoxicity of five different dual-cured resin cements used for fiber posts cementation. We tested the cytotoxicity of this five materials on MG63 osteoblast-like cells through two different methods: MTT ([3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide succinate) assay which tests for mitochondrial enzyme activity(6) and xCELLigence® system. PMID:26309592

  7. Conventional dual-cure versus self-adhesive resin cements in dentin bond integrity

    PubMed Central

    da SILVA, Renata Andreza Talaveira; COUTINHO, Margareth; CARDOZO, Pedro Igor; da SILVA, Larissa Alves; ZORZATTO, José Roberto

    2011-01-01

    During post preparation, the root canal is exposed to the oral cavity, and endodontic treatment may fail because of coronal leakage, bacterial infection and sealing inability of the luting cement. Objective this study quantified the interfacial continuity produced with conventional dual-cure and self-adhesive resin cements in the cervical (C), medium (M) and apical (A) thirds of the root. Material and methods Forty single-rooted human teeth were restored using Reforpost # 01 conical glass-fiber posts and different materials (N=10 per group): group AC=Adper™ ScotchBond™ Multi-purpose Plus + AllCem; group ARC=Adper™ ScotchBond™ Multi-purpose Plus + RelyX ARC; group U100=RelyX U100; and group MXC=Maxcem Elite. After being kept in 100% humidity at 37ºC for 72 hours, the samples were sectioned parallel to their longitudinal axis and positive epoxy resin replicas were made. The scanning electron micrographs of each third section of the teeth were combined using Image Analyst software and measured with AutoCAD-2002. We obtained percentage values of the interfacial continuity. Results Interfacial continuity was similar in the apical, medium and cervical thirds of the roots within the groups (Friedman test, p>0.05). Comparison of the different cements in a same root third showed that interfacial continuity was lower in MXC (C=45.5%; M=48.5%; A=47.3%) than in AC (C=85.9%, M=81.8% and A=76.0%), ARC (C=83.8%, M=82.4% and A=75.0%) and U100 (C=84.1%, M=82.4% and A=77.3%) (Kruskal-Wallis test, p<0.05). Conclusions Allcem, Rely X ARC and U100 provide the best cementation; cementation was similar among root portions; in practical terms, U100 is the best resin because it combines good cementation and easy application and none of the cements provides complete interfacial continuity. PMID:21710099

  8. Repair bond strength of dual-cured resin composite core buildup materials

    PubMed Central

    El-Deeb, Heba A.; Ghalab, Radwa M.; Elsayed Akah, Mai M.; Mobarak, Enas H.

    2015-01-01

    The reparability of dual-cured resin composite core buildup materials using a light-cured one following one week or three months storage, prior to repair was evaluated. Two different dual-cured resin composites; Cosmecore™ DC automix and Clearfil™ DC automix core buildup materials and a light-cured nanofilled resin composite; Filtek™ Z350 XT were used. Substrate specimens were prepared (n = 12/each substrate material) and stored in artificial saliva at 37 °C either for one week or three months. Afterward, all specimens were ground flat, etched using Scotchbond™ phosphoric acid etchant and received Single Bond Universal adhesive system according to the manufacturers’ instructions. The light-cured nanofilled resin composite (Filtek™ Z350 XT) was used as a repair material buildup. To determine the cohesive strength of each solid substrate material, additional specimens from each core material (n = 12) were prepared and stored for the same periods. Five sticks (0.8 ± 0.01 mm2) were obtained from each specimen (30 sticks/group) for microtensile bond strength (μTBS) testing. Modes of failure were also determined. Two-way ANOVA revealed a significant effect for the core materials but not for the storage periods or their interaction. After one week, dual-cured resin composite core buildup materials (Cosmecore™ DC and Clearfil™ DC) achieved significantly higher repair μTBS than the light-cured nanofilled resin composite (Filtek™ Z350 XT). However, Clearfil™ DC revealed the highest value, then Cosmecore™ DC and Filtek™ Z350 XT, following storage for 3-month. Repair strength values recovered 64–86% of the cohesive strengths of solid substrate materials. The predominant mode of failure was the mixed type. Dual-cured resin composite core buildup materials revealed acceptable repair bond strength values even after 3-month storage. PMID:26966567

  9. Do blood contamination and haemostatic agents affect microtensile bond strength of dual cured resin cement to dentin?

    PubMed Central

    KİLİC, Kerem; ARSLAN, Soley; DEMETOGLU, Goknil Alkan; ZARARSIZ, Gokmen; KESİM, Bulent

    2013-01-01

    Objective: The purpose of this study was to evaluate the effects of blood contamination and haemostatic agents such as Ankaferd Blood Stopper (ABS) and hydrogen peroxide (H2O2) on the microtensile bond strength between dual cured resin cement-dentin interface. Material and Methods: Twelve pressed lithium disilicate glass ceramics were luted to flat occlusal dentin surfaces with Panavia F under the following conditions: Control Group: no contamination, Group Blood: blood contamination, Group ABS: ABS contamination Group H2O2: H2O2 contamination. The specimens were sectioned to the beams and microtensile testing was carried out. Failure modes were classified under stereomicroscope. Two specimens were randomly selected from each group, and SEM analyses were performed. Results: There were significant differences in microtensile bond strengths (µTBS) between the control and blood-contaminated groups (p<0.05), whereas there were no significant differences found between the control and the other groups (p>0.05). Conclusions: Contamination by blood of dentin surface prior to bonding reduced the bond strength between resin cement and the dentin. Ankaferd Blood Stoper and H2O2 could be used safely as blood stopping agents during cementation of all-ceramics to dentin to prevent bond failure due to blood contamination. PMID:23559118

  10. Effect of curing mode on the hardness of dual-cured composite resin core build-up materials.

    PubMed

    Arrais, César Augusto Galvão; Kasaz, Aline de Cerqueira; Albino, Luís Gustavo Barrote; Rodrigues, José Augusto; Reis, Andre Figueiredo

    2010-01-01

    This study evaluated the Knoop Hardness (KHN) values of two dual-cured composite resin core build-up materials and one resin cement exposed to different curing conditions. Two dual-cured core build-up composite resins (LuxaCore-Dual, DMG; and FluoroCore2, Dentsply Caulk), and one dual-cured resin cement (Rely X ARC, 3M ESPE) were used in the present study. The composite materials were placed into a cylindrical matrix (2 mm in height and 3 mm in diameter), and the specimens thus produced were either light-activated for 40 s (Optilux 501, Demetron Kerr) or were allowed to self-cure for 10 min in the dark (n = 5). All specimens were then stored in humidity at 37 degrees C for 24 h in the dark and were subjected to KHN analysis. The results were submitted to 2-way ANOVA and Tukey's post-hoc test at a pre-set alpha of 5%. All the light-activated groups exhibited higher KHN values than the self-cured ones (p = 0.00001), regardless of product. Among the self-cured groups, both composite resin core build-up materials showed higher KHN values than the dual-cured resin cement (p = 0.00001). LuxaCore-Dual exhibited higher KHN values than FluoroCore2 (p = 0.00001) when they were allowed to self-cure, while no significant differences in KHN values were observed among the light-activated products. The results suggest that dual-cured composite resin core build-up materials may be more reliable than dual-cured resin cements when curing light is not available. PMID:20658046

  11. Evaluation of shear bond strength between dual cure resin cement and zirconia ceramic after thermocycling treatment

    PubMed Central

    Lee, Jung-Jin; Kang, Cheol-Kyun; Oh, Ju-Won

    2015-01-01

    PURPOSE This study was performed to evaluate shear bond strength (SBS) between three dual-cured resin cements and silica coated zirconia, before and after thermocycling treatment. MATERIALS AND METHODS Sixty specimens were cut in 15 × 2.75 mm discs using zirconia. After air blasting of 50 µm alumina, samples were prepared by tribochemical silica coating with Rocatec™ plus. The specimens were divided into three groups according to the dual-cure resin cement used: (1) Calibra silane+Calibra®, (2) Monobond S+Multilink® N and (3) ESPN sil+RelyX™ Unicem Clicker. After the resin cement was bonded to the zirconia using a Teflon mold, photopolymerization was carried out. Only 10 specimens in each group were thermocycled 6,000 times. Depending on thermocycling treatment, each group was divided into two subgroups (n=10) and SBS was measured by applying force at the speed of 1 mm/min using a universal testing machine. To find out the differences in SBS according to the types of cements and thermocycling using the SPSS, two-way ANOVA was conducted and post-hoc analysis was performed by Turkey's test. RESULTS In non-thermal aged groups, SBS of Multilink group (M1) was higher than that of Calibra (C1) and Unicem (U1) group (P<.05). Moreover, even after thermocycling treatment, SBS of Multilink group (M2) was higher than the other groups (C2 and U2). All three cements showed lower SBS after the thermocycling than before the treatments. But Multilink and Unicem had a significant difference (P<.05). CONCLUSION In this experiment, Multilink showed the highest SBS before and after thermocycling. Also, bond strengths of all three cements decreased after thermocycling. PMID:25722830

  12. Evaluation of the flexural strength of dual-cure composite resin cements.

    PubMed

    Duymus, Zeynep Yesil; Yanikoğlu, Nuran Dinckal; Alkurt, Murat

    2013-07-01

    The aim of this study was to evaluate of flexural strength of some adhesive resin cements. Three dual-cure composite resin cements (Nexus 3; Variolink II, Panavia F) were prepared. The manufacturer's mixing directions for the cements were followed. Adhesive resin cement was mixed, placed in the rectangular portion of the mold. Fifteen specimens were prepared for each cements. The cements were light-activated with light lamp for 40 s on both and top and bottom surfaces. The each cement specimens were divided into three groups according to time of storage and stored in distilled water for 24 h, 15, and 30 days. Total 45 specimens were stored at 37°C (98.6 0F) in distilled water for 24 h, 15, and 30 days prior to tests. The flexural strength was tested wıth a universal testing machine at a crosshead speed of 0.5 mm/min (0.02 in.) The maximum load was recorded as MPa. The results were analyzed by Analysis of Variance and Duncan test. The Panavia F resin cements content Bisphenol A was showed the highest flexural strength (80.80 MPa) (11.71 ksi) for 24 h. The lowest flexural strength was observed in Nexus 3 (51.00 MPa) (7.39 ksi). It was found significant interaction of material and time (p < 0.05). The types of cement and time of storage was statistically significant on the flexural strengths (p < 0.001). PMID:23359518

  13. In-depth polymerization of a self-adhesive dual-cured resin cement.

    PubMed

    Puppin-Rontani, R M; Dinelli, R G; de Paula, A B; Fucio, S B P; Ambrosano, G M B; Pascon, F M

    2012-01-01

    The aim of this study was to assess Knoop hardness at different depths of a dual-cured self-adhesive resin cement through different thicknesses of Empress Esthetic® ceramic.Flattened bovine dentin was embedded in resin. The cement was inserted into a rubber mold (0.8 x 5 mm) that was placed between two polyvinyl chloride plastic films and placed over the flat dentin and light cured by Elipar Trilight-QTH (800 mW/cm2) or Ultra-Lumelight-emitting diode (LED 5; 1585 mW/cm2) over ceramic disks 1.4 or 2 mm thick. The specimens(n=6) were stored for 24 hours before Knoop hardness (KHN) was measured. The data were submitted to analysis of variance in a factorial split-plot design and Tukey's test (a=0.05).There was significant interaction among the study factors. In the groups cured by the QTHunit, an increase in ceramic thickness resulted in reduced cement hardness values at all depths, with the highest values always being found in the center (1.4 mm, 58.1; 2 mm, 50.1)and the lowest values at the bottom (1.4 mm,23.8; 2 mm, 20.2). When using the LED unit, the hardness values diminished with increased ceramic thickness only on the top (1.4 mm,51.5; 2 mm, 42.3). In the group with the 1.4-mm-thick disk, the LED curing unit resulted in similar values on the top (51.5) and center(51.9) and lower values on the bottom (24.2).However, when the cement was light cured through the 2-mm disk, the highest hardness value was obtained in the center (51.8), followed by the top (42.3) and bottom (19.9),results similar to those obtained with the QTH curing unit (center > top > bottom). The hardness values of the studied cement at different depths were dependent on the ceramic thickness but not on the light curing units used. PMID:22166106

  14. Degree of conversion of two dual-cured resin cements light-irradiated through zirconia ceramic disks

    PubMed Central

    Kim, Min-Jeong; Kim, Kyo-Han; Kim, Young-Kyung

    2013-01-01

    PURPOSE The aim of this Fourier transform infrared (FTIR) spectroscopic study was to measure the degree of conversion (DC) of dual-cured resin cements light-irradiated through zirconia ceramic disks with different thicknesses using various light-curing methods. MATERIALS AND METHODS Zirconia ceramic disks (KT12) with three different thicknesses (1.0, 2.0, and 4.0 mm) were prepared. The light transmittance of the disks was measured using ultraviolet visible near-infrared spectroscopy. Four different light-curing protocols were used by combining two curing light modes (Elipar TriLight (standard mode) and bluephase G2 (high power mode)) with light-exposure times of 40 and 120 seconds. The DCs of the two dual-cured resin cements (Duo-Link and Panavia F2.0) light-irradiated through the disks was analyzed at three time intervals (3, 7, and 10 minutes) by FTIR spectroscopy. The data was analyzed using repeated measures ANOVA (α=.05).Two-way ANOVA and Tukey post hoc test were used to analyze the 10 minute DC results. RESULTS The 1.0 mm thick disk exhibited low light transmittance (<25%), and the transmittance decreased considerably with increasing disk thickness. All groups exhibited significantly higher 10 minute DC values than the 3 or 7 minute values (P<.05), but some exceptions were observed in Duo-Link. Two-way ANOVA revealed that the influence of the zirconia disk thickness on the 10 minute DC was dependent on the light-curing methods (P<.001). This finding was still valid even at 4.0 mm thickness, where substantial light attenuation took place. CONCLUSION The curing of the dual-cured resin cements was affected significantly by the light-curing technique, even though the additional chemical polymerization mechanism worked effectively. PMID:24353887

  15. Resistance to bond degradation between dual-cure resin cements and pre-treated sintered CAD-CAM dental ceramics

    PubMed Central

    Osorio, Raquel; Monticelli, Francesca; Osorio, Estrella; Toledano, Manuel

    2012-01-01

    Objective: To evaluate the bond stability of resin cements when luted to glass-reinforced alumina and zirconia CAD/CAM dental ceramics. Study design: Eighteen glass-infiltrated alumina and eighteen densely sintered zirconia blocks were randomly conditioned as follows: Group 1: No treatment; Group 2: Sandblasting (125 µm Al2O3-particles); and Group 3: Silica-coating (50 µm silica-modified Al2O3-particles). Composite samples were randomly bonded to the pre-treated ceramic surfaces using different resin cements: Subgroup 1: Clearfil Esthetic Cement (CEC); Subgroup 2: RelyX Unicem (RXU); and Subgroup 3: Calibra (CAL). After 24 h, bonded specimens were cut into 1 ± 0.1 mm2 sticks. One-half of the beams were tested for microtensile bond strength (MTBS). The remaining one-half was immersed in 10 % NaOCl aqueous solution (NaOClaq) for 5 h before testing. The fracture pattern and morphology of the debonded surfaces were assessed with a field emission gun scanning electron microscope (FEG-SEM). A multiple ANOVA was conducted to analyze the contributions of ceramic composition, surface treatment, resin cement type, and chemical challenging to MTBS. The Tukey test was run for multiple comparisons (p < 0.05). Results: After 24 h, CEC luted to pre-treated zirconia achieved the highest MTBS. Using RXU, alumina and zirconia registered comparable MTBS. CAL failed prematurely, except when luted to sandblasted zirconia. After NaOClaq storage, CEC significantly lowered MTBS when luted to zirconia or alumina. RXU decreased MTBS only when bonded to silica-coated alumina. CAL recorded 100 % of pre-testing failures. Micromorphological alterations were evident after NaOClaq immersion. Conclusions: Resin-ceramic interfacial longevity depended on cement selection rather than on surface pre-treatments. The MDP-containing and the self-adhesive resin cements were both suitable for luting CAD/CAM ceramics. Despite both cements being prone to degradation, RXU luted to zirconia or untreated or

  16. Comparison of the flexural strength of two dual cure adhesive resin cements under oral simulated conditions: an in-vitro study.

    PubMed

    Awasthi, P; Nair, A; Regish, K M; Viswambaran, M; Kumar, M

    2013-06-01

    The purpose of this in vitro study was to evaluate the flexural strength of the newly developed self-adhesive dual cure resin cement and compare it with conventional resin cement under oral simulated conditions. A conventional resin cement (Calibra) and self adhesive resin cement (RelyX U100) were selected and 40 specimens of each cement were fabricated for the study. Half of these specimens were polymerized directly whereas the other half were polymerized through 2 mm of porcelain disc. Specimens were tested after 24hrs and after 30 days immersion in artificial saliva. A three point bending test was performed using universal testing machine at a crosshead speed of 1mm/min. Overall RelyX U100 showed higher mean flexural strength compared to Calibra (141.55 MPa, 119.46MPa, respectively). When the specimens of both the cements were light cured through 2 mm porcelain disc, their flexural strength decreased significantly. The mean flexural strength of both self adhesive and conventional dual cure adhesive resin cements was increased significantly after storage in artificial saliva for 30 days at 37 degreeC. Among the two dual cure resin cements, the self adhesive dual cure cement (RelyX U100) showed increased overall mean flexural strength as compared to conventional resin cement (Calibra) under all the curing and storage protocols. PMID:23888528

  17. Microleakage of Dual-Cured Adhesive Systems in Class V Composite Resin Restorations

    PubMed Central

    Kasraie, S.; Azarsina, M.; Khamverdi, Z.; Shokraneh, F.

    2012-01-01

    Objective: Microleakage is a major factor affecting longevity of composite restorations. This study evaluated the effect of polymerization mode of bonding agent on microleakage of composite restorations. Materials and Methods: Forty-eight Class V cavities were prepared on buccal and lingual surfaces of 24 extracted human premolars. Occlusal and gingival margins were placed in the enamel and dentin, respectively. Teeth were divided into four groups as follows: Group I: Optibond Solo Plus (light-cured); Group II: Optibond Solo Plus (dual-cured); Group III: Prime & Bond NT (light-cured), Group IV: Prime & Bond NT (dual-cured). Teeth were restored using Z250 composite in three increments. After polishing the restorations, samples were thermocycled for 1000 cycles and stored in distilled water for 3 months. Then they were placed in 2% fuchsine solution for 48 hours. The samples were sectioned longitudinally and evaluated for microleakage under a stereomicroscope at ×40 magnification. Dye penetration was scored on a 0–3 ordinal scale. Data were analyzed using Kruskal-Wallis, Bonferroni and Wilcoxon signed ranks test. Results: Microleakage was significantly lower in enamel margins compared to dentin margins (P<0.05); multiple comparisons by Bonferroni tests revealed that the only factor with significant effect on leakage of the restoration is location of the restoration margin. Mode of adhesive polymerization had no significant influence on microleakage (P>0.05). Prime & Bond NT had less microleakage compared to Optibond SoloPlus, but the difference was not significant (P>0.05). Conclusion: There was no difference in the amount of microleakage in Class V composite restorations using light-cured and dual-cured bonding systems. Dentinal margins of restorations exhibited more microleakage than enamel margins. PMID:23066474

  18. Evaluation of Adhesive Bonding of Lithium Disilicate Ceramic Material with Duel Cured Resin Luting Agents

    PubMed Central

    Gundawar, Sham M.; Radke, Usha M.

    2015-01-01

    Purpose: The purpose of this vitro study was to comparatively evaluate the adhesive bonding of dual cured resin luting agents with lithium disilicate ceramic material. Materials and Methods: Porcelain laminate veneers were prepared with lithium disilicate ceramic material i.e. IPS Empress II( E-Max Press). These laminates were bonded with RelyX ARC, Panavia F 2.0, Variolink II, Duolink and Nexus NX3.The porcelain laminates were etched with 9.6% hydrofluoric acid (Pulpdent Corporation) for one minute, washed for 15 sec with three way syringe and dried for 15 sec with air syringe. The silane (Ultradent) was applied with the help of applicator tip in a single coat and kept undisturbed for one minute. The prepared surfaces of the premolars were treated with 37% phosphoric acid (Prime dent) for 15 sec, thoroughly rinsed and dried as per manufactures instructions. The shear bond test was carried out on all samples with the Universal testing machine (Instron U.S.A.) The scanning electron microscopic study was performed at the fractured interface of representative samples from each group of luting agents. Result: In this study, the highest value of shear bond strength was obtained for NEXUS NX3 and the lowest for VARIOLINK II. Conclusion: The difference in bond strength can be interpreted as the difference in fracture resistance of luting agents, to which shearing load was applied during the shear bond strength test. It is inferred from this study that the composition of the luting agent determines the adhesive characteristics in addition to surface treatment and bonding surface area. PMID:25859514

  19. Effect of Different Thicknesses of Pressable Ceramic Veneers on Polymerization of Light-cured and Dual-cured Resin Cements

    PubMed Central

    Cho, Seok-Hwan; Lopez, Arnaldo; Berzins, David W.; Prasad, Soni; Ahn, Kwang Woo

    2015-01-01

    Aim This study evaluated the effects of ceramic veneer thicknesses on the polymerization of two different resin cements. Materials and Methods A total of 80 ceramic veneer discs were fabricated by using a pressable ceramic material (e.max Press; Ivoclar Vivadent) from a Low Translucency (LT) ingot (A1 shade). These discs were divided into light-cured (LC; NX3 Nexus LC; Kerr) and dual-cured (DC; NX3 Nexus DC; Kerr) and each group was further divided into 4 subgroups, based on ceramic disc thickness (0.3 mm, 0.6 mm, 0.9 mm, and 1.2 mm). The values of Vickers microhardness (MH) and degree of conversion (DOC) were obtained for each specimen after a 24-hour storage period. Association between ceramic thickness, resin cement type, and light intensity readings (mW/cm2) with respect to microhardness and degree of conversion was statistically evaluated by using ANOVA. Results For the DOC values, there was no significant difference observed among the LC resin cement subgroups, except in the 1.2 mm subgroup; only the DOC value (14.0 ± 7.4%) of 1.2 mm DC resin cement had significantly difference from that value (28.9 ± 7.5%) of 1.2 mm LC resin cement (P<.05). For the MH values between LC and DC resin cement groups, there was statistically significant difference (P<.05); overall, the MH values of LC resin cement groups demonstrated higher values than DC resin cement groups. On the other hands, among the DC resin cement subgroups, the MH values of 1.2 mm DC subgroup was significantly lower than the 0.3 mm and 0.6 mm subgroups (P<.05). However, among the LC subgroups, there was no statistically significant difference among them (P >.05). Conclusion The degree of conversion and hardness of the resin cement was unaffected with veneering thicknesses between 0.3 and 0.9 mm. However, the DC resin cement group resulted in a significantly lower DOC and MH values for the 1.2 mm subgroup. Clinical Significance While clinically adequate polymerization of LC resin cement can be achieved

  20. Comparative Evaluation of Bond Strength of Dual-Cured Resin Cements: An In-Vitro Study

    PubMed Central

    Kumari, R Veena; Poluri, Ramya Krishna; Nagaraj, Hema; Siddaruju, Kishore

    2015-01-01

    Background: To compare the microtensile bond strength of resin cements to enamel and dentin and to determine the type of bond failure using stereomicroscope. Materials and Methods: In this in-vitro study 40 teeth were embedded in acrylic resin and divided into two main groups i.e., Group A for enamel and Group B for dentin. Each group is again subdivided into four subgroups, which are as follows; Subgroup 1 for Calibra resin cement, Subgroup 2 for Paracem, Subgroup 3 for Variolink II and Subgroup 4 for Rely X ARC. These resin cements were applied on enamel and dentin according to manufacturer’s instructions followed by incremental build-up of composite resin on the top of resin cements. Each tooth was sectioned perpendicular to the resin-substrate interface with a slow speed diamond saw under water cooling yielding sections of approximately 1 mm2. On an average, three sections from each tooth were used for testing. The beams obtained after sectioning were stressed to failure under tension in a custom made stainless steel forceps held in a universal testing machine (Lloyd) at a crosshead speed of 1.0 mm/min. Results were analyzed using two-way analysis of variance, independent t-test, and Tukey’s HSD post-hoc test. Results: Cements bonded to enamel substrates showed higher mean bond strength compared to dentin, which is statistically significant. Rely X ARC showed highest mean bond strength to both the substrates. Conclusion: There was a significant difference between the bond strength to enamel and dentin and, Rely X ARC resin cement showed higher bond strength compared with the other groups. PMID:26225104

  1. Evaluation of light transmission through different esthetic posts and its influence on the degree of polymerization of a dual cure resin cement

    PubMed Central

    Taneja, Sonali; Kumari, Manju; Gupta, Anupama

    2013-01-01

    Aim: To measure the light transmission through different esthetic posts and to evaluate the degree of polymerization of dual cure resin cement cured through these posts. Materials and Methods: The posts were divided into two experimental groups i.e. Group A (D.T. Light post); Group B (D.T. White post) and control i.e. Group C (metal post), each group having 10 samples. Posts of each group were illuminated with curing light and photographs were taken keeping the parameters standardized to evaluate the intensity of light transmission at different levels. The degree of polymerization of dual cure resin cement was evaluated using Fourier Transform Infrared spectroscopy. The data obtained was subjected to statistical analysis. Results: D.T. Light post showed highest light transmission and degree of polymerization. The light intensity decreased from cervical to apical for both esthetic post but the decrease from middle to apical third was insignificant for D.T. White post group. No light transmission was detected in metal post but the degree of polymerization decreased significantly from cervical to middle third. Conclusion: Cementation of fibre post with superior light transmitting ability using dual cured resin cement resulted in increased degree of polymerization. PMID:23349573

  2. Effect of Light Intensity on the Degree of Conversion of Dual-cured Resin Cement at Different Depths with the use of Translucent Fiber Posts

    PubMed Central

    Bahari, Mahmoud; Savadi Oskoee, Siavash; Kimyai, Soodabeh; Mohammadi, Narmin; Saati Khosroshahi, Elmira

    2014-01-01

    Objectives: To evaluate the effect of different light intensities on the degree of conversion (DC) of dual-cured resin cement at different depths of translucent fiber posts. Materials and Methods: Thirty translucent fiber posts were randomly assigned into three (n=10) groups. They were cemented in the simulated canal spaces using Duo-Link dual-cured resin cement. The cement was light-cured under 600, 800 and 1100 mW/cm2 light intensities for 40 seconds. DC of the resin cement was calculated at cervical, middle and apical thirds using the spectra of FT-Raman spectrometer. Data were analyzed by repeated measurement ANOVA and Tukey’s post hoc tests (α=0.05). Results: In all the groups, the least DC was obtained at the apical region. There were no significant differences in the DC with different light intensities between the cervical and middle regions (p>0.05). However, in the apical region, the DC in both 800 and 1100 mw/cm2 was similar (p>0.05), but greater with 600 mW/cm2 light intensity (p=0.02 and p<0.001, respectively). Conclusion: In comparison with the light intensity of 600 mW/cm2, the light intensity of 800 mW/cm2 significantly increased the DC of dual-cured resin cement in the apical region. However, DC was not significantly different between 800 and 1100 mw/cm2 light intensities. If the resin cement, especially in the apical areas is not sufficiently cured, microleakage might increase and post retention might be jeopardized. In comparison with 600 mW/cm2 light intensity, 800 mW/cm2 significantly increases DC at the apical third that might be clinically beneficial. PMID:25628659

  3. Physical properties of fixed prosthodontic, resin composite luting agents.

    PubMed

    White, S N; Yu, Z

    1993-01-01

    This study determined and compared physical properties of six fixed prosthodontic resin composite luting agents and one control. Inorganic filler content, compressive strength, diametral tensile strength, film thickness, and Knoop hardness were determined. The amounts of filler and the physical properties varied widely among materials. One material, which contained a minimal amount of filler, underwent so much plastic deformation that its strengths could not be measured. All other materials demonstrated high strengths. The materials with the least filler demonstrated the least resistance to indentation. The material with the lowest film thickness had not set at the time of measurement, 10 minutes after mixing. Most materials had unacceptable film thicknesses. Only one material demonstrated acceptable physical properties throughout the study. PMID:8240650

  4. Submargination of a resin luting cement--a clinical case report.

    PubMed

    Chan, D C; Titus, H W

    1996-12-01

    The purpose of this case report was to examine the marginal integrity of an indirect inlay and an onlay luted with resin luting cement over a four year period. A technique to seal the occlusal margins of the inlay restoration was reported. Over time, the occlusal margins of the inlay were noticeably submarginated due to wear degradation of the resin inlay cement. The onlay margins were less affected by wear. Clinical techniques to overcome submargination problems were discussed. PMID:9518821

  5. Indirect composite restorations luted with two different procedures: A ten years follow up clinical trial

    PubMed Central

    Preti, Alessandro; Vano, Michele; Derchi, Giacomo; Mangani, Francesco; Cerutti, Antonio

    2015-01-01

    Objectives: The aim of this clinical trial was to evaluate posterior indirect composite resin restoration ten years after placement luted with two different procedures. Study Design: In 23 patients 22 inlays/onlays (Group A) were luted using a dual-cured resin composite cement and 26 inlays/onlays (Group B) were luted using a light cured resin composite for a total of 48 Class I and Class II indirect composite resin inlays and onlays. The restorations were evaluated at 2 time points: 1) one week after placement (baseline evaluation) and 2) ten years after placement using the modified USPHS criteria. The Mann-Whitney and the Wilcoxon tests were used to examine the difference between the results of the baseline and 10 years evaluation for each criteria. Results: Numerical but not statistically significant differences were noted on any of the recorded clinical parameters (p>0.05) between the inlay/onlays of Group A and Group B. 91% and 94 % of Group A and B respectively were rated as clinically acceptable in all the evaluated criteria ten years after clinical function. Conclusions: Within the limits of the study the results showed after ten years of function a comparable clinical performance of indirect composite resin inlays/onlays placed with a light cure or dual cure luting procedures. Key words:Light curing composite, dual curing composite, indirect composite restoration, inlays/onlays, clinical trial. PMID:25810842

  6. Resin luting materials: Tissue response in dog's teeth.

    PubMed

    Bezzon, Osvaldo L; Rivera, Daniella S H; Silva, Raquel A B; Oliveira, Daniela S B; Silva-Herzog, Daniel; Nelson-Filho, Paulo; Lucisano, Marília P; Silva, Léa A B

    2015-12-01

    The aim of this study was to evaluate radiographically and histologically the pulpal and periapical response to self-adhesive (Rely X™ Unicem) and self-etching and self-curing (Multilink(®)) resin-based luting materials in deep cavities in dogs' teeth. Deep class V cavities (0.5-mm-thick dentin) were prepared in 60 canine premolars and the following materials were applied on cavity floor: Groups I/V-RelyX™ Unicem; Groups II/VI-Multilink(®); Groups III/VII-zinc phosphate cement (control) and; Groups IV/VIII-gutta-percha (control). Cavities were restored with silver amalgam. Animals were euthanized after 10 days (groups I-IV) and 90 days (groups V-VIII). Tooth/bone blocks were radiographed and processed for histopathological evaluation of pulp and periapical tissue response to the materials. All materials presented similar histopathological features and radiographic findings at both periods. The pulp tissue was intact. The apical and periapical regions and periodontal ligament thickness were normal. No inflammatory cells, resorption of mineralized tissue (dentin, cementum, and alveolar bone) or bacteria were observed. The lamina dura was intact and no areas of periapical bone rarefaction or internal/external root resorption were observed radiographically. It can be concluded that Rely X™ Unicem and Multilink(®) caused no adverse tissue reactions and may be indicated for cementation of indirect restorations in deep dentin cavities without pulp exposure. PMID:26497153

  7. Influence of light-curing protocols on polymerization shrinkage and shrinkage force of a dual-cured core build-up resin composite.

    PubMed

    Tauböck, Tobias T; Bortolotto, Tissiana; Buchalla, Wolfgang; Attin, Thomas; Krejci, Ivo

    2010-08-01

    This study investigated the influence of time delay and duration of photo-activation on linear polymerization shrinkage, shrinkage force, and hardening of a dual-cured core build-up resin composite. The test material (Rebilda DC) was light-cured for 20 or 60 s either early (2 min) or late (7 min) after the start of mixing. Non-irradiated self-cured specimens served as controls. Linear shrinkage and shrinkage force were measured for 60 min using custom-made devices. Knoop hardness was determined at the end of the observation period. Self-cured controls, showing a linear shrinkage similar to that of specimens early light-cured for 20 s generated the lowest shrinkage force and hardness. A shorter light exposure time (20 s vs. 60 s) reduced linear shrinkage, shrinkage force, and hardness when early light-curing was performed, but did not affect the three properties in specimens light-cured late after the start of mixing. Late photo-activation increased linear shrinkage, irrespective of irradiation time, and resulted in a higher shrinkage force and hardness for short light exposure time. A moderate correlation was found between the two shrinkage properties studied (r(2) = 0.65). In conclusion, improvements in shrinkage behavior of the tested core build-up material were associated with inferior hardening, making it important to adapt curing protocols to the clinical situation. PMID:20662918

  8. Radiopacity of different resin-based and conventional luting cements compared to human and bovine teeth.

    PubMed

    Pekkan, Gürel; Ozcan, Mutlu

    2012-02-01

    This study evaluated the radiopacity of different resin-based luting materials and compared the results to human and bovine dental hard tissues. Disc specimens (N=130, n=10 per group) (diameter: 6 mm, thickness: 1 mm) were prepared from 10 resin-based and 3 conventional luting cements. Human canine dentin (n=10), bovine enamel (n=10), bovine dentin (n=10) and Aluminium (Al) step wedge were used as references. The optical density values of each material were measured from radiographic images using a transmission densitometer. Al step wedge thickness and optical density values were plotted and equivalent Al thickness values were determined for radiopacity measurements of each material. The radiopacity values of conventional cements and two resin luting materials (Rely X Unicem and Variolink II), were significantly higher than that of bovine enamel that could be preferred for restorations cemented on enamel. Since all examined resin-based luting materials showed radiopacity values equivalent to or greater than that of human and bovine dentin, they could be considered suitable for the restorations cemented on dentin. PMID:22277608

  9. Composite resin vs resin cement for luting of indirect restorations: comparison of solubility and shrinkage behavior.

    PubMed

    Bortolotto, Tissiana; Guillarme, Davy; Gutemberg, Daniel; Veuthey, Jean-Luc; Krejci, Ivo

    2013-01-01

    The aim of this study was to evaluate relationship between shrinkage development and early solubility of two commonly used luting materials, a self-adhesive cement (GCem chemical and light cured) and composite resin (Tetric). Linear displacement, shrinkage forces and leaching of UDMA from specimens immersed in 75% ethanol/25% water were measured. The least amount of linear shrinkage (33.0±2.9 µm) and polymerization force (4.1±0.3 kg) was observed in Tetric. UDMA leaching (% µg/mL) was the following: chemically cured GCem (4.2±0.2)>light cured GCem (1.5±0.1)>Tetric (0.1). Shrinkage development in the early stages of polymerization was much slower in the self-cured specimens in respect to light cured ones. With the chemically cured self-adhesive cement, incomplete materials' setting during the initial stages after polymerization favored monomer leaching from the cements' mass. PMID:24088842

  10. Effect of surface preparation on bond strength of resin luting cements to dentin.

    PubMed

    Peerzada, Farrahnaz; Yiu, Cynthia Kar Yung; Hiraishi, Noriko; Tay, Franklin Russell; King, Nigel Martyn

    2010-01-01

    This study examined the effects of using two different burs for dentin surface preparation on the microtensile bond strength (microTBS) of three resin luting cements. Flat, deep dentin surfaces from 45 extracted human third molars were divided into three groups (n = 15) according to bur type: (i) diamond bur and (ii) tungsten carbide bur. The controls were abraded with #600-grit SiC paper. Both burs operated in a high-speed handpiece under water-cooling. Composite blocks were luted onto the dentin using one of three cements: RelyX ARC (ARC, 3M ESPE), Panavia F2.0 (PF, Kuraray) and RelyX Unicem (UN, 3M ESPE) following the manufacturers' instructions. For ARC, the dentin surface was treated with 32% phosphoric acid. The bonded specimens were stored at 37 degrees C for 24 hours and sectioned into 0.9 x 0.9 mm beams for microTBS testing. The data were analyzed using the two-way ANOVA and Student-Newman-Keuls tests. Representative fractured beams from each group were prepared for fractographic analysis under SEM. Two-way ANOVA revealed that the effects of "dentin surface preparation" and "luting cement" were statistically significant (p < 0.001); however, the interaction of these two factors was not significant (p > 0.05). ARC showed no significant difference in microTBS among the three differently prepared dentin surfaces. The microTBS of PF and UN was significantly lower when bonding to dentin prepared with a diamond bur (p < 0.05), compared to the control. For Panavia F2.0, higher bond strengths were achieved on the dentin surface prepared with a tungsten carbide bur. Proper bur selection is essential to optimizing the dentin adhesion of self-etch resin luting cements. PMID:21180001

  11. Solubility and sorption of resin-based luting cements.

    PubMed

    Knobloch, L A; Kerby, R E; McMillen, K; Clelland, N

    2000-01-01

    This study compared the seven-day water sorption, water solubility and lactic acid solubility of three composite cements and three resin-modified glass-ionomer cements. Disc-shaped specimens measuring 15 mm x 0.5 mm were prepared according to each manufacturer's specifications and desiccated to a constant mass. Specimens were then placed in distilled water at 37 degrees C for seven days. Acid solubility was performed in 0.01 M lactic acid. The weight changes of the specimens after immersion in distilled water or 0.01 M lactic acid were measured using an electronic analytical balance. A one-way ANOVA followed by the Ryan-Einot-Gabriel-Welsch (REGW) multiple range test was performed on all data. Significant differences (p < 0.05) were found among several cements tested for each of the properties investigated. Due to their hydrophilic nature, all resin-modified glass-ionomer cements showed significantly higher water sorption compared to composite cements. PMID:11203853

  12. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    PubMed Central

    TÜRKMEN, Cafer; DURKAN, Meral; CİMİLLİ, Hale; ÖKSÜZ, Mustafa

    2011-01-01

    Objective The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. Material and Methods Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group): direct composite resin restoration (Alert) with etch-and-rinse adhesive system (Bond 1 primer/adhesive), Group 2: indirect composite restoration (Estenia) luted with a resin cement (Cement-It) combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond), Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively) onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. Results The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7) showed better results compared to the other groups (p<0.05). Group 4 showed the weakest bond strength (p>0.05). The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. Conclusion The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces. PMID:21710095

  13. The Comparison of Sorption and Solubility Behavior of Four Different Resin Luting Cements in Different Storage Media

    PubMed Central

    Giti, Rashin; Vojdani, Mahroo; Abduo, Jaafar; Bagheri, Rafat

    2016-01-01

    Statement of the Problem Structural integrity and dimensional stability are the key factors that determine the clinical success and durability of luting cements in the oral cavity. Sorption and solubility of self-adhesive resin luting cements in food-simulating solutions has not been studied sufficiently. Purpose This study aimed to compare the sorption and solubility of 2 conventional and 2 self-adhesive resin-based luting cements immersed in four different storage media. Materials and Method A total of 32 disc-shaped specimens were prepared from each of four resin luting cements; seT (SDI), Panavia F (Kuraray), Clearfil SA Cement (Kuraray), and Choice 2 (Bisco). Eight specimens of each material were immersed in all tested solutions including n-heptane 97%, distilled water, apple juice, or Listerine mouth wash. Sorption and solubility were measured by weighing the specimens before and after immersion and desiccation. Data were analyzed by SPSS version 18, using two-way ANOVA and Tukey’s HSD test with p≤ 0.05 set as the level of significance. Results There was a statistically significant interaction between the materials and solutions. The effect of media on the sorption and solubility was material-dependent. While seT showed the highest values of the sorption in almost all solutions, Choice 2 showed the least values of sorption and solubility. Immersion in apple juice caused more sorption than other solutions (p≤ 0.05). Conclusion The sorption and solubility behavior of the studied cements were significantly affected by their composition and the storage media. The more hydrophobic materials with higher filler content like Choice 2 resin cement showed the least sorption and solubility. Due to their lower sorption and solubility, these types of resin-based luting cements are recommended to be used clinically. PMID:27284553

  14. Spectrophotometric Study of the Effect of Luting Agents on the Resultant Shade of Ceramic Veneers: An Invitro Study

    PubMed Central

    Kale, Yogesh; Pustake, Swati; Bijjaragi, Shobha; Pustake, Bhushan

    2015-01-01

    Introduction Dentistry has found practically the best available aesthetic answer, is ceramic restoration. There are various factors that contribute to the success of ceramic veneers, like colour of underlying tooth, thickness if ceramics and the type of underlying luting cement. Shade selection and matching remains still challenge, however the shade of luting agent used for cementation of veneers produces a change in resultant shade of veneers. Aim To compare and analyze the spectrophotometric effect of opaque and transparent luting agent on resultant shade of ceramic veneers made of 2L1.5 shade (Vitapan 3D-Masters) and B2 shade (Vitapan Classic). Materials and Methods Out of 15 ceramic veneers of 2L1.5 shade (VITAPAN 3D- Master), seven teeth cemented with opaque cement and eight teeth with transparent cement shade of dual cure resin cement (Variolink IITM). Out of 10 ceramic veneers of B2 shade (VITAPAN Classic), five teeth were cemented with opaque cement and other five teeth with transparent cement shade of dual cure resin cement (Variolink IITM). Spectrophotometric (Macbeth U.S.A.) analysis of all ceramic veneer crowns done with optiview software and readings were recorded in Commission Internationale de I’ Eclairge {CIELAB} system and dE value was calculated. Statistical Analysis Statistical analysis was done by using Paired t-test. Results Spectrophotometric analysis of all the veneers cemented with opaque luting agent were lighter in shade due to significant change in dL value. Veneers cemented with transparent luting agent were darker in shade due to significant change in the dL value. Conclusion Opaque luting agent gives lighter shade and transparent luting agent gives darker shade to ceramic veneers fabricated with 2L1.5 and B2 shades. PMID:26501014

  15. Effect of eugenol-based root canal sealers on retention of prefabricated metal posts luted with resin cement

    PubMed Central

    Al-Ali, Khalil

    2009-01-01

    Objective This study evaluated the effect of two different eugenol-based root canal sealers on the retention of prefabricated metal posts luted with adhesive resin cement. Materials and methods Thirty prefabricated ParaPosts randomly divided among three groups of 10 each were luted into extracted single-rooted teeth with adhesive resin cement. Two of the groups had been obturated with Gutta–Percha and one of two eugenol-based root canal sealers (Endofil and Tubli-Seal), respectively. The third group was not obturated and served as the control. The forces required for dislodgment of posts from their prepared post spaces were recorded using a universal testing machine. Data were statistically analyzed using one-way ANOVA and Tukey’s multiple range test was used to determine the mean differences. Results Endofil and Tubli-Seal groups demonstrated significantly reduced retention compared to the unobturated (control) group (P < 0.05). Conclusion Eugenol-based sealers significantly reduced the retention of prefabricated posts luted with adhesive resin cement. PMID:23960462

  16. Effects of curing mode of resin cements on the bond strength of a titanium post: An intraradicular study

    PubMed Central

    Reza, Fazal; Lim, Siau Peng

    2012-01-01

    Aim: To compare push-out bond strength between self-cured and dual-cured resin cement using a titanium post. Background: Dual-cured resin cements have been found to be less polymerized in the absence of light; thus the bond strength of cements would be compromised due to the absence of light with a metallic post. Materials and Methods: Ten extracted teeth were prepared for cement titanium PARAPOST, of five specimens each, with Panavia F [dual-cured (PF)] and Rely×Luting 2 [self-cured resin-modified glass ionomer luting cement (RL)]; the push-out bond strength (PBS) at three different levels of the sectioned roots was measured. The failure modes were observed and the significance of the differences in bond strength of the two types of cement at each level and at different levels of the same type was analyzed with non-parametric tests. Results: The push-out bond strength of the RL group was greater at all the three levels; with significant differences at the coronal and middle levels (P<0.05). No significant differences in PBS at different levels of the same group were observed. Cement material around the post was obvious in the PF group. The failure mode was mostly adhesive between the post and resin cement in the RL group. Conclusion: Bond strength was greater with self-cured, resin-modified glass ionomer luting cement, using titanium post. PMID:22557808

  17. Adhesion of conventional and simplified resin-based luting cements to superficial and deep dentin.

    PubMed

    Özcan, Mutlu; Mese, Ayse

    2012-08-01

    This study evaluated the bond strengths of conventional (chemically and dual-polymerized) and simplified resin-based luting cements with their corresponding adhesives to superficial dentin (SD) and deep dentin (DD). Recently extracted third molars (N = 70, n = 10 per group) were obtained and prepared for testing procedures. After using their corresponding etchants, primers, and/or adhesive systems, the conventional and simplified cements (Variolink II [group A, conventional], Bifix QM [group B, conventional], Panavia F2.0 [group C, conventional], Multilink Automix [group D, simplified], Superbond C&B [group E, conventional], Clearfil Esthetic Cement [group F, simplified], Ketac-Fil [group G, conventional]) were adhered incrementally onto the dentin surfaces using polyethylene molds (inner diameter 3.5 mm, height 5 mm) and polymerized accordingly. Resin-modified glass-ionomer cement (RMGIC) acted as the control material. Shear bond strengths (1 mm/min) were determined after 500 times of thermocycling. Kruskal-Wallis and Mann-Whitney tests were used to analyze the data (α = 0.05). Bond strength (MPa) results were significantly affected by the cement types and their corresponding adhesive systems (p ≤ 0.05). The shear bond strengths (MPa ± SD) for groups A-G were 14.6 ± 3.8, 18.9 ± 3.9, 5.5 ± 4.5, 3.1 ± 3.6, 1.1 ± 2.5, 15.5 ± 2.6, 7 ± 4.3 and 7.1 ± 5.8, 15.1 ± 7.8, 8.4 ± 7.3, 7.5 ± 7.3, 4.9 ± 5.1, 12.5 ± 2.1, 6 ± 2.6 for SD and DD, respectively. The level of dentin depth did not decrease the bond strength significantly (p > 0.05) for all cements, except for Variolink II (p < 0.05). On the SD, bond strength of resin cements with "etch-and-rinse" adhesive systems (Variolink II, Bifix QM, Super-Bond C&B) showed similar results being higher than those of the simplified ones. Simplified cements and RMGIC as control material showed inferior adhesion to superficial and deep dentin compared to conventional resin cements tested. PMID:21833482

  18. Strengthening of Porcelain Provided by Resin Cements and Flowable Composites.

    PubMed

    Spazzin, A O; Guarda, G B; Oliveira-Ogliari, A; Leal, F B; Correr-Sobrinho, L; Moraes, R R

    2016-01-01

    This study evaluated the effect of mechanical properties of resin-based luting agents on the strength of resin-coated porcelain. The luting agents tested were two flowable resin composites (Filtek Z350 Flow and Tetric-N Flow), a light-cured resin cement (Variolink Veneer [VV]), and a dual-cured resin cement (Variolink II) in either light-cured (base paste) or dual-cured (base + catalyst pastes [VD]) mode. Flexural strength (σf) and modulus of elasticity (Ef) of the luting agents were measured in three-point bending mode (n=5). Porcelain discs (Vita VM7) were tested either untreated (control) or acid etched, silanized, and coated with the luting agents. Biaxial flexural strength (σbf) of the porcelain discs was tested using a ball-on-ring setup (n=30). The σbf of the resin-coated specimens was calculated at z-axial positions for multilayer specimens in the ball-on-ring test: position z = 0 (ceramic surface at the bonded interface) and position z = -t2 (luting agent surface above ring). The σf and Ef data were subjected to analysis of variance and the Student-Newman-Keuls test (α=0.05). A Weibull analysis was performed for σbf data. Weibull modulus (m) and characteristic strength (σ0) were calculated. Linear regression analyses investigated the relationship between mechanical properties of the luting agents and the strengthening of porcelain. VD had higher and VV had lower mechanical strength than the other materials. At z = 0, all resin-coated groups had higher σbf than the control group. No significant differences between the luting agents were observed for σbf and σ0. At z = -t2, VD had the highest σbf and σ0, whereas VV had the poorest results. No significant differences in m were observed across groups. A linear increase in flexural strength of the porcelain was associated with increased σf and Ef of the luting agents at position z = -t2. In conclusion, resin coating and use of luting agents with better physical properties generally improved the

  19. A Confocal Microscopic Evaluation of the Dehydration Effect on Conventional, Resin Reinforced Powder/Liquid and Paste to Paste Glass Ionomer Luting Cements

    PubMed Central

    George, Liza; Kandaswamy, D

    2015-01-01

    Background: The purpose of this study was to evaluate the effect of dehydration of resin-modified glass ionomer powder/liquid system, resin-modified glass ionomer paste/paste luting cements in three different quantities and to compare them with a conventional glass ionomer luting cement using confocal laser scanning microscope. Materials and Methods: A conventional glass ionomer (Group I), a resin modified powder/liquid system (Group II), and a resin-modified paste/paste system (Group III) were selected for the study. In Group III, there were three subgroups based on the quantity of material dispensed. 50 premolar teeth were selected and randomly divided among the groups with 10 samples in each. The teeth were ground flat to expose a flat occlusal dentin. A device was made to standardize the thickness of cement placed on the teeth. The teeth were stored in distilled water for 24 h and then longitudinally sectioned to examine the tooth dentin interface under a confocal microscope. The specimens were allowed to dehydrate under the microscope for different time intervals. The width of the crack after dehydration near the dentinal interface was measured at definite intervals in all the groups and analyzed statistically using Student’s t-test. Results: Conventional glass ionomer cement showed the maximum width of the crack followed by resin modified paste/paste system during the dehydration period. Resin modified powder/liquid system did not show cohesive failure. Conclusions: Conventional glass ionomer luting cement is more susceptible to cohesive failure when subjected to dehydration compared to resin-modified glass ionomer paste/paste luting cement. Among the luting cements, resin-modified glass ionomer powder/liquid system showed the best results when subjected to dehydration. PMID:26464535

  20. Influence of alloy microstructure on the microshear bond strength of basic alloys to a resin luting cement.

    PubMed

    Bauer, José; Costa, José Ferreira; Carvalho, Ceci Nunes; Souza, Douglas Nesadal de; Loguercio, Alessandro Dourado; Grande, Rosa Helena Miranda

    2012-01-01

    The aim of this study was to evaluate the influence of microstructure and composition of basic alloys on their microshear bond strength (µSBS) to resin luting cement. The alloys used were: Supreme Cast-V (SC), Tilite Star (TS), Wiron 99 (W9), VeraBond II (VBII), VeraBond (VB), Remanium (RM) and IPS d.SIGN 30 (IPS). Five wax patterns (13 mm in diameter and 4mm height) were invested, and cast in a centrifugal casting machine for each basic alloy. The specimens were embedded in resin, polished with a SiC paper and sandblasted. After cleaning the metal surfaces, six tygon tubes (0.5 mm height and 0.75 mm in diameter) were placed on each alloy surface, the resin cement (Panavia F) was inserted, and the excess was removed before light-curing. After storage (24 h/37°C), the specimens were subjected to µSBS testing (0.5 mm/min). The data were subjected to a one-way repeated measures analysis of variance and Turkey's test (α=0.05). After polishing, their microstructures were revealed with specific conditioners. The highest µSBS (mean/standard deviation in MPa) were observed in the alloys with dendritic structure, eutectic formation or precipitation: VB (30.6/1.7), TS (29.8/0.9), SC (30.6/1.7), with the exception of IPS (31.1/0.9) which showed high µSBS but no eutectic formation. The W9 (28.1/1.5), VBII (25.9/2.0) and RM (25.9/0.9) showed the lowest µSBS and no eutectic formation. It seems that alloys with eutectic formation provide the highest µSBS values when bonded to a light-cured resin luting cement. PMID:23306223

  1. Dual cure low-VOC coating process. Final technical report, Phase 3

    SciTech Connect

    Kinzer, K.E.

    1993-12-01

    US EPA is implementing increasingly stringent environmental regulations on the emissions of volatile organic compounds (VOCs), which amount to about 7 {times} 10{sup 9} lb/year, largely from paints and other coating systems in industry. Objective of this project is to develop Dual Cure Photocatalyst coating technology for aerospace topcoats (urethane/acrylate), aerospace primers (epoxy/acrylate), and solventless tape backings. Some problems (moisture etc.) were encountered in the primer area. Cost, economic, and energy analyses were conducted. The dual cure technology has already been commercialized in 3M`s flexible diamond resin products. Tabs.

  2. Bonding to sound vs caries-affected dentin using photo- and dual-cure adhesives.

    PubMed

    Say, Esra Can; Nakajima, Masatoshi; Senawongse, Pisol; Soyman, Mübin; Ozer, Füsun; Tagami, Junji

    2005-01-01

    This study aimed to evaluate the microtensile bond strength (microTBS) of photo- and dual-cure adhesives to sound and caries-affected dentin using total- and self-etch techniques. Human third molars with occlusal caries were prepared as previously described by Nakajima and others (1995). Dentin surfaces were bonded with Optibond Solo Plus (Kerr; photo-cure adhesive) or Optibond Solo Plus + Dual-cure activator (Kerr; dual-cure adhesive) with total- and self-etch technique. Clearfil AP-X (Kuraray) was used for composite buildups. Following storage in distilled water at 37 degrees C for 24 hours, the teeth were sectioned into 0.7-mm thick slices to obtain sound and caries-affected dentin slabs, then trimmed to form hour glass shapes with a 1 mm2 cross-sectional area. The specimens were subjected to microtensile testing using EZ-test (Shimadzu) at 1 mm/minute. Data were analyzed using three-way ANOVA and Student's t-Test (p<0.05). Bond strengths to sound dentin with photo- and dual-cure adhesives using total- and self-etch techniques were significantly higher than those to caries-affected dentin. Dual-cure adhesive significantly decreased bond strengths both to sound and caries-affected dentin. The total-etch technique showed no beneficial effect on caries-affected dentin compared with the self-etch technique. Scanning electron microscopic observation of the resin-dentin interfaces revealed that hybrid layers in caries-affected dentin were thicker than those observed in sound dentin with photo- and dual-cure adhesives. Resin infiltration into dentinal tubules of caries-affected dentin was hampered by the presence of mineral deposits. PMID:15765963

  3. Effects of coronal substrates and water storage on the microhardness of a resin cement used for luting ceramic crowns

    PubMed Central

    de MENDONÇA, Luana Menezes; PEGORARO, Luiz Fernando; LANZA, Marcos Daniel Septímio; PEGORARO, Thiago Amadei; de CARVALHO, Ricardo Marins

    2014-01-01

    Composite resin and metallic posts are the materials most employed for reconstruction of teeth presenting partial or total destruction of crowns. Resin-based cements have been widely used for cementation of ceramic crowns. The success of cementation depends on the achievement of adequate cement curing. Objectives To evaluate the microhardness of Variolink® II (Ivoclar Vivadent, Schaan, Liechtenstein), used for cementing ceramic crowns onto three different coronal substrate preparations (dentin, metal, and composite resin), after 7 days and 3 months of water storage. The evaluation was performed along the cement line in the cervical, medium and occlusal thirds on the buccal and lingual aspects, and on the occlusal surface. Material and Methods Thirty molars were distributed in three groups (N=10) according to the type of coronal substrate: Group D- the prepared surfaces were kept in dentin; Groups M (metal) and R (resin)- the crowns were sectioned at the level of the cementoenamel junction and restored with metallic cast posts or resin build-up cores, respectively. The crowns were fabricated in ceramic IPS e.max® Press (Ivoclar Vivadent, Schaan, Liechtenstein) and luted with Variolink II. After 7 days of water storage, 5 specimens of each group were sectioned in buccolingual direction for microhardness measurements. The other specimens (N=5) were kept stored in deionized water at 37ºC for three months, followed by sectioning and microhardness measurements. Results Data were first analyzed by three-way ANOVA that did not reveal significant differences between thirds and occlusal surface (p=0.231). Two-way ANOVA showed significant effect of substrates (p<0.001) and the Tukey test revealed that microhardness was significantly lower when crowns were cemented on resin cores and tested after 7 days of water storage (p=0.007). Conclusion The type of material employed for coronal reconstruction of preparations for prosthetic purposes may influence the cement properties

  4. Vertical misfit of laser-sintered and vacuum-cast implant-supported crown copings luted with definitive and temporary luting agents

    PubMed Central

    Sánchez-Turrión, Andrés; López-Lozano, José F.; Albaladejo, Alberto; Torres-Lagares, Daniel; Montero, Javier; Suárez-García, Maria J.

    2012-01-01

    Objectives. This study aimed to evaluate the vertical discrepancy of implant-supported crown structures constructed with vacuum-casting and Direct Metal Laser Sintering (DMLS) technologies, and luted with different cement types. Study Design. Crown copings were fabricated using: (1) direct metal laser sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC); and (3) vacuum-cast Ti (CT). Frameworks were luted onto machined implant abutments under constant seating pressure. Each alloy group was randomly divided into 5 subgroups (n = 10 each) according to the cement system utilized: Subgroup 1 (KC) used resin-modified glass-ionomer Ketac Cem Plus; Subgroup 2 (PF) used Panavia F 2.0 dual-cure resin cement; Subgroup 3 (RXU) used RelyX Unicem 2 Automix self-adhesive dual-cure resin cement; Subgroup 4 (PIC) used acrylic/urethane-based temporary Premier Implant Cement; and Subgroup 5 (DT) used acrylic/urethane-based temporary DentoTemp cement. Vertical misfit was measured by scanning electron microscopy (SEM). Two-way ANOVA and Student-Newman-Keuls tests were run to investigate the effect of alloy/fabrication technique, and cement type on vertical misfit. The statistical significance was set at α = 0.05. Results. The alloy/manufacturing technique and the luting cement affected the vertical discrepancy (p < 0.001). For each cement type, LS samples exhibited the best fit (p < 0.01) whereas CC and CT frames were statistically similar. Within each alloy group, PF and RXU provided comparably greater discrepancies than KC, PIC, and DT, which showed no differences. Conclusions. Laser sintering may be an alternative to vacuum-casting of base metals to obtain passive-fitting implant-supported crown copings. The best marginal adaptation corresponded to laser sintered structures luted with glass-ionomer KC, or temporary PIC or DT cements. The highest discrepancies were recorded for Co-Cr and Ti cast frameworks bonded with PF or RXU resinous agents. All groups were within the clinically

  5. Evaluation of the Bond Strength of Resin Cements Used to Lute Ceramics on Laser-Etched Dentin

    PubMed Central

    Duzdar, Lale; Oksuz, Mustafa; Tanboga, Ilknur

    2014-01-01

    Abstract Objective: The purpose of this study was to investigate the shear bond strength (SBS) of two different adhesive resin cements used to lute ceramics on laser-etched dentin. Background data: Erbium, chromium: yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation has been claimed to improve the adhesive properties of dentin, but results to date have been controversial, and its compatibility with existing adhesive resin cements has not been conclusively determined. Materials and methods: Two adhesive cements, one “etch-and-rinse” [Variolink II (V)] and one “self-etch” [Clearfil Esthetic Cement (C)] luting cement, were used to lute ceramic blocks (Vita Celay Blanks, Vita) onto dentin surfaces. In total, 80 dentin specimens were distributed randomly into eight experimental groups according to the dentin surface-etching technique used Er,Cr:YSGG laser and Er:YAG laser: (1) 37% orthophosphoric acid+V (control group), (2) Er,Cr:YSGG laser+V, (3) Er,Cr:YSGG laser+acid+V, (4) Er:YAG laser+V, (5) Er:YAG laser+acid+V, (6) C, (7) Er,Cr:YSGG laser+C, and (8) Er:YAG laser+C. Following these applications, the ceramic discs were bonded to prepared surfaces and were shear loaded in a universal testing machine until fracture. SBS was recorded for each group in MPa. Shear test values were evaluated statistically using the Mann–Whitney U test. Results: No statistically significant differences were evident between the control group and the other groups (p>0.05). The Er,Cr:YSGG laser+A+V group demonstrated significantly higher SBS than did the Er,Cr:YSGG laser+V group (p=0.034). The Er,Cr:YSGG laser+C and Er:YAG laser+C groups demonstrated significantly lower SBS than did the C group (p<0.05). Conclusions: Dentin surfaces prepared with lasers may provide comparable ceramic bond strengths, depending upon the adhesive cement used. PMID:24992276

  6. Comparative Evaluation of Fracture Resistance of Simulated Immature Teeth Restored with Glass Fiber Posts, Intracanal Composite Resin, and Experimental Dentine Posts

    PubMed Central

    Jha, Padmanabh; Aggarwal, Akarshak

    2015-01-01

    Aim. The aim of this study was to compare the fracture resistance of simulated immature teeth restored with gutta-percha, glass fiber posts (GFP), experimental dentine posts (DP) or Intracanal composite Resin (ICR). Materials and Methods. Fifty maxillary canines were decoronated, standardized and enlarged until, number 5 Peeso reamers were allowed to simulate immature teeth. After placement of 5 mm of MTA, the canals were divided into 5 groups and filled as follows: Group 1: AH Plus + gutta-percha, lateral compaction; Group 2: GFP luted with PARACORE dual cure resin; Group 3: DP luted with PARACORE dual cure resin; Group 4: PARACORE dual cure resin. A standardized core was built in all groups except in Group 5. Each of the specimens was tested for fracture resistance by universal testing machine. Results. The mean fracture resistance were 817 ± 27.753, 1164.6 ± 21.624, 994.4 ± 96.8747, 873.8 ± 105.446 and 493.7 ± 6.945 newtons for Groups 1, 2, 3, 4, and 5 respectively. Independent “t” test revealed statistically significant discrepancies, in the fracture resistance among the 4 groups except Group 1 and Group 4 (P < 0.05). Conclusions. This study suggests that GFP and DP may be preferred for additional reinforcement of immature teeth. PMID:25629086

  7. The erosion kinetics of conventional and resin-modified glass-ionomer luting cements in acidic buffer solutions.

    PubMed

    Hazar-Yoruc, Binnaz; Bavbek, Andac Barkin; Özcan, Mutlu

    2012-01-01

    This study investigated the erosion kinetics of conventional and resin-modified glass-ionomer luting cements in acidic buffer solutions as a function of time. Disc shaped specimens were prepared from conventional (Ketac-Cem: KTC) and resin-modified glass ionomer cements (Fuji Plus: FP) and immersed in three acidic buffer solutions (0.01 M) namely, acetic acid/sodium acetate (AA(B)), lactic acid/sodium lactate (LA(B)) and citric acid/sodium citrate (CA(B)) with a constant pH of 4.1 and stored for 1, 8, 24, 48, 80, 120 and 168 h. F concentration was determined using ion-specific electrode. Si, Ca and Al concentrations were determined by atomic absorption spectroscopy. Ca, Al, Si and F solubility rates in both FP and KTC were the highest in CA(B) solution. The erosion rates of both FP and KTC in all buffer solutions increased as a function of immersion time. The amount of F eluted from FP was more than that of KTC. The total amount of elements released from FP was less than KTC in all solutions. PMID:23207217

  8. Effects of dentin moisture on the push-out bond strength of a fiber post luted with different self-adhesive resin cements

    PubMed Central

    Uzunoğlu, Emel; Yılmaz, Zeliha

    2013-01-01

    Objectives This study evaluated the effects of intraradicular moisture on the pushout bond strength of a fibre post luted with several self-adhesive resin cements. Materials and Methods Endodontically treated root canals were treated with one of three luting cements: (1) RelyX U100, (2) Clearfil SA, and (3) G-Cem. Roots were then divided into four subgroups according to the moisture condition tested: (I) dry: excess water removed with paper points followed by dehydration with 95% ethanol, (II) normal moisture: canals blot-dried with paper points until appearing dry, (III) moist: canals dried by low vacuum using a Luer adapter, and (IV) wet: canals remained totally flooded. Two 1-mm-thick slices were obtained from each root sample and bond strength was measured using a push-out test setup. The data were analysed using a two-way analysis of variance and the Bonferroni post hoc test with p = 0.05. Results Statistical analysis demonstrated that moisture levels had a significant effect on the bond strength of luting cements (p < 0.05), with the exception of G-Cem. RelyX U100 displayed the highest bond strength under moist conditions (III). Clearfil SA had the highest bond strength under normal moisture conditions (II). Statistical ranking of bond strength values was as follows: RelyX U100 > Clearfil SA > G-Cem. Conclusions The degree of residual moisture significantly affected the adhesion of luting cements to radicular dentine. PMID:24303359

  9. Influence of Different Types of Resin Luting Agents on Color Stability of Ceramic Laminate Veneers Subjected to Accelerated Artificial Aging.

    PubMed

    Silami, Francisca Daniele Jardilino; Tonani, Rafaella; Alandia-Román, Carla Cecilia; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2016-01-01

    The aim of this study was to evaluate the influence of accelerated aging (AAA) on the color stability of resin cements for bonding ceramic laminate veneers of different thicknesses. The occlusal surfaces of 80 healthy human molars were flattened. Ceramic laminate veneers (IPS e-max Ceram) of two thicknesses (0.5 and 1.0 mm) were bonded with three types of luting agents: light-cured, conventional dual and self-adhesive dual cement. Teeth without restorations and cement samples (0.5 mm) were used as control. After initial color evaluations, the samples were subjected to AAA for 580 h. After this, new color readouts were made, and the color stability (ΔE) and luminosity (ΔL) data were analyzed. The greatest color changes (p<0.05) occurred when 0.5 mm veneers were fixed with light-cured cement and the lowest when 1.0 mm veneers were fixed with conventional dual cement. There was no influence of the restoration thickness when the self-adhesive dual cement was used. When veneers were compared with the control groups, it was verified that the cement samples presented the greatest alterations (p<0.05) in comparison with both substrates and restored teeth. Therefore, it was concluded that the thickness of the restoration influences color and luminosity changes for conventional dual and light-cured cements. The changes in self-adhesive cement do not depend on restoration thickness. PMID:27007354

  10. Effects of resin luting agents and 1% NaOCl on the marginal fit of indirect composite restorations in primary teeth

    PubMed Central

    BORGES, Ana Flávia Sanches; SIMONATO, Luciana Estevam; PASCON, Fernanda Miori; KANTOWITZ, Kamila Rosamiglia; RONTANI, Regina Maria Puppin

    2011-01-01

    Objective The purpose of this study was to provide information regarding the marginal adaptation of composite resin onlays in primary teeth previously treated with 1% sodium hypochlorite (NaOCl) (pulp irrigant) using two different resin luting agents. Material and Methods Forty extracted sound primary molars had their crowns prepared in a standardized machine and were randomly divided into 4 groups (n=10): G1 (1% NaOCl irrigation+EnForce); G2 (EnForce); G3 (1% NaOCl irrigation+Rely X); G4 (Rely X). The onlays were made with Z250 composite resin on plaster models. After luting, the tooth/restoration set was stored in 100% relative humidity at 37ºC for 24 h and finished with Soflex discs. Caries Detector solution was applied at the tooth/restoration interface for 5 s. The specimens were washed and four digital photos of each tooth were then taken. The extents of the gaps were measured with Image Tool 3.0 software. The percentage data were submitted to a Kruskal-Wallis test (α=0.05). The Relative Risk test analyzed the chance of a gap presence correlated to each group. Results There were no statistically significant differences (p>0.05) among the groups. The relative risk test revealed that some groups were more apt to have a presence of gaps than others. Conclusion Neither the 1% NaOCl treatment nor the resin luting agents caused any alterations in the dental substrate that could have influenced the marginal adaptation of composite onlays in primary teeth. PMID:21986649

  11. Early resin luting material damage around a circular fiber post in a root canal treated premolar by using micro-computerized tomographic and finite element sub-modeling analyses.

    PubMed

    Chang, Yen-Hsiang; Lee, Hao; Lin, Chun-Li

    2015-11-01

    This study utilizes micro-computerized tomographic (micro-CT) and finite element (FE) sub-modeling analyses to investigate the micro-mechanical behavior associated with voids/bubbles stress behavior at the luting material layer to understand the early damage in a root canal treated premolar. 3-dimensional finite element (FE) models of a macro-root canal treated premolar and two sub-models at the luting material layer to provide the void/bubble distribution and dimensions were constructed from micro-CT images and simulated to receive axial and lateral forces. The boundary conditions for the sub-models were determined from the macro-premolar model results and applied in sub-modeling analysis. The first principal stresses for the dentin, luting material layer and post in macro-premolar model and for luting material void/bubble in sub-models were recorded. The simulated results revealed that the macro-premolar model dramatically underestimated the luting material stress because the voids/bubbles at the adhesive layer cannot be captured due to coarse mesh and high stress gradient and the variations between sub- and macro-models ranging from 2.65 to 4.5 folds under lateral load at the mapping location. Stress concentrations were found at the edge of the voids/bubbles and values over 20 MPa in sub-modeling analysis immediately caused the luting material failure/micro-crack. This study establishes that micro-CT and FE sub-modeling techniques can be used to simulate the stress pattern at the micro-scale luting material layer in a root canal treated premolar, suggesting that attention must be paid to resin luting material initial failure/debonding when large voids/bubbles are generated during luting procedures. PMID:26253208

  12. The role of resin cement on bond strength of glass-fiber posts luted into root canals: a systematic review and meta-analysis of in vitro studies.

    PubMed

    Sarkis-Onofre, R; Skupien, J A; Cenci, M S; Moraes, R R; Pereira-Cenci, T

    2014-01-01

    Because there are several ways to cement glass-fiber posts (GFPs) into root canals, there is no consensus on the best strategy to achieve high bond strengths. A systematic review was conducted to determine if there is difference in bond strength to dentin between regular and self-adhesive resin cements and to verify the influence of several variables on the retention of GFPs. This report followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. In vitro studies that investigated the bond strength of GFPs luted with self-adhesive and regular resin cements were selected. Searches were carried out in the PubMed and Scopus databases. No publication year or language limit was used, and the last search was done in October 2012. A global comparison was performed between self-adhesive and regular resin cements. Two subgroup analyses were performed: 1) Self-adhesive × Regular resin cement + Etch-and-rinse adhesive and 2) Self-adhesive × Regular resin cement + Self-etch adhesive. The analyses were carried out using fixed-effect and random-effects models. The results showed heterogeneity in all comparisons, and higher bond strength to dentin was identified for self-adhesive cements. Although the articles included in this meta-analysis showed high heterogeneity and high risk of bias, the in vitro literature seems to suggest that use of self-adhesive resin cement could improve the retention of GFPs into root canals. PMID:23937401

  13. Effect of long-term simulated pulpal pressure on the bond strength and nanoleakage of resin-luting agents with different bonding strategies.

    PubMed

    de Alexandre, R S; Santana, V B; Kasaz, A C; Arrais, C A G; Rodrigues, J A; Reis, A F

    2014-01-01

    This study evaluated the effects of simulated hydrostatic pulpal pressure (SPP) on the microtensile bond strength (μTBS) to dentin and nanoleakage patterns produced by self-adhesive luting agents after 12 months. Three self-adhesive luting agents (RelyX Unicem [UN], RelyX U100 [UC], and Clearfil SA Luting [SA]) and three conventional luting agents (Rely X ARC [RX], Panavia F [PF], and a two-step self-etching adhesive system [Clearfil SE Bond] associated with Panavia F [PS]) were evaluated. One hundred twenty-three human molars were abraded to expose occlusal surfaces. Resin cements were used to lute cylindrical composite blocks to the teeth either subjected or not to SPP. Sixty specimens were subjected to 15 cm H2O of SPP for 24 hours before and 24 hours or 12 months after cementation procedures. Afterward, restored teeth were serially sectioned into beams with a cross-sectional area of 1 mm(2) at the bonded interface and were tested in tension (cross-head speed of 1 mm/min). Failure mode was determined using scanning electron microscopy (SEM). Data were statistically analyzed by three-way analysis of variance and post hoc Tukey test (p=0.05). Two additional teeth in each group were serially sectioned into 0.9-mm-thick slabs, which were submitted to a nanoleakage protocol with AgNO3 and analyzed with scanning and transmission electron microscopes. The μTBS values of the etch-and-rinse group (RX) were negatively influenced by SPP and long-term water storage with SPP. After 12 months, UC and SA presented premature failures in all specimens when submitted to SPP. SPP increased silver deposition in most groups in both evaluation times. The hydrostatic pulpal pressure effect was material dependent. The storage time without SPP did not affect bond strength. However, long-term SPP influenced the performance of the etch-and-rinse and self-adhesive cements regarding μTBS and nanoleakage pattern, except to UN. PMID:24502755

  14. Correlation between clinical performance and degree of conversion of resin cements: a literature review

    PubMed Central

    DE SOUZA, Grace; BRAGA, Roberto Ruggiero; CESAR, Paulo Francisco; LOPES, Guilherme Carpena

    2015-01-01

    Resin-based cements have been frequently employed in clinical practice to lute indirect restorations. However, there are numerous factors that may compromise the clinical performance of those cements. The aim of this literature review is to present and discuss some of the clinical factors that may affect the performance of current resin-based luting systems. Resin cements may have three different curing mechanisms: chemical curing, photo curing or a combination of both. Chemically cured systems are recommended to be used under opaque or thick restorations, due to the reduced access of the light. Photo-cured cements are mainly indicated for translucent veneers, due to the possibility of light transmission through the restoration. Dual-cured are more versatile systems and, theoretically, can be used in either situation, since the presence of both curing mechanisms might guarantee a high degree of conversion (DC) under every condition. However, it has been demonstrated that clinical procedures and characteristics of the materials may have many different implications in the DC of currently available resin cements, affecting their mechanical properties, bond strength to the substrate and the esthetic results of the restoration. Factors such as curing mechanism, choice of adhesive system, indirect restorative material and light-curing device may affect the degree of conversion of the cement and, therefore, have an effect on the clinical performance of resin-based cements. Specific measures are to be taken to ensure a higher DC of the luting system to be used. PMID:26398507

  15. A new atraumatic method of removing fractured palatal root using endodontic H-files luted with resin modified glass ionomercement: A pilot study

    PubMed Central

    Kannan, V. Sadesh; Narayanan, G. R. Sathya; Ahamed, A. Saneem; Velavan, K.; Elavarasi, E.; Danavel, C.

    2014-01-01

    Purpose: The purpose of this study is to evaluate the efficacy of using endodontic H-files luted with Resin modified glass ionomer cement (RMGIC) in removing fractured palatal root. Materials and Methods: This study consists of 30 patients, of which 16 were males and 14 were females with a mean age of 36 years. In which, 19 were maxillary first molar and 11 were maxillary second molar. In that, 18 were fractured at the level of apical 1/3rd and 12 were at the level of apical 2/3rd. All cases were first tried with endodontic H-files, within few attempts, it was wedged tightly in the remaining pulp chamber with one or two clockwise direction and using sudden jerk with a downward pull the remnant part was removed. The cases, which fail to deliver after several attempts were taken up for study. After sufficient isolation with a rubber dam and the socket was dried using sterile gauze, under good lighting and vision again the same file was introduced, which was now luted with RMGIC, after 5 min of setting time, the same attempt using sudden jerk with a downward pull was given. Results: In those 30 cases, 20 cases were removed in the first few attempts using endodontic H-files. The 10 cases (7 cases were apical 2/3rd and 3 cases were of apical 1/3rd), which fails to come out were tried using endodontic H-files luted with RMGIC, in which 9 cases were successfully removed (90%) and 1 case of apical 1/3rd was again failed to come out. Conclusion: Even though, the number of cases were too small to come to a definitive conclusion, the encouraging result (90%) and technically easy, this is a novel method of removing fractured palatal root atraumatically and devoid of any complication. PMID:25210360

  16. Influence of different luting protocols on shear bond strength of computer aided design/computer aided manufacturing resin nanoceramic material to dentin

    PubMed Central

    Poggio, Claudio; Pigozzo, Marco; Ceci, Matteo; Scribante, Andrea; Beltrami, Riccardo; Chiesa, Marco

    2016-01-01

    Background: The purpose of this study was to evaluate the influence of three different luting protocols on shear bond strength of computer aided design/computer aided manufacturing (CAD/CAM) resin nanoceramic (RNC) material to dentin. Materials and Methods: In this in vitro study, 30 disks were milled from RNC blocks (Lava Ultimate/3M ESPE) with CAD/CAM technology. The disks were subsequently cemented to the exposed dentin of 30 recently extracted bovine permanent mandibular incisors. The specimens were randomly assigned into 3 groups of 10 teeth each. In Group 1, disks were cemented using a total-etch protocol (Scotchbond™ Universal Etchant phosphoric acid + Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 2, disks were cemented using a self-etch protocol (Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 3, disks were cemented using a self-adhesive protocol (RelyX™ Unicem 2 Automix self-adhesive resin cement). All cemented specimens were placed in a universal testing machine (Instron Universal Testing Machine 3343) and submitted to a shear bond strength test to check the strength of adhesion between the two substrates, dentin, and RNC disks. Specimens were stressed at a crosshead speed of 1 mm/min. Data were analyzed with analysis of variance and post-hoc Tukey's test at a level of significance of 0.05. Results: Post-hoc Tukey testing showed that the highest shear strength values (P < 0.001) were reported in Group 2. The lowest data (P < 0.001) were recorded in Group 3. Conclusion: Within the limitations of this in vitro study, conventional resin cements (coupled with etch and rinse or self-etch adhesives) showed better shear strength values compared to self-adhesive resin cements. Furthermore, conventional resin cements used together with a self-etch adhesive reported the highest values of adhesion. PMID:27076822

  17. The effects of tooth preparation cleansing protocols on the bond strength of self-adhesive resin luting cement to contaminated dentin.

    PubMed

    Chaiyabutr, Yada; Kois, John C

    2008-01-01

    This in vitro study evaluated the bond strength of a self-adhesive luting cement after using four different techniques to remove surface contamination on dentin. Extracted human molars were flattened to expose the dentin surface and prepared for full crown preparation. Acrylic temporary crowns were fabricated and placed using temporary cement. The specimens were stored at room temperature with 100% relative humidity for seven days. Following removal of the temporary crowns, the specimens were randomly divided into four groups, and excess provisional cement was removed with (1) a hand instrument (excavator), (2) prophy with a mixture of flour pumice and water (3) aluminous oxide abrasion with a particle size of 27 microm at 40 psi and (4) aluminous oxide abrasion with a particle size of 50 microm at 40 psi. The microstructure morphology of the tooth surface was evaluated and residual materials were detected using SEM and EDS analysis of randomly selected specimens. The ceramics were treated with 9.5% hydrofluoric acid-etch and silanized to the prepared dentin prior to cementing with self-adhesive resin cement (RelyX Unicem, 3M ESPE). The shear bond strength was determined at a crosshead speed of 0.5 mm/minute. The results were analyzed with one-way ANOVA, followed by Tukey's test. Particle abrasion treatment of dentin with an aluminous oxide particle provided the highest values of bond strength, while hand instrument excavation was the lowest (p < 0.05). Aluminous oxide particle size did not significantly influence the bond strength at 40 psi. The use of low pressure and small particle abrasion treated dentin as a mechanical cleansing protocol prior to definitive cementation increased the bond strength of self-adhesive resin-luting cement to dentin following eugenol-containing temporary cement. PMID:18833862

  18. Monkey pulpal responses to conventional and adhesive luting cements.

    PubMed

    Inokoshi, S; Fujitani, M; Otsuki, M; Sonoda, H; Kitasako, Y; Shimada, Y; Tagami, J

    1998-01-01

    Monkey pulpal responses to metal inlays luted with a combination of an adhesive resin and luting composite and conventional dental cements were histopathologically evaluated. Initial pulpal responses caused by re-exposure of the cut dentin surfaces and luting procedure under hydraulic pressure subsided at 90 days after final cementation. There was no significant difference among pulpal reactions to conventional dental cements and a combination of an adhesive resin and luting composite. The adhesive resin coating of freshly cut dentinal walls/floors immediately after cavity preparation seems to provide protection for the dentin and pulp in indirect restorations requiring temporary sealing. PMID:9610329

  19. Dual cure low-VOC coating process: Phase 3. Semi-annual technical progress report, October 1992--March 31, 1993

    SciTech Connect

    Kinzer, K.E.

    1993-11-01

    Objective of Phase 3 is to complete proof-of-principle testing in full-scale systems of the dual cure photocatalyst technology developed in earlier phases. Phase 3 commercial applications are aerospace topcoats, aerospace primers, and solventless manufacture of tape backings. Progress was made in improving urethane/acrylate formulation for aerospace topcoats, particularly in reverse impact, initial gloss, and loss retention during accelerated weathering. Formulations have now been developed which meet all initial criteria; the formulation was optimized. Aerospace primer formulations based on epoxy/flexibilizer systems were evaluated. Because of cure consistency problems and the increased need for non-chromated primers, work on aerospace primer system was de-emphasized to allow greater effort on development and commercialization of aerospace topcoat. Work on solventless backing saturants for electrical tape backings has been completed; optimal dual cure resin formulations have been used in preparing complete tape constructions.

  20. Comparative evaluation of fracture resistance of various post systems using different luting agents under tangential loading

    PubMed Central

    Aggarwal, Rajnish; Gupta, Swati; Tandan, Amrit; Gupta, Narendra Kumar; Dwivedi, Ravi; Aggarwal, Renu

    2013-01-01

    Objective The purpose of this in vitro study was to evaluate the fracture resistance of various post system using different luting agents under tangential loading after wet thermocycling. Material & methods Seventy freshly extracted maxillary central incisors were endodontically treated and post-spaces were prepared to receive different post system. They were assigned to 7 groups. Composite resin was used as core material in all the groups. Three type of post system: prefabricated post system (ParaPost® XP™), fibre post (ParaPost® fiber Lux™), cast nickel–chromium alloy post and two type of luting cements dual cure resin cement (ParaCem®, Whaledent) and glass ionomer cement (Fuji I, GC) were used. The specimens were thermocycled and subjected to tangential loading at a crosshead speed of 1.5 mm/min. The failure loads were recorded and data were statistically analyzed with one-way ANOVA (p < 0.05) and Student's t tests (p < 0.001). Results Significant differences of fracture resistance were detected among groups (p < 0.001). The greatest number of repairable fracture mode was recorded in fibre posts and resin cement system. Conclusions Within the limitations of this in vitro study, it can be stated that fibre posts can be recommended as a better alternative to the cast post and cores and prefabricated metallic posts in the anterior region and resin cement might give additional fracture resistance when used for post and crown cementation. PMID:25737886

  1. Retention of radicular posts varying the application technique of the adhesive system and luting agent.

    PubMed

    Fonseca, Tabajara Sabbag; Alfredo, Edson; Vansan, Luiz Pascoal; Silva, Ricardo Gariba; Sousa, Yara T Correa Silva; Saquy, Paulo César; Sousa-Neto, Manoel D

    2006-01-01

    This study evaluated in vitro the retention of intracanal cast posts cemented with dual-cure resin varying the application method of the primer/adhesive solution and luting agent in the prosthetic space prepared to receive the posts. Sixty endodontically treated maxillary canines had their crowns discarded, and their roots were embedded in acrylic resin. The prosthetic spaces were prepared with Largo burs mounted on a low-speed handpiece coupled to a parallelometer in order to maintain length and diameter of intraradicular posts constant and to guarantee that the preparations were parallel after casting. Two groups (n = 30) were randomly formed according to the device used to apply the adhesive system: microbrush or standard bristle brush (control). Each group was divided into 3 subgroups (n = 10) according to the technique used to place the luting agent into the root canal: using only a lentulo spiral before setting the post, applying it onto the post surface, or combining both methods. After 72 hours, the tensile force required to dislodge each post was determined by a universal testing machine (Instron 4444) set at a speed of 1 mm/min. The results indicated that the use of the microbrush yielded higher bond strength values (0.1740 +/- 0.04 kN) than those recorded for the bristle brush tip (0.1369 +/- 0.04 kN, p < 0.001). Bonferroni's test demonstrated a higher retention (p < 0.001) in radicular post cemented with the technique that combined both methods (lentulo + post: 0.1787 +/- 0.03 kN) than that obtained with lentulo (0.1461 +/- 0.065 kN) or post (0.1416 +/- 0.03 kN) alone. The interactions between the adhesive system and luting agent application techniques presented statistical difference (p < 0.001). It was concluded that the best performance in terms of tensile strength among the tested conditions was obtained when the adhesive system was applied with a microbrush and the luting agent was taken into the root canal with lentulo spirals alone (0.1961 +/- 0

  2. Evaluation of push-out bond strength of two fiber-reinforced composite posts systems using two luting cements in vitro

    PubMed Central

    Kadam, Ajay; Pujar, Madhu; Patil, Chetan

    2013-01-01

    Introduction: The concept of using a “post” for the restoration of teeth has been practiced to restore the endodontically treated tooth. Metallic posts have been commonly used, but their delirious effects have led to the development of fiber-reinforced materials that have overcome the limitations of metallic posts. The use of glass and quartz fibers was proposed as an alternative to the dark color of carbon fiber posts as far as esthetics was concerned. “Debonding” is the most common failure in fiber-reinforced composite type of posts. This study was aimed to compare the push-out bond strength of a self-adhesive dual-cured luting agent (RelyX U100) with a total etch resin luting agent (Variolink II) used to cement two different FRC posts. Materials and Methods: Eighty human maxillary anterior single-rooted teeth were decoronated, endodontically treated, post space prepared and divided into four groups (n = 20); Group I: D.T. light post (RTD) and Variolink II (Ivoclare vivadent), Group II: D.T. light post (RTD) and RelyX U100 (3M ESPE), Group III: Glassix post (Nordin) and Variolink II (Ivoclare vivadent) and Group IV: Glassix post (Nordin) and RelyX U100 (3M ESPE). Each root was sectioned to get slices of 2 ± 0.05-mm thickness. Push-out tests were performed using a triaxial loading frame. To express bond strength in megapascals (Mpa), load value recorded in Newton (N) was divided by the area of the bonded interface. After testing the push-out strengths, the samples were analyzed under a stereomicroscope. Results: The mean values of the push-out bond strength show that Group I and Group III had significantly higher values than Group II and Group IV. The most common mode of failure observed was adhesive between dentin and luting material and between post and luting material. Conclusions: The mean push-out bond strengths were higher for Groups I and III where Variolink II resin cement was used for luting the fiber post, which is based on the total etch

  3. Practical clinical considerations of luting cements: A review

    PubMed Central

    Lad, Pritam P; Kamath, Maya; Tarale, Kavita; Kusugal, Preethi B

    2014-01-01

    The longevity of fixed partial denture depends on the type of luting cement used with tooth preparation. The clinician’s understating of various cements, their advantages and disadvantages is of utmost importance. In recent years, many luting agents cements have been introduced claiming clinically better performance than existing materials due to improved characteristics. Both conventional and contemporary dental luting cements are discussed here. The various agents discussed are: Zinc phosphate, Zinc polycarboxylate, Zinc oxide-eugenol, Glass-ionomer, Resin modified GIC, Compomers and Resin cement. The purpose of this article is to provide a discussion that provides a clinical perspective of luting cements currently available to help the general practitioner make smarter and appropriate choices. How to cite the article: Lad PP, Kamath M, Tarale K, Kusugal PB. Practical clinical considerations of luting cements: A review. J Int Oral Health 2014;6(1):116-20. PMID:24653615

  4. Practical clinical considerations of luting cements: A review.

    PubMed

    Lad, Pritam P; Kamath, Maya; Tarale, Kavita; Kusugal, Preethi B

    2014-02-01

    The longevity of fixed partial denture depends on the type of luting cement used with tooth preparation. The clinician's understating of various cements, their advantages and disadvantages is of utmost importance. In recent years, many luting agents cements have been introduced claiming clinically better performance than existing materials due to improved characteristics. Both conventional and contemporary dental luting cements are discussed here. The various agents discussed are: Zinc phosphate, Zinc polycarboxylate, Zinc oxide-eugenol, Glass-ionomer, Resin modified GIC, Compomers and Resin cement. The purpose of this article is to provide a discussion that provides a clinical perspective of luting cements currently available to help the general practitioner make smarter and appropriate choices. How to cite the article: Lad PP, Kamath M, Tarale K, Kusugal PB. Practical clinical considerations of luting cements: A review. J Int Oral Health 2014;6(1):116-20. PMID:24653615

  5. Dual cure low-VOC coating process. Phase 3, Semi-annual report, April 1, 1992--September 30, 1992

    SciTech Connect

    Kinzer, K.E.

    1993-10-01

    The objective of Phase 3 of 3M`s contract with the US Department of Energy is to complete proof-of-principle testing in full-scale systems of the dual cure photocatalyst technology developed in earlier Phases of the program. The Phase 3 commercial applications to be demonstrated are aerospace topcoats, aerospace primers, and solventless manufacture of tape backings. This report details activities of Phase 3 during this reporting period. In the second six months of Phase 3, work has continued in all three applications. Significant progress has been made in improving the performance of the urethane/acrylate formulation being used for the aerospace topcoat application. Key improvements have been made in obtaining increased reverse impact, initial gloss and gloss retention during accelerated weathering. Technical challenges have continued with the aerospace primer formulation. Efforts in this six months have continued to focus on establishing a good baseline epoxy/acrylate formulation with reliable cure conditions. Work on the third demonstration application, development of solventless backing saturants for electrical tape backings, has essentially been completed. Optimal dual cure resin formulations have been identified and utilized in preparing complete tape constructions. These tapes have been evaluated and characterized in terms of benchmark UL and internal 3M specifications for electrical tape performance.

  6. The effect of curing modes on polymerization contraction stress of a dual cured composite.

    PubMed

    Feng, L; Suh, B I

    2006-01-01

    Although a lower curing rate is often cited as the reason why a chemical cured (CC) dental composite produces lower polymerization contraction stress (PCS) than a light cured (LC) composite, the exact mechanism is still unclear. In addition, the comparison is often made by using different brands of composites. The comparison's fairness is questionable because the two composites have different compositions and preparation procedures. The goal of the present work was to determine if the curing mode alone can produce different PCS. We formulated a dual cured composite and prepared it the same way for both CC and LC modes. We measured PCS by a strain gauge method, shrinkage by a video-imagining technique, degree of conversion (DC) by infrared spectroscopy, and flexural modulus by the three-point bending test. The CC specimens showed lower PCS and lower flexural modulus than the LC specimens, although both possessed an identical chemical composition and physical texture before cure. This finding indicates that the curing mode alone can affect PCS. Because the CC and LC specimens produced a similar shrinkage and DC, the lower modulus is considered to be one of the reasons for the lower stress. Using a structural inhomogeneity model, we explained how a resin composite with an identical DC can have different physical properties such as the modulus. PMID:16047326

  7. Thio-urethanes improve properties of dual-cured composite cements.

    PubMed

    Bacchi, A; Dobson, A; Ferracane, J L; Consani, R; Pfeifer, C S

    2014-12-01

    This study aims at modifying dual-cure composite cements by adding thio-urethane oligomers to improve mechanical properties, especially fracture toughness, and reduce polymerization stress. Thiol-functionalized oligomers were synthesized by combining 1,3-bis(1-isocyanato-1-methylethyl)benzene with trimethylol-tris-3-mercaptopropionate, at 1:2 isocyanate:thiol. Oligomer was added at 0, 10 or 20 wt% to BisGMA-UDMA-TEGDMA (5:3:2, with 25 wt% silanated inorganic fillers) or to one commercial composite cement (Relyx Ultimate, 3M Espe). Near-IR was used to measure methacrylate conversion after photoactivation (700 mW/cm(2) × 60s) and after 72 h. Flexural strength and modulus, toughness, and fracture toughness were evaluated in three-point bending. Polymerization stress was measured with the Bioman. The microtensile bond strength of an indirect composite and a glass ceramic to dentin was also evaluated. Results were analyzed with analysis of variance and Tukey's test (α = 0.05). For BisGMA-UDMA-TEGDMA cements, conversion values were not affected by the addition of thio-urethanes. Flexural strength/modulus increased significantly for both oligomer concentrations, with a 3-fold increase in toughness at 20 wt%. Fracture toughness increased over 2-fold for the thio-urethane modified groups. Contraction stress was reduced by 40% to 50% with the addition of thio-urethanes. The addition of thio-urethane to the commercial cement led to similar flexural strength, toughness, and conversion at 72h compared to the control. Flexural modulus decreased for the 20 wt% group, due to the dilution of the overall filler volume, which also led to decreased stress. However, fracture toughness increased by up to 50%. The microtensile bond strength increased for the experimental composite cement with 20 wt% thio-urethane bonding for both an indirect composite and a glass ceramic. Novel dual-cured composite cements containing thio-urethanes showed increased toughness, fracture toughness and

  8. Thio-urethanes Improve Properties of Dual-cured Composite Cements

    PubMed Central

    Bacchi, A.; Dobson, A.; Ferracane, J.L.; Consani, R.; Pfeifer, C.S.

    2014-01-01

    This study aims at modifying dual-cure composite cements by adding thio-urethane oligomers to improve mechanical properties, especially fracture toughness, and reduce polymerization stress. Thiol-functionalized oligomers were synthesized by combining 1,3-bis(1-isocyanato-1-methylethyl)benzene with trimethylol-tris-3-mercaptopropionate, at 1:2 isocyanate:thiol. Oligomer was added at 0, 10 or 20 wt% to BisGMA-UDMA-TEGDMA (5:3:2, with 25 wt% silanated inorganic fillers) or to one commercial composite cement (Relyx Ultimate, 3M Espe). Near-IR was used to measure methacrylate conversion after photoactivation (700 mW/cm2 × 60s) and after 72 h. Flexural strength and modulus, toughness, and fracture toughness were evaluated in three-point bending. Polymerization stress was measured with the Bioman. The microtensile bond strength of an indirect composite and a glass ceramic to dentin was also evaluated. Results were analyzed with analysis of variance and Tukey’s test (α = 0.05). For BisGMA-UDMA-TEGDMA cements, conversion values were not affected by the addition of thio-urethanes. Flexural strength/modulus increased significantly for both oligomer concentrations, with a 3-fold increase in toughness at 20 wt%. Fracture toughness increased over 2-fold for the thio-urethane modified groups. Contraction stress was reduced by 40% to 50% with the addition of thio-urethanes. The addition of thio-urethane to the commercial cement led to similar flexural strength, toughness, and conversion at 72h compared to the control. Flexural modulus decreased for the 20 wt% group, due to the dilution of the overall filler volume, which also led to decreased stress. However, fracture toughness increased by up to 50%. The microtensile bond strength increased for the experimental composite cement with 20 wt% thio-urethane bonding for both an indirect composite and a glass ceramic. Novel dual-cured composite cements containing thio-urethanes showed increased toughness, fracture toughness and

  9. Influence of Immediate Dentin Sealing on the Shear Bond Strength of Pressed Ceramic Luted to Dentin with Self-Etch Resin Cement

    PubMed Central

    Dalby, Robert; Ellakwa, Ayman; Millar, Brian; Martin, F. Elizabeth

    2012-01-01

    Objectives. To examine the effect of immediate dentin sealing (IDS), with dentin bonding agents (DBAs) applied to freshly cut dentin, on the shear bond strength of etched pressed ceramic luted to dentin with RelyX Unicem (RXU) cement. Method. Eighty extracted noncarious third molars were ground flat to expose the occlusal dentin surfaces. The teeth were randomly allocated to five groups (A to E) of sixteen teeth each. Groups A to D were allocated a dentin bonding agent (Optibond FL, One Coat Bond, Single Bond, or Go!) that was applied to the dentin surface to mimic the clinical procedure of IDS. These specimen groups then had etched glass ceramic discs (Authentic) luted to the sealed dentin surface using RXU. Group E (control) had etched glass ceramic discs luted to the dentin surface (without a dentin bonding agent) using RXU following the manufacturer's instructions. All specimens were stored for one week in distilled water at room temperature and then shear stressed at a constant cross-head speed of 1 mm per minute until failure. Statistical analysis was performed by ANOVA followed by post hoc Tukey HSD method (P < 0.05) applied for multiple paired comparisons. Results. The shear bond strength results for group A to E ranged from 6.94 ± 1.53 to 10.03 ± 3.50 MPa. One-way ANOVA demonstrated a difference (P < 0.05) between the groups tested and the Tukey HSD demonstrated a significant (P < 0.05) difference between the shear bond strength (SBS) of Optibond FL (Group A) and Go! (Group D). There was no statistical difference (P > 0.05) in the SBS between the test groups (A–D) or the control (group E). Conclusion. IDS using the dentin bonding agents tested does not statistically (P > 0.05) affect the shear bond strength of etched pressed ceramic luted to dentin with RXU when compared to the control. PMID:22287963

  10. Comparison of the effect of shear bond strength with silane and other three chemical presurface treatments of a glass fiber-reinforced post on adhesion with a resin-based luting agent: An in vitro study

    PubMed Central

    Belwalkar, Vaibhavi Ramkrishna; Gade, Jaykumar; Mankar, Nikhil Purushottam

    2016-01-01

    Background: Loss of retention has been cited to be the most common cause of the failure of postretained restoration with irreversible consequences when materials with different compositions are in intimate contact at the post/adhesive interface. With this background, a study was conducted to improve the adhesion at the resin phase of fiber posts using silane and other chemical pretreatments. Materials and Methods: Hundred glass fiber-reinforced posts were tested with 4 different protocols (n = 25) using silane as a control (Group A) and other three experimental groups, namely, Group B-20% potassium permanganate, Group C-4% hydrofluoric acid, and Group D-10% hydrogen peroxide were pretreated on the postsurface followed by silanization. These specimens were bonded with dual-polymerizing resin-based luting agent, which were then loaded at the crosshead speed of 1 mm/min to record the shear bond strength at the post/adhesive interface. The data were analyzed using one-way ANOVA test for multiple group comparisons and the post hoc Bonferroni test for pairwise comparisons (P < 0.05). Results: Group B showed more influence on the shear bond strength when compared to other protocols, respectively (P < 0.001). Conclusion: Alone silanization as a surface treatment did not improve the bond strength. Combination of chemical presurface treatments followed by silanization significantly enhanced the bond strength at the post/adhesive interface. PMID:27307666

  11. The properties of polymerizable luting cements.

    PubMed

    Nicholson, J W; McKenzie, M A

    1999-10-01

    The properties of a polyacid-modified composite resin and two resin-modified luting cements have been studied. The polyacid-modified composite resin had the slowest setting reaction and, in this respect, it did not conform to the current international standard for luting cements. The compressive strength of all of the materials was studied after varying periods of storage from 24 h to 1 year. The polyacid-modified composite resin showed a distinct dip in strength at 1 month in all of the storage media, but otherwise it showed no significant variation with either age or storage medium. The resin-modified glass-ionomers showed variation at 24 h with storage medium (deionized water, 0.9% NaCl or 20 mmol dm(-3) lactic acid), but thereafter they showed little variation, until 1 year, when Vitremer luting showed a significant decline in strength in pure water. However, at 24 h and when stored in water, all of the materials had strengths that easily exceeded the minimum requirement of the current standard (70 MPa). They all took up water on storage, with diffusion coefficients ranging from 1.32 to 17. 19x10(-7) cm2 s(-1). These values were found to depend on whether the specimens were stored in pure water or in physiological saline. However, equilibrium water contents varied only slightly between water and saline. The polyacid-modified composite resin, Dyract-Cem, took up the least water, as well as showing the smallest variation in strength with age. By contrast, it was more difficult to mix than the other materials and the high viscosity of the paste led to the formation of voids and other imperfections in the specimens. PMID:10564431

  12. LUTE telescope structural design

    NASA Technical Reports Server (NTRS)

    Ruthven, Gregory

    1993-01-01

    The major objective of the Lunar Ultraviolet Transit Experiment (LUTE) Telescope Structural Design Study was to investigate the feasibility of designing an ultralightweight 1-m aperture system within optical performance requirements and mass budget constraints. This study uses the results from our previous studies on LUTE as a basis for further developing the LUTE structural architecture. After summarizing our results in Section 2, Section 3 begins with the overall logic we used to determine which telescope 'structural form' should be adopted for further analysis and weight estimates. Specific telescope component analysis showing calculated fundamental frequencies and how they compare with our derived requirements are included. 'First-order' component stress analyses to ensure telescope optical and structural component (i.e. mirrors & main bulkhead) weights are realistic are presented. Layouts of both the primary and tertiary mirrors showing dimensions that are consistent with both our weight and frequency calculations also form part of Section 3. Section 4 presents our calculated values for the predicted thermally induced primary-to-secondary mirror despace motion due to the large temperature range over which LUTE must operate. Two different telescope design approaches (one which utilizes fused quartz metering rods and one which assumes the entire telescope is fabricated from beryllium) are considered in this analysis. We bound the secondary mirror focus mechanism range (in despace) based on these two telescope configurations. In Section 5 we show our overall design of the UVTA (Ultraviolet Telescope Assembly) via an 'exploded view' of the sub-system. The 'exploded view' is annotated to help aid in the understanding of each sub-assembly. We also include a two view layout of the UVTA from which telescope and telescope component dimensions can be measured. We conclude our study with a set of recommendations not only with respect to the LUTE structural architecture

  13. A clinically focused discussion of luting materials.

    PubMed

    Hill, E E; Lott, J

    2011-06-01

    A luting agent's primary function is to fill the minute void between an indirect restoration (definitive or provisional) and tooth (or implant abutment) and mechanically lock the restoration in place to prevent dislodgement during function. The purpose of this paper is to provide a clinically focused discussion on the broad spectrum of luting materials currently available to help the general practitioner make appropriate choices. Resins are typically formulated for a specific function or restoration and offer strength, aesthetics, flexible working times, and very low solubility yet are technique sensitive, expensive and often hard to clean-up. Glass-ionomers offer good strength and optical properties plus the potential for fluoride release/recharge but may have short working times, are sensitive to moisture or dehydration early on, and take time to fully set. Resin-modified glass-ionomers are hybrid, dual-phase materials which are manipulated like glass-ionomer but set quicker and are stronger. Zinc phosphate cement, used successfully for over a century to lute well-fitting metal and metal-ceramic definitive restorations, is a very inexpensive, rigid material which displays very high early compressive strength yet acidity and solubility can be problems. Polycarboxylate cement (a hybrid of zinc phosphate) has lower compressive strength but high tensile strength and may be less injurious to the pulp. Zinc oxide eugenol and zinc oxide non-eugenol cements typically have good sealing abilities but their relatively low compressive and tensile strengths, inherent brittleness, and high solubility limit usage to provisional restorations or implant supported crowns. Claims for multi-purpose or universal use by manufacturers can be somewhat confusing and overwhelming. Even so, the busy general practitioner must have sufficient knowledge to help choose an appropriate luting agent for each unique clinical situation. PMID:21564117

  14. Radiopacity Evaluation of Contemporary Luting Cements by Digitization of Images

    PubMed Central

    Reis, José Maurício dos Santos Nunes; Jorge, Érica Gouveia; Ribeiro, João Gustavo Rabelo; Pinelli, Ligia Antunes Pereira; Abi-Rached, Filipe de Oliveira; Tanomaru-Filho, Mário

    2012-01-01

    Objective. The aim of this study was to evaluate the radiopacity of two conventional cements (Zinc Cement and Ketac Cem Easymix), one resin-modified glass ionomer cement (RelyX Luting 2) and six resin cements (Multilink, Bistite II DC, RelyX ARC, Fill Magic Dual Cement, Enforce and Panavia F) by digitization of images. Methods. Five disc-shaped specimens (10 × 1.0 mm) were made for each material, according to ISO 4049. After setting of the cements, radiographs were made using occlusal films and a graduated aluminum stepwedge varying from 1.0 to 16 mm in thickness. The radiographs were digitized, and the radiopacity of the cements was compared with the aluminum stepwedge using the software VIXWIN-2000. Data (mmAl) were submitted to one-way ANOVA and Tukey's test (α = 0.05). Results. The Zinc Cement was the most radiopaque material tested (P < 0.05). The resin cements presented higher radiopacity (P < 0.05) than the conventional (Ketac Cem Easymix) or resin-modified glass ionomer (RelyX Luting 2) cements, except for the Fill Magic Dual Cement and Enforce. The Multilink presented the highest radiopacity (P < 0.05) among the resin cements. Conclusion. The glass ionomer-based cements (Ketac Cem Easymix and RelyX Luting 2) and the resin cements (Fill Magic Dual Cement and Enforce) showed lower radiopacity values than the minimum recommended by the ISO standard. PMID:23008777

  15. Cytotoxicity evaluation of luting resin cements on bovine dental pulp-derived cells (bDPCs) by real-time cell analysis.

    PubMed

    Arslan Malkoç, Meral; Demir, Necla; Şengün, Abdulkadir; Bozkurt, Şerife Buket; Hakki, Sema Sezen

    2015-01-01

    To evaluate the cytotoxicity of resin cements on dental pulp-derived cells (bDPCs), Bifix QM (BQM), Choice 2(C2), RelyX U200(RU200), Maxcem Elite(ME), and Multilink Automix(MA) were tested. The materials were incubated in DMEM for 72 h. A real-time cell analyzer was used to evaluate cell survival. The statistical analyses used were one-way ANOVA and Tukey-Kramer tests. BQM, RU200, and ME demonstrated a significant decrease in the bDPCs' index at 24 and 72 h (p≤0.001). These materials were found to be the most toxic resin cements, as compared to the control and other tested materials (C2 and MA). However, C2 and MA showed a better survival rate, compared to BQM, RU200, and ME, and had lower cell index than the control group. The cytotoxic effects of resin cements on pulpa should be evaluated during the selection of proper cements. PMID:25736260

  16. Guitars and Lutes

    NASA Astrophysics Data System (ADS)

    Rossing, Thomas D.; Caldersmith, Graham

    Lute-type instruments have a long history. Various types of necked chordophones were in use in ancient Egyptian, Hittite, Greek, Roman, Turkish, Chinese, and other cultures. In the ninth century, Moors brought the oud (or ud) to Spain. In the fifteenth century, the vihuela became popular in Spain and Portugal. About the same time guitars with four double-strings became popular, and Italy became the center of the guitar world.

  17. Comparative Evaluation of Shear Bond Strength of Luting Cements to Different Core Buildup Materials in Lactic Acid Buffer Solution

    PubMed Central

    Patil, Siddharam M.; Desai, Raviraj G.; Arabbi, Kashinath C.; Prakash, Ved

    2015-01-01

    Aim and Objectives The core buildup material is used to restore badly broken down tooth to provide better retention for fixed restorations. The shear bond strength of a luting agent to core buildup is one of the crucial factors in the success of the cast restoration. The aim of this invitro study was to evaluate and compare the shear bond strength of luting cements with different core buildup materials in lactic acid buffer solution. Materials and Methods Two luting cements {Traditional Glass Ionomer luting cement (GIC) and Resin Modified Glass Ionomer luting cement (RMGIC)} and five core buildup materials {Silver Amalgam, Glass ionomer (GI), Glass Ionomer Silver Reinforced (GI Silver reinforced), Composite Resin and Resin Modified Glass Ionomer(RMGIC)} were selected for this study. Total 100 specimens were prepared with 20 specimens for each core buildup material using a stainless steel split metal die. Out of these 20 specimens, 10 specimens were bonded with each luting cement. All the bonded specimens were stored at 370c in a 0.01M lactic acid buffer solution at a pH of 4 for 7days. Shear bond strength was determined using a Universal Testing Machine at a cross head speed of 0.5mm/min. The peak load at fracture was recorded and shear bond strength was calculated. The data was statistically analysed using Two-way ANOVA followed by HOLM-SIDAK method for pair wise comparison at significance level of p<0.05. Results Two-Way ANOVA showed significant differences in bond strength of the luting cements (p<0.05) and core materials (p<0.05) and the interactions (p<0.05). Pairwise comparison of luting cements by HOLM-SIDAK test, showed that the RMGIC luting cement had higher shear bond strength values than Traditional GIC luting cement for all the core buildup materials. RMGIC core material showed higher bond strength values followed by Composite resin, GI silver reinforced, GI and silver amalgam core materials for both the luting agents. Conclusion Shear bond strength of

  18. Retention of Root Canal Posts: Effect of Cement Film Thickness, Luting Cement, and Post Pretreatment.

    PubMed

    Sahafi, A; Benetti, A R; Flury, S; Peutzfeldt, A

    2015-01-01

    The aim of this study was to investigate the effect of the cement film thickness of a zinc phosphate or a resin cement on retention of untreated and pretreated root canal posts. Prefabricated zirconia posts (CosmoPost: 1.4 mm) and two types of luting cements (a zinc phosphate cement [DeTrey Zinc] and a self-etch adhesive resin cement [Panavia F2.0]) were used. After removal of the crowns of 360 extracted premolars, canines, or incisors, the root canals were prepared with a parallel-sided drill system to three different final diameters. Half the posts did not receive any pretreatment. The other half received tribochemical silicate coating according to the manufacturer's instructions. Posts were then luted in the prepared root canals (n=30 per group). Following water storage at 37°C for seven days, retention of the posts was determined by the pull-out method. Irrespective of the luting cement, pretreatment with tribochemical silicate coating significantly increased retention of the posts. Increased cement film thickness resulted in decreased retention of untreated posts and of pretreated posts luted with zinc phosphate cement. Increased cement film thickness had no influence on retention of pretreated posts luted with resin cement. Thus, retention of the posts was influenced by the type of luting cement, by the cement film thickness, and by the post pretreatment. PMID:25764045

  19. Cusp Fracture Resistance of Maxillary Premolars Restored with the Bonded Amalgam Technique Using Various Luting Agents

    PubMed Central

    Marchan, Shivaughn M.; Coldero, Larry; White, Daniel; Smith, William A. J.; Rafeek, Reisha N.

    2009-01-01

    Objective. This in vitro study uses measurements of fracture resistance to compare maxillary premolars restored with the bonded amalgam technique using a new resin luting cement, glass ionomer, and resin-modified glass ionomer as the bonding agents. Materials. Eighty-five sound maxillary premolars were selected and randomly assigned to one of five test groups of 17 teeth each. One group of intact teeth served as the control. The remaining groups were prepared to a standard cavity form relative to the dimensions of the overall tooth and restored with amalgam alone or a bonded amalgam using one of three luting agents: RelyX Arc (a new resin luting cement), RelyX luting (a resin-modified glass ionomer), or Ketac-Cem μ (a glass ionomer) as the bonding agents. Each tooth was then subjected to compressive testing until catastrophic failure occurred. The mean loads at failure of each group were statistically compared using ANOVA with a post hoc Bonferroni test. Results. It was found that regardless of the luting cement used for the amalgam bonding technique, there was little effect on the fracture resistance of teeth. Conclusion. Cusp fracture resistance of premolars prepared with conservative MOD cavity preparations is not improved by using an amalgam-bonding technique compared to similar cavities restored with amalgam alone. PMID:20339450

  20. Influence of luting agent translucency on fiber post retention.

    PubMed

    Juloski, Jelena; Goracci, Cecilia; Tsintsadze, Nino; Carrabba, Michele; Vichi, Alessandro; Vulicevic, Zoran R; Ferrari, Marco

    2015-04-01

    The aim was to assess the influence of cement translucency on the retentive strength of luted fiber posts. Twenty extracted human premolars were randomly divided into four equal groups, based on the combinations of materials to be tested. Two post types of the same size, shape, and chemical composition, but different light-transmission properties [Translucent post (TP) and Opaque post (OP)] were selected. The two post types were luted using the etch-and-rinse, light-curing adhesive in combination with two shades of the same resin cement of markedly different light-transmitting ability [Transparent shade (TS) and Opaque shade (OS)]. Early post retention was assessed using the thin-slice push-out test. Post type did not significantly influence post retention; however, cement translucency emerged as a relevant factor in intraradicular cementation, with the TS achieving higher push-out strengths. The between-factor interaction was also statistically significant; specifically, OP-OS yielded significantly lower retentive strengths than all the other groups. Post translucency did not influence post retention, provided that a highly translucent cement was utilized for luting. PMID:25683864

  1. Evaluation of the marginal seal of CEREC 3D restorations using two different luting agents.

    PubMed

    Jahangiri, Leila; Agosta, Claudine; Estafan, Denise

    2007-01-01

    This in vitro study used two resin cements to evaluate the microleakage of CEREC 3D restorations. An mesio-occluso-distal-lingual (MODL) onlay preparation was placed on an ivorine premolar tooth. Sixty elastomeric impressions of this preparation were used to fabricate resin dies. Imaging propellant was applied to the resin dies. Optical impressions were taken with the CEREC 3 and the CEREC 3D software and used to design and mill 60 onlays. The reliability coefficient was alpha = 0.76 with an examiner agreement rate of 96.4%. Restorations cemented with posterior composite demonstrated a mean microleakage value of 1.46 mm (SD+/- 1.64); by contrast, those restored with dual-cure cement reported a mean microleakage value of 0.21 mm (SD+/-0.57). The difference in microleakage was very highly significant (alpha = 0.001). Posterior composite CEREC 3D restorations cemented with the dual-cure cement showed significantly less microleakage compared to those cemented with posterior composite. PMID:17333982

  2. [Haemotoxicity of dental luting cements].

    PubMed

    Anders, A; Welker, D

    1989-06-01

    A glass ionomer luting cement (AquaCem) shows a relatively low haemolytic activity in comparison with two zinc phosphate cements. Especially the initial irritation by this cement is smaller. Although it is possible that AquaCem particularly, in unfavourable cases, may damage the pulpa dentin system; this is due to the slowly decrease of the haemolytic activity with increasing of the probes. We found that Adhesor showed in dependence of the batches a varying quality. PMID:2626769

  3. Lunar Ultraviolet Telescope Experiment (LUTE), phase A

    NASA Technical Reports Server (NTRS)

    Mcbrayer, Robert O.

    1994-01-01

    The Lunar Ultraviolet Telescope Experiment (LUTE) is a 1-meter telescope for imaging from the lunar surface the ultraviolet spectrum between 1,000 and 3,500 angstroms. There have been several endorsements of the scientific value of a LUTE. In addition to the scientific value of LUTE, its educational value and the information it can provide on the design of operating hardware for long-term exposure in the lunar environment are important considerations. This report provides the results of the LUTE phase A activity begun at the George C. Marshall Space Flight Center in early 1992. It describes the objective of LUTE (science, engineering, and education), a feasible reference design concept that has evolved, and the subsystem trades that were accomplished during the phase A.

  4. Cytotoxicity of commonly used luting cements -An in vitro study.

    PubMed

    Trumpaite-Vanagiene, Rita; Bukelskiene, Virginija; Aleksejuniene, Jolanta; Puriene, Alina; Baltriukiene, Daiva; Rutkunas, Vygandas

    2015-01-01

    The study aimed to 1) evaluate the cytotoxicity of luting cements: Hoffmann's Zinc Phosphate (Hoffmann's ZP), GC Fuji Plus Resin Modified Glass Ionomer (Fuji Plus RMGI) and 3M ESPE RelyX Unicem Resin Cement (RelyX Unicem RC) and 2) test if pre-washing reduces the cements' cytotoxicity. In vitro human gingival fibroblast (HGF) culture model was chosen. The cytotoxicity was evaluated by MTT test, the cell viability -by staining the cells with AO/EB dye mixture. The means±SD of Cell Survival Ratio (CSR%) were compared among different cement types under two testing conditions, with or without cement pre-washing. The CSR%s were compared by ANOVA and linear multiple regression (LMR). Hoffmann's ZPC was less cytotoxic, while Fuji Plus RMGIC and RelyX Unicem RC were more cytotoxic (ANOVA, p<0.001). The type of cement and cement pre-washing jointly explained 90% of cell survival (LMR, p<0.001, adjusted squared R=0.889). The commonly used luting cements such as Hoffmann's ZP, Fuji Plus RMGI and RelyX Unicem RC may have a cytotoxic potential. PMID:25904168

  5. Retentiveness of various luting agents used with implant-supported prostheses: a preliminary in vitro study.

    PubMed

    Garg, Pooja; Gupta, Gaurav; Prithviraj, D R; Pujari, Malesh

    2013-01-01

    The aim of this preliminary in vitro study was to compare the retentiveness of a luting agent designed for use with dental implants to luting agents designed for use with tooth-retained restorations. The following luting agents were tested: (1) implant cement, (2) resin-bonded zinc oxide-eugenol cement, (3) zinc phosphate cement, (4) zinc polycarboxylate cement, and (5) glass-ionomer cement. After cementation, each sample was subjected to a pull-out test using a universal testing machine, and the loads required to remove the crowns were recorded. The mean values and standard deviations of cement failure loads were analyzed using analysis of variance and the Bonferroni test. The mean cement failure loads (N) were 333.86 ± 18.91 for implant cement, 394.62 ± 9.76 for resin-bonded zinc oxide-eugenol cement, 629.30 ± 20.65 for zinc phosphate cement, 810.08 ± 11.52 for zinc polycarboxylate cement, and 750.17 ± 13.78 for glass-ionomer cement. The retention provided by polycarboxylate cement was significantly greater than that of all other luting agents; the implant cement showed the lowest retention values. These preliminary in vitro observations need to be confirmed under conditions that more closely approximate the clinical environment. PMID:23342339

  6. Retention of Implant Supported Metal Crowns Cemented with Different Luting Agents: A Comparative Invitro Study

    PubMed Central

    Singh, Kavipal; Kaur, Simrat; Arora, Aman

    2016-01-01

    Introduction To overcome limitations of screw-retained prostheses, cement-retained prostheses have become the restoration of choice now a days. Selection of the cement hence becomes very critical to maintain retrievability of the prostheses. Aim The purpose of this study was to assess and compare the retention of base metal crowns cemented to implant abutments with five different luting cements. Materials and Methods Ten implant analogs were secured in five epoxy resin casts perpendicular to the plane of cast in right first molar and left first molar region and implant abutments were screwed. Total of 100 metal copings were fabricated and cemented. The cements used were zinc phosphate, resin modified glass ionomer cement, resin cement, non-eugenol acrylic based temporary implant cement & non-eugenol temporary resin cement implant cement. Samples were subjected to a pull-out test using an Instron universal testing machine at a crosshead speed of 0.5mm/min. The load required to de-cement each coping was recorded and mean values for each group calculated and put to statistical analysis. Results The results showed that resin cement has the highest retention value 581.075N followed by zinc phosphate luting cement 529.48N, resin modified glass ionomer cement 338.095 N, non-eugenol acrylic based temporary implant cement 249.045 N and non-eugenol temporary resin implant cement 140.49N. Conclusion Within the limitations of study, it was concluded that non-eugenol acrylic based temporary implant cement and non-eugenol temporary resin implant cement allow for easy retrievability of the prosthesis in case of any failure in future. These are suitable for cement retained implant restorations. The results provide a possible preliminary ranking of luting agents based on their ability to retain an implant-supported prosthesis and facilitate easy retrieval. PMID:27190954

  7. A Review of Luting Agents

    PubMed Central

    Pameijer, Cornelis H.

    2012-01-01

    Due to the availability of a large number of luting agents (dental cements) proper selection can be a daunting task and is usually based on a practitioner's reliance on experience and preference and less on in depth knowledge of materials that are used for the restoration and luting agent properties. This review aims at presenting an overview of current cements and discusses physical properties, biocompatibility and other properties that make a particular cement the preferred choice depending on the clinical indication. Tables are provided that outline the different properties of the generic classification of cements. It should be noted that no recommendations are made to use a particular commercial cement for a hypothetical clinical situation. The choice is solely the responsibility of the practitioner. The appendix is intended as a guide for the practitioner towards a recommended choice under commonly encountered clinical scenarios. Again, no commercial brands are recommended although the author recognizes that some have better properties than others. Please note that this flowchart strictly presents the author's opinion and is based on research, clinical experience and the literature. PMID:22505909

  8. A Luting Technique for Passive Fit of Implant-Supported Fixed Dentures.

    PubMed

    Menini, Maria; Dellepiane, Elena; Pera, Paolo; Bevilacqua, Marco; Pesce, Paolo; Pera, Francesco; Tealdo, Tiziano

    2016-01-01

    Several factors contribute to distortion of implant prostheses during fabrication and could prevent passive, accurate adaptation between implants and implant frameworks. The misfit between implants and restorative components may be significant and possibly lead to biologic or mechanical complications. The aim of this article is to describe a laboratory luting technique used to lute implant cylinders to metal frameworks in implant prostheses. This technique provides accurate, passive fits. According to this technique, titanium implant cylinders provided with corresponding external castable cylinders are used. Implant cylinders are screwed into the analogs in the master cast while the castable cylinders on top are splinted together using castable resin to realize a castable resin pattern. After casting, the framework is adjusted and cemented to the titanium cylinders on the master cast. Due to its ease and quickness of use and clinical efficiencies, this technique is deemed particularly useful in immediate loading rehabilitations. PMID:25898912

  9. Effect of surface treatments on the flexural properties and adhesion of glass fiber-reinforced composite post to self-adhesive luting agent and radicular dentin.

    PubMed

    Elnaghy, Amr M; Elsaka, Shaymaa E

    2016-01-01

    This study evaluated the effect of different surface treatments on the flexural properties and adhesion of glass fiber post to self-adhesive luting agent and radicular dentin. Seventy-five single-rooted human teeth were prepared to receive a glass fiber post (Reblida). The posts were divided into five groups according to the surface treatment: Gr C (control; no treatment), Gr S (silanization for 60 s), Gr AP (airborne-particle abrasion), Gr HF (etching with 9 % hydrofluoric acid for 1 min), and Gr M10 (etching with CH2Cl2 for 10 min). Dual-cure self-adhesive luting agent (Rely X Unicem) was applied to each group for testing the adhesion using micropush-out test. Failure types were examined with stereomicroscope and surface morphology of the posts was characterized using a scanning electron microscopy (SEM). Flexural properties of posts were assessed using a three-point bending test. Data were analyzed using ANOVA and Tukey's HSD test. Statistical significance was set at the 0.05 probability level. Groups treated with M10 showed significantly higher bond strength than those obtained with other surface treatments (P < 0.05). In general, improvements in bond strength (MPa) were found in the following order: M10 > C > S > AP > HF. Most failure modes were adhesive type of failures between dentin and luting agent (48.2%). SEM analysis revealed that the fiber post surfaces were modified after surface treatments. The surface treatments did not compromise the flexural properties of fiber posts. Application of M10 to the fiber post surfaces enhanced the adhesion to self-adhesive luting agent and radicular dentin. PMID:25424595

  10. Gas chromatography/mass spectrometry characterization of historical varnishes of ancient Italian lutes and violin.

    PubMed

    Echard, J P; Benoit, C; Peris-Vicente, J; Malecki, V; Gimeno-Adelantado, J V; Vaiedelich, S

    2007-02-12

    The organic constituents of historical vanishes from two ancient Italian lutes and a Stradivari violin, kept in the Musée de la musique in Paris, have been characterized using gas chromatography-mass spectrometry. Results have been compared with the chromatograms and mass spectra of recent as well as old naturally aged reference materials. The three historical varnishes analyzed have been shown to be oil varnishes, probably mixtures of linseed oil with resins. Identification of diterpenoids and triterpenoids compounds, and of the resins that may have been ingredients of the varnishes, are discussed in this paper. PMID:17386601

  11. Bulk filling of Class II cavities with a dual-cure composite: Effect of curing mode and enamel etching on marginal adaptation

    PubMed Central

    Bortolotto, Tissiana; Roig, Miguel; Krejci, Ivo

    2014-01-01

    Objectives: This study attempted to find a simple adhesive restorative technique for class I and II cavities on posterior teeth. Study Design: The tested materials were a self-etching adhesive (Parabond, Coltène/Whaledent) and a dual-cure composite (Paracore, Coltène/Whaledent) used in bulk to restore the cavities. Class II MO cavities were performed and assigned to 4 groups depending on the orthophosphoric acid (H3PO4) conditioning of enamel and polymerization method used (chemical or dual). Specimens were subjected to quantitative marginal analysis before and after thermo-mechanical loading. Results: Higher percentages of marginal adaptation at the total margin length, both before and after thermo-mechanical loading, were found in groups in which enamel was etched with phosphoric acid, without significant differences between the chemically and dual-cured modes. The restorations performance was similar on enamel and dentin, obtaining low results of adaptation on occlusal enamel in the groups without enamel etching, the lowest scores were on cervical dentin in the group with no ortophosphoric acid and self-cured. Conclusions: A dual-cure composite applied in bulk on acid etched enamel obtained acceptable marginal adaptation results, and may be an alternative technique for the restoration of class II cavities. Key words:Dual-cure composite, bulk technique, class II restoration, selective enamel etching, marginal adaptation. PMID:25674316

  12. In vitro tensile strength of luting cements on metallic substrate.

    PubMed

    Orsi, Iara A; Varoli, Fernando K; Pieroni, Carlos H P; Ferreira, Marly C C G; Borie, Eduardo

    2014-01-01

    The aim of this study was to determine the tensile strength of crowns cemented on metallic substrate with four different types of luting agents. Twenty human maxillary molars with similar diameters were selected and prepared to receive metallic core castings (Cu-Al). After cementation and preparation the cores were measured and the area of crown's portion was calculated. The teeth were divided into four groups based on the luting agent used to cement the crowns: zinc phosphate cement; glass ionomer cement; resin cement Rely X; and resin cement Panavia F. The teeth with the crowns cemented were subjected to thermocycling and later to the tensile strength test using universal testing machine with a load cell of 200 kgf and a crosshead speed of 0.5 mm/min. The load required to dislodge the crowns was recorded and converted to MPa/mm(2). Data were subjected to Kruskal-Wallis analysis with a significance level of 1%. Panavia F showed significantly higher retention in core casts (3.067 MPa/mm(2)), when compared with the other cements. Rely X showed a mean retention value of 1.877 MPa/mm(2) and the zinc phosphate cement with 1.155 MPa/mm(2). Glass ionomer cement (0.884 MPa/mm(2)) exhibited the lowest tensile strength value. Crowns cemented with Panavia F on cast metallic posts and cores presented higher tensile strength. The glass ionomer cement showed the lowest tensile strength among all the cements studied. PMID:25140718

  13. Microtensile Bond Strength of Self-Adhesive Luting Cements to Ceramics

    PubMed Central

    Abo, Tomoko; Uno, Shigeru; Yoshiyama, Masahiro; Yamada, Toshimoto; Hanada, Nobuhiro

    2012-01-01

    The purpose of this paper was to compare the bond strengths of the self-adhesive luting cements between ceramics and resin cores and examine their relation to the cement thickness. Three self-adhesive luting cements (Smartcem, Maxcem, and G-CEM) and a resin cement (Panavia F 2.0) for control were used in the paper. The thickness of the cements was controlled in approximately 25, 50, 100, or 200 μm. Each 10 specimens were made according to the manufacturers' instructions and stored in water at 37°C. After 24 hours, microtensile bond strength (μTBS) was measured. There were significant differences in cements. Three self-adhesive cements showed significantly lower μTBSs than control that required both etching and priming before cementation (Tukey, P < 0.05). The cement thickness of 50 or 100 μm tended to induce the highest μTBSs for each self-adhesive luting cements though no difference was found. PMID:22606202

  14. Retention strength of tin plated gold inlays bonded with two resin cements.

    PubMed

    Eakle, W S; Giblin, J M

    2000-01-01

    Research has shown bonding of restorations to tooth structure to enhance retention of the restoration to increase the fracture resistance of the tooth, and to reduce microleakage. Resin cements have superior physical properties to traditional cements such as zinc phosphate. The purpose of this study was to compare the retention of gold inlays luted with two resin cements to that of those luted with zinc phosphate cement. PMID:11199614

  15. Bonding Effectiveness of Two Adhesive Luting Cements to Glass Fiber Posts: Pull-Out Evaluation of Three Different Post Surface Conditioning Methods

    PubMed Central

    Calabrese, Marco

    2014-01-01

    The purpose of this study was to evaluate the bond strength at the post/resin-cement interface with 3 different surface treatments of glass fiber posts and with 2 different luting resin cements. Sixty glass fiber posts (RelyX Fiber Post) were randomly divided into 3 groups (n = 20) and were luted with a dual-polymerizing self-adhesive universal resin cement (RelyX Unicem) and with a dual-polymerizing resin cement (RelyX ARC). This was carried out in association with a dual-polymerizing adhesive (Scotchbond Multi-Purpose Plus) in simulated plexiglass root canals after receiving three different pretreatment procedures. A pull-out test was performed on each sample to measure bond strengths. Data were analyzed with two-way ANOVA. Two samples from each group were processed for SEM observations in order to investigate the morphologic aspect of the post/cement interface. Both resin cements demonstrated significant different bond strength values (P < 0.0001). The surface treatment result was also statistically significant (P = 0.0465). SEM examination showed a modification of the post surface after pretreatment with methyl methacrylate. The dual-polymerizing self-adhesive universal resin cement achieved higher MPa bond strength values. The use of methyl methacrylate as a surface treatment of glass fiber posts provided a significant increase in bond strengths between the posts and both luting materials. PMID:24987418

  16. Bonding All-Ceramic Restorations with Two Resins Cement Techniques: A Clinical Report of Three-Year Follow-Up

    PubMed Central

    Anchieta, Rodolfo Bruniera; Rocha, Eduardo Passos; de Almeida, Erika Oliveira; Junior, Amilcar Chagas Freitas; Martini, Ana Paula

    2011-01-01

    Ceramics have been widely used for esthetic and functional improvements. The resin cement is the material of choice for bonding ceramics to dental substrate and it can also dictate the final esthetic appearance and strength of the restoration. The correct use of the wide spectrum of resin luting agents available depends on the dental tooth substrate. This article presents three-year clinical results of a 41 years old female patient B.H.C complaining about her unattractive smile. Two all-ceramic crowns and two laminates veneers were placed in the maxillary incisors and cemented with a self-adhesive resin luting cement and conventional resin luting cement, respectively. After a three-year follow-up, the restorations and cement/teeth interface were clinically perfect with no chipping, fractures or discoloration. Proper use of different resin luting cements shows clinical appropriate behavior after a three-year follow-up. Self-adhesive resin luting cement may be used for cementing all-ceramic crowns with high predictability of success, mainly if there is a large dentin surface available for bonding and no enamel at the finish line. Otherwise, conventional resin luting agent should be used for achieving an adequate bonding strength to enamel. PMID:21912505

  17. Influence of temporary cement remnant and surface cleaning method on bond strength to dentin of a composite luting system.

    PubMed

    Kanakuri, Katsuhito; Kawamoto, Yoshikazu; Matsumura, Hideo

    2005-03-01

    The aim of the current study was to evaluate the influence of polycarboxylate temporary cement remaining on the dentin surface on the bond strength of a composite luting system. An acrylic resin plate was luted to bovine dentin with a polycarboxylate temporary cement (HY-Bond Temporary Cement Hard, HYB). The temporary cement was not used for the control groups. After removing the temporary cement with an excavator, dentin specimens were divided into five groups; 1) no subsequent treatment, 2) cleaning with a rotational brush (RTB), 3) cleaning with a rotational brush and non-fluoridated flour of pumice, 4) sweeping with an air scaler, and 5) treated with a sonic toothbrush. A silane-treated ceramic disk (IPS Empress) was bonded to each dentin specimen with a composite luting system (Panavia F). Shear testing results showed that the RTB groups exhibited the highest bond strength regardless of the use of temporary cement (P < 0.05). The use of a rotational brush with water coolant is recommended to achieve ideal bond strength between the Panavia F luting system and dentin to which HYB temporary cement was primarily applied. PMID:15881223

  18. Effect of dimension of luting space and luting composite on marginal adaptation of a class II ceramic inlay.

    PubMed

    Schmalz, G; Federlin, M; Reich, E

    1995-04-01

    This study evaluated the in vitro marginal quality at the interproximal cervical margin of class II Cerec restorations. Marginal quality was evaluated separately by (1) SEM analysis before and after simultaneous thermocycling and mechanical loading for the integrity of the restoration surface and (2) dye penetration after thermocycling and mechanical loading to evaluate the strength of the bond within the depth of the cavity. The results reveal that marginal integrity is influenced by the width of the luting space and the luting composite. With a luting space of 100 microns, marginal quality with as little as 3% to 14% loss of adhesion can be obtained. Luting spaces greater than 100 microns can partially be compensated by the luting composite. For Cerec inlays, highly filled luting composites with a high viscosity are recommended. PMID:7783020

  19. Evaluation of the bond strength between aged composite cores and luting agent

    PubMed Central

    2015-01-01

    PURPOSE The aim of this study was to evaluate effect of different surface treatment methods on the bond strength between aged composite-resin core and luting agent. MATERIALS AND METHODS Seventy-five resin composites and also seventy-five zirconia ceramic discs were prepared. 60 composite samples were exposed to thermal aging (10,000 cycles, 5 to 55℃) and different surface treatment. All specimens were separated into 5 groups (n=15): 1) Intact specimens 2) Thermal aging-air polishing 3) Thermal aging- Er:YAG laser irradiation 4) Thermal aging- acid etching 5) Thermal-aging. All specimens were bonded to the zirconia discs with resin cement and fixed to universal testing machine and bond strength testing loaded to failure with a crosshead speed of 0.5 mm/min. The fractured surface was classified as adhesive failure, cohesive failure and adhesive-cohesive failure. The bond strength data was statistically compared by the Kruskal-Wallis method complemented by the Bonferroni correction Mann-Whitney U test. The probability level for statistical significance was set at α=.05. RESULTS Thermal aging and different surface treatment methods have significant effect on the bond strength between composite-resin cores and luting-agent (P<.05). The mean baseline bond strength values ranged between 7.07 ± 2.11 and 26.05 ± 6.53 N. The highest bond strength of 26.05 ± 6.53 N was obtained with Group 3. Group 5 showed the lowest value of bond strength. CONCLUSION Appropriate surface treatment method should be applied to aged composite resin cores or aged-composites restorations should be replaced for the optimal bond strength and the clinical success. PMID:25932308

  20. Bond strength and stability of 3 luting systems on a zirconia-dentin complex.

    PubMed

    Turker, Sebnem Begum; Ozcan, Mutlu; Mandali, Gamze; Damla, Isil; Bugurman, Burcu; Valandro, Luiz Felipe

    2013-01-01

    This study compared the bond strength and stability of 3 different luting systems to a zirconia ceramic crown. Sixty cylinders of zirconia ceramic were cemented to flat dentin surfaces of extracted human teeth, using 3 different luting agents (n = 20): a glass ionomer (GI) cement, a resin-modified glass-ionomer (RMGI) cement, and a resin cement containing 10-methacryloyloxydecyl dihydrogen phosphate (MDP). The specimens from each cement group were then divided into 2 subgroups (n = 10). Three subgroups (1 from each cement) were selected to test shear bond strength (SBS) immediately before an aging process of thermocycling and water storage, the remaining 3 subgroups were tested for SBS after the aging process. The aging process affected the bond strength of the MDP and RMGI cements. The MDP cement demonstrated superior bond strength compared to the GI and RMGI cements; the GI cement consistently had the lowest bond strength. The RMGI cement had higher cohesive failures at cement (70%), while the GI and the MDP cements had higher percentages of adhesive failure at the ceramic-cement interface (70% and 100%, respectively). The MDP cement promoted better adhesion between dentin and the zirconia ceramic. PMID:24192740

  1. The effect of amine-free initiator system and the polymerization type on color stability of resin cements.

    PubMed

    Ural, Çağrı; Duran, İbrahim; Tatar, Numan; Öztürk, Özgür; Kaya, İsmail; Kavut, İdris

    2016-01-01

    We investigated the short-term (4 weeks) color stability of light-cure and dual-cure resin cements. Sixty disk-shaped test specimens of adhesive resin cement (10 × 1 mm) were prepared. One feldspathic porcelain test specimen (12 × 14 × 0.8 mm) was prepared from a prefabricated ceramic block. The feldspathic sample was placed on the resin cement disk and all the measurements were performed without cementation. Specific color coordinate differences (ΔL, Δa, and Δb), and the total color differences (ΔE) were calculated after immersion in distilled water for different periods. Data were compared using one-way analysis of variance (ANOVA) (α = 0.05). The test results revealed that different chemical structures and curing modes affected the ΔE values (P < 0.05). The highest ΔE values were obtained for RelyX Unicem dual-cure cement (2.14 ± 0.40), and the lowest for NX3 light-cure cement (0.78 ± 0.34). Third generation adhesive resin cement free of tertiary amines and benzoyl peroxide showed relatively slight color change in both test groups (light-cure and dual-cure resin cement). (J Oral Sci 58, 157-161, 2016). PMID:27349535

  2. Evaluation of TEGDMA leaching from four resin cements by HPLC

    PubMed Central

    Altintas, Subutay Han; Usumez, Aslihan

    2012-01-01

    Objective The aim of this study was to evaluate the elution of TEGDMA from dual cured resin cements, used for bonding of ceramic restoration by high performance liquid chromatography (HPLC). Methods: Forty freshly extracted caries and restoration free molar teeth used in this study. Standardized Class I preparations were prepared in all teeth. Ceramic inlays were cemented with one of the dual cured resin cements (Variolink II, Rely X ARC, Rely X Unicem and Resilute). After cementation, specimens were stored in 75% ethanol solution. HPLC was used to analyze the amounts of TEGDMA in different time intervals. Two-way ANOVA and Tukey HSD tests were used to evaluate the results (P<.05). Results: The amount of TEGDMA eluted from Resilute was the highest and the amount of TEG-DMA eluted from Rely X Unicem was the lowest (P<.05). The total amount of monomers was the highest after 21 days (P<.05). Conclusion: In the case of resin cements, elution of TEGDMA was the highest in Resilute and lowest in Rely X Unicem. The amount of TEGDMA eluted from resin cements was influenced by the time. PMID:22904653

  3. Effects of different luting cements and light curing units on the sealing ability and bond strength of fiber posts.

    PubMed

    Beriat, Nilüfer Celebi; Ertan, Ahmet Atila; Yilmaz, Zeliha; Gulay, Gülsah; Sahin, Cem

    2012-01-01

    This study evaluated the sealing ability and push-out bond strength of two luting cements cured with two different types of light curing units (LCU): light-emitting diode (LED) versus quartz tungsten halogen (QTH). Forty teeth were divided into four groups(n=10/group). Quartz fiber posts (D. T. Light-Post) were luted to coronal or apical section of root canals using two types of resin cements (Panavia F or RelyX) cured with either LED LCU (Elipar FreeLight II) or QTH LCU (Optilux 501). Highest push-out bond strength was exhibited by QTH-cured RelyX, which was not significantly different from LED-cured RelyX but was higher than QTH-cured Panavia F. The push-out bond strength of Panavia F did not differ with LCU type (p>0.05), but exhibited lower values than both QTH- and LED-cured RelyX. Fluid filtration test revealed that sealing ability was not influenced by luting cement type, but was significantly influenced by LCU type in favor of QTH light source: QTH-cured specimens displayed better seal than LED-cured ones (p<0.05). PMID:22864210

  4. LUTE primary mirror materials and design study report

    NASA Technical Reports Server (NTRS)

    Ruthven, Greg

    1993-01-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  5. Qualitative evaluation of the adesive interface between lithium disilicate, luting composite and natural tooth.

    PubMed

    Mobilio, Nicola; Fasiol, Alberto; Catapano, Santo

    2016-01-01

    Aim of this work was to qualitatively evaluate the interface between tooth, luting composite and lithium disilicate surface using a scanning electron microscope (SEM). An extracted restoration-free human molar was stored in physiological solution until it was embedded in an autopolimerysing acrylic resin. A standard preparation for overlay was completed and after preparation an anatomic overlay was waxed on the tooth and then hot pressed using lithium disilicate ceramic. After cementation the sample was dissected and the section was analysed using an Automatic Micromet (Remet s.a.s) and the section was analyzed using a scanning electron microscope (SEM). SEM evaluation of the tooth showed the three layers seamlessly; by increasing the enlargement the interface did not change. PMID:27486504

  6. Qualitative evaluation of the adesive interface between lithium disilicate, luting composite and natural tooth

    PubMed Central

    Mobilio, Nicola; Fasiol, Alberto; Catapano, Santo

    2016-01-01

    Summary Aim of this work was to qualitatively evaluate the interface between tooth, luting composite and lithium disilicate surface using a scanning electron microscope (SEM). An extracted restoration-free human molar was stored in physiological solution until it was embedded in an autopolimerysing acrylic resin. A standard preparation for overlay was completed and after preparation an anatomic overlay was waxed on the tooth and then hot pressed using lithium disilicate ceramic. After cementation the sample was dissected and the section was analysed using an Automatic Micromet (Remet s.a.s) and the section was analyzed using a scanning electron microscope (SEM). SEM evaluation of the tooth showed the three layers seamlessly; by increasing the enlargement the interface did not change. PMID:27486504

  7. Bond strength of three luting agents to zirconia ceramic - Influence of surface treatment and thermocycling

    PubMed Central

    ATTIA, Ahmed

    2011-01-01

    Objective This in vitro study aimed to evaluate the influence of different surface treatments, 3 luting agents and thermocycling on microtensile bond strength (µTBS) to zirconia ceramic. Material and Methods A total of 18 blocks (5x5x4 mm) were fabricated from zirconia ceramic (ICE Zirkonia) and duplicated into composite blocks (Alphadent). Ceramic blocks were divided into 3 groups (n=6) according to the following surface treatments: airborne-particle abrasion (AA), silica-coating, (SC) (CoJet) and silica coating followed by silane application (SCSI) (ESPE Sil). Each group was divided into 3 subgroups (n=2) according to the 3 luting agents used. Resin-modified glass-ionomer cement (RMGIC, Ketac Cem Plus), self-adhesive resin cement (UN, RelyX Unicem) and adhesive resin cement (ML, MultiLink Automix) were used for bonding composite and zirconia blocks. Each bonding assembly was cut into microbars (10 mm long and 1±0.1 mm2). Seven specimens of each subgroup were stored in water bath at 37ºC for 1 week. The o ther 7 specimens were stored in water bath at 37ºC for 30 days then thermocycled (TC) for 7,500 cycles. µTBS values were recorded for each specimen using a universal testing machine. Statistical analyses were performed using a 3-way ANOVA model followed by serial 1-way ANOVAs. Comparison of means was performed with Tukey's HSD test at (α=0.05). Results µTBS ranged from 16.8 to 31.8 MPa after 1 week and from 7.3 to 16.4 MPa after 30 days of storage in water and thermocycling. Artificial aging significantly decreased µTBS (p<0.05). Considering surface treatment, SCSI significantly increased µTBS (p<0.05) compared to SC and AA. Resin cements (UN and ML) demonstrated significantly higher µTBS (p<0.05) compared to RMGIC cement. Conclusions Silica coating followed by silane application together with adhesive resin cements significantly increased µTBS, while thermocycling significantly decreased µTBS. PMID:21710091

  8. INFLUENCE OF LUTING AGENTS ON TIME REQUIRED FOR CAST POST REMOVAL BY ULTRASOUND: AN IN VITRO STUDY

    PubMed Central

    Soares, Janir Alves; Brito, Manoel; Fonseca, Dimitri Ribas; Melo, Anielo Faleiro; Santos, Suelleng Maria Cunha; Sotomayor, Nadia Del Carmen Soto; Braga, Neilor Mateus Antunes; Silva, André Luis Faria e

    2009-01-01

    Objective: This in vitro study evaluated the influence of luting agents on ultrasonic vibration time for intraradicular cast post removal. Material and Methods: After endodontic treatment, 30 roots of extracted human canines were embedded in resin cylinders. The post-holes were prepared at 10 mm depth and their impressions were taken using autopolymerizing acrylic resin. After casting procedures using a nickel-chromium alloy, the posts were randomly distributed into 3 groups (n=10) according to the luting material: G1- zinc phosphate (SS White) (control group), G2 - glass ionomer cement (Vidrion C; SS White), and G3- resin cement (C&B; Bisco). In G3, the adhesive procedure was performed before post cementation. After 24 h, the cement line was removed at the post/tooth interface using a fine diamond bur, and the ST-09 tip of an Enac ultrasound unit was applied at maximum power on all surfaces surrounding the posts. The application time was recorded with a chronometer until the post was completely dislodged and data were analyzed by ANOVA and Tukey's test (p<0.05). Results: The roots were removed from the acrylic resin and inspected to detect cracks and/or fractures. The means for G1, G2, and G3 were 168.5, 59.5, and 285 s, respectively, with statistically significant differences among them. Two G3 posts resisted removal, one of which developed a vertical fracture line. Conclusions: Therefore, the cement type had a direct influence on the time required for ultrasonic post removal. Compared to the zinc phosphate and glass ionomer cements, the resin cement required a longer ultrasonic vibration time. PMID:19466241

  9. Influence of the interposition of ceramic spacers on the degree of conversion and the hardness of resin cements.

    PubMed

    Calgaro, Patricia Angélica Milani; Furuse, Adilson Yoshio; Correr, Gisele Maria; Ornaghi, Bárbara Pick; Gonzaga, Carla Castiglia

    2013-01-01

    This study evaluated: I) the effect of photo-activation through ceramics on the degree of conversion (DC) and on the Knoop hardness (KHN) of light- and dual-cured resin cements; and II) two different protocols for obtaining the spectra of uncured materials, to determine the DC of a dual-cured resin cement. Thin films of cements were photo-activated through ceramics [feldspathic porcelain (FP); lithium disilicate glass-ceramics of low translucency (e.max-LT), medium opacity (e.max-MO) and high translucency (e.max-HT); glass-infiltrated alumina composite (IC) and polycrystalline zirconia (ZR)] with thicknesses of 1.5 and 2.0 mm. DC was analyzed by Fourier transform infrared (FTIR) spectroscopy. Two protocols were used to obtain the spectra of the uncured materials: I) base and catalyst pastes were mixed, and II) thin films of base and catalyst pastes were obtained separately, and an average was obtained. KHN assessment was performed with cylindrical specimens. The results were analyzed by ANOVA and Tukey's test (α= 0.05). The light-cured cement showed higher DC (61.9%) than the dual-cured cement (55.7%). The DC varied as follows: FP (65.4%), e.max-HT (65.1%), e.max-LT (61.8%), e.max-MO (60.9%), ZR (54.8%), and IC (44.9%). The light-cured cement showed lower KHN (22.0) than the dual-cured (25.6) cement. The cements cured under 1.5 mm spacers showed higher KHN (26.2) than when polymerized under 2.0 mm ceramics (21.3). Regarding the two protocols, there were significant differences only in three groups. Thus, both methods can be considered appropriate. The physical and mechanical properties of resin cements may be affected by the thickness and microstructure of the ceramic material interposed during photo-activation. PMID:24036978

  10. Light transmittance of zirconia as a function of thickness and microhardness of resin cements under different thicknesses of zirconia

    PubMed Central

    Egilmez, Ferhan; Ergun, Gulfem; Kaya, Bekir M.

    2013-01-01

    Objective: The objective of this study was to compare microhardness of resin cements under different thicknesses of zirconia and the light transmittance of zirconia as a function of thickness. Study design: A total of 126 disc-shaped specimens (2 mm in height and 5 mm in diameter) were prepared from dual-cured resin cements (RelyX Unicem, Panavia F and Clearfil SA cement). Photoactivation was performed by using quartz tungsten halogen and light emitting diode light curing units under different thicknesses of zirconia. Then the specimens (n=7/per group) were stored in dry conditions in total dark at 37°C for 24 h. The Vicker’s hardness test was performed on the resin cement layer with a microhardness tester. Statistical significance was determined using multifactorial analysis of variance (ANOVA) (alpha=.05). Light transmittance of different thicknesses of zirconia (0.3, 0.5 and 0.8 mm) was measured using a hand-held radiometer (Demetron, Kerr). Data were analyzed using one-way ANOVA test (alpha=.05). Results: ANOVA revealed that resin cement and light curing unit had significant effects on microhardness (p < 0.001). Additionally, greater zirconia thickness resulted in lower transmittance. There was no correlation between the amount of light transmitted and microhardness of dual-cured resin cements (r = 0.073, p = 0.295). Conclusion: Although different zirconia thicknesses might result in insufficient light transmission, dual-cured resin cements under zirconia restorations could have adequate microhardness. Key words:Zirconia, microhardness, light transmittance, resin cement. PMID:23385497

  11. Evaluation of removal forces of implant-supported zirconia copings depending on abutment geometry, luting agent and cleaning method during re-cementation

    PubMed Central

    Rödiger, Matthias; Rinke, Sven; Ehret-Kleinau, Fenja; Pohlmeyer, Franziska; Lange, Katharina; Bürgers, Ralf

    2014-01-01

    PURPOSE To evaluate the effects of different abutment geometries in combination with varying luting agents and the effectiveness of different cleaning methods (prior to re-cementation) regarding the retentiveness of zirconia copings on implants. MATERIALS AND METHODS Implants were embedded in resin blocks. Three groups of titanium abutments (pre-fabricated, height: 7.5 mm, taper: 5.7°; customized-long, height: 6.79 mm, taper: 4.8°; customized-short, height: 4.31 mm, taper: 4.8°) were used for luting of CAD/CAM-fabricated zirconia copings with a semi-permanent (Telio CS) and a provisional cement (TempBond NE). Retention forces were evaluated using a universal testing machine. Furthermore, the influence of cleaning methods (manually, manually in combination with ultrasonic bath or sandblasting) prior to re-cementation with a provisional cement (TempBond NE) was investigated with the pre-fabricated titanium abutments (height: 7.5 mm, taper: 5.7°) and SEM-analysis of inner surfaces of the copings was performed. Significant differences were determined via two-way ANOVA. RESULTS Significant interactions between abutment geometry and luting agent were observed. TempBond NE showed the highest level of retentiveness on customized-long abutments, but was negatively affected by other abutment geometries. In contrast, luting with Telio CS demonstrated consistent results irrespective of the varying abutment geometries. Manual cleaning in combination with an ultrasonic bath was the only cleaning method tested prior to re-cementation that revealed retentiveness levels not inferior to primary cementation. CONCLUSION No superiority for one of the two cements could be demonstrated because their influences on retentive strength are also depending on abutment geometry. Only manual cleaning in combination with an ultrasonic bath offers retentiveness levels after re-cementation comparable to those of primary luting. PMID:25006388

  12. Film Thickness and Flow Properties of Resin-Based Cements at Different Temperatures

    PubMed Central

    Bagheri, R

    2013-01-01

    Statement of Problem: For a luting agent to allow complete seating of prosthetic restorations, it must obtain an appropriate flow rate maintaining a minimum film thickness. The performance of recently introduced luting agents in this regard has not been evaluated. Purpose: To measure and compare the film thickness and flow properties of seven resin-containing luting cements at different temperatures (37°C, 25°C and10°C). Material and Methods: Specimens were prepared from five resin luting cements; seT (SDI), Panavia F (Kuraray), Varioloink II (Ivoclar), Maxcem (Kerr), Nexus2 (Kerr) and two resin-modified glass-ionomer luting cements (RM-GICs); GC Fuji Plus (GC Corporation), and RelyX Luting 2 (3 M/ESPE). The film thickness and flow rate of each cement (n=15) was determined using the test described in ISO at three different temperatures. Results: There was a linear correlation between film thickness and flow rate for most of the materials. Cooling increased fluidity of almost all materials while the effect of temperature on film thickness was material dependent. At 37°C, all products revealed a film thickness of less than 25µm except for GC Fuji Plus. At 25°C, all cements produced a film thickness of less than 27 µm except for seT. At 10°C, apart from seT and Rely X Luting 2, the remaining cements showed a film thickness smaller than 20 µm. Conclusion: Cooling increased fluidity of almost all materials, however. the film thickness did not exceed 35 µm in either condition, in spite of the lowest film thickness being demonstrated at the lowest temperature. PMID:24724120

  13. Color stability of composite resin cements.

    PubMed

    Smith, Darrell S; Vandewalle, Kraig S; Whisler, Gerry

    2011-01-01

    This study sought to determine the difference in color stability of resin cements after one year of storage in water. Three commercial resin cements (Nexus 3, Calibra, Variolink 2) were evaluated under three different curing conditions (photo-, dual-, and self-cure) over three storage time periods (3, 6, and 12 months). A plastic mold was used to prepare cylindrical specimens of each of the three resin cements. For the phototcured specimens, only the base component of the resin cement was cured. For the dual- and self-cure specimens, the base and catalyst of the cements were mixed according to the manufacturer's instructions, syringed into the mold, and either photocured as before (dual-cure) or allowed to chemically set (self-cure). The total amount of color change (delta E) was calculated using a spectrophotometer after 24 hours (baseline) and after 3, 6, and 12 months of storage in distilled water. Data were analyzed using a repeated measures ANOVA and a Tukey test. After one year of storage, Nexus 3 demonstated the lowest color change values (delta E) under all curing conditions, although it was not significantly different from Variolink 2 when photocured or Calibra when self-cured. New resin cements without a traditional benzoyl peroxide/amine redox initiator system, such as Nexus 3, could be more color-stable over time. PMID:22313825

  14. Lunar-Ultraviolet Telescope Experiment (LUTE) integrated program plan

    NASA Technical Reports Server (NTRS)

    Smith, Janice F. (Compiler); Forrest, Larry

    1993-01-01

    A detailed Lunar Ultraviolet Telescope Experiment (LUTE) program plan representing major decisions and tasks leading to those decisions for program execution are presented. The purpose of this task was to develop an integrated plan of project activities for the LUTE project, and to display the plan as an integrated network that shows the project activities, all critical interfaces, and schedules. The integrated network will provide the project manager with a frame work for strategic planning and risk management throughout the life of the project.

  15. Analytical method to estimate resin cement diffusion into dentin

    NASA Astrophysics Data System (ADS)

    de Oliveira Ferraz, Larissa Cristina; Ubaldini, Adriana Lemos Mori; de Oliveira, Bruna Medeiros Bertol; Neto, Antonio Medina; Sato, Fracielle; Baesso, Mauro Luciano; Pascotto, Renata Corrêa

    2016-05-01

    This study analyzed the diffusion of two resin luting agents (resin cements) into dentin, with the aim of presenting an analytical method for estimating the thickness of the diffusion zone. Class V cavities were prepared in the buccal and lingual surfaces of molars (n=9). Indirect composite inlays were luted into the cavities with either a self-adhesive or a self-etch resin cement. The teeth were sectioned bucco-lingually and the cement-dentin interface was analyzed by using micro-Raman spectroscopy (MRS) and scanning electron microscopy. Evolution of peak intensities of the Raman bands, collected from the functional groups corresponding to the resin monomer (C–O–C, 1113 cm-1) present in the cements, and the mineral content (P–O, 961 cm-1) in dentin were sigmoid shaped functions. A Boltzmann function (BF) was then fitted to the peaks encountered at 1113 cm-1 to estimate the resin cement diffusion into dentin. The BF identified a resin cement-dentin diffusion zone of 1.8±0.4 μm for the self-adhesive cement and 2.5±0.3 μm for the self-etch cement. This analysis allowed the authors to estimate the diffusion of the resin cements into the dentin. Fitting the MRS data to the BF contributed to and is relevant for future studies of the adhesive interface.

  16. Effect of etch-and-rinse and self-etching adhesive systems on hardness uniformity of resin cements after glass fiber post cementation

    PubMed Central

    Grande da Cruz, Fernanda Zander; Grande, Christiana Zander; Roderjan, Douglas Augusto; Galvão Arrais, César Augusto; Bührer Samra, Adriana Postiglione; Calixto, Abraham Lincoln

    2012-01-01

    Objective To evaluate the effects of etch-and-rinse and self-etching adhesive systems on Vickers hardness (VHN) uniformity of dual-cured resin cements after fiber post cementation. Methods: Fifty glass fiber posts were cemented into bovine roots using the following cementing systems: Prime&Bond 2.1 Dual Cure and Enforce with light-activation (PBDC-LCEN); Prime&Bond 2.1 and Enforce with light-activation (PB-CLEN); Prime&Bond 2.1 Dual Cure and Enforce without light exposure (PBDC-SCEN); ED Primer and Panavia 21 (ED-SCPN); and Clearfil SE Bond and Panavia 21 (CF-SCPN). The roots were stored in distilled water for 72 h and transversely sectioned into thirds (coronal, medium, and apical). The VHN values of the resin cement layers were measured close to the post and to the dentin wall on the transversely sectioned flat surfaces. The results were analyzed by three-way repeated measures analysis of variance (ANOVA) and Tukey’s post-hoc test (pre-set alpha of 5%). Results: Most resin cements presented higher VHN values near the post than near the dentin wall. The ED-SCPN group showed the highest VHN values regardless of the root third, while the self-cured group PBDC-SCEN exhibited the lowest values. The resin cements from the light-activated groups PBDC-LCEN and PB-LCEN showed lower VHN values at the apical third than at the coronal third. The VHN values were not influenced by the root third in self-cured groups PBDC-SCEN, ED-SCPN, and ED-SCPN. Conclusion: Depending on the product, bonding agents might promote changes in hardness uniformity of resin cements after post cementation. PMID:22904652

  17. Immediate and delayed photoactivation of self-adhesive resin cements and retention of glass-fiber posts.

    PubMed

    Faria-e-Silva, André Luis; Peixoto, Aline Carvalho; Borges, Marcela Gonçalves; Menezes, Murilo de Sousa; Moraes, Rafael Ratto de

    2014-01-01

    The aim of this study was to evaluate the effect of immediate and delayed photoactivation of self-adhesive resin cements (SARCs) on the retention of glass-fiber posts luted into root canals. Bovine incisors were endodontically treated, and post holes of 9 mm in depth were prepared. Fiber posts were luted using one of two SARCs, BisCem (Bisco Inc., Schaumburg, USA) or RelyX Unicem clicker (3M ESPE, Saint Paul, USA), or a regular (etch-and-rinse) resin cement (AllCem; FGM, Joinvile, Brazil). Photoactivation was performed immediately, or at 5 or 10 min after cementation. Root/post specimens were transversely sectioned 7 days after luting into 1-mm-thick slices, which were submitted to push-out testing in a mechanical testing machine. Bond strength data were analyzed by two-way ANOVA and Student-Newman-Keuls' method (α = 0.05). Immediate photoactivation resulted in the highest bond strength for Unicem. BisCem demonstrated higher bond strength values when photoactivated after a 10-min delay. Immediate photoactivation yielded the lowest bond strengths for AllCem, although no differences in bond strength were observed between photoactivation delayed by 5 and 10 min. In conclusion, the moment of resin cement photoactivation may affect the intraradicular retention of fiber posts, depending upon the resin cement used for luting. PMID:25006624

  18. Effect of modulated photo-activation on polymerization shrinkage behavior of dental restorative resin composites.

    PubMed

    Tauböck, Tobias T; Feilzer, Albert J; Buchalla, Wolfgang; Kleverlaan, Cornelis J; Krejci, Ivo; Attin, Thomas

    2014-08-01

    This study investigated the influence of modulated photo-activation on axial polymerization shrinkage, shrinkage force, and hardening of light- and dual-curing resin-based composites. Three light-curing resin composites (SDR bulk-fill, Esthet X flow, and Esthet X HD) and one dual-curing material (Rebilda DC) were subjected to different irradiation protocols with identical energy density (27 J cm(-2) ): high-intensity continuous light (HIC), low-intensity continuous light (LIC), soft-start (SS), and pulse-delay curing (PD). Axial shrinkage and shrinkage force of 1.5-mm-thick specimens were recorded in real time for 15 min using custom-made devices. Knoop hardness was determined at the end of the observation period. Statistical analysis revealed no significant differences among the curing protocols for both Knoop hardness and axial shrinkage, irrespective of the composite material. Pulse-delay curing generated the significantly lowest shrinkage forces within the three light-curing materials SDR bulk-fill, Esthet X flow, and Esthet X HD. High-intensity continuous light created the significantly highest shrinkage forces within Esthet X HD and Rebilda DC, and caused significantly higher forces than LIC within Esthet X flow. In conclusion, both the composite material and the applied curing protocol control shrinkage force formation. Pulse-delay curing decreases shrinkage forces compared with high-intensity continuous irradiation without affecting hardening and axial polymerization shrinkage. PMID:25039287

  19. Dual and self-curing potential of self-adhesive resin cements as thin films.

    PubMed

    Moraes, R R; Boscato, N; Jardim, P S; Schneider, L F J

    2011-01-01

    In this study, the dual- and self-curing potential of self-adhesive resin cements (SARCs) as thin, clinically-relevant cement films was investigated. The SARCs tested were: BisCem (BSC; Bisco), Maxcem Elite (MXE; Kerr), RelyX Unicem clicker (UNI; 3M ESPE), seT capsule (SET; SDI), and SmartCem 2 (SC2; Dentsply Caulk). The conventional cement RelyX ARC (3M ESPE) was tested as a reference. The degree of conversion (DC) as a function of time was evaluated by real-time Fourier transform infrared spectroscopy with an attenuated total reflectance (ATR) device. The cements were either photoactivated for 40 seconds (dual-cure mode) or not photoactivated (self-cure mode). The cement film thickness was 50 ± 10 μm. The DC (%) was evaluated 1, 5, 10, 15, 20, 25, and 30 minutes after placing the cement on the ATR cell. Data for DC as a function of time were analyzed by two-way repeated measures analysis of variance (ANOVA). DC values at 30 minutes for the self- and dual-cure modes were submitted to one-way ANOVA. Post hoc comparisons were performed using the Student-Newman-Keuls test (p<0.05). The rate and the extent of conversion were lower for the SARCs compared with the conventional cement. Means ± standard deviations (SD) for the dual-cure mode at 30 minutes were: 75 ± 5 (ARC)a, 73 ± 8 (SET)a, 61 ± 4 (MXE)b, 51 ± 9 (BSC)c, 51 ± 4 (UNI)c, and 48 ± 3 (SC2)c, while in the self-cure mode means and SD were 62 ± 6 (ARC)a, 54 ± 3 (MXE)b, 40 ± 6 (SC2)c, 35 ± 2 (UNI)c, 35 ± 3 (SET)c, and 11 ± 3 (BSC)d. The DC for the dual-cure mode was generally higher than the self-cure, irrespective of the time. Discrepancies in DC between the dual- and self-cure modes from 11% to 79% were observed. In conclusion, SARCs may present slower rate of polymerization and lower final DC than conventional resin cements, in either the dual- or self-cure mode. PMID:21864125

  20. Does inhibition of proteolytic activity improve adhesive luting?

    PubMed

    Lührs, Anne-Katrin; De Munck, Jan; Geurtsen, Werner; Van Meerbeek, Bart

    2013-04-01

    Endogenous enzymes may be involved in the biodegradation of adhesive restoration-tooth interfaces. Inhibitors of matrix metalloproteinases (MMPs) have been suggested to retard the bond-degradation process. Limited data are available on whether composite cements may also benefit from MMP inhibitors. Therefore, the aim of this study was to determine the effect of two MMP inhibitors--chlorhexidine digluconate (CHX) and galardin--on the microtensile bond strength (μTBS) of two self-adhesive composite cements to dentin. Ceramic specimens were cemented to bur-cut dentin surfaces using the self-adhesive composite cements RelyX Unicem 2 (3M ESPE) or Clearfil SA (Kuraray), or the etch-and-rinse composite cement Nexus 3 (Kerr) that served as the control. The surfaces were left untreated or were pretreated with MMP inhibitors (2% CHX or 0.2 mM galardin). The μTBS was determined 'immediately' and upon ageing (water storage for 6 months). Statistical analysis revealed a significant effect of the factors 'composite cement' and 'storage', as well as all interactions, but no effect of the MMP inhibitors. After 6 months of ageing, the μTBS decreased for all cements, except for the multistep etch-and-rinse luting composite when it was applied without MMP inhibitors. The MMP inhibitors could not prevent the decrease in μTBS upon ageing and therefore do not improve the luting durability of the composite cements tested. PMID:23489902

  1. In vitro evaluation of the bonding durability of self-adhesive resin cement to titanium using highly accelerated life test.

    PubMed

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Matinlinna, Jukka Pekka; Shinya, Akiyoshi

    2011-01-01

    The purpose of this in vitro study was to evaluate the bonding durability of three self-adhesive resin cements to titanium using the Highly Accelerated Life Test (HALT). The following self-adhesive resin cements were used to bond pairs of titanium blocks together according to manufacturers' instructions: RelyX Unicem, Breeze, and Clearfil SA Luting. After storage in water at 37°C for 24 h, bonded specimens (n=15) immersed in 37°C water were subjected to cyclic shear load testing regimes of 20, 30, or 40 kg using a fatigue testing machine. Cyclic loading continued until failure occurred, and the number of cycles taken to reach failure was recorded. The bonding durability of a self-adhesive resin cement to titanium was largely influenced by the weight of impact load. HALT showed that Clearfil SA Luting, which contained MDP monomer, yielded the highest median bonding lifetime to titanium. PMID:22123007

  2. Galileo's Lute and the Law of Falling Bodies

    NASA Astrophysics Data System (ADS)

    Thompson, Mark

    2008-05-01

    Galileo's Lute and the Law of Falling Bodies is an excerpt from Galileo 1610. Galileo 1610 is a dramatic, musical and intellectual odyssey back to the life and times of Galileo Galilei, the famous 17th century Italian scientist and philosopher. It commemorates the 400th anniversary of Galileo's discoveries with his telescope in 1610. Dressed in authentic Renaissance attire as Galileo, the author-- a cantorial soloist and amateur astronomer-- tells the fascinating story of "The Father of Modern Science,” drawing from the actual correspondence and writings of Galileo, as well as those of his many biographers. Through his dialogue with the audience on a wide range of discoveries and opinions, "Galileo” shares his wisdom and his life experiences with pathos, wit and humor, lacing his narration with entertaining lute songs from the late Renaissance period, some of which were actually composed by Galileo's father, Vincenzo. Bridging the past to the present, the author breathes life into "Galileo” as he once again frolics and struggles among us. In bringing forth some of life's great issues, we learn something about our own inquisitive nature, as well as that of science and music. The author has appeared as Galileo for over a decade on radio, at community theatres and libraries, public schools, colleges and universities throughout the country. He has performed for civic organizations, astronomy association conventions, marketing and outreach programs as well as private events and parties. Galileo 1610 is suitable for a variety of educational and entertainment programs, for both children and adults. All presentations are tailored to fit the interest, experience and size of the audience.

  3. Effect of glycine pretreatment on the shear bond strength of a CAD/CAM resin nano ceramic material to dentin

    PubMed Central

    Ceci, Matteo; Pigozzo, Marco; Scribante, Andrea; Beltrami, Riccardo; Colombo, Marco; Chiesa, Marco

    2016-01-01

    Background The purpose of this study was to evaluate the effect of glycine pretreatment on the shear bond strength between dentin and a CAD/CAM resin nano ceramic material (LavaTM Ultimate Restorative), bonded together with adhesive cements using three different luting protocols (total-etch; self-etch; self-adhesive). Material and Methods Thirty cylinders were milled from resin nano ceramic blocks with CAD/CAM technology. The cylinders were subsequently cemented to the exposed dentin of 30 bovine permanent mandibular incisors. The specimens were assigned into six groups of five teeth each according to luting procedure and dentin pretreatment. In the first two groups (A1, A2) 10 cylinders were cemented using a total-etch protocol; in groups B1 and B2, 10 cylinders were cemented using a self-etch protocol; in groups C1 and C2, 10 cylinders were cemented using a self-adhesive protocol; in groups A1, B1 and C1 the dentinal surface was also treated with glycine powder. All cemented specimens were submitted to a shear bond strength test. Statistical analysis was performed with Stata 9.0 software. Results ANOVA showed the presence of significant differences among the various groups (P <0.0001). Conclusions Glycine did not change the different bond strength demonstrated by the various luting protocols tested. Conventional resin composite cements used together with a self-etch adhesive reported the highest values. However the use of glycine seems to increase the bond strength of self-adhesive resin cements. Key words:Adhesive cements, CAD/CAM, glycine, luting system, resin nano ceramic, shear bond strength. PMID:27034754

  4. Colour matching of composite resin cements with their corresponding try-in pastes.

    PubMed

    Kampouropoulos, D; Gaintantzopoulou, M; Papazoglou, E; Kakaboura, A

    2014-06-01

    Two shades of four resin cements (Calibra, Clearfil Esthetic, Insure, Variolink II), in light- and dual-curing modes, were tested for colour matching with their corresponding try-in pastes, immediately after photopolymerization and after 24-hour dry and dark storage. Colour measurements were performed for 0.8 mm-thick specimens through a 0.8mm-thick ceramic plate. For each resin cement, colour differences (deltaE) were calculated between the two curing modes, and between the corresponding try-in paste, at baseline and after 24h. deltaE>0 values were detected between all resin cements and their try-in pastes, which were brand/shade/curing mode depended. The try-in pastes of the Variolink II system demonstrated the best colour matching (deltaE<2). Try-in pastes of Calibra and Insure, at both curing modes, did not match at an acceptable value, the shade of their corresponding resin cements (deltaE>3.3). Calibra presented the highest colour differences. deltaE values of the Clearfil Esthetic system immediately after photo-activation ranged between 2 and 3 units. A ceramic restoration may fail aesthetically as a result of not acceptable colour match (deltaE>3.3) between the shade of certain resin cements and their relevant try-in pastes. PMID:25134367

  5. Contact area and static pressure profile at the plate-bone interface in the nonluted and luted bone plate.

    PubMed

    Staller, G S; Richardson, D W; Nunamaker, D M; Provost, M

    1995-01-01

    Contact area and pressure between 6-hole broad dynamic compression plates and 20 pairs of equine third metatarsal bones were measured using nonluted and luted plating techniques. Pressure-sensitive film (pressure ranges 10 to 50 MPa and 50 to 130 MPa) was used as the static pressure transducer. Nonluted and one of two luting techniques were tested on each pair of bones; each luting technique was tested on 20 bones. Quantitative determinations of contact area and pressure were made using computerized image processing techniques. Mean (+/- SD) total contact area for nonluted plates was 18.49% +/- 3.5% of the potential plate-bone contact area. Luting increased (P < .05) total contact area to 25.56% +/- 4.0% and 31.29% +/- 6.6% for the respective luting techniques. The effects of luting on contact area were dependent on the contact pressure. At contact pressure ranges 10 to 20 and 21 to 35 MPa, luting increased contact area. In contact pressure ranges 36 to 45 and 50 to 65 MPa, plate-bone contact was inherently greatest and plate luting had no significant effect on contact area. In contact pressure ranges 66 to 99 and 100 to 126 MPa, luting decreased contact area. Contact area was increased at lower contact pressures at the expense of higher pressure contact. Contact in the middle third of the plate was 20% to 40% of the contact at either end of the plate. Plate luting increased contact area best where plate-bone contour was most similar. PMID:7571381

  6. Influence of chlorhexidine on dentin adhesive interface micromorphology and nanoleakage expression of resin cements.

    PubMed

    Stape, Thiago Henrique Scarabello; Menezes, Murilo De Sousa; Barreto, Bruno De Castro Ferreira; Naves, Lucas Zago; Aguiar, Flávio Henrique Baggio; Quagliatto, Paulo Sérgio; Martins, Luís Roberto Marcondes

    2013-08-01

    This study focused on adhesive interface morphologic characterization and nanoleakage expression of resin cements bonded to human dentin pretreated with 1% chlorhexidine (CHX). Thirty-two non-carious human third molars were ground flat to expose superficial dentin. Resin composite blocks were luted to the exposed dentin using one conventional (RelyX ARC) and one self-adhesive resin cement (RelyX U100), with/without CHX pretreatment. Four groups (n = 8) were obtained: control groups (ARC and U100); experimental groups (ARC/CHX and U100/CHX) were pretreated with 1% CHX prior to the luting process. After storage in water for 24 h, the bonded teeth were sectioned into 0.9 × 0.9 mm(2) sticks producing a minimum of 12 sticks per tooth. Four sticks from each tooth were prepared for hybrid layer evaluation by scanning electron microscope analysis. The remaining sticks were immersed in silver nitrate for 24 h for either nanoleakage evaluation along the bonded interfaces or after rupture. Nanoleakage samples were carbon coated and examined using backscattered electron mode. Well-established hybrid layers were observed in the groups luted with RelyX ARC. Nanoleakage evaluation revealed increase nanoleakage in groups treated with CHX for both resin cements. Group U100/CHX exhibited the most pronouncing nanoleakage expression along with porous zones adjacent to the CHX pretreated dentin. The results suggest a possible incompatibility between CHX and RelyX U100 that raises the concern that the use of CHX with self-adhesive cements may adversely affect resin-dentin bond. PMID:23737406

  7. Intra-radicular dentin treatments and retention of fiber posts with self-adhesive resin cements.

    PubMed

    Faria-e-Silva, André Luis; Menezes, Murilo de Sousa; Silva, Fernanda Pereira; Reis, Giselle Rodrigues dos; Moraes, Rafael Ratto de

    2013-01-01

    The aim of this study was to evaluate the effect of treating intraradicular dentin with irrigating solutions on the retention of glass-fiber posts luted with self-adhesive resin cement. Bovine incisors were endodontically treated, and 9-mm-deep postholes were prepared. Before inserting the cement, the root canals were irrigated with various solutions: 11.5% polyacrylic acid for 30 s, 17% EDTA for 60 s, or 5% NaOCl for 60 s, respectively. Irrigation with distilled water was used in the control group. After all specimens had been rinsed with distilled water, the excess moisture was removed and the posts were luted using either BisCem (Bisco) or RelyX Unicem clicker (3M ESPE). Seven days after luting, the specimens were sectioned transversally into 1-mm-thick slices, which were submitted to push-out testing on a mechanical testing machine. Bond strength data (n = 6 per group) were analyzed by two-way ANOVA and Student-Newman-Keuls' test (α = 0.05). For Unicem, EDTA showed lower bond strength than the other solutions, which had similar results. For BisCem, EDTA showed higher bond strength than the other treatments, while application of NaOCl yielded higher bond strength than polyacrylic acid whereas the control group had intermediate results. In conclusion, irrigating root canals before insertion of self-adhesive resin cements, especially EDTA, might interfere with retention of the fiber posts. PMID:23306622

  8. Relined fiberglass post: an ex vivo study of the resin cement thickness and dentin-resin interface.

    PubMed

    Souza, Niélli Caetano de; Marcondes, Maurem Leitão; Breda, Ricardo Vaz; Weber, João Batista Blessmann; Mota, Eduardo Gonçalves; Spohr, Ana Maria

    2016-01-01

    The aim of this study was to evaluate the thickness of resin cements in the root thirds when using conventional fiberglass posts (CP) and relined fiberglass posts (RP) in weakened roots and to evaluate the morphological characteristics of the dentin-resin interface. Forty human maxillary anterior teeth had the crown sectioned below the cemento-enamel junction. The canals were endodontically treated and weakened with diamond burs. Teeth were divided into four groups (n = 10): Group 1 - CP + RelyX ARC; Group 2 - CP + RelyX U200; Group 3 - RP + RelyX ARC; and Group 4 - RP + RelyX U200. Prior to luting, 0.1% Fluorescein and 0.1% Rhodamine B dyes were added to an adhesive and resin cement, respectively. Slices were obtained from the apical, middle, and cervical thirds of the root. Confocal laser scanning microscopy images were recorded in four areas (buccal, lingual, mesial, distal) of each third. In each area, four equidistant measures of the resin cement were made and the mean value was calculated. The interface morphology was observed. The data were submitted to three-way ANOVA and Tukey's test (α = 0.05). The interaction between fiberglass posts, resin cement, and root thirds was significant (p < 0.0001). The resin cement thicknesses were significantly lower for RP in comparison with CP, except in the apical third. There was no significant difference between the resin cements for RP. There was formation of resin cement tags and adhesive tags along the root for RP. RP favored the formation of thin and uniform resin cement films and resin tags in weakened roots. PMID:27556553

  9. Effect of filler size on wear resistance of resin cement.

    PubMed

    Shinkai, K; Suzuki, S; Katoh, Y

    2001-11-01

    The purpose of this study was to evaluate the effect of filler size on the wear of resin cements. Materials tested included four experimental dual-cure resin cements (Kuraray) consisting of different-sized filler particles. A rectangular box cavity was prepared on the flattened occlusal surface of extracted human molars. Ceramic inlays for the cavities were fabricated using the Cerec 2 system. The Cerec inlays were cemented with the respective cements and adhesive systems according to the manufacturer's directions. The restored surface was finished by wet-grinding with an 800-grit silicon carbide paper. Six specimens were prepared for each resin cement. Half of the specimens were subjected to a three-body wear test for 200,000 cycles, and the others were subjected to a toothbrush abrasion test for 30,000 cycles. The worn surface of each restoration was scanned by a profilometer (Surfcom 475 A) at eight different points for each restoration. The wear value was determined by measuring the vertical gap depth on the profilometric tracings. The data were statistically analyzed by one-way analysis of variance (ANOVA) and Scheffe's test. The results showed that, with increase of filler size, the wear value decreased in the toothbrush test and increased in the three-body wear test. The cement with 0.04-microm filler exhibited the lowest wear value among the materials in the three-body wear test, and the same wear value as the cement with 0.97-microm filler in the toothbrush test. Based upon the results of this study, it is concluded that the wear of resin cements was affected by the filler size as well as the mode of wear test. PMID:14530920

  10. Antimicrobial Effects of Dental Luting Glass Ionomer Cements on Streptococcus mutans

    PubMed Central

    Altenburger, Markus; Spitzmüller, Bettina; Anderson, Annette; Hellwig, Elmar

    2014-01-01

    Objective. To reduce secondary caries, glass ionomer luting cements are often used for cementing of indirect restorations. This is because of their well-known antimicrobial potential through the release of fluoride ions. The aim of this in vitro study was to investigate the antimicrobial effect of five dental luting cements which were based on glass ionomer cement technology. Methods. Five different glass ionomer based luting cements were tested for their antimicrobial effects on Streptococcus mutans in two different experimental setups: (i) determination of colony-forming units (CFUs) in a plate-counting assay; (ii) live/dead staining (LDS) and fluorescence microscopy. All experiments were conducted with or without prior treatment of the materials using sterilized human saliva. Antimicrobial effects were evaluated for adherent and planktonic bacteria. Bovine enamel slabs (BES) were used as negative control. BES covered with 0.2% chlorhexidine (CHX) served as positive control. Results. Each of the tested materials significantly reduced the number of initially adhered CFUs; this reduction was even more pronounced after prior incubation in saliva. Antimicrobial effects on adherent bacteria were confirmed by live-dead staining. Conclusion. All five luting cements showed an antimicrobial potential which was increased by prior incubation with human saliva, suggesting an enhanced effect in vivo. PMID:24795539

  11. Do resin cements influence the cuspal deflection of teeth restored with composite resin inlays?

    PubMed

    da Rosa, Helen C V; Marcondes, Maurem L; de Souza, Niélli C; Weber, João B B; Spohr, Ana M

    2015-04-01

    The aim of this study was to evaluate the influence of different resin cements on the cuspal deflection of endodontically treated teeth restored with composite resin inlays. Sixty upper premolars were randomly divided into five groups (n=12): 1 - sound teeth; 2 - cavity; 3 - Rely X ARC; 4 - RelyX Unicem; 5 - SeT. The teeth from groups 2, 3, 4 and 5 received a MOD preparation and endodontic treatment. Impressions were made with vinyl polysiloxane and poured using type IV die stone in groups 3, 4 and 5. Inlays with composite resin were built over each cast and luted with the resin cements. A 200 N load was applied on the occlusal surface, and cuspal deflection was measured using a micrometer. After 24 h, cuspal deflection was measured again using a 300 N load. The Student t-test showed that there was no statistically significant difference between the 200 N and 300 N occlusal loads only for the sound teeth group (p = 0.389) and the RelyX ARC group (p = 0.188). ANOVA and Tukey'test showed that the sound teeth had the lowest mean cuspal deflection, differing statistically from the other groups (p<0.05). The highest cuspal deflections were obtained in the SeT group and the cavity group, with no statistical difference between them. Intermediate values were obtained in RelyX ARC group and RelyX Unicem group, which differed statistically. The self-adhesive resin cements RelyX Unicem and SeT showed less capacity to maintain the stiffness of the tooth/restoration complex than the conventional resin cement RelyX ARC. PMID:25950160

  12. Effect of light-curing units on push-out fiber post bond strength in root canal dentin

    NASA Astrophysics Data System (ADS)

    Calixto, L. R.; Bandéca, M. C.; Silva, F. B.; Rastelli, A. N. S.; Porto-Neto, S. T.; Andrade, M. F.

    2009-08-01

    The purpose of this study was to evaluate the effectiveness of different light-curing units on the bond strength (push-out) of glass fiber posts in the different thirds of the root (cervical, middle and apical) with different adhesive luting resin systems (dual-cure total-etch; dual-cured and self-etch bonding system; and dual-cure self-adhesive cements), Disks of the samples ( n = 144) were used, with approximately 1 mm of thickness of 48 bovine roots restored with glass fiber posts, that were luted with resin cements photo-activated by halogen LCU (QTH, Optilux 501) and blue LED (Ultraled), with power densities of 600 and 550 mW/cm2, respectively. A universal testing machine (MTS 810 Material Test System) was used with a 1 mm diameter steel rod at cross-head speed of 0.5 mm/min until post extrusion, with load cell of 50 kg, for evaluation of the push-out strength in the different thirds of each sample. The push-out strength values in kgf were converted to MPa and analyzed through Analysis of Variance and Tukey’s test, at significance level of 5%. The results showed that there were no statistical differences between the QTH and LED LCUs. The self-adhesive resin cement had lower values of retention. The total-etch and self-adhesive system resin cements seem to be a possible alternative for glass fiber posts cementation into the radicular canal and the LED LCU can be applied as an alternative to halogen light on photo-activation of dual-cured resin cements.

  13. Studies on MMA-TBB resin II. The effect of dual use of TBB and other initiators on polymerization of PMMA/MMA resin.

    PubMed

    Hirabayashi, Chiemi

    2003-03-01

    The effects of dual use of tributylborane (TBB) and benzoyl peroxide/ N,N-dimethyl-p-toluidine (BPO/DMPT) or camphorquinone/N,N-dimethyaminoethyl methacrylate (CQ/DMAEMA), as well as BPO/DMPT and CQ/DMAEMA for comparison purposes, on postpolymerization of PMMA/MMA resin were examined from the view point of long term changes of residual MMA and molecular weight. Each resin was polymerized and analyzed by high performance liquid chromatography and size exclusion chromatography. The effect of dual use of TBB and BPO/DMPT or CQ/DMAEMA on polymerization of PMMA/MMA resin was additive in nature and each initiator system worked rather independently without little interaction between the two. TBB was effective especially during the period of postpolymerization. On the other hand, BPO/DMPT used in combination with CQ/DMAEMA had a limited effect only during the initial period and little effect during postpolymerization. It was suggested that TBB was most suitable as a chemically accelerated initiator component for a dual cure system. PMID:12790296

  14. Effect of composite surface treatment and aging on the bond strength between a core build-up composite and a luting agent

    PubMed Central

    COTES, Caroline; CARDOSO, Mayra; de MELO, Renata Marques; VALANDRO, Luiz Felipe; BOTTINO, Marco Antonio

    2015-01-01

    Objective The purpose of this study was to assess the influence of conditioning methods and thermocycling on the bond strength between composite core and resin cement. Material and Methods Eighty blocks (8×8×4 mm) were prepared with core build-up composite. The cementation surface was roughened with 120-grit carbide paper and the blocks were thermocycled (5,000 cycles, between 5°C and 55°C, with a 30 s dwell time in each bath). A layer of temporary luting agent was applied. After 24 h, the layer was removed, and the blocks were divided into five groups, according to surface treatment: (NT) No treatment (control); (SP) Grinding with 120-grit carbide paper; (AC) Etching with 37% phosphoric acid; (SC) Sandblasting with 30 mm SiO2 particles, silane application; (AO) Sandblasting with 50 mm Al2O3 particles, silane application. Two composite blocks were cemented to each other (n=8) and sectioned into sticks. Half of the specimens from each block were immediately tested for microtensile bond strength (µTBS), while the other half was subjected to storage for 6 months, thermocycling (12,000 cycles, between 5°C and 55°C, with a dwell time of 30 s in each bath) and µTBS test in a mechanical testing machine. Bond strength data were analyzed by repeated measures two-way ANOVA and Tukey test (α=0.05). Results The µTBS was significantly affected by surface treatment (p=0.007) and thermocycling (p=0.000). Before aging, the SP group presented higher bond strength when compared to NT and AC groups, whereas all the other groups were statistically similar. After aging, all the groups were statistically similar. SP submitted to thermocycling showed lower bond strength than SP without thermocycling. Conclusion Core composites should be roughened with a diamond bur before the luting process. Thermocycling tends to reduce the bond strength between composite and resin cement. PMID:25760269

  15. Do Resin Cements Alter Action Potentials of Isolated Rat Sciatic Nerve?

    PubMed Central

    Ertan, Ahmet Atila; Beriat, Nilufer Celebi; Onur, Mehmet Ali; Tan, Gamze; Cehreli, Murat Cavit

    2011-01-01

    Objectives: The purpose of this study was to explore the effects dual-cure resin cements on nerve conduction. Methods: Panavia F, RelyX ARC, and Variolink II polymerized either by light-emitting diode (LED) or quartz tungsten halogen (QTH) were used in the study (n=10). The conductance of sciatic nerves of 50 rats were measured before and after contact with the specimens for 1 h. Results: The time-dependent change in nerve conductance and the comparison of LED versus QTH showed that differences between groups are significant (P<.05). For both polymerization techniques, pair-wise comparisons of resin cements showed that the nerve conductance between groups is different (P<.05). RelyX ARC elicited irreversible inhibition of compound action potentials (more than 50% change) and Panavia F and Variolink II polymerized by LED and QTH did not alter nerve conduction beyond physiologic limits. Conclusions: Resin cements may alter nerve conductance and even lead to neurotoxic effects. PMID:21494389

  16. Effect of flexural strength of orthodontic resin cement on bond strength of metal brackets to enamel surfaces.

    PubMed

    Li, Jun

    2011-04-01

    Three types of experimental resin cements with different curing systems, dual, light, and chemical, were designed. The relationship between the flexural strengths of the three experimental and five commercial (Beauty Ortho Bond, Transbond™ XT, Light Cure Bond, Kurasper® F, and Super Bond) orthodontic resin cements on the tensile bond strength (TBS) and shear bond strength (SBS) of metal brackets to enamel was determined. Seven specimen bars of each resin were prepared for measuring the flexural strengths of the resins. Bonded specimens of each resin were prepared, seven for measuring TBS and seven SBS for after bonding of a metal bracket to a maxillary central human labial anterior tooth using experimental and commercial resin cements. The results were analysed by one-way analysis of variance and Scheffé's multiple comparison tests. The level of statistical significance was set at 0.05. Increases in the flexural strength of the resin cements were related to increases in the TBS and SBS of the metal bracket. While the light-curing cements exhibited a strong linear correlation between flexural strengths and TBS or SBS, the dual- and chemical-curing cements exhibited a different flexural strength effect on both TBS and SBS. This was a result of the adhesive layer under the metal bracket, which could be chemically cured, in contrast to the light-curing cement. To control setting time and to obtain higher initial TBS and SBS by polymerizing the resin cement under the bracket, a dual-curing system, that combines both light- and chemical-curing systems, is essential. PMID:20937669

  17. Effect of Luting Agents on Retention of Dental Implant-Supported Prostheses.

    PubMed

    Pan, Yu-Hwa; Lin, Tai-Min; Liu, Perng-Ru; Ramp, Lance C

    2015-10-01

    To evaluate the retentive strength of 7 different luting agents in cement-retained implant abutment/analog assemblies. Fifty-six externally hexed dental implant abutment/analog assemblies and cast superstructures were divided randomly into 7 groups for cementation with each of the 7 luting agents. Five definitive cements tested were zinc phosphate cement, All-Bond 2, Maxcem, RelyX Luting cement, HY-Bond, and two provisional cements, ImProv and Premier. Cast superstructures were cemented onto the implant abutments and exposed to 1000 thermal cycles (0°C-55°C) and 100 000 cycles on a chewing simulator (75 N load). A universal testing machine was used to measure cement failure load of the assembled specimens. Cement failure load was evaluated with 1-way ANOVA and Duncan's multiple range analysis. Significant differences in cement failure loads were measured (P < .0001). Post hoc testing with Duncan's multiple range indicated 4 separate groupings. Maxcem and All-Bond 2 were comparable, having the greatest load failure. RelyX and zinc phosphate cement were analogous, and higher than HY-Bond. Improv and Premier constituted a pair, which demonstrated the lowest retentive values. Within the limitations of this in vitro study, Maxcem and All-Bond 2 are good candidates for cement-retained implant prostheses while concerning retention. PMID:24666355

  18. Influence of Resin Cements on the Tension Force of Cast Frameworks Made by the Technique of Framework Cemented on Prepared Abutments.

    PubMed

    Perroni, Ana Paula; Gomes, Érica Alves; Bielemann, Amália Machado; Baseggio, Bruna; Federizzi, Leonardo; Spazzin, Aloísio Oro; dos Santos, Mateus Bertolini Fernandes

    2015-01-01

    This study evaluated the tension force of cast frameworks made by the technique of framework cemented on prepared abutments using two different resin cements. Forty multi-unit abutment analogs were individually fixed with chemically cured acrylic resin inside PVC cylinders using a parallelometer. Brass cylindrical abutments were tightened to the multi-unit abutments to be used as spacers and then castable UCLA abutments were positioned above. These abutments were cast with Ni-Cr and then divided into 4 groups (n=10): cemented with RelyX U100(r); cemented with RelyX U100(r) and simulation of acrylic resin polymerization process; cemented with Multilink(r); and cemented with Multilink(r) and simulation of acrylic resin polymerization process. Abutments were cemented according to manufacturers' instructions. In a universal testing machine, tensile strength was applied in the direction of the long axis of the abutments at 1 mm/min crosshead speed until displacement of the luted abutments was obtained. The values of maximum tensile force (N) required for the displacement of the luted abutments were tabulated and analyzed statistically by one-way ANOVA with a 95% confidence level. No statistically significant difference was found among the groups (p>0.05). There was an increase in mean tension force when the specimens were subjected to the simulation of acrylic resin polymerization process, but the results did not differ statistically. Both resin cements presented positive results as regards the retention of luted abutments on their respective multi-unit abutments. Both materials may be indicated for the technique of framework cemented on prepared abutments when professionals pursuit better adaptation of implant-supported frameworks. PMID:26312978

  19. Effect of dentin dehydration and composite resin polymerization mode on bond strength of two self-etch adhesives

    PubMed Central

    Samimi, Pooran; Alizadeh, Mehdi; Shirban, Farinaz; Davoodi, Amin; Khoroushi, Maryam

    2016-01-01

    Background: Dual-cured composite resins are similar to self-cured composite resins in some of their clinical applications due to inadequate irradiation, lack of irradiation, or delayed irradiation. Therefore, incompatibility with self-etch adhesives (SEAs) should be taken into account with their use. On the other, the extent of dentin dehydration has a great role in the quality of adhesion of these resin materials to dentin. The aim of this study was to investigate the effect of dentin dehydration and composite resin polymerization mode on bond strength of two SEAs. Materials and Methods: A total of 120 dentinal specimens were prepared from extracted intact third molars. Half of the samples were dehydrated in ethanol with increasing concentrations. Then Clearfil SE Bond (CSEB) and Prompt L-Pop (PLP) adhesives were applied in the two groups. Cylindrical composite resin specimens were cured using three polymerization modes: (1) Immediate light-curing, (2) delayed light-curing after 20 min, and (3) self-curing. Bond strength was measured using universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with two-way ANOVA and Duncan post hoc tests. Statistical significance was defined at P < 0.05. Results: There were no significant differences for CSEB subgroups with hydrated and dehydrated dentin samples between the three different curing modes (P > 0.05). PLP showed significant differences between subgroups with the lowest bond strength in hydrated dentin with delayed light-curing and self-cured mode of polymerization. Conclusion: Within the limitations of this study, a delay in composite resin light-curing or using chemically cured composite resin had a deleterious effect on dentin bond strength of single-step SEAs used in the study. PMID:27041894

  20. Effect of different light curing methods on mechanical and physical properties of resin-cements polymerized through ceramic discs

    PubMed Central

    CEKIC-NAGAS, Isil; ERGUN, Gulfem

    2011-01-01

    Objective The aim of this study was to compare the polimerization ability of three different light-curing units (quartz tungsten halogen, light-emitting diodes and plasma arc) and their exposure modes (high-intensity and soft-start) by determination of microhardness, water sorption and solubility, and diametral tensile strength of 5 dual-curing resin cements. Material and methods A total of 720 disc-shaped samples (1 mm height and 5 mm diameter) were prepared from different dual-curing resin cements (Duolink, Nexus, Bifix-QM, Panavia F and RelyX Unicem). Photoactivation was performed by using quartz tungsten halogen (high-power and soft-up modes), light-emitting diode (standard and exponential modes) and plasma arc (normal and ramp-curing modes) curing units through ceramic discs. Then the samples (n=8/per group) were stored dry in the dark at 37ºC for 24 h. The Vickers hardness test was performed on the resin cement layer with a microhardness tester (Shimadzu HMV). For sorption and solubility tests; the samples were stored in a desiccator at 37ºC and weighed to a constant mass. The samples were weighed both before and after being immersed in deionized water for different periods of time (24 h and 7 days) and being desiccated. The diametral tensile strength of the samples was tested in a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed statistically by nonparametric Kruskal Wallis and Mann-Whitney U tests at 5% significance level. Results Resin cement and light-curing unit had significant effects (p<0.05) on microhardness, diametral tensile strength, water solubility and sorption. However, no significant differences (p>0.05) were obtained with different modes of LCUs. Conclusion The study indicates that polymerization of resin cements with different light-curing units may result in various polymer structures, and consequently different mechanical and physical properties. PMID:21710093

  1. Diametral tensile strength and film thickness of an experimental dental luting agent derived from castor oil

    PubMed Central

    CARMELLO, Juliana Cabrini; FAIS, Laiza Maria Grassi; RIBEIRO, Lígia Nunes de Moraes; CLARO NETO, Salvador; GUAGLIANONI, Dalton Geraldo; PINELLI, Lígia Antunes Pereira

    2012-01-01

    The need to develop new dental luting agents in order to improve the success of treatments has greatly motivated research. Objective The aim of this study was to evaluate the diametral tensile strength (DTS) and film thickness (FT) of an experimental dental luting agent derived from castor oil (COP) with or without addition of different quantities of filler (calcium carbonate - CaCO3). Material and Methods Eighty specimens were manufactured (DTS N=40; FT N=40) and divided into 4 groups: Pure COP; COP 10%; COP 50% and zinc phosphate (control). The cements were mixed according to the manufacturers' recommendations and submitted to the tests. The DTS test was performed in the MTS 810 testing machine (10 KN, 0.5 mm/min). For FT test, the cements were sandwiched between two glass plates (2 cm2) and a load of 15 kg was applied vertically on the top of the specimen for 10 min. The data were analyzed by means of one-way ANOVA and Tukey's test (α=0.05). Results The values of DTS (MPa) were: Pure COP- 10.94±1.30; COP 10%- 30.06±0.64; COP 50%- 29.87±0.27; zinc phosphate- 4.88±0.96. The values of FT (µm) were: Pure COP- 31.09±3.16; COP 10%- 17.05±4.83; COP 50%- 13.03±4.83; Zinc Phosphate- 20.00±0.12. One-way ANOVA showed statistically significant differences among the groups (DTS - p=1.01E-40; FT - p=2.4E-10). Conclusion The experimental dental luting agent with 50% of filler showed the best diametral tensile strength and film thickness. PMID:22437672

  2. Scanning electron microscopic study of teeth restored with fiber posts and composite resin: An in vitro study

    PubMed Central

    Sridhara, K. S.; Mankar, Sunil; Jayshankar, C. M.; Vinaya, K.

    2014-01-01

    Aims and Objectives: The aim of this study is to compare and evaluate the thickness of resin dentin interface zones (RDIZ) obtained by luting carbon fiber post to intra-radicular dentin, either with All-Bond 2 bonding agent and C and B composite cement or Panavia F dentin-bonding system and Panavia F resin cement. Materials and Methods: Twenty single rooted mandibular premolars of similar sizes were prepared for the carbon fiber post after biomechanical preparation and obturation. They were divided into two groups, Group 1 and 2 of 10 samples each. Carbon fiber posts used for Group 1 samples were luted using All-Bond 2 and C and B cement. For Group 2 carbon fiber posts were luted using Panavia F dentin-bonding system and Panavia F resin cement. All the 20 samples were sectioned longitudinally and marked at three points on the length of the tooth from the dentin-core interface to the apex at 2 mm, 5 mm, and 8 mm to get coronal, middle, and apical areas, respectively. The formation and thickness (width) of the RDIZ at the marked areas was evaluated by scanning electron microscope using ×1000 magnification. The results were statistical analyzed. Results: Irrespective of the adhesive systems used all specimens showed a RDIZ formation. Microscopic examination of Group 1 showed significantly higher percentage of RDIZ (P < 0.05) than Group 2. RDIZ morphology was easily detectable at coronal and middle areas of all specimens. Conclusion: All-Bond 2 showed denser and wider RDIZ compared with the Panavia F. PMID:25210390

  3. Bond strength of resin cement to CO2 and Er:YAG laser-treated zirconia ceramic

    PubMed Central

    Kasraei, Shahin; Heidari, Bijan; Vafaee, Fariborz

    2014-01-01

    Objectives It is difficult to achieve adhesion between resin cement and zirconia ceramics using routine surface preparation methods. The aim of this study was to evaluate the effects of CO2 and Er:YAG laser treatment on the bond strength of resin cement to zirconia ceramics. Materials and Methods In this in-vitro study 45 zirconia disks (6 mm in diameter and 2 mm in thickness) were assigned to 3 groups (n = 15). In control group (CNT) no laser treatment was used. In groups COL and EYL, CO2 and Er:YAG lasers were used for pretreatment of zirconia surface, respectively. Composite resin disks were cemented on zirconia disk using dual-curing resin cement. Shear bond strength tests were performed at a crosshead speed of 0.5 mm/min after 24 hr distilled water storage. Data were analyzed by one-way ANOVA and post hoc Tukey's HSD tests. Results The means and standard deviations of shear bond strength values in the EYL, COL and CNT groups were 8.65 ± 1.75, 12.12 ± 3.02, and 5.97 ± 1.14 MPa, respectively. Data showed that application of CO2 and Er:YAG lasers resulted in a significant higher shear bond strength of resin cement to zirconia ceramics (p < 0.0001). The highest bond strength was recorded in the COL group (p < 0.0001). In the CNT group all the failures were adhesive. However, in the laser groups, 80% of the failures were of the adhesive type. Conclusions Pretreatment of zirconia ceramic via CO2 and Er:YAG laser improves the bond strength of resin cement to zirconia ceramic, with higher bond strength values in the CO2 laser treated samples. PMID:25383349

  4. Push-out bond strength of fiber posts to root dentin using glass ionomer and resin modified glass ionomer cements

    PubMed Central

    PEREIRA, Jefferson Ricardo; da ROSA, Ricardo Abreu; SÓ, Marcus Vinícius Reis; AFONSO, Daniele; KUGA, Milton Carlos; HONÓRIO, Heitor Marques; do VALLE, Accácio Lins; VIDOTTI, Hugo Alberto

    2014-01-01

    Objective The purpose of this study was to assess the push-out bond strength of glass fiber posts to root dentin after cementation with glass ionomer (GICs) and resin-modified glass ionomer cements (RMGICs). Material and Methods Fifty human maxillary canines were transversally sectioned at 15 mm from the apex. Canals were prepared with a step back technique until the application of a #55 K-file and filled. Post spaces were prepared and specimens were divided into five groups according to the cement used for post cementation: Luting & Lining Cement; Fuji II LC Improved; RelyX Luting; Ketac Cem; and Ionoseal. After cementation of the glass fiber posts, all roots were stored at 100% humidity until testing. For push-out test, 1-mm thick slices were produced. The push-out test was performed in a universal testing machine at a crosshead speed of 0.5 mm/minute and the values (MPa) were analyzed by Kolmogorov-Smirnov and Levene's tests and by two-way ANOVA and Tukey's post hoc test at a significance level of 5%. Results Fiber posts cemented using Luting & Lining Cement, Fuji II LC Improved, and Ketac Cem presented the highest bond strength to root dentin, followed by RelyX Luting. Ionoseal presented the lowest bond strength values (P>0.05). The post level did not influence the bond strength of fiber posts to root dentin (P=0.148). The major cause of failure was cohesive at the cement for all GICs and RMGICs. Conclusions Except for Ionoseal, all cements provided satisfactory bond strength values. PMID:25004052

  5. Bonding of Resin Cement to Zirconia with High Pressure Primer Coating

    PubMed Central

    Wang, Ying-jie; Jiao, Kai; Liu, Yan; Zhou, Wei; Shen, Li-juan; Fang, Ming; Li, Meng; Zhang, Xiang; Tay, Franklin R.; Chen, Ji-hua

    2014-01-01

    Objectives To investigate the effect of air-drying pressure during ceramic primer coating on zirconia/resin bonding and the surface characteristics of the primed zirconia. Methods Two ceramic primers (Clearfil Ceramic Primer, CCP, Kuraray Medical Inc. and Z-Prime Plus, ZPP, Bisco Inc.) were applied on the surface of air-abraded zirconia (Katana zirconia, Noritake) and dried at 4 different air pressures (0.1–0.4 MPa). The primed zirconia ceramic specimens were bonded with a resin-based luting agent (SA Luting Cement, Kuraray). Micro-shear bond strengths of the bonded specimens were tested after 3 days of water storage or 5,000× thermocycling (n = 12). Failure modes of the fractured specimens were examined with scanning electron miscopy. The effects of air pressure on the thickness of the primer layers and the surface roughness (Sa) of primed zirconia were evaluated using spectroscopic ellipsometry (n = 6), optical profilometry and environmental scanning electron microscopy (ESEM) (n = 6), respectively. Results Clearfil Ceramic Primer air-dried at 0.3 and 0.4 MPa, yielding significantly higher µSBS than gentle air-drying subgroups (p<0.05). Compared to vigorous drying conditions, Z-Prime Plus air-dried at 0.2 MPa exhibited significantly higher µSBS (p<0.05). Increasing air-drying pressure reduced the film thickness for both primers. Profilometry measurements and ESEM showed rougher surfaces in the high pressure subgroups of CCP and intermediate pressure subgroup of ZPP. Conclusion Air-drying pressure influences resin/zirconia bond strength and durability significantly. Higher air-drying pressure (0.3-0.4 MPa) for CCP and intermediate pressure (0.2 MPa) for ZPP are recommended to produce strong, durable bonds between resin cement and zirconia ceramics. PMID:24992678

  6. Bonding of self-adhesive resin cements to enamel using different surface treatments: bond strength and etching pattern evaluations.

    PubMed

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-08-01

    This study evaluated the shear bond strengths and etching patterns of seven self-adhesive resin cements to human enamel specimens which were subjected to one of the following surface treatments: (1) Polishing with #600 polishing paper; (2) Phosphoric acid; (3) G-Bond one-step adhesive; or (4) Phosphoric acid and G-Bond. After surface treatment, the human incisor specimens were bonded to a resin composite using a self-adhesive resin cement [Maxcem (MA), RelyX Unicem (UN), Breeze (BR), BisCem (BI), seT (SE), Clearfil SA Luting (CL)] or a conventional resin cement [ResiCem (RE)]. Representative morphology formed with self-adhesive resin cements showed areas of etched enamel intermingled with areas of featureless enamel. In conclusion, etching efficacy influenced the bonding effectiveness of self-adhesive resin cements to unground enamel, and that a combined use of phosphoric acid and G-Bond for pretreatment of human enamel surfaces improved the bond strength of self-adhesive resin cements. PMID:20668359

  7. Retention of gold alloy crowns cemented with traditional and resin cements.

    PubMed

    Pinzón, Lilliam M; Frey, Gary N; Winkler, Mark M; Tate, William H; Burgess, John O; Powers, John M

    2009-01-01

    The aim of this study was to measure in vitro retention of cast gold crowns cemented with traditional and resin cements. Forty-eight human molars were prepared on a lathe to produce complete crown preparations with a consistent taper and split into six groups, eight crowns in each group. Crowns were cast in a high-gold alloy and then cemented. After 24 hours, the retention force (N) was recorded and mean values were analyzed by one-way analysis of variance and the Fisher post-hoc least significant difference (PLSD) multiple comparisons test (a = .05). Failure sites were examined under 3100 magnification and recorded. Mean values (SD) for each group in increasing order of retention force were: Harvard Cement: 43 N (27), TempoCem: 59 N (16), PermaCem Dual: 130 N (42), RelyX Luting Cement: 279 N (26), Contax and PermaCem Dual: 286 N (38), and TempoCem with Contax and PermaCem Dual: 340 N (14). The Fisher PLSD interval (P = .05) for comparing cements was 29 N. Zinc-phosphate cement and provisional resin cements had the lowest retention forces. Resin cement with a bonding agent and the hybrid-ionomer cement had similar retention forces. Resin cement with a bonding agent applied after use of a provisional resin cement had a significantly higher retention force than the other cements tested. PMID:19639070

  8. Evaluation of the shear bond strength of resin cement to Y-TZP ceramic after different surface treatments.

    PubMed

    Shin, Yoo-Jin; Shin, Yooseok; Yi, Young-Ah; Kim, Jaehoon; Lee, In-Bog; Cho, Byeong-Hoon; Son, Ho-Hyun; Seo, Deog-Gyu

    2014-01-01

    The purpose of this study was to evaluate the effect of various surface treatments on the shear bond strength of Y-TZP (Yttria-Tetragonal Zirconia Polycrystal) ceramics with zirconia primer and two different resin cements both containing 10-methacryloyloxydecyl dihydrogen phosphate (MDP). Zirconia blocks (LAVA, 3M ESPE, St. Paul, MN) were polished and assigned to five groups according to the surface treatment: (1) no further treatment (control); (2) airborne abrasion with Al2 O3 particles; (3) Z-PRIME Plus (Bisco, Schaumburg, IL) applied on polished zirconia; (4) Z-PRIME Plus applied on zirconia after airborne abrasion; and (5) tribochemical silica-coating performed with the CoJet system (3M ESPE) followed by application of ESPE®-Sil (3M ESPE). Each group was further divided into one of two resin cements: Panavia F2.0 (Kuraray, Kurashiki, Okayama, Japan) and Clearfil SA Luting (Kuraray). Resin cement placed inside a gel-cap was polymerized on the zirconia surface. Shear bond strength was tested with a universal testing machine at 0.5 mm/min. One-way analysis of variance and paired t-test were done. (p < 0.05), and scanning electron microscope (SEM) images were taken. Zirconia primer applied after airborne abrasion significantly increased the shear bond strength resulting in the highest value for both resin cements. Control groups for both cements showed the weakest value for shear bond strength. No significant differences were found between the shear bond strengths of the individual resin cements applied to zirconia surfaces treated the same way. In conclusion, the combined surface treatment of airborne abrasion followed by a zirconia primer is recommended for zirconia bonding with Panavia F2.0 and Clearfil SA Luting cements. PMID:24676632

  9. Development of a ceramic primer with higher bond durability for resin cement.

    PubMed

    Li, Rui

    2010-07-01

    To increase the bond durability of resin to the CAD/CAM ceramic surface, two types of two-bottle type ceramic primers, consisting of Primer A1 or A2 and Primer B, were designed. Primer A1 was prepared by dissolving 25, 50, or 100 mg of gamma-methacryloxypropyltrimethoxysilane in 1 mL of ethanol. Primer A2 was prepared by dissolving 50 mg of mixed silanes, consisting of 1,2-bis(trimethoxysilyl)ethane to gamma-methacryloxypropyltrimethoxysilane, in 1 mL of ethanol. Mole fractions of 1,2-bis(trimethoxysilyl)ethane to gamma-methacryloxypropyltrimethoxysilane were 0, 10, 20, 30, 40 and 50 mol%. Primer B was prepared after dissolving 0.01, 0.05 or 0.1 mol L(-1) hydrochloric acid in ethanol by 50 vol%. Ceramic surface was silanated with a mixture of Primers A1 and B or Primers A2 and B for 1 min, and then air-dried. Commercial GC ceramic primer and Porcelain Liner M were utilized. Thereafter, dual-curing type resin cement was bonded to silanated ceramic surface through visible-light irradiation. Shear bond strength of resin to the ceramic surface was measured, before and after thermo-cycling. Addition of 0.01 or 0.05 mol L(-1) hydrochloric acid to the gamma-methacryloxypropyltrimethoxysilane allowed for significant increases in the bond strength. However, thermo-cycling resulted in significant decreases of approximately 5 MPa in the bond strength. Conversely, when the mixed silane, where 30 mol% of 1,2-bis(trimethoxysilyl)ethane dissolved in gamma-methacryloxypropyltrimethoxysilane, was utilized with 0.05 mol L(-1) hydrochloric acid, the reduction in the bond strength decreased to approximately 2 MPa. The designed ceramic primers exhibited higher ceramic bond durability than commercial ceramic primers. PMID:20136699

  10. Clinical evaluation of 860 anterior and posterior lithium disilicate restorations: retrospective study with a mean follow-up of 3 years and a maximum observational period of 6 years.

    PubMed

    Fabbri, Giacomo; Zarone, Fernando; Dellificorelli, Gianluca; Cannistraro, Giorgio; De Lorenzi, Marco; Mosca, Alberto; Sorrentino, Roberto

    2014-01-01

    This study aimed to assess the clinical performance of lithium disilicate restorations supported by natural teeth or implants. Eight hundred sixty lithium disilicate adhesive restorations, including crowns on natural teeth and implant abutments, veneers, and onlays, were made in 312 patients. Parafunctional patients were included, but subjects with uncontrolled periodontitis and gingival inflammation were excluded. Veneers up to 0.5 mm thick were luted with flowable composite resin or light curing cements, while dual-curing composite systems were used with veneers up to 0.8 mm thick. Onlays up to 2 mm in thickness were luted with flowable composite resins or dual-curing composite cements. Crowns up to 1 mm in thickness were cemented with self-adhesive or dual-curing resin cements. The observational period ranged from 12 to 72 months, with a mean follow-up of 3 years. The mechanical and esthetic outcomes of the restorations were evaluated according to the modified California Dental Association (CDA) criteria. Data were analyzed with descriptive statistics. Twenty-six mechanical complications were observed: 17 porcelain chippings, 5 fractures, and 4 losses of retention. Structural drawbacks occurred mainly in posterior segments, and monolithic restorations showed the lowest number of mechanical complications. The clinical ratings of the successful restorations, both monolithic and layered, were satisfactory according to the modified CDA criteria for color match, porcelain surface, and marginal integrity. The cumulative survival rates of lithium disilicate restorations ranged from 95.46% to 100%, while cumulative success rates ranged from 95.39% to 100%. All restorations recorded very high survival and success rates. The use of lithium disilicate restorations in fixed prosthodontics proved to be effective and reliable in the short- and medium-term. PMID:24600653

  11. Effect of Self-adhesive Resin Cement and Tribochemical Treatment on Bond Strength to Zirconia

    PubMed Central

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-01-01

    Aim To evaluate the interactive effects of different self-adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coating with 110 µm Al2O3 particles which modified with silica; and, Group 3, tribochemical treatment - silica coating + silanization. Specimens were stored in distilled water at 37°C for 24 hours before testing shear bond strength. Results Silica coating and tribochemical treatment significantly increased the bond strength of the MA, UN, BR, BI, SE and CL to zirconia compared to #600 polishing. For both #600 polished and silica coating treatments, MDP-containing self-adhesive resin cement CL had the highest bond strengths to zirconia. Conclusion Applying silica coating and tribochemical treatment improved the bond strength of self-adhesive resin cement to zirconia, especially for CL. PMID:20690416

  12. Microtensile bond strength and micromorphologic analysis of surface-treated resin nanoceramics

    PubMed Central

    Park, Joon-Ho

    2016-01-01

    PURPOSE The aim of this study was to evaluate the influence of different surface treatment methods on the microtensile bond strength of resin cement to resin nanoceramic (RNC). MATERIALS AND METHODS RNC onlays (Lava Ultimate) (n=30) were treated using air abrasion with and without a universal adhesive, or HF etching followed by a universal adhesive with and without a silane coupling agent, or tribological silica coating with and without a universal adhesive, and divided into 6 groups. Onlays were luted with resin cement to dentin surfaces. A microtensile bond strength test was performed and evaluated by one-way ANOVA and Tukey HSD test (α=.05). A nanoscratch test, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy were used for micromorphologic analysis (α=.05). The roughness and elemental proportion were evaluated by Kruskal–Wallis test and Mann–Whitney U test. RESULTS Tribological silica coating showed the highest roughness, followed by air abrasion and HF etching. After HF etching, the RNC surface presented a decrease in oxygen, silicon, and zirconium ratio with increasing carbon ratio. Air abrasion with universal adhesive showed the highest bond strength followed by tribological silica coating with universal adhesive. HF etching with universal adhesive showed the lowest bond strength. CONCLUSION An improved understanding of the effect of surface treatment of RNC could enhance the durability of resin bonding when used for indirect restorations. When using RNC for restoration, effective and systemic surface roughening methods and an appropriate adhesive are required. PMID:27555896

  13. A bioactive dental luting cement--its retentive properties and 3-year clinical findings.

    PubMed

    Jefferies, Steven R; Pameijer, Cornelis H; Appleby, David C; Boston, Daniel; Lööf, Jesper

    2013-02-01

    -year recall. After periodic recalls up to 3 years, Ceramir C&B thus far has performed quite favorably as a luting agent for permanent cementation of permanent restorations. In-vitro crown-coping retention studies were also conducted using this cement and various control cementation materials. Mean laboratory retentive forces measured for Ceramir C&B were comparable to other currently available luting agents for both metal and all-ceramic indirect restorative materials. PMID:23577551

  14. Haemostatic agents on the shear bond strength of self-adhesive resin

    PubMed Central

    Anil, Akansha; Sekhar, Anand; Ginjupalli, Kishor

    2015-01-01

    Background Dentin surface contaminated with haemostatic agents can interfere with the bonding of self-adhesive resin cement. Therefore the purpose of this study was to evaluate the effect of various haemostatic agents such as Aluminium chloride, Ferric sulphate and Tannic acid on the shear bond strength of self-adhesive resin luting agent. Material and Methods The buccal surfaces of extracted premolars were flattened to expose the dentine. The teeth were then randomly divided into four groups. In Group I Aluminium Chloride was applied on the flattened dentinal surface, in Group II Ferric Sulphate was applied to exposed dentin surface, in Group III tannic acid was applied on to the dentinal surface, and the control group, i.e. Group IV was rinsed with saline. After the surface treatment, all the teeth were air dried. Then a predetermined dimension of RelyX™ U200 self-adhesive resin cement was bonded to the pretreated dentin surfaces. The samples were then stored under 370C in distilled water for 24 hours under 100 % humidity. Following this each sample was tested for shear bond strength with an Instron testing machine at a crosshead speed of 1mm/min. Results There was significant difference in the shear bond strength of control and tannic acid contaminated group (p<0.05), whereas there was no significant differences between the shear bond strength between control and aluminium chloride and ferric sulphate groups (p>0.05). Conclusions The usage of haemostatic agent can negatively affect the bond strength of self-adhesive resin cement (Rely X) on to the dentin surface. As per the study Tannic acid significantly weakened the bond between the self-adhesive resin and dentin. Key words:Aluminium chloride, Ferric sulphate, haemostatic agent, self-adhesive resin cement, shear bond strength, Tannic acid. PMID:26330930

  15. Influence of resin cement shade on the color and translucency of ceramic veneers

    PubMed Central

    HERNANDES, Daiana Kelly Lopes; ARRAIS, Cesar Augusto Galvão; de LIMA, Erick; CESAR, Paulo Francisco; RODRIGUES, José Augusto

    2016-01-01

    ABSTRACT Objective This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3) layer on color change, translucency parameter (TP), and chroma of low (LT) and high (HT) translucent reinforced lithium disilicate ceramic laminates. Material and Methods One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent) was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick) under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE) of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B) and white (W) background readings was used for TP analysis, while chroma was calculated by the formula C* ab=(a*2+b*2)½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. Results HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Conclusions Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable. PMID:27556211

  16. Effect of Luting Cement Space on the Strain Response of Gold Crowns Under Static Compressive Loading.

    PubMed

    Asbia, S; Ibbetson, R; Reuben, B

    2015-03-01

    The aim the work was to investigate the effect of varying degrees of luting cement thickness on the strain of the cemented gold alloy crowns under compression. Five dies with their corresponding crowns were fabricated using a lost wax technique. Three gold crowns for each die were fabricated under the control of specific die spacer layers to provide a space of 40 µm (10 layers of die-spacer thickness) and 80 µm (20 layers of die-spacer thickness). The crowns were subsequently cemented using zinc phosphate cement. The crowns were subjected to gradual static compressive loading between 10N to 250N (Newton) and the strain measured simultaneously. The results were statistically analysed using Independent t-test for the different die-spacer thickness at the 95% confidence interval (p = 0.05). It was found that a significant relationship in the three thicknesses. It was concluded that the absence of die-spacer significantly reduced strain response, whereas a very little change in the strain recorded as the die spacer layers has increased. Clinically, decreasing the number of die-spacer layers is advantageous as it provides a lower strain response under static compressive loading that would improve the longevity of the cemented full crowns inside the patient's mouth. PMID:26415332

  17. Comparison of failure mechanisms for cements used in skeletal luting applications.

    PubMed

    Clarkin, O; Boyd, D; Towler, M R

    2009-08-01

    Glass Polyalkenoate Cements (GPCs) based on strontium calcium zinc silicate (Sr-Ca-Zn-SiO(2)) glasses and low molecular weight poly(acrylic acid) (PAA) have been shown to exhibit suitable compressive strength (65 MPa) and flexural strength (14 MPa) for orthopaedic luting applications. In this study, two such GPC formulations, alongside two commercial cements (Simplex P and Hydroset) were examined. Fracture toughness and tensile bond strength to sintered hydroxyapatite and a biomedical titanium alloy were examined. Fracture toughness of the commercial Poly(methyl methacrylate) cement, Simplex P, (3.02 MPa m(1/2)) was superior to that of the novel GPC (0.36 MPa m(1/2)) and the commercial calcium phosphate cement, Hydroset, for which no significant fracture toughness was obtained. However, tensile bond strengths of the novel GPCs (0.38 MPa), after a prolonged period (30 days), were observed to be superior to commercial controls (Simplex P: 0.07 MPa, Hydroset: 0.16 MPa). PMID:19283454

  18. Incombustible resin composition

    NASA Technical Reports Server (NTRS)

    Akima, T.

    1982-01-01

    Incombustible resin compositions composed of aromatic compounds were obtained through (1) combustion polymer material and (2) bisphenol A or halogenated bisphenol A and bisphenol A diglycidl ether or halogenated bisphenol A diglycidyl ether. The aromatic compound is an adduct of bifunctional phenols and bifunctional epoxy resins.

  19. Delayed cure bismaleimide resins

    DOEpatents

    Not Available

    1982-08-12

    Prior art polybismaleimides begin to polymerize at or just above the melting point of the monomer. This patent describes new bismaleimide resins which have an increased pot life and provide longer time periods in which the monomer remains fluid. The resins can be polymerized into molded articles with a high uniformity of properties. (DLC)

  20. Effects of surface treatment on bond strength between dental resin agent and zirconia ceramic.

    PubMed

    Moradabadi, Ashkan; Roudsari, Sareh Esmaeily Sabet; Yekta, Bijan Eftekhari; Rahbar, Nima

    2014-01-01

    This paper presents the results of an experimental study to understand the dominant mechanism in bond strength between dental resin agent and zirconia ceramic by investigating the effects of different surface treatments. Effects of two major mechanisms of chemical and micromechanical adhesion were evaluated on bond strength of zirconia to luting agent. Specimens of yttrium-oxide-partially-stabilized zirconia blocks were fabricated. Seven groups of specimens with different surface treatment were prepared. 1) zirconia specimens after airborne particle abrasion (SZ), 2) zirconia specimens after etching (ZH), 3) zirconia specimens after airborne particle abrasion and simultaneous etching (HSZ), 4) zirconia specimens coated with a layer of a Fluorapatite-Leucite glaze (GZ), 5) GZ specimens with additional acid etching (HGZ), 6) zirconia specimens coated with a layer of salt glaze (SGZ) and 7) SGZ specimens after etching with 2% HCl (HSGZ). Composite cylinders were bonded to airborne-particle-abraded surfaces of ZirkonZahn specimens with Panavia F2 resin luting agent. Failure modes were examined under 30× magnification and the effect of surface treatments was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SZ and HSZ groups had the highest and GZ and SGZ groups had the lowest mean shear bond strengths among all groups. Mean shear bond strengths were significantly decreased by applying a glaze layer on zirconia surfaces in GZ and SGZ groups. However, bond strengths were improved after etching process. Airborne particle abrasion resulted in higher shear bond strengths compared to etching treatment. Modes of failure varied among different groups. Finally, it is concluded that micromechanical adhesion was a more effective mechanism than chemical adhesion and airborne particle abrasion significantly increased mean shear bond strengths compared with another surface treatments. PMID:24268263

  1. Peri-implant Biofilm Formation on Luting Agents Used for Cementing Implant-Supported Fixed Restorations: A Preliminary In Vivo Study.

    PubMed

    Papavasileiou, Dimitrios; Behr, Michael; Gosau, Martin; Gerlach, Till; Buergers, Ralf

    2015-01-01

    This study investigated subgingival peri-implant biofilm formation on four luting agents (Kerr TempBond, Harvard Dental Harvard Cement, 3M ESPE RelyX Unicem, and Kuraray Panavia F 2.0) under realistic in situ conditions. Samples of the luting agents were positioned in the subgingival area of healing abutments, and the biofilm accumulation on the samples at the interface between luting agent and titanium and on the smooth titanium surface was investigated using scanning electron microscopy. In comparison to plane titanium surfaces, interfaces between implant abutment, cement, and suprastructure showed an increased bacterial accumulation and should therefore be regarded as predisposing substrates for peri-implant biofilm formation. PMID:26218019

  2. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements

    PubMed Central

    Escribano, Nuria; Baracco, Bruno; Romero, Martin; Ceballos, Laura

    2016-01-01

    Background No specific indications about the pre-treatment of indirect composite restorations is provided by the manufacturers of most self-adhesive resin cements. The potential effect of silane treatment to the bond strength of the complete tooth/indirect restoration complex is not available.The aim of this study was to determine the contribution of different surface treatments on microtensile bond strength of composite overlays to dentin using several self-adhesive resin cements and a total-etch one. Material and Methods Composite overlays were fabricated and bonding surfaces were airborne-particle abraded and randomly assigned to two different surface treatments: no treatment or silane application (RelyX Ceramic Primer) followed by an adhesive (Adper Scotchbond 1 XT). Composite overlays were luted to flat dentin surfaces using the following self-adhesive resin cements: RelyX Unicem, G-Cem, Speedcem, Maxcem Elite or Smartcem2, and the total-etch resin cement RelyX ARC. After 24 h, bonded specimens were cut into sticks 1 mm thick and stressed in tension until failure. Two-way ANOVA and SNK tests were applied at α=0.05. Results Bond strength values were significantly influenced by the resin cement used (p<0.001). However, composite surface treatment and the interaction between the resin cement applied and surface treatment did not significantly affect dentin bond strength (p>0.05). All self-adhesive resin cements showed lower bond strength values than the total-etch RelyX ARC. Among self-adhesive resin cements, RelyX Unicem and G-Cem attained statistically higher bond strength values. Smartcem2 and Maxcem Elite exhibited 80-90% of pre-test failures. Conclusions The silane and adhesive application after indirect resin composite sandblasting did not improve the bond strength of dentin-composite overlay complex. Selection of the resin cement seems to be a more relevant factor when bonding indirect composites to dentin than its surface treatment. Key words

  3. Effect of type of luting agents on stress distribution in the bone surrounding implants supporting a three-unit fixed dental prosthesis: 3D finite element analysis

    PubMed Central

    Ghasemi, Ehsan; Abedian, Alireza; Iranmanesh, Pedram; Khazaei, Saber

    2015-01-01

    Background: Osseointegration of dental implants is influenced by many biomechanical factors that may be related to stress distribution. The aim of this study was to evaluate the effect of type of luting agent on stress distribution in the bone surrounding implants, which support a three-unit fixed dental prosthesis (FDP) using finite element (FE) analysis. Materials and Methods: A 3D FE model of a three-unit FDP was designed replacing the maxillary first molar with maxillary second premolar and second molar as the abutments using CATIA V5R18 software and analyzed with ABAQUS/CAE 6.6 version. The model was consisted of 465108 nodes and 86296 elements and the luting agent thickness was considered 25 μm. Three load conditions were applied on eight points in each functional cusp in horizontal (57.0 N), vertical (200.0 N) and oblique (400.0 N, θ = 120°) directions. Five different luting agents were evaluated. All materials were assumed to be linear elastic, homogeneous, time independent and isotropic. Results: For all luting agent types, the stress distribution pattern in the cortical bone, connectors, implant and abutment regions was almost uniform among the three loads. Furthermore, the maximum von Mises stress of the cortical bone was at the palatal side of second premolar. Likewise, the maximum von Mises stress in the connector region was in the top and bottom of this part. Conclusion: Luting agents transfer the load to cortical bone and different types of luting agents do not affect the pattern of load transfer. PMID:25709676

  4. Development of resins for composites by resin transfer molding

    NASA Technical Reports Server (NTRS)

    Woo, Edmund P.; Puckett, Paul M.; Maynard, Shawn J.

    1991-01-01

    Designed to cover a wide range of resin technology and to meet the near-term and long-term needs of the aircraft industry, this research has three objectives: to produce resin transfer molding (RES) resins with improved processability, to produce prepreg systems with high toughness and service temperature, and to produce new resin systems. Progress on reaching the objectives is reported.

  5. Effect of Marginal Sealant on Shear Bond Strength of Glass Ionomer Cement: Used as A Luting Agent

    PubMed Central

    Nazirkar, Girish; Singh, Shailendra; Badgujar, Mayura; Gaikwad, Bhushan; Bhanushali, Shilpa; Nalawade, Sumit

    2014-01-01

    Background: Moisture sensitivity and dissolution has been a known drawback of glass ionomer cement (GIC). When used as a luting agent for cementation of casted indirect restoration, the exposed cement at the margins is often a primary factor for marginal leakage and consequent failure of the restoration. The following in vitro study was planned to evaluate the effect of a marginal sealant on GIC used as luting agent. Materials and Methods: Sixty healthy extracted premolars were selected and prepared to receive metal-ceramic prosthesis. The prepared restorations were cemented using GIC and were divided randomly into two groups. The specimens in Group A were directly immersed in artificial saliva solution without any protection at the margins, while the exposed cement for Group B specimens was protected using a marginal sealant before immersing it in the artificial saliva solution. The specimens were tested after 24 h using a crown pull test on the universal testing machine to measure the shear bond strength of the cement. Result: The specimens in Group B showed statistically significant difference from the specimens in Group A with the mean shear bond strength of 6.60 Mpa and 5.32 respectively. Conclusion: Protection of GIC exposed at the margins of indirect cast restorations with a marginal sealant can significantly increase the longevity of the prosthesis by reducing the marginal leakage and perlocation of fluids. How to cite the article: Nazirkar G, Singh S, Badgujar M, Gaikwad B, Bhanushali S, Nalawade S. Effect of marginal sealant on shear bond strength of glass ionomer cement: Used as a luting agent. J Int Oral Health 2014;6(3):65-9 PMID:25083035

  6. The 24-year clinical performance of porcelain laminate veneer restorations bonded with a two-liquid silane primer and a tri-n-butylborane-initiated adhesive resin.

    PubMed

    Nakamura, Mitsuo; Matsumura, Hideo

    2014-09-01

    This report describes the bonding technique and clinical course of porcelain laminate veneer restorations applied to discolored maxillary incisors and canines. The patient was an 18-year-old woman, and tooth reduction was limited to the enamel. Laminate veneer restorations were made with a feldspathic porcelain material (Cosmotech Porcelain). After try-in, enamel surfaces were etched with 65% phosphoric acid gel, and a tri-n-butylborane-initiated resin (Super-Bond C&B) was applied as a bonding agent. The inner surface of the restorations was etched with 5% hydrofluoric acid gel (HF Gel) and treated with a two-liquid silane primer (Porcelain Liner M), after which the Super-Bond resin was applied. Each restoration was seated with a dual-activated composite luting agent (Cosmotech Composite). After 24 years and 8 months, the restorations are functioning satisfactorily. The luting system and bonding technique described in this report are an option for seating laminate veneer restorations made of silica-based tooth-colored ceramics. PMID:25231150

  7. Biocompatibility of composite resins

    PubMed Central

    Mousavinasab, Sayed Mostafa

    2011-01-01

    Dental materials that are used in dentistry should be harmless to oral tissues, so they should not contain any leachable toxic and diffusible substances that can cause some side effects. Reports about probable biologic hazards, in relation to dental resins, have increased interest to this topic in dentists. The present paper reviews the articles published about biocompatibility of resin-restorative materials specially resin composites and monomers which are mainly based on Bis-GMA and concerns about their degradation and substances which may be segregated into oral cavity. PMID:23372592

  8. Biocidal quaternary ammonium resin

    NASA Technical Reports Server (NTRS)

    Janauer, G. E.

    1983-01-01

    Activated carbon (charcoal) and polymeric resin sorbents are widely used in the filtration and treatment of drinking water, mainly to remove dissolved organic and inorganic impurities and to improve the taste. Earlier hopes that activated carbon might "disinfect' water proved to be unfounded. The feasibility of protecting against microbial infestation in charcoal and resin beds such as those to be incorporated into total water reuse systems in spacecraft was investigated. The biocidal effect of IPCD (insoluable polymeric contact disinfectants) in combination with a representative charcoal was assessed. The ion exchange resins (IPCD) were shown to adequately protect charcoal and ion exchange beds.

  9. Improving adhesion between luting cement and zirconia-based ceramic with an alternative surface treatment.

    PubMed

    Martins, Aurealice Rosa Maria; Gotti, Valéria Bisinoto; Shimano, Marcos Massao; Borges, Gilberto Antônio; Gonçalves, Luciano de Souza

    2015-01-01

    This study evaluated the influence of an alternative surface treatment on the microshear bond strength (μsbs) of zirconia-based ceramic. Thirty-five zirconia disks were assigned to five groups according to the following treatments: Control (CO), glass and silane were not applied to the zirconia surface; G1, air blasted with 100μm glass beads + glaze + silane; G2, a gel containing 15% (by weight) glass beads applied to the ceramic surface + glaze + silane; G3, a gel containing 25% (by weight) glass beads applied to the ceramic surface + glaze + silane; and G4, a gel containing 50% (by weight) glass beads applied to the ceramic surface + glaze + silane. The specimens were built up using RelyX ARC®, according to the manufacturer's recommendations, and inserted in an elastomeric mold with an inner diameter of 0.8 mm. The μsbs test was performed using a testing machine at a crosshead speed of 0.5 mm/min. ANOVA and Tukey's test (p < 0.05) were applied to the bond strength values (in MPa). CO (15.6 ± 4.1) showed the lowest μsbs value. There were no statistical differences between the G1 (24.9 ± 7.4), G2 (24.9 ± 2.3), G3 (35.0 ± 10.3) and G4 (35.3 ± 6.0) experimental groups. Those groups submitted to surface treatments with higher concentrations of glass showed a lower frequency of adhesive failures. In conclusion, the glass application improved the interaction between the ceramic and the luting cement. PMID:25859635

  10. In-vitro evaluation of an experimental method for bonding of orthodontic brackets with self-adhesive resin cements

    PubMed Central

    Ramazanzadeh, Barat Ali; Merati, Mohsen; Shafaee, Hooman; Dogon, Leon; Sohrabi, Keyvan

    2013-01-01

    Background Self-adhesive resin cements do not require the surface treatment of teeth and are said to release fluoride, which makes them suitable candidates for bonding of orthodontic brackets. The objectives of this study was to investigate the shear bond strength (SBS) of self-adhesive resin cements on etched on non-etched surfaces in vitro and to assess their fluoride release features. Materials and Methods Four fluoride-releasing dual-cure self-adhesive resin cements were investigated. For SBS experiment, 135 freshly extracted human maxillary premolars were used and divided into nine groups of 15 teeth. In the control group, brackets were cemented by Transbond XT (3M Unitek, USA), in four groups self-adhesive resin cements were used without acid-etching and in four groups self-adhesive cements were applied on acid-etched surfaces and the brackets were then deboned in shear with a testing machine. Adhesive remnant index (ARI) scores were also calculated. For fluoride release investigation, 6 discs were prepared for each self-adhesive cement. Transbond XT and Fuji Ortho LC (GC, Japan) served as negative and positive control groups, respectively. The fluoride release of each disc into 5 ml of deionized water was measured at days 1, 2, 3, 7, 14, 28, and 56 using a fluoride ion-selective electrode connected to an ion analyzer. To prevent cumulative measurements, the storage solutions were changed daily. Results The SBS of brackets cemented with Transbond XT were significantly higher compared to self-adhesives applied on non-etched surfaces (P<0.001). However, when the self-adhesive resin cements were used with enamel etching, no significant differences was found in the SBS compared to Transbond XT, except for Breeze. The comparisons of the ARI scores indicated that bracket failure modes were significantly different between the etched and non-etched groups. All self-adhesive cements released clinically sufficient amounts of fluoride for an extended period of time

  11. Effects of hydrogen peroxide pretreatment and heat activation of silane on the shear bond strength of fiber-reinforced composite posts to resin cement

    PubMed Central

    Shin, Tae-Bong; Lee, Joo-Hee; Ahn, Kang-Min; Kim, Tae-Hyung

    2016-01-01

    PURPOSE To evaluate the effects of hydrogen peroxide pretreatment and heat activation of silane on the shear bond strength of fiber-reinforced composite posts to resin cement. MATERIALS AND METHODS The specimens were prepared to evaluate the bond strength of epoxy resin-based fiber posts (D.T. Light-Post) to dual-curing resin cement (RelyX U200). The specimens were divided into four groups (n=18) according to different surface treatments: group 1, no treatment; group 2, silanization; group 3, silanization after hydrogen peroxide etching; group 4, silanization with warm drying at 80℃ after hydrogen peroxide etching. After storage of the specimens in distilled water at 37℃ for 24 hours, the shear bond strength (in MPa) between the fiber post and resin cement was measured using a universal testing machine. The fractured surface of the fiber post was examined using scanning electron microscopy. Data were analyzed using one-way ANOVA and post-hoc analysis with Tukey's HSD test (α=0.05). RESULTS Silanization of the fiber post (Group 2) significantly increased the bond strength in comparison with the non treated control (Group 1) (P<.05). Heat drying after silanization also significantly increased the bond strength (Group 3 and 4) (P<.05). However, no effect was determined for hydrogen peroxide etching before applying silane agent (Group 2 and 3) (P>.05). CONCLUSION Fiber post silanization and subsequent heat treatment (80℃) with warm air blower can be beneficial in clinical post cementation. However, hydrogen peroxide etching prior to silanization was not effective in this study. PMID:27141252

  12. Priming the tooth surface with chlorhexidine and antibacterial activity of resin cement

    PubMed Central

    Saini, Monika; Singh, Yashpal; Garg, Rishabh; Pandey, Anita

    2013-01-01

    AIM: To evaluate the effect of priming the tooth surface with 2% chlorhexidine gluconate on antibacterial activity of resin cement. METHODS: Ten patients in whom a single missing tooth was present on both the right and left side in the upper or lower arch were selected. Two fixed partial dentures (FPDs) in each patient on the right and left side were planned. Each FPD was assigned either to the control or test group. In the control group, FPD was luted with resin cement and in the test group, the tooth surface was primed with 2% chlorhexidine gluconate before luting with resin cement. Bacteriological samples were collected at base line level, as the patient came to the outpatient department before the start of any treatment, 5 wk prior to cementation of FPD and at 13 wk (8 wk after final cementation). Microbiological processing of all samples was done and the results were statistically analyzed. RESULTS: In the test group, a predominance of aerobic/facultative gram positive cocci rod was seen which indicates a healthy periodontal site, whereas in the control group, a predominance of anaerobic gram negative rods was present which indicates an unhealthy periodontal condition. This is evident by the fact that the anaerobic bacteria percentage in the control sample is 57% and 15% in the test sample after 13 wk, whereas the aerobic/facultative bacteria percentage is 43% in the control sample and 85% in the test sample after 13 wk. The percentage of gram negative bacteria in the control sample is 61% and in the test sample is 20% after 13 wk, whereas the percentage of gram positive bacteria in the control sample is 39% and in the test sample is 80% after 13 wk. The shift from anaerobic gram negative bacteria to aerobic gram positive bacteria is clearly seen from the control to test sample after 13 wk. CONCLUSION: The present study demonstrated that priming the tooth surface with 2% chlorhexidine gluconate may enhance antibacterial activity of the resin cement. PMID

  13. Thermally stable laminating resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Vaughan, R. W.; Burns, E. A.

    1972-01-01

    Improved thermally stable laminating resins were developed based on the addition-type pyrolytic polymerization. Detailed monomer and polymer synthesis and characterization studies identified formulations which facilitate press molding processing and autoclave fabrication of glass and graphite fiber reinforced composites. A specific resin formulation, termed P10P was utilized to prepare a Courtaulds HMS reinforced simulated airfoil demonstration part by an autoclave molding process.

  14. An in vitro Comparative Evaluation of Micro Tensile Bond Strength of Two metal bonding Resin Cements bonded to Cobalt Chromium alloy

    PubMed Central

    Musani, Smita; Musani, Iqbal; Dugal, Ramandeep; Habbu, Nitin; Madanshetty, Pallavi; Virani, Danish

    2013-01-01

    Background: The purpose of this study was to evaluate and compare the micro tensile bond strength of two metal bonding resin cements to sandblasted cobalt chromium alloy. Materials & Methods: Eight, Cobalt chromium alloy blocks of dimensions 10x5x5 mm were cast, finished and polished. One of the faces of each alloy block measuring 5x5mm was sandblasted with 50 μm grit alumina particles. The alloy blocks were then cleaned in an ultrasonic cleaner for 1 min and then air dried with an air stream. The Sandblasted surfaces of the two alloy blocks were bonded together with 2 different metal bonding resin systems (Panavia F Kuraray and DTK Kleber – Bredent). The samples were divided into 2 groups (n=4). Group 1- Two Co-Cr blocks were luted with Panavia cement. Group 2- Two Co-Cr blocks were luted with DTK Kleber-Bredent cement. The bonded samples were cut with a diamond saw to prepare Microtensile bars of approximately 1mm x 1mm x 6mm. Thirty bars from each group were randomly separated into 2 subgroups (n=15) and left for 3hrs (baseline) as per manufacturer's instructions while the other group was aged for 24hrs in 370C water, prior to loading to failure under tension at a cross head speed of 1mm/min. Failure modes were determined by means of stereomicroscopy (sm). Statistical analysis was performed through one way – ANOVA. Results: Significant variation in micro-tensile bond strength was observed between the two metal bonding resin systems. Conclusion: DTK showed higher mean bond strength values than Panavia F cement both at baseline and after aging. How to cite this article: Musani S, Musani I, Dugal R, Habbu N, Madanshetty P, Virani D. An in vitro Comparative Evaluation of Micro Tensile Bond Strength of Two metal bonding Resin Cements bonded to Cobalt Chromium alloy. J Int Oral Health 2013;5(5):73-8. PMID:24324308

  15. Acetylene terminated matrix resins

    NASA Technical Reports Server (NTRS)

    Goldfarb, I. J.; Lee, Y. C.; Arnold, F. E.; Helminiak, T. E.

    1985-01-01

    The synthesis of resins with terminal acetylene groups has provided a promising technology to yield high performance structural materials. Because these resins cure through an addition reaction, no volatile by-products are produced during the processing. The cured products have high thermal stability and good properties retention after exposure to humidity. Resins with a wide variety of different chemical structures between the terminal acetylene groups are synthesized and their mechanical properties studied. The ability of the acetylene cured polymers to give good mechanical properties is demonstrated by the resins with quinoxaline structures. Processibility of these resins can be manipulated by varying the chain length between the acetylene groups or by blending in different amounts of reactive deluents. Processing conditions similar to the state-of-the-art epoxy can be attained by using backbone structures like ether-sulfone or bis-phenol-A. The wide range of mechanical properties and processing conditions attainable by this class of resins should allow them to be used in a wide variety of applications.

  16. Effects of the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on mechanical properties of luting and lining glass ionomer cement

    NASA Astrophysics Data System (ADS)

    Heravi, Farzin; Bagheri, Hossein; Rangrazi, Abdolrasoul; Mojtaba Zebarjad, Seyed

    2016-07-01

    Recently, the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into glass ionomer cements (GICs) has attracted interest due to its remineralization of teeth and its antibacterial effects. However, it should be investigated to ensure that the incorporation of CPP-ACP does not have significant adverse effects on its mechanical properties. The purpose of this study was to evaluate the effects of the addition of CPP-ACP on the mechanical properties of luting and lining GIC. The first step was to synthesize the CPP-ACP. Then the CPP-ACP at concentrations of 1%, 1.56% and 2% of CPP-ACP was added into a luting and lining GIC. GIC without CPP-ACP was used as a control group. The results revealed that the incorporation of CPP-ACP up to 1.56%(w/w) increased the flexural strength (29%), diametral tensile strength (36%) and microhardness (18%), followed by a reduction in these mechanical properties at 2%(w/w) CPP-ACP. The wear rate was significantly decreased (23%) in 1.56%(w/w) concentration of CPP-ACP and it was increased in 2%(w/w). Accordingly, the addition of 1.56%(w/w) CPP-ACP into luting and lining GIC had no adverse effect on the mechanical properties of luting and lining GIC and could be used in clinical practice.

  17. Graphite fiber reinforced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1975-01-01

    Mechanical properties of neat resin samples and graphite fiber reinforced samples of thermoplastic resins were characterized with particular emphasis directed to the effects of environmental exposure (humidity, temperature and ultraviolet radiation). Tensile, flexural, interlaminar shear, creep and impact strengths were measured for polysulfone, polyarylsulfone and a state-of-the-art epoxy resin samples. In general, the thermoplastic resins exhibited environmental degradation resistance equal to or superior to the reference epoxy resin. Demonstration of the utility and quality of a graphite/thermoplastic resin system was accomplished by successfully thermoforming a simulated compressor blade and a fan exit guide vane.

  18. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-09

    A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

  19. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  20. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  1. A castor oil-containing dental luting agent: effects of cyclic loading and storage time on flexural strength

    PubMed Central

    DERCELI, Juliana dos Reis; FAIS, Laiza Maria Grassi; PINELLI, Lígia Antunes Pereira

    2014-01-01

    Favorable results in the use of castor oil polyurethane (COP) as pulp capping, membrane material, sealer, mouthwash and in bone repair, associated with the fact that Ricinus communis is not derived from petroleum and it is abundant in Brazil, encourage researches in the development of luting agents. Objectives This study compared the flexural strength (FS) of a castor oil-containing dental luting agent with a weight percentage of 10% (wt%) of calcium carbonate (COP10) with RelyX ARC (RX) after mechanical cycling (MC) and distilled water storage. Material and Methods Sixty-four specimens (25x2x2 mm) were fabricated and divided into two groups, COP10 and RX (control). Each group was divided into 4 subgroups (n=8) according to the storage time, 24 hours (24 h) or 60 days (60 d), and the performance (MC+FS) or not (only FS) of the mechanical cycling test. The FS (10 kN; 0.5 mm/min) and MC tests (10,000 cycles, 5 Hz, 0.5 mm/min) were carried out using an MTS-810 machine. The data were analyzed using ANOVA (α=0.05). Results The obtained FS (MPa) values were: COP10 24h- 19.04±2.41; COP10 60d- 17.92±3.54; RX 24h- 75.19±3.43; RX 60d- 88.77±6.89. All the RX specimens submitted to MC fractured, while the values for COP10 after MC were as follows: COP10 24h- 17.90±1.87 and COP10 60d- 18.60±1.60. Conclusions A castor oil-containing dental luting agent with a weight percentage of 10% (wt%) of calcium carbonate is resistant to mechanical cycling without decreases in flexural strength. However, mean COP10 showed only about 25% of the RelyX ARC mean flexural strength. PMID:25591018

  2. Epoxy resin holograms

    NASA Astrophysics Data System (ADS)

    Ruiz-Limón, B.; Wetzel, G. B. J.; Olivares Pérez, A.; Ponce-Lee, E. L.; Ramos-Garcia, R.; Toxqui López, S.; Hernández-Garay, M. P.; Fuentes-Tapia, I.

    2006-02-01

    We observed that a commercial epoxy resin (Comex (R) is enable to record images by means of lithography techniques. We can generate a hologram using a digital image and a computer simulation program and transferred it on our resin by microlithography techniques to get a phase hologram and increase its efficiency. The exposition to the heat produce temperature gradients and the information in the mask is transferred to the material by the refraction index changes, thus the film is recorded. At the same time the hologram is cured.

  3. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    PubMed Central

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  4. Simulated Wear of Self-Adhesive Resin Cements.

    PubMed

    Takamizawa, T; Barkmeier, W W; Latta, M A; Berry, T P; Tsujimoto, A; Miyazaki, M

    2016-01-01

    One of the primary areas of concern with luting agents is marginal gap erosion and attrition. The purpose of this laboratory study was to evaluate bulk and marginal slit (gap) generalized wear of self-adhesive resin cements. Three self-adhesive resin cements were used in this study: G-CEM LinkAce (LA), Maxcem Elite (ME), and RelyX Unicem2 Automix (RU). A custom stainless-steel fixture with a cavity 4.5 mm in diameter and 4 mm deep was used for simulated generalized (bulk) wear. For simulated marginal gap wear, a two-piece stainless-steel custom fixture was designed with a slit (gap) 300 μm wide and 3 mm in length. For both wear models, 20 specimens each for each of the three adhesive cements were made for both light-cure and chemical-cure techniques. The cured cements were polished with a series of carbide papers to a 4000-grit surface and subjected to 100,000 cycles using the slit (gap) wear model and 400,000 cycles for generalized (bulk) wear in a Leinfelder-Suzuki (Alabama machine) wear simulator (maximum load of 78.5 N). Flat-ended stainless-steel antagonists were used in a water slurry of poly(methylmethacrylate) beads for simulation of generalized contact-free area wear with both wear models. Before and after the wear challenges, the specimens were profiled with a Proscan 2100 noncontact profilometer, and wear (volume loss [VL] and mean facet depth [FD]) was determined using AnSur 3D software. Two-way analysis of variance (ANOVA) and Tukey post hoc tests were used for data analysis for the two wear models. Scanning electron microscopy (SEM) was used to examine polished surfaces of the resin cements and the worn surfaces after the wear challenges. The two-way ANOVA of VL using the generalized (bulk) wear model showed a significant effect among the three resin cement materials for the factor of resin cement (p<0.001) and the interaction of the cement and cure method (p<0.001), but not for the cure method (p=0.465). The two-way ANOVA for FD also found a

  5. The selection criteria of temporary or permanent luting agents in implant-supported prostheses: in vitro study

    PubMed Central

    Gonzalez-Gonzalez, Ignacio; Brizuela-Velasco, Aritza; Ellacuria-Echebarria, Joseba

    2016-01-01

    PURPOSE The use of temporary or permanent cements in fixed implant-supported prostheses is under discussion. The objective was to compare the retentiveness of one temporary and two permanent cements after cyclic compressive loading. MATERIALS AND METHODS The working model was five solid abutments screwed to five implant analogs. Thirty Cr-Ni alloy copings were randomized and cemented to the abutments with one temporary (resin urethane-based) or two permanent (resin-modified glass ionomer, resin-composite) cements. The retention strength was measured twice: once after the copings were cemented and again after a compressive cyclic loading of 100 N at 0.72 Hz (100,000 cycles). RESULTS Before loading, the retention strength of resin composite was 75% higher than the resin-modified glass ionomer and 2.5 times higher than resin urethanebased cement. After loading, the retentiveness of the three cements decreased in a non-uniform manner. The greatest percentage of retention loss was shown by the temporary cement and the lowest by the permanent resin composite. However, the two permanent cements consistently show high retention values. CONCLUSION The higher the initial retention of each cement, the lower the percentage of retention loss after compressive cyclic loading. After loading, the resin urethane-based cement was the most favourable cement for retrieving the crowns and resin composite was the most favourable cement to keep them in place. PMID:27141259

  6. [Cervical discrepancies and closeness of marginal fit of full cast crowns in correlation with the luting agent used].

    PubMed

    Utz, K H; Grüner, M; Vothknecht, R

    1989-11-01

    In an in-vitro study 75 extracted teeth were prepared with a chamfer and a 12 degree convergence angle. After corrective impression taking and preparation of the dies accurately fitting caps were made of "Stabilor G" alloy. The marginal defects were measured at 4 points on each tooth under the light-microscope before and after cementing with three different luting agents. Before cementation the mean values and standard deviation of the cervical discrepancies were 105 +/- 43 microns. The crowns fixed by means of zinc oxyphosphate cement (Harvard) exhibited marginal defects of 142 +/- 33 microns, those fixed with Fuji-Ionomer type I glass polyalkenoate cement had 159 +/- 20 microns, and the crowns cemented with Ketac-Cem had 127 +/- 6 microns. After exposing the specimens to thermal cycling, additional data on the sealing capacity of these cements could be obtained which showed zinc oxyphosphate cement to have the most favorable properties. PMID:2639008

  7. Resin impregnation process for producing a resin-fiber composite

    NASA Technical Reports Server (NTRS)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  8. Retentiveness of various luting agents used with implant-supported prosthesis: an in vitro study.

    PubMed

    Garg, Pooja; Pujari, Malesh; Prithviraj, D R; Khare, Sumit

    2014-12-01

    Desired retrievability of cemented implant-supported fixed prosthesis makes the retentive strength of cementing agents an important consideration. The aim of the study was to evaluate the retentiveness of purposely designed implant cement and compare its retentiveness with dental cements that are commonly used with implant systems. Ten implant analogs were embedded in auto-polymerizing acrylic resin blocks and titanium abutments were attached to them. Fifty standardized copings were waxed directly on the abutment and casted. The cements used were: (1) resin-bonded zinc oxide eugenol cement, (2) purposely designed implant cement, (3) zinc phosphate cement, (4) zinc polycarboxylate cement, and (5) glass ionomer cement. After cementation, each sample was subjected to a pull-out test using universal testing machine and loads required to remove the crowns were recorded. The mean values and standard deviations of cement failure loads were analyzed using ANOVA and Bonferroni test. The mean values (± SD) of loads at failure (n = 10) for various cements were as follows (N): resin-bonded zinc oxide eugenol cement 394.62 (± 9.76), Premier implant cement 333.86 (± 18.91), zinc phosphate cement 629.30 (± 20.65), zinc polycarboxylate cement 810.08 (± 11.52), and glass ionomer cement 750.17 (± 13.78). The results do not suggest that one cement type is better than another, but they do provide a ranking order of the cements regarding their ability to retain the prosthesis and facilitate easy retrievability. PMID:25506659

  9. RETENTIVENESS OF VARIOUS LUTING AGENTS USED WITH IMPLANT SUPPORTED- PROSTHESIS: AN INVITRO STUDY.

    PubMed

    Garg, Pooja; Pujari, Malesh L; D R, Prithviraj; Khare, Sumit

    2014-03-01

    Abstract ABSTRACT:Purpose: Desired retrievability of cemented implant-supported fixed prosthesis makes the retentive strength of cementing agents an important consideration. The aim of the study was to evaluate the retentiveness of purposely-designed implant cement and to compare its retentiveness with dental cements that are commonly used with implant systems.Materials and method: Ten implant analogs were embedded in auto-polymerizing acrylic resin blocks and titanium abutments were attached to them. 50 standardized copings were waxed directly on the abutment and casted. The cements used were: 1. resin-bonded zinc oxide eugenol cement (Kalzinol, DPI), 2. purposely-designed implant cement (Premier implant cement), 3. zinc phosphate cement (DeTrey Zinc, Dentsply), 4. zinc polycarboxylate cement (Poly-F, Dentsply) and 5. glass ionomer cement (GC Gold Label, GC corporation, Japan). After cementation, each sample was subjected to a pull-out test using universal testing machine and loads required to remove the crowns were recorded. The mean values and standard deviations of cement failure loads were analyzed using ANOVA and Bonferroni test.Results: The mean values (±SD) of loads at failure (n = 10) for various cements were as follows (N): resin-bonded zinc oxide eugenol cement 394.62 (±9.76), Premier implant cement 333.86 (±18.91), zinc phosphate cement 629.30 (±20.65), zinc polycarboxylate cement 810.08 (±11.52) and glass ionomer cement 750.17 (±13.78).Conclusions: The results do not suggest that one cement type is better than another, but they do provide a ranking order of the cements in their ability to retain the prosthesis and to facilitate its easy retrievability. PMID:24588463

  10. Effect of surface treatment on the initial bond strength of different luting cements to zirconium oxide ceramic.

    PubMed

    Nothdurft, F P; Motter, P J; Pospiech, P R

    2009-06-01

    The objective of this study was to compare the shear bond strength to zirconium oxide ceramic of adhesive-phosphate-monomer-containing (APM) and non-APM-containing (nAPM) luting cements after different surface treatments. nAPM cements: Bifix QM, Dual Cement, Duo Cement Plus, Multilink Automix, ParaCem Universal DC, PermaCem Smartmix, RelyX ARC, Variolink Ultra, and Variolink II; APM cements: Panavia EX, Panavia F2.0, and RelyX UniCem. Groups of ten test specimens were each prepared by layering luting cement, using cylindrical Teflon molds, onto differently treated zirconium dioxide discs. The surface treatments were airborne-particle abrasion with 110 mum alumina particles, silica coating (SC) using 30 mum alumina particles modified by silica (Rocatec System) or SC and silanization. Bifix QM and Multilink Automix were used in combination with an additional bonding/priming agent recommended by the manufacturers. After 48 h of water storage, each specimen was subjected to a shear test. Combinations involving APM-containing cements (14.41-23.88 MPa) generally exhibited higher shear bond strength than those without APM (4.29-17.34 MPa). Exceptions were Bifix QM (14.20-25.11 MPa) and Multilink Automix (19.14-23.09 MPa) in combination with system-specific silane or priming agent, which were on the upper end of shear bond strength values. With the use of the Rocatec system, a partially significant increase in shear bond strength could be achieved in nAPM cement. Modified surface treatment modalities increased the bond strength to zirconium oxide, although the most important factor in achieving a strong bond was the selection of a suitable cement. System-specific priming or bonding agents lead to further improvement. PMID:18758827

  11. Nontoxic Resins Advance Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The 2008 NASA Commercial Invention of the Year, PETI-330, is a polyimide matrix resin that performs well at high temperatures and is easily processed into composites in a simple, short curing cycle. Invented by scientists at Langley Research Center, PETI-330 is now licensed to Ube Industries, based in Japan with its American headquarters in New York. In addition to being durable and lightweight, the resin is also nontoxic, which makes it safe for workers to handle. PETI-330 was created specifically for heat-resistant composites formed with resin transfer molding and resin infusion, which formerly could only be used with low temperature resin systems.

  12. Microleakage and marginal gap of adhesive cements for noble alloy full cast crowns.

    PubMed

    Hooshmand, T; Mohajerfar, M; Keshvad, A; Motahhary, P

    2011-01-01

    Very limited comparative information about the microleakage in noble alloy full cast crowns luted with different types of adhesive resin cements is available. The purpose of this study was to evaluate the microleakage and marginal gap of two self-adhesive resin cements with that of other types of adhesive luting cements for noble alloy full cast crowns. Fifty noncarious human premolars and molars were prepared in a standardized manner for full cast crown restorations. Crowns were made from a noble alloy using a standardized technique and randomly cemented with five cementing agents as follows: 1) GC Fuji Plus resin-modified glass ionomer cement, 2) Panavia F 2.0 resin cement, 3) Multilink Sprint self-adhesive resin cement, 4), Rely X Unicem self-adhesive resin cement with pretreatment, and 5) Rely X Unicem with no pretreatment. The specimens were stored in distilled water at 37°C for two weeks and then subjected to thermocycling. They were then placed in a silver nitrate solution, vertically cut in a mesiodistal direction and evaluated for microleakage and marginal gap using a stereomicroscope. Data were analyzed using a nonparametric Kruskal-Wallis test followed by Dunn multiple range test at a p<0.05 level of significance. The Rely X Unicem (with or with no pretreatment) exhibited the smallest degree of microleakage at both tooth-cement and cement-crown interfaces. The greatest amount of microleakage was found for Panavia F 2.0 resin cement followed by GC Fuji Plus at both interfaces. No statistically significant difference in the marginal gap values was found between the cementing agents evaluated (p>0.05). The self-adhesive resin cements provided a much better marginal seal for the noble alloy full cast crowns compared with the resin-modified glass ionomer or dual-cured resin-based cements. PMID:21740242

  13. Effect of light-cure initiation time on polymerization and orthodontic bond strength with a resin-modified glass-ionomer

    NASA Astrophysics Data System (ADS)

    Thomas, Jess

    Introduction: The polymerization and acid-base reactions in resin-modified glass-ionomers (RMGI) are thought to compete with and inhibit one another. The objective of this study was to examine the effect of visible light-cure (VLC) delay on the polymerization efficiency and orthodontic bond strength of a dual-cured RMGI. Methods: An RMGI light-cured immediately, 2.5, 5, or 10 minutes after mixing comprised the experimental groups. Isothermal and dynamic temperature scan differential scanning calorimetry (DSC) analysis of the RMGI was performed to determine extents of VLC polymerization and acid-base reaction exotherms. Human premolars (n = 18/group) were bonded with the RMGI. Shear bond strength and adhesive remnant index (ARI) scores were determined. Results: DSC results showed the 10 minute delay RMGI group experienced significantly (P <0.05) lower VLC polymerization compared to the other groups. Acid-base reaction exotherms were undetected in all groups except the 10 minute delay group. No significant differences (P >0.05) were noted among the groups for mean shear bond strength. A chi-square test showed no significant difference (P = 0.428) in ARI scores between groups. Conclusions: Delay in light-curing may reduce polymerization efficiency and alter the structure of the RMGI, but orthodontic shear bond strength does not appear to be compromised.

  14. Evaluation of tensile retention of Y-TZP crowns cemented on resin composite cores: effect of the cement and Y-TZP surface conditioning.

    PubMed

    Rippe, M P; Amaral, R; Oliveira, F S; Cesar, P F; Scotti, R; Valandro, L F; Bottino, M A

    2015-01-01

    This study evaluated the effect of the cement type (adhesive resin, self-adhesive, glass ionomer, and zinc phosphate) on the retention of crowns made of yttria-stabilized polycrystalline tetragonal zirconia (Y-TZP). Therefore, 108 freshly extracted molars were embedded in acrylic resin, perpendicular to their long axis, and prepared for full crowns: the crown preparations were removed and reconstructed using composite resin plus fiber posts with dimensions identical to the prepared dentin. The preparations were impressed using addition silicone, and Y-TZP copings were produced, which presented a special setup for the tensile testing. Cementation was performed with two adhesive resin cements (Multilink Automix, Ivoclar-Vivadent; RelyX ARC, 3M ESPE, St Paul, MN, USA), one self-adhesive resin cement (RelyX U100, 3M ESPE), one glass ionomer based cement (RelyX Luting, 3M ESPE), and one zinc phosphate cement (Cimento de Zinco, SS White, Rio de Janeiro, Brazil). For the resin cement groups, the inner surfaces of the crowns were subjected to three surface treatments: cleaning with isopropyl alcohol, tribochemical silica coating, or application of a thin low-fusing glass porcelain layer plus silanization. After 24 hours, all groups were subjected to thermocycling (6000 cycles) and included in a special device for tensile testing in a universal testing machine to test the retention of the infrastructure. After testing, the failure modes of all samples were analyzed under a stereomicroscope. The Kruskal-Wallis test showed that the surface treatment and cement type (α=0.05) affected the tensile retention results. The Multilink cement presented the highest tensile retention values, but that result was not statistically different from RelyX ARC. The surface treatment was statistically relevant only for the Multilink cement. The cement choice was shown to be more important than the crown surface treatment for cementation of a Y-TZP crown to a composite resin substrate. PMID

  15. Effect of sandblasting, silica coating, and laser treatment on the microtensile bond strength of a dental zirconia ceramic to resin cements.

    PubMed

    Mahmoodi, Nasrin; Hooshmand, Tabassom; Heidari, Solmaz; Khoshro, Kimia

    2016-02-01

    The purpose of this in vitro study was to evaluate the effect of laser irradiation as well as other surface treatment methods on the microtensile bond strength of a dental zirconia ceramic to the two types of resin cements. Zirconia ceramic blocks (ICE Zirkon) were sintered according to the manufacturer's instructions and duplicated in resin composites. The ceramic specimens were divided into four groups according to the following surface treatments: no surface treatment (control), sandblasting with alumina, silica coating plus silanization, and Nd:YAG laser irradiation. The specimens were divided equally and then bonded with Panavia F2.0 (self-etching resin cement) and Clearfil SA Luting (self-adhesive resin cement) to the composite blocks. The bonded ceramic-composite blocks were stored in distilled water at 37 °C for 72 h, cut to prepare bar-shaped specimens with a bonding area of approximately 1 mm(2), and thermocycled for 3000 cycles between 5 and 55 °C, and the microtensile bond strengths were measured using a universal testing machine. The data were analyzed by ANOVA and Tukey post hoc test. The results showed that the self-adhesive resin cement used in this study did not improve the microtensile bond strength when the zirconia surface was sandblasted by alumina. The use of the Nd:YAG laser did not enhance the bond strength between the zirconia and both types of resin cements. In addition, silica coating of the zirconia surfaces plus silane application significantly improved the bond strength regardless of the type of resin cement utilized. PMID:26690357

  16. Evaluation of the resin cement thicknesses and push-out bond strengths of circular and oval fiber posts in oval-shapes canals

    PubMed Central

    Er, Özgür; Kılıç, Kerem; Kılınç, Halil İbrahim; Sağsen, Burak

    2015-01-01

    PURPOSE The aim of this study was to evaluate whether the push-out bond strength varies between oval and circular fiber posts, and to examine the effect on the resin cement thicknesses around the posts. MATERIALS AND METHODS Eighteen mandibular premolar roots were separated into two groups for oval and circular fiber posts systems. Post spaces were prepared and fiber posts were luted to the post spaces. Roots were cut horizontally to produce 1-mm-thick specimens. Resin cement thicknesses were determined with a metallographic optical microscope and push-out tests were done. RESULTS No significant differences were observed in terms of push-out bond strength between the oval and circular fiber posts (P>.05) The resin cement thicknesses of the oval posts were greater than those of the circular posts group in the coronal, middle and apical specimens (P<.05). CONCLUSION In the light of these results, it can be stated that resin cement thickness does not affect the push-out bond strength. PMID:25722832

  17. High-temperature resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1982-01-01

    The basic chemistry, cure processes, properties, and applications of high temperature resins known as polyimides are surveyed. Condensation aromatic polymides are prepared by reacting aromatic diamines with aromatic dianhydrides, aromatic tetracarboxylic acids, or with dialkyl esters of aromatic tetracarboxylic acids, depending on the intended end use. The first is for coatings or films while the latter two are more suitable for polyimide matrix resins. Prepreg solutions are made by dissolving reactants in an aprotic solvent, and advances in the addition of a diamine on the double bond and radical polymerization of the double bond are noted to have yielded a final cure product with void-free characteristics. Attention is given to properties of the Skybond, Pyralin, and NR-150B polyimide prepreg materials and characteristics of aging in the NP-150 polyimides. Finally, features of the NASA-developed PMR polyimides are reviewed.

  18. Flame Retardant Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  19. Bismaleimide Copolymer Matrix Resins

    NASA Technical Reports Server (NTRS)

    Parker, John A.; Heimbuch, Alvin H.; Hsu, Ming-Ta S.; Chen, Timothy S.

    1987-01-01

    Graphite composites, prepared from 1:1 copolymer of two new bismaleimides based on N,N'-m-phenylene-bis(m-amino-benzamide) structure have mechanical properties superior to those prepared from other bismaleimide-type resins. New heat-resistant composites replace metal in some structural applications. Monomers used to form copolymers with superior mechanical properties prepared by reaction of MMAB with maleic or citraconic anhydride.

  20. Evaluation of the Luting Cement Space for Provisional Restoration by using Various Coats of Die Spacer Materials-An Invitro Study

    PubMed Central

    Siddineni, Krishna Chaitanya; Jyothula, Ravi Rakesh Dev; Gade, Phani Krishna; Bhupathi, Deepthi; Kondaka, Sudheer; Hussain, Zakir; Paluri, Geetha Bhavani

    2014-01-01

    Aim: The present study was to evaluate the space provided for the temporary luting cement, after the application of various coats of die spacers, during the fabrication of provisional crowns and bridges. Materials and Methods: A total of 50 specimens of dental stone with provisional crowns on all these samples were prepared and were divided into five groups based on the application of various coats of different die spacers. Later these specimens were sectioned buccolingually and were observed using a stereomicroscope under 100X magnification. The images thus obtained were evaluated and noted for the amount of space between the inner surface of the provisional crown and the specimens at five different locations using Image Pro 6.0 Express software and the values were subjected to one-way ANOVA test, and unpaired t-test. Results: There was a significant increase of luting space thickness with various die spacer applications than the specimens of control group. Conclusion: Specimens of double coat applications of silver and gold die spacers showed higher luting cement space than the separating media application specimens. PMID:25386515

  1. System for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  2. Advanced thermoplastic resins, phase 1

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.; Falcone, A.; Gerken, N. T.

    1991-01-01

    Eight thermoplastic polyimide resin systems were evaluated as composite matrix materials. Two resins were selected for more extensive mechanical testing and both were versions of LaRC-TPI (Langley Research Center - Thermoplastic Polyimide). One resin was made with LaRC-TPI and contained 2 weight percent of a di(amic acid) dopant as a melt flow aid. The second system was a 1:1 slurry of semicrystalline LaRC-TPI powder in a polyimidesulfone resin diglyme solution. The LaRC-TPI powder melts during processing and increases the melt flow of the resin. Testing included dynamic mechanical analysis, tension and compression testing, and compression-after-impact testing. The test results demonstrated that the LaRC-TPI resins have very good properties compared to other thermoplastics, and that they are promising matrix materials for advanced composite structures.

  3. Vitrification of ion exchange resins

    DOEpatents

    Cicero-Herman, Connie A.; Workman, Rhonda Jackson

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  4. Phosphorus-containing bisimide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1981-01-01

    The production of fire-resistant resins particularly useful for making laminates with inorganic fibers such as graphite fibers is discussed. The resins are by (1) condensation of an ethylenically unsaturated cyclic anhydride with a bis(diaminophenyl) phosphine oxide, and (2) by addition polymerization of the bisimide so obtained. Up to about 50%, on a molar basis, of benzophenonetetracarboxylic acid anhydride can be substituted for some of the cyclic anhydride to alter the properties of the products. Graphite cloth laminates made with these resins show 800 C char yields greater than 70% by weight in nitrogen. Limiting oxygen indexes of more than 100% are determined for these resins.

  5. A new polyimide laminatine resin

    NASA Technical Reports Server (NTRS)

    Barrick, J. D. W.; Jewell, R. A.; Stclair, T. L.

    1977-01-01

    Addition polyimide for composite materials is based on liquid monomers and has significant advantages over most existing high-temperature resins. Essentially solventless prepreg has improved drape, tack.

  6. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the products classified under SIC 28214 thermosetting resins including those resins and resin groups listed below. Product groups are indicated with an asterisk (*). *Alkyd Resins Dicyanodiamide Resin *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin...

  7. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the products classified under SIC 28214 thermosetting resins including those resins and resin groups listed below. Product groups are indicated with an asterisk (*). *Alkyd Resins Dicyanodiamide Resin *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin...

  8. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the products classified under SIC 28214 thermosetting resins including those resins and resin groups listed below. Product groups are indicated with an asterisk (*). *Alkyd Resins Dicyanodiamide Resin *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin...

  9. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the products classified under SIC 28214 thermosetting resins including those resins and resin groups listed below. Product groups are indicated with an asterisk (*). *Alkyd Resins Dicyanodiamide Resin *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin...

  10. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the products classified under SIC 28214 thermosetting resins including those resins and resin groups listed below. Product groups are indicated with an asterisk (*). *Alkyd Resins Dicyanodiamide Resin *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin...

  11. Analysis of marginal adaptation and sealing to enamel and dentin of four self-adhesive resin cements.

    PubMed

    Aschenbrenner, Carina Maria; Lang, Reinhold; Handel, Gerhard; Behr, Michael

    2012-02-01

    This in vitro study compared the marginal adaptation of all-ceramic MOD-inlays luted to human molars with four self-adhesive resin cements. Thirty-two human third molars were randomly assigned to four test groups (n = 8 per group). MOD cavities were prepared with approximal finishing lines in dentin and enamel. All-ceramic Empress 2 inlays were luted with four self-adhesive cements (Clearfil SA, iCEM, Bifix SE, seT). Oral stress was simulated by 90 day storage in water as well as by thermal and mechanical loading (TCML, 1.2 × 10(6) × 50 N, 6,000 × 5°/55°, 1.6 Hz). The marginal fit was evaluated by scanning electron microscopy (SEM) and dye penetration. Data were analyzed with the ANOVA/Tukey's test (α = 0.05). The SEM investigation of the gingival cement margins (cement-tooth interface) showed values of perfect margin [percent] (means ± SD) after simulated aging between 84 ± 9% and 95 ± 5% for enamel and 80 ± 9% and 92 ± 3% for dentin. In enamel, seT showed significantly higher marginal integrity than iCEM after water storage and TCML (post hoc; p = 0.011). Furthermore, the marginal adaptation of iCEM in enamel deteriorated by simulated aging (p = 0.014, ANOVA). Mean values of dye penetration (percentage of dye entry into dentin) at the investigated restorations margins ranged between 3% and 8% for enamel and 12% and 22% for dentin. Clearfil SA, iCEM, and seT showed lower dye penetration in enamel than in dentin (Clearfil SA: p = 0.013, iCEM: p = 0.044, seT: p = 0.003). The results suggest that the four self-adhesive luting agents investigated seem to successfully bond to dentin-restricted as well as to enamel-restricted cavities, predicting good clinical performance. PMID:21327799

  12. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.; Pater, R. H.

    1981-01-01

    High char yield epoxy using novel bisimide amines (BIA's) as curing agents with a state of the art epoxy resin was developed. Stoichiometric quantities of the epoxy resin and the BIA's were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bisimide amine cured expoxies (IME's) were considerably lower than the state of the art epoxies. The strain-to-failure of the control resin system was improved 25% by replacement of DDS with 6F-DDS. Each BIA containing resin exhibited twice the char yield of the control resin MY 720/DDS. Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems showed superior properties compared to the other Celion 6000/IME composite systems and state of the art graphite epoxy systems. The two systems exhibited excellent wet shear and flexural strengths and moduli at 300 and 350 F.

  13. [Influence of retainer design on fixation strength of resin-bonded glass fiber reinforced composite fixed cantilever dentures].

    PubMed

    Petrikas, O A; Voroshilin, Iu G; Petrikas, I V

    2013-01-01

    Fiber-reinforced composite (FRC) fixed partial dentures (FPD) have become an accepted part of the restorative dentist's armamentarium. The aim of this study was to evaluate in vitro the influence of retainer design on the strength of two-unit cantilever resin-bonded glass FRC-FPDs. Four retainer designs were tested: a dual wing, a dual wing + horizontal groove, a dual wing + occlusal rest and a step-box. Of each design on 7 human mandibular molars, FRC-FPDs of a premolar size were produced. The FRC framework was made of resin Revolution (Kerr) impregnated glass fibers (GlasSpan, GlasSpan) and veneered with hybrid resin composite (Charisma, Kulzer). Revolution (Kerr) was used as resin luting cement. FRC-FPDs were loaded to failure in a universal testing machine. T (Student's)-test was used to evaluate the data. The four designs were analyzed with finite element analysis (FEA) to reveal the stress distribution within the tooth/restoration complex. Significantly lower fracture strengths were observed with inlay-retained FPDs (step-box: 172±11 N) compared to wing-retained FPDs (p<0.05) (a dual wing + horizontal groove 222±9 N). The highest fracture strengths were observed with dual wing + occlusal rest FPDs: 250±10 N compared to inlay-retained FPDs (p<0.001) and wing-retained FPDs (p<0.001). FEA showed more favorable stress distributions within the tooth/restoration complex for dual wing retainers+ occlusal rest FPDs. There was stress concentration around connectors and retainers near connectors. A dual-wing retainer with occlusal rest is the optimal design for replacement of a single premolar by means of a two-unit cantilever FRC-FPDs. PMID:23715455

  14. Effect of disinfectants containing glutaraldehyde on bonding of a tri-n-butylborane initiated resin to dentine.

    PubMed

    Baba, N; Taira, Y; Matsumura, H; Atsuta, M

    2002-05-01

    The purpose of this study was to evaluate the effects of disinfectants on the bond strength of resin to dentine. The surface of bovine dentine was exposed to formaldehyde (FA) aqueous solutions, glutaraldehyde (GA) aqueous solutions, 2-hydroxyethyl methacrylate aqueous solutions (HEMA), a commercially available dentine primer (Gluma CPS desensitizer, GLUMA), isotonic sodium chloride solution (IS), and distilled water (DW), and placed in a humidor (HU) at 37 degrees C, or non-stored (baseline). All dentine surfaces were conditioned with a 10% citric acid and 3% ferric chloride solution (10-3 liquid), and then bonded to an acrylic rod with a self-curing adhesive resin (Super-Bond C&B). The mean tensile bond strengths determined 24 h after bonding were compared by analysis of variance (ANOVA) and Fisher's protected LSD test (n=5, P < or = 0.05). The exposure of dentine to IS, DW and HU for both 48 and 168 h resulted in a decrease in bond strength when compared with the baseline. The highest bond strengths after 168 h of exposure were obtained with 5% GA, 10% HEMA, and GLUMA, the values of which were equivalent to baseline and were significantly higher than that of FA. It is concluded that disinfectant pre-treatment with 5% GA or GLUMA stabilizes the bonding of tri-n-butylborane (TBB) initiated luting agent to bovine dentine conditioned with 10-3 liquid. PMID:12028497

  15. Resin composite repair: Quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments

    PubMed Central

    Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan

    2015-01-01

    Objective: The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. Materials and Methods: A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000×). Mesial and distal 1/3 parts of the restorations were removed out leaving only middle part. One side of the cavity was finished with course diamond bur and the other was air-abraded with 50 μm Al2O3. They were randomly divided into four groups (n = 10) to receive: Group 1: Adper Single Bond 2; Group 2: All Bond 3; Group 3: ClearfilSE; Group 4: BeautiBond, before being repaired with the same resin composite (Filtek Z250). The specimens were re-thermocycled (1000×), sealed with nail varnish, stained with 0.5% basic fuchsin, sectioned mesiodistally and photographed digitally. The extent of dye penetration was measured by image analysis software (ImageJ) for both bur-finished and air-abraded surfaces at resin-tooth and resin-resin interfaces. The data were analyzed statistically. Results: BeautiBond exhibited the most microleakage at every site. Irrespective of adhesive and initial composite type, air-abrasion showed less microleakage except for BeautiBond. The type of initial repaired restorative material did not affect the microleakage. BeautiBond adhesive may not be preferred in resin composite repair in terms of microleakage prevention. Conclusions: Surface treatment with air-abrasion produced the lowest microleakage scores, independent of the adhesive systems and the pre-existing resin composite type. Pre-existing composite type does not affect the microleakage issue. All-in-one adhesive resin (BeautiBond) may not be preferred in resin composite repair in terms of microleakage prevention. PMID:25713491

  16. Comparing the effect of a resin based sealer on crown retention for three types of cements: an in vitro study.

    PubMed

    Patel, Pankaj; Thummar, Mansukh; Shah, Dipti; Pitti, Varun

    2013-09-01

    To determine the effect of resin based sealer on retention of casting cemented with three different luting agents. 55 extracted molar teeth were prepared with a flat occlusal surface, 20° taper and 4 mm axial height. The axial surface of each specimen was determined. The specimen were then distributed into five groups based on decreasing surface area, so each cementation group contained 11 specimens with similar mean axial surface area. A two-step, single bottle universal adhesive system (One-Step-Resinomer, Bisco) was used to seal dentin after the tooth preparation. Sealer was not used on the control specimens except for the modified-resin cement (Resinomer, Bisco) specimens that required use of adhesive with cementation. Using ceramometal (Wirobond(®), BEGO), a casting was produced for each specimen and cemented with either zinc phosphate (Harvard), glass ionomer (Vivaglass) or modified resin cement (Resinomer) with single bottle adhesive. All the castings were cemented with a force of 20 kg. Castings were thermal cycled at 5 and 55 °C for 2,500 cycles and were then removed along the path of insertion using a universal testing machine at 0.5 mm/min. A single-factor ANOVA was used with a = 0.05. The nature of failure was also recorded. The mean stress removal for non sealed zinc phosphate, sealed zinc phosphate, non sealed glass ionomer, sealed glass ionomer and modified resin cement was found to be 3.56, 1.92, 2.40, 4.26, 6.95 MPa respectively. Zinc phosphate cement remained principally on the castings when the tooth surface was treated with the sealer and was found on both the tooth and the casting when the sealer was not used. Fracture of root before dislodgement was seen in 9 of 11 specimens with modified resin cement. Resin sealer decreases the retention of the castings when used with zinc phosphate and increases it when used with glass ionomer cement. The highest mean dislodgement force was measured with modified resin cement. PMID:24431752

  17. Chromatography resin support

    DOEpatents

    Dobos, James G.

    2002-01-01

    An apparatus and method of using an improved chromatography resin support is disclosed. The chromatography support platform is provided by a stainless steel hollow cylinder adapted for being inserted into a chromatography column. An exterior wall of the stainless steel cylinder defines a groove for carrying therein an "O"-ring. The upper surface of the stainless steel column is covered by a fine stainless steel mesh welded to the edges of the stainless steel cylinder. When placed upon a receiving ledge defined within a chromatography column, the "O"-ring provides a fluid tight seal with the inner edge wall of the chromatography cylinder. The stainless steel mesh supports the chromatography matrix and provides a back flushable support which is economical and simple to construct.

  18. Indirect resin composites

    PubMed Central

    Nandini, Suresh

    2010-01-01

    Aesthetic dentistry continues to evolve through innovations in bonding agents, restorative materials, and conservative preparation techniques. The use of direct composite restoration in posterior teeth is limited to relatively small cavities due to polymerization stresses. Indirect composites offer an esthetic alternative to ceramics for posterior teeth. This review article focuses on the material aspect of the newer generation of composites. This review was based on a PubMed database search which we limited to peer-reviewed articles in English that were published between 1990 and 2010 in dental journals. The key words used were ‘indirect resin composites,’ composite inlays,’ and ‘fiber-reinforced composites.’ PMID:21217945

  19. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components...

  20. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components...

  1. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components...

  2. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components...

  3. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Terpene resins. 178.3930 Section 178.3930 Food and... Terpene resins. The terpene resins identified in paragraph (a) of this section may be safely used as components of polypropylene film intended for use in contact with food, and the terpene resins identified...

  4. Resin polymerization problems--are they caused by resin curing lights, resin formulations, or both?

    PubMed

    Christensen, R P; Palmer, T M; Ploeger, B J; Yost, M P

    1999-01-01

    Negative effects of rapid, high-intensity resin curing have been predicted for both argon lasers and plasma-arc curing lights. To address these questions, six different resin restorative materials were cured with 14 different resin curing lights representing differences in intensities ranging from 400 mW/cm2 to 1,900 mW/cm2; delivery modes using constant, ramped, and stepped methods; cure times ranging from 1 second to 40 seconds; and spot sizes of 6.7 mm to 10.9 mm. Two lasers, five plasma-arc lights, and seven halogen lights were used. Shrinkage, modulus, heat generation, strain, and physical changes on the teeth and resins during strain testing were documented. Results showed effects associated with lights were not statistically significant, but resin formulation was highly significant. Microfill resins had the least shrinkage and the lowest modulus. An autocure resin had shrinkage and modulus as high as or higher than the light-cured hybrid resins. Lasers and plasma-arc lights produced the highest heat increases on the surface (up to 21 degrees C) and within the resin restorations (up to 14 degrees C), and the halogen lights produced the most heat within the pulp chamber (up to 2 degrees C). Strain within the tooth was least with Heliomolar and greatest with Z100 Restorative and BISFIL II autocure resin. Clinical effects of strain relief were evident as white lines at the tooth-resin interface and cracks in enamel adjacent to the margins. This work implicates resin formulation, rather than light type or curing mode, as the important factor in polymerization problems. Lower light intensity and use of ramped and stepped curing modes did not provide significant lowering of shrinkage, modulus, or strain, and did not prevent enamel cracking adjacent to margins and formation of "white line" defects at the margins. Until materials with lower shrinkage and modulus are available, use of low-viscosity surface sealants as a final step in resin placement is suggested to

  5. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Jones, R. J.; Vaughan, R. W.

    1972-01-01

    High temperature resin matrices suitable for use in advanced graphite fiber composites for jet engine applications were evaluated. A series of planned, sequential screening experiments with resin systems in composite form were performed to reduce the number of candidates to a single A-type polyimide resin that repetitively produced void-free, high strength and modulus composites acceptable for use in the 550 F range for 1000 hours. An optimized processing procedure was established for this system. Extensive mechanical property studies characterized this single system, at room temperature, 500 F, 550 F and 600 F, for various exposure times.

  6. Flammability screening tests of resins

    NASA Technical Reports Server (NTRS)

    Arhart, R. W.; Farrar, D. G.; Hughes, B. M.

    1979-01-01

    Selected flammability characteristics of glass cloth laminates of thermosetting resins are evaluated. A protocol for the evaluation of the flammability hazards presented by glass cloth laminates of thermosetting resins and the usefulness of that protocol with two laminates are presented. The glass laminates of an epoxy resin, M-751 are evaluated for: (1) determination of smoke generation from the laminates; (2) analysis of products of oxidative degradation of the laminates; (3) determination of minimum oxygen necessary to maintain flaming oxidation; (4) evaluation of toxicological hazards.

  7. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, A.W.; Gatrone, R.C.; Alexandratos, S.; Horwitz, E.P.

    1997-04-08

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorus. The pendent groups have the formula as shown in the patent wherein R is hydrogen, a cation or mixtures thereof; and R{sup 1} is hydrogen or an C{sub 1}-C{sub 2} alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  8. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1997-01-01

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  9. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1998-01-27

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange-resin are also disclosed.

  10. Effect of Preparation Taper, Height and Marginal Design Under Varying Occlusal Loading Conditions on Cement Lute Stress: A Three Dimensional Finite Element Analysis.

    PubMed

    Tripathi, Siddhi; Amarnath, Gowdagere Shamanna; Muddugangadhar, Byrasandra Channapa; Sharma, Ashish; Choudhary, Suchismita

    2014-12-01

    To assess the effect of preparation taper, height and margin design under different loading conditions on cement lute stress. A 3-D FE model of an upper second premolar and molar was developed from CT scan of human skull using software programmes (MIMICS, Hypermesh and ANSYS). 10° and 30° taper, 3 and 5 mm preparation height and shoulder and chamfer finish lines were used. Type 1 Glass ionomer cement with 24 μm lute width was taken and the model was loaded under 100 N horizontal point load, vertical point load distributed axial load. The maximum shear stress and Von Mises stress within the cement lute were recorded. The maximum shear stresses ranged from 1.70 to 3.93 MPa (horizontal point loading), 0.66 to 3.04 MPa (vertical point loading), 0.38 to 0.87 MPa (distributed loading). The maximum Von Mises stresses ranged from 3.39 to 10.62 MPa (horizontal point loading), 1.93 to 8.58 MPa (vertical point loading) and 1.49 to 3.57 MPa (distributed loading). The combination of 10° taper and 5 mm height had the lowest stress field while the combination of 30° taper and 5 mm height had the highest stress field. Distributed axial loading shows least stress, better stress homogenization and gives a favorable prognosis for the fixed prostheses. Smaller preparation taper of 10° is biomechanically more acceptable than a 30° taper. It is desirable to decrease taper as height increases. The chamfer margin design is associated with greater local cement stresses toward the margins that could place the cement at greater risk for microfracture and failure. PMID:26199500

  11. Use of zinc phosphate cement as a luting agent for Denzir trade mark copings: an in vitro study.

    PubMed

    Söderholm, Karl-Johan M; Mondragon, Eduardo; Garcea, Ileana

    2003-02-01

    BACKGROUND: The clinical success rate with zinc phosphate cemented Procera crowns is high. The objective with this study was to determine whether CADCAM processed and zinc phosphate cemented Denzir copings would perform as well as zinc phosphate cemented Procera copings when tested in vitro in tension. METHODS: Twelve Procera copings and twenty-four Denzir copings were made. After the copings had been made, twelve of the Denzir copings were sandblasted on their internal surfaces. All copings were then cemented with zinc phosphate cement to carbon steel dies and transferred to water or artificial saliva. Two weeks after cementation, half of the samples were tested. The remaining samples were tested after one year in the storage medium. All tests were done in tension and evaluated with an ANOVA. RESULTS: Sandblasted and un-sandblasted Denzir copings performed as well as Procera copings. Storage in water or artificial saliva up to one year did not decrease the force needed to dislodge any of the coping groups. Three copings fractured during testing and one coping developed a crack during testing. The three complete fractures occurred in Procera copings, while the partly cracked coping was a Denzir coping. CONCLUSION: No significant differences existed between the different material groups, and the retentive force increased rather than decreased with time. Fewer fractures occurred in Denzir copings, explained by the higher fracture toughness of the Denzir material. Based on good clinical results with zinc phosphate cemented Procera crowns, we foresee that zinc phosphate cement luted Denzir copings are likely to perform well clinically. PMID:12622874

  12. Luting of ceramic crowns with a self-adhesive cement: Effect of contamination on marginal adaptation and fracture strength

    PubMed Central

    Slavcheva, Slavena; Krejci, Ivo

    2013-01-01

    Objectives: This study evaluated the percentages of continuous margins (%CM) and fracture strength (FS) of crowns made out from blocs of leucite-reinforced ceramic (IPS Empress CAD) and luted with a representative self-adhesive cement (RelyX Unicem) under four contaminating agents: saliva, water, blood, a haemostatic solution containing aluminium chloride (pH= 0.8) and a control group with no contamination. Study Design: %CM at both tooth-cement (TC) and cement-crown (CC) interfaces were determined before and after a fatigue test consisting of 600’000 chewing loads and 1’500 temperature cycles changing from 5º C to 50º C. Load to fracture was recorded on fatigued specimens. Kruskal-Wallis test was used to compare %CM and FS between the five groups with a level of confidence of 95%. Results: At the TC interface, no significant differences in marginal adaptation before loading could be detected between groups. After loading, a significant marginal degradation was observed in the group contaminated with aluminium chloride (52 ± 22 %CM) in respect to the other groups. No significant differences in %CM could be detected between the groups contaminated with saliva, water, blood and the control. At the CC interface, no significant differences in marginal adaptation were observed between the groups. The FS on loaded specimens was around 1637N, with no significant differences between groups as well. Conclusions: An adverse interaction of the highly acidic haemostatic agent with either dentin or the self-adhesive cement could explain the specimens’ marginal degradation. The self-adhesive cement tested in this study was no sensitive to moisture contamination either with saliva, water or blood. Key words:Marginal adaptation, RelyX Unicem, contamination, all-ceramic crowns. PMID:23722123

  13. Regenerating Water-Sterilizing Resins

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1982-01-01

    Iodine-dispensing resin can be regenerated after iodine content has been depleted, without being removed from water system. Resin is used to make water potable by killing bacteria, fungi, and viruses. Regeneration technique may be come basis of water purifier for very long space missions. Enough crystalline iodine for multiple regenerations during mission can be stored in one small cartridge. Cartridge could be inserted in waterline as necessary on signal from iodine monitor or timer.

  14. Liquid monobenzoxazine based resin system

    DOEpatents

    Tietze, Roger; Nguyen, Yen-Loan; Bryant, Mark

    2014-10-07

    The present invention provides a liquid resin system including a liquid monobenzoxazine monomer and a non-glycidyl epoxy compound, wherein the weight ratio of the monobenzoxazine monomer to the non-glycidyl epoxy compound is in a range of about 25:75 to about 60:40. The liquid resin system exhibits a low viscosity and exceptional stability over an extended period of time making its use in a variety of composite manufacturing methods highly advantageous.

  15. Maleimide Functionalized Siloxane Resins

    SciTech Connect

    Loy, D.A.; Shaltout, R.M.

    1999-04-01

    Polyorganosiloxanes are a commercially important class of compounds. They exhibit many important properties, including very low glass transition temperatures, making them useful over a wide temperature range. In practice, the polysiloxane polymer is often mixed with a filler material to help improve its mechanical properties. An alternative method for increasing polymer mechanical strength is through the incorporation of certain substituents on the polymer backbone. Hard substituents such as carbonates and imides generally result in improved mechanical properties of polysiloxanes. In this paper, we present the preparation of novel polysiloxane resins modified with hard maleimide substituents. Protected ethoxysilyl-substituted propyl-maleimides were prepared. The maleimide substituent was protected with a furanyl group and the monomer polymerized under aqueous acidic conditions. At elevated temperatures (>120 C), the polymer undergoes retro Diels-Alder reaction with release of foran (Equation 1). The deprotected polymer can then be selectively crosslinked by a forward Diels-Alder reaction (in the presence of a co-reactant having two or more dime functionalities).

  16. A Comparative Evaluation of the Effect of Resin based Sealers on Retention of Crown Cemented with Three Types of Cement – An In Vitro Study

    PubMed Central

    Sharma, Sumeet; Patel, J.R.; Sethuraman, Rajesh; Singh, Sarbjeet; Wazir, Nikhil Dev; Singh, Harvinder

    2014-01-01

    Aim: In an effort to control postoperative sensitivity, dentin sealers are being applied following crown preparations, with little knowledge of how crown retention might be affected. A previous study demonstrated no adverse effect when using a gluteraldehyde-based sealer, and existing studies have shown conflicting results for resin-based products. This study determined the retention of the casting cemented with three types of cement, with and without use of resin sealers and it determined the mode of failure. Materials and Methods: Extracted human molars (n=60) were prepared with a flat occlusal, 20-degree taper, and 4-mm axial length. The axial surface area of each preparation was determined and specimens were distributed equally among groups (n=10). A single-bottle adhesive system (one step single bottle adhesive system) was used to seal dentin, following tooth preparation. Sealers were not used on the control specimens. The test castings were prepared by using Ni-Cr alloy for each specimen and they were cemented with a seating force of 20 Kg by using either Zinc Phosphate (Harvard Cement), Glass Ionomer (GC luting and lining cement,GC America Inc.) and modified-resin cement (RelyXTMLuting2). Specimens were thermocycled for one month and were then removed along the path of insertion by using a Universal Testing Machine at 0.5 mm/min. A single-factor ANOVA was used with a p value of .05. The nature of failure was recorded and the data was analyzed by using Chi-square test. Results: Mean dislodgement stress for Zinc phosphate (Group A) was 24.55±1.0 KgF and that for zinc phosphate with sealer (Group D) was 14.65±0.8 KgF. For glass ionomer (Group B) without sealer, the mean value was 32.0±1.0 KgF and mean value for glass ionomer with sealer (Group E) was 37.90±1.0 KgF. The mean value for modified resin cement (Group C) was 44.3±1.0KgF and that for modified resins with sealer (Group F) was 57.2±1.2 KgF. The tooth failed before casting dislodgement in 8 to 10

  17. Low Melt Viscosity Resins for Resin Transfer Molding

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    2002-01-01

    In recent years, resin transfer molding (RTM) has become one of the methods of choice for high performance composites. Its cost effectiveness and ease of fabrication are major advantages of RTM. RTM process usually requires resins with very low melt viscosity (less than 10 Poise). The optimum RTM resins also need to display high thennal-oxidative stability, high glass transition temperature (T(sub g)), and good toughness. The traditional PMR-type polyimides (e.g. PMR-15) do not fit this requirement, because the viscosities are too high and the nadic endcap cures too fast. High T(sub g), low-melt viscosity resins are highly desirable for aerospace applications and NASA s Reusable Launch Vehicle (RLV) program. The objective of this work is to prepare low-melt viscosity polyimide resins for RTM or resin film infusion (RFI) processes. The approach involves the synthesis of phenylethynyl-terminated imide oligomers. These materials have been designed to minimize their melt viscosity so that they can be readily processed. During the cure, the oligomers undergo both chain extension and crosslinking via the thermal polymerization of the phenylethynyl groups. The Phenylethynyl endcap is preferred over the nadic group due to its high curing temperature, which provides broader processing windows. This work involved the synthesis and polymerization of oligomers containing zig-zag backbones and twisted biphenyl structures. Some A-B type precursors which possessed both nitro and anhydride functionality, or both nitro and amine functionality, were also synthesized in order to obtain the well defined oligomers. The resulting zig-zag structured oligomers were then end-capped with 4-phenylethynylphthalic anhydride (PEPA) for further cure. The properties of these novel imide oligomers are evaluated.

  18. Influence of 2% chlorhexidine on pH, calcium release and setting time of a resinous MTA-based root-end filling material.

    PubMed

    Jacinto, Rogério Castilho; Linhares-Farina, Giane; Sposito, Otávio da Silva; Zanchi, César Henrique; Cenci, Maximiliano Sérgio

    2015-01-01

    The addition of chlorhexidine (CHX) to a resinous experimental Mineral Trioxide Aggregate (E-MTA) based root-end filling material is an alternative to boost its antimicrobial activity. However, the influence of chlorhexidine on the properties of this material is unclear. The aim of this study was to evaluate the influence of 2% chlorhexidine on the pH, calcium ion release and setting time of a Bisphenol A Ethoxylate Dimethacrylate/Mineral Trioxide Aggregate (Bis-EMA/MTA) based dual-cure experimental root-end filling material (E-MTA), in comparison with E-MTA without the addition of CHX and with conventional white MTA (W-MTA). The materials were placed in polyethylene tubes, and immersed in deionized water to determine pH (digital pH meter) and calcium ion release (atomic absorption spectrometry technique). The setting time of each material was analyzed using Gilmore needles. The data were statistically analyzed at a significance level of 5%. E-MTA + CHX showed an alkaline pH in the 3 h period of evaluation, the alkalinity of which decreased but remained as such for 15 days. The pH of E-MTA + CHX was higher than the other two materials after 7 days, and lower after 30 days (p < 0.05). All of the materials were found to release calcium ions throughout the 30 days of the study. The addition of CHX increased the calcium ion release of E-MTA to levels statistically similar to W-MTA. E-MTA showed shorter initial and final setting time, compared with W-MTA (p < 0.05). The addition of 2% CHX to MTA prevented setting of the material. The addition of CHX to E-MTA increased its pH and calcium ion release. However, it also prevented setting of the material. PMID:25715035

  19. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  20. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  1. Soluble high molecular weight polyimide resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Lubowitz, H. R.

    1970-01-01

    High molecular weight polyimide resins have greater than 20 percent /by weight/ solubility in polar organic solvents. They permit fabrication into films, fibers, coatings, reinforced composite, and adhesive product forms. Characterization properties for one typical polyimide resin are given.

  2. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  3. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  4. Method for loading resin beds

    DOEpatents

    Notz, Karl J.; Rainey, Robert H.; Greene, Charles W.; Shockley, William E.

    1978-01-01

    An improved method of preparing nuclear reactor fuel by carbonizing a uranium loaded cation exchange resin provided by contacting a H.sup.+ loaded resin with a uranyl nitrate solution deficient in nitrate, comprises providing the nitrate deficient solution by a method comprising the steps of reacting in a reaction zone maintained between about 145.degree.-200.degree. C, a first aqueous component comprising a uranyl nitrate solution having a boiling point of at least 145.degree. C with a second aqueous component to provide a gaseous phase containing HNO.sub.3 and a reaction product comprising an aqueous uranyl nitrate solution deficient in nitrate.

  5. Push-out bond strength of quartz fibre posts to root canal dentin using total-etch and self-adhesive resin cements

    PubMed Central

    Mohammadi, Narmin; Navimipour, Elmira J.; Shakerifar, Maryam

    2012-01-01

    Objectives: Several adhesive systems are available for cementation of fibre posts into the root canal. The aim of the present study was to investigate the push-out bond strengths of quartz fibre posts to root dentin with the use of different total-etch and self-adhesive resin cements. Study Design: Ninety single-rooted human premolars were endodontically treated and standardized post-spaces were prepared. Fibre posts were cemented with different luting agents: total-etch (Nexus NX3, Duo-Link, and RelyX ARC) and self-adhesive resin cements (Maxcem Elite, BisCem, and RelyX Unicem). Three post/dentin sections (coronal, middle and apical) were obtained from each specimen, and push-out bond strength test was performed in each section at a cross-head speed of 0.5 mm/min. Data was analyzed with two-factor and one-way analysis of variance and a post-hoc Tukey test at a significance level of p < 0.05. Results: Cement type, canal region, and their interaction significantly influenced bond strength. Significantly higher bond strength values were observed in the apical region of self-adhesive cements. Only Duo-Link and RelyX ARC cements resulted in homogeneous bond strengths. Conclusions: Cementation of quartz fibre posts using self-adhesive cements provided higher push-out bond strengths especially in the apical region, while total-etch cements resulted in more uniform bond strengths in different regions of the root canal. Key words: Push-out bond strength; quartz fibre post; total-etch resin cement; self-adhesive resin cement. PMID:22143695

  6. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Terpene resin. 172.280 Section 172.280 Food and... Terpene resin. The food additive terpene resin may be safely used in accordance with the following prescribed conditions: (a) The food additive is the betapinene polymer obtained by polymerizing...

  7. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Terpene resin. 172.280 Section 172.280 Food and..., Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely used... polymer obtained by polymerizing terpene hydrocarbons derived from wood. It has a softening point of...

  8. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Terpene resin. 172.280 Section 172.280 Food and..., Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely used... polymer obtained by polymerizing terpene hydrocarbons derived from wood. It has a softening point of...

  9. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Terpene resin. 172.280 Section 172.280 Food and..., Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely used... polymer obtained by polymerizing terpene hydrocarbons derived from wood. It has a softening point of...

  10. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Terpene resin. 172.280 Section 172.280 Food and..., Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely used... polymer obtained by polymerizing terpene hydrocarbons derived from wood. It has a softening point of...

  11. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Perfluorocarbon resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The per-fluoro-carbon resins identified in paragraph (a)(1) of this section shall have a melt viscosity of not... viscosity of the perfluorocarbon resins identified in paragraph (a)(1) of this section shall not vary...

  12. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Perfluorocarbon resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The per-fluoro-carbon resins identified in paragraph (a)(1) of this section shall have a melt viscosity of not... viscosity of the perfluorocarbon resins identified in paragraph (a)(1) of this section shall not vary...

  13. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Perfluorocarbon resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The per-fluoro-carbon resins identified in paragraph (a)(1) of this section shall have a melt viscosity of not... viscosity of the perfluorocarbon resins identified in paragraph (a)(1) of this section shall not vary...

  14. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-30

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  15. Method of removing contaminants from plastic resins

    DOEpatents

    Bohnert,George W.; Hand,Thomas E.; Delaurentiis,Gary M.

    2007-08-07

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  16. Method of removing contaminants from plastic resins

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-11-18

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  17. Process for curing bismaleimide resins

    NASA Technical Reports Server (NTRS)

    Parker, John A. (Inventor); OTHY S.imides alone. (Inventor)

    1986-01-01

    This invention relates to vinyl pyridine group containing compounds and oligomers, their advantageous copolymerization with bismaleimide resins, and the formation of reinforced composites based on these copolymers. When vinyl pyridines including vinyl stilbazole materials and vinyl styrylpyridine oligomer materials are admixed with bismaleimides and cured to form copolymers the cure temperatures of the copolymers are substantially below the cure temperatures of the bismaleimides alone.

  18. Synthesis of improved phenolic resins

    NASA Technical Reports Server (NTRS)

    Delano, C. B.; Mcleod, A. H.

    1979-01-01

    Twenty seven addition cured phenolic resin compositions were prepared and tested for their ability to give char residues comparable to state-of-the-art phenolic resins. Cyanate, epoxy, allyl, acrylate, methacrylate and ethynyl derivatized phenolic oligomers were investigated. The novolac-cyanate and propargyl-novolac resins provided anaerobic char yields at 800 C of 58 percent. A 59 percent char yield was obtained from modified epoxy novolacs. A phosphonitrilic derivative was found to be effective as an additive for increasing char yields. The novolac-cyanate, epoxy-novolac and methacrylate-epoxy-novolac systems were investigated as composite matrices with Thornel 300 graphite fiber. All three resins showed good potential as composite matrices. The free radical cured methacrylate-epoxy-novolac graphite composite provided short beam shear strengths at room temperature of 93.3 MPa (13.5 ksi). The novolac-cyanate graphite composite produced a short beam shear strength of 74 MPa (10.7 ksi) and flexural strength of 1302 MPa (189 ksi) at 177 C. Air heat aging of the novolac-cyanate and epoxy novolac based composites for 12 weeks at 204 C showed good property retention.

  19. Fiber reinforced composite resin systems.

    PubMed

    Giordano, R

    2000-01-01

    The Targis/Vectris and Sculpture/FibreKor systems were devised to create a translucent maximally reinforced resin framework for fabrication of crowns, bridges, inlays, and onlays. These materials are esthetic, have translucency similar to castable glass-ceramics such as OPC and Empress, and have fits that are reported to be acceptable in clinical and laboratory trials. These restorations rely on proper bonding to the remaining tooth structure; therefore, careful attention to detail must be paid to this part of the procedure. Cementation procedures should involve silane treatment of the cleaned abraded internal restoration surface, application of bonding agent to the restoration as well as the etched/primed tooth, and finally use of a composite resin. Each manufacturer has a recommended system which has been tested for success with its resin system. These fiber reinforced resins are somewhat different than classical composites, so not all cementation systems will necessarily work with them. Polishing of the restoration can be accomplished using diamond or alumina impregnated rubber wheels followed by diamond paste. The glass fibers can pose a health risk. They are small enough to be inhaled and deposited in the lungs, resulting in a silicosis-type problem. Therefore, if fibers are exposed and ground on, it is extremely important to wear a mask. Also, the fibers can be a skin irritant, so gloves also should be worn. If the fibers become exposed intraorally, they can cause gingival inflammation and may attract plaque. The fibers should be covered with additional composite resin. If this cannot be accomplished, the restoration should be replaced. The bulk of these restorations are formed using a particulate filled resin, similar in structure to conventional composite resins. Therefore, concerns as to wear resistance, color stability, excessive expansion/contraction, and sensitivity remain until these materials are proven in long-term clinical trials. They do hold the

  20. Oxygen index tests of thermosetting resins

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J., Jr.; Parker, J. A.; Kourtides, D. A.

    1980-01-01

    The flammability characteristics of nine thermosetting resins under evaluation for use in aircraft interiors are described. These resins were evaluated using the Oxygen Index (ASTM 2863) testing procedure. The test specimens consisted of both neat resin and glass reinforced resin. When testing glass-reinforced samples it was observed that Oxygen Index values varied inversely with resin content. Oxygen values were also obtained on specimens exposed to temperatures up to 300 C. All specimens experienced a decline in Oxygen Index when tested at an elevated temperature.

  1. Commercial Ion Exchange Resin Vitrification Studies

    SciTech Connect

    Cicero-Herman, C.A

    2002-06-28

    In the nuclear industry, ion exchange resins are used for purification of aqueous streams. The major contaminants of the resins are usually the radioactive materials that are removed from the aqueous streams. The use of the ion exchange resins creates a waste stream that can be very high in both organic and radioactive constituents. Therefore, disposal of the spent resin often becomes an economic problem because of the large volumes of resin produced and the relatively few technologies that are capable of economically stabilizing this waste. Vitrification of this waste stream presents a reasonable disposal alternative because of its inherent destruction capabilities, the volume reductions obtainable, and the durable product that it produces.

  2. Comparative Evaluation of Enhancing Retention of Dislodged Crowns Using Preparation Modifications and Luting Cements: An In-Vitro Study

    PubMed Central

    Amarnath, G S; Pandey, Apurva; Prasad, Hari Ananth; Hilal, Mohammed

    2015-01-01

    Background: Complete cast crowns are good alternatives and have best longevity for the restoration of damaged posterior teeth. Occasionally, a crown with clinically acceptable margins, preparation design, and occlusion becomes loose. Providers often debate whether such a crown can be successfully recemented with any degree of confidence that it will not be dislodged under normal masticatory function. It has been documented that resistance form increases by placing grooves opposing each other in a crown and tooth; cements also have a role to play in retention of crowns. To determine whether the addition of horizontal groove in the internal surface of the crown and/or tooth preparation will increase retention of the crowns, without remaking them and achieving better retention with cements. Materials and Methods: A total of 80 extracted human mandibular molars were taken and standard preparation was done. After the crowns were ready, the groove was made in the internal surface of the crown and on the tooth, which were cemented with glass ionomer cement and resin cement. The tensile force needed to dislodge the crowns and teeth after cementation was found out. Result: The mean tensile force needed to dislodge the crown and tooth combination was highest for the group in which crown had a groove without any groove on the tooth and cemented using resin cement (252.60N). Conclusion: It can be concluded from the study that it is best to recement a crown and tooth combination using resin cement where the crown has a groove, and the tooth has no groove. PMID:26464539

  3. Effect of the crown design and interface lute parameters on the stress-state of a machined crown-tooth system: a finite element analysis.

    PubMed

    Shahrbaf, Shirin; vanNoort, Richard; Mirzakouchaki, Behnam; Ghassemieh, Elaheh; Martin, Nicolas

    2013-08-01

    The effect of preparation design and the physical properties of the interface lute on the restored machined ceramic crown-tooth complex are poorly understood. The aim of this work was to determine, by means of three-dimensional finite element analysis (3D FEA) the effect of the tooth preparation design and the elastic modulus of the cement on the stress state of the cemented machined ceramic crown-tooth complex. The three-dimensional structure of human premolar teeth, restored with adhesively cemented machined ceramic crowns, was digitized with a micro-CT scanner. An accurate, high resolution, digital replica model of a restored tooth was created. Two preparation designs, with different occlusal morphologies, were modeled with cements of 3 different elastic moduli. Interactive medical image processing software (mimics and professional CAD modeling software) was used to create sophisticated digital models that included the supporting structures; periodontal ligament and alveolar bone. The generated models were imported into an FEA software program (hypermesh version 10.0, Altair Engineering Inc.) with all degrees of freedom constrained at the outer surface of the supporting cortical bone of the crown-tooth complex. Five different elastic moduli values were given to the adhesive cement interface 1.8GPa, 4GPa, 8GPa, 18.3GPa and 40GPa; the four lower values are representative of currently used cementing lutes and 40GPa is set as an extreme high value. The stress distribution under simulated applied loads was determined. The preparation design demonstrated an effect on the stress state of the restored tooth system. The cement elastic modulus affected the stress state in the cement and dentin structures but not in the crown, the pulp, the periodontal ligament or the cancellous and cortical bone. The results of this study suggest that both the choice of the preparation design and the cement elastic modulus can affect the stress state within the restored crown

  4. Phenoxy resins containing pendent ethynyl groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Jensen, B. J.; Havens, S. J.

    1984-01-01

    As part of an effort on tougher/solvent resistant matrix resins for composites, research was directed towards exploring methods to improve the solvent resistance of linear amorphous thermoplastics. Ethyl reactive groups were placed on the ends of oligomers and pendent along the polymer chain and subsequently thermally reacted to provide crosslinking and thus improvement in solvent resistance. This concept is extended to another thermoplastic, a phenoxy resin. A commercially available phenoxy resin (PKHH) was systematically modified by reaction of the pendent hydroxyl groups on the phenoxy resin with various amounts of 4-ethynylbenzoyl chloride. As the pendent ethynyl group content in the phenoxy resin increased, the cured resin exhibited a higher glass transition temperature, better solvent resistance and less flexibility. The solvent resistance was further improved by correcting a low molecular weight diethynyl compound, 2,2-bis(4-ethynylbenzoyloxy-4'-phenyl)propane, with a phenoxy resin containing pendent ethynyl groups.

  5. Three-Dimensional Finite Element Analysis of Anterior Two-Unit Cantilever Resin-Bonded Fixed Dental Prostheses

    PubMed Central

    Shinya, Akikazu; Lassila, Lippo V. J.; Vallittu, Pekka K.; Kleverlaan, Cornelis J.; Feilzer, Albert J.; De Moor, Roeland J. G.

    2015-01-01

    The aim of this study was to evaluate the influence of different framework materials on biomechanical behaviour of anterior two-unit cantilever resin-bonded fixed dental prostheses (RBFDPs). A three-dimensional finite element model of a two-unit cantilever RBFDP replacing a maxillary lateral incisor was created. Five framework materials were evaluated: direct fibre-reinforced composite (FRC-Z250), indirect fibre-reinforced composite (FRC-ES), gold alloy (M), glass ceramic (GC), and zirconia (ZI). Finite element analysis was performed and stress distribution was evaluated. A similar stress pattern, with stress concentrations in the connector area, was observed in RBFDPs for all materials. Maximal principal stress showed a decreasing order: ZI > M > GC > FRC-ES > FRC-Z250. The maximum displacement of RBFDPs was higher for FRC-Z250 and FRC-ES than for M, GC, and ZI. FE analysis depicted differences in location of the maximum stress at the luting cement interface between materials. For FRC-Z250 and FRC-ES, the maximum stress was located in the upper part of the proximal area of the retainer, whereas, for M, GC, and ZI, the maximum stress was located at the cervical outline of the retainer. The present study revealed differences in biomechanical behaviour between all RBFDPs. The general observation was that a RBFDP made of FRC provided a more favourable stress distribution. PMID:25879077

  6. Three-dimensional finite element analysis of anterior two-unit cantilever resin-bonded fixed dental prostheses.

    PubMed

    Keulemans, Filip; Shinya, Akikazu; Lassila, Lippo V J; Vallittu, Pekka K; Kleverlaan, Cornelis J; Feilzer, Albert J; De Moor, Roeland J G

    2015-01-01

    The aim of this study was to evaluate the influence of different framework materials on biomechanical behaviour of anterior two-unit cantilever resin-bonded fixed dental prostheses (RBFDPs). A three-dimensional finite element model of a two-unit cantilever RBFDP replacing a maxillary lateral incisor was created. Five framework materials were evaluated: direct fibre-reinforced composite (FRC-Z250), indirect fibre-reinforced composite (FRC-ES), gold alloy (M), glass ceramic (GC), and zirconia (ZI). Finite element analysis was performed and stress distribution was evaluated. A similar stress pattern, with stress concentrations in the connector area, was observed in RBFDPs for all materials. Maximal principal stress showed a decreasing order: ZI>M>GC>FRC-ES>FRC-Z250. The maximum displacement of RBFDPs was higher for FRC-Z250 and FRC-ES than for M, GC, and ZI. FE analysis depicted differences in location of the maximum stress at the luting cement interface between materials. For FRC-Z250 and FRC-ES, the maximum stress was located in the upper part of the proximal area of the retainer, whereas, for M, GC, and ZI, the maximum stress was located at the cervical outline of the retainer. The present study revealed differences in biomechanical behaviour between all RBFDPs. The general observation was that a RBFDP made of FRC provided a more favourable stress distribution. PMID:25879077

  7. Effect of different surface treatments on shear bond strength of zirconia to three resin cements

    NASA Astrophysics Data System (ADS)

    Dadjoo, Nisa

    strengths for all three cements were observed with Scotchbond Universal surface treatment (p=0.0041). Calibra in combination with aluminum oxide air abrasion resulted in statistically lowest bond strength at 12.0 +/- 3.9 MPa. The predominant mode of failure was cohesive with cement remaining principally on the zirconium oxide samples in 57.5% of the specimens, followed by cement found on both the zirconium oxide samples and composite rods (mixed) in 32.5% of the samples. Only 10% of the specimens were found with cement on the composite rods (adhesive failure). Conclusions: Within the limitations of this in vitro study, the MDP-containing resin cement, Panavia SA, yielded the strongest bond to Y-TZP ceramic when compared to adhesive (RelyX Ultimate) or esthetic (Calibra) resin cements. Air abrasion particle + Scotchbond Universal surface treatment demonstrated the highest bond strength regardless of the cement. Significance: The variation of surface conditioning methods yielded different results in accordance with the cement types. Overall, Scotchbond Universal adhesive + air abrasion yielded the highest bond strengths among all three surface treatments. The phosphate monomer-containing luting system, Panavia SA, is acceptable for bonding to zirconia ceramics.

  8. Foam, Foam-resin composite and method of making a foam-resin composite

    NASA Technical Reports Server (NTRS)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  9. Influence of immediate dentin sealing techniques on cuspal deflection and fracture resistance of teeth restored with composite resin inlays.

    PubMed

    Oliveira, L; Mota, E G; Borges, G A; Burnett, L H; Spohr, A M

    2014-01-01

    SUMMARY This research evaluated the influence of immediate dentin sealing (IDS) techniques on cuspal deflection and fracture resistance of teeth restored with composite resin inlays. Forty-eight maxillary premolars were divided into four groups: G1, sound teeth (control); G2, without IDS; G3, IDS with Clearfil SE Bond (CSE); and G4, IDS with CSE and Protect Liner F. The teeth from groups 2, 3, and 4 received mesio-distal-occlusal preparations. The impressions were made with vinyl polysiloxane, followed by provisional restoration and storage in water for seven days. The impressions were poured using type IV die stone, and inlays with Filtek Z250 composite resin were built over each cast. The inlays were luted with Panavia F. After storage in water for 72 hours, a 200-N load was applied on the occlusal surface using a metal sphere connected to a universal testing machine, and the cuspal deflection was measured with a micrometer. The specimens were then submitted to an axial load until failure. The following mean cuspal deflection (μm) and mean fracture resistance (N) followed by the same lowercase letter represent no statistical difference by analysis of variance and Tukey (p<0.05): cuspal deflection: G1, 3.1 ± 1.5(a); G2, 10.3 ± 4.6(b); G3, 5.5 ± 1.8(ac); and G4, 7.7 ± 5.1(bc); fracture resistance: G1, 1974 ± 708(a); G2, 1162 ± 474(b); G3, 700 ± 280(b); and G4, 810 ± 343(b). IDS with CSE allowed cuspal deflection comparable with that associated with sound teeth. The application of Protect Liner F did not contribute to a decrease in cuspal deflection. The IDS techniques did not influence the fracture resistance of teeth. PMID:23718211

  10. High Temperature Transfer Molding Resins

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2000-01-01

    High temperature resins containing phenylethynyl groups that are processable by transfer molding have been prepared. These phenylethynyl containing oligomers were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynlphthalic anhydride in glacial acetic acid to form a mixture of imide compounds in one step. This synthetic approach is advantageous since the products are a mixture of compounds and consequently exhibit a relatively low melting temperature. In addition, these materials exhibit low melt viscosities which are stable for several hours at 210-275 C, and since the thermal reaction of the phenylethynyl group does not occur to any appreciable extent at temperatures below 300 C, these materials have a broad processing window. Upon thermal cure at approximately 300-350 C, the phenylethynyl groups react to provide a crosslinked resin system. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  11. Advanced thermoplastic resins, phase 2

    NASA Technical Reports Server (NTRS)

    Brown, A. M.; Hill, S. G.; Falcone, A.

    1991-01-01

    High temperature structural resins are required for use on advanced aerospace vehicles as adhesives and composite matrices. NASA-Langley developed polyimide resins were evaluated as high temperature structural adhesives for metal to metal bonding and as composite matrices. Adhesive tapes were prepared on glass scrim fabric from solutions of polyamide acids of the semicrystalline polyimide LARC-CPI, developed at the NASA-Langley Research Center. Using 6Al-4V titanium adherends, high lap shear bond strengths were obtained at ambient temperature (45.2 MPa, 6550 psi) and acceptable strengths were obtained at elevated temperature (14.0 MPa, 2030 psi) using the Pasa-Jell 107 conversion coating on the titanium and a bonding pressure of 1.38 MPa (200 psi). Average zero degree composite tensile and compressive strengths of 1290 MPa (187 ksi) and 883 MPa (128 ksi) respectively were obtained at ambient temperature with unsized AS-4 carbon fiber reinforcement.

  12. Pharmaceutical Applications of Ion-Exchange Resins

    NASA Astrophysics Data System (ADS)

    Elder, David P.

    2005-04-01

    The historical uses of ion-exchange resins and a summary of the basic chemical principles involved in the ion-exchange process are discussed. Specific applications of ion-exchange resins are provided. The utility of these agents to stabilize drugs are evaluated. Commonly occurring chemical and physical incompatibilities are reviewed. Ion-exchange resins have found applicability as inactive pharmaceutical constituents, particularly as disintegrants (inactive tablet ingredient whose function is to rapidly disrupt the tablet matrix on contact with gastric fluid). One of the more elegant approaches to improving palatability of ionizable drugs is the use of ion-exchange resins as taste-masking agents. The selection, optimization of drug:resin ratio and particle size, together with a review of scaleup of typical manufacturing processes for taste-masked products are provided. Ion-exchange resins have been extensively utilized in oral sustained-release products. The selection, optimization of drug:resin ratio and particle size, together with a summary of commonly occurring commercial sustained-release products are discussed. Ion-exchange resins have also been used in topical products for local application to the skin, including those where drug flux is controlled by a differential electrical current (ionotophoretic delivery). General applicability of ion-exchange resins, including ophthalmic delivery, nasal delivery, use as drugs in their own right (e.g., colestyramine, formerly referred to as cholestyramine), as well as measuring gastrointestinal transit times, are discussed. Finally, pharmaceutical monographs for ion-exchange resins are reviewed.

  13. Comparative study of the radiopacity of resin cements used in aesthetic dentistry

    PubMed Central

    Monterde-Hernández, Manuel; Cabanillas-Casabella, Cristina; Pallares-Sabater, Antonio

    2016-01-01

    PURPOSE The aim of this study was to compare the radiopacity of 6 modern resin cements with that of human enamel and dentine using the Digora digital radiography system, to verify whether they meet the requirements of ANSI/ADA specification no. 27/1993 and the ISO 4049/2000 standard and assess whether their radiopacity is influenced by the thickness of the cement employed. MATERIALS AND METHODS Three 3-thickness samples (0.5, 1 and 1.5 mm) were fabricated for each material. The individual cement samples were radiographed on the CCD sensor next to the aluminium wedge and the tooth samples. Five radiographs were made of each sample and therefore five readings of radiographic density were taken for each thickness of the materials. The radiopacity was measured in pixels using Digora 2.6 software. The calibration curve obtained from the mean values of each step of the wedge made it possible to obtain the equivalent in mm of aluminium for each mm of the luting material. RESULTS With the exception of Variolink Veneer Medium Value 0, all the cements studied were more radiopaque than enamel and dentin (P<.05) and complied with the ISO and ANSI/ADA requirements (P<.001). The radiopacity of all the cements examined depended on their thickness: the thicker the material, the greater its radiopacity. CONCLUSION All materials except Variolink Veneer Medium Value 0 yielded radiopacity values that complied with the recommendations of the ISO and ANSI/ADA. Variolink Veneer Medium Value 0 showed less radiopacity than enamel and dentin. PMID:27350854

  14. Phosphorus-containing imide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1984-01-01

    Flame-resistant reinforced bodies are disclosed which are composed of reinforcing fibers, filaments or fabrics in a cured body of bis- and tris-imide resins derived from tris(m-aminophenyl) phosphine oxides by reaction with maleic anhydride or its derivatives, or of addition polymers of such imides, including a variant in which a mono-imide is condensed with a dianhydride and the product is treated with a further quantity of maleic anhydride.

  15. High-Temperature Polyimide Resin

    NASA Technical Reports Server (NTRS)

    Vanucci, Raymond D.; Malarik, Diane C.

    1990-01-01

    Improved polyimide resin used at continuous temperatures up to 700 degrees F (371 degrees C). PMR-II-50, serves as matrix for fiber-reinforced composites. Material combines thermo-oxidative stability with autoclave processability. Used in such turbine engine components as air-bypass ducts, vanes, bearings, and nozzle flaps. Other potential applications include wing and fuselage skins on high-mach-number aircraft and automotive engine blocks and pistons.

  16. ELUTION OF URANIUM FROM RESIN

    DOEpatents

    McLEan, D.C.

    1959-03-10

    A method is described for eluting uranium from anion exchange resins so as to decrease vanadium and iron contamination and permit recycle of the major portion of the eluats after recovery of the uranium. Diminution of vanadium and iron contamination of the major portion of the uranium is accomplished by treating the anion exchange resin, which is saturated with uranium complex by adsorption from a sulfuric acid leach liquor from an ore bearing uranium, vanadium and iron, with one column volume of eluant prepared by passing chlorine into ammonium hydroxide until the chloride content is about 1 N and the pH is about 1. The resin is then eluted with 8 to 9 column volumes of 0.9 N ammonium chloride--0.1 N hydrochloric acid solution. The eluants are collected separately and treated with ammonia to precipitate ammonium diuranate which is filtered therefrom. The uranium salt from the first eluant is contaminated with the major portion of ths vanadium and iron and is reworked, while the uranium recovered from the second eluant is relatively free of the undesirable vanadium and irons. The filtrate from the first eluant portion is discarded. The filtrate from the second eluant portion may be recycled after adding hydrochloric acid to increase the chloride ion concentration and adjust the pH to about 1.

  17. Synthesis of improved polyester resins

    NASA Technical Reports Server (NTRS)

    Mcleod, A. H.; Delano, C. B.

    1979-01-01

    Eighteen aromatic unsaturated polyester prepolymers prepared by a modified interfacial condensation technique were investigated for their solubility in vinyl monomers and ability to provide high char yield forming unsaturated polyester resins. The best resin system contained a polyester prepolymer of phthalic, fumaric and diphenic acids reacted with 2,7-naphthalene diol and 9,9-bis(4-hydroxyphenyl)fluorene. This prepolymer is very soluble in styrene, divinyl benzene, triallyl cyanurate, diallyl isophthalate and methylvinylpyridine. It provided anaerobic char yields as high as 41 percent at 800 C. The combination of good solubility and char yield represents a significant improvement over state-of-the-art unsaturated polyester resins. The majority of the other prepolymers had only low or no solubility in vinyl monomers. Graphite composites from this prepolymer with styrene were investigated. The cause for the observed low shear strengths of the composites was not determined, however 12-week aging of the composites at 82 C showed that essentially no changes in the composites had occurred.

  18. Factors affecting on bond strength of glass fiber post cemented with different resin cements to root canal

    NASA Astrophysics Data System (ADS)

    Clavijo, V. R. G.; Bandéca, M. C.; Calixto, L. R.; Nadalin, M. R.; Saade, E. G.; Oliveira-Junior, O. B.; Andrade, M. F.

    2009-09-01

    Luting materials provides the retention of endodontic post. However, the failures of endodontic posts predominantly occurred are the losses of retention. Thus, the alternating use to remove the smear layer, open the dentine tubules, and/or etch the inter-tubular dentine can be provided by EDTA. This study was performed to evaluate effect of EDTA on bond strength of glass fiber post cemented with different resin cements to root canal. Fifty bovine incisors were selected and the crowns were removed to obtain a remaining 14-mm-height root. The roots were randomly distributed into five groups: GI: RelyX™ ARC/LED; GII: RelyX™ U100/LED; GIII EDTA/RelyX™ U100/LED; GIV: Multilink™; and GV: EDTA/Multlink™. After endodontic treatment, the post space was prepared with the drills designated for the quartz-coated-carbon-fiber post Aestheti-Post®. Before application of resin cements, root canals were irrigated with 17% EDTA (GIII and GV) during 1 min, rinsed with distilled water and dried using paper points. The light-cured materials were light-activated with UltraLume LED 5 (Ultradent, South Jordan, Utah) with power density of 1315 mW/cm2. Specimens were perpendicularly sectioned into approximately 1 mm thick sections and the stubs were performed on Universal Testing Machine. The analysis of variance (ANOVA) and Tukey’s post-hoc tests showed significant statistical different between RelyX™ ARC (GI) and RelyX™ U100 independent of the pre-treatment (GII to GIII) ( P < 0.05). The Multlink™ showed between RelyX™ ARC and RelyX™ U100 (GI to GIII; GII to GV) ( P < 0.05). The ANOVA showed significant statistical similar ( P > 0.05) to all resin cements between the Cervical to Apical regions (GI to GV). The use of 17% EDTA showed no difference significant between the resin cements evaluated (GII to GIII; GIV to GV). Within the limitations of the current study, it can be concluded that the use of EDTA did not provide efficiency on bond strength. The RelyX™ ARC

  19. 21 CFR 177.2510 - Polyvinylidene fluoride resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyvinylidene fluoride resins. 177.2510 Section... Repeated Use § 177.2510 Polyvinylidene fluoride resins. Polyvinylidene fluoride resins may be safely used... fluoride resins consist of basic resins produced by the polymerization of vinylidene fluoride. (b)...

  20. Effects of surface treatments, thermocycling, and cyclic loading on the bond strength of a resin cement bonded to a lithium disilicate glass ceramic.

    PubMed

    Guarda, G B; Correr, A B; Gonçalves, L S; Costa, A R; Borges, G A; Sinhoreti, M A C; Correr-Sobrinho, L

    2013-01-01

    SUMMARY Objectives : The aim of this present study was to investigate the effect of two surface treatments, fatigue and thermocycling, on the microtensile bond strength of a newly introduced lithium disilicate glass ceramic (IPS e.max Press, Ivoclar Vivadent) and a dual-cured resin cement. Methods : A total of 18 ceramic blocks (10 mm long × 7 mm wide × 3.0 mm thick) were fabricated and divided into six groups (n=3): groups 1, 2, and 3-air particle abraded for five seconds with 50-μm aluminum oxide particles; groups 4, 5, and 6-acid etched with 10% hydrofluoric acid for 20 seconds. A silane coupling agent was applied onto all specimens and allowed to dry for five seconds, and the ceramic blocks were bonded to a block of composite Tetric N-Ceram (Ivoclar Vivadent) with RelyX ARC (3M ESPE) resin cement and placed under a 500-g static load for two minutes. The cement excess was removed with a disposable microbrush, and four periods of light activation for 40 seconds each were performed at right angles using an LED curing unit (UltraLume LED 5, Ultradent) with a final 40 second light exposure from the top surface. All of the specimens were stored in distilled water at 37°C for 24 hours. Groups 2 and 5 were submitted to 3,000 thermal cycles between 5°C and 55°C, and groups 3 and 6 were submitted to a fatigue test of 100,000 cycles at 2 Hz. Specimens were sectioned perpendicular to the bonding area to obtain beams with a cross-sectional area of 1 mm(2) (30 beams per group) and submitted to a microtensile bond strength test in a testing machine (EZ Test) at a crosshead speed of 0.5 mm/min. Data were submitted to analysis of variance and Tukey post hoc test (p≤0.05). Results : The microtensile bond strength values (MPa) were 26.9 ± 6.9, 22.2 ± 7.8, and 21.2 ± 9.1 for groups 1-3 and 35.0 ± 9.6, 24.3 ± 8.9, and 23.9 ± 6.3 for groups 4-6. For the control group, fatigue testing and thermocycling produced a predominance of adhesive failures. Fatigue and

  1. Scintillating 99Tc Selective Ion Exchange Resins

    SciTech Connect

    Mitchell Greenhalgh; Richard D. Tillotson

    2012-07-01

    Scintillating technetium (99Tc) selective ion exchange resins have been developed and evaluated for equilibrium capacities and detection efficiencies. These resins can be utilized for the in-situ concentration and detection of low levels of pertechnetate anions (99TcO4-) in natural waters. Three different polystyrene type resin support materials were impregnated with varying amounts of tricaprylmethylammonium chloride (Aliquat 336) extractant, several different scintillating fluors and wavelength shifters. The prepared resins were contacted batch-wise to equilibrium over a wide range of 99TcO4- concentrations in natural water. The measured capacities were used to develop Langmuir adsorption isotherms for each resin. 99Tc detection efficiencies were determined and up to 71.4 ± 2.6% was achieved with some resins. The results demonstrate that a low level detection limit for 99TcO4- in natural waters can be realized.

  2. Development of tough, moisture resistant laminating resins

    NASA Technical Reports Server (NTRS)

    Brand, R. A.; Harrison, E. S.

    1982-01-01

    Tough, moisture resistant laminating resins for employment with graphite fibers were developed. The new laminating resins exhibited cost, handleability and processing characteristics equivalent to 394K (250 F) curing epoxies. The laminating resins were based on bisphenol A dicyanate and monofunctional cyanates with hydrophobic substituents. These resins sorb only small quantities of moisture at equilibrium (0.5% or less) with minimal glass transition temperature depression and represent an improvement over epoxies which sorb around 2% moisture at equilibrium. Toughening was accomplished by the precipitation of small diameter particles of butadiene nitrile rubber throughout the resin matrix. The rubber domains act as microcrack termini and energy dissipation sites, allowing increased stress accommodation prior to catastrophic failure. A unique blend of amine terminated butadiene nitrile elastomer (MW 2,000) and a high nitrile content butadiene nitrile rubber yielded the desired resin morphology.

  3. New modified hydrocarbon resins; An alternative to styrenated terpene resins in hot melts

    SciTech Connect

    Carper, J.D. )

    1990-06-01

    This paper reports on the development of two hydrocarbon-based resin formulations that could be used with different thermoplastic block copolymers to formulate pressure-sensitive adhesives. Results are examined with one of these resins in formulations with styrene-isoprene-styrene (SIS) and styrene-butadiene (SB) compounds. The new modified hydrocarbon resin, with a softening point of 98{degrees} C, matches the adhesive performance of a terpene resin with a softening point of 105{degrees} C. The resin performs as well as the modified terpene in SIS-, SB-, and EVA-based adhesives. The new hydrocarbon resin is especially well suited for hot-melt adhesives. It exhibits low volatility, good color stability, and excellent melt viscosity stability. Since the new resin is based on petroleum hydrocarbon feedstocks, it should be available at moderate, stable prices. The other hydrocarbon resin, with a softening point of 85{degrees} C, produced comparable results.

  4. Resin selection criteria for tough composite structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Smith, G. T.

    1983-01-01

    Resin selection criteria are derived using a structured methodology consisting of an upward integrated mechanistic theory and its inverse (top-down structured theory). These criteria are expressed in a "criteria selection space" which are used to identify resin bulk properties for improved composite "toughness". The resin selection criteria correlate with a variety of experimental data including laminate strength, elevated temperature effects and impact resistance.

  5. Porous Ceramic Spheres from Ion Exchange Resin

    NASA Technical Reports Server (NTRS)

    Dynys, Fred

    2005-01-01

    A commercial cation ion exchange resin, cross-linked polystyrene, has been successfully used as a template to fabricate 20 to 50 micron porous ceramic spheres. Ion exchange resins have dual template capabilities. Pore architecture of the ceramic spheres can be altered by changing the template pattern. Templating can be achieved by utilizing the internal porous structure or the external surface of the resin beads. Synthesis methods and chemical/physical characteristics of the ceramic spheres will be reported.

  6. Characterization of PMR polyimide resin and prepreg

    NASA Technical Reports Server (NTRS)

    Lindenmeyer, P. H.; Sheppard, C. H.

    1984-01-01

    Procedures for the chemical characterization of PMR-15 resin solutions and graphite-reinforced prepregs were developed, and a chemical data base was established. In addition, a basic understanding of PMR-15 resin chemistry was gained; this was translated into effective processing procedures for the production of high quality graphite composites. During the program the PMR monomers and selected model compounds representative of postulated PMR-15 solution chemistry were acquired and characterized. Based on these data, a baseline PMR-15 resin was formulated and evaluated for processing characteristics and composite properties. Commercially available PMR-15 resins were then obtained and chemically characterized. Composite panels were fabricated and evaluated.

  7. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... for repeated use in contact with food. (d) Specifications—(1) Infrared identification. Perfluorocarbon resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The...

  8. Bending rigidity of composite resin coating clasps.

    PubMed

    Ikebe, K; Kibi, M; Ono, T; Nokubi, T

    1993-12-01

    The purpose of this study is to examine the bending profiles of composite resin coating cast clasps. The cobalt-chromium alloy cast clasps were made using tapered wax pattern. Silane coupling method (Silicoater MD, Kulzer Co.) was used to attach composite resin to metal surface. The breakage and the bending rigidity of composite resin coating clasps were evaluated. Results were as follows: 1) After the repeated bending test to the tips of clasp arm at 10,000 times in 0.25 mm deflection, neither crack on composite resin surface nor separation at resin/metal interface was observed in any specimen. 2) There was no significant difference in the bending rigidity of clasp arms between before and after composite resin coating. From these results, it was demonstrated that the composite resin coating cast clasp was available in clinical cases and coating with composite resin had little influence on the bending rigidity of clasp arms. Therefore, it was suggested that our clasp designing and fabricating system to control the bending rigidity of clasp arms could be applied to composite resin coating clasps. PMID:8935086

  9. Sand control with resin and explosive

    SciTech Connect

    Dees, J.M.; Begnaud, W.J.; Sahr, N.L.

    1992-09-08

    This patent describes a method for treating a well having perforated casing to prevent solids movement through the perforations and into the wellbore. It comprises positioning a quantity of liquid resin solution such that the solution occupies the interval of the casing having perforations; positioning an explosive in proximity with the liquid resin solution; detonating the explosive; displacing the liquid resin solution remaining in the wellbore after step (c) through the perforations with a displacing fluid; and injecting a chemical solution through the perforations to cause the resin to polymerize to form a consolidated permeable matrix.

  10. Novel silica-based ion exchange resin

    SciTech Connect

    1997-11-01

    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  11. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1982-01-01

    Results of a program designed to develop tough imide modified epoxy (IME) resins cured by bisimide amine (BIA) hardeners are presented. State of the art epoxy resin, MY720, was used. Three aromatic bisimide amines and one aromatic aliphatic BIA were evaluated. BIA's derived from 6F anhydride (3,3 prime 4,4 prime-(hexafluoro isopropyl idene) bis (phthalic anhydride) and diamines, 3,3 prime-diam nodiphenyl sulfone (3,3 prime-DDS), 4,4 prime-diamino diphenyl sulfone (4,4 prime-DDS), 1.12-dodecane diamine (1,12-DDA) were used. BIA's were abbreviated 6F-3,3 prime-DDS, 6F-4,4 prime-DDS, 6F-3,3 prime-DDS-4,4 prime DDS, and 6F-3,3 prime-DDS-1,12-DDA corresponding to 6F anhydride and diamines mentioned. Epoxy resin and BIA's (MY720/6F-3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA and a 50:50 mixture of a BIA and parent diamine, MY720/6F-3,3 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA/3,3 prime-DDS were studied to determine effect of structure and composition. Effect of the addition of two commercial epoxies, glyamine 200 and glyamine 100 on the properties of several formulations was evaluated. Bisimide amine cured epoxies were designated IME's (imide modified epoxy). Physical, thermal and mechanical properties of these resins were determined. Moisture absorption in boiling water exhibited by several of the IME's was considerably lower than the state of the art epoxies (from 3.2% for the control and state of the art to 2.0 wt% moisture absorption). Char yields are increased from 20% for control and state of the art epoxies to 40% for IME resins. Relative toughness characteristics of IME resins were measured by 10 deg off axis tensile tests of Celion 6000/IME composites. Results show that IME's containing 6F-3,3 prime-DDS or 6F-3,3 prime-DDS-1,12-DDA improved the "toughness" characteristics of composites by about 35% (tensile strength), about 35% (intralaminar shear

  12. High refractive index photocurable resins

    NASA Astrophysics Data System (ADS)

    Morford, Robert V.; Mercado, Ramil L.; Planje, Curtis E.; Flaim, Tony D.

    2005-04-01

    The performance of optoelectronic devices can be increased by incorporating a high refractive index layer into the system. This paper describes several potential high refractive index resin candidates. Our materials include the added advantages over other systems because the new materials are cationically photocurable and free flowing, have low shrinkage upon cure, have no (or little) volatile organic components, are applicable by a variety of methods (dip coating, roller coating, injection molding, or film casting), can be applied in a variety of thicknesses (10-100 m), are fast-curing, and possess robust physical properties. Particular attention focuses on the refractive index in the visible spectrum, light transmission, and formulation viscosity.

  13. Polyimide Resins Resist Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Spacecraft and aerospace engines share a common threat: high temperature. The temperatures experienced during atmospheric reentry can reach over 2,000 F, and the temperatures in rocket engines can reach well over 5,000 F. To combat the high temperatures in aerospace applications, Dr. Ruth Pater of Langley Research Center developed RP-46, a polyimide resin capable of withstanding the most brutal temperatures. The composite material can push the service temperature to the limits of organic materials. Designed as an environmentally friendly alternative to other high-temperature resins, the RP-46 polyimide resin system was awarded a 1992 "R&D 100" award, named a "2001 NASA Technology of the Year," and later, due to its success as a spinoff technology, "2004 NASA Commercial Invention of the Year." The technology s commercial success also led to its winning the Langley s "Paul F. Holloway Technology Transfer Award" as well as "Richard T. Whitcom Aerospace Technology Transfer Award" both for 2004. RP-46 is relatively inexpensive and it can be readily processed for use as an adhesive, composite, resin molding, coating, foam, or film. Its composite materials can be used in temperatures ranging from minus 150 F to 2,300 F. No other organic materials are known to be capable of such wide range and extreme high-temperature applications. In addition to answering the call for environmentally conscious high-temperature materials, RP-46 provides a slew of additional advantages: It is extremely lightweight (less than half the weight of aluminum), chemical and moisture resistant, strong, and flexible. Pater also developed a similar technology, RP-50, using many of the same methods she used with RP-46, and very similar in composition to RP-46 in terms of its thermal capacity and chemical construction, but it has different applications, as this material is a coating as opposed to a buildable composite. A NASA license for use of this material outside of the Space Agency as well as

  14. Phosphorus-containing imide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1985-01-01

    Cured polymers of bis and tris-imides derived from tris(m-aminophenyl) phosphine oxides by reaction with maleic anhydride or its derivatives, and addition polymers of such imides, including a variant in which a monoimide is condensed with a dianhydride and the product is treated with a further quantity of maleic anhydride prior to curing are disclosed and claimed. Such polymers are flame resistant. Also disclosed are an improved method of producing tris(m-aminophenyl) phosphine oxides from the nitro analogues by reduction with hydrazine hydrate using palladized charcoal or Raney nickel as the catalyst and fiber reinforced cured resin composites.

  15. 21 CFR 175.380 - Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... condensation of xylene-formaldehyde resin and 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins, to... include resins produced by the condensation of allyl ether of mono-, di-, or trimethylol phenol and...

  16. Silicone modified resins for graphite fiber laminates

    NASA Technical Reports Server (NTRS)

    Frost, L. W.; Bower, G. M.

    1980-01-01

    Six silicone modified resins were selected for evaluation in unidirectional filament wound graphite laminates. Neat samples of these resins had 1,000 C char residues of 6-63%. The highest flexural values measured for the laminates were a strength of 1,220 MPa and a modulus of 105 GPa. The highest interlaminar shear strength was 72 MPa.

  17. Some experiences with epoxy resin grouting compounds.

    PubMed

    Hosein, H R

    1980-07-01

    Epoxy resin systems are used in tiling and grouting in the construction industry. Because of the nature of the application, skin contact is the primary hazard. The most prevalent reaction was reddening of the forearms, followed by whole body reddening and loss of appetite, these latter two being associated with smoking while applying the resin. PMID:7415974

  18. Fluorinated diamond bonded in fluorocarbon resin

    DOEpatents

    Taylor, Gene W.

    1982-01-01

    By fluorinating diamond grit, the grit may be readily bonded into a fluorocarbon resin matrix. The matrix is formed by simple hot pressing techniques. Diamond grinding wheels may advantageously be manufactured using such a matrix. Teflon fluorocarbon resins are particularly well suited for using in forming the matrix.

  19. Modified resins for solid-phase extraction

    DOEpatents

    Fritz, James S.; Sun, Jeffrey J.

    1993-07-27

    A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.

  20. Modified resins for solid-phase extraction

    DOEpatents

    Fritz, James S.; Sun, Jeffrey J.

    1991-12-10

    A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.

  1. 21 CFR 177.1555 - Polyarylate resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1555 Polyarylate resins. Polyarylate resins (CAS Reg. No. 51706-10-6) may be safely used as articles or components of articles intended for use...

  2. 21 CFR 177.1555 - Polyarylate resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1555 Polyarylate resins. Polyarylate resins (CAS Reg. No. 51706-10-6) may be safely used as articles or components of articles intended for use...

  3. 21 CFR 177.1555 - Polyarylate resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1555 Polyarylate resins. Polyarylate resins (CAS Reg. No. 51706-10-6) may be safely used as articles or components of articles intended for use...

  4. TMI-2 purification demineralizer resin study

    SciTech Connect

    Thompson, J D; Osterhoudt, T R

    1984-05-01

    Study of the Makeup and Purification System demineralizers at TMI-2 has established that fuel quantities in the vessels are low, precluding criticality, that the high radioactive cesium concentration on the demineralizer resins can be chemically removed, and that the demineralizer resins can probably be removed from the vessels by sluicing through existing plant piping. Radiation measurements from outside the demineralizers establishing that there is between 1.5 and 5.1 (probably 3.3) lb of fuel in the A vessel and less than that amount in the B vessel. Dose rates up to 2780 R per hour were measured on contact with the A demineralizer. Remote visual observation of the A demineralizer showed a crystalline crust overlaying amber-colored resins. The cesium activity in solid resin samples ranged from 220 to 16,900 ..mu..Ci/g. Based on this information, researchers concluded that the resins cannot be removed through the normal pathway in their present condition. Studies do show that the resins will withstand chemical processing designed to rinse and elute cesium from the resins. The process developed should work on the TMI-2 resins.

  5. Effect of Resin Viscosity in Fiber Reinforcement Compaction in Resin Injection Pultrusion Process

    NASA Astrophysics Data System (ADS)

    Shakya, N.; Roux, J. A.; Jeswani, A. L.

    2013-12-01

    In resin injection pultrusion, the liquid resin is injected through the injection slots into the fiber reinforcement; the liquid resin penetrates through the fibers as well as pushes the fibers towards the centerplane causing fiber compaction. The compacted fibers are more difficult to penetrate, thus higher resin injection pressure becomes necessary to achieve complete reinforcement wetout. Lower injection pressures below a certain range (depending upon the fiber volume fraction and resin viscosity) cannot effectively penetrate through the fiber bed and thus cannot achieve complete wetout. Also, if the degree of compaction is very high the fibers might become essentially impenetrable. The more viscous the resin is, the harder it is to penetrate through the fibers and vice versa. The effect of resin viscosity on complete wetout achievement with reference to fiber-reinforcement compaction is presented in this study.

  6. Optical and color stabilities of paint-on resins for shade modification of restorative resins.

    PubMed

    Arikawa, Hiroyuki; Kanie, Takahito; Fujii, Koichi; Ban, Seiji; Homma, Tetsuya; Takahashi, Hideo

    2004-06-01

    The purpose of this study was to examine the optical and color stabilities of the paint-on resin used for shade modification of restorative resins. Three shades of paint-on resin and two crown and bridge resins were used. The light transmittance characteristics of the materials during accelerated aging tests such as water immersion, toothbrush abrasion, ultraviolet (UV) light irradiation, and staining tests were measured. Discolorations of materials resulting from tests were also determined. There were no significant effects of water immersion, toothbrush abrasion and UV light irradiation on the light transmittance and visible color change of paint-on resins, whereas the staining tests significantly decreased the light transmittance and increased color change of the translucent shades of materials. Our results indicate that the paint-on resins exhibit stable optical properties and color appearance, which are at least as good as the crown and bridge resins. PMID:15287561

  7. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Techniques were developed that provided thermo-oxidatively stable A-type polyimide/graphite fiber composites using the approach of in situ polymerization of monomeric reactants directly on reinforcing fibers, rather than employing separately prepared prepolymer varnish. This was accomplished by simply mixing methylene dianiline and two ester-acids and applying this solution to the fibers for subsequent molding. Five different formulated molecular weight resins were examined, and an optimized die molding procedure established for the 1500 formulated molecular weight system. Extensive ultrasonic inspection of composites was successfully utilized as a technique for monitoring laminate quality. Composite mechanical property studies were conducted with this polyimide resin at room temperature and after various time exposures in a thermo-oxidative environment at 561 K (550 F), 589 K (600 F) and 617 K (650 F). It was determined that such composites have a long term life in the temperature range of 561 K to 589 K. The final phase involved the fabrication and evaluation of a series of demonstration airfoil specimens.

  8. Evaluation of resins for provisional restorations.

    PubMed

    Burgess, J O; Haveman, C W; Butzin, C

    1992-06-01

    An in vivo study of two resin materials (Barricaid and Caulk Temporary Crown and Bridge Resin) was done to determine the retention, post-operative sensitivity, and fabrication time of provisional restorations made from these materials. Following the placement of these resins in 67 intracoronal cavity preparations of 19 adult patients, a baseline evaluation was made which included a clinical examination and color slides. Twenty-four hours after the temporary restorations were placed, the patients completed evaluations of the post-operative sensitivity experienced. There was no difference in post-operative sensitivity between the teeth restored with Barricaid or Caulk Temporary Crown and Bridge Resin. At the insertion appointment of the final restoration, the interim restoration's success rate was determined. There was no difference between the retention of the two provisional materials. Fabrication time was significantly different with Barricaid restorations requiring less than one-half the fabrication time of the Caulk Temporary Crown and Bridge Resin material. PMID:1388950

  9. Release and toxicity of dental resin composite

    PubMed Central

    Gupta, Saurabh K.; Saxena, Payal; Pant, Vandana A.; Pant, Aditya B.

    2012-01-01

    Dental resin composite that are tooth-colored materials have been considered as possible substitutes to mercury-containing silver amalgam filling. Despite the fact that dental resin composites have improved their physico-chemical properties, the concern for its intrinsic toxicity remains high. Some components of restorative composite resins are released in the oral environment initially during polymerization reaction and later due to degradation of the material. In vitro and in vivo studies have clearly identified that these components of restorative composite resins are toxic. But there is a large gap between the results published by research laboratories and clinical reports. The objective of this manuscript was to review the literature on release phenomenon as well as in vitro and in vivo toxicity of dental resin composite. Interpretation made from the recent data was also outlined. PMID:23293458

  10. Physical Properties of Synthetic Resin Materials

    NASA Technical Reports Server (NTRS)

    Fishbein, Meyer

    1939-01-01

    A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

  11. Solidification of ion exchange resin wastes

    SciTech Connect

    Not Available

    1982-08-01

    Solidification media investigated included portland type I, portland type III and high alumina cements, a proprietary gypsum-based polymer modified cement, and a vinyl ester-styrene thermosetting plastic. Samples formulated with hydraulic cement were analyzed to investigate the effects of resin type, resin loading, waste-to-cement ratio, and water-to-cement ratio. The solidification of cation resin wastes with portland cement was characterized by excessive swelling and cracking of waste forms, both after curing and during immersion testing. Mixed bed resin waste formulations were limited by their cation component. Additives to improve the mechanical properties of portland cement-ion exchange resin waste forms were evaluated. High alumina cement formulations dislayed a resistance to deterioration of mechanical integrity during immersion testing, thus providing a significant advantage over portland cements for the solidification of resin wastes. Properties of cement-ion exchange resin waste forms were examined. An experiment was conducted to study the leachability of /sup 137/Cs, /sup 85/Sr, and /sup 60/Co from resins modified in portland type III and high alumina cements. The cumulative /sup 137/Cs fraction release was at least an order of magnitude greater than that of either /sup 85/Sr or /sup 60/Co. Release rates of /sup 137/Cs in high alumina cement were greater than those in portland III cement by a factor of two.Compressive strength and leach testing were conducted for resin wastes solidified with polymer-modified gypsum based cement. /sup 137/Cs, /sup 85/Sr, and /sup 60/Co fraction releases were about one, two and three orders of magnitude higher, respectively, than in equivalent portland type III cement formulations. As much as 28.6 wt % dry ion exchange resin was successfully solidified using vinyl ester-styrene compared with a maximum of 25 wt % in both portland and gypsum-based cement.

  12. Marginal gap, cement thickness, and microleakage of 2 zirconia crown systems luted with glass ionomer and MDP-based cements.

    PubMed

    Sener, Isil; Turker, Begum; Valandro, Luiz Felipe; Ozcan, Mutlu

    2014-01-01

    This in vitro study evaluated the marginal gap, cement thickness, and microleakage of glass-ionomer cement (GIC) and phosphate monomer-containing resin cement (MDP-RC) under 2 zirconia crown systems (Cercon and DC-Zirkon). Forty human premolars were prepared for all-ceramic zirconia crowns with a 1 mm circumferential finish line and a 1.5 mm occlusal reduction. The crowns (n = 10 per group) from each zirconia system were randomly divided into 2 groups and cemented either with GIC (Vivaglass CEM) or MDP-RC (Panavia F 2.0) cement. The cemented crowns were thermocycled 5000 times (5°-55°C). The crowns were immersed in 0.5% basic fuchsine dye solution for 24 hours and sectioned buccolingually and mesiodistally. Specimens were examined under optical microscope (100X). Data were analyzed using Student t-test and chi-square tests (α = 0.05). Mean marginal gap values for Cercon (85 ± 11.4 μm) were significantly higher than for DC-Zircon (75.3 ± 13.2 μm) (P = 0.018). The mean cement thickness values of GIC (81.7 ± 13.9 μm) and MDP-RC (78.5 ± 12.5 μm) were not significantly different (P = 0.447). Microleakage scores did not demonstrate significant difference between GIC (P = 0.385) and MDP-RC (P = 0.631) under Cercon or DC-Zircon. Considering the cement thickness values and microleakage scores obtained, both zirconia crown systems could be cemented in combination with either GIC or MDP-RC. PMID:24598500

  13. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Processing techniques were developed for the fabrication of both polyphenylquinoxaline and polyimide composites by the in situ polymerization of monomeric reactants directly on the graphite reinforcing fibers, rather than using previously prepared prepolymer varnishes. Void-free polyphenylquinoxaline composites were fabricated and evaluated for room and elevated flexure and shear properties. The technology of the polyimide system was advanced to the point where the material is ready for commercial exploitation. A reproducible processing cycle free of operator judgment factors was developed for fabrication of void-free composites exhibiting excellent mechanical properties and a long time isothermal life in the range of 288 C to 316 C. The effects of monomer reactant stoichiometry and process modification on resin flow were investigated. Demonstration of the utility and quality of this polyimide system was provided through the successful fabrication and evaluation of four complex high tip speed fan blades.

  14. Increased tooth mobility because of loss of alveolar bone support: a hazard for zirconia two-unit cantilever resin-bonded FDPs in vitro?

    PubMed

    Sterzenbach, Guido; Tunjan, Rene; Rosentritt, Martin; Naumann, Michael

    2014-02-01

    This study evaluates in vitro the impact of increased abutment tooth mobility on survival of zirconia-based two-unit cantilever resin-bonded fixed dental prosthesis (RB-FDP) by long-term dynamic loading in a chewing simulator. Human maxillary central incisors (n = 32) were endodontically treated and alveolar bone loss was simulated: 0% (group B), 25% (group C), and 50% (group D). RB-FDPs were adhesively luted. Zirconia full crown two-unit FDPs served as control (group A). Specimens were exposed to simulated clinical function by two subsequent sequences of thermal-cycling (2 × 3.000) parallel to mechanical loading (1.2 × 10(6) load cycles) (TCML; first sequence: load 1-25 N; second sequence: load 1-50 N). Tooth mobility increased significantly as the simulated bone level decreased (p < 0.001). Log-rank tests revealed no significant differences between experimental groups (p = 0.479). The results support the assumption that zirconia-based two-unit cantilever RB-FDPs may be an appropriate treatment option, even if abutment tooth mobility increase because of alveolar bone loss. However, debonding of zirconia-based two-unit RB-FDPs will be a likely event, whereas fatal failures of the abutment teeth may not occur. PMID:23997026

  15. 49 CFR 173.165 - Polyester resin kits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Polyester resin kits. 173.165 Section 173.165... Polyester resin kits. (a) Polyester resin kits consisting of a base material component (Class 3, Packing..., according to the criteria for Class 3, applied to the base material. Additionally, polyester resin kits...

  16. 49 CFR 173.165 - Polyester resin kits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Polyester resin kits. 173.165 Section 173.165... Polyester resin kits. (a) Polyester resin kits consisting of a base material component (Class 3, Packing..., according to the criteria for Class 3, applied to the base material. Additionally, polyester resin kits...

  17. 49 CFR 173.165 - Polyester resin kits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Polyester resin kits. 173.165 Section 173.165... Polyester resin kits. (a) Except for transportation by aircraft, polyester resin kits consisting of a base.... Additionally, unless otherwise excepted in this subchapter, polyester resin kits must be packaged...

  18. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be...) Acrylamide-acrylic acid resins are produced by the polymerization of acrylamide with partial hydrolysis or...

  19. 21 CFR 177.2355 - Mineral reinforced nylon resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Mineral reinforced nylon resins. 177.2355 Section... Repeated Use § 177.2355 Mineral reinforced nylon resins. Mineral reinforced nylon resins identified in... reinforced nylon resins consist of nylon 66, as identified in and complying with the specifications of §...

  20. Properties of a nanodielectric cryogenic resin

    SciTech Connect

    Polyzos, Georgios; Tuncer, Enis; Sauers, Isidor; More, Karren Leslie

    2010-01-01

    Physical properties of a nanodielectric composed of in situ synthesized titanium dioxide (TiO{sub 2}) nanoparticles ({le} 5 nm in diameter) and a cryogenic resin are reported. The dielectric losses were reduced by a factor of 2 in the nanocomposite, indicating that the presence of small TiO{sub 2} nanoparticles restricted the mobility of the polymer chains. Dielectric breakdown data of the nanodielectric was distributed over a narrower range than that of the unfilled resin. The nanodielectric had 1.56 times higher 1% breakdown probability than the resin, yielding 0.64 times thinner insulation thickness for the same voltage level, which is beneficial in high voltage engineering.

  1. Class II Resin Composites: Restorative Options.

    PubMed

    Patel, Minesh; Mehta, Shamir B; Banerji, Subir

    2015-10-01

    Tooth-coloured, resin composite restorations are amongst the most frequently prescribed forms of dental restoration to manage defects in posterior teeth. The attainment of a desirable outcome when placing posterior resin composite restorations requires the clinician to have a good understanding of the benefits (as well as the limitations) posed by this material, together with a sound knowledge of placement technique. Numerous protocols and materials have evolved to assist the dental operator with this type of demanding posterior restoration. With the use of case examples, four techniques available are reported here. CPD/Clinical Relevance: This article explores varying techniques for the restoration of Class II cavities using resin composite. PMID:26685471

  2. Improved microbial-check-valve resins

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1980-01-01

    Improved microbial-check-valve resins have been tested for their microbicidal effectiveness and long-term stability. Resins give more-stable iodine concentrations than previous preparations and do not impart objectionable odor or taste to treated water. Microbial check valve is small cylindrical device, packed with iodide-saturated resin, that is installed in water line where contamination by micro-organisms is to be prevented. Prototype microbial check valve was tested for stability and performance under harsh environmental conditions. Effectiveness was 100 percent at 35 deg, 70 deg, and 160 deg F (2 deg, 21 deg, and 71 deg C).

  3. Chemical Characterization of Phenol/Formaldehyde Resins

    NASA Technical Reports Server (NTRS)

    Brayden, T. H.

    1986-01-01

    Report discusses tests of commercial phenol/formaldehyde resins to establish relationships among composition before use, behavior during curing, and strength after curing. Resin used in carbon/carbon laminates. In curing process, two molecules of phenol joined together in sequence of reactions involving molecule of formaldehyde. Last step of sequence, molecule of water released. Sequence repeats until one of ingredients used up, leaving solidified thermoset plastic. Issues to be resolved: number and relative abundances of ingredients, presence of certain chemical groups, heat-producing ability of resin, and range of molecular weights present.

  4. SEM and elemental analysis of composite resins

    SciTech Connect

    Hosoda, H.; Yamada, T.; Inokoshi, S. )

    1990-12-01

    Twenty-four chemically cured, 21 light-cured anterior, three light-cured anterior/posterior, and 18 light-cured posterior composite resins were examined using scanning electron microscopy, and the elemental composition of their filler particles was analyzed with an energy dispersive electron probe microanalyzer. According to the results obtained, the composite resins were divided into five groups (traditional, microfilled type, submicrofilled type, hybrid type, and semihybrid), with two additional hypothetical categories (microfilled and hybrid). Characteristics of each type were described with clinical indications for selective guidance of respective composite resins for clinical use.

  5. Cobalt Ions Improve the Strength of Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St. Clair, A. K.

    1986-01-01

    Technique developed for improving mechanical strength of epoxy resins by adding cobalt ions in form of tris(acetylacetonato)cobalt (III) complex. Solid cast disks prepared from cobalt ion-containing epoxy resins tested for flexural strength and stiffness. Incorporation of cobalt ions into epoxies increased flexural strength of resins by 10 to 95 percent. Suitable resins for this technique include any liquid or solid TGMDA resins. Improved epoxy formulation proves useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft.

  6. Hydraulic Permeability of Resorcinol-Formaldehyde Resin

    SciTech Connect

    Taylor, Paul Allen

    2010-01-01

    An ion exchange process using spherical resorcinol-formaldehyde (RF) resin is the baseline process for removing cesium from the dissolved salt solution in the high-level waste tanks at the Hanford Site, using large scale columns as part of the Waste Treatment Plant (WTP). The RF resin is also being evaluated for use in the proposed small column ion exchange (SCIX) system, which is an alternative treatment option at Hanford and at the Savannah River Site (SRS). A recirculating test loop with a small ion exchange column was used to measure the effect of oxygen uptake and radiation exposure on the permeability of a packed bed of the RF resin. The lab-scale column was designed to be prototypic of the proposed Hanford columns at the WTP. Although the test equipment was designed to model the Hanford ion exchange columns, the data on changes in the hydraulic permeability of the resin will also be valuable for determining potential pressure drops through the proposed SCIX system. The superficial fluid velocity in the lab-scale test (3.4-5.7 cm/s) was much higher than is planned for the full-scale Hanford columns to generate the maximum pressure drop expected in those columns (9.7 psig). The frictional drag from this high velocity produced forces on the resin in the lab-scale tests that matched the design basis of the full-scale Hanford column. Any changes in the resin caused by the radiation exposure and oxygen uptake were monitored by measuring the pressure drop through the lab-scale column and the physical properties of the resin. Three hydraulic test runs were completed, the first using fresh RF resin at 25 C, the second using irradiated resin at 25 C, and the third using irradiated resin at 45 C. A Hanford AP-101 simulant solution was recirculated through a test column containing 500 mL of Na-form RF resin. Known amounts of oxygen were introduced into the primary recirculation loop by saturating measured volumes of the simulant solution with oxygen and reintroducing

  7. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite.

    PubMed

    Croll, Theodore P; Berg, Joel H; Donly, Kevin J

    2015-01-01

    This report documents treatment and repair of three carious teeth that were restored with a new dental repair material that features the characteristics of both resin-modified glass-ionomer restorative cement (RMGI) and resin-based composite (RBC). The restorative products presented are reported by the manufacturer to be the first bioactive dental materials with an ionic resin matrix, a shock-absorbing resin component, and bioactive fillers that mimic the physical and chemical properties of natural teeth. The restorative material and base/liner, which feature three hardening mechanisms, could prove to be a notable advancement in the adhesive dentistry restorative materials continuum. PMID:25822408

  8. Phenoxy resins containing pendent ethynyl groups and cured resins obtained therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M. (Inventor)

    1985-01-01

    Phenoxy resins containing pendent ethynyl groups, the process for preparing the same, and the cured resin products obtained therefrom are disclosed. Upon the application of heat, the ethynyl groups react to provide branching and crosslinking with the cure temperature being lowered by using a catalyst if desired but not required. The cured phenoxy resins containing pendent ethynyl groups have improved solvent resistance and higher use temperature than linear uncrosslinked phenoxy resins and are applicable for use as coatings, films, adhesives, composited matrices and molding compounds.

  9. Method for regenerating magnetic polyamine-epichlorohydrin resin

    DOEpatents

    Kochen, Robert L.; Navratil, James D.

    1997-07-29

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.

  10. Method for regenerating magnetic polyamine-epichlorohydrin resin

    DOEpatents

    Kochen, R.L.; Navratil, J.D.

    1997-07-29

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately. 9 figs.

  11. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... articles intended for repeated use in contact with food. (d) Specifications—(1) Infrared identification. Perfluorocarbon resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The...

  12. Determining resin/fiber content of laminates

    NASA Technical Reports Server (NTRS)

    Garrard, G. G.; Houston, D. W.

    1979-01-01

    Article discusses procedure where hydrazine is used to extract graphite fibers from cured polyimide resin. Method does not attack graphite fibers and is faster than hot-concentrated-acid digestion process.

  13. Silicone modified resins for graphite fiber laminates

    NASA Technical Reports Server (NTRS)

    Frost, L. W.; Bower, G. M.

    1979-01-01

    The development of silicon modified resins for graphite fiber laminates which will prevent the dispersal of graphite fibers when the composites are burned is discussed. Eighty-five silicone modified resins were synthesized and evaluated including unsaturated polyesters, thermosetting methacrylates, epoxies, polyimides, and phenolics. Neat resins were judged in terms of Si content, homogeneity, hardness, Char formation, and thermal stability. Char formation was estimated by thermogravimetry to 1,000 C in air and in N2. Thermal stability was evaluated by isothermal weight loss measurements for 200 hrs in air at three temperatures. Four silicone modified epoxies were selected for evaluation in unidirectional filament wound graphite laminates. Neat samples of these resins had 1,000 C char residues of 25 to 50%. The highest flexural values measured for the laminates were a strength of 140 kpsi and a modulus of 10 Mpsi. The highest interlaminar shear strength was 5.3 kpsi.

  14. Synthesis of improved phenolic and polyester resins

    NASA Technical Reports Server (NTRS)

    Delano, C. B.

    1980-01-01

    Thirty-seven cured phenolic resin compositions were prepared and tested for their ability to provide improved char residues and moisture resistance over state of the art epoxy resin composite matrices. Cyanate, epoxy novolac and vinyl ester resins were investigated. Char promoter additives were found to increase the anaerobic char yield at 800 C of epoxy novolacs and vinyl esters. Moisture resistant cyanate and vinyl ester compositions were investigated as composite matrices with Thornel 300 graphite fiber. A cyanate composite matrix provided state of the art composite mechanical properties before and after humidity exposure and an anaerobic char yield of 46 percent at 800 C. The outstanding moisture resistance of the matrix was not completely realized in the composite. Vinyl ester resins showed promise as candidates for improved composite matrix systems.

  15. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  16. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  17. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  18. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  19. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  20. Improved high-temperature resistant matrix resins

    NASA Technical Reports Server (NTRS)

    Green, H. E.; Chang, G. E.; Wright, W. F.; Ueda, K.; Orell, M. K.

    1989-01-01

    A study was performed with the objective of developing matrix resins that exhibit improved thermo-oxidative stability over state-of-the-art high temperature resins for use at temperatures up to 644 K (700 F) and air pressures up to 0.7 MPa (100 psia). The work was based upon a TRW discovered family of polyimides currently licensed to and marketed by Ethyl Corporation as EYMYD(R) resins. The approach investigated to provide improved thermo-oxidative properties was to use halogenated derivatives of the diamine, 2, 2-bis (4-(4-aminophenoxy)phenyl) hexafluoropropane (4-BDAF). Polyimide neat resins and Celion(R) 12,000 composites prepared from fluorine substituted 4-BDAF demonstrated unexpectedly lower glass transition temperatures (Tg) and thermo-oxidative stabilities than the baseline 4-BDAF/PMDA polymer.

  1. 40 CFR 414.40 - Applicability; description of the thermoplastic resins subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the products classified under SIC 28213 thermoplastic resins including those resins and resin groups... Butyrates Cellulose Acetate Resin *Cellulose Acetates *Cellulose Acetates Propionates Cellulose Nitrate... Polymers Nylon 11 Resin *Nylon 6-66 Copolymers *Nylon 6—Nylon 11 Blends Nylon 6 Resin Nylon 612 Resin...

  2. 40 CFR 414.40 - Applicability; description of the thermoplastic resins subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the products classified under SIC 28213 thermoplastic resins including those resins and resin groups... Butyrates Cellulose Acetate Resin *Cellulose Acetates *Cellulose Acetates Propionates Cellulose Nitrate... Polymers Nylon 11 Resin *Nylon 6-66 Copolymers *Nylon 6—Nylon 11 Blends Nylon 6 Resin Nylon 612 Resin...

  3. 40 CFR 414.40 - Applicability; description of the thermoplastic resins subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the products classified under SIC 28213 thermoplastic resins including those resins and resin groups... Butyrates Cellulose Acetate Resin *Cellulose Acetates *Cellulose Acetates Propionates Cellulose Nitrate... Polymers Nylon 11 Resin *Nylon 6-66 Copolymers *Nylon 6—Nylon 11 Blends Nylon 6 Resin Nylon 612 Resin...

  4. 40 CFR 414.40 - Applicability; description of the thermoplastic resins subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the products classified under SIC 28213 thermoplastic resins including those resins and resin groups... Butyrates Cellulose Acetate Resin *Cellulose Acetates *Cellulose Acetates Propionates Cellulose Nitrate... Polymers Nylon 11 Resin *Nylon 6-66 Copolymers *Nylon 6—Nylon 11 Blends Nylon 6 Resin Nylon 612 Resin...

  5. 40 CFR 414.40 - Applicability; description of the thermoplastic resins subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the products classified under SIC 28213 thermoplastic resins including those resins and resin groups... Butyrates Cellulose Acetate Resin *Cellulose Acetates *Cellulose Acetates Propionates Cellulose Nitrate... Polymers Nylon 11 Resin *Nylon 6-66 Copolymers *Nylon 6—Nylon 11 Blends Nylon 6 Resin Nylon 612 Resin...

  6. Radiation testing of organic ion exchange resins

    SciTech Connect

    Carlson, C.D.; Bray, L.A.; Bryan, S.A.

    1995-09-01

    A number of ion exchange materials are being evaluated as part of the Tank Waste Remediation System (TWRS) Pacific Northwest Laboratory (PNL) Pretreatment Project for the removal of {sup 137}Cs from aqueous tank wastes. Two of these materials are organic resins; a phenol-formaldehyde resin (Duolite CS-100) produced by Rohm and Haas Co. (Philadelphia, Pennsylvania) and a resorcinol-formaldehyde (RF) resin produced by Boulder Scientific Co. (Mead, Colorado). One of the key parameters in the assessment of the organic based ion exchange materials is its useful lifetime in the radioactive and chemical environment that will be encountered during waste processing. The focus of the work presented in this report is the radiation stability of the CS-100 and the RF resins. The scope of the testing included one test with a sample of the CS-100 resin and testing of two batches of the RF resin (BSC-187 and BSC-210). Samples of the exchangers were irradiated with a {sup 60}Co source to a total absorbed dose of 10{sup 9} R over a period of 5 months in a static (no flow) and a flowing configuration with neutralized current acid waste (NCAW) simulant as a feed. Based on a maximum concentration of {sup 137}Cs on the resin that would result from processing NCAW, this dose represents an operational period of at least 150 days for the RF resin and at least 1260 days for the CS-100 resin. Gas generation in the static experiment was continuously monitored and G values (molecules of gas per 100 eV) were determined for each species. Resin samples were obtained periodically and the equilibrium behavior of the resins was assessed by determining the distribution coefficients (K{sub d}s). Structural information was also obtained by {sup 13}C cross polarization magic angle (CPMAS) nuclear magnetic resonance (NMR) spectrometry and Fourier Transform Infrared (FTIR) spectroscopy so that changes to the chemical structure could be correlated with changes in K{sub d}.

  7. Cesium-specific phenolic ion exchange resin

    DOEpatents

    Bibler, Jane P.; Wallace, Richard M.

    1995-01-01

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio.

  8. Cesium-specific phenolic ion exchange resin

    DOEpatents

    Bibler, J.P.; Wallace, R.M.

    1995-08-15

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio. 2 figs.

  9. Improvement of enamel bond strengths for conventional and resin-modified glass ionomers: acid-etching vs. conditioning*

    PubMed Central

    Zhang, Ling; Tang, Tian; Zhang, Zhen-liang; Liang, Bing; Wang, Xiao-miao; Fu, Bai-ping

    2013-01-01

    Objective: This study deals with the effect of phosphoric acid etching and conditioning on enamel micro-tensile bond strengths (μTBSs) of conventional and resin-modified glass ionomer cements (GICs/RMGICs). Methods: Forty-eight bovine incisors were prepared into rectangular blocks. Highly-polished labial enamel surfaces were either acid-etched, conditioned with liquids of cements, or not further treated (control). Subsequently, two matching pre-treated enamel surfaces were cemented together with one of four cements [two GICs: Fuji I (GC), Ketac Cem Easymix (3M ESPE); two RMGICs: Fuji Plus (GC), RelyX Luting (3M ESPE)] in preparation for μTBS tests. Pre-treated enamel surfaces and cement-enamel interfaces were analyzed by scanning electron microscopy (SEM). Results: Phosphoric acid etching significantly increased the enamel μTBS of GICs/RMGICs. Conditioning with the liquids of the cements produced significantly weaker or equivalent enamel μTBS compared to the control. Regardless of etching, RMGICs yielded stronger enamel μTBS than GICs. A visible hybrid layer was found at certain enamel-cement interfaces of the etched enamels. Conclusions: Phosphoric acid etching significantly increased the enamel μTBSs of GICs/RMGICs. Phosphoric acid etching should be recommended to etch the enamel margins before the cementation of the prostheses such as inlays and onlays, using GICs/RMGICs to improve the bond strengths. RMGICs provided stronger enamel bond strength than GICs and conditioning did not increase enamel bond strength. PMID:24190447

  10. Cleanup of TMI-2 demineralizer resins

    SciTech Connect

    Bond, W.D.; King, L.J.; Knauer, J.B.; Hofstetter, K.J.; Thompson, J.D.

    1985-01-01

    Radiocesium is being removed from Demineralizers A and B (DA and DB by a process that was developed from laboratory tests on small samples of resin from the demineralizers. The process was designed to elute the radiocesium from the demineralizer resins and then to resorb it onto the zeolite ion exchangers contained in the Submerged Demineralizer System (SDS). The process was also required to limit the maximum cesium activities in the resin eluates (SDS feeds) so that the radiation field surrounding the pipelines would not be excessive. The process consists of 17 stages of batch elution. In the initial stage, the resin is contacted with 0.18 M boric acid. Subsequent stages subject the resin to increasing concentrations of sodium in NaH/sub 2/BO/sub 3/-H/sub 3/BO/sub 3/ solution (total B = 0.35 M) and then 1 M sodium hydroxide in the final stages. Results on the performance of the process in the cleanup of the demineralizers at TMI-2 are compared to those obtained from laboratory tests with small samples of the DA and DB resins. To date, 15 stages of batch elution have been completed on the demineralizers at TMI-2 which resulted in the removal of about 750 Ci of radiocesium from DA and about 3300 Ci from DB.

  11. Ion Exchange Temperature Testing with SRF Resin

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Brown, Garrett N.; Peterson, Reid A.

    2012-03-01

    Ion exchange using the Spherical Resorcinol-Formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection for use in the Pretreatment Facility of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in an at-tank deployment for removing 137Cs. Recent proposed changes to the WTP ion exchange process baseline indicate that higher temperatures (50°C) to alleviate post-filtration precipitation issues prior to reaching the ion exchange columns may be required. Therefore, it is important to understand the behavior of SRF resin performance under the conditions expected with the new equipment and process changes. This research examined the impact of elevated temperature on resin loading and resin degradation during extended solution flow using elevated temperature (45°, 50°, 55°, 60°, 65°, 75°C). Testing for extended times at elevated temperatures showed that the resin does degrade and loading capacity is reduced at and above 45°C. Above 60°C the resin appears to not load at all.

  12. Optical characterization and applications of a dual-cure photopolymerizable system.

    PubMed

    Duarte-Quiroga, Reyna A; Calixto, Sergio; Lougnot, Daniel J

    2003-03-10

    The optical response of a photopolymerizable formulation consisting of a bisphenol A epoxy acrylate oligomer, a divinyl ether, and a photoinitiator system containing Rose Bengal was studied by recording holographic gratings. This blend is sensitive to blue-green light. Single- and double-exposure volume phase holograms were recorded. In addition to these examples, surface depth measurements were made by means of a holographic contour technique. PMID:12645977

  13. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1984-01-01

    The results of a program designed to develop tough imide modified epoxy resins cured by bisimide amine (BIA) hardeners are described. State-of-the-art epoxides MY720 and DER383 were used, and four bismide amines were evaluated. These were the BIA's derived from the 6F anhydride (4,4'-(hexafluoroisopropylidene) bis(phthalic anhydride) and the diamines 3,3'-diaminodiphynyl sulfone, 4,4'-oxygianiline, 4,4'-methylene dianiline, and 1,12-dodecane diamine. A key intermediate, designated 6F anhydride, is required for the synthesis of the bisimide amines. Reaction parameters to synthesize a precursor to the 6F anhydride (6FHC) in high yields were investigated. The catalyst trifluoromethane sulfonic acid was studied. Although small scale runs yielded the 6FHC in 50 percent yield, efforts to ranslate these results to a larger scale synthesis gave the 6FHC in only 9 percent yield. Results show that the concept of using bisimide amine as curing agents to improve the toughness properties of epoxies is valid.

  14. Preparation and cured properties of novel cycloaliphatic epoxy resins

    SciTech Connect

    Tokizawa, Makoto; Okada, Hiroyoshi; Wakabayashi, Nobukatsu; Kimura, Tomiaki . Research Center)

    1993-10-20

    Preparation and characterization of novel cycloaliphatic epoxy resins, which are derived from octadienyl compounds, were studied. From a model peracetic acid epoxidation reaction using 2,7-octadienyl acetate-1, the structure of the liquid resins is estimated to be mainly terminal epoxides and some amount of inner epoxide depending on the epoxide content. The epoxy resins offer lower toxicity and lower vapor pressure. The reactivity of the resin with acid anhydrides is moderate but faster than that of traditional cyclohexane epoxide-type resins and slower than that of the glycidyl ester-type resins. This reactivity was also examined using model compounds. The heat deflection temperature of the hexahydro-phthalic anhydride-cured resins is shown to be directly proportional to the number of epoxy groups in the molecules. The flexural strength of the cured resins is nearly equivalent to that of the commercial resins, although the flexural elongation of the resins is larger than that of the rigid cyclohexane epoxide-type resins. The thermal stability of the cured resins is compared to typical rigid cycloaliphatic resins; furthermore, high water resistance of the cured resins is suggested to be attributed to the hydrophobic character of the C[sub 8] chain by cross-linking.

  15. Tc-99 Ion Exchange Resin Testing

    SciTech Connect

    Valenta, Michelle M.; Parker, Kent E.; Pierce, Eric M.

    2010-08-01

    Pacific Northwest National Laboratory was contracted by CHPRC to evaluate the release of 99Tc from spent resin used to treat water from well 299-W15-765 and stored for several years. The key questions to be answered are: 1) does 99Tc readily release from the spent ion exchange resin after being in storage for several years; 2) if hot water stripping is used to remove the co-contaminant carbon tetrachloride, will 99Tc that has been sequestered by the resin be released; and 3) can spent resin be encapsulated into a cementitious waste form; if so, how much 99Tc would be released from the weathering of the monolith waste form? The results from the long term stability leach test results confirm that the resin is not releasing a significant amount of the sequestered 99Tc, evident by the less than 0.02% of the total 99Tc loaded being identified in the solution. Furthermore, it is possible that the measured 99Tc concentration is the result of 99Tc contained in the pore spaces of the resin. In addition to these results, analyses conducted to examine the impact of hot water on the release of 99Tc suggest that only a small percentage of the total is being released. This suggest that hot water stripping to remove carbon tetrachloride will not have a significant affect on the resin’s ability to hold-on to sequestered 99Tc. Finally, encapsulation of spent resin in a cementitious material may be a viable disposal option, but additional tests are needed to examine the extent of physical degradation caused by moisture loss and the effect this degradation process can have on the release of 99Tc.

  16. Resin flow monitoring in vacuum-assisted resin transfer molding using optical fiber distributed sensor

    NASA Astrophysics Data System (ADS)

    Eum, Soohyun; Kageyama, Kazuro; Murayama, Hideaki; Ohsawa, Isamu; Uzawa, Kiyoshi; Kanai, Makoto; Igawa, Hirotaka

    2007-04-01

    In this study, we implemented resin flow monitoring by using an optical fiber sensor during vacuum assisted resin transfer molding (VaRTM).We employed optical frequency domain reflectometry (OFDR) and fiber Bragg grating (FBG) sensor for distributed sensing. Especially, long gauge FBGs (about 100mm) which are 10 times longer than an ordinary FBG were employed for more effective distributed sensing. A long gauge FBG was embedded in GFRP laminates, and other two ones were located out of laminate for wavelength reference and temperature compensation, respectively. During VaRTM, the embedded FBG could measure how the preform affected the sensor with vacuum pressure and resin was flowed into the preform. In this study, we intended to detect the gradient of compressive strain between impregnated part and umimpregnated one within long gauge FBG. If resin is infused to preform, compressive strain which is generated on FBG is released by volume of resin. We could get the wavelength shift due to the change of compressive strain along gauge length of FBG by using short-time Fourier transformation for signal acquired from FBG. Therefore, we could know the resin flow front with the gradient of compressive strain of FBG. In this study, we used silicon oil which has same viscosity with resin substitute for resin in order to reuse FBG. In order to monitor resin flow, the silicon oil was infused from one edge of preform, the silicon oil was flowed from right to left. Then, we made dry spot within gauge length by infusing silicon oil to both sides of preform to prove the ability of dry spot monitoring with FBG. We could monitor resin flow condition and dry spot formation successfully using by FBG based on OFDR.

  17. Characterization of Polyimide Matrix Resins and Prepregs

    NASA Technical Reports Server (NTRS)

    Maximovich, M. G.; Galeos, R. M.

    1985-01-01

    Graphite/polyimide composite materials are attractive candidates for a wide range of aerospace applications. They have many of the virtues of graphite/epoxies, i.e., high specific strengths and stiffness, and also outstanding thermal/oxidative stability. Yet they are not widely used in the aerospace industry due to problems of procesability. By their nature, modern addition polyimide (PI) resins and prepregs are more complex than epoxies; the key to processing lies in characterizing and understanding the materials. Chemical and rheological characterizations are carried out on several addition polyimide resins and graphite reinforced prepregs, including those based on PMR-15, LARC 160 (AP 22), LARC 160 (Curithane 103) and V378A. The use of a high range torque transducer with a Rheometrics mechanical spectrometer allows rheological data to be generated on prepreg materials as well as neat resins. The use of prepreg samples instead of neat resins eliminates the need for preimidization of the samples and the data correlates well with processing behavior found in the shop. Rheological characterization of the resins and prepregs finds significant differences not readily detected by conventional chemical characterization techniques.

  18. Diffusion of residual monomer in polymer resins.

    PubMed Central

    Piver, W T

    1976-01-01

    A simplified mathematical model which made use of Fick's laws of diffusion written in spherical coordinates was developed to describe the rate of diffusion of residual monomers from polymer resins. The properties of the monomer-polymer system which influenced the amount of monomer remaining in the polymer as a function of time were the diffusivity and solubility of the monomer in the polymer, and the particle size of the polymer resin. This model was used to analyze literature data on the diffusion of residual vinyl chloride monomer in polyvinyl chloride resins made by the suspension process. It was concluded that particle size of the resin was a significant parameter which should be taken advantage of in process equipment designed to remove residual monomer from PVC resins. The diffusivity of the monomer in the polymer was a function of the solubility of the monomer in the polymer. Monomer solubility can be determined from Henry's law. It was suggested that this model could be adapted to describe diffusion of monomers from any monomer-polymer system, and would be a useful approach to modeling the transport of nonreactive chemical additives from plastics. PMID:1026410

  19. Polymerization characteristics of EMA-based resin.

    PubMed

    Saito, Yuji

    2004-03-01

    To explore the feasibility of a new relining material, polymerization characteristics such as peak temperature, setting time, residual monomer, and postpolymerization were examined in ethyl methacrylate (EMA) resins composed of EMA and 4 kinds of EMA/methyl methacrylate (MMA) copolymers with high and low molecular weights and initiated by benzoyl peroxide/N,N-dimethyl-p-toluidine system and compared with those of MMA/PMMA resins. Peak temperature (53.8-71.0 degrees C) and residual monomer (2.56-3.52% after 1 h and 1.57-2.31% after 24 h) of the EMA resins were significantly lower than those of the MMA resins (88.9-93.4 degrees C and 4.61-5.85% after 1 h and 4.09-4.84% after 24 h, respectively). The composition of the copolymers had a significant effect on peak temperature and setting time but no significant effect on residual monomer and postpolymerization. The molecular weight of the copolymers affected peak temperature, setting time and residual monomer significantly. This study suggested that EMA resins are worthy of further evaluation as a relining material. PMID:15164919

  20. Water transport into epoxy resins and composites

    SciTech Connect

    Tsou, H.S.

    1987-01-01

    The processing-property relationships were established for the epoxy system of tetraglycidyl 4,4'-diaminodiphenyl methane (TGDDM) cured with diaminodiphenyl sulfone (DDS). The TGDDM-DDS epoxy system was selected for analysis as the ensuing polymer matrix is most common in high-performance fiber-reinforced epoxy composites. Experiments on water transport in epoxy resins with varying compositions were performed and a relaxation-coupled transport behavior was observed in these epoxy resins. By post-curing vitrified epoxy resins, the additional free volume usually measured in them was removed and maximum water uptake was reduced. Since epoxy resins were in a quasi-equilibrium glassy state after the post-cure, Fick's law with a constant diffusion coefficient could adequately describe the water sorption behavior. A network formation model based on the branching theory was developed, taking into account the difference in reactivities of primary and secondary amines and the etherification reaction. Using this network formation model, water uptake in post-cured epoxy resins was found to be proportional to tertiary amine concentration.

  1. Development of a heterogeneous laminating resin system

    NASA Technical Reports Server (NTRS)

    Biermann, T. F.; Hopper, L. C.

    1985-01-01

    The factors which effect the impact resistance of laminating resin systems and yet retain equivalent performance with the conventional 450 K curing epoxy matrix systems in other areas were studied. Formulation work was conducted on two systems, an all-epoxy and an epoxy/bismaleimide, to gain fundamental information on the effect formulation changes have upon neat resin and composite properties. The all-epoxy work involved formulations with various amounts and combinations of eight different epoxy resins, four different hardeners, fifteen different toughening agents, a filler, and a catalyst. The epoxy/bismaleimide effort improved formulations with various amounts and combinations of nine different resins, four different hardeners, eight different toughening agents, four different catalysts, and a filler. When a formulation appeared to offer the proper combination of properties required for a laminating resin Celion 3K-70P fabric was prepregged. Initial screening tests on composites primarily involved Gardner type impact and measurement of short beam shear strengths under dry and hot/wet conditions.

  2. Biocompatibility of polymethylmethacrylate resins used in dentistry.

    PubMed

    Gautam, Rupali; Singh, Raghuwar D; Sharma, Vinod P; Siddhartha, Ramashanker; Chand, Pooran; Kumar, Rakesh

    2012-07-01

    Biocompatibility or tissue compatibility describes the ability of a material to perform with an appropriate host response when applied as intended. Poly-methylmethacrylate (PMMA) based resins are most widely used resins in dentistry, especially in fabrication of dentures and orthodontic appliances. They are considered cytotoxic on account of leaching of various potential toxic substances, most common being residual monomer. Various in vitro and in vivo experiments and cell based studies conducted on acrylic based resins or their leached components have shown them to have cytotoxic effects. They can cause mucosal irritation and tissue sensitization. These studies are not only important to evaluate the long term clinical effect of these materials, but also help in further development of alternate resins. This article reviews information from scientific full articles, reviews, or abstracts published in dental literature, associated with biocompatibility of PMMA resins and it is leached out components. Published materials were searched in dental literature using general and specialist databases, like the PubMED database. PMID:22454327

  3. Ponderosa pine resin defenses and growth: metrics matter.

    PubMed

    Hood, Sharon; Sala, Anna

    2015-11-01

    Bark beetles (Coleoptera: Curculionidae, Scolytinae) cause widespread tree mortality in coniferous forests worldwide. Constitutive and induced host defenses are important factors in an individual tree's ability to survive an attack and in bottom-up regulation of bark beetle population dynamics, yet quantifying defense levels is often difficult. For example, in Pinus spp., resin flow is important for resistance to bark beetles but is extremely variable among individuals and within a season. While resin is produced and stored in resin ducts, the specific resin duct metrics that best correlate with resin flow remain unclear. The ability and timing of some pine species to produce induced resin is also not well understood. We investigated (i) the relationships between ponderosa pine (Pinus ponderosa Lawson & C. Lawson) resin flow and axial resin duct characteristics, tree growth and physiological variables, and (ii) if mechanical wounding induces ponderosa pine resin flow and resin ducts in the absence of bark beetles. Resin flow increased later in the growing season under moderate water stress and was highest in faster growing trees. The best predictors of resin flow were nonstandardized measures of resin ducts, resin duct size and total resin duct area, both of which increased with tree growth. However, while faster growing trees tended to produce more resin, models of resin flow using only tree growth were not statistically significant. Further, the standardized measures of resin ducts, density and duct area relative to xylem area, decreased with tree growth rate, indicating that slower growing trees invested more in resin duct defenses per unit area of radial growth, despite a tendency to produce less resin overall. We also found that mechanical wounding induced ponderosa pine defenses, but this response was slow. Resin flow increased after 28 days, and resin duct production did not increase until the following year. These slow induced responses may allow

  4. [Application of composite resin inlays to deciduous molars--a clinical observation of the resin onlay].

    PubMed

    Yamamoto, H; Iyori, H; Kanomi, R; Yao, K; Hieda, T

    1990-01-01

    Although composite resin has been used as an aesthetic restorative material, wear and fracture of the resin of fracture of the tooth structure are likely to occur when the size of the dental cavities are large. In addition to the lack of the aesthetic value, clinical results of prefabricated metal crown revealed several problems which were caused by the wear of the metal and the ill-adaptation of the cervical margin. In the present study, 50 devitalized deciduous molars were treated with composite resin onlays which were designed to cover the entire occlusal surface of the deciduous molar, and the clinical results were evaluated for a 6 month period. Additionally, for the purpose of simplification of the laboratory process for making resin onlays, ready-made occlusal shells were fabricated. The variety of the prepared shell size consisted of 7 sizes for the first deciduous molar, 9 sizes for the upper second deciduous molar and 10 sizes for the lower deciduous molar. The following results were obtained. 1) A partial resin fracture at the peripheral area of the mesio-buccal cuspid was found in five cases out of 50. 2) A glossy appearance on the surface of the onlay which was created by coated unfilled resin disappeared after 6 months of observation. 3) In relation to the resin onlay, when the antagonistic tooth was restored with prefabricated metal crowns, holes were made by attrition on all the crowns within a 3-4 month period.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2133972

  5. Composite resin in medicine and dentistry.

    PubMed

    Stein, Pamela S; Sullivan, Jennifer; Haubenreich, James E; Osborne, Paul B

    2005-01-01

    Composite resin has been used for nearly 50 years as a restorative material in dentistry. Use of this material has recently increased as a result of consumer demands for esthetic restorations, coupled with the public's concern with mercury-containing dental amalgam. Composite is now used in over 95% of all anterior teeth direct restorations and in 50% of all posterior teeth direct restorations. Carbon fiber reinforced composites have been developed for use as dental implants. In medicine, fiber-reinforced composites have been used in orthopedics as implants, osseous screws, and bearing surfaces. In addition, hydroxyapatite composite resin has become a promising alternative to acrylic cement in stabilizing fractures and cancellous screw fixation in elderly and osteoporotic patients. The use of composite resin in dentistry and medicine will be the focus of this review, with particular attention paid to its physical properties, chemical composition, clinical applications, and biocompatibility. PMID:16393132

  6. Jetted mixtures of particle suspensions and resins

    NASA Astrophysics Data System (ADS)

    Hoath, S. D.; Hsiao, W.-K.; Hutchings, I. M.; Tuladhar, T. R.

    2014-10-01

    Drop-on-demand (DoD) ink-jetting of hard particle suspensions with volume fraction Φ ˜ 0.25 has been surveyed using 1000 ultra-high speed videos as a function of particle size (d90 = 0.8—3.6 μm), with added 2 wt. % acrylic (250 kDa) or 0.5 wt. % cellulose (370 kDa) resin, and also compared with Newtonian analogues. Jet break-off times from 80 μm diameter nozzles were insensitive (120 ± 10 μs) to particle size, and resin jet break-off times were not significantly altered by >30 wt. % added particles. Different particle size grades can be jetted equally well in practice, while resin content effectively controls DoD break-off times.

  7. Improved high temperature resistant matrix resins

    NASA Technical Reports Server (NTRS)

    Chang, G. E.; Powell, S. H.; Jones, R. J.

    1983-01-01

    The objective was to develop organic matrix resins suitable for service at temperatures up to 644 K (700 F) and at air pressures up to 0.4 MPa (60 psia) for time durations of a minimum of 100 hours. Matrix resins capable of withstanding these extreme oxidative environmental conditions would lead to increased use of polymer matrix composites in aircraft engines and provide significant weight and cost savings. Six linear condensation, aromatic/heterocyclic polymers containing fluorinated and/or diphenyl linkages were synthesized. The thermo-oxidative stability of the resins was determined at 644 K and compressed air pressures up to 0.4 MPa. Two formulations, both containing perfluoroisopropylidene linkages in the polymer backbone structure, exhibited potential for 644 K service to meet the program objectives. Two other formulations could not be fabricated into compression molded zero defect specimens.

  8. Resin additive improves performance of high-temperature hydrocarbon lubricants

    NASA Technical Reports Server (NTRS)

    Johnson, R. L.; Loomis, W. R.

    1971-01-01

    Paraffinic resins, in high temperature applications, improve strength of thin lubricant film in Hertzian contacts even though they do not increase bulk oil viscosity. Use of resin circumvents corrosivity and high volatility problems inherent with many chemical additives.

  9. REDFORD CORE MAKING MACHINE. RESIN IMPREGNATED SAND IS BLOWN INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REDFORD CORE MAKING MACHINE. RESIN IMPREGNATED SAND IS BLOWN INTO THE HEATED CORE BOX THAT SETS THE RESIN CREATING THE HARDENED CORE SHOWN HERE. - Southern Ductile Casting Company, Core Making, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  10. Try-in Pastes Versus Resin Cements: A Color Comparison.

    PubMed

    Vaz, Edenize Cristina; Vaz, Maysa Magalhães; Rodrigues Gonçalves de Oliveira, Maria Beatriz; Takano, Alfa Emília; de Carvalho Cardoso, Paula; de Torres, Érica Miranda; Gonzaga Lopes, Lawrence

    2016-05-01

    This study aimed to compare the color of ceramic veneer restorations using different shades of try-in pastes and resin cement. Researchers found no differences between try-in pastes and resin cements after cementation. PMID:27213935

  11. Additive effects on the toughening of unsaturated polyester resins

    SciTech Connect

    Suspene, L.; Yang, Y.S.; Pascault, J.P.

    1993-12-31

    An elastomer additive, carboxy-terminated acrylonitrile-butadiene copolymer, was used for toughening in the free radical cross-linking copolymerization of unsaturated polyester (UP) resins. For molded parts, Charpy impact behavior was generally enhanced and the number of catastrophic failures was reduced. The miscibility and interfacial properties of additive and resin blends play important roles in the toughening process. Phase-diagram studies showed that the elastomer additive is immiscible with the UP resin and is phase-separated from the resin matrix during curing. This phase-separation phenomenon is similar to that in the low-profile mechanism of UP resins. Additive-resin system miscibility greatly influences curing morphology. Microvoids occurred in the additive phase of cured resin because of shrinkage stress. The intrinsic inhomogeneity of the polyester network and the existence of microvoids in the final product limit the toughening effect of additives on unsaturated polyester resins. 49 refs., 13 figs., 3 tabs.

  12. Effect of resin monomer composition on toothbrush wear resistance.

    PubMed

    Kawai, K; Iwami, Y; Ebisu, S

    1998-04-01

    The purpose of this study was to compare the toothbrush abrasion resistance of seven different experimental resins which were made by changing the composition of resin monomers. The experimental resins were made by mixing four kinds of dental resin monomers (Bis-GMA, UDMA, TMPT and TEGDMA), camphorquinone (1 wt%), dimethylaminoethyl methacrylate (2 wt%) and 2,6-di-tert-butyl-p-cresol (0.05 wt%). The resin specimens were stored in air for 2 weeks, and then put on a toothbrush abrasion testing machine. After 100000 strokes, the wear loss of each specimen was determined by weight change during the wear test. TMPT-TEGDMA resin showed the most wear resistance, while Bis-GMA- and UDMA-based resins showed increased wear resistance with an increased content of TEGDMA. Also, a inverse relationship between the microhardness number and the amount of wear of the respective resins was confirmed. PMID:9610853

  13. Performance Properties of Graphite Reinforced Composites with Advanced Resin Matrices

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1980-01-01

    This article looks at the effect of different resin matrices on thermal and mechanical properties of graphite composites, and relates the thermal and flammability properties to the anaerobic char yield of the resins. The processing parameters of graphite composites utilizing graphite fabric and epoxy or other advanced resins as matrices are presented. Thermoset resin matrices studied were: aminecured polyfunctional glycidyl aminetype epoxy (baseline), phenolicnovolac resin based on condensation of dihydroxymethyl-xylene and phenol cured with hexamine, two types of polydismaleimide resins, phenolic resin, and benzyl resin. The thermoplastic matrices studied were polyethersulfone and polyphenylenesulfone. Properties evaluated in the study included anaerobic char yield, limiting oxygen index, smoke evolution, moisture absorption, and mechanical properties at elevated temperatures including tensile, compressive, and short-beam shear strengths. Generally, it was determined that graphite composites with the highest char yield exhibited optimum fire-resistant properties.

  14. Standard tests for toughened resin composites, revised edition

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Several toughened resin systems are evaluated to achieve commonality for certain kinds of tests used to characterize toughened resin composites. Specifications for five tests were standardized; these test standards are described.

  15. PMR Resin Compositions For High Temperatures

    NASA Technical Reports Server (NTRS)

    Vannucci, Raymond D.

    1989-01-01

    Report describes experiments to identify polymer matrix resins suitable for making graphite-fiber laminates used at 700 degree F (371 degree C) in such applications as aircraft engines to achieve higher thrust-to-weight ratios. Two particular high-molecular-weight formulations of PMR (polymerization of monomer reactants) resins most promising. PMR compositions of higher FMW exhibit enhanced thermo-oxidative stability. Formation of high-quality laminates with these compositions requires use of curing pressures higher than those suitable for compositions of lower FMW.

  16. Electronic structure and optical properties of resin

    NASA Astrophysics Data System (ADS)

    Rao, Zhi-Fan; Zhou, Rong-Feng

    2013-03-01

    We used the density of functional theory (DFT) to study the electronic structure and density of states of resin by ab initio calculation. The results show the band gap of resin is 1.7 eV. The covalent bond is combined C/O atoms with H atoms. The O 2p orbital is the biggest effect near the Fermi level. The results of optical properties show the reflectivity is low, and the refractive index is 1.7 in visible light range. The highest absorption coefficient peak is in 490 nm and the value is 75,000.

  17. New phosphorus-containing bisimide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Hsu, M.-T.; Parker, J. A.

    1984-01-01

    Phosphorus-based flame retardants have been effectively used in a wide variety of polymeric materials. Such additives, however, may either influence the decomposition reaction in polymers or lack durability due to a tendency to be leached out by solvents. Attention is given to the synthesis, characterization, thermal stability and degradation mechanisms of bisimide resins, and an evaluation is conducted of the flammability and mechanical properties of graphite cloth-reinforced laminates fabricated from one of the six phosphorus-containing bisimide resins considered.

  18. Resin transfer molding of textile composites

    NASA Technical Reports Server (NTRS)

    Falcone, Anthony; Dursch, Harry; Nelson, Karl; Avery, William

    1993-01-01

    The design and manufacture of textile composite panels, tubes, and angle sections that were provided to NASA for testing and evaluation are documented. The textile preform designs and requirements were established by NASA in collaboration with Boeing and several vendors of textile reinforcements. The following four types of preform architectures were used: stitched uniweave, 2D-braids, 3D-braids, and interlock weaves. The preforms consisted primarily of Hercules AS4 carbon fiber; Shell RSL-1895 resin was introduced using a resin transfer molding process. All the finished parts were inspected using ultrasonics.

  19. Benzonorbornadiene end caps for PMR resins

    NASA Technical Reports Server (NTRS)

    Panigot, Michael J.; Waters, John F.; Varde, Uday; Sutter, James K.; Sukenik, Chaim N.

    1992-01-01

    Several ortho-disubstituted benzonorbornadiene derivatives are described. These molecules contain acid, ester, or anhydride functionality permitting their use as end caps in PMR (polymerization of monomer reactants) polyimide systems. The replacement of the currently used norbornenyl end caps with benzonorbornadienyl end caps affords resins of increased aromatic content. It also allows evaluation of some mechanistic aspects of PMR cross-linking. Initial testing of N-phenylimide model compounds and of actual resin formulations using the benzonorbornadienyl end cap reveals that they undergo efficient thermal crosslinking to give oligomers with physical properties and thermal stability comparable to commercial norbornene-end-capped PMR systems.

  20. Technical assessment for quality control of resins

    NASA Technical Reports Server (NTRS)

    Gosnell, R. B.

    1977-01-01

    Survey visits to companies involved in the manufacture and use of graphite-epoxy prepregs were conducted to assess the factors which may contribute to variability in the mechanical properties of graphite-epoxy composites. In particular, the purpose was to assess the contributions of the epoxy resins to variability. Companies represented three segments of the composites industry - aircraft manufacturers, prepreg manufacturers, and epoxy resin manufacturers. Several important sources of performance variability were identified from among the complete spectrum of potential sources which ranged from raw materials to composite test data interpretation.

  1. Resin Dermatitis in a Car Factory

    PubMed Central

    Engel, H. O.; Calnan, C. D.

    1966-01-01

    An outbreak of dermatitis in a car assembly factory is described; it affected 50 workers who handled rubber weatherstrips coated with an adhesive. The adhesive was found to contain para-tertiary butyl phenol (P.T.B.P.) formaldehyde resin. Of those patch tested 70% gave positive reactions to the adhesive and 65% to the resin. Improved methods of handling and personal protection succeeded in arresting the occurrence of dermatitis. Barrier creams gave no protection in these circumstances. The episode illustrates the different preventive control methods which have to be tried when dealing with a simple skin hazard which cannot be abolished. Images PMID:5904100

  2. Occupational dermatitis to epoxydic and phenolic resins.

    PubMed

    Geraut, Christian; Tripodi, Dominique; Brunet-Courtois, Béatrice; Leray, Fabrice; Geraut, Laurent

    2009-01-01

    Contact dermatitis to epoxydic and phenolic resins are the most frequent contact dermatoses due to plastics, in particular in the form of airborne dermatitis. The chemical formulas of the various components of these resins and their additives are complex and the patch tests available in the trade are insufficient and often arrive at a late stage in the progress of industry, in particular in advanced technologies like aeronautical engineering, shipbuilding or the new floor and wall coverings in buildings. This article is a review of the actions to be taken with these allergies, as well as with regards to their diagnosis, prevention and medico-legal compensation. PMID:19349256

  3. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  4. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  5. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  6. Reusable chelating resins concentrate metal ions from highly dilute solutions

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.; Weetal, H. H.; Weliky, N.

    1966-01-01

    Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.

  7. Bismaleimide resins for flame resistant honeycomb sandwich panels

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A 60 kg batch of Resin M751 was produced in pilot plant scale. The resin was delivered to the prepreg company as an NMP solution. 100 kg of glass-fabric prepregs were fabricated. Prepreg characteristics and curing cycles for laminate fabrication were provided. A new batch of Resin M756 (Code M756 - 2) was synthesized.

  8. 21 CFR 177.2510 - Polyvinylidene fluoride resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyvinylidene fluoride resins. 177.2510 Section... as Components of Articles Intended for Repeated Use § 177.2510 Polyvinylidene fluoride resins. Polyvinylidene fluoride resins may be safely used as articles or components of articles intended for repeated...

  9. 21 CFR 177.2510 - Polyvinylidene fluoride resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyvinylidene fluoride resins. 177.2510 Section... as Components of Articles Intended for Repeated Use § 177.2510 Polyvinylidene fluoride resins. Polyvinylidene fluoride resins may be safely used as articles or components of articles intended for repeated...

  10. 21 CFR 872.3310 - Coating material for resin fillings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Coating material for resin fillings. 872.3310... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3310 Coating material for resin fillings. (a) Identification. A coating material for resin fillings is a device intended to be applied to...

  11. 21 CFR 872.3300 - Hydrophilic resin coating for dentures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hydrophilic resin coating for dentures. 872.3300... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3300 Hydrophilic resin coating for dentures. (a) Identification. A hydrophilic resin coating for dentures is a device that consists of a...

  12. 40 CFR 721.9499 - Modified silicone resin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified silicone resin. 721.9499... Substances § 721.9499 Modified silicone resin. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified silicone resin (PMN P-96-1649)...

  13. Occupational asthma due to unheated polyvinylchloride resin dust.

    PubMed

    Lee, H S; Yap, J; Wang, Y T; Lee, C S; Tan, K T; Poh, S C

    1989-11-01

    Polyvinylchloride (PVC) resins are widely used in industry. Asthma due to the thermal degradation products of PVC are well documented. In this first case of occupational asthma due to unheated PVC resin dust the patient was exposed to PVC resin dust during the mixing of chemicals used for making plastic seals for bottle caps. PMID:2590649

  14. ELUTION OF URANIUM VALUES FROM ION EXCHANGE RESINS

    DOEpatents

    Kennedy, R.H.

    1959-11-24

    A process is described for eluting complex uranium ions absorbed on ion exchange resins. The resin is subjected to the action of an aqueous eluting solution contuining sulfuric acid and an alkali metal, ammonium, or magnesium chloride or nitrate, the elution being carried out until the desired amount of the uranium is removed from the resin.

  15. 40 CFR 721.4380 - Modified hydrocarbon resin.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified hydrocarbon resin. 721.4380... Substances § 721.4380 Modified hydrocarbon resin. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified hydrocarbon resin (P-91-1418)...

  16. 40 CFR 721.4380 - Modified hydrocarbon resin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified hydrocarbon resin. 721.4380... Substances § 721.4380 Modified hydrocarbon resin. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified hydrocarbon resin (P-91-1418)...

  17. 40 CFR 721.4380 - Modified hydrocarbon resin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified hydrocarbon resin. 721.4380... Substances § 721.4380 Modified hydrocarbon resin. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified hydrocarbon resin (P-91-1418)...

  18. 40 CFR 721.4380 - Modified hydrocarbon resin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified hydrocarbon resin. 721.4380... Substances § 721.4380 Modified hydrocarbon resin. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified hydrocarbon resin (P-91-1418)...

  19. 40 CFR 721.4380 - Modified hydrocarbon resin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified hydrocarbon resin. 721.4380... Substances § 721.4380 Modified hydrocarbon resin. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified hydrocarbon resin (P-91-1418)...

  20. 21 CFR 872.3770 - Temporary crown and bridge resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Temporary crown and bridge resin. 872.3770 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3770 Temporary crown and bridge resin. (a) Identification. A temporary crown and bridge resin is a device composed of a material, such...

  1. 21 CFR 872.3770 - Temporary crown and bridge resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Temporary crown and bridge resin. 872.3770 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3770 Temporary crown and bridge resin. (a) Identification. A temporary crown and bridge resin is a device composed of a material, such...

  2. 21 CFR 872.3770 - Temporary crown and bridge resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Temporary crown and bridge resin. 872.3770 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3770 Temporary crown and bridge resin. (a) Identification. A temporary crown and bridge resin is a device composed of a material, such...

  3. 21 CFR 872.3770 - Temporary crown and bridge resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Temporary crown and bridge resin. 872.3770 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3770 Temporary crown and bridge resin. (a) Identification. A temporary crown and bridge resin is a device composed of a material, such...

  4. 21 CFR 872.3770 - Temporary crown and bridge resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Temporary crown and bridge resin. 872.3770 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3770 Temporary crown and bridge resin. (a) Identification. A temporary crown and bridge resin is a device composed of a material, such...

  5. 21 CFR 177.2510 - Polyvinylidene fluoride resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyvinylidene fluoride resins. 177.2510 Section... as Components of Articles Intended for Repeated Use § 177.2510 Polyvinylidene fluoride resins. Polyvinylidene fluoride resins may be safely used as articles or components of articles intended for repeated...

  6. 21 CFR 177.2510 - Polyvinylidene fluoride resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyvinylidene fluoride resins. 177.2510 Section... as Components of Articles Intended for Repeated Use § 177.2510 Polyvinylidene fluoride resins. Polyvinylidene fluoride resins may be safely used as articles or components of articles intended for repeated...

  7. 21 CFR 872.3820 - Root canal filling resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Root canal filling resin. 872.3820 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3820 Root canal filling resin. (a) Identification. A root canal filling resin is a device composed of material, such as methylmethacrylate,...

  8. 21 CFR 872.3820 - Root canal filling resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Root canal filling resin. 872.3820 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3820 Root canal filling resin. (a) Identification. A root canal filling resin is a device composed of material, such as methylmethacrylate,...

  9. 21 CFR 872.3820 - Root canal filling resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Root canal filling resin. 872.3820 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3820 Root canal filling resin. (a) Identification. A root canal filling resin is a device composed of material, such as methylmethacrylate,...

  10. 21 CFR 177.1600 - Polyethylene resins, carboxyl modified.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene resins, carboxyl modified. 177.1600... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1600 Polyethylene resins, carboxyl modified. Carboxyl-modified polyethylene resins may be safely used as the food-contact surface...

  11. 21 CFR 177.1600 - Polyethylene resins, carboxyl modified.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene resins, carboxyl modified. 177.1600... Use Food Contact Surfaces § 177.1600 Polyethylene resins, carboxyl modified. Carboxyl-modified polyethylene resins may be safely used as the food-contact surface of articles intended for use in contact...

  12. 21 CFR 177.1600 - Polyethylene resins, carboxyl modified.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene resins, carboxyl modified. 177.1600... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1600 Polyethylene resins, carboxyl modified. Carboxyl-modified polyethylene resins may be safely used as the food-contact surface...

  13. 21 CFR 177.1600 - Polyethylene resins, carboxyl modified.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene resins, carboxyl modified. 177.1600... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1600 Polyethylene resins, carboxyl modified. Carboxyl-modified polyethylene resins may be safely used as the food-contact surface...

  14. 21 CFR 177.1600 - Polyethylene resins, carboxyl modified.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene resins, carboxyl modified. 177.1600... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1600 Polyethylene resins, carboxyl modified. Carboxyl-modified polyethylene resins may be safely used as the food-contact surface...

  15. Synthesis and toughness properties of resins and composites

    NASA Technical Reports Server (NTRS)

    Johnston, N. J.

    1984-01-01

    Tensile and shear moduli of four ACEE (Aircraft Energy Efficiency Program) resins are presented along with ACEE composite material modulus predictions based on micromechanics. Compressive strength and fracture toughness of the resins and composites were discussed. In addition, several resin synthesis techniques are reviewed.

  16. 21 CFR 177.2420 - Polyester resins, cross-linked.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... polycondensation reaction at levels not to exceed 0.2 percent of the polyester resin. Dicumyl peroxide....2 percent of the polyester resin. Lauroyl peroxide p-Menthane hydroperoxide Methyl ethyl ketone... reaction at levels not to exceed 0.2 percent of the polyester resin. 4. Solvents for...

  17. 21 CFR 177.2420 - Polyester resins, cross-linked.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... polycondensation reaction at levels not to exceed 0.2 percent of the polyester resin. Dicumyl peroxide....2 percent of the polyester resin. Lauroyl peroxide p-Menthane hydroperoxide Methyl ethyl ketone... reaction at levels not to exceed 0.2 percent of the polyester resin. 4. Solvents for...

  18. Photosensitive filler minimizes internal stresses in epoxy resins

    NASA Technical Reports Server (NTRS)

    Dillon, J. N.

    1967-01-01

    Photosensitive filler is added to curable epoxy resins to minimize stress from internal shrinkage during curing or polymerization. Cinnamic acid resins and cinnamal ketones may be added in the amount of 1 to 3 percent by weight of the resin mixture.

  19. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  20. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  1. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  2. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylamide-acrylic acid resins. 176.110 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  3. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  4. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  5. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  6. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  7. 21 CFR 872.3300 - Hydrophilic resin coating for dentures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hydrophilic resin coating for dentures. 872.3300... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3300 Hydrophilic resin coating for dentures. (a) Identification. A hydrophilic resin coating for dentures is a device that consists of a...

  8. 21 CFR 872.3310 - Coating material for resin fillings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Coating material for resin fillings. 872.3310... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3310 Coating material for resin fillings. (a) Identification. A coating material for resin fillings is a device intended to be applied to...

  9. 21 CFR 872.3310 - Coating material for resin fillings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Coating material for resin fillings. 872.3310... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3310 Coating material for resin fillings. (a) Identification. A coating material for resin fillings is a device intended to be applied to...

  10. 21 CFR 872.3310 - Coating material for resin fillings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Coating material for resin fillings. 872.3310... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3310 Coating material for resin fillings. (a) Identification. A coating material for resin fillings is a device intended to be applied to...

  11. 21 CFR 872.3300 - Hydrophilic resin coating for dentures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hydrophilic resin coating for dentures. 872.3300... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3300 Hydrophilic resin coating for dentures. (a) Identification. A hydrophilic resin coating for dentures is a device that consists of a...

  12. 21 CFR 872.3300 - Hydrophilic resin coating for dentures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hydrophilic resin coating for dentures. 872.3300... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3300 Hydrophilic resin coating for dentures. (a) Identification. A hydrophilic resin coating for dentures is a device that consists of a...

  13. 21 CFR 872.3300 - Hydrophilic resin coating for dentures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hydrophilic resin coating for dentures. 872.3300... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3300 Hydrophilic resin coating for dentures. (a) Identification. A hydrophilic resin coating for dentures is a device that consists of a...

  14. 21 CFR 872.3310 - Coating material for resin fillings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Coating material for resin fillings. 872.3310... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3310 Coating material for resin fillings. (a) Identification. A coating material for resin fillings is a device intended to be applied to...

  15. Occupational asthma due to unheated polyvinylchloride resin dust.

    PubMed Central

    Lee, H S; Yap, J; Wang, Y T; Lee, C S; Tan, K T; Poh, S C

    1989-01-01

    Polyvinylchloride (PVC) resins are widely used in industry. Asthma due to the thermal degradation products of PVC are well documented. In this first case of occupational asthma due to unheated PVC resin dust the patient was exposed to PVC resin dust during the mixing of chemicals used for making plastic seals for bottle caps. PMID:2590649

  16. 21 CFR 872.3200 - Resin tooth bonding agent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Resin tooth bonding agent. 872.3200 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3200 Resin tooth bonding agent. (a) Identification. A resin tooth bonding agent is a device material, such as methylmethacrylate, intended to be...

  17. 21 CFR 872.3690 - Tooth shade resin material.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tooth shade resin material. 872.3690 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3690 Tooth shade resin material. (a) Identification. Tooth shade resin material is a device composed of materials such as bisphenol-A...

  18. 21 CFR 872.3690 - Tooth shade resin material.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tooth shade resin material. 872.3690 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3690 Tooth shade resin material. (a) Identification. Tooth shade resin material is a device composed of materials such as bisphenol-A...

  19. 21 CFR 872.3200 - Resin tooth bonding agent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Resin tooth bonding agent. 872.3200 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3200 Resin tooth bonding agent. (a) Identification. A resin tooth bonding agent is a device material, such as methylmethacrylate, intended to be...

  20. 21 CFR 872.3200 - Resin tooth bonding agent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Resin tooth bonding agent. 872.3200 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3200 Resin tooth bonding agent. (a) Identification. A resin tooth bonding agent is a device material, such as methylmethacrylate, intended to be...

  1. 21 CFR 872.3690 - Tooth shade resin material.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tooth shade resin material. 872.3690 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3690 Tooth shade resin material. (a) Identification. Tooth shade resin material is a device composed of materials such as bisphenol-A...

  2. 21 CFR 872.3200 - Resin tooth bonding agent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Resin tooth bonding agent. 872.3200 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3200 Resin tooth bonding agent. (a) Identification. A resin tooth bonding agent is a device material, such as methylmethacrylate, intended to be...

  3. 21 CFR 872.3690 - Tooth shade resin material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tooth shade resin material. 872.3690 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3690 Tooth shade resin material. (a) Identification. Tooth shade resin material is a device composed of materials such as bisphenol-A...

  4. 21 CFR 872.3690 - Tooth shade resin material.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tooth shade resin material. 872.3690 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3690 Tooth shade resin material. (a) Identification. Tooth shade resin material is a device composed of materials such as bisphenol-A...

  5. 21 CFR 177.2355 - Mineral reinforced nylon resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Mineral reinforced nylon resins. 177.2355 Section... as Components of Articles Intended for Repeated Use § 177.2355 Mineral reinforced nylon resins. Mineral reinforced nylon resins identified in paragraph (a) of this section may be safely used as...

  6. 21 CFR 177.2355 - Mineral reinforced nylon resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Mineral reinforced nylon resins. 177.2355 Section... as Components of Articles Intended for Repeated Use § 177.2355 Mineral reinforced nylon resins. Mineral reinforced nylon resins identified in paragraph (a) of this section may be safely used as...

  7. 21 CFR 177.2355 - Mineral reinforced nylon resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Mineral reinforced nylon resins. 177.2355 Section... as Components of Articles Intended for Repeated Use § 177.2355 Mineral reinforced nylon resins. Mineral reinforced nylon resins identified in paragraph (a) of this section may be safely used as...

  8. 21 CFR 177.2355 - Mineral reinforced nylon resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Mineral reinforced nylon resins. 177.2355 Section... as Components of Articles Intended for Repeated Use § 177.2355 Mineral reinforced nylon resins. Mineral reinforced nylon resins identified in paragraph (a) of this section may be safely used as...

  9. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for...

  10. 40 CFR 721.5905 - Modified phenolic resin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified phenolic resin (generic). 721... Substances § 721.5905 Modified phenolic resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified phenolic resin...

  11. 40 CFR 721.5908 - Modified phenolic resin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified phenolic resin (generic). 721... Substances § 721.5908 Modified phenolic resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as modified phenolic resin (PMN...

  12. Low-melt Viscosity Polyimide Resins for Resin Transfer Molding (RTM) II

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Criss, Jim M.; Mintz, Eric A.; Scheiman, Daniel A.; Nguyen, Baochau N.; McCorkle, Linda S.

    2007-01-01

    A series of polyimide resins with low-melt viscosities in the range of 10-30 poise and high glass transition temperatures (Tg s) of 330-370 C were developed for resin transfer molding (RTM) applications. These polyimide resins were formulated from 2,3,3 ,4 -biphenyltetracarboxylic dianhydride (a-BPDA) with 4-phenylethynylphthalic anhydride endcaps along with either 3,4 - oxyaniline (3,4 -ODA), 3,4 -methylenedianiline, (3,4 -MDA) or 3,3 -methylenedianiline (3,3 -MDA). These polyimides had pot lives of 30-60 minutes at 260-280 C, enabling the successful fabrication of T650-35 carbon fiber reinforced composites via RTM process. The viscosity profiles of the polyimide resins and the mechanical properties of the polyimide carbon fiber composites will be discussed.

  13. Analysis of Resin-Dentin Interface Morphology and Bond Strength Evaluation of Core Materials for One Stage Post-Endodontic Restorations

    PubMed Central

    Bitter, Kerstin; Gläser, Christin; Neumann, Konrad; Blunck, Uwe; Frankenberger, Roland

    2014-01-01

    Purpose Restoration of endodontically treated teeth using fiber posts in a one-stage procedure gains more popularity and aims to create a secondary monoblock. Data of detailed analyses of so called “post-and-core-systems” with respect to morphological characteristics of the resin-dentin interface in combination with bond strength measurements of fiber posts luted with these materials are scarce. The present study aimed to analyze four different post-and-core-systems with two different adhesive approaches (self-etch and etch-and-rinse). Materials and Methods Human anterior teeth (n = 80) were endodontically treated and post space preparations and post placement were performed using the following systems: Rebilda Post/Rebilda DC/Futurabond DC (Voco) (RB), Luxapost/Luxacore Z/Luxabond Prebond and Luxabond A+B (DMG) (LC), X Post/Core X Flow/XP Bond and Self Cure Activator (Dentsply DeTrey) (CX), FRC Postec/MultiCore Flow/AdheSE DC (Ivoclar Vivadent) (MC). Adhesive systems and core materials of 10 specimens per group were labeled using fluorescent dyes and resin-dentin interfaces were analyzed using Confocal Laser Scanning Microscopy (CLSM). Bond strengths were evaluated using a push-out test. Data were analyzed using repeated measurement ANOVA and following post-hoc test. Results CLSM analyses revealed significant differences between groups with respect to the factors hybrid layer thickness (p<0.0005) and number of resin tags (p = 0.02; ANOVA). Bond strength was significantly affected by core material (p = 0.001), location inside the root canal (p<0.0005) and incorporation of fluorescent dyes (p = 0.036; ANOVA). CX [7.7 (4.4) MPa] demonstrated significantly lower bond strength compared to LC [14.2 (8.7) MPa] and RB [13.3 (3.7) MPa] (p<0.05; Tukey HSD) but did not differ significantly from MC [11.5 (3.5) MPa]. Conclusion It can be concluded that bond strengths inside the root canal were not affected by the adhesive approach of the post

  14. 21 CFR 177.1585 - Polyestercarbonate resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., 1985, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are... resins identified in paragraph (a) of this section can be identified by their characteristic...

  15. Pharmaceutical Applications of Ion-Exchange Resins

    ERIC Educational Resources Information Center

    Elder, David

    2005-01-01

    The historical uses of ion-exchanged resins and a summary of the basic chemical principles involved in the ion-exchanged process are discussed. Specific applications of ion-exchange are provided that include drug stabilization, pharmaceutical excipients, taste-masking agents, oral sustained-release products, topical products for local application…

  16. 21 CFR 177.1580 - Polycarbonate resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polycarbonate resins. 177.1580 Section 177.1580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food...

  17. 21 CFR 177.1580 - Polycarbonate resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... production of the resins; or by (2) The reaction of molten 4,4′-iso-propylidenediphenol with molten diphenyl... (CAS Reg. No. 599-64-4) For use only as a chain terminator at a level not to exceed 5 percent by...

  18. 21 CFR 177.1580 - Polycarbonate resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polycarbonate resins. 177.1580 Section 177.1580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food...

  19. 21 CFR 177.1580 - Polycarbonate resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polycarbonate resins. 177.1580 Section 177.1580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food...

  20. 21 CFR 177.1580 - Polycarbonate resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polycarbonate resins. 177.1580 Section 177.1580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food...

  1. [Study of purity tests for silicone resins].

    PubMed

    Sato, Kyoko; Otsuki, Noriko; Ohori, Akio; Chinda, Mitsuru; Furusho, Noriko; Osako, Tsutomu; Akiyama, Hiroshi; Kawamura, Yoko

    2012-01-01

    In the 8th edition of Japan's Specifications and Standards for Food Additives, the purity test for silicone resins requires the determination of the refractive index and kinetic viscosity of the extracted silicone oil, and allows for only a limited amount of silicon dioxide. In the purity test, carbon tetrachloride is used to separate the silicone oil and silicon dioxide. To exclude carbon tetrachloride, methods were developed for separating the silicone oil and silicon dioxide from silicone resin, which use hexane and 10% n-dodecylbenzenesulfonic acid in hexane. For silicone oil, the measured refractive index and kinetic viscosity of the silicone oil obtained from the hexane extract were shown to be equivalent to those of the intact silicone oil. In regard to silicon dioxide, it was confirmed that, following the separation with 10% n-dodecylbenzenesulfonic acid in hexane, the level of silicon dioxide in silicone resin can be accurately determined. Therefore, in this study, we developed a method for testing the purity of silicone resins without the use of carbon tetrachloride, which is a harmful reagent. PMID:23243991

  2. Fiber reinforced thermoplastic resin matrix composites

    NASA Technical Reports Server (NTRS)

    Jones, Robert J. (Inventor); Chang, Glenn E. C. (Inventor)

    1989-01-01

    Polyimide polymer composites having a combination of enhanced thermal and mechanical properties even when subjected to service temperatures as high as 700.degree. F. are described. They comprise (a) from 10 to 50 parts by weight of a thermoplastic polyimide resin prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and (b) from 90 to 50 parts by weight of continuous reinforcing fibers, the total of (a) and (b) being 100 parts by weight. Composites based on polyimide resin formed from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and pyromellitic dianhydride and continuous carbon fibers retained at least about 50% of their room temperature shear strength after exposure to 700.degree. F. for a period of 16 hours in flowing air. Preferably, the thermoplastic polyimide resin is formed in situ in the composite material by thermal imidization of a corresponding amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. It is also preferred to initially size the continuous reinforcing fibers with up to about one percent by weight of an amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. In this way imidization at a suitable elevated temperature results in the in-situ formation of a substantially homogeneous thermoplastic matrix of the polyimide resin tightly and intimately bonded to the continuous fibers. The resultant composites tend to have optimum thermo-mechanical properties.

  3. Resin char oxidation retardant for composites

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.; Gluyas, R. E.

    1981-01-01

    Boron powder stabilizes char, so burned substances are shiny, smooth, and free of loose graphite fibers. Resin weight loss of laminates during burning in air is identical for the first three minutes for unfilled and boron-filled samples, then boron samples stabilize.

  4. 21 CFR 177.1330 - Ionomeric resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ionomeric resins. 177.1330 Section 177.1330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact...

  5. Resin Characterization in Cured Composite Materials

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Chang, A.

    1985-01-01

    Molecular-level characterization of polymeric matrix resin in cured graphite-reinforced composite materials now determined through analysis of diffuse reflectance (DR) with Fourier Transform Infrared (FTIR) spectroscopy. Improved analytical method based on diffuse reflectance. DR/ FTIR technique successfully applied to analysis of several different composites and adhesives impossible to analyze by conventional methods.

  6. 21 CFR 177.1680 - Polyurethane resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyurethane resins. 177.1680 Section 177.1680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food...

  7. 21 CFR 177.1680 - Polyurethane resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyurethane resins. 177.1680 Section 177.1680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food...

  8. 21 CFR 177.1680 - Polyurethane resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyurethane resins. 177.1680 Section 177.1680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food...

  9. Studies on chemoviscosity modeling for thermosetting resins

    NASA Technical Reports Server (NTRS)

    Bai, J. M.; Hou, T. H.; Tiwari, S. N.

    1987-01-01

    A new analytical model for simulating chemoviscosity of thermosetting resins has been formulated. The model is developed by modifying the well-established Williams-Landel-Ferry (WLF) theory in polymer rheology for thermoplastic materials. By introducing a relationship between the glass transition temperature Tg(t) and the degree of cure alpha(t) of the resin system under cure, the WLF theory can be modified to account for the factor of reaction time. Temperature dependent functions of the modified WLF theory constants C sub 1 (t) and C sub 2 (t) were determined from the isothermal cure data. Theoretical predictions of the model for the resin under dynamic heating cure cycles were shown to compare favorably with the experimental data. This work represents progress toward establishing a chemoviscosity model which is capable of not only describing viscosity profiles accurately under various cure cycles, but also correlating viscosity data to the changes of physical properties associated with the structural transformation of the thermosetting resin systems during cure.

  10. 21 CFR 177.1555 - Polyarylate resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyarylate resins. 177.1555 Section 177.1555 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food...

  11. 21 CFR 177.1655 - Polysulfone resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polysulfone resins. 177.1655 Section 177.1655 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food...

  12. 21 CFR 177.1380 - Fluorocarbon resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... resin pellets, when extracted with 100 milliliters of distilled water at reflux temperature for 8 hours... distilled water at reflux temperature for 8 hours, shall yield total extractives not to exceed 0.003 percent... 1 CFR part 51. Copies may be obtained from the American Society for Testing and Materials, 1916...

  13. 21 CFR 177.1556 - Polyaryletherketone resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyaryletherketone resins. 177.1556 Section 177.1556 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use...

  14. 21 CFR 177.1380 - Fluorocarbon resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Fluorocarbon resins. 177.1380 Section 177.1380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food...

  15. 21 CFR 177.1330 - Ionomeric resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ionomeric resins. 177.1330 Section 177.1330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food...

  16. 21 CFR 177.1595 - Polyetherimide resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) of this section shall have an intrinsic viscosity in chloroform at 25 °C (77 °F) of not less than 0.35 deciliter per gram as determined by a method titled “Intrinsic Viscosity of ULTEM Polyetherimide... discs of thickness 0.16 centimeter (0.063 inch). The resin discs when extracted with distilled water...

  17. Thermal expansion characteristics of light-cured dental resins and resin composites.

    PubMed

    Sideridou, Irini; Achilias, Dimitris S; Kyrikou, Eleni

    2004-07-01

    The thermal expansion characteristics of dental resins prepared by light-curing of Bis-GMA, TEGDMA, UDMA, Bis-EMA(4) or PCDMA dimethacrylate monomers and of commercial light-cured resin composites (Z-100 MP, Filtek Z-250, Sculpt-It and Alert), the organic matrix resin of which is based on different combinations of the above monomers, were studied by thermomechanical analysis (TMA). This study showed the existence of a glass transition temperature at around 35-47 degrees C for the resins and 40-45 degrees C for the composites; then the coefficient of linear thermal expansion (CLTE) was calculated at the temperature intervals 0-60 degrees C, 0-T(g) and T(g)-60 degrees C. The CLTE values of Bis-GMA, TEGDMA and UDMA resins are similar and lower than those of Bis-EMA (4) and PCDMA resins. The CLTE values of the composites indicated that the major factor that affects the CLTE of a composite is the filler content, but it also seems to be affected by the chemical structure of the matrix resin. TMA on water-saturated samples showed that water desorption takes place during the measurement and that the residual water acts as a plasticizer decreasing the T(g) and increasing the CLTE values. Furthermore, TMA on post-heated samples for 1, 3 or 6h showed, only for the resins, an initial decrease of CLTE and increase of the T(g) after 1h that was not significantly changed after 6h of heating. PMID:14967543

  18. Decomposition of Rare Earth Loaded Resin Particles

    SciTech Connect

    Voit, Stewart L; Rawn, Claudia J

    2010-09-01

    The Fuel Cycle R and D (FCR and D) program within the Department of Energy Office of Nuclear Energy (DOE-NE) is evaluating nuclear fuel cycle options, including once-through, modified open, and fully closed cycles. Each of these scenarios may utilize quite different fuel management schemes and variation in fuel types may include high thermal conductivity UO{sub 2}, thoria-based, TRISO, metal, advanced ceramic (nitride, carbide, composite, etc.), and minor actinide (MA) bearing fuels and targets. Researchers from the US, Europe, and japan are investigating methods of fabricating high-specific activity spherical particles for fuel and target applications. The capital, operating, and maintenance costs of such a fuel fabrication facility can be significant, thus fuel synthesis and fabrication processes that minimize waste and process losses, and require less footprint are desired. Investigations have been performed at the Institute for Transuranium Elements (ITU) and the French Atomic Energy Commission (CEA) studying the impact of americium and curium on the fuel fabrication process. proof of concept was demonstrated for fabrication of MA-bearing spherical particles, however additional development will be needed for engineering scale-up. Researchers at the Paul Scherer Institute (PSI) and the Japan Atomic Energy Association (JAEA) have collaborated on research with ceramic-metallic (CERMET) fuels using spherical particles as the ceramic component dispersed in the metal matrix. Recent work at the CEA evaluates the burning of MA in the blanket region of sodium fast reactors. There is also interest in burning MA in Canada Deuterium Uranium (CANDU) reactors. The fabrication of uranium-MA oxide pellets for a fast reactor blanket or MA-bearing fuel for CANDU reactors may benefit from a low-loss dedicated footprint for producing MA-spherical particles. One method for producing MA-bearing spherical particles is loading the actinide metal on a cation exchange resin. The AG-50W

  19. Resin film infusion mold tooling and molding method

    NASA Technical Reports Server (NTRS)

    Burgess, Roger (Inventor); Grossheim, Brian (Inventor); Mouradian, Karbis (Inventor); Thrash, Patrick J. (Inventor)

    1999-01-01

    A mold apparatus and method for resin film infusion molding including an outer mold tool having a facing sheet adapted to support a resin film and preform assembly. The facing sheet includes attachment features extending therefrom. An inner mold tool is positioned on the facing sheet to enclose the resin film and preform assembly for resin film infusion molding. The inner mold tool includes a plurality of mandrels positioned for engagement with the resin film and preform assembly. Each mandrel includes a slot formed therein. A plurality of locating bars cooperate with the slots and with the attachment features for locating the mandrels longitudinally on the outer mold tool.

  20. NITRATE CONVERSION OF HB-LINE REILLEXTM HPQ RESIN

    SciTech Connect

    Steimke, J.; Williams, M.; Steeper, T.; Leishear, R.

    2012-05-29

    Reillex{trademark} HPQ ion exchange resin is used by HB Line to remove plutonium from aqueous streams. Reillex{trademark} HPQ resin currently available from Vertellus Specialties LLC is a chloride ionic form, which can cause stress corrosion cracking in stainless steels. Therefore, HB Line Engineering requested that Savannah River National Laboratory (SRNL) convert resin from chloride form to nitrate form in the Engineering Development Laboratory (EDL). To perform this task, SRNL treated two batches of resin in 2012. The first batch of resin from Reilly Industries Batch 80302MA was initially treated at SRNL in 2001 to remove chloride. This batch of resin, nominally 30 liters, has been stored wet in carboys since that time until being retreated in 2012. The second batch of resin from Batch 23408 consisted of 50 kg of new resin purchased from Vertellus Specialties in 2012. Both batches were treated in a column designed to convert resin using downflow of 1.0 M sodium nitrate solution through the resin bed followed by rinsing with deionized water. Both batches were analyzed for chloride concentration, before and after treatment, using Neutron Activation Analysis (NAA). The resin specification [Werling, 2003] states the total chlorine and chloride concentration shall be less than 250 ppm. The resin condition for measuring this concentration is not specified; however, in service the resin would always be fully wet. Measurements in SRNL showed that changing from oven dry resin to fully wet resin, with liquid in the particle interstices but no supernatant, increases the total weight by a factor of at least three. Therefore, concentration of chlorine or chloride expressed as parts per million (ppm) decreases by a factor of three. Therefore, SRNL recommends measuring chlorine concentration on an oven dry basis, then dividing by three to estimate chloride concentration in the fully wet condition. Chloride concentration in the first batch (No.80302MA) was nearly the same

  1. Stability Of A Carbon-Dioxide-Removing Resin

    NASA Technical Reports Server (NTRS)

    Wydeven, Theodore; Wood, Peter

    1990-01-01

    Report describes experiments determing long-term chemical stability of IRA-45, commerical ion-exchange resin candidate for use in removing CO2 from atmosphere of Space Station. In proposed system, cabin air passes through resin, and acidic CO2 absorbed by weakly-basic hydrated diethylenetriamine bonded to porous resin substrate. When resin absorbs all CO2, disconnects from airstream and heated with steam to desorb CO2. Resin reuseable. Removed by post-treating process air with phosphoric acid on charcoal. Other chemicals removed by trace-contaminant-control subsystem of Space Station.

  2. Resin systems for producing polymer concrete

    SciTech Connect

    Kukacka, L.E.

    1988-09-01

    When plastics are combined with mixtures of inorganic materials, high-strength, durable, fast-setting composites are produced. These materials are used in structural engineering and other applications, and as a result of the many commercial successes that have been achieved, considerable research and development work is in progress throughout the world. One family of polymer-based composites receiving considerable attention is called polymer concrete. Work in this area is directed toward developing new high-strength durable materials by combining cement and concrete technology with that of polymer chemistry. The purpose of this paper is to discuss the types of resins that can be used to form polymer concretes. Resin selection is normally based upon the desired properties for the composite and cost. However, the physical and chemical properties of the resins before and during curing are also important, particularly for field-applied materials. Currently, for normal temperature (0/degree/ to 30/degree/C) applications, epoxy resins, vinyl monomers such as polyester-styrene, methylmethacrylate, furfuryl alcohol, furan derivatives, urethane, and styrene, are being used. Styrene-trimethylolpropane trimethacrylate (TMPTMA) mixtures and styrene-acrylamide-TMPTMA mixtures yield composites with excellent hydrothermal stability at temperatures up to 150/degree/ and 250/degree/C, respectively, and organosiloxane resins have been successfully tested at 300/degree/C. Of equal importance is the selection of the composition of the inorganic phase of the composite, since chemical interactions between the two phases can significantly enhance the final properties. Further work to elucidate the mechanisms of these interactions is needed. 6 refs.

  3. ANALYSIS OF VENTING OF A RESIN SLURRY

    SciTech Connect

    Laurinat, J.; Hensel, S.

    2012-03-27

    A resin slurry venting analysis was conducted to address safety issues associated with overpressurization of ion exchange columns used in the Purex process at the Savannah River Site (SRS). If flow to these columns were inadvertently interrupted, an exothermic runaway reaction could occur between the ion exchange resin and the nitric acid used in the feed stream. The nitric acid-resin reaction generates significant quantities of noncondensable gases, which would pressurize the column. To prevent the column from rupturing during such events, rupture disks are installed on the column vent lines. The venting analysis models accelerating rate calorimeter (ARC) tests and data from tests that were performed in a vented test vessel with a rupture disk. The tests showed that the pressure inside the test vessel continued to increase after the rupture disk opened, though at a slower rate than prior to the rupture. Calculated maximum discharge rates for the resin venting tests exceeded the measured rates of gas generation, so the vent size was sufficient to relieve the pressure in the test vessel if the vent flow rate was constant. The increase in the vessel pressure is modeled as a transient phenomenon associated with expansion of the resin slurry/gas mixture upon rupture of the disk. It is postulated that the maximum pressure at the end of this expansion is limited by energy minimization to approximately 1.5 times the rupture disk burst pressure. The magnitude of this pressure increase is consistent with the measured pressure transients. The results of this analysis demonstrate the need to allow for a margin between the design pressure and the rupture disk burst pressure in similar applications.

  4. [New acrylic resins with very low residual monomer].

    PubMed

    Ohe, Y; Kadoma, Y; Imai, Y

    1989-07-01

    New experimental acrylic resins were prepared by polymerization of MMA in the presence of vinylidene fluoride/hexafluoropropylene copolymer. The amount of residual monomer in the resins prepared by visible light curing, cold curing, and heat curing, at various polymer/monomer ratios, was measured and compared with the usual MMA/PMMA resin. In the visible light cured resins containing 60 or 70 wt% of the fluoropolymer, the amount of residual monomer was less than 0.1%. In the cold cured resins, the amount of residual monomer was very low: 0.2% and 0.7% for the resins containing 70 and 60 wt% of the polymer, respectively. These values were comparable to the usual heat cured MMA/PMMA resins. In the heat cured resins, the amount of residual monomer was the lowest; less than 0.1%, even in the resin consisting of 50 wt% polymer. Thus, we prepared new acrylic resins with much less residual monomer than the usual MMA/PMMA resins. PMID:2491165

  5. Synthesis and Characterizations of Melamine-Based Epoxy Resins

    PubMed Central

    Ricciotti, Laura; Roviello, Giuseppina; Tarallo, Oreste; Borbone, Fabio; Ferone, Claudio; Colangelo, Francesco; Catauro, Michelina; Cioffi, Raffaele

    2013-01-01

    A new, easy and cost-effective synthetic procedure for the preparation of thermosetting melamine-based epoxy resins is reported. By this innovative synthetic method, different kinds of resins can be obtained just by mixing the reagents in the presence of a catalyst without solvent and with mild curing conditions. Two types of resins were synthesized using melamine and a glycidyl derivative (resins I) or by adding a silane derivative (resin II). The resins were characterized by means of chemical-physical and thermal techniques. Experimental results show that all the prepared resins have a good thermal stability, but differ for their mechanical properties: resin I exhibits remarkable stiffness with a storage modulus value up to 830 MPa at room temperature, while lower storage moduli were found for resin II, indicating that the presence of silane groups could enhance the flexibility of these materials. The resins show a pot life higher than 30 min, which makes these resins good candidates for practical applications. The functionalization with silane terminations can be exploited in the formulation of hybrid organic-inorganic composite materials. PMID:24013372

  6. Commercial Ion Exchange Resin Vitrification in Borosilicate Glass

    SciTech Connect

    Cicero-Herman, C.A.; Workman, P.; Poole, K.; Erich, D.; Harden, J.

    1998-05-01

    Bench-scale studies were performed to determine the feasibility of vitrification treatment of six resins representative of those used in the commercial nuclear industry. Each resin was successfully immobilized using the same proprietary borosilicate glass formulation. Waste loadings varied from 38 to 70 g of resin/100 g of glass produced depending on the particular resin, with volume reductions of 28 percent to 68 percent. The bench-scale results were used to perform a melter demonstration with one of the resins at the Clemson Environmental Technologies Laboratory (CETL). The resin used was a weakly acidic meth acrylic cation exchange resin. The vitrification process utilized represented a approximately 64 percent volume reduction. Glass characterization, radionuclide retention, offgas analyses, and system compatibility results will be discussed in this paper.

  7. Study on the resin temperature developments during UV imprinting process.

    PubMed

    Jeon, Jongduk; Jang, Siyoul

    2012-02-01

    During the imprinting process, the temperature of the UV resin increases as the phase of the resin changes from fluid into solid. During UV curing, some amount of heat is released from inside the resin and transferred into contacting materials. The heat flow is measured with photo-DSC, and other related thermal and mechanical properties of the resin. With the measured material properties, the temperature developments both inside of the resin layer and along the interfaces of the contacting materials are computed. During the UV exposure period, the thermal deformation of the mold, which directly influences the pattern distortion are investigated. Under this condition, the developments of strain and temperature inside the mold structure including the UV resin of 3-D shape are computed with the transient time scale during UV curing according to the thickness of resin layer. These computational results are expected to provide useful information for better designs of the imprinting mold and the process condition. PMID:22629908

  8. Electrically conductive resinous bond and method of manufacture

    DOEpatents

    Snowden, Jr., Thomas M.; Wells, Barbara J.

    1987-01-01

    A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40.degree. to 365.degree. C. to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

  9. Electrically conductive resinous bond and method of manufacture

    DOEpatents

    Snowden, T.M. Jr.; Wells, B.J.

    1985-01-01

    A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40 to 365/sup 0/C to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

  10. Uranium Adsorption on Ion-Exchange Resins - Batch Testing

    SciTech Connect

    Mattigod, Shas V.; Golovich, Elizabeth C.; Wellman, Dawn M.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    The uranium adsorption performance of five resins (Dowex 1, Dowex 21K 16-30 [fresh], Dowex 21K 16-30 [regenerated], Purofine PFA600/4740, and ResinTech SIR-1200) were tested using unspiked, nitrate-spiked, and nitrate-spiked/pH adjusted source water from well 299-W19-36. These batch tests were conducted in support of a resin selection process in which the best resin to use for uranium treatment in the 200-West Area groundwater pump-and-treat system will be identified. The results from these tests are as follows: • The data from the high-nitrate (1331 mg/L) tests indicated that Dowex 1, Dowex 21K 16-30 (fresh), Purofine PFA600/4740, and ResinTech SIR-1200 all adsorbed uranium similarly well with Kd values ranging from ~15,000 to 95,000 ml/g. All four resins would be considered suitable for use in the treatment system based on uranium adsorption characteristics. • Lowering the pH of the high nitrate test conditions from 8.2 to 7.5 did not significantly change the uranium adsorption isotherms for the four tested resins. The Kd values for these four resins under high nitrate (1338 mg/L), lower pH (7.5) ranged from ~15,000 to 80,000 ml/g. • Higher nitrate concentrations greatly reduced the uranium adsorption on all four resins. Tests conducted with unspiked (no amendments; nitrate at 337 mg/L and pH at 8.2) source water yielded Kd values for Dowex 1, Dowex 21K 16-30 (fresh), Purofine PFA600/4740, and ResinTech SIR-1200 resins ranging from ~800,000 to >3,000,000 ml/g. These values are about two orders of magnitude higher than the Kd values noted from tests conducted using amended source water. • Compared to the fresh resin, the regenerated Dowex 21K 16-30 resin exhibited significantly lower uranium-adsorption performance under all test conditions. The calculated Kd values for the regenerated resin were typically an order of magnitude lower than the values calculated for the fresh resin. • Additional testing using laboratory columns is recommended to better

  11. Multidisciplinary Management of Complicated Crown-Root Fracture of an Anterior Tooth Undergoing Apexification

    PubMed Central

    Mese, Merve; Akcay, Merve; Yasa, Bilal; Akcay, Huseyin

    2015-01-01

    The purpose of this case report was to present the multidisciplinary management of a subgingival crown-root fracture of a patient undergoing apexification treatment. A 12-year-old male patient was referred to the pediatric dentistry clinic with an extensive tooth fracture of the right permanent maxillary lateral incisor. Clinical and radiographic examinations revealed the presence of a complicated crown-root fracture, which had elongated to the buccal subgingival area. The dental history disclosed that the apexification procedure had been started to be performed after his first trauma experience and he had neglected his appointment. The coronal fragment was gently extracted; endodontic treatment was performed; flap surgery was performed to make the fracture line visible. The coronal fragment was reattached to the root fragment with a dual-cure luting composite. A fiber post was stabilized and the access cavity of the tooth was restored with composite resin. At the end of the 24th month, the tooth was asymptomatic, functionally, esthetically acceptable and had no periapical pathology. It is important for the patients undergoing apexification treatment to keep their appointments because of the fracture risk. Restoration of the fractured tooth by preparing retention grooves and a bonding fiber-reinforced post are effective and necessary approaches for successful management. PMID:26146573

  12. Simultaneous Replacement of Maxillary Central Incisors with CEREC Biogeneric Reference Technique: A Case Report

    PubMed Central

    Akgungor, Gokhan; Sen, Deniz; Bal, Eray; Özcan, Mutlu

    2013-01-01

    Biogeneric Reference Technique (BRT) of the CEREC 3D v.3.8 software is an effective technique for single anterior ceramic crowns because it provides computer-controlled match of the tooth form to the contralateral tooth. BRT also enables the fabrication of two or more anterior all-ceramic crowns simultaneously. This clinical report demonstrates the clinical application of BRT for designing and milling two central incisors in one appointment using a single optical impression. After completing the virtual design of the first central incisor, it was copied and a mirror image was created. The second central incisor was designed using this replicated image and therefore a computer-controlled symmetry was obtained. The crowns were milled from monolithic feldspathic ceramic blocks and adhesively luted with dual-cured resin cement following dentin conditioning. At the two-year follow-up appointment, the restorations were intact, no adverse effects were noted, and the resultant appearance was highly satisfactory for the patient. A step-by-step protocol is described from design to cementation of these restorations. PMID:23875091

  13. Bi-axial flexural strength of dual-polymerizing agents cemented to human dentin after photo-activation with different light-curing systems

    PubMed Central

    Taher, Nadia Malek A.

    2010-01-01

    Objectives This study aimed to assess the bi-axial flexural strength of two dual-polymerizing resin luting agents cemented to human dentin when photo-activated with different light-curing units. Materials and methods Two dual-cured resin cements: choice (CH) and Variolink II (VL) were tested. Hybrid composite resin (Z-250) discs (12 × 1.5 mm) were fabricated. Three types of light-curing units were used halogen-curing unit (QTH), light-emitting diode (LED) and plasma arc (PAC). Sixty dentin discs of 0.5 mm thickness were prepared from extracted human teeth. A circular mold (2.5 mm in height and 12 mm diameter) was utilized to create supporting structure for dentin, resin cement complex. The resin luting cement (0.5 mm) was placed on the previously prepared dentin discs and covered with the prefabricated composite discs. Photo-activation of cements was performed for 40 s with QTH and LED units and for 3 s with PAC. The specimens were divided into 12 groups (20 specimens for each light source). Six groups were kept in distilled water for 24 h and the rest were stored for 6 weeks. Bi-axial flexural strength was determined using Instron machine. The data was analyzed using two-way ANOVA and Tukey test for comparison. Results The findings indicated that the bi-axial flexural strength values for both cements CH and VL were higher for 24 h over 6 weeks but not statistically significant when cured with QTH. Meanwhile, when LED light was used for photo-activation the cements, the flexural strength values reported were statistically higher of 24 h over 6 weeks storage at P = 0.4E−6 However, PAC light did not record any statistically significant difference between two duration for the CH cement although when used for polymerization of VL the reported value for 6 weeks were statistically significantly higher value than 24 h duration at P = 0.002. Conclusion When high immediate flexural strength is preferred in clinical situation photo-activation the

  14. Flammability of Epoxy Resins Containing Phosphorus

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Thompson, C. M.; Smith, J. G.; Connell, J. W.; Hinkley, J. A.

    2005-01-01

    As part of a program to develop fire-resistant exterior composite structures for future subsonic commercial and general aviation aircraft, flame-retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured neat epoxy formulations were characterized by thermogravimetric analysis, propane torch test, elemental analysis, microscale combustion calorimetry, and fire calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness and compressive strength of several cured formulations showed no detrimental effect due to phosphorus content. The chemistry and properties of these new epoxy formulations are discussed.

  15. Ethynylated aromatics as high temperature matrix resins

    NASA Technical Reports Server (NTRS)

    Hurwitz, F. I.

    1987-01-01

    Difunctional and trifunctional arylacetylenes were used as monomers to form thermoset matrix resin composites. Composites can be hot-pressed at 180 C to react 80 percent of the acetylene groups. Crosslinking is completed by postcuring at 350 C. The postcured resins are thermally stable to nominally 460 C in air. As a result of their high crosslink density, the matrix exhibits brittle failure when uniaxial composites are tested in tension. Failure of both uniaixial tensile and flexural specimens occurs in shear at the fiber-matrix interface. Tensile fracture stresses for 0-deg composites fabricated with 60 v/o Celion 6K graphite fiber were 827 MPa. The strain to failure was 0.5 percent. Composites fabricated with 8 harness satin Celion cloth (Fiberite 1133) and tested in tension also failed in shear at tensile stresses of 413 MPa.

  16. Epoxy resins in the construction industry.

    PubMed

    Spee, Ton; Van Duivenbooden, Cor; Terwoert, Jeroen

    2006-09-01

    Epoxy resins are used as coatings, adhesives, and in wood and concrete repair. However, epoxy resins can be highly irritating to the skin and are strong sensitizers. Some hardeners are carcinogenic. Based on the results of earlier Dutch studies, an international project on "best practices,"--Epoxy Code--with epoxy products was started. Partners were from Denmark, Germany, the Netherlands, and the UK. The "Code" deals with substitution, safe working procedures, safer tools, and skin protection. The feasibility of an internationally agreed "ranking system" for the health risks of epoxy products was studied. Such a ranking system should inform the user of the harmfulness of different epoxies and stimulate research on less harmful products by product developers. PMID:17119222

  17. Ethynylated aromatics as high temperature matrix resins

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1986-01-01

    Difunctional and trifunctional arylacetylenes were used as monomers to form thermoset matrix resin composites. Composites can be hot pressed at 180 C to react 80 percent of the acetylene groups. Crosslinking is completed by postcuring at 350 C. The postcured resins are thermally stable to nominally 460 C in air. As a result of their high crosslink density, the matrix exhibits brittle failure when unaxial composites are tested in tension. Failure of both uniaxial tensile and flexural specimens occurs in shear at the fiber matrix interface. Tensile fracture stresses for 0 deg composites fabricated with 60 v/o Celion 6K graphite fiber were 827 MPa. The strain to failure was 0.5 percent. Composites fabricated with 8 harness satin Celion cloth (Fiberite 1133) and tested in tension also failed in shear at tensile stresses of 413 MPa.

  18. Development of a Heterogeneous Laminating Resin

    NASA Technical Reports Server (NTRS)

    Gosnell, R.

    1984-01-01

    The feasibility of toughening the common types of matrix resins such as Narmco 5208 by utilizing a heterogeneous additive was examined. Some basic concepts and principles in the toughening of matrix resins for advanced composites were studied. The following conclusions were advanced: (1) the use of damage volume as a guide for measurement of impact resistance appears to be a valid determination; (2) short beam shear is a good test to determine the effect of toughening agents on mechanical properties; (3) rubber toughening results in improved laminate impact strength, but with substantial loss in high temperature dry and wet strength; (4) in the all-epoxy systems, the polycarbonate toughening agent seemed to be the most effective, although hot-wet strength is sacrificed; ABS was not as effective; and (5) in general, the toughened all-epoxy systems showed better damage tolerance, but less hot-wet strength; toughened bismaleimides had better hot-wet strength.

  19. Composites with improved fiber-resin interfacial adhesion

    NASA Technical Reports Server (NTRS)

    Cizmecioglu, Muzaffer (Inventor)

    1989-01-01

    The adhesion of fiber reinforcement such as high modulus graphite to a matrix resin such as polycarbonate is greatly enhanced by applying a very thin layer, suitably from 50 Angstroms to below 1000 Angstroms, to the surface of the fiber such as by immersing the fiber in a dilute solution of the matrix resin in a volatile solvent followed by draining to remove excess solution and air drying to remove the solvent. The thin layer wets the fiber surface. The very dilute solution of matrix resin is able to impregnate multifilament fibers and the solution evenly flows onto the surface of the fibers. A thin uniform layer is formed on the surface of the fiber after removal of the solvent. The matrix resin coated fiber is completely wetted by the matrix resin during formation of the composite. Increased adhesion of the resin to the fibers is observed at fracture. At least 65 percent of the surface of the graphite fiber is covered with polycarbonate resin at fracture whereas uncoated fibers have very little matrix resin adhering to their surfaces at fracture and epoxy sized graphite fibers exhibit only slightly higher coverage with matrix resin at fracture. Flexural modulus of the composite containing matrix resin coated fibers is increased by 50 percent and flexural strength by 37 percent as compared to composites made with unsized fibers.

  20. Anion-exchange resin-based desulfurization process. Final report

    SciTech Connect

    Sheth, A C; Dharmapurikar, R; Strevel, S D

    1994-01-01

    The following investigations were performed: (1) batch mode screening of eleven(11) commercially available resins and selection of three candidate resins for further evaluation in a fixed-bed setup. (2) Process variables study using three candidate resins in the fixed-bed setup and selection of the ``best`` resin for process economics development. (3) Exhaustion efficiency and solution concentration were found to be inversely related necessitating a trade-off between the resin cost versus the cost of evaporation/concentration of ensuing effluents. (4) Higher concentration of the HCO{sub 3}{sup {minus}} form of active sites over less active CO{sub 3}{sup 2{minus}} form of sites in the resin was believed to be the main reason for the observed increase in the equilibrium capacity of the resin at an elevated static CO{sub 2}-pressure. This Increase in capacity was found to level off around 80--120 psig range. The increase in CO{sub 2}-pressure, however, did not appear to affect the overall ion-exchange kinetics. (5) In the fixed-bed mode, the solution concentration was found to affect the equilibrium capacity of candidate resins. Their relationship was well satisfied by the Langmuir type non-linear equilibrium isotherm. Alternatively, the effect of solution concentration on overall ion-exchange kinetics varied from resin to resin. (6) Product inhibition effect on the resin was observed as an initial increase followed by a significant decrease in the resin`s equilibrium capacity for SO{sub 4}{sup 2{minus}} as the HCO{sub 3}{sup {minus}}/SO{sub 4}{sup 2{minus}} molar ratio in the solution was increased from 0 to 1.0. This ratio, however, did not affect the overall ion-exchange kinetics.