Science.gov

Sample records for dual-source ct initial

  1. Principle and applications of dual source CT

    NASA Astrophysics Data System (ADS)

    Flohr, Thomas

    2008-08-01

    Dual source CT (DSCT) has the potential to solve remaining limitations of conventional multi-detector row CT (MDCT)-scanners, such as insufficient temporal resolution for ECG-controlled cardiac imaging. A DSCT is equipped with two X-ray tubes and two corresponding detectors that are mounted onto the rotating gantry with an angular offset of 90°. The key benefit of DSCT for cardiac scanning is improved temporal resolution equivalent to a quarter of the gantry rotation time (83 ms at 0.33 s rotation time). Additionally, both X-ray tubes can be operated at different kV- and mA-settings, enabling the acquisition of dual energy data. The acquisition of dual energy CT data can add functional information to the morphological information based on different X-ray attenuation coefficients that is usually obtained in a CT examination.

  2. Flash imaging in dual source CT (DSCT)

    NASA Astrophysics Data System (ADS)

    Bruder, H.; Petersilka, M.; Mehldau, H.; Heidinger, W.; Allmendinger, T.; Schmidt, B.,; Raupach, R.; Thierfelder, C.,; Stierstorfer, K.; Flohr, T.

    2009-02-01

    We present new acquisition modes of a recently introduced dual-source computed tomography (DSCT) system equipped with two X-ray tubes and two corresponding detectors, mounted onto the rotating gantry with an angular offset of typically 90°. Due to the simultaneous acquisition of complementary data, the minimum exposure time is reduced by a factor of two compared to a single-source CT system (SSCT). The correspondingly improved temporal resolution is beneficial for cardiac CT. Also, maximum table feed per rotation in a spiral mode can be increased by a factor of 2 compared to SSCT, which provides benefits both for cardiac CT and non-cardiac CT. In an ECG-triggered mode the entire cardiac volume can be scanned within a fraction of one cardiac RR-cycle. At a rotation time of 0.28s using a detector with 64×0.6 mm beam collimation, the scan time of the entire heart is less than 0.3s at a temporal resolution of 75 ms. It will be shown, that the extremely fast cardiac scan reduces the patient dose to a theoretical lowest limit: for a 120 kV scan the dose level for a typical cardiac CT scan is well below 2 mSv. Using further protocol optimization (scan range adaptation, 100kV), the radiation dose can be reduced below 1mSv.

  3. Coronary artery anomalies in adults: imaging at dual source CT coronary angiography.

    PubMed

    Laspas, Fotios; Roussakis, Arkadios; Mourmouris, Christos; Kritikos, Nikolaos; Efthimiadou, Roxani; Andreou, John

    2013-04-01

    Congenital abnormalities of the coronary arteries have an incidence of 1%, and most of these are benign. However, a small number are associated with myocardial ischaemia and sudden death. Various imaging modalities are available for coronary artery assessment. Recently, multi-detector CT has emerged as an accurate diagnostic tool for defining coronary artery anomalies. The purpose of this pictorial essay is to review the dual source CT appearance of congenital anomalies of the coronary arteries in adults. PMID:23551776

  4. Temporal resolution and motion artifacts in single-source and dual-source cardiac CT

    SciTech Connect

    Schoendube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas

    2013-03-15

    Purpose: The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. Methods: To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. Results: While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same

  5. Dual-source multi-energy CT with triple or quadruple x-ray beams

    NASA Astrophysics Data System (ADS)

    Yu, Lifeng; Li, Zhoubo; Leng, Shuai; McCollough, Cynthia H.

    2016-03-01

    Energy-resolved photon-counting CT (PCCT) is promising for material decomposition with multi-contrast agents. However, corrections for non-idealities of PCCT detectors are required, which are still active research areas. In addition, PCCT is associated with very high cost due to lack of mass production. In this work, we proposed an alternative approach to performing multi-energy CT, which was achieved by acquiring triple or quadruple x-ray beam measurements on a dual-source CT scanner. This strategy was based on a "Twin Beam" design on a single-source scanner for dual-energy CT. Examples of beam filters and spectra for triple and quadruple x-ray beam were provided. Computer simulation studies were performed to evaluate the accuracy of material decomposition for multi-contrast mixtures using both tri-beam and quadruple-beam configurations. The proposed strategy can be readily implemented on a dual-source scanner, which may allow material decomposition of multi-contrast agents to be performed on clinical CT scanners with energy-integrating detector.

  6. Dual-Source Multi-Energy CT with Triple or Quadruple X-ray Beams

    PubMed Central

    Yu, Lifeng; Leng, Shuai; McCollough, Cynthia H.

    2016-01-01

    Energy-resolved photon-counting CT (PCCT) is promising for material decomposition with multi-contrast agents. However, corrections for non-idealities of PCCT detectors are required, which are still active research areas. In addition, PCCT is associated with very high cost due to lack of mass production. In this work, we proposed an alternative approach to performing multi-energy CT, which was achieved by acquiring triple or quadruple x-ray beam measurements on a dual-source CT scanner. This strategy was based on a “Twin Beam” design on a single-source scanner for dual-energy CT. Examples of beam filters and spectra for triple and quadruple x-ray beam were provided. Computer simulation studies were performed to evaluate the accuracy of material decomposition for multi-contrast mixtures using a tri-beam configuration. The proposed strategy can be readily implemented on a dual-source scanner, which may allow material decomposition of multi-contrast agents to be performed on clinical CT scanners with energy-integrating detector. PMID:27330237

  7. High-Pitch CT Pulmonary Angiography in Third Generation Dual-Source CT: Image Quality in an Unselected Patient Population

    PubMed Central

    Sabel, Bastian O.; Buric, Kristijan; Karara, Nora; Thierfelder, Kolja M.; Dinkel, Julien; Sommer, Wieland H.; Meinel, Felix G.

    2016-01-01

    Objectives To investigate the feasibility of high-pitch CT pulmonary angiography (CTPA) in 3rd generation dual-source CT (DSCT) in unselected patients. Methods Forty-seven patients with suspected pulmonary embolism underwent high-pitch CTPA on a 3rd generation dual-source CT scanner. CT dose index (CTDIvol) and dose length product (DLP) were obtained. Objective image quality was analyzed by calculating signal-to-noise-ratio (SNR) and contrast-to-noise ratio (CNR). Subjective image quality on the central, lobar, segmental and subsegmental level was rated by two experienced radiologists. Results Median CTDI was 8.1 mGy and median DLP was 274 mGy*cm. Median SNR was 32.9 in the central and 31.9 in the segmental pulmonary arteries. CNR was 29.2 in the central and 28.2 in the segmental pulmonary arteries. Median image quality was “excellent” in central and lobar arteries and “good” in subsegmental arteries according to both readers. Segmental arteries varied between “excellent” and “good”. Image quality was non-diagnostic in one case (2%), beginning in the lobar arteries. Thirteen patients (28%) showed minor motion artifacts. Conclusions In third-generation dual-source CT, high-pitch CTPA is feasible for unselected patients. It yields excellent image quality with minimal motion artifacts. However, compared to standard-pitch cohorts, no distinct decrease in radiation dose was observed. PMID:26872262

  8. Dual energy CT with photon counting and dual source systems: comparative evaluation

    NASA Astrophysics Data System (ADS)

    Atak, Haluk; Shikhaliev, Polad M.

    2015-12-01

    Recently, new dual energy (DE) computed tomography (CT) systems—dual source CT (DSCT) and photon counting CT (PCCT) have been introduced. Although these systems have the same clinical targets, they have major differences as they use dual and single kVp acquisitions and different x-ray detection and energy resolution concepts. The purpose of this study was theoretical and experimental comparisons of DSCT and PCCT. The DSCT Siemens Somatom Flash was modeled for simulation study. The PCCT had the same configuration as DSCT except it used a photon counting detector. The soft tissue phantoms with 20, 30, and 38 cm diameters included iodine, CaCO3, adipose, and water samples. The dose (air kerma) was 14 mGy for all studies. The low and high energy CT data were simulated at 80 kVp and 140 kVp for DSCT, and in 20-58 keV and 59-120 keV energy ranges for PCCT, respectively. The experiments used Somatom Flash DSCT system and PCCT system based on photon counting CdZnTe detector with 2  ×  256 pixel configuration and 1  ×  1 mm2 pixels size. In simulated general CT images, PCCT provided higher contrast-to-noise ratio (CNR) than DSCT with 0.4/0.8 mm Sn filters. The PCCT with K-edge filter provided higher CNR than the PCCT with a Cu filter, and DSCT with 0.4 mm Sn filter provided higher CNR than the DSCT with a 0.8 mm Sn filter. In simulated DE subtracted images, CNR of the DSCT was comparable to the PCCT with a Cu filter. However, DE PCCT with Ho a K-edge filter provided 30-40% higher CNR than the DE DSCT with 0.4/0.8 mm Sn filters. The experimental PCCT provided higher CNR in general imaging compared to the DSCT. In experimental DE subtracted images, the DSCT provided higher CNR than the PCCT with a Cu filter. However, experimental CNR with DE PCCT with K-edge filter was 15% higher than in DE DSCT, which is less than 30-40% increase predicted by the simulation study. It is concluded that ideal PCCT can provide substantial advantages over ideal

  9. Dual energy CT with photon counting and dual source systems: comparative evaluation.

    PubMed

    Atak, Haluk; Shikhaliev, Polad M

    2015-12-01

    Recently, new dual energy (DE) computed tomography (CT) systems-dual source CT (DSCT) and photon counting CT (PCCT) have been introduced. Although these systems have the same clinical targets, they have major differences as they use dual and single kVp acquisitions and different x-ray detection and energy resolution concepts. The purpose of this study was theoretical and experimental comparisons of DSCT and PCCT. The DSCT Siemens Somatom Flash was modeled for simulation study. The PCCT had the same configuration as DSCT except it used a photon counting detector. The soft tissue phantoms with 20, 30, and 38 cm diameters included iodine, CaCO3, adipose, and water samples. The dose (air kerma) was 14 mGy for all studies. The low and high energy CT data were simulated at 80 kVp and 140 kVp for DSCT, and in 20-58 keV and 59-120 keV energy ranges for PCCT, respectively. The experiments used Somatom Flash DSCT system and PCCT system based on photon counting CdZnTe detector with 2  ×  256 pixel configuration and 1  ×  1 mm(2) pixels size. In simulated general CT images, PCCT provided higher contrast-to-noise ratio (CNR) than DSCT with 0.4/0.8 mm Sn filters. The PCCT with K-edge filter provided higher CNR than the PCCT with a Cu filter, and DSCT with 0.4 mm Sn filter provided higher CNR than the DSCT with a 0.8 mm Sn filter. In simulated DE subtracted images, CNR of the DSCT was comparable to the PCCT with a Cu filter. However, DE PCCT with Ho a K-edge filter provided 30-40% higher CNR than the DE DSCT with 0.4/0.8 mm Sn filters. The experimental PCCT provided higher CNR in general imaging compared to the DSCT. In experimental DE subtracted images, the DSCT provided higher CNR than the PCCT with a Cu filter. However, experimental CNR with DE PCCT with K-edge filter was 15% higher than in DE DSCT, which is less than 30-40% increase predicted by the simulation study. It is concluded that ideal PCCT can provide substantial advantages over ideal

  10. Descriptive anatomy of the dominant septal perforators using Dual Source Coronary CT Angiography.

    PubMed

    Brinjikji, Waleed; Harris, Scott R; Froemming, Adam T; Christensen, Kevin N; Lachman, Nirusha; Araoz, Philip A

    2010-01-01

    Although clinical outcomes for septal ablation in treating left ventricular outflow tract obstructions are generally favorable, a variety of complications have been reported including a high incidence of right bundle branch block. These complications may be attributed to anatomic variability of the dominant septal perforator. We used Dual Source CT Coronary Angiography (DS-CTA) to determine the location of the termination point of the dominant septal perforator as well as the distance of the termination point from the mitral annulus in patients undergoing DS-CTA. One-hundred-fourteen DS-CTA scans were retrospectively reviewed by two observers by consensus. The left ventricle was divided into anterior wall, anterioseptum, and inferioseptum. For each segment, the myocardium was divided into three layers (1) right ventricular side, (2) mid portion, and (3) left ventricular side. The zone of termination of the dominant septal perforator was identified as well as the distance of the termination point from the mitral annulus. The dominant septal perforator terminated in the right ventricular side of the anterioseptum in 86 of the 118 visualized terminations (73%) and in the left ventricular anterior wall in 6 visualized terminations (5%). On average, the dominant septal perforator terminated 26.3 +/- 8.6 mm from the mitral annulus. In the majority of cases, the dominant septal perforator terminates in the right ventricular side of anterioseptum. In addition, there is great variability in the distribution of the termination point of the dominant septal perforator from the mitral annulus. PMID:19918876

  11. Effectiveness of Using Dual-source CT and the Upshot it creates on Both Heart Rate and Image Quality

    PubMed Central

    Selçuk, Tuba; Otçu, Hafize; Yüceler, Zeyneb; Bilgili, Çiğdem; Bulakçı, Mesut; Savaş, Yıldıray; Çelik, Ömer

    2016-01-01

    Background: Early detection of coronary artery disease (CAD) is important because of the high morbidity and mortality rates. As invasive coronary angiography (ICA) is an invasive procedure, an alternative diagnostic method; coronary computed tomography angiography (CTA), has become more widely used by the improvements in detector technology. Aims: In this study, we aimed to examine the accuracy and image quality of high-pitch 128-slice dual-source CTA taking the ICA as reference technique. We also aimed to compare the accuracy and image quality between different heart rate groups of >70 beates per minute (bpm) and ≤70 bpm. Study Design: Retrospective cross-sectional study. Methods: Among 450 patients who underwent coronary CTA with the FLASH spiral technique, performed with a second generation dual-source computed tomography device with a pitch value of 3.2, 102 patients without stent and/or bypass surgery history and clinically suspected coronary artery disease who underwent ICA within 15 days were enrolled. Image quality was assessed by two independent radiologists using a 4-point scale (1=absence of any artifacts- 4=non-evaluable). A stenosis >50% was considered significant on a per-segment, per-vessel, and per-patient basis and ICA was considered the reference method. Radiation doses were determined using dose length product (DLP) values detected by the computed tomography (CT) device. In addition, patients were classified into two groups according to their heart rates as ≤70 bpm (73 patients) and >70 bpm (29 patients). The relation between the diagnostic accuracy and heart rate groups were evaluated. Results: Overall, 1495 (98%) coronary segments were diagnostic in 102 patients (32 male, 70 female, mean heart rate: 65 bpm). There was a significant correlation between image quality and mean heart rate in the right coronary artery (RCA) segments. The effective radiation dose was 0.98±0.09 mili Sievert (mSv). On a per-patient basis, sensitivity, specificity

  12. Optimal image reconstruction phase at low and high heart rates in dual-source CT coronary angiography.

    PubMed

    Araoz, Philip A; Kirsch, Jacobo; Primak, Andrew N; Braun, Natalie N; Saba, Osama; Williamson, Eric E; Harmsen, W Scott; Mandrekar, Jayawant N; McCollough, Cynthia H

    2009-12-01

    The purpose of this study was to determine the cardiac phase having the highest coronary sharpness for low and high heart rate patients scanned with dual source CT (DSCT) and to compare coronary image sharpness over different cardiac phases. DSCT coronary CT scans for 30 low heart rate (< or =70 beats per minute- bpm) and 30 high heart rate (>70 bpm) patients were reconstructed into different cardiac phases, starting at 30% and increasing at 5% increments until 70%. A blinded observer graded image sharpness per coronary segment, from which sharpness scores were produced for the right (RCA), left main (LM), left anterior descending (LAD), and circumflex (Cx) coronary arteries. For each coronary artery, the phase with maximal image sharpness was identified with repeated measures analysis of variance. Comparison of coronary sharpness between low and high heart rate patients was made using generalized estimating equations. For low heart rates the highest sharpness scores for all four vessels (RCA, LM, LAD, and Cx) were at the 65 or 70% phase, which are end-diastolic cardiac phases. For high heart rates the highest sharpness scores were between the 35 and 45% phases, which are end-systolic phases. Low heart rate patients had higher coronary sharpness at most cardiac phases; however, patients with high heart rates had higher coronary sharpness in the 45% phase for all four vessels (P < 0.0001). Using DSCT scanning, optimal image sharpness is obtained in end-diastole at low heart rates and in end-systole in high heart rates. PMID:19669664

  13. Optimal image reconstruction phase at low and high heart rates in dual-source CT coronary angiography

    PubMed Central

    Kirsch, Jacobo; Primak, Andrew N.; Braun, Natalie N.; Saba, Osama; Williamson, Eric E.; Harmsen, W. Scott; Mandrekar, Jayawant N.; McCollough, Cynthia H.

    2009-01-01

    The purpose of this study was to determine the cardiac phase having the highest coronary sharpness for low and high heart rate patients scanned with dual source CT (DSCT) and to compare coronary image sharpness over different cardiac phases. DSCT coronary CT scans for 30 low heart rate (≤ 70 beats per minute- bpm) and 30 high heart rate (>70 bpm) patients were reconstructed into different cardiac phases, starting at 30% and increasing at 5% increments until 70%. A blinded observer graded image sharpness per coronary segment, from which sharpness scores were produced for the right (RCA), left main (LM), left anterior descending (LAD), and circumflex (Cx) coronary arteries. For each coronary artery, the phase with maximal image sharpness was identified with repeated measures analysis of variance. Comparison of coronary sharpness between low and high heart rate patients was made using generalized estimating equations. For low heart rates the highest sharpness scores for all four vessels (RCA, LM, LAD, and Cx) were at the 65 or 70% phase, which are end-diastolic cardiac phases. For high heart rates the highest sharpness scores were between the 35 and 45% phases, which are end-systolic phases. Low heart rate patients had higher coronary sharpness at most cardiac phases; however, patients with high heart rates had higher coronary sharpness in the 45% phase for all four vessels (P < 0.0001). Using DSCT scanning, optimal image sharpness is obtained in end-diastole at low heart rates and in end-systole in high heart rates. PMID:19669664

  14. Image Quality of 3rd Generation Spiral Cranial Dual-Source CT in Combination with an Advanced Model Iterative Reconstruction Technique: A Prospective Intra-Individual Comparison Study to Standard Sequential Cranial CT Using Identical Radiation Dose

    PubMed Central

    Wenz, Holger; Maros, Máté E.; Meyer, Mathias; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O.; Flohr, Thomas; Leidecker, Christianne; Groden, Christoph; Scharf, Johann; Henzler, Thomas

    2015-01-01

    Objectives To prospectively intra-individually compare image quality of a 3rd generation Dual-Source-CT (DSCT) spiral cranial CT (cCT) to a sequential 4-slice Multi-Slice-CT (MSCT) while maintaining identical intra-individual radiation dose levels. Methods 35 patients, who had a non-contrast enhanced sequential cCT examination on a 4-slice MDCT within the past 12 months, underwent a spiral cCT scan on a 3rd generation DSCT. CTDIvol identical to initial 4-slice MDCT was applied. Data was reconstructed using filtered backward projection (FBP) and 3rd-generation iterative reconstruction (IR) algorithm at 5 different IR strength levels. Two neuroradiologists independently evaluated subjective image quality using a 4-point Likert-scale and objective image quality was assessed in white matter and nucleus caudatus with signal-to-noise ratios (SNR) being subsequently calculated. Results Subjective image quality of all spiral cCT datasets was rated significantly higher compared to the 4-slice MDCT sequential acquisitions (p<0.05). Mean SNR was significantly higher in all spiral compared to sequential cCT datasets with mean SNR improvement of 61.65% (p*Bonferroni0.05<0.0024). Subjective image quality improved with increasing IR levels. Conclusion Combination of 3rd-generation DSCT spiral cCT with an advanced model IR technique significantly improves subjective and objective image quality compared to a standard sequential cCT acquisition acquired at identical dose levels. PMID:26288186

  15. Dual-Source CT Angiography of Peripheral Arterial Stents: In Vitro Evaluation of 22 Different Stent Types

    PubMed Central

    Köhler, Michael; Burg, Matthias C.; Bunck, Alexander C.; Heindel, Walter; Seifarth, Harald; Maintz, David

    2011-01-01

    Purpose. To test different peripheral arterial stents using four image reconstruction approaches with respect to lumen visualization, lumen attenuation and image noise in dual-source multidetector row CT (DSCT) in vitro. Methods and Materials. 22 stents (nitinol, steel, cobalt-alloy, tantalum, platinum alloy) were examined in a vessel phantom. All stents were imaged in axial orientation with standard parameters. Image reconstructions were obtained with four different convolution kernels. To evaluate visualization characteristics of the stent, the lumen diameter, intraluminal density and noise were measured. Results. The mean percentage of the visible stent lumen diameter from the nominal stent diameter was 74.5% ± 5.7 for the medium-sharp kernel, 72.8% ± 6.4 for the medium, 70.8% ± 6.4 for the medium-smooth and 67.6% ± 6.6 for the smooth kernel. Mean values of lumen attenuation were 299.7HU ± 127 (medium-sharp), 273.9HU ± 68 (medium), 270.7HU ± 53 (medium-smooth) and 265.8HU ± 43. Mean image noise was: 54.6 ± 6.3, 20.5 ± 1.7, 16.3 ± 1.7, 14.0 ± 2 respectively. Conclusion. Visible stent lumen diameter varies depending on stent type and scan parameters. Lumen diameter visibility increases with the sharpness of the reconstruction kernel. Smoother kernels provide more realistic density measurements inside the stent lumen and less image noise. PMID:22091369

  16. Conversion of the energy-subtracted CT number to electron density based on a single linear relationship: an experimental verification using a clinical dual-source CT scanner.

    PubMed

    Tsukihara, Masayoshi; Noto, Yoshiyuki; Hayakawa, Takahide; Saito, Masatoshi

    2013-05-01

    In radiotherapy treatment planning, the conversion of the computed tomography (CT) number to electron density is one of the main processes that determine the accuracy of patient dose calculations. However, in general, the CT number and electron density of tissues cannot be interrelated using a simple one-to-one correspondence. This study aims to experimentally verify the clinical feasibility of an existing novel conversion method proposed by the author of this note, which converts the energy-subtracted CT number (ΔHU) to the relative electron density (ρe) via a single linear relationship by using a dual-energy CT (DECT). The ΔHU-ρe conversion was performed using a clinical second-generation dual-source CT scanner operated in the dual-energy mode with tube potentials of 80 kV and 140 kV with and without an additional tin filter. The ΔHU-ρe calibration line was obtained from the DECT image acquisition for tissue substitutes in an electron density phantom. In addition, the effect of object size on ΔHU-ρe conversion was also experimentally investigated. The plot of the measured ΔHU versus nominal ρe values exhibited a single linear relationship over a wide ρe range from 0.00 (air) to 2.35 (aluminum). The ΔHU-ρe conversion performed with the tin filter yielded a lower dose and more reliable ρe values that were less affected by the object-size variation when compared to the corresponding values obtained for the case without the tin filter. PMID:23571116

  17. Conversion of the energy-subtracted CT number to electron density based on a single linear relationship: an experimental verification using a clinical dual-source CT scanner

    NASA Astrophysics Data System (ADS)

    Tsukihara, Masayoshi; Noto, Yoshiyuki; Hayakawa, Takahide; Saito, Masatoshi

    2013-05-01

    In radiotherapy treatment planning, the conversion of the computed tomography (CT) number to electron density is one of the main processes that determine the accuracy of patient dose calculations. However, in general, the CT number and electron density of tissues cannot be interrelated using a simple one-to-one correspondence. This study aims to experimentally verify the clinical feasibility of an existing novel conversion method proposed by the author of this note, which converts the energy-subtracted CT number (ΔHU) to the relative electron density (ρe) via a single linear relationship by using a dual-energy CT (DECT). The ΔHU-ρe conversion was performed using a clinical second-generation dual-source CT scanner operated in the dual-energy mode with tube potentials of 80 kV and 140 kV with and without an additional tin filter. The ΔHU-ρe calibration line was obtained from the DECT image acquisition for tissue substitutes in an electron density phantom. In addition, the effect of object size on ΔHU-ρe conversion was also experimentally investigated. The plot of the measured ΔHU versus nominal ρe values exhibited a single linear relationship over a wide ρe range from 0.00 (air) to 2.35 (aluminum). The ΔHU-ρe conversion performed with the tin filter yielded a lower dose and more reliable ρe values that were less affected by the object-size variation when compared to the corresponding values obtained for the case without the tin filter.

  18. An Aneurysmal Left Circumflex Artery-to-Right Atrium Fistula in a Patient with Ischemic Symptoms: Accurate Diagnosis with Dual-Source CT Angiography

    SciTech Connect

    Oncel, Dilek Oncel, Guray

    2008-07-15

    In this report, we present a 55-year-old female patient with a left circumflex artery-to-right atrial fistula associated with a huge saccular aneurysm. She had undergone conventional angiography due to ischemic symptoms. In conventional angiography, a very dilated and tortuous vessel originating from the circumflex artery and continuous with a huge saccular aneurysm was visualized but the drainage site could not be demonstrated. With dual-source CT coronary angiography, the exact anatomy of this fistula was demonstrated and surgery was planned.

  19. Feasibility of low-concentration iodinated contrast medium with lower-tube-voltage dual-source CT aortography using iterative reconstruction: comparison with automatic exposure control CT aortography.

    PubMed

    Shin, Hee Jeong; Kim, Song Soo; Lee, Jae-Hwan; Park, Jae-Hyeong; Jeong, Jin-Ok; Jin, Seon Ah; Shin, Byung Seok; Shin, Kyung-Sook; Ahn, Moonsang

    2016-06-01

    To evaluate the feasibility of low-concentration contrast medium (CM) for vascular enhancement, image quality, and radiation dose on computed tomography aortography (CTA) using a combined low-tube-voltage and iterative reconstruction (IR) technique. Ninety subjects underwent dual-source CT (DSCT) operating in dual-source, high-pitch mode. DSCT scans were performed using both high-concentration CM (Group A, n = 50; Iomeprol 400) and low-concentration CM (Group B, n = 40; Iodixanol 270). Group A was scanned using a reference tube potential of 120 kVp and 120 reference mAs under automatic exposure control with IR. Group B was scanned using low-tube-voltage (80 or 100 kVp if body mass index ≥25 kg/m(2)) at a fixed current of 150 mAs, along with IR. Images of the two groups were compared regarding attenuation, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), iodine load, and radiation dose in various locations of the CTA. In comparison between Group A and Group B, the average mean attenuation (454.73 ± 86.66 vs. 515.96 ± 101.55 HU), SNR (25.28 ± 4.34 vs. 31.29 ± 4.58), and CNR (21.83 ± 4.20 vs. 27.55 ± 4.81) on CTA in Group B showed significantly greater values and significantly lower image noise values (18.76 ± 2.19 vs. 17.48 ± 3.34) than those in Group A (all Ps < 0.05). Homogeneous contrast enhancement from the ascending thoracic aorta to the infrarenal abdominal aorta was significantly superior in Group B (P < 0.05). Low-concentration CM and a low-tube-voltage combination technique using IR is a feasible method, showing sufficient contrast enhancement and image quality. PMID:26621755

  20. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: Image reconstruction and assessment of image quality

    SciTech Connect

    Flohr, Thomas G.; Leng Shuai; Yu Lifeng; Allmendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D.; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H.

    2009-12-15

    Purpose: To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. Methods: With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. Results: No significant differences in quantitative measures of image quality were found between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6{<=}pitch{<=}3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch=3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving

  1. Comparison Between Prospectively Electrocardiogram-Gated High-Pitch Mode and Retrospectively Electrocardiogram-Gated Mode for Dual-Source CT Coronary Angiography

    PubMed Central

    Koplay, Mustafa; Celik, Mahmut; Avcı, Ahmet; Erdogan, Hasan; Demir, Kenan; Sivri, Mesut; Nayman, Alaaddin

    2015-01-01

    Summary Background We aimed to report the image quality, relationship between heart rate and image quality, amount of contrast agent given to the patients and radiation doses in coronary CT angiography (CTA) obtained by using high-pitch prospectively ECG-gated “Flash Spiral” technique (method A) or retrospectively ECG-gated technique (method B) using 128×2-slice dual-source CT. Material/Methods A total of 110 patients who were evaluated with method A and method B technique with a 128×2-detector dual-source CT device were included in the study. Patients were divided into three groups based on their heart rates during the procedure, and a relationship between heart rate and image quality were evaluated. The relationship between heart rate, gender and radiation dose received by the patients was compared. Results A total of 1760 segments were evaluated in terms of image quality. Comparison of the relationship between heart rate and image quality revealed a significant difference between heart rate <60 beats/min group and >75 beats/min group whereas <60 beats/min and 60–75 beats/min groups did not differ significantly. The average effective dose for coronary CTA was calculated as 1.11 mSv (0.47–2.01 mSv) for method A and 8.22 mSv (2.19–12.88 mSv) for method B. Conclusions Method A provided high quality images with doses as low as <1 mSv in selected patients who have low heart rates with a high negative predictive value to rule out coronary artery disease. Although method B increases the amount of effective dose, it provides high diagnostic quality images for patients who have a high heart rate and arrhythmia which makes it is difficult to obtain images. PMID:26767072

  2. Comparison of diagnostic accuracy of dual-source CT and conventional angiography in detecting congenital heart diseases

    PubMed Central

    Sedaghat, Fariborz; Pouraliakbar, Hamidreza; Motevalli, Marzieh; Karimi, Mohammad Ali; Armand, Sandbad

    2014-01-01

    Summary Background Cardiac dual-source computed tomography (DSCT) is primarily used for coronary arteries. There are limited studies about the application of DSCT for congenital heart diseases. The aim of this study was to determine the diagnostic value of DSCT in the cardiac anomalies. Material/Methods The images of DSCTs and conventional angiographies of 36 patients (21 male; mean age: 8.5 month) with congenital heart diseases were reviewed and the parameters of diagnostic value of these methods were compared. Cardiac surgery was the gold standard. Results A total of 105 cardiac anomalies were diagnosed at surgery. Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of DSCT were 98.25%, 97.9%, 98.1%, 99.07%, and 98.2%, respectively. The corresponding values of angiography were 95.04%, 98.7%, 97.8%, 98.1%, and 98%, respectively. Only one atrial septal defect (ASD) and two patent ductus arteriosus (PDA) were missed by DSCT. Angiography missed two ASD and two PDA. DSCT also provided important additional findings (n=35) about the intrathoracic or intraabdominal organs. Conclusions DSCT is a highly accurate diagnostic modality for congenital heart diseases, obviating the need for invasive modalities. Beside its noninvasive nature, the advantage of DSCT over the angiography is its ability to provide detailed anatomical information about the heart, vessels, lungs and intraabdominal organs. PMID:24987488

  3. Virtual Monochromatic Images from Dual-Energy Multidetector CT: Variance in CT Numbers from the Same Lesion between Single-Source Projection-based and Dual-Source Image-based Implementations.

    PubMed

    Mileto, Achille; Barina, Andrew; Marin, Daniele; Stinnett, Sandra S; Roy Choudhury, Kingshuk; Wilson, Joshua M; Nelson, Rendon C

    2016-04-01

    Purpose To determine the variance in virtual monochromatic computed tomography (CT) numbers from the same lesion, comparing the two clinically available dual-energy multidetector CT hardware implementations (single-source projection-based and dual-source image-based), in a phantom-based simulated abdominal environment. Materials and Methods This phantom-based study was exempt from institutional review board oversight. Polyethylene terephthalate spheres (15 and 18 mm) with two iodine-to-saline dilutions (0.8 and 1.2 mg of iodine per millilliter) were serially suspended in a cylindrical polypropylene bottle filled with diluted iodinated contrast material. The bottle was placed into a 36-cm-wide torso-shaped water phantom simulating the abdomen of a medium-sized patient. Dual-energy (80/140 kVp) and single-energy (100 and 120 kVp) scans were obtained with single-source and dual-source multidetector CT implementations. Virtual monochromatic images were reconstructed at energy levels of 40-140 keV (in 10-keV increments) in either the projection-space or image-space domain. A multivariate regression analysis approach was used to investigate the effect of energy level, lesion size, lesion iodine content, and implementation type on measured CT numbers. Results There were significant differences in the attenuation values measured in the simulated lesions with the single-source projection-based platform and the dual-source image-based implementation (P < .001 for all comparisons). The magnitude of these differences was greatest at lower monochromatic energy levels and at lower iodine concentrations (average difference at 40 keV: 25.7 HU; average difference at 140 keV: 7 HU). The monochromatic energy level and the lesion iodine concentration had a significant effect on the difference in the measured attenuation values between the two implementations, which indicates that the two imaging platforms respond differently to changes in investigated variables (P < .001 for all

  4. Dual-source dual-energy CT with additional tin filtration: Dose and image quality evaluation in phantoms and in-vivo

    PubMed Central

    Primak, Andrew N.; Giraldo, Juan Carlos Ramirez; Eusemann, Christian D.; Schmidt, Bernhard; Kantor, B.; Fletcher, Joel G.; McCollough, Cynthia H.

    2010-01-01

    Purpose To investigate the effect on radiation dose and image quality of the use of additional spectral filtration for dual-energy CT (DECT) imaging using dual-source CT (DSCT). Materials and Methods A commercial DSCT scanner was modified by adding tin filtration to the high-kV tube, and radiation output and noise measured in water phantoms. Dose values for equivalent image noise were compared among DE-modes with and without tin filtration and single-energy (SE) mode. To evaluate DECT material discrimination, the material-specific DEratio for calcium and iodine were determined using images of anthropomorphic phantoms. Data were additionally acquired in 38 and 87 kg pigs, and noise for the linearly mixed and virtual non-contrast (VNC) images compared between DE-modes. Finally, abdominal DECT images from two patients of similar sizes undergoing clinically-indicated CT were compared. Results Adding tin filtration to the high-kV tube improved the DE contrast between iodine and calcium as much as 290%. Pig data showed that the tin filtration had no effect on noise in the DECT mixed images, but decreased noise by as much as 30% in the VNC images. Patient VNC-images acquired using 100/140 kV with added tin filtration had improved image quality compared to those generated with 80/140 kV without tin filtration. Conclusion Tin filtration of the high-kV tube of a DSCT scanner increases the ability of DECT to discriminate between calcium and iodine, without increasing dose relative to SECT. Furthermore, use of 100/140 kV tube potentials allows improved DECT imaging of large patients. PMID:20966323

  5. Ultra-low-dose dual-source CT coronary angiography with high pitch: diagnostic yield of a volumetric planning scan and effects on dose reduction and imaging strategy

    PubMed Central

    Hamm, B; Huppertz, A; Lembcke, A

    2015-01-01

    Objective: To evaluate the role of an ultra-low-dose dual-source CT coronary angiography (CTCA) scan with high pitch for delimiting the range of the subsequent standard CTCA scan. Methods: 30 patients with an indication for CTCA were prospectively examined using a two-scan dual-source CTCA protocol (2.0 × 64.0 × 0.6 mm; pitch, 3.4; rotation time of 280 ms; 100 kV): Scan 1 was acquired with one-fifth of the tube current suggested by the automatic exposure control software [CareDose 4D™ (Siemens Healthcare, Erlangen, Germany) using 100 kV and 370 mAs as a reference] with the scan length from the tracheal bifurcation to the diaphragmatic border. Scan 2 was acquired with standard tube current extending with reduced scan length based on Scan 1. Nine central coronary artery segments were analysed qualitatively on both scans. Results: Scan 2 (105.1 ± 10.1 mm) was significantly shorter than Scan 1 (127.0 ± 8.7 mm). Image quality scores were significantly better for Scan 2. However, in 5 of 6 (83%) patients with stenotic coronary artery disease, a stenosis was already detected in Scan 1 and in 13 of 24 (54%) patients with non-stenotic coronary arteries, a stenosis was already excluded by Scan 1. Using Scan 2 as reference, the positive- and negative-predictive value of Scan 1 was 83% (5 of 6 patients) and 100% (13 of 13 patients), respectively. Conclusion: An ultra-low-dose CTCA planning scan enables a reliable scan length reduction of the following standard CTCA scan and allows for correct diagnosis in a substantial proportion of patients. Advances in knowledge: Further dose reductions are possible owing to a change in the individual patient's imaging strategy as a prior ultra-low-dose CTCA scan may already rule out the presence of a stenosis or may lead to a direct transferal to an invasive catheter procedure. PMID:25710210

  6. A multireader diagnostic performance study of low-contrast detectability on a third-generation dual-source CT scanner: filtered back projection versus advanced modeled iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Solomon, Justin; Mileto, Achille; Ramirez-Giraldo, Juan Carlos; Samei, Ehsan

    2015-03-01

    The purpose of this work was to compare CT low-contrast detectability between two reconstruction algorithms, filtered back-projection (FBP) and advanced modeled iterative reconstruction (ADMIRE). A phantom was designed with a range of low-contrast circular inserts representing 5 contrast levels and 3 sizes. The phantom was imaged on a third-generation dual-source CT scanner (SOMATOM Definition Force, Siemens Healthcare) under various dose levels (0.74 - 5.8 mGy CTDIVol). Images were reconstructed using different settings of slice thickness (0.6 - 5 mm) and reconstruction algorithms (FBP and ADMIRE with strength of 3-5) and were assessed by eleven blinded and independent readers using a two alternative forced choice (2AFC) detection experiment. A second observer experiment was further performed in which observers scored the images based on the total number of visible object groups. Detection performance increased with increasing contrast, size, dose, with accuracy ranging from 50% (i.e., guessing) to 87% with an average inter-observer variability of ±7%. The use of ADMIRE-3 increased performance by 5.2% resulting in an estimated dose reduction potential of 56-60%. The results from the second experiment also showed increased number of visible object groups for increasing dose, slice thickness, and ADMIRE strength. The score difference between FBP and ADMIRE was 0.9, 1.3, and 2.1 for ADMIRE strengths of 3, 4, and 5, respectively, resulting in estimated dose reduction potentials between 4-80%. Overall, the data indicated potential to image at reduced doses while maintaining comparable image quality when using ADMIRE compared to FBP.

  7. Application of Prospective ECG-Gated High-Pitch 128-Slice Dual-Source CT Angiography in the Diagnosis of Congenital Extracardiac Vascular Anomalies in Infants and Children

    PubMed Central

    Wang, Ximing; Duan, Yanhua; Xu, Wenjian; Li, Haiou; Cao, Ting; Liu, Xuejun; Ji, Xiaopeng; Cheng, Zhaoping; Wang, Anbiao

    2014-01-01

    Purpose To investigate the value of prospective ECG-gated high-pitch 128-slice dual-source CT (DSCT) angiography in the diagnosis of congenital extracardiac vascular anomalies in infants and children in comparison with transthoracic echocardiography (TTE). Methods Eighty consecutive infants or children clinically diagnosed of congenital heart disease and suspected with extracardiac vascular anomaly were enrolled, and 75 patients were finally included in this prospective study. All patients underwent prospective ECG-gated high-pitch DSCT angiography after TTE with an interval of 1–7 days. The diagnostic accuracy and sensitivity of high-pitch DSCT angiography and TTE were compared according to the surgical/CCA findings. The image quality of DSCT was assessed using a five-point scale. The effective radiation dose (ED) was calculated. Results A total of 17 congenital heart diseases and 162 separate extracardiac vascular anomalies were confirmed by surgical/CCA findings in 75 patients. The diagnostic accuracy of high-pitch DSCT angiography and TTE was 99.67% and 97.89%, respectively. The sensitivity of high-pitch DSCT angiography and TTE was 97.53% and 79.62%, respectively. There was significant difference regarding to the diagnostic accuracy and the sensitivity between high-pitch DSCT angiography and TTE (χ2 = 23.561 and 28.013, P<0.05). The agreement on the image quality scoring of DSCT between the two observers was excellent (κ = 0.81), and the mean score of image quality was 4.1±0.7. The mean ED of DSCT was 0.29±0.08 mSv. Conclusions Prospective ECG-gated high-pitch 128-slice DSCT angiography with low radiation dose and high diagnostic accuracy has higher sensitivity compared to TTE in the detection of congenital extracardiac vascular anomalies in infants and children. PMID:25546178

  8. Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control

    PubMed Central

    Scheffel, Hans; Plass, André; Vachenauer, Robert; Desbiolles, Lotus; Gaemperli, Oliver; Schepis, Tiziano; Frauenfelder, Thomas; Schertler, Thomas; Husmann, Lars; Grunenfelder, Jürg; Genoni, Michele; Kaufmann, Philipp A.; Marincek, Borut; Leschka, Sebastian

    2006-01-01

    The aim of this study was to assess the diagnostic accuracy of dual-source computed tomography (DSCT) for evaluation of coronary artery disease (CAD) in a population with extensive coronary calcifications without heart rate control. Thirty patients (24 male, 6 female, mean age 63.1±11.3 years) with a high pre-test probability of CAD underwent DSCT coronary angiography and invasive coronary angiography (ICA) within 14±9 days. No beta-blockers were administered prior to the scan. Two readers independently assessed image quality of all coronary segments with a diameter ≥1.5 mm using a four-point score (1: excellent to 4: not assessable) and qualitatively assessed significant stenoses as narrowing of the luminal diameter >50%. Causes of false-positive (FP) and false-negative (FN) ratings were assigned to calcifications or motion artifacts. ICA was considered the standard of reference. Mean body mass index was 28.3±3.9 kg/m2 (range 22.4–36.3 kg/m2), mean heart rate during CT was 70.3±14.2 bpm (range 47–102 bpm), and mean Agatston score was 821±904 (range 0–3,110). Image quality was diagnostic (scores 1–3) in 98.6% (414/420) of segments (mean image quality score 1.68±0.75); six segments in three patients were considered not assessable (1.4%). DSCT correctly identified 54 of 56 significant coronary stenoses. Severe calcifications accounted for false ratings in nine segments (eight FP/one FN) and motion artifacts in two segments (one FP/one FN). Overall sensitivity, specificity, positive and negative predictive value for evaluating CAD were 96.4, 97.5, 85.7, and 99.4%, respectively. First experience indicates that DSCT coronary angiography provides high diagnostic accuracy for assessment of CAD in a high pre-test probability population with extensive coronary calcifications and without heart rate control. PMID:17031451

  9. Low-dose coronary-CT angiography using step and shoot at any heart rate: comparison of image quality at systole for high heart rate and diastole for low heart rate with a 128-slice dual-source machine.

    PubMed

    Paul, Jean-François; Amato, Aude; Rohnean, Adela

    2013-03-01

    To compare image quality of coronary CT angiography in step-and-shoot mode at the diastolic phase at low heart rates (<70 bpm) and systolic phase at high heart rates (≥70 bpm). We prospectively included 96 consecutive patients then excluded 5 patients with arrhythmia. Coronary CT-angiography was performed using a dual-source 128-slice CT machine, at the diastolic phase in the 55 patients with heart rates <70 bpm (group D) and at the systolic phase in the 36 patients with heart rates ≥70 (group S). Image quality was scored on a 5 point-scale (1, not interpretable; 2, insufficient for diagnosis; 3, fair, sufficient for diagnosis; 4, good; 5, excellent). In addition, we compared the number of stair-step artifacts in the two groups. Mean image quality score was 4 (0.78) in group D and 4.1 (0.34) in group S (NS), with an unequal distribution (p = 0.01). Step artifacts were seen in 44 % of group D and 18 % of group S patients (p = 0.02). In 3 group D patients and no group S patients, the image score was <3 due to artifacts, requiring repeat CT-angiography. When performing dual-source 128-slice CT-angiography, step-and-shoot acquisition provides comparable mean image quality in systole, with less variability and fewer stair-step artifacts, compared to diastole. This method may be feasible at any heart rate in most patients in sinus rhythm, allowing low-dose prospective acquisition without beta-blocker premedication. PMID:22918571

  10. Physical analysis of breast cancer using dual-source computed tomography

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Lee, H. K.; Cho, J. H.

    2014-12-01

    This study was aimed to analyze various physical characteristics of breast cancer using dual-source computed tomography (CT). A phantom study and a clinical trial were performed in order and a 64-multidetector CT device was used for the examinations. In the phantom study, single-source (SS) CT was set up with a conventional scanning condition that is usually applied for breast CT examination and implementation was done at tube voltage of 120 kVp. Dual-source CT acquired images by irradiating X-ray sources with fast switching between two kilovoltage settings (80 and 140 kVp). After scanning, Hounsfield Unit (HU) values and radiation doses in a region of interest were measured and analyzed. In the clinical trial, the HU values were measured and analyzed after single-source computed tomography (SSCT) and dual-source CT in patients diagnosed with breast cancer. Also, the tumor size measured by dual-source CT was compared with the actual tumor size. The phantom study determined that the tumor region was especially measured by dual-source CT, while nylon fiber and specks region were especially measured by SSCT. The radiation dose was high with dual-source CT. The clinical trial showed a higher HU value of cancerous regions when scanned by dual-source CT compared with SSCT.

  11. Effect of Heart Rate and Coronary Calcification on the Diagnostic Accuracy of the Dual-Source CT Coronary Angiography in Patients with Suspected Coronary Artery Disease

    PubMed Central

    Meng, Lingdong; Cheng, Yuntao; Wu, Xiaoyan; Tang, Yuansheng; Wang, Yong; Xu, Fayun

    2009-01-01

    Objective To evaluate the diagnostic accuracy of a dual-source computed tomography (DSCT) coronary angiography, with a particular focus on the effect of heart rate and calcifications. Materials and Methods One hundred and nine patients with suspected coronary disease were divided into 2 groups according to a mean heart rate (< 70 bpm and ≥ 70 bpm) and into 3 groups according to the mean Agatston calcium scores (≤ 100, 101-400, and > 400). Next, the effect of heart rate and calcification on the accuracy of coronary artery stenosis detection was analyzed by using an invasive coronary angiography as a reference standard. Coronary segments of less than 1.5 mm in diameter in an American Heart Association (AHA) 15-segment model were independently assessed. Results The mean heart rate during the scan was 71.8 bpm, whereas the mean Agatston score was 226.5. Of the 1,588 segments examined, 1,533 (97%) were assessable. A total of 17 patients had calcium scores above 400 Agatston U, whereas 50 had heart rates ≥ 70 bpm. Overall the sensitivity, specificity, positive predictive values (PPV) and negative predictive values (NPV) for significant stenoses were: 95%, 91%, 65%, and 99% (by segment), respectively and 97%, 90%, 81%, and 91% (by artery), respectively (n = 475). Heart rate showed no significant impact on lesion detection; however, vessel calcification did show a significant impact on accuracy of assessment for coronary segments. The specificity, PPV and accuracy were 96%, 80%, and 96% (by segment), respectively for an Agatston score less than 100% and 99%, 96% and 98% (by artery). For an Agatston score of greater to or equal to 400 the specificity, PPV and accuracy were reduced to 79%, 55%, and 83% (by segment), respectively and to 79%, 69%, and 85% (by artery), respectively. Conclusion The DSCT provides a high rate of accuracy for the detection of significant coronary artery disease, even in patients with high heart rates and evidence of coronary calcification

  12. Quantification of coronary artery plaque using 64-slice dual-source CT: comparison of semi-automatic and automatic computer-aided analysis based on intravascular ultrasonography as the gold standard.

    PubMed

    Kim, Young Jun; Jin, Gong Yong; Kim, Eun Young; Han, Young Min; Chae, Jei Keon; Lee, Sang Rok; Kwon, Keun Sang

    2013-12-01

    We evaluated the feasibility of automatic computer-aided analysis (CAA) compared with semi-automatic CAA for differentiating lipid-rich from fibrous plaques based on coronary CT angiography (CCTA) imaging. Seventy-four coronary plaques in 57 patients were evaluated by CCTA using 64-slice dual-source CT. Quantitative analysis of coronary artery plaques was performed by measuring the relative volumes (low, medium, and calcified) of plaque components using automatic CAA and by measuring mean CT density using semi-automatic CAA. We compared the two plaque measurement methods for lipid-rich and fibrous plaques using Pearson's correlation. Intravascular ultrasonography was used as the goal standard for assessment of plaques. Mean CT density of plaques tended to increase in the order of lipid [36 ± 19 Hounsfield unit (HU)], fibrous (106 ± 34 HU), and then calcified plaques (882 ± 296 HU). The mean relative volumes of 'low' components measured by automatic CAA were 13.8 ± 4.6, 7.9 ± 6.7, and 3.5 ± 3.0 % for lipid, fibrous, and calcified plaques, respectively (r = -0.348, P = 0.022). The mean relative volumes of 'medium' components on automatic CAA were 12.9 ± 4.1, 15.7 ± 9.6, and 5.6 ± 4.8 % for lipid, fibrous, and calcified plaques, respectively (r = -0.385, P = 0.011). The mean relative volumes of low and medium components within plaques significantly correlated with the types of plaques. Plaque analysis using automatic CAA has the potential to differentiate lipid from fibrous plaques based on measurement of the relative volume percentages of the low and medium components. PMID:24293043

  13. Low-Dose Prospectively Electrocardiogram-Gated Axial Dual-Source CT Angiography in Patients with Pulsatile Bilateral Bidirectional Glenn Shunt: An Alternative Noninvasive Method for Postoperative Morphological Estimation

    PubMed Central

    Ji, Xiaopeng; Zhao, Bin; Cheng, Zhaoping; Si, Biao; Wang, Zhiheng; Duan, Yanhua; Nie, Pei; Li, Haiou; Yang, Shifeng; Jiao, Hui; Wang, Ximing

    2014-01-01

    Objective To explore the clinical value of low-dose prospectively electrocardiogram-gated axial dual-source CT angiography (low-dose PGA scanning, CTA) in patients with pulsatile bilateral bidirectional Glenn shunt (bBDG) as an alternative noninvasive method for postoperative morphological estimation. Methods Twenty patients with pulsatile bBDG (mean age 4.2±1.6 years) underwent both low-dose PGA scanning and conventional cardiac angiography (CCA) for the morphological changes. The morphological evaluation included the anatomy of superior vena cava (SVC) and pulmonary artery (PA), the anastomotic location, thrombosis, aorto-pulmonary collateral circulation, pulmonary arteriovenous malformations, etc. Objective and subjective image quality was assessed. Bland–Altman analysis and linear regression analyses were used to evaluate the correlation on measurements between CTA and CCA. Effective radiation dose of both modalities was calculated. Results The CT attenuation value of bilateral SVC and PA was higher than 300 HU. The average subjective image quality score was 4.05±0.69. The morphology of bilateral SVC and PA was displayed completely and intuitively by CTA images. There were 24 SVC above PA and 15 SVC beside PA. Thrombosis was found in 1 patient. Collateral vessels were detected in 13 patients. No pulmonary arteriovenous malformation was found in our study. A strong correlation (R2>0.8, P<0.001) was observed between the measurements on CTA images and on CCA images. Bland–Altman analysis demonstrated a systematic overestimation of the measurements by CTA (the mean value of bias>0).The mean effective dose of CTA and CCA was 0.50±0.17 mSv and 4.85±1.34 mSv respectively. Conclusion CT angiography with a low-dose PGA scanning is an accurate and reliable noninvasive examination in the assessment of morphological changes in patients with pulsatile bBDG. PMID:24736546

  14. Evaluation of high-pitch flash scan for pulmonary venous CTA on a 128-slice dual source CT: compared with prospective ECG-triggered sequence scan.

    PubMed

    Cao, Li Xiu; Zhang, Huan; Liu, Bo; Yang, Wen Jie; Zhang, Yan Yan; Pan, Zi Lai; Yan, Fu Hua; Chen, Ke Min

    2013-10-01

    To compare the image quality (IQ) and radiation dose of high-pitch scan and prospective ECG-triggered sequence scan on a 128-slice DSCT system for patients with atrial fibrillation (AF). Pulmonary venous (PV) CTA was performed with two protocols, including high-pitch scan and prospective ECG-triggered sequence scan. For each protocol, 20 sex, age and body-mass-index (mean 24.2 kg/m(2)) matched patients were identified. Two experienced radiologists, who were blinded to the scan protocols, independently graded the CT images of the two groups by a 5-point scale for subjective IQ assessment. Measured CT attenuation (Hounsfield units ± standard deviation), signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) at various anatomic locations were also recorded for objective IQ evaluation. Radiation exposure parameters [dose length product (DLP) and effective radiation dose (ERD)] were compared. Twenty-three patients (57.5 %) showed an ECG pattern of AF in total. Subjective IQ was rated excellent in 100 % for the high-pitch scan group, while minor step artifacts were observed in two patients (10 %) with arrhythmia for the prospective ECG-triggered sequence group. There was no significant difference on IQ, neither by subjective, nor by objective measures (SNR, CNR) between the two groups. The ERD of high-pitch flash scan and prospective ECG-triggered sequence scan were 0.9 (± 0.25) and 2.9 (± 0.69) mSv, respectively. Significantly lower radiation was achieved by using high-pitch flash scan (P < 0.05). High-pitch flash scan can provide similar subjective and objective IQ compared with prospective ECG-triggered sequence scan for PV CTA, while radiation exposure was significantly reduced. PMID:23645131

  15. Abdominal Aortic Intimal Flap Motion Characterization in Acute Aortic Dissection: Assessed with Retrospective ECG-Gated Thoracoabdominal Aorta Dual-Source CT Angiography

    PubMed Central

    Yang, Shifeng; Li, Xia; Chao, Baoting; Wu, Lebin; Cheng, Zhaoping; Duan, Yanhua; Wu, Dawei; Zhan, Yiqiang; Chen, Jiuhong; Liu, Bo; Ji, Xiaopeng; Nie, Pei; Wang, Ximing

    2014-01-01

    Objectives To evaluate the feasibility of dose-modulated retrospective ECG-gated thoracoabdominal aorta CT angiography (CTA) assessing abdominal aortic intimal flap motion and investigate the motion characteristics of intimal flap in acute aortic dissection (AAD). Materials and Methods 49 patients who had thoracoabdominal aorta retrospective ECG-gated CTA scan were enrolled. 20 datasets were reconstructed in 5% steps between 0 and 95% of the R-R interval in each case. The aortic intimal flap motion was assessed by measuring the short axis diameters of the true lumen and false lumen 2 cm above of celiac trunk ostium in different R-R intervals. Intimal flap motion and configuration was assessed by two independent observers. Results In these 49 patients, 37 had AAD, 7 had intramural hematoma, and 5 had negative result for acute aortic disorder. 620 datasets of 31 patients who showed double lumens in abdominal aorta were enrolled in evaluating intimal flap motion. The maximum and minimum true lumen diameter were 12.2±4.1 mm (range 2.6∼17.4) and 6.7±4.1 mm (range 0∼15.3) respectively. The range of intimal flap motion in all patients was 5.5±2.6 mm (range 1.8∼10.2). The extent of maximum true lumen diameter decreased during a cardiac cycle was 49.5%±23.5% (range 12%∼100%). The maximum motion phase of true lumen diameter was in systolic phase (5%∼40% of R-R interval). Maximum and minimum intimal flap motion was at 15% and 75% of the R-R interval respectively. Intimal flap configuration had correlation with the phase of cardiac cycle. Conclusions Abdominal intimal flap position and configuration varied greatly during a cardiac cycle. Retrospective ECG-gated thoracoabdominal aorta CTA can reflect the actual status of the true lumen and provide more information about true lumen collapse. This information may be helpful to diagnosis and differential diagnosis of dynamic abstraction. PMID:24503676

  16. TH-C-18A-12: Evaluation of the Impact of Body Size and Tube Output Limits in the Optimization of Fast Scanning with High-Pitch Dual Source CT

    SciTech Connect

    Ramirez Giraldo, J; Mileto, A.; Hurwitz, L.; Marin, D.

    2014-06-15

    Purpose: To evaluate the impact of body size and tube power limits in the optimization of fast scanning with high-pitch dual source CT (DSCT). Methods: A previously validated MERCURY phantom, made of polyethylene, with circular cross-section of diameters 16, 23, 30 and 37cm, and connected through tapered sections, was scanned using a second generation DSCT system. The DSCT operates with two independently controlled x-ray tube generators offering up to 200 kW power reserve (100 kW per tube). The entire length of the phantom (42cm) was scanned with two protocols using: A)Standard single-source CT (SSCT) protocol with pitch of 0.8, and B) DSCT protocol with high-pitch values ranging from 1.6 to 3.2 (0.2 steps). All scans used 120 kVp with 150 quality reference mAs using automatic exposure control. Scanner radiation output (CTDIvol) and effective mAs values were extracted retrospectively from DICOM files for each slice. Image noise was recorded. All variables were assessed relative to phantom diameter. Results: With standard-pitch SSCT, the scanner radiation output (and tube-current) were progressively adapted with increasing size, from 6 mGy (120 mAs) up to 15 mGy (270 mAs) from the thinnest (16cm) to the thickest diameter (37 cm), respectively. By comparison, using high-pitch (3.2), the scanner output was bounded at about 8 mGy (140 mAs), independent of phantom diameter. Although relative to standard-pitch, the high-pitch led to lower radiation output for the same scan, the image noise was higher, particularly for larger diameters. To match the radiation output adaptation of standard-pitch, a high-pitch mode of 1.6 was needed, with the advantage of scanning twice as fast. Conclusion: To maximize the benefits of fast scanning with high-pitch DSCT, the body size and tube power limits of the system need to be considered such that a good balance between speed of acquisition and image quality are warranted. JCRG is an employee of Siemens Medical Solutions USA Inc.

  17. Pulmonary langerhans cell histiocytosis: PET/CT for initial workup and treatment response evaluation.

    PubMed

    Hansen, Neil J; Hankins, Jordan H

    2015-02-01

    A 40-year-old man underwent pan-endoscopy owing to abdominal pain. Biopsies of the gastrointestinal tract demonstrated diffuse Langerhans cell histiocytosis. PET/CT was done, with CT demonstrating classic pulmonary manifestations of Langerhans cell histiocytosis that had association with intense FDG uptake on PET. Bowel appeared normal. Treatment was initiated with smoking cessation and 6 cycles of cytarabine. Follow-up PET/CT after initial treatment demonstrated improvement of parenchymal abnormalities seen on CT, with resolution of hypermetabolic activity. Maintenance chemotherapy was initiated. PET/CT is increasingly being used for initial staging and treatment response assessment in this rare disorder. PMID:24999688

  18. Initial results with a multisource inverse-geometry CT system

    NASA Astrophysics Data System (ADS)

    Baek, Jongduk; Pelc, Norbert J.; Deman, Bruno; Uribe, Jorge; Harrison, Daniel; Reynolds, Joseph; Neculaes, Bogdan; Inzinna, Louis; Caiafa, Antonio

    2012-03-01

    The multi-source inverse-geometry CT(MS-IGCT) system is composed of multiple sources and a small 2D detector array. An experimental MS-IGCT system was built and we report initial results with 2×4 x-ray sources, a 75 mm inplane field-of-view (FOV) and 160 mm z-coverage in a single gantry rotation. To evaluate the system performance, experimental data were acquired from several phantoms and a post-mortem rat. Before image reconstruction, geometric calibration, data normalization, beam hardening correction and detector spectral calibration were performed. For reconstruction, the projection data were rebinned into two full cone beam data sets, and the FDK algorithm was used. The reconstructed volumes from the upper and lower source rows shared an overlap volume which was combined in image space. The reconstructed images of the uniform cylinder phantom showed good uniformity of the reconstructed values without any artifacts. The rat data were also reconstructed reliably. The initial experimental results from this rotating-gantry MS-IGCT system demonstrated its ability to image a complex anatomical object without any significant image artifacts and to ultimately achieve large volumetric coverage in a single gantry rotation.

  19. Initial staging of Hodgkin's disease: role of contrast-enhanced 18F FDG PET/CT.

    PubMed

    Chiaravalloti, Agostino; Danieli, Roberta; Caracciolo, Cristiana Ragano; Travascio, Laura; Cantonetti, Maria; Gallamini, Andrea; Guazzaroni, Manlio; Orlacchio, Antonio; Simonetti, Giovanni; Schillaci, Orazio

    2014-08-01

    The objective of this study was to compare the diagnostic accuracy of positron emission tomography/low-dose computed tomography (PET/ldCT) versus the same technique implemented by contrast-enhanced computed tomography (ceCT) in staging Hodgkin's disease (HD).Forty patients (18 men and 22 women, mean age 30 ± 9.6) with biopsy-proven HD underwent a PET/ldCT study for initial staging including an unenhanced low-dose computed tomography for attenuation correction with positron emission tomography acquisition and a ceCT, performed at the end of the PET/ldCT scan, in the same exam session. A detailed datasheet was generated for illness locations for separate imaging modality comparison and then merged in order to compare the separate imaging method results (PET/ldCT and ceCT) versus merged results positron emission tomography/contrast-enhanced computed tomography (PET/ceCT). The nodal and extranodal lesions detected by each technique were then compared with follow-up data that served as the reference standard.No significant differences were found at staging between PET/ldCT and PET/ceCT in our series. One hundred and eighty four stations of nodal involvement have been found with no differences in both modalities. Extranodal involvement was identified in 26 sites by PET/ldCT and in 28 by PET/ceCT. We did not find significant differences concerning the stage (Ann Arbor).Our study shows a good concordance and conjunction between PET/ldCT and ceCT in both nodal and extranodal sites in the initial staging of HD, suggesting that PET/ldCT could suffice in most of these patients. PMID:25121354

  20. CT guided percutaneous needle biopsy of the chest: initial experience

    PubMed Central

    Lazguet, Younes; Maarouf, Rachid; Karrou, Marouan; Skiker, Imane; Alloubi, Ihsan

    2016-01-01

    The objective of this article is to report our first experience of CT guided percutaneous thoracic biopsy and to demonstrate the accuracy and safety of this procedure. This was a retrospective study of 28 CT-Guided Percutaneous Needle Biopsies of the Chest performed on 24 patients between November 2014 and April 2015. Diagnosis was achieved in 18 patients (75%), negative results were found in 3 patients (12,5%). Biopsy was repeated in these cases with two positive results. Complications were seen in 7 patients (29%), Hemoptysis in 5 patients (20%), Pneumothorax in 1 patient (4,1%) and vaso-vagal shock in 1 patient (4,1%). CT Guided Percutaneous Needle Biopsy of the Chest is a safe, minimally invasive procedure with high sensitivity, specificity and accuracy for diagnosis of lung lesions.

  1. Criteria for CT and Initial Management of Head Injured Infants: A Review.

    PubMed

    Shiomi, Naoto; Echigo, Tadashi; Hino, Akihiko; Hashimoto, Naoya; Yamaki, Tarumi

    2016-07-15

    Criteria for computed tomography (CT) to head injured infants have not been established. Since the identification of neurological findings is difficult in infants, examination by CT may be necessary in some cases, but it may be difficult to perform CT because of problems with radiation exposure and body movement. Moreover, even though no intracranial abnormality was found immediately after injury, abnormal findings may appear after several hours. From this viewpoint, course observation after injury may be more important than CT in the initial treatment of head trauma in infants. The complaints and neurological manifestations of infants, particularly those aged 2 or younger, are frequently unclear; therefore, there is an opinion that CT is recommended for all pediatric patients. However, the appropriateness of its use should be determined after confirming the mechanism of injury, consciousness level, neurological findings, and presence/absence of a history of abuse. Among the currently available rules specifying criteria for CT of infants with head trauma, the Pediatric Emergency Care Applied Research Network (PECARN) study may be regarded as reliable at present. In Japan, where the majority of emergency hospitals are using CT, it may be necessary to develop criteria for CT in consideration of the actual situation. CT diagnosis for pediatric head trauma is not always necessary. When no imaging is performed, this should be fully explained at the initial treatment before selecting course observation at home. Checking on a state of the patients by telephone is useful for both patients and physicians. PMID:27194179

  2. Criteria for CT and Initial Management of Head Injured Infants: A Review

    PubMed Central

    SHIOMI, Naoto; ECHIGO, Tadashi; HINO, Akihiko; HASHIMOTO, Naoya; YAMAKI, Tarumi

    2016-01-01

    Criteria for computed tomography (CT) to head injured infants have not been established. Since the identification of neurological findings is difficult in infants, examination by CT may be necessary in some cases, but it may be difficult to perform CT because of problems with radiation exposure and body movement. Moreover, even though no intracranial abnormality was found immediately after injury, abnormal findings may appear after several hours. From this viewpoint, course observation after injury may be more important than CT in the initial treatment of head trauma in infants. The complaints and neurological manifestations of infants, particularly those aged 2 or younger, are frequently unclear; therefore, there is an opinion that CT is recommended for all pediatric patients. However, the appropriateness of its use should be determined after confirming the mechanism of injury, consciousness level, neurological findings, and presence/absence of a history of abuse. Among the currently available rules specifying criteria for CT of infants with head trauma, the Pediatric Emergency Care Applied Research Network (PECARN) study may be regarded as reliable at present. In Japan, where the majority of emergency hospitals are using CT, it may be necessary to develop criteria for CT in consideration of the actual situation. CT diagnosis for pediatric head trauma is not always necessary. When no imaging is performed, this should be fully explained at the initial treatment before selecting course observation at home. Checking on a state of the patients by telephone is useful for both patients and physicians. PMID:27194179

  3. Quantitative assessment of scatter correction techniques incorporated in next generation dual-source computed tomography

    NASA Astrophysics Data System (ADS)

    Mobberley, Sean David

    Accurate, cross-scanner assessment of in-vivo air density used to quantitatively assess amount and distribution of emphysema in COPD subjects has remained elusive. Hounsfield units (HU) within tracheal air can be considerably more positive than -1000 HU. With the advent of new dual-source scanners which employ dedicated scatter correction techniques, it is of interest to evaluate how the quantitative measures of lung density compare between dual-source and single-source scan modes. This study has sought to characterize in-vivo and phantom-based air metrics using dual-energy computed tomography technology where the nature of the technology has required adjustments to scatter correction. Anesthetized ovine (N=6), swine (N=13: more human-like rib cage shape), lung phantom and a thoracic phantom were studied using a dual-source MDCT scanner (Siemens Definition Flash. Multiple dual-source dual-energy (DSDE) and single-source (SS) scans taken at different energy levels and scan settings were acquired for direct quantitative comparison. Density histograms were evaluated for the lung, tracheal, water and blood segments. Image data were obtained at 80, 100, 120, and 140 kVp in the SS mode (B35f kernel) and at 80, 100, 140, and 140-Sn (tin filtered) kVp in the DSDE mode (B35f and D30f kernels), in addition to variations in dose, rotation time, and pitch. To minimize the effect of cross-scatter, the phantom scans in the DSDE mode was obtained by reducing the tube current of one of the tubes to its minimum (near zero) value. When using image data obtained in the DSDE mode, the median HU values in the tracheal regions of all animals and the phantom were consistently closer to -1000 HU regardless of reconstruction kernel (chapters 3 and 4). Similarly, HU values of water and blood were consistently closer to their nominal values of 0 HU and 55 HU respectively. When using image data obtained in the SS mode the air CT numbers demonstrated a consistent positive shift of up to 35 HU

  4. Differential diagnosis of solitary pulmonary nodules with dual-source spiral computed tomography

    PubMed Central

    Shi, Zhitao; Wang, Yanhui; He, Xueqi

    2016-01-01

    The aim of the present study was to analyze the value of applying dual-source 64-layer spiral computed tomography (CT) in the differential diagnosis of solitary pulmonary nodules (SPNs). Mediastinal windows from 45 cases were selected to study SPNs (maximum diameter, ≤3 cm), and the pathological nature of lesions was determined by clinical and pathological diagnosis. Conventional 64-layer spiral CT scanning, local enhancement and 3D recombination technologies were used to determine the occurrence rate, lesion diameter, degree of enhancement, lobular sign, spicule sign, pleural indentation sign, vessel convergence sign and bronchus sign. The final diagnoses indicated 34 cases of malignant SPNs (75.6%) and 11 benign cases (24.4%). When the nodule diameter in the malignant group was compared with that of the benign group, the difference was not statistically significant (P>0.05). Nodules in the malignant group showed inhomogeneous enhancement while nodules in the benign group showed homogeneous enhancement. The enhanced CT values in the malignant group were higher than those in the benign group, and the difference was statistically significant (P<0.05). The proportion of nodules with lobular sign in the malignant group was significantly higher than that in the benign group (P<0.05). The proportion of nodules with calcification, vessel convergence sign and bronchus sign in the malignant group were significantly higher than those in the benign group, and the differences were statistically significant (P<0.05). A comparison of vacuole sign, pleural indentation sign, spiculate protuberance and fat occurrence between the two groups yielded no statistically significant differences (P>0.05). The sensitivity of CT enhancement was 85.6%, specificity was 79.6%, positive predicated value was 92.3%, and the negative predicted value was 85.2%. In conclusion, SPNs diagnosed by CT enhancement manifested with enhancement degree, lobular sign, calcification, vessel convergence sign

  5. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  6. Improving initial polyp candidate extraction for CT colonography

    NASA Astrophysics Data System (ADS)

    Zhu, Hongbin; Fan, Yi; Lu, Hongbing; Liang, Zhengrong

    2010-04-01

    Reducing the number of false positives (FPs) as much as possible is a challenging task for computer-aided detection (CAD) of colonic polyps. As part of a typical CAD pipeline, an accurate and robust process for segmenting initial polyp candidates (IPCs) will significantly benefit the successive FP reduction procedures, such as feature-based classification of false and true positives (TPs). In this study, we introduce an improved scheme for segmenting IPCs. It consists of two main components. One is geodesic distance-based merging, which merges suspicious patches (SPs) for IPCs. Based on the merged SPs, another component, called convex dilation, grows each SP beyond the inner surface of the colon wall to form a volume of interest (VOI) for that IPC, so that the inner border of the VOI beyond the colon inner surface could be segmented as convex, as expected. The IPC segmentation strategy was evaluated using a database of 50 patient studies, which include 100 scans at supine and prone positions with 84 polyps and masses sized from 6 to 35 mm. The presented IPC segmentation strategy (or VOI extraction method) demonstrated improvements, in terms of having no undesirably merged true polyp and providing more helpful mean and variance of the image intensities rooted from the extracted VOI for classification of the TPs and FPs, over two other VOI extraction methods (i.e. the conventional method of Nappi and Yoshida (2003 Med. Phys. 30 1592-601) and our previous method (Zhu et al 2009 Cancer Manag. Res. 1 1-13). At a by-polyp sensitivity of 0.90, these three methods generated the FP rate (number of FPs per scan) of 4.78 (new method), 6.37 (Nappi) and 7.01 (Zhu) respectively.

  7. Low-Dose PET/CT and Full-Dose Contrast-Enhanced CT at the Initial Staging of Localized Diffuse Large B-Cell Lymphomas

    PubMed Central

    Sabaté-Llobera, Aida; Cortés-Romera, Montserrat; Mercadal, Santiago; Hernández-Gañán, Javier; Pomares, Helena; González-Barca, Eva; Gámez-Cenzano, Cristina

    2016-01-01

    Computed tomography (CT) has been used as the reference imaging technique for the initial staging of diffuse large B-cell lymphoma until recent days, when the introduction of positron emission tomography (PET)/CT imaging as a hybrid technique has become of routine use. However, the performance of both examinations is still common. The aim of this work was to compare the findings between low-dose 2-deoxy-2-(18F)fluoro-d-glucose (18F-FDG) PET/CT and full-dose contrast-enhanced CT (ceCT) in 28 patients with localized diffuse large B-cell lymphoma according to PET/CT findings, in order to avoid the performance of ceCT. For each technique, a comparison in the number of nodal and extranodal involved regions was performed. PET/CT showed more lesions than ceCT in both nodal (41 vs. 36) and extranodal localizations (16 vs. 15). Disease staging according to both techniques was concordant in 22 patients (79%) and discordant in 6 patients (21%), changing treatment management in 3 patients (11%). PET/CT determined a better staging and therapeutic approach, making the performance of an additional ceCT unnecessary. PMID:27559300

  8. New applications for noninvasive cardiac imaging: dual-source computed tomography.

    PubMed

    Rist, Carsten; Johnson, Thorsten R; Becker, Christoph R; Reiser, Maximilian F; Nikolaou, Konstantin

    2007-12-01

    Coronary catheter angiography is considered to be the standard of reference for the diagnosis of coronary artery disease (CAD) and the grading of coronary artery stenoses. Even with the established generation of 16- and 64-multislice CT (MSCT) systems, with remarkable results reported for diagnostic accuracy, a substantial number of limitations remain, hindering full acceptance of the method as a standard technique in the clinical cascade for CAD patients. Recently, dual-source CT (DSCT) with improved temporal resolution has been introduced into clinical routine, raising the hope that some of the earlier problems might be overcome. MSCTA with 64-slice CT scanners has successfully been validated for the evaluation of clinically relevant lumen reduction of the coronary arteries with high negative predictive values and for the simultaneous assessment of pulmonary embolism, coronary artery stenoses, and aortic dissection and aneurysm in patients with chest pain ("triple rule out"). However, certain limitations continue to exist including partial volume effects due to heavy calcium deposits in the coronary artery wall, impaired assessability of coronary artery branches smaller than 2 mm in diameter, and impaired assessability of patients with a high heart rate and/or arrhythmia. While MSCT has mainly been tested to detect obstructive CAD, an accurate assessment of regional and global ventricular function, as well as of the aortic and mitral valves, might be feasible using DSCT, since image reconstruction is possible in virtually any phase of the cardiac cycle with a sufficiently high temporal resolution. DSCT is a robust method for the evaluation of patients with higher heart rates and arrhythmias and, in most cases, obviates the need for beta-blocker premedication. While the evaluation of coronary artery stenoses will remain the primary clinical indication for cardiac DSCT, a simultaneous and sufficiently accurate assessment of global left ventricular functional

  9. Initial implementation of the conversion from the energy-subtracted CT number to electron density in tissue inhomogeneity corrections: An anthropomorphic phantom study of radiotherapy treatment planning

    SciTech Connect

    Tsukihara, Masayoshi; Noto, Yoshiyuki; Sasamoto, Ryuta; Hayakawa, Takahide; Saito, Masatoshi

    2015-03-15

    Purpose: To achieve accurate tissue inhomogeneity corrections in radiotherapy treatment planning, the authors had previously proposed a novel conversion of the energy-subtracted computed tomography (CT) number to an electron density (ΔHU–ρ{sub e} conversion), which provides a single linear relationship between ΔHU and ρ{sub e} over a wide range of ρ{sub e}. The purpose of this study is to present an initial implementation of the ΔHU–ρ{sub e} conversion method for a treatment planning system (TPS). In this paper, two example radiotherapy plans are used to evaluate the reliability of dose calculations in the ΔHU–ρ{sub e} conversion method. Methods: CT images were acquired using a clinical dual-source CT (DSCT) scanner operated in the dual-energy mode with two tube potential pairs and an additional tin (Sn) filter for the high-kV tube (80–140 kV/Sn and 100–140 kV/Sn). Single-energy CT using the same DSCT scanner was also performed at 120 kV to compare the ΔHU–ρ{sub e} conversion method with a conventional conversion from a CT number to ρ{sub e} (Hounsfield units, HU–ρ{sub e} conversion). Lookup tables for ρ{sub e} calibration were obtained from the CT image acquisitions for tissue substitutes in an electron density phantom (EDP). To investigate the beam-hardening effect on dosimetric uncertainties, two EDPs with different sizes (a body EDP and a head EDP) were used for the ρ{sub e} calibration. Each acquired lookup table was applied to two radiotherapy plans designed using the XiO TPS with the superposition algorithm for an anthropomorphic phantom. The first radiotherapy plan was for an oral cavity tumor and the second was for a lung tumor. Results: In both treatment plans, the performance of the ΔHU–ρ{sub e} conversion was superior to that of the conventional HU–ρ{sub e} conversion in terms of the reliability of dose calculations. Especially, for the oral tumor plan, which dealt with dentition and bony structures, treatment

  10. Iterative Image Reconstruction for Limited-Angle CT Using Optimized Initial Image

    PubMed Central

    Guo, Jingyu; Qi, Hongliang; Xu, Yuan; Chen, Zijia; Li, Shulong; Zhou, Linghong

    2016-01-01

    Limited-angle computed tomography (CT) has great impact in some clinical applications. Existing iterative reconstruction algorithms could not reconstruct high-quality images, leading to severe artifacts nearby edges. Optimal selection of initial image would influence the iterative reconstruction performance but has not been studied deeply yet. In this work, we proposed to generate optimized initial image followed by total variation (TV) based iterative reconstruction considering the feature of image symmetry. The simulated data and real data reconstruction results indicate that the proposed method effectively removes the artifacts nearby edges. PMID:27066107

  11. CT-Guided Fiducial Placement for CyberKnife Stereotactic Radiosurgery: An Initial Experience

    SciTech Connect

    Sotiropoulou, Evangelia; Stathochristopoulou, Irene; Stathopoulos, Konstantinos; Verigos, Kosmas; Salvaras, Nikolaos; Thanos, Loukas

    2010-06-15

    CyberKnife frameless image-guided radiosurgery has become a widely used system for parenchymal extracranial lesions. Gold fiducials are required for the planning and aiming of CyberKnife therapy. We report our initial experience and describe the technique of positioning tumor markers, under CT guidance. We conducted a retrospective review of 105 patients who were referred for CyberKnife stereotactic radiosurgery at Iatropolis CyberKnife Center in Athens. All patients underwent percutaneous fiducial placement via CT guidance. At the desired location, the 18-G needle was advanced into or near the tumor. Data collected included number and locations of fiducials placed and complications experienced to date. One hundred five patients underwent fiducial placement under CT guidance and a total number of 319 gold seeds were implanted. We experienced one episode of pneumothorax that required drainage, one mild pneumothorax, and three episodes of perifocal pulmonary hemorrhage. In conclusion, fiducial implantation under CT guidance appears to be a safe and efficient procedure, as long as it is performed by an experienced interventional radiologist.

  12. Initial experience with optical-CT scanning of RadBall Dosimeters.

    PubMed

    Oldham, M; Clift, C; Thomas, A; Farfan, E; Foley, T; Jannik, T; Adamovics, J; Holmes, C; Stanley, S

    2010-12-01

    The RadBall dosimeter is a novel device for providing 3-D information on the magnitude and distribution of contaminant sources of unknown radiation in a given hot cell, glovebox, or contaminated room. The device is presently under evaluation by the National Nuclear Lab (NNL, UK) and the Savannah River National Laboratory (SRNL, US), for application as a diagnostic device for such unknown contaminants in the nuclear industry. A critical component of the technique is imaging the dose distribution recorded in the RadBall using optical-CT scanning. Here we present our initial investigations using the Duke Mid-sized Optical-CT Scanner (DMOS) to image dose distributions deposited in RadBalls exposed to a variety of radiation treatments. PMID:21218190

  13. Initial experience with optical-CT scanning of RadBall Dosimeters

    PubMed Central

    Oldham, M; Clift, C; Thomas, A; Farfan, E; Foley, T; Jannik, T; Adamovics, J; Holmes, C; Stanley, S

    2010-01-01

    The RadBall dosimeter is a novel device for providing 3-D information on the magnitude and distribution of contaminant sources of unknown radiation in a given hot cell, glovebox, or contaminated room. The device is presently under evaluation by the National Nuclear Lab (NNL, UK) and the Savannah River National Laboratory (SRNL, US), for application as a diagnostic device for such unknown contaminants in the nuclear industry. A critical component of the technique is imaging the dose distribution recorded in the RadBall using optical-CT scanning. Here we present our initial investigations using the Duke Mid-sized Optical-CT Scanner (DMOS) to image dose distributions deposited in RadBalls exposed to a variety of radiation treatments. PMID:21218190

  14. Initial experience with optical-CT scanning of RadBall Dosimeters

    NASA Astrophysics Data System (ADS)

    Oldham, M.; Clift, C.; Thomas, A.; Farfan, E.; Foley, T.; Jannik, T.; Adamovics J.; Holmes, C.; Stanley, S.

    2010-11-01

    The RadBall dosimeter is a novel device for providing 3-D information on the magnitude and distribution of contaminant sources of unknown radiation in a given hot cell, glovebox, or contaminated room. The device is presently under evaluation by the National Nuclear Lab (NNL, UK) and the Savannah River National Laboratory (SRNL, US), for application as a diagnostic device for such unknown contaminants in the nuclear industry. A critical component of the technique is imaging the dose distribution recorded in the RadBall using optical-CT scanning. Here we present our initial investigations using the Duke Mid-sized Optical-CT Scanner (DMOS) to image dose distributions deposited in RadBalls exposed to a variety of radiation treatments.

  15. Multiparametric PET/CT-perfusion does not add significant additional information for initial staging in lung cancer compared with standard PET/CT

    PubMed Central

    2014-01-01

    Background The purpose of this study was to assess the relationship of CT-perfusion (CTP), 18F-FDG-PET/CT and histological parameters, and the possible added value of CTP to FDG-PET/CT in the initial staging of lung cancer. Methods Fifty-four consecutive patients (median age 65 years, 15 females, 39 males) with suspected lung cancer were evaluated prospectively by CT-perfusion scan and 18F-FDG-PET/CT scan. Overall, 46 tumors were identified. CTP parameters blood flow (BF), blood volume (BV), and mean transit time (MTT) of the tumor tissue were calculated. Intratumoral microvessel density (MVD) was assessed quantitatively. Differences in CTP parameters concerning tumor type, location, PET positivity of lymph nodes, TNM status, and UICC stage were analyzed. Spearman correlation analyses between CTP and 18F-FDG-PET/CT parameters (SUVmax, SUVmean, PETvol, and TLG), MVD, tumor size, and tumor stage were performed. Results The mean BF (mL/100 mL min-1), BV (mL/100 mL), and MTT (s) was 35.5, 8.4, and 14.2, respectively. The BF and BV were lower in tumors with PET-positive lymph nodes (p = 0.02). However, the CTP values were not significantly different among the N stages. The CTP values were not different, depending on tumor size and location. No significant correlation was found between CTP parameters and MVD. Conclusions Overall, the CTP information showed only little additional information for the initial staging compared with standard FDG-PET/CT. Low perfusion in lung tumors might possibly be associated with metabolically active regional lymph nodes. Apart from that, both CTP and 18F-FDG-PET/CT parameter sets may reflect different pathophysiological mechanisms in lung cancer. PMID:24450990

  16. Initial investigation into lower-cost CT for resource limited regions of the world

    NASA Astrophysics Data System (ADS)

    Dobbins, James T., III; Wells, Jered R.; Segars, W. Paul; Li, Christina M.; Kigongo, Christopher J. N.

    2010-04-01

    This paper describes an initial investigation into means for producing lower-cost CT scanners for resource limited regions of the world. In regions such as sub-Saharan Africa, intermediate level medical facilities serving millions have no CT machines, and lack the imaging resources necessary to determine whether certain patients would benefit from being transferred to a hospital in a larger city for further diagnostic workup or treatment. Low-cost CT scanners would potentially be of immense help to the healthcare system in such regions. Such scanners would not produce state-of-theart image quality, but rather would be intended primarily for triaging purposes to determine the patients who would benefit from transfer to larger hospitals. The lower-cost scanner investigated here consists of a fixed digital radiography system and a rotating patient stage. This paper describes initial experiments to determine if such a configuration is feasible. Experiments were conducted using (1) x-ray image acquisition, a physical anthropomorphic chest phantom, and a flat-panel detector system, and (2) a computer-simulated XCAT chest phantom. Both the physical phantom and simulated phantom produced excellent image quality reconstructions when the phantom was perfectly aligned during acquisition, but artifacts were noted when the phantom was displaced to simulate patient motion. An algorithm was developed to correct for motion of the phantom and demonstrated success in correcting for 5-mm motion during 360-degree acquisition of images. These experiments demonstrated feasibility for this approach, but additional work is required to determine the exact limitations produced by patient motion.

  17. Comprehensive Evaluation of Cardiac Hydatid Using 256 Slice Dual Source CT: One Stop Shop

    PubMed Central

    Sethi, Sonali; Gupta, Nishant; Goel, Vandana; Puri, Sunil Kumar

    2015-01-01

    Hydatid disease results from infection with larval stage of Echinococcus granulosus tapeworm. Dogs and other canines are the definitive hosts; Human beings are common accidental intermediate hosts. Liver is the most common organ to be involved in this condition. Cardiac hydatid, seen in only 0.5 to 2% cases, is a rare entity because of myocardial contractility. Larvae reach the myocardium through coronary circulation. Among various locations of cardiac hydatid, due to its rich coronary arterial supply Left ventricle (LV) myocardium is the most common site of involvement followed by interventricular septum and right ventricle. Rare locations include pericardium, right atrium and left atrium. A 50-year-old woman presented with dyspnoea for 11 months, chest X-ray showed a well defined, homogenous left paracardiac mass, which is not separable from left heart border. Transthoracic echocardiography revealed a complex multicystic mass lesion abutting antero-lateral wall of left ventricle. Contrast enhanced computed tomography showed a well-circumscribed multicystic mass lesion with honeycomb appearance arising from myocardium of anterolateral wall of left ventricle. Indirect haemagglutination test for hydatid disease was positive. At surgery the cyst was seen to arise from LV myocardium. It was incised and grape like contents were evacuated. The cavity was irrigated with scolicidal solution. Thereafter, the cyst was marsupialised. Histopathological examination revealed grape like cyst contents consistent with the diagnosis of hydatid cyst. PMID:26557591

  18. Quantitative CT for volumetric analysis of medical images: initial results for liver tumors

    NASA Astrophysics Data System (ADS)

    Behnaz, Alexander S.; Snider, James; Chibuzor, Eneh; Esposito, Giuseppe; Wilson, Emmanuel; Yaniv, Ziv; Cohen, Emil; Cleary, Kevin

    2010-03-01

    Quantitative CT for volumetric analysis of medical images is increasingly being proposed for monitoring patient response during chemotherapy trials. An integrated MATLAB GUI has been developed for an oncology trial at Georgetown University Hospital. This GUI allows for the calculation and visualization of the volume of a lesion. The GUI provides an estimate of the volume of the tumor using a semi-automatic segmentation technique. This software package features a fixed parameter adaptive filter from the ITK toolkit and a tumor segmentation algorithm to reduce inter-user variability and to facilitate rapid volume measurements. The system also displays a 3D rendering of the segmented tumor, allowing the end user to have not only a quantitative measure of the tumor volume, but a qualitative view as well. As an initial validation test, several clinical cases were hand-segmented, and then compared against the results from the tool, showing good agreement.

  19. Analysis of Pulmonary Vein Antrums Motion with Cardiac Contraction Using Dual-Source Computed Tomography

    PubMed Central

    de Guise, Jacques; Vu, Toni; Chartrand-Lefebvre, Carl; Blais, Danis; Lebeau, Martin; Nguyen, Nhu-Tram; Roberge, David

    2016-01-01

    Purpose: The purpose of the study was to determine the extent of displacement of the pulmonary vein antrums resulting from the intrinsic motion of the heart using 4D cardiac dual-source computed tomography (DSCT). Methods: Ten consecutive female patients were enrolled in this prospective planning study. In breath-hold, a contrast-injected cardiac 4-dimensional (4D) computed tomography (CT) synchronized to the electrocardiogram was obtained using a prospective sequential acquisition method including the extreme phases of systole and diastole. Right and left atrial fibrillation target volumes (CTVR and CTVL) were defined, with each target volume containing the antral regions of the superior and inferior pulmonary veins. Four points of interest were used as surrogates for the right superior and inferior pulmonary vein antrum (RSPVA and RIPVA) and the left superior and inferior pulmonary vein antrum (LSPVA and LIPVA). On our 4D post-processing workstation (MIM Maestro™, MIM Software Inc.), maximum displacement of each point of interest from diastole to systole was measured in the mediolateral (ML), anteroposterior (AP), and superoinferior (SI) directions. Results: Median age of the enrolled patients was 60 years (range, 56-71 years). Within the CTVR, the mean displacements of the superior and inferior surrogates were 3 mm vs. 1 mm (p=0.002), 2 mm vs. 0 mm (p= 0.001), and 3 mm vs. 0 mm (p=0.00001), in the ML, AP, and SI directions, respectively. On the left, mean absolute displacements of the LSPVA vs. LIPVA were similar at 4 mm vs. 1 mm (p=0.0008), 2 mm vs. 0 mm (p= 0.001), and 3 mm vs. 1 mm (p=0.00001) in the ML, AP, and SI directions. Conclusion: When isolated from breathing, cardiac contraction is associated with minimal inferior pulmonary veins motion and modest (1-6 mm) motion of the superior veins. Target deformation was thus of a magnitude similar or greater than target motion, limiting the potential gains of cardiac tracking. Optimal strategies for cardiac

  20. Conditional Reasoning in Context: A Dual-Source Model of Probabilistic Inference

    ERIC Educational Resources Information Center

    Klauer, Karl Christoph; Beller, Sieghard; Hutter, Mandy

    2010-01-01

    A dual-source model of probabilistic conditional inference is proposed. According to the model, inferences are based on 2 sources of evidence: logical form and prior knowledge. Logical form is a decontextualized source of evidence, whereas prior knowledge is activated by the contents of the conditional rule. In Experiments 1 to 3, manipulations of…

  1. Clinical impact of 18F-FDG PET/CT on initial staging and therapy planning for breast cancer

    PubMed Central

    GUNALP, BENGUL; INCE, SEMRA; KARACALIOGLU, ALPER OZGUR; AYAN, ASLI; EMER, OZDES; ALAGOZ, ENGIN

    2012-01-01

    The purpose of this study was to determine the clinical significance of 18F-FDG PET/CT on initial staging and therapy planning in patients with invasive breast cancer. One hundred and forty-one consecutive, biopsy proven preoperative and 195 postoperative high-risk breast cancer patients who were referred for PET/CT for initial staging were included in this retrospective study. The clinical stage had been determined by conventional imaging modalities prior to the PET/CT scan. Of the 141 examined preoperative patients, 19 had clinical stage I (T1N0), 51 had stage IIA (12 T2N0 and 39 T1N1), 49 had stage IIB (2 T3N0 and 47 T2N1), 12 had stage IIIA (11 T3N1, 1 T2N2), 2 had stage IIIB (2 T4N1) and 8 had stage IV. PET/CT modified the staging for 26% of stage I patients, 29% of stage IIA patients, 46% of stage IIB patients, 58% of stage IIIA patients and 100% of stage IIIB patients. PET/CT scans detected extra-axillary regional lymph nodes in 14 (9.9%) patients and distant metastasis in 41 (29%) patients. PET/CT scans detected multifocal lesions in 30 (21%) patients, multicentric lesions in 21 (14%) patients and malign foci in the contralateral breast (bilateral breast cancer) confirmed by biopsy in 5 (3.5%) patients. Of the examined 195 postoperative patients PET/CT detected axillary lymph nodes in 22 (11%) patients, extra-axillary regional lymph nodes in 21 (10%) patients and distant metastasis in 24 (12%) patients. PET/CT findings altered plans for radiotherapy in 22 (11%) patients and chemotherapy was adapted to the meta-static diseases in 24 (12%) patients. PET/CT was revealed to be superior to conventional imaging modalities for the detection of extra-axillary regional metastatic lymph nodes and distant metastases. These features make PET/CT an essential imaging modality for the primary staging of invasive breast cancer, particularly in patients with clinical stages II and III. PMID:23170128

  2. Clinical impact of (18)F-FDG PET/CT on initial staging and therapy planning for breast cancer.

    PubMed

    Gunalp, Bengul; Ince, Semra; Karacalioglu, Alper Ozgur; Ayan, Asli; Emer, Ozdes; Alagoz, Engin

    2012-10-01

    The purpose of this study was to determine the clinical significance of (18)F-FDG PET/CT on initial staging and therapy planning in patients with invasive breast cancer. One hundred and forty-one consecutive, biopsy proven preoperative and 195 postoperative high-risk breast cancer patients who were referred for PET/CT for initial staging were included in this retrospective study. The clinical stage had been determined by conventional imaging modalities prior to the PET/CT scan. Of the 141 examined preoperative patients, 19 had clinical stage I (T1N0), 51 had stage IIA (12 T2N0 and 39 T1N1), 49 had stage IIB (2 T3N0 and 47 T2N1), 12 had stage IIIA (11 T3N1, 1 T2N2), 2 had stage IIIB (2 T4N1) and 8 had stage IV. PET/CT modified the staging for 26% of stage I patients, 29% of stage IIA patients, 46% of stage IIB patients, 58% of stage IIIA patients and 100% of stage IIIB patients. PET/CT scans detected extra-axillary regional lymph nodes in 14 (9.9%) patients and distant metastasis in 41 (29%) patients. PET/CT scans detected multifocal lesions in 30 (21%) patients, multicentric lesions in 21 (14%) patients and malign foci in the contralateral breast (bilateral breast cancer) confirmed by biopsy in 5 (3.5%) patients. Of the examined 195 postoperative patients PET/CT detected axillary lymph nodes in 22 (11%) patients, extra-axillary regional lymph nodes in 21 (10%) patients and distant metastasis in 24 (12%) patients. PET/CT findings altered plans for radiotherapy in 22 (11%) patients and chemotherapy was adapted to the meta-static diseases in 24 (12%) patients. PET/CT was revealed to be superior to conventional imaging modalities for the detection of extra-axillary regional metastatic lymph nodes and distant metastases. These features make PET/CT an essential imaging modality for the primary staging of invasive breast cancer, particularly in patients with clinical stages II and III. PMID:23170128

  3. Preliminary results on the role of PET/CT in initial staging, restaging, and management of lung cancer

    NASA Astrophysics Data System (ADS)

    Malamitsi, J.; Valotassiou, B.; Iliadis, K.; Kosmidis, P.; Laspas, F.; Vasilaki, M.; Pipini, E.; Petounis, A.; Gogou, L.; Pagou, M.; Dalianis, K.; Efthimiadou, R.; Andreou, J.

    2006-12-01

    AimTo determine true-positive and true-negative rates of PET/CT studies in the staging of lung cancer as compared with conventional imaging (CT and bone scan and occasionally MRI) and the impact of PET/CT on the treatment strategy in patients with lung cancer. Materials and methodTwenty patients (21 studies) with known or suspected lung cancer (14 patients with non-small-cell lung cancer (NSCLC), three patients with small-cell lung cancer (SCLC), three patients with solitary pulmonary nodule underwent initial staging (seven studies) or restaging (14 studies) with combined FDG PET and CT scans on a PET/CT tomograph. PET/CT images were evaluated separately by two nuclear medicine physicians and two radiologists specialized on PET, CT, and MRI. Histology results and a more than 6 months follow-up served as the reference standards. ResultsAccurate diagnosis was achieved on 16 studies. Site-by-site analysis gave the following results: 16 true-positive sites (seven on histology, nine on >6 months follow-up), six true-negative sites (two on histology, four on >6 months follow-up). On PET/CT, six patients were correctly down-staged, three patients were correctly upstaged and seven patients were diagnosed correctly as being on the same stage (2/7 with increase of extent of disease, 5/7 with the same extent of disease). One patient was falsely upstaged and three patients were falsely down-staged. On the basis of PET/CT results, change of management was induced in six patients, while in 14 patients there was no change induced. In five cases PET/CT was partially accurate: on site-by-site analysis, four sites proved true positive (on histology), one site false positive (on histology), and four sites false negative (one on histology, three on >6 months follow-up). ConclusionIn our early experience, PET/CT contributed significantly to correct staging and management of patients with lung cancer.

  4. An outlook on x-ray CT research and development.

    PubMed

    Wang, Ge; Yu, Hengyong; De Man, Bruno

    2008-03-01

    Over the past decade, computed tomography (CT) theory, techniques and applications have undergone a rapid development. Since CT is so practical and useful, undoubtedly CT technology will continue advancing biomedical and non-biomedical applications. In this outlook article, we share our opinions on the research and development in this field, emphasizing 12 topics we expect to be critical in the next decade: analytic reconstruction, iterative reconstruction, local/interior reconstruction, flat-panel based CT, dual-source CT, multi-source CT, novel scanning modes, energy-sensitive CT, nano-CT, artifact reduction, modality fusion, and phase-contrast CT. We also sketch several representative biomedical applications. PMID:18404940

  5. Scenes from the past: initial investigation of early jurassic vertebrate fossils with multidetector CT.

    PubMed

    Bolliger, Stephan A; Ross, Steffen; Thali, Michael J; Hostettler, Bernhard; Menkveld-Gfeller, Ursula

    2012-01-01

    The study of fossils permits the reconstruction of past life on our planet and enhances our understanding of evolutionary processes. However, many fossils are difficult to recognize, being encased in a lithified matrix whose tedious removal is required before examination is possible. The authors describe the use of multidetector computed tomography (CT) in locating, identifying, and examining fossil remains of crocodilians (Mesosuchia) embedded in hard shale, all without removing the matrix. In addition, they describe how three-dimensional (3D) reformatted CT images provided details that were helpful for extraction and preparation. Multidetector CT can help experienced paleontologists localize and characterize fossils in the matrix of a promising rock specimen in a nondestructive manner. Moreover, with its capacity to generate highly accurate 3D images, multidetector CT can help determine whether the fossils warrant extraction and can assist in planning the extraction process. Thus, multidetector CT may well become an invaluable tool in the field of paleoradiology. PMID:22977034

  6. Evaluation of an initiative to reduce radiation exposure from CT to children in a non-pediatric-focused facility.

    PubMed

    Blumfield, Einat; Zember, Jonathan; Guelfguat, Mark; Blumfield, Amit; Goldman, Harold

    2015-12-01

    We would like to share our experience of reducing pediatric radiation exposure. Much of the recent literature regarding successes of reducing radiation exposure has come from dedicated children's hospitals. Nonetheless, over the past two decades, there has been a considerable increase in CT imaging of children in the USA, predominantly in non-pediatric-focused facilities where the majority of children are treated. In our institution, two general hospitals with limited pediatric services, a dedicated initiative intended to reduce children's exposure to CT radiation was started by pediatric radiologists in 2005. The initiative addressed multiple issues including eliminating multiphase studies, decreasing inappropriate scans, educating referring providers, training residents and technologists, replacing CT with ultrasound or MRI, and ensuring availability of pediatric radiologists for consultation. During the study period, the total number of CT scans decreased by 24 %. When accounting for the number of scans per visit to the emergency department (ED), the numbers of abdominal and head CT scans decreased by 37.2 and 35.2 %, respectively. For abdominal scans, the average number of phases per scan decreased from 1.70 to 1.04. Upon surveying the pediatric ED staff, it was revealed that the most influential factors on ordering of scans were daily communication with pediatric radiologists, followed by journal articles and lectures by pediatric radiologists. We concluded that a non-pediatric-focused facility can achieve dramatic reduction in CT radiation exposure to children; however, this is most effectively achieved through a dedicated, multidisciplinary process led by pediatric radiologists. PMID:26263878

  7. Missed rib fractures on evaluation of initial chest CT for trauma patients: pattern analysis and diagnostic value of coronal multiplanar reconstruction images with multidetector row CT

    PubMed Central

    Cho, S H; Sung, Y M; Kim, M S

    2012-01-01

    Objective The objective of this study was to review the prevalence and radiological features of rib fractures missed on initial chest CT evaluation, and to examine the diagnostic value of additional coronal images in a large series of trauma patients. Methods 130 patients who presented to an emergency room for blunt chest trauma underwent multidetector row CT of the thorax within the first hour during their stay, and had follow-up CT or bone scans as diagnostic gold standards. Images were evaluated on two separate occasions: once with axial images and once with both axial and coronal images. The detection rates of missed rib fractures were compared between readings using a non-parametric method of clustered data. In the cases of missed rib fractures, the shapes, locations and associated fractures were evaluated. Results 58 rib fractures were missed with axial images only and 52 were missed with both axial and coronal images (p=0.088). The most common shape of missed rib fractures was buckled (56.9%), and the anterior arc (55.2%) was most commonly involved. 21 (36.2%) missed rib fractures had combined fractures on the same ribs, and 38 (65.5%) were accompanied by fracture on neighbouring ribs. Conclusion Missed rib fractures are not uncommon, and radiologists should be familiar with buckle fractures, which are frequently missed. Additional coronal imagescan be helpful in the diagnosis of rib fractures that are not seen on axial images. PMID:22514102

  8. Initial report of PET/CT-guided radiofrequency ablation of liver metastases.

    PubMed

    Prior, John O; Kosinski, Marek; Delaloye, Angelika Bischof; Denys, Alban

    2007-06-01

    Computed tomography (CT) and ultrasonography (US) are commonly employed to guide positioning of radiofrequency electrodes within target tumors. However, this technique cannot be used when the tumor is detectable only by positron emission tomography (PET). In such cases, even the use of intraprocedural coregistered PET/CT will not prevent malpositioning of the electrode tip relative to a lesion visualized only on PET as a result of patient breathing and organ shifts during CT-guided electrode placement. The present report describes a single case of successful targeting and complete ablation of a lesion invisible on CT and US with the use of a method to visualize electrode tip positioning by PET. PMID:17538147

  9. Application of intelligent optimal kV scanning technology (CARE kV) in dual-source computed tomography (DSCT) coronary angiography

    PubMed Central

    Zhang, Jun; Kang, Shaolei; Han, Dan; Xie, Xiaojie; Deng, Yaming

    2015-01-01

    This study aims to evaluate the applications and values of dual-source computed tomography (DSCT) intelligent optimal kV scanning technology (CARE kV) in coronary CT angiography (CCTA). 150 patients with normal body mass index were performed DSCT coronary angiography, then randomly divided into the “Semi”, 120,100 and 80 kV Group, and the 2 “on” groups, with 30 patients in each group. The first 5 groups used the reference voltage as 120 kV, and the reference current as 400 mAs, while the other group used the reference voltage as 100 kV, and the reference current as 400 mAs. The image quality, average CT value, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and radiation dose were comparatively analyzed among the 5 groups. The image quality scores of the five groups showed no significant difference (P > 0.05); the average CT values and image noises had significance (P < 0.05), while SNR and CNR showed no significant difference (P > 0.05). The 80 kV group showed the biggest noise, with the CT value as 700 HU, while the radiation dose was the lowest, followed by the on group. As for the patients with normal body mass index (BMI), CARE kV-“on” could obtain high-quality images and lower radiation dose for CCTA, while the operation was simple and convenient. PMID:26770354

  10. Initial prostate cancer diagnosis and disease staging--the role of choline-PET-CT.

    PubMed

    Mapelli, Paola; Picchio, Maria

    2015-09-01

    An early and correct diagnosis together with accurate staging of prostate cancer is necessary in order to plan the most appropriate treatment strategy. Morphological imaging modalities such as transrectal ultrasonography (TRUS), CT, and MRI can have some limitations regarding their accuracy for primary diagnosis and staging of prostate cancer; for instance, they have limited specificity in differentiating cancer from benign prostatic conditions and, by using size as the only criterion to characterize lymph node metastases, they might not be accurate enough for tumour characterization. In this scenario, PET-CT with (11)C-labelled or (18)F-labelled choline derivatives provides morphological and functional characterization and could overcome the limitations of the conventional imaging techniques. PET-CT is one of the most investigated molecular imaging modalities for prostate cancer diagnosis and staging. Currently, the main investigations on the role of PET-CT in the diagnosis and staging of prostate cancer have been performed on a retrospective basis and this type of analysis might be one of the main reasons why different results regarding its diagnostic accuracy have been reported. PMID:26260884

  11. Feasibility of FDG-PET/CT for the initial diagnosis of papillary thyroid cancer.

    PubMed

    Kim, Heejin; Na, Kyung Jin; Choi, Jae Hyuk; Ahn, Byeong-Cheol; Ahn, Dongbin; Sohn, Jin Ho

    2016-06-01

    To assess the role of [18F]-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET/CT) as a preoperative diagnostic tool in papillary thyroid carcinoma (PTC). From 2011 to 2014, 197 patients with PTC (246 tumor foci in all) underwent FDG-PET. Among these patients, 46 underwent neck dissection for lateral neck metastasis. According to the FDG avidity of the tumor foci or lateral neck metastasis, factors associated with the prognostic value were evaluated by univariate and multivariate logistic regression analyses. Among the 197 patients, 7 (3.6 %) were incidentally found to have non-thyroid origin malignancy. Additionally, 63.0 % (155/246) of PTC foci showed FDG uptake on PET/CT. Univariate analysis showed that the tumor size, the presence of extrathyroidal extension, BRAF mutation, and Hashimoto thyroiditis were associated with FDG avidity. However, except for pathological extrathyroidal extension, the other factors showed statistically significant correlations with FDG avidity (p < 0.001, p = 0.008, and p = 0.009, respectively). FDG uptake in lateral neck node metastasis showed high specificity and negative predictive value (NPV). In four cases of nonspecific findings on ultrasonography (USG)/CT, FDG avidity was helpful to diagnose the presence of lateral neck metastasis. The maximum standardized uptake value (SUVmax) of PET/CT was correlated with the maximum diameter of the involved lateral node. FDG avidity did not show any significance in the recurrence-free survival of both the thyroid tumor and lateral neck metastasis. The FDG avidity of PTC did not show prognostic predictive meaning. However, in the case of lateral neck metastasis, FDG avidity showed high sensitivity and NPV, and could provide better information in cases of nonspecific findings on USG and CT. PMID:25971994

  12. Probabilistic conditional reasoning: Disentangling form and content with the dual-source model.

    PubMed

    Singmann, Henrik; Klauer, Karl Christoph; Beller, Sieghard

    2016-08-01

    The present research examines descriptive models of probabilistic conditional reasoning, that is of reasoning from uncertain conditionals with contents about which reasoners have rich background knowledge. According to our dual-source model, two types of information shape such reasoning: knowledge-based information elicited by the contents of the material and content-independent information derived from the form of inferences. Two experiments implemented manipulations that selectively influenced the model parameters for the knowledge-based information, the relative weight given to form-based versus knowledge-based information, and the parameters for the form-based information, validating the psychological interpretation of these parameters. We apply the model to classical suppression effects dissecting them into effects on background knowledge and effects on form-based processes (Exp. 3) and we use it to reanalyse previous studies manipulating reasoning instructions. In a model-comparison exercise, based on data of seven studies, the dual-source model outperformed three Bayesian competitor models. Overall, our results support the view that people make use of background knowledge in line with current Bayesian models, but they also suggest that the form of the conditional argument, irrespective of its content, plays a substantive, yet smaller, role. PMID:27416493

  13. Percutaneous Cryoablation of Small Hepatocellular Carcinoma with US Guidance and CT Monitoring: Initial Experience

    SciTech Connect

    Orlacchio, Antonio Bazzocchi, Gabriele; Pastorelli, Daniela; Bolacchi, Francesca; Angelico, Mario; Almerighi, Cristiana; Masala, Salvatore; Simonetti, Giovanni

    2008-05-15

    The purpose of this study was to retrospectively determine the safety and effectiveness of percutaneous cryoablation, monitored with computed tomography (CT) and ultrasonographic (US) guidance, for the treatment of hepatocellular carcinoma (HCC). Four patients with small HCCs underwent one percutaneous cryoablation treatment session monitored with CT and US guidance. All patients underwent pretreatment blood chemistry testing and imaging evaluation. We treated lesions with simultaneous insertion of multiple 17-G cryoprobes (two or three) and defined technical success when the extension of a visible iceball was beyond 5 mm from the tumor margin. Intralesional enhancement or tumoral size increase was defined as local progression compared with that on images obtained immediately after ablation. We evaluated complications and follow-up (at 1, 3, and 6 months). All patients survived without short- or long-term complications. Cryoablation was technically successful in all patients at the end of the procedure. During follow-up two patients developed disease recurrence. One patient developed local tumor progression on the margin of the lesion; the other, a new HCC. In the case of local tumor progression a new elevation of {alpha}-fetoprotein ({alpha}FP) levels occurred at first follow-up control. In the other case levels of {alpha}FP remained stable during the first 3 months after the procedure, then demonstrated a progressive increase in {alpha}FP levels beginning at the fourth month, without tumor evidence during CT control at 3 months. We conclude that percutaneous cryotherapy with US guidance and CT monitoring is a feasible, safe, and effective for treatment of HCC. If local ablative procedures of hepatic lesions are to be performed, percutaneous cryoablation, not laparotomic, should be discussed as an alternative therapeutic measure. Longer follow-up should provide proof of the effectiveness of this technique.

  14. CT-Guided Interventions Using a Free-Hand, Optical Tracking System: Initial Clinical Experience

    SciTech Connect

    Schubert, Tilman Jacob, Augustinus L.; Pansini, Michele; Liu, David; Gutzeit, Andreas; Kos, Sebastian

    2013-08-01

    PurposeThe present study was designed to evaluate the geometrical accuracy and clinical applicability of a new, free-hand, CT-guided, optical navigation system.MethodsFifteen procedures in 14 consecutive patients were retrospectively analyzed. The navigation system was applied for interventional procedures on small target lesions, in cases with long needle paths, narrow access windows, or when an out-of-plane access was expected. Mean lesion volume was 27.9 ml, and mean distance to target measured was 107.5 mm. Eleven of 15 needle trajectories were planned as out-of-plane approaches regarding the axial CT plane.ResultsNinety-one percent of the biopsies were diagnostic. All therapeutic interventions were technically successful. Targeting precision was high with a mean distance of the needle tip from planned target of 1.98 mm. Mean intervention time was 1:12 h. A statistically significant correlation between angular needle deviation and intervention time (p = 0.007), respiratory movement of the target (p = 0.008), and body mass index (p = 0.02) was detected. None of the evaluated parameters correlated significantly with the distance from the needle tip to the planned target.ConclusionsThe application of a navigation system for complex CT-guided procedures provided safe and effective targeting within a reasonable intervention time in our series.

  15. Optic nerve sheath diameter on initial brain CT, raised intracranial pressure and mortality after severe TBI: an interesting link needing confirmation.

    PubMed

    Masquère, Pierre; Bonneville, Fabrice; Geeraerts, Thomas

    2013-01-01

    Optic nerve sheath diameter (ONSD) enlargement on initial computed tomography (CT) scan has been found to be associated with increased mortality after severe traumatic brain injury. This could offer the possibility to detect patients with raised intracranial pressure requiring urgent therapeutic interventions and/or invasive intracranial monitoring to guide the treatment. The method to measure ONSD using CT scan, however, needs further confirmation. Moreover, the link between ONSD enlargement on initial CT scan and raised intracranial pressure also needs to be confirmed by further studies. PMID:23751121

  16. SU-D-207-03: Development of 4D-CBCT Imaging System with Dual Source KV X-Ray Tubes

    SciTech Connect

    Nakamura, M; Ishihara, Y; Matsuo, Y; Ueki, N; Iizuka, Y; Mizowaki, T; Hiraoka, M

    2015-06-15

    Purpose: The purposes of this work are to develop 4D-CBCT imaging system with orthogonal dual source kV X-ray tubes, and to determine the imaging doses from 4D-CBCT scans. Methods: Dual source kV X-ray tubes were used for the 4D-CBCT imaging. The maximum CBCT field of view was 200 mm in diameter and 150 mm in length, and the imaging parameters were 110 kV, 160 mA and 5 ms. The rotational angle was 105°, the rotational speed of the gantry was 1.5°/s, the gantry rotation time was 70 s, and the image acquisition interval was 0.3°. The observed amplitude of infrared marker motion during respiration was used to sort each image into eight respiratory phase bins. The EGSnrc/BEAMnrc and EGSnrc/DOSXYZnrc packages were used to simulate kV X-ray dose distributions of 4D-CBCT imaging. The kV X-ray dose distributions were calculated for 9 lung cancer patients based on the planning CT images with dose calculation grid size of 2.5 x 2.5 x 2.5 mm. The dose covering a 2-cc volume of skin (D2cc), defined as the inner 5 mm of the skin surface with the exception of bone structure, was assessed. Results: A moving object was well identified on 4D-CBCT images in a phantom study. Given a gantry rotational angle of 105° and the configuration of kV X-ray imaging subsystems, both kV X-ray fields overlapped at a part of skin surface. The D2cc for the 4D-CBCT scans was in the range 73.8–105.4 mGy. Linear correlation coefficient between the 1000 minus averaged SSD during CBCT scanning and D2cc was −0.65 (with a slope of −0.17) for the 4D-CBCT scans. Conclusion: We have developed 4D-CBCT imaging system with dual source kV X-ray tubes. The total imaging dose with 4D-CBCT scans was up to 105.4 mGy.

  17. Empirical beam hardening correction (EBHC) for CT

    SciTech Connect

    Kyriakou, Yiannis; Meyer, Esther; Prell, Daniel; Kachelriess, Marc

    2010-10-15

    Purpose: Due to x-ray beam polychromaticity and scattered radiation, attenuation measurements tend to be underestimated. Cupping and beam hardening artifacts become apparent in the reconstructed CT images. If only one material such as water, for example, is present, these artifacts can be reduced by precorrecting the rawdata. Higher order beam hardening artifacts, as they result when a mixture of materials such as water and bone, or water and bone and iodine is present, require an iterative beam hardening correction where the image is segmented into different materials and those are forward projected to obtain new rawdata. Typically, the forward projection must correctly model the beam polychromaticity and account for all physical effects, including the energy dependence of the assumed materials in the patient, the detector response, and others. We propose a new algorithm that does not require any knowledge about spectra or attenuation coefficients and that does not need to be calibrated. The proposed method corrects beam hardening in single energy CT data. Methods: The only a priori knowledge entering EBHC is the segmentation of the object into different materials. Materials other than water are segmented from the original image, e.g., by using simple thresholding. Then, a (monochromatic) forward projection of these other materials is performed. The measured rawdata and the forward projected material-specific rawdata are monomially combined (e.g., multiplied or squared) and reconstructed to yield a set of correction volumes. These are then linearly combined and added to the original volume. The combination weights are determined to maximize the flatness of the new and corrected volume. EBHC is evaluated using data acquired with a modern cone-beam dual-source spiral CT scanner (Somatom Definition Flash, Siemens Healthcare, Forchheim, Germany), with a modern dual-source micro-CT scanner (TomoScope Synergy Twin, CT Imaging GmbH, Erlangen, Germany), and with a modern

  18. Ultrafast electron transfer reactions initiated by excited CT states of push pull perylenes

    NASA Astrophysics Data System (ADS)

    Miller, Scott E.; Zhao, Yongyu; Schaller, Richard; Mulloni, Viviana; Just, Eric M.; Johnson, Robert C.; Wasielewski, Michael R.

    2002-01-01

    Two new chromophores that absorb in the visible spectrum, the 9-( N-pyrrolidinyl)- and 9-( N-piperidinyl)perylene-3,4-dicarboximides, 5PMI and 6PMI, respectively, were synthesized and shown to possess lowest excited singlet states with about 70% charge transfer (CT) character. Changing the ring size of the cyclic amine from 5 to 6 significantly changes the energies of the CT states, as well as the redox potentials of the chromophores. These chromophores were linked to pyromellitimide (PI) and 1,8:4,5-naphthalenediimide (NI) electron acceptors using a single N-N bond between their respective imides to yield the corresponding donor-acceptor dyads 5PMI-PI, 5PMI-NI, 6PMI-PI, and 6PMI-NI. The donors and acceptors in these molecules are positioned relative to one another in a rod-like arrangement at fixed distances and restricted orientations. The rates of charge separation and recombination were measured using transient absorption spectroscopy. These chromophores were also used to prepare rigid donor-acceptor triads 5PMI-PI-NI and 6PMI-PI-NI, which display one- or two-step electron transfer mechanisms that depend on solvent polarity. These compounds exhibit a broad range of structure and media driven changes in electron transfer mechanism.

  19. Quantitative parameters to compare image quality of non-invasive coronary angiography with 16-slice, 64-slice and dual-source computed tomography.

    PubMed

    Burgstahler, Christof; Reimann, Anja; Brodoefel, Harald; Daferner, Ulrike; Herberts, Tina; Tsiflikas, Ilias; Thomas, Christoph; Drosch, Tanja; Schroeder, Stephen; Heuschmid, Martin

    2009-03-01

    Multi-slice computed tomography (MSCT) is a non-invasive modality to visualize coronary arteries with an overall good image quality. Improved spatial and temporal resolution of 64-slice and dual-source computed tomography (DSCT) scanners are supposed to have a positive impact on diagnostic accuracy and image quality. However, quantitative parameters to compare image quality of 16-slice, 64-slice MSCT and DSCT are missing. A total of 256 CT examinations were evaluated (Siemens, Sensation 16: n = 90; Siemens Sensation 64: n = 91; Siemens Definition: n = 75). Mean Hounsfield units (HU) were measured in the cavum of the left ventricle (LV), the ascending aorta (Ao), the left ventricular myocardium (My) and the proximal part of the left main (LM), the left anterior descending artery (LAD), the right coronary artery (RCA) and the circumflex artery (CX). Moreover, the ratio of intraluminal attenuation (HU) to myocardial attenuation was assessed for all coronary arteries. Clinical data [body mass index (BMI), gender, heart rate] were accessible for all patients. Mean attenuation (CA) of the coronary arteries was significantly higher for DSCT in comparison to 64- and 16-slice MSCT within the RCA [347 +/- 13 vs. 254 +/- 14 (64-MSCT) vs. 233 +/- 11 (16-MSCT) HU], LM (362 +/- 11/275 +/- 12/262 +/- 9), LAD (332 +/- 17/248 +/- 19/219 +/- 14) and LCX (310 +/- 12/210 +/- 13/221 +/- 10, all p < 0.05), whereas there was no significant difference between DSCT and 64-MSCT for the LV, the Ao and My. Heart rate had a significant impact on CA ratio in 16-slice and 64-slice CT only (p < 0.05). BMI had no impact on the CA ratio in DSCT only (p < 0.001). Improved spatial and temporal resolution of dual-source CT is associated with better opacification of the coronary arteries and a better contrast with the myocardium, which is independent of heart rate. In comparison to MSCT, opacification of the coronary arteries at DSCT is not affected by BMI. The main advantage of DSCT lies with the

  20. A stochastic inventory management model for a dual sourcing supply chain with disruptions

    NASA Astrophysics Data System (ADS)

    Iakovou, Eleftherios; Vlachos, Dimitrios; Xanthopoulos, Anastasios

    2010-03-01

    As companies continue to globalise their operations and outsource significant portion of their value chain activities, they often end up relying heavily on order replenishments from distant suppliers. The explosion in long-distance sourcing is exposing supply chains and shareholder value at ever increasing operational and disruption risks. It is well established, both in academia and in real-world business environments, that resource flexibility is an effective method for hedging against supply chain disruption risks. In this contextual framework, we propose a single period stochastic inventory decision-making model that could be employed for capturing the trade-off between inventory policies and disruption risks for an unreliable dual sourcing supply network for both the capacitated and uncapacitated cases. Through the developed model, we obtain some important managerial insights and evaluate the merit of contingency strategies in managing uncertain supply chains.

  1. A dual cone-beam CT system for image guided radiotherapy: Initial performance characterization

    SciTech Connect

    Li Hao; Bowsher, James; Yin Fangfang; Giles, William

    2013-02-15

    Purpose: The purpose of this study is to evaluate the performance of a recently developed benchtop dual cone-beam computed tomography (CBCT) system with two orthogonally placed tube/detector sets. Methods: The benchtop dual CBCT system consists of two orthogonally placed 40 Multiplication-Sign 30 cm flat-panel detectors and two conventional x-ray tubes with two individual high-voltage generators sharing the same rotational axis. The x-ray source to detector distance is 150 cm and x-ray source to rotational axis distance is 100 cm for both subsystems. The objects are scanned through 200 Degree-Sign of rotation. The dual CBCT system utilized 110 Degree-Sign of projection data from one detector and 90 Degree-Sign from the other while the two individual single CBCTs utilized 200 Degree-Sign data from each detector. The system performance was characterized in terms of uniformity, contrast, spatial resolution, noise power spectrum, and CT number linearity. The uniformities, within the axial slice and along the longitudinal direction, and noise power spectrum were assessed by scanning a water bucket; the contrast and CT number linearity were measured using the Catphan phantom; and the spatial resolution was evaluated using a tungsten wire phantom. A skull phantom and a ham were also scanned to provide qualitative evaluation of high- and low-contrast resolution. Each measurement was compared between dual and single CBCT systems. Results: Compared to single CBCT, the dual CBCT presented: (1) a decrease in uniformity by 1.9% in axial view and 1.1% in the longitudinal view, as averaged for four energies (80, 100, 125, and 150 kVp); (2) comparable or slightly better contrast (0{approx}25 HU) for low-contrast objects and comparable contrast for high-contrast objects; (3) comparable spatial resolution; (4) comparable CT number linearity with R{sup 2}{>=} 0.99 for all four tested energies; (5) lower noise power spectrum in magnitude. Dual CBCT images of the skull phantom and the

  2. A cardiac phantom study on quantitative correction of coronary calcium score on multi-detector, dual source, and electron beam tomography for velocity, calcification density, and acquisition time

    NASA Astrophysics Data System (ADS)

    Greuter, Marcel J. W.; Groen, Jaap M.; Nicolai, Lieuwe J.; Dijkstra, Hildebrand; Oudkerk, Matthijs

    2009-02-01

    Objective: To quantify the influence of velocity, calcification density and acquisition time on coronary calcium determination using multi-detector CT, dual-source CT and EBT. Materials and Methods: Artificial arteries with four calcifications of increasing density were attached to a robotic arm to which a linear movement was applied between 0 and 120 mm/s (step 10 mm/s). The phantom was scanned five times on 64-slice MDCT, DSCT and EBT using a standard acquisition protocol and the average Agatston score was determined. Results: Increasing motion artifacts were observed at increasing velocities on all scanners, with increasing severity from EBT to DSCT to 64-slice MDCT. The Agatston score showed a linear dependency on velocity from which a correction factor was derived. This correction factor showed a linear dependency on calcification density (0.92<=R2<=0.95). The slope and offset of this correction factor also showed a linear dependency on acquisition time (0.84<=R2<=0.86). Conclusion: The Agatston score is highly dependent on the average density of individual calcifications. The dependency of the Agatston score on velocity shows a linear behaviour on calcification density. A quantitative method could be derived which corrects the measured calcium score for the influence of velocity, calcification density and acquisition time.

  3. New normative standards of conditional reasoning and the dual-source model.

    PubMed

    Singmann, Henrik; Klauer, Karl Christoph; Over, David

    2014-01-01

    There has been a major shift in research on human reasoning toward Bayesian and probabilistic approaches, which has been called a new paradigm. The new paradigm sees most everyday and scientific reasoning as taking place in a context of uncertainty, and inference is from uncertain beliefs and not from arbitrary assumptions. In this manuscript we present an empirical test of normative standards in the new paradigm using a novel probabilized conditional reasoning task. Our results indicated that for everyday conditional with at least a weak causal connection between antecedent and consequent only the conditional probability of the consequent given antecedent contributes unique variance to predicting the probability of conditional, but not the probability of the conjunction, nor the probability of the material conditional. Regarding normative accounts of reasoning, we found significant evidence that participants' responses were confidence preserving (i.e., p-valid in the sense of Adams, 1998) for MP inferences, but not for MT inferences. Additionally, only for MP inferences and to a lesser degree for DA inferences did the rate of responses inside the coherence intervals defined by mental probability logic (Pfeifer and Kleiter, 2005, 2010) exceed chance levels. In contrast to the normative accounts, the dual-source model (Klauer et al., 2010) is a descriptive model. It posits that participants integrate their background knowledge (i.e., the type of information primary to the normative approaches) and their subjective probability that a conclusion is seen as warranted based on its logical form. Model fits showed that the dual-source model, which employed participants' responses to a deductive task with abstract contents to estimate the form-based component, provided as good an account of the data as a model that solely used data from the probabilized conditional reasoning task. PMID:24860516

  4. Initial use of fast switched dual energy CT for coronary artery disease

    NASA Astrophysics Data System (ADS)

    Pavlicek, William; Panse, Prasad; Hara, Amy; Boltz, Thomas; Paden, Robert; Yamak, Didem; Licato, Paul; Chandra, Naveen; Okerlund, Darin; Dutta, Sandeep; Bhotika, Rahul; Langan, David

    2010-04-01

    Coronary CT Angiography (CTA) is limited in patients with calcified plaque and stents. CTA is unable to confidently differentiate fibrous from lipid plaque. Fast switched dual energy CTA offers certain advantages. Dual energy CTA removes calcium thereby improving visualization of the lumen and potentially providing a more accurate measure of stenosis. Dual energy CTA directly measures calcium burden (calcium hydroxyapatite) thereby eliminating a separate non-contrast series for Agatston Scoring. Using material basis pairs, the differentiation of fibrous and lipid plaques is also possible. Patency of a previously stented coronary artery is difficult to visualize with CTA due to resolution constraints and localized beam hardening artifacts. Monochromatic 70 keV or Iodine images coupled with Virtual Non-stent images lessen beam hardening artifact and blooming. Virtual removal of stainless steel stents improves assessment of in-stent re-stenosis. A beating heart phantom with 'cholesterol' and 'fibrous' phantom coronary plaques were imaged with dual energy CTA. Statistical classification methods (SVM, kNN, and LDA) distinguished 'cholesterol' from 'fibrous' phantom plaque tissue. Applying this classification method to 16 human soft plaques, a lipid 'burden' may be useful for characterizing risk of coronary disease. We also found that dual energy CTA is more sensitive to iodine contrast than conventional CTA which could improve the differentiation of myocardial infarct and ischemia on delayed acquisitions. These phantom and patient acquisitions show advantages with using fast switched dual energy CTA for coronary imaging and potentially extends the use of CT for addressing problem areas of non-invasive evaluation of coronary artery disease.

  5. Pulmonary Venous Anatomy Imaging with Low-Dose, Prospectively ECG-Triggered, High-Pitch 128-Slice Dual Source Computed Tomography

    PubMed Central

    Thai, Wai-ee; Wai, Bryan; Lin, Kaity; Cheng, Teresa; Heist, E. Kevin; Hoffmann, Udo; Singh, Jagmeet; Truong, Quynh A.

    2012-01-01

    Background Efforts to reduce radiation from cardiac computed tomography (CT) are essential. Using a prospectively triggered, high-pitch dual source CT (DSCT) protocol, we aim to determine the radiation dose and image quality (IQ) in patients undergoing pulmonary vein (PV) imaging. Methods and Results In 94 patients (61±9 years, 71% male) who underwent 128-slice DSCT (pitch 3.4), radiation dose and IQ were assessed and compared between 69 patients in sinus rhythm (SR) and 25 in atrial fibrillation (AF). Radiation dose was compared in a subset of 19 patients with prior retrospective or prospectively triggered CT PV scans without high-pitch. In a subset of 18 patients with prior magnetic resonance imaging (MRI) for PV assessment, PV anatomy and scan duration were compared to high-pitch CT. Using the high-pitch protocol, total effective radiation dose was 1.4 [1.3, 1.9] mSv, with no difference between SR and AF (1.4 vs 1.5 mSv, p=0.22). No high-pitch CT scans were non-diagnostic or had poor IQ. Radiation dose was reduced with high-pitch (1.6 mSv) compared to standard protocols (19.3 mSv, p<0.0001). This radiation dose reduction was seen with SR (1.5 vs 16.7 mSv, p<0.0001) but was more profound with AF (1.9 vs 27.7 mSv, p=0.039). There was excellent agreement of PV anatomy (kappa 0.84, p<0.0001), and a shorter CT scan duration (6 minutes) compared to MRI (41 minutes, p<0.0001). Conclusions Using a high-pitch DSCT protocol, PV imaging can be performed with minimal radiation dose, short scan acquisition, and excellent IQ in patients with SR or AF. This protocol highlights the success of new cardiac CT technology to minimize radiation exposure, giving clinicians a new low-dose imaging alternative to assess PV anatomy. PMID:22586259

  6. A dedicated cone-beam CT system for musculoskeletal extremities imaging: Design, optimization, and initial performance characterization

    SciTech Connect

    Zbijewski, W.; De Jean, P.; Prakash, P.; Ding, Y.; Stayman, J. W.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Machado, A.; Carrino, J. A.; Siewerdsen, J. H.

    2011-08-15

    Purpose: This paper reports on the design and initial imaging performance of a dedicated cone-beam CT (CBCT) system for musculoskeletal (MSK) extremities. The system complements conventional CT and MR and offers a variety of potential clinical and logistical advantages that are likely to be of benefit to diagnosis, treatment planning, and assessment of therapy response in MSK radiology, orthopaedic surgery, and rheumatology. Methods: The scanner design incorporated a host of clinical requirements (e.g., ability to scan the weight-bearing knee in a natural stance) and was guided by theoretical and experimental analysis of image quality and dose. Such criteria identified the following basic scanner components and system configuration: a flat-panel detector (FPD, Varian 3030+, 0.194 mm pixels); and a low-power, fixed anode x-ray source with 0.5 mm focal spot (SourceRay XRS-125-7K-P, 0.875 kW) mounted on a retractable C-arm allowing for two scanning orientations with the capability for side entry, viz. a standing configuration for imaging of weight-bearing lower extremities and a sitting configuration for imaging of tensioned upper extremity and unloaded lower extremity. Theoretical modeling employed cascaded systems analysis of modulation transfer function (MTF) and detective quantum efficiency (DQE) computed as a function of system geometry, kVp and filtration, dose, source power, etc. Physical experimentation utilized an imaging bench simulating the scanner geometry for verification of theoretical results and investigation of other factors, such as antiscatter grid selection and 3D image quality in phantom and cadaver, including qualitative comparison to conventional CT. Results: Theoretical modeling and benchtop experimentation confirmed the basic suitability of the FPD and x-ray source mentioned above. Clinical requirements combined with analysis of MTF and DQE yielded the following system geometry: a {approx}55 cm source-to-detector distance; 1.3 magnification; a

  7. A dedicated cone-beam CT system for musculoskeletal extremities imaging: Design, optimization, and initial performance characterization

    PubMed Central

    Zbijewski, W.; De Jean, P.; Prakash, P.; Ding, Y.; Stayman, J. W.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Machado, A.; Carrino, J. A.; Siewerdsen, J. H.

    2011-01-01

    Purpose: This paper reports on the design and initial imaging performance of a dedicated cone-beam CT (CBCT) system for musculoskeletal (MSK) extremities. The system complements conventional CT and MR and offers a variety of potential clinical and logistical advantages that are likely to be of benefit to diagnosis, treatment planning, and assessment of therapy response in MSK radiology, orthopaedic surgery, and rheumatology. Methods: The scanner design incorporated a host of clinical requirements (e.g., ability to scan the weight-bearing knee in a natural stance) and was guided by theoretical and experimental analysis of image quality and dose. Such criteria identified the following basic scanner components and system configuration: a flat-panel detector (FPD, Varian 3030+, 0.194 mm pixels); and a low-power, fixed anode x-ray source with 0.5 mm focal spot (SourceRay XRS-125-7K-P, 0.875 kW) mounted on a retractable C-arm allowing for two scanning orientations with the capability for side entry, viz. a standing configuration for imaging of weight-bearing lower extremities and a sitting configuration for imaging of tensioned upper extremity and unloaded lower extremity. Theoretical modeling employed cascaded systems analysis of modulation transfer function (MTF) and detective quantum efficiency (DQE) computed as a function of system geometry, kVp and filtration, dose, source power, etc. Physical experimentation utilized an imaging bench simulating the scanner geometry for verification of theoretical results and investigation of other factors, such as antiscatter grid selection and 3D image quality in phantom and cadaver, including qualitative comparison to conventional CT. Results: Theoretical modeling and benchtop experimentation confirmed the basic suitability of the FPD and x-ray source mentioned above. Clinical requirements combined with analysis of MTF and DQE yielded the following system geometry: a ∼55 cm source-to-detector distance; 1.3 magnification; a 20

  8. Noninvasive assessment of coronary in-stent restenosis by dual-source computed tomography.

    PubMed

    Pflederer, Tobias; Marwan, Mohamed; Renz, Alexandra; Bachmann, Sven; Ropers, Dieter; Kuettner, Axel; Anders, Katharina; Bamberg, Fabian; Daniel, Werner G; Achenbach, Stephan

    2009-03-15

    Assessment of coronary artery stents using computed tomographic angiography has been challenging. The technology of dual-source computed tomography (DSCT) provides higher temporal resolution that may allow more accurate evaluation of coronary stents. This study evaluated the accuracy of DSCT for the assessment of coronary artery in-stent restenosis. A total of 112 patients with 150 previously implanted coronary stents (diameter > or = 3.0 mm) were examined using DSCT (Definition; Siemens Medical Solutions, Forchheim, Germany) before conventional coronary angiography. Each stent was classified as assessable or not assessable. All assessable stents were further classified for the absence or presence of in-stent restenosis (>50% diameter reduction) using DSCT, and results were compared with those using quantitative coronary angiography. Mean stent diameter was 3.27 +/- 0.35 mm. Fifteen of 80 stents (19%) with a diameter of 3.0 mm were not assessable, and all 70 stents >3.0 mm were assessable. DSCT correctly identified 16 of 19 in-stent restenoses in 135 assessable stents, as well as the absence of in-stent restenosis in 110 of 116 stents (sensitivity 84%, specificity 95%, positive predictive value 73%, and negative predictive value 97% in assessable stents). In conclusion, DSCT may be useful to noninvasively detect in-stent restenosis, especially in stents with a relatively large diameter. PMID:19268737

  9. Virtual monochromatic imaging in dual-source and dual-energy CT for visualization of acute ischemic stroke

    NASA Astrophysics Data System (ADS)

    Hara, Hidetake; Muraishi, Hiroshi; Matsuzawa, Hiroki; Inoue, Toshiyuki; Nakajima, Yasuo; Satoh, Hitoshi; Abe, Shinji

    2015-07-01

    We have recently developed a phantom that simulates acute ischemic stroke. We attempted to visualize an acute-stage cerebral infarction by using dual-energy Computed tomography (DECT) to obtain virtual monochromatic images of this phantom. Virtual monochromatic images were created by using DECT voltages from 40 to 100 keV in steps of 10 keV and from 60 to 80 keV in steps of 1 keV, under three conditions of the tube voltage with thin (Sn) filters. Calculation of the CNR values allowed us to evaluate the visualization of acute-stage cerebral infarction. The CNR value of a virtual monochromatic image was the highest at 68 keV under 80 kV / Sn 140 kV, at 72 keV under 100 kV / Sn 140 kV, and at 67 keV under 140 kV / 80 kV. The CNR values of virtual monochromatic images at voltages between 65 and 75 keV were significantly higher than those obtained for all other created images. Therefore, the optimal conditions for visualizing acute ischemic stroke were achievable.

  10. Automatic localization of landmark sets in head CT images with regression forests for image registration initialization

    NASA Astrophysics Data System (ADS)

    Zhang, Dongqing; Liu, Yuan; Noble, Jack H.; Dawant, Benoit M.

    2016-03-01

    Cochlear Implants (CIs) are electrode arrays that are surgically inserted into the cochlea. Individual contacts stimulate frequency-mapped nerve endings thus replacing the natural electro-mechanical transduction mechanism. CIs are programmed post-operatively by audiologists but this is currently done using behavioral tests without imaging information that permits relating electrode position to inner ear anatomy. We have recently developed a series of image processing steps that permit the segmentation of the inner ear anatomy and the localization of individual contacts. We have proposed a new programming strategy that uses this information and we have shown in a study with 68 participants that 78% of long term recipients preferred the programming parameters determined with this new strategy. A limiting factor to the large scale evaluation and deployment of our technique is the amount of user interaction still required in some of the steps used in our sequence of image processing algorithms. One such step is the rough registration of an atlas to target volumes prior to the use of automated intensity-based algorithms when the target volumes have very different fields of view and orientations. In this paper we propose a solution to this problem. It relies on a random forest-based approach to automatically localize a series of landmarks. Our results obtained from 83 images with 132 registration tasks show that automatic initialization of an intensity-based algorithm proves to be a reliable technique to replace the manual step.

  11. Feasibility and Initial Performance of Simultaneous SPECT-CT Imaging Using a Commercial Multi-Modality Preclinical Imaging System

    PubMed Central

    Osborne, Dustin R.; Austin, Derek W.

    2015-01-01

    Multi-modality imaging provides coregistered PET-CT and SPECT-CT images; however such multi-modality workflows usually consist of sequential scans from the individual imaging components for each modality. This typical workflow may result in long scan times limiting throughput of the imaging system. Conversely, acquiring multi-modality data simultaneously may improve correlation and registration of images, improve temporal alignment of the acquired data, increase imaging throughput, and benefit the scanned subject by minimizing time under anesthetic. In this work, we demonstrate the feasibility and procedure for modifying a commercially available preclinical SPECT-CT platform to enable simultaneous SPECT-CT acquisition. We also evaluate the performance of simultaneous SPECT-CT tomographic imaging with this modified system. Performance was accessed using a 57Co source and image quality was evaluated with 99mTc phantoms in a series of simultaneous SPECT-CT scans. PMID:26146568

  12. Coronary lesion complexity assessed by SYNTAX score in 256-slice dual-source MDCT angiography

    PubMed Central

    Yüceler, Zeyneb; Kantarcı, Mecit; Tanboğa, İbrahim Halil; Sade, Recep; Kızrak, Yeşim; Pirimoğlu, Berhan; Bayraktutan, Ümmügülsüm; Oğul, Hayri; Aksakal, Enbiya

    2016-01-01

    PURPOSE The SYNTAX Score (SS) has an important role in grading the complexity of coronary artery disease (CAD) in patients undergoing revascularization. Noninvasive determination of SS prior to invasive coronary angiography (ICA) might optimize patient management. We aimed to evaluate the agreement between ICA and multidetector computed tomography (MDCT) while testing the diagnostic effectiveness of SS-MDCT. METHODS Our study included 108 consecutive patients who underwent both MDCT angiography with a 256-slice dual-source MDCT system and ICA within 14±3 days. SS was calculated for both ICA and MDCT coronary angiography. Spearman’s rank correlation coefficient was used to evaluate the association of SS-MDCT with SS-ICA, and Bland-Altman analysis was performed. RESULTS The degree of agreement between SS-ICA and SS-MDCT was moderate. The mean SS-MDCT was 14.5, whereas the mean SS-ICA was 15.9. After dividing SS into three groups (high [≥33], intermediate [23–32], and low [≤22] subgroups), agreement analysis was repeated. There was a significant correlation between SS-MDCT and SS-ICA in the low SS group (r=0.63, P = 0.043) but no significant correlation in the high SS group (r=0.036, P = 0.677). The inter-test agreement analysis showed at least moderate agreement, whereas thrombotic lesions and the type of bifurcation lesion showed fair agreement. CONCLUSION The calculation of SS-MDCT by adapting SS-ICA parameters achieved nearly the same degree of precision as SS-ICA and was better than SS-ICA, especially in the low SS group. PMID:27328718

  13. Driving Saturn's magnetospheric periodicities from the upper atmosphere/ionosphere: Magnetotail response to dual sources

    NASA Astrophysics Data System (ADS)

    Jia, Xianzhe; Kivelson, Margaret G.

    2012-11-01

    Despite the high degree of axial symmetry of Saturn's internal magnetic field, rotation-associated periodicities are evident in Saturn's electromagnetic radiation, its magnetic perturbations and its particle populations. Although close to the mean rotation period of the cloud tops, the electromagnetic period drifts slightly over a time scale of years and, at high latitudes, differs for sources in the north and south. The source of the periodicity remains a mystery. The model investigated here places the momentum source in the upper atmosphere/ionosphere, with the wind patterns in the two hemispheres rotating about the spin axis at different rates typical of the 2005-2006 southern summer for which Cassini data have been extensively analyzed. A source at low altitudes would account for the persistence of phase following solar wind disruption of magnetospheric flow patterns but might not produce appropriate magnetospheric responses. However, a magnetohydrodynamic simulation in which vortical winds in the ionosphere drive field-aligned currents into the magnetosphere shows that the dual sources account nearly quantitatively for many measured magnetospheric responses. This paper focuses on the magnetotail where the model is shown to reproduce many well-documented results of data analysis including the features that appear distinctly at each of the two periods and those that appear as a carrier signal with amplitude modulation and phase shifts. In particular, the model accounts for current sheet flapping and modulation of the plasma sheet thickness and for the periodic structure of density enhancements at high latitudes at different periods in the north and the south.

  14. Driving Saturn's Magnetospheric Periodicities from the Upper Atmosphere/Ionosphere: Magnetotail Response to Dual Sources

    NASA Astrophysics Data System (ADS)

    Jia, X.; Kivelson, M. G.

    2012-12-01

    Despite the high degree of axial symmetry of Saturn's internal magnetic field, rotation-associated periodicities are evident in Saturn's electromagnetic radiation, its magnetic perturbations and its particle populations. Although close to the mean rotation period of the cloud tops, the electromagnetic period drifts slightly over a time scale of years and, at high latitudes, differs in the north and south. The source of the periodicity remains a mystery. As an extension of an earlier model of Saturn's rotational periodicity [Jia et al., 2012, JGR, A04215], the model investigated here places the momentum source in the upper atmosphere/ionosphere with the wind patterns in both hemispheres rotating about the spin axis at different rates typical of the 2005-2006 southern summer for which Cassini data have been extensively analyzed. A source at low altitudes would account for the persistence of phase following solar wind disruption of magnetospheric flow patterns but might not produce appropriate magnetospheric responses. However, using a 3D magnetohydrodynamic simulation in which vortical winds in the ionosphere drive field-aligned currents into the magnetosphere, we show that the dual sources account nearly quantitatively for many measured magnetospheric responses. This paper focuses on the magnetotail where the model is shown to reproduce many well-documented results of data analysis including the features that appear distinctly at each of the two periods and those that appear as a carrier signal with amplitude modulation and phase shifts. In particular, the model accounts for current sheet flapping and modulation of the plasma sheet thickness and for the periodic structure of density enhancements at high latitudes at different periods in the north and the south.

  15. Measurements of Coronary Artery Aneurysms Due to Kawasaki Disease by Dual-Source Computed Tomography (DSCT).

    PubMed

    Tsujii, Nobuyuki; Tsuda, Etsuko; Kanzaki, Suzu; Kurosaki, Kenichi

    2016-03-01

    Diameters of coronary artery aneurysms (CAAs) complicating acute phase KD can strongly predict the long-term prognosis of coronary artery lesions (CAL). Recently, computed tomographic angiography (CTA) has been used to detect CAL, and the purpose of this study was to determine whether coronary artery diameters measurements by CTA using dual-source computed tomography (DSCT) can be used instead of coronary angiogram (CAG) measurements. Twenty-five patients (22 males and three females) with CAL due to KD, who had undergone both CTA and CAG within one year, were retrospectively evaluated between 2007 and 2013. A prospective electrocardiogram-triggered CTA was performed on a DSCT (SOMATOM(®) Definition, Siemens Healthcare, Germany). Two pediatric cardiologists independently measured the diameters of CAAs twice in each maximum intensity projection (MIP), curved multiplaner reconstruction (MPR) and CAG. We measured 161 segments in total (segment 1-3, 5-7, 11, 13). Diagnostic accuracy was expressed as κ coefficient. A Bland-Altman analysis was also used to assess the intra-observer, inter-observer and inter-modality agreement. The diagnostic quality of CTA was excellent (κ = 0.93). Excellent inter-observer agreement for the diameters of CAAs was obtained for MIP, MPR and CAG and for the intra-observer agreement. The inter-modality agreement was also excellent in measurements of CAA (MPR-CAG: y = 0.9x + 0.40, r = 0.97, p < 0.0001 MIP-CAG: y = x + 0.1, r = 0.94, p < 0.0001). These values in normal coronary arteries were also obtained. We found a significant correlation between CTA and CAG in measuring the coronary arteries. We conclude that measuring coronary artery diameters by CTA is reliable and useful. PMID:26515298

  16. Giant coronary aneurysm caused by Kawasaki disease: consistency between catheter angiography and electrocardiogram gated dual-source computed tomography angiography.

    PubMed

    Hwang, Eun-Ha; Ju, Jung-Ki; Cho, Min-Jung; Lee, Ji-Won; Lee, Hyoung-Doo

    2015-12-01

    We present the case of a 5-year-old child with coronary complications due to Kawasaki disease; this patient unintentionally underwent both dual-source computed tomography (DSCT) coronary angiography and invasive coronary angiographic examination in 2 months. This case highlights the strong consistency of the results between DSCT coronary angiography and invasive coronary angiography. Compared to conventional invasive coronary angiography, DSCT coronary angiography offered additional advantages such as minimal invasiveness and less radiation exposure. PMID:26770226

  17. A multi-source inverse-geometry CT system: initial results with an 8 spot x-ray source array.

    PubMed

    Baek, Jongduk; De Man, Bruno; Uribe, Jorge; Longtin, Randy; Harrison, Daniel; Reynolds, Joseph; Neculaes, Bogdan; Frutschy, Kristopher; Inzinna, Louis; Caiafa, Antonio; Senzig, Robert; Pelc, Norbert J

    2014-03-01

    We present initial experimental results of a rotating-gantry multi-source inverse-geometry CT (MS-IGCT) system. The MS-IGCT system was built with a single module of 2 × 4 x-ray sources and a 2D detector array. It produced a 75 mm in-plane field-of-view (FOV) with 160 mm axial coverage in a single gantry rotation. To evaluate system performance, a 2.5 inch diameter uniform PMMA cylinder phantom, a 200 µm diameter tungsten wire, and a euthanized rat were scanned. Each scan acquired 125 views per source and the gantry rotation time was 1 s per revolution. Geometric calibration was performed using a bead phantom. The scanning parameters were 80 kVp, 125 mA, and 5.4 µs pulse per source location per view. A data normalization technique was applied to the acquired projection data, and beam hardening and spectral nonlinearities of each detector channel were corrected. For image reconstruction, the projection data of each source row were rebinned into a full cone beam data set, and the FDK algorithm was used. The reconstructed volumes from upper and lower source rows shared an overlap volume which was combined in image space. The images of the uniform PMMA cylinder phantom showed good uniformity and no apparent artifacts. The measured in-plane MTF showed 13 lp cm(-1) at 10% cutoff, in good agreement with expectations. The rat data were also reconstructed reliably. The initial experimental results from this rotating-gantry MS-IGCT system demonstrated its ability to image a complex anatomical object without any significant image artifacts and to achieve high image resolution and large axial coverage in a single gantry rotation. PMID:24556567

  18. A Multi-Source Inverse-Geometry CT system: Initial results with an 8 spot x-ray source array

    PubMed Central

    Baek, Jongduk; De Man, Bruno; Uribe, Jorge; Longtin, Randy; Harrison, Daniel; Reynolds, Joseph; Neculaes, Bogdan; Frutschy, Kristopher; Inzinna, Louis; Caiafa, Antonio; Senzig, Robert; Pelc, Norbert J.

    2014-01-01

    We present initial experimental results of a rotating-gantry multi-source inverse-geometry CT (MS-IGCT) system. The MS-IGCT system was built with a single module of 2×4 x-ray sources and a 2D detector array. It produced a 75 mm in-plane field-of-view (FOV) with 160 mm axial coverage in a single gantry rotation. To evaluate system performance, a 2.5 inch diameter uniform PMMA cylinder phantom, a 200 μm diameter tungsten wire, and a euthanized rat were scanned. Each scan acquired 125 views per source and the gantry rotation time was 1 second per revolution. Geometric calibration was performed using a bead phantom. The scanning parameters were 80 kVp, 125 mA, and 5.4 us pulse per source location per view. A data normalization technique was applied to the acquired projection data, and beam hardening and spectral nonlinearities of each detector channel were corrected. For image reconstruction, the projection data of each source row were rebinned into a full cone beam data set, and the FDK algorithm was used. The reconstructed volumes from upper and lower source rows shared an overlap volume which was combined in image space. The images of the uniform PMMA cylinder phantom showed good uniformity and no apparent artefacts. The measured in-plane MTF showed 13 lp/cm at 10% cutoff, in good agreement with expectations. The rat data were also reconstructed reliably. The initial experimental results from this rotating-gantry MS-IGCT system demonstrated its ability to image a complex anatomical object without any significant image artefacts and to achieve high image resolution and large axial coverage in a single gantry rotation. PMID:24556567

  19. A multi-source inverse-geometry CT system: initial results with an 8 spot x-ray source array

    NASA Astrophysics Data System (ADS)

    Baek, Jongduk; De Man, Bruno; Uribe, Jorge; Longtin, Randy; Harrison, Daniel; Reynolds, Joseph; Neculaes, Bogdan; Frutschy, Kristopher; Inzinna, Louis; Caiafa, Antonio; Senzig, Robert; Pelc, Norbert J.

    2014-03-01

    We present initial experimental results of a rotating-gantry multi-source inverse-geometry CT (MS-IGCT) system. The MS-IGCT system was built with a single module of 2 × 4 x-ray sources and a 2D detector array. It produced a 75 mm in-plane field-of-view (FOV) with 160 mm axial coverage in a single gantry rotation. To evaluate system performance, a 2.5 inch diameter uniform PMMA cylinder phantom, a 200 µm diameter tungsten wire, and a euthanized rat were scanned. Each scan acquired 125 views per source and the gantry rotation time was 1 s per revolution. Geometric calibration was performed using a bead phantom. The scanning parameters were 80 kVp, 125 mA, and 5.4 µs pulse per source location per view. A data normalization technique was applied to the acquired projection data, and beam hardening and spectral nonlinearities of each detector channel were corrected. For image reconstruction, the projection data of each source row were rebinned into a full cone beam data set, and the FDK algorithm was used. The reconstructed volumes from upper and lower source rows shared an overlap volume which was combined in image space. The images of the uniform PMMA cylinder phantom showed good uniformity and no apparent artifacts. The measured in-plane MTF showed 13 lp cm-1 at 10% cutoff, in good agreement with expectations. The rat data were also reconstructed reliably. The initial experimental results from this rotating-gantry MS-IGCT system demonstrated its ability to image a complex anatomical object without any significant image artifacts and to achieve high image resolution and large axial coverage in a single gantry rotation.

  20. Radiation dose and physical image quality in 128-section dual-source computed tomographic coronary angiography: a phantom study.

    PubMed

    Matsubara, Kosuke; Koshida, Haruka; Sakuta, Keita; Takata, Tadanori; Horii, Junsei; Iida, Hiroji; Koshida, Kichiro; Ichikawa, Katsuhiro; Matsui, Osamu

    2012-01-01

    One-hundred-and-twenty-eight-section dual X-ray source computed tomography (CT) systems have been introduced into clinical practice and have been shown to increase temporal resolution. Higher temporal resolution allows low-dose spiral mode at a high pitch factor during CT coronary angiography. We evaluated radiation dose and physical image qualities in CT coronary angiography by applying high-pitch spiral, step-and-shoot, and low-pitch spiral modes to determine the optimal acquisition mode for clinical situations. An anthropomorphic phantom, small dosimeters, a calibration phantom, and a microdisc phantom were used to evaluate the radiation doses absorbed by thoracic organs, noise power spectrums, in-plane and z-axis modulation transfer functions, slice sensitivity profiles, and number of artifacts for the three acquisition modes. The high-pitch spiral mode had the advantage of a small absorbed radiation dose, but provided low image quality. The low-pitch spiral mode resulted in a high absorbed radiation dose of approximately 200 mGy for the heart. Although the absorbed radiation dose was lower in the step-and-shoot mode than in the low-pitch spiral mode, the noise power spectrum was inferior. The quality of the in-plane modulation transfer function differed, depending on spatial frequency. Therefore, the step-and-shoot mode should be applied initially because of its low absorbed radiation dose and superior image quality. PMID:22955662

  1. Dual-source computed tomographic coronary angiography: image quality and stenosis diagnosis in patients with high heart rates.

    PubMed

    Zheng, Minwen; Li, Jiayi; Xu, Jian; Chen, Kang; Zhao, Hongliang; Huan, Yi

    2009-01-01

    We sought to evaluate prospectively the effects of heart rate and heart-rate variability on dual-source computed tomographic coronary image quality in patients whose heart rates were high, and to determine retrospectively the accuracy of dual-source computed tomographic diagnosis of coronary artery stenosis in the same patients.We compared image quality and diagnostic accuracy in 40 patients whose heart rates exceeded 70 beats/min with the same data in 40 patients whose heart rates were 70 beats/min or slower. In both groups, we analyzed 1,133 coronary arterial segments. Five hundred forty-five segments (97.7%) in low-heart-rate patients and 539 segments (93.7%) in high-heart-rate patients were of diagnostic image quality. We considered P < 0.05 to be statistically significant. No statistically significant differences between the groups were found in diagnostic-image quality scores of total segments or of any coronary artery, nor were any significant differences found between the groups in the accurate diagnosis of angiographically significant stenosis.Calcification was the chief factor that affected diagnostic accuracy. In high-heart-rate patients, heart-rate variability was significantly related to the diagnostic image quality of all segments (P = 0.001) and of the left circumflex coronary artery (P = 0.016). Heart-rate variability of more than 5 beats/min most strongly contributed to an inability to evaluate segments in both groups. When heart rates rose, the optimal reconstruction window shifted from diastole to systole.The image quality of dual-source computed tomographic coronary angiography at high heart rates enables sufficient diagnosis of stenosis, although variability of heart rates significantly deteriorates image quality. PMID:19436804

  2. CT-Guided Wire Localization for Involved Axillary Lymph Nodes After Neo-adjuvant Chemotherapy in Patients With Initially Node-Positive Breast Cancer.

    PubMed

    Trinh, Long; Miyake, Kanae K; Dirbas, Frederick M; Kothary, Nishita; Horst, Kathleen C; Lipson, Jafi A; Carpenter, Catherine; Thompson, Atalie C; Ikeda, Debra M

    2016-07-01

    Resection of biopsy-proven involved axillary lymph nodes (iALNs) is important to reduce the false-negative rates of sentinel lymph node (SLN) biopsy after neo-adjuvant chemotherapy (NAC) in patients with initially node-positive breast cancer. Preoperative wire localization for iALNs marked with clips placed during biopsy is a technique that may help the removal of iALNs after NAC. However, ultrasound (US)-guided localization is often difficult because the clips cannot always be reliably visible on US. Computed tomography (CT)-guided wire localization can be used; however, to date there have been no reports on CT-guided wire localization for iALNs. The aim of this study was to describe a series of patients who received CT-guided wire localization for iALN removal after NAC and to evaluate the feasibility of this technique. We retrospectively analyzed five women with initially node-positive breast cancer (age, 41-52 years) who were scheduled for SLN biopsy after NAC and received preoperative CT-guided wire localization for iALNs. CT visualized all the clips that were not identified on post-NAC US. The wire tip was deployed beyond or at the target, with the shortest distance between the wire and the index clip ranging from 0 to 2.5 mm. The total procedure time was 21-38 minutes with good patient tolerance and no complications. In four of five cases, CT wire localization aided in identification and resection of iALNs that were not identified with lymphatic mapping. Residual nodal disease was confirmed in two cases: both had residual disease in wire-localized lymph nodes in addition to SLNs. Although further studies with more cases are required, our results suggest that CT-guided wire localization for iALNs is a feasible technique that facilitates identification and removal of the iALNs as part of SLN biopsy after NAC in situations where US localization is unsuccessful. PMID:27061012

  3. Cardiac Dual-source Computed Tomography for the Detection of Left Main Compression Syndrome in Patients with Pulmonary Hyper-tension

    PubMed Central

    Demerouti, Eftychia; Manginas, Athanassios; Petrou, Emmanouil; Katsilouli, Spyridoula; Karyofillis, Panagiotis; Athanassopoulos, George; Karatasakis, George; Iakovou, Ioannis; Mihas, Konstantinos; Mastorakou, Irene

    2016-01-01

    Introduction: Left Main Compression Syndrome (LMCS) represents an entity described as the extrinsic compression of the left main coronary artery (LMCA) by a dilated pulmonary artery (PA) trunk. We examined the presence of LMCS in patients with pulmonary hypertension (PH) using dual-source computed tomography (DSCT), as a non-invasive diagnostic tool. Methods: The following parameters were measured: PA trunk diameter (PAD), the distance between PAD and LMCA (LMPA) and the distance between PA and aorta (AoPA). These measurements were related with demographic, echocardiographic, hemodynamic and clinical parameters. Angiography was performed in two patients with LMCS suspected by cardiac computed tomographic angiography. Patients without PH but with angina were examined as controls, using DSCT cardiac angiography to assess the same measurements and to detect the prevalence of coronary artery disease. Results: PA diameter value over 40.00 mm has been associated with PH and LMCS. Furthermore, LMCS did not occur at a distance smaller than 0.50 mm between the PA and the LMCA, and did not correlate with the distance between the PA and the aorta or with cardiac index and NT-proBNP. Conclusion: DSCT may represent the initial testing modality in PH patients with dilated PA trunk to exclude LMCS. A periodical rule-out of this rare entity, as assessed by DSCT, in patients with a severely dilated PA seems to be mandatory for PH patients contributing to survival improvement. PMID:27499817

  4. Pheochromocytoma presenting with remote bony recurrence twenty years after initial surgery: detection with 68Ga-DOTANOC PET/CT.

    PubMed

    Parida, Girish Kumar; Dhull, Varun Singh; Sharma, Punit; Bal, Chandrasekhar; Kumar, Rakesh

    2014-04-01

    Pheochromocytomas are rare tumors which can be malignant in 10% of cases. We present the case of a 75-year-old woman who presented with headache and palpitation for 1 year. She had a past history of right adrenalectomy for pheochromocytoma 20 years back. In between, the patient was asymptomatic. Twenty-four-hour urinary vanillylmandelic acid was raised. Noncontrast CT and ultrasound of abdomen were unremarkable. The patient underwent 68Ga-DOTANOC PET/CT that showed metastasis to left ilium, which was confirmed on biopsy. PMID:23640231

  5. Prolonged Cerebral Circulation Time Is the Best Parameter for Predicting Vasospasm during Initial CT Perfusion in Subarachnoid Hemorrhagic Patients

    PubMed Central

    Lin, Chun Fu; Hsu, Sanford P. C.; Lin, Chung Jung; Guo, Wan Yuo; Liao, Chih Hsiang; Chu, Wei Fa; Hung, Sheng Che; Shih, Yang Shin; Lin, Yen Tzu

    2016-01-01

    Purpose We sought to imitate angiographic cerebral circulation time (CCT) and create a similar index from baseline CT perfusion (CTP) to better predict vasospasm in patients with subarachnoid hemorrhage (SAH). Methods Forty-one SAH patients with available DSA and CTP were retrospectively included. The vasospasm group was comprised of patients with deterioration in conscious functioning and newly developed luminal narrowing; remaining cases were classified as the control group. The angiography CCT (XA-CCT) was defined as the difference in TTP (time to peak) between the selected arterial ROIs and the superior sagittal sinus (SSS). Four arterial ROIs were selected to generate four corresponding XA-CCTs: the right and left anterior cerebral arteries (XA-CCTRA2 and XA-CCTLA2) and right- and left-middle cerebral arteries (XA-CCTRM2 and XA-CCTLM2). The CCTs from CTP (CT-CCT) were defined as the differences in TTP from the corresponding arterial ROIs and the SSS. Correlations of the different CCTs were calculated and diagnostic accuracy in predicting vasospasm was evaluated. Results Intra-class correlations ranged from 0.96 to 0.98. The correlations of XA-CCTRA2, XA-CCTRM2, XA-CCTLA2, and XA-CCTLM2 with the corresponding CT-CCTs were 0.64, 0.65, 0.53, and 0.68, respectively. All CCTs were significantly prolonged in the vasospasm group (5.8–6.4 s) except for XA-CCTLA2. CT-CCTA2 of 5.62 was the optimal cut-off value for detecting vasospasm with a sensitivity of 84.2% and specificity 82.4% Conclusion CT-CCTs can be used to interpret cerebral flow without deconvolution algorithms, and outperform both MTT and TTP in predicting vasospasm risk. This finding may help facilitate management of patients with SAH. PMID:26986626

  6. SU-E-I-33: Initial Evaluation of Model-Based Iterative CT Reconstruction Using Standard Image Quality Phantoms

    SciTech Connect

    Gingold, E; Dave, J

    2014-06-01

    Purpose: The purpose of this study was to compare a new model-based iterative reconstruction with existing reconstruction methods (filtered backprojection and basic iterative reconstruction) using quantitative analysis of standard image quality phantom images. Methods: An ACR accreditation phantom (Gammex 464) and a CATPHAN600 phantom were scanned using 3 routine clinical acquisition protocols (adult axial brain, adult abdomen, and pediatric abdomen) on a Philips iCT system. Each scan was acquired using default conditions and 75%, 50% and 25% dose levels. Images were reconstructed using standard filtered backprojection (FBP), conventional iterative reconstruction (iDose4) and a prototype model-based iterative reconstruction (IMR). Phantom measurements included CT number accuracy, contrast to noise ratio (CNR), modulation transfer function (MTF), low contrast detectability (LCD), and noise power spectrum (NPS). Results: The choice of reconstruction method had no effect on CT number accuracy, or MTF (p<0.01). The CNR of a 6 HU contrast target was improved by 1–67% with iDose4 relative to FBP, while IMR improved CNR by 145–367% across all protocols and dose levels. Within each scan protocol, the CNR improvement from IMR vs FBP showed a general trend of greater improvement at lower dose levels. NPS magnitude was greatest for FBP and lowest for IMR. The NPS of the IMR reconstruction showed a pronounced decrease with increasing spatial frequency, consistent with the unusual noise texture seen in IMR images. Conclusion: Iterative Model Reconstruction reduces noise and improves contrast-to-noise ratio without sacrificing spatial resolution in CT phantom images. This offers the possibility of radiation dose reduction and improved low contrast detectability compared with filtered backprojection or conventional iterative reconstruction.

  7. Automated continuous quantitative measurement of proximal airways on dynamic ventilation CT: initial experience using an ex vivo porcine lung phantom

    PubMed Central

    Yamashiro, Tsuneo; Tsubakimoto, Maho; Nagatani, Yukihiro; Moriya, Hiroshi; Sakuma, Kotaro; Tsukagoshi, Shinsuke; Inokawa, Hiroyasu; Kimoto, Tatsuya; Teramoto, Ryuichi; Murayama, Sadayuki

    2015-01-01

    Background The purpose of this study was to evaluate the feasibility of continuous quantitative measurement of the proximal airways, using dynamic ventilation computed tomography (CT) and our research software. Methods A porcine lung that was removed during meat processing was ventilated inside a chest phantom by a negative pressure cylinder (eight times per minute). This chest phantom with imitated respiratory movement was scanned by a 320-row area-detector CT scanner for approximately 9 seconds as dynamic ventilatory scanning. Obtained volume data were reconstructed every 0.35 seconds (total 8.4 seconds with 24 frames) as three-dimensional images and stored in our research software. The software automatically traced a designated airway point in all frames and measured the cross-sectional luminal area and wall area percent (WA%). The cross-sectional luminal area and WA% of the trachea and right main bronchus (RMB) were measured for this study. Two radiologists evaluated the traceability of all measurable airway points of the trachea and RMB using a three-point scale. Results It was judged that the software satisfactorily traced airway points throughout the dynamic ventilation CT (mean score, 2.64 at the trachea and 2.84 at the RMB). From the maximum inspiratory frame to the maximum expiratory frame, the cross-sectional luminal area of the trachea decreased 17.7% and that of the RMB 29.0%, whereas the WA% of the trachea increased 6.6% and that of the RMB 11.1%. Conclusion It is feasible to measure airway dimensions automatically at designated points on dynamic ventilation CT using research software. This technique can be applied to various airway and obstructive diseases. PMID:26445535

  8. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression in small cell lung cancer - initial experience

    PubMed Central

    Rudelius, Martina; Schmid, Jan-Stefan; Schoene, Alexander; Schirbel, Andreas; Samnick, Samuel; Pelzer, Theo; Buck, Andreas K.; Kropf, Saskia; Wester, Hans-Jürgen; Herrmann, Ken

    2016-01-01

    Chemokine receptor CXCR4 is a key factor for tumor growth and metastasis in several types of human cancer. This study investigated the feasibility of CXCR4-directed imaging of small cell lung cancer (SCLC) with positron emission tomography/computed tomography (PET/CT) using the radiolabelled chemokine ligand [68Ga]Pentixafor. 10 patients with primarily diagnosed (n=3) or pre-treated (n=7) SCLC (n=9) or large cell neuroendocrine carcinoma of the lung (LCNEC, n=1) underwent [68Ga]Pentixafor-PET/CT. 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG, n=6) and/or somatostatin receptor (SSTR)-directed PET/CT with [68Ga]DOTATOC (n=5) and immunohistochemistry (n=10) served as standards of reference. CXCR4-PET was positive in 8/10 patients and revealed more lesions with significantly higher tumor-to-background ratios than SSTR-PET. Two patients who were positive on [18F]FDG-PET were missed by CXCR4-PET, in the remainder [68Ga]Pentixafor detected an equal (n=2) or higher (n=2) number of lesions. CXCR4 expression of tumor lesions could be confirmed by immunohistochemistry. Non-invasive imaging of CXCR4 expression in SCLC is feasible. [68Ga]Pentixafor as a novel PET tracer might serve as readout for confirmation of CXCR4 expression as prerequisite for potential CXCR4-directed treatment including receptor-radio(drug)peptide therapy. PMID:26843617

  9. CT-Guided Percutaneous Drainage of Infected Collections Due to Gastric Leak After Sleeve Gastrectomy for Morbid Obesity: Initial Experience

    SciTech Connect

    Kelogrigoris, M. Sotiropoulou, E.; Stathopoulos, K.; Georgiadou, V.; Philippousis, P.; Thanos, L.

    2011-06-15

    This study was designed to evaluate the efficacy and safety of computed tomography (CT)-guided drainage in treating infected collections due to gastric leak after laparoscopic sleeve gastrectomy for morbid obesity. From January 2007 to June 2009, 21 patients (9 men and 12 women; mean age, 39.2 (range, 26-52) years) with infected collections due to gastric leak after laparoscopic sleeve gastrectomy for morbid obesity underwent image-guided percutaneous drainage. All procedures were performed using CT guidance and 8- to 12-Fr pigtail drainage catheters. Immediate technical success was achieved in all 21 infected collections. In 18 of 21 collections, we obtained progressive shrinkage of the collection with consequent clinical success (success rate 86%). In three cases, the abdominal fluid collection was not resolved, and the patients were reoperated. Among the 18 patients who avoided surgery, 2 needed replacement of the catheter due to obstruction. No major complications occurred during the procedure. The results of our study support that CT-guided percutaneous drainage is an effective and safe method to treat infected abdominal fluid collections due to gastric leak in patients who had previously underwent laparoscopic sleeve gastrectomy for morbid obesity. It may be considered both as a preparatory step for surgery and a valuable alternative to open surgery. Failure of the procedure does not, however, preclude a subsequent surgical operation.

  10. Computer-Aided Diagnosis of Splenic Enlargement Using Wave Pattern of Spleen in Abdominal CT Images: Initial Observations

    NASA Astrophysics Data System (ADS)

    Seong, Won; Cho, June-Sik; Noh, Seung-Moo; Park, Jong-Won

    In general, the spleen accompanied by abnormal abdomen is hypertrophied. However, if the spleen size is originally small, it is hard to detect the splenic enlargement due to abnormal abdomen by simply measure the size. On the contrary, the spleen size of a person having a normal abdomen may be large by nature. Therefore, measuring the size of spleen is not a reliable diagnostic measure of its enlargement or the abdomen abnormality. This paper proposes an automatic method to diagnose the splenic enlargement due to abnormality, by examining the boundary pattern of spleen in abdominal CT images.

  11. Pulmonary Masses: Initial Results of Cone-beam CT Guidance with Needle Planning Software for Percutaneous Lung Biopsy

    SciTech Connect

    Braak, Sicco J.; Herder, Gerarda J. M.; Heesewijk, Johannes P. M. van Strijen, Marco J. L. van

    2012-12-15

    Purpose: To evaluate the outcome of percutaneous lung biopsy (PLB) findings using cone-beam computed tomographic (CT) guidance (CBCT guidance) and compared to conventional biopsy guidance techniques. Methods: CBCT guidance is a stereotactic technique for needle interventions, combining 3D soft-tissue cone-beam CT, needle planning software, and real-time fluoroscopy. Between March 2007 and August 2010, we performed 84 Tru-Cut PLBs, where bronchoscopy did not provide histopathologic diagnosis. Mean patient age was 64.6 (range 24-85) years; 57 patients were men, and 25 were women. Records were prospectively collected for calculating sensitivity, specificity, positive predictive value, negative predictive value, and accuracy. We also registered fluoroscopy time, room time, interventional time, dose-area product (DAP), and complications. Procedures were divided into subgroups (e.g., location, size, operator). Results: Mean lesion diameter was 32.5 (range 3.0-93.0) mm, and the mean number of samples per biopsy procedure was 3.2 (range 1-7). Mean fluoroscopy time was 161 (range 104-551) s, room time was 34 (range 15-79) min, mean DAP value was 25.9 (range 3.9-80.5) Gy{center_dot}cm{sup -2}, and interventional time was 18 (range 5-65) min. Of 84 lesions, 70 were malignant (83.3%) and 14 were benign (16.7%). Seven (8.3%) of the biopsy samples were nondiagnostic. All nondiagnostic biopsied lesions proved to be malignant during surgical resection. The outcome for sensitivity, specificity, positive predictive value, negative predictive value, and accuracy was 90% (95% confidence interval [CI] 86-96), 100% (95% CI 82-100), 100% (95% CI 96-100), 66.7% (95% CI 55-83), and 91.7% (95% CI 86-96), respectively. Sixteen patients (19%) had minor and 2 (2.4%) had major complications. Conclusion: CBCT guidance is an effective method for PLB, with results comparable to CT/CT fluoroscopy guidance.

  12. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans

    SciTech Connect

    2011-02-15

    Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (''nodule{>=}3 mm,''''nodule<3 mm,'' and ''non-nodule{>=}3 mm''). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked ''nodule'' by at least one radiologist. 2669 of these lesions were marked ''nodule{>=}3 mm'' by at least one radiologist, of which 928 (34.7%) received such marks from

  13. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans

    PubMed Central

    Armato, Samuel G.; McLennan, Geoffrey; Bidaut, Luc; McNitt-Gray, Michael F.; Meyer, Charles R.; Reeves, Anthony P.; Zhao, Binsheng; Aberle, Denise R.; Henschke, Claudia I.; Hoffman, Eric A.; Kazerooni, Ella A.; MacMahon, Heber; van Beek, Edwin J. R.; Yankelevitz, David; Biancardi, Alberto M.; Bland, Peyton H.; Brown, Matthew S.; Engelmann, Roger M.; Laderach, Gary E.; Max, Daniel; Pais, Richard C.; Qing, David P.-Y.; Roberts, Rachael Y.; Smith, Amanda R.; Starkey, Adam; Batra, Poonam; Caligiuri, Philip; Farooqi, Ali; Gladish, Gregory W.; Jude, C. Matilda; Munden, Reginald F.; Petkovska, Iva; Quint, Leslie E.; Schwartz, Lawrence H.; Sundaram, Baskaran; Dodd, Lori E.; Fenimore, Charles; Gur, David; Petrick, Nicholas; Freymann, John; Kirby, Justin; Hughes, Brian; Vande Casteele, Alessi; Gupte, Sangeeta; Sallam, Maha; Heath, Michael D.; Kuhn, Michael H.; Dharaiya, Ekta; Burns, Richard; Fryd, David S.; Salganicoff, Marcos; Anand, Vikram; Shreter, Uri; Vastagh, Stephen; Croft, Barbara Y.; Clarke, Laurence P.

    2011-01-01

    Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC∕IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (“nodule≥3 mm,” “nodule<3 mm,” and “non-nodule≥3 mm”). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked “nodule” by at least one radiologist. 2669 of these lesions were marked “nodule≥3 mm” by at least one radiologist, of which 928 (34.7%) received such

  14. The oil and gas potential of southern Bolivia: Contributions from a dual source rock system

    SciTech Connect

    Hartshorn, K.G.

    1996-08-01

    The southern Sub-Andean and Chaco basins of Bolivia produce oil, gas and condensate from reservoirs ranging from Devonian to Tertiary in age. Geochemical evidence points to contributions from two Paleozoic source rocks: the Devonian Los Monos Formation and the Silurian Kirusillas Formation. Rock-Eval pyrolysis, biomarker data, microscopic kerogen analysis, and burial history modeling are used to assess the quality, distribution, and maturity of both source rock systems. The geochemical results are then integrated with the structural model for the area in order to determine the most likely pathways for migration of oil and gas in the thrust belt and its foreland. Geochemical analysis and modeling show that the primary source rock, shales of the Devonian Los Monos Formation, entered the oil window during the initial phase of thrusting in the sub-Andean belt. This provides ideal timing for oil accumulation in younger reservoirs of the thrust belt. The secondary source rock, although richer, consumed most of its oil generating capacity prior to the development of the thrust related structures. Depending on burial depth and location, however, the Silurian source still contributes gas, and some oil, to traps in the region.

  15. Radiologist-initiated double reading of abdominal CT: retrospective analysis of the clinical importance of changes to radiology reports

    PubMed Central

    Andersen, Jack Gunnar; Stokke, Mali Victoria; Tennstrand, Anne Lise; Aamodt, Rolf; Heggelund, Thomas; Dahl, Fredrik A; Sandbæk, Gunnar; Hurlen, Petter

    2016-01-01

    Background Misinterpretation of radiological examinations is an important contributing factor to diagnostic errors. Consultant radiologists in Norwegian hospitals frequently request second reads by colleagues in real time. Our objective was to estimate the frequency of clinically important changes to radiology reports produced by these prospectively obtained double readings. Methods We retrospectively compared the preliminary and final reports from 1071 consecutive double-read abdominal CT examinations of surgical patients at five public hospitals in Norway. Experienced gastrointestinal surgeons rated the clinical importance of changes from the preliminary to final report. The severity of the radiological findings in clinically important changes was classified as increased, unchanged or decreased. Results Changes were classified as clinically important in 146 of 1071 reports (14%). Changes to 3 reports (0.3%) were critical (demanding immediate action), 35 (3%) were major (implying a change in treatment) and 108 (10%) were intermediate (requiring further investigations). The severity of the radiological findings was increased in 118 (81%) of the clinically important changes. Important changes were made less frequently when abdominal radiologists were first readers, more frequently when they were second readers, and more frequently to urgent examinations. Conclusion A 14% rate of clinically important changes made during double reading may justify quality assurance of radiological interpretation. Using expert second readers and a targeted selection of urgent cases and radiologists reading outside their specialty may increase the yield of discrepant cases. PMID:27013638

  16. Cone beam CT for determining breast cancer margin: an initial experience and its comparison with mammography and specimen radiograph

    PubMed Central

    Yao, Juan; Shaw, Chris; Lai, CJ; Rong, John; Wang, Jian; Liu, Wenya

    2015-01-01

    Purpose: To assess the ability of cone beam CT (CBCT) in determining the breast cancer margin using, to compare the results with mammography and specimen radiography, and to explore the clinical potential of CBCT for breast imaging. Methods: Specimens of 46 breast cancer patients were imaged by using a prototype CBCT system. Each patient underwent mammography, CBCT and X-ray of breast surgical specimen within 6 months. Images of mammography, breast surgical specimen radiography and CBCT were evaluated by an experienced radiologist. Indicators, such as: morphology, glitch, density, invasion, structural distortion and calcification, were observed. Result: There was no significant difference of the calcification, glitch and morphology among three methods. However, there was significant difference in indicators of breast tumor invasion among three methods. There was statistical significance in detecting invasions of breast cancer cells in peripheral tissues among three methods. Conclusion: CBCT shows no superiority over mammography and specimen radiography in determining tumor’s outline and detecting calcification. On the other hand, CBCT demonstrates its advantage in determining the 3 dimensional position of a lesion which could be a potential clinical application in future practices of breast imaging. PMID:26629005

  17. Current and Novel Imaging Techniques in Coronary CT.

    PubMed

    Machida, Haruhiko; Tanaka, Isao; Fukui, Rika; Shen, Yun; Ishikawa, Takuya; Tate, Etsuko; Ueno, Eiko

    2015-01-01

    Multidetector coronary computed tomography (CT), which is widely performed to assess coronary artery disease noninvasively and accurately, provides excellent image quality. Use of electrocardiography (ECG)-controlled tube current modulation and low tube voltage can reduce patient exposure to nephrotoxic contrast media and carcinogenic radiation when using standard coronary CT with a retrospective ECG-gated helical scan. Various imaging techniques are expected to overcome the limitations of standard coronary CT, which also include insufficient spatial and temporal resolution, beam-hardening artifacts, limited coronary plaque characterization, and an inability to allow functional assessment of coronary stenosis. Use of a step-and-shoot scan, iterative reconstruction, and a high-pitch dual-source helical scan can further reduce radiation dose. Dual-energy CT can improve contrast medium enhancement and reasonably reduce the contrast dose when combined with noise reduction with the use of iterative reconstruction. High-definition CT can improve spatial resolution and diagnostic evaluation of small or peripheral coronary vessels and coronary stents. Dual-source CT and a motion correction algorithm can improve temporal resolution and reduce coronary motion artifacts. Whole-heart coverage with 320-detector CT and an intelligent boundary registration algorithm can eliminate stair-step artifacts. By decreasing beam hardening and enabling material decomposition, dual-energy CT is expected to remove or reduce the depiction of coronary calcification to improve intraluminal evaluation of calcified vessels and to provide detailed analysis of coronary plaque components and accurate qualitative and quantitative assessment of myocardial perfusion. Fractional flow reserve derived from coronary CT is a state-of-the-art noninvasive technique for accurately identifying myocardial ischemia beyond coronary CT. Understanding these techniques is important to enhance the value of coronary CT

  18. Tetralogy of Fallot Cardiac Function Evaluation and Intelligent Diagnosis Based on Dual-Source Computed Tomography Cardiac Images.

    PubMed

    Cai, Ken; Rongqian, Yang; Li, Lihua; Xie, Zi; Ou, Shanxing; Chen, Yuke; Dou, Jianhong

    2016-05-01

    Tetralogy of Fallot (TOF) is the most common complex congenital heart disease (CHD) of the cyanotic type. Studies on ventricular functions have received an increasing amount of attention as the development of diagnosis and treatment technology for CHD continues to advance. Reasonable options for imaging examination and accurate assessment of preoperative and postoperative left ventricular functions of TOF patients are important in improving the cure rate of TOF radical operation, therapeutic evaluation, and judgment prognosis. Therefore, with the aid of dual-source computed tomography (DSCT), cardiac images with high temporal resolution and high definition, we measured the left ventricular time-volume curve using image data and calculating the left ventricular function parameters to conduct the preliminary evaluation on TOF patients. To comprehensively evaluate the cardiac function, the segmental ventricular wall function parameters were measured, and the measurement results were mapped to a bull's eye diagram to realize the standardization of segmental ventricular wall function evaluation. Finally, we introduced a new clustering method based on auto-regression model parameters and combined this method with Euclidean distance measurements to establish an intelligent diagnosis of TOF. The results of this experiment show that the TOF evaluation and the intelligent diagnostic methods proposed in this article are feasible. PMID:26496001

  19. Wet-chemical synthesis of different bismuth telluride nanoparticles using metal organic precursors - single source vs. dual source approach.

    PubMed

    Bendt, Georg; Weber, Anna; Heimann, Stefan; Assenmacher, Wilfried; Prymak, Oleg; Schulz, Stephan

    2015-08-28

    Thermolysis of the single source precursor (Et2Bi)2Te in DIPB at 80 °C yielded phase-pure Bi4Te3 nanoparticles, while mixtures of Bi4Te3 and elemental Bi were formed at higher temperatures. In contrast, cubic Bi2Te particles were obtained by thermal decomposition of Et2BiTeEt in DIPB. Moreover, a dual source approach (hot injection method) using the reaction of Te(SiEt3)2 and Bi(NMe2)3 was applied for the synthesis of different pure Bi-Te phases including Bi2Te, Bi4Te3 and Bi2Te3, which were characterized by PXRD, REM, TEM and EDX. The influence of reaction temperature, precursor molar ratio and thermolysis conditions on the resulting material phase was verified. Moreover, reactions of alternate bismuth precursors such as Bi(NEt2)3, Bi(NMeEt)3 and BiCl3 with Te(SiEt3)2 were investigated. PMID:26194635

  20. Dual-Source Computed Tomographic Temporal Resolution Provides Higher Image Quality Than 64-Detector Temporal Resolution at Low Heart Rates

    PubMed Central

    Araoz, Philip A.; Kirsch, Jacobo; Primak, Andrew N.; Braun, Natalie N.; Saba, Osama; Williamson, Eric E.; Harmsen, W. Scott; Mandrekar, Jayawant N.; McCollough, Cynthia H.

    2010-01-01

    Objective To compare coronary image quality at temporal resolutions associated with dual-source computed tomography (DSCT; 83 milliseconds) and 64–detector row scanning (165 milliseconds). Methods In 30 patients with a heart rate of less than 70 beats per minute, DSCT coronary angiograms were reconstructed at 83- and 165-millisecond temporal resolutions over different cardiac phases. A blinded observer graded coronary quality. Results The typical DSCT temporal resolution (83 milliseconds) showed a significantly greater quality at end-systole for all coronary vessels and at end-diastole for the right coronary and left anterior descending coronary arteries. For all vessels, the end-diastole produced the highest quality for both temporal resolutions. Conclusions Imaging at 83 milliseconds creates superior quality at end-systole for all coronary vessels and at end-diastole for the right coronary and left anterior descending coronary arteries. At low heart rates, end-diastole produces the highest quality at both temporal resolutions. PMID:20118724

  1. Fused monochromatic imaging acquired by single source dual energy CT in hepatocellular carcinoma during arterial phase: an initial experience

    PubMed Central

    Gao, Shun-Yu; Cui, Yong; Sun, Ying-Shi; Tang, Lei; Li, Xiao-Ting; Zhang, Xiao-Yan; Shan, Jun

    2014-01-01

    Objective To explore whether single and fused monochromatic images can improve liver tumor detection and delineation by single source dual energy CT (ssDECT) in patients with hepatocellular carcinoma (HCC) during arterial phase. Methods Fifty-seven patients with HCC who underwent ssDECT scanning at Beijing Cancer Hospital were enrolled retrospectively. Twenty-one sets of monochromatic images from 40 to 140 keV were reconstructed at 5 keV intervals in arterial phase. The optimal contrast-noise ratio (CNR) monochromatic images of the liver tumor and the lowest-noise monochromatic images were selected for image fusion. We evaluated the image quality of the optimal-CNR monochromatic images, the lowest-noise monochromatic images and the fused monochromatic images, respectively. The evaluation indicators included the spatial resolution of the anatomical structure, the noise level, the contrast and CNR of the tumor. Results In arterial phase, the anatomical structure of the liver can be displayed most clearly in the 65-keV monochromatic images, with the lowest image noise. The optimal-CNR monochromatic images of HCC tumor were 50-keV monochromatic images in which the internal structural features of the liver tumors were displayed most clearly and meticulously. For tumor detection, the fused monochromatic images and the 50-keV monochromatic images had similar performances, and were more sensitive than 65-keV monochromatic images. Conclusions We achieved good arterial phase images by fusing the optimal-CNR monochromatic images of the HCC tumor and the lowest-noise monochromatic images. The fused images displayed liver tumors and anatomical structures more clearly, which is potentially helpful for identifying more and smaller HCC tumors. PMID:25232217

  2. A comparison of sampling strategies for dual energy micro-CT

    NASA Astrophysics Data System (ADS)

    Guo, Xiaolian; Johnston, Samuel M.; Johnson, G. Allan; Badea, Cristian T.

    2012-03-01

    Micro-CT has become a powerful tool for small animal research. Many micro-CT applications require exogenous contrast agents, which are most commonly based on iodine. Despite advancements in contrast agents, single-energy micro-CT is sometimes limited in the separation of two different materials that share similar grayscale intensity values as in the case of bone and iodine. Dual energy micro-CT offers a solution to this separation problem, while eliminating the need for pre-injection scanning. Various dual energy micro-CT sampling strategies are possible, including 1) single source sequential scanning, 2) simultaneous dual source acquisition, or 3) single source with kVp switching. But, no commercial micro-CT system exists in which all these sampling strategies have been implemented. This study reports on the implementation and comparison of these scanning techniques on the same small animal imaging system. Furthermore, we propose a new sampling strategy that combines dual source and kVp switching. Post-sampling and reconstruction, a simple two-material dual energy decomposition was applied to differentiate iodine from bone. The results indicate the time differences and the potential problems associated with each sampling strategy. Dual source scanning allows for the fastest acquisition, but is prone to errors in decomposition associated with scattering and imperfect geometric alignment of the two imaging chains. KVp switching prevents these types of artifacts, but requires more time for sampling. The novel combination between the dual source and kVp switching has the potential to reduce sampling time and provide better decomposition performance.

  3. Prognostic impact of initial maximum standardized uptake value of 18F-FDG PET/CT on treatment response in patients with metastatic lung adenocarcinoma treated with erlotinib

    PubMed Central

    Kus, Tulay; Aktas, Gokmen; Sevinc, Alper; Kalender, Mehmet Emin; Yilmaz, Mustafa; Kul, Seval; Oztuzcu, Serdar; Oktay, Cemil; Camci, Celaletdin

    2015-01-01

    Purpose To investigate whether the initial maximum standardized uptake value (SUVmax) on fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) has a prognostic significance in metastatic lung adenocarcinoma. Patients and methods Sixty patients (24 females, mean age: 57.9±12 years) with metastatic stage lung adenocarcinoma who used erlotinib and underwent 18F-FDG PET/CT at the time of diagnosis between May 2010 and May 2014 were enrolled in this retrospective study. The patients were stratified according to the median SUVmax value, which was found as 11. Progression-free survival (PFS) rates for 3, 6, and 12 months were examined for SUVmax values and epidermal growth factor receptor (EGFR) mutation status. Results The number of EGFR-sensitizing mutation positive/negative/unknown was 26/17/17, respectively, and the number of patients using erlotinib at first-line, second-line, and third-line therapy was 15, 31, and 14 consecutively. The PFS rates of EGFR mutation positive, negative, and unknown patients for 3 months were 73.1%, 35.3%, and 41.2% (P=0.026, odds ratio [OR]=4.39; 95% confidence interval [CI]: 1.45–13.26), respectively. The PFS rates of EGFR positive, negative, and unknown patients for 6 months were 50%, 29.4%, and 29.4% (P=0.267, OR: 2.4; 95% CI: 0.82–6.96), respectively. The PFS rates of EGFR positive, negative, and unknown patients for 12 months were 42.3%, 29.4%, 23.5% (P=0.408, OR: 2.0; 95% CI: 0.42–5.26), respectively. Thirty-one of 60 patients had SUVmax values ≤11. The PFS rates for 3, 6, and 12 months were 70.5%/28% (P=0.001, OR=9.0; 95% CI: 2.79–29.04), 61.7%/8% (P<0.001, OR=28.35; 95% CI: 5.5–143), and 52.9%/8% (P<0.001, OR=18.69; 95% CI: 3.76–92.9) for low SUVmax (≤11) group/high SUVmax (>11) group, respectively. Conclusion Initial SUVmax value on 18F-FDG PET/CT is found to be a prognostic factor anticipating the response to erlotinib for 3, 6, and 12-month rates of PFS in both EGFR

  4. Porcine Ex Vivo Liver Phantom for Dynamic Contrast-Enhanced Computed Tomography: Development and Initial Results

    PubMed Central

    Thompson, Scott M.; Giraldo, Juan C. Ramirez; Knudsen, Bruce; Grande, Joseph P.; Christner, Jodie A.; Xu, Man; Woodrum, David A.; McCollough, Cynthia H.; Callstrom, Matthew R.

    2011-01-01

    Objectives To demonstrate the feasibility of developing a fixed, dual-input, biological liver phantom for dynamic contrast-enhanced computed tomography (CT) imaging and to report initial results of use of the phantom for quantitative CT perfusion imaging. Materials and Methods Porcine livers were obtained from completed surgical studies and perfused with saline and fixative. The phantom was placed in a body-shaped, CT-compatible acrylic container and connected to a perfusion circuit fitted with a contrast injection port. Flow-controlled contrast-enhanced imaging experiments were performed using a 128-slice and 64 slice, dual-source multidetector CT scanners. CT angiography protocols were employed to obtain portal venous and hepatic arterial vascular enhancement, reproduced over a period of four to six months. CT perfusion protocols were employed at different input flow rates to correlate input flow with calculated tissue perfusion, to test reproducibility and demonstrate the feasibility of simultaneous dual input liver perfusion. Histologic analysis of the liver phantom was also performed. Results CT angiogram 3D reconstructions demonstrated homogenous tertiary and quaternary branching of the portal venous system out to the periphery of all lobes of the liver as well as enhancement of the hepatic arterial system to all lobes of the liver and gallbladder throughout the study period. For perfusion CT, the correlation between the calculated mean tissue perfusion in a volume of interest and input pump flow rate was excellent (R2 = 0.996) and color blood flow maps demonstrated variations in regional perfusion in a narrow range. Repeat perfusion CT experiments demonstrated reproducible time-attenuation curves and dual-input perfusion CT experiments demonstrated that simultaneous dual input liver perfusion is feasible. Histologic analysis demonstrated that the hepatic microvasculature and architecture appeared intact and well preserved at the completion of four to six

  5. Dual source heat pump

    DOEpatents

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  6. Imaging of the Coronary Venous System: Validation of Three-Dimensional Rotational Venous Angiography Against Dual-Source Computed Tomography

    SciTech Connect

    Knackstedt, Christian; Muehlenbruch, Georg; Mischke, Karl; Bruners, Philipp; Schimpf, Thomas; Frechen, Dirk; Schummers, Georg; Mahnken, Andreas H.; Guenther, Rolf W.; Kelm, Malte; Schauerte, Patrick

    2008-11-15

    Information on the anatomy of the cardiac venous system (CVS) is increasingly important for cardiac resynchronization therapy or percutaneous transvenous mitral valve annuloplasty. Three-dimensional (3D) imaging can further improve the understanding of the relationship of cardiac structures. This study was performed to validate the accuracy of rotational coronary sinus angiography (CSA) displaying the 3D anatomy of the CVS compared to ECG-gated, contrast-enhanced, cardiac dual-source computed tomography (DSCT). Five domestic pigs (60 kg) underwent DSCT using a standardized examination protocol. Using a standard C-arm for fluoroscopy, a rotational CSA was obtained and 3D-image reconstructions performed. Side branches were identified using both methods and enumerated. Vessel visibility was estimated for each side branch and great cardiac vein/anterior interventricular vein. Also, vessel diameters were measured at distinct landmarks, i.e., side branching. The amount of contrast medium was determined and the effective radiation exposure of both methods was calculated. There was no significant difference regarding the vessel diameter of the great cardiac vein/anterior interventricular vein or its side branches. Also, estimation of vessel visibility was not different between the two imaging modalities. Estimated radiation exposure and amount of contrast medium were lower for rotational CSA. In conclusion, a 3D reconstruction of rotational CSA images is possible. All parts of the CVS are well depicted, allowing a 3D overview of the CVS anatomy. On-site 3D visualization might improve decision making during cardiac interventions. In contrast to DSCT, rotational CSA does not demonstrate the anatomy of the mitral annulus or the course of the left circumflex artery.

  7. Utility of [18F] Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG PET/CT) in the Initial Staging and Response Assessment of Locally Advanced Breast Cancer Patients Receiving Neoadjuvant Chemotherapy.

    PubMed

    Hulikal, Narendra; Gajjala, Sivanath Reddy; Kalawat, Teck Chand; Kottu, Radhika; Amancharla Yadagiri, Lakshmi

    2015-12-01

    In India up to 50 % of breast cancer patients still present as locally advanced breast cancer (LABC). The conventional methods of metastatic work up include physical examination, bone scan, chest & abdominal imaging, and biochemical tests. It is likely that the conventional staging underestimates the extent of initial spread and there is a need for more sophisticated staging procedure. The PET/CT can detect extra-axillary and occult distant metastases and also aid in predicting response to chemotherapy at an early point in time. To evaluate the utility of FDG PET/CT in initial staging and response assessment of patients with LABC receiving NACT. A prospective study of all biopsy confirmed female patients diagnosed with LABC receiving NACT from April 2013 to May 2014. The conventional work up included serum chemistry, CECT chest and abdomen and bone scan. A baseline whole body PET/CT was done in all patients. A repeat staging evaluation and a whole body PET/CT was done after 2/3rd cycle of NACT in non-responders and after 3/4 cycles in clinical responders. The histopathology report of the operative specimen was used to document the pathological response. The FDG PET/CT reported distant metastases in 11 of 38 patients, where as conventional imaging revealed metastases in only 6. Almost all the distant lesions detected by conventional imaging were detected with PET/CT, which showed additional sites of metastasis in 3 patients. In 2 patients, PET/CT detected osteolytic bone metastasis which were not detected by bone scan. In 5 patients PET CT detected N3 disease which were missed on conventional imaging. A total of 14 patients had second PET/CT done to assess the response to NACT and 11 patients underwent surgery. Two patients had complete pathological response. Of these 1 patient had complete metabolic and morphologic response and other had complete metabolic and partial morphologic response on second PET/CT scan. The 18 FDG PET/CT can detect more number of

  8. An open library of CT patient projection data

    NASA Astrophysics Data System (ADS)

    Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Holmes, David; Fletcher, Joel; McCollough, Cynthia

    2016-03-01

    Lack of access to projection data from patient CT scans is a major limitation for development and validation of new reconstruction algorithms. To meet this critical need, we are building a library of CT patient projection data in an open and vendor-neutral format, DICOM-CT-PD, which is an extended DICOM format that contains sinogram data, acquisition geometry, patient information, and pathology identification. The library consists of scans of various types, including head scans, chest scans, abdomen scans, electrocardiogram (ECG)-gated scans, and dual-energy scans. For each scan, three types of data are provided, including DICOM-CT-PD projection data at various dose levels, reconstructed CT images, and a free-form text file. Several instructional documents are provided to help the users extract information from DICOM-CT-PD files, including a dictionary file for the DICOM-CT-PD format, a DICOM-CT-PD reader, and a user manual. Radiologist detection performance based on the reconstructed CT images is also provided. So far 328 head cases, 228 chest cases, and 228 abdomen cases have been collected for potential inclusion. The final library will include a selection of 50 head, chest, and abdomen scans each from at least two different manufacturers, and a few ECG-gated scans and dual-source, dual-energy scans. It will be freely available to academic researchers, and is expected to greatly facilitate the development and validation of CT reconstruction algorithms.

  9. An Open Library of CT Patient Projection Data

    PubMed Central

    Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Holmes, David; Fletcher, Joel; McCollough, Cynthia

    2016-01-01

    Lack of access to projection data from patient CT scans is a major limitation for development and validation of new reconstruction algorithms. To meet this critical need, we are building a library of CT patient projection data in an open and vendor-neutral format, DICOM-CT-PD, which is an extended DICOM format that contains sinogram data, acquisition geometry, patient information, and pathology identification. The library consists of scans of various types, including head scans, chest scans, abdomen scans, electrocardiogram (ECG)-gated scans, and dual-energy scans. For each scan, three types of data are provided, including DICOM-CT-PD projection data at various dose levels, reconstructed CT images, and a free-form text file. Several instructional documents are provided to help the users extract information from DICOM-CT-PD files, including a dictionary file for the DICOM-CT-PD format, a DICOM-CT-PD reader, and a user manual. Radiologist detection performance based on the reconstructed CT images is also provided. So far 328 head cases, 228 chest cases, and 228 abdomen cases have been collected for potential inclusion. The final library will include a selection of 50 head, chest, and abdomen scans each from at least two different manufacturers, and a few ECG-gated scans and dual-source, dual-energy scans. It will be freely available to academic researchers, and is expected to greatly facilitate the development and validation of CT reconstruction algorithms. PMID:27239087

  10. Pediatric CT Scans

    Cancer.gov

    The Radiation Epidemiology Branch and collaborators have initiated a retrospective cohort study to evaluate the relationship between radiation exposure from CT scans conducted during childhood and adolescence and the subsequent development of cancer.

  11. Improving low-dose cardiac CT images using 3D sparse representation based processing

    NASA Astrophysics Data System (ADS)

    Shi, Luyao; Chen, Yang; Luo, Limin

    2015-03-01

    Cardiac computed tomography (CCT) has been widely used in diagnoses of coronary artery diseases due to the continuously improving temporal and spatial resolution. When helical CT with a lower pitch scanning mode is used, the effective radiation dose can be significant when compared to other radiological exams. Many methods have been developed to reduce radiation dose in coronary CT exams including high pitch scans using dual source CT scanners and step-and-shot scanning mode for both single source and dual source CT scanners. Additionally, software methods have also been proposed to reduce noise in the reconstructed CT images and thus offering the opportunity to reduce radiation dose while maintaining the desired diagnostic performance of a certain imaging task. In this paper, we propose that low-dose scans should be considered in order to avoid the harm from accumulating unnecessary X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. Accordingly, in this paper, a 3D dictionary representation based image processing method is proposed to reduce CT image noise. Information on both spatial and temporal structure continuity is utilized in sparse representation to improve the performance of the image processing method. Clinical cases were used to validate the proposed method.

  12. Dual-energy performance of dual kVp in comparison to dual-layer and quantum-counting CT system concepts

    NASA Astrophysics Data System (ADS)

    Kappler, S.; Grasruck, M.; Niederlöhner, D.; Strassburg, M.; Wirth, S.

    2009-02-01

    Recent publications in the field of Computed Tomography (CT) demonstrate the rising interest in applying dual-energy methods for material classification during clinical routine examinations. Based on today's standard of technology, dual-energy CT can be realized by either scanning with different X-ray spectra or by deployment of energy selective detector technologies. The list of so-called dual-kVp methods contains sequential scans, fast kVp-switching and dual-source CT. Examples of energy selective detectors are scintillator-based energyintegrating dual-layer devices or direct converter with quantum counting electronics. The general difference of the approaches lies in the shape of the effectively detected X-ray energy spectra and in the presence of crossscatter radiation in the case of dual-source devices. This leads to different material classification capabilities for the various techniques. In this work, we present detector response simulations of realistic CT scans with subsequent CT image reconstruction. Analysis of the image data allows direct and objective comparison of the dual-kVp, dual-layer, and quantum counting CT system concepts. The dual-energy performance is benchmarked in terms of image noise and Iodine-bone separation power at given image sharpness and dose exposure. For the case of dual-source devices the effect of cross-scatter radiation, as well as the benefit of additional filtering are taken into account.

  13. Urinary stone differentiation in patients with large body size using dual-energy dual-source computed tomography

    PubMed Central

    Qu, Mingliang; Jaramillo-Alvarez, Giselle; Ramirez Giraldo, Juan C.; Liu, Yu; Duan, Xinhui; Wang, Jia; Vrtiska, Terri J; Krambeck, Amy E.; Lieske, John; McCollough, Cynthia H

    2013-01-01

    Objective To evaluate the ability of 100/Sn140 kV (Sn, tin filter) dual-energy CT to differentiate urinary stone types in a patient cohort with a wide range of body sizes. Methods 80 human urinary stones were categorised into four groups (uric acid; cystine; struvite, oxalate and brushite together; and apatite) and imaged in 30–50-cm wide water tanks using clinical 100/Sn140 kV protocols. The CT number ratio (CTR) between the low- and high-energy images was calculated. Thresholds for differentiating between stone groups were determined using ROC analysis. Additionally, 86 stones from 66 patients were characterised using the size-adaptive CTR thresholds determined in the phantom study. Results In phantoms, the area under the ROC curve for differentiating between stone groups ranged from 0.71 to 1.00, depending on phantom size. In patients, body width ranged from 28.5 to 50.0 cm, and 79.1% of stones were correctly characterised. Sensitivity and specificity for correctly identifying the stone category were 100% and 100% (group 1), 100% and 95.3% (group 2), 85.7% and 60.9% (group 3), and 52.6% and 92.5% (group 4). Conclusion Dual-energy CT can provide in vivo urinary stone characterisation for patients over a wide range of body sizes. PMID:23263603

  14. CT -- Body

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Body Computed tomography (CT) of the body uses special x-ray ... Body? What is CT Scanning of the Body? Computed tomography, more commonly known as a CT or CAT ...

  15. Initial In Vivo Quantification of Tc-99m Sestamibi Uptake as a Function of Tissue Type in Healthy Breasts Using Dedicated Breast SPECT-CT

    PubMed Central

    Mann, Steve D.; Perez, Kristy L.; McCracken, Emily K. E.; Shah, Jainil P.; Wong, Terence Z.; Tornai, Martin P.

    2012-01-01

    A pilot study is underway to quantify in vivo the uptake and distribution of Tc-99m Sestamibi in subjects without previous history of breast cancer using a dedicated SPECT-CT breast imaging system. Subjects undergoing diagnostic parathyroid imaging studies were consented and imaged as part of this IRB-approved breast imaging study. For each of the seven subjects, one randomly selected breast was imaged prone-pendant using the dedicated, compact breast SPECT-CT system underneath the shielded patient support. Iteratively reconstructed and attenuation and/or scatter corrected images were coregistered; CT images were segmented into glandular and fatty tissue by three different methods; the average concentration of Sestamibi was determined from the SPECT data using the CT-based segmentation and previously established quantification techniques. Very minor differences between the segmentation methods were observed, and the results indicate an average image-based in vivo Sestamibi concentration of 0.10 ± 0.16 μCi/mL with no preferential uptake by glandular or fatty tissues. PMID:22956950

  16. CT Scans

    MedlinePlus

    ... cross-sectional pictures of your body. Doctors use CT scans to look for Broken bones Cancers Blood clots Signs of heart disease Internal bleeding During a CT scan, you lie still on a table. The table ...

  17. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT

    PubMed Central

    Badea, Cristian T.; Hedlund, Laurence W.; Johnson, G. Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging. PMID:27006920

  18. High-pitch spiral acquisition: a new scan mode for coronary CT angiography.

    PubMed

    Achenbach, Stephan; Marwan, Mohamed; Schepis, Tiziano; Pflederer, Tobias; Bruder, Herbert; Allmendinger, Thomas; Petersilka, Martin; Anders, Katharina; Lell, Michael; Kuettner, Axel; Ropers, Dieter; Daniel, Werner G; Flohr, Thomas

    2009-01-01

    Coronary CT angiography allows high-quality imaging of the coronary arteries when state-of-the-art CT systems are used. However, radiation exposure has been a concern. We describe a new scan mode that uses a very high-pitch spiral acquisition, "Flash Spiral," which has been developed specifically for low-dose imaging with dual-source CT. The scan mode uses a pitch of 3.2 to acquire a spiral CT data set, while covering the entire volume of the heart in one cardiac cycle. Data acquisition is prospectively triggered by the electrocardiogram and starts in late systole to be completed within one cardiac cycle. Images are reconstructed with a temporal resolution that corresponds to one-quarter of the gantry rotation time. Throughout the data set, subsequent images are reconstructed at later time instants in the cardiac cycle. In a patient with a heart rate of 49 beats/min, the Flash Spiral scan mode was used with a first-generation dual-source CT system and allowed artifact-free visualization of the coronary arteries with a radiation exposure of 1.7 mSv for a 12-cm scan range at 120 kVp tube voltage. PMID:19332343

  19. Head CT scan

    MedlinePlus

    Brain CT; Cranial CT; CT scan - skull; CT scan - head; CT scan - orbits; CT scan - sinuses; Computed tomography - cranial ... or other growth (mass) Cerebral atrophy (loss of brain tissue) ... with the hearing nerve Stroke or transient ischemic attack (TIA)

  20. A model for quantitative correction of coronary calcium scores on multidetector, dual source, and electron beam computed tomography for influences of linear motion, calcification density, and temporal resolution: A cardiac phantom study

    SciTech Connect

    Greuter, M. J. W.; Groen, J. M.; Nicolai, L. J.; Dijkstra, H.; Oudkerk, M.

    2009-11-15

    Purpose: The objective of this study is to quantify the influence of linear motion, calcification density, and temporal resolution on coronary calcium determination using multidetector computed tomography (MDCT), dual source CT (DSCT), and electron beam tomography (EBT) and to find a quantitative method which corrects for the influences of these parameters using a linear moving cardiac phantom. Methods: On a robotic arm with artificial arteries with four calcifications of increasing density, a linear movement was applied between 0 and 120 mm/s (step of 10 mm/s). The phantom was scanned five times on 64-slice MDCT, DSCT, and EBT using a standard acquisition protocol. The average Agatston, volume, and mass scores were determined for each velocity, calcification, and scanner. Susceptibility to motion was quantified using a cardiac motion susceptibility (CMS) index. Resemblance to EBT and physical volume and mass was quantified using a {Delta} index. Results: Increasing motion artifacts were observed at increasing velocities on all scanners, with increasing severity from EBT to DSCT to 64-slice MDCT. The calcium score showed a linear dependency on motion from which a correction factor could be derived. This correction factor showed a linear dependency on the mean calcification density with a good fit for all three scoring methods and all three scanners (0.73{<=}R{sup 2}{<=}0.95). The slope and offset of this correction factor showed a linear dependency on temporal resolution with a good fit for all three scoring methods and all three scanners (0.83{<=}R{sup 2}{<=}0.98). CMS was minimal for EBT and increasing values were observed for DSCT and highest values for 64-slice MDCT. CMS was minimal for mass score and increasing values were observed for volume score and highest values for Agatston score. For all densities and scoring methods DSCT showed on average the closest resemblance to EBT calcium scores. When using the correction factor, CMS index decreased on average by

  1. A novel CT imaging system with adjacent double X-ray sources.

    PubMed

    An, Mou; Xie, Yaoqin

    2013-01-01

    Current computed tomography (CT) scanners rotate fast to reduce motion artifact. X-ray tube must work in a high power to make the image clear under short exposure time. However, the life span of such a tube may be shortened. In this paper, we propose a novel double sources CT imaging system, which puts two of the same X-ray sources closely with each other. The system is different from current dual source CT with orthogonal X-ray sources. In our system, each projection is taken twice by these two sources to enhance the exposure value and then recovered to a single source projection for image reconstruction. The proposed system can work like normal single source CT system, while halving down the working power for each tube. PMID:24348737

  2. A Novel CT Imaging System with Adjacent Double X-Ray Sources

    PubMed Central

    Xie, Yaoqin

    2013-01-01

    Current computed tomography (CT) scanners rotate fast to reduce motion artifact. X-ray tube must work in a high power to make the image clear under short exposure time. However, the life span of such a tube may be shortened. In this paper, we propose a novel double sources CT imaging system, which puts two of the same X-ray sources closely with each other. The system is different from current dual source CT with orthogonal X-ray sources. In our system, each projection is taken twice by these two sources to enhance the exposure value and then recovered to a single source projection for image reconstruction. The proposed system can work like normal single source CT system, while halving down the working power for each tube. PMID:24348737

  3. Initial evaluation of virtual un-enhanced imaging derived from fast kVp-switching dual energy contrast enhanced CT for the abdomen

    NASA Astrophysics Data System (ADS)

    Joshi, M.; Mendonca, P.; Okerlund, D.; Lamb, P.; Kulkarni, N.; Pinho, D.; Sahani, D.; Bhotika, R.

    2011-03-01

    The feasibility and utility of creating virtual un-enhanced images from contrast enhanced data acquired using a fast switching dual energy CT acquisition, is explored. Utilizing projection based material decomposition data, monochromatic images are generated and a Multi-material decomposition technique is applied. Quantitative and qualitative evaluation is performed to assess the equivalence of Virtual Un-Enhanced (VUE) and True Un-enhanced (TUE) for multiple tissue types and different organs in the abdomen. Ten patient cases were analyzed where a TUE and a subsequent Contrast Enhanced (CE) acquisition were obtained using fast kVp-switching dual energy CT utilizing Gemstone Spectral Imaging. Quantitative measurements were made by placing multiple Regions of Interest on the different tissues and organs in both the TUE and the VUE images. The absolute Hounsfield Unit (HU) differences in the mean values between TUE & VUE were calculated as well as the differences of the standard deviations. Qualitative analysis was done by two radiologists for overall image quality, presence of residual contrast, appearance of pathology, appearance and contrast of normal tissues and organs in comparison to the TUE. There is a very strong correlation between the TUE and VUE images.

  4. SU-E-T-287: Robustness Study of Passive-Scattering Proton Therapy in Lung: Is Range and Setup Uncertainty Calculation On the Initial CT Enough to Predict the Plan Robustness?

    SciTech Connect

    Ding, X; Dormer, J; Kenton, O; Liu, H; Simone, C; Solberg, T; Lin, L

    2014-06-01

    Purpose: Plan robustness of the passive-scattering proton therapy treatment of lung tumors has been studied previously using combined uncertainties of 3.5% in CT number and 3 mm geometric shifts. In this study, we investigate whether this method is sufficient to predict proton plan robustness by comparing to plans performed on weekly verification CT scans. Methods: Ten lung cancer patients treated with passive-scattering proton therapy were randomly selected. All plans were prescribed 6660cGy in 37 fractions. Each initial plan was calculated using +/− 3.5% range and +/− 0.3cm setup uncertainty in x, y and z directions in Eclipse TPS(Method-A). Throughout the treatment course, patients received weekly verification CT scans to assess the daily treatment variation(Method-B). After contours and imaging registrations are verified by the physician, the initial plan with the same beamline and compensator was mapped into the verification CT. Dose volume histograms (DVH) were evaluated for robustness study. Results: Differences are observed between method A and B in terms of iCTV coverage and lung dose. Method-A shows all the iCTV D95 are within +/− 1% difference, while 20% of cases fall outside +/−1% range in Method-B. In the worst case scenario(WCS), the iCTV D95 is reduced by 2.5%. All lung V5 and V20 are within +/−5% in Method-A while 15% of V5 and 10% of V20 fall outside of +/−5% in Method-B. In the WCS, Lung V5 increased by 15% and V20 increased by 9%. Method A and B show good agreement with regard to cord maximum and Esophagus mean dose. Conclusion: This study suggests that using range and setup uncertainty calculation (+/−3.5% and +/−3mm) may not be sufficient to predict the WCS. In the absence of regular verification scans, expanding the conventional uncertainty parameters(e.g., to +/−3.5% and +/−4mm) may be needed to better reflect plan actual robustness.

  5. Spectra of clinical CT scanners using a portable Compton spectrometer

    SciTech Connect

    Duisterwinkel, H. A.; Abbema, J. K. van; Kawachimaru, R.; Paganini, L.; Graaf, E. R. van der; Brandenburg, S.; Goethem, M. J. van

    2015-04-15

    Purpose: Spectral information of the output of x-ray tubes in (dual source) computer tomography (CT) scanners can be used to improve the conversion of CT numbers to proton stopping power and can be used to advantage in CT scanner quality assurance. The purpose of this study is to design, validate, and apply a compact portable Compton spectrometer that was constructed to accurately measure x-ray spectra of CT scanners. Methods: In the design of the Compton spectrometer, the shielding materials were carefully chosen and positioned to reduce background by x-ray fluorescence from the materials used. The spectrum of Compton scattered x-rays alters from the original source spectrum due to various physical processes. Reconstruction of the original x-ray spectrum from the Compton scattered spectrum is based on Monte Carlo simulations of the processes involved. This reconstruction is validated by comparing directly and indirectly measured spectra of a mobile x-ray tube. The Compton spectrometer is assessed in a clinical setting by measuring x-ray spectra at various tube voltages of three different medical CT scanner x-ray tubes. Results: The directly and indirectly measured spectra are in good agreement (their ratio being 0.99) thereby validating the reconstruction method. The measured spectra of the medical CT scanners are consistent with theoretical spectra and spectra obtained from the x-ray tube manufacturer. Conclusions: A Compton spectrometer has been successfully designed, constructed, validated, and applied in the measurement of x-ray spectra of CT scanners. These measurements show that our compact Compton spectrometer can be rapidly set-up using the alignment lasers of the CT scanner, thereby enabling its use in commissioning, troubleshooting, and, e.g., annual performance check-ups of CT scanners.

  6. CT Imaging of Coronary Stents: Past, Present, and Future

    PubMed Central

    Mahnken, Andreas H.

    2012-01-01

    Coronary stenting became a mainstay in coronary revascularization therapy. Despite tremendous advances in therapy, in-stent restenosis (ISR) remains a key problem after coronary stenting. Coronary CT angiography evolved as a valuable tool in the diagnostic workup of patients after coronary revascularization therapy. It has a negative predictive value in the range of 98% for ruling out significant ISR. As CT imaging of coronary stents depends on patient and stent characteristics, patient selection is crucial for success. Ideal candidates have stents with a diameter of 3 mm and more. Nevertheless, even with most recent CT scanners, about 8% of stents are not accessible mostly due to blooming or motion artifacts. While the diagnosis of ISR is currently based on the visual assessment of the stent lumen, functional information on the hemodynamic significance of in-stent stenosis became available with the most recent generation of dual source CT scanners. This paper provides a comprehensive overview on previous developments, current techniques, and clinical evidence for cardiac CT in patients with coronary artery stents. PMID:22997590

  7. CT scan

    MedlinePlus

    ... that slides into the center of the CT scanner. Once you are inside the scanner, the machine's x-ray beam rotates around you. Modern spiral scanners can perform the exam without stopping. A computer ...

  8. Comparison of dual-source computed tomography for the quantification of the aortic valve area in patients with aortic stenosis versus transthoracic echocardiography and invasive hemodynamic assessment.

    PubMed

    Ropers, Dieter; Ropers, Ulrike; Marwan, Mohammed; Schepis, Titiano; Pflederer, Tobias; Wechsel, Martin; Klinghammer, Lutz; Flachskampf, Frank A; Daniel, Werner G; Achenbach, Stephan

    2009-12-01

    We compared the measurements of the aortic valve area (AVA) using dual-source computed tomography (DSCT) in patients with mid to severe aortic stenosis to measurements using transthoracic echocardiography (TTE) and invasive hemodynamic assessment. A total of 50 patients (mean age 73 +/- 10 years) with suspected aortic stenosis were included. The computed tomographic data were acquired using DSCT with standardized scan parameters (2 x 64 x 0.6 mm collimation, 330-ms rotation, 120-kV tube voltage, 560 mA/rot tube current). After injection of 35 ml contrast agent (flow rate 5 ml/s), a targeted volume data set, ranging from the top of the leaflets to the infundibulum, was acquired. Ten cross-sectional data sets (slice thickness 1 mm, no overlap, increment 0.6 mm) were reconstructed during systole in 5% increments of the R-R interval. The AVA determined in systole by planimetry was compared to the calculated AVA values using the continuity equation on TTE and the Gorlin formula on catheterization. DSCT allowed the planimetry of the AVA in all patients. The mean AVA using DSCT was 1.16 +/- 0.47 cm(2) compared to a mean AVA of 1.04 +/- 0.45 cm(2) using TTE and 1.06 +/- 0.45 cm(2) using catheterization, with a significant correlation between DSCT/TTE (r = 0.93, p <0.001) and DSCT/cardiac catheterization (r = 0.97, p <0.001). However, DSCT demonstrated a slight, but significant, overestimation of the AVA compared to TTE (+0.12 +/- 0.17 cm) and catheterization (+0.10 +/- 0.12 cm(2)). In conclusion, DSCT permits one to assess the AVA with a high-image quality and diagnostic accuracy compared to TTE and invasive determination. PMID:19932793

  9. Diagnostic Value of Prospective Electrocardiogram-triggered Dual-source Computed Tomography Angiography for Infants and Children with Interrupted Aortic Arch

    PubMed Central

    Li, Hai-Ou; Wang, Xi-Ming; Nie, Pei; Ji, Xiao-Peng; Cheng, Zhao-Ping; Chen, Jiu-Hong; Xu, Zhuo-Dong

    2015-01-01

    Background: Accurate assessment of intra- as well as extra-cardiac malformations and radiation dosage concerns are especially crucial to infants and children with interrupted aortic arch (IAA). The purpose of this study is to investigate the value of prospective electrocardiogram (ECG)-triggered dual-source computed tomography (DSCT) angiography with low-dosage techniques in the diagnosis of IAA. Methods: Thirteen patients with suspected IAA underwent prospective ECG-triggered DSCT scan and transthoracic echocardiography (TTE). Surgery was performed on all the patients. A five-point scale was used to assess image quality. The diagnostic accuracy of DSCT angiography and TTE was compared with the surgical findings as the reference standard. A nonparametric Chi-square test was used for comparative analysis. P <0.05 was considered as a significant difference. The mean effective radiation dose (ED) was calculated. Results: Diagnostic DSCT images were obtained for all the patients. Thirteen IAA cases with 60 separate cardiovascular anomalies were confirmed by surgical findings. The diagnostic accuracy of TTE and DSCT for total cardiovascular malformations was 93.7% and 97.9% (P > 0.05), and that for extra-cardiac vascular malformations was 92.3% and 99.0% (P < 0.05), respectively. The mean score of image quality was 3.77 ± 0.83. The mean ED was 0.30 ± 0.04 mSv (range from 0.23 mSv to 0.39 mSv). Conclusions: In infants and children with IAA, prospective ECG-triggered DSCT with low radiation exposure and high diagnostic efficiency has higher accuracy compared to TTE in detection of extra-cardiac vascular anomalies. PMID:25947401

  10. Investigation of temporal resolution required for CT coronary angiography

    NASA Astrophysics Data System (ADS)

    Ohashi, Kazuya; Ichikawa, Katsuhiro; Kawai, Tatsuya; Shibamoto, Yuta

    2012-03-01

    Sub-second multi-detector computed tomography systems (MDCTs) offer great potentials for improving cardiac imaging. However, since the temporal resolution of such CT systems is not sufficient, blurring and artifacts produced by fast cardiac motion are still problematic. The purposes of this study were to investigate the accurate method for measurement of temporal resolution (TR) of the cardiac CT and required TR for obtaining better CT coronary angiography (CTCA). We employed a dual source CT system (Somatom Definition, Siemens), which has various temporal resolution modes (83, 125, and 165 msec) for electro-cardiogram (ECG)-gated scanning. The temporal sensitivity profiles (TSPs) were measured by a new method using temporal impulse generated by metal ball (impulse method). The CTCA images of 200 patients with heart rates (HRs) ranging from 36 to 117 beat per minute (bpm) were visually evaluated using a 4-point scale. The 165-msec TR mode, which is mostly available on recent MDCTs, showed a sufficient image quality only at low HR (<= 60 bpm) for all 3 arteries. The image quality of 125-msec TR mode was acceptable at low to intermediate HRs (< 80 bpm) for LADs and LCXs, and insufficient for the RCAs in cases with HR more than 71 bpm. The 83-msec TR mode demonstrated excellent image quality except for cases with very quick motion of the RCAs at a high HR (>80 bpm).

  11. Simultaneous radical cystectomy and colorectal cancer resection for synchronous muscle invasive bladder cancer and cT3 colorectal cancer: Our initial experience in five patients

    PubMed Central

    Liu, Zhuo; Chen, Guiping; Zhu, Yuping; Li, Dechuan

    2014-01-01

    To review cases of simultaneous radical cystectomy and colorectal cancer (CRC) resection for synchronous carcinoma of bladder and colorectum. Between May 1997 and September 2010, five patients were diagnosed with synchronous bladder cancer and CRCs. The primary colorectal tumors included three sigmoid cancers, one ascending colon cancer and one rectal cancer. All patients underwent simultaneous radical cystectomy and CRC resection. Pathologic types were confirmed by the biopsies of cystoscopy and colonoscopy. All patients were performed synchronous radical cystectomy and CRC resection. Four of them received adjuvant chemotherapies for CRC. Two of them died of liver metastasis 32.8 months and 13 months after surgery. Although patients with synchronous carcinoma of bladder and colorectum are rare, the Urologist should be alerted to this possibility when evaluating patients for the initially presenting symptoms and/or detected tumors. The simultaneous surgery is technically feasible for the selected patients. PMID:25538788

  12. Principles of CT and CT technology.

    PubMed

    Goldman, Lee W

    2007-09-01

    This article provides a review of the basic principles of CT within the context of the evolution of CT. Modern CT technology can be understood as a natural progression of improvements and innovations in response to both engineering problems and clinical requirements. Detailed discussions of multislice CT, CT image quality evaluation, and radiation doses in CT will be presented in upcoming articles in this series. PMID:17823453

  13. Lumbosacral spine CT

    MedlinePlus

    Spinal CT; CT - lumbosacral spine ... In other cases, a CT of the lumbosacral spine may be done after injecting contrast dye into ... of the body. A CT of the lumbosacral spine can evaluate fractures and changes of the spine, ...

  14. Thoracic CT

    MedlinePlus

    ... table that slides into the center of the scanner. Once you are inside the scanner, the machine's x-ray beam rotates around you. ... than 300 pounds, have your doctor contact the scanner operator before the exam. CT scanners have a ...

  15. Dual-energy CT revisited with multidetector CT: review of principles and clinical applications.

    PubMed

    Karçaaltıncaba, Muşturay; Aktaş, Aykut

    2011-09-01

    Although dual-energy CT (DECT) was first conceived in the 1970s, it was not widely used for CT indications. Recently, the simultaneous acquisition of volumetric dual-energy data has been introduced using multidetector CT (MDCT) with two X-ray tubes and rapid kVp switching (gemstone spectral imaging). Two major advantages of DECT are material decomposition by acquiring two image series with different kVp and the elimination of misregistration artifacts. Hounsfield unit measurements by DECT are not absolute and can change depending on the kVp used for an acquisition. Typically, a combination of 80/140 kVp is used for DECT, but for some applications, 100/140 kVp is preferred. In this study, we summarized the clinical applications of DECT and included images that were acquired using the dual-source CT and rapid kVp switching. In general, unenhanced images can be avoided by using DECT for body and neurological applications; iodine can be removed from the image, and a virtual, non-contrast (water) image can be obtained. Neuroradiological applications allow for the removal of bone and calcium from the carotid and brain CT angiography. Thorax applications include perfusion imaging in patients with pulmonary thromboemboli and other chest diseases, xenon ventilation-perfusion imaging and solitary nodule characterization. Cardiac applications include dual-energy cardiac perfusion, viability and cardiac iron detection. The removal of calcific plaques from arteries, bone removal and aortic stent graft evaluation may be achieved in the vascular system. Abdominal applications include the detection and characterization of liver and pancreas masses, the diagnosis of steatosis and iron overload, DECT colonoscopy and CT cholangiography. Urinary system applications are urinary calculi characterization (uric acid vs. non-uric acid), renal cyst characterization and mass characterization. Musculoskeletal applications permit the differentiation of gout from pseudogout and a reduction of

  16. Development of an Ex Vivo, Beating Heart Model for CT Myocardial Perfusion

    PubMed Central

    Pelgrim, Gert Jan; Das, Marco; Haberland, Ulrike; Slump, Cees; Handayani, Astri; van Tuijl, Sjoerd; Stijnen, Marco; Klotz, Ernst; Oudkerk, Matthijs; Wildberger, Joachim E.; Vliegenthart, Rozemarijn

    2015-01-01

    Objective. To test the feasibility of a CT-compatible, ex vivo, perfused porcine heart model for myocardial perfusion CT imaging. Methods. One porcine heart was perfused according to Langendorff. Dynamic perfusion scanning was performed with a second-generation dual source CT scanner. Circulatory parameters like blood flow, aortic pressure, and heart rate were monitored throughout the experiment. Stenosis was induced in the circumflex artery, controlled by a fractional flow reserve (FFR) pressure wire. CT-derived myocardial perfusion parameters were analysed at FFR of 1 to 0.10/0.0. Results. CT images did not show major artefacts due to interference of the model setup. The pacemaker-induced heart rhythm was generally stable at 70 beats per minute. During most of the experiment, blood flow was 0.9–1.0 L/min, and arterial pressure varied between 80 and 95 mm/Hg. Blood flow decreased and arterial pressure increased by approximately 10% after inducing a stenosis with FFR ≤ 0.50. Dynamic perfusion scanning was possible across the range of stenosis grades. Perfusion parameters of circumflex-perfused myocardial segments were affected at increasing stenosis grades. Conclusion. An adapted Langendorff porcine heart model is feasible in a CT environment. This model provides control over physiological parameters and may allow in-depth validation of quantitative CT perfusion techniques. PMID:26185756

  17. Dual-source parallel radiofrequency excitation ACR phantom magnetic resonance imaging at 3 T: Assessment of the effect of image quality on high-contrast spatial resolution, percent signal ghosting, and low-contrast object detectability in comparison with conventional single-source transmission

    NASA Astrophysics Data System (ADS)

    Lee, Kyung-Bae; Park, Yong-Sung; Choe, Bo-Young

    2013-10-01

    The purpose of the present study was to assess dual-source parallel radiofrequency (RF) excitation American College of Radiology (ACR) phantom magnetic resonance (MR) imaging at 3T compared with conventional single-source RF transmission and compared with the standard ACR MRI phantom test. We used a 3T MR scanner equipped with dual-source parallel RF excitation and an 8-channel head phased array coil. We employed T1- and T2-weighted fast spin echo (FSE) pulse sequences for an assessment of the impact of image quality on high-contrast spatial resolution, percent signal ghosting and low-contrast object detectability following the ACR MRI quality control (QC) manual. With geometric accuracy and identical slice locations, dual RFs using dual-source parallel RF excitation MR showed an advantage over single RF using dual-source parallel RF excitation MR and conventional MR in terms of high-contrast spatial resolution (p < 0.010), percent signal ghosting (p < 0.010), and low-contrast object detectability (p < 0.010). The quality of the image from the dual-source parallel RF excitation MR equipment was superior to that of the image from conventional MR equipment for the ACR phantom. We need to pursue dual-source parallel RF excitation MR studies involving various clinical cases.

  18. [CT fluoroscopy].

    PubMed

    Rogalla, P; Juran, R

    2004-07-01

    Percutaneous biopsy of pulmonary nodules requires precise needle placement, with the goal of attaining a secure position of the needle for therapeutic or diagnostic purposes as quickly as possible and with minimal tissue damage along the access route. The requirements from the image guidance system during the intervention are, in addition to universal applicability, a quick reaction time and a user-friendly interface. CT fluoroscopy fulfils these requirements, although radiation protection for the patient and radiologist becomes an important issue. PMID:15232690

  19. CT scanner x-ray spectrum estimation from transmission measurements

    PubMed Central

    Duan, Xinhui; Wang, Jia; Yu, Lifeng; Leng, Shuai; McCollough, Cynthia H.

    2011-01-01

    Purpose: In diagnostic CT imaging, multiple important applications depend on the knowledge of the x-ray spectrum, including Monte Carlo dose calculations and dual-energy material decomposition analysis. Due to the high photon flux involved, it is difficult to directly measure spectra from the x-ray tube of a CT scanner. One potential method for indirect measurement involves estimating the spectrum from transmission measurements. The expectation maximization (EM) method is an accurate and robust method to solve this problem. In this article, this method was evaluated in a commercial CT scanner. Methods: Two step-wedges (polycarbonate and aluminum) were used to produce different attenuation levels. Transmission measurements were performed on the scanner and the measured data from the scanner were exported to an external computer to calculate the spectra. The EM method was applied to solve the equations that represent the attenuation processes of polychromatic x-ray photons. Estimated spectra were compared to the spectra simulated using a software provided by the manufacturer of the scanner. To test the accuracy of the spectra, a verification experiment was performed using a phantom containing different depths of water. The measured transmission data were compared to the transmission values calculated using the estimated spectra. Results: Spectra of 80, 100, 120, and 140 kVp from a dual-source CT scanner were estimated. The estimated and simulated spectra were well matched. The differences of mean energies were less than 1 keV. In the verification experiment, the measured and calculated transmission values were in excellent agreement. Conclusions: Spectrum estimation using transmission data and the EM method is a quantitatively accurate and robust technique to estimate the spectrum of a CT system. This method could benefit studies relying on accurate knowledge of the x-ray spectra from CT scanner. PMID:21452736

  20. Investigations on x-ray luminescence CT for small animal imaging

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Stanton, I. N.; Johnston, S. M.; Johnson, G. A.; Therien, M. J.

    2012-03-01

    X-ray Luminescence CT (XLCT) is a hybrid imaging modality combining x-ray and optical imaging in which x-ray luminescent nanophosphors (NPs) are used as emissive imaging probes. NPs are easily excited using common CT energy x-ray beams, and the NP luminescence is efficiently collected using sensitive light-based detection systems. XLCT can be recognized as a close analog to fluorescence diffuse optical tomography (FDOT). However, XLCT has remarkable advantages over FDOT due to the substantial excitation penetration depths provided by x-rays relative to laser light sources, long-term photo-stability of NPs, and the ability to tune NP emission within the NIR spectral window. Since XCLT uses an x-ray pencil beam excitation, the emitted light can be measured and back-projected along the x-ray path during reconstruction, where the size of the x-ray pencil beam determines the resolution for XLCT. In addition, no background signal competes with NP luminescence (i.e., no auto fluorescence) in XLCT. Currently, no small animal XLCT system has been proposed or tested. This paper investigates an XLCT system built and integrated with a dual source micro-CT system. A novel sampling paradigms that results in more efficient scanning is proposed and tested via simulations. Our preliminary experimental results in phantoms indicate that a basic CT-like reconstruction is able to recover a map of the NP locations and differences in NP concentrations. With the proposed dual source system and faster scanning approaches, XLCT has the potential to revolutionize molecular imaging in preclinical studies.

  1. SU-E-I-73: Clinical Evaluation of CT Image Reconstructed Using Interior Tomography

    SciTech Connect

    Zhang, J; Ge, G; Winkler, M; Cong, W; Wang, G

    2014-06-01

    Purpose: Radiation dose reduction has been a long standing challenge in CT imaging of obese patients. Recent advances in interior tomography (reconstruction of an interior region of interest (ROI) from line integrals associated with only paths through the ROI) promise to achieve significant radiation dose reduction without compromising image quality. This study is to investigate the application of this technique in CT imaging through evaluating imaging quality reconstructed from patient data. Methods: Projection data were directly obtained from patients who had CT examinations in a Dual Source CT scanner (DSCT). Two detectors in a DSCT acquired projection data simultaneously. One detector provided projection data for full field of view (FOV, 50 cm) while another detectors provided truncated projection data for a FOV of 26 cm. Full FOV CT images were reconstructed using both filtered back projection and iterative algorithm; while interior tomography algorithm was implemented to reconstruct ROI images. For comparison reason, FBP was also used to reconstruct ROI images. Reconstructed CT images were evaluated by radiologists and compared with images from CT scanner. Results: The results show that the reconstructed ROI image was in excellent agreement with the truth inside the ROI, obtained from images from CT scanner, and the detailed features in the ROI were quantitatively accurate. Radiologists evaluation shows that CT images reconstructed with interior tomography met diagnosis requirements. Radiation dose may be reduced up to 50% using interior tomography, depending on patient size. Conclusion: This study shows that interior tomography can be readily employed in CT imaging for radiation dose reduction. It may be especially useful in imaging obese patients, whose subcutaneous tissue is less clinically relevant but may significantly increase radiation dose.

  2. Kilovoltage CT using a linac-CT scanner combination.

    PubMed

    Thieke, C; Malsch, U; Schlegel, W; Debus, J; Huber, P; Bendl, R; Thilmann, C

    2006-09-01

    Modern radiotherapy techniques such as intensity modulation are capable of generating complex dose distributions whose high dose areas tightly conform to the tumour target volume, sparing critical organs even when they are located in close proximity. This potential can only be exploited to its full extent when the accumulated dose actually delivered over the complete treatment course is sufficiently close to the dose computed on the initial CT scan used for treatment planning. Exact patient repositioning is mandatory, but also other sources of error, e.g. changes of the patient's anatomy under therapy, should be taken into account. At the German Cancer Research Center, we use a combination of a linear accelerator and a CT scanner installed in one room and sharing the same couch. It allows the quantification and correction of interfractional variations between planning and treatment delivery. In this paper, we describe treatments of prostate, paraspinal and head and neck tumours. All patients were immobilized by customized fixation devices and treated in a stereotactic setup. For each patient, frequent CT scans were taken during the treatment course. Each scan was compared with the original planning CT using manual checks and automatic rigid matching algorithms. Depending on the individual case, the adaptation to variations was carried out offline after several fractions or in real-time between the CT scan and linac irradiation. We discuss the techniques for detecting and correcting interfractional errors and outline the procedural steps of a linac-CT scanner-supported radiation treatment course. PMID:16980687

  3. [Development of real-time CT fluoroscopy].

    PubMed

    Katada, K; Anno, H; Takeshita, G; Ogura, Y; Koga, S; Ida, Y; Nonomura, K; Kanno, T; Ohashi, A; Sata, S

    1994-10-25

    A new CT system that permits real-time monitoring of CT images was developed. Phantom and volunteer studies revealed that the images were displayed at a rate of six per second with a delay time of 0.83 second with clinically sufficient resolution (256 x 256) using the newly developed fast image processor and partial-reconstruction algorithm. The clinical trial of stereotactic aspiration of intracerebral hematoma was successful. The initial trial with CT fluoroscopy revealed potential usefulness of the system in biopsy and other CT-guided interventions. PMID:9261196

  4. Quantification of Urinary Stone Composition in Mixed Stones Using Dual-Energy CT: A Phantom Study

    PubMed Central

    Leng, Shuai; Huang, Alice; Montoya, Juan; Duan, Xinhui; Williams, James C.; McCollough, Cynthia H.

    2016-01-01

    Purpose To demonstrate the feasibility of using dual-energy computed tomography to accurately quantify uric acid and non-uric-acid components in urinary stones having mixed composition. Materials and Methods A total of 24 urinary stones were analyzed with microCT to serve as the reference standard for uric acid and non-uric-acid composition. These stones were placed in water phantoms to simulate body attenuation of slim to obese adults and scanned on a third-generation dual-source scanner using dual-energy modes adaptively selected based on phantom size. CT number ratio, which is distinct for different materials, was calculated for each pixel of the stones. Each pixel was then classified as uric acid and non-uric-acid by comparing the CT number ratio with preset thresholds ranging from 1.1 to 1.7. Minimal, maximal and root-mean-square errors were calculated by comparing composition to the reference standard and the threshold with the minimal root-mean-square-error was determined. A paired t-test was performed to compare the stone composition determined with dual-energy CT with the reference standard obtained with microCT. Results The optimal CT number ratio threshold ranged from 1.27 to 1.55, dependent on phantom size. The root-mean-square error ranged from 9.60% to 12.87% across all phantom sizes. Minimal and maximal absolute error ranged from 0.04% to 1.24% and from 22.05% to 35.46%, respectively. Dual-energy CT and the reference microCT did not differ significantly on uric acid and non-uric-acid composition (P from 0.20 to 0.96, paired t-test). Conclusion Accurate quantification of uric acid and non-uric-acid composition in mixed stones is possible using dual-energy CT. PMID:27224260

  5. Assessment of image quality and radiation dose of prospectively ECG-triggered adaptive dual-source coronary computed tomography angiography (cCTA) with arrhythmia rejection algorithm in systole versus diastole: a retrospective cohort study.

    PubMed

    Lee, Ashley M; Beaudoin, Jonathan; Engel, Leif-Christopher; Sidhu, Manavjot S; Abbara, Suhny; Brady, Thomas J; Hoffmann, Udo; Ghoshhajra, Brian B

    2013-08-01

    In this study, we sought to evaluate the image quality and effective radiation dose of prospectively ECG-triggered adaptive systolic (PTA-systolic) dual-source CTA versus prospectively triggered adaptive diastolic (PTA-diastolic) dual-source CTA in patients of unselected heart rate and rhythm. This retrospective cohort study consisted of 41 PTA-systolic and 41 matched PTA-diastolic CTA patients whom underwent clinically indicated 128-slice dual source CTA between December 2010 to June 2012. Image quality and motion artifact score (both on a Likert scale 1-4 with 4 being the best), effective dose, and CTDIvol were compared. The effect of heart rate (HR) and heart rate variability [HRV] on image motion artifact score and CTDIvol was analyzed with Pearson's correlation coefficient. All 82 exams were considered diagnostic with 0 non-diagnostic segments. PTA-systolic CTA patients had a higher maximum HR, wider HRV, were less likely to be in sinus rhythm, and received less beta-blocker vs. PTA-diastolic CTA patients. No difference in effective dose was observed (PTA-systolic vs. PTA-diastolic CTA: 2.9 vs. 2.2 mSv, p = 0.26). Image quality score (3.3 vs. 3.5, p < 0.05) and motion artifact score (3.5 vs. 3.8, p < 0.05) were lower in PTA-systolic CTAs than in PTA-diastolic CTAs. For PTA-systolic CTAs, an increase in HR was not associated with a negative impact on motion artifact score nor CTDIvol. For PTA-diastolic CTA, an increase in HR was associated with increased motion artifacts and CTDIvol. HRV demonstrated no correlation with motion artifact and CTDIvol for both PTA-systolic and PTA-diastolic CTAs. In conclusion, both PTA-diastolic CTA and PTA-systolic CTA yielded diagnostic examinations at unselected heart rates and rhythms with similar effective radiation, but PTA-systolic CTA resulted in more consistent radiation exposure and image quality across a wide range of rates and rhythms. PMID:23526082

  6. Acute pancreatitis: prognostic value of CT

    SciTech Connect

    Balthazar, E.J.; Ranson, J.H.C.; Naidich, D.P.; Megibow, A.J.; Caccavale, R.; Cooper, M.M.

    1985-09-01

    In 83 patients with acute pancreatitis, the initial computed tomographic (CT) examinations were classified by degree of disease severity (grades A-E) and were correlated with the clinical follow-up, objective prognostic signs, and complications and death. The length of hospitalization correlated well with the severity of the initial CT findings. Abscesses occurred in 21.6% of the entire group, compared with 60.0% of grade E patients. Pleural effusions were also more common in grade E patients. Abscesses were seen in 80.0% of patients with six to eight prognostic signs, compared with 12.5% of those with zero to two. The use of prognostic signs with initial CT findings results in improved prognostic accuracy. Early CT examination of patients with acute pancreatitis is a useful prognostic indicator of morbidity and mortality.

  7. Computed Tomography (CT) - Spine

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Spine Computed tomography (CT) of the spine is a diagnostic imaging ... Spine? What is CT Scanning of the Spine? Computed tomography, more commonly known as a CT or CAT ...

  8. 4D micro-CT using fast prospective gating

    NASA Astrophysics Data System (ADS)

    Guo, Xiaolian; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan; Badea, Cristian T.

    2012-01-01

    Micro-CT is currently used in preclinical studies to provide anatomical information. But, there is also significant interest in using this technology to obtain functional information. We report here a new sampling strategy for 4D micro-CT for functional cardiac and pulmonary imaging. Rapid scanning of free-breathing mice is achieved with fast prospective gating (FPG) implemented on a field programmable gate array. The method entails on-the-fly computation of delays from the R peaks of the ECG signals or the peaks of the respiratory signals for the triggering pulses. Projection images are acquired for all cardiac or respiratory phases at each angle before rotating to the next angle. FPG can deliver the faster scan time of retrospective gating (RG) with the regular angular distribution of conventional prospective gating for cardiac or respiratory gating. Simultaneous cardio-respiratory gating is also possible with FPG in a hybrid retrospective/prospective approach. We have performed phantom experiments to validate the new sampling protocol and compared the results from FPG and RG in cardiac imaging of a mouse. Additionally, we have evaluated the utility of incorporating respiratory information in 4D cardiac micro-CT studies with FPG. A dual-source micro-CT system was used for image acquisition with pulsed x-ray exposures (80 kVp, 100 mA, 10 ms). The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent containing 123 mg I ml-1 delivered via a tail vein catheter in a dose of 0.01 ml g-1 body weight. The phantom experiment demonstrates that FPG can distinguish the successive phases of phantom motion with minimal motion blur, and the animal study demonstrates that respiratory FPG can distinguish inspiration and expiration. 4D cardiac micro-CT imaging with FPG provides image quality superior to RG at an isotropic voxel size of 88 µm and 10 ms temporal resolution. The acquisition time for either sampling approach is less than 5 min. The

  9. Advances in CT imaging for urolithiasis.

    PubMed

    Andrabi, Yasir; Patino, Manuel; Das, Chandan J; Eisner, Brian; Sahani, Dushyant V; Kambadakone, Avinash

    2015-01-01

    Urolithiasis is a common disease with increasing prevalence worldwide and a lifetime-estimated recurrence risk of over 50%. Imaging plays a critical role in the initial diagnosis, follow-up and urological management of urinary tract stone disease. Unenhanced helical computed tomography (CT) is highly sensitive (>95%) and specific (>96%) in the diagnosis of urolithiasis and is the imaging investigation of choice for the initial assessment of patients with suspected urolithiasis. The emergence of multi-detector CT (MDCT) and technological innovations in CT such as dual-energy CT (DECT) has widened the scope of MDCT in the stone disease management from initial diagnosis to encompass treatment planning and monitoring of treatment success. DECT has been shown to enhance pre-treatment characterization of stone composition in comparison with conventional MDCT and is being increasingly used. Although CT-related radiation dose exposure remains a valid concern, the use of low-dose MDCT protocols and integration of newer iterative reconstruction algorithms into routine CT practice has resulted in a substantial decrease in ionizing radiation exposure. In this review article, our intent is to discuss the role of MDCT in the diagnosis and post-treatment evaluation of urolithiasis and review the impact of emerging CT technologies such as dual energy in clinical practice. PMID:26166961

  10. Advances in CT imaging for urolithiasis

    PubMed Central

    Andrabi, Yasir; Patino, Manuel; Das, Chandan J.; Eisner, Brian; Sahani, Dushyant V.; Kambadakone, Avinash

    2015-01-01

    Urolithiasis is a common disease with increasing prevalence worldwide and a lifetime-estimated recurrence risk of over 50%. Imaging plays a critical role in the initial diagnosis, follow-up and urological management of urinary tract stone disease. Unenhanced helical computed tomography (CT) is highly sensitive (>95%) and specific (>96%) in the diagnosis of urolithiasis and is the imaging investigation of choice for the initial assessment of patients with suspected urolithiasis. The emergence of multi-detector CT (MDCT) and technological innovations in CT such as dual-energy CT (DECT) has widened the scope of MDCT in the stone disease management from initial diagnosis to encompass treatment planning and monitoring of treatment success. DECT has been shown to enhance pre-treatment characterization of stone composition in comparison with conventional MDCT and is being increasingly used. Although CT-related radiation dose exposure remains a valid concern, the use of low-dose MDCT protocols and integration of newer iterative reconstruction algorithms into routine CT practice has resulted in a substantial decrease in ionizing radiation exposure. In this review article, our intent is to discuss the role of MDCT in the diagnosis and post-treatment evaluation of urolithiasis and review the impact of emerging CT technologies such as dual energy in clinical practice. PMID:26166961

  11. The Value of 18F-FDG PET/CT in Diagnostic Procedure of Intravascular Large B-Cell Lymphoma Presenting Fever of Unknown Origin and Pulmonary Hypertension as an Initial Manifestation.

    PubMed

    Wu, Fengyu; Wang, Zhenguang; Xing, Xiaoming; Yu, Mingming; Shi, Bin

    2016-06-01

    A 57-year-old man presented with fever of unknown origin and pulmonary hypertension. An F-FDG PET/CT scan was performed to evaluate the source of fever, which showed diffuse, homogeneously increased FDG uptake in both lungs, which prompted the transbronchial lung biopsy. The pathological examination from biopsy specimen demonstrated intravascular large B-cell lymphoma. PMID:26914573

  12. Pediatric CT: Strategies to Lower Radiation Dose

    PubMed Central

    Zacharias, Claudia; Alessio, Adam M.; Otto, Randolph K.; Iyer, Ramesh S.; Philips, Grace S.; Swanson, Jonathan O.; Thapa, Mahesh M.

    2016-01-01

    OBJECTIVE The introduction of MDCT has increased the utilization of CT in pediatric radiology along with concerns for radiation sequelae. This article reviews general principles of lowering radiation dose, the basic physics that impact radiation dose, and specific CT integrated dose-reduction tools focused on the pediatric population. CONCLUSION The goal of this article is to provide a comprehensive review of the recent literature regarding CT dose reduction methods, their limitations, and an outlook on future developments with a focus on the pediatric population. The discussion will initially focus on general considerations that lead to radiation dose reduction, followed by specific technical features that influence the radiation dose. PMID:23617474

  13. CT in pyogenic osteomyelitis of the spine

    SciTech Connect

    Kattapuram, S.V.; Phillips, W.C.; Boyd, R.

    1983-06-01

    Six patients with bacteriologically proven pyogenic osteomyelitis of the spine were followed serially with computed tomography (CT). Initial evaluation of the involved vertebral bodies and adjacent soft tissues showed a drop in CT numbers when compared to normal cancellous bone and soft tissues. A soft-tissue mass was seen in all cases. After appropriate antibiotic therapy, all six patients showed an increase in bone density and a diminution of the soft-tissue mass (p < 0.05). Five of the six patients showed a further decrease in soft-tissue CT numbers.

  14. A Case of Coronary Cameral Fistula with Associated Aneurysm: Role of ECG Gated 256- Slice Dual Source Multidetector Computed Tomography in Diagnosis

    PubMed Central

    Garg, Lalit; Rissam, Harmeet Kaur; Puri, Sunil Kumar

    2016-01-01

    We report an interesting case of coronary cameral fistula with associated aneurysmal dilatation of coronary artery. The complete evaluation including anatomical relationships with surrounding vascular and non-vascular structures can be achieved with ECG gated multi-detector computed tomography (MDCT). MDCT has many advantages over echocardiography and digital subtraction catheter angiography, because of its ability to demonstrate the fistula separate from surrounding cardiovascular structures along with any aneurysm or obstruction in its course. Thus, MDCT is emerging as the initial non-invasive imaging technique for comprehensive preoperative evaluation of these rare congenital anomalies for cardiovascular surgeons to achieve better operative assessibity and outcome. PMID:27437325

  15. NETL CT Imaging Facility

    ScienceCinema

    None

    2014-05-21

    NETL's CT Scanner laboratory is equipped with three CT scanners and a mobile core logging unit that work together to provide characteristic geologic and geophysical information at different scales, non-destructively.

  16. Head CT (image)

    MedlinePlus

    CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...

  17. CT scan (image)

    MedlinePlus

    CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...

  18. CT appearance of splenosis

    SciTech Connect

    Mendelson, D.S.; Cohen, B.A.; Armas, R.R.

    1982-12-01

    Splenosis is an unusual complication of splenic trauma. The computed tomographic (CT) appearance of splenosis is described. One should consider this diagnosis when faced with a history of splenic trauma and multiple round or oval masses at CT.

  19. Orbit CT scan

    MedlinePlus

    ... results may mean: Bleeding Broken eye socket bone Graves disease Infection Tumor Risks CT scans and other x- ... Livingstone; 2014:chap 66. Read More CT scan Graves disease Tumor Update Date 1/18/2015 Updated by: ...

  20. NETL CT Imaging Facility

    SciTech Connect

    2013-09-04

    NETL's CT Scanner laboratory is equipped with three CT scanners and a mobile core logging unit that work together to provide characteristic geologic and geophysical information at different scales, non-destructively.

  1. Initial Staging of Hodgkin’s Disease

    PubMed Central

    Chiaravalloti, Agostino; Danieli, Roberta; Caracciolo, Cristiana Ragano; Travascio, Laura; Cantonetti, Maria; Gallamini, Andrea; Guazzaroni, Manlio; Orlacchio, Antonio; Simonetti, Giovanni; Schillaci, Orazio

    2014-01-01

    Abstract The objective of this study was to compare the diagnostic accuracy of positron emission tomography/low-dose computed tomography (PET/ldCT) versus the same technique implemented by contrast-enhanced computed tomography (ceCT) in staging Hodgkin’s disease (HD). Forty patients (18 men and 22 women, mean age 30 ± 9.6) with biopsy-proven HD underwent a PET/ldCT study for initial staging including an unenhanced low-dose computed tomography for attenuation correction with positron emission tomography acquisition and a ceCT, performed at the end of the PET/ldCT scan, in the same exam session. A detailed datasheet was generated for illness locations for separate imaging modality comparison and then merged in order to compare the separate imaging method results (PET/ldCT and ceCT) versus merged results positron emission tomography/contrast-enhanced computed tomography (PET/ceCT). The nodal and extranodal lesions detected by each technique were then compared with follow-up data that served as the reference standard. No significant differences were found at staging between PET/ldCT and PET/ceCT in our series. One hundred and eighty four stations of nodal involvement have been found with no differences in both modalities. Extranodal involvement was identified in 26 sites by PET/ldCT and in 28 by PET/ceCT. We did not find significant differences concerning the stage (Ann Arbor). Our study shows a good concordance and conjunction between PET/ldCT and ceCT in both nodal and extranodal sites in the initial staging of HD, suggesting that PET/ldCT could suffice in most of these patients. PMID:25121354

  2. A study of the short- to long-phantom dose ratios for CT scanning without table translation

    SciTech Connect

    Li, Xinhua; Zhang, Da; Liu, Bob; Yang, Jie

    2014-09-15

    Purpose: For CT scanning in the stationary-table modes, AAPM Task Group 111 proposed to measure the midpoint dose on the central and peripheral axes of sufficiently long phantoms. Currently, a long cylindrical phantom is usually not available in many clinical facilities. The use of a long phantom is also challenging because of the heavy weight. In order to shed light on assessing the midpoint dose in CT scanning without table movement, the authors present a study of the short- to long-phantom dose ratios, and perform a cross-comparison of CT dose ratios on different scanner models. Methods: The authors performed Geant4-based Monte Carlo simulations with a clinical CT scanner (Somatom Definition dual source CT, Siemens Healthcare), and modeled dosimetry measurements using a 0.6 cm{sup 3} Farmer type chamber and a 10-cm long pencil ion chamber. The short (15 cm) to long (90 cm) phantom dose ratios were computed for two PMMA diameters (16 and 32 cm), two phantom axes (the center and the periphery), and a range of beam apertures (3–25 cm). The results were compared with the published data of previous studies with other multiple detector CT (MDCT) scanners and cone beam CT (CBCT) scanners. Results: The short- to long-phantom dose ratios changed with beam apertures but were insensitive to beam qualities (80–140 kV, the head and body bowtie filters) and MDCT and CBCT scanner models. Conclusions: The short- to long-phantom dose ratios enable medical physicists to make dosimetry measurements using the standard CT dosimetry phantoms and a Farmer chamber or a 10 cm long pencil chamber, and to assess the midpoint dose in long phantoms. This method provides an effective approach for the dosimetry of CBCT scanning in the stationary-table modes, and is useful for perfusion and interventional CT.

  3. Marketing cardiac CT programs.

    PubMed

    Scott, Jason

    2010-01-01

    There are two components of cardiac CT discussed in this article: coronary artery calcium scoring (CACS) and coronary computed tomography angiography (CCTA).The distinctive advantages of each CT examination are outlined. In order to ensure a successful cardiac CT program, it is imperative that imaging facilities market their cardiac CT practices effectively in order to gain a competitive advantage in this valuable market share. If patients receive quality care by competent individuals, they are more likely to recommend the facility's cardiac CT program. Satisfied patients will also be more willing to come back for any further testing. PMID:22276376

  4. SU-E-I-99: Estimation of Effective Charge Distribution by Dual-Energy CT Reconstruction

    SciTech Connect

    Sakata, D; Kida, S; Nakano, M; Masutani, Y; Nakagawa, K; Haga, A

    2014-06-01

    Purpose: Computed Tomography (CT) is a method to produce slice image of specific volume from the scanned x-ray projection images. The contrast of CT image is correlated with the attenuation coefficients of the x-ray in the object. The attenuation coefficient is strongly dependent on the x-ray energy and the effective charge of the material. The purpose of this presentation is to show the effective charge distribution predicted by CT images reconstructed with kilovoltage(kV) and megavoltage(MV) x-ray energy. Methods: The attenuation coefficients of x-ray can be characterized by cross section of photoionization and Compton scattering for the specific xray energy. In particular, the photoionization cross section is strongly correlated with the effective charge of the object. Hence we can calculate effective charge by solving the coupled equation between the attenuation coefficient and the theoretical cross section. For this study, we use the megavoltage (MV) and kilovoltage (kV) x-rays of Elekta Synergy as the dual source x-ray, and CT image of the Phantom Laboratory CatPhan is reconstructed by the filtered back projection (FBP) and iterative algorithm for cone-beam CT (CBCT). Results: We report attenuation coefficients of each component of the CatPhan specified by each x-ray source. Also the effective charge distribution is evaluated by the MV and kV dual x-ray sources. The predicted effective charges are comparable with the nominal ones. Conclusion: We developed the MV and kV dual-source CBCT reconstruction to yield the effective charge distribution. For more accuracy, it is critical to remove an effect of the scattering photon in the CBCT reconstruction algorithm. The finding will be fine reference of the effective charge of tissue and lead to the more realistic absorbed-dose calculation. This work was partly supported by the JSPS Core-to-Core Program(No. 23003), and this work was partly supported by JSPS KAKENHI 24234567.

  5. TU-F-18A-09: CT Number Stability Across Patient Sizes Using Virtual-Monoenergetic Dual-Energy CT

    SciTech Connect

    Michalak, G; Grimes, J; Fletcher, J; McCollough, C; Halaweish, A

    2014-06-15

    Purpose: Virtual-monoenergetic imaging uses dual-energy CT data to synthesize images corresponding to a single photon energy, thereby reducing beam-hardening artifacts. This work evaluated the ability of a commercial virtual-monoenergetic algorithm to achieve stable CT numbers across patient sizes. Methods: Test objects containing a range of iodine and calcium hydroxyapatite concentrations were placed inside 8 torso-shaped water phantoms, ranging in lateral width from 15 to 50 cm, and scanned on a dual-source CT system (Siemens Somatom Force). Single-energy scans were acquired from 70-150 kV in 10 kV increments; dual-energy scans were acquired using 4 energy pairs (low energy: 70, 80, 90, and 100 kV; high energy: 150 kV + 0.6 mm Sn). CTDIvol was matched for all single- and dual-energy scans for a given phantom size. All scans used 128×0.6 mm collimation and were reconstructed with 1-mm thickness at 0.8-mm increment and a medium smooth body kernel. Monoenergetic images were generated using commercial software (syngo Via Dual Energy, VA30). Iodine contrast was calculated as the difference in mean iodine and water CT numbers from respective regions-of-interest in 10 consecutive images. Results: CT numbers remained stable as phantom width varied from 15 to 50 cm for all dual-energy data sets (except for at 50 cm using 70/150Sn due to photon starvation effects). Relative to the 15 cm phantom, iodine contrast was within 5.2% of the 70 keV value for phantom sizes up to 45 cm. At 90/150Sn, photon starvation did not occur at 50 cm, and iodine contrast in the 50-cm phantom was within 1.4% of the 15-cm phantom. Conclusion: Monoenergetic imaging, as implemented in the evaluated commercial system, eliminated the variation in CT numbers due to patient size, and may provide more accurate data for quantitative tasks, including radiation therapy treatment planning. Siemens Healthcare.

  6. Improvement in B1+ Homogeneity and Average Flip Angle Using Dual-Source Parallel RF Excitation for Cardiac MRI in Swine Hearts.

    PubMed

    Schär, Michael; Ding, Haiyan; Herzka, Daniel A

    2015-01-01

    Cardiac MRI may benefit from increased polarization at high magnetic field strength of 3 Tesla but is challenged by increased field inhomogeneity. Initial human studies have shown that the radiofrequency (RF) excitation field (B1+) used for signal excitation in the heart is both inhomogeneous and significantly lower than desired, potentially leading to image artifacts and biased quantitative measures. Recently, multi-channel transmit systems have been introduced allowing localized patient specific RF shimming based on acquired calibration B1+ maps. Some prior human studies have shown lower than desired mean flip angles in the hearts of large patients even after RF shimming. Here, 100 cardiac B1+ map pairs before and after RF shimming were acquired in 55 swine. The mean flip angle and the coefficient of variation (CV) of the flip angle in the heart were determined before and after RF shimming. Mean flip angle, CV, and RF shim values (power ratio and phase difference between the two transmit channels) were tested for correlation with cross sectional body area and the Right-Left/Anterior-Posterior ratio. RF shimming significantly increased the mean flip angle in swine heart from 74.4±6.7% (mean ± standard deviation) to 94.7±4.8% of the desired flip angle and significantly reduced CV from 0.11±0.03 to 0.07±0.02 (p<1e-10 for both). These results compare well with several previous human studies, except that the mean flip angle in the human heart only improved to 89% with RF shimming, possibly because the RF shimming routine does not consider safety constraints in very large patients. Additionally, mean flip angle decreased and CV increased with larger cross sectional body area, however, the RF shimming parameters did not correlate with cross sectional body area. RF shim power ratio correlated weakly with Right-Left/Anterior-Posterior ratio but phase difference did not, further substantiating the need for subject specific cardiac RF shimming. PMID:26436658

  7. Improvement in B1+ Homogeneity and Average Flip Angle Using Dual-Source Parallel RF Excitation for Cardiac MRI in Swine Hearts

    PubMed Central

    Schär, Michael; Ding, Haiyan; Herzka, Daniel A.

    2015-01-01

    Cardiac MRI may benefit from increased polarization at high magnetic field strength of 3 Tesla but is challenged by increased field inhomogeneity. Initial human studies have shown that the radiofrequency (RF) excitation field (B1+) used for signal excitation in the heart is both inhomogeneous and significantly lower than desired, potentially leading to image artifacts and biased quantitative measures. Recently, multi-channel transmit systems have been introduced allowing localized patient specific RF shimming based on acquired calibration B1+ maps. Some prior human studies have shown lower than desired mean flip angles in the hearts of large patients even after RF shimming. Here, 100 cardiac B1+ map pairs before and after RF shimming were acquired in 55 swine. The mean flip angle and the coefficient of variation (CV) of the flip angle in the heart were determined before and after RF shimming. Mean flip angle, CV, and RF shim values (power ratio and phase difference between the two transmit channels) were tested for correlation with cross sectional body area and the Right-Left/Anterior-Posterior ratio. RF shimming significantly increased the mean flip angle in swine heart from 74.4±6.7% (mean ± standard deviation) to 94.7±4.8% of the desired flip angle and significantly reduced CV from 0.11±0.03 to 0.07±0.02 (p<<1e-10 for both). These results compare well with several previous human studies, except that the mean flip angle in the human heart only improved to 89% with RF shimming, possibly because the RF shimming routine does not consider safety constraints in very large patients. Additionally, mean flip angle decreased and CV increased with larger cross sectional body area, however, the RF shimming parameters did not correlate with cross sectional body area. RF shim power ratio correlated weakly with Right-Left/Anterior-Posterior ratio but phase difference did not, further substantiating the need for subject specific cardiac RF shimming. PMID:26436658

  8. Effect of nitrogen flow rate on structural, morphological and optical properties of In-rich InxAl1-xN thin films grown by plasma-assisted dual source reactive evaporation

    NASA Astrophysics Data System (ADS)

    Alizadeh, M.; Ganesh, V.; Goh, B. T.; Dee, C. F.; Mohmad, A. R.; Rahman, S. A.

    2016-08-01

    In-rich InxAl1-xN thin films were deposited on quartz substrate at various nitrogen flow rates by plasma-assisted dual source reactive evaporation technique. The elemental composition, surface morphology, structural and optical properties of the films were investigated by X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), Raman spectroscopy, X-ray diffraction (XRD), UV-vis spectrophotometer and photoluminescence (PL) measurements. XPS results revealed that the indium composition (x) of the InxAl1-xN films increases from 0.90 to 0.97 as the nitrogen flow rate is increased from 40 to 100 sccm, respectively. FESEM images of the surface and cross-sectional microstructure of the InxAl1-xN films showed that by increasing the N2 flow rate, the grown particles are highly agglomerated. Raman and XRD results indicated that by increasing nitrogen flow rate the In-rich InxAl1-xN films tend to turn into amorphous state. It was found that band gap energy of the films are in the range of 0.90-1.17 eV which is desirable for the application of full spectra solar cells.

  9. Attenuation-based estimation of patient size for the purpose of size specific dose estimation in CT. Part II. Implementation on abdomen and thorax phantoms using cross sectional CT images and scanned projection radiograph images

    SciTech Connect

    Wang Jia; Christner, Jodie A.; Duan Xinhui; Leng Shuai; Yu Lifeng; McCollough, Cynthia H.

    2012-11-15

    Purpose: To estimate attenuation using cross sectional CT images and scanned projection radiograph (SPR) images in a series of thorax and abdomen phantoms. Methods: Attenuation was quantified in terms of a water cylinder with cross sectional area of A{sub w} from both the CT and SPR images of abdomen and thorax phantoms, where A{sub w} is the area of a water cylinder that would absorb the same dose as the specified phantom. SPR and axial CT images were acquired using a dual-source CT scanner operated at 120 kV in single-source mode. To use the SPR image for estimating A{sub w}, the pixel values of a SPR image were calibrated to physical water attenuation using a series of water phantoms. A{sub w} and the corresponding diameter D{sub w} were calculated using the derived attenuation-based methods (from either CT or SPR image). A{sub w} was also calculated using only geometrical dimensions of the phantoms (anterior-posterior and lateral dimensions or cross sectional area). Results: For abdomen phantoms, the geometry-based and attenuation-based methods gave similar results for D{sub w}. Using only geometric parameters, an overestimation of D{sub w} ranging from 4.3% to 21.5% was found for thorax phantoms. Results for D{sub w} using the CT image and SPR based methods agreed with each other within 4% on average in both thorax and abdomen phantoms. Conclusions: Either the cross sectional CT or SPR images can be used to estimate patient attenuation in CT. Both are more accurate than use of only geometrical information for the task of quantifying patient attenuation. The SPR based method requires calibration of SPR pixel values to physical water attenuation and this calibration would be best performed by the scanner manufacturer.

  10. Dynamic contrast-enhanced CT of head and neck tumors: perfusion measurements using a distributed-parameter tracer kinetic model. Initial results and comparison with deconvolution-based analysis

    NASA Astrophysics Data System (ADS)

    Bisdas, Sotirios; Konstantinou, George N.; Sherng Lee, Puor; Thng, Choon Hua; Wagenblast, Jens; Baghi, Mehran; San Koh, Tong

    2007-10-01

    The objective of this work was to evaluate the feasibility of a two-compartment distributed-parameter (DP) tracer kinetic model to generate functional images of several physiologic parameters from dynamic contrast-enhanced CT data obtained of patients with extracranial head and neck tumors and to compare the DP functional images to those obtained by deconvolution-based DCE-CT data analysis. We performed post-processing of DCE-CT studies, obtained from 15 patients with benign and malignant head and neck cancer. We introduced a DP model of the impulse residue function for a capillary-tissue exchange unit, which accounts for the processes of convective transport and capillary-tissue exchange. The calculated parametric maps represented blood flow (F), intravascular blood volume (v1), extravascular extracellular blood volume (v2), vascular transit time (t1), permeability-surface area product (PS), transfer ratios k12 and k21, and the fraction of extracted tracer (E). Based on the same regions of interest (ROI) analysis, we calculated the tumor blood flow (BF), blood volume (BV) and mean transit time (MTT) by using a modified deconvolution-based analysis taking into account the extravasation of the contrast agent for PS imaging. We compared the corresponding values by using Bland-Altman plot analysis. We outlined 73 ROIs including tumor sites, lymph nodes and normal tissue. The Bland-Altman plot analysis revealed that the two methods showed an accepted degree of agreement for blood flow, and, thus, can be used interchangeably for measuring this parameter. Slightly worse agreement was observed between v1 in the DP model and BV but even here the two tracer kinetic analyses can be used interchangeably. Under consideration of whether both techniques may be used interchangeably was the case of t1 and MTT, as well as for measurements of the PS values. The application of the proposed DP model is feasible in the clinical routine and it can be used interchangeably for measuring

  11. FDG PET/CT diagnosis of hepatic lymphoma mimicking focal fatty infiltration on CT

    PubMed Central

    Lin, Eugene; Lee, Marie; Agoff, Nicholas

    2010-01-01

    Areas of hypoattenuation in the liver which do not have mass effect are typically thought to represent focal fatty infiltration. Rarely, tumors can present without mass effect in the liver. We present a case in which areas of liver hypoattenuation which were initially thought to represent focal fatty infiltration on CT due to lack of mass effect had abnormal uptake on a FDG PET/CT exam; these areas were due to secondary hepatic involvement from non-Hodgkin’s lymphoma. PMID:22470725

  12. PET/CT Artifacts

    PubMed Central

    Blodgett, Todd M.; Mehta, Ajeet S.; Mehta, Amar S.; Laymon, Charles M.; Carney, Jonathan; Townsend, David W.

    2014-01-01

    There are several artifacts encountered in PET/CT imaging, including attenuation correction (AC) artifacts associated with using CT for attenuation correction. Several artifacts can mimic a 2-deoxy-2-[18F] fluoro-D-glucose (FDG) avid malignant lesions and therefore recognition of these artifacts is clinically relevant. Our goal was to identify and characterize these artifacts and also discuss some protocol variables that may affect image quality in PET/CT. PMID:21237418

  13. Practical CT dosimetry

    SciTech Connect

    Yoshizumi, T.T.; Suneja, S.K.; Teal, J.S. )

    1989-07-01

    The dose from computed tomography (CT) examinations is not negligible from a radiation safety standpoint. Occasionally, one encounters a case in which an unsuspected pregnant woman undergoes a CT pelvic scan, and the radiologist is required to estimate the dose to the fetus. This article addresses practical methods of CT dosimetry with a specific discussion on fetal dose estimate. Three methods are described: (1) the use of a dose chart, (2) the pencil ionization chamber method, and (3) the thermoluminescence dosimetry (TLD) method.

  14. CT findings in leukemia

    SciTech Connect

    Heiberg, E.; Wolverson, M.K.; Sundaram, M.; Shields, J.B.

    1984-12-01

    Review of 84 computed tomographic (CT) scans in leukemic patients demonstrate a wide spectrum of abnormalities. Findings caused by leukemia were lymphadenopathy, visceral enlargement, focal defects, and tissue infiltration. Hemorrhage was by far the most common complication and could usually be characterized on the noncontrast CT scan. The distinction between old hematomas, foci of infection, and leukemia infiltration could not be made with certainty without CT-guided aspiration. Unusual instances of sepsis, such as microabscesses of the liver and typhlitis, were seen.

  15. Segmentation-free empirical beam hardening correction for CT

    SciTech Connect

    Schüller, Sören; Sawall, Stefan; Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich; Kachelrieß, Marc

    2015-02-15

    proposed algorithm to be segmentation-free (sf). This deformation leads to a nonlinear accentuation of higher CT-values. The original volume and the gray value deformed volume are monochromatically forward projected. The two projection sets are then monomially combined and reconstructed to generate sets of basis volumes which are used for correction. This is done by maximization of the image flatness due to adding additionally a weighted sum of these basis images. sfEBHC is evaluated on polychromatic simulations, phantom measurements, and patient data. The raw data sets were acquired by a dual source spiral CT scanner, a digital volume tomograph, and a dual source micro CT. Different phantom and patient data were used to illustrate the performance and wide range of usability of sfEBHC across different scanning scenarios. The artifact correction capabilities are compared to EBHC. Results: All investigated cases show equal or improved image quality compared to the standard EBHC approach. The artifact correction is capable of correcting beam hardening artifacts for different scan parameters and scan scenarios. Conclusions: sfEBHC generates beam hardening-reduced images and is furthermore capable of dealing with images which are affected by high noise and strong artifacts. The algorithm can be used to recover structures which are hardly visible inside the beam hardening-affected regions.

  16. CT of Gastric Emergencies.

    PubMed

    Guniganti, Preethi; Bradenham, Courtney H; Raptis, Constantine; Menias, Christine O; Mellnick, Vincent M

    2015-01-01

    Abdominal pain, nausea, and vomiting are common presenting symptoms among adult patients seeking care in the emergency department, and, with the increased use of computed tomography (CT) to image patients with these complaints, radiologists will more frequently encounter a variety of emergent gastric pathologic conditions on CT studies. Familiarity with the CT appearance of emergent gastric conditions is important, as the clinical presentation is often nonspecific and the radiologist may be the first to recognize gastric disease as the cause of a patient's symptoms. Although endoscopy and barium fluoroscopy remain important tools for evaluating patients with suspected gastric disease in the outpatient setting, compared with CT these modalities enable less comprehensive evaluation of patients with nonspecific complaints and are less readily available in the acute setting. Endoscopy is also more invasive than CT and has greater potential risks. Although the mucosal detail of CT is relatively poor compared with barium fluoroscopy or endoscopy, CT can be used with the appropriate imaging protocols to identify inflammatory conditions of the stomach ranging from gastritis to peptic ulcer disease. In addition, CT can readily demonstrate the various complications of gastric disease, including perforation, obstruction, and hemorrhage, which may direct further clinical, endoscopic, or surgical management. We will review the normal anatomy of the stomach and discuss emergent gastric disease with a focus on the usual clinical presentation, typical imaging appearance, and differentiating features, as well as potential imaging pitfalls. PMID:26562229

  17. CT imaging of enhanced oil recovery experiments

    SciTech Connect

    Gall, B.L.

    1992-12-01

    X-ray computerized tomography (Cr) has been used to study fluid distributions during chemical enhanced oil recovery experiments. Four CT-monitored corefloods were conducted, and oil saturation distributions were calculated at various stages of the experiments. Results suggested that this technique could add significant information toward interpretation and evaluation of surfactant/polymer EOR recovery methods. CT-monitored tracer tests provided information about flow properties in the core samples. Nonuniform fluid advance could be observed, even in core that appeared uniform by visual inspection. Porosity distribution maps based on CT density calculations also showed the presence of different porosity layers that affected fluid movement through the cores. Several types of CT-monitored corefloods were conducted. Comparisons were made for CT-monitored corefloods using chemical systems that were highly successful in reducing residual oil saturations in laboratory experiments and less successful systems. Changes were made in surfactant formulation and in concentration of the mobility control polymer. Use of a poor mobility control agent failed to move oil that was not initially displaced by the injected surfactant solution; even when a good'' surfactant system was used. Use of a less favorable surfactant system with adequate mobility control could produce as much oil as the use of a good surfactant system with inadequate mobility control. The role of mobility control, therefore, becomes a critical parameter for successful application of chemical EOR. Continuation of efforts to use CT imaging in connection with chemical EOR evaluations is recommended.

  18. CT imaging of enhanced oil recovery experiments

    SciTech Connect

    Gall, B.L.

    1992-12-01

    X-ray computerized tomography (Cr) has been used to study fluid distributions during chemical enhanced oil recovery experiments. Four CT-monitored corefloods were conducted, and oil saturation distributions were calculated at various stages of the experiments. Results suggested that this technique could add significant information toward interpretation and evaluation of surfactant/polymer EOR recovery methods. CT-monitored tracer tests provided information about flow properties in the core samples. Nonuniform fluid advance could be observed, even in core that appeared uniform by visual inspection. Porosity distribution maps based on CT density calculations also showed the presence of different porosity layers that affected fluid movement through the cores. Several types of CT-monitored corefloods were conducted. Comparisons were made for CT-monitored corefloods using chemical systems that were highly successful in reducing residual oil saturations in laboratory experiments and less successful systems. Changes were made in surfactant formulation and in concentration of the mobility control polymer. Use of a poor mobility control agent failed to move oil that was not initially displaced by the injected surfactant solution; even when a ``good`` surfactant system was used. Use of a less favorable surfactant system with adequate mobility control could produce as much oil as the use of a good surfactant system with inadequate mobility control. The role of mobility control, therefore, becomes a critical parameter for successful application of chemical EOR. Continuation of efforts to use CT imaging in connection with chemical EOR evaluations is recommended.

  19. Predictive value of low tube voltage and dual-energy CT for successful shock wave lithotripsy: an in vitro study.

    PubMed

    Largo, Remo; Stolzmann, Paul; Fankhauser, Christian D; Poyet, Cédric; Wolfsgruber, Pirmin; Sulser, Tullio; Alkadhi, Hatem; Winklhofer, Sebastian

    2016-06-01

    This study investigates the capabilities of low tube voltage computed tomography (CT) and dual-energy CT (DECT) for predicting successful shock wave lithotripsy (SWL) of urinary stones in vitro. A total of 33 urinary calculi (six different chemical compositions; mean size 6 ± 3 mm) were scanned using a dual-source CT machine with single- (120 kVp) and dual-energy settings (80/150, 100/150 Sn kVp) resulting in six different datasets. The attenuation (Hounsfield Units) of calculi was measured on single-energy CT images and the dual-energy indices (DEIs) were calculated from DECT acquisitions. Calculi underwent SWL and the number of shock waves for successful disintegration was recorded. The prediction of required shock waves regarding stone attenuation/DEI was calculated using regression analysis (adjusted for stone size and composition) and the correlation between CT attenuation/DEI and the number of shock waves was assessed for all datasets. The median number of shock waves for successful stone disintegration was 72 (interquartile range 30-361). CT attenuation/DEI of stones was a significant, independent predictor (P < 0.01) for the number of required shock waves with the best prediction at 80 kVp (β estimate 0.576) (P < 0.05). Correlation coefficients between attenuation/DEI and the number of required shock waves ranged between ρ = 0.31 and 0.68 showing the best correlation at 80 kVp (P < 0.001). The attenuation of urinary stones at low tube voltage CT is the best predictor for successful stone disintegration, being independent of stone composition and size. DECT shows no added value for predicting the success of SWL. PMID:26391614

  20. 78 FR 9940 - Naugatuck Valley Surgical Center, Department of Saint Mary's Hospital, Waterbury, CT: Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ..., Waterbury, CT: Notice of Affirmative Determination, Regarding Application for Reconsideration By application..., 2013 (78 FR 771). The workers supply medical transcription services. The initial investigation...

  1. A modified VMAT adaptive radiotherapy for nasopharyngeal cancer patients based on CT-CT image fusion

    PubMed Central

    2013-01-01

    Background To investigate the feasibility and benefits of a modified adaptive radiotherapy (ART) by replanning in the initial CT (iCT) with new contours from a repeat CT (rCT) based on CT-CT image fusion for nasopharyngeal cancer (NPC) patients underwent volumetric modulated arc radiotherapy (VMAT). Materials and methods Nine NPC patients underwent VMAT treatment with a rCT at 23rd fraction were enrolled in this study. Dosimetric differences for replanning VMAT plans in the iCT and in the rCT were compared. Volumetric and dosimetric changes of gross tumor volume (GTV) and organs at risk (OARs) of this modified ART were also investigated. Results No dosimetric differences between replanning in the iCT and in the rCT were observed. The average volume of GTV decreased from 78.83 ± 38.42 cm3 in the iCT to 71.44 ± 37.46 cm3 in the rCT, but with no significant difference (p = 0.42).The average volume of the left and right parotid decreased from 19.91 ± 4.89 cm3 and 21.58 ± 6.16 cm3 in the iCT to 11.80 ± 2.79 cm3 and 13.29 ± 4.17 cm3 in the rCT (both p < 0.01), respectively. The volume of other OARs did not shrink very much. No significant differences on PTVGTV and PTVCTV coverage were observed for replanning with this modified ART. Compared to the initial plans, the average mean dose of the left and right parotid after re-optimization were decreased by 62.5 cGy (p = 0.05) and 67.3 cGy (p = 0.02), respectively, and the V5 (the volume receiving 5 Gy) of the left and right parotids were decreased by 7.8% (p = 0.01) and 11.2% (p = 0.001), respectively. There was no significant difference on the dose delivered to other OARs. Conclusion Patients with NPC undergoing VMAT have significant anatomic and dosimetric changes to parotids. Repeat CT as an anatomic changes reference and re-optimization in the iCT based on CT-CT image fusion was accurate enough to identify the volume changes and to ensure safe dose to

  2. Borne identity: CT imaging of vascular infections.

    PubMed

    Huang, Jessica S; Ho, Alexander S; Ahmed, Absar; Bhalla, Sanjeev; Menias, Christine O

    2011-08-01

    Vascular infections present in a multitude of ways with computed tomography (CT) aiding in the diagnosis of many of the uncommon vascular infections, which are equally dangerous and carry severe life-threatening consequences if untreated from a delay in diagnosis. This pictorial review aims to discuss and illustrate the CT findings of the following vascular infections including aortitis, mycotic aneurysms, infective endocarditis, septic thrombophlebitis in the chest and abdomen, and Kawasaki disease. Recognition and prompt diagnosis of these uncommon vascular infections are critical to the initiation of the appropriate management and therapy. PMID:21424803

  3. CT discrimination and image process on damage process of unsaturated compacted loess during triaxial creep

    NASA Astrophysics Data System (ADS)

    Li, Xiaojun; Jiang, Lihua; Tang, Yichuan

    2010-08-01

    The triaxial creep compression tests of compacted loess samples are conducted with a new set of modified triaxial compression apparatus. With the new apparatus, the loess sample can be scanned with CT machine at the same time during compression process. The different damage process of compacted loess sample is directly observed for the first time with CT images and CT numbers. The initiation mechanisms of loess micro-crack during different creep compression processes are analyzed with CT images.

  4. Spiral CT: vascular applications.

    PubMed

    Rankin, S C

    1998-08-01

    Recent technical advances in CT have renewed interest in the development of CT angiography (CTA). CT angiography is a minimally invasive method of visualising the vascular system and is becoming an alternative to conventional arteriography in some situations. Spiral technology allows a volume of data to be obtained on a single breath-hold with no respiratory misregistration. Fast machines with second or subsecond acquisition times mean the images are obtained while there are high circulating levels of contrast medium giving peak vascular opacification from a peripheral intravenous injection. Accurate timing will ensure either the arterial or venous phase is imaged. Multiple overlapping axial images can be obtained from the data set with no increase in radiation dose to the patient and from these scans computer generated multiplanar and 3D images are obtained which can be viewed from numerous angles. CT angiography can be performed more quickly, less invasively and at reduced cost compared to conventional angiography. PMID:9717621

  5. Thoracic spine CT scan

    MedlinePlus

    ... that slides into the center of the CT scanner. Once you are inside the scanner, the machine's x-ray beam rotates around you. (Modern "spiral" scanners can perform the exam without stopping.) A computer ...

  6. Head CT scan

    MedlinePlus

    ... that slides into the center of the CT scanner. While inside the scanner, the machine's x-ray beam rotates around you. ... breathing during the test, you should notify the scanner operator immediately. Scanners come with an intercom and ...

  7. Arm CT scan

    MedlinePlus

    CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... Mosby; 2013:chap 57. Shaw AS, Prokop M. Computed tomography. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  8. Heart CT scan

    MedlinePlus

    CAT scan - heart; Computed axial tomography scan - heart; Computed tomography scan - heart; Calcium scoring; Multi-detector CT scan - heart; Electron beam computed tomography - heart; Agaston score; Coronary calcium scan

  9. Sinus CT scan

    MedlinePlus

    CAT scan - sinus; Computed axial tomography scan - sinus; Computed tomography scan - sinus; CT scan - sinus ... 2014:chap 67. Shaw AS, Dixon AK. Multidetector computed tomography. In: Adam A, Dixon AK, eds. Grainger & Allison's ...

  10. Leg CT scan

    MedlinePlus

    CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... Saunders; 2012:chap 11. Shaw AS, Prokop M. Computed tomography. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  11. Pelvic CT scan

    MedlinePlus

    CAT scan - pelvis; Computed axial tomography scan - pelvis; Computed tomography scan - pelvis; CT scan - pelvis ... gov/pubmed/18381118 . Shaw AS, Dixon AK. Multidetector computed tomography. In: Grainger RC, Allison D, Adam, Dixon AK, ...

  12. Shoulder CT scan

    MedlinePlus

    CAT scan - shoulder; Computed axial tomography scan - shoulder; Computed tomography scan - shoulder; CT scan - shoulder ... Mosby; 2012:chap 57. Shaw AS, Prokop M. Computed tomography. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  13. Lumbar spine CT scan

    MedlinePlus

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower back ... stopping.) A computer creates separate images of the spine area, called slices. These images can be stored, ...

  14. Chest CT Scan

    MedlinePlus

    ... pictures to create a very detailed, three-dimensional (3D) model of organs. Sometimes, a substance called contrast dye is injected into a vein in your arm for the CT scan. This substance highlights areas in your chest, which ...

  15. CT Colonography (Virtual Colonoscopy)

    MedlinePlus

    ... into the colon using a hand-held squeeze bulb. Sometimes an electronic pump is used to deliver ... When you enter the CT scanner room, special light lines may be seen projected onto your body, ...

  16. CT Angiography (CTA)

    MedlinePlus

    ... CT Angiography? Angiography is a minimally invasive medical test that helps physicians diagnose and treat medical conditions. Angiography uses one of three imaging technologies and, in most cases, a contrast material injection ...

  17. Composite Synthesis Methodology Development: Nanocrvstalline SiC and Ti3SiC2 Alloys for Reactory Materials – Outline of initial synthesis capabilities M4CT-13PN0405034

    SciTech Connect

    Henager, Charles H.; Alvine, Kyle J.; Shin, Yongsoon; Jiang, Weilin; Nguyen, Ba Nghiep

    2013-03-29

    We have identified three initial preceramic polymers to help produce the SiC-based alloys for this project and have developed simple processing steps to make SiC-based alloy ceramics. The use of unfilled SMP-10 (Polycarbosilane) or SMP-877 (Methyl-Polycarbosilane) is not feasible due to the large mass losses that occur during pyrolysis. The pre-gelling steps below save time when those two polymers are filled with powders. The use of SL-MS30 provides us with a SiC-filled polymer that can be used to test out the CNT mats without further complications due to other powders.

  18. Spectral deblurring: an algorithm for high-resolution, hybrid spectral CT

    NASA Astrophysics Data System (ADS)

    Clark, D. P.; Badea, C. T.

    2015-03-01

    We are developing a hybrid, dual-source micro-CT system based on the combined use of an energy integrating (EID) x-ray detector and a photon counting x-ray detector (PCXD). Due to their superior spectral resolving power, PCXDs have the potential to reduce radiation dose and to enable functional and molecular imaging with CT. In most current PCXDs, however, spatial resolution and field of view are limited by hardware development and charge sharing effects. To address these problems, we propose spectral deblurring—a relatively simple algorithm for increasing the spatial resolution of hybrid, spectral CT data. At the heart of the algorithm is the assumption that the underlying CT data is piecewise constant, enabling robust recovery in the presence of noise and spatial blur by enforcing gradient sparsity. After describing the proposed algorithm, we summarize simulation experiments which assess the trade-offs between spatial resolution, contrast, and material decomposition accuracy given realistic levels of noise. When the spatial resolution between imaging chains has a ratio of 5:1, spectral deblurring results in a 52% increase in the material decomposition accuracy of iodine, gadolinium, barium, and water vs. linear interpolation. For a ratio of 10:1, a realistic representation of our hybrid imaging system, a 52% improvement was also seen. Overall, we conclude that the performance breaks down around high frequency and low contrast structures. Following the simulation experiments, we apply the algorithm to ex vivo data acquired in a mouse injected with an iodinated contrast agent and surrounded by vials of iodine, gadolinium, barium, and water.

  19. Phantom based evaluation of CT to CBCT image registration for proton therapy dose recalculation

    NASA Astrophysics Data System (ADS)

    Landry, Guillaume; Dedes, George; Zöllner, Christoph; Handrack, Josefine; Janssens, Guillaume; Orban de Xivry, Jonathan; Reiner, Michael; Paganelli, Chiara; Riboldi, Marco; Kamp, Florian; Söhn, Matthias; Wilkens, Jan J.; Baroni, Guido; Belka, Claus; Parodi, Katia

    2015-01-01

    The ability to perform dose recalculation on the anatomy of the day is important in the context of adaptive proton therapy. The objective of this study was to investigate the use of deformable image registration (DIR) and cone beam CT (CBCT) imaging to generate the daily stopping power distribution of the patient. We investigated the deformation of the planning CT scan (pCT) onto daily CBCT images to generate a virtual CT (vCT) using a deformable phantom designed for the head and neck (H & N) region. The phantom was imaged at a planning CT scanner in planning configuration, yielding a pCT and in deformed, treatment day configuration, yielding a reference CT (refCT). The treatment day configuration was additionally scanned at a CBCT scanner. A Morphons DIR algorithm was used to generate a vCT. The accuracy of the vCT was evaluated by comparison to the refCT in terms of corresponding features as identified by an adaptive scale invariant feature transform (aSIFT) algorithm. Additionally, the vCT CT numbers were compared to those of the refCT using both profiles and regions of interest and the volumes and overlap (DICE coefficients) of various phantom structures were compared. The water equivalent thickness (WET) of the vCT, refCT and pCT were also compared to evaluate proton range differences. Proton dose distributions from the same initial fluence were calculated on the refCT, vCT and pCT and compared in terms of proton range. The method was tested on a clinical dataset using a replanning CT scan acquired close in time to a CBCT scan as reference using the WET evaluation. Results from the aSIFT investigation suggest a deformation accuracy of 2-3 mm. The use of the Morphon algorithm did not distort CT number intensity in uniform regions and WET differences between vCT and refCT were of the order of 2% of the proton range. This result was confirmed by proton dose calculations. The patient results were consistent with phantom observations. In conclusion, our phantom

  20. CT findings in ulcerative, granulomatous, and indeterminate colitis

    SciTech Connect

    Gore, R.M.; Marn, C.S.; Kirby, D.F.; Vogelzang, R.L.; Neiman, H.L.

    1984-08-01

    Eight patients with ulcerative colitis, three with colitis indeterminate, and 15 patients with Crohn disease were studied by computed tomography (CT) to establish CT criteria for each disorder in hopes of providing a new diagnostic perspective useful in the radiographic evaluation of inflammatory colitis. The CT findings in ulcerative colitis included thickening of the colon wall, which was characterized by inhomogeneous attenuation and a target appearance of the rectum, and proliferation of perirectal fat. Bowel wall thickening with homogeneous attenuation, fistula and abscess formation, and mesenteric abnormalities were observed in patients with Crohn colitis. Patients with colitis indeterminate showed colonic changes on CT observed in both disorders. Initial experience suggests that CT can differentiate patients with well established ulcerative and Crohn colitis.

  1. Spatio-temporal filtration of dynamic CT data using diffusion filters

    NASA Astrophysics Data System (ADS)

    Bruder, H.; Raupach, R.; Klotz, E.; Stierstorfer, K.; Flohr, T.

    2009-02-01

    We present a method for spatio-temporal filtration of dynamic CT data, to increase the signal-to-noise ratio (SNR) of image data at the same time maintaining image quality, in particular spatial and temporal sharpness of the images. Alternatively, the radiation dose applied to the patient can be reduced at the same time maintaining the noise level and the image sharpness. In contrast to classical methods, which generally operate on the three spatial dimensions of image data, noise statistics is improved by extending the filtration to the temporal dimension. Our approach is based on nonlinear and anisotropic diffusion filters, which are based on a model of heat diffusion adapted to medical CT data. Bilateral filters are a special class of diffusion filters, which do not need iteration to reach a convergence image, but represent the fixed point of a dedicated diffusion filter. Spatio-temporal, anisotropic bilateral filters are developed and applied to dynamic CT image data. The potential was evaluated using data from perfusion CT and cardiac dual source CT (DSCT) data, respectively. It was shown, that in perfusion CT, SNR can be improved by a factor of 4 at the same radiation dose. On basis of clinical data it was shown, that alternatively the radiation dose to the patient can be reduced by a factor of at least 2. A more accurate evaluation of the perfusion parameters blood flow, blood volume and time-to-peak is supported. In DSCT noise statistics can be improved using more projection data than needed for image reconstruction, however, as a consequence the temporal resolution is significantly impaired. Due to the anisotropy of the spatio-temporal bilateral filter temporal contrast edges between adjacent time samples are preserved, at the same time substantially smoothing image data in homogeneous regions. Also temporal contrast edges are preserved, maintaining the very high temporal resolution of DSCT acquisitions (~ 80 ms). CT examinations of the heart require

  2. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M.; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F.; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L.; McCollough, Cynthia H.

    2016-02-01

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  3. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

    PubMed Central

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H

    2016-01-01

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  4. Paget sarcoma of the pelvic bone with widespread metastatic disease on radiography, CT, MRI, and 18F-FDG PET/CT with pathologic correlation.

    PubMed

    Davis, Michael A; Scalcione, Luke R; Gimber, Lana H; Thompson, Rebecca B; Avery, Ryan J; Taljanovic, Mihra S

    2014-04-01

    We report a case of Paget sarcoma of the left superior pubic ramus and disseminated metastatic disease in a 70-year-old man. Paget disease of the left hemipelvis with malignant degeneration in the region of the left superior pubic ramus was initially diagnosed on radiographs. Subsequent CT, MRI, PET/CT imaging, and CT-guided biopsy confirmed the diagnosis and showed extensive left-sided pelvic and abdominal lymphadenopathy with widespread metastatic disease to liver, spleen, and lungs. PMID:24566398

  5. Dose management in CT facility

    PubMed Central

    Tsapaki, V; Rehani, M

    2007-01-01

    Computed Tomography (CT) examinations have rapidly increased in number over the last few years due to recent advances such as the spiral, multidetector-row, CT fluoroscopy and Positron Emission Tomography (PET)-CT technology. This has resulted in a large increase in collective radiation dose as reported by many international organisations. It is also stated that frequently, image quality in CT exceeds the level required for confident diagnosis. This inevitably results in patient radiation doses that are higher than actually required, as also stressed by the US Food and Drug Administration (FDA) regarding the CT exposure of paediatric and small adult patients. However, the wide range in exposure parameters reported, as well as the different CT applications reveal the difficulty in standardising CT procedures. The purpose of this paper is to review the basic CT principles, outline the recent technological advances and their impact in patient radiation dose and finally suggest methods of radiation dose optimisation. PMID:21614279

  6. Your Radiologist Explains CT Colonography

    MedlinePlus Videos and Cool Tools

    ... About this Site RadiologyInfo.org is produced by: Image/Video Gallery Your Radiologist Explains CT Colonography (Virtual ... to allow for inflation with air while CT images are being taken. If you’re scheduled for ...

  7. Comparison of organ-specific-radiation dose levels between 70 kVp perfusion CT and standard tri-phasic liver CT in patients with hepatocellular carcinoma using a Monte-Carlo-Simulation-based analysis platform

    PubMed Central

    Gawlitza, J.; Haubenreisser, H.; Meyer, M.; Hagelstein, C.; Sudarski, S.; Schoenberg, S.O.; Henzler, T.

    2016-01-01

    Purpose The aim of this study was to systematically compare organ-specific-radiation dose levels between a radiation dose optimized perfusion CT (dVPCT) protocol of the liver and a tri-phasic standard CT protocol of the liver using a Monte-Carlo-Simulation-based analysis platform. Methods and materials The complete CT data of 52 patients (41 males; mean age 65 ± 12) with suspected HCC that underwent dVPCT examinations on a 3rd generation dual-source CT (Somatom Force, Siemens) with a dose optimized tube voltage of 70 kVp or 80 kVp were exported to an analysis platform (Radimetrics, Bayer). The dVPCT studies were matched with a reference group of 50 patients (35 males; mean age 65 ± 14) that underwent standard tri-phasic CT (sCT) examinations of the liver with 130 kVp using the calculated water-equivalent-diameter of the patients. The analysis platform was used for the calculation of the organ-specific effective dose (ED) as well as global radiation-dose parameters (ICRP103). Results The organ-specific ED of the dVPCT protocol was statistically significantly lower when compared to the sCT in 14 of 21, and noninferior in a total of 18 of 21 examined items (all p < 0.05). The EDs of the dVPCT examinations were especially in the dose sensitive organs such as the red marrow (17.3 mSv vs 24.6 mSv, p = < 0.0001) and the liver (33.3 mSv vs 46.9 mSv, p = 0.0003) lower when compared to the sCT. Conclusion Our results suggest that dVPCT performed at 70 or 80 kVp compares favorably to sCT performed with 130 kVp with regard to effective organ dose levels, especially in dose sensitive organs, while providing additional functional information which is of paramount importance in patients undergoing novel targeted therapies. PMID:27200404

  8. Imaging performance in differential phase contrast CT compared with the conventional CT-noise equivalent quanta NEQ(k)

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Yang, Yi; Tang, Shaojie

    2012-03-01

    The grating-based x-ray differential phase contrast (DPC) CT is emerging as a new technology with the potential for extensive preclinical and clinical applications. In general, the performance of an imaging system is jointly determined by its signal property (modulation transfer function-MTF(k)) and noise property (noise power spectrum-NPS(k)), which is characterized by its spectrum of noise equivalent quanta. As reported by us previously, owing to an adoption of the Hilbert filtering for image reconstruction in the fashion of filtered backprojection (FBP), the noise property of DPC-CT characterized by its NPS(k) differs drastically from that of the conventional attenuation-based CT (1/|k| trait vs. |k| trait). In this work, via system analysis, modeling and simulated phantom study, we initially investigate the signal property of DPC-CT characterized by its MTF(k) and compare it with that of the conventional CT. In addition, we investigate the DPC-CT's spectrum of noise equivalent quanta NEQ(k) - the most important figure of merit (FOM) in the assessment of an imaging system's performance - by taking the MTF(k) and NPS(k) jointly into account. Through such a thorough investigation into both the signal and noise properties, the imaging performance of DPC-CT and its potential over the conventional attenuation-based CT can be fully understood and appreciated.

  9. Pelvic CT scan

    MedlinePlus

    ... that slides into the center of the CT scanner. Once you are inside the scanner, the machine's x-ray beam rotates around you. ... weight limit. Too much weight can damage the scanner's working parts. You will be asked to remove ...

  10. PET/CT imaging artifacts.

    PubMed

    Sureshbabu, Waheeda; Mawlawi, Osama

    2005-09-01

    The purpose of this paper is to introduce the principles of PET/CT imaging and describe the artifacts associated with it. PET/CT is a new imaging modality that integrates functional (PET) and structural (CT) information into a single scanning session, allowing excellent fusion of the PET and CT images and thus improving lesion localization and interpretation accuracy. Moreover, the CT data can also be used for attenuation correction, ultimately leading to high patient throughput. These combined advantages have rendered PET/CT a preferred imaging modality over dedicated PET. Although PET/CT imaging offers many advantages, this dual-modality imaging also poses some challenges. CT-based attenuation correction can induce artifacts and quantitative errors that can affect the PET emission images. For instance, the use of contrast medium and the presence of metallic implants can be associated with focal radiotracer uptake. Furthermore, the patient's breathing can introduce mismatches between the CT attenuation map and the PET emission data, and the discrepancy between the CT and PET fields of view can lead to truncation artifacts. After reading this article, the technologist should be able to describe the principles of PET/CT imaging, identify at least 3 types of image artifacts, and describe the differences between PET/CT artifacts of different causes: metallic implants, respiratory motion, contrast medium, and truncation. PMID:16145223

  11. Threshold adjusted calcium scoring using CT is less susceptible to cardiac motion and more accurate.

    PubMed

    Groen, J M; Dijkstra, H; Greuter, M J W; Oudkerk, M

    2009-02-01

    The purpose of this paper is to investigate calcium scoring on computed tomography (CT) using an adjusted threshold depending on the maximum Hounsfield value within the calcification (HU(peak)). The volume of 19 calcifications was retrospectively determined on 64-slice multidetector CT and dual source CT (DSCT) at different thresholds and the threshold associated with the physical volume was determined. In addition, approximately 10 000 computer simulations were done simulating the same process for calcifications with mixed density. Using these data a relation between the HU(peak) and the threshold could be established. Hereafter, this relation was assessed by scanning six calcifications in a phantom at 40-110 beats per minute using DSCT. The influence of motion was determined and the measured calcium scores were compared to the physical volumes and mass. A positive linear correlation was found between the scoring threshold and the HU(peak) of the calcifications both for the phantom measurements as for the computer simulations. Using this relation the individual threshold for each calcification could be calculated. Calcium scores of the moving calcifications determined with an adjusted threshold were approximately 30% less susceptible to cardiac motion compared to standard calcium scoring. Furthermore, these scores approximated the physical volume and mass at least 10% better than the standard calcium scores. The threshold in calcium scoring should be adjusted for each individual calcification based on the HU(peak) of the calcification. Calcium scoring using an adjusted threshold is less susceptible to cardiac motion and more accurate compared to the physical values. PMID:19291982

  12. Seventh-generation CT

    NASA Astrophysics Data System (ADS)

    Besson, G. M.

    2016-03-01

    A new dual-drum CT system architecture has been recently introduced with the potential to achieve significantly higher temporal resolution than is currently possible in medical imaging CT. The concept relies only on known technologies; in particular rotation speeds several times higher than what is possible today could be achieved leveraging typical x-ray tube designs and capabilities. However, the architecture lends itself to the development of a new arrangement of x-ray sources in a toroidal vacuum envelope containing a rotating cathode ring and a (optionally rotating) shared anode ring to potentially obtain increased individual beam power as well as increase total exposure per rotation. The new x-ray source sub-system design builds on previously described concepts and could make the provision of multiple conventional high-power cathodes in a CT system practical by distributing the anode target between the cathodes. In particular, relying on known magnetic-levitation technologies, it is in principle possible to more than double the relative speed of the electron-beam with respect to the target, thus potentially leading to significant individual beam power increases as compared to today's state-of-the-art. In one embodiment, the proposed design can be naturally leveraged by the dual-drum CT concept previously described to alleviate the problem of arranging a number of conventional rotating anode-stem x-ray tubes and power conditioners on the limited space of a CT gantry. In another embodiment, a system with three cathodes is suggested leveraging the architecture previously proposed by Franke.

  13. Regularized CT reconstruction on unstructured grid

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Lu, Yao; Ma, Xiangyuan; Xu, Yuesheng

    2016-04-01

    Computed tomography (CT) is an ill-posed problem. Reconstruction on unstructured grid reduces the computational cost and alleviates the ill-posedness by decreasing the dimension of the solution space. However, there was no systematic study on edge-preserving regularization methods for CT reconstruction on unstructured grid. In this work, we propose a novel regularization method for CT reconstruction on unstructured grid, such as triangular or tetrahedral meshes generated from the initial images reconstructed via analysis reconstruction method (e.g., filtered back-projection). The proposed regularization method is modeled as a three-term optimization problem, containing a weighted least square fidelity term motivated by the simultaneous algebraic reconstruction technique (SART). The related cost function contains two non-differentiable terms, which bring difficulty to the development of the fast solver. A fixed-point proximity algorithm with SART is developed for solving the related optimization problem, and accelerating the convergence. Finally, we compare the regularized CT reconstruction method to SART with different regularization methods. Numerical experiments demonstrated that the proposed regularization method on unstructured grid is effective to suppress noise and preserve edge features.

  14. Pitfalls in PET/CT imaging

    NASA Astrophysics Data System (ADS)

    Rondogianni, Ph; Papathanasiou, N.; Giannopoulou, Ch

    2011-09-01

    PET with 2-[fluorine 18] fluoro-2-deoxy-d-glucose (FDG), has been a clinical tool for the evaluation of various cancers providing valuable metabolic information clinically helpful in the diagnosis, initial staging, therapy monitoring and restaging. However, FDG is not specific for neoplastic processes. Unless anatomic correlation is available to delineate normal structures, pathologic sites of FDG accumulation can easily be confused with normal physiological uptake, leading to false-positive or false-negative findings. Coregistration of PET scans (functional and morphologic information) with computed tomographic (CT) scans (anatomic information) using a combined PET-CT scanner improves the overall sensitivity and specificity of information provided by PET or CT alone. In this paper, we discuss the probable causes of false negative images and pitfalls due to technical reasons, inflammatory processes or benign lesions as well as the utility of PET-CT in differentiating malignant from inflammatory and benign processes, since in some cases such differentiation cannot be made, with certainty, using FDG PET alone.

  15. Research Initiatives

    Cancer.gov

    This page provides detailed information about currently funded RFA initiatives both led by DCCPS, and those led by other NIH Institutes and Centers (I/Cs) that include DCCPS as a partner. Each initiative includes a table of funded grants and a map that shows the location of funded institutions.

  16. Temporal and spectral imaging with micro-CT

    SciTech Connect

    Johnston, Samuel M.; Johnson, G. Allan; Badea, Cristian T.

    2012-08-15

    Purpose: Micro-CT is widely used for small animal imaging in preclinical studies of cardiopulmonary disease, but further development is needed to improve spatial resolution, temporal resolution, and material contrast. We present a technique for visualizing the changing distribution of iodine in the cardiac cycle with dual source micro-CT. Methods: The approach entails a retrospectively gated dual energy scan with optimized filters and voltages, and a series of computational operations to reconstruct the data. Projection interpolation and five-dimensional bilateral filtration (three spatial dimensions + time + energy) are used to reduce noise and artifacts associated with retrospective gating. We reconstruct separate volumes corresponding to different cardiac phases and apply a linear transformation to decompose these volumes into components representing concentrations of water and iodine. Since the resulting material images are still compromised by noise, we improve their quality in an iterative process that minimizes the discrepancy between the original acquired projections and the projections predicted by the reconstructed volumes. The values in the voxels of each of the reconstructed volumes represent the coefficients of linear combinations of basis functions over time and energy. We have implemented the reconstruction algorithm on a graphics processing unit (GPU) with CUDA. We tested the utility of the technique in simulations and applied the technique in an in vivo scan of a C57BL/6 mouse injected with blood pool contrast agent at a dose of 0.01 ml/g body weight. Postreconstruction, at each cardiac phase in the iodine images, we segmented the left ventricle and computed its volume. Using the maximum and minimum volumes in the left ventricle, we calculated the stroke volume, the ejection fraction, and the cardiac output. Results: Our proposed method produces five-dimensional volumetric images that distinguish different materials at different points in time, and

  17. CT Chest with IV Contrast Compared with CT Angiography after Blunt Trauma.

    PubMed

    Zaw, Andrea A; Stewart, Donovan; Murry, Jason S; Hoang, David M; Sun, Beatrice; Ashrafian, Sogol; Hotz, Heidi; Chung, Rex; Margulies, Daniel R; Ley, Eric J

    2016-01-01

    Blunt aortic injury (BAI) after chest trauma is a potentially lethal condition. Rapid diagnosis is important to appropriately treat patients. The purpose of this study was to compare CT with intravenous contrast (CTI) to CT with angiography (CTA) in the initial evaluation of blunt chest trauma patients. This was a retrospective review of all blunt trauma patients who received a CTI or CTA during the initial evaluation at an urban Level I trauma center from January 1, 2010 to December 31, 2013. Two-hundred and eighty-one trauma patients met inclusion criteria. Most, 167/281 (59%) received CTI and 114/281 (41%) received CTA. There were no differences between cohorts in age, gender, initial heart rate, systolic blood pressure, and Glasgow Coma Scale in emergency department. Mortality rates were similar for CTI and CTA (4% vs 8%, P = 0.20). CTI identified an injury in 54 per cent compared with 46 per cent in CTA (P = 0.05). Overall, 2 per cent of patients had BAI with similar rates in CTI and CTA (2% vs 2%, P = 0.80). BAI was not missed using either CTI or CTA. Trauma patients studied with CTI had similar diagnostic findings as CTA. CTI may be preferable to CTA during the initial assessment for possible BAI because of a single contrast injection for whole body CT. PMID:26802856

  18. Concha bullosa: CT evaluation.

    PubMed

    Zinreich, S J; Mattox, D E; Kennedy, D W; Chisholm, H L; Diffley, D M; Rosenbaum, A E

    1988-01-01

    Aeration of the middle turbinate, termed "concha bullosa," is a common anatomical variant of intranasal anatomy. Of 320 patients evaluated for sinus disease with coronal CT, 34% had concha bullosa on at least one side. The overall incidence of inflammatory disease in the ostiomeatal complex in these symptomatic patients was not different between those with and without concha bullosa. However, there were many cases in which an abnormally large middle turbinate appeared to obstruct the ostiomeatal complex causing secondary infection of the ethmoid, frontal, and maxillary sinuses. Obstruction of drainage of the concha bullosa itself can lead to mucocele formation. Furthermore, the presence of a concha bullosa has important implications for the technique of endoscopic surgery used in the management of the sinus disease. The anatomy, pathophysiology, and CT findings in patients with concha bullosa are reviewed. PMID:3170840

  19. Quantitative micro-CT

    NASA Astrophysics Data System (ADS)

    Prevrhal, Sven

    2005-09-01

    Micro-CT for bone structural analysis has progressed from an in-vitro laboratory technique to devices for in-vivo assessment of small animals and the peripheral human skeleton. Currently, topological parameters of bone architecture are the primary goals of analysis. Additional measurement of the density or degree of mineralization (DMB) of trabecular and cortical bone at the microscopic level is desirable to study effects of disease and treatment progress. This information is not commonly extracted because of the challenges of accurate measurement and calibration at the tissue level. To assess the accuracy of micro-CT DMB measurements in a realistic but controlled situation, we prepared bone-mimicking watery solutions at concentrations of 100 to 600 mg/cm3 K2PO4H and scanned them with micro-CT, both in glass vials and microcapillary tubes with inner diameters of 50, 100 and 150 μm to simulate trabecular thickness. Values of the linear attenuation coefficients μ in the reconstructed image are commonly affected by beam hardening effects for larger samples and by partial volume effects for small volumes. We implemented an iterative reconstruction technique to reduce beam hardening. Partial voluming was sought to be reduced by excluding voxels near the tube wall. With these two measures, improvement on the constancy of the reconstructed voxel values and linearity with solution concentration could be observed to over 90% accuracy. However, since the expected change in real bone is small more measurements are needed to confirm that micro-CT can indeed be adapted to assess bone mineralization at the tissue level.

  20. Technical Note: Relation between dual-energy subtraction of CT images for electron density calibration and virtual monochromatic imaging

    SciTech Connect

    Saito, Masatoshi

    2015-07-15

    Purpose: For accurate tissue inhomogeneity correction in radiotherapy treatment planning, the author previously proposed a simple conversion of the energy-subtracted computed tomography (CT) number to an electron density (ΔHU–ρ{sub e} conversion), which provides a single linear relationship between ΔHU and ρ{sub e} over a wide ρ{sub e} range. The purpose of the present study was to reveal the relation between the ΔHU image for ρ{sub e} calibration and a virtually monochromatic CT image by performing numerical analyses based on the basis material decomposition in dual-energy CT. Methods: The author determined the weighting factor, α{sub 0}, of the ΔHU–ρ{sub e} conversion through numerical analyses of the International Commission on Radiation Units and Measurements Report-46 human body tissues using their attenuation coefficients and given ρ{sub e} values. Another weighting factor, α(E), for synthesizing a virtual monochromatic CT image from high- and low-kV CT images, was also calculated in the energy range of 0.03 < E < 5 MeV, assuming that cortical bone and water were the basis materials. The mass attenuation coefficients for these materials were obtained using the XCOM photon cross sections database. The effective x-ray energies used to calculate the attenuation were chosen to imitate a dual-source CT scanner operated at 80–140 and 100–140 kV/Sn. Results: The determined α{sub 0} values were 0.455 for 80–140 kV/Sn and 0.743 for 100–140 kV/Sn. These values coincided almost perfectly with the respective maximal points of the calculated α(E) curves located at approximately 1 MeV, in which the photon-matter interaction in human body tissues is exclusively the incoherent (Compton) scattering. Conclusions: The ΔHU image could be regarded substantially as a CT image acquired with monoenergetic 1-MeV photons, which provides a linear relationship between CT numbers and electron densities.

  1. CT number variations in micro CT imaging systems

    NASA Astrophysics Data System (ADS)

    Tu, Shu-Ju; Hsieh, Hui-Ling; Chao, Tsi-Chian

    2008-03-01

    CT numbers can be directly computed from the linear attenuation coefficients in the reconstructed CT images and are correlated to the electron densities of the chemical elements with specific atomic numbers. However, the computed CT numbers can be varied when different imaging parameters are used. Phantoms composed of clinically relevant and tissue-equivalent materials (lung, bone, muscle, and adipose) were scanned with a commercial circular-scanning micro CT imager. This imaging system is composed with a micro-focused x-ray tube and charged-coupled device (CCD) camera as the detector. The mean CT numbers and the corresponding standard deviations in terms of Hounsfield units were then computed from a pre-defined region of interest located within the reconstructed volumetric images. The variations of CT number were then identified from a series of imaging parameters. Those parameters include imaging acquisition modes (e.g., the metal filter used in the x-ray tube), reconstruction methods (e.g., Feldkamp and iterative algorithm), and post-image processing techniques (e.g., ring artifact, beam-hardening artifact, and smoothing processing). These variations of CT numbers are useful and important in tissue characterization, quantitative bone structure analysis, bone marrow density evaluation, and Monte Carlo dose calculations for the pilot small animal study when micro CT imaging systems are employed. Also these variations can be used as the quantification for the performance of the micro CT imaging systems.

  2. Sci—Thur PM: Imaging — 06: Canada's National Computed Tomography (CT) Survey

    SciTech Connect

    Wardlaw, GM; Martel, N; Blackler, W; Asselin, J-F

    2014-08-15

    The value of computed tomography (CT) in medical imaging is reflected in its' increased use and availability since the early 1990's; however, given CT's relatively larger exposures (vs. planar x-ray) greater care must be taken to ensure that CT procedures are optimised in terms of providing the smallest dose possible while maintaining sufficient diagnostic image quality. The development of CT Diagnostic Reference Levels (DRLs) supports this process. DRLs have been suggested/supported by international/national bodies since the early 1990's and widely adopted elsewhere, but not on a national basis in Canada. Essentially, CT DRLs provide guidance on what is considered good practice for common CT exams, but require a representative sample of CT examination data to make any recommendations. Canada's National CT Survey project, in collaboration with provincial/territorial authorities, has collected a large national sample of CT practice data for 7 common examinations (with associated clinical indications) of both adult and pediatric patients. Following completion of data entry into a common database, a survey summary report and recommendations will be made on CT DRLs from this data. It is hoped that these can then be used by local regions to promote CT practice optimisation and support any dose reduction initiatives.

  3. CT Chest with IV Contrast Compared with CT Angiography after Blunt Trauma.

    PubMed

    Zaw, Andrea A; Stewart, Donovan; Murry, Jason S; Hoang, David M; Sun, Beatrice; Ashrafian, Sogol; Hotz, Heidi; Chung, Rex; Margulies, Daniel R; Ley, Eric J

    2015-10-01

    Blunt aortic injury (BAI) after chest trauma is a potentially lethal condition that requires rapid diagnosis for appropriate treatment. We compared CT with IV contrast (CTI) with CT with angiography (CTA) during the initial phase of care at an urban Level I trauma center from January 1, 2010 to December 31, 2013. Overall, 281 patients met inclusion criteria with 167 (59%) CTI and 114 (41%) CTA. There were no differences between cohorts in age, gender, initial heart rate, systolic blood pressure, and Glasgow Coma Scale. Mortality rates were similar for CTI and CTA (4% vs 8%, P = 0.20). CTI identified any chest injury in 54 per cent of patients compared with 46 per cent with CTA (P = 0.05). The rate of BAI was similar with CTI and CTA (2% vs 2%, P = 0.80), and neither modality was falsely negative. We conclude that CTI and CTA are similar at evaluating trauma patients for BAI, although CTI may be preferable during the initial assessment phase because the contrast injection may be combined with abdominal scanning and image time is reduced when whole-body CT is required. PMID:26463312

  4. Chronic osteomyelitis examined by CT

    SciTech Connect

    Wing, V.W.; Jeffrey, R.B. Jr.; Federle, M.P.; Helms, C.A.; Trafton, P.

    1985-01-01

    CT examination of 25 patients who had acute exacerbations of chronic osteomyelitis allowed for the correct identification of single or multiple sequestra in 14 surgical patients. Plain radiographs were equivocal for sequestra in seven of these patients, because the sequestra were too small or because diffuse bony sclerosis was present. CT also demonstrated a foreign body and five soft tissue abscesses not suspected on the basis of plain radiographs. CT studies, which helped guide the operative approach, were also useful in treating those patients whose plain radiographs were positive for sequestra. The authors review the potential role of CT in evaluating patients with chronic osteomyelitis.

  5. CT findings of atrial myxoma

    SciTech Connect

    Tsuchiya, F.; Kohno, A.; Saitoh, R.; Shigeta, A.

    1984-04-01

    The computed tomographic (CT) appearance of six atrial myxomas was analyzed. Five of the myxomas were located in the left atrium and one was in the right atrium. The margin of the myxoma was at least slightly lobulated in five cases and the content was inhomogeneous in all. Calcification was demonstrated in three cases. The site of attachment of the myxoma was demonstrated by CT to be the arial septum in all cases. The CT finding correlated well with the operative findings. It is concluded that it is possible with CT to diagnose atrial myxoma by the location and nature of the intracardiac mass and to differentiate it from thrombus.

  6. Nano-CT Scanning

    NASA Astrophysics Data System (ADS)

    Masschaele, B.

    Tomography is a non-destructive research technique which allows investigating the internal structure of objects in 3D . The "centre for X-ray tomography (UGCT)" of the Ghent University has developed a modular X-ray micro/nanoCT scanner which is used for multi-disciplinary research. In this paper we give an overview of the different components of the UGCT scanner with special attention to the X-ray imaging detectors. Also the software tools for data reconstruction and analysis and some obtained results are discussed.

  7. Serial CT Findings of Paragonimus Infested Dogs and the Micro-CT Findings of the Worm Cysts

    PubMed Central

    Lee, Chang Hyun; Goo, Jin Mo; Lee, Hyun Ju; Hong, Sung-Tae; Shen, Cheng Hua; Chung, Doo Hyun; Son, Kyu Ri; Chang, Jung Min; Eo, Hong

    2007-01-01

    Objective To investigate the serial CT findings of Paragonimus westermani infected dogs and the microscopic structures of the worm cysts using Micro-CT. Materials and Methods This study was approved by the committee on animal research at our institution. Fifteen dogs infected with P. westermani underwent serial contrast-enhanced CT scans at pre-infection, after 10 days of infection, and monthly thereafter until six months for determining the radiologic-pathologic correlation. Three dogs (one dog each time) were sacrificed at 1, 3 and 6 months, respectively. After fixation of the lungs, both multi-detector CT and Micro-CT were performed for examining the worm cysts. Results The initial findings were pleural effusion and/or subpleural ground-glass opacities or linear opacities at day 10. At day 30, subpleural and peribronchial nodules appeared with hydropneumothorax and abdominal or chest wall air bubbles. Cavitary change and bronchial dilatation began to be seen on CT scan at day 30 and this was mostly seen together with mediastinal lymphadenopathy at day 60. Thereafter, subpleural ground-glass opacities and nodules with or without cavitary changes were persistently observed until day 180. After cavitary change of the nodules, the migratory features of the subpleural or peribronchial nodules were seen on all the serial CT scans. Micro-CT showed that the cyst wall contained dilated interconnected tubular structures, which had communications with the cavity and the adjacent distal bronchus. Conclusion The CT findings of paragonimiasis depend on the migratory stage of the worms. The worm cyst can have numerous interconnected tubular channels within its own wall and these channels have connections with the cavity and the adjacent distal bronchus. PMID:17923779

  8. 4D micro-CT for cardiac and perfusion applications with view under sampling

    NASA Astrophysics Data System (ADS)

    Badea, Cristian T.; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan

    2011-06-01

    Micro-CT is commonly used in preclinical studies to provide anatomical information. There is growing interest in obtaining functional measurements from 4D micro-CT. We report here strategies for 4D micro-CT with a focus on two applications: (i) cardiac imaging based on retrospective gating and (ii) pulmonary perfusion using multiple contrast injections/rotations paradigm. A dual source micro-CT system is used for image acquisition with a sampling rate of 20 projections per second. The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent. Fast scanning of free breathing mice is achieved using retrospective gating. The ECG and respiratory signals are used to sort projections into ten cardiac phases. The pulmonary perfusion protocol uses a conventional contrast agent (Isovue 370) delivered by a micro-injector in four injections separated by 2 min intervals to allow for clearance. Each injection is synchronized with the rotation of the animal, and each of the four rotations is started with an angular offset of 22.5 from the starting angle of the previous rotation. Both cardiac and perfusion protocols result in an irregular angular distribution of projections that causes significant streaking artifacts in reconstructions when using traditional filtered backprojection (FBP) algorithms. The reconstruction involves the use of the point spread function of the micro-CT system for each time point, and the analysis of the distribution of the reconstructed data in the Fourier domain. This enables us to correct for angular inconsistencies via deconvolution and identify regions where data is missing. The missing regions are filled with data from a high quality but temporally averaged prior image reconstructed with all available projections. Simulations indicate that deconvolution successfully removes the streaking artifacts while preserving temporal information. 4D cardiac micro-CT in a mouse was performed with adequate image quality at isotropic

  9. Thin-Section CT Characteristics and Longitudinal CT Follow-up of Chemotherapy Induced Interstitial Pneumonitis: A Retrospective Cohort Study.

    PubMed

    Lee, Han Na; Kim, Mi Young; Koo, Hyun Jung; Kim, Sung-Soo; Yoon, Dok Hyun; Lee, Jae Cheol; Song, Jin Woo

    2016-01-01

    To describe the computed tomography (CT) features of chemotherapy-induced interstitial pneumonitis (CIIP) with longitudinal follow-up.The study was approved by the local ethics committee. One hundred consecutive patients with CIIP between May 2005 and March 2015 were retrospectively enrolled. The initial CT was reviewed by 2 independent chest radiologists and categorized into 1 of 4 CT patterns in accordance with the 2013 guidelines for idiopathic interstitial pneumonia: nonspecific interstitial pneumonia (NSIP), organizing pneumonia (OP), hypersensitivity pneumonitis (HP) mimicking desquamative interstitial pneumonitis, and diffuse alveolar damage (DAD). We assessed semiquantitative analysis on a 5% scale to assess the extent of parenchymal abnormalities (emphysema, reticulation, ground-glass opacity, consolidation, honeycombing cyst) and their distribution on initial (n = 100), subsequent (n = 87), and second follow-up CT (n = 48). Interval changes in extent on follow-up CT were compared using paired t test. The clinic-radiologic factors were compared between Group 1 (NSIP and OP patterns) and Group 2 (HP and DAD patterns) using χ and independent t tests.The most common pattern of CIIP on the initial CT was HP (51%), followed by NSIP (23%), OP (20%), and DAD (6%). Diffuse ground-glass opacity was the most common pulmonary abnormality. The predominant distribution was bilateral (99%) and symmetric (82%), with no craniocaudal (60%) or axial (79%) dominance. Subsequent and second follow-up CTs showed decreased extent of total pulmonary abnormalities (P < 0.001, respectively). In comparison with Group 1 CIIP, Group 2 CIIP was more likely to be caused by molecularly targeted drugs (P = 0.030), appeared earlier (P = 0.034), and underwent more complete resolution (P < 0.001). Use of a CT pattern-recognition approach to CIIP is appropriate and practical in interpreting radiological findings. PMID:26765442

  10. Non-Rigid Registration of Liver CT Images for CT-Guided Ablation of Liver Tumors.

    PubMed

    Luu, Ha Manh; Klink, Camiel; Niessen, Wiro; Moelker, Adriaan; Walsum, Theo van

    2016-01-01

    CT-guided percutaneous ablation for liver cancer treatment is a relevant technique for patients not eligible for surgery and with tumors that are inconspicuous on US imaging. The lack of real-time imaging and the use of a limited amount of CT contrast agent make targeting the tumor with the needle challenging. In this study, we evaluate a registration framework that allows the integration of diagnostic pre-operative contrast enhanced CT images and intra-operative non-contrast enhanced CT images to improve image guidance in the intervention. The liver and tumor are segmented in the pre-operative contrast enhanced CT images. Next, the contrast enhanced image is registered to the intra-operative CT images in a two-stage approach. First, the contrast-enhanced diagnostic image is non-rigidly registered to a non-contrast enhanced image that is conventionally acquired at the start of the intervention. In case the initial registration is not sufficiently accurate, a refinement step is applied using non-rigid registration method with a local rigidity term. In the second stage, the intra-operative CT-images that are used to check the needle position, which often consist of only a few slices, are registered rigidly to the intra-operative image that was acquired at the start of the intervention. Subsequently, the diagnostic image is registered to the current intra-operative image, using both transformations, this allows the visualization of the tumor region extracted from pre-operative data in the intra-operative CT images containing needle. The method is evaluated on imaging data of 19 patients at the Erasmus MC. Quantitative evaluation is performed using the Dice metric, mean surface distance of the liver border and corresponding landmarks in the diagnostic and the intra-operative images. The registration of the diagnostic CT image to the initial intra-operative CT image did not require a refinement step in 13 cases. For those cases, the resulting registration had a Dice