Science.gov

Sample records for dynamic atmosphere composition

  1. Middle atmosphere dynamics and composition

    NASA Technical Reports Server (NTRS)

    Geller, M. A.

    1981-01-01

    Aspects of the dynamics and composition of that region of the earth atmosphere lying above the tropopause but below 100 km are considered as they relate to processes at middle and high latitudes. The physics of the summer to winter reversal of the direction of the middle atmosphere jet is discussed, along with the effects of planetary waves on the mean zonal flow, which occasionally produce sudden stratosphere warming events. The chemistry of the two middle atmospheric trace constituents ozone and nitric oxide, which play dominant roles in atmospheric radiation balance and lower ionospheric structure, respectively, is then examined, and the importance of transport in determining their distribution is pointed out.

  2. Composition/Structure/Dynamics of comet and planetary satellite atmospheres

    NASA Technical Reports Server (NTRS)

    Combi, Michael R. (Principal Investigator)

    1995-01-01

    This research program addresses two cases of tenuous planetary atmospheres: comets and Io. The comet atmospheric research seeks to analyze a set of spatial profiles of CN in comet Halley taken in a 7.4-day period in April 1986; to apply a new dust coma model to various observations; and to analyze observations of the inner hydrogen coma, which can be optically thick to the resonance scattering of Lyman-alpha radiation, with the newly developed approach that combines a spherical radiative transfer model with our Monte Carlo H coma model. The Io research seeks to understand the atmospheric escape from Io with a hybrid-kinetic model for neutral gases and plasma given methods and algorithms developed for the study of neutral gas cometary atmospheres and the earth's polar wind and plasmasphere. Progress is reported on cometary Hydrogen Lyman-alpha studies; time-series analysis of cometary spatial profiles; model analysis of the dust comae of comets; and a global kinetic atmospheric model of Io.

  3. Temporal Dynamics of Bacterial and Fungal Community Composition in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Emerson, J. B.; Perring, A. E.; Schwarz, J. P.; Fahey, D. W.; Fierer, N.

    2014-12-01

    There is increasing evidence for significant microbial influences on atmospheric chemistry, cloud condensation, and ice nuclei concentrations, with known health impacts, yet we have a limited understanding of the types, abundances, and spatiotemporal dynamics of bacteria and fungi in the atmosphere. Here we use culture-independent molecular approaches, including targeted gene sequencing and quantitative PCR, to characterize bacterial and fungal community composition and abundance in the atmospheric boundary layer. We present results from 32 air samples, collected via vacuum filtration at 10 m and 250 m on the Boulder Atmospheric Observatory tower (Erie, CO) between November 2013 and April 2014. Samples were collected at night, and each sample was integrated over consecutive nights for approximately two weeks. Significant temporal shifts in bacterial and fungal community composition were observed over the course of the study, corresponding to changing bacterial and fungal concentrations. Within the same sampling time periods, bacterial and fungal communities from the near-surface atmosphere (10 m) were generally similar to those aloft (250 m), although coupled temporal and altitudinal effects were observed in some cases, particularly for fungi. Overall, our results indicate that bacterial and fungal communities exhibit minimal vertical stratification throughout the nocturnal atmospheric boundary layer but show a high degree of variability on two-week timescales. This study paves the way for further research into the connections between boundary layer microbiology, atmospheric dynamics, emissions, and local meteorology.

  4. Effects of Bulk Composition on the Atmospheric Dynamics on Close-in Exoplanets

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Showman, A. P.

    2014-04-01

    Depending on the metallicity of the protoplanetary disk, the details of gas accretion during planetary formation, and atmospheric loss during planetary evolution, the atmospheres of exoplanets could exhibit a variety of bulk compositions (e.g., Moses et al., 2013). Examples include hydrogen-dominated atmospheres like Jupiter, more metal-rich (but still hydrogen-dominated) atmospheres like Neptune, evaporated atmospheres dominated by helium in analogy to helium white dwarfs, or of course carbon dioxide, water vapour, nitrogen, and other heavy molecules as exhibited by terrestrial planets in the solar system. Despite differing opacities that will impact the radiative energy deposition (e.g., Lewis et al., 2010; Kataria et al., 2014), differing bulk compositions also differ in molecular weight and specific heat. The latter two fundamental parameters might have crucial effects on various aspects of atmospheric structure and dynamics. For example, a lower specific heat from molecules such as carbon dioxide implies a steeper dry adiabatic temperature gradient; this implies that, for a given vertical temperature profile, atmospheres with differing molecular weights exhibit different Brunt-Väisälä frequencies and therefore gravity wave speeds. Molecular weight also influences the scale height of the atmosphere, which could range (for typical exoplanet gravities) from ten km for high-molecularweight compositions to hundreds of km for hydrogen-dominated cases. A lower molecular weight or a lower specific heat would likely cause a larger deformation radius in which the atmospheric flow is more significantly influenced by the gravity and buoyancy effects instead of the rotation effects. In this study we use a three-dimensional general circulation model (GCM) to simulate generic exoplanets with different compositions, emphasizing close-in, synchronously rotating super Earths whose atmospheric composition is the most uncertain and which will be the focus of characterization

  5. Effects of bulk composition on the atmospheric dynamics on close-in exoplanets

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Showman, Adam P.

    2014-11-01

    Depending on the metallicity of the protoplanetary disk, the details of gas accretion during planetary formation, and atmospheric loss during planetary evolution, the atmospheres of exoplanets could exhibit a variety of bulk compositions (e.g., Moses et al., 2013). Examples include hydrogen-dominated atmospheres like Jupiter, more metal-rich (but still hydrogen-dominated) atmospheres like Neptune, evaporated atmospheres dominated by helium in analogy to helium white dwarfs, or of course carbon dioxide, water vapor, nitrogen, and other heavy molecules as exhibited by terrestrial planets in the solar system. Despite differing opacities that will impact the radiative energy deposition (e.g., Lewis et al., 2010), differing bulk compositions also differ in molecular weight and heat capacity. The latter two fundamental parameters might have crucial effects on various aspects of atmospheric structure and dynamics. Molecular weight may influence the scale height, Brunt-Väisälä frequencies and therefore gravity wave speeds in the atmosphere. A lower molecular weight or a lower heat capacity would likely to result a larger deformation radius in which the atmospheric flow is more significantly influenced by the gravity and buoyancy effects instead of the rotation effects. We use a three-dimensional general circulation model to simulate generic sub-Jupiter exoplanets, especially those close to their host stars-known as “hot Neptunes” or close-in “super-Earths”. We found that the atmosphere with lower molecular mass favors zonal jets and equatorial superrotation, and that with lower heat capacity favors day-to-night divergent flow. Our results suggest that super Earths and hotNeptunes will exhibit large meteorological diversity due to bulk composition effects. Since atmospheres with fast zonal jets tends to have smaller day-night temperature difference due to larger circulation efficiency and larger hot spot phase shift than that with day-to-night divergent flows

  6. Atmospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Green, John

    2004-12-01

    In his book, John Green presents a unique personal insight into the fundamentals of fluid mechanics and atmospheric dynamics. Generations of students have benefited from his lectures, and this book, many years in the making, is the result of his wide teaching and research experience. The theory of fluid flow has developed to such an extent that very complex mathematics and models are currently used to describe it, but many of the fundamental results follow from relatively simple considerations: these classic principles are derived here in a novel, distinctive, and at times even idiosyncratic, way. The book is an introduction to fluid mechanics in the atmosphere for students and researchers that are already familiar with the subject, but who wish to extend their knowledge and philosophy beyond the currently popular development of conventional undergraduate instruction.

  7. Dynamics in Atmospheric Physics

    NASA Astrophysics Data System (ADS)

    Lindzen, Richard A.

    2005-08-01

    Motion is manifest in the atmosphere in an almost infinite variety of ways. In Dynamics in Atmospheric Physics, Dr. Richard Lindzen describes the nature of motion in the atmosphere, develops fluid dynamics relevant to the atmosphere, and explores the role of motion in determining the climate and atmospheric composition. The author presents the material in a lecture note style, and the emphasis throughout is on describing phenomena that are at the frontiers of current research, but due attention is given to the methodology of research and to the historical background of these topics. The author's treatment and choice of topics is didactic. Problems at the end of each chapter will help students assimilate the material. In general the discussions emphasize physical concepts, and throughout Dr. Lindzen makes a concerted effort to avoid the notion that dynamic meteorology is simply the derivation of equations and their subsequent solution. His desire is that interested students will delve further into solution details. The book is intended as a text for first year graduate students in the atmospheric sciences. Although the material in the book is self contained, a familiarity with differential equations is assumed; some background in fluid mechanics is helpful.

  8. Dynamics in Atmospheric Physics

    NASA Astrophysics Data System (ADS)

    Lindzen, Richard A.

    1990-06-01

    Motion is manifest in the atmosphere in an almost infinite variety of ways. In Dynamics in Atmospheric Physics, Dr. Richard Lindzen describes the nature of motion in the atmosphere, develops fluid dynamics relevant to the atmosphere, and explores the role of motion in determining the climate and atmospheric composition. The author presents the material in a lecture note style, and the emphasis throughout is on describing phenomena that are at the frontiers of current research, but due attention is given to the methodology of research and to the historical background of these topics. The author's treatment and choice of topics is didactic. Problems at the end of each chapter will help students assimilate the material. In general the discussions emphasize physical concepts, and throughout Dr. Lindzen makes a concerted effort to avoid the notion that dynamic meteorology is simply the derivation of equations and their subsequent solution. His desire is that interested students will delve further into solution details. The book is intended as a text for first year graduate students in the atmospheric sciences. Although the material in the book is self contained, a familiarity with differential equations is assumed; some background in fluid mechanics is helpful.

  9. Effects of Bulk Composition on the Atmospheric Dynamics on Close-in Exoplanets

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Showman, A. P.

    2015-12-01

    Depending on the metallicity of the protoplanetary disk, the details of gas accretion during planetary formation, and atmospheric loss during planetary evolution, the atmospheres of sub-Jupiter-sized planets could exhibit a variety of bulk compositions. Examples include hydrogen-dominated atmospheres like Jupiter, more metal-rich atmospheres like Neptune, evaporated atmospheres dominated by helium, or of course carbon dioxide, water vapor, nitrogen, and other heavy molecules as exhibited by terrestrial planets in the solar system. Here we systematically investigate the effects of atmospheric bulk compositions on temperature and wind distributions for tidally locked sub-Jupiter-sized planets using an idealized three-dimensional general circulation model (GCM). Composition—in particular, the molecular mass and specific heat—affect the sound speed, gravity wave speeds, atmospheric scale height, and Rossby deformation radius, and therefore in principle can exert significant controls on the atmospheric circulation, including the day-night temperature difference and other observables. We performed numerous simulations exploring a wide range of molecular masses and molar specific heats. The effect of molecular weight dominates. We found that a higher-molecular-weight atmosphere tends to have a larger day-night temperature contrast, a smaller eastward phase shift in the thermal light curve, and a narrower equatorial super-rotating jet that occurs in a deeper atmosphere. The zonal-mean zonal wind is smaller and more prone to exhibit a latitudinally alternating pattern in a higher-molecular-weight atmosphere. If the vertical temperature profile is close to adiabatic, molar specific heat will play a significant role in controlling the transition from a divergent flow in the upper atmosphere to a jet-dominated flow in the lower atmosphere. We are also working on analytical theories to explain aspects of the simulations relevant for possible observables on tidally locked

  10. Effects of Bulk Composition on the Atmospheric Dynamics on Close-in Exoplanets

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Showman, Adam P.

    2015-12-01

    Depending on the metallicity of the protoplanetary disk and processes such as gas accretion during planetary formation and atmospheric loss during planetary evolution, the atmospheres of sub-Jupiter-sized planets could exhibit a variety of bulk compositions. Examples include hydrogen-dominated atmospheres like Jupiter, more metal-rich atmospheres like Neptune, carbon dioxide, water vapor, nitrogen, and other heavy molecules as exhibited by terrestrial planets in the solar system. In this study we systematically investigate the effects of atmospheric bulk compositions on temperature and wind distributions for tidally locked sub-Jupiter-sized planets such as super-Earths and mini-Neptunes, using an idealized three-dimensional general circulation model (GCM). Composition—in particular, the molecular mass and specific heat—affect the sound speed, gravity wave speeds, atmospheric scale height, and Rossby deformation radius, and therefore in principle can exert significant controls on the atmospheric circulation, including the day-night temperature difference and other observables.We performed numerous simulations exploring a wide range of molecular masses and molar specific heats. The effect of molecular weight dominates. We found that a higher-molecular-weight atmosphere tends to have a larger day-night temperature contrast, a smaller eastward phase shift in the thermal light curve, and a narrower equatorial super-rotating jet that occurs in a deeper atmosphere. The zonal-mean zonal wind is smaller and more prone to exhibit a latitudinally alternating pattern in a higher-molecular-weight atmosphere. If the vertical temperature profile is close to adiabatic, molar specific heat will play a significant role in controlling the transition from a divergent flow in the upper atmosphere to a jet-dominated flow in the lower atmosphere.In order to understand the systematic behavior and capture the underlying physics, we present analytical theories to explain aspects of the

  11. Lunar atmospheric composition experiment

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1975-01-01

    Apollo 17 carried a miniature mass spectrometer, called the Lunar Atmospheric Composition Experiment (LACE), to the moon as part of the Apollo Lunar Surface Experiments Package (ALSEP) to study the composition and variations in the lunar atmosphere. The instrument was successfully deployed in the Taurus-Littrow Valley with its entrance aperture oriented upward to intercept and measure the downward flux of gases at the lunar surface. During the ten lunations that the LACE operated, it produced a large base of data on the lunar atmosphere, mainly collected at night time. It was found that thermal escape is the most rapid loss mechanism for hydrogen and helium. For heavier gases, photoionization followed by acceleration through the solar wind electric field accounted for most of the loss. The dominant gases on the moosn were argon and helium, and models formed for their distribution are described in detail. It is concluded that most of the helium in the lunar atmosphere is of solar wind origin, and that there also exist very small amounts of methane, ammonia, and carbon dioxide.

  12. Linking activity, composition and seasonal dynamics of atmospheric methane oxidizers in a meadow soil

    PubMed Central

    Shrestha, Pravin Malla; Kammann, Claudia; Lenhart, Katharina; Dam, Bomba; Liesack, Werner

    2012-01-01

    Microbial oxidation is the only biological sink for atmospheric methane. We assessed seasonal changes in atmospheric methane oxidation and the underlying methanotrophic communities in grassland near Giessen (Germany), along a soil moisture gradient. Soil samples were taken from the surface layer (0–10 cm) of three sites in August 2007, November 2007, February 2008 and May 2008. The sites showed seasonal differences in hydrological parameters. Net uptake rates varied seasonally between 0 and 70 μg CH4 m−2 h−1. Greatest uptake rates coincided with lowest soil moisture in spring and summer. Over all sites and seasons, the methanotrophic communities were dominated by uncultivated methanotrophs. These formed a monophyletic cluster defined by the RA14, MHP and JR1 clades, referred to as upland soil cluster alphaproteobacteria (USCα)-like group. The copy numbers of pmoA genes ranged between 3.8 × 105–1.9 × 106 copies g−1 of soil. Temperature was positively correlated with CH4 uptake rates (P<0.001), but had no effect on methanotrophic population dynamics. The soil moisture was negatively correlated with CH4 uptake rates (P<0.001), but showed a positive correlation with changes in USCα-like diversity (P<0.001) and pmoA gene abundance (P<0.05). These were greatest at low net CH4 uptake rates during winter times and coincided with an overall increase in bacterial 16S rRNA gene abundances (P<0.05). Taken together, soil moisture had a significant but opposed effect on CH4 uptake rates and methanotrophic population dynamics, the latter being increasingly stimulated by soil moisture contents >50 vol% and primarily related to members of the MHP clade. PMID:22189499

  13. Study of atmospheric dynamics

    NASA Technical Reports Server (NTRS)

    Mcnider, Richard T.; Christy, John R.; Cox, Gregory N.

    1993-01-01

    In order to better understand the dynamics of the global atmosphere, a data set of precision temperature measurements was developed using the NASA built Microwave Sounding Unit. Modeling research was carried out to validate global model outputs using various satellite data. Idealized flows in a rotating annulus were studied and applied to the general circulation of the atmosphere. Dynamic stratospheric ozone fluctuations were investigated. An extensive bibliography and several reprints are appended.

  14. Studies for the 3-Dimensional Structure, Composition, and Dynamic of Io's Atmosphere

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    2001-01-01

    Research work is discussed for the following: (1) the exploration of new H and Cl chemistry in Io's atmosphere using the already developed two-dimensional multi-species hydrodynamic model of Wong and Smyth; and (2) for the development of a new three-dimensional multi-species hydrodynamic model for Io's atmosphere.

  15. Dynamics of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Clark, John H. E.

    2004-04-01

    The study of atmospheric dynamics has seen an impressive expansion into many sub-disciplines in the past few decades. It is only natural, then, that most textbooks published during this period have tended to focus on one of these sub-disciplines. Atmospheric dynamics seems to be too broad a subject area to be the focus of a single text. A pitfall of writing a broadly focused text like Dynamics of the Atmosphere is that some subjects will receive short shrift. Nevertheless, the authors have succeeded admirably in striking a balance between, first of all, covering the important topics and, second, providing sufficient detail on these subjects in a concise and accurate manner. Dynamics of the Atmosphere is an advanced undergraduate or graduate-level text whose aim is to provide a thorough treatment of the important aspects of the subject. The authors emphasize a rigorous mathematical analysis of the various topics and usually do not relegate the details to appendices. They have done an excellent job of verifying the accuracy of all the mathematical derivations. I could not find any errors, although I freely admit not having checked all of the mathematical steps in each section.

  16. Improvement of Nd:GGG crystal growth process under dynamic atmosphere composition

    NASA Astrophysics Data System (ADS)

    Asadian, M.; Mirzaei, N.; Saeedi, H.; Najafi, M.; Mashayekhi Asl, I.

    2012-02-01

    In this paper, the temperature dependency of the required oxygen on the quality of Nd:GGG crystal during the growth process has been investigated. Based on the thermodynamic analysis, the oxygen partial pressure in the surrounding vapor phase should be as low as possible through heating the raw material at lower temperatures to prevent the oxidation of iridium to IrO 2 ( s). In order to eliminate the volatilization of Ga 2O 3, the oxygen was charged into the gas atmosphere (N 2) near the Nd:GGG melting point. Powder X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) were employed to characterize the crystal quality under different growth atmosphere. The experimental results confirm the validity of thermodynamic calculations. It was predicted that charging the required oxygen at about 1950 K could reduce the iridium loss rate to about 36%. Consequently, it would be expected to acquire more favorable Nd:GGG crystals with quite improved properties by applying the accurate growth conditions.

  17. The Atmospheric Infrared Sounder (AIRS) on the NASA Aqua Spacecraft: A General Remote Sensing Tool for Understanding Atmospheric Structure, Dynamics and Composition

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Fetzer, Eric J.

    2010-01-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. Early in the mission, the AIRS instrument demonstrated its value to the weather forecasting community with better than 6 hours of improvement on the 5 day forecast. Now with over eight years of consistent and stable data from AIRS, scientists are able to examine processes governing weather and climate and look at seasonal and interannual trends from the AIRSdata with high statistical confidence. Naturally, long-term climate trends require a longer data set, but indications are that the Aqua spacecraft and the AIRS instrument should last beyond 2018. This paper briefly describes the AIRS data products and presents some of the most significant findings involving the use of AIRS data in the areas of weather forecast improvement, climate processes and model validation, cloud and polar processes, and atmospheric composition (chemistry and dust).

  18. Finding Atmospheric Composition (AC) Metadata

    NASA Technical Reports Server (NTRS)

    Strub, Richard F..; Falke, Stefan; Fiakowski, Ed; Kempler, Steve; Lynnes, Chris; Goussev, Oleg

    2015-01-01

    The Atmospheric Composition Portal (ACP) is an aggregator and curator of information related to remotely sensed atmospheric composition data and analysis. It uses existing tools and technologies and, where needed, enhances those capabilities to provide interoperable access, tools, and contextual guidance for scientists and value-adding organizations using remotely sensed atmospheric composition data. The initial focus is on Essential Climate Variables identified by the Global Climate Observing System CH4, CO, CO2, NO2, O3, SO2 and aerosols. This poster addresses our efforts in building the ACP Data Table, an interface to help discover and understand remotely sensed data that are related to atmospheric composition science and applications. We harvested GCMD, CWIC, GEOSS metadata catalogs using machine to machine technologies - OpenSearch, Web Services. We also manually investigated the plethora of CEOS data providers portals and other catalogs where that data might be aggregated. This poster is our experience of the excellence, variety, and challenges we encountered.Conclusions:1.The significant benefits that the major catalogs provide are their machine to machine tools like OpenSearch and Web Services rather than any GUI usability improvements due to the large amount of data in their catalog.2.There is a trend at the large catalogs towards simulating small data provider portals through advanced services. 3.Populating metadata catalogs using ISO19115 is too complex for users to do in a consistent way, difficult to parse visually or with XML libraries, and too complex for Java XML binders like CASTOR.4.The ability to search for Ids first and then for data (GCMD and ECHO) is better for machine to machine operations rather than the timeouts experienced when returning the entire metadata entry at once. 5.Metadata harvest and export activities between the major catalogs has led to a significant amount of duplication. (This is currently being addressed) 6.Most (if not all

  19. Atmospheric and Oceanic Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Vallis, Geoffrey K.

    2006-11-01

    Fluid dynamics is fundamental to our understanding of the atmosphere and oceans. Although many of the same principles of fluid dynamics apply to both the atmosphere and oceans, textbooks tend to concentrate on the atmosphere, the ocean, or the theory of geophysical fluid dynamics (GFD). This textbook provides a comprehensive unified treatment of atmospheric and oceanic fluid dynamics. The book introduces the fundamentals of geophysical fluid dynamics, including rotation and stratification, vorticity and potential vorticity, and scaling and approximations. It discusses baroclinic and barotropic instabilities, wave-mean flow interactions and turbulence, and the general circulation of the atmosphere and ocean. Student problems and exercises are included at the end of each chapter. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation will be an invaluable graduate textbook on advanced courses in GFD, meteorology, atmospheric science and oceanography, and an excellent review volume for researchers. Additional resources are available at www.cambridge.org/9780521849692. Includes end of chapter review questions to aid understanding Unified and comprehensive treatment of both atmospheric and oceanic fluid dynamics Covers many modern topics and provides up to date knowledge

  20. Composition of the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Ott, U.

    1991-04-01

    Data on the composition of the Martian atmosphere obtained by instruments aboard the Viking spacecraft are not of sufficient accuracy to address important questions regarding the compsition and history of Mars. Laboratory analyses of gases trapped in glassy phases of shergottite meteorite EETA 79001 yield precise data, but it remains to be ascertained that these gases constitute unfractionated Martian atmosphere. Return from Mars of a gas sample for laboratory analysis appears preferable to another in situ measurement, especially if rocks of documented origin will become available for gas analysis as well.

  1. Atmospheric Composition Change: Climate-Chemistry Interactions

    NASA Technical Reports Server (NTRS)

    Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; Cox, T.; Eyring, V.; Fowler, D.; Fuzzi, S.; Jockel, P.; Laj, P.; Lohmann, U.; Maione, M.; Monks, T.; Prevot, A. S. H.; Raes, F.; Richter, A.; Rognerud, B.; Schulz, M.; Shindell, D.; Stevenson, D. S.; Storelvmo, T.; Wang, W.-C.; vanWeele, M.; Wild, M.; Wuebbles, D.

    2011-01-01

    Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced

  2. Lidar investigations of atmospheric dynamics

    NASA Astrophysics Data System (ADS)

    Philbrick, C. Russell; Hallen, Hans D.

    2015-09-01

    Ground based lidar techniques using Raleigh and Raman scattering, differential absorption (DIAL), and supercontinuum sources are capable of providing unique signatures to study dynamical processes in the lower atmosphere. The most useful profile signatures of dynamics in the lower atmosphere are available in profiles of time sequences of water vapor and aerosol optical extinction obtained with Raman and DIAL lidars. Water vapor profiles are used to study the scales and motions of daytime convection cells, residual layer bursts into the planetary boundary layer (PBL), variations in height of the PBL layer, cloud formation and dissipation, scale sizes of gravity waves, turbulent eddies, as well as to study the seldom observed phenomena of Brunt-Väisälä oscillations and undular bore waves. Aerosol optical extinction profiles from Raman lidar provide another tracer of dynamics and motion using sequential profiles atmospheric aerosol extinction, where the aerosol distribution is controlled by dynamic, thermodynamic, and photochemical processes. Raman lidar profiles of temperature describe the stability of the lower atmosphere and measure structure features. Rayleigh lidar can provide backscatter profiles of aerosols in the troposphere, and temperature profiles in the stratosphere and mesosphere, where large gravity waves, stratospheric clouds, and noctilucent clouds are observed. Examples of several dynamical features are selected to illustrate interesting processes observed with Raman lidar. Lidar experiments add to our understanding of physical processes that modify atmospheric structure, initiate turbulence and waves, and describe the relationships between energy sources, atmospheric stability parameters, and the observed dynamics.

  3. The PHOCUS Project: Atmospheric Composition

    NASA Astrophysics Data System (ADS)

    Hedin, J.; Gumbel, J.; Khaplanov, M.

    2012-12-01

    On the morning of July 21, 2011, the PHOCUS sounding rocket was launched from Esrange, Sweden, into strong noctilucent clouds (NLC) and polar mesosphere summer echoes (PMSE). The aim of the PHOCUS project (Particles, Hydrogen and Oxygen Chemistry in the Upper Summer mesosphere) is to study mesospheric particles (ice and meteoric smoke) and their interaction with their neutral and charged environment. Interactions of interest comprise the charging and nucleation of particles, the relationship between meteoric smoke and ice, and the influence of these particles on gas-phase chemistry. Here we will describe the optical measurements of the atmospheric composition and present first results including comparison to the other simultaneous measurements. The atmospheric composition was probed by a set of optical instruments from Stockholm University. The idea behind the instrument setup was to combine the advantages of the sensitive resonance fluorescence with well-calibrated airglow photometry. The set of instruments consisted of two resonance fluorescence probes (each containing a lamp and a detector), one for atomic oxygen and one for atomic hydrogen, and two IR photometers for O2 and OH dayglow emissions in the near IR. The O2 IR Atmospheric system at 1.27 μm is related to the photolysis of O3, which during the day is in steady state with O and a retrieval of O is possible. The OH Meinel emission is produced by the reaction between mesospheric O3 and H, and H concentrations can be deduced by combining information from both photometers. Unfortunately, some of these measurements were corrupted by instrument problems or payload glow. O3 and O profiles will be presented and compared to the simultaneous measurements of ice and meteoric smoke particles, water vapour and the state of the background neutral and charged atmosphere.

  4. Uranus atmospheric dynamics and circulation

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Beebe, Reta F.; Conrath, Barney J.; Hinson, David P.; Ingersoll, Andrew P.

    1991-01-01

    The observations, models, and theories relevant to the atmospheric dynamics and meteorology of Uranus are discussed. The available models for the large-scale heat transport and atmospheric dynamics as well as diagnostic interpretations of the Voyager data are reviewed. Some pertinent ideas and questions regarding the global circulation balance are considered, partly in comparison with other planetary atmospheres. The available data indicate atmospheric rotation at midlatitudes nearly 200 m/s faster than that of the planetary magnetic field. Analysis of the dynamical deformation of the shape and size of isobaric surfaces measured by the Voyager radio-occultation experiment suggests a subrotating equator at comparable altitudes. Infrared temperature retrievals above the cloud deck indicate a smaller equator-to-pole contrast than expected for purely radiative-convective equilibrium, but show local variations implying a latitudinally correlated decrease with altitude in the cloud-tracked wind.

  5. Atmospheric composition forecasting in Europe

    NASA Astrophysics Data System (ADS)

    Menut, L.; Bessagnet, B.

    2010-01-01

    The atmospheric composition is a societal issue and, following new European directives, its forecast is now recommended to quantify the air quality. It concerns both gaseous and particles species, identified as potential problems for health. In Europe, numerical systems providing daily air quality forecasts are numerous and, mostly, operated by universities. Following recent European research projects (GEMS, PROMOTE), an organization of the air quality forecast is currently under development. But for the moment, many platforms exist, each of them with strengths and weaknesses. This overview paper presents all existing systems in Europe and try to identify the main remaining gaps in the air quality forecast knowledge. As modeling systems are now able to reasonably forecast gaseous species, and in a lesser extent aerosols, the future directions would concern the use of these systems with ensemble approaches and satellite data assimilation. If numerous improvements were recently done on emissions and chemistry knowledge, improvements are still needed especially concerning meteorology, which remains a weak point of forecast systems. Future directions will also concern the use of these forecast tools to better understand and quantify the air pollution impact on health.

  6. Dynamics of the Middle Atmosphere

    NASA Astrophysics Data System (ADS)

    Brasseur, Guy

    In recent years, much effort has been put in the study of chemical, dynamical, and radiative processes in the middle atmosphere. A great deal of activity has been stimulated by the necessity of estimating the potential effects of several anthropogenic perturbations on the ozone layer and on the earth's climate. For example, the atmospheric response to the emission of chlorofluorocarbons or nitrogen oxides is among the problems to be elucidated. Questions such as this cannot be properly answered without an understanding of the various processes involved in the transport of chemical constituents. The publication of a book. that contains original contributions on a variety of topics, such as internal gravity waves, tides, planetary waves, and stratospheric warmings, and that presents overview articles on the transport of trace species and on general circulation models is particularly useful for both research scientists and graduate students involved in atmospheric science.

  7. Space Shuttle Atmospheric ascent flight dynamics

    NASA Technical Reports Server (NTRS)

    Patha, J. T.; Noess, K. A.; Lines, M. V.

    1972-01-01

    The atmospheric ascent flight phase of the mated composite booster and orbiter is discussed. The composite recoverable space shuttle booster and orbiter exhibits unique flight control characteristics. This uniqueness results from large lifting surfaces and aerodynamic and structural assymetrics. An effective load relief technique reduces aerodynamic loads on both the booster and the orbiter. Reducing aerodynamic loads permits decreasing the structural weight of the lifting and stabilizing surfaces. An orbiter payload penalty is caused by trajectory deviations resulting from load relief. However, the net effect of an effective load relief technique is an increase in payload capability. Atmospheric launch dynamics investigations have been carried out for different configuration types, which include expendable, straight wing, delta wing, and ballistic recoverable boosters.

  8. Atmospheric composition - Influence of biology

    NASA Technical Reports Server (NTRS)

    Mcelroy, M. B.

    1983-01-01

    The variability of atmospheric constituents influenced by biological organisms over various time scales is examined, together with the human contribution to atmospheric sulfur. The biogeochemistry of nitrogen is discussed, with an emphasis on N2O, NO, and microbially mediated reactions in soil and water. Carbon species are bound up mainly in sediments and the deep ocean, but human activities involving combustion may cause a doubling of the atmospheric levels of CO2 in the near future, which could produce a general low-level atmospheric warming. Longer term measurements are required to assess the effects of CH4 augmentation in the atmosphere through fuel combustion. Coal burning effectively doubles the amount of SO2 produced by natural sources, and reduces the pH of rainwater, thus posing hazards to fish, plankton, and mollusc life.

  9. Photodissociation dynamics and atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Wayne, R. P.

    1993-07-01

    The paper uses data from the literature to explore photodissociation dynamics of molecules possessing three, four, and five atoms, as represented by O3 and CO2, NH3 and C2H2, and CH4, respectively. The results yield many details, even in regard to the disposal of energy into rotation, which have applications to atmospheric problems. For instance, experiments probing the translational energies of the O and the vibrational and rotational distributions in the CO suggest that a spin-forbidden channel operates as it does in ozone photolysis. The data for both O3 and CO2 suggest a relationship between the structure of the parent molecule and the dynamics of dissociation.

  10. Polar Atmospheric Dynamics of Jupiter

    NASA Astrophysics Data System (ADS)

    Sayanagi, Kunio M.; Mitchell, J. L.; Heavens, N. G.

    2012-10-01

    We investigate the transition in Jupiter's atmospheric dynamic regime between mid-latitudes to polar regions. Spacecraft observations of Jupiter have identified three distinct dynamical regimes in the cloud-top winds. In the equatorial region, a fast, broad jetstream blows eastward where no vortices are found. In the mid-latitudes, many vortices exist between the numerous jetstreams that alternate in wind direction between eastward and westward. On Jupiter, vortices become increasingly prevalent with latitude; poleward of 65 degree N/S latitudes, the banded structure that characterizes the lower latitudes becomes indiscernible, and the flow acquires an increasingly turbulent appearance with little zonal organization - we identify this regime as polar turbulence. Saturn also has a very similarly organized atmosphere, except that it maintains zonally organized cloud bands up to the poles and lacks polar turbulence. The zonal structure of Saturn culminates in the southern hemisphere with a hurricane-like cyclonic vortex residing precisely at south pole. Here, we focus on the transition from the mixed jet-vortex regime in the mid-latitudes to the vortex-dominated polar-regime of Jupiter. Using an idealized shallow-water model in a beta-plane channel, we test the stability of various scenarios that range between a jet-dominated flow and vortical turbulence. Since we are simulating a zone on the sphere rather than the full circulation, we test the sensitivity of the dynamics to latitude by varying the model’s beta-plane parameters, namely, the background Coriolis parameter f0 and its gradient beta. In addition, as we employ a 1 1/2-layer shallow-water model, we also vary the layer thickness and the bottom-layer topography to mimic a steeply varying thermal stratification (i.e., a potential vorticity front) by exploiting the topographic beta effects. We use the EPIC model (Dowling et al. 1998) to perform our numerical experiments. Our study is supported by a NASA Outer

  11. Titan's Atmospheric Dynamics and Meteorology

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.; West, R. A.

    2008-01-01

    Titan, after Venus, is the second example of an atmosphere with a global cyclostrophic circulation in the solar system, but a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10degS, indicate that the zonal winds are generally in the sense of the satellites rotation. They become cyclostrophic approx. 35 km above the surface and generally increase with altitude, with the exception of a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from the temperature field retrieved from Cassini measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds at mid northern latitudes of 190 ms-' near 300 km. Above this level, the vortex decays. Curiously, the zonal winds and temperatures are symmetric about a pole that is offset from the surface pole by approx.4 degrees. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the offset between the equator, where the distance to the rotation axis is greatest, and the solar equator. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures in the north polar region near 400 km and the enhanced concentration of several organic molecules suggests subsidence there during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50degN. Titan's winter polar vortex appears to share many of the same characteristics of winter vortices on Earth-the ozone holes. Global mapping of temperatures, winds, and composition in he troposphere, by contrast, is incomplete. The few suitable discrete clouds that have bee found for tracking indicate smaller velocities than aloft, consistent with the

  12. An assessment model for atmospheric composition

    NASA Technical Reports Server (NTRS)

    Prather, Michael J. (Editor)

    1988-01-01

    Predicting future perturbations to global air quality and climate requires, as a prerequisite, prognostic models for the composition of the Earth's atmosphere. Such assessment models are needed to evaluate the impact on our environment of different social choices that affect emissions of the photochemically and radiatively important trace gases. Our presentation here of a prototype assessment model is intended to encourage public scientific discussions of the necessary components of the model and their interactions, with the recognition that models similar to this will likely be used by the Environmental Protection Agency and other regulatory agencies in order to assess the effect of changes in atmospheric composition on climate over the next century.

  13. Atmospheric Data Package for the Composite Analysis

    SciTech Connect

    Napier, Bruce A.; Ramsdell, James V.

    2005-09-01

    The purpose of this data package is to summarize our conceptual understanding of atmospheric transport and deposition, describe how this understanding will be simplified for numerical simulation as part of the Composite Analysis (i.e., implementation model), and finally to provide the input parameters needed for the simulations.

  14. OGO-6 neutral atmospheric composition experiment

    NASA Technical Reports Server (NTRS)

    Taeusch, D. R.

    1973-01-01

    The continued analysis of data obtained from the neutral atmospheric composition experiment flown on OGO-V6 is discussed. The effort was directed toward the study of five specific areas of interest for which the OGO-V6 data were especially useful.

  15. Effects of eustatic sea-level change, ocean dynamics, and iron fertilization on atmospheric pCO2 and seawater composition over the last 130 000 years

    NASA Astrophysics Data System (ADS)

    Wallmann, K.; Schneider, B.; Sarnthein, M.

    2015-06-01

    We developed and employed an earth system model to explore the forcings of atmospheric pCO2 change and the chemical and isotopic evolution of seawater over the last glacial cycle. Concentrations of dissolved phosphorus, reactive nitrogen, molecular oxygen, dissolved inorganic carbon (DIC), total alkalinity (TA), 13C-DIC and 14C-DIC were calculated for 24 ocean boxes. The bi-directional water fluxes between these model boxes were derived from a 3-D circulation field of the modern ocean (Opa 8.2, NEMO) and tuned such that tracer distributions calculated by the box model were consistent with observational data from the modern ocean. To model the last 130 kyr, we employed records of past changes in sea-level, ocean circulation, and dust deposition. According to the model, about half of the glacial pCO2 drawdown may be attributed to marine regressions. The glacial sea-level low-stands implied steepened ocean margins, a reduced burial of particulate organic carbon, phosphorus, and neritic carbonate at the margin seafloor, a decline in benthic denitrification, and enhanced weathering of emerged shelf sediments. In turn, they led to a distinct rise in the standing stocks of DIC, TA, and nutrients in the global ocean, promoted the glacial sequestration of atmospheric CO2 in the ocean, and added 13C- and 14C-depleted DIC to the ocean as recorded in benthic foraminifera signals. The other half of the glacial drop in pCO2 was linked to reduced deep ocean dynamics, a shoaling of Atlantic meridional overturning circulation, and a rise in iron fertilization. The increased transit time of deep waters in the glacial ocean led to significant 14C depletions with respect to the atmosphere. The deglacial rapid and stepwise rise in atmospheric pCO2 was induced by upwelling both in the Southern Ocean and subarctic North Pacific and promoted by a drop in dust-borne iron discharge to the Southern Ocean. The deglacial sea-level rise led to a gradual decline in nutrient, DIC, and TA stocks

  16. Mass spectrometric measurements of atmospheric composition

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1974-01-01

    The development of a magnetic sector field analyzer for continuous sampling and measurement of outer planetary atmospheres is discussed. Special features of the analyzer include a dynamic range of 10 to the minus 7th power, a mass range from 1 to 48 AMU, two ion sensitivities, a special scan time of 35 sec at 14 BPS, and the use of ion counting techniques for analysis.

  17. Dynamics of the Venus atmosphere

    NASA Technical Reports Server (NTRS)

    Ingersoll, A. P.

    1992-01-01

    The superrotation of the Venus atmosphere is a major unanswered problem in planetary science. At cloud-top levels (65-70 km altitude) the atmosphere rotates with a five-day period, corresponding to an equatorial wind speed of 90 m/s. Angular velocity is roughly constant on spherical shells, and decreases linearly with altitude to zero at the surface. The direction of rotation is the same as that of the solid planet, which is retrograde--opposite to the direction of orbital motion, but the 5-day period is short compared to the 243-day spin period of the solid planet or to the mean solar day, which is 117 Earth-days at the surface. The problem with the superrotation is that shearing stresses tend to transfer angular momentum downward, and would slow the atmosphere until it is spinning with the solid planet. Some organized circulation pattern is counteracting the tendency, but the pattern has not been identified. A simple Hadley-type circulation cannot do it because such a circulation is zonally symmetric and Hide's Theorem states that in an axisymmetric circulation an extremum in angular momentum per unit mass M can exist only at the surface. Venus violates the last condition, having a maximum of retrograde M on the equator at 70-80 km altitude. This leaves waves and eddies to maintain the superrotation but the length scales and forcing mechanisms for these motions need to be specified. Possible forcing mechanisms associated with waves, eddies and tides are discussed.

  18. The composition of the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Nier, A. O.

    1972-01-01

    Miniature mass spectrometers were developed and were carried on sounding rockets to determine the composition of the upper atmosphere. Techniques have been developed that accurately correct for the velocity and spin of the moving vehicle. Above 120 km N2, O2, and Ar appear to be in diffusive equilibrium. Most He concentration measurements show a more rapid decline with altitude than predicted by diffusive equilibrium. Because of the highly reactive nature of atomic oxygen, measurements of this species by mass spectrometry are low by an unknown factor.

  19. Composition, Chemistry, and Climate of the Atmosphere. 2: Mean properties of the atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B. (Editor); Salstein, David A.

    1994-01-01

    The atmosphere can be defined as the relatively thin gaseous envelope surrounding the entire planet Earth. It possesses a number of properties related to its physical state and chemical composition, and it undergoes a variety of internal processes and external interactions that can either maintain or alter these properties. Whereas descriptions of the atmosphere's chemical properties form much of the remaining chapters of this book, the present chapter will highlight the atmosphere's gases, and these define its temperature structure. In contrast, the larger-scale motions comprise the winds, the global organization of which is often referred to as the general circulation. The framework of the dynamical and thermodynamical laws, including the three principles of conversation of mass, momentum, and energy, are fundamental in describing both the internal processes of the atmosphere and its external interactions. The atmosphere is not a closed system, because it exchanges all three of these internally conservative quantities across the atmosphere's boundary below and receives input from regions outside it. Thus surface fluxes of moisture, momentum, and heat occur to and from the underlying ocean and land. The atmosphere exchanges very little mass and momentum with space, though it absorbs directly a portion of the solar radiational energy received from above.

  20. Atmospheric dynamics of the outer planets.

    PubMed

    Ingersoll, A P

    1990-04-20

    Despite major differences in the solar and internal energy inputs, the atmospheres of the four Jovian planets all exhibit latitudinal banding and high-speed jet streams. Neptune and Saturn are the windiest planets, Jupiter is the most active, and Uranus is a tipped-over version of the others. Large oval storm systems exhibit complicated time-dependent behavior that can be simulated in numerical models and laboratory experiments. The largest storm system, the Great Red Spot of Jupiter, has survived for more than 300 years in a chaotic shear zone where smaller structures appear and dissipate every few days. Future space missions will add to our understanding of small-scale processes, chemical composition, and vertical structure. Theoretical hypotheses about the interiors provide input for fluid dynamical models that reproduce many observed features of the winds, temperatures, and cloud patterns. In one set of models the winds are confined to the thin layer where clouds form. In other models, the winds extend deep into the planetary fluid interiors. Hypotheses will be tested further as observations and theories become more exact and detailed comparisons are made. PMID:17784483

  1. Titan's Atmospheric Composition from Observations by the Cassini Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; LeClair, A.; Flasar, F. M.; Kunde, V. G.; Conrath, B. J.; Coustenis, A.; Jennings, D. J.; Nixon, C. A.; Brasunas, J.; Achterberg, R. K.

    2006-01-01

    The Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft has been making observations during the fly-bys of Titan since the Saturn-Orbit-Insertion in July 2004. The observations provide infrared them1 emission spectra of Titan s atmosphere in three spectral channels covering the 10/cm to 1400/cm spectral region, with variable spectral resolutions of 0.53/cm and 2.8/cm. The uniquely observed spectra exhibit rotational and vibrational-rotational spectral lines of the molecular constituents of Titan s atmosphere that may be analyzed to retrieve information about the composition, thermal structure, and physical and dynamical processes in the remotely sensed atmosphere. We present an analysis of Titan's infrared spectra observed during July 2004 (TO), December 2004 (Tb) and February 2005 (T3), for retrieval of the stratospheric thermal structure, distribution of the hydrocarbons, nitriles, and oxygen bearing constituents, such as C2H2, C2H4, C2H6, C3H8, HCN, HC3N, CO, and CO2 . Preliminary results on the distribution and opacity of haze in Titan s atmosphere are discussed.

  2. The Stable Isotopic Composition of Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Yakir, D.

    2003-12-01

    When a bean leaf was sealed in a closed chamber under a lamp (Rooney, 1988), in two hours the atmospheric CO2 in the microcosm reached an isotopic steady state with a 13C abundance astonishingly similar to the global mean value of atmospheric CO2 at that time (-7.5‰ in the δ13C notation introduced below). Almost concurrently, another research group sealed a suspension of asparagus cells in a different type of microcosm in which within about two hours the atmospheric O2 reached an isotopic steady state with 18O enrichment relative to water in the microcosm that was, too, remarkably similar to the global-scale offset between atmospheric O2 and mean ocean water (21‰ versus 23.5‰ in the δ18O notation introduced below; Guy et al., 1987). These classic experiments capture some of the foundations underlying the isotopic composition of atmospheric CO2 and O2. First, in both cases the biological system rapidly imposed a unique isotopic value on the microcosms' atmosphere via their massive photosynthetic and respiratory exchange of CO2 and O2. Second, in both cases the biological system acted on materials with isotopic signals previously formed by the global carbon and hydrological cycles. That is, the bean leaf introduced its previously formed organic matter (the source of the CO2 respired into microcosm's atmosphere), and the asparagus cells were introduced complete with local tap water (from which photosynthesis released molecular oxygen). Therefore, while the isotopic composition of the biological system used was slave to long-term processes, intense metabolic processes centered on few specific enzymes (Yakir, 2002) dictated the short-term atmospheric composition.In a similar vein, on geological timescales of millions of years, the atmosphere and its isotopic composition are integral parts of essentially a single dynamic ocean-atmosphere-biosphere system. This dynamic system exchanges material, such as carbon and oxygen, with the sediments and the lithosphere via

  3. Dynamics of the Venus atmospheric superrotation

    NASA Astrophysics Data System (ADS)

    Takagi, Masahiro

    It has been shown by Takagi and Matsuda (2006, 2007) that the thermal tides excited at the cloud levels propagate downward to the ground, and induce mean flow in the opposite direction to the Venus rotation at about 0-10 km levels. Surface friction acting on this counter flow can provide the Venus atmosphere with net angular momentum required for its superrotation. By using a nonlinear dynamical model, it has been confirmed that this mechanism generates the atmospheric superrotation extending from the ground to 80 km, whose vertical structure is consistent with observations. However, a mean zonal component of the solar heating is excluded in this model. Numerical experiments with the mean zonal solar heating imply that dynamical effects of the mean meridional circulation cannot be neglected. It is also necessary to construct a radiation scheme suitable for the Venus atmosphere with enormous optical depth. We are currently working on these tasks.

  4. Measuring Atmospheric Dynamics on Titan with AO

    NASA Astrophysics Data System (ADS)

    Adamkovics, Mate; de Pater, I.; Hartung, M.

    2009-05-01

    The cycling of fluid methane between Titan's atmosphere and surface, via seemingly familiar meteorological phenomena, is often compared to Earth's hydrology. Near-IR observations with AO resolve the moon's 1" disk, measure spatial variation in both the surface reflectivity and scattering in the atmosphere, and constrain the methane cycle. Forward models of the atmosphere are compared to observations and used to identify and quantify sources and altitudes of atmospheric opacity; including aerosols, clouds, and precipitation. The ubiquitous submicron aerosol hazes are tracers of global stratospheric dynamics over yearly timescales. Cloud properties may constrain the tropospheric circulation and are observed to change on hourly, daily, and seasonal timescales. Here we present observations of the daily life-cycle of a cloud system, a signature of tropospheric precipitation, seasonal changes in aerosol, and discuss the models that are used to quantify the observed meteorology.

  5. Titan's upper atmospheric structure and ionospheric composition

    NASA Astrophysics Data System (ADS)

    Westlake, Joseph H.

    This Dissertation investigates the density structure of the neutral upper atmosphere and the composition of the ionosphere of Titan through Cassini observations. The highly extended atmosphere of Titan consists primarily of N2, CH4, and H2. The focus is on data extracted from the Ion and Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS) instruments onboard Cassini. The INMS, which is fundamentally a quadrupole mass spectrometer, measures the abundance of neutral and ion components with masses of 1--8 and 12--99 Da. The CAPS instrument consists of three subsystems of which the Ion Beam Spectrometer (CAPS-IBS) is used in this study to derive mass spectra of thermal ions up to 400 Da. in mass in Titan's ionosphere. From measurements of molecular nitrogen in Titan's upper atmosphere an atmospheric scale height is derived implying an effective temperature. From an analysis of 29 targeted flybys of Titan we find that the thermosphere is isothermal from an altitude of 1050 km to the exobase height with an average effective temperature of 153 K. The scale height, and hence the effective temperature, is found to be highly variable. We assess this variability against the relevant geospatial, solar, and magnetospheric parameters to determine which are highly correlated to the effective temperatures. Titan's thermospheric temperature is found to be controlled by variations in the magnetospheric plasma environment. No correlation is found to exist with respect to geospatial parameters (i.e., latitude or longitude) and anti-correlation is found with solar parameters implying that Titan's nightside is hotter than its dayside. Furthermore, Titan's thermosphere is found to respond to plasma forcings on timescales less than one Titan day. To investigate the composition of Titan's ionosphere we present a 1D photochemical model of Titan's dayside ionosphere constrained by Cassini measurements. We show that the production of the primary products of

  6. COMPOSITIONS OF HOT SUPER-EARTH ATMOSPHERES: EXPLORING KEPLER CANDIDATES

    SciTech Connect

    Miguel, Y.; Kaltenegger, L.; Fegley, B.; Schaefer, L.

    2011-12-15

    This paper outlines a simple approach to evaluate the atmospheric composition of hot rocky planets by assuming different types of planetary composition and using corresponding model calculations. To explore hot atmospheres above 1000 K, we model the vaporization of silicate magma and estimate the range of atmospheric compositions according to the planet's radius and semi-major axis for the Kepler 2011 February data release. Our results show five atmospheric types for hot, rocky super-Earth atmospheres, strongly dependent on the initial composition and the planet's distance to the star. We provide a simple set of parameters that can be used to evaluate atmospheric compositions for current and future candidates provided by the Kepler mission and other searches.

  7. CIDGA - Coupling of Interior Dynamic models with Global Atmosphere models

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Plesa, Ana-Catalina; Breuer, Doris

    2010-05-01

    Atmosphere temperatures and in particular the surface temperatures mostly depend on the solar heat flux and the atmospheric composition. The latter can be influenced by interior processes of the planet, i.e. volcanism that releases greenhouse gases such as H2O, CO2 and methane into the atmosphere and plate tectonics through which atmospheric CO2 is recycled via carbonates into the mantle. An increasing concentration of greenhouse gases in the atmosphere results in an increase of the surface temperature. Changes in the surface temperature on the other hand may influence the cooling behaviour of the planet and hence influence its volcanic activity [Phillips et al., 2001]. This feedback relation between mantle convection and atmosphere is not very well understood, since until now mostly either the interior dynamic of a planet or its atmosphere was investigated separately. 2D or 3D mantle convection models to the authors' knowledge haven't been coupled to the atmosphere so far. We have used the 3D spherical simulation code GAIA [Hüttig et al., 2008] including partial melt production and coupled it with the atmosphere module CIDGA using a gray greenhouse model for varying H2O concentrations. This way, not only the influence of mantle dynamics on the atmosphere can be investigated, but also the recoupling effect, that the surface temperature has on the mantle dynamics. So far, we consider one-plate planets without crustal and thus volatile recycling. Phillips et al. [2001] already investigated the coupling effect of the surface temperature on mantle dynamics by using simple parameterized convection models for Venus. In their model a positive feedback mechanism has been observed, i.e., an increase of the surface temperature leads to an increase of partial melt and hence an increase of atmosphere density and surface temperature. Applying our model to Venus, we show that an increase of surface temperature leads not only to an increase of partial melt in the mantle; it also

  8. Constraining the Atmospheric Composition of WASP-18b

    NASA Astrophysics Data System (ADS)

    Wells, Robert; Lopez-Morales, Mercedes; Lewis, Nikole; Apai, Daniel; Jordan, Andres; Espinoza, Nestor; Rackham, Benjamin; Osip, David J.; Fraine, Jonathan D.; Fortney, Jonathan J.; Rodler, Florian

    2015-01-01

    WASP-18b is one of the hottest and fastest orbiting hot Jupiter exoplanets discovered so far. The goal of this work is to constrain the composition of its atmosphere by comparing the data to theoretical models; and to advance our knowledge of atmospheric processes such as cloud formation. The data consist of optical transmission spectra via multi-object spectroscopy with wide slits, taken using IMACS on the Magellan telescopes at the Las Campanas Observatory, Chile. We are also searching for titanium oxide in the atmosphere of WASP-18b to study hazes & thermal inversions and what causes them. Our result will contribute to comparative studies of exoplanets over a wide range of radii, masses and temperatures and allow us to refine theories about exoplanet atmospheric chemical, radiative and dynamical processes through modelling. This work will take a step towards probing planets around nearby stars in the next few years and studies of potentially habitable planets. Data reduction was done in a pipeline written by the ACCESS collaboration. ACCESS (Arizona-CfA-Católica Exoplanet Spectroscopy Survey) is a project to create a comprehensive database of optical exoplanet spectra, using ground based facilities. I present the work done so far on WASP-18b.

  9. Helicity in dynamical processes in the atmosphere

    NASA Astrophysics Data System (ADS)

    Kurgansky, Michael; Maksimenkov, Leonid; Khapaev, Alexey; Chkhetiani, Otto

    2016-04-01

    In modern geophysical fluid dynamics and dynamic meteorology, a notable interest is observed to the notion of helicity ("kinetic helicity" to be distinguished from "magnetic helicity" widely used in magnetohydrodynamics, astrophysics and Solar physics), which is defined by the scalar product of 3D vectors of velocity and vorticity. In this contribution, we bring together different, both known in the literature and novel formulations of the helicity balance equation, by also taking into account the effects of air compressibility and Earth rotation. Equations and relationships are presented that are valid under different approximations customarily made in the dynamic meteorology, e.g. Boussinesq approximation, quasi-static approximation, quasi-geostrophic approximation. An emphasis is placed on the helicity budget analysis in large-scale atmospheric motions. An explicit expression is presented for the rate of helicity injection from the free atmosphere into a non-linear Ekman boundary layer. This injection is shown to be exactly balanced by the helicity viscous destruction within the boundary layer. It is conjectured that this helicity injection may characterize the intensity of atmospheric circulation in extratropical latitudes of both terrestrial hemispheres. Examples are provided based on re-analyses data. Vertical distribution of helicity and superhelicity in different Ekman boundary layers is also discussed.

  10. Dust particle dynamics in atmospheric dust devils

    NASA Astrophysics Data System (ADS)

    Izvekova, Yulia; Popel, Sergey

    2016-04-01

    Dust particle dynamics is modeled in the Dust Devils (DDs). DD is a strong, well-formed, and relatively long-lived whirlwind, ranging from small (half a meter wide and a few meters tall) to large (more than 100 meters wide and more than 1000 meters tall) in Earth's atmosphere. We develop methods for the description of dust particle charging in DDs, discuss the ionization processes in DDs, and model charged dust particle motion. Our conclusions are consistent with the fact that DD can lift a big amount of dust from the surface of a planet into its atmosphere. On the basis of the model we perform calculations and show that DDs are important mechanism for dust uplift in the atmospheres of Earth and Mars. Influence of DD electric field on dynamics of dust particles is investigated. It is shown that influence of the electric field on dust particles trajectories is significant near the ground. At some altitude (more then a quarter of the height of DD) influence of the electric field on dust particles trajectories is negligible. For the calculation of the dynamics of dust electric field can be approximated by effective dipole located at a half of the height of DD. This work was supported by the Russian Federation Presidential Program for State Support of Young Scientists (project no. MK-6935.2015.2).

  11. The Stable Isotopic Composition of Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Yakir, D.

    2003-12-01

    When a bean leaf was sealed in a closed chamber under a lamp (Rooney, 1988), in two hours the atmospheric CO2 in the microcosm reached an isotopic steady state with a 13C abundance astonishingly similar to the global mean value of atmospheric CO2 at that time (-7.5‰ in the δ13C notation introduced below). Almost concurrently, another research group sealed a suspension of asparagus cells in a different type of microcosm in which within about two hours the atmospheric O2 reached an isotopic steady state with 18O enrichment relative to water in the microcosm that was, too, remarkably similar to the global-scale offset between atmospheric O2 and mean ocean water (21‰ versus 23.5‰ in the δ18O notation introduced below; Guy et al., 1987). These classic experiments capture some of the foundations underlying the isotopic composition of atmospheric CO2 and O2. First, in both cases the biological system rapidly imposed a unique isotopic value on the microcosms' atmosphere via their massive photosynthetic and respiratory exchange of CO2 and O2. Second, in both cases the biological system acted on materials with isotopic signals previously formed by the global carbon and hydrological cycles. That is, the bean leaf introduced its previously formed organic matter (the source of the CO2 respired into microcosm's atmosphere), and the asparagus cells were introduced complete with local tap water (from which photosynthesis released molecular oxygen). Therefore, while the isotopic composition of the biological system used was slave to long-term processes, intense metabolic processes centered on few specific enzymes (Yakir, 2002) dictated the short-term atmospheric composition.In a similar vein, on geological timescales of millions of years, the atmosphere and its isotopic composition are integral parts of essentially a single dynamic ocean-atmosphere-biosphere system. This dynamic system exchanges material, such as carbon and oxygen, with the sediments and the lithosphere via

  12. Measurement of Atmospheric Composition from Geostationary Platforms

    NASA Technical Reports Server (NTRS)

    Bhartia, P. K.; Kawa, S. R.; Janz, S.; Herman, J. R.; Gleason, J. F.

    2008-01-01

    Satellite instruments flown since 1970 have had great success in elucidating the processes that control stratospheric ozone. In contrast, space-based data for tropospheric constituents that affect air quality and climate have only recently become available. While these datasets highlight the rapidly advancing capabilities of spacebased tropospheric sensors, they are also pointing to the limitations of sun-synchronous, low-earth orbiting (SSO/LEO) satellite platforms for making such measurements. In our talk we will highlight the science requirements for new missions and the technological and algorithmic approaches that we are developing to meet these requirements. From these studies a clear need for advanced atmospheric composition sensors has emerged that can be put on geostationary (GEO) platforms to provide 5 km horizontal resolution with 15-60 minutes repeat cycle. Such measurements have been high priority in the recently released Decadal Survey report by the US National Research Council. The need for GEO is driven not only by the science requirements to track rapidly changing pollution events but also by the need to provide altitude-resolved information about tropospheric constituents. Currently, with the exception of aerosols, it is not possible to derive profile information about lower tropospheric constituents from satellite measurements. New algorithmic approaches are being developed to obtain this information by combining UV and IR data, by monitoring the spatial and temporal structures of the constituents, and by using low-level clouds to separate boundary layer constituents from free troposphere. All these approaches require better spatial and temporal resolution than that provided by LEO sensors.

  13. The Dynamics of the Atmospheric Radiation Environment at Aviation Altitudes

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, Epaminondas G.

    2004-01-01

    Single Event Effects vulnerability of on-board computers that regulate the: navigational, flight control, communication, and life support systems has become an issue in advanced modern aircraft, especially those that may be equipped with new technology devices in terabit memory banks (low voltage, nanometer feature size, gigabit integration). To address this concern, radiation spectrometers need to fly continually on a multitude of carriers over long periods of time so as to accumulate sufficient information that will broaden our understanding of the very dynamic and complex nature of the atmospheric radiation environment regarding: composition, spectral distribution, intensity, temporal variation, and spatial variation.

  14. Dynamic model of the Earth's upper atmosphere

    NASA Technical Reports Server (NTRS)

    Slowey, J. W.

    1984-01-01

    An initial modification to the MSF/J70 Thermospheric Model, in which the variations due to sudden geomagnetic disturbances upon the Earth's upper atmospheric density structure were modeled is presented. This dynamic model of the geomagnetic variation included is an improved version of one which SAO developed from the analysis of the ESRO 4 mass spectrometer data that was incorporated in the Jacchia 1977 model. The variation with geomagnetic local time as well as with geomagnetic latitude are included, and also the effects due to disturbance of the temperature profiles in the region of energy deposition.

  15. Extrasolar comets : dynamics and composition

    NASA Astrophysics Data System (ADS)

    Lecavelier des Etangs, Alain; Wilson, Paul Anthony; Kiefer, Flavien

    2015-12-01

    Extrasolar comets, or exocomets, are detected using transit spectroscopy in young planetary systems.Spectroscopic observations of β Pictoris revealed a high rate of transits, allowing statistical analysis of exocomets populations. Using more than 1,000 archival spectra, we obtained a sample of several hundreds of signatures of exocomets transiting the disk of the parent star. Statistical analysis of the observed properties of these exocomets allowed the identification of two populations with different physical and dynamical properties. One family consists of exocomets producing shallow absorption lines at high radial velocities (>40 km/s), which can be attributed to old exhausted comets trapped in a mean motion resonance with a massive planet, possibly β Pic b. The second family consists of exocomets which produce deep absorption lines at low radial velocities (˜ 15 km/s), which could be related to the recent fragmentation of one or a few parent bodies.Most recently, our last HST/COS observations of β Pic yielded the first detection of exocomets in the far-UV. Several new species were detected for the first time in exocomets, including HI, CII, NI, OI and all the ionization states of Si. Measuring the abundance of the key species such as Hydrogen, Carbon, Nitrogen and Oxygen in evaporating exocomets allows us to trace the condensation and evaporation processes present in the late stages of planetary formation. Moreover, the measured radial velocities of these exocomets are consistent with the two dynamical populations previously identified. Most importantly, correlations between the dynamical properties and abundances seems to show up. In short, these two families of exocomets have different dynamical properties, and their origin could be determined by studying their chemical composition. I will present the latest results on that subject, and provide an overview of other systems for which signatures of exocomets have been observed.

  16. Model atmospheres for cool stars. [varying chemical composition

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.

    1974-01-01

    This report contains an extensive series of model atmospheres for cool stars having a wide range in chemical composition. Model atmospheres (temperature, pressure, density, etc.) are tabulated, along with emergent energy flux distributions, limb darkening, and information on convection for selected models. The models are calculated under the usual assumptions of hydrostatic equilibrium, constancy of total energy flux (including transport both by radiation and convection) and local thermodynamic equilibrium. Some molecular and atomic line opacity is accounted for as a straight mean. While cool star atmospheres are regimes of complicated physical conditions, and these atmospheres are necessarily approximate, they should be useful for a number of kinds of spectral and atmospheric analysis.

  17. Isotopic composition of atmospheric hydrogen and methane

    USGS Publications Warehouse

    Bainbridge, A.E.; Suess, H.E.; Friedman, I.

    1961-01-01

    IN a recent communication, Bishop and Taylor1 express the opinion that the tritium concentration of free hydrogen in the atmosphere has been rising over the past ten years, with a doubling time of approximately 18 months. The authors suspect that artificial tritium was released into the atmosphere several years before the Castle test series in 1954, which is commonly assumed to have led to the first pronounced rise in the tritium concentration of terrestrial surface water. Bishop and Taylor's communication includes a diagram of the logarithms of all the experimentally determined tritium values in free atmospheric hydrogen plotted against time. The plot shows that the values follow a straight line that includes the first value obtained by Faltings and Harteck2 on atmospheric hydrogen collected in 1948. ?? 1961 Nature Publishing Group.

  18. Isotopic composition of atmospheric moisture from pan water evaporation measurements.

    PubMed

    Devi, Pooja; Jain, Ashok Kumar; Rao, M Someshwer; Kumar, Bhishm

    2015-01-01

    A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability. PMID:26332982

  19. Performance of a dynamic atmosphere generation system

    SciTech Connect

    Nano, G.; Borroni, A.; Mazza, B.

    1987-09-01

    A controlled test atmosphere system for gaseous pollutants was designed and constructed. For a reliable characterization of indoor air pollution, a suitable set of sampling and analysis procedures has to be devised and accomplished. The precision and accuracy of the measurements must be determined exactly for a correct interpretation of the results. The two main difficulties appear to be the actual generation of the individual standard and the preparations of physico-chemically thoroughly characterized mixtures. This system utilized two methods for generation of dynamic standards: permeation tubes and gas saturators. Special care also was devoted to the achievement of both a good time stability of the concentration of the standard mixtures and a satisfactory agreement between expected and measured concentration values.

  20. Geomagnetic Disturbances Caused by Internal Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Sonneman, G.

    1984-01-01

    It is commonly believed that geomagnetic disturbances are caused by external influences connected with the solar wind. The 27-day recurrence of perturbations seems to be a strong hint for this interaction. But frequently geomagnetic disturbances occur without any relation to sunspot numbers or radiowave fluxes. This was one of the reasons for introducing hypothetical M-regions on the Sun and their relation to solar wind activities. Only one half of the variance of the geomagnetic AL-index could be related to the solar wind. Therefore it is concluded that internal processes of the magnetosphere were responsible for additional geomagnetic activity. Arguments, which might lead to the suggestion of geomagnetic disturbances as being caused by internal atmospheric dynamics are discussed and a rather preliminary scenario of those processes is proposed.

  1. Dynamics investigation in the Venus upper atmosphere

    NASA Astrophysics Data System (ADS)

    Migliorini, A.; Altieri, F.; Shakun, A.; Zasova, L.; Piccioni, G.; Bellucci, G.

    The O_2 nightglow emissions in the infrared spectral range are important features to investigate dynamics at the mesospheric altitudes, in the planetary atmosphere. In this work, we analyzed the profiles obtained at limb by the VIRTIS spectrometer on board the Venus Express mission, acquired during the mission period from 2006-07-05 to 2008-08-15 to investigate possible gravity waves characteristics at the airglow altitudes. Indeed, several profiles present double peaked structures that can be interpreted as due to gravity waves. In analogy to the Earth's and Mars cases, we use a well-known theory to model the O_2 nightglow emissions affected by gravity waves propagation, in order to support this thesis and derive the waves properties. We discuss results from 30 profiles showing double peaked structures, focusing on vertical wavelength and wave amplitude of the possible gravity waves. On average, the double peaked profiles are compatible with the effects of gravity waves with a vertical wavelength ranging between 7 and 16 km, and wave amplitude of 3-14%. A comparison with gravity waves properties in the Mars and Earth's atmospheres, using the same theory, is also proposed \\citep{altieri_2014}. \\ The research is supported by ASI (contract ASI-INAF I/050/10/0).

  2. Planetary Atmosphere Dynamics and Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Atkinson, David H.

    1996-01-01

    This research program has dealt with two projects in the field of planetary atmosphere dynamics and radiative energy transfer, one theoretical and one experimental. The first project, in radiative energy transfer, incorporated the capability to isolate and quantify the contribution of individual atmospheric components to the Venus radiative balance and thermal structure to greatly improve the current understanding of the radiative processes occurring within the Venus atmosphere. This is possible by varying the mixing ratios of each gas species, and the location, number density and aerosol size distributions of the clouds. This project was a continuation of the work initiated under a 1992 University Consortium Agreement. Under the just completed grant, work has continued on the use of a convolution-based algorithm that provided the capability to calculate the k coefficients of a gas mixture at different temperatures, pressures and spectral intervals from the separate k-distributions of the individual gas species. The second primary goal of this research dealt with the Doppler wind retrieval for the Successful Galileo Jupiter probe mission in December, 1995. In anticipation of the arrival of Galileo at Jupiter, software development continued to read the radioscience and probe/orbiter trajectory data provided by the Galileo project and required for Jupiter zonal wind measurements. Sample experiment radioscience data records and probe/orbiter trajectory data files provided by the Galileo Radioscience and Navigation teams at the Jet Propulsion Laboratory, respectively, were used for the first phase of the software development. The software to read the necessary data records was completed in 1995. The procedure by which the wind retrieval takes place begins with initial consistency checks of the raw data, preliminary data reductions, wind recoveries, iterative reconstruction of the probe descent profile, and refined wind recoveries. At each stage of the wind recovery

  3. Chapter 13. Atmospheric Dynamics and Meteorology

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.

    2009-01-01

    Titan, after Venus, is the second example in the solar system of an atmosphere with a global cyclostrophic circulation, but in this case a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10 deg S, indicate that the zonal winds are mostly in the sense of the satellite's rotation. They generally increase with altitude and become cyclostrophic near 35 km above the surface. An exception to this is a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from temperatures retrieved from Cassini orbiter measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds of 190 m/s at mid northern latitudes near 300 km. Above this level, the vortex decays. Curiously, the stratospheric zonal winds and temperatures in both hemispheres are symmetric about a pole that is offset from the surface pole by about 4 deg. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the onset between the equator, where the distance to the rotation axis is greatest, and the seasonally varying subsolar latitude. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures near 400 km and the enhanced concentration of several organic molecules suggest subsidence in the north polar region during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50 deg N. Titan's winter polar vortex appears to share many of the same characteristics of isolating high and low-latitude air masses as do the winter polar vortices on Earth that envelop the ozone holes. Global mapping of temperatures, winds, and composition in the troposphere, by contrast, is incomplete

  4. Multiwavelength Studies For Titan's Atmospheric Composition Analysis

    NASA Astrophysics Data System (ADS)

    Benilan, Yves; Sebbar, E. Es; Fray, N.; Gazeau, M.; Jolly, A.; Schwell, M.; Guillemin, J.

    2009-09-01

    Titan's atmosphere mainly made of nitrogen and methane is rich in organic molecules. Hydrocarbons are formed from the photolytic dissociation of CH4 and nitriles are created by dissociation of N2 followed by reactions with hydrocarbons. In order to understand the physicochemical mechanisms responsible for the evolution of Titan's atmosphere, photochemical models are built. The latter need constrains for vertical profiles of organic compounds from the high thermosphere down to the low stratosphere as well as photodissociation rates. Those profiles over the entire atmosphere can be retrieved from Cassini observations, in particular by limb sounding, coupling infrared and ultraviolet spectroscopy. However, in order to interpret those data obtained by the ultraviolet (UVIS) and infrared (CIRS) spectrometers on board Cassini's spacecraft, precise spectroscopic parameters and their dependence on temperature are needed. We will review the current knowledge in this field of planetary spectroscopy and point out the lack of spectroscopic parameters of already detected species, especially for radiative transfer calculations at low temperature. We will focus our talk on the Cyanogen molecule (C2N2) which has been observed in Titan atmosphere in the FIR domain around 230 cm-1. We will present the latest spectroscopic studies we have performed on this molecule. Those studies cover the entire spectrum from the mid- infrared and to the vacuum ultraviolet. Integrated band intensities have been determined for all bands in the infrared. In the ultraviolet domain, we have determined absolute cross sections from 350 down to 80 nm covering six orders of magnitude absorptions. We will also show how temperature can influence VUV absorption coefficients and the implications on the interpretation of UVIS observations.

  5. Saturn's Polar Atmosphere: Seasonal Change and Composition from Cassini

    NASA Astrophysics Data System (ADS)

    Fletcher, Leigh; Orton, Glenn; Baines, Kevin; Momary, Thomas; Irwin, Patrick; Roos-Serote, Maarten; Teanby, Nicholas; Merlet, Cecile; Read, Peter

    Cassini's prime mission permitted the first detailed infrared studies of the polar atmosphere of Saturn, under both southern summertime and northern wintertime conditions. Both poles exhibited small, discrete warm vortices (`hotspots') in the troposphere and stratosphere, which were depleted in disequilibrium species and hazes, surrounded by strong prograde jets and characterised by distinct `eyewalls.' In addition, the south polar stratosphere had an extensive warm polar `hood' between 70-90° S, which was expected to be seasonal in nature and related to the presence of high-altitude stratospheric hazes, localised at the south pole. Finally, infrared observations revealed the continued presence of the northern hexagon discovered during the Voyager encounter in 1981, but observed no comparable features in the south. In August 2009 Saturn reached its equinox, so that the cold northern pole emerged into sunlight for the first time in almost 15 years. We present a time series of Composite Infrared Spectrom-eter (CIRS) observations from 2004 to 2009 which demonstrate (a) the continued presence of the polar vortices under spring and autumnal conditions; (b) the cooling of the southern stratospheric hood; and (c) the persistence of the northern hexagon. These are compared with ground-based observations of Saturn from the Very Large Telescope VISIR instrument at the time of ring-plane crossing to study compositional asymmetries between the two poles. Fur-thermore, we derive the spatial distribution of aerosols, phosphine, ammonia and arsine in the north polar hotspot and hexagon from Cassini VIMS 4.5-5.1 µm observations to reveal the mor-phology and composition of these dynamical features. These results will be discussed in terms of our present understanding of the polar circulation systems on Saturn, and their response to seasonal variations of insolation.

  6. Parachute Dynamic Stability Variations Due to Atmospheric Density

    NASA Astrophysics Data System (ADS)

    Ginn, J. M.; Braun, R. D.; Clark, I. G.

    2014-06-01

    Apparent inertia effects on parachute dynamics are investigated. Both static and dynamic stability are examined as a function of apparent inertia parameters. Conclusions are drawn describing changes in stability based on atmospheric density.

  7. Clouds Composition in Super-Earth Atmospheres: Chemical Equilibrium Calculations

    NASA Astrophysics Data System (ADS)

    Kempton, Eliza M.-R.; Mbarek, Rostom

    2015-12-01

    Attempts to determine the composition of super-Earth atmospheres have so far been plagued by the presence of clouds. Yet the theoretical framework to understand these clouds is still in its infancy. For the super-Earth archetype GJ 1214b, KCl, Na2S, and ZnS have been proposed as condensates that would form under the condition of chemical equilibrium, if the planet’s atmosphere has a bulk composition near solar. Condensation chemistry calculations have not been presented for a wider range of atmospheric bulk composition that is to be expected for super-Earth exoplanets. Here we provide a theoretical context for the formation of super-Earth clouds in atmospheres of varied composition by determining which condensates are likely to form, under the assumption of chemical equilibrium. We model super-Earth atmospheres assuming they are formed by degassing of volatiles from a solid planetary core of chondritic material. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3,000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculations. The super-Earth atmospheres that we study range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a diverse range of atmospheric composition that is appropriate for low-mass exoplanets. Some condensates appear across all of our models. However, the majority of condensed species appear only over specific ranges of H:O and C:O ratios. We find that for GJ 1214b, KCl is the primary cloud-forming condensate at solar composition, in agreement with previous work. However, for oxidizing atmospheres, where H:O is less than unity, K2SO4 clouds form instead. For carbon-rich atmospheres with super-solar C:O ratios, graphite clouds additionally appear. At

  8. The atmospheric aerosol dynamics on Lidar and Sunphotometer data over Yakutsk

    NASA Astrophysics Data System (ADS)

    Nikolashkin, Semyen; Timofeeva, Galina; Sakerin, Sergey; Titov, Semyen; Marichev, Valery

    The lidar and sunphotometer investigations of atmospheric aerosol layers vertical structure and dynamics have been carried out in Yakutsk (62N). Also the season and annual variations of the total atmospheric aerosol and water vapor concentration near Yakutsk have been carried out and the main features are developed. The atmosphere is cleaner on aerosol composition on fall and winter periods, but spring and summer period is differed by maximally hazing and variability of the aerosol optical depth. The investigation of seasonal feature of water vapor concentration in the atmosphere for 2004-2006 years showed an expected view of the seasonal distribution with maximum in the summer season, because of high activity of the lower atmosphere in summer and more intensive evaporation in the warm period. Some results on investigation of the influence of the solar corpuscular and geomagnetic activity on aerosol composition of atmosphere on the subauroral latitudes are discussed.

  9. Interior and its implications for the atmosphere. [effects of Titan interior structure on its atmospheric composition

    NASA Technical Reports Server (NTRS)

    Lewis, J. S.

    1974-01-01

    The bulk composition and interior structure of Titan required to explain the presence of a substantial methane atmosphere are shown to imply the presence of solid CH4 - 7H2O in Titan's primitive material. Consideration of the possible composition and structure of the present atmosphere shows plausible grounds for considering models with total atmospheric pressures ranging from approximately 20 mb up to approximately 1 kb. Expectations regarding the physical state of the surface and its chemical composition are strongly conditioned by the mass of atmosphere believed to be present. A surface of solid CH4, liquid CH4 solid, CH4 hydrate, H2O ice, aqueous NH3 solution, or even a non-surface of supercritical H2O-NH3-CH4 fluid could be rationalized.

  10. Impact dynamics research on composite transport structures

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1984-01-01

    The experimental and analytical efforts being undertaken to investigate the response of composite and aluminum structures under crash loading conditions were reviewed. A Boeing 720 airplane was used in the controlled-impact demonstration test. Energy absorption of composite materials, the tearing of fuselage skin panels, the friction and abrasion behavior of composite skins, and the crushing behavior and dynamic response of composite beams were among the topics addressed.

  11. Impact dynamics research on composite transport structures

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1985-01-01

    The experimental and analytical efforts being undertaken to investigate the response of composite and aluminum structures under crash loading conditions were reviewed. A Boeing 720 airplane was used in the controlled-impact demonstration test. Energy absorption of composite materials, the tearing of fuselage skin panels, the friction and abrasion behavior of composite skins, and the crushing behavior and dynamic response of composite beams were among the topics addressed.

  12. Atmospheric Circulation and Composition of GJ1214b

    NASA Astrophysics Data System (ADS)

    Menou, Kristen

    2012-01-01

    The exoplanet GJ1214b presents an interesting example of compositional degeneracy for low-mass planets. Its atmosphere may be composed of water, super-solar or solar metallicity material. We present atmospheric circulation models of GJ1214b for these three compositions, with explicit gray radiative transfer and an optional treatment of MHD bottom drag. All models develop strong, superrotating zonal winds (~1-2 km s-1). The degree of eastward heat advection, which can be inferred from secondary eclipse and thermal phase curve measurements, varies greatly between the models. These differences are understood as resulting from variations in the radiative times at the thermal photosphere, caused by separate molecular weight and opacity effects. Our GJ1214b models illustrate how atmospheric circulation can be used as a probe of composition for similar tidally locked exoplanets in the mini-Neptune/waterworld class.

  13. ATMOSPHERIC CIRCULATION AND COMPOSITION OF GJ1214b

    SciTech Connect

    Menou, Kristen

    2012-01-15

    The exoplanet GJ1214b presents an interesting example of compositional degeneracy for low-mass planets. Its atmosphere may be composed of water, super-solar or solar metallicity material. We present atmospheric circulation models of GJ1214b for these three compositions, with explicit gray radiative transfer and an optional treatment of MHD bottom drag. All models develop strong, superrotating zonal winds ({approx}1-2 km s{sup -1}). The degree of eastward heat advection, which can be inferred from secondary eclipse and thermal phase curve measurements, varies greatly between the models. These differences are understood as resulting from variations in the radiative times at the thermal photosphere, caused by separate molecular weight and opacity effects. Our GJ1214b models illustrate how atmospheric circulation can be used as a probe of composition for similar tidally locked exoplanets in the mini-Neptune/waterworld class.

  14. Apollo 17 Lunar Surface Experiment: Lunar Atmosphere Composition Experiment

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Table-top views of one of the Apollo 17 Lunar Surface Experiments. This view is of the Lunar Atmosphere Composition Experiment (LACE) (Lunar Mass Spectrometer), Experiment S-205, one of the experiments of the Apollo Lunar Surface Experiments Package which will be carried on the Apollo 17 lunar landing mission. The LACE will measrue components in the ambient lunar atmosphere in the range of one to 110 atomic mass units (AMU).

  15. Nonlinear dynamics and predictability in the atmospheric sciences

    SciTech Connect

    Ghil, M.; Kimoto, M.; Neelin, J.D. )

    1991-01-01

    Systematic applications of nonlinear dynamics to studies of the atmosphere and climate are reviewed for the period 1987-1990. Problems discussed include paleoclimatic applications, low-frequency atmospheric variability, and interannual variability of the ocean-atmosphere system. Emphasis is placed on applications of the successive bifurcation approach and the ergodic theory of dynamical systems to understanding and prediction of intraseasonal, interannual, and Quaternary climate changes.

  16. A Community-oriented CEOS Atmospheric Composition Portal (ACP)

    NASA Astrophysics Data System (ADS)

    Bernonville, S.; Goussev, O.; Falke, S.; Lindsay, F.; Lynnes, C. S.; Yang, W.; Zhao, P.; Johnson, J.

    2012-04-01

    The Atmospheric Composition Constellation (ACC) and the Workgroup for Information Systems and Services (WGISS) within the Committee on Earth Observation Satellites (CEOS) is developing a portal to support interoperability among the atmospheric composition research and applications communities. The CEOS Atmospheric Composition Portal (ACP) is defining approaches for providing data access, tools and contextual guidance for an international suite of remote sensing datasets. An initial prototype provides access to data services and analysis tools hosted by the World Data Center for Remote Sensing of the Atmosphere (WDC-RSAT), NASA's Goddard Earth Sciences Data and Information Services Center (GES DISC) and DataFed. Distributed access to data is implemented via interoperability standards, including the Open Geospatial Consortium's (OGC) Web Map Service (WMS) and Web Coverage Service (WCS). A fundamental aspect to the design, implementation and evolution of the ACP is community collaboration. The portal is intended as a community resource that is created through collaboration across remotely sensed atmospheric composition data organizations and used by a variety of groups across the climate, air quality, and stratospheric ozone domains. The implementation of interoperability standards in the ACP has involved coordination on identifying the most applicable standards and the definition of community-specific conventions to ensure consistent adoption of standards. This presentation includes an overview of the ACP, its community oriented approach, and use of community-conventions in achieving standards-based interoperability.

  17. Linking atmospheric composition data across data types and national boundaries

    NASA Astrophysics Data System (ADS)

    Schultz, Martin; Lyapina, Olga; Schröder, Sabine; Stein, Olaf; Mallmann, Daniel

    2016-04-01

    The field of atmospheric composition research involves the management of data sources from various disciplines such as meteorology, chemistry, (radiation) physics, emission inventories, etc. The output from global and regional chemistry climate models, chemistry transport models, and air quality models presents considerable challenges due to the manifold variables of interest and the multitude of diagnostics needed in order to interpret the results. Furthermore, many observations of atmospheric composition exist from different platforms involving different geometries, time resolutions, size spectra, etc. Due to the fact that few observation networks are globally coordinated, various representations of data formats and metadata definitions exist. For example, there is no unique agreement on chemical species names and in many networks, national languages are used to document the data. We will present a summary of the issues involving global interoperability of atmospheric composition data including the aspects of data volume, data compexity and metadata standardisation, and we will demonstrate various activities carried out in Jülich and internationally to overcome these challenges. Specifically, we will describe the current implementation and plans for the Copernicus Atmosphere Monitoring Service boundary condition service (http://ows-server.iek.fz-juelich.de), the design of the JOIN web interface (https://join.fz-juelich.de), and the activities for building an ontology of atmospheric composition vocabulary (https://ontology.geodab.eu/).

  18. Titan's atmosphere (clouds and composition): new results

    NASA Astrophysics Data System (ADS)

    Griffith, C. A.

    Titan's atmosphere potentially sports a cycle similar to the hydrologic one on Earth with clouds, rain and seas, but with methane playing the terrestrial role of water. Over the past ten years many independent efforts indicated no strong evidence for cloudiness until some unique spectra were analyzed in 1998 (Griffith et al.). These surprising observations displayed enhanced fluxes of 14-200 % on two nights at precisely the wavelengths (windows) that sense Titan's lower altitude where clouds might reside. The morphology of these enhancements in all 4 windows observed indicate that clouds covered ~6-9 % of Titan's surface and existed at ~15 km altitude. Here I discuss new observations recorded in 1999 aimed to further characterize Titan's clouds. While we find no evidence for a massive cloud system similar to the one observed previously, 1%-4% fluctuations in flux occur daily. These modulations, similar in wavelength and morphology to the more pronounced ones observed earlier, suggest the presence of clouds covering ≤1% of Titan's disk. The variations are too small to have been detected by most prior measurements. Repeated observations, spaced 30 minutes apart, indicate a temporal variability observable in the time scale of a couple of hours. The cloud heights hint that convection might govern their evolution. Their short lives point to the presence of rain.

  19. Modeling the effects of atmospheric emissions on groundwater composition

    SciTech Connect

    Brown, T.J.

    1994-12-31

    A composite model of atmospheric, unsaturated and groundwater transport is developed to evaluate the processes determining the distribution of atmospherically derived contaminants in groundwater systems and to test the sensitivity of simulated contaminant concentrations to input parameters and model linkages. One application is to screen specific atmospheric emissions for their potential in determining groundwater age. Temporal changes in atmospheric emissions could provide a recognizable pattern in the groundwater system. The model also provides a way for quantifying the significance of uncertainties in the tracer source term and transport parameters on the contaminant distribution in the groundwater system, an essential step in using the distribution of contaminants from local, point source atmospheric emissions to examine conceptual models of groundwater flow and transport.

  20. Earth-atmosphere evolution based on new determination of Devonian atmosphere Ar isotopic composition

    NASA Astrophysics Data System (ADS)

    Stuart, Finlay M.; Mark, Darren F.; Gandanger, Pierre; McConville, Paul

    2016-07-01

    The isotopic composition of the noble gases, in particular Ar, in samples of ancient atmosphere trapped in rocks and minerals provides the strongest constraints on the timing and rate of Earth atmosphere formation by degassing of the Earth's interior. We have re-measured the isotopic composition of argon in the Rhynie chert from northeast Scotland using a high precision mass spectrometer in an effort to provide constraints on the composition of Devonian atmosphere. Irradiated chert samples yield 40Ar/36Ar ratios that are often below the modern atmosphere value. The data define a 40Ar/36Ar value of 289.5 ± 0.4 at K/36Ar = 0. Similarly low 40Ar/36Ar are measured in un-irradiated chert samples. The simplest explanation for the low 40Ar/36Ar is the preservation of Devonian atmosphere-derived Ar in the chert, with the intercept value in 40Ar-39Ar-36Ar space representing an upper limit. In this case the Earth's atmosphere has accumulated only 3% (5.1 ± 0.4 ×1016 mol) of the total 40Ar inventory since the Devonian. The average accumulation rate of 1.27 ± 0.09 ×108 mol40Ar/yr overlaps the rate over the last 800 kyr. This implies that there has been no resolvable temporal change in the outgassing rate of the Earth since the mid-Palaeozoic despite the likely episodicity of Ar degassing from the continental crust. Incorporating the new Devonian atmosphere 40Ar/36Ar into the Earth degassing model of Pujol et al. (2013) provides the most precise constraints on atmosphere formation so far. The atmosphere formed in the first ∼100 Ma after initial accretion during a catastrophic degassing episode. A significant volume of 40Ar did not start to accumulate in the atmosphere until after 4 Ga which implies that stable K-rich continental crust did not develop until this time.

  1. Atmospheric Composition Data and Information Services Center (ACDISC)

    NASA Technical Reports Server (NTRS)

    Kempler, S.

    2005-01-01

    NASA's GSFC Earth Sciences (GES) Data and Information and Data Services Center (DISC) manages the archive, distribution and data access for atmospheric composition data from AURA'S OMI, MLS, and hopefully one day, HIRDLS instruments, as well as heritage datasets from TOMS, UARS, MODIS, and AIRS. This data is currently archived in the GES Distributed Active Archive Center (DAAC). The GES DISC has begun the development of a community driven data management system that's sole purpose is to manage and provide value added services to NASA's Atmospheric Composition (AC) Data. This system, called the Atmospheric Composition Data and Information Services Center (ACDISC) will provide access all AC datasets from the above mentioned instruments, as well as AC datasets residing at remote archive sites (e.g, LaRC DAAC) The goals of the ACDISC are to: 1) Provide a data center for Atmospheric Scientists, guided by Atmospheric Scientists; 2) Be absolutely responsive to the data and data service needs of the Atmospheric Composition (AC) community; 3) Provide services (i.e., expertise) that will facilitate the effortless access to and usage of AC data; 4) Collaborate with AC scientists to facilitate the use of data from multiple sensors for long term atmospheric research. The ACDISC is an AC specific, user driven, multi-sensor, on-line, easy access archive and distribution system employing data analysis and visualization, data mining, and other user requested techniques that facilitate science data usage. The purpose of this presentation is to provide the evolution path that the GES DISC in order to better serve AC data, and also to receive continued community feedback and further foster collaboration with AC data users and providers.

  2. Dynamical variability in Saturn Equatorial Atmosphere

    NASA Astrophysics Data System (ADS)

    Sánchez-Lavega, A.; Pérez-Hoyos, S.; Hueso, R.; Rojas, J. F.; French, R. G.; Grupo Ciencias Planetarias Team

    2003-05-01

    Historical ground-based and recent HST observations show that Saturn's Equatorial Atmosphere is the region where the most intense large-scale dynamical variability took place at cloud level in the planet. Large-scale convective storms (nicknamed the ``Great White Spots") occurred in 1876, 1933 and 1990. The best studied case (the 1990 storm), produced a dramatic change in the cloud aspect in the years following the outburst of September 1990. Subsequently, a new large storm formed in 1994 and from 1996 to 2002 our HST observations showed periods of unusual cloud activity in the southern part of the Equator. This contrast with the aspect observed during the Voyager 1 and 2 encounters in 1980 and 1981 when the Equator was calm, except for some mid-scale plume-like features seen in 1981. Cloud-tracking of the features have revealed a dramatic slow down in the equatorial winds from maximum velocities of ˜ 475 m/s in 1980-1981 to ˜ 275 m/s during 1996-2002, as we have recently reported in Nature, Vol. 423, 623 (2003). We discuss the possibility that seasonal and ring-shadowing effects are involved in generating this activity and variability. Acknowledgements: This work was supported by the Spanish MCYT PNAYA 2000-0932. SPH acknowledges a PhD fellowship from the Spanish MECD and RH a post-doc fellowship from Gobierno Vasco. RGF was supported in part by NASA's Planetary Geology and Geophysics Program NAG5-10197 and STSCI Grant GO-08660.01A.

  3. Atmosphere composition of quiescent accreting neutron stars in globular clusters

    NASA Astrophysics Data System (ADS)

    Servillat, M.

    2012-12-01

    Through the study of the quiescent X-ray emission of neutron stars in low-mass X-ray binaries it is possible to constrain the equation of state of dense matter. However, the chemical composition of the neutron star atmosphere is still uncertain. Using deep Chandra observations, we report the detailed spectral analysis of a neutron star in the globular cluster M28. For the first time for this kind of object, different atmosphere models composed of hydrogen, helium or carbon are used. The carbon model can be ruled out, and the derived mass and radius are clearly distinct depending on the composition of the atmosphere, leading to different constraints on the equation of state. We compare those results with the other similar neutron stars studied with a hydrogen atmosphere model only and show that a helium model could be relevant in many cases. Measurements of neutron star masses/radii by spectral fitting should consider the possibility of heavier element atmospheres, which produce larger masses/radii for the same data, unless the composition of the accretor is known independently.

  4. Influence of Cenozoic Plateau Growth on Precipitation and Atmospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Insel, N.; Poulsen, C. J.; Rowley, D. B.

    2011-12-01

    Large mountain ranges exhibit a first-order control on climate, but it is unclear how climate may have changed over time as topography developed. In this work we use global and regional general circulation models (Genesis3.0, RegCM4) to evaluate dynamical and physical atmospheric changes associated with variations in the Andean and Himalayan topography during the Cenozoic. Our model results show that orogenic plateaus play a critical role in the evolution of climate by affecting atmospheric circulation and precipitation patterns. The influence of high topography on regional climate is not purely mechanical through orographic lifting, but also due to modifications of dynamical processes. The uplift of the Andes and Himalaya influence atmospheric flow in the following ways: (1) Orogens act as a barrier to atmospheric flow, thereby changing low-level (800 mbar) wind patterns by causing a reversal and/or significant strengthening of the prevailing winds. The establishment and strength of low-level jets is directly related to mountain elevations. (2) In contrast, monsoonal circulations form without the existence of a plateau, but are modified by high topography through thermal and mechanical effects (e.g. sensible or latent heating, orographic blocking). (3) An increase in the surface pressure gradient between high mountain ranges and the foreland enhances convergence of low-level flow and draws in moisture from adjacent regions. The increase in moisture transport provides the latent heat required to drive convective updrafts and enhances convection and precipitation along the windward flanks of high topography. (4) Regional atmospheric circulation similar to modern are established and amplify as the mountains rise to ~50-75% of their modern elevation. Our model results are largely consistent with proxy evidence of regional climate change, and have implications for the timing and rate of surface plateau uplift. Most importantly, simulated changes in paleoclimate alter

  5. Automated Atmospheric Composition Dataset Level Metadata Discovery. Difficulties and Surprises

    NASA Astrophysics Data System (ADS)

    Strub, R. F.; Falke, S. R.; Kempler, S.; Fialkowski, E.; Goussev, O.; Lynnes, C.

    2015-12-01

    The Atmospheric Composition Portal (ACP) is an aggregator and curator of information related to remotely sensed atmospheric composition data and analysis. It uses existing tools and technologies and, where needed, enhances those capabilities to provide interoperable access, tools, and contextual guidance for scientists and value-adding organizations using remotely sensed atmospheric composition data. The initial focus is on Essential Climate Variables identified by the Global Climate Observing System - CH4, CO, CO2, NO2, O3, SO2 and aerosols. This poster addresses our efforts in building the ACP Data Table, an interface to help discover and understand remotely sensed data that are related to atmospheric composition science and applications. We harvested GCMD, CWIC, GEOSS metadata catalogs using machine to machine technologies - OpenSearch, Web Services. We also manually investigated the plethora of CEOS data providers portals and other catalogs where that data might be aggregated. This poster is our experience of the excellence, variety, and challenges we encountered.Conclusions:1.The significant benefits that the major catalogs provide are their machine to machine tools like OpenSearch and Web Services rather than any GUI usability improvements due to the large amount of data in their catalog.2.There is a trend at the large catalogs towards simulating small data provider portals through advanced services. 3.Populating metadata catalogs using ISO19115 is too complex for users to do in a consistent way, difficult to parse visually or with XML libraries, and too complex for Java XML binders like CASTOR.4.The ability to search for Ids first and then for data (GCMD and ECHO) is better for machine to machine operations rather than the timeouts experienced when returning the entire metadata entry at once. 5.Metadata harvest and export activities between the major catalogs has led to a significant amount of duplication. (This is currently being addressed) 6.Most (if not

  6. Titan's atmospheric composition: from Voyager to Cassini and beyond

    NASA Astrophysics Data System (ADS)

    Coustenis, A.

    2007-12-01

    Titan's atmosphere was revealed by the Voyager missions in the 80s. The trace composition was in particular inferred from infrared spectra by the V1/IRIS Spectrometer. ISO gave us an opportunity to further explore this exciting milieu in 1997 (Coustenis et al., 1998; 2003) and brought the discovery of new molecules : H2O and C6H6. Our understanding of Titan's atmospheric chemical composition has recently been enhanced by the data returned by the Cassini instruments. Spectra recorded by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft have been processed from the Titan flybys spanning three years now since SOI (Flasar et al., 2005; Teanby et al., 2006, Vinatier et al., 2006; Nixon et al., 2006; Coustenis et al., 2007). The spectra characterize various regions on Titan from 85°S to 80°N with a variety of emission angles. We have studied the emission observed in the CIRS detector arrays (covering the 10-1500 cm-1 spectral range with apodized resolutions of 2.54 or 0.53 cm-1). We have used temperature profiles retrieved from the inversion of the emission observed in the methane band at 1304 cm-1 and a line-by-line radiative transfer code to infer the abundances of the trace constituents and some of their isotopes in Titan's stratosphere (Coustenis et al., 2007a). The composite spectra show several signatures of previously identified molecules: hydrocarbons, nitriles, H2O and CO2. Besides these well-known trace species, a firm detection of benzene (C6H6) is provided by CIRS at 674 cm-1 and allows for the study of its latitudinal variations. No longitudinal variations were found for any of the gases. Information is retrieved on the meridional variations of the trace constituents and tied to predictions by dynamical-photochemical models (Hourdin et al., 2004; Lavvas et al., 2007). Molecules showing a significant enhancement at northern latitudes are the nitriles (HC3N, HCN) and the complex hydrocarbons (C4H2, C3H4). The D/H ratio on Titan was

  7. Theoretical and experimental investigations of upper atmosphere dynamics

    NASA Technical Reports Server (NTRS)

    Roper, R. G.; Edwards, H. D.

    1980-01-01

    A brief overview of the significant contributions made to the understanding of the dynamics of the Earth's upper atmosphere is presented, including the addition of winds and diffusion to the semi-empirical Global Reference Atmospheric Model developed for the design phase of the Space Shuttle, reviews of turbulence in the lower thermosphere, the dynamics of the equatorial mesopause, stratospheric warming effects on mesopause level dynamics, and the relevance of these studies to the proposed Middle Atmosphere Program (1982-85). A chronological bibliography, with abstracts of all papers published, is also included.

  8. Modeling the Atmospheric Structure and Dynamics of the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.

    1999-01-01

    Models of the general circulation and climate system of Mars have reached a high level of maturity, but observations to validate them have lacked the kind of global and temporal coverage required. However, we are now on the verge of a new era in Mars exploration as Mars Global Surveyor, and the now enroute Mars Climate Orbiter, will provide daily global coverage of the atmosphere for two Mars years. In the coming years, data from these missions will test the predictions of general circulation models (GCM's) whose results have perhaps become too accepted as truth. This talk will review what GCM's tell us about Mars, what their weaknesses are, and what the latest results imply for their future. Additional information is contained in the original extended abstract.

  9. Atmosphere dynamics in the equatorial meteor zone

    NASA Technical Reports Server (NTRS)

    Kascheev, B. L.

    1987-01-01

    The study of the atmospheric circulation of the Earth from its surface to the altitudes of 100 to 110 km is essential for establishing atmospheric motion regularities with a view toward perfecting weather forecasting. The main results of the Soviet equatorial meteor expedition (SEME) are presented. A continuous cycle of measurements was carried out. Considerable interdiurnal variation of the zonal component was observed. Importantly, in the meridional component, the prevalence of a two day component was established in the equatorial meteor zone for the first time. The pronounced westward motion of the atmosphere over the equator is noted. The SEME data analysis has shown that the meteor zone is characterized by flashes of intensity of the internal gravity waves and turbulence at highest instability moments of atmosphere due to tidal motion.

  10. Historical aspects of radar atmospheric dynamics

    NASA Technical Reports Server (NTRS)

    Kato, Susumu

    1989-01-01

    A review of the history of radar techniques which have been applied to atmospheric observation is given. The author starts with ionosphere observation with the ionosonde, symbolizing as it does the earliest history of radar observation, and proceeds to later developments in radar observation such as the use of partial reflection, meteor, and incoherent scatter radars. Mesosphere stratosphere troposphere (MST) radars are discussed in terms of lower atmosphere observation.

  11. Changes in composition of atmospheric resid upon hydrodesulfurization

    SciTech Connect

    Vasilenko, G.V.; Belan, G.B.; Muchinskii, Y.D.; Polyakova, A.A.

    1984-03-01

    This article examines an atmospheric resid from Romashkino crude before and after hydrodesulfurization in order to show how high-resolution mass spectrometry (HRMS) can be applied to high-molecular-weight organic sulfur compounds and aromatic compounds. The original atmospheric resid and a hydrodesulfurized boiler fuel were subjected to adsorptive separation into fractions. Results are presented from an investigation of the fractions that are the most complex in composition, the ''heavy aromatic'' concentrates, the yields of which before and after hydrodesulfurization were 35% and 25.8% by weight on the original atmospheric resid. The data indicate that in the process of hydrodesulfurization, the hydrogenation of aromatic rings is followed by the splitting of the naphthenic rings. The homologue composition was determined along with the group composition. The distribution curves were investigated for the alkyl ions C /SUB n/ H/sup +/ /SUB 2n+1/ in the singlet monoisotope mass spectra. The number of alkyl substituents on the ring from the structure of the mass spectrum in the region of pseudomolecular ions is calculated. It is concluded that in the hydrodesulfurization of an atmospheric resid from Romashkino crude, hydroaromatic hydrocarbons and polythiaalkanes are removed, and alkylaromatic hydrocarbons and derivatives of pyrene, chrysene, benzothiophene, and dibenzothiophene are accumulated.

  12. Isotopic composition of precipitation during different atmospheric circulation patterns

    NASA Astrophysics Data System (ADS)

    Brenčič, Mihael; Kononova, Nina; Vreča, Polona

    2016-04-01

    Precipitation generating processes depend on atmospheric circulation patterns and consequently it is expected that its water stable isotopic composition of hydrogen and oxygen is related to them. Precipitation generated at similar atmospheric circulation patterns should have similar empirical distribution of δ2H and δ18O values. There are several approaches in which atmospheric circulation patterns are classified as elementary air circulation mechanisms - ECM; in our approach we have applied Dzerdzeevskii classification. Two types of models of relation between ECM and isotopic composition of precipitation are proposed; first is based on the linear combination of δ2H and δ18O values with precipitation amount weighted average (Brenčič et al., 2015) and the second new one is based on the multiple regression approach. Both approaches make possible also to estimate empirical distributions' dispersion parameters. Application of the models is illustrated on the precipitation records from Ljubljana and Portorož GNIP stations, Slovenia. Estimated values of the parameters for empirical distributions of δ2H and δ18O of each ECM subtype have shown that calculated estimates are reasonable. Brenčič, M., Kononova, N.K., Vreča, P., 2015: Relation between isotopic composition of precipitation and atmospheric circulation patterns. Journal of Hydrology 529, 1422-1432: doi: 10.1016/j.jhydrol.2015.08.040

  13. Pioneer 10 Jupiter atmospheric definition results: A summary. [Jupiter atmosphere composition measurements

    NASA Technical Reports Server (NTRS)

    Wolfe, J.; Kliore, A.

    1974-01-01

    The various entry probes for measuring outer planetary atmospheric compositions are discussed. Considered are chemical components and physical accumulation processes observable by spectroscopic studies, as well as pressure gauges, temperature gauges, accelerometers, nephelometers, and visible and infrared sensors for determining abundances.

  14. The San Marco 3 neutral atmosphere composition experiment

    NASA Technical Reports Server (NTRS)

    Pelz, D. T.; Newton, G. P.; Kasprzak, W. T.; Clem, T. D.

    1973-01-01

    The experimental instrumentation of the San Marco 3 satellite is described along with the calibration and operation. The instrumentation for the following experiments was included: an air density experiment for measuring the instantaneous drag force, and thus the neutral particle total mass density; a neutral atmosphere composition experiment for measuring the densities of helium, atomic and molecular oxygen, molecular nitrogen and argon; and a neutral atmosphere temperature experiment to determine the gas kinetic temperature by measuring molecular nitrogen density variations in an orificed spherical chamber as a function of angle of attack.

  15. Exploration Spacecraft and Space Suit Internal Atmosphere Pressure and Composition

    NASA Technical Reports Server (NTRS)

    Lange, Kevin; Duffield, Bruce; Jeng, Frank; Campbell, Paul

    2005-01-01

    The design of habitat atmospheres for future space missions is heavily driven by physiological and safety requirements. Lower EVA prebreathe time and reduced risk of decompression sickness must be balanced against the increased risk of fire and higher cost and mass of materials associated with higher oxygen concentrations. Any proposed increase in space suit pressure must consider impacts on space suit mass and mobility. Future spacecraft designs will likely incorporate more composite and polymeric materials both to reduce structural mass and to optimize crew radiation protection. Narrowed atmosphere design spaces have been identified that can be used as starting points for more detailed design studies and risk assessments.

  16. Current Scientific Issues in Large Scale Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, T. L. (Compiler)

    1986-01-01

    Topics in large scale atmospheric dynamics are discussed. Aspects of atmospheric blocking, the influence of transient baroclinic eddies on planetary-scale waves, cyclogenesis, the effects of orography on planetary scale flow, small scale frontal structure, and simulations of gravity waves in frontal zones are discussed.

  17. Dynamic response of damaged angleplied fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.; Lark, R. F.

    1979-01-01

    An investigation was conducted to determine the effects of low level damage induced by monotonic load, cyclic load and/or residual stresses on the vibration frequencies and damping factors of fiber composite angleplied laminates. Two different composite systems were studied - low modulus fiber and ultra high modulus fiber composites. The results obtained showed that the frequencies and damping factors of angleplied laminates made from low modulus fiber composites are sensitive to low level damage while those made from ultra high modulus composites are not. Also, vibration tests may not be sufficiently sensitive to assess concentrated local damage in angleplied laminates. And furthermore, dynamic response determined from low-velocity impact coupled with the Fast Fourier Transform and packaged in a minicomputer can be a convenient procedure for assessing low-level damage in fiber composite angleplied laminates.

  18. Europa's Oxygen Atmosphere: Effects due to Regolith Porosity and Composition

    NASA Astrophysics Data System (ADS)

    Cassidy, T. A.; Johnson, R. E.

    2006-05-01

    The surfaces of "airless" bodies in our solar system are covered by porous regoliths, granular surfaces generated by micrometeor impact. Europa's tenuous neutral atmosphere is generated by UV and plasma irradiation of and sublimation from this regolith. Therefore, in addition to the atmosphere above the surface, there is a substantial amount of gas in the porous regolith. The effect of the regolith on the source processes and sinks are typically neglected in modeling the spatial distribution and composition of the atmosphere. The regolith complicates processes such as sputtering, the ejection of mostly neutral atoms and molecules due to energetic ion flux, because the incident ions encounter surfaces at a variety of angles, rather than one angle as usually assumed. Also, most ejecta produced within a regolith no longer have a direct line to space. If ejecta do not stick to or react with grain surfaces, then it may be safely assumed that the majority of ejecta will interact with grain surfaces before leaving the regolith. Similarly, a returning non-sticking particle experiences numerous interactions with grains below the nominal surface. As compared to a flat, smooth planetary surface, these many interactions enhance the probability of chemical reactions or sticking. F. Leblanc and R.E. Johnson have shown that the sticking coefficient is critical in describing the alkali atmosphere at Mercury and likely Europa. The regolith will also affect the velocity distribution of non-sticking ejecta and atmospheric species, which will affect the population of the Europa neutral torus. In this presentation the effect of regolith on the source and sink processes is demonstrated by generating the gravitationally bound and escaping components of the ballistic Europan atmosphere with and without regolith effects. Assuming that O2 can react in the regolith where there is a high sulfur content, we can generate a morphology roughly consistent with HST observations by McGrath and

  19. Predicting the Atmospheric Composition of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Sharp, A. G.; Moses, J. I.; Friedson, A. J.; Fegley, B., Jr.; Marley, M. S.; Lodders, K.

    2004-01-01

    To date, approximately 120 planet-sized objects have been discovered around other stars, mostly through the radial-velocity technique. This technique can provide information about a planet s minimum mass and its orbital period and distance; however, few other planetary data can be obtained at this point in time unless we are fortunate enough to find an extrasolar giant planet that transits its parent star (i.e., the orbit is edge-on as seen from Earth). In that situation, many physical properties of the planet and its parent star can be determined, including some compositional information. Our prospects of directly obtaining spectra from extrasolar planets may improve in the near future, through missions like NASA's Terrestrial Planet Finder. Most of the extrasolar giant planets (EGPs) discovered so far have masses equal to or greater than Jupiter's mass, and roughly 16% have orbital radii less than 0.1 AU - extremely close to the parent star by our own Solar-System standards (note that Mercury is located at a mean distance of 0.39 AU and Jupiter at 5.2 AU from the Sun). Although all EGPs are expected to have hydrogen-dominated atmospheres similar to Jupiter, the orbital distance can strongly affect the planet's temperature, physical, chemical, and spectral properties, and the abundance of minor, detectable atmospheric constituents. Thermochemical equilibrium models can provide good zero-order predictions for the atmospheric composition of EGPs. However, both the composition and spectral properties will depend in large part on disequilibrium processes like photochemistry, chemical kinetics, atmospheric transport, and haze formation. We have developed a photochemical kinetics, radiative transfer, and 1-D vertical transport model to study the atmospheric composition of EGPs. The chemical reaction list contains H-, C-, O-, and N-bearing species and is designed to be valid for atmospheric temperatures ranging from 100-3000 K and pressures up to 50 bar. Here we examine

  20. Solar-wind interactions - Nature and composition of lunar atmosphere

    NASA Technical Reports Server (NTRS)

    Mukherjee, N. R.

    1975-01-01

    The nature and composition of the lunar atmosphere are examined on the basis of solar-wind interactions, and the nature of the species in the trapped-gas layer is discussed using results of theoretical and experimental investigations. It is shown that the moon has a highly tenuous atmosphere consisting of various species derived from five sources: solar-wind interaction products, cosmic-ray interaction products, effects of meteoritic impacts, planetary degassing, and radioactive-decay products. Atmospheric concentrations are determined for those species derived from solar-wind protons, alpha particles, and oxygen ions. Carbon chemistry is briefly discussed, and difficulties encountered in attempts to determine quantitatively the concentrations of molecular oxygen, atomic oxygen, carbon monoxide, carbon dioxide, and methane are noted. The calculated concentrations are shown to be in good agreement with observations by the Apollo 17 lunar-surface mass spectrometer and orbital UV spectrometer.

  1. Fire Influences on Atmospheric Composition, Air Quality, and Climate

    NASA Technical Reports Server (NTRS)

    Voulgarakis, Apostolos; Field, Robert D.

    2015-01-01

    Fires impact atmospheric composition through their emissions, which range from long-lived gases to short-lived gases and aerosols. Effects are typically larger in the tropics and boreal regions but can also be substantial in highly populated areas in the northern mid-latitudes. In all regions, fire can impact air quality and health. Similarly, its effect on large-scale atmospheric processes, including regional and global atmospheric chemistry and climate forcing, can be substantial, but this remains largely unexplored. The impacts are primarily realised in the boundary layer and lower free troposphere but can also be noticeable in upper troposphere/lower stratosphere (UT/LS) region, for the most intense fires. In this review, we summarise the recent literature on findings related to fire impact on atmospheric composition, air quality and climate. We explore both observational and modelling approaches and present information on key regions and on the globe as a whole. We also discuss the current and future directions in this area of research, focusing on the major advances in emission estimates, the emerging efforts to include fire as a component in Earth system modelling and the use of modelling to assess health impacts of fire emissions.

  2. Probabilistic Dynamic Buckling of Smart Composite Shells

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2007-01-01

    A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of intraply hybrid composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right next to the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.

  3. Probabilistic Dynamic Buckling of Smart Composite Shells

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2003-01-01

    A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10 percent at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.

  4. Multifluids description of dynamics of upper atmosphere

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Hung, R. J.

    1975-01-01

    A multifluids model to investigate ionospheric dynamics was established on kinetic theory. Its resultant equations are used to examine the following dynamic problems in the gamma region of 80-2000 Km of the ionosphere: (1) propagation of acoustic modes in the 500-2,000 Km of the ionosphere (two fluid model); (2) the relation between the cross field plasma drift instabilities and type I and type II ionospheric irregularities; and (3) time dependent neutral wind structure and horizontal pressure gradient.

  5. Dynamic Data-Driven Event Reconstruction for Atmospheric Releases

    SciTech Connect

    Kosovic, B; Belles, R; Chow, F K; Monache, L D; Dyer, K; Glascoe, L; Hanley, W; Johannesson, G; Larsen, S; Loosmore, G; Lundquist, J K; Mirin, A; Neuman, S; Nitao, J; Serban, R; Sugiyama, G; Aines, R

    2007-02-22

    Accidental or terrorist releases of hazardous materials into the atmosphere can impact large populations and cause significant loss of life or property damage. Plume predictions have been shown to be extremely valuable in guiding an effective and timely response. The two greatest sources of uncertainty in the prediction of the consequences of hazardous atmospheric releases result from poorly characterized source terms and lack of knowledge about the state of the atmosphere as reflected in the available meteorological data. In this report, we discuss the development of a new event reconstruction methodology that provides probabilistic source term estimates from field measurement data for both accidental and clandestine releases. Accurate plume dispersion prediction requires the following questions to be answered: What was released? When was it released? How much material was released? Where was it released? We have developed a dynamic data-driven event reconstruction capability which couples data and predictive models through Bayesian inference to obtain a solution to this inverse problem. The solution consists of a probability distribution of unknown source term parameters. For consequence assessment, we then use this probability distribution to construct a ''''composite'' forward plume prediction which accounts for the uncertainties in the source term. Since in most cases of practical significance it is impossible to find a closed form solution, Bayesian inference is accomplished by utilizing stochastic sampling methods. This approach takes into consideration both measurement and forward model errors and thus incorporates all the sources of uncertainty in the solution to the inverse problem. Stochastic sampling methods have the additional advantage of being suitable for problems characterized by a non-Gaussian distribution of source term parameters and for cases in which the underlying dynamical system is non-linear. We initially developed a Markov Chain Monte

  6. The composition of the atmosphere at the surface of Mars

    NASA Technical Reports Server (NTRS)

    Owen, T.; Biemann, K.; Biller, J. E.; Lafleur, A. L.; Rushneck, D. R.; Howarth, D. W.

    1977-01-01

    The current status is summarized of investigations of the composition of the Martian atmosphere, in which use was made of the mass spectrometers that function as the analytical component of the molecular analysis experiments on the two Viking landers. The following points seem well established: N2, Ar-40, Ne, Kr, Xe, and the primordial isotope of Ar are present. The present atmosphere of Mars represents only a small fraction of the total amount of volatiles outgassed by the planet, so that high surface pressure and abundant water may have been present. The noble gases in the Martian atmosphere exhibit a relative abundance pattern similar to that in the earth's atmosphere and (except for Xe) to that in the primordial component of meteorites. The existence of a 'planetary component' is thus proven, supporting the arguments of those who favor a fractionation of noble gases prior to the formation of the planets. In spite of these similarities, the isotopic ratios of nitrogen, argon, and xenon indicate that the histories of the Martian and the earth's atmospheres have been very different.

  7. Sharing is Winning: Cooperative Learning about Atmospheric Composition Change

    NASA Astrophysics Data System (ADS)

    Schuepbach, E.

    2010-09-01

    This contribution presents evolving good practice in disseminating the body of know-how, skills and competencies within the networked community of atmospheric scientists as established in ACCENT. The promotion of early-career scientists, and encouraging the next generation to move into the field were among the key issues addressed by the "Training and Education" programme in the European Network of Excellence in Atmospheric Composition Change (ACCENT). Dissemination avenues include a virtual knowledge train carrying the wealth of high-quality scientific learning material developed with experts involved in the ACCENT network. Learning opportunities on current research in atmospheric composition change in Europe were also created during face-to-face training workshops. Real-life examples of pressing air quality issues were addressed in meetings with stakeholder groups that offered opportunities for mutual learning in inspiring partnerships. In order to increase the expertise in atmospheric composition change across Europe, activities were organized with the general public (e.g., Café Scientifique), where the participating early-career scientists were confronted with questions from lay people. For interested teachers, didactic translations of compact overviews on air quality science topics developed in ACCENT offer links with the typical European science curriculum and go beyond school book content. Some of the educational events, methods and tools are described in a booklet published in 2009 ("We Care for Clean Air!", ISBN 978-88-95665-01-6). The electronic version and all training material can be downloaded from www.accent-network.org/portal/education - a valuable resource for teachers and learners around the globe.

  8. Application of atmospheric pressure plasma in polymer and composite adhesion

    NASA Astrophysics Data System (ADS)

    Yu, Hang

    An atmospheric pressure helium and oxygen plasma was used to investigate surface activation and bonding in polymer composites. This device was operated by passing 1.0-3.0 vol% of oxygen in helium through a pair of parallel plate metal electrodes powered by 13.56 or 27.12 MHz radio frequency power. The gases were partially ionized between the capacitors where plasma was generated. The reactive species in the plasma were carried downstream by the gas flow to treat the substrate surface. The temperature of the plasm gas reaching the surface of the substrate did not exceed 150 °C, which makes it suitable for polymer processing. The reactive species in the plasma downstream includes ~ 1016-1017 cm-3 atomic oxygen, ~ 1015 cm-3 ozone molecule, and ~ 10 16 cm-3 metastable oxygen molecule (O2 1Deltag). The substrates were treated at 2-5 mm distance from the exit of the plasma. Surface properties of the substrates were characterized using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS). Subsequently, the plasma treated samples were bonded adhesively or fabricated into composites. The increase in mechanical strength was correlated to changes in the material composition and structure after plasma treatment. The work presented hereafter establishes atmospheric pressure plasma as an effective method to activate and to clean the surfaces of polymers and composites for bonding. This application can be further expanded to the activation of carbon fibers for better fiber-resin interactions during the fabrication of composites. Treating electronic grade FR-4 and polyimide with the He/O2 plasma for a few seconds changed the substrate surface from hydrophobic to hydrophilic, which allowed complete wetting of the surface by epoxy in underfill applications. Characterization of the surface by X-ray photoelectron spectroscopy shows formation of oxygenated functional groups, including hydroxyl, carbonyl, and

  9. The molecular dynamics of atmospheric reaction

    NASA Technical Reports Server (NTRS)

    Polanyi, J. C.

    1971-01-01

    Detailed information about the chemistry of the upper atmosphere took the form of quantitative data concerning the rate of reaction into specified states of product vibration, rotation and translation for exothermic reaction, as well as concerning the rate of reaction from specified states of reagent vibration, rotation and translation for endothermic reaction. The techniques used were variants on the infrared chemiluminescence method. Emphasis was placed on reactions that formed, and that removed, vibrationally-excited hydroxyl radicals. Fundamental studies were also performed on exothermic reactions involving hydrogen halides.

  10. Atmosphere composition monitor for space station and advanced missions application

    SciTech Connect

    Wynveen, R.A.; Powell, F.T.

    1987-01-01

    Long-term human occupation of extraterrestrial locations may soon become a reality. The National Aeronautics and Space Administration (NASA) has recently completed the definition and preliminary design of the low earth orbit (LEO) space station. They are now currently moving into the detailed design and fabrication phase of this space station and are also beginning to analyze the requirements of several future missions that have been identified. These missions include, for example, Lunar and Mars sorties, outposts, bases, and settlements. A requirement of both the LEO space station and future missions are environmental control and life support systems (ECLSS), which provide a comfortable environment for humans to live and work. The ECLSS consists of several major systems, including atmosphere revitalization system (ARS), atmosphere pressure and composition control system, temperature and humidity control system, water reclamation system, and waste management system. Each of these major systems is broken down into subsystems, assemblies, units, and instruments. Many requirements and design drivers are different for the ECLSS of the LEO space station and the identified advanced missions (e.g., longer mission duration). This paper discusses one of the ARS assemblies, the atmosphere composition monitor assembly (ACMA), being developed for the LEO space station and addresses differences that will exist for the ACMA of future missions.

  11. Composition and evolution of the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Donahue, Thomas (Principal Investigator)

    1996-01-01

    The contract year started by analyzing Jovian atmospheric data acquired by the Galileo Probe Mass Spectrometer (GPMS). Two Venus hydrogen projects got underway as well. The first study strives to understand how to reconcile the standard treatment of the evolution of the H2O and HDO resevoirs on Venus over 4.5 Gyr in the presence of H and D escape and injection by comets. The second study is calculating the charge exchange contribution to hydrogen loss rates, using realistic models for exospheric H, H(+), D, D(+), and ion temperature from PV data. This report includes the following papers as attachments and supporting data: 'The Galileo Probe Mass Spectrometer: Composition of Jupiter's Atmosphere'; 'Chemical Composition Measurements of the Atmosphere of Jupiter with the Galileo Probe Mass Spectrometer'; 'Ion/Neutral Escape of Hydrogen and Deuterium: Evolution of Water'; 'Hydrogen and Deuterium in the Thermosphere of Venus: Solar Cycle Variations and Escape'; and 'Solar Cycle Variations in H(+) and D(+) Densities in the Venus Ionosphere: Implications for Escape'.

  12. Building a "big picture" of planetary atmospheres dynamics

    NASA Astrophysics Data System (ADS)

    Read, Peter; Wang, Yixiong

    and explore relatively simple parameter spaces for atmospheric circulation systems, along similar lines to what is commonly done in the laboratory, without the need to compute many of the details specific to individual planetary composition, topography etc. Trends observed in such studies indicate that a common theoretical framework can account for many of the basic differences and similarities between the terrestrial planets in the Solar System, although this approach is still in its infancy. Such an approach can even enable simple predictions to be made of the style and intensity of circulation for planets (e.g. around other stars) yet to be discovered. Future work along similar lines, however, will need to take into account a wider range of possibilities than has been studied systematically hitherto, including the full range of planetary obliquity and seasonal variations, ratios of dynamical and radiative timescales, diurnal cycles and tidally-locked states. [1] R. Hide and P. J. Mason. Adv. in Phys., 24:47-99, 1975 [2] Wordsworth, R. D., Read, P. L. Yamazaki, H. Y. (2008) Phys. Fluids, 20, 126602

  13. ATMOSPHERIC RETRIEVAL FOR SUPER-EARTHS: UNIQUELY CONSTRAINING THE ATMOSPHERIC COMPOSITION WITH TRANSMISSION SPECTROSCOPY

    SciTech Connect

    Benneke, Bjoern; Seager, Sara

    2012-07-10

    We present a retrieval method based on Bayesian analysis to infer the atmospheric compositions and surface or cloud-top pressures from transmission spectra of exoplanets with general compositions. In this study, we identify what can unambiguously be determined about the atmospheres of exoplanets from their transmission spectra by applying the retrieval method to synthetic observations of the super-Earth GJ 1214b. Our approach to inferring constraints on atmospheric parameters is to compute their joint and marginal posterior probability distributions using the Markov Chain Monte Carlo technique in a parallel tempering scheme. A new atmospheric parameterization is introduced that is applicable to general atmospheres in which the main constituent is not known a priori and clouds may be present. Our main finding is that a unique constraint of the mixing ratios of the absorbers and two spectrally inactive gases (such as N{sub 2} and primordial H{sub 2}+ He) is possible if the observations are sufficient to quantify both (1) the broadband transit depths in at least one absorption feature for each absorber and (2) the slope and strength of the molecular Rayleigh scattering signature. A second finding is that the surface pressure or cloud-top pressure can be quantified if a surface or cloud deck is present at low optical depth. A third finding is that the mean molecular mass can be constrained by measuring either the Rayleigh scattering slope or the shapes of the absorption features, thus enabling one to distinguish between cloudy hydrogen-rich atmospheres and high mean molecular mass atmospheres. We conclude, however, that without the signature of molecular Rayleigh scattering-even with robustly detected infrared absorption features (>10{sigma})-there is no reliable way to tell from the transmission spectrum whether the absorber is a main constituent of the atmosphere or just a minor species with a mixing ratio of X{sub abs} < 0.1%. The retrieval method leads us to a

  14. Satellite Observations for Detecting and Tracking Changes in Atmospheric Composition

    NASA Technical Reports Server (NTRS)

    Neil, Doreen O.; Kondragunbta, Shobha; Osterman, Gregory; Pickering, Kenneth; Pinder, Robert W.; Prados, Ana I.; Szykman, James

    2009-01-01

    The satellite observations provide constraints on detailed atmospheric modeling, including emissions inventories, indications of transport, harmonized data over vast areas suitable for trends analysis, and a link between spatial scales ranging from local to global, and temporal scales from diurnal to interannual. 1 The National Oceanic and Atmospheric Administration's (NOAA) long-term commitments help provide these observations in cooperation with international meteorological organizations. NASA s long-term commitments will advance scientifically important observations as part of its Earth Science Program, and will assist the transition of the science measurements to applied analyses through the Applied Science Program. Both NASA and NOAA have begun to provide near realtime data and tools to visualize and analyze satellite data,2 while maintaining data quality, validation, and standards. Consequently, decision-makers can expect satellite data services to support air quality decision making now and in the future. The international scientific community's Integrated Global Atmosphere Chemistry Observation System Report3 outlined a plan for ground-based, airborne and satellite measurements and models to integrate the observations into a four-dimensional representation of the atmosphere (space and time) to support assessment and policy information needs. This plan is being carried out under the Global Earth Observation System of Systems (GEOSS). Demonstrations of such an integrated capability4 provide new understanding of the changing atmosphere and link policy decisions to benefits for society. In this article, we highlight the use of satellite data to constrain biomass burning emissions, to assess oxides of nitrogen (NO(x)) emission reductions, and to contribute to state implementation plans, as examples of the use of satellite observations for detecting and tracking changes in atmospheric composition.

  15. Effects of eustatic sea-level change, ocean dynamics, and nutrient utilization on atmospheric pCO2 and seawater composition over the last 130 000 years: a model study

    NASA Astrophysics Data System (ADS)

    Wallmann, K.; Schneider, B.; Sarnthein, M.

    2016-02-01

    -level rise led to a gradual decline in nutrient, DIC, and TA stocks, a slow change due to the large size and extended residence times of dissolved chemical species in the ocean. Thus, the rapid deglacial rise in pCO2 can be explained by fast changes in ocean dynamics and nutrient utilization whereas the gradual pCO2 rise over the Holocene may be linked to the slow drop in nutrient and TA stocks that continued to promote an ongoing CO2 transfer from the ocean into the atmosphere.

  16. Vesper - Venus Chemistry and Dynamics Orbiter - A NASA Discovery Mission Proposal: Submillimeter Investigation of Atmospheric Chemistry and Dynamics

    NASA Technical Reports Server (NTRS)

    Chin, Gordon

    2011-01-01

    Vesper conducts a focused investigation of the chemistry and dynamics of the middle atmosphere of our sister planet- from the base of the global cloud cover to the lower thermosphere. The middle atmosphere controls the stability of the Venus climate system. Vesper determines what processes maintain the atmospheric chemical stability, cause observed variability of chemical composition, control the escape of water, and drive the extreme super-rotation. The Vesper science investigation provides a unique perspective on the Earth environment due to the similarities in the middle atmosphere processes of both Venus and the Earth. Understanding key distinctions and similarities between Venus and Earth will increase our knowledge of how terrestrial planets evolve along different paths from nearly identical initial conditions.

  17. Atmospheric composition and climate on the early Earth.

    PubMed

    Kasting, James F; Howard, M Tazewell

    2006-10-29

    Oxygen isotope data from ancient sedimentary rocks appear to suggest that the early Earth was significantly warmer than today, with estimates of surface temperatures between 45 and 85 degrees C. We argue, following others, that this interpretation is incorrect-the same data can be explained via a change in isotopic composition of seawater with time. These changes in the isotopic composition could result from an increase in mean depth of the mid-ocean ridges caused by a decrease in geothermal heat flow with time. All this implies that the early Earth was warm, not hot.A more temperate early Earth is also easier to reconcile with the long-term glacial record. However, what triggered these early glaciations is still under debate. The Paleoproterozoic glaciations at approximately 2.4Ga were probably caused by the rise of atmospheric O2 and a concomitant decrease in greenhouse warming by CH4. Glaciation might have occurred in the Mid-Archaean as well, at approximately 2.9Ga, perhaps as a consequence of anti-greenhouse cooling by hydrocarbon haze. Both glaciations are linked to decreases in the magnitude of mass-independent sulphur isotope fractionation in ancient rocks. Studying both the oxygen and sulphur isotopic records has thus proved useful in probing the composition of the early atmosphere. PMID:17008214

  18. LEOMAC: A Future 'Global Atmospheric Composition Mission' (CACM) Concept

    NASA Technical Reports Server (NTRS)

    Livesey, Nathaniel; Santee, Michelle; Stek, Paul; Waters, Joe; Levelt, Pieternel; Veefkind, Pepijn; Kumer, Jack; Roche, Aidan

    2008-01-01

    Resolution of important outstanding questions in air quality, climate change and ozone layer stability demands global observations of multiple chemical species with high horizontal and vertical resolution from the boundary layer to the stratopause. We present a mission concept that delivers the needed atmospheric composition observations, along with cloud ice and water vapor data needed for improvements in climate and weather forecasting models. The mission comprises ultraviolet and infrared nadir and microwave limb viewing instruments observing wide swaths each orbit. We review the scientific goals of the mission and the measurement capabilities this concept will deliver. We describe how precessing orbits offer significant improvements in temporal resolution and diurnal coverage compared to sun-synchronous orbits. Such improvements are needed to quantify the impact of critical 'fast processes' such as deep convection on the composition and radiative properties of the upper troposphere, a region where water vapor and ozone are strong but poorly understood greenhouse gases. This concept can serve as the 'Global Atmospheric Composition Mission' (GACM) recently recommended by the National Academy of Sciences decadal survey as one of 17 priority earth science missions for the coming decade.

  19. Atmospheric composition and climate on the early Earth

    PubMed Central

    Kasting, James F; Howard, M. Tazewell

    2006-01-01

    Oxygen isotope data from ancient sedimentary rocks appear to suggest that the early Earth was significantly warmer than today, with estimates of surface temperatures between 45 and 85°C. We argue, following others, that this interpretation is incorrect—the same data can be explained via a change in isotopic composition of seawater with time. These changes in the isotopic composition could result from an increase in mean depth of the mid-ocean ridges caused by a decrease in geothermal heat flow with time. All this implies that the early Earth was warm, not hot. A more temperate early Earth is also easier to reconcile with the long-term glacial record. However, what triggered these early glaciations is still under debate. The Paleoproterozoic glaciations at approximately 2.4 Ga were probably caused by the rise of atmospheric O2 and a concomitant decrease in greenhouse warming by CH4. Glaciation might have occurred in the Mid-Archaean as well, at approximately 2.9 Ga, perhaps as a consequence of anti-greenhouse cooling by hydrocarbon haze. Both glaciations are linked to decreases in the magnitude of mass-independent sulphur isotope fractionation in ancient rocks. Studying both the oxygen and sulphur isotopic records has thus proved useful in probing the composition of the early atmosphere. PMID:17008214

  20. A compositing approach for preserving signifigant features in atmospheric profiles

    SciTech Connect

    Brown, R. )

    1993-03-01

    Composite profiles of thermodynamic and kinematic variables are prepared to represent the characteristics of the environment within which a particular atmospheric phenomenon occurs. During the averaging process, it is desirable to retain the dominant features and associated gradients found in the individual profiles so that representative values of quantities such as flux parameters, energy budgets, convective available ptoential energy, and various stability indices can be computed from the composite profiles. The conventional compositing approach, where averages are computed at common heights, reduces or even smooths out a significant feature when the height and vertical extent of the feature differ from one individual file to the next. To retain a desirable feature in the composite profile, it is necessary to compute averages at the heights where the feature occurs and to compute the average height of the feature itself. As an example ot the capabilities of this scaling or feature-preserving approach, the technique was applied to a set of 33 hodographs from supercell thunderstorm environments as documented in the literature. The feature-preserving technique retained realistic wind-shear values, including a midaltitude minimum-shear layer that disappeared when the conventional compositing technique was used. 44 refs., 5 figs., 1 tab.

  1. Surface ices and the atmospheric composition of Pluto

    NASA Astrophysics Data System (ADS)

    Owen, T. C.; Roush, T. L.; Cruikshank, D. P.; Elliot, J. L.; Young, L. A.; de Bergh, C.; Schmitt, B.; Geballe, T. R.; Brown, R. H.; Bartholomew, M. J.

    1993-08-01

    Observations of the 1.4- to 2.4-micrometer spectrum of Pluto reveal absorptions of carbon monoxide and nitrogen ices and confirm the presence of solid methane. Frozen nitrogen is more abundant than the other two ices by a factor of about 50; gaseous nitrogen must therefore be the major atmospheric constituent. The absence of carbon dioxide absorptions is one of several differences between the spectra of Pluto and Triton in this region. Both worlds carry information about the composition of the solar nebula and the processes by which icy planetesimals formed.

  2. The model of the composition of the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Izakov, M. N.; Krasitskiy, O. P.

    1977-01-01

    Global mean distributions of Martian atmospheric components concentrations from the planet's surface up to an altitude of 250 km are calculated. Improved data on the turbulent mixing coefficient, as a function of altitude, on temperature distribution and on chemical and photochemical reaction rates are used. The model data agree well with available measurements of some components concentrations. Variations of composition due to long-period variations of temperature, moisture and turbulent mixing are investigated. The relative significance of different catalytic cycles and the important role of excited atoms 0 (d-1) are revealed.

  3. Surface ices and the atmospheric composition of Pluto

    NASA Technical Reports Server (NTRS)

    Owen, Tobias C.; Roush, Ted L.; Cruikshank, Dale P.; Elliot, James L.; Young, Leslie A.; De Bergh, Catherine; Schmitt, Bernard; Geballe, Thomas R.; Brown, Robert H.; Bartholomew, Mary J.

    1993-01-01

    Observations of the 1.4- to 2.4-micrometer spectrum of Pluto reveal absorptions of carbon monoxide and nitrogen ices and confirm the presence of solid methane. Frozen nitrogen is more abundant than the other two ices by a factor of about 50; gaseous nitrogen must therefore be the major atmospheric constituent. The absence of carbon dioxide absorptions is one of several differences between the spectra of Pluto and Triton in this region. Both worlds carry information about the composition of the solar nebula and the processes by which icy planetesimals formed.

  4. Jupiter's atmospheric composition from the Cassini thermal infrared spectroscopy experiment

    NASA Technical Reports Server (NTRS)

    Kunde, V. G.; Flasar, F. M.; Jennings, D. E.; Bezard, B.; Strobel, D. F.; Conrath, B. J.; Nixon, C. A.; Bjoraker, G. L.; Romani, P. N.; Achterberg, R. K.; Simon-Miller, A. A.; Irwin, P.; Brasunas, J. C.; Pearl, J. C.; Smith, M. D.; Orton, G. S.; Gierasch, P. J.; Spilker, L. J.; Carlson, R. C.; Mamoutkine, A. A.; Calcutt, S. B.; Read, P. L.; Taylor, F. W.; Fouchet, T.; Parrish, P.

    2004-01-01

    The Composite Infrared Spectrometer observed Jupiter in the thermal infrared during the swing-by of the Cassini spacecraft. Results include the detection of two new stratospheric species, the methyl radical and diacetylene, gaseous species present in the north and south auroral infrared hot spots; determination of the variations with latitude of acetylene and ethane, the latter a tracer of atmospheric motion; observations of unexpected spatial distributions of carbon dioxide and hydrogen cyanide, both considered to be products of comet Shoemaker-Levy 9 impacts; characterization of the morphology of the auroral infrared hot spot acetylene emission; and a new evaluation of the energetics of the northern auroral infrared hot spot.

  5. Dynamic Probabilistic Instability of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2009-01-01

    A computationally effective method is described to evaluate the non-deterministic dynamic instability (probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of available computer codes for finite element, composite mechanics and probabilistic structural analysis. The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different load rates and different probability levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic load and loading rate are the dominant uncertainties in that order.

  6. Saturn's Atmospheric Composition from Observations by the Cassini/Composite Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Young, M.; LeClair, A. C.; Achterberg, R. K.; Flasar, F. M.; Kunde, V. G.

    2010-01-01

    Thermal emission infrared observation of Saturn s atmosphere are being made by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft since its insertion in Saturn s orbit on July 2nd, 2004. The measurements made in both limb and nadir modes of observations consist of infrared spectra in the 10-1400/cm region with a variable spectral resolution of 0.53/cm and 2.8/cm, and exhibit rotational and vibrational spectral features that may be analyzed for retrieval of the thermal structure and constituent distribution of Saturn s atmosphere. In this paper, we present a comprehensive analysis of the CIRS infrared observed spectra for retrieval of Saturn s atmospheric composition focusing on the distributions of some selected hydrocarbons, phosphine, ammonia, and possible determination of the isotopic ratios of some species with sufficiently strong isolated spectral features. A comparison of the retrieved constituent distributions with the available data in the literature will be made.

  7. Towards an exploitation of IAGOS atmospheric composition measurements

    NASA Astrophysics Data System (ADS)

    Marshall, Julia; Gerbig, Christoph; Petzold, Andreas; Zahn, Andreas

    2015-04-01

    IAGOS, In-service Aircraft for a Global Observing System, has installed instrumentation on a growing fleet of commercial airliners in order to continuously monitor atmospheric composition around the globe. IAGOS is providing accurate in situ observations of greenhouse gases (GHGs), reactive gases, aerosols, and cloud particles at high spatial resolution in the free atmosphere, thereby covering the essential climate variables (ECVs) for atmospheric composition as designated by the GCOS programme (Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC, 2010). The greenhouse gas measurements made by IAGOS will be submitted to the WMO/GAW World Data Centre for Greenhouse Gases (WDCGG). Within the EU FP7 project IGAS (IAGOS for the GMES Atmospheric Service), the links between this new data stream and scientific users, including the Copernicus Atmosphere Monitoring Service, are being improved. This includes the provision of measurements in both near-real-time and delayed mode, and improved accessibility to the data through linkages to the databases of both the German Aerospace Centre (DLR) flight campaign archive and the Copernicus data archive. Work has been undertaken to investigate the use of the near-real-time profile measurements in order to correct bias in satellite measurements assimilated by the Copernicus Atmosphere Monitoring Service. Documentation of the QA/QC procedures and measurement techniques for each instrument have been formalized and reviewed by external experts, to provide users with a measurement traceable to WMO standards. The representativeness of the measurements has been assessed, to better interpret results in polluted regions and near the tropopause. The potential impact of the GHG measurements on regional scale flux inversions has been quantified, which is relevant for ICOS (Integrated Carbon Observing System). Finally, tools have been developed to use the measurements for validation of satellite column

  8. Radiation Belt Electron Dynamics: Modeling Atmospheric Losses

    NASA Technical Reports Server (NTRS)

    Selesnick, R. S.

    2003-01-01

    The first year of work on this project has been completed. This report provides a summary of the progress made and the plan for the coming year. Also included with this report is a preprint of an article that was accepted for publication in Journal of Geophysical Research and describes in detail most of the results from the first year of effort. The goal for the first year was to develop a radiation belt electron model for fitting to data from the SAMPEX and Polar satellites that would provide an empirical description of the electron losses into the upper atmosphere. This was largely accomplished according to the original plan (with one exception being that, for reasons described below, the inclusion of the loss cone electrons in the model was deferred). The main concerns at the start were to accurately represent the balance between pitch angle diffusion and eastward drift that determines the dominant features of the low altitude data, and then to accurately convert the model into simulated data based on the characteristics of the particular electron detectors. Considerable effort was devoted to achieving these ends. Once the model was providing accurate results it was applied to data sets selected from appropriate periods in 1997, 1998, and 1999. For each interval of -30 to 60 days, the model parameters were calculated daily, thus providing good short and long term temporal resolution, and for a range of radial locations from L = 2.7 to 3.9. .

  9. Ultrafast transient dynamics in composite multiferroics

    NASA Astrophysics Data System (ADS)

    Jia, Chenglong; Zhang, Ning; Sukhov, Alexander; Berakdar, Jamal

    2016-02-01

    We investigate theoretically the dynamic multiferroic (MF) response of coupled ferroelectric (FE)/ferromagnetic (FM) composites upon excitation by a photo-induced acoustic strain pulse. Two magnetoelectric (ME) mechanisms are considered: interface strain- and charge-mediated ME couplings. The former results in demagnetization, depolarization and repolarization within tens of picoseconds via respectively magnetostriction and piezoelectricity. Charge ME interaction affects the FE/FM feedback response leading to magnetization recovery. Experimental realization based on time-resolved x-ray diffraction is suggested. The findings indicate the potential of composite MF for photo-steered, high-speed, multi-state electronic devices.

  10. Observing the atmospheric composition with the IASI/MetOp satellite: emissions, composition and transport

    NASA Astrophysics Data System (ADS)

    Clerbaux, C.; Coheur, P.; George, M.; Clarisse, L.; Hurtmans, D.; Hadji-Lazaro, J.; Razavi, A.

    2010-12-01

    Among the available remote sensing data to monitor the atmospheric composition, IASI, the Infrared Atmospheric Sounding Interferometer flying onboard the MetOp satellite since 2006, offers unprecedented possibilities for sounding the troposphere in near-real time and for capturing sudden changes in the atmosphere with a global coverage. This presentation will review the capabilities of IASI to contribute to several aspects of atmospheric chemistry, such as the identification of local and regional sources to improve emission inventories, the tracking of long-range transport of pollution, and the detection of unexpected events such as large fires or volcanic plumes. Illustrations will be provided for carbon monoxide, methanol, ammonia, and ash/sulfur dioxide from volcanoes. The sensitivity and errors inherent to satellite sounding in the infrared spectral range will also be discussed.

  11. Atmospheric Dynamics of the Outer Planets

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.

    2002-01-01

    The giant planets-Jupiter, Saturn, Uranus, and Neptune-are fluid objects. The winds are powered by absorbed sunlight, as on earth, and by internal heat left over from planetary formation. The main constituents of the atmospheres are hydrogen and helium. The clouds are made of ammonia, hydrogen sulphide, and water. All four giant planets are banded, with multiple zonal jet streams. Even Uranus, whose spin axis is tipped by 98deg relative to the orbit axis, shows latitudinal banding and zonal jets. Equator-to-pole temperature differences are close to zero. Wind speeds are larger than on earth and do not decrease with distance from the sun. Although the power/area at Neptune is only 1/20 that at Jupiter, the winds at Neptune are three times stronger. Stable vortices like the Great Red Spot of Jupiter and similar spots on Neptune come in all size ranges and exhibit a variety of behaviours including merging, orbiting, filament ejection, and oscillating in both shape and position. At least at cloud-top levels, 90% of the long-lived vortices are anticyclonic and sit in anticyclonic shear zones. Features in the cyclonic zones tend to be chaotic, with lifetimes of several days or less. These mesoscale eddies tend to have lightning in them, which suggests that they get their energy from moist convection. The rate of conversion of eddy kinetic energy into kinetic energy of the zonal jets is more than 10% of the power/area radiated by Jupiter. This fraction is more than an order of magnitude larger than on earth. Several lines of evidence now indicate that the winds at cloud-top levels are the surface manifestation of deep-rooted motions that extend into the interior and are presumably driven by internal heat.

  12. Validation of Atmospheric Dynamics (VADY) - connections between planetary waves and atmospheric circulation types

    NASA Astrophysics Data System (ADS)

    Lang, Benjamin; Jacobeit, Jucundus; Beck, Christoph; Philipp, Andreas

    2015-04-01

    The climate research program "Medium-range Climate Predictions" (MiKlip), funded by the Federal Ministry of Education and Research in Germany (BMBF), has the aim to develop a climate model system (MPI-ESM) that can provide reliable decadal predictions of climate, including extreme weather events. A substantial part of the development process is a comprehensive model validation. Within MiKlip, it includes comparisons of model simulations and observations in order to allow statements about the performance of the model and to give particular recommendations for the further development of the model. The research project "Validation of Atmospheric Dynamics" (VADY), conducted by the cooperation partners "Institute of Geography at the University of Augsburg" (IGUA) and the "German Aerospace Centre" (DLR), contributes to model validation within MiKlip with a special focus on atmospheric waves and circulation dynamics. Within the framework of VADY, DLR validates the representation of atmospheric waves on different levels and scales based on suitable activity indices (e.g. the so-called large-scale dynamical activity index (LDAI), which is a measure for the activity of planetary waves). The focus of IGUA is on the model validation with respect to the representation of atmospheric circulation types, dynamical modes and the teleconnectivity of the atmospheric circulation. Currently, the connection between LDAI and atmospheric circulation types on different levels and for different seasons in the North Atlantic-European region is analysed by considering, in particular, the North Atlantic Oscillation. Results will be shown for the connection between LDAI and atmospheric circulation types and subsequently for the representation of the identified connections in the decadal-prediction model system of MPI-ESM.

  13. Dynamics behavior of homogeneous dielectric barrier discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Gu, Biao; Wang, Wenchun; Wang, Dezhen; Peng, Xuwen

    2009-07-01

    An experimental study on the dynamics behavior of homogeneous dielectric barrier discharge (HDBD) at atmospheric pressure is described in this paper. Two kinds of discharge mode, glow and Townsend discharge modes, can be easily identified according to the differential conductivity of current-voltage relationship in the ascent stage of discharge current for the atmospheric HDBD. A (three-dimensional) 3D phase space made by discharge current, gas gap voltage, and charge density of dielectric-plate surface was utilized in the study. By projecting the discharge evolution trajectory in the 3D space, the 3D trajectory of multiple current peaks discharge in atmospheric helium shows a limited cycle with convolutions and undergoes a series of bifurcation process; however, the 3D trajectory of atmospheric N2 HDBD is a limited cycle without any convolution and bifurcation process. In addition, the first ionization coefficient of working gas plays a key role to determine the discharge mode of atmospheric HDBD, the transition of discharge mode and the dynamics stability of atmospheric HDBD.

  14. Dynamics behavior of homogeneous dielectric barrier discharge at atmospheric pressure

    SciTech Connect

    Zhang Yan; Gu Biao; Wang Wenchun; Wang Dezhen; Peng Xuwen

    2009-07-15

    An experimental study on the dynamics behavior of homogeneous dielectric barrier discharge (HDBD) at atmospheric pressure is described in this paper. Two kinds of discharge mode, glow and Townsend discharge modes, can be easily identified according to the differential conductivity of current-voltage relationship in the ascent stage of discharge current for the atmospheric HDBD. A (three-dimensional) 3D phase space made by discharge current, gas gap voltage, and charge density of dielectric-plate surface was utilized in the study. By projecting the discharge evolution trajectory in the 3D space, the 3D trajectory of multiple current peaks discharge in atmospheric helium shows a limited cycle with convolutions and undergoes a series of bifurcation process; however, the 3D trajectory of atmospheric N{sub 2} HDBD is a limited cycle without any convolution and bifurcation process. In addition, the first ionization coefficient of working gas plays a key role to determine the discharge mode of atmospheric HDBD, the transition of discharge mode and the dynamics stability of atmospheric HDBD.

  15. The Sentinel-4 Mission: Instrument Description and Atmospheric Composition Products

    NASA Astrophysics Data System (ADS)

    Veihelmann, B.; Ingmann, P.; Bazalgette Courreges-Lacoste, G.; Ahlers, B.; Stark, H.; Meijer, Y.

    2012-04-01

    Sentinel-4 (S4) is an operational satellite mission providing atmospheric composition data on a European basis with a fast (hourly) revisit time. The S4 mission is defined as an Ultra-violet Visible Near-infrared (UVN) spectrometer on the geostationary Meteosat Third Generation-Sounder (MTG-S) platforms together with utilisation of subsets of data from the MTG-Infra-Red Sounder onboard the same platforms and from the MTG-Flexible Combined Imager onboard the MTG-Imager (MTG-I) platforms. Key features of the S4/UVN instrument are the spectral range from 305 nm to 500 nm with a spectral resolution of 0.5 nm for the UV visible, and 750 nm to 770 nm with a spectral resolution of 0.12 nm in the Near-Infared, in combination with a low polarization sensitivity and a high radiometric accuracy (3% absolute, 0.05% relative spectral). The instrument shall observe Europe with a spatial sampling distance of 8 km at 45°N with a revisit time of 1 hour. The expected launch date of the first MTG-S platform is 2019, and the expected lifetime is 15 years (two S4/UVN instruments in sequence on two MTG-S platforms). The Sentinel-4 mission, together with Sentinel-5 and the Sentinel-5 Precursor missions, is part of the Global Monitoring for Environment and Security (GMES) space component. The primary objective of the Sentinel-4 mission is the observation of the diurnal cycle of tropospheric species in support of the air quality applications of GMES Atmosphere Services. The main target species of the Sentinel-4/UVN instrument are NO2, O3, HCHO, SO2, and aerosols. The presentation focuses on the Sentinel-4/UVN instrument and the atmospheric composition products.

  16. Mass composition and dynamics in quiet sun prominences

    NASA Astrophysics Data System (ADS)

    Kilper, Gary K.

    2009-06-01

    Solar prominences are transient phenomena in the solar atmosphere that display highly dynamic activity and can result in dramatic eruptions, ejecting a large amount of material into the heliosphere. The dynamics of the prominence plasma reveal information about its interaction with the magnetic field of the prominence, while the eruptions are associated with coronal mass ejections, which greatly affect space weather near Earth and throughout the solar system. My research on these topics was conducted via observational analyses of the partially-ionized prominence material, its composition, and the dynamics over time in prominences that range in activity from quiescent to highly active. The main results are evidence that (1) in quiescent prominences, neutral He is located more in the lower part of the structure, (2) a higher level of activity in prominences is related to a mixing of the material, and (3) an extended period of high activity and mixing occurs prior to eruptions, possibly due to mass loading. In addition, innovative modifications to analytical techniques led to measurements of the material's mass, composition, and small-scale dynamics.

  17. The Wmo Global Atmosphere Watch Programme: Global Framework for Atmospheric Composition Observations and Analysis

    NASA Astrophysics Data System (ADS)

    Tarasova, O. A.; Jalkanen, L.

    2010-12-01

    The WMO Global Atmosphere Watch (GAW) Programme is the only existing long-term international global programme providing an international coordinated framework for observations and analysis of the chemical composition of the atmosphere. GAW is a partnership involving contributors from about 80 countries. It includes a coordinated global network of observing stations along with supporting facilities (Central Facilities) and expert groups (Scientific Advisory Groups, SAGs and Expert Teams, ETs). Currently GAW coordinates activities and data from 27 Global Stations and a substantial number of Regional and Contributing Stations. Station information is available through the GAW Station Information System GAWSIS (http://gaw.empa.ch/gawsis/). There are six key groups of variables which are addressed by the GAW Programme, namely: ozone, reactive gases, greenhouse gases, aerosols, UV radiation and precipitation chemistry. GAW works to implement integrated observations unifying measurements from different platforms (ground based in situ and remote, balloons, aircraft and satellite) supported by modeling activities. GAW provides data for ozone assessments, Greenhouse Gas Bulletins, Ozone Bulletins and precipitation chemistry assessments published on a regular basis and for early warnings of changes in the chemical composition and related physical characteristics of the atmosphere. To ensure that observations can be used for global assessments, the GAW Programme has developed a Quality Assurance system. Five types of Central Facilities dedicated to the six groups of measurement variables are operated by WMO Members and form the basis of quality assurance and data archiving for the GAW global monitoring network. They include Central Calibration Laboratories (CCLs) that host primary standards (PS), Quality Assurance/Science Activity Centres (QA/SACs), World Calibration Centers (WCCs), Regional Calibration Centers (RCCs), and World Data Centers (WDCs) with responsibility for

  18. Dynamic based damage detection in composite structures

    NASA Astrophysics Data System (ADS)

    Banerjee, Sauvik; Ricci, Fabrizio; Baid, Harsh; Mal, Ajit K.

    2009-03-01

    Advanced composites are being used increasingly in state-of-the-art aircraft and aerospace structures. In spite of their many advantages, composite materials are highly susceptible to hidden flaws that may occur at any time during the life cycle of a structure, and if undetected, may cause sudden and catastrophic failure of the entire structure. This paper is concerned with the detection and characterization of hidden defects in composite structures before they grow to a critical size. A methodology for automatic damage identification and localization is developed using a combination of vibration and wave propagation data. The structure is assumed to be instrumented with an array of actuators and sensors to excite and record its dynamic response, including vibration and wave propagation effects. A damage index, calculated from the measured dynamical response of the structure in a previous (reference) state and the current state, is introduced as a determinant of structural damage. The indices are used to identify low velocity impact damages in increasingly complex composite structural components. The potential application of the approach in developing health monitoring systems in defects-critical structures is indicated.

  19. Investigations of atmospheric dynamics using a CW Doppler sounder array

    NASA Technical Reports Server (NTRS)

    Rao, G. L.

    1974-01-01

    A three-dimensional CW Doppler sounding system currently under operation at the NASA-Marshall Space Flight Center, Alabama is described. The properties of the neutral atmosphere are discussed along with the theory of Doppler sounding technique. Methods of data analyses used to investigate the dynamical phenomena at the ionospheric heights are presented and suggestions for future investigations provided.

  20. Atmospheric Composition Monitoring with MOPITT and IASI: CO, a Tracer of Pollution

    NASA Astrophysics Data System (ADS)

    George, M.; Clerbaux, C.; Hadji-Lazaro, J.; Bouarar, I.; Hurtmans, D.; Coheur, P. F.; Edwards, D. P.; Deeter, M. N.; Worden, H. M.; Inness, A.

    2014-12-01

    Carbon monoxide (CO) is an important trace gas for understanding air quality and atmospheric composition. It is a good tracer of pollution plumes and atmospheric dynamics. In this presentation we analyse the global and regional CO distributions as seen by remote sensors onboard of satellites, in particular the nadir-looking thermal infrared MOPITT/Terra and IASI/MetOp instruments. Since several years of data are now available, we show CO distributions over polluted and clean regions for the period 2008-2013, and we discuss their evolution with time. A detailed analysis was performed to compare both datasets and we show the influence of the a priori assumptions in the retrieval process. We did a retrieval experience where the MOPITT retrieval code was run on the MOPITT dataset using the IASI a priori profile and covariance matrix. The agreement for total columns and profiles distributions is discussed, and the retrieved profiles are validated with aircraft IAGOS data. Finally, we will also describe how MOPITT and IASI data are routinely assimilated in the Monitoring Atmospheric Composition and Climate (MACC) system (the pre-operational Copernicus Atmosphere Service of the European Union), which provides analyses and forecasts of global CO distributions.

  1. Simulation of cold atmospheric plasma component composition and particle densities in air

    NASA Astrophysics Data System (ADS)

    Kirsanov, Gennady; Bekasov, Vladimir; Eliseev, Stepan; Kudryavtsev, Anatoly; Sisoev, Sergey

    2015-11-01

    Recently discharges in air at atmospheric pressure were the subject of numerous studies. Of particular interest are the cold streams of air plasma, which contains large amounts of chemically active species. It is their action can be decisive in the interaction with living tissues. Therefore, in addition to its physical properties, it is important to know the component composition and particle densities. The goal was to develop a numerical model of atmospheric pressure glow microdischarge in air with the definition of the component composition of plasma. To achieve this goal the task was broken down into two sub-tasks, in the first simulated microdischarge atmospheric pressure in air using a simplified set of plasma chemical reactions in order to obtain the basic characteristics of the discharge, which are the initial approximations in the problem of the calculation of the densities with detailed plasma chemistry, including 53 spices and over 600 chemical reactions. As a result of the model was created, which can be adapted for calculating the component composition of plasma of various sources. Calculate the density of particles in the glow microdischarges and dynamics of their change in time.

  2. Simulation of cold atmospheric plasma component composition and particle densities in air

    NASA Astrophysics Data System (ADS)

    Kirsanov, Gennady; Chirtsov, Alexander; Kudryavtsev, Anatoliy

    2015-11-01

    Recently discharges in air at atmospheric pressure were the subject of numerous studies. Of particular interest are the cold streams of air plasma, which contains large amounts of chemically active species. It is their action can be decisive in the interaction with living tissues. Therefore, in addition to its physical properties, it is important to know the component composition and particle densities. The goal was to develop a numerical model of atmospheric pressure glow microdischarge in air with the definition of the component composition of plasma. To achieve this goal the task was divided into two sub-tasks, in the first simulated microdischarge atmospheric pressure in air using a simplified set of plasma chemical reactions in order to obtain the basic characteristics of the discharge, which are the initial approximations in the problem of the calculation of the densities with detailed plasma chemistry, including 53 spices and over 600 chemical reactions. As a result of the model was created, which can be adapted for calculating the component composition of plasma of various sources. Calculate the density of particles in the glow microdischarges and dynamics of their change in time.

  3. Multispecies population dynamics of prebiotic compositional assemblies.

    PubMed

    Markovitch, Omer; Lancet, Doron

    2014-09-21

    Present life portrays a two-tier phenomenology: molecules compose supramolecular structures, such as cells or organisms, which in turn portray population behaviors, including selection, evolution and ecological dynamics. Prebiotic models have often focused on evolution in populations of self-replicating molecules, without explicitly invoking the intermediate molecular-to-supramolecular transition. Here, we explore a prebiotic model that allows one to relate parameters of chemical interaction networks within molecular assemblies to emergent population dynamics. We use the graded autocatalysis replication domain (GARD) model, which simulates the network dynamics within amphiphile-containing molecular assemblies, and exhibits quasi-stationary compositional states termed compotype species. These grow by catalyzed accretion, divide and propagate their compositional information to progeny in a replication-like manner. The model allows us to ask how molecular network parameters influence assembly evolution and population dynamics parameters. In 1000 computer simulations, each embodying different parameter set of the global chemical interaction network parameters, we observed a wide range of behaviors. These were analyzed by a multi species logistic model often used for analyzing population ecology (r-K or Lotka-Volterra competition model). We found that compotypes with a larger intrinsic molecular repertoire show a higher intrinsic growth (r) and lower carrying capacity (K), as well as lower replication fidelity. This supports a prebiotic scenario initiated by fast-replicating assemblies with a high molecular diversity, evolving into more faithful replicators with narrower molecular repertoires. PMID:24831416

  4. Ar Atmosphere: Implications for Structure and Composition of Mercury's Crust

    NASA Technical Reports Server (NTRS)

    Killen, R. M.; Morgan, T. H.

    2001-01-01

    We examine the possibilities of sustaining an argon atmosphere by diffusion from the upper 10 km of crust, and alternatively by effusion from a molten or previously molten area at great depth . Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in surface-bounded exospheres is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon, Mercury and probably Europa is representative of current effusion rather than accumulation over the lifetime of the body. Argon content will be a function of K content, temperature, grain size distribution, connected pore volume and possible seismic activity. Although Mercury and the Moon differ in many details, we can train the solutions to diffusion equations to predict the average lunar atmosphere. Then these parameters can be varied for Hermean conditions. Assuming a lunar crustal potassium abundance of 300 ppm, the observed argon atmosphere requires equilibrium between the argon production in the upper 9 Km of the moon (1.135 x 10(exp -3) cm(exp -3) s(exp -1)) and its loss. Hodges et al. conclude that this loss rate and the observed time variability requires argon release through seismic activity, tapping a deep argon source. An important observation is that the extreme surface of the Moon is enhanced in argon rather than depleted, as one would expect from outgassing of radiogenic argon. Manka and Michel concluded that ion implantation explains the surface enhancement of Ar-40. About half of the argon ions produced in the lunar atmosphere would return to the surface, where they would become embedded in the rocks. Similarly, at Mercury we expect the surface rocks to be enhanced in Ar-40 wherever

  5. Spin dynamics in driven composite multiferroics

    SciTech Connect

    Wang, Zidong Grimson, Malcolm J.

    2015-09-28

    A spin dynamics approach has been used to study the behavior of the magnetic spins and the electric pseudo-spins in a 1-D composite multiferroic chain with a linear magneto-electric coupling at the interface. The response is investigated with either external magnetic or electric fields driving the system. The spin dynamics is based on the Landau-Lifshitz-Gilbert equation. A Gaussian white noise is later added into the dynamic process to include the thermal effects. The interface requires a closer inspection of the magneto-electric effects. Thus, we construct a 2-D ladder model to describe the behavior of the magnetic spins and the electric pseudo-spins with different magneto-electric couplings.

  6. Spin dynamics in driven composite multiferroics

    NASA Astrophysics Data System (ADS)

    Wang, Zidong; Grimson, Malcolm J.

    2015-09-01

    A spin dynamics approach has been used to study the behavior of the magnetic spins and the electric pseudo-spins in a 1-D composite multiferroic chain with a linear magneto-electric coupling at the interface. The response is investigated with either external magnetic or electric fields driving the system. The spin dynamics is based on the Landau-Lifshitz-Gilbert equation. A Gaussian white noise is later added into the dynamic process to include the thermal effects. The interface requires a closer inspection of the magneto-electric effects. Thus, we construct a 2-D ladder model to describe the behavior of the magnetic spins and the electric pseudo-spins with different magneto-electric couplings.

  7. Nonlinear dynamics of global atmospheric and Earth-system processes

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry; Ebisuzaki, Wesley; Maasch, Kirk A.; Oglesby, Robert; Pandolfo, Lionel

    1990-01-01

    Researchers are continuing their studies of the nonlinear dynamics of global weather systems. Sensitivity analyses of large-scale dynamical models of the atmosphere (i.e., general circulation models i.e., GCM's) were performed to establish the role of satellite-signatures of soil moisture, sea surface temperature, snow cover, and sea ice as crucial boundary conditions determining global weather variability. To complete their study of the bimodality of the planetary wave states, they are using the dynamical systems approach to construct a low-order theoretical explanation of this phenomenon. This work should have important implications for extended range forecasting of low-frequency oscillations, elucidating the mechanisms for the transitions between the two wave modes. Researchers are using the methods of jump analysis and attractor dimension analysis to examine the long-term satellite records of significant variables (e.g., long wave radiation, and cloud amount), to explore the nature of mode transitions in the atmosphere, and to determine the minimum number of equations needed to describe the main weather variations with a low-order dynamical system. Where feasible they will continue to explore the applicability of the methods of complex dynamical systems analysis to the study of the global earth-system from an integrative viewpoint involving the roles of geochemical cycling and the interactive behavior of the atmosphere, hydrosphere, and biosphere.

  8. Lobe dynamics and homoclinic tangles in atmospheric flows

    NASA Astrophysics Data System (ADS)

    Naik, S.; Ross, S. D.

    2012-12-01

    In recent years, dynamical system theorists have been developing methods to study structures that govern the dynamics of atmospheric and oceanic flows. The primary concern for these flows are the finite time nature and the arbitrary time dependence in contrast to classical dynamical systems. Recent work on 2D quasi-horizontal approximations of atmospheric motion have demonstrated that there are aperiodic, finite-time analogs of homoclinic tangles and lobe dynamics, e.g., around hurricane boundaries. The tools used have been coherent structure boundaries based on ridges of the finite-time Lyapunov exponent (FTLE) field calculated from integrated particle trajectories. There are some ambiguities in the FTLE-based approach which suggests other methods should be attempted. In this work, we apply methods based on Lagrangian descriptors (due to Mancho and co-workers) to locate distinguished hyperbolic trajectories (DHTs) and generate corresponding finite-time stable and unstable manifolds to study lobe dynamics, as applied to atmospheric flow as well as fluid experiments. We compare the Lagrangian descriptor approach with the FTLE-based approach.

  9. Interpretation of Titan's atmospheric composition measured by Cassini-Huygens

    NASA Astrophysics Data System (ADS)

    Tobie, G.; Gautier, D.; Hersant, F.; Lunine, J. I.

    2008-09-01

    ABSTRACT The GCMS instrument aboard the Huygens probe has measured the composition of Titan's atmosphere [1] and detected for the first time 36Ar and 40Ar, but no Xe and Kr. Assuming that planetesimals which formed the satellite originated from the cold solar nebula around 10 AU, we predict, on the basis of our interpretation of the CNS enrichments in Saturn [2], that they must have contained silicates, H2O ice, CO2, CH4, H2S, NH3 and some amount of noble gases. Using the evolution model of Tobie et al. [3], we have determined the fate of the different volatile species present in Titan's interior and in the atmosphere from the accretion to present time. At the end of accretion, most of the region outward of this proto-corewas warmliquid water (T > 300K), in which gas compound has very low solubility, and so potentially very large amounts of volatiles, notably methane, ended up in the primitive atmosphere and on the surface. During that early epoch, the composition of the hot-proto atmosphere should have reflected the composition of the planetesimals. The atmosphere at that time was probablymainly composed of H2O, NH3, CO2, CH4, H2S, which strongly contrasts with the nitrogen dominating atmosphere we have on Titan today. Early escape, photolysis, impact-driven chemistry and progressive condensation to the surface of the different species initially present in the primitive atmosphere gradually change the composition of the atmosphere, so that most of the primordial gas compound disappeared fromthe atmosphere. After that catastrophic early epoch, only the inner undifferentiated portion of Titans interior was able to hold primordial volatiles. These volatile species were released fromthe deep interior when internal differentiation occured, roughly 0.5 Gyr after accretion. Depending on their ability to interact with water molecules, each species follow a different evolutionnary pathway. For pressure conditions occurringwithin Titan, we show thatmost of the volatile

  10. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics

    PubMed Central

    Bringel, Françoise; Couée, Ivan

    2015-01-01

    The phyllosphere, which lato sensu consists of the aerial parts of plants, and therefore primarily, of the set of photosynthetic leaves, is one of the most prevalent microbial habitats on earth. Phyllosphere microbiota are related to original and specific processes at the interface between plants, microorganisms and the atmosphere. Recent –omics studies have opened fascinating opportunities for characterizing the spatio-temporal structure of phyllosphere microbial communities in relation with structural, functional, and ecological properties of host plants, and with physico-chemical properties of the environment, such as climate dynamics and trace gas composition of the surrounding atmosphere. This review will analyze recent advances, especially those resulting from environmental genomics, and how this novel knowledge has revealed the extent of the ecosystemic impact of the phyllosphere at the interface between plants and atmosphere. Highlights • The phyllosphere is one of the most prevalent microbial habitats on earth. • Phyllosphere microbiota colonize extreme, stressful, and changing environments. • Plants, phyllosphere microbiota and the atmosphere present a dynamic continuum. • Phyllosphere microbiota interact with the dynamics of volatile organic compounds and atmospheric trace gasses. PMID:26052316

  11. Dynamical ocean-atmospheric drivers of floods and droughts

    NASA Astrophysics Data System (ADS)

    Perdigão, Rui A. P.; Hall, Julia

    2014-05-01

    The present study contributes to a better depiction and understanding of the "facial expression" of the Earth in terms of dynamical ocean-atmospheric processes associated to both floods and droughts. For this purpose, the study focuses on nonlinear dynamical and statistical analysis of ocean-atmospheric mechanisms contributing to hydrological extremes, broadening the analytical hydro-meteorological perspective of floods and hydrological droughts to driving mechanisms and feedbacks at the global scale. In doing so, the analysis of the climate-related causality of hydrological extremes is not limited to the synoptic situation in the region where the events take place. Rather, it goes further in the train of causality, peering into dynamical interactions between planetary-scale ocean and atmospheric processes that drive weather regimes and influence the antecedent and event conditions associated to hydrological extremes. In order to illustrate the approach, dynamical ocean-atmospheric drivers are investigated for a selection of floods and droughts. Despite occurring in different regions with different timings, common underlying mechanisms are identified for both kinds of hydrological extremes. For instance, several analysed events are seen to have resulted from a large-scale atmospheric situation consisting on standing planetary waves encircling the northern hemisphere. These correspond to wider vortices locked in phase, resulting in wider and more persistent synoptic weather patterns, i.e. with larger spatial and temporal coherence. A standing train of anticyclones and depressions thus encircled the mid and upper latitudes of the northern hemisphere. The stationary regime of planetary waves occurs when the mean eastward zonal flow decreases up to a point in which it no longer exceeds the westward phase propagation of the Rossby waves produced by the latitude-varying Coriolis effect. The ocean-atmospheric causes for this behaviour and consequences on hydrological

  12. Role of Megafauna and Frozen Soil in the Atmospheric CH4 Dynamics

    PubMed Central

    Zimov, Sergey; Zimov, Nikita

    2014-01-01

    Modern wetlands are the world’s strongest methane source. But what was the role of this source in the past? An analysis of global 14C data for basal peat combined with modelling of wetland succession allowed us to reconstruct the dynamics of global wetland methane emission through time. These data show that the rise of atmospheric methane concentrations during the Pleistocene-Holocene transition was not connected with wetland expansion, but rather started substantially later, only 9 thousand years ago. Additionally, wetland expansion took place against the background of a decline in atmospheric methane concentration. The isotopic composition of methane varies according to source. Owing to ice sheet drilling programs past dynamics of atmospheric methane isotopic composition is now known. For example over the course of Pleistocene-Holocene transition atmospheric methane became depleted in the deuterium isotope, which indicated that the rise in methane concentrations was not connected with activation of the deuterium-rich gas clathrates. Modelling of the budget of the atmospheric methane and its isotopic composition allowed us to reconstruct the dynamics of all main methane sources. For the late Pleistocene, the largest methane source was megaherbivores, whose total biomass is estimated to have exceeded that of present-day humans and domestic animals. This corresponds with our independent estimates of herbivore density on the pastures of the late Pleistocene based on herbivore skeleton density in the permafrost. During deglaciation, the largest methane emissions originated from degrading frozen soils of the mammoth steppe biome. Methane from this source is unique, as it is depleted of all isotopes. We estimated that over the entire course of deglaciation (15,000 to 6,000 year before present), soils of the mammoth steppe released 300–550 Pg (1015 g) of methane. From current study we conclude that the Late Quaternary Extinction significantly affected the global

  13. Role of megafauna and frozen soil in the atmospheric CH4 dynamics.

    PubMed

    Zimov, Sergey; Zimov, Nikita

    2014-01-01

    Modern wetlands are the world's strongest methane source. But what was the role of this source in the past? An analysis of global 14C data for basal peat combined with modelling of wetland succession allowed us to reconstruct the dynamics of global wetland methane emission through time. These data show that the rise of atmospheric methane concentrations during the Pleistocene-Holocene transition was not connected with wetland expansion, but rather started substantially later, only 9 thousand years ago. Additionally, wetland expansion took place against the background of a decline in atmospheric methane concentration. The isotopic composition of methane varies according to source. Owing to ice sheet drilling programs past dynamics of atmospheric methane isotopic composition is now known. For example over the course of Pleistocene-Holocene transition atmospheric methane became depleted in the deuterium isotope, which indicated that the rise in methane concentrations was not connected with activation of the deuterium-rich gas clathrates. Modelling of the budget of the atmospheric methane and its isotopic composition allowed us to reconstruct the dynamics of all main methane sources. For the late Pleistocene, the largest methane source was megaherbivores, whose total biomass is estimated to have exceeded that of present-day humans and domestic animals. This corresponds with our independent estimates of herbivore density on the pastures of the late Pleistocene based on herbivore skeleton density in the permafrost. During deglaciation, the largest methane emissions originated from degrading frozen soils of the mammoth steppe biome. Methane from this source is unique, as it is depleted of all isotopes. We estimated that over the entire course of deglaciation (15,000 to 6,000 year before present), soils of the mammoth steppe released 300-550 Pg (10(15) g) of methane. From current study we conclude that the Late Quaternary Extinction significantly affected the global

  14. New Opacities for Dense Helium and the Composition of Helium Rich, Very Cool White Dwarf Atmospheres

    NASA Astrophysics Data System (ADS)

    Kowalski, P. M.; Mazevet, S.; Saumon, D.

    2004-12-01

    Very cool white dwarfs (T eff ≤ 4000K) are among the oldest stars in the Milky Way. They are of great interest as chronometers for understanding the history of star formation in our Galaxy. To realize the full potential of white dwarf cosmochronology, we need to understand better the physical processes that take place in the surface layers of cool white dwarfs. Strong surface gravity results in a compositionally stratified structure for those stars, with light elements "floating" to the surface. Accretion from the ISM over Gyrs should result in pure H atmosphere for all of them today, regardless of their initial composition. However, observations indicate that many very cool white dwarfs possess helium-rich atmospheres. Envelope models provide a possible explanation for this phenomenon, where He is transported to the atmosphere from the envelope by a convective zone which, for cool white dwarfs of T eff ≤ 5000K, can extend from the surface down to the helium layer. However, an analysis based on current atmospheric models gives a He abundance that is much higher than can be explained by the convective mixing model. We think that one of the main reason for this discrepancy is an inadequate description of the opacity used in current atmosphere models. The very cool helium-rich atmospheres, with densities up to 2 \\ g/cm3, are fluid, not gaseous. The description of the opacity must be revised for this high density regime. Using quantum molecular dynamics simulations we calculated new opacities for dense helium that are much larger than previously thought. As a result, a much lower helium abundance is found in the coolest white dwarfs, which is in much better agreement with the predictions of the convective mixing model. This research was supported by the United States Department of Energy under contract W-7405-ENG-36.

  15. An exploration of Saturn's atmospheric dynamics with Global Climate Modeling

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Guerlet, Sandrine; Indurain, Mikel; Meurdesoif, Yann; Millour, Ehouarn; Sylvestre, Mélody; Dubos, Thomas; Fouchet, Thierry

    2015-04-01

    A decade of Cassini observations has yielded a new vision on the dynamical phenomena in Saturn's troposphere and stratosphere. Several puzzling signatures (equatorial oscillations with a period of about half a Saturn year, interhemispheric circulations affecting the hydrocarbons' distribution, including possible effects of rings shadowing, sudden warming associated with the powerful 2010 Great White Spot) cannot be explained by current photochemical and radiative models, which do not include dynamics. We therefore suspect that 1. the observed anomalies arise from large-scale dynamical circulations and 2. those large-scale dynamical motions are driven by atmospheric waves, eddies, and convection, in other words fundamental mechanisms giving birth to, e.g., the Quasi-Biennal Oscillation and Brewer-Dobson circulation in the Earth's middle atmosphere. We explore the plausibility of this scenario using our new Global Climate Modeling (GCM) for Saturn. To build this model, we firstly formulated dedicated physical parameterizations for Saturn's atmosphere, with a particular emphasis on radiative computations (using a correlated-k radiative transfer model, with radiative species and spectral discretization tailored for Saturn) aimed at both efficiency and accuracy, and validated them against existing Cassini observations. A second step consisted in coupling this radiative model to an hydrodynamical solver to predict the three-dimensional evolution of Saturn's tropospheric and stratospheric flow. We will provide an analysis of the first results of those dynamical simulations, with a focus on the development of baroclinic and barotropic instability, on eddy vs. mean flow interactions, and how this could relate to the enigmatic signatures observed by Cassini. Preliminary high-resolution simulations with a new icosahedral dynamical solver adapted to high-performance computing will also be analyzed. Perspectives are twofold: firstly, broadening our fundamental knowledge of

  16. Interpretation of Titan's atmospheric composition measured by Cassini-Huygens

    NASA Astrophysics Data System (ADS)

    Tobie, G.; Gautier, D.; Hersant, F.; Lunine, J. I.

    2008-09-01

    ABSTRACT The GCMS instrument aboard the Huygens probe has measured the composition of Titan's atmosphere [1] and detected for the first time 36Ar and 40Ar, but no Xe and Kr. Assuming that planetesimals which formed the satellite originated from the cold solar nebula around 10 AU, we predict, on the basis of our interpretation of the CNS enrichments in Saturn [2], that they must have contained silicates, H2O ice, CO2, CH4, H2S, NH3 and some amount of noble gases. Using the evolution model of Tobie et al. [3], we have determined the fate of the different volatile species present in Titan's interior and in the atmosphere from the accretion to present time. At the end of accretion, most of the region outward of this proto-corewas warmliquid water (T > 300K), in which gas compound has very low solubility, and so potentially very large amounts of volatiles, notably methane, ended up in the primitive atmosphere and on the surface. During that early epoch, the composition of the hot-proto atmosphere should have reflected the composition of the planetesimals. The atmosphere at that time was probablymainly composed of H2O, NH3, CO2, CH4, H2S, which strongly contrasts with the nitrogen dominating atmosphere we have on Titan today. Early escape, photolysis, impact-driven chemistry and progressive condensation to the surface of the different species initially present in the primitive atmosphere gradually change the composition of the atmosphere, so that most of the primordial gas compound disappeared fromthe atmosphere. After that catastrophic early epoch, only the inner undifferentiated portion of Titans interior was able to hold primordial volatiles. These volatile species were released fromthe deep interior when internal differentiation occured, roughly 0.5 Gyr after accretion. Depending on their ability to interact with water molecules, each species follow a different evolutionnary pathway. For pressure conditions occurringwithin Titan, we show thatmost of the volatile

  17. Large Deformation Dynamic Bending of Composite Beams

    NASA Technical Reports Server (NTRS)

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams tested were 23 in. by 2 in. and generally 30 plies thick. The beams were loaded dynamically with a gravity-driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 300 or 150 off-axis plies occurred in several events. All laminates exhibited bimodular elastic properties. The compressive flexural moduli in some laminates was measured to be 1/2 the tensile flexural modulus. No simple relationship could be found among the measured ultimate failure strains of the different laminate types. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  18. Lidar determination of the composition of atmosphere aerosols

    NASA Technical Reports Server (NTRS)

    Wright, M. L.

    1980-01-01

    Theoretical and experimental studies of the feasibility of using DIfferential SCatter (DISC) lidar to measure the composition of atmospheric aerosols are described. This technique involves multiwavelength measurements of the backscatter cross section of aerosols in the middle infrared, where a number of materials display strong restrahlen features that significantly modulate the backscatter spectrum. The theoretical work indicates that a number of materials of interest, including sulfuric acid, ammonium sulfate, and silicates, can be discriminated among with a CO2 lidar. An initial evaluation of this procedure was performed in which cirrus clouds and lower altitude tropospheric aerosols were developed. The observed ratio spectrum of the two types of aerosol displays structure that is in crude accord with theoretical expectations.

  19. Effects of cirrus composition on atmospheric radiation budgets

    NASA Technical Reports Server (NTRS)

    Kinne, Stefan; Liou, Kuo-Nan

    1988-01-01

    A radiative transfer model that can be used to determine the change in solar and infrared fluxes caused by variations in the composition of cirrus clouds was used to investigate the importance of particle size and shape on the radiation budget of the Earth-atmosphere system. Even though the cloud optical thickness dominates the radiative properties of ice clouds, the particle size and nonsphericity of ice crystals are also important in calculations of the transfer of near-IR solar wavelengths. Results show that, for a given optical thickness, ice clouds composed of larger particles would produce larger greenhouse effects than those composed of smaller particles. Moreover, spherical particles with equivalent surface areas, frequently used for ice crystal clouds, would lead to an overestimation of the greenhouse effect.

  20. Factors influencing atmospheric composition over subarctic North America during summer

    NASA Technical Reports Server (NTRS)

    Wofsy, Steven C.; Fan, S. -M.; Blake, D. R.; Bradshaw, J. D.; Sandholm, S. T.; Singh, H. B.; Sachse, G. W.; Harriss, R. C.

    1994-01-01

    Elevated concentrations of hydrocarbons, CO, and nitrogen oxides were observed in extensive haze layers over northeastern Canada in the summer of 1990, during ABLE 3B. Halocarbon concentrations remained near background in most layers, indicating a source from biomass wildfires. Elevated concentrations of C2Cl4 provided a sensitive indicator for pollution from urban/industrial sources. Detailed analysis of regional budgets for CO and hydrocarbons indicates that biomass fires accounted for approximately equal to 70% of the input to the subarctic for most hydrocarbons and for acetone and more than 50% for CO. Regional sources for many species (including CO) exceeded chemical sinks during summer, and the boreal region provided a net source to midlatitudes. Interannual variations and long-term trends in atmospheric composition are sensitive to climatic change; a shift to warmer, drier conditions could increase the areas burned and thus the sources of many trace gases.

  1. Nonlinear dynamics of global atmospheric and earth system processes

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Verbitsky, Mikhail; Saltzman, Barry; Mann, Michael E.; Park, Jeffrey; Lall, Upmanu

    1995-01-01

    During the grant period, the authors continued ongoing studies aimed at enhancing their understanding of the operation of the atmosphere as a complex nonlinear system interacting with the hydrosphere, biosphere, and cryosphere in response to external radiative forcing. Five papers were completed with support from the grant, representing contributions in three main areas of study: (1) theoretical studies of the interactive atmospheric response to changed biospheric boundary conditions measurable from satellites; (2) statistical-observational studies of global-scale temperature variability on interannual to century time scales; and (3) dynamics of long-term earth system changes associated with ice sheet surges.

  2. The Galileo probe mass spectrometer: composition of Jupiter's atmosphere

    NASA Technical Reports Server (NTRS)

    Niemann, H. B.; Atreya, S. K.; Carignan, G. R.; Donahue, T. M.; Haberman, J. A.; Harpold, D. N.; Hartle, R. E.; Hunten, D. M.; Kasprzak, W. T.; Mahaffy, P. R.; Owen, T. C.; Spencer, N. W.; Way, S. H.

    1996-01-01

    The composition of the jovian atmosphere from 0.5 to 21 bars along the descent trajectory was determined by a quadrupole mass spectrometer on the Galileo probe. The mixing ratio of He (helium) to H2 (hydrogen), 0.156, is close to the solar ratio. The abundances of methane, water, argon, neon, and hydrogen sulfide were measured; krypton and xenon were detected. As measured in the jovian atmosphere, the amount of carbon is 2.9 times the solar abundance relative to H2, the amount of sulfur is greater than the solar abundance, and the amount of oxygen is much less than the solar abundance. The neon abundance compared with that of hydrogen is about an order of magnitude less than the solar abundance. Isotopic ratios of carbon and the noble gases are consistent with solar values. The measured ratio of deuterium to hydrogen (D/H) of (5 +/- 2) x 10(-5) indicates that this ratio is greater in solar-system hydrogen than in local interstellar hydrogen, and the 3He/4He ratio of (1.1 +/- 0.2) x 10(-4) provides a new value for protosolar (solar nebula) helium isotopes. Together, the D/H and 3He/4He ratios are consistent with conversion in the sun of protosolar deuterium to present-day 3He.

  3. Effect of flares on the chemical composition of exoplanets atmospheres

    NASA Astrophysics Data System (ADS)

    Venot, O.; Decin, L.

    2015-10-01

    M stars are very abundant in our Galaxy, and very likely harbour the majority of planetary systems. But a particularity of M stars is that they are the most active class of stars. Indeed, they experience stellar variability such as flares. These violent and unpredictable outbursts originate from the photosphere and are caused by magnetic processus. During such an event, the energy emitted by the star can vary by several orders of magnitude for the whole wavelength range. It results in an enhancement of the H# emission and of the continuum. Different studies on the effect of flares on exoplanets have already been conducted [1, 2]. Here we are interested in the effect of a flare on the atmospheric composition of a warm Neptune orbiting around an M star. Using the stellar flux of AD Leo recorded during a flare event [1] and the chemical model of [3], we have studied the impact on the atmosphere. We have also computed the synthetic spectra assuming that such an event occurs during a transit. We will present these results.

  4. Modelling the impact of aircraft emissions on atmospheric composition

    NASA Astrophysics Data System (ADS)

    Wasiuk, D. K.; Lowenberg, M. H.; Shallcross, D. E.

    2012-12-01

    Emissions of the trace gases CO2, CO, H2O, HC, NOx, and SOx that have the potential to perturb large scale atmospheric composition are accumulating in the atmosphere at an unprecedented rate as the demand for air traffic continues to grow. We investigate the global and regional effects of aircraft emissions on the atmosphere and climate using mathematical modelling, sensitivity simulations, and perturbation simulations and present historical and spatial distribution evolution of the global and regional number of departures, fuel burn and emissions. A comprehensive aircraft movement database spanning years 2005 - 2012, covering 225 countries and over 223 million departures on approximately 41000 unique routes serves as a basis for our investigation. We combine air traffic data with output from an aircraft performance model (fuel burn and emissions) including 80 distinct aircraft types, representing 216 of all the aircraft flown in the world in 2005 - 2012. This accounts for fuel burn and emissions for 99.5% of the total number of departures during that time. Simulations are being performed using a state of the art 3D Lagrangian global chemical transport model (CTM) CRI-STOCHEM for simulation of tropospheric chemistry. The model is applied with the CRI (Common Representative Intermediates) chemistry scheme with 220 chemical species, and 609 reactions. This allows us to study in detail the chemical cycles driven by NOx, governing the rate of formation of O3 which controls the production of OH and indirectly determines the lifetime of other greenhouse gases. We also investigate the impact of the Eyjafjallajökull eruption on the European air traffic and present a model response to the perturbation of NOx emissions that followed.

  5. Modelling the impact of aircraft emissions on atmospheric composition

    NASA Astrophysics Data System (ADS)

    Wasiuk, D. K.; Shallcross, D. E.; Lowenberg, M. H.

    2012-04-01

    Emissions of the trace gases CO2, CO, H2O, HC, NOx, and SOx that have the potential to perturb large scale atmospheric composition are accumulating in the atmosphere at an unprecedented rate as the demand for air traffic continues to grow. We investigate the global, regional and local effects of aircraft emissions on the atmosphere and climate using mathematical modelling, sensitivity simulations, and perturbation simulations. The approach is to gather results for the three main industrialised regions in the Northern Hemisphere, focusing on the 40°N - 60°N latitude belt where the majority of aircraft movements take place. A comprehensive aircraft movement database spanning years 2005 - 2012, covering 225 countries and over 223 million departures on approx. 41000 unique routes serves as a basis for our investigation. We combine air traffic data with output from an aircraft performance model including 80 distinct aircraft types, representing 216 of all the aircraft flown in the world in 2005 - 2012. This accounts for fuel burn and emissions for 99.5% of the total number of departures during that time. Simulations are being performed using a state of the art 3D Lagrangian global chemical transport model (CTM) CRI-STOCHEM for simulation of tropospheric chemistry. The model will be applied with two chemistry schemes, namely the Common Representative Intermediates (CRI) reduced chemistry scheme (220 chemical species, 609 reactions) and the near explicit Master Chemical Mechanism (MCM) chemistry scheme (5900 chemical species, 13500 reactions). This will allow us to study in detail the chemical cycles driven by NOx, governing the rate of formation of O3 which controls the production of OH and indirectly determines the lifetime of other greenhouse gases.

  6. Structure and Composition of the Neutral Upper Atmosphere of Mars from the MAVEN NGIMS Investigation

    NASA Astrophysics Data System (ADS)

    Mahaffy, P. R.; Benna, M.; Yelle, R. V.; Stone, S. W.; Elrod, M. K.; Fox, J. L.

    2015-12-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) on the MAVEN mission is designed to characterize the state of the upper atmosphere and its response to perturbations from the sun and from lower atmosphere. These measurements complement other instruments on the MAVEN spacecraft and support the MAVEN science goal [Jakosky et al., 2015] of understanding atmospheric escape and over the course of martian history. We report NGIMS measurements of the neutral composition of multiple atomic and molecular species over hundreds of orbits since the science phase of this mission began late in 2014. Ion measurements from NGIMS are reported separately in other contributions to this session. The wide dynamic range, the high temporal resolution, and the use of two different ion source configurations of the NGIMS instrument [Mahaffy et al., 2014] allows neutral density structure and its variability to be characterized in detail. Large amplitude wave structure is observed on the lowest altitude portion of many orbits that dissipates at higher altitudes. Although this structure puts scatter in the retrieval of scale height temperatures these are nevertheless robustly secured by averaging over several orbits. The variability of the upper atmosphere temperature with latitude and local solar time is reported. The deep dip campaign approach to the homopause allows the mixing ratio of the major gases in the lower atmosphere to be measured. We compare these mixing ratios with those reported by the Sample Analysis at Mars investigation and previous Viking measurements. Jakosky, B. M., et al. (2015), The Mars Atmosphere and Volatile Evolution (MAVEN) Mission, Space Sci Rev, 21. Mahaffy, P. R., et al. (2014), The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission, Space Sci Rev, 185, DOI: 10.1007/s11214-11014-10091-11211.

  7. Goddard Atmospheric Composition Data Center: Aura Data and Services in One Place

    NASA Technical Reports Server (NTRS)

    Leptoukh, G.; Kempler, S.; Gerasimov, I.; Ahmad, S.; Johnson, J.

    2005-01-01

    The Goddard Atmospheric Composition Data and Information Services Center (AC-DISC) is a portal to the Atmospheric Composition specific, user driven, multi-sensor, on-line, easy access archive and distribution system employing data analysis and visualization, data mining, and other user requested techniques for the better science data usage. It provides convenient access to Atmospheric Composition data and information from various remote-sensing missions, from TOMS, UARS, MODIS, and AIRS, to the most recent data from Aura OMI, MLS, HIRDLS (once these datasets are released to the public), as well as Atmospheric Composition datasets residing at other remote archive site.

  8. Subcycled dynamics in the Spectral Community Atmosphere Model, version 4

    SciTech Connect

    Taylor, Mark; Evans, Katherine J; Hack, James J; Worley, Patrick H

    2010-01-01

    To gain computational efficiency, a split explicit time integration scheme has been implemented in the CAM spectral Eulerian dynamical core. In this scheme, already present in other dynamical core options within the Community Atmosphere Model, version 4 (CAM), the fluid dynamics portion of the model is subcycled to allow a longer time step for the parameterization schemes. The physics parameterization of CAM is not subject to the stability restrictions of the fluid dynamics, and thus finer spatial resolutions of the model do not require the physics time step to be reduced. A brief outline of the subcycling algorithm implementation and resulting model efficiency improvement is presented. A discussion regarding the effect of the climate statistics derived from short model runs is provided.

  9. Global dynamics and thermal structure of Jupiter's atmosphere

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.

    1986-01-01

    Voyager flyby observations have yielded the first detailed maps of wind and temperature fields in the Jupiter atmosphere; these data indicate that Jupiter's zonal currents violate the barotropic instability criterion if they extend only a few scale heights below the cloud tops. Microwave observations at mm and cm wavelengths have probed the atmosphere down to a level of about 7 bars, thereby constraining horizontal and vertical thermal structure in a region of the atmosphere about which little was known. Temporal variations in the temperature field suggest that dynamical processes may be important in the establishment of tropopause structure on short time scales. Ground-based and Voyager observations have also indicated a hemispheric asymmetry in temperature in the upper stratosphere.

  10. A generalized tensor formulation of atmosphere and seas dynamics

    NASA Technical Reports Server (NTRS)

    Avis, L. M.; Turner, R. E.; Rees, T. H.

    1975-01-01

    A generalized mathematical model was developed for simulation of the dynamics and transport of both the atmosphere and seas. A nearly horizontal bottom coordinate surface conforms to the land-to-air interface and the sea-floor-to-water interface, which simplifies computations. General vertical motion of the other quasi-horizontal coordinate surfaces is allowed; external gravity waves can be represented by the top coordinate surface, and meteorological fronts and inversion layers in the atmosphere and refractive layers in the seas can be represented with enhanced resolution by the internal quasi-horizontal coordinate surfaces. A tensor reformulation of the standard subgrid mixing theory departs significantly from the standard theory in allowing, as a solution under adiabatic conditions, rigid-body rotation of the atmosphere.

  11. Determination of the combined isotopic composition of atmospheric methane

    NASA Astrophysics Data System (ADS)

    Butterworth, Anna Lucy

    Methane is an important global warming gas, present in the atmosphere at a concentration of 1.714 ppmv. Its concentration has more than doubled since the start of the industrial revolution and the increase is generally acknowledged to be due to human activities. The continued rise in concentration of methane is believed to be contributing to an increase in mean global temperature. Recently, the global budget of methane has been constrained by balancing the magnitude and isotopic signature of the sources and sinks with the measured tropospheric abundance and isotopic composition. The dual element stable isotopic composition (δ13C and /delta D) of methane may be used to characterise different sources of methane. Traditional methods of determining the δ13C value and the /delta D value of methane require large sample sizes. An alternative approach to investigating the stable isotopic composition of methane was to determine the combined ratio of 13CH4 and 12CH3D (mass 17) relative to 12CH4 (mass 16) and quote the results on a δ17M scale. A static-vacuum mass spectrometer has been developed specifically for the determination of the 17M/16M ratio of sub- nanomole quantities of methane with a δ17M precision of [/pm]0.2/ /perthous. An on-line sample preparation technique has also been developed to separate the methane from 10 ml of air and provide a pure, dry, ~300 picomole methane sample for isotope ratio determination. The overall δ17M precision of the analysis of the methane in air samples was [<][/pm]0.5/ /perthous. A number of sources of atmospheric methane have been investigated, demonstrating that sources may be distinguished from each other on the δ17M scale. The very small sample requirements for the instrument permitted a simple air sampling procedure to be employed, which was particularly useful for collecting air samples in remote locations. Air samples, containing methane emitted by termites, were collected from a tropical rainforest. The methane produced

  12. Composition of Atmospheric Dust from Qatar in the Arabian Gulf

    NASA Astrophysics Data System (ADS)

    Yigiterhan, O.; Al-Ansari, I. S.; Abdel-Moati, M.; Al-Ansi, M.; Paul, B.; Nelson, A.; Turner, J.; Murray, J. W.; Alfoldy, B. Z.; Mahfouz, M. M. K.; Giamberini, M.

    2015-12-01

    Samples of atmospheric dust from Qatar have been collected and analyzed for major and trace elemental composition. Twenty-one samples were collected in 2014 and 2015 from Doha, Al Khor, Katara, Sealine, and Al Waab by a variety of techniques. Some samples were collected during the megastorms that occurred in April 2015. Back trajectories were determined for each sample using the NOAA HYSPLIT model over a 50 hour time interval. Our samples were about equally divided between northerly (n=12; northern Saudi Arabia, Kuwait or Iraq) and southerly (n=8; SE Saudi Arabia, United Arab Emirates and Oman) sources. One sample originated directly westward, in Saudi Arabia. Samples were microwave-assisted total acid digested (HF+HCl+HNO3) and analyzed by inductively coupled plasma-mass spectroscopy (ICP-MS) and inductively coupled plasma-optical emission spectroscopy (ICP-OES). There are only 12 out of 23 elements for which the Qatari dust was enriched relative to upper continental crust (UCC). Calcium was especially enriched at 400% relative to UCC. About 33% of the total sample mass was CaCO3, reflecting the composition of surface rocks in the source areas. Of the elements typically associated with anthropogenic activity, Ag, Ni and Zn were the most enriched relative to UCC, with enrichment factors of 182%, 233% and 209%, respectively. Others like Pb and V were not significantly enriched, with enrichment factors of 25% and 3%, respectively. The major elements Al, Mn and Fe were depleted relative to UCC because of the strong enrichment in CaCO3, with enrichment factors of -58%, -35% and -45% respectively. We separately averaged the samples with northern and southern origins to see if composition could be used to identify source. Only three elements had a statistical difference. Pb and Na were higher in the samples from the Se while Cr was higher in those from the north.

  13. Using a Network of Excellence (NoE) for Learning about and Teaching Atmospheric Composition Change

    NASA Astrophysics Data System (ADS)

    Schuepbach, E.

    2005-12-01

    ACCENT (2004-08) is a Network of Excellence in Atmospheric Composition Change in Framework Programme VI of the European Union (www.accent-network.org). The task "Training and Education" aims at preparing the next generation of atmospheric scientists (up to 3 years after completion of a Ph.D.) for the future of scientific endeavour in the field. Educational events, courses, and training workshops will be offered both on subjects in the field of atmospheric composition change and on essential skills (e.g., communication, networking, interdisciplinarity), and will be paralleled by leadership sessions and Science Cafes to increase the expertise to a common level across Europe (including Accession countries). Integration of female scientists, and (young) scientists from newly associated and emerging countries will be realized through specific schemes (e.g., mentoring, fellowships). Training and Education in ACCENT aims at triggering the use of New Information and Communication Technologies (NICT), and innovations in learning and teaching in an, and by using a Network (of Excellence). Best practice will be compiled in a Dynamical Compendium including pedagogical concepts for the electronically-supported teaching and learning, and simple methods to enrich classical frontal teaching at University level. Both, didactical and communication approaches to reach out for specific target groups in the scientific community and the general public will be outlined in the presentation.

  14. Subtropical middle atmosphere dynamics observed by the Chung Li radar

    NASA Technical Reports Server (NTRS)

    Fu, I. J.; Liu, C. H.; Roettger, J.; Chao, J. K.

    1989-01-01

    The Chung Li Radar (24.91 N; 121.24 E) has been operating since 1986. A five beam observational configuration was used on a regular basis to study the various dynamics processes in the atmosphere-lower stratosphere height region. Due to its geographical location, the annual Typhoon and Mei-Yu seasons provide good opportunities to study the various interesting dynamic processes such as instabilities, generation of gravity waves, wave mean field interaction, etc. Three dimensional air motions due to these fronts are presented. Special cases of gravity wave generation, propagation and their effects on the turbulent layers are discussed.

  15. Nonlinear dynamics of global atmospheric and Earth system processes

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry

    1993-01-01

    During the past eight years, we have been engaged in a NASA-supported program of research aimed at establishing the connection between satellite signatures of the earth's environmental state and the nonlinear dynamics of the global weather and climate system. Thirty-five publications and four theses have resulted from this work, which included contributions in five main areas of study: (1) cloud and latent heat processes in finite-amplitude baroclinic waves; (2) application of satellite radiation data in global weather analysis; (3) studies of planetary waves and low-frequency weather variability; (4) GCM studies of the atmospheric response to variable boundary conditions measurable from satellites; and (5) dynamics of long-term earth system changes. Significant accomplishments from the three main lines of investigation pursued during the past year are presented and include the following: (1) planetary atmospheric waves and low frequency variability; (2) GCM studies of the atmospheric response to changed boundary conditions; and (3) dynamics of long-term changes in the global earth system.

  16. Exploring the Frontier of Exoplanet Atmosphere Dynamics with NASA's Great Observatories

    NASA Astrophysics Data System (ADS)

    Kreidberg, Laura; Bean, Jacob; Stevenson, Kevin; Showman, Adam; Fortney, Jonathan; Line, Michael; Desert, Jean-Michel

    2014-12-01

    We propose a joint Spitzer+HST program to explore the frontier of exoplanet atmosphere dynamics. We will pursue a multi-wavelength approach to create detailed maps of the thermal structure of two of the best target hot Jupiters. First, we will perform secondary eclipse mapping for WASP-18b with Spitzer at 4.5 microns to complement existing Spitzer+HST phase curve observations. The combination of these data will yield the first ever map of an exoplanet's thermal structure as a function of latitude, longitude, and altitude, and provide a benchmark for 3D atmospheric circulation models of highly irradiated planets. Second, we will use a new technique pioneered by our team to observe full-orbit phase curves for WASP-103b with Spitzer and HST/WFC3. These observations will reveal the planet's phase-resolved emission spectrum and determine the global temperature-pressure profile and atmospheric composition, as well as its heat redistribution and Bond albedo. This program will significantly expand the sample of thoroughly characterized exoplanets and enable comparative planetology beyond the Solar System. Spitzer and HST are the facilities that have made the strongest contributions to our understanding of exoplanet atmospheres thus far, and we are now in a position to combine their powers in a strategic way to yield unprecedentedly detailed characterization of hot Jupiter atmospheric dynamics. This program will set the stage for even more precise investigations that will be possible with JWST.

  17. Composition and structure of the Venus atmosphere - Results from Pioneer Venus

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.; Hodges, R. R., Jr.; Mcelroy, M. B.; Donahue, T. M.; Kolpin, M.

    1979-01-01

    The composition of the Venusian atmosphere was studied using a mass spectrometer on the Pioneer Venus sounder probe. The single-focusing magnetic-sector spectrometer scanned the mass range from hydrogen through mercury with a dynamic range of six decades. Data taken by the mass spectrometer were compared with those of a gas chromatograph, resulting in slight discrepancies due to the use of a sputter ion pump acting as a sink for entry of rare gases through the inlet leak. A surprisingly large concentration of primordial Ar-36 and Ar-38 was discovered in a ratio of 5 to 1. It was concluded that the large excess of primordial argon was a valid result and that the mixing of HCl in the lower Venusian atmosphere was less than a few parts per million. Arguments against the sun as the source for excess primordial gases on Venus were presented. Concentrations of other elements such as Ne, Kr, He, S, and O were discussed. Although the mass peaks in the spectrum were real, it was not clear whether all of the chemical reactions (i.e., COS production) actually occurred in the atmosphere. Until further analysis can be made, it will be uncertain how the inlet system, which is at atmospheric temperature, affected the results.

  18. Dynamic damage in carbon-fibre composites.

    PubMed

    Bourne, N K; Parry, S; Townsend, D; Withers, P J; Soutis, C; Frias, C

    2016-07-13

    The Taylor test is used to determine damage evolution in carbon-fibre composites across a range of strain rates. The hierarchy of damage across the scales is key in determining the suite of operating mechanisms and high-speed diagnostics are used to determine states during dynamic loading. Experiments record the test response as a function of the orientation of the cylinder cut from the engineered multi-ply composite with high-speed photography and post-mortem target examination. The ensuing damage occurs during the shock compression phase but three other tensile loading modes operate during the test and these are explored. Experiment has shown that ply orientations respond to two components of release; longitudinal and radial as well as the hoop stresses generated in inelastic flow at the impact surface. The test is a discriminant not only of damage thresholds but of local failure modes and their kinetics. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. PMID:27242311

  19. Mars Atmospheric Evolution : What Can Dynamical Simulations Tell Us?

    NASA Astrophysics Data System (ADS)

    Bougher, S. W.; Bell, J. M.; Fox, J. L.

    2004-12-01

    The history of the martian atmosphere and climate over time cannot be properly understood without knowing the role of loss of water and other volatiles to space. Furthermore, the martian climate system is an integrated one, from below the surface to above the exobase. Thus, volatile exchange and loss rates cannot be properly investigated without determining the role of the upper atmosphere and its coupling below (e.g. surface-atmosphere interactions, dynamics and energetics, dust storms) and influences above (e.g. solar wind interaction). Dynamical models (General Circulation Models) for the entire martian atmosphere ( ˜0-250 km) are beginning to be developed and exercised that address global energetics, chemistry, and dynamics. These models capture the key processes coupling the Mars lower and upper atmospheres, basic photochemistry, as well as solar wind interaction processes. Important volatile loss processes include : (a) solar wind stripping (i.e. pick-up ion loss), (b) photochemical loss (e.g. dissociative recombination of O2+), (c) thermal loss (i.e. Jeans escape of light species), and (d) impact ejection of the atmosphere (i.e. sputtering). Each of these processes depends on the intensity of solar EUV radiation, which affects thermospheric temperatures and densities, ionospheric properties, exosphere structure, and ultimately the fluxes of escaping atoms and ions. General Circulation Models (GCMs) provide the global context in which to understand present day escape processes and extrapolate these processes into the past for ancient solar and martian conditions. Here we consider the effects of higher solar EUV fluxes of the ancient sun upon the martian thermosphere-ionosphere structure. A reasonable characterization of this atmospheric structure, and an understanding of the underlying process that drive its variations, provide the foundation upon which escape rates can be estimated over Mars history. The combination of key spacecraft measurements (e

  20. A transition in the cloud composition of hot Jupiters atmospheres

    NASA Astrophysics Data System (ADS)

    Parmentier, Vivien; Jonathan, Fortney; Showman, Adam P.; Marley, Mark; Morley, Caroline

    2015-12-01

    Over a large range of equilibrium temperatures clouds seem to dominate the transmission spectrum of Hot Jupiters atmospheres and no trend allowing the classification of these objects have yet emerged. Recently observations of the light reflected by Hot Jupiters atmospheres shed a new light on the cloud distribution on the dayside of these planets : for a handful of planets clouds are more abundant on the western than on the eastern side of the dayside hemisphere and, more importantly, this asymmetry depends on the equilibrium temperature of the planet.Here we use a grid of 3D global circulation models to show that a single cloud species is unable to explain the recent Kepler observations. The cloud asymmetry on the dayside is a strong function of the condensation temperature of the cloud species which allow us to determine the composition of the clouds present in these planets. We show that a transition between silicate clouds and sulfide clouds appear at equilibrium temperatures of 1600K. A mechanism such as the presence of a deep cold trap is necessary to explain this transi- tion. Furthermore, we show that the western limb temperature is always cold, independently of the equilibrium temperature of the planet, allowing cloud particles to form even in the most irradiated planets as seen in the observations.Our results provide the first evidence for a transition in the cloud species of hot Jupiters similar to the L/T Brown Dwarf transition. We showed that inhomogeneous dayside and limbs cloud coverage are expected what should affect the retrieved molecular abundances from emission and transmission spectra of these planets.

  1. Composition of LHB Comets and Their Influence on the Early Earth Atmosphere Composition

    NASA Technical Reports Server (NTRS)

    Tornow, C.; Kupper, S.; Ilgner, M.; Kuehrt, E.; Motschmann, U.

    2011-01-01

    Two main processes were responsible for the composition of this atmosphere: chemical evolution of the volatile fraction of the accretion material forming the planet and the delivery of gasses to the planetary surface by impactors during the late heavy bombardment (LHB). The amount and composition of the volatile fraction influences the outgassing of the Earth mantle during the last planetary formation period. A very weakened form of outgassing activity can still be observed today by examining the composition of volcanic gasses. An enlightenment of the second process is based on the sparse records of the LHB impactors resulting from the composition of meteorites, observed cometary comas, and the impact material found on the Moon. However, for an assessment of the influence of the outgassing on the one hand and the LHB event on the other, one has to supplement the observations with numerical simulations of the formation of volatiles and their incorporation into the accretion material which is the precursors of planetary matter, comets and asteroids. These simulations are performed with a combined hydrodynamic-chemical model of the solar nebula (SN). We calculate the chemical composition of the gas and dust phase of the SN. From these data, we draw conclusions on the upper limits of the water content and the amount of carbon and nitrogen rich volatiles incorporated later into the accretion material. Knowing these limits we determine the portion of major gas compounds delivered during the LHB and compare it with the related quantities of the outgassed species.

  2. The Sentinel-4 Mission: Instrument Description and Atmospheric Composition Products

    NASA Astrophysics Data System (ADS)

    Veihelmann, Ben; Meijer, Yasjka; Ingmann, Paul; Koopman, Rob; Bazalgette Courrèges-Lacoste, Grégory; Stark, Hendrik

    2013-04-01

    The Sentinel-4 mission, together with Sentinel-5 and the Sentinel-5 Precursor missions, is part of the Global Monitoring for Environment and Security (GMES) space component covering the Earth's atmosphere. The primary objective of the Sentinel-4 mission is the observation of the diurnal cycle of tropospheric species in support of the air quality applications of GMES Atmosphere Services. The presentation focuses on the Sentinel-4/UVN instrument and its related Level-2 atmospheric composition products. The Sentinel-4 instrument is an Ultra-violet Visible Near infrared spectrometer (S4/UVN) which is embarked on the geostationary Meteosat Third Generation-Sounder (MTG-S) platforms. Key features of the S4/UVN instrument are the spectral range from 305 nm to 500 nm with a spectral resolution of 0.5 nm, and from 750 nm to 775 nm with a spectral resolution of 0.12 nm, in combination with a low polarization sensitivity and a high radiometric accuracy. The instrument shall observe Europe with a revisit time of one hour. The spatial sampling distance varies across the geographic coverage area and takes a value of 8 km at a reference location at 45˚ N. The expected launch date of the first MTG-S platform is 2019, and the expected lifetime is 15 years (two S4/UVN instruments in sequence on two MTG-S platforms). ESA will develop products based on the S4/UVN measurements for the key target species, which are NO2, O3, HCHO, SO2, aerosols, and CHOCHO, and for cloud and surface properties (mainly intermediate products). Also a synergetic O3 vertical profile product is foreseen based on observations from the S4/UVN and the MTG InfraRed Sounder (IRS) on-board the same platform. Synergetic aerosol and cloud products are foreseen based on observations from the S4/UVN and from the MTG Flexible Combined Imager (FCI) on-board the MTG-Imager (MTG-I) platform. Current pre-development studies are dedicated to a daily surface reflectance map product that treats the surface directionality as

  3. Composition and dynamics of plasma in Saturn's magnetosphere.

    PubMed

    Young, D T; Berthelier, J-J; Blanc, M; Burch, J L; Bolton, S; Coates, A J; Crary, F J; Goldstein, R; Grande, M; Hill, T W; Johnson, R E; Baragiola, R A; Kelha, V; McComas, D J; Mursula, K; Sittler, E C; Svenes, K R; Szegö, K; Tanskanen, P; Thomsen, M F; Bakshi, S; Barraclough, B L; Bebesi, Z; Delapp, D; Dunlop, M W; Gosling, J T; Furman, J D; Gilbert, L K; Glenn, D; Holmlund, C; Illiano, J-M; Lewis, G R; Linder, D R; Maurice, S; McAndrews, H J; Narheim, B T; Pallier, E; Reisenfeld, D; Rymer, A M; Smith, H T; Tokar, R L; Vilppola, J; Zinsmeyer, C

    2005-02-25

    During Cassini's initial orbit, we observed a dynamic magnetosphere composed primarily of a complex mixture of water-derived atomic and molecular ions. We have identified four distinct regions characterized by differences in both bulk plasma properties and ion composition. Protons are the dominant species outside about 9 RS (where RS is the radial distance from the center of Saturn), whereas inside, the plasma consists primarily of a corotating comet-like mix of water-derived ions with approximately 3% N+. Over the A and B rings, we found an ionosphere in which O2+ and O+ are dominant, which suggests the possible existence of a layer of O2 gas similar to the atmospheres of Europa and Ganymede. PMID:15731443

  4. The influence of leaf-atmosphere NH3(g ) exchange on the isotopic composition of nitrogen in plants and the atmosphere.

    PubMed

    Johnson, Jennifer E; Berry, Joseph A

    2013-10-01

    The distribution of nitrogen isotopes in the biosphere has the potential to offer insights into the past, present and future of the nitrogen cycle, but it is challenging to unravel the processes controlling patterns of mixing and fractionation. We present a mathematical model describing a previously overlooked process: nitrogen isotope fractionation during leaf-atmosphere NH3(g ) exchange. The model predicts that when leaf-atmosphere exchange of NH3(g ) occurs in a closed system, the atmospheric reservoir of NH3(g ) equilibrates at a concentration equal to the ammonia compensation point and an isotopic composition 8.1‰ lighter than nitrogen in protein. In an open system, when atmospheric concentrations of NH3(g ) fall below or rise above the compensation point, protein can be isotopically enriched by net efflux of NH3(g ) or depleted by net uptake. Comparison of model output with existing measurements in the literature suggests that this process contributes to variation in the isotopic composition of nitrogen in plants as well as NH3(g ) in the atmosphere, and should be considered in future analyses of nitrogen isotope circulation. The matrix-based modelling approach that is introduced may be useful for quantifying isotope dynamics in other complex systems that can be described by first-order kinetics. PMID:23452149

  5. Linking Hydrology and Atmospheric Sciences in Continental Water Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    David, C. H.; Gochis, D. J.; Maidment, D. R.; Wilhelmi, O.

    2006-12-01

    Atmospheric observation and model output datasets as well as hydrologic datasets are increasingly becoming available on a continental scale. Although the availability of these datasets could allow large-scale water dynamics modeling, the different objects and semantics used in atmospheric science and hydrology set barriers to their interoperability. Recent work has demonstrated the feasibility for modeling terrestrial water dynamics for the continental United States of America. Continental water dynamics defines the interaction of the hydrosphere, the land surface and subsurface at spatial scales ranging from point to continent. The improved version of the National Hydrographic Dataset (NHDPlus, an integrated suite of geospatial datasets stored in a vector and raster GIS format) was used as hydrologic and elevation data input to the Noah community Land Surface Model, developed at NCAR. Noah was successfully run on a watershed in the Ohio River Basin with NHDPlus inputs. The use of NHDPlus as input data for Noah is a crucial improvement for community modeling efforts allowing users to by-pass much of the time consumed in Digital Elevation Model and hydrological network processing. Furthermore, the community Noah land surface model, in its hydrologically-enhanced configuration, is capable of providing flow inputs for a river dynamics model. Continued enhancement of Noah will, as a consequence, be beneficial to the atmospheric science community as well as to the hydrologic community. Ongoing research foci include using a diversity of weather drivers as an input to Noah, and investigation of how to use land surface model outputs for river forecasting, using both the ArcHydro and OpenMI frameworks.

  6. Atmospheric pressure plasma assisted calcination of composite submicron fibers

    NASA Astrophysics Data System (ADS)

    Medvecká, Veronika; Kováčik, Dušan; Tučeková, Zlata; Zahoranová, Anna; Černák, Mirko

    2016-08-01

    The plasma assisted calcination of composite organic/inorganic submicron fibers for the preparation of inorganic fibers in submicron scale was studied. Aluminium butoxide/polyvinylpyrrolidone fibers prepared by electrospinning were treated using low-temperature plasma generated by special type of dielectric barrier discharge, so called diffuse coplanar surface barrier discharge (DCSBD) at atmospheric pressure in ambient air, synthetic air, oxygen and nitrogen. Effect of plasma treatment on base polymer removal was investigated by using Attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectroscopy. Influence of working gas on the base polymer reduction was studied by energy-dispersive X-ray spectroscopy (EDX) and CHNS elemental analysis. Changes in fibers morphology were observed by scanning electron microscopy (SEM). High efficiency of organic template removal without any degradation of fibers was observed after plasma treatment in ambient air. Due to the low-temperature approach and short exposure time, the plasma assisted calcination is a promising alternative to the conventional thermal calcination. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  7. A dynamical perspective on the energetic particles precipitation-middle atmosphere interaction

    NASA Astrophysics Data System (ADS)

    Karami, Khalil; Sinnhuber, Miriam; Versick, Stefan; Braesicke, Peter

    2015-04-01

    Energetic particles including protons, electrons and heavier ions, enter the Earth's atmosphere over polar region of both hemispheres, where the geomagnetic lines are considered to be open and connected to the interplanetary medium. This condition allows direct access for energetic particles of solar or galactic origin to directly deposit their own energy into the middle and upper atmosphere. Such particle precipitations can greatly disturb the chemical composition of the upper and middle atmosphere. At polar latitudes, these particles have the potential to penetrate from thermosphere deep into the mesosphere and in rare occasions into the stratosphere. The most important are changes to the budget of atmospheric nitric oxides, NOy, and to atmospheric reactive hydrogen oxides, HOx, which both contribute to ozone loss in the stratosphere and mesosphere. The chemistry-climate general circulation model ECHAM5/MESSy is used to investigate the impact of changed ozone concentration due to energetic particles precipitation on temperatures and wind fields. The simulated anomalies of both zonal mean temperature and zonal wind suggest that these changes are very unlikely to be caused in situ by ozone depletion and indirect dynamical condition is important. The results of our simulations suggests that ozone perturbation is a starting point for a chain of processes resulting in temperature and circulation changes in many areas of the atmosphere. Different dynamical analysis (e.g., frequency of sudden stratospheric warming, dates of stratospheric final warming, divergence of Eliassen-Palm flux and refractive index of planetary waves) are performed to investigate the impact of ozone anomaly originated from high energetic particle precipitation on middle atmospheric temperature and circulation.

  8. Atmospheric Boundary-Layer Dynamics with Constant Bowen Ratio

    NASA Astrophysics Data System (ADS)

    Porporato, Amilcare

    2009-08-01

    Motivated by the observation that the diurnal evolution of sensible and latent heat fluxes tends to maintain a constant Bowen ratio, we derive approximate solutions of the ordinary differential equations of a simplified atmospheric boundary-layer (ABL) model. Neglecting the early morning transition, the potential temperature and specific humidity of the mixed layer are found to be linearly related to the ABL height. Similar behaviour is followed by the inversion strengths of temperature and humidity at the top of the ABL. The potential temperature of the mixed layer depends on the entrainment parameter and the free-atmosphere temperature lapse rate, while the specific humidity also depends on the free-atmosphere humidity lapse rate and the Bowen ratio. The temporal dynamics appear only implicitly in the evolution of the height of the boundary layer, which in turn depends on the time-integrated surface sensible heat flux. Studying the limiting behaviour of the Bowen ratio for very low and very large values of net available energy, we also show how the tendency to maintain constant Bowen ratio during midday hours stems from its relative insensitivity to the atmospheric conditions for large values of net available energy. The analytical expression for the diurnal evolution of the ABL obtained with constant Bowen ratio is simple and provides a benchmark for the results of more complex models.

  9. Satellite Observations for Detecting and Tracking Changes in Atmospheric Composition

    EPA Science Inventory

    The international scientific community's Integrated Global Atmosphere Chemistry Observation System report outlined a plan for ground-based, airborne and satellite Measurements, and models to integrate the observations into a 4-dimensional representation of the atmosphere (space a...

  10. Concept study for a Venus Lander Mission to Analyze Atmospheric and Surface Composition

    NASA Astrophysics Data System (ADS)

    Kumar, K.; Banks, M. E.; Benecchi, S. D.; Bradley, B. K.; Budney, C. J.; Clark, G. B.; Corbin, B. A.; James, P. B.; O'Brien, R. C.; Rivera-Valentin, E. G.; Saltman, A.; Schmerr, N. C.; Seubert, C. R.; Siles, J. V.; Stickle, A. M.; Stockton, A. M.; Taylor, C.; Zanetti, M.; JPL Team X

    2011-12-01

    We present a concept-level study of a New Frontiers class, Venus lander mission that was developed during Session 1 of NASA's 2011 Planetary Science Summer School, hosted by Team X at JPL. Venus is often termed Earth's sister planet, yet they have evolved in strikingly different ways. Venus' surface and atmosphere dynamics, and their complex interaction are poorly constrained. A lander mission to Venus would enable us to address a multitude of outstanding questions regarding the geological evolution of the Venusian atmosphere and crust. Our proposed mission concept, VenUs Lander for Composition ANalysis (VULCAN), is a two-component mission, consisting of a lander and a carrier spacecraft functioning as relay to transmit data to Earth. The total mission duration is 150 days, with primary science obtained during a 1-hour descent through the atmosphere and a 2-hour residence on the Venusian surface. In the atmosphere, the lander will provide new data on atmospheric evolution by measuring dominant and trace gas abundances, light stable isotopes, and noble gas isotopes with a neutral mass spectrometer. It will make important meteorological observations of mid-lower atmospheric dynamics with pressure and temperature sensors and obtain unprecedented, detailed imagery of surface geomorphology and properties with a descent Near-IR/VIS camera. A nepholometer will provide new constraints on the sizes of suspended particulate matter within the lower atmosphere. On the surface, the lander will quantitatively investigate the chemical and mineralogical evolution of the Venusian crust with a LIBS-Raman spectrometer. Planetary differentiation processes recorded in heavy elements will be evaluated using a gamma-ray spectrometer. The lander will also provide the first stereo images for evaluating the geomorphologic/volcanic evolution of the Venusian surface, as well as panoramic views of the sample site using multiple filters, and detailed images of unconsolidated material and rock

  11. LWS FST: Determine and Quantify the Responses of Atmospheric/Ionospheric Composition and Temperature to Solar XUV Spectral Variability

    NASA Astrophysics Data System (ADS)

    Talaat, E. R.; Fuller-Rowell, T. J.; Qian, L.; Richards, P. G.; Ridley, A. J.

    2010-12-01

    We present a summary of the research plans and preliminary results of our 2009 Living With a Star Focus Science Team. Focus Area Description: With the recent availability of comprehensive solar spectral measurements at X-ray and ultraviolet (XUV) wavelengths, together with upper atmospheric chemistry and transport models, quantification of the full range of solar effects on chemically active minor constituents and ion composition in the ionospherethermosphere- mesosphere (I-T-M) system is now possible. Additional solar-driven variation is caused by the energetic particle environment, ranging from auroral fluxes to galactic cosmic rays. These sources have important influences on the chemistry, energetics, and dynamics of the lower thermosphere and ionosphere (e.g., on nitric oxide and ozone) via direct energy deposition and modulation of ion-neutral frictional heating. Observations of neutral composition and temperature for different phases of the solar cycle and for sporadic events are available through NASA missions like the Upper Atmosphere Research Satellite (UARS) and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics mission (TIMED), as well as from other space- and groundbased instruments. Observations of ionospheric electron density are available through a variety of sources. In view of these advances, models of atmospheric/ionospheric composition and energetics that fully exploit the available estimates of external energetic inputs can now be developed to more accurately quantify solar effects in the middle and upper atmosphere. We seek to determine how well our understanding of atmospheric/ionospheric processes, as incorporated in state-of-the-art models, is able to explain observed compositional and temperature effects in the middle and upper atmosphere caused by external energetic inputs, in order to be able to predict these effects under both normal and extreme conditions.

  12. Efficient Nonlinear Low-Order Models in Atmospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Grady, K.; Gluhovsky, A.

    2014-12-01

    Following the pioneering work of Kolmogorov, Lorenz, and Obukhov, low-order models (LOMs) have been widely employed in studies of atmospheric and climate dynamics for reducing hydrodynamic equations to a small number of modes in order to understand the interplay of principal mechanisms. However, arbitrary truncations in the Galerkin method commonly used to derive LOMs can lead to systems that lack fundamental physical properties, such as energy conservation in the dissipationless limit. The presentation will address this problem by constructing efficient LOMs as coupled 3-mode nonlinear dynamical systems known in mechanics as Volterra gyrostats. Such systems guarantee energy conservation in the dissipationless limit, and their modular nature allows the creation of new LOMs through the addition or removal of gyrostats in existing models (resulting in, for example, Hamiltonian LOMs). In fact, all physically sound models that have appeared in recent publications can be written as coupled gyrostats. These and new LOMs developed by the authors will be discussed in the talk, suggesting that coupled gyrostats may offer a general framework for developing efficient LOMs for atmospheric dynamics.

  13. Fractionation of the Early Terrestrial Atmospheres: Dynamical Escape

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.

    2002-01-01

    Hydrodynamic escape may have played a significant role in the early fractionation of the atmospheres of the terrestrial planets. This possibility has been demonstrated in the last two decades by numerous models that show radial, transonic flow of hydrogen can occur in the presence of sufficient solar EUV Hydrodynamic escape may have played a significant role in the early fractionation of the atmospheres of the terrestrial planets. This possibility has been demonstrated in the last two decades by numerous models that show radial, transonic flow of hydrogen can occur in the presence of sufficient solar EUV flux, thought to exist in the first 500 My. The models show that the larger the solar flux the greater the mass of the fractionating species, which are accelerated to escape speeds by the hydrogen wind through drag processes. As the atmospheres evolve and the solar EUV flux wanes, the maximum mass of flowing gas constituents decreases until all gases become static. We show that fractionation can continue beyond this point when non-radial flow and dynamically enhanced Jeans escape are considered. For example, the early terrestrial atmospheres are thought to have had large hydrogen contents, resulting in exobase altitudes of a planetary radius or more. In this case, rotational speeds at the exobases of Earth and Mars would be large enough so that light constituents would "spin" off and fractionate, especially at equatorial latitudes. Also, in the presence of transonic flow of hydrogen only, non-radial expansion throws heavier gases to high altitudes in the exosphere, accompanied by strong bulk speeds at the exobase, which results in enhanced thermal escape fluxes and fractionation. flux, thought to exist in the first 500 My. The models show that the larger the solar flux the greater the mass of the fractionating species, which are accelerated to escape speeds by the hydrogen wind through drag processes. As the atmospheres evolve and the solar EUV flux wanes, the

  14. Study of the dynamics of meteoroids through the Earth's atmosphere and retrieval of meteorites

    NASA Astrophysics Data System (ADS)

    Guadalupe Cordero Tercero, Maria; Farah-Simon, Alejandro; Velázquez-Villegas, Fernando

    2016-07-01

    When a comet , asteroid or meteoroid impact with a planet several things can happen depending on the mass, velocity and composition of the impactor, if the planet or moon has an atmosphere or not, and the angle of impact. On bodies without an atmosphere like Mercury or the Moon, every object that strikes their surfaces produces impact craters with sizes ranging from centimeters to hundreds and even thousands of kilometers across. On bodies with an atmosphere, this encounter can produce impact craters, meteorites, meteors and fragmentation. Each and every one of these phenomena is interesting because they provide information about the surfaces and the geological evolution of solar system bodies. Meteors (shooting stars) are luminous wakes on the sky due to the interaction between the meteoroid and the Earth's atmosphere. A meteoroid is asteroidal or cometary material ranging in size from 2 mm to a few tens of meters. The smallest tend to evaporate at heights between 80 and 120 km. Objects of less than 2 mm are called micrometeorites. If the meteor brightness exceeds the brightness of Venus, the phenomenon is called a bolide or fireball. If a meteoroid, or a fragment of it, survives atmospheric ablation and it can be recovered on the ground, that piece is called a meteorite. Most meteoroids 2 meters long fragment suddenly into the atmosphere, it produces a shock wave that can affect humans and their environment like the Chelyabinsk event occurred on February 15, 2013 an two less energetic events in Mexico in 2010 and 2011. To understand the whole phenomenon, we proposed a video camera network for observing meteors. The objectives of this network are to: a) contribute to the study of the fragmentation of meteoroids in the Earth's atmosphere, b) determine values of important physical parameters; c ) study seismic waves produced by atmospheric shock waves, d) study the dynamics of meteoroids and f ) recover and study meteorites. During this meeting, the academic

  15. Experiments of reconstructing discrete atmospheric dynamic models from data (I)

    NASA Astrophysics Data System (ADS)

    Lin, Zhenshan; Zhu, Yanyu; Deng, Ziwang

    1995-03-01

    In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, x n + 1 = 1- μx {2/n}, could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.

  16. ATMOSPHERIC DYNAMICS OF BROWN DWARFS AND DIRECTLY IMAGED GIANT PLANETS

    SciTech Connect

    Showman, Adam P.; Kaspi, Yohai

    2013-10-20

    A variety of observations provide evidence for vigorous motion in the atmospheres of brown dwarfs and directly imaged giant planets. Motivated by these observations, we examine the dynamical regime of the circulation in the atmospheres and interiors of these objects. Brown dwarfs rotate rapidly, and for plausible wind speeds, the flow at large scales will be rotationally dominated. We present three-dimensional, global, numerical simulations of convection in the interior, which demonstrate that at large scales, the convection aligns in the direction parallel to the rotation axis. Convection occurs more efficiently at high latitudes than low latitudes, leading to systematic equator-to-pole temperature differences that may reach ∼1 K near the top of the convection zone. The interaction of convection with the overlying, stably stratified atmosphere will generate a wealth of atmospheric waves, and we argue that, as in the stratospheres of planets in the solar system, the interaction of these waves with the mean flow will cause a significant atmospheric circulation at regional to global scales. At large scales, this should consist of stratified turbulence (possibly organizing into coherent structures such as vortices and jets) and an accompanying overturning circulation. We present an approximate analytic theory of this circulation, which predicts characteristic horizontal temperature variations of several to ∼50 K, horizontal wind speeds of ∼10-300 m s{sup –1}, and vertical velocities that advect air over a scale height in ∼10{sup 5}-10{sup 6} s. This vertical mixing may help to explain the chemical disequilibrium observed on some brown dwarfs. Moreover, the implied large-scale organization of temperature perturbations and vertical velocities suggests that near the L/T transition, patchy clouds can form near the photosphere, helping to explain recent observations of brown-dwarf variability in the near-IR.

  17. Composition of early planetary atmospheres - I. Connecting disc astrochemistry to the formation of planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Cridland, A. J.; Pudritz, R. E.; Alessi, M.

    2016-09-01

    We present a model of the early chemical composition and elemental abundances of planetary atmospheres based on the cumulative gaseous chemical species that are accreted on to planets forming by core accretion from evolving protoplanetary discs. The astrochemistry of the host disc is computed using an ionization-driven, non-equilibrium chemistry network within viscously evolving disc models. We accrete gas giant planets whose orbital evolution is controlled by planet traps using the standard core accretion model and track the chemical composition of the material that is accreted on to the protoplanet. We choose a fiducial disc model and evolve planets in three traps - water ice line, dead zone and heat transition. For a disc with a lifetime of 4.1 Myr, we produce two hot Jupiters (M = 1.43, 2.67 MJupiter, r = 0.15, 0.11 au) in the heat transition and ice line trap and one failed core (M = 0.003 MJupiter, r = 3.7 au) in the dead zone. These planets are found with mixing ratios for CO and H2O of 1.99 × 10-4 and 5.0 × 10-4, respectively, for both hot Jupiters. Additionally, for these planets we find CO2 and CH4, with mixing ratios of 1.8 × 10-6 → 9.8 × 10-10 and 1.1 × 10-8 → 2.3 × 10-10, respectively. These ranges correspond well with the mixing ratio ranges that have been inferred through the detection of emission spectra from hot Jupiters by multiple authors. We compute a carbon-to-oxygen ratio of 0.227 for the ice line planet and 0.279 for the heat transition planet. These planets accreted their gas inside the ice line, hence the sub-solar C/O.

  18. The atmospheres of the earth and the other planets: Origin, evolution and composition

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1988-01-01

    The current understanding of the composition, chemistry, and structure of the atmospheres of the other planets and the origin, early history, and evolution of the earth's atmosphere is reviewed. The information on the atmospheres of the other planets is based on the successful Mariner, Viking, Pioneer, and Voyager missions to these planets. The information on the origin, early history, and evolution of the atmosphere, which is somewhat speculative, is largely based on numerical studies with geochemical and photochemical models.

  19. Shockwave and cavitation bubble dynamics of atmospheric air

    NASA Astrophysics Data System (ADS)

    Leela, Ch.; Bagchi, S.; Tewari, Surya P.; Kiran, P. Prem

    2013-11-01

    The generation and evolution of laser induced shock waves (SWs) and the hot core plasma (HCP) created by focusing 7 ns, 532 nm laser pulses in ambient air is studied using time resolved shadowgraphic imaging technique. The dynamics of rapidly expanding plasma releasing SWs into the ambient atmosphere were studied for time delays ranging from nanoseconds to milliseconds with ns temporal resolution. The SW is observed to get detached from expanding HCP at around 3μs. Though the SWs were found to expand spherically following the Sedov-Taylor theory, the rapidly expanding HCP shows asymmetric expansion during both the expansion and cooling phase similar to that of inertial cavitation bubble (CB) dynamics. The asymmetric expansion of HCP leads to oscillation of the plasma boundary, eventually leading to collapse by forming vortices formed by the interaction of ambient air.

  20. Estimation of Dynamical Parameters in Atmospheric Data Sets

    NASA Technical Reports Server (NTRS)

    Wenig, Mark O.

    2004-01-01

    In this study a new technique is used to derive dynamical parameters out of atmospheric data sets. This technique, called the structure tensor technique, can be used to estimate dynamical parameters such as motion, source strengths, diffusion constants or exponential decay rates. A general mathematical framework was developed for the direct estimation of the physical parameters that govern the underlying processes from image sequences. This estimation technique can be adapted to the specific physical problem under investigation, so it can be used in a variety of applications in trace gas, aerosol, and cloud remote sensing. The fundamental algorithm will be extended to the analysis of multi- channel (e.g. multi trace gas) image sequences and to provide solutions to the extended aperture problem. In this study sensitivity studies have been performed to determine the usability of this technique for data sets with different resolution in time and space and different dimensions.

  1. Active Upper-atmosphere Chemistry and Dynamics from Polar Circulation Reversal on Titan

    NASA Technical Reports Server (NTRS)

    Teanby, Nicholas A.; Irwin, Patrick Gerard Joseph; Nixon, Conor A.; DeKok, Remco; Vinatier, Sandrine; Coustenis, Athena; Sefton-Nash, Elliot; Calcutt, Simon B.; Flasar, Michael F.

    2012-01-01

    Saturn's moon Titan has a nitrogen atmosphere comparable to Earth's, with a surface pressure of 1.4 bar. Numerical models reproduce the tropospheric conditions very well but have trouble explaining the observed middle-atmosphere temperatures, composition and winds. The top of the middle-atmosphere circulation has been thought to lie at an altitude of 450 to 500 kilometres, where there is a layer of haze that appears to be separated from the main haze deck. This 'detached' haze was previously explained as being due to the colocation of peak haze production and the limit of dynamical transport by the circulation's upper branch. Herewe report a build-up of trace gases over the south pole approximately two years after observing the 2009 post-equinox circulation reversal, from which we conclude that middle-atmosphere circulation must extend to an altitude of at least 600 kilometres. The primary drivers of this circulation are summer-hemisphere heating of haze by absorption of solar radiation and winter-hemisphere cooling due to infrared emission by haze and trace gases; our results therefore imply that these effects are important well into the thermosphere (altitudes higher than 500 kilometres). This requires both active upper-atmosphere chemistry, consistent with the detection of high-complexity molecules and ions at altitudes greater than 950 kilometres, and an alternative explanation for the detached haze, such as a transition in haze particle growth from monomers to fractal structures.

  2. Geostrophic dynamics at surfaces in the atmosphere and ocean

    NASA Astrophysics Data System (ADS)

    Tulloch, Ross

    Observed dynamics near bounding upper surfaces in the atmosphere and ocean are interpreted in terms of quasi-geostrophic theory. The quasi-geostrophic equations consist of advection of linearized potential vorticity coupled with advection of temperature at the upper and lower bounding surfaces. We show that the standard vertical finite difference formulation of 3D quasi-geostrophic flow accurately represents the flow only down to a critical horizontal scale that decreases with vertical grid spacing. To overcome this constraint, we derive a surface-modal formulation which accurately and efficiently captures both the surface dynamics due to temperature anomalies on the upper and lower boundaries, and the interior dynamics due to potential vorticity anomalies, without the need for high vertical resolution. In the atmosphere, the horizontal wavenumber spectra of wind and temperature near the tropopause have a steep -3 slope at synoptic scales and a shallow -5/3 slope at mesoscales, with a smooth transition between the two regimes from 800km to 200km. We demonstrate that when the surface temperature anomalies are resolved, quasi-geostrophic flow driven by baroclinic instability exhibits such a transition near the tropopause. The horizontal scale of transition between -3 and -5/3 slopes depends on the relative magnitudes of the mean surface temperature gradient and the mean potential vorticity gradient. In the ocean, sea surface height anomalies measured by satellite altimetry exhibit shallower spectral slopes than quasi-geostrophic theory predicts, and faster than expected westward phase propagation of sea surface height in the midlatitudes. We argue that, in some regions, the shallow spectral slopes are due to surface quasi-geostrophic dynamics, and that the westward phase propagation in the midlatitudes is indicative of a transition from a linear Rossby wave regime in the tropics to a nonlinear turbulent regime in the midlatitudes.

  3. The Atmosphere.

    ERIC Educational Resources Information Center

    Ingersoll, Andrew P.

    1983-01-01

    The composition and dynamics of the earth's atmosphere are discussed, considering the atmosphere's role in distributing the energy of solar radiation received by the earth. Models of this activity which help to explain climates of the past and predict those of the future are also considered. (JN)

  4. Deciphering Jupiter's atmospheric dynamics using the upcoming Juno gravity measurements

    NASA Astrophysics Data System (ADS)

    Kaspi, Yohai; Galanti, Eli

    2016-07-01

    This summer, the Juno spacecraft will arrive at Jupiter in course for close flybys of the planet, obtaining a high precision gravity spectrum of Jupiter. This data can be used to estimate the depth of Jupiter's observed cloud-level wind, and decipher the possible internal flows, that might be decoupled from the surface wind. In this talk, we discuss the Juno gravity experiment, and the possible outcomes with regard to the flows on Jupiter. We show several ways in which the gravity spectrum might be used to study the large scale flows: 1. measurements of the high order even harmonics which beyond J10 are dominated by the dynamics; 2. measurements of odd gravity harmonics which have no contribution from a static planet, and therefore are a pure signature of dynamics; 3. upper limits on the depth of the surface flow can be obtained by comparing low order even harmonics from dynamical models to the difference between the measured low order even harmonics and the largest possible values of a static planet; 4. direct latitudinally varying measurements of the gravity field exerted on the spacecraft. We will discuss how these methods may be applied given the expected sensitivities of the Juno gravity experiment. In addition, we present an inverse adjoint model, which allows given the gravity data, to infer the flows that produce it. This will allow, hopefully, to make significant progress in one of the longest-standing question in planetary atmospheric dynamics regarding the nature of the flows on the giant planets.

  5. The Upper Atmosphere Research Satellite In-Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.

    1997-01-01

    Upper Atmosphere Research Satellite flight data from the first 737 days after launch (September 1991) was used to investigate spacecraft disturbances and responses. The investigation included two in-flight dynamics experiments (approximately three orbits each). Orbital and configuration influences on spacecraft dynamic response were also examined. Orbital influences were due to temperature variation from crossing the Earth's terminator and variation of the solar incident energy as the orbit precessed. During the terminator crossing, the rapid ambient temperature change caused the spacecraft's two flexible appendages to experience thermal elastic bending (thermal snap). The resulting response was dependent upon the orientation of the solar array and the solar incident energy. Orbital influences were also caused by on-board and environmental disturbances and spacecraft configuration changes resulting in dynamic responses which were repeated each orbit. Configuration influences were due to solar array rotation changing spacecraft modal properties. The investigation quantified the spacecraft dynamic response produced by the solar array and high gain antenna harmonic drive disturbances. The solar array's harmonic drive output resonated two solar array modes. Friction in the solar array gear drive provided sufficient energy dissipation which prevented the solar panels from resonating catastrophically; however, the solar array vibration amplitude was excessively large. The resulting vibration had a latitude-specific pattern.

  6. Evolution dynamics of tropical ocean-atmosphere annual cycle variability

    SciTech Connect

    Nigam, S.; Chao, Y.

    1996-12-01

    The structure of ocean-atmosphere annual cycle variability is extracted from the revised Comprehensive Ocean-Atmosphere Data Set SSTs, surface winds, and the latent heat (LH) and net shortwave (SW) surface fluxes using the covariance-based rotated principal component analysis method. The coupled annual cycle variability is concisely described using two modes that are in temporal quadrature. The first, peaking in June/July (and December/January), represents monsoonal flow onto Indochina, Central America, and western Africa. The second mode peaks in September/October and March/April when it represents the extreme phases of the SST annual cycle in the eastern oceans. Analysis of the surface momentum balance in the Pacific cold tongue core shows the equatorial flow, and in particular the zonal wind, to be dynamically consistent with the SST gradient during both the cold tongue`s nascent (June/July) and mature (September/October) phases; the dynamical consistency improves when the impact of nearsurface static stability variation on horizontal momentum dissipation is also considered. Evolution structure of the extracted annual cycle, moreover, shows the easterly wind tendency to lead SST cooling in the off-coastal zone. Taken together, these findings suggest that the Pacific cold tongue westward expansion results from local interaction of the zonal wind and zonal SST gradient, as encapsulated in the proposed {open_quotes}westward expansion hypothesis{close_quotes} - a simple analytic model of which is also presented. 29 refs., 10 figs.

  7. Upper atmosphere research satellite program. [to study the chemistry energetics, and dynamics

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.

    1978-01-01

    A satellite program to conduct research on the chemistry, energetics, and dynamics of the upper atmosphere was developed. The scientific goals of the Upper Atmospheric Research Program, the program requirements, and the approach toward meeting those requirements are outlined. An initial series of two overlapping spacecraft missions is described. Both spacecraft are launched and recovered by the STS, one in the winter of 1983 at a 56 deg inclination, and the other a year later at a 70 deg inclination. The duration of each mission is 18 months, and each carries instruments to make global measurements of the temperature, winds, composition, irradation, and radiance in the stratosphere, mesosphere, and lower thermosphere between the tropopause and 120 km altitude. The program requires a dedicated ground-based data system and a science team organization that leads to a strong interaction between the experiments and theory. The program includes supportive observations from other platforms such as rockets, balloons, and the Spacelab.

  8. Atmosphere-surface water exchanges from measurements of isotopic composition at a tall tower in Boulder

    NASA Astrophysics Data System (ADS)

    Noone, D. C.; Risi, C.; Raudzens Bailey, A.; Brown, D. P.; Buenning, N. H.; Gregory, S. A.; Nusbaumer, J.; Sykes, J.; Schneider, D. P.; Vanderwende, B. J.; Wong, J.; Wolfe, D. E.

    2010-12-01

    The exchange of water and carbon between the atmosphere and land remains poorly understood, particularly in regions of complex terrain and in the case of stable nighttime boundary layers. Profile measurements of the isotopic composition of water vapor were made at the 300 meter NOAA Boulder Atmospheric Observatory tall tower facility in Erie in February of 2010 to establish how well moisture budgets can be constrained with isotopic information. Measurements were made by placing instruments on the tower elevator and manually controlling the ascent and decent every 15 minutes for a total of 311 profiles. The four-day experiment followed a snow storm that produced 25-50 mm of snow. Temporal variations in the measured isotopic composition are dominated by the synoptic meteorology rather than local processes. Although both the “Keeling plot” approach applied to time series and the mixing lines applied to vertical profiles emerge algebraically from simple turbulence theory, only the latter is successful in estimating end members in good agreement with the known isotopic composition of the source water. However, mixing lines are only formed when conditions are stationary, and the approach generally fails during times of changes in the profile associated with regional advection. Rapid ventilation of the boundary layer during the day is found from the isotopic data because evaporation of the snow melt tags the gas transport. Weak transport at night is determined using CO2 profiles because respiration contrasts with the tropospheric baseline. We find that transport at night is characterized by slow mixing interrupted by fast mixing events. The intermittent exchange appears important for the net exchange and it is not clear that they are captured in turbulence schemes in climate models. Because the mixing line method is not uniformly successful, our results suggest a more complete framework based on boundary layer dynamics is needed for isotopic profiles to be meaningful.

  9. Numerical models of thermal convection in Venus interior: implications for its atmospheric composition

    NASA Astrophysics Data System (ADS)

    Sotin, C.; Choblet, G.; Smrekar, S. E.

    2012-12-01

    The composition of Venus atmosphere is the result of several processes including the accretion of volatiles during the formation of the planet and then the outgassing of volatiles that are trapped into the mantle rocks, during volcanic events. Spacecraft can more easily study the atmosphere of a planet than its interior. Observations of the atmosphere can therefore provide important information on the interior dynamics and the thermal evolution of a planet such as Venus. This study describes the results of numerical simulations of thermal convection in Venus mantle. These simulations investigate the effects of spherical geometry, internal heating rate, and complex viscosity on the characteristics of mantle plumes. In particular, they provide key information on the velocities and temperature of the upwelling plumes. Temperature and vertical velocities control the occurrence and amount of partial melt that can eventually migrate to the surface and release the gas compounds that were incorporated into the melt. Numerical simulations are carried out in the stagnant lid regime since Venus does not show any evidence of mobile lid or plate tectonics. In that regime, the thickness of the lid is very large and the temperature exceeds the melting temperature of mantle rocks only if water is present in the rocks. The recent volcanic activity suggests that melt is produced at depth. The results of these numerical simulations imply that Venus' mantle is wet. The information on the radial velocity of the plumes and the number of plumes allows us to investigate the amount of water that can be extracted from the mantle. The values are compared with the abundance of water in the low atmosphere, which has been estimated by the analysis of infrared spectra obtained by the VIRTIS instrument onboard the VenusExpress spacecraft. Similarly, we have investigated the amount of 40Ar that can be released during the partial melting of upwelling mantle plumes. This work has been performed at

  10. Dynamics of the atmospheres of the outer planets

    NASA Technical Reports Server (NTRS)

    Gierasch, Peter J.; Conrath, Barney J.

    1992-01-01

    Current knowledge about dynamics and the thermal structure of the outer planets is reviewed with the aim of identifying important measurements which should be made in the post-Voyager era. The existence of jets and cloud bands is the puzzle that underlies all others. The discussion focuses on the particular case of Jupiter because the documentation is the most complete. It is argued that the gross dynamical parameters of the outer planetary atmospheres are the keys to their behaviors, rather than the particular specifics of radiative forcing, cloud distributions, or thermodynamic transformations. Voyager data has shown that the jet systems decay with height in the region above the visible clouds. Therefore, the highest priority must be given to establishing dynamical parameters that characterize levels within and beneath the clouds. These require the determination of the deep structure of the jets, of the density stratification, and of the horizontal density contrasts. The deep regions are not easily accessible and these measurements present challenging opportunities. Indirect inferences about the controlling processes may sometimes be possible by observing waves and other activity in the more easily accessible stratosphere.

  11. The atmospheric circulation of the super Earth GJ 1214b: Dependence on composition and metallicity

    SciTech Connect

    Kataria, T.; Showman, A. P.; Fortney, J. J.; Marley, M. S.; Freedman, R. S.

    2014-04-20

    We present three-dimensional atmospheric circulation models of GJ 1214b, a 2.7 Earth-radius, 6.5 Earth-mass super Earth detected by the MEarth survey. Here we explore the planet's circulation as a function of atmospheric metallicity and atmospheric composition, modeling atmospheres with a low mean molecular weight (MMW; i.e., H{sub 2}-dominated) and a high MMW (i.e., water- and CO{sub 2}-dominated). We find that atmospheres with a low MMW have strong day-night temperature variations at pressures above the infrared photosphere that lead to equatorial superrotation. For these atmospheres, the enhancement of atmospheric opacities with increasing metallicity lead to shallower atmospheric heating, larger day-night temperature variations, and hence stronger superrotation. In comparison, atmospheres with a high MMW have larger day-night and equator-to-pole temperature variations than low MMW atmospheres, but differences in opacity structure and energy budget lead to differences in jet structure. The circulation of a water-dominated atmosphere is dominated by equatorial superrotation, while the circulation of a CO{sub 2}-dominated atmosphere is instead dominated by high-latitude jets. By comparing emergent flux spectra and light curves for 50× solar and water-dominated compositions, we show that observations in emission can break the degeneracy in determining the atmospheric composition of GJ 1214b. The variation in opacity with wavelength for the water-dominated atmosphere leads to large phase variations within water bands and small phase variations outside of water bands. The 50× solar atmosphere, however, yields small variations within water bands and large phase variations at other characteristic wavelengths. These observations would be much less sensitive to clouds, condensates, and hazes than transit observations.

  12. The Atmospheric Circulation of the Super Earth GJ 1214b: Dependence on Composition and Metallicity

    NASA Astrophysics Data System (ADS)

    Kataria, T.; Showman, A. P.; Fortney, J. J.; Marley, M. S.; Freedman, R. S.

    2014-04-01

    We present three-dimensional atmospheric circulation models of GJ 1214b, a 2.7 Earth-radius, 6.5 Earth-mass super Earth detected by the MEarth survey. Here we explore the planet's circulation as a function of atmospheric metallicity and atmospheric composition, modeling atmospheres with a low mean molecular weight (MMW; i.e., H2-dominated) and a high MMW (i.e., water- and CO2-dominated). We find that atmospheres with a low MMW have strong day-night temperature variations at pressures above the infrared photosphere that lead to equatorial superrotation. For these atmospheres, the enhancement of atmospheric opacities with increasing metallicity lead to shallower atmospheric heating, larger day-night temperature variations, and hence stronger superrotation. In comparison, atmospheres with a high MMW have larger day-night and equator-to-pole temperature variations than low MMW atmospheres, but differences in opacity structure and energy budget lead to differences in jet structure. The circulation of a water-dominated atmosphere is dominated by equatorial superrotation, while the circulation of a CO2-dominated atmosphere is instead dominated by high-latitude jets. By comparing emergent flux spectra and light curves for 50× solar and water-dominated compositions, we show that observations in emission can break the degeneracy in determining the atmospheric composition of GJ 1214b. The variation in opacity with wavelength for the water-dominated atmosphere leads to large phase variations within water bands and small phase variations outside of water bands. The 50× solar atmosphere, however, yields small variations within water bands and large phase variations at other characteristic wavelengths. These observations would be much less sensitive to clouds, condensates, and hazes than transit observations.

  13. The chemical composition and climatology of the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Henderson-Sellers, A.

    1983-01-01

    The earth's climate as it relates to the evolution of life is discussed.. Seven fundamental characteristics of the early evolutionary environment are examined, including a carbon dioxide and water vapor atmosphere, atmospheric mass between 500 and 1000 mb, a global hydrosphere, lowered solar luminosity, hospitable average global temperatures, a convectively active atmosphere, and trace gases. The influence of the early earth's extensive hydrosphere on the origin of life is considered. The warming of that hydrosphere due to radiative fluxes and the greenhouse effect is examined, and the nature of the feedback between clouds and climate is addressed.

  14. Atmospheric dynamics Research InfraStructure in Europe: The ARISE Project

    NASA Astrophysics Data System (ADS)

    Blanc, E.; Bittner, M.; Hauchecorne, A.; Ceranna, L.; Charlton-Perez, A. J.; Ripepe, M.; Evers, L.; Kvaerna, T.; Lastovicka, J.; Eliasson, L.; Crosby, N. B.; Blanc-Benon, P.; Le Pichon, A.; Marchetti, E.; Pilger, C.; Keckhut, P.; Schmidt, C.; Lee, C.; Smets, P.

    2013-12-01

    ARISE proposes to design a new infrastructure that integrates different station networks in order to provide a new "3D" image of the atmospheric dynamics from the ground up to the mesosphere with unprecedented spatio-temporal resolution. These networks are: - the International infrasound network developed for the verification of the Comprehensive nuclear Test Ban Treaty (CTBT). This system is unique by its quality for infrasound and atmospheric wave observations, - the Network for the Detection of Atmospheric Composition Changes (NDACC) which uses Lidar to measure stratospheric dynamics, - the Network for the Detection of Mesopause Changes (NDMC), dedicated to airglow layer measurements in the mesosphere, and additional complementary stations and satellite data. The infrastructure extends across Europe and outlying regions, including polar and equatorial regions. The measurements will be used to improve the parameterization of gravity waves in the stratosphere to better resolve climate models. The project also concerns civil applications related to monitoring of natural hazards as volcanoes. The presentation will highlight the first results obtained in the frame of the project.

  15. Southeast Pacific atmospheric composition and variability sampled along 20˚S during VOCALS-REx

    SciTech Connect

    Allen, G.; Kleinman, L.; Coe, H.; Clarke, A.; Bretherton, C.; Wood, R.; Abel, S. J.; Barrett, P.; Brown, P.; George, R.; Freitag, S.; McNaughton, C.; Howell, S.; Shank, L.; Kapustin, V.; Brekhovskikh, V.; Lee, Y.-N.; Springston, S.; Toniazzo, T.; Krejci, R.; Fochesatto, J.; Shaw, G.; Krecl, P.; Brooks, B.; McKeeking, G.; Bower, K. N.; Williams, P. I.; Crosier, J.; Crawford, I.; Connolly, P.; Covert, D.; Bandy, A. R.

    2011-01-10

    The VAMOS Ocean-Climate-Atmosphere-Land Regional Experiment (VOCALS-REx) was conducted from 15 October to 15 November 2008 in the South East Pacific region to investigate interactions between land, sea and atmosphere in this unique tropical eastern ocean environment and to improve the skill of global and regional models in representing the region. This study synthesises selected aircraft, ship and surface site observations from VOCALS-REx to statistically summarise and characterise the atmospheric composition and variability of the Marine Boundary Layer (MBL) and Free Troposphere (FT) along the 20{sup o} S parallel between 70{sup o} W and 85{sup o} W. Significant zonal gradients in mean MBL sub-micron aerosol particle size and composition, carbon monoxide, ozone and sulphur dioxide were seen over the campaign, with a generally more variable and polluted coastal environment and a less variable, more pristine remote maritime regime. Gradients are observed to be associated with strong gradients in cloud droplet number. The FT is often more polluted in terms of trace gases than the MBL in the mean; however increased variability in the FT composition suggests an episodic nature to elevated concentrations. This is consistent with a complex vertical interleaving of airmasses with diverse sources and hence pollutant concentrations as seen by generalised back trajectory analysis, which suggests contributions from both local and long-range sources. Furthermore, back trajectory analysis demonstrates that the observed zonal gradients both in the boundary layer and the free troposphere are characteristic of marked changes in airmass history with distance offshore - coastal boundary layer airmasses having been in recent contact with the local land surface and remote maritime airmasses having resided over ocean for in excess of ten days. Boundary layer composition to the east of 75{sup o} W was observed to be dominated by coastal emissions from sources to the west of the Andes

  16. Progression of damage and fracture in composites under dynamic loading

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Murthy, Pappu L. N.; Chamis, Christos C.

    1990-01-01

    A new computational simulation method is presented to evaluate the dynamic aspects of composite structural response and durability that have not been simulated previously. Composite structural behavior under any loading condition, geometry, composite system, laminate configuration, and boundary conditions can now be simulated. Structural degradation, delamination, fracture, and damage propagation are included in the simulation. An angle-plied composite plate structure under normal impact loading is used as an example to demonstrate the versatility of the simulation method.

  17. Atmospheric CO2 Dynamics During the Holocene Revealed by Stomatal Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Wagner, F.; McElwain, J.; Kouwenberg, L. L.; Beerling, D. J.; Kuerschner, W. M.; Visscher, H.

    2002-12-01

    A variety of land plants are capable of sustained adjustment of the number of leaf stomata (gas pores) to changing atmospheric CO2 concentrations. Measured on fossil leaves, and calibrated against modern training sets, stomatal frequency data are increasingly applied as a proxy for palaeo-atmospheric CO2 reconstructions. These data demonstrate with high temporal resolution and accuracy that century-scale CO2 fluctuations contributed to Holocene climate evolution. We here present a composite record of Holocene atmospheric CO2 concentrations based on stomatal frequency analysis. The CO2 estimations are derived from fossil leaf assemblages preserved in peat and lake deposits in Europe, Canada and the USA. The leaf material studied originates from deciduous trees, conifers and shrubs. Independent of site locality and plant species studied, CO2 reconstructions from the individual sections correspond well in the overlapping parts of the records. The combined data sets provide convincing evidence for a highly dynamic atmospheric CO2 regime during the Holocene. A fast CO2 increase occurs at the Younger Dryas / Holocene transition. Short-term CO2 reductions are associated with three major cool pulses known from marine and terrestrial records: the Preboreal Oscillation, the 8.2 kyr event and the Little Ice Age.

  18. Novel atmospheric plasma enhanced chitosan nanofiber/gauze composite wound dressings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electrospun chitosan nanofibers were deposited onto atmospheric plasma treated cotton gauze to create a novel composite bandage with higher adhesion, better handling properties, enhanced bioactivity, and moisture management. Plasma treatment of the gauze substrate was performed to improve the durabi...

  19. Formaldehyde Concentration Dynamics of the International Space Station Cabin Atmosphere

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2005-01-01

    Formaldehyde presents a significant challenge to maintaining cabin air quality on board crewed spacecraft. Generation sources include offgassing from a variety of non-metallic materials as well as human metabolism. Because generation sources are pervasive and human health can be affected by continual exposure to low concentrations, toxicology and air quality control engineering experts jointly identified formaldehyde as a key compound to be monitored as part the International Space Station's (ISS) environmental health monitoring and maintenance program. Data acquired from in-flight air quality monitoring methods are the basis for assessing the cabin environment's suitability for long-term habitation and monitoring the performance of passive and active controls that are in place to minimize crew exposure. Formaldehyde concentration trends and dynamics served in the ISS cabin atmosphere are reviewed implications to present and future flight operations discussed.

  20. Atmospheric structure and dynamics: the spatial and temporal domains

    NASA Astrophysics Data System (ADS)

    Harper, G. M.

    2013-05-01

    Multi-wavelength studies of M supergiants have revealed atmospheric structures with a large range of spatial and temporal scales. Focusing on Betelgeuse, these scales and their perplexing connections from the photosphere to the interstellar medium are reviewed. Of particular current interest is the dynamic origin of the ubiquitous and relatively dust-free mass loss. Is it multiple plumes of convection driven ejecta, episodic ejection of molecular reservoirs, or a more steady and uniform flow? With powerful new facilities such as the VLT and ALMA we may begin to understand the connections and answer such puzzles, but ultimately detailed studies of a sample of M supergiants will be needed to disentangle the physics from the stars' personalities.

  1. Theory of the norm-induced metric in atmospheric dynamics

    NASA Astrophysics Data System (ADS)

    Koh, T.-Y.; Wan, F.

    2015-03-01

    We suggest that some metrics for quantifying distances in phase space are based on linearized flows about unrealistic reference states and hence may not be applicable to atmospheric flows. A new approach of defining a norm-induced metric based on the total energy norm is proposed. The approach is based on the rigorous mathematics of normed vector spaces and the law of energy conservation in physics. It involves the innovative construction of the phase space so that energy (or a certain physical invariant) takes the form of a Euclidean norm. The metric can be applied to both linear and nonlinear flows and for small and large separations in phase space. The new metric is derived for models of various levels of sophistication: the 2-D barotropic model, the shallow-water model and the 3-D dry, compressible atmosphere in different vertical coordinates. Numerical calculations of the new metric are illustrated with analytic dynamical systems as well as with global reanalysis data. The differences from a commonly used metric and the potential for application in ensemble prediction, error growth analysis and predictability studies are discussed.

  2. Physically-Derived Dynamical Cores in Atmospheric General Circulation Models

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Lin, Shian-Kiann

    1999-01-01

    The algorithm chosen to represent the advection in atmospheric models is often used as the primary attribute to classify the model. Meteorological models are generally classified as spectral or grid point, with the term grid point implying discretization using finite differences. These traditional approaches have a number of shortcomings that render them non-physical. That is, they provide approximate solutions to the conservation equations that do not obey the fundamental laws of physics. The most commonly discussed shortcomings are overshoots and undershoots which manifest themselves most overtly in the constituent continuity equation. For this reason many climate models have special algorithms to model water vapor advection. This talk focuses on the development of an atmospheric general circulation model which uses a consistent physically-based advection algorithm in all aspects of the model formulation. The shallow-water model of Lin and Rood (QJRMS, 1997) is generalized to three dimensions and combined with the physics parameterizations of NCAR's Community Climate Model. The scientific motivation for the development is to increase the integrity of the underlying fluid dynamics so that the physics terms can be more effectively isolated, examined, and improved. The expected benefits of the new model are discussed and results from the initial integrations will be presented.

  3. Physically-Derived Dynamical Cores in Atmospheric General Circulation Models

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Lin, Shian-Jiann

    1999-01-01

    The algorithm chosen to represent the advection in atmospheric models is often used as the primary attribute to classify the model. Meteorological models are generally classified as spectral or grid point, with the term grid point implying discretization using finite differences. These traditional approaches have a number of shortcomings that render them non-physical. That is, they provide approximate solutions to the conservation equations that do not obey the fundamental laws of physics. The most commonly discussed shortcomings are overshoots and undershoots which manifest themselves most overtly in the constituent continuity equation. For this reason many climate models have special algorithms to model water vapor advection. This talk focuses on the development of an atmospheric general circulation model which uses a consistent physically-based advection algorithm in all aspects of the model formulation. The shallow-water model is generalized to three dimensions and combined with the physics parameterizations of NCAR's Community Climate Model. The scientific motivation for the development is to increase the integrity of the underlying fluid dynamics so that the physics terms can be more effectively isolated, examined, and improved. The expected benefits of the new model are discussed and results from the initial integrations will be presented.

  4. Numerical simulation of the middle atmosphere chemical composition and temperature under changing solar conditions

    NASA Technical Reports Server (NTRS)

    Zadorozhny, A. M.; Dyominov, I. G.; Tuchkov, G. A.

    1989-01-01

    There are given results of the numerical experiments on modelling the influence of solar activity on chemical composition and temperature of the middle atmosphere. The consideration is made for peculiarities of solar activity impact under different values of antropogenic pollution of the atmosphere with chlorofluorocarbons and other stuff.

  5. GEO-CAPE: The Next Big Thing in Atmospheric Composition Measurement for NASA?

    NASA Astrophysics Data System (ADS)

    Kawa, S. R.; Schoeberl, M. R.; Janz, S.; Gleason, J. F.; Bhartia, P. K.; Caffrey, R. T.; Rodriguez, J. M.; Fishman, J.

    2008-05-01

    The U.S. National Research Council's recent decadal survey, Earth Science and Applications from Space, has recommended the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission for launch in the 2013- 2016 time period. This is the only new mission recommended for NASA to measure atmospheric reactive gas composition in the next decade. GEO-CAPE science objectives include coastal ocean dynamics and biophysics as well as sources, transport, and chemistry of atmospheric pollution. Objectives for the terrestrial biosphere should also be considered. The notional payload includes a medium-resolution (~7 km) continental-scanning UV-Visible spectrometer, a very high-resolution (~250 m) programmable UV-Vis-NearIR event imager, and a CO mapper operating in both reflected sunlight and thermal emission bands. The satellite is planned to be deployed in geostationary/geosynchronous orbit over the continental U.S. Key capabilities are to continuously sample processes that occur rapidly (1-3 hour time scales) at relatively small spatial scales. The very high-resolution, geosynchronous multi-disciplinary observatory would be a shared resource for regular observations, special observing studies, and emergencies. This presentation will examine the science measurement requirements for GEO-CAPE, offer some possible instrument implementation options, and summarize the overall scope of the mission in terms of technology readiness, algorithm and data analysis challenges, and size-weight-cost feasibility issues.

  6. Dynamic crack arrest in ceramics and ceramic composites

    NASA Technical Reports Server (NTRS)

    Kobayashi, A. S.; Yang, K. H.

    1989-01-01

    The results of past dynamic crack arrest experiments involving structural ceramics and ceramic composites are reviewed and analyzed. The lack of dynamic crack arrest in very brittle materials is discussed and contrasted with dynamic crack arrest in somewhat brittle metallic and polymeric materials. Numerical analyses show that the lack of crack arrest is due to reduced dynamic fracture resistance of the material and is not due to the kinetic energy.

  7. Supersonic Flight Dynamics Test: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad; Karlgaard, Christopher D.; Blood, Eric M.; O'Farrell, Clara; Ginn, Jason M.; Shoenenberger, Mark; Dutta, Soumyo

    2015-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of a Supersonic Inflatable Aerodynamic Decelerator, which is part of the Low Density Supersonic Decelerator technology development project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and Supersonic Parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. This test was used to validate the test architecture for future missions. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, atmosphere, and aerodynamics. The results of the reconstruction show significantly higher lofting of the trajectory, which can partially be explained by off-nominal booster motor performance. The reconstructed vehicle force and moment coefficients fall well within pre-flight predictions. A parameter identification analysis indicates that the vehicle displayed greater aerodynamic static stability than seen in pre-flight computational predictions and ballistic range tests.

  8. Venus lower atmospheric composition - Preliminary results from Pioneer Venus

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.; Hodges, R. R., Jr.; Mcelroy, M. B.; Donahue, T. M.; Kolpin, M.

    1979-01-01

    Initial examination of data from the neutral mass spectrometer on the Pioneer Venus sounder probe indicates that the abundances of argon-36, argon-38, and neon-20 in the Venus atmosphere are much higher than those of the corresponding gases in Earth's atmosphere, although the abundance of radiogenic argon-40 is apparently similar for both planets. The lower atmosphere of Venus includes significant concentrations of various gaseous sulfur compounds. The inlet leak to the mass spectrometer was temporarily blocked by an apparently liquid component of the Venus clouds during passage through the dense cloud layer. Analysis of gases released during the evaporation of the droplets shows the presence of water vapor to some compound or compounds of sulfur.

  9. Venus lower atmospheric composition - Analysis by gas chromatography

    NASA Technical Reports Server (NTRS)

    Oyama, V. I.; Carle, G. C.; Woeller, F.; Pollack, J. B.

    1979-01-01

    The first gas chromatographic analysis of the lower atmosphere of Venus is reported. Three atmospheric samples were analyzed. The third of these samples showed carbon dioxide (96.4 percent), molecular nitrogen (3.41 percent), water vapor (0.135 percent), molecular oxygen (69.3 ppm), argon (18.6 ppm), neon (4.31 ppm), and sulfur dioxide (186 ppm). The amounts of water vapor and sulfur dioxide detected are roughly compatible with the requirements of greenhouse models of the high surface temperature of Venus. The large positive gradient of sulfur dioxide, molecular oxygen, and water vapor from the cloud tops to their bottoms, as implied by Earth-based observations and these results, gives added support for the presence of major quantities of aqueous sulfuric acid in the clouds. A comparison of the inventory of inert gases found in the atmospheres of Venus, Earth, and Mars suggests that these components are due to outgassing from the planetary interiors.

  10. A New Ground-Based Carbon Monoxide Radiometer for Observing the Dynamics of the Arctic Middle Atmosphere

    NASA Astrophysics Data System (ADS)

    Ryan, Niall; Palm, Mathias; Notholt, Justus

    2015-04-01

    The dynamical properties of the middle atmosphere must largely be derived from interpretation of observed chemical tracer data, predominantly from measurements by ground-based or satellite-borne instruments. Carbon monoxide (CO) is a well-suited tracer for polar middle atmosphere dynamics: during polar winter, the chemical reactions involving the gas are negligible due to lack of sunlight and the gas exhibits strong vertical and horizontal gradients. Ground-based measurements of the atmosphere are increasingly important for making long-term records of atmospheric composition and, because of the likely upcoming gap in satellite measurements, are needed to intercompare past and future satellite instruments. This contribution presents a new ground-based millimeter wave radiometer, CORAM, that is designed to measure radiation, at ~230 GHz, emitted during rotational transitions of CO. CORAM will be housed at the APIWEV station in Ny Alesund, Spitsbergen (79° N), an ideal location for observing middle atmosphere dynamics from inside and outside the polar vortex, and make continuous CO observations in the High-Arctic. The observations from CORAM will be used for validation of the polar dynamics in atmospheric models, and to investigate the short-term variability of polar middle atmosphere dynamics. Used in combination with measurements in Kiruna, Sweden (68° N), information about the CO gradient across the polar vortex edge can also be recovered. I will describe the new instrument and inversion technique, and present the ability of the observation system operating in a High-Arctic location. I will show the sensitivity of the system to CO concentrations in the altitude range of approximately 40-80 km with a preliminary error analysis using optimal estimation, and the effect of inversion nonlinearities on CO trend analysis.

  11. Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications

    PubMed Central

    DeLeon-Rodriguez, Natasha; Lathem, Terry L.; Rodriguez-R, Luis M.; Barazesh, James M.; Anderson, Bruce E.; Beyersdorf, Andreas J.; Ziemba, Luke D.; Bergin, Michael; Nenes, Athanasios; Konstantinidis, Konstantinos T.

    2013-01-01

    The composition and prevalence of microorganisms in the middle-to-upper troposphere (8–15 km altitude) and their role in aerosol-cloud-precipitation interactions represent important, unresolved questions for biological and atmospheric science. In particular, airborne microorganisms above the oceans remain essentially uncharacterized, as most work to date is restricted to samples taken near the Earth’s surface. Here we report on the microbiome of low- and high-altitude air masses sampled onboard the National Aeronautics and Space Administration DC-8 platform during the 2010 Genesis and Rapid Intensification Processes campaign in the Caribbean Sea. The samples were collected in cloudy and cloud-free air masses before, during, and after two major tropical hurricanes, Earl and Karl. Quantitative PCR and microscopy revealed that viable bacterial cells represented on average around 20% of the total particles in the 0.25- to 1-μm diameter range and were at least an order of magnitude more abundant than fungal cells, suggesting that bacteria represent an important and underestimated fraction of micrometer-sized atmospheric aerosols. The samples from the two hurricanes were characterized by significantly different bacterial communities, revealing that hurricanes aerosolize a large amount of new cells. Nonetheless, 17 bacterial taxa, including taxa that are known to use C1–C4 carbon compounds present in the atmosphere, were found in all samples, indicating that these organisms possess traits that allow survival in the troposphere. The findings presented here suggest that the microbiome is a dynamic and underappreciated aspect of the upper troposphere with potentially important impacts on the hydrological cycle, clouds, and climate. PMID:23359712

  12. Dynamics of the middle atmosphere as observed by the ARISE project

    NASA Astrophysics Data System (ADS)

    Blanc, E.

    2015-12-01

    It has been strongly demonstrated that variations in the circulation of the middle atmosphere influence weather and climate all the way to the Earth's surface. A key part of this coupling occurs through the propagation and breaking of planetary and gravity waves. However, limited observations prevent to faithfully reproduce the dynamics of the middle atmosphere in numerical weather prediction and climate models. The main challenge of the ARISE (Atmospheric dynamics InfraStructure in Europe) project is to combine existing national and international observation networks including: the International infrasound monitoring system developed for the CTBT (Comprehensive nuclear-Test-Ban Treaty) verification, the NDACC (Network for the Detection of Atmospheric Composition Changes) lidar network, European observation infrastructures at mid latitudes (OHP observatory), tropics (Maïdo observatory), high latitudes (ALOMAR and EISCAT), infrasound stations which form a dense European network and satellites. The ARISE network is unique by its coverage (polar to equatorial regions in the European longitude sector), its altitude range (from troposphere to mesosphere and ionosphere) and the involved scales both in time (from seconds to tens of years) and space (from tens of meters to thousands of kilometers). Advanced data products are produced with the scope to assimilate data in the Weather Prediction models to improve future forecasts over weeks and seasonal time scales. ARISE observations are especially relevant for the monitoring of extreme events such as thunderstorms, volcanoes, meteors and at larger scales, deep convection and stratospheric warming events for physical processes description and study of long term evolution with climate change. Among the applications, ARISE fosters integration of innovative methods for remote detection of non-instrumented volcanoes including distant eruption characterization to provide notifications with reliable confidence indices to the

  13. Microbiological and biochemical aspects of Camembert-type cheeses depend on atmospheric composition in the ripening chamber.

    PubMed

    Leclercq-Perlat, M-N; Picque, D; Riahi, H; Corrieu, G

    2006-08-01

    Camembert-type cheeses were prepared from pasteurized milk seeded with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti, and Brevibacterium aurantiacum. Microorganism growth and biochemical dynamics were studied in relation to ripening chamber CO(2) atmospheric composition using 31 descriptors based on kinetic data. The chamber ripening was carried out under 5 different controlled atmospheres: continuously renewed atmosphere, periodically renewed atmosphere, no renewed atmosphere, and 2 for which CO(2) was either 2% or 6%. All microorganism dynamics depended on CO(2) level. Kluyveromyces lactis was not sensitive to CO(2) during its growth phases, but its death did depend on it. An increase of CO(2) led to a significant improvement in G. candidum. Penicillium camemberti mycelium development was enhanced by 2% CO(2). The equilibrium between P. camemberti and G. candidum populations was disrupted in favor of the yeast when CO(2) was higher than 4%. Growth of B. aurantiacum depended more on O(2) than on CO(2). Two ripening progressions were observed in relation to the presence of CO(2) at the beginning of ripening: in the presence of CO(2), the ripening was fast-slow, and in the absence of CO(2), it was slow-fast. The underrind was too runny if CO(2) was equal to or higher than 6%. The nitrogen substrate progressions were slightly related to ripening chamber CO(2) and O(2) levels. During chamber ripening, the best atmospheric condition to produce an optimum between microorganism growth, biochemical dynamics, and cheese appearance was a constant CO(2) level close to 2%. PMID:16840644

  14. Optimization of the sintering atmosphere for high-density hydroxyapatite–carbon nanotube composites

    PubMed Central

    White, Ashley A.; Kinloch, Ian A.; Windle, Alan H.; Best, Serena M.

    2010-01-01

    Hydroxyapatite–carbon nanotube (HA–CNT) composites have the potential for improved mechanical properties over HA for use in bone graft applications. Finding an appropriate sintering atmosphere for this composite presents a dilemma, as HA requires water in the sintering atmosphere to remain phase pure and well hydroxylated, yet CNTs oxidize at the high temperatures required for sintering. The purpose of this study was to optimize the atmosphere for sintering these composites. While the reaction between carbon and water to form carbon monoxide and hydrogen at high temperatures (known as the ‘water–gas reaction’) would seem to present a problem for sintering these composites, Le Chatelier's principle suggests this reaction can be suppressed by increasing the concentration of carbon monoxide and hydrogen relative to the concentration of carbon and water, so as to retain the CNTs and keep the HA's structure intact. Eight sintering atmospheres were investigated, including standard atmospheres (such as air and wet Ar), as well as atmospheres based on the water–gas reaction. It was found that sintering in an atmosphere of carbon monoxide and hydrogen, with a small amount of water added, resulted in an optimal combination of phase purity, hydroxylation, CNT retention and density. PMID:20573629

  15. Topographic Influence and Atmospheric Dynamics in the Indian Wells Valley

    NASA Astrophysics Data System (ADS)

    Uher, Erich J.

    Indian Wells Valley (IWV) is home to the China Lake Naval Air Weapons Station (NAWS) whose operations necessitate regional forecasting and weather analysis relevant to aviation and plume release scenarios. In order to better understand the terrain influenced mesoscale circulations in the varied complex terrain of Indian Wells Valley surrounding Ridgecrest, four seasonal WRF simulations were analyzed using linear shallow water theory and nonlinear theory for flows over two-dimensional mountains. The goal is to better understand the relationships between atmospheric dynamical processes and the wind/thermal structure of the mesoscale at Indian Wells Valley. This will involve exploring relationships linking theoretical meteorology in complex terrain and advanced high resolution atmospheric modeling in this region. The WRF simulation results show several distinct circulations which rely on the interaction between complex terrain and the background weather conditions: 1) In calm synoptic conditions, diurnal processes guide the evolution of boundary layer stability and slope flows. 2) In periods of greatest seasonal surface heating (i.e. summer), the pressure gradient across the Sierra Nevada drives near surface westerlies across IWV. 3) In conditions with strong synoptic scale increase in stability and meridional winds across the Sierra Nevada, a downslope windstorm can develop in IWV. The downslope winds and compensatory gravity wave activity over IWV will conclude once there is a significant change in conditions aloft, or an increase in convective instability at the surface of IWV which prevents air aloft from sinking towards the surface. These results provide a better understanding of the mesoscale meteorology in this region and improve forecast and analysis for plume transport and aviation needs while also laying the groundwork for future projects managing environmental concerns in this region.

  16. Atmospheric-Pressure Processed Silver Nanowire (Ag-NW)/ZnO Composite Transparent Conducting Contacts

    SciTech Connect

    Perkins, John D.; Aggarwal, Shruti; van Hest, Maikel F. A. M.; Ginley, David S.

    2015-06-14

    Composite transparent contacts (TCs) based on metal nanowires and metal oxide matrix materials hold great promise for high performance transparent contacts for photovoltaics and opto-electronic technologies with the potential of all-atmospheric pressure processing. The metal nanowire mesh can provide both electrical conductivity and mechanical robustness against bending while the matrix material can both control the electrical interface and protect the metal nanowires. Here, we demonstrate all atmospheric pressure processed Ag-NW/ZnO composite TCs that are 90% transparent in the visible with sheet resistance Rs ~= 10 Ohms/sq. In addition, the composite TCs have higher infrared transmission than conventional TCO films with the same sheet resistance.

  17. Prediction of moisture and temperature changes in composites during atmospheric exposure

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Tenney, D. R.; Unnan, J.

    1978-01-01

    The effects of variations in diffusion coefficients, surface properties of the composite, panel tilt, ground reflection, and geographical location on the moisture concentration profiles and average moisture content of composite laminates were studied analytically. A heat balance which included heat input due to direct and sky diffuse solar radiation, ground reflection, and heat loss due to reradiation and convection was used to determine the temperature of composites during atmospheric exposure. The equilibrium moisture content was assumed proportional to the relative humidity of the air in the boundary layer of the composite. Condensation on the surface was neglected. Histograms of composite temperatures were determined and compared with those for the ambient environment.

  18. Dynamic oxygenation of the early atmosphere and oceans

    NASA Astrophysics Data System (ADS)

    Lyons, Timothy W.; Planavsky, Noah J.; Reinhard, Christopher T.

    2014-05-01

    The traditional view of the oxygenation of the early atmosphere and oceans depicts irreversibly rising abundances in two large steps: one at the Great Oxidation Event (GOE) ca. 2.3-2.4 billion years ago (Ga) and another near the end of the Neoproterozoic. This talk will explore how the latest data challenge this paradigm. Recent results reveal a far more dynamic history of early oxygenation, one with both rising and falling levels, long periods of sustained low concentrations even after the GOE, complex feedback relationships that likely coupled nutrients and ocean redox, and dramatic changes tied through still-emerging cause-and-effect relationships to first-order tectonic, climatic, and evolutionary events. In the face of increasing doubt about the robustness of organic biomarker records from the Archean, researchers are increasingly reliant on inorganic geochemical proxies for the earliest records of oxygenic photosynthesis. Proxy data now suggest oxygenesis at ca. 3.0 Ga with a likelihood of local oxygen build up in the surface ocean long before the GOE, as well as low (and perhaps transient) accumulation in the atmosphere against a backdrop of mostly less than ca. 0.001% of the present atmospheric concentration. By the GOE, the balance between oxygen sources and sinks shifted in favor of persistent accumulation, although sedimentary recycling of non-mass-dependent sulfur isotope signatures allows for the possibility of rising and falling atmospheric oxygen before the GOE as traditionally defined by the sulfur isotope record. Recycling may also hinder our ability to precisely date the transition to permanent oxygen accumulation beyond trace levels. Diverse data point to a dramatic increase in biospheric oxygen following the GOE, coincident with the largest positive carbon isotope excursion in Earth history, followed by an equally dramatic drop. This decline in Earth surface redox potential ushered in more than a billion years of dominantly low oxygen levels in

  19. Spatial and temporal variability of PM levels and composition in a complex summer atmospheric scenario in Barcelona (NE Spain)

    NASA Astrophysics Data System (ADS)

    Viana, M.; Pérez, C.; Querol, X.; Alastuey, A.; Nickovic, S.; Baldasano, J. M.

    Summer atmospheric coastal dynamics exert a significant influence on the levels and composition of atmospheric particulate matter (PM) in the North-Eastern Iberian Peninsula. Summer atmospheric scenarios in this region present a high degree of complexity as they are characterised by the absence of synoptic-scale air mass advections, the development of breeze circulations, enhanced photochemistry, local mineral dust re-suspension and the occurrence of African dust outbreaks. Three sampling sites were selected in Barcelona (NE Spain), an urban coastal site surrounded by complex topography. Regional dust modelling (DREAM) and high resolution meteorological modelling (MM5) were used to interpret PM levels and composition at the three sites. The results outline the effect of breeze dynamics and thermal internal boundary layer formation as the main meteorological drivers of the hourly evolution of PM levels. Levels of crustal components, secondary inorganic and carbon species are higher during the night, and only the marine aerosol content is higher during the day. Nitrate levels are higher during the night due to the thermal stability on NH 4NO 3. Sulphate levels are higher during the night as a consequence of the drainage flows. Lidar measurements and model results signalled the occurrence of two African dust episodes during the study period which mainly affected the free troposphere over Barcelona.

  20. Transport composite fuselage technology: Impact dynamics and acoustic transmission

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.; Balena, F. J.; Labarge, W. L.; Pei, G.; Pitman, W. A.; Wittlin, G.

    1986-01-01

    A program was performed to develop and demonstrate the impact dynamics and acoustic transmission technology for a composite fuselage which meets the design requirements of a 1990 large transport aircraft without substantial weight and cost penalties. The program developed the analytical methodology for the prediction of acoustic transmission behavior of advanced composite stiffened shell structures. The methodology predicted that the interior noise level in a composite fuselage due to turbulent boundary layer will be less than in a comparable aluminum fuselage. The verification of these analyses will be performed by NASA Langley Research Center using a composite fuselage shell fabricated by filament winding. The program also developed analytical methodology for the prediction of the impact dynamics behavior of lower fuselage structure constructed with composite materials. Development tests were performed to demonstrate that the composite structure designed to the same operating load requirement can have at least the same energy absorption capability as aluminum structure.

  1. Martian atmospheric photochemistry and composition during periods of low obliquity

    NASA Technical Reports Server (NTRS)

    Lindner, B. L.; Jakosky, B. M.

    1985-01-01

    During periods of low obliquity, previous work has shown that martian CO2 partial pressures decreased to 0.1 mbar; CO2 partial pressures decreased to 0.02 mbar prior to the formation of the Tharsis bulge. The permanent polar caps act as a cold trap and projected global average water vapor abundances drop to possibly as low as 0.00001 precipitable micron. As a result, the odd hydrogen catalytic cycle would not be effective at recombining CO and O back into CO2, and as much as 0.12 mbar of CO and 0.06 mbar of O2 could exist. These increased abundances would radically affect surface oxidation, change the lower atmospheric thermal structure, and completely alter the upper atmosphere.

  2. Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Akmaev, R. A.; Fomichev, V. I.; Zhu, X.

    2006-12-01

    The greenhouse effect, commonly associated with lower-atmospheric warming, manifests as cooling in the middle and upper atmosphere. Carbon dioxide is the main cooler and its continuing rise has been demonstrated to result in dramatic temperature reductions, particularly in the thermosphere. In a hydrostatic atmosphere, the cooling is associated with a density decrease at a given height. The stratospheric ozone depletion documented in satellite observations since 1979 and a steady increase of water vapor are also expected to introduce a net cooling in the middle atmosphere primarily via a reduced solar heating and increased emissions in the infrared, respectively. These effects are simulated with the global spectral mesosphere/lower thermosphere model (SMLTM) extending approximately from the tropopause to over 200 km. Climatological distributions of the radiatively active gases are prescribed in the model, which makes it suitable for studies with imposed realistic trends in CO2, O3, and H2O approximately corresponding to the period 1980 2000. Although confined to the stratosphere, the ozone depletion has a profound cooling effect on mesospheric temperatures, which is comparable to or exceeding that of the CO2 forcing. The water vapor cooling appears to play a secondary but non-negligible role, especially in the overall density reduction in the lower thermosphere. The additional hydrostatic contraction of the colder middle atmosphere is predicted to result in a local maximum of the density decline near 110 km of up to -6.5% per decade over the twenty-year period.

  3. Atmospheric and surface compositional studies of Mercury and the moon

    NASA Technical Reports Server (NTRS)

    Potter, A. E.

    1988-01-01

    The atmosphere of the Moon and Mercury will be studied by means of high resolution spectroscopy of sodium and potassium resonance line emissions. The variation of metal vapor abundances with time, and with location will be measured with a view to understanding the origin and evolution of these elements in the atmospheres of the Moon and Mercury. Infrared spectroscopic measurements will be made of Mercury to determine the surface mineralogy, predicated on the availability of the Kuiper Airborne Observatory and infrared charge coupled device (CCD). During the past year, an excellent series of measurements were completed of the spatial distribution of sodium on Mercury. Sodium was found to be concentrated at the polar regions, and to be displaced towards the terminator by solar radiation pressure. Sodium and potassium were discovered in the atmosphere of the Moon. The ratio of sodium to potassium approximates that of the lunar regolith. Thermal infrared measurements of Mercury showed that the Christiansen peak was located shortwards of 8 micrometer, which indicates an acidic mineralogy.

  4. Venus lower atmospheric composition: analysis by gas chromatography.

    PubMed

    Oyama, V I; Carle, G C; Woeller, F; Pollack, J B

    1979-02-23

    The first gas chromatographic analysis of the lower atmosphere of Venus is reported. Three atmospheric samples were analyzed. The third of these samples showed carbon dioxide (96.4 percent), molecular nitrogen (3.41 percent), water vapor (0.135 percent), molecular oxygen [69.3 parts per million (ppm)], argon (18.6 ppm), neon (4.31 ppm), and sulfuir dioxide (186 ppm). The amounts of water vapor and sulfur dioxide detected are roughly compatible with the requirements of greenhouse models of the high surface temperature of Venus. The large positive gradient of sulfur dioxide, molecular oxygen, and water vapor from the clould tops to their bottoms, as implied by Earth-based observations and these resuilts, gives added support for the presence of major quantities of aqueous sulfuric acid in the clouds. A comparison of the inventory of inert gases found in the atmospheres of Venus, Earth, and Mars suggests that these components are due to outgassing from the planetary interiors. PMID:17833004

  5. Dynamics of two-dimensional composites

    SciTech Connect

    Filippov, I.G.; Kostin, V.I.; Filippov, F.I.

    1995-12-31

    As it is well known, the composites have complex mechanical, Theological and other characteristics, and development of design methods of composites is one of important present-day problems. The paper deals with layer composites (plane and cylindric with the axe of symmetry) exhibiting anisotropy, viscosity and other characteristics. The problem is treated in non-stationary formulation. Plane or cylindrical layer composites are treated in exact three-dimensional definition for each layer at given boundary and initial conditions. It is supposed that materials of each layer comply with the linear theory of thermoviscoelasticity. General solutions are built up for each layer depending on essential number of arbitrary functions defining characteristic values for each layer. After substitution into boundary conditions, the general set of solving equations for these quantities is received. Such approach permits to obtain and build up an approximate boundary problem describing the vibration of one or other composite. Besides that, the rigorous expressions for all quantities of lauers in accordance with determining characteristic parameters permitting to strictly formulate the boundary and initial conditions for composites limited in plane or having a finite length, are obtained.

  6. COMPOSITIONAL DIVERSITY IN THE ATMOSPHERES OF HOT NEPTUNES, WITH APPLICATION TO GJ 436b

    SciTech Connect

    Moses, J. I.; Line, M. R.; Visscher, C.; Richardson, M. R.; Nettelmann, N.; Fortney, J. J.; Barman, T. S.; Stevenson, K. B.; Madhusudhan, N.

    2013-11-01

    Neptune-sized extrasolar planets that orbit relatively close to their host stars—often called {sup h}ot Neptunes{sup —}are common within the known population of exoplanets and planetary candidates. Similar to our own Uranus and Neptune, inefficient accretion of nebular gas is expected produce hot Neptunes whose masses are dominated by elements heavier than hydrogen and helium. At high atmospheric metallicities of 10-10,000 times solar, hot Neptunes will exhibit an interesting continuum of atmospheric compositions, ranging from more Neptune-like, H{sub 2}-dominated atmospheres to more Venus-like, CO{sub 2}-dominated atmospheres. We explore the predicted equilibrium and disequilibrium chemistry of generic hot Neptunes and find that the atmospheric composition varies strongly as a function of temperature and bulk atmospheric properties such as metallicity and the C/O ratio. Relatively exotic H{sub 2}O, CO, CO{sub 2}, and even O{sub 2}-dominated atmospheres are possible for hot Neptunes. We apply our models to the case of GJ 436b, where we find that a CO-rich, CH{sub 4}-poor atmosphere can be a natural consequence of a very high atmospheric metallicity. From comparisons of our results with Spitzer eclipse data for GJ 436b, we conclude that although the spectral fit from the high-metallicity forward models is not quite as good as the best fit obtained from pure retrieval methods, the atmospheric composition predicted by these forward models is more physically and chemically plausible in terms of the relative abundance of major constituents. High-metallicity atmospheres (orders of magnitude in excess of solar) should therefore be considered as a possibility for GJ 436b and other hot Neptunes.

  7. Dynamics and Predictability of Deep Propagating Atmospheric Gravity Waves

    NASA Astrophysics Data System (ADS)

    Doyle, J.; Fritts, D. C.; Smith, R.; Eckermann, S. D.

    2012-12-01

    An overview will be provided of the first field campaign that attempts to follow deeply propagating gravity waves (GWs) from their tropospheric sources to their mesospheric breakdown. The DEEP propagating gravity WAVE experiment over New Zealand (DEEPWAVE-NZ) is a comprehensive, airborne and ground-based measurement and modeling program focused on providing a new understanding of GW dynamics and impacts from the troposphere through the mesosphere and lower thermosphere (MLT). This program will employ the new NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. The NGV will be equipped with new lidar and airglow instruments for the DEEPWAVE measurement program, providing temperatures and vertical winds spanning altitudes from immediately above the NGV flight altitude (~13 km) to ~100 km. The region near New Zealand is chosen since all the relevant GW sources occur strongly here, and upper-level winds in austral winter permit GWs to propagate to very high altitudes. Given large-amplitude GWs that propagate routinely into the MLT, the New Zealand region offers an ideal natural laboratory for studying these important GW dynamics and effects impacting weather and climate over a much deeper atmospheric layer than previous campaigns have attempted (0-100 km altitude). The logistics of making measurements in the vicinity of New Zealand are potentially easier than from the Andes and Drake Passage region. A suite of GW-focused modeling and predictability tools will be used to guide NGV flight planning to GW events of greatest scientific significance. These models will also drive scientific interpretation of the GW measurements, together providing answers to the key science questions posed by DEEPWAVE about GW dynamics, morphology, predictability and impacts from 0-100 km. Preliminary results will be presented from high-resolution and adjoint models applied over areas featuring deep wave propagation. The high

  8. Observations and Modeling of Solar Flare Atmospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Li, Y.

    2015-09-01

    Solar flares are one of the most energetic events in solar atmosphere, which last minutes to tens of minutes. The eruption of a solar flare involves energy release, plasma heating, particle acceleration, mass flows, waves, etc. A solar flare releases a large amount of energy, and its emission spans a wide wavelength range. Solar flares are usually accompanied by coronal mass ejections (CMEs); therefore they could significantly affect the space environments between the Earth and the Sun. At present, we do not fully understand the whole flare process. There are still many important questions to be resolved, such as when and where is the energy released? How long does the energy release last? What are the main ways of energy release? And how does the solar atmosphere respond to the energy release? To address these questions, we study in detail the flare heating and dynamic evolution. We first give a brief review of previous flare studies (Chapter 1), and introduce the observing instruments (Chapter 2) and the modeling method (Chapter 3) related to this thesis work. Then we use spectral data to investigate the chromospheric evaporation (Chapter 4). Based on the results, we further explore the flare heating problem. With observationally inferred heating functions, we model two flare loops, and compare the results with observations (Chapter 5). A consistency is achieved between modeling and observations. In addition, we model two different sets of flare loop systems with quite different heating profiles and dynamic evolutions (Chapter 6). The details are described as below. Firstly, we investigate the chromospheric evaporation in the flare on 2007 January 16 using line profiles observed by the Extreme-ultraviolet (EUV) Imaging Spectrometer (EIS) on board Hinode. Three points with different magnetic polarities at flare ribbons are analyzed in detail. We find that the three points show different patterns of upflows and downflows in the impulsive phase of the flare. The

  9. Sequential composition of dynamically dexterous robot behaviors

    SciTech Connect

    Burridge, R.R.; Rizzi, A.A.; Koditschek, D.E.

    1999-06-01

    The authors report on efforts to develop a sequential robot controller-composition technique in the context of dexterous batting maneuvers. A robot with a flat paddle is required to strike repeatedly at a thrown ball until the ball is brought to rest on the paddle at a specified location. The robot`s reachable workspace is blocked by an obstacle that disconnects the free space formed when the ball and paddle remain in contact, forcing the machine to let go for a time to bring the ball to the desired state. The controller compositions the authors create guarantee that a ball introduced in the safe workspace remains there and is ultimately brought to the goal. They report on experimental results from an implementation of these formal composition methods, and present descriptive statistics characterizing the experiments.

  10. The effect of fuel composition on flame dynamics

    SciTech Connect

    Hendricks, Adam G.; Vandsburger, Uri

    2007-10-15

    As fuel sources diversify, the gas turbine industry is under increasing pressure to develop fuel-flexible plants, able to use fuels with a variety of compositions from a large range of sources. However, the dynamic characteristics vary considerably with composition, in many cases altering the thermoacoustic stability of the combustor. We compare the flame dynamics, or the response in heat release rate of the flame to acoustic perturbations, of the three major constituents of natural gas: methane, ethane, and propane. The heat release rate is quantified using OH* chemiluminescence and product gas temperature. Gas temperature is measured by tracking the absorption of two high-temperature water lines, via Tunable Diode Laser Absorption Spectroscopy. The flame dynamics of the three fuels differ significantly. The changes in flame dynamics due to variations in fuel composition have the potential to have a large effect on the thermoacoustic stability of the combustor. (author)

  11. Investigating the Source, Transport, and Isotope Composition of Water in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Griffis, T. J.; Schultz, N. M.; Lee, X.

    2011-12-01

    The isotope composition of water (liquid and vapor phases) can provide important insights regarding the source of water used by plants, the origins of atmospheric water vapor, and the sources of carbon dioxide. In recent years there have been significant advances in the ability to quantify the isotope composition of water and water vapor using optical isotope techniques. We have used and helped develop some of these techniques to determine the isotope composition of soil and plant waters, to measure the isoflux of water vapor between the land surface and atmosphere, and to examine the isotope composition of water vapor and deuterium excess in the atmospheric boundary layer. In this presentation we will discuss three related issues: 1) Identification and correction of spectral contamination in soil and plant water samples using optical techniques; 2) The benefits and practical limitations of quantifying the isotope composition of evapotranspiration using the eddy covariance approach; and 3) The scientific value and feasibility of tracking the long-term (seasonal and interannual) behavior of the isotope composition of water vapor and deuterium excess in the atmospheric boundary layer. A few short stories will be provided from experiments conducted in the lab, at the field scale, and from a very tall tower at the University of Minnesota from 2008 to 2011.

  12. Dynamic Mechanical Behavior of Boron Carbide Based Composites

    NASA Astrophysics Data System (ADS)

    Hayun, S.; Frage, N.; Dariel, M. P.; Zaretsky, E.

    2007-12-01

    The dynamic response of two boron carbide-based composites was studied in planar impact experiments (impact velocities 100-1000 m/sec) using a 25 mm gas gun. The composites were fabricated by infiltration of compacted B4C and partially sintered B4C preforms by molten Si. In the course of the infiltration process, the liquid silicon reacts with the B4C phase resulting in the formation of the SiC and B12(B,C,Si)3 phases along with some residual silicon present in the infiltrated composites. The velocities of the sample-PMMA window interface were monitored continuously by VISAR. The composites display a relatively high HEL (12-14 GPa) and spall strength (about 1 GPa) values. Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) were used to characterize the fracture surface. The correlation between the microstructure of the infiltrated composites and their dynamic response is discussed.

  13. Dynamics of elastic nonlinear rotating composite beams with embedded actuators

    NASA Astrophysics Data System (ADS)

    Ghorashi, Mehrdaad

    2009-08-01

    A comprehensive study of the nonlinear dynamics of composite beams is presented. The study consists of static and dynamic solutions with and without active elements. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Numerical solutions for the steady state and transient responses have been obtained. It is shown that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. The effect of perturbing the steady state solution has also been calculated and the results are shown to be compatible with those of the accelerating beam analysis. Next, the coupled flap-lag rigid body dynamics of a rotating articulated beam with hinge offset and subjected to aerodynamic forces is formulated. The solution to this rigid-body problem is then used, together with the finite difference method, in order to produce the nonlinear elasto-dynamic solution of an accelerating articulated beam. Next, the static and dynamic responses of nonlinear composite beams with embedded Anisotropic Piezo-composite Actuators (APA) are presented. The effect of activating actuators at various directions on the steady state force and moments generated in a rotating composite beam has been presented. With similar results for the transient response, this analysis can be used in controlling the response of adaptive rotating beams.

  14. Radiolytic Model for Chemical Composition of Europa's Atmosphere and Surface

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2004-01-01

    The overall objective of the present effort is to produce models for major and selected minor components of Europa s neutral atmosphere in 1-D versus altitude and in 2-D versus altitude and longitude or latitude. A 3-D model versus all three coordinates (alt, long, lat) will be studied but development on this is at present limited by computing facilities available to the investigation team. In this first year we have focused on 1-D modeling with Co-I Valery Shematovich s Direct Simulation Monte Carlo (DSMC) code for water group species (H2O, O2, O, OH) and on 2-D with Co-I Mau Wong's version of a similar code for O2, O, CO, CO2, and Na. Surface source rates of H2O and O2 from sputtering and radiolysis are used in the 1-D model, while observations for CO2 at the Europa surface and Na detected in a neutral cloud ejected from Europa are used, along with the O2 sputtering rate, to constrain source rates in the 2-D version. With these separate approaches we are investigating a range of processes important to eventual implementation of a comprehensive 3-D atmospheric model which could be used to understand present observations and develop science requirements for future observations, e.g. from Earth and in Europa orbit. Within the second year we expect to merge the full water group calculations into the 2-D version of the DSMC code which can then be extended to 3-D, pending availability of computing resources. Another important goal in the second year would be the inclusion of sulk and its more volatile oxides (SO, SO2).

  15. The dynamic atmospheres of red giant stars. Spectral synthesis in high resolution

    NASA Astrophysics Data System (ADS)

    Nowotny, W.

    2005-11-01

    Light is the only source of information we have to study distant stars. Our knowledge about the state of the matter inside stars has been gathered by analysing star light (photometry, spectroscopy, interferometry, polarimetry, etc.). Of central importance in this context are stellar atmospheres, which are the transition regions from the optically thick stellar interiors where the electromagnetic radiation is generated to the optically thin outer layers from where the photons can leave the star. However, the atmosphere of a star is not only the region where most of the observable radiation is emitted or in other words the layers which are "visible from outside". The atmosphere also leaves an imprint on the stellar spectrum as the radiation passes through, most of the line spectrum is formed there. Thus, the light serves as a probe for the physical processes within stellar atmospheres, especially spectroscopy is one of the major tools in stellar astrophysics. Applying the underlying physical principles in numerical simulations (model atmospheres, synthetic spectra) is the second -- complementary and necessary -- step towards a deeper understanding of stellar atmospheres and for deriving stellar parameters (e.g. T_eff, L, log g, chemical composition) of observed objects. This thesis is dedicated to the outer layers of Asymptotic Giant Branch (AGB) stars, which have rather remarkable properties compared to atmospheres of most other types of stars. AGB stars represent low- to intermediate mass stars at a late stage of their evolution. Forming a sub-group among all red giants, they exhibit large extensions, low effective temperatures and high luminosities. The evolutionary phase of the AGB -- complex but decisive for stellar evolution -- is characterised by several important phenomena as for example nucleo-synthesis in explosively burning shells (thermal pulses), convective processes (dredge up), large-amplitude pulsations with long periods or a pronounced mass loss. Red

  16. Composition of the atmosphere at the surface of Mars - Detection of argon-36 and preliminary analysis

    NASA Technical Reports Server (NTRS)

    Owen, T.; Biemann, K.

    1976-01-01

    The composition of the Martian atmosphere was determined by the mass spectrometer in the molecular analysis experiment. The presence of argon and nitrogen was confirmed and a value of 1 to 2750 plus or minus 500 for the ratio of argon-36 to argon-40 was established. A preliminary interpretation of these results suggests that Mars had a slightly more massive atmosphere in the past, but that much less total outgassing has occurred on Mars than on earth.

  17. Effect of atmospheric pressure plasma treatment condition on adhesion of ramie fibers to polypropylene for composite

    NASA Astrophysics Data System (ADS)

    Li, Ying; Manolache, Sorin; Qiu, Yiping; Sarmadi, Majid

    2016-02-01

    In order to improve the interfacial adhesion between hydrophilic ramie fibers and hydrophobic polypropylene (PP) matrices, ramie fibers are modified by atmospheric pressure dielectric barrier discharge (DBD) plasma with our continuous ethanol flow technique in helium environment. A central composite design of experiments with different plasma processing parameter combinations (treatment current, treatment time and ethanol flow rate) is applied to find the most influential parameter and to obtain the best modification effect. Field emission scanning electron microscope (SEM) shows the roughened surfaces of ramie fibers from the treated groups due to plasma etching effect. Dynamic contact angle analysis (DCAA) demonstrates that the wettability of the treated fibers drastically decreases. Microbond pullout test shows that the interfacial shear strength (IFSS) between treated ramie fibers and PP matrices increases significantly. Residual gas analysis (RGA) confirms the creation of ethyl groups during plasma treatment. This study shows that our continuous ethanol flow technique is effective in the plasma modification process, during which the ethanol flow rate is the most influential parameter but all parameters have simultaneous influence on plasma modification effect of ramie fibers.

  18. Composition of atmospheric suspensions of Ussuriisk City according to snow pollution

    NASA Astrophysics Data System (ADS)

    Golokhvast, Kirill S.; Soboleva, Elena V.; Borisovsky, Andrey O.; Khristoforova, Nadezhda K.

    2014-11-01

    The results of the study by scanning electron microscopy with energy dispersive analysis of microparticles of atmospheric suspensions contained in Ussuriysk winter snows (2012/2013) are presented. Particles of rocks and technogenic (mainly metal and soot) formations to prevail in the atmospheric suspensions of Ussuriysk are shown. There is a large amount of metal particles of automobile and industrial - Fe, Au, Pt, Pd, Cu, Sn, Pb, Ti, W. The analysis of the qualitative composition of atmospheric suspensions Ussuriysk confirms its status as a city with a strong impact of automobile transportation and high levels of air pollution.

  19. Investigation of the small-scale structure and dynamics of Uranus' atmosphere

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.; Hinson, David P.

    1991-01-01

    This document constitutes the final technical report of the Uranus Analysis Program. Papers and/or abstracts resulting from this research are presented. The following topics are covered: (1) past and future of radio occultation studies of planetary atmospheres; (2) equatorial waves in the stratosphere of Uranus; (3) the atmosphere of Uranus- results of radio occultation measurements with Voyager 2; (4) Uranus' atmospheric dynamics and circulation; (5) small-scale structure and dynamics in the atmosphere of Uranus; (6) evidence for inertia-gravity waves in the stratosphere of Uranus derived from Voyager 2 radio occultation data; and (7) planetary waves in the equatorial stratosphere of Uranus.

  20. Simulation of the impact of thunderstorm activity on atmospheric gas composition

    NASA Astrophysics Data System (ADS)

    Smyshlyaev, S. P.; Mareev, E. A.; Galin, V. Ya.

    2010-08-01

    A chemistry-climate model of the lower and middle atmosphere has been used to estimate the sensitivity of the atmospheric gas composition to the rate of thunderstorm production of nitrogen oxides at upper tropospheric and lower stratospheric altitudes. The impact that nitrogen oxides produced by lightning have on the atmospheric gas composition is treated as a subgrid-scale process and included in the model parametrically. The natural uncertainty in the global production rate of nitrogen oxides in lightning flashes was specified within limits from 2 to 20 Tg N/year. Results of the model experiments have shown that, due to the variability of thunderstorm-produced nitrogen oxides, their concentration in the upper troposphere and lower stratosphere can vary by a factor of 2 or 3, which, given the influence of nitrogen oxides on ozone and other gases, creates the potential for a strong perturbation of the atmospheric gas composition and thermal regime. Model calculations have shown the strong sensitivity of ozone and the OH hydroxyl to the amount of lightning nitrogen oxides at different atmospheric altitudes. These calculations demonstrate the importance of nitrogen oxides of thunderstorm origin for the balance of atmospheric odd ozone and gases linked to it, such as ozone and hydroxyl radicals. Our results demonstrate that one important task is to raise the accuracy of estimates of the rate of nitrogen oxide production by lightning discharges and to use physical parametrizations that take into account the local lightning effects and feedbacks arising in this case rather than climatological data in models of the gas composition and general circulation of the atmosphere.

  1. Dynamics of atmospheric-methane oxidation in glacier-forefield soils

    NASA Astrophysics Data System (ADS)

    Chiri, Eleonora; Nauer, Philipp A.; Rainer, Edda-Marie; Henneberger, Ruth; Zeyer, Josef; Schroth, Martin H.

    2015-04-01

    Mature upland soils are currently considered the sole terrestrial sink for atmospheric methane (CH4). But little is known about CH4 dynamics in young, developing soil ecosystems such as glacier forefields formed by progressive glacial retreat. Glacier forefields are situated on diverse bedrock types, exhibit a continuum of soil age (chronosequence), and are comprised of various geomorphological landforms, which may differ in physicochemical properties. These features may affect activity and community structure of aerobic methane-oxidizing bacteria (MOB) catalyzing atmospheric CH4 oxidation. Moreover, MOB activity and community structure may be affected by environmental parameters subject to seasonal variability such as soil temperature, water content, and nutrient availability. The aim of this study was to assess spatial and seasonal variability in atmospheric CH4 oxidation in glacier-forefield soils derived from siliceous and calcareous bedrock. Specifically, we quantified soil-atmosphere CH4 flux and CH4 oxidation activity using the soil-gas-profile method and static flux chambers in soils of different age and belonging to different landforms. In these soils MOB abundance and variation in community structure were assessed by targeting the functional gene pmoA using quantitative PCR, TRFLP-based cluster analysis, and high-throughput DNA-sequencing technology. Seasonal variability in atmospheric CH4 oxidation was assessed based on the same attributes measured with high temporal resolution throughout one snow-free season. Most glacier-forefield soils acted as a sink for atmospheric CH4 regardless of bedrock type, and CH4 flux (-0.082 to -2.2 mg CH4 m-2 d-1) and MOB abundance (2.4×103 to 5.5×105 pmoA genecopies (g soil w.w.)-1) increased significantly with soil age. Cluster analysis revealed variations in MOB community composition related to bedrock type rather than soil age, suggesting that distinct MOB communities provided a similar ecosystem service in soils on

  2. Effect of Solar Radiation on the Optical Properties and Molecular Composition of Laboratory Proxies of Atmospheric Brown Carbon

    SciTech Connect

    Lee, Hyun Ji; Aiona, Paige K.; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

    2014-09-02

    Sources, optical properties, and chemical composition of atmospheric brown carbon (BrC) aerosol are uncertain, making it challenging to estimate its contribution to radiative forcing. Furthermore, optical properties of BrC may change significantly during its atmospheric aging. We examined the effect of solar photolysis on the molecular composition, mass absorption coefficient, and fluorescence of secondary organic aerosol prepared by high-NOx photooxidation of naphthalene (NAP SOA). The aqueous solutions of NAP SOA was observed to photobleach with an effective half-time of ~15 hours (with sun in its zenith) for the loss of the near-UV (300 -400 nm) absorbance. The molecular composition of NAP SOA was significantly modified by photolysis, with the average SOA formula changing from C14.1H14.5O5.1N0.08 to C11.8H14.9O4.5N0.02 after 4 hours of irradiation. The average O/C ratio did not change significantly, however, suggesting that it is not a good metric for assessing the extent of photolysis-driven aging in NAP SOA (and in BrC in general). In contrast to NAP SOA, the photolysis of BrC material produced by aqueous reaction of limonene+O3 SOA (LIM/O3 SOA) with ammonium sulfate was much faster, but it did not result in a significant change in the molecular level composition. The characteristic absorbance of the aged LIM/O3 SOA in the 450-600 nm range decayed with an effective half-time of <0.5 hour. This result emphasizes the highly variable and dynamic nature of different types of atmospheric BrC.

  3. A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin.

    PubMed

    Atreya, S K; Wong, M H; Owen, T C; Mahaffy, P R; Niemann, H B; de Pater, I; Drossart, P; Encrenaz, T h

    1999-01-01

    We present our current understanding of the composition, vertical mixing, cloud structure and the origin of the atmospheres of Jupiter and Saturn. Available observations point to a much more vigorous vertical mixing in Saturn's middle-upper atmosphere than in Jupiter's. The nearly cloud-free nature of the Galileo probe entry site, a 5-micron hotspot, is consistent with the depletion of condensable volatiles to great depths, which is attributed to local meteorology. Somewhat similar depletion of water may be present in the 5-micron bright regions of Saturn also. The supersolar abundances of heavy elements, particularly C and S in Jupiter's atmosphere and C in Saturn's, as well as the progressive increase of C from Jupiter to Saturn and beyond, tend to support the icy planetesimal model of the formation of the giant planets and their atmospheres. However, much work remains to be done, especially in the area of laboratory studies, including identification of possible new microwave absorbers, and modelling, in order to resolve the controversy surrounding the large discrepancy between Jupiter's global ammonia abundance, hence the nitrogen elemental ratio, derived from the earth-based microwave observations and that inferred from the analysis of the Galileo probe-orbiter radio attenuation data for the hotspot. We look forward to the observations from Cassini-Huygens spacecraft which are expected to result not only in a rich harvest of information for Saturn, but a better understanding of the formation of the giant planets and their atmospheres when these data are combined with those that exist for Jupiter. PMID:11543193

  4. Chemical composition of atmospheric aerosols between Moscow and Vladivostok

    NASA Astrophysics Data System (ADS)

    Kuokka, S.; Teinilä, K.; Saarnio, K.; Aurela, M.; Sillanpää, M.; Hillamo, R.; Kerminen, V.-M.; Vartiainen, E.; Kulmala, M.; Skorokhod, A. I.; Elansky, N. F.; Belikov, I. B.

    2007-05-01

    The TROICA-9 expedition (Trans-Siberian Observations Into the Chemistry of the Atmosphere) was carried out at the Trans-Siberian railway between Moscow and Vladivostok in October 2005. Measurements of aerosol physical and chemical properties were made from an observatory carriage connected to a passenger train. Black carbon (BC) concentrations in fine particles (PM2.5, aerodynamic diameter <2.5 μm) were measured with an aethalometer using a five-minute time resolution. Concentrations of inorganic ions and some organic compounds (Cl-, NO3-, SO42-, Na+, NH4+, K+, Ca2+, Mg2+, oxalate and methane sulphonate) were measured continuously by using an on-line system with a 15-min time resolution. In addition, particle volume size distributions were determined for particles in the diameter range 3-850 nm using a 10-min. time resolution. The continuous measurements were completed with 24-h. PM2.5 filter samples which were stored in a refrigerator and later analyzed in chemical laboratory. The analyses included mass concentrations of PM2.5, ions, monosaccharide anhydrides (levoglucosan, galactosan and mannosan) and trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V and Zn). The mass concentrations of PM2.5 varied in the range of 4.3-34.8 μg m-3 with an average of 21.6 μg m-3. Fine particle mass consisted mainly of BC (average 27.6%), SO42- (13.0%), NH4+ (4.1%), and NO3- (1.4%). One of the major constituents was obviously also organic carbon which was not determined. The contribution of BC was high compared with other studies made in Europe and Asia. High concentrations of ions, BC and particle volume were observed between Moscow and roughly 4000 km east of it, as well as close to Vladivostok, primarily due to local anthropogenic sources. In the natural background area between 4000 and 7200 km distance from Moscow, observed concentrations were low, even though there were local particle sources, such as forest fires, that increased occasionally concentrations. The

  5. Crossed molecular beam studies of atmospheric chemical reaction dynamics

    SciTech Connect

    Zhang, Jingsong

    1993-04-01

    The dynamics of several elementary chemical reactions that are important in atmospheric chemistry are investigated. The reactive scattering of ground state chlorine or bromine atoms with ozone molecules and ground state chlorine atoms with nitrogen dioxide molecules is studied using a crossed molecular beams apparatus with a rotatable mass spectrometer detector. The Cl + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at four collision energies ranging from 6 kcal/mole to 32 kcal/mole. The derived product center-of-mass angular and translational energy distributions show that the reaction has a direct reaction mechanism and that there is a strong repulsion on the exit channel. The ClO product is sideways and forward scattered with respect to the Cl atom, and the translational energy release is large. The Cl atom is most likely to attack the terminal oxygen atom of the ozone molecule. The Br + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at five collision energies ranging from 5 kcal/mole to 26 kcal/mole. The derived product center-of-mass angular and translational energy distributions are quite similar to those in the Cl + O{sub 3} reaction. The Br + O{sub 3} reaction has a direct reaction mechanism similar to that of the Cl + O{sub 3} reaction. The electronic structure of the ozone molecule seems to play the central role in determining the reaction mechanism in atomic radical reactions with the ozone molecule. The Cl + NO{sub 2} {yields} ClO + NO reaction has been studied at three collision energies ranging from 10.6 kcal/mole to 22.4 kcal/mole. The center-of-mass angular distribution has some forward-backward symmetry, and the product translational energy release is quite large. The reaction proceeds through a short-lived complex whose lifetime is less than one rotational period. The experimental results seem to show that the Cl atom mainly attacks the oxygen atom instead of the nitrogen atom of the NO{sub 2} molecule.

  6. Energy balance and plume dynamics in Triton's lower atmosphere

    SciTech Connect

    Yelle, R.V.; Lunine, J.I.; Hunten, D.M. )

    1991-02-01

    The present study of the thermal balance-affecting relationships among Triton lower atmosphere thermal conduction, eddy mixing, condensation, and radiative heating indicates that, while the temperature gradient is negative in the lower atmosphere, it becomes positive at higher altitudes due to the downward conduction of ionospheric heat. This temperature profile is essentially consistent with radio-occultation experiment data; the geyser-like plumes observed by Voyager suggest that the Trioton atmosphere's convective and conductive regions join near 10-km altitude, and that the values inferred for the eddy diffusion and heat-transport coefficients indicate a profile reminiscent of the earth's. 28 refs.

  7. Energy balance and plume dynamics in Triton's lower atmosphere

    NASA Technical Reports Server (NTRS)

    Yelle, Roger V.; Lunine, Jonathan I.; Hunten, Donald M.

    1991-01-01

    The present study of the thermal balance-affecting relationships among Triton lower atmosphere thermal conduction, eddy mixing, condensation, and radiative heating indicates that, while the temperature gradient is negative in the lower atmosphere, it becomes positive at higher altitudes due to the downward conduction of ionospheric heat. This temperature profile is essentially consistent with radio-occultation experiment data; the geyser-like plumes observed by Voyager suggest that the Trioton atmosphere's convective and conductive regions join near 10-km altitude, and that the values inferred for the eddy diffusion and heat-transport coefficients indicate a profile reminiscent of the earth's.

  8. Martian Chronology and Atmospheric Composition: In Situ Measurements versus Sample Return

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.

    2008-01-01

    I examine two significant issues of martian science from the point of view of in situ measurements by robotic spacecraft versus sample return and analysis in terrestrial labs. (1) To define martian history, ages of geological processes and surface features are required. Estimated ages from surface crater densities have limitations, and the ages measured for martian meteorites cannot be associated with specific martian locales. Whereas returned martian rocks could be accurately dated, some have suggested sending a robotic spacecraft to Mars to measure rock ages using the classical K- Ar-40 technique, considered the easiest to implement. (2) To understand the evolution of the martian atmosphere and its interactions with the surface, requires precise measurements of atmospheric composition. A significant amount of information has derived from measurements by Viking and of martian meteorites. Instrumentation on the Mars Science Lander (MSL) spacecraft to be launched in the near future promises to determine atmospheric composition even more precisely. If MSL is successful, which questions about atmospheric composition will remain and thus will require atmospheric sample return to answer?

  9. Atmospheric aerosols: A literature summary of their physical characteristics and chemical composition

    NASA Technical Reports Server (NTRS)

    Harris, F. S., Jr.

    1976-01-01

    This report contains a summary of 199 recent references on the characterization of atmospheric aerosols with respect to their composition, sources, size distribution, and time changes, and with particular reference to the chemical elements measured by modern techniques, especially activation analysis.

  10. PROTON INDUCED GAMMA-RAY ANALYSIS OF ATMOSPHERIC AEROSOLS FOR CARBON, NITROGEN, AND SULFUR COMPOSITION

    EPA Science Inventory

    A technique for the simultaneous quantitative analysis of carbon, nitrogen, and sulfur using in-beam gamma-ray spectrometry has been developed for use with atmospheric aerosol samples. Samples are collected on quartz filters, and the aerosol composition is determined by analyzing...

  11. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM

    SciTech Connect

    Heng, Kevin; Workman, Jared E-mail: jworkman@coloradomesa.edu

    2014-08-01

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.

  12. Modeling Thermospheric Dynamics Under all Solar, Geomagnetic, and Lower Atmosphere Conditions

    NASA Astrophysics Data System (ADS)

    Fuller-Rowell, T. J.; Fedrizzi, M.; Fang, T. W.; Codrescu, M.; Negrea, C.; Lu, X.; Wu, F.

    2014-12-01

    During very active geomagnetic conditions, neutral thermospheric dynamics is dominated by magnetospheric momentum and energy input. Mid and high latitude horizontal winds can exceed many hundreds of meters per second, vertical winds many tens of meters per second, and the impulsive energy input can drive global wave surges of one to two hundred meters per second. The latitudinal change in global temperature and pressure from the energy input drives an altered circulation, neutral composition structure, and the disturbance dynamo, all of which have dramatic impact on the ionosphere. During more typical solar and geomagnetic activity conditions the balance between these solar and magnetospheric drivers, and forcing from the lower atmosphere, is not so clear. A whole spectrum of waves, including migrating and non-migrating tides and gravity waves, propagate from sources in the lower atmosphere, increase in amplitude, and drive winds throughout the thermosphere and at all latitudes. Some of these waves break in the mesosphere and lower thermosphere and mix the constituents. Some penetrate further into the thermosphere driving steep vertical gradients, and as they dissipate by molecular viscosity they deposit momentum. Much of the variability in electrodynamics is driven by the larger-scale tidal spectrum of waves driving neutral winds in the lower thermosphere dynamo region. The shorter period and smaller scale spectrum of gravity waves also drive neutral winds, and their impact is readily apparent in the ionosphere from incoherent scatter and dynasonde observations. The still sparse direct observations of neutral winds means that sometimes it is the impact on the ionosphere that must be used to indicate the presence of neutral atmospheric winds and waves.

  13. Global climate modeling of Saturn's atmosphere: exploration of seasonal variability and stratospheric dynamics

    NASA Astrophysics Data System (ADS)

    Spiga, A.; Guerlet, S.; Millour, E.; Sylvestre, M.; Fouchet, T.; Wordsworth, R.; Leconte, J.; Forget, F.; Hourdin, F.

    2013-12-01

    A leap forward on our knowledge of Saturn's stratosphere has resulted from the combination of orbital observations on board the Cassini spacecraft and state-of-the-art ground-based observations. Maps of temperature and hydrocarbons in Saturn's stratosphere revealed puzzling anomalies: equatorial oscillations with a period of about half a Saturn year, meridional circulations affecting the hydrocarbons' distribution, including possible effects of rings shadowing, "beacons" associated with the powerful 2010 Great White Spot. Those signatures, reminiscent of fundamental wave-driven phenomena in the Earth's middle atmosphere (e.g., Quasi-Biennal Oscillation, Brewer-Dobson circulation), cannot be reproduced by 1D photochemical and radiative models. This motivated us to develop a complete 3D General Circulation Model (GCM) for Saturn, based on the LMDz hydrodynamical core, to explore the circulation, seasonal variability, and wave activity in Saturn's atmosphere. In order to closely reproduce Saturn's radiative forcing, a particular emphasis was put in obtaining fast and accurate radiative transfer calculations. Our radiative model uses correlated-k distributions and spectral discretization tailored for Saturn's atmospheric composition (methane, ethane, acetylene). In addition to this, we include CIA absorption (hydrogen and helium), internal heat flux, ring shadowing, and aerosols. A systematic study is carried out on the sensitivity of the model to spectral discretization, spectroscopic databases, and aerosol scenarios (varying particle sizes, opacities and vertical structures). Temperature fields obtained with this new radiative equilibrium model are compared to that inferred from Cassini/CIRS observations. In the troposphere, our model reproduces the observed temperature knee caused by heating at the top of the tropospheric aerosol layer. In the lower stratosphere, the overall meridional gradient between the summer and the winter hemispheres agrees with observations

  14. Dynamic mechanical behavior of boron carbide-based composites

    NASA Astrophysics Data System (ADS)

    Hayun, Shmulik; Frage, Nahum; Dariel, Moshe; Zaretsky, Eugene

    2007-06-01

    This presentation is concerned with the dynamic response of two types of boron carbide-based composites. The composites were fabricated by infiltration of compacted but unsintered B4C preforms and of partially sintered B4C skeletons by liquid Si. During the infiltration process, molten silicon reacts with the B4C phase resulting in the formation of the SiC and B12(B,C,Si)3 phases. Some residual silicon is also present in the infiltrated composites. The dynamic behavior was studied in planar impact experiments (impact velocities 100-1000 m/sec) using a 25 mm gas gun. The velocities of the sample-PMMA window interface were monitored continuously by VISAR. The composites failed completely in compression, at loads above their HEL (17-18 GPa). The spall strength, deduced from low-velocity impacts, ranged from 0.5 to 1.1 GPa, depending on the tensile strain rate. Scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS) were used to analyze the fracture surface. The correlation between the microstructure of the infiltrated composites and their dynamic response is discussed.

  15. Tailoring the electron dynamics and chemical kinetics in radio-frequency driven atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Gans, Timo

    2015-09-01

    Radio-frequency atmospheric pressure plasmas are versatile and efficient sources for reactive species at ambient room temperature. The non-equilibrium chemical kinetics is initiated and determined by the electron dynamics. Due to the strongly collisional environment and associated short electron energy relaxation times the electron dynamics can be tailored using multi-frequency power coupling techniques, enabling separate control of key parameters like electron density and electron mean energy. Details of the chemical kinetics depend on the feedgas composition and desired application. Measurements and predictive simulations of key reactive species are equally challenging due to the strongly collisional environment and their multi-scale nature in space and time. The most promising approach is the exploitation of complementary advantages in direct measurements combined with specifically designed numerical simulations. The employed diagnostic techniques include picosecond laser spectroscopy, synchrotron VUV spectroscopy, IR absorption spectroscopy and nanosecond optical imaging spectroscopy. The presentation will focus on examples of He-O2-N2 mixtures for bio-medical applications and He/Ar-CO2 mixtures for CO2 conversion into value-added chemicals. This work has been supported by the UK EPSRC (EP/K018388/1 & EP/H003797/1).

  16. Testing our Understanding of Biogenic Emissions and their Impacts on Atmospheric Composition above the Amazon Rainforest

    NASA Astrophysics Data System (ADS)

    Levine, J. G.; MacKenzie, A. R.; Squire, O. J.; Archibald, A. T.; Griffiths, P. T.; Oram, D.; Forster, G.; Lee, J. D.; Hopkins, J. R.; Bauguitte, S.; Demarco, C. F.; Artaxo, P.

    2014-12-01

    Biogenic volatile organic compounds (BVOCs) have a profound effect on atmospheric chemistry and composition, and thereby affect global air quality and climate. The Amazon rainforest constitutes an intense source of BVOCs and is thus a key location in which to probe these effects. Notable uncertainties remain regarding the amount of BVOCs emitted from the rainforest (a function of plant type, environmental conditions and physiological factors) and the quantitative influence they have on atmospheric oxidants, such as OH and O3 (a function of physical conditions and ambient atmospheric composition, not least the concentration of nitrogen oxides; NOx=NO+NO2). The effect that isoprene oxidation at low NOx concentrations has on the concentrations of OH and O3 proves a particular challenge to reproduce in atmospheric chemistry-transport models. We present here the results of a series of experiments aimed at testing our understanding of BVOC emissions from the Brazilian Amazon and the atmospheric chemistry stemming from these. We attempt to reproduce aircraft measurements of BVOCs, NOx and O3 from the South American Biomass Burning Analysis (SAMBBA) campaign in 2012, including those made close to the site of recent BVOC emission measurements, just north of Manaus, in the Cooperative LBA Atmospheric Regional Experiment (CLAIRE-UK). We compare the abilities of a variety of atmospheric chemistry mechanisms to capture the measurements in both a global atmospheric chemistry-transport model and a trajectory model of chemistry and transport. The exploration in both Eulerian and Lagrangian frameworks, with their contrasting treatments of mixing, is pertinent in view of: the sensitivity that the chemistry stemming from BVOCs shows to ambient NOx concentrations; and the episodic influence of anthropogenic emissions in this environment, for example from Manaus.

  17. Phase stability and dynamics of entangled polymer–nanoparticle composites

    PubMed Central

    Mangal, Rahul; Srivastava, Samanvaya; Archer, Lynden A.

    2015-01-01

    Nanoparticle–polymer composites, or polymer–nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host. PMID:26044723

  18. Dynamic fracture responses of alumina and two ceramic composites

    NASA Technical Reports Server (NTRS)

    Yang, Kwan-Ho; Kobayashi, Albert S.

    1990-01-01

    A hybrid experimental-numerical procedure was used to characterize the dynamic fracture response of Al2O3 and TiB2-particulate/SiC-matrix and SiC-whisker/Al2O3-matrix composites. Unlike metals and polymers, dynamic arrest stress intensity factors (SIFs) did not exist in the monolithic ceramics and the two ceramic composites considered. Thus a running crack in these materials cannot be arrested by lowering the driving force, i.e., the dynamic SIF. Fractography study of the alumina specimens showed that the area of transgranular failure varied from about 3 percent to about 16 percent for rapid crack extensions in statically and impact loaded specimens, respectively. The influence of kinematic constraints which enforces transgranular flat crack extension, despite the higher fracture energy of transgranular fracture, is discussed.

  19. Phase stability and dynamics of entangled polymer-nanoparticle composites

    SciTech Connect

    Mangal, Rahul; Srivastava, Samanvaya; Archer, Lynden A.

    2015-06-10

    Nanoparticle–polymer composites, or polymer–nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.

  20. Improved ambiguity resolution for URTK with dynamic atmosphere constraints

    NASA Astrophysics Data System (ADS)

    Tang, Weiming; Liu, Wenjian; Zou, Xuan; Li, Zongnan; Chen, Liang; Deng, Chenlong; Shi, Chuang

    2016-06-01

    Raw observation processing method with prior knowledge of ionospheric delay could strengthen the ambiguity resolution (AR), but it does not make full use of the relatively longer wavelength of wide-lane (WL) observation. Furthermore, the accuracy of calculated atmospheric delays from the regional augmentation information has quite different in quality, while the atmospheric constraint used in the current methods is usually set to an empirical value. A proper constraint, which matches the accuracy of calculated atmospheric delays, can most effectively compensate the residual systematic biases caused by large inter-station distances. Therefore, the standard deviation of the residual atmospheric parameters should be fine-tuned. This paper presents an atmosphere-constrained AR method for undifferenced network RTK (URTK) rover, whose ambiguities are sequentially fixed according to their wavelengths. Furthermore, this research systematically analyzes the residual atmospheric error and finds that it mainly varies along the positional relationship between the rover and the chosen reference stations. More importantly, its ionospheric part of certain location will also be cyclically influenced every day. Therefore, the standard deviation of residual ionospheric error can be modeled by a daily repeated cosine or other functions with the help of data one day before, and applied by rovers as pseudo-observation. With the data collected at 29 stations from a continuously operating reference station network in Guangdong Province (GDCORS) in China, the efficiency of the proposed approach is confirmed by improving the success and error rates of AR for 10-20 % compared to that of the WL-L1-IF one, as well as making much better positioning accuracy.

  1. Comparison of Fully-Compressible Equation Sets for Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.

    2016-01-01

    Traditionally, the equation for the conservation of energy used in atmospheric models is based on potential temperature and is used in place of the total energy conservation. This paper compares the application of the two equations sets for both the Euler and the Navier-Stokes solutions using several benchmark test cases. A high-resolution wave-propagation method which accurately takes into account the source term due to gravity is used for computing the non-hydrostatic atmospheric flows. It is demonstrated that there is little to no difference between the results obtained using the two different equation sets for Euler as well as Navier-Stokes solutions.

  2. Using the Internet to Disseminate Educational Material on Atmospheric Composition Change in ACCENT

    NASA Astrophysics Data System (ADS)

    Schuepbach, E.

    2005-12-01

    ACCENT (2004-08) is a Network of Excellence in Atmospheric Composition Change in Framework Programme VI of the European Union (www.accent-network.org). The task "Training and Education" aims at preparing the next generation of atmospheric scientists (up to 3 years after completion of a Ph.D.) for the future of scientific endeavour in the field. Educational events, courses, and training workshops will be offered both on subjects in the field of atmospheric composition change and on essential skills (e.g., communication, networking, interdisciplinarity), and will be paralleled by leadership sessions and Science Cafes to increase the expertise to a common level across Europe (including Accession countries). Integration of female scientists, and (young) scientists from newly associated and emerging countries will be realized through specific schemes (e.g., mentoring, fellowships). Training and Education in ACCENT also aims at triggering the use of New Information and Communication Technologies (NICT). Examples will be presented on the varied use of NICT to disseminate educational material on atmospheric composition change, both at the undergraduate and at the postgraduate level, and to teachers.

  3. Composition of the earth's atmosphere by shock-layer radiometry during the PAET entry probe experiment.

    NASA Technical Reports Server (NTRS)

    Whiting, E. E.; Arnold, J. O.; Page, W. A.; Reynolds, R. M.

    1973-01-01

    A determination of the composition of the earth's atmosphere obtained from onboard radiometer measurements of the spectra emitted from the bow shock layer of a high-speed entry probe is reported. The N2, O2, CO2, and noble gas concentrations in the earth's atmosphere were determined to good accuracy by this technique. The results demonstrate unequivocally the feasibility of determining the composition of an unknown planetary atmosphere by means of a multichannel radiometer viewing optical emission from the heated atmospheric gases in the region between the bow shock wave and the vehicle surface. The spectral locations in this experiment were preselected to enable the observation of CN violet, N2(+) first negative and atomic oxygen emission at 3870, 3910, and 7775 A, respectively. The atmospheric gases were heated and compressed by the shock wave to a peak temperature of about 6100 K and a corresponding pressure of 0.4 atm. Complete descriptions of the data analysis technique and the onboard radiometer and its calibration are given.

  4. Nonlinear dynamics of global atmospheric and Earth-system processes

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry; Ebisuzaki, Wesley; Maasch, Kirk A.; Oglesby, Robert; Pandolfo, Lionel

    1991-01-01

    General Circulation Model (GCM) studies of the atmospheric response to change boundary conditions are discussed. Results are reported on an extensive series of numerical studies based on the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM) general circulation model. In these studies the authors determined the response to systematic changes in atmospheric CO2 ranging from 100 to 1000 ppm; to changes in the prescribed sea surface temperature (SST) in the Gulf of Mexico, such as occurred during the deglaciation phase of the last ice age; to changes in soil moisture over North America; and to changes in sea ice extent in the Southern Hemisphere. Study results show that the response of surface temperature and other variables is nearly logarithmic, with lower levels of CO2 implying greater sensitivity of the atmospheric state to changes in CO2. It was found that the surface temperature of the Gulf of Mexico exerts considerable control over the storm track and behavior of storm systems over the North Atlantic through its influence on evaporation and the source of latent heat. It was found that reductions in soil moisture can play a significant role in amplifying and maintaining North American drought, particularly when a negative soil moisture anomaly prevails late in the spring.

  5. The Dynamics and Structure of Titan's Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Flasar, F. Michael

    2009-01-01

    Titan, after Venus, is the second example in the solar system of an atmosphere with a global cyclostrophic circulation. The origin and maintenance of these superrotating atmospheres is not well understood, but Titan has a strong seasonal modulation in the middle atmosphere, and the seasonal changes in the winds may offer clues. The pole in winter and early spring is characterized by temperatures 20-30 K cooler at 100-170 km than those at low latitudes, and strong circumpolar winds as high as 190 m/s at 200-250 km. At these levels the polar region is characterized by enhanced concentrations of several organic gases, and also detectable condensates. All this suggests that the polar vortex provides a mixing barrier between winter polar and lower-latitude air masses, analogous to the winter polar vortices on Earth. Because the concentrations of organic gases increase with altitude in the middle atmosphere, the observed enhancements suggest subsidence over the winter pole. Consistent with this are the observed temperatures approx.200 K at the winter-polar stratopause (280 km), making it the warmest part of the atmosphere. The warm stratopause likely results from adiabatic heating associated with the subsidence. Recent observations in late northern winter and early spring indicate that the warm anomaly at the winter-polar stratopause is weakening, and the strong zonal winds are weakening. Curiously, the stratospheric zonal winds and temperatures in both hemispheres are symmetric about a pole that is offset from the surface pole by 4 degrees. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the offset between the equator, where the distance to the rotation axis is greatest, and the seasonally varying subsolar latitude.

  6. Extracting Compositional Variation from THEMIS Data for Features with Large Topography on Mars Via Atmospheric Equalization

    NASA Technical Reports Server (NTRS)

    Anderson, F. S.; Drake, J. S.; Hamilton, V. E.

    2005-01-01

    We have developed a means of equalizing the atmospheric signature in Mars Odyssey Thermal Emission Imaging System (THEMIS) infrared data over regions with large topography such as the Valles Marineris (VM). This equalization allows for the analysis of compositional variations in regions that previously have been difficult to study because of the large differences in atmospheric path length that result from large changes in surface elevation. Specifically, our motivation for this study is to examine deposits that are small at the scales observable by the Thermal Emission Spectrometer (TES) onboard Mars Global Surveyor, but which are more readily resolved with THEMIS.

  7. Non-Deterministic Dynamic Instability of Composite Shells

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2004-01-01

    A computationally effective method is described to evaluate the non-deterministic dynamic instability (probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of available computer codes for finite element, composite mechanics, and probabilistic structural analysis. The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different load rates and different probability levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic load and loading rate are the dominant uncertainties, in that order.

  8. Composition and effects of inhalable size fractions of atmospheric aerosols in the polluted atmosphere: part I. PAHs, PCBs and OCPs and the matrix chemical composition.

    PubMed

    Landlová, Linda; Cupr, Pavel; Franců, Juraj; Klánová, Jana; Lammel, Gerhard

    2014-05-01

    Atmospheric particulate matter (PM) abundance, mass size distribution (MSD) and chemical composition are parameters relevant for human health effects. The MSD and phase state of semivolatile organic pollutants were determined at various polluted sites in addition to the PM composition and MSD. The distribution pattern of pollutants varied from side to side in correspondence to main particle sources and PM composition. Levels of particle-associated polycyclic aromatic hydrocarbons (PAHs) were 1-30 ng m(-3) (corresponding to 15-35 % of the total, i.e., gas and particulate phase concentrations), of polychlorinated biphenyls (PCBs) were 2-11 pg m(-3) (4-26 % of the total) and of DDT compounds were 2-12 pg m(-3) (4-23 % of the total). The PM associated amounts of other organochlorine pesticides were too low for quantification. The organics were preferentially found associated with particles <0.45 μm of aerodynamic equivalent diameter. The mass fractions associated with sub-micrometer particles (PM0.95) were 73-90 %, 34-71 % and 36-81 % for PAHs, PCBs and DDT compounds, respectively. The finest particles fraction had the highest aerosol surface concentration (6.3-29.7)×10(-6) cm(-1) (44-70 % of the surface concentration of all size fractions). The data set was used to test gas-particle partitioning models for semivolatile organics for the first time in terms of the organics' MSD and size-dependent PM composition. The results of this study prove that at the various sites particles with diverse size, matrix composition, amount of contaminants and toxicological effects occur. Legislative regulation based on gravimetric determination of PM mass can clearly be insufficient for assessment. PMID:24488522

  9. Exploration of the link between Emiliania huxleyi bloom dynamics and aerosol fluxes to the lower Atmosphere

    NASA Astrophysics Data System (ADS)

    Trainic, M.

    2013-12-01

    shells are emitted as aerosols, but also that aerosol type and therefore chemical composition, microphysical and optical properties depend on the stage of the bloom growth. Unraveling the atmospheric signature of algal bloom dynamics in the ocean will provide novel insights into its ecological and climatic roles.

  10. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models

    SciTech Connect

    Held, I.M. ); Suarez, M.J. )

    1994-10-01

    A benchmark calculation is proposed for evaluating the dynamical cores of atmospheric general circulation models independently of the physical parameterizations. The test focuses on the long-term statistical properties of a fully developed general circulation; thus, it is particularly appropriate for intercomparing the dynamics used in climate models. To illustrate the use of this benchmark, two very different atmospheric dynamical cores - one spectral, one finite difference - are compared. It is found that the long-term statistics produced by the two models are very similar. Selected results from these calculations are presented to initiate the intercomparison. 17 refs., 4 figs.

  11. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Held, Isaac M.; Suarez, Max J.

    1994-01-01

    A benchmark calculation is proposed for evaluating the dynamical cores of atmospheric general circulation models (GCMs) independently of the physical parameterizations. The test focuses on the long-term statistical properties of a fully developed general circulation; thus, it is particularly appropriate for intercomparing the dynamics used in climate models. To illustrate the use of this benchmark, two very different atmospheric dynamical cores--one spectral, one finite difference--are compared. It is found that the long-term statistics produced by the two models are very similar. Selected results from these calculations are presented to initiate the intercomparison.

  12. The microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications

    NASA Astrophysics Data System (ADS)

    Nenes, A.; DeLeon-Rodriguez, N.; Lathem, T. L.; Rodriguez-Rojas, L. M.; Barazesh, J.; Anderson, B. E.; Beyersdorf, A.; Ziemba, L. D.; Bergin, M. H.; Konstantinidis, K.

    2012-12-01

    The composition and prevalence of microorganisms in the middle to upper troposphere (8-15 km altitude) and their role in aerosol-cloud-precipitation interactions represent important, unresolved questions for biological and atmospheric science. Here we report on the microbiome of low and high altitude air masses sampled onboard the NASA DC-8 platform during the 2010 Genesis and Rapid Intensification Processes (GRIP) campaign in the Caribbean Sea. The samples were collected in cloudy and cloud-free air masses, before, during, and after two major tropical hurricanes, Earl and Karl. Quantitative PCR and microscopy revealed that viable bacterial cells represented on average around 20% of the total particles in the 0.25-1μm diameter range and were at least an order of magnitude more abundant compared to fungal cells, suggesting that bacteria represent an important and underestimated fraction of micron-sized atmospheric aerosols. The samples from the two hurricanes were characterized by significantly different bacterial communities, revealing that hurricanes aerosolize a large amount of new cells. Nonetheless, 17 bacterial taxa, including taxa that are known to utilize C1-C4 carbon compounds present in the atmosphere, were found in all samples, indicating that these organisms have developed adaptations to survive in the troposphere. The findings presented here suggest that the microbiome is a dynamic and underappreciated aspect of the upper troposphere with potentially profound impacts on the water cycle, clouds, and climate.

  13. Dynamic consolidation of aluminum-silicon carbide composites

    SciTech Connect

    Rabin, B.H.; Korth, G.E.; Williamson, R.L.

    1990-01-01

    Dynamic consolidation was investigated as a potential method for producing P/M metal matrix composites. In this study, 2124 aluminum powders were mixed with silicon carbide particulate and consolidated using explosives. Numerical simulations were performed to provide insight into the consolidation process and to aid in the selection of experimental conditions. The microstructure of the as-consolidated product was dependent upon processing variables. Careful control of the shock parameters allowed full density, crack free composites to be achieved in cylindrical geometries. Although full density was obtained, low fracture strengths suggested a lack of interparticle bonding, probably resulting from the limited ability to redistribute surface oxides during consolidation. 10 refs., 9 figs.

  14. Ionospheric manifestations of earthquakes and tsunamis in a dynamic atmosphere

    NASA Astrophysics Data System (ADS)

    Godin, Oleg A.; Zabotin, Nikolay A.; Zabotina, Liudmila

    2015-04-01

    Observations of the ionosphere provide a new, promising modality for characterizing large-scale physical processes that occur on land and in the ocean. There is a large and rapidly growing body of evidence that a number of natural hazards, including large earthquakes, strong tsunamis, and powerful tornadoes, have pronounced ionospheric manifestations, which are reliably detected by ground-based and satellite-borne instruments. As the focus shifts from detecting the ionospheric features associated with the natural hazards to characterizing the hazards for the purposes of improving early warning systems and contributing to disaster recovery, it becomes imperative to relate quantitatively characteristics of the observed ionospheric disturbances and the underlying natural hazard. The relation between perturbations at the ground level and their ionospheric manifestations is strongly affected by parameters of the intervening atmosphere. In this paper, we employ the ray theory to model propagation of acoustic-gravity waves in three-dimensionally inhomogeneous atmosphere. Huygens' wavefront-tracing and Hamiltonian ray-tracing algorithms are used to simulate propagation of body waves from an earthquake hypocenter through the earth's crust and ocean to the upper atmosphere. We quantify the influence of temperature stratification and winds, including their seasonal variability, and air viscosity and thermal conductivity on the geometry and amplitude of ionospheric disturbances that are generated by seismic surface waves and tsunamis. Modeling results are verified by comparing observations of the velocity fluctuations at altitudes of 150-160 km by a coastal Dynasonde HF radar system with theoretical predictions of ionospheric manifestations of background infragravity waves in the ocean. Dynasonde radar systems are shown to be a promising means for monitoring acoustic-gravity wave activity and observing ionospheric perturbations due to earthquakes and tsunamis. We will discuss

  15. Parameterized rotating convection for core and planetary atmosphere dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, K.

    1991-04-01

    New types of convective instability and associated nonlinear phenomena in rapidly rotating spherical systems have been discovered through numerical simulations. The Prandtl number, defined as the ratio of the viscous and thermal diffusivities of a fluid, Pr = nu/kappa, plays a crucial role in determining the fundamental features of both the instabilities and the corresponding nonlinear convection. The results shed new light on regimes of convection in the earth's core and the atmospheres of the major planets.

  16. Impact ejecta dynamics in an atmosphere - Experimental results and extrapolations

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Gault, D. E.

    1982-01-01

    It is noted that the impacts of 0.635-cm aluminum projectiles at 6 km/sec into fine pumice dust, at 1 atm, generate a ball of ionized gas behind an expanding curtain of upward moving ejecta. The gas ball forms a toroid which dissolves as it is driven along the interior of the ejecta curtain, by contrast to near-surface explosions in which a fireball envelops early-time crater growth. High frame rate Schlieren photographs show that the atmosphere at the base of the ejecta curtain is initially turbulent, but later forms a vortex. These experiments suggest that although small size ejecta may be decelerated by air drag, they are not simply lofted and suspended but become incorporated in an ejecta cloud that is controlled by air flow which is produced by the response of the atmosphere to the impact. The extrapolation of these results to large body impacts on the earth suggests such contrasts with laboratory experiments as a large quantity of impact-generated vapor, the supersonic advance of the ejecta curtain, the lessened effect of air drag due to the tenuous upper atmosphere, and the role of secondary cratering.

  17. Unraveling the dynamics of aminopolymer/silica composites

    NASA Astrophysics Data System (ADS)

    Carrillo, Jan-Michael; Sakwa-Novak, Miles; Holewinski, Adam; Potter, Matthew; Rother, Gernot; Jones, Christopher; Sumpter, Bobby

    The structure and dynamics of a model branched polymer, representing poly(ethylenimine), was investigated through coarse-grained molecular dynamics simulations and neutron scattering experiments. The monomer concentration and solvent quality were varied in the simulations and detailed comparisons between the calculated structural and dynamical properties of the unconfined polymer and those confined within an adsorbing and non-adsorbing cylindrical pore, representing the silica based structural support of the composite, were made. The simulations show a direct relationship in the structure of the polymer and the non-monotonic dynamics of the polymers as a function of monomer concentration within an adsorbing cylindrical pore. However, the non-monotonic behavior disappears for the case of the branched polymer within a non-adsorbing cylindrical pore. Overall the simulation results are in good agreement with quasi-elastic neutron scattering (QENS) studies of branched poly(ethylenimine) in mesoporous silica (SBA-15) of comparable size, suggesting an approach that can be a useful guide for understanding how to tune porous polymer composites for enhancing desired dynamical and structural behavior targeting carbon dioxide adsorption.

  18. Unraveling the Dynamics of Aminopolymer/Silica Composites.

    PubMed

    Carrillo, Jan-Michael Y; Sakwa-Novak, Miles A; Holewinski, Adam; Potter, Matthew E; Rother, Gernot; Jones, Christopher W; Sumpter, Bobby G

    2016-03-22

    The structure and dynamics of a model branched polymer was investigated through molecular dynamics simulations and neutron scattering experiments. The polymer confinement, monomer concentration, and solvent quality were varied in the simulations and detailed comparisons between the calculated structural and dynamical properties of the unconfined polymer and those confined within an adsorbing and nonadsorbing cylindrical pore, representing the silica based structural support of the composite, were made. The simulations show a direct relationship in the structure of the polymer and the nonmonotonic dynamics as a function of monomer concentration within an adsorbing cylindrical pore. However, the nonmonotonic behavior disappears for the case of the branched polymer within a nonadsorbing cylindrical pore. Overall, the simulation results are in good agreement with quasi-elastic neutron scattering (QENS) studies of branched poly(ethylenimine) in mesoporous silica (SBA-15) of comparable size, suggesting an approach that can be a useful guide for understanding how to tune porous polymer composites for enhancing desired dynamical and structural behavior targeting carbon dioxide adsorption. PMID:26915732

  19. Venus - Chemical weathering of igneous rocks and buffering of atmospheric composition

    NASA Technical Reports Server (NTRS)

    Nozette, S.; Lewis, J. S.

    1982-01-01

    Data from the Pioneer Venus radar mapper, combined with measurements of wind velocity and atmospheric composition, suggest that surface erosion on Venus varies with altitude. Calcium- and magnesium-rich weathering products are produced at high altitudes by gas-solid reactions with igneous minerals, then removed into the hotter lowlands by surface winds. These fine-grained weathering products may then rereact with the lower atmosphere and buffer the composition of the observed gases carbon dioxide, water vapor, sulfur dioxide, and hydrogen fluoride in some regions of the surface. This process is a plausible mechanism for the establishment in the lowlands of a calcium-rich mineral assemblage, which had previously been found necessary for the buffering of these species.

  20. Learning about Atmospheric Composition Change within a Network of Excellence: a Synthesis of ACCENT "Training & Education

    NASA Astrophysics Data System (ADS)

    Schuepbach, E.; Uherek, E.; Ladstaetter-Weissenmayer, A.

    2009-04-01

    The fast move towards a knowledge-based society poses sweeping challenges to science education worldwide. Being a new instrument under EU funding mode, the Network of Excellence in Atmospheric Composition Change (ACCENT; www.accent-network.org) seeks to meet these challenges, and to explore novel ways for learning and teaching. The Task Training and Education (T&E) in ACCENT has developed an «Integrated Learning Environment» (ILE) aimed at serving the learner's needs (beginners, advanced learners). It focuses on interactivity and problem-based learning, and incorporates multifaceted learning opportunities like debates with stakeholders. A virtual knowledge train connects knowledge on atmospheric composition change across the world. Evolving good practice in ACCENT T&E are compiled in a Handbook.

  1. Venus: chemical weathering of igneous rocks and buffering of atmospheric composition.

    PubMed

    Nozette, S; Lewis, J S

    1982-04-01

    Data from the Pioneer Venus radar mapper, combined with measurements of wind velocity and atmospheric composition, suggest that surface erosion on Venus varies with altitude. Calcium- and magnesium-rich weathering products are produced at high altitudes by gas-solid reactions with igneous minerals, then removed into the hotter lowlands by surface winds. These fine-grained weathering products may then rereact with the lower atmosphere and buffer the composition of the observed gases carbon dioxide, water vapor, sulfur dioxide, and hydrogen fluoride in some regions of the surface. This process is a plausible mechanism for the establishment in the lowlands of a calcium-rich mineral assemblage, which had previously been found necessary for the buffering of these species. PMID:17736250

  2. Dynamics of the middle atmosphere as observed by the ARISE project

    NASA Astrophysics Data System (ADS)

    Blanc, Elisabeth

    2015-04-01

    The atmosphere is a complex system submitted to disturbances in a wide range of scales, including high frequency sources as volcanoes, thunderstorms, tornadoes and at larger scales, gravity waves from deep convection or wind over mountains, atmospheric tides and planetary waves. These waves affect the different atmospheric layers submitted to different temperature and wind systems which strongly control the general atmospheric circulation. The full description of gravity and planetary waves constitutes a challenge for the development of future models of atmosphere and climate. The objective of this paper is to present a review of recent advances obtained in this topic, especially in the framework of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project

  3. On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes - Part 1: Statistical models and spatial fingerprints of atmospheric dynamics and chemistry

    NASA Astrophysics Data System (ADS)

    Frossard, L.; Rieder, H. E.; Ribatet, M.; Staehelin, J.; Maeder, J. A.; Di Rocco, S.; Davison, A. C.; Peter, T.

    2012-05-01

    We use models for mean and extreme values of total column ozone on spatial scales to analyze "fingerprints" of atmospheric dynamics and chemistry on long-term ozone changes at northern and southern mid-latitudes. The r-largest order statistics method is used for pointwise analysis of extreme events in low and high total ozone (termed ELOs and EHOs, respectively). For the corresponding mean value analysis a pointwise autoregressive moving average model (ARMA) is used. The statistical models include important atmospheric covariates to describe the dynamical and chemical state of the atmosphere: the solar cycle, the Quasi-Biennial Oscillation (QBO), ozone depleting substances (ODS) in terms of equivalent effective stratospheric chlorine (EESC), the North Atlantic Oscillation (NAO), the Antarctic Oscillation (AAO), the El~Niño/Southern Oscillation (ENSO), and aerosol load after the volcanic eruptions of El Chichón and Mt. Pinatubo. The influence of the individual covariates on mean and extreme levels in total column ozone is derived on a grid cell basis. The results show that "fingerprints", i.e., significant influence, of dynamical and chemical features are captured in both the "bulk" and the tails of the ozone distribution, respectively described by means and EHOs/ELOs. While results for the solar cycle, QBO and EESC are in good agreement with findings of earlier studies, unprecedented spatial fingerprints are retrieved for the dynamical covariates.

  4. Mission Objectives Of The Atmospheric Composition Related Sentinels S5p, S4, And S5

    NASA Astrophysics Data System (ADS)

    Ingmann, Paul; Veihelmann, Ben; Langen, Jorg; Meijer, Yasjka

    2013-12-01

    Atmospheric chemistry observations from space have been made for over 30 years, in the beginning mainly by US missions. These missions have always been motivated by the concern about a number of environmental issues. At present European instruments like GOME-2 on MetOp/EPS-A and -B and OMI on NASA's Aura are in space and, despite being designed for research purposes, perform routine observations. The space instruments have helped improving our understanding of processes that govern stratospheric ozone depletion, climate change and the transport of pollutants. However, long-term continuous time series of atmospheric trace gas data have been limited to stratospheric ozone and a few related species. According to current planning, meteorological satellites will maintain these observations over the next decade. They will also add some measurements of tropospheric trace gases critical for climate forcing. However, as their measurements have been motivated by meteorology, vertical sensitivities and accuracies are marginal for atmospheric chemistry applications. With the exception of stratospheric ozone, reliable long-term space-based monitoring of atmospheric constituents with quality attributes sufficient to serve atmospheric chemistry applications still need to be established. The need for a GMES atmospheric service (GAS), its scope and high level requirements were laid down in an orientation papers organised by the European Commission and then updated by an Implementation Group (IG) [1], backed by four working groups, advising the Commission on scope, architecture, in situ and space requirements. The goal of GAS is to provide coherent information on atmospheric variables in support of European policies and for the benefit of European citizens. Services cover air quality, climate change/forcing, stratospheric ozone and solar radiation. To meet the needs of the user community atmospheric composition mission concepts for GEO and LEO have been defined usually referred to

  5. Io's surface - Its phase composition and influence on Io's atmosphere and Jupiter's magnetosphere

    NASA Astrophysics Data System (ADS)

    Fanale, F. P.; Banerdt, W. B.; Elson, L. S.; Johnson, T. V.; Zurek, R. W.

    The evidence and interpretations pertaining to the surface phase composition of Io and the mechanisms by which Io's surface influences its atmosphere are discussed. The mechanism by which Io's surface and/or atmosphere supplies neutral and ionic species to the region around the satellite and ultimately to the Jovian magnetosphere is also discussed. A model is suggested in which the global SO2 gas abundance is primarily controlled by buffering in the brightest, coldest regions. The net SO2 flux across the disk is limited by regional cold trapping on high albedo regions and possibly by the resistance of a tenuous non-SO2 residual atmosphere. The continuing migration of SO2 toward cooler regions and those lacking SO2 sources is opposed by SO2 destruction and planetary ejection processes, including sputtering, thus preventing buildup of thick, ubiquitous SO2 coverage.

  6. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust.

    PubMed

    Longo, Amelia F; Feng, Yan; Lai, Barry; Landing, William M; Shelley, Rachel U; Nenes, Athanasios; Mihalopoulos, Nikolaos; Violaki, Kalliopi; Ingall, Ellery D

    2016-07-01

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility. PMID:27286140

  7. Molecular composition of atmospheric aerosols from Halley Bay, Antarctica, using ultra-high resolution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Brough, Neil; Rincon, Angela; Jones, Anna; Kalberer, Markus

    2016-04-01

    Antarctica is one of the few pristine places to study natural processes of atmospheric aerosols and anthropogenic impacts on the clean remote atmosphere. Although stratospheric aerosol in Antarctica has now been explored in some detail because of the ozone depletion phenomenon, tropospheric aerosol particles in Antarctica remain very little studied. The main goal of this work is to identify in detail the organic chemical composition of aerosol from Halley Bay station, which is located on the Brunt Ice Shelf floating on the Weddell Sea in Antarctica. In this study we characterise the molecular composition of aerosols from three seasons (summer, autumn and winter in 2012) using ultra-high resolution mass spectrometry (UHRMS). The technique provides high accuracy and high mass resolving power that allows determining unambiguous number of organic compounds present in complex organic mixtures (Noziere et al., 2015). The molecular composition interpretation was facilitated using visualisation methods (e.g. double bond equivalent, Van Krevelen diagrams, Kendrick mass analysis, and carbon oxidation state), which allowed to identify patterns, such as differences between sampling times and atmospheric processes. The majority of the identified compounds were attributed to nitrogen and sulphur containing species which exhibited very strong seasonal trends. Relatively large fraction (up to 30% of the total number of molecules) of these species contained very low hydrogen to carbon ratios (below 1) indicating that the site is impacted by anthropogenic emissions. Influences of the meteorological parameters and air mass trajectories on the molecular composition are discussed. Nozière et al., The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges, Chem. Rev., 115, 3920-3983, 2015.

  8. Dynamic characteristics of piezoelectric shear deformable composite plates

    NASA Astrophysics Data System (ADS)

    Kolar, Ramesh

    2004-07-01

    Layered composites have attracted attention for their high specific stiffness, high specific strength, and application specific tailoring of their properties. It is also recognized that layered composites are prone to delamination failure in addition to other failure modes. Consideration of transverse shear on the deformation behavior of the composites is an important aspect in the study of delamination mode failure of such plates. In this paper, we consider the effects of including the transverse shear deformation on the vibration characteristics of layered piezoelectric composites. The formulation is based on the Raleigh-Ritz method using the beam characteristic functions. MATLAB based symbollic math tool box is used in evaluating th eintegrals resulting from the Raleigh Ritz approach. Various commonly occuring boundary conditions are discussed. Results are provided showing the effects of the shear deformation on the dynamics of layered laminated composites. The effects of laminate thickness, fiber orientation, and the plate aspect ratios on the free vibration characteristics of the composite laminates are given to demonstrate the methodology described.

  9. Isotopic composition of atmospheric nitrate in a tropical marine boundary layer

    PubMed Central

    Savarino, Joel; Morin, Samuel; Erbland, Joseph; Grannec, Francis; Patey, Matthew D.; Vicars, William; Alexander, Becky; Achterberg, Eric P.

    2013-01-01

    Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL. PMID:23431201

  10. Static stability and thermal wind in an atmosphere of variable composition Applications to Mars

    NASA Technical Reports Server (NTRS)

    Hess, S. L.

    1979-01-01

    Radiometric measurements of the temperature of the south polar cap of Mars in winter have yielded values significantly below the expected 148 K. One proposed explanation for this result is a substantial reduction in the CO2 content of the atmosphere and a lowering of the mean molecule weight near the surface. The meteorological consequences of this explanation are explored by deriving a criterion for vertical static stability and a thermal wind law for an atmosphere of variable composition. The atmosphere proves to be statically unstable unless the anomaly in the CO2 mixing ratio extends to heights of tens of kilometers. The effect of varying molecular weight exceeds the effect of temperature gradient, producing shears with height of reversed sign. The shears are baroclinically unstable, and this instability would eradicate the latitudinal gradient of molecular weight. This inconsistency can be resolved by invoking a reasonable elevation of the central polar cap and by imposing an adequate zonal wind. It is concluded that if the explanation requiring a change in atmospheric composition is correct, it must be accompanied by other special circumstances to make it meteorologically consistent.

  11. Tracing changes in atmospheric sources of lead contamination using lead isotopic compositions in Australian red wine.

    PubMed

    Kristensen, Louise Jane; Taylor, Mark Patrick; Evans, Andrew James

    2016-07-01

    Air quality data detailing changes to atmospheric composition from Australia's leaded petrol consumption is spatially and temporally limited. In order to address this data gap, wine was investigated as a potential proxy for atmospheric lead conditions. Wine spanning sixty years was collected from two wine regions proximal to the South Australian capital city, Adelaide, and analysed for lead concentration and lead and strontium isotopic composition for source apportionment. Maximum wine lead concentrations (328 μg/L) occur prior to the lead-in-air monitoring in South Australia in the later 1970s. Wine lead concentrations mirror available lead-in-air measurements and show a declining trend reflecting parallel reductions in leaded petrol emissions. Lead from petrol dominated the lead in wine ((206)Pb/(207)Pb: 1.086; (208)Pb/(207)Pb: 2.360) until the introduction of unleaded petrol, which resulted in a shift in the wine lead isotopic composition closer to vineyard soil ((206)Pb/(207)Pb: 1.137; (208)Pb/(207)Pb: 2.421). Current mining activities or vinification processes appear to have no impact with recent wine samples containing less than 4 μg/L of lead. This study demonstrates wine can be used to chronicle changes in environmental lead emissions and is an effective proxy for atmospherically sourced depositions of lead in the absence of air quality data. PMID:27037773

  12. Education and training in ACCENT - the European Network of Excellence in Atmospheric Composition Change

    NASA Astrophysics Data System (ADS)

    Schuepbach, E.

    2004-12-01

    This contribution focuses on opportunities for education and training activities in the new Network of Excellence (NoE) in Atmospheric Composition Change (ACCENT) of the European Union FP6 (2004-2008). ACCENT (see www.accent-network.org) aims at promoting a common European strategy for research on atmospheric composition sustainability, to develop and maintain durable means of communication and collaboration within the European scientific community, to facilitate this research and to optimise the interactions with policy-makers and the general public. These overall goals of ACCENT will be pursued through specific objectives which can be classified as (i) joint research programmes, (ii) tasks for integration and (iii) outreach tasks. Here, the strategies for education and training in ACCENT are outlined, and specific objectives and activities of the Task Education and Training for the first 18 months are presented. The aim of this contribution is to exchange and seek possibilities for international co-operation on education and training in atmospheric composition change.

  13. Higgs Discovery: Impact on Composite Dynamics Technicolor & eXtreme Compositeness Thinking Fast and Slow

    NASA Astrophysics Data System (ADS)

    Sannino, Francesco

    I discuss the impact of the discovery of a Higgs-like state on composite dynamics starting by critically examining the reasons in favour of either an elementary or composite nature of this state. Accepting the standard model interpretation I re-address the standard model vacuum stability within a Weyl-consistent computation. I will carefully examine the fundamental reasons why what has been discovered might not be the standard model Higgs. Dynamical electroweak breaking naturally addresses a number of the fundamental issues unsolved by the standard model interpretation. However this paradigm has been challenged by the discovery of a not-so-heavy Higgs-like state. I will therefore review the recent discovery1 that the standard model top-induced radiative corrections naturally reduce the intrinsic non-perturbative mass of the composite Higgs state towards the desired experimental value. Not only we have a natural and testable working framework but we have also suggested specic gauge theories that can realise, at the fundamental level, these minimal models of dynamical electroweak symmetry breaking. These strongly coupled gauge theories are now being heavily investigated via first principle lattice simulations with encouraging results. The new findings show that the recent naive claims made about new strong dynamics at the electroweak scale being disfavoured by the discovery of a not-so-heavy composite Higgs are unwarranted. I will then introduce the more speculative idea of extreme compositeness according to which not only the Higgs sector of the standard model is composite but also quarks and leptons, and provide a toy example in the form of gauge-gauge duality.

  14. The Structure and Dynamics of Titan's Middle Atmosphere and Troposphere

    NASA Technical Reports Server (NTRS)

    Flasar, F.M.; Achterberg, R.K.; Schinder, P.J.

    2009-01-01

    Titan, after Venus, is the second example in the solar system of an atmosphere with a global cyclostrophic circulation. The origin and maintenance of these superrotating atmospheres is not well understood, but Titan has a strong seasonal modulation in the middle atmosphere, and the seasonal changes in the winds may offer clues. The pole in winter and early spring is characterized by temperatures 20-30 K cooler at 140-170 km than those at low latitudes, and strong circumpolar winds as high as 190 m/s at 200- 250 km. At these levels the polar region is characterized by enhanced concentrations of several organic gases, and also detectable condensates. All this suggests that the polar vortex provides a mixing barrier between winter polar and lower-latitude air masses, analogous to the polar ozone holes on Earth. Because the concentrations of organic gases increase with altitude in the middle atmosphere, the observed enhancements suggest subsidence over the winter pole. Consistent with this are the observed temperatures approximately 200 K at the winter-polar stratopause (280 km), making it the warmest part of the atmosphere. The warm stratopause likely results from adiabatic heating associated with the subsidence. Recent observations in late northern winter and early spring indicate that the warm anomaly at the winter-polar stratopause is weakening;. In contrast to the middle atmosphere, latitude contrasts in tropospheric temperatures are muted. During the northern winter season, they were approximately 5 K at the tropopause and 3 K or less near the surface, being coldest at high northern latitudes. This is understandable in terms of the long radiative relaxation times in the troposphere, compared to times that are much shorter than a season in the upper stratosphere and higher. Curiously, the transition between the small meridional contrast (and presumably seasonal variations) in temperatures observed in the troposphere and the large variations observed at higher

  15. The Influence of CO2 Admixtures on the Product Composition in a Nitrogen-Methane Atmospheric Glow Discharge Used as a Prebiotic Atmosphere Mimic

    NASA Astrophysics Data System (ADS)

    Mazankova, V.; Torokova, L.; Krcma, F.; Mason, N. J.; Matejcik, S.

    2016-04-01

    This work extends our previous experimental studies of the chemistry of Titan's atmosphere by atmospheric glow discharge. The Titan's atmosphere seems to be similarly to early Earth atmospheric composition. The exploration of Titan atmosphere was initiated by the exciting results of the Cassini-Huygens mission and obtained results increased the interest about prebiotic atmospheres. Present work is devoted to the role of CO2 in the prebiotic atmosphere chemistry. Most of the laboratory studies of such atmosphere were focused on the chemistry of N2 + CH4 mixtures. The present work is devoted to the study of the oxygenated volatile species in prebiotic atmosphere, specifically CO2 reactivity. CO2 was introduced to the standard N2 + CH4 mixture at different mixing ratio up to 5 % CH4 and 3 % CO2. The reaction products were characterized by FTIR spectroscopy. This work shows that CO2 modifies the composition of the gas phase with the detection of oxygenated compounds: CO and others oxides. There is a strong influence of CO2 on increasing concentration other products as cyanide (HCN) and ammonia (NH3).

  16. Dynamic Data-Driven Event Reconstruction for Atmospheric Releases

    SciTech Connect

    Mirin, A; Serban, R; Kosovic, B

    2005-03-14

    This is a collaborative LDRD Exploratory Research project involving four directorates--Energy & Environment, Engineering, NAI and Computation. The project seeks to answer the following critical questions regarding atmospheric releases--''How much material was released? When? Where? and What are the potential consequences?'' Inaccurate estimation of the source term can lead to gross errors, time delays during a crisis, and even fatalities. We are developing a capability that seamlessly integrates observational data streams with predictive models in order to provide the best possible estimates of unknown source term parameters, as well as optimal and timely situation analyses consistent with both models and data. Our approach utilizes Bayesian inference and stochastic sampling methods (Markov Chain and Sequential Monte Carlo) to reformulate the inverse problem into a solution based on efficient sampling of an ensemble of predictive simulations, guided by statistical comparisons with data. We are developing a flexible and adaptable data-driven event-reconstruction capability for atmospheric releases that provides (1) quantitative probabilistic estimates of the principal source-term parameters (e.g., the time-varying release rate and location); (2) predictions of increasing fidelity as an event progresses and additional data become available; and (3) analysis tools for sensor network design and uncertainty studies. Our computational framework incorporates multiple stochastic algorithms, operates with a range and variety of atmospheric models, and runs on multiple computer platforms, from workstations to large-scale computing resources. Our final goal is a multi-resolution capability for both real-time operational response and high fidelity multi-scale applications.

  17. Change of the dynamics of heavy metals concentration in atmospheric precipitation in chatkal nature reservation of the republic of uzbekistan as anthropogenic index of the atmospheric pollution

    NASA Astrophysics Data System (ADS)

    Smirnova, T.; Tolkacheva, G.

    2003-04-01

    At present the investigation of the chemical composition of precipitation is a very actual task in the monitoring of environmental pollution. It is known that heavy metals can be the indices of the anthropogenic atmospheric pollution. The emissions from the mining enterprises, of non-ferrous metallurgy, of chemical industry, from heat-and-power production plants, from transport vehicles fare the sources of the heavy metals ingress into the atmosphere. Their emissions in atmosphere form fine-disperse aerosol fractions and afterwards they fall down together with precipitation onto the underlying surface. Heavy metals have the property of accumulation in environmental objects, which disturbs its ecological balance. One of the problems of the study of the influence of heavy metals pollution on the environment is their travel with the air masses of different origin on large distance. In this concern it is interesting to study the content of the heavy metals in atmospheric aerosols and precipitation in the background zones. Chatkal nature reservation on the territory of Tashkent province presents such background point. For the estimation of the level of atmospheric pollution by heavy metals and evaluation of the possible impact on the background level of air pollution of Chatkal nature reservation by anthropogenic sources (industrial cities of the capital province of Uzbekistan) the data analysis was carried out by the Administration of Environment Pollution Monitoring (AEPM) of hydrometeorological service of the Republic of Uzbekistan. It is necessary to mention that Chatkal biospheric nature reservation is situated in 100 km from Tashkent (the capital of the Republic of Uzbekistan) and in 60 km from Almalyk (the biggest centre of mining-metallurgical and chemical industry of the republic). The station of the complex background monitoring of atmospheric pollution (SCBM) is situated on the territory of this nature reservation. This area is characterized by a typical

  18. Atmospheric turbulence parameters for modeling wind turbine dynamics

    NASA Technical Reports Server (NTRS)

    Holley, W. E.; Thresher, R. W.

    1982-01-01

    A model which can be used to predict the response of wind turbines to atmospheric turbulence is given. The model was developed using linearized aerodynamics for a three-bladed rotor and accounts for three turbulent velocity components as well as velocity gradients across the rotor disk. Typical response power spectral densities are shown. The system response depends critically on three wind and turbulence parameters, and models are presented to predict desired response statistics. An equation error method, which can be used to estimate the required parameters from field data, is also presented.

  19. On the role of internal atmospheric variability in ENSO dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Li

    In the first part of this dissertation we use an Intermediate Coupled Model to develop a quantitative test to validate the null hypothesis that low-frequency variation of ENSO predictability may be caused by stochastic processes. Three "perfect model scenario" prediction experiments are carried out, where the model is forced either solely by stochastic forcing or additionally by decadal-varying backgrounds with different amplitudes. These experiments indicate that one can not simply reject the null hypothesis unless the decadal-varying backgrounds are unrealistically strong. The second part of this dissertation investigates the extent to which internal atmospheric variability (IAV) can influence ENSO variation, and examines the underlying physical mechanisms linking IAV to ENSO variability with the aid of a newly developed coupled model consisting of an atmospheric general circulation model and a Zebiak-Cane type of reduced gravity ocean model. A novel noise filter algorithm is developed to suppress IAV in the coupled model. A long control coupled simulation, where the filter is not employed, demonstrates that the coupled model captures many statistical properties of the observed ENSO behavior. It further shows that the development of El Nino is linked to a boreal spring phenomenon referred to as the Pacific Meridional Model (MM). The MM, characterized by an anomalous north-south SST gradient and anomalous surface circulation in the northeasterly trade regime with maximum variance in boreal spring, is inherent to thermodynamic ocean-atmosphere coupling in the Intertropical Convergence Zone latitude. The Northern Pacific Oscillation provides one source of external forcing to excite it. This result supports the hypothesis that the MM works as a conduit for extratropical atmospheric influence on ENSO. A set of coupled simulations, where the filter is used to suppress IAV, indicate that reducing IAV in both wind stress and heat flux substantially weakens ENSO variance

  20. An Exact Solvable Model of Rocket Dynamics in Atmosphere

    ERIC Educational Resources Information Center

    Rodrigues, H.; Pinho, M. O.; Portes, D., Jr.; Santiago, A.

    2009-01-01

    In basic physics courses at undergraduate level, the dynamics of self-propelled bodies is presented as an example of momentum conservation law applied to systems with time-varying mass. However, is often studied the simple situation of free motion or the motion under the action of a constant gravitational field. In this work, we investigate the…

  1. The dynamic response of carbon fiber-filled polymer composites

    NASA Astrophysics Data System (ADS)

    Dattelbaum, D. M.; Gustavsen, R. L.; Sheffield, S. A.; Stahl, D. B.; Scharff, R. J.; Rigg, P. A.; Furmanski, J.; Orler, E. B.; Patterson, B.; Coe, J. D.

    2012-08-01

    The dynamic (shock) responses of two carbon fiber-filled polymer composites have been quantified using gas gun-driven plate impact experimentation. The first composite is a filament-wound, highly unidirectional carbon fiber-filled epoxy with a high degree of porosity. The second composite is a chopped carbon fiber- and graphite-filled phenolic resin with little-to-no porosity. Hugoniot data are presented for the carbon fiber-epoxy (CE) composite to 18.6 GPa in the through-thickness direction, in which the shock propagates normal to the fibers. The data are best represented by a linear Rankine-Hugoniot fit: Us = 2.87 + 1.17 ×up(ρ0 = 1.536g/cm3). The shock wave structures were found to be highly heterogeneous, both due to the anisotropic nature of the fiber-epoxy microstructure, and the high degree of void volume. Plate impact experiments were also performed on a carbon fiber-filled phenolic (CP) composite to much higher shock input pressures, exceeding the reactants-to-products transition common to polymers. The CP was found to be stiffer than the filament-wound CE in the unreacted Hugoniot regime, and transformed to products near the shock-driven reaction threshold on the principal Hugoniot previously shown for the phenolic binder itself. [19] On-going research is focused on interrogating the direction-dependent dyanamic response and dynamic failure strength (spall) for the CE composite in the TT and 0∘ (fiber) directions.

  2. The structure and dynamics of Titan's middle atmosphere.

    PubMed

    Flasar, F M; Achterberg, R K

    2009-02-28

    Titan's middle atmosphere is characterized by cyclostrophic winds and strong seasonal modulation. Cassini CIRS observations, obtained in northern winter, indicate that the stratosphere near 1mbar is warmest at low latitudes, with the South Pole a few degrees colder and the North Pole approximately 20K colder. Associated with the cold northern temperatures are strong circumpolar winds with speeds as high as 190ms-1. Within this vortex, the mixing ratios of several organic gases are enhanced relative to those at low latitudes. Comparison with Voyager thermal infrared measurements, obtained 25 years ago in northern spring, suggests that the enhancement currently observed will increase as the winter progresses. The stratopause height increases from 0.1mbar near the equator to 0.01mbar near the North Pole, where it is the warmest part of the atmosphere, greater than 200K. This implies subsidence at the pole, which is consistent with the enhanced organics observed. Condensate features, several still not identified, are also apparent in the infrared spectra at high northern latitudes. In many ways, the winter vortex observed on Titan, with cyclostrophic winds, resembles the polar winter vortices on the Earth, where the mean winds are geostrophic. PMID:19073460

  3. The Structure and Dynamics of Titan's Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Achterberg, R. K.

    2008-01-01

    Titan's middle atmosphere is characterized by cyclostrophic winds and strong seasonal modulation. Cassini CIRS observations, obtained in northern winter, indicate that the stratosphere near l mbar is warmest at low latitudes, with the South Pole a few degrees colder and the North Pole approximately 20 K colder. Associated with the cold northern temperatures are strong circumpolar winds with speeds as high as 190 m/s. Within this vortex, the mixing ratios of several organic gases are enhanced relative to those at low latitudes. Comparison with Voyager thermal infrared measurements, obtained 25 years ago in northern spring, suggests that the enhancement currently observed will increase as the winter progresses. The stratopause height, increases from 0.1 mbar near the equator to 0.01 mbar near the North Pole, where it is the warmest part of the atmosphere, greater than 200 K. This implies subsidence at the pole, which is consistent with the enhanced organics observed. Condensate features, several still not identified, are also apparent in the infrared spectra at high northern latitudes. In many ways, the winter vortex observed on Titan, with cyclostrophic winds, resembles the polar winter vortices on the Earth, where the mean winds are geostrophic.

  4. The Atmospheric Dynamics of Jupiter, Saturn, and Titan

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.

    2009-01-01

    Comparative studies of Jupiter and Saturn often emphasize their similarities, but recent observations have highlighted important differences. The stratospheres of both planets exhibit an equatorial oscillation reminiscent of that in Earth's middle atmosphere. Jupiter's oscillation has a 4-5 year period, not linked to its season, and it has been modeled as an analog to the terrestrial quasi-biennial oscillation, driven by the stresses associated with vertically propagating waves. Saturn's equatorial oscillation is nearly semiannual, but wave activity may still be a driver. Jupiter's internal rotation rate is inferred from its steady modulated radio emission. Saturn's internal rotation is more enigmatic. It has been inferred from the modulation of the body's kilometric radio emission, but this period has varied by 1% over the last 25 years. Saturn's equatorial winds are also puzzling, as those inferred from cloud tracking by Cassini and more recent HST observations are weaker than those from Voyager. Whether this is attributable to a difference in altitudes of the tracked clouds in winds with vertical shear or a real temporal change in the winds is not known. Both winter and summer poles of Saturn exhibit very compact circumpolar vortices with warm cores, indicating subsidence. Titan's middle atmosphere is characterized by global cyclostrophic winds, particularly the strong circumpolar vortex in the winter hemisphere. In many ways, the spatial distribution of temperature, gaseous constituents, and condensates is reminiscent of conditions in terrestrial winter vortices, albeit with different chemistry. The meridional contrast in Titan's tropospheric temperatures is small, only a few kelvins.

  5. Retrieval of Mars' Upper Atmospheric Composition using Dayglow Observations by IUVS on MAVEN

    NASA Astrophysics Data System (ADS)

    Correira, J.; Evans, J. S.; Stevens, M. H.; Lumpe, J. D., Jr.; Schneider, N. M.; Stewart, I. F.; Deighan, J.; Jain, S.; Chaffin, M.; Crismani, M. M. J.; Stiepen, A.; McClintock, B.; Holsclaw, G.; Lefèvre, F.; Lo, D.; Clarke, J. T.; Epavier, F.; Thiemann, E.; Chamberlin, P. C.; Bougher, S. W.; Bell, J. M.; Mahaffy, P. R.; Benna, M.; Jakosky, B. M.

    2015-12-01

    We present direct retrievals of neutral and ion number densities in Mars's upper atmosphere using FUV and MUV dayglow observations from 130 - 200 km. Atmospheric composition is inferred using the Atmospheric Ultraviolet Radiance Integrated Code [Strickland et al., 1999] adapted to the Martian atmosphere [Evans et al., 2015]. For our retrievals we use emission features observed by IUVS on MAVEN under daytime conditions over both northern and southern hemispheres from October 2014 to September 2015. We use retrieved CO2 densities to derive temperature variability between 150 - 220 km. We also investigate the sensitivity of neutral and ion density retrievals to variability in solar irradiance, solar longitude, and local time. We compare our retrievals to predictions from the Mars Global Ionosphere-Thermosphere Model [MGITM, Bougher et al., 2015], as well as in situ measurements by the Neutral Gas Ionizing Mass Spectrometer [NGIMS, Mahaffy et al., 2014], and quantify the differences throughout the altitude region of interest. The N2/CO2 ratio is used to show that N2 is in the diffusively separated region of the Martian atmosphere with a mean mixing ratio that is consistent with model predictions from MGITM, as well as in situ measurements by Viking 1 & 2 [Nier and McElroy, 1977] and NGIMS.

  6. Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system

    NASA Astrophysics Data System (ADS)

    Fang, Jiabei; Yang, Xiu-Qun

    2015-12-01

    The structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system are examined in this study, using the NCEP/NCAR atmospheric reanalysis, HadISST SST and Simple Ocean Data Assimilation data for 1960-2010. The midlatitude decadal anomalies associated with the Pacific Decadal Oscillation are identified, being characterized by an equivalent barotropic atmospheric low (high) pressure over a cold (warm) oceanic surface. Such a unique configuration of decadal anomalies can be maintained by an unstable ocean-atmosphere interaction mechanism in the midlatitudes, which is hypothesized as follows. Associated with a warm PDO phase, an initial midlatitude surface westerly anomaly accompanied with intensified Aleutian low tends to force a negative SST anomaly by increasing upward surface heat fluxes and driving southward Ekman current anomaly. The SST cooling tends to increase the meridional SST gradient, thus enhancing the subtropical oceanic front. As an adjustment of the atmospheric boundary layer to the enhanced oceanic front, the low-level atmospheric meridional temperature gradient and thus the low-level atmospheric baroclinicity tend to be strengthened, inducing more active transient eddy activities that increase transient eddy vorticity forcing. The vorticity forcing that dominates the total atmospheric forcing tends to produce an equivalent barotropic atmospheric low pressure north of the initial westerly anomaly, intensifying the initial anomalies of the midlatitude surface westerly and Aleutian low. Therefore, it is suggested that the midlatitude ocean-atmosphere interaction can provide a positive feedback mechanism for the development of initial anomaly, in which the oceanic front and the atmospheric transient eddy are the indispensable ingredients. Such a positive ocean-atmosphere feedback mechanism is fundamentally responsible for the observed decadal anomalies in the midlatitude North Pacific ocean-atmosphere

  7. Cold-atmospheric pressure plasma polymerization of acetylene on wood flour for improved wood plastics composites

    NASA Astrophysics Data System (ADS)

    Lekobou, William; Pedrow, Patrick; Englund, Karl; Laborie, Marie-Pierre

    2009-10-01

    Plastic composites have become a large class of construction material for exterior applications. One of the main disadvantages of wood plastic composites resides in the weak adhesion between the polar and hydrophilic surface of wood and the non-polar and hydrophobic polyolefin matrix, hindering the dispersion of the flour in the polymer matrix. To improve interfacial compatibility wood flour can be pretreated with environmentally friendly methods such as cold-atmospheric pressure plasma. The objective of this work is therefore to evaluate the potential of plasma polymerization of acetylene on wood flour to improve the compatibility with polyolefins. This presentation will describe the reactor design used to modify wood flour using acetylene plasma polymerization. The optimum conditions for plasma polymerization on wood particles will also be presented. Finally preliminary results on the wood flour surface properties and use in wood plastic composites will be discussed.

  8. Atmospheric-pressure-plasma-jet sintered nanoporous AlN/CNT composites

    NASA Astrophysics Data System (ADS)

    Chiu, Yi-Fan; Yeh, Po-Wei; Cheng, I.-Chun; Chen, Jian-Zhang

    2016-07-01

    A nanoporous AlN-5 wt% CNT composite is successfully sintered using atmospheric-pressure plasma jets (APPJs). The AlN in an APPJ-sintered AlN/CNT composite shows a pure hexagonal [space group: P63mc] crystal structure. Optical emission spectroscopy (OES) results indicate that the CN violet emission intensity rapidly increases and then decreases owing to the vigorous interaction between the nitrogen APPJ and the carbonaceous materials in the printed pastes. Because the vigorous interaction may over-burn the CNTs, the conductivity of AlN first increases and then decreases as the APPJ sintering duration increases. APPJ-sintered AlN/CNT composites exhibit good CF4 inductively coupled plasma erosion resistant property.

  9. Lunar atmosphere. How surface composition and meteoroid impacts mediate sodium and potassium in the lunar exosphere.

    PubMed

    Colaprete, A; Sarantos, M; Wooden, D H; Stubbs, T J; Cook, A M; Shirley, M

    2016-01-15

    Despite being trace constituents of the lunar exosphere, sodium and potassium are the most readily observed species due to their bright line emission. Measurements of these species by the Ultraviolet and Visible Spectrometer (UVS) on the Lunar Atmosphere and Dust Environment Explorer (LADEE) have revealed unambiguous temporal and spatial variations indicative of a strong role for meteoroid bombardment and surface composition in determining the composition and local time dependence of the Moon's exosphere. Observations show distinct lunar day (monthly) cycles for both species as well as an annual cycle for sodium. The first continuous measurements for potassium show a more repeatable variation across lunations and an enhancement over KREEP (Potassium Rare Earth Elements and Phosphorus) surface regions, revealing a strong dependence on surface composition. PMID:26678876

  10. Dynamic Data-Driven Event Reconstruction for Atmospheric Releases

    SciTech Connect

    Sugiyama, G; Kosovic, B; Hanley, W; Johannesson, G; Larsen, S; Loosmore, G; Lundquist, J; Mirin, A; Nitao, J; Serban, R; Dyer, K

    2004-10-13

    For atmospheric releases, event reconstruction answers the critical questions - How much material was released? When? Where? and What are the potential consequences? Inaccurate estimation of the source term can lead to gross errors, time delays during a crisis, and even fatalities. We are developing a capability that seamlessly integrates observational data streams with predictive models in order to provide the best possible estimates of unknown source term parameters, as well as optimal and timely situation analyses consistent with both models and data. Our approach utilizes Bayesian inference and stochastic sampling methods (Markov Chain and Sequential Monte Carlo) to reformulate the inverse problem into a solution based on efficient sampling of an ensemble of predictive simulations, guided by statistical comparisons with data.

  11. Impact of electron chemistry on the structure and composition of Io's atmosphere

    NASA Astrophysics Data System (ADS)

    Smyth, William H.; Wong, M. C.

    2004-09-01

    Two-dimensional model calculations (altitude and solar zenith angle) are performed to investigate the impact of electron chemistry on the composition and structure of Io's atmosphere. The calculations are based upon the model of Wong and Smyth (2000, Icarus 146, 60-74) for Io's SO 2 sublimation atmosphere with the addition of new electron chemistry, where the interactions of the electrons and neutrals are treated in a simple fashion. The model calculations are presented for Io's atmosphere at western elongation (dusk ansa) for both a low-density case (subsolar temperature of 113 K) and a high-density case (subsolar temperature of 120 K). The impact of electron-neutral chemistry on the composition and structure of Io's atmosphere is confined primarily to an interaction layer. The penetration depth of the interaction layer is limited to high altitudes in the thicker dayside atmosphere but reaches the surface in the thinner dayside and/or nightside atmosphere at larger solar zenith angles. Within most of the thicker dayside atmosphere, the column density of SO 2 is not significantly altered by electrons, but in the interaction layer all number densities are significantly altered: SO 2 is reduced, O, SO, S, and O 2 are greatly enhanced, and O, SO, and S become comparable to SO 2 at high altitudes. For the thinner nightside atmosphere, the species number densities are dramatically altered: SO 2 is drastically reduced to the least abundant species of the SO 2 family, SO and O 2 are significantly reduced at all altitudes, and O and S are dramatically enhanced and become the dominant species at all altitudes except near the surface. The interaction layer also defines the location of the emission layer for neutrals excited by electron impact and hence determines the fraction of the total neutral column density that is visible in remote observation. Electron chemistry may also impact the ratio of the equatorial to polar SO 2 column density deduced from Lyman- α images and

  12. Characterization of dental composite curing kinetics using dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Wells-Gray, Elaine M.; Kirkpatrick, Sean J.; Sakaguchi, Ron L.

    2009-02-01

    Polymer resin composites are a class of widely used restorative dental materials that undergo a complex polymerization curing process that has been the subject of substantial research. This study uses speckle correlation methods based on dynamic light scattering as a tool to monitor the rate and extent of dental composite polymerization during and after photo-curing. Thin disc-shaped samples (<2mm) were constructed using composite consisting of 50:50 BisGMA/TEGDMA resin, quartz silica filler particles, and camphorquinone as photo-initiator. A 633 nm HeNe laser beam was used to probe the top surface of the sample via a backscattered speckle pattern, while the bottom surface was illuminated with a halogen curing lamp (peak wavelength=470nm) to initiate the polymerization reaction. The speckle patterns were recorded with a CCD camera, and stored as a 'speckle cube' for post processing. Correlation values of the intensity fluctuation were calculated on a pixel-by-pixel basis for pairs of subsequent speckle images and then ensemble averaged. Results show a sharp decrease in correlation at the onset of curing, indicating a large amount of double bond conversion and movement within the composite. Correlation values then quickly increase, eventually reaching a plateau near unity, indicating cessation of molecular rearrangement. The kinetic behavior demonstrated by our correlation curves are in good agreement with curing data found in the literature, and demonstrate the usefulness of this technique for monitoring dental composite curing.

  13. Atmospheric dynamics. Constrained work output of the moist atmospheric heat engine in a warming climate.

    PubMed

    Laliberté, F; Zika, J; Mudryk, L; Kushner, P J; Kjellsson, J; Döös, K

    2015-01-30

    Incoming and outgoing solar radiation couple with heat exchange at Earth's surface to drive weather patterns that redistribute heat and moisture around the globe, creating an atmospheric heat engine. Here, we investigate the engine's work output using thermodynamic diagrams computed from reanalyzed observations and from a climate model simulation with anthropogenic forcing. We show that the work output is always less than that of an equivalent Carnot cycle and that it is constrained by the power necessary to maintain the hydrological cycle. In the climate simulation, the hydrological cycle increases more rapidly than the equivalent Carnot cycle. We conclude that the intensification of the hydrological cycle in warmer climates might limit the heat engine's ability to generate work. PMID:25635098

  14. The atmospheric structure and dynamical properties of Neptune derived from ground-based and IUE spectrophotometry

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Smith, Wm. Hayden

    1990-01-01

    A wide range of recent full-disk spectral observations is used to constrain the atmospheric structure and dynamical properties of Neptune; analytical determinations are made of the abundances of such spectrally active gas species as the deep-atmosphere CH4 molar fraction and the mean ortho/para hydrogen ratio in the visible atmosphere, as well as stratospheric and tropospheric aerosol properties. Compared to Uranus, the greater abundance and shorter lifetimes of Neptunian particulates in the stratospheric region irradiated by the solar UV flux indicate that such radiation is the darkening agent of stratospheric aerosols on both planets.

  15. Atmospheric dynamics in Laboratory Biosphere with wheat and sweet potato crops

    NASA Astrophysics Data System (ADS)

    Dempster, W. F.; Allen, J. P.; Alling, A.; Nelson, M.; Silvertone, S.; van Thillo, M.

    Laboratory Biosphere is a 40 m3 closed life system equipped with 12000 watts of high pressure sodium lamps over planting beds with 5.37 m2 of soil. Atmospheric composition changes due to photosynthetic fixation of carbon dioxide and corresponding production of oxygen or the reverse, respiration, are observed in short timeframes, eg. hourly. To focus on inherent characteristics of the crop as distinct from its area or the volume of the chamber, we report fixation and respiration rates in millimoles per hour per square meter of planted area. An 85 day crop of USU Apogee wheat under a 16 hour lighted / 8 hour dark regime peaked in fixation rate at about 100 mmol h-1 m-2 approximately 24 days after planting. Light intensity was about 840 mol m-2 s-1. Dark respiration peaked at about 31 mmol h-1 m-2 at the same time. Thereafter, both fixation and respiration declined toward zero as harvest time approached. A residual soil respiration rate of about 1.9 mmol h-1 m-2 was observed in the dark closed chamber for 100 days after the harvest. A 126 day crop of Tuskegee TU-82-155 sweet potato behaved quite differently. Under a 680 mol m-2 s-1, 18 hour lighted / 6 hour dark regime, fixation during lighted hours rose to a plateau ranging from about 27 to 48 mmol h-1 m-2 after 42 days and respiration settled into a range of 12 to 23 mmol h-1 m-2. These rates continued unabated until the harvest at 126 days, suggesting that tuber biomass production might have continued at about the same rate for some time beyond the harvest time that was exercised in this experiment. In both experiments CO2 levels were allowed to range widely from a few hundred ppm to about 3000 ppm, which permitted observation of fixation rates both at varying CO2 concentrations and at each number of days after planting. This enables plotting the fixation rate as a function of both variables. Understanding the atmospheric dynamics of individual crops will be essential for design and atmospheric management of more

  16. Atmospheric dynamics in the “Laboratory Biosphere” with wheat and sweet potato crops

    NASA Astrophysics Data System (ADS)

    Dempster, William F.; Allen, J. P.; Alling, A.; Silverstone, S.; Van Thillo, M.

    Laboratory Biosphere is a 40-m 3 closed life system equipped with 12,000 W of high pressure sodium lamps over planting beds with 5.37 m 2 of soil. Atmospheric composition changes due to photosynthetic fixation of carbon dioxide and corresponding production of oxygen or the reverse, respiration, are observed in short timeframes, e.g., hourly. To focus on inherent characteristics of the crop as distinct from its area or the volume of the chamber, we report fixation and respiration rates in mmol h -1 m -2 of planted area. An 85-day crop of USU Apogee wheat under a 16-h lighted/8-h dark regime peaked in fixation rate at about 100 mmol h -1 m -2 approximately 24 days after planting. Light intensity was about 840 μmol m -2 s -1. Dark respiration peaked at about 31 mmol h -1 m -2 at the same time. Thereafter, both fixation and respiration declined toward zero as harvest time approached. A residual soil respiration rate of about 1.9 mmol h -1 m -2 was observed in the dark closed chamber for 100 days after the harvest. A 126-day crop of Tuskegee TU-82-155 sweet potato behaved quite differently. Under a 680 μmol m -2 s -1, 18-h lighted/6-h dark regime, fixation during lighted hours rose to a plateau ranging from about 27 to 48 mmol h -1 m -2 after 42 days and dark respiration settled into a range of 12-23 mmol h -1 m -2. These rates continued unabated until the harvest at 126 days, suggesting that tuber biomass production might have continued at about the same rate for some time beyond the harvest time that was exercised in this experiment. In both experiments CO 2 levels were allowed to range widely from a few hundred to about 3000 ppm, which permitted observation of fixation rates both at varying CO 2 concentrations and at each number of days after planting. This enables plotting the fixation rate as a function of both variables. Understanding the atmospheric dynamics of individual crops will be essential for design and atmospheric management of more complex CELSS which

  17. Small error dynamics and the predictability of atmospheric flows

    NASA Technical Reports Server (NTRS)

    Farrell, Brian F.

    1990-01-01

    In this paper, linear small-error theory is applied to the study of weather predictability. A simple baroclinic shear model and a barotropic channel model with a localized jet are used as examples. It is shown that increase in error on synoptic forecast time scales is controlled by rapidly growing perturbations that are not of normal mode form. Unpredictable regimes are not necessarily associated with larger exponential growth rates than are relatively more predictable regimes. Model problems illustrating baroclinic and barotropic dynamics suggest that asymptotic measures of divergence in phase space, while applicable in the limit of infinite time, may not be appropriate over time intervals addressed by present synoptic forecast.

  18. Constraining the Atmospheric Composition of the Day-Night Terminators of HD 189733b: Atmospheric Retrieval with Aerosols

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Min; Irwin, Patrick G. J.; Fletcher, Leigh N.; Heng, Kevin; Barstow, Joanna K.

    2014-07-01

    A number of observations have shown that Rayleigh scattering by aerosols dominates the transmission spectrum of HD 189733b at wavelengths shortward of 1 μm. In this study, we retrieve a range of aerosol distributions consistent with transmission spectroscopy between 0.3-24 μm that were recently re-analyzed by Pont et al. To constrain the particle size and the optical depth of the aerosol layer, we investigate the degeneracies between aerosol composition, temperature, planetary radius, and molecular abundances that prevent unique solutions for transit spectroscopy. Assuming that the aerosol is composed of MgSiO3, we suggest that a vertically uniform aerosol layer over all pressures with a monodisperse particle size smaller than about 0.1 μm and an optical depth in the range 0.002-0.02 at 1 μm provides statistically meaningful solutions for the day/night terminator regions of HD 189733b. Generally, we find that a uniform aerosol layer provide adequate fits to the data if the optical depth is less than 0.1 and the particle size is smaller than 0.1 μm, irrespective of the atmospheric temperature, planetary radius, aerosol composition, and gaseous molecules. Strong constraints on the aerosol properties are provided by spectra at wavelengths shortward of 1 μm as well as longward of 8 μm, if the aerosol material has absorption features in this region. We show that these are the optimal wavelengths for quantifying the effects of aerosols, which may guide the design of future space observations. The present investigation indicates that the current data offer sufficient information to constrain some of the aerosol properties of HD189733b, but the chemistry in the terminator regions remains uncertain.

  19. Constraining the atmospheric composition of the day-night terminators of HD 189733b: Atmospheric retrieval with aerosols

    SciTech Connect

    Lee, Jae-Min; Irwin, Patrick G. J.; Fletcher, Leigh N.; Barstow, Joanna K.; Heng, Kevin

    2014-07-01

    A number of observations have shown that Rayleigh scattering by aerosols dominates the transmission spectrum of HD 189733b at wavelengths shortward of 1 μm. In this study, we retrieve a range of aerosol distributions consistent with transmission spectroscopy between 0.3-24 μm that were recently re-analyzed by Pont et al. To constrain the particle size and the optical depth of the aerosol layer, we investigate the degeneracies between aerosol composition, temperature, planetary radius, and molecular abundances that prevent unique solutions for transit spectroscopy. Assuming that the aerosol is composed of MgSiO{sub 3}, we suggest that a vertically uniform aerosol layer over all pressures with a monodisperse particle size smaller than about 0.1 μm and an optical depth in the range 0.002-0.02 at 1 μm provides statistically meaningful solutions for the day/night terminator regions of HD 189733b. Generally, we find that a uniform aerosol layer provide adequate fits to the data if the optical depth is less than 0.1 and the particle size is smaller than 0.1 μm, irrespective of the atmospheric temperature, planetary radius, aerosol composition, and gaseous molecules. Strong constraints on the aerosol properties are provided by spectra at wavelengths shortward of 1 μm as well as longward of 8 μm, if the aerosol material has absorption features in this region. We show that these are the optimal wavelengths for quantifying the effects of aerosols, which may guide the design of future space observations. The present investigation indicates that the current data offer sufficient information to constrain some of the aerosol properties of HD189733b, but the chemistry in the terminator regions remains uncertain.

  20. Dynamic responses of atmospheric carbon dioxide concentration to global temperature changes between 1850 and 2010

    NASA Astrophysics Data System (ADS)

    Wang, Weile; Nemani, Ramakrishna

    2016-02-01

    Changes in Earth's temperature have significant impacts on the global carbon cycle that vary at different time scales, yet to quantify such impacts with a simple scheme is traditionally deemed difficult. Here, we show that, by incorporating a temperature sensitivity parameter (1.64 ppm yr-1 °C-1) into a simple linear carbon-cycle model, we can accurately characterize the dynamic responses of atmospheric carbon dioxide (CO2) concentration to anthropogenic carbon emissions and global temperature changes between 1850 and 2010 ( r 2 > 0.96 and the root-mean-square error < 1 ppm for the period from 1960 onward). Analytical analysis also indicates that the multiplication of the parameter with the response time of the atmospheric carbon reservoir (~12 year) approximates the long-term temperature sensitivity of global atmospheric CO2 concentration (~15 ppm °C-1), generally consistent with previous estimates based on reconstructed CO2 and climate records over the Little Ice Age. Our results suggest that recent increases in global surface temperatures, which accelerate the release of carbon from the surface reservoirs into the atmosphere, have partially offset surface carbon uptakes enhanced by the elevated atmospheric CO2 concentration and slowed the net rate of atmospheric CO2 sequestration by global land and oceans by ~30% since the 1960s. The linear modeling framework outlined in this paper thus provides a useful tool to diagnose the observed atmospheric CO2 dynamics and monitor their future changes.

  1. Investigating Atmospheric Oxidation with Molecular Dynamics Imaging and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Merrill, W. G.; Case, A. S.; Keutsch, F. N.

    2013-06-01

    Volatile organic compounds (VOCs) in the Earth's atmosphere constitute trace gas species emitted primarily from the biosphere, and are the subject of inquiry for a variety of air quality and climate studies. Reactions intiated (primarily) by the hydroxyl radical (OH) lead to a myriad of oxygenated species (OVOCs), which in turn are prone to further oxidation. Investigations of the role that VOC oxidation plays in tropospheric chemistry have brought to light two troubling scenarios: (1) VOCs are responsible in part for the production of two EPA-regulated pollutants---tropospheric ozone and organic aerosol---and (2) the mechanistic details of VOC oxidation remain convoluted and poorly understood. The latter issue hampers the implementation of near-explicit atmospheric simulations, and large discrepancies in OH reactivity exist between measurements and models at present. Such discrepancies underscore the need for a more thorough description of VOC oxidation. Time-of-flight measurements and ion-imaging techniques are viable options for resolving some of the mechanistic and energetic details of VOC oxidation. Molecular beam studies have the advantage of foregoing unwanted bimolecular reactions, allowing for the characterization of specific processes which must typically compete with the complex manifold of VOC oxidation pathways. The focus of this work is on the unimolecular channels of organic peroxy radical intermediates, which are necessarily generated during VOC oxidation. Such intermediates may isomerize and decompose into distinct chemical channels, enabling the unambiguous detection of each pathway. For instance, a (1 + 1') resonance enhanced multiphoton ionization (REMPI) scheme may be employed to detect carbon monoxide generated from a particular unimolecular process. A number of more subtle mechanistic details may be explored as well. By varying the mean free path of the peroxy radicals in a flow tube, the role of collisional quenching in these unimolecular

  2. Evaluating Changes In the Elemental Composition of Micrometeorites During Entry into the Earth’s Atmosphere

    NASA Astrophysics Data System (ADS)

    Rudraswami, N. G.; Shyam Prasad, M.; Dey, S.; Plane, J. M. C.; Feng, W.; Taylor, S.

    2015-11-01

    We evaluate the heating of extraterrestrial particles entering the atmosphere using the comprehensive chemical ablation model (CABMOD). This model predicts the ablation rates of individual elements in a particle with a defined size, composition, entry velocity, and entry angle with respect to the zenith (ZA). In the present study, bulk chemical analyses of 1133 Antarctica micrometeorites (collected from the south pole water well) are interpreted using CABMOD. The marked spread in Fe/Si values in unmelted, partially melted, and melted micrometeorites is explained by the loss of relatively volatile Fe during atmospheric entry. The combined theoretical modeling and elemental composition of the micrometeorites (Mg/Si ratios) suggest that ˜85% of particles have a provenance of carbonaceous chondrites, the remaining ˜15% are either ordinary or enstatite chondrites. About 65% of the micrometeorites have undergone <20% ablation, while a further 20% have lost between 20% and 60% of their original mass. This has implications for understanding the micrometeorite flux that reaches the Earth's surface, as well as estimating the pre-atmospheric size of the particles. Our work shows that the unmelted particles that contribute ˜50% to the total micrometeorite collection on Earth's surface have a small entry zone: ZA = 60°-90° if the entry velocity is ˜11 km s-1, and ZA = 80°-90° for >11-21 km s-1.

  3. Laboratory analogues simulating Titan's atmospheric aerosols: Compared chemical compositions of grains and thin films

    NASA Astrophysics Data System (ADS)

    Carrasco, Nathalie; Jomard, François; Vigneron, Jackie; Etcheberry, Arnaud; Cernogora, Guy

    2016-09-01

    Two sorts of solid organic samples can be produced in laboratory experiments simulating Titan's atmospheric reactivity: grains in the volume and thin films on the reactor walls. We expect that grains are more representative of Titan's atmospheric aerosols, but films are used to provide optical indices for radiative models of Titan's atmosphere. The aim of the present study is to address if these two sorts of analogues are chemically equivalent or not, when produced in the same N2-CH4 plasma discharge. The chemical compositions of both these materials are measured by using elemental analysis, XPS analysis and Secondary Ion Mass Spectrometry. The main parameter probed is the CH4/N2 ratio to explore various possible chemical regimes. We find that films are homogeneous but significantly less rich in nitrogen and hydrogen than grains produced in the same experimental conditions. This surprising difference in their chemical compositions could be explained by the efficient etching occurring on the films, which stay in the discharge during the whole plasma duration, whereas the grains are ejected after a few minutes. The higher nitrogen content in the grains possibly involves a higher optical absorption than the one measured on the films, with a possible impact on Titan's radiative models.

  4. Changes in shape and composition of sea-salt particles upon aging in an urban atmosphere

    NASA Astrophysics Data System (ADS)

    Adachi, Kouji; Buseck, Peter R.

    2015-01-01

    Sea salt is one of the most abundant types of natural aerosol particles and significantly influences local and global climate. It is an important constituent of samples collected between June 10 and 15 in the Los Angeles area during the 2010 CalNex campaign. The sea-salt particles reacted with other species in the atmosphere and became Na-bearing aerosol (NaA) particles. Using transmission electron microscopy, we found that Na occurred in almost half of all analyzed particles (∼3500), although commonly only in minor amounts. Almost all the NaA particles contained S but not Cl, suggesting that Cl was depleted through particle formation to sulfate, nitrate, or both in the urban atmosphere. We observed both rounded and euhedral NaA particles. The rounded ones consisted mainly of aged sea salt (>12 h) that had reacted extensively with sulfate, whereas the euhedral ones occurred in samples from relatively fresh marine air. The shapes and compositions of NaA particles changed within 3 h in the urban atmosphere. Moreover, our calculations indicate that light scattering from NaA particles depends on their shapes (e.g., roughly spherical, flat, or elongated). These compositions and shapes affect hygroscopicities and light scattering, respectively, both of which influence their climate effects.

  5. The Sturgeon Falls paleosol and the composition of the atmosphere 1.1 Ga BP

    NASA Technical Reports Server (NTRS)

    Zbinden, E. A.; Holland, H. D.; Feakes, C. R.

    1988-01-01

    A paleosol is exposed along the north bank of the Sturgeon River, some 25 km SW of Baraga, Michigan. The paleosol was developed on hydrothermally altered Keweenawan basalt and is overlain by the Jacobsville sandstone. Textures, mineralogy, and chemical composition change gradually upwards from unweathered metabasalt, through the paleosol, to the contact of the paleosol with the Jacobsville sandstone. Many of these changes are similar to those in modern soils developed on basaltic rocks. However, K has clearly been added to the paleosol, probably by solutions which had equilibrated with K-feldspar in the Jacobsville sandstone. The Keweenawan basalt was oxidized quite extensively during its conversion to greenstone. During weathering, the remaining Fe2+ was oxidized to Fe3+ and was retained in the paleosol. The composition of the parent greenstone and its change during weathering can be used to define an approximate lower limit to the ratio of the O2 pressure to the CO2 pressure in the atmosphere during the formation of the paleosol [formula: see text]. Free O2 must have been present in the atmosphere 1.1 Ga ago, but its partial pressure could have been 10(3) times lower than in the atmosphere today.

  6. Three-dimensional dynamical and chemical modelling of the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.; Alyea, F. N.; Cunnold, D. M.

    1976-01-01

    Progress in coding a 3-D upper atmospheric model and in modeling the ozone perturbation resulting from the shuttle booster exhaust is reported. A time-dependent version of a 2-D model was studied and the sulfur cycle in the stratosphere was investigated. The role of meteorology in influencing stratospheric composition measurements was also studied.

  7. Atmospheric Dynamics of Luminous Late-Type Stars

    NASA Astrophysics Data System (ADS)

    Airapetian, V. S.; Ofman, L.; Robinson, R. D.; Carpenter, K.; Davila, J.

    We present first results of magnetohydrodynamic (MHD) calculations of winds from luminous late-type stars using an existing, 2.5D, non-linear MHD code recently developed by Ofman & Davila (e.g., Ofman & Davila 1997). We assume that the wind is initiated in a hydrostatic atmosphere with an isothermal pressure scale height of 0.072 R* and a ``chromospheric hole'' modeled by a transverse density structure and a radial magnetic field. To ensure that we are accurately assessing the terminal velocity of the wind, we carried out the calculations to a height of 20 stellar radii. We find that in the higher density (low Alfven velocity) regions outside of the ``chromospheric hole'' the Alfven waves are freely propagating. Ponderomotive forces associated with these waves drive radial, compressive motions and contribute to stellar wind acceleration. The compressive motions then excite slow magnetosonic waves which non-linearly steepen into solitary waves that propagate on top of a background flow. This situation is similar to solar coronal hole models. In the lower density ``chromospheric hole'' region the Alfven wave are strongly reflected, and produce a substantial outflow, with both radial and azimuthal velocities approaching the local Alfven speed. Our results are in qualitative agreement with observational signatures of winds in cool, luminous late-type stars.

  8. Strength and dynamic characteristics analyses of wound composite axial impeller

    NASA Astrophysics Data System (ADS)

    Wang, Jifeng; Olortegui-Yume, Jorge; Müller, Norbert

    2012-03-01

    A low cost, light weight, high performance composite material turbomachinery impeller with a uniquely designed blade patterns is analyzed. Such impellers can economically enable refrigeration plants to use water as a refrigerant (R718). A strength and dynamic characteristics analyses procedure is developed to assess the maximum stresses and natural frequencies of these wound composite axial impellers under operating loading conditions. Numerical simulation using FEM for two-dimensional and three-dimensional impellers was investigated. A commercially available software ANSYS is used for the finite element calculations. Analysis is done for different blade geometries and then suggestions are made for optimum design parameters. In order to avoid operating at resonance, which can make impellers suffer a significant reduction in the design life, the designer must calculate the natural frequency and modal shape of the impeller to analyze the dynamic characteristics. The results show that using composite Kevlar fiber/epoxy matrix enables the impeller to run at high tip speed and withstand the stresses, no critical speed will be matched during start-up and shut-down, and that mass imbalances of the impeller shall not pose a critical problem.

  9. Multi-Scale Compositionality: Identifying the Compositional Structures of Social Dynamics Using Deep Learning

    PubMed Central

    Peng, Huan-Kai; Marculescu, Radu

    2015-01-01

    Objective Social media exhibit rich yet distinct temporal dynamics which cover a wide range of different scales. In order to study this complex dynamics, two fundamental questions revolve around (1) the signatures of social dynamics at different time scales, and (2) the way in which these signatures interact and form higher-level meanings. Method In this paper, we propose the Recursive Convolutional Bayesian Model (RCBM) to address both of these fundamental questions. The key idea behind our approach consists of constructing a deep-learning framework using specialized convolution operators that are designed to exploit the inherent heterogeneity of social dynamics. RCBM’s runtime and convergence properties are guaranteed by formal analyses. Results Experimental results show that the proposed method outperforms the state-of-the-art approaches both in terms of solution quality and computational efficiency. Indeed, by applying the proposed method on two social network datasets, Twitter and Yelp, we are able to identify the compositional structures that can accurately characterize the complex social dynamics from these two social media. We further show that identifying these patterns can enable new applications such as anomaly detection and improved social dynamics forecasting. Finally, our analysis offers new insights on understanding and engineering social media dynamics, with direct applications to opinion spreading and online content promotion. PMID:25830775

  10. Reduction Dynamics of Doped Ceria, Nickel Oxide, and Cermet Composites Probed Using In Situ Raman Spectroscopy

    PubMed Central

    Shearing, Paul R.; Brightman, Edward; Brett, Dan J. L.; Brandon, Nigel P.; Cohen, Lesley F.

    2016-01-01

    The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single‐step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance. PMID:27595058

  11. Dynamic fracture of functionally graded magnetoelectroelastic composite materials

    SciTech Connect

    Stoynov, Y.; Dineva, P.

    2014-11-12

    The stress, magnetic and electric field analysis of multifunctional composites, weakened by impermeable cracks, is of fundamental importance for their structural integrity and reliable service performance. The aim is to study dynamic behavior of a plane of functionally graded magnetoelectroelastic composite with more than one crack. The coupled material properties vary exponentially in an arbitrary direction. The plane is subjected to anti-plane mechanical and in-plane electric and magnetic load. The boundary value problem described by the partial differential equations with variable coefficients is reduced to a non-hypersingular traction boundary integral equation based on the appropriate functional transform and frequency-dependent fundamental solution derived in a closed form by Radon transform. Software code based on the boundary integral equation method (BIEM) is developed, validated and inserted in numerical simulations. The obtained results show the sensitivity of the dynamic stress, magnetic and electric field concentration in the cracked plane to the type and characteristics of the dynamic load, to the location and cracks disposition, to the wave-crack-crack interactions and to the magnitude and direction of the material gradient.

  12. Coupled Polarization/magnetization Dynamics in Composite Multiferroics: AN Overview

    NASA Astrophysics Data System (ADS)

    Sukhov, A.; Chotorlishvili, L.; Jia, C. L.; Berakdar, J.

    In this chapter we present a theoretical approach for modeling the coupled polarization-magnetization dynamics in composite multiferroic nanostructures. The free energy functional is based on coupling established expressions for the the Ginzburg-Landau-Devonshire polarization free energy density with the Landau-Ginzburg magnetization free energy density. The polarization/magnetization coupling term depends on the nature of the underlying magnetoelectric interaction. As an example we inspect the role of an emerging non-collinear spin order at the ferroelectric/magnetic interface and discuss how this mechanism is reflected in the total free energy density. We present and analyze numerical results for the coupled polarization and magnetization dynamics driven by external electric and magnetic fields and show how this dynamics can be accessed experimentally via ferromagnetic resonance in nanostructured multiferroic BaTiO3/Fe or BaTiO3/Co composites. As a way for robust signal transmission and conversion, solitonic excitations are envisaged. The finding is that initially prepared magnetic (electric) solitonic signals propagate towards the interface where they are efficiently converted into electric (magnetic) signals. In a further section we explore the potential of multiferroics for quantum information applications.

  13. The modern atmospheric background dust load: Recognition in Central Asian snowpack, and compositional constraints

    USGS Publications Warehouse

    Hinkley, T.; Pertsiger, F.; Zavjalova, L.

    1997-01-01

    Dusts in strata of snowpack in the Alai-Pamir range, Kirghizstan, Central Asia, have chemical compositions that are in the same restricted range as those of the dusts found in snowpacks at three other locations: central south Greenland, the St. Elias range (Alaska), and coastal Antarctica, where special-type local dust sources certainly cannot dominate. This similarity at the four widely separated sites appears to indicate that there is a modern atmospheric background dust that is the same on a regional, hemispheric, or global scale. The common compositional range is that of average crustal rock, or of moderately ferromagnesian volcanic rock. It is not that of carbonate, nor highly siliciceous rocks. Previously, the existence of an atmospheric background dust has been postulated only on the basis of its particle size distribution, and only from observations in polar regions. The present study partially determines the chemical composition of the background dust, and confirms its existence in snowpack at four localities worldwide, including the center of the earth's largest continent where dusts of local source have considerable influence. U.S. copyright. Published in 1997 by the American Geophysical Union.

  14. The role of planetary formation and evolution in shaping the composition of exoplanetary atmospheres

    NASA Astrophysics Data System (ADS)

    Turrini, D.; Nelson, R. P.; Barbieri, M.

    2015-12-01

    Over the last twenty years, the search for extrasolar planets has revealed the rich diversity of outcomes from the formation and evolution of planetary systems. In order to fully understand how these extrasolar planets came to be, however, the orbital and physical data we possess are not enough, and they need to be complemented with information about the composition of the exoplanets. Ground-based and space-based observations provided the first data on the atmospheric composition of a few extrasolar planets, but a larger and more detailed sample is required before we can fully take advantage of it. The primary goal of a dedicated space mission like the Exoplanet Characterization Observatory (EChO) proposal is to fill this gap and to expand the limited data we possess by performing a systematic survey of extrasolar planets. The full exploitation of the data that space-based and ground-based facilities will provide in the near future, however, requires knowledge about the sources and sinks of the chemical species and molecules that will be observed. Luckily, the study of the past history of the Solar System provides several indications about the effects of processes like migration, late accretion and secular impacts, and on the time they occur in the life of planetary systems. In this work we will review what is already known about the factors influencing the composition of planetary atmospheres, focusing on the case of gaseous giant planets, and what instead still need to be investigated.

  15. Plasma penetration depth and mechanical properties of atmospheric plasma-treated 3D aramid woven composites

    NASA Astrophysics Data System (ADS)

    Chen, X.; Yao, L.; Xue, J.; Zhao, D.; Lan, Y.; Qian, X.; Wang, C. X.; Qiu, Y.

    2008-12-01

    Three-dimensional aramid woven fabrics were treated with atmospheric pressure plasmas, on one side or both sides to determine the plasma penetration depth in the 3D fabrics and the influences on final composite mechanical properties. The properties of the fibers from different layers of the single side treated fabrics, including surface morphology, chemical composition, wettability and adhesion properties were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle measurement and microbond tests. Meanwhile, flexural properties of the composites reinforced with the fabrics untreated and treated on both sides were compared using three-point bending tests. The results showed that the fibers from the outer most surface layer of the fabric had a significant improvement in their surface roughness, chemical bonding, wettability and adhesion properties after plasma treatment; the treatment effect gradually diminished for the fibers in the inner layers. In the third layer, the fiber properties remained approximately the same to those of the control. In addition, three-point bending tests indicated that the 3D aramid composite had an increase of 11% in flexural strength and 12% in flexural modulus after the plasma treatment. These results indicate that composite mechanical properties can be improved by the direct fabric treatment instead of fiber treatment with plasmas if the fabric is less than four layers thick.

  16. Chemical composition measurements of the atmosphere of Jupiter with the Galileo Probe mass spectrometer

    NASA Technical Reports Server (NTRS)

    Niemann, H. B.; Atreya, S. K.; Carignan, G. R.; Donahue, T. M.; Haberman, J. A.; Harpold, D. N.; Hartle, R. E.; Hunten, D. M.; Kasprzak, W. T.; Mahaffy, P. R.; Owen, T. C.; Spencer, N. W.

    1998-01-01

    The Galileo Probe entered the atmosphere of Jupiter on December 7, 1995. Measurements of the chemical and isotopic composition of the Jovian atmosphere were obtained by the mass spectrometer during the descent over the 0.5 to 21 bar pressure region over a time period of approximately 1 hour. The sampling was either of atmospheric gases directly introduced into the ion source of the mass spectrometer through capillary leaks or of gas, which had been chemically processed to enhance the sensitivity of the measurement to trace species or noble gases. The analysis of this data set continues to be refined based on supporting laboratory studies on an engineering unit. The mixing ratios of the major constituents of the atmosphere hydrogen and helium have been determined as well as mixing ratios or upper limits for several less abundant species including: methane, water, ammonia, ethane, ethylene, propane, hydrogen sulfide, neon, argon, krypton, and xenon. Analysis also suggests the presence of trace levels of other 3 and 4 carbon hydrocarbons, or carbon and nitrogen containing species, phosphine, hydrogen chloride, and of benzene. The data set also allows upper limits to be set for many species of interest which were not detected. Isotope ratios were measured for 3He/4He, D/H, 13C/12C, 20Ne/22Ne, 38Ar/36Ar and for isotopes of both Kr and Xe.

  17. Chemical composition measurements of the atmosphere of Jupiter with the Galileo Probe mass spectrometer.

    PubMed

    Niemann, H B; Atreya, S K; Carignan, G R; Donahue, T M; Haberman, J A; Harpold, D N; Hartle, R E; Hunten, D M; Kasprzak, W T; Mahaffy, P R; Owen, T C; Spencer, N W

    1998-01-01

    The Galileo Probe entered the atmosphere of Jupiter on December 7, 1995. Measurements of the chemical and isotopic composition of the Jovian atmosphere were obtained by the mass spectrometer during the descent over the 0.5 to 21 bar pressure region over a time period of approximately 1 hour. The sampling was either of atmospheric gases directly introduced into the ion source of the mass spectrometer through capillary leaks or of gas, which had been chemically processed to enhance the sensitivity of the measurement to trace species or noble gases. The analysis of this data set continues to be refined based on supporting laboratory studies on an engineering unit. The mixing ratios of the major constituents of the atmosphere hydrogen and helium have been determined as well as mixing ratios or upper limits for several less abundant species including: methane, water, ammonia, ethane, ethylene, propane, hydrogen sulfide, neon, argon, krypton, and xenon. Analysis also suggests the presence of trace levels of other 3 and 4 carbon hydrocarbons, or carbon and nitrogen containing species, phosphine, hydrogen chloride, and of benzene. The data set also allows upper limits to be set for many species of interest which were not detected. Isotope ratios were measured for 3He/4He, D/H, 13C/12C, 20Ne/22Ne, 38Ar/36Ar and for isotopes of both Kr and Xe. PMID:11541457

  18. The Atmospheric Dynamics Mission on the International Space Station--A new technique for observing winds in the atmosphere

    SciTech Connect

    Ingmann, P.; Readings, C. J.; Knott, K.

    1999-01-22

    For the post-2000 time-frame two general classes of Earth Observation missions have been identified to address user requirements (see e.g. ESA, 1995), namely Earth Watch and Earth Explorer missions. One of the candidate Earth Explorer Missions selected for Phase A study is the Atmospheric Dynamics Mission which is intended to exploit a Doppler wind lidar, ALADIN, to measure winds in clear air (ESA, 1995 and ESA, 1996). It is being studied as a candidate for flight on the International Space Station (ISS) as an externally attached payload. The primary, long-term objective of the Atmospheric Dynamics Mission is to provide observations of wind profiles (e.g. radial wind component). Such data would be assimilated into numerical forecasting models leading to an improvement in objective analyses and hence in Numerical Weather Prediction. The mission would also provide data needed to address some of the key concerns of the World Climate Research Programme (WCRP) i.e. quantification of climate variability, validation and improvement of numerical models and process studies relevant to climate change. The newly acquired data would also help realize some of the objectives of the Global Climate Observing System (GCOS)

  19. Towards an energy-conserving quasi-hydrostatic deep-atmosphere dynamical core

    NASA Astrophysics Data System (ADS)

    Tort, Marine; Dubos, Thomas

    2014-05-01

    Towards an energy-conserving quasi-hydrostatic deep-atmosphere dynamical core Marine Tort1 & Thomas Dubos1 1 Laboratoire Météorologique Dynamique, Ecole Polytechnique, Palaiseau, FRANCE Atmosphere dynamics of our planet is quite well described by traditional primitive equations based on the so-called shallow-atmosphere approximation. Thus, the model is dynamically consistent (in the sense that it possesses conservation principles for mass, energy, potential vorticity and angular momentum) when certain metric terms and the cosφ Coriolis terms are neglected (Phillips, 1966). Nevertheless, to simulate planetary atmospheres, the shallow-atmosphere approximation should be relaxed because of the low planet radius (such as Titan) or the depth of their atmospheres (such as Jupiter or Saturne). Non-traditional terms have some dynamical effects (Gerkema and al., 2008) but they are little-known and rarely integrated into general circulation dynamical cores (Wood and Staniforth, 2002). As an example, the french GCM of the Laboratoire Météorologique Dynamique (LMD-Z) integrates the traditional primitive equations discretized from their curl (vector-invariant) form based on a finite different scheme whose conserves exactly potential vorticity (Sadourny, 1975a,b). We considered an orthogonal curvilinear system and we first derived a curl form of global, deep-atmosphere quasi-hydrostatic model in which prognostic variable is absolute axial momentum instead of relative velocity vector. Given the close relationship between the curl form and Hamiltonian formulation of the previous equations, we generalized Sadourny's energy-conserving formulation by discretizing the Poisson bracket and the energy themselves (Salmon, 1983; Gassmann, 2013). The substantial computing infrastructure of the dynamical core is the same but the modification of the hydrostatic balance requires a mass-based vertical coordinate (Wood and Staniforth, 2003). The new discretization has been implemented into

  20. Impact of atmospheric circulation fluctuations on the zoobenthos dynamics in the Sea of Azov

    NASA Astrophysics Data System (ADS)

    Matishov, G. G.; Gargopa, Yu. M.; Sarvilina, S. V.

    2010-02-01

    The impact of atmospheric circulation fluctuations (Vangengeim’s classification) on the zoobenthos dynamics in the Sea of Azov was studied. The “western” circulation processes lead to zoobenthos biomass decrease, and the opposite pattern was observed when “eastern” circulation processes prevail. A quasiperiodicity with 3-7 to 10-15 year cycles is revealed for the zoobenthos biomass dynamics. These changes are closely connected with the climatically induced increase of the zoobenthos biomass in the Sea of Azov.

  1. Detecting the dynamical state of the atmosphere from the orbital decay of the ODERACS spheres

    NASA Technical Reports Server (NTRS)

    Tan, Arjun

    1996-01-01

    The orbital decay curve of a satellite having constant cross-sectional area and in circular orbit can furnish valuable information regarding the dynamical state of the atmosphere. It is shown that a rectilinear decay curve having constant downward slope (zero curvature) should indicate that the atmosphere was undergoing compression during that period. A decay curve having concavity upwards (positive curvature) will strongly indicate that the atmosphere was in a contracting phase. A decay curve with downward concavity (negative curvature) may indicate an expanding, a stationary or a contracting atmosphere. This theory, when applied to the orbital decay of the Orbital Debris Radar Calibration Spheres (ODERACS) satellites, indicates that during the period from Day 90 through Day 240 in the year 1994, the atmosphere was very definitely in a compression mode. During this period, ODERACS Sphere 1 faced nearly constant densities while Sphere 6 actually encountered progressively smaller air densities as they descended. The atmospheric scale height as calculated from the orbital data of Spheres 1 and 6 diminished steadily during the same period. It is shown that Spheres 1 and 6 descended faster and slower respectively, than the level of constant air density equal to 5 x 10 kg/m . During a brief period from Day 240 through Day 290, the atmosphere reversed to a strongly expanding mode. Thereafter, the atmosphere reverted back to a compression mode from Day 290 through Day 390, 1994.

  2. Overview of atmospheric effects

    NASA Technical Reports Server (NTRS)

    Rote, D. M.

    1980-01-01

    Effluents from the transportation system are the major cause of Satellite Power System related atmospheric effects. These effects are discussed and include inadvertent weather modification, air quality degradation, compositional changes in the stratosphere and mesosphere, formation of noctilucent clouds, plasma density changes, airglow enhancements, and changes in composition and dynamics of the plasmasphere and magnetosphere.

  3. Dynamically-Tunable Smart Composites Featuring Electro-Rheological Fluids

    NASA Astrophysics Data System (ADS)

    Gandhi, Mukesh V.; Thompson, Brian S.

    1990-02-01

    A new generation of revolutionary multi-functional, dynamically-tunable, intelligent, ultra-advanced composite materials featuring electro-rheological fluids is proposed herein for the active continuum vibrational-control of structural systems. This paper reports on pioneering proof-of-concept experimental investigations focused on evaluating the elastodynamic transient and also the forced response characteristics of beams fabricated in this new class of materials. The results of these investigations clearly demonstrate the ability to dramatically change the vibrational characteristics of beam-like specimens fabricated in ultra-advanced composite materials by changing the electrical field imposed on the fluid domains. In addition, experimental results are presented which characterize the elastodynamic response of a connecting rod of a slider-crank mechanism fabricated in these ultra-advanced composite materials. Again, the combined forced and parametric responses are controlled by the voltage imposed on the electro-rheological fluid domain in the structure. The capability of these materials to interface with modern solid-state electronics can be exploited by extending the fundamental phenomenological work presented herein through the successful incorporation of intelligent sensor technologies and modern control strategies in order to significantly accelerate the evolution of these novel composite materials for the military and aerospace industries.

  4. The composition of the primitive atmosphere and the synthesis of organic compounds on the early Earth

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Miller, S. L.

    1985-01-01

    The generally accepted theory for the origin of life on the Earth requires that a large variety of organic compounds be present to form the first living organisms and to provide the energy sources for primitive life either directly or through various fermentation reactions. This can provide a strong constraint on discussions of the formation of the Earth and on the composition of the primitive atmosphere. In order for substantial amounts of organic compounds to have been present on the prebiological Earth, certain conditions must have existed. There is a large body of literature on the prebiotic synthesis of organic compounds in various postulated atmospheres. In this mixture of abiotically synthesized organic compounds, the amino acids are of special interest since they are utilized by modern organisms to synthesize structural materials and a large array of catalytic peptides.

  5. Measurement of atmospheric composition by the ATMOS instrument from Table Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Gunson, Michael R.; Irion, Fredrick W.

    1991-09-01

    Following its first flight on board the Space Shuttle 'Challenger' as part of the Spacelab 3 payload, the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument has been operated at the Jet Propulsion Laboratory's Table Mountain Observatory (TMO; 34.4 deg N, 117.7 deg W, 2.23 km altitude) in the San Gabriel Mountains of Southern California. With the delay in the resumption of regular Shuttle flights, ATMOS has acquired a large number of high-quality, high-resolution infrared solar absorption spectra, spanning a period between late-1985 and mid-1990. These spectra are being analyzed to derive the column abundances of several atmospheric species including O3, HCl, HF, and HNO3. Although limited in temporal coverage, the preliminary results for these gases are discussed here in the context of the requirement and contribution to be made by similar instruments in detecting long term changes in stratospheric composition.

  6. SMA Hybrid Composites for Dynamic Response Abatement Applications

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2000-01-01

    A recently developed constitutive model and a finite element formulation for predicting the thermomechanical response of Shape Memory Alloy (SMA) hybrid composite (SMAHC) structures is briefly described. Attention is focused on constrained recovery behavior in this study, but the constitutive formulation is also capable of modeling restrained or free recovery. Numerical results are shown for glass/epoxy panel specimens with embedded Nitinol actuators subjected to thermal and acoustic loads. Control of thermal buckling, random response, sonic fatigue, and transmission loss are demonstrated and compared to conventional approaches including addition of conventional composite layers and a constrained layer damping treatment. Embedded SMA actuators are shown to be significantly more effective in dynamic response abatement applications than the conventional approaches and are attractive for combination with other passive and/or active approaches.

  7. Accelerated Testing of Polymeric Composites Using the Dynamic Mechanical Analyzer

    NASA Technical Reports Server (NTRS)

    Abdel-Magid, Becky M.; Gates, Thomas S.

    2000-01-01

    Creep properties of IM7/K3B composite material were obtained using three accelerated test methods at elevated temperatures. Results of flexural creep tests using the dynamic mechanical analyzer (DMA) were compared with results of conventional tensile and compression creep tests. The procedures of the three test methods are described and the results are presented. Despite minor differences in the time shift factor of the creep compliance curves, the DMA results compared favorably with the results from the tensile and compressive creep tests. Some insight is given into establishing correlations between creep compliance in flexure and creep compliance in tension and compression. It is shown that with careful consideration of the limitations of flexure creep, a viable and reliable accelerated test procedure can be developed using the DMA to obtain the viscoelastic properties of composites in extreme environments.

  8. Dynamic effects of interaction of composite projectiles with targets

    NASA Astrophysics Data System (ADS)

    Zakharov, V. M.

    2016-01-01

    The process of high-speed impact of projectiles against targets of finite thickness is experimentally investigated. Medium-hard steel plates are used as targets. The objective of this research is to carry out a comparative analysis of dynamic effects of interaction of various types of projectiles with targets, such as characteristics of destruction of the target, the state of the projectile behind the target, and particularities of the after-penetration stream of fragments after the target has been pierced. The projectiles are made of composites on the basis of tungsten carbide obtained by caking and the SHS-technology. To compare effectiveness of composite projectiles steel projectiles are used. Their effectiveness was estimated in terms of the ballistic limit. High density projectiles obtained by means of the SHS-technology are shown to produce results comparable in terms of the ballistic limit with high-strength projectiles that contain tungsten received by caking.

  9. Recent Highlights in Ring Structure, Dynamics, and Composition

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    2006-01-01

    While the Cassini orbiter has been in a near-equatorial orbit for most of the time since the last DPS meeting, the science teams have turned to preliminary analysis of many aspects of data taken over the first year of the mission. New understanding has been gained of several different aspects of ring structure and dynamics - especially the small-scale ring vertical structure related to marginal gravitational instabilities, and the diverse roles played by small moonlets sprinkled around and within the rings. In addition, a closer look is being taken at how ring composition varies locally and regionally and how this variation compares with models of ring compositional evolution. Cassini will re-emerge from the equator plane in late July, and new ring observations will again be available. In this talk we will review progress over the last year, highlight key outstanding issues and problems, and provide a context for the new observations reported at this meeting.

  10. Carbon Observations from Geostationary Earth Orbit as Part of an Integrated Observing System for Atmospheric Composition

    NASA Astrophysics Data System (ADS)

    Edwards, D. P.

    2015-12-01

    This presentation describes proposed satellite carbon measurements from the CHRONOS mission. The primary goal of this experiment is to measure the atmospheric pollutants carbon monoxide (CO) and methane (CH4) from geostationary orbit, with hourly observations of North America at high spatial resolution. CHRONOS observations would provide measurements not currently available or planned as part of a surface, suborbital and satellite integrated observing system for atmospheric composition over North America. Carbon monoxide is produced by combustion processes such as urban activity and wildfires, and serves as a proxy for other combustion pollutants that are not easily measured. Methane has diverse anthropogenic sources ranging from fossil fuel production, animal husbandry, agriculture and waste management. The impact of gas exploration in the Western States of the USA and oil extraction from the Canadian tar sands will be particular foci of the mission, as will the poorly-quantified natural CH4 emissions from wetlands and thawing permafrost. In addition to characterizing pollutant sources, improved understanding of the domestic CH4 budget is a priority for policy decisions related to short-lived climate forcers. A primary motivation for targeting CO is its value as a tracer of atmospheric pollution, and CHRONOS measurements will provide insight into local and long-range transport across the North American continent, as well as the processes governing the entrainment and venting of pollution in and out of the planetary boundary layer. As a result of significantly improved characterization of diurnal changes in atmospheric composition, CHRONOS observations will find direct societal applications for air quality regulation and forecasting. We present a quantification of this expected improvement in the prediction of near-surface concentrations when CHRONOS measurements are used in Observation System Simulation Experiments (OSSEs). If CHRONOS and the planned NASA Earth

  11. Multiple oxygen and sulfur isotope compositions of atmospheric sulfate in Baton Rouge, LA, USA

    NASA Astrophysics Data System (ADS)

    Jenkins, Kathryn A.; Bao, Huiming

    Secondary atmospheric sulfates (SAS) is the ultimate oxidation product and sink for sulfur gases of biological, volcanic, and anthropogenic origins on Earth. Their presence in the atmosphere as aqueous or solid phases contributes to acid rain and climate change, thus, understanding SAS formation pathways is pertinent. There has been extensive measurement of δ34S values for SAS, which mainly aimed at source identification. Relatively fewer oxygen isotope compositions ( δ18O, Δ 17O), which are most useful for resolving competing oxidation pathways, were available, however. This study represents the first effort to characterize the Δ 17O, δ18O, and δ34S simultaneously for SAS in a tropospheric air shed. We measured a total of 20 samples collected in Baton Rouge (LA, USA) during a 600-day period. The isotope compositions for atmospheric sulfate range from +0.25‰ to +1.43‰ for Δ 17O, +11.8‰ to +19.3‰ for δ18O, and -1.4‰ to +3.8‰ for δ34S. No apparent correlation is found among Δ 17O, δ18O, or δ34S values. The Δ 17O has no seasonal variation and its values are consistent with an oxidation pathway dominated by aqueous H 2O 2. The δ18O and δ34S are within the range of those observed in other sites around the world and are not characteristic for Baton Rouge. Despite the huge variability in atmospheric condition among mid-latitude sites, the long-term average Δ 17O value for SAS appears to fall within a fairly narrow range from +0.6‰ to +0.8‰, which is ˜1‰ to 2‰ lower than those in polar sites.

  12. Deciphering the atmospheric composition of WASP-12b: A comprehensive analysis of its dayside emission

    SciTech Connect

    Stevenson, Kevin B.; Bean, Jacob L.; Madhusudhan, Nikku; Harrington, Joseph

    2014-08-10

    WASP-12b was the first planet reported to have a carbon-to-oxygen ratio (C/O) greater than one in its dayside atmosphere. However, recent work to further characterize its atmosphere and confirm its composition has led to incompatible measurements and divergent conclusions. Additionally, the recent discovery of stellar binary companions ∼1'' from WASP-12 further complicates the analyses and subsequent interpretations. We present a uniform analysis of all available Hubble and Spitzer Space Telescope secondary-eclipse data, including previously unpublished Spitzer measurements at 3.6 and 4.5 μm. The primary controversy in the literature has centered on the value and interpretation of the eclipse depth at 4.5 μm. Our new measurements and analyses confirm the shallow eclipse depth in this channel, as first reported by Campo and collaborators and used by Madhusudhan and collaborators to infer a carbon-rich composition. To explain WASP-12b's observed dayside emission spectrum, we implemented several recent retrieval approaches. We find that when we exclude absorption due to C{sub 2}H{sub 2} and HCN, which are not universally considered in the literature, our models require implausibly large atmospheric CO{sub 2} abundances, regardless of the C/O. By including C{sub 2}H{sub 2} and HCN in our models, we find that a physically plausible carbon-rich solution achieves the best fit to the available photometric and spectroscopic data. In comparison, the best-fit oxygen-rich models have abundances that are inconsistent with the chemical equilibrium expectations for hydrogen-dominated atmospheres and are 670 times less probable. Our best-fit solution is also 7.3 × 10{sup 6} times more probable than an isothermal blackbody model.

  13. The stable isotope compositions of mercury in atmospheric particles (PM10) from Paris (France) and vicinity

    NASA Astrophysics Data System (ADS)

    Widory, D.; Petelet-Giraud, E.; Johnson, T.; Quétel, C.; Snell, J.; van Bocxstaele, M.; Bullen, T. D.

    2010-12-01

    Solid mercury (Hg) in atmospheric particles in the environment can be derived from a variety of primary sources and cycled through numerous secondary processes, complicating identification of its origin. Using the PM10 fraction of aerosols from Paris and vicinity, we investigated the possibility that Hg stable isotope compositions could help identify the origins of atmospheric Hg and processes affecting the atmospheric Hg budget. Characterization of Hg isotope compositions of emissions from the different potential sources (e.g. waste incinerators, coal-fired power plants, metal refining plants, road traffic, heating sources and volcanic gases) shows that those containing Hg are clearly discriminated by specific Hg isotope signatures. PM10 were sampled in three different locations: A) downtown Paris, characterized by diffuse pollution, B) nearby suburb of the city, close to suspected Hg emitters, and C) in distant suburb of the city, having only a few industrial activities in the area. Results indicate that Hg in most of the PM10 samples is explained by binary mixings. The mixing end-members include at least two distinct sources at low Hg concentrations in the aerosols, compatible with industrial activity. At high Hg concentration in the aerosols, the isotopes may likewise indicate two distinct sources with δ202Hg compositions of -4.1 and -11.4 ‰. This range is significantly less than that measured on the potential sources of Hg pollution, and may indicate secondary processes, such as gas to solid phase transfers. The occurrence of post-emission processes is reinforced by the strong correlations existing between these low δ202Hg and MIF Δ201Hg values.

  14. Dynamics Explorer 1: Energetic Ion Composition Spectrometer (EICS)

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.; Peterson, W. K.; Collin, H. L.

    1994-01-01

    The Energetic Ion Composition Spectrometer (EICS) experiment was selected as part of the Dynamics Explorer (DE) Program. One of the primary goals of the DE program was to investigate in detail the plasma physics processes responsible for energizing thermal (approximately 1 eV) ionospheric ions and transporting them to the earth's plasma sheet and distant polar cap. The results of the EICS data analysis (including support of other investigators) and of the archiving efforts supported by this contract are summarized in this document. Also reported are some aspects of our operational support activities.

  15. Dynamic parameters in models of atmospheric vortex structures

    NASA Astrophysics Data System (ADS)

    Dobryshman, E. M.; Kochina, V. G.; Letunova, T. A.

    2013-09-01

    Vortex simulation and the computation of fields of dynamic parameters of vortex structures (velocity, rotor velocity, and helicity) are carried out with the use of exact hydrodynamic equations in a cylindrical coordinate system. Components of centripetal and Coriolis accelerations are taken into account in the initial equations. Internal and external solutions are defined. Internal solutions ignore the disturbances of the pressure field, but they are considered in external solutions. The simulation is carried out so that the effect of accounting for spatial coordinates on the structure of the above fields is pronounced. It is shown that the initial kinetic energy of rotating motion transforms into the kinetic energy of radial and vertical velocity components in models with centripetal acceleration. In models with Coriolis acceleration, the Rossby effect is clearly pronounced. The method of an "inverse problem" is used for finding external solutions, i.e., reconstruction of the pressure field at specified velocity components. Computations have shown that tangential components mainly contribute to the velocity and helicity vortex moduli at the initial stage.

  16. On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes - Part 1: Statistical models and spatial fingerprints of atmospheric dynamics and chemistry

    NASA Astrophysics Data System (ADS)

    Frossard, L.; Rieder, H. E.; Ribatet, M.; Staehelin, J.; Maeder, J. A.; Di Rocco, S.; Davison, A. C.; Peter, T.

    2013-01-01

    We use statistical models for mean and extreme values of total column ozone to analyze "fingerprints" of atmospheric dynamics and chemistry on long-term ozone changes at northern and southern mid-latitudes on grid cell basis. At each grid cell, the r-largest order statistics method is used for the analysis of extreme events in low and high total ozone (termed ELOs and EHOs, respectively), and an autoregressive moving average (ARMA) model is used for the corresponding mean value analysis. In order to describe the dynamical and chemical state of the atmosphere, the statistical models include important atmospheric covariates: the solar cycle, the Quasi-Biennial Oscillation (QBO), ozone depleting substances (ODS) in terms of equivalent effective stratospheric chlorine (EESC), the North Atlantic Oscillation (NAO), the Antarctic Oscillation (AAO), the El Niño/Southern Oscillation (ENSO), and aerosol load after the volcanic eruptions of El Chichón and Mt. Pinatubo. The influence of the individual covariates on mean and extreme levels in total column ozone is derived on a grid cell basis. The results show that "fingerprints", i.e., significant influence, of dynamical and chemical features are captured in both the "bulk" and the tails of the statistical distribution of ozone, respectively described by mean values and EHOs/ELOs. While results for the solar cycle, QBO, and EESC are in good agreement with findings of earlier studies, unprecedented spatial fingerprints are retrieved for the dynamical covariates. Column ozone is enhanced over Labrador/Greenland, the North Atlantic sector and over the Norwegian Sea, but is reduced over Europe, Russia and the Eastern United States during the positive NAO phase, and vice-versa during the negative phase. The NAO's southern counterpart, the AAO, strongly influences column ozone at lower southern mid-latitudes, including the southern parts of South America and the Antarctic Peninsula, and the central southern mid-latitudes. Results

  17. A size-composition resolved aerosol model for simulating the dynamics of externally mixed particles: SCRAM (v 1.0)

    NASA Astrophysics Data System (ADS)

    Zhu, S.; Sartelet, K. N.; Seigneur, C.

    2015-06-01

    The Size-Composition Resolved Aerosol Model (SCRAM) for simulating the dynamics of externally mixed atmospheric particles is presented. This new model classifies aerosols by both composition and size, based on a comprehensive combination of all chemical species and their mass-fraction sections. All three main processes involved in aerosol dynamics (coagulation, condensation/evaporation and nucleation) are included. The model is first validated by comparison with a reference solution and with results of simulations using internally mixed particles. The degree of mixing of particles is investigated in a box model simulation using data representative of air pollution in Greater Paris. The relative influence on the mixing state of the different aerosol processes (condensation/evaporation, coagulation) and of the algorithm used to model condensation/evaporation (bulk equilibrium, dynamic) is studied.

  18. High-Order Shock-Capturing Methods for Modeling Dynamics of the Solar Atmosphere

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Kosovichev, Alexander; Levy, Doron

    2004-01-01

    We use one-dimensional high-order central shock capturing numerical methods to study the response of various model solar atmospheres to forcing at the solar surface. The dynamics of the atmosphere is modeled with the Euler equations in a variable-sized flux tube in the presence of gravity. We study dynamics of the atmosphere suggestive of spicule formation and coronal oscillations. These studies are performed on observationally-derived model atmospheres above the quiet sun and above sunspots. To perform these simulations, we provide a new extension of existing second- and third- order shock-capturing methods to irregular grids. We also solve the problem of numerically maintaining initial hydrostatic balance via the introduction of new variables in the model equations and a careful initialization mechanism. We find several striking results: all model atmospheres respond to a single impulsive perturbation with several strong shock waves consistent with the rebound-shock model. These shock waves lift material and the transition region well into the initial corona, and the sensitivity of this lift to the initial impulse depends non-linearly on the details of the atmosphere model. We also reproduce an observed 3-minute coronal oscillation above sunspots compared to 5-minute oscillations above the quiet sun.

  19. Study of atmospheric dynamics and pollution in the coastal area of English Channel using clustering technique

    NASA Astrophysics Data System (ADS)

    Sokolov, Anton; Dmitriev, Egor; Delbarre, Hervé; Augustin, Patrick; Gengembre, Cyril; Fourmenten, Marc

    2016-04-01

    The problem of atmospheric contamination by principal air pollutants was considered in the industrialized coastal region of English Channel in Dunkirk influenced by north European metropolitan areas. MESO-NH nested models were used for the simulation of the local atmospheric dynamics and the online calculation of Lagrangian backward trajectories with 15-minute temporal resolution and the horizontal resolution down to 500 m. The one-month mesoscale numerical simulation was coupled with local pollution measurements of volatile organic components, particulate matter, ozone, sulphur dioxide and nitrogen oxides. Principal atmospheric pathways were determined by clustering technique applied to backward trajectories simulated. Six clusters were obtained which describe local atmospheric dynamics, four winds blowing through the English Channel, one coming from the south, and the biggest cluster with small wind speeds. This last cluster includes mostly sea breeze events. The analysis of meteorological data and pollution measurements allows relating the principal atmospheric pathways with local air contamination events. It was shown that contamination events are mostly connected with a channelling of pollution from local sources and low-turbulent states of the local atmosphere.

  20. Unraveling the Dynamics of Aminopolymer/Silica Composites

    DOE PAGESBeta

    Carrillo, Jan-Michael Y.; Sakwa-Novak, Miles A.; Holewinski, Adam; Potter, Matthew E.; Rother, Gernot; Jones, Christopher W.; Sumpter, Bobby G.

    2016-02-25

    Branched poly(ethylenimine) (PEI) encapsulated within mesoporous silica (SBA-15), has proven to be an eective sorbent for developing carbon capture technologies. However, the structure-property correlations which govern their adsorptive properties is not well understood. By combining coarse-grained molecular dynamics simulations and neutron scattering experiments we are able to construct, and validate, a detailed model of the dynamics and morphology of the conned polymer within the mesoporous support. By varying the simulation properties we are able to probe, for the rst time, the direct relationship between the structure of the polymer and the non-monotonic dynamics of the polymer as a function ofmore » monomer concentration within an adsorbing cylindrical pore. Overall the simulation results are in good agreement with quasi-elastic neutron scattering (QENS) studies, suggesting an approach that can be a useful guide for understanding how to tune porous polymer composites for enhancing desired dynamical and structural behavior targeting enhanced carbon dioxide adsorption.« less

  1. Dynamic processes in the lower ionosphere as indicators of the interaction between the different atmospheric layers

    NASA Astrophysics Data System (ADS)

    Bencze, Pal

    The origins of lower-ionospheric wave phenomena in the lower and middle atmospheric layers are examined in a theoretical review and illustrated with graphs of typical observational data. Particular attention is given to planetary (Rossby), tidal, and gravity waves; turbulence and heat generation; and ionization associated with dynamic processes in the geomagnetic conjugate region.

  2. Apple fruit volatile compound dynamics during storage in low O2 or high CO2 atmospheres

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long term controlled atmosphere (CA) storage of apples prolongs postharvest life and impacts fruit volatile compound production after fruit are removed from storage. As less is known regarding fruit volatile dynamics during storage, studies were conducted to characterize volatile compounds present ...

  3. Determination of the isotopic composition of atmospheric methane and its application in the Antarctic

    NASA Technical Reports Server (NTRS)

    Lowe, David C.; Brenninkmeijer, Carl A. M.; Tyler, Stanley C.; Dlugkencky, Edward J.

    1991-01-01

    A procedure for establishing the C-13/C-12 ratio and the C-14 abundance in the atmospheric methane is discussed. The method involves air sample collection, measurement of the methane mixing ratio by gas chromotography followed by quantitative conversion of the methane in the air samples to CO2 and H2O, and analysis of the resulting CO2 for the C-13/C-12 ratio by stable isotope ratio mass spectrometry and measurement of C-14 content by accelerator mass spectrometry. The carbon isotropic composition of methane in air collected at Baring Head, New Zealand, and in air collected on aircraft flights between New Zealand and Antarctica is determined by the method, and no gradient in the composition between Baring Head and the South Pole station is found. As the technique is refined, and more data is gathered, small seasonal and long-term variations in C-13 are expected to be resolved.

  4. The Stratospheric Wind Ingrared Limb Sounder: Investigation of atmospheric dynamics and transport from Eos

    NASA Technical Reports Server (NTRS)

    Mccleese, D. J.

    1992-01-01

    The Stratospheric Wind Infrared Limb Sounder (SWIRLS) is one of the instruments in the atmospheric sounder package to be flown by NASA on the Earth Observing System (EOS) B platform in the late 1990's. SWIRLS is designed to measure the horizontal vector wind field, atmospheric temperature, and the abundances and distributions of ozone and nitrous oxide in the middle atmosphere. These measurements will constitute a dynamical climatology of the stratosphere covering time scales ranging from diurnal to interannual. In addition, the SWIRLS investigation will quantify the physical mechanisms responsible for the structure and variations of stratospheric circulation and temperature fields, including the transport of species, particularly ozone, heat and momentum. Existing data sets lack the combination of accuracy, global and temporal coverage, spatial resoultion and simultaneity required to distinguish unambiguosly between the roles of dynamical and chemical processes in determining the current distribution of ozone and its evolution in the future. The measurement objectives, measurement approach, and instrumentation of SWIRLS is described.

  5. Revealing the Complex Dynamics of the Atmospheres of Red Supergiants with the Very Large Telescope Interferometer

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.; Weigelt, G.; Hofmann, K.-H.; Schertl, D.

    2015-12-01

    Massive stars lose a significant fraction of their initial mass when they evolve to red supergiants before they end their life in supernova explosions. The mass loss greatly affects their final fate. However, the mass loss from these dying supergiants is not yet understood well. Here we present our efforts to spatially resolve the dynamics of the atmospheres of red supergiants with the Very Large Telescope Interferometer (VLTI) and the AMBER instrument to clarify the physical mechanism behind the mass loss. The VLTI/AMBER's combination of milliarcsecond spatial resolution and high spectral resolution allows us to spatially resolve stellar atmospheres and extract the dynamical information at each position over the star and the atmosphere — just like observations of the Sun.

  6. The puzzling chemical composition of GJ 436B'S atmosphere: Influence of tidal heating on the chemistry

    SciTech Connect

    Agúndez, Marcelino; Selsis, Franck; Venot, Olivia; Iro, Nicolas

    2014-02-01

    The dissipation of the tidal energy deposited on eccentric planets may induce a heating of the planet that affects its atmospheric thermal structure. Here we study the influence of tidal heating on the atmospheric composition of the eccentric (e = 0.16) 'hot Neptune' GJ 436b, for which inconclusive chemical abundances are retrieved from multiwavelength photometric observations carried out during primary transit and secondary eclipse. We build up a one-dimensional model of GJ 436b's atmosphere in the vertical direction and compute the pressure-temperature and molecular abundances profiles for various plausible internal temperatures of the planet (up to 560 K) and metallicities (from solar to 100 times solar), using a radiative-convective model and a chemical model which includes thermochemical kinetics, vertical mixing, and photochemistry. We find that the CO/CH{sub 4} abundance ratio increases with metallicity and tidal heating, and ranges from 1/20 to 1000 within the ranges of metallicity and internal temperature explored. Water vapor locks most of the oxygen and reaches a very high abundance, whatever the metallicity and internal temperature of the planet. The CO{sub 2}/H{sub 2}O abundance ratio increases dramatically with metallicity, and takes values between 10{sup –5}-10{sup –4} with solar elemental abundances and ∼0.1 for a metallicity 100 times solar. None of the atmospheric models based on solid physical and chemical grounds provide a fully satisfactory agreement with available observational data, although the comparison of calculated spectra and observations seems to point to models with a high metallicity and efficient tidal heating, in which high CO/CH{sub 4} abundance ratios and warm temperatures in the dayside atmosphere are favored.

  7. Analysis of Chemical Composition of Atmospheric Aerosols Above a South East Asian Rainforest

    NASA Astrophysics Data System (ADS)

    Robinson, N. H.; Allan, J. D.; Williams, P. I.; Hamilton, J. F.; Chen, Q.; Martin, S. T.; Coe, H.; McFiggans, G. B.

    2008-12-01

    The tropics emit a huge amount of volatile organic compounds (VOCs) into the Earth's atmosphere. The processes by which these gases are oxidised to form secondary organic aerosol (SOA) are not well understood or quantified. Insight into the origins and properties of these particles can be gained by analysis of their composition. Intensive field measurements were carried out as part of the Oxidant and Particle Photochemical Processes (OP3) and the Aerosol Coupling in the Earth System (ACES) projects in the rainforest in Malaysian Borneo. This is the first campaign of its type in a South East Asian rainforest. We present detailed organic aerosol composition measurements made using an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) at Bukit Atur, a Global Atmosphere Watch site located in the Danum Valley Conservation Area. This is a state-of-the-art field deployable instrument that can provide real time composition, mass loading and aerodynamic particle sizing information. In addition, the mass spectral resolution is sufficient to perform an analysis of the elemental composition of the organic species present. Other tools such as positive matrix factorisation (PMF) have been used to help assess the relative source contributions to the organic aerosol. The aerosol's chemical origins have been further investigated by comparing these spectra to chamber experiments, mass spectral libraries and data from comparable locations in other locations. These data are also being analysed in conjunction with high complexity offline techniques applied to samples collected using filters and a Particle-Into-Liquid Sampler (PILS). Methods used include liquid chromatography and comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry. These techniques provide a more detailed chemical characterisation of the SOA and water soluble organic carbon, allowing direct links back to gas phase precursors.

  8. Dynamic viscoelasticities for short fiber-thermoplastic elastomer composites

    SciTech Connect

    Guo, Wuyun; Ashida, Michio . Graduate School of Science and Technology)

    1993-11-20

    Dynamic moduli, E[prime] and E[double prime], and loss tangent tan [delta] were investigated for thermoplastic elastomers (TPEs), styrene-isoprene-styrene copolymers (SISs), styrene-butadiene-styrene copolymer (SBS), and Hytrel and composites reinforced by poly(ethylene terephthalate) (PET) short fibers. The styrenic TPEs have a typical rubbery behavior and the Hytrel TPE has medial characteristics between rubber and plastic. Both E[prime] and E[double prime] of the composites depended on the matrix as well as the fiber loading and fiber length. Based on the viewpoint of different extensibility between the fiber and the matrix elastomer, a triblock model was considered for estimating the storage modulus of the short fiber-TPE composites as follows: E[sub c] = [alpha] V[sub f]E[sub f] + [beta](1 [minus] V[sub f])E[sub m], where [alpha] and [beta] are the effective deformation coefficients for the fiber and the matrix elastomer, respectively. They can be quantitatively represented by modulus ratio M (= E[sub m]/E[sub f]) and fiber length L: [alpha] = (L[sup n] + k)M/(L[sup n]M + k), [beta] = (1 [minus] [alpha]V[sub f])/(1 [minus] V[sub f]), where the constants n and k are obtained experimentally. When k = 0.0222 and n = 0.45, E[sub c] of the TPE composites agreed well with the prediction of the proposed model. The relaxation spectrum of the composites showed a distinct main peak ascribed to the matrix elastomer, but no peak to the PET fiber.

  9. Semi-volatile inorganic species: importance for atmospheric chemical composition on diurnal and seasonal timescales

    NASA Astrophysics Data System (ADS)

    Pearce, Hana; Mann, Graham; Arnold, Stephen; O'Connor, Fiona; Benduhn, Francois; Rumbold, Steven; Pringle, Kirsty

    2016-04-01

    Nitrate aerosol has become an important driver of reduced European air quality and climate forcing, following reductions in sulphate precursor emissions since the 1980s, and is expected to be more influential in future decades. Measurements from the European Integrated Project on Aerosol and Cloud Climate Air Quality Interactions (EUCAARI) field campaign have shown that semi-volatile aerosol species such as ammonium nitrate can comprise a major component of the sub-micron particulate matter, particularly in high pollution episodes. This presentation will assess the contribution of semi-volatile inorganic aerosol to diurnal and seasonal cycles in atmospheric chemical composition over Europe. We use the UM-UKCA composition-climate model, including the GLOMAP interactive aerosol microphysics module and a recently developed 'hybrid' dissolution solver (HyDis) to accurately represent size-resolved partitioning of ammonia and nitric acid to the particle phase. In particular, we evaluate simulated size-resolved composition variations over Europe through the diurnal cycle, comparing hourly model output to Aerosol Mass Spectrometer observations at several sites during 2008. We will present the results of this composition analysis, in addition to model evaluation from comparisons with European Monitoring for Environmental Protection (EMEP) network and EUCAARI field campaign observations.

  10. A moist aquaplanet variant of the Held-Suarez test for atmospheric model dynamical cores

    NASA Astrophysics Data System (ADS)

    Thatcher, Diana R.; Jablonowski, Christiane

    2016-04-01

    A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the Held-Suarez (HS) test that was developed for dry simulations on "a flat Earth" and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the nonlinear dynamics-physics moisture feedbacks without the complexity of full-physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary-layer mixing, and the exchange of latent and sensible heat between the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of the National Center for Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics-dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. The new moist variant of the HS test can be considered a test case of intermediate complexity.

  11. Dynamic and static assessment of piezoelectric embedded composites

    NASA Astrophysics Data System (ADS)

    Cote, Francois; Masson, Patrice; Mrad, Nezih

    2002-07-01

    The design of fully integrated structures, and especially of new generation composites with embedded sensors and actuators, now requires the development of adequate tools for predicting the static and the dynamic behavior of the structure as well as its life cycle. These tools will provide flexibility in assessing well-suited control strategies for optimum structural performance. As a first step towards the development of integrated computational tools for smart structures, this work validates both theoretically and experimentally the implementation under MSC/NASTRAN of a simplified multilayer tri-dimensional model based on the analogy between thermal strains and piezoelectric strains. Numerical results obtained from this model are first compared to results obtained from a reference finite element tri-dimensional piezoelectric code developed to assess the thermal analogy for different loading conditions. Experimental validation is also conducted on a clamped AS4/3501-6 carbon/epoxy composite beam structure excited at the clamped end by an embedded piezoelectric. Results obtained from vibration testing are assessed with the thermal analogy model using a large number of tri-dimensional elements in order to get a detailed representation of the different variables. Details for practical implementation of the embedment procedures are presented along with the adequate model prediction of the structure's dynamic behavior.

  12. Reproductive dynamics shapes genomotype composition in an allopolyploid complex.

    PubMed

    Morgado-Santos, M; Carona, S; Magalhães, M F; Vicente, L; Collares-Pereira, M J

    2016-05-25

    Hybrid complexes are composed of organisms with multiple combinations of parental genomes (genomotypes) that interconnect through nets of crosses. Although several such complexes are well established without speciation or extinction, mechanisms shaping their dynamics remain poorly understood. In this study, we quantified the reproductive success of the allopolyploid Iberian fish Squalius alburnoides in experimental free-access and directional crosses involving the most common genomotypes. Specifically, we analysed the paternity of the offspring produced when females had free access to male genomotypes and quantified variations in egg allocation, fertilization rate, and offspring survival among crosses involving each male genomotype. The composition of the offspring produced from free-access crosses varied significantly from that expected from random mating, suggesting that offspring production and viability are not independent of parental male genomotype. Moreover, directional crosses producing the genomotype most commonly found in wild populations appeared to be the most successful, with females laying more eggs, and fertilization rate and offspring survival being the highest. These results suggest that reproductive dynamics plays a relevant role in structuring the genomotype composition of populations and opens a path to future research on the ecology and evolutionary biology of allopolyploids and their multiplicity of possible evolutionary pathways. PMID:27226473

  13. Statistical and Dynamical Properties of Covariant Lyapunov Vectors in a Coupled Atmosphere-Ocean Model - Error dynamics.

    NASA Astrophysics Data System (ADS)

    Vannitsem, Stéphane; Lucarini, Valerio

    2016-04-01

    We study the dynamics of the error in a simplified coupled atmosphere-ocean model using the formalism of covariant Lyapunov vectors (CLVs), which link physically-based directions of perturbations to growth/decay rates. The model is obtained via a severe truncation of quasi-geostrophic equations for the two fluids, and includes a simple yet physically meaningful representation of their dynamical/thermodynamical coupling. The model has 36 degrees of freedom, and the parameters are chosen so that a chaotic behaviour is observed. Furthermore, for some specific coupling strength a Low-Frequency Variability is developing reminiscent of the North Atlantic Oscillation. Different behaviors of the error were found depending on the specific norm chosen to measure the amplitude of the error. For the L2 norm, a super-exponential behavior is found, inducing a mean error amplification in the stable subspace described by the CLVs dominating the error dynamics within the ocean. This behavior disappears when the logarithmic norm is used, except for a few CLVs in the highly degenerate subspace defined by CLVs 6-10 for which complicate mixing and amplifications arise. Furthermore the long term dynamics of the error considerably changes when the LFV is developing in the system. When the LFV is not developing, the error saturation arises on different time scales associated to the variables under considerations, while once the LFV is present, the error along all variables of the model - and in particular of the atmosphere - is saturating on the longer time scales associated with the dynamics of the ocean. The implications of this error dynamics on the predictability of the coupled ocean-atmosphere system at short, medium and long term are discussed.

  14. Dynamics of a pulsed laser generated tin plasma expanding in an oxygen atmosphere

    NASA Astrophysics Data System (ADS)

    Barreca, F.; Fazio, E.; Neri, F.; Barletta, E.; Trusso, S.; Fazio, B.

    2005-10-01

    Semiconducting tin oxide can be successfully deposited by means of the laser ablation technique. In particular by ablating metallic tin in a controlled oxygen atmosphere, thin films of SnOx have been deposited. The partial oxygen pressure at which the films are deposited strongly influences both the stoichiometry and the structural properties of the films. In this work, we present a study of the expansion dynamics of the plasma generated by ablating a tin target by means of a pulsed laser using time and space resolved optical emission spectroscopy and fast photography imaging of the expanding plasma. Both Sn I and Sn II optical emission lines have been observed from the time-integrated spectroscopy. Time resolved-measurements revealed the dynamics of the expanding plasma in the ambient oxygen atmosphere. Stoichiometry of the films has been determined by means of X-ray photoelectron spectroscopy and correlated to the expansion dynamics of the plasma.

  15. Meteoric smoke in the middle atmosphere: seasonal cycle, composition, and interaction with polar mesospheric clouds

    NASA Astrophysics Data System (ADS)

    Hervig, M. E.; Bardeen, C.; Deaver, L. E.; Gumbel, J.

    2012-12-01

    The Solar Occultation for Ice Experiment (SOFIE) onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite has observed polar mesospheric clouds (PMC) and meteoric smoke in the middle atmosphere since early 2007. Meteoric smoke consists of nanometer sized particles that result from meteoroid ablation products. Smoke is thought to play a role in neutral and ion chemistry, the nucleation of mesospheric ice and stratospheric aerosols, and also serve as a tracer of the global circulation. SOFIE smoke observations indicate a seasonal cycle with reduced smoke abundance during polar summer, and variability in the strength of this seasonal cycle from year-to-year. Smoke modeling studies using a climatological atmosphere indicate that this seasonal cycle is due to transport by the strong pole-to-pole circulation. Model simulations that incorporate meteorological conditions concurrent with SOFIE are used to better understand inter-annual variations in smoke transport and relationships to the global circulation. Multi-wavelength SOFIE observations indicate that PMC particles are a mixture of ice and meteoric smoke (0.02-2% by volume). The results further indicate that the smoke contained in ice is consistent with a composition of magnesiowustite or carbon. Multi-wavelength observations of smoke (in the absence of ice) are used to further examine the composition of meteoric smoke. These results also indicate magnesiowustite or carbon, in addition to olivine or magnetite. The observations are used in conjunction with model studies to examine questions concerning mesospheric ice nucleation and ice-smoke coagulation.

  16. Modulating Exciton Dynamics in Composite Nanocrystals for Excitonic Solar Cells.

    PubMed

    Concina, Isabella; Manzoni, Cristian; Grancini, Giulia; Celikin, Mert; Soudi, Afsoon; Rosei, Federico; Zavelani-Rossi, Margherita; Cerullo, Giulio; Vomiero, Alberto

    2015-07-01

    Quantum dots (QDs) represent one of the most promising materials for third-generation solar cells due to their potential to boost the photoconversion efficiency beyond the Shockley-Queisser limit. Composite nanocrystals can challenge the current scenario by combining broad spectral response and tailored energy levels to favor charge extraction and reduce energy and charge recombination. We synthesized PbS/CdS QDs with different compositions at the surface of TiO2 nanoparticles assembled in a mesoporous film. The ultrafast photoinduced dynamics and the charge injection processes were investigated by pump-probe spectroscopy. We demonstrated good injection of photogenerated electrons from QDs to TiO2 in the PbS/CdS blend and used the QDs to fabricate solar cells. The fine-tuning of chemical composition and size of lead and cadmium chalcogenide QDs led to highly efficient PV devices (3% maximum photoconversion efficiency). This combined study paves the way to the full exploitation of QDs in next-generation photovoltaic (PV) devices. PMID:26266724

  17. Impact of rocket exhaust plumes on atmospheric composition and climate ― an overview

    NASA Astrophysics Data System (ADS)

    Voigt, Ch.; Schumann, U.; Graf, K.; Gottschaldt, K.-D.

    2013-03-01

    Rockets are the only direct anthropogenic emission sources into the upper atmosphere. Gaseous rocket emissions include CO, N2, H2, H2O, and CO2, while solid rocket motors (SRM) additionally inject significant amounts of aluminum oxide (Al2O3) particles and gaseous chlorine species into the atmosphere. These emissions strongly perturb local atmospheric trace gas and aerosol distributions. Here, previous aircraft measurements in various rocket exhaust plumes including several large space shuttle launch vehicles are compiled. The observed changes of the lower stratospheric composition in the near field are summarized. The injection of chlorine species and particles into the stratosphere can lead to ozone loss in rocket exhaust plumes. Local observations are compared with global model simulations of the effects of rocket emissions on stratospheric ozone concentrations. Large uncertainties remain concerning individual ozone loss reaction rates and the impact of small-scale plume effects on global chemistry. Further, remote sensing data from satellite indicate that rocket exhaust plumes regionally increase iron and water vapor concentrations in the mesosphere potentially leading to the formation of mesospheric clouds at 80- to 90-kilometer altitude. These satellite observations are summarized and the rocket emission inventory is compared with other natural and anthropogenic sources to the stratosphere such as volcanism, meteoritic material, and aviation.

  18. Atmospheric composition 1 million years ago from blue ice in the Allan Hills, Antarctica

    PubMed Central

    Higgins, John A.; Kurbatov, Andrei V.; Spaulding, Nicole E.; Brook, Ed; Introne, Douglas S.; Chimiak, Laura M.; Yan, Yuzhen; Mayewski, Paul A.; Bender, Michael L.

    2015-01-01

    Here, we present direct measurements of atmospheric composition and Antarctic climate from the mid-Pleistocene (∼1 Ma) from ice cores drilled in the Allan Hills blue ice area, Antarctica. The 1-Ma ice is dated from the deficit in 40Ar relative to the modern atmosphere and is present as a stratigraphically disturbed 12-m section at the base of a 126-m ice core. The 1-Ma ice appears to represent most of the amplitude of contemporaneous climate cycles and CO2 and CH4 concentrations in the ice range from 221 to 277 ppm and 411 to 569 parts per billion (ppb), respectively. These concentrations, together with measured δD of the ice, are at the warm end of the field for glacial–interglacial cycles of the last 800 ky and span only about one-half of the range. The highest CO2 values in the 1-Ma ice fall within the range of interglacial values of the last 400 ka but are up to 7 ppm higher than any interglacial values between 450 and 800 ka. The lowest CO2 values are 30 ppm higher than during any glacial period between 450 and 800 ka. This study shows that the coupling of Antarctic temperature and atmospheric CO2 extended into the mid-Pleistocene and demonstrates the feasibility of discontinuously extending the current ice core record beyond 800 ka by shallow coring in Antarctic blue ice areas. PMID:25964367

  19. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    NASA Astrophysics Data System (ADS)

    Hameed, Sultan; Cess, Robert D.; Hogan, Joseph S.

    1980-12-01

    Recent modeling of atmospheric chemical processes (Logan et al., 1978; Hameed et al., 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NOx, and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NOx. The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NOx, and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  20. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    NASA Technical Reports Server (NTRS)

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  1. Titan's surface composition and atmospheric transmission with solar occultation measurements by Cassini VIMS

    NASA Astrophysics Data System (ADS)

    Hayne, Paul O.; McCord, Thomas B.; Sotin, Christophe

    2014-11-01

    Solar occultation measurements by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) reveal the near-infrared transmission of Titan's atmosphere down to an altitude of ∼40 km. By combining these observations with VIMS reflectance measurements of Titan's surface and knowledge of haze and gas opacity profiles from the Huygens probe, we constrain a simple model for the transfer of radiation in Titan's atmosphere in order to derive surface reflectance in the methane windows used for compositional analysis. The advantages of this model are twofold: (1) it is accurate enough to yield useful results, yet simple enough to be implemented in just a few lines of code, and (2) the model parameters are directly constrained by the VIMS occultation and on-planet measurements. We focus on the 2.0, 2.7, 2.8 and 5.0 μm windows, where haze opacity is minimized, and diagnostic vibrational bands exist for water ice and other candidate surface species. A particularly important result is the strong atmospheric attenuation at 2.7 μm compared to 2.8 μm, resulting in a reversal of apparent spectral slope in a compositionally diagnostic wavelength range. These results show that Titan's surface reflectance is much "bluer" and more closely matched by water ice than the uncorrected spectra would indicate, although the majority of Titan's surface has a spectrum consistent with mixtures (either intimate or areal) of water ice and haze particles precipitated from the atmosphere. Compositions of geologic units can be accurately modeled as mixtures ranging from predominantly water ice (Sinlap crater ejecta and margins of dark equatorial terrain) to predominantly organic-rich (Tui Regio and Hotei Regio), with particles in the size range ∼10-20 μm. In distinguishing between hypothesized formation mechanisms for Tui and Hotei Regio, their organic-rich composition favors a process that concentrates precipitated haze particles, such as playa lake evaporite deposition (Barnes, J.W., Bow

  2. Dynamics of the chemical composition of rainwater throughout Hurricane Irene

    NASA Astrophysics Data System (ADS)

    Mullaugh, K. M.; Willey, J. D.; Kieber, R. J.; Mead, R. N.; Avery, G. B., Jr.

    2013-03-01

    Sequential sampling of rainwater from Hurricane Irene was carried out in Wilmington, NC, USA on 26 and 27 August 2011. Eleven samples were analyzed for pH, major ions (Cl-, NO3-, SO42-, Na+, K+, Mg2+, Ca2+, NH4+), dissolved organic carbon (DOC) and hydrogen peroxide (H2O2). Hurricane Irene contributed 16% of the total rainwater and 18% of the total chloride wet deposition received in Wilmington NC during all of 2011. This work highlights the main physical factors influencing the chemical composition of tropical storm rainwater: wind speed, wind direction, back trajectory and vertical mixing, time of day and total rain volume. Samples collected early in the storm, when winds blew out of the east, contained dissolved components indicative of marine sources (salts from sea spray and low DOC). The sea-salt components in the samples had two maxima in concentration during the storm the first of which occurred before the volume of rain had sufficiently washed out sea salt from the atmosphere and the second when back trajectories showed large volumes of marine surface air were lifted. As the storm progressed and winds shifted to a westerly direction, the chemical composition of the rainwater became characteristic of terrestrial storms (high DOC and NH4+ and low sea salt). This work demonstrates that tropical storms are not only responsible for significant wet deposition of marine components to land, but terrestrial components can also become entrained in rainwater, which can then be delivered to coastal waters via wet deposition. This study also underscores why analysis of one composite sample can lead to an incomplete interpretation of the factors that influence the chemically divergent analytes in rainwater during extreme weather events.

  3. Seasonal variation of gravity waves in the Equatorial Middle Atmosphere: results from ISRO's Middle Atmospheric Dynamics (MIDAS) program

    NASA Astrophysics Data System (ADS)

    Ramkumar, G.; Antonita, T. M.; Bhavani Kumar, Y.; Venkata Kumar, H.; Narayana Rao, D.

    2006-10-01

    Altitude profiles of temperature in the stratospheric and mesopheric region from lidar observations at NARL, Gadanki, India, during December 2002-April 2005, as part of ISRO's Middle Atmospheric Dynamics - "MIDAS (2002-2005)" program are used to study the characteristics of gravity waves and their seasonal variation. Month-to-month variation of the gravity wave activity observed during the period of December 2002-April 2005 show maximum wave activity, with primary peaks in May 2003, August 2004 and March 2005 and secondary peaks in February 2003 and November 2004. This month-to-month variation in gravity wave activity is linked to the variation in the strength of the sources, viz. convection and wind shear, down below at the tropospheric region, estimated from MST radar measurements at the same location. Horizontal wind shear is found to be mostly correlated with wave activity than convection, and sometimes both sources are found to contribute towards the wave activity.

  4. Laboratory Simulations of Titan's Surface Composition and its Relation to Atmospheric Haze Layers

    NASA Astrophysics Data System (ADS)

    Sebree, Joshua A.; Schmitt, Angela M.; Trainer, Melissa G.; Li, Xiang; Pinnick, Veronica T.; Getty, Stephanie A.; Loeffler, Mark; Anderson, Carrie M.; Brinckerhoff, William B.

    2014-06-01

    The arrival of the Cassini spacecraft in orbit around Saturn has led to the discovery of benzene at ppm levels, as well as large positive ions evocative of polycyclic aromatic hydrocarbons (PAHs) in Titan's atmosphere. Recently, the assignment of the band at 3.28 μm as observed by the Visual-Infrared Mapping Spectrometer (VIMS) to gas-phase PAHs provides further evidence that these molecules are prevalent on Titan. These observations suggest that aromatic reaction pathways play an important role in the photochemistry of Titan's atmosphere, in particular in the formation of large organic species. These aerosols eventually settle out of the atmosphere onto the surface of Titan giving rise to the different surface albedos that are observed by the VIMS instrument onboard Cassini. We will present results from a laboratory study of the UV irradiation of ppm-level aromatic precursors to understand their influence on the observable characteristics of Titan's surface. Spectroscopic measurements of our analog aerosols compare favorably to observations of Titan's haze by VIMS and by the Composite Infrared Spectrometer (CIRS) in the far-infrared. In addition, the broad aerosol emission feature centered at approximately 145 wn is of particular interest. From the broadness of this feature, we speculate that the emission is a blended composite of low-energy vibrations of large molecules such as polycyclic aromatic hydrocarbons (PAHs) and their nitrogen containing counterparts, polycyclic aromatic nitrogen heterocycles (PANHs). A further comparison of our aerosol spectra to the surface observations carried out by Cassini also shows a strong correlation between the aerosol makeup and the surface albedo of Titan. Using laser desorption mass spectrometry (LDMS) and collision-induced dissociation (CID) MS/MS techniques we confirm the presence of large (5+ rings) PAHs/PANHs in our aerosols and discuss possible formation pathways.

  5. Mixing ratio and carbon isotopic composition investigation of atmospheric CO2 in Beijing, China.

    PubMed

    Pang, Jiaping; Wen, Xuefa; Sun, Xiaomin

    2016-01-01

    The stable isotope composition of atmospheric CO2 can be used as a tracer in the study of urban carbon cycles, which are affected by anthropogenic and biogenic CO2 components. Continuous measurements of the mixing ratio and δ(13)C of atmospheric CO2 were conducted in Beijing from Nov. 15, 2012 to Mar. 8, 2014 including two heating seasons and a vegetative season. Both δ(13)C and the isotopic composition of source CO2 (δ(13)CS) were depleted in the heating seasons and enriched in the vegetative season. The diurnal variations in the CO2 mixing ratio and δ(13)C contained two peaks in the heating season, which are due to the effects of morning rush hour traffic. Seasonal and diurnal patterns of the CO2 mixing ratio and δ(13)C were affected by anthropogenic emissions and biogenic activity. Assuming that the primary CO2 sources at night (22:00-04:00) were coal and natural gas combustion during heating seasons I and II, an isotopic mass balance analysis indicated that coal combustion had average contributions of 83.83±14.11% and 86.84±12.27% and that natural gas had average contributions of 16.17±14.11% and 13.16±12.27%, respectively. The δ(13)C of background CO2 in air was the main error source in the isotopic mass balance model. Both the mixing ratio and δ(13)C of atmospheric CO2 had significant linear relationships with the air quality index (AQI) and can be used to indicate local air pollution conditions. Energy structure optimization, for example, reducing coal consumption, will improve the local air conditions in Beijing. PMID:26363727

  6. Jovian atmospheres

    SciTech Connect

    Allison, M.; Travis, L.D.

    1986-10-01

    A conference on the atmosphere of Jupiter produced papers in the areas of thermal and ortho-para hydrogen structure, clouds and chemistry, atmospheric structure, global dynamics, synoptic features and processes, atmospheric dynamics, and future spaceflight opportunities. A session on the atmospheres of Uranus and Neptune was included, and the atmosphere of Saturn was discussed in several papers.

  7. Observations of the Thermal Structure and Dynamics of the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Conrath, B. J.; Pearl, J. C.; Smith, M. D.; Banfield, D.; Christensen, P. R.

    1999-01-01

    Information on the thermal structure of the Martian atmosphere has been obtained using several different techniques, including in situ sounding from decent probes, radio occultations and infrared thermal emission measurements from orbiters, and earth based full-disk microwave measurements. Knowledge of the 3- dimensional atmospheric temperature field and its temporal variation provides an important observational approach to the study of the dynamics of the atmosphere. Comparison of the observed thermal structure with results from a Mars General Circulation Model (MGCM) can be used to refine the model and provide greater insight into the physical processes controlling the dynamics of the atmosphere. Direct assimilation of the temperature observations into an MGCM can also be used to address similar goals. In addition, relatively simple diagnostic models can be applied to the data to directly obtain information on winds and other meteorological properties of the atmosphere. In this overview, we concentrate primarily on the structure retrieved from thermal emission measurements. Additional information is contained in the original extended abstract.

  8. The dynamic response of inelastic, delaminated composite plates

    SciTech Connect

    Williams, T.O.; Addessio, F.L.

    1997-04-01

    The dynamic behavior of metal matrix composite (MMC) plates is considered. In particular, the influence of inelastic deformations and delamination at the interfaces of the lamina on the macroscopic and local response of Al{sub 2}O{sub 3}/Al plates are studied. The work is carried out using a recently developed plate theory which models both delamination and localized history-dependent effects such, as inelasticity. A linear debonding model for the interface is employed for the current work. The theory models both the initiation and growth of delaminations without imposing any restrictions on the location, size, or direction of growth of the delamination. In the current work the response of the individual lamina in the plate are modeled using the Method of Cells (MOC) micromechanical model. The inelastic behavior in the matrix is modeled using the unified viscoplastic theory of Bodner and Partom. The behavior of a Al{sub 2}O{sub 3}/Al plate under dynamic cylindrical bending subjected to a ramp and hold type of loading is examined. For simplicity, the plate is assumed to be composed of a cross-ply layup. It is shown that both inelastic deformations and delamination have a strong influence on dynamic plate behavior. The inelastic deformations have strong effect on the axial displacement while delamination has greater influence on the deflection.

  9. Realistic Modeling of Multi-Scale MHD Dynamics of the Solar Atmosphere

    NASA Technical Reports Server (NTRS)

    Kitiashvili, Irina; Mansour, Nagi N.; Wray, Alan; Couvidat, Sebastian; Yoon, Seokkwan; Kosovichev, Alexander

    2014-01-01

    Realistic 3D radiative MHD simulations open new perspectives for understanding the turbulent dynamics of the solar surface, its coupling to the atmosphere, and the physical mechanisms of generation and transport of non-thermal energy. Traditionally, plasma eruptions and wave phenomena in the solar atmosphere are modeled by prescribing artificial driving mechanisms using magnetic or gas pressure forces that might arise from magnetic field emergence or reconnection instabilities. In contrast, our 'ab initio' simulations provide a realistic description of solar dynamics naturally driven by solar energy flow. By simulating the upper convection zone and the solar atmosphere, we can investigate in detail the physical processes of turbulent magnetoconvection, generation and amplification of magnetic fields, excitation of MHD waves, and plasma eruptions. We present recent simulation results of the multi-scale dynamics of quiet-Sun regions, and energetic effects in the atmosphere and compare with observations. For the comparisons we calculate synthetic spectro-polarimetric data to model observational data of SDO, Hinode, and New Solar Telescope.

  10. Effective low-order models for atmospheric dynamics and time series analysis

    NASA Astrophysics Data System (ADS)

    Gluhovsky, Alexander; Grady, Kevin

    2016-02-01

    The paper focuses on two interrelated problems: developing physically sound low-order models (LOMs) for atmospheric dynamics and employing them as novel time-series models to overcome deficiencies in current atmospheric time series analysis. The first problem is warranted since arbitrary truncations in the Galerkin method (commonly used to derive LOMs) may result in LOMs that violate fundamental conservation properties of the original equations, causing unphysical behaviors such as unbounded solutions. In contrast, the LOMs we offer (G-models) are energy conserving, and some retain the Hamiltonian structure of the original equations. This work examines LOMs from recent publications to show that all of them that are physically sound can be converted to G-models, while those that cannot lack energy conservation. Further, motivated by recent progress in statistical properties of dynamical systems, we explore G-models for a new role of atmospheric time series models as their data generating mechanisms are well in line with atmospheric dynamics. Currently used time series models, however, do not specifically utilize the physics of the governing equations and involve strong statistical assumptions rarely met in real data.

  11. Effective low-order models for atmospheric dynamics and time series analysis.

    PubMed

    Gluhovsky, Alexander; Grady, Kevin

    2016-02-01

    The paper focuses on two interrelated problems: developing physically sound low-order models (LOMs) for atmospheric dynamics and employing them as novel time-series models to overcome deficiencies in current atmospheric time series analysis. The first problem is warranted since arbitrary truncations in the Galerkin method (commonly used to derive LOMs) may result in LOMs that violate fundamental conservation properties of the original equations, causing unphysical behaviors such as unbounded solutions. In contrast, the LOMs we offer (G-models) are energy conserving, and some retain the Hamiltonian structure of the original equations. This work examines LOMs from recent publications to show that all of them that are physically sound can be converted to G-models, while those that cannot lack energy conservation. Further, motivated by recent progress in statistical properties of dynamical systems, we explore G-models for a new role of atmospheric time series models as their data generating mechanisms are well in line with atmospheric dynamics. Currently used time series models, however, do not specifically utilize the physics of the governing equations and involve strong statistical assumptions rarely met in real data. PMID:26931600

  12. Dissipative Particle Dynamics modeling of nanorod-polymer composites

    NASA Astrophysics Data System (ADS)

    Khani, Shaghayegh; Maia, Joao

    2014-11-01

    Recent years have seen a plethora of experimental methods for fabricating nanorod-polymer composites with enhanced physical and mechanical properties. The macroscopic properties of the composites are directly related to the dispersion and organization of the nanoparticles in the matrix. For instance, a significant improvement in the properties of the nanorod-polymer composites is observed upon formation of a percolating network. Thus, controlling the structure of the nanoparticles in the matrix will advance the technology in the field. One way of doing this is by adjusting the chemical interactions which is done through grafting polymer chains on the surface of the rods. Although the enthalpic interactions play the major role in such systems other entropic variables such as the dimension of the rods, density of grafting and etc. may influence the final morphology of the system. The recent developments in the computational techniques have paved the road for further understanding of the controlled assembly of nanorods in polymer matrices. In this study, Dissipative Particle Dynamics (DPD) is employed in order to investigate the effect of enthalpic and entopic variables on the phase behavior of the nanorod-polymer composites. DPD is a coarse-grained mesoscale method which has been found very promising in simulating multi component systems. The interaction parameter between the components of the systems can be mapped onto the Flory-Huggins χ-parameter via well-known Groot-Warren expression. The main goal of this work is to provide a phase diagram that can be used to guide the experiments in designing new materials.

  13. A moist aquaplanet variant of the Held–Suarez test for atmospheric model dynamical cores

    SciTech Connect

    Thatcher, Diana R.; Jablonowski, Christiane

    2016-01-01

    A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the Held–Suarez (HS) test that was developed for dry simulations on “a flat Earth” and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the nonlinear dynamics–physics moisture feedbacks without the complexity of full-physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary-layer mixing, and the exchange of latent and sensible heat between the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of the National Center for Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics–dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. The new moist variant of the HS test can be considered a test case of intermediate complexity.

  14. A moist aquaplanet variant of the Held–Suarez test for atmospheric model dynamical cores

    DOE PAGESBeta

    Thatcher, Diana R.; Jablonowski, Christiane

    2016-04-04

    A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the Held–Suarez (HS) test that was developed for dry simulations on “a flat Earth” and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the nonlinear dynamics–physics moisture feedbacks without the complexity of full-physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary-layer mixing, and the exchange of latent and sensible heat betweenmore » the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of the National Center for Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics–dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. The new moist variant of the HS test can be considered a test case of intermediate complexity.« less

  15. A moist aquaplanet variant of the Held–Suarez test for atmospheric model dynamical cores

    DOE PAGESBeta

    Thatcher, Diana R.; Jablonowski, Christiane

    2016-04-04

    A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the Held–Suarez (HS) test that was developed for dry simulations on “a flat Earth” and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the nonlinear dynamics–physics moisture feedbacks without the complexity of full-physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary-layer mixing, and the exchange of latent and sensible heat betweenmore » the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of the National Center for Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics–dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. Furthermore, the new moist variant of the HS test can be considered a test case of intermediate

  16. Composition and decomposition of soybean and sorghum tissues grown under elevated atmospheric carbon dioxide

    SciTech Connect

    Henning, F.P.; Wood, C.W.; Rogers, H.H.; Runion, G.B.; Prior, S.A.

    1996-07-01

    It has been hypothesized that changes in both quantity and quality of plant residue inputs to soils as atmospheric carbon dioxide (CO{sub 2}) concentration increases may alter carbon (C) and nitrogen (N) turnover rates and pool sizes. We determined the effect of elevated atmospheric CO{sub 2} on plant tissue quality, and how modifications in tissue quality affect C and N mineralization. Soybean and sorghum were grown under elevated (704.96 {plus_minus} 0.33 {mu}mol CO{sub 2} mol{sup {minus}1}) and ambient (357.44 {plus_minus} 0.12 {mu}mol CO{sub 2} mol{sup {minus}1}) atmospheric CO{sub 2} in open-top chambers. Leaf and stem tissues were separated form harvested plants and analyzed for C,N, lignin, and cellulose. Tissues were applied to Norfolk loamy sand (fine-loamy, siliceous, thermic Typic Kandiudult) and aerobically incubated for 70-d to determine C and N mineralization, C turnover, relative N mineralization, and C/N mineralized. Elevated CO{sub 2} had no effect on plant residue C concentration, but N concentration of soybean leaves and stems and sorghum stems was reduced; however, CO{sub 2} enrichment increased C/N ratio and lignin concentration for only sorghum stems and soybean leaves, respectively. Source of plant residue (i.e., produced under either elevated or ambient CO{sub 2}) had no impact on soil C turnover, relative N mineralization, cumulative C and N mineralization, and C/N mineralized. These data suggest that increasing atmospheric CO{sub 2} will have little effect on composition or decomposition of field crop residues. Thus, since CO{sub 2} enrichment results in increased photosynthetic C fixation, the possibility exists for increased soil C storage under field crops in an elevated CO{sub 2} world. 29 refs., 4 figs., 4 tabs.

  17. Solar Cycle Variability in Mean Thermospheric Composition and Temperature Induced by Atmospheric Tides

    NASA Astrophysics Data System (ADS)

    Jones, M., Jr.; Forbes, J. M.; Hagan, M. E.

    2015-12-01

    Vertically-propagating atmospheric thermal tides whose origins lie in Earth's lower atmosphere are now widely recognized as one of the dominant "meteorological" drivers of space weather. Many prior research efforts have focused on documenting and understanding the role that dissipating tides play in determining the longitudinal and seasonal variability associated with lower thermospheric winds, temperature, and constituent densities. However, considerably less attention has focused on understanding the potential solar cycle variability in the mean thermospheric state induced by the tides. In this paper we utilize the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM), forced with observationally-based tides at the model lower boundary from the Climatological Tidal Model of the Thermosphere (CTMT, from Oberheide et al. [2011]), to elucidate how the dissipating tides induce variations of up to 30 K in the zonal-mean thermosphere temperature between solar minimum and maximum. Numerical experiments are performed for the month of September and for solar minimum, medium, and maximum conditions in order to quantify the solar cycle variability associated with the different terms in the thermodynamic energy, major and minor neutral constituent continuity equations. Our analysis indicates that solar cycle variability in neutral temperatures results from a combination of net eddy heat transport effects and tidal modulation of net nitric oxide (NO) cooling. The chemical and dynamical pathways through which dissipating tides affect mean NO cooling differently at solar minimum and maximum are diagnosed.

  18. The Vega balloons - A tool for studying atmosphere dynamics on Venus

    NASA Technical Reports Server (NTRS)

    Kremnev, R. S.; Selivanov, A. S.; Linkin, V. M.; Lipatov, A. N.; Tarnoruder, I. IA.; Puchkov, V. I.; Kustodiev, V. D.; Shurupov, A. A.; Ragent, B.; Preston, R. A.

    1986-01-01

    The Vega balloon experiment, designed to measure the dynamics of the Venus atmosphere, comprised the balloons themselves, their gondolas with on-board sensors and radio transmitters, and the radio telescope network on the earth. The structures and the physical parameters of the balloon probe are described, together with the instruments on the gondola, designed for the measurements of the atmospheric pressure, temperature, and vertical wind flows, and illumination, as well as possible flashes of lightning. Consideration is also given to the formatting of the information flow for the individual parameters measured.

  19. Dynamics and predictability of a low-order wind-driven ocean-atmosphere coupled model

    NASA Astrophysics Data System (ADS)

    Vannitsem, Stéphane

    2014-04-01

    The dynamics of a low-order coupled wind-driven ocean-atmosphere system is investigated with emphasis on its predictability properties. The low-order coupled deterministic system is composed of a baroclinic atmosphere for which 12 dominant dynamical modes are only retained (Charney and Straus in J Atmos Sci 37:1157-1176, 1980) and a wind-driven, quasi-geostrophic and reduced-gravity shallow ocean whose field is truncated to four dominant modes able to reproduce the large scale oceanic gyres (Pierini in J Phys Oceanogr 41:1585-1604, 2011). The two models are coupled through mechanical forcings only. The analysis of its dynamics reveals first that under aperiodic atmospheric forcings only dominant single gyres (clockwise or counterclockwise) appear, while for periodic atmospheric solutions the double gyres emerge. In the present model domain setting context, this feature is related to the level of truncation of the atmospheric fields, as indicated by a preliminary analysis of the impact of higher wavenumber ("synoptic" scale) modes on the development of oceanic gyres. In the latter case, double gyres appear in the presence of a chaotic atmosphere. Second the dynamical quantities characterizing the short-term predictability (Lyapunov exponents, Lyapunov dimension, Kolmogorov-Sinaï (KS) entropy) displays a complex dependence as a function of the key parameters of the system, namely the coupling strength and the external thermal forcing. In particular, the KS-entropy is increasing as a function of the coupling in most of the experiments, implying an increase of the rate of loss of information about the localization of the system on its attractor. Finally the dynamics of the error is explored and indicates, in particular, a rich variety of short term behaviors of the error in the atmosphere depending on the (relative) amplitude of the initial error affecting the ocean, from polynomial ( at 2 + bt 3 + ct 4) up to exponential-like evolutions. These features are explained

  20. Spectroscopic aspects of differential method for sounding gas composition of the atmosphere

    NASA Technical Reports Server (NTRS)

    Zuev, V. V.; Ippolitov, I. I.; Ponomarev, Y. N.

    1986-01-01

    The problems concerning the dynamics of populations of the sounded atmospheric gas molecule levels taking into account the nonmonochromatic character of radiation, durations of exciting and sounding pulses, rates of relaxation of excited vibration-rotation states population along different channels in a natural multicomponent mixture of gases and air were investigated. The problems of spectroscopic software, completeness and accuracy of the initial spectroscopic information, information on channels and rates of relaxation from the viewpoint of developing specific schemes of sounding are discussed. The values of deviations of vibration-rotation level populations of some atmospheric molecules from their equilibrium value at simultaneous action of double frequency radiation on the sounding path and the corresponding dynamic variation of lidar return amplitude were estimated. The importance of nonlinear spectrosopic effects in the lidar return value variation at sounding radiation frequency equaling the resonance frequency of vibration-rotation transition in the problem on sounding the humidity profiles and concentrations of gaseous pollutants was also estimated.

  1. MEP and planetary climates: insights from a two-box climate model containing atmospheric dynamics

    PubMed Central

    Jupp, Tim E.; Cox, Peter M.

    2010-01-01

    A two-box model for equator-to-pole planetary heat transport is extended to include simple atmospheric dynamics. The surface drag coefficient CD is treated as a free parameter and solutions are calculated analytically in terms of the dimensionless planetary parameters η (atmospheric thickness), ω (rotation rate) and ξ (advective capability). Solutions corresponding to maximum entropy production (MEP) are compared with solutions previously obtained from dynamically unconstrained two-box models. As long as the advective capability ξ is sufficiently large, dynamically constrained MEP solutions are identical to dynamically unconstrained MEP solutions. Consequently, the addition of a dynamical constraint does not alter the previously obtained MEP results for Earth, Mars and Titan, and an analogous result is presented here for Venus. The rate of entropy production in an MEP state is shown to be independent of rotation rate if the advective capability ξ is sufficiently large (as for the four examples in the solar system), or if the rotation rate ω is sufficiently small. The model indicates, however, that the dynamical constraint does influence the MEP state when ξ is small, which might be the case for some extrasolar planets. Finally, results from the model developed here are compared with previous numerical simulations in which the effect of varying surface drag coefficient on entropy production was calculated. PMID:20368254

  2. MEP and planetary climates: insights from a two-box climate model containing atmospheric dynamics.

    PubMed

    Jupp, Tim E; Cox, Peter M

    2010-05-12

    A two-box model for equator-to-pole planetary heat transport is extended to include simple atmospheric dynamics. The surface drag coefficient CD is treated as a free parameter and solutions are calculated analytically in terms of the dimensionless planetary parameters eta (atmospheric thickness), omega (rotation rate) and xi (advective capability). Solutions corresponding to maximum entropy production (MEP) are compared with solutions previously obtained from dynamically unconstrained two-box models. As long as the advective capability xi is sufficiently large, dynamically constrained MEP solutions are identical to dynamically unconstrained MEP solutions. Consequently, the addition of a dynamical constraint does not alter the previously obtained MEP results for Earth, Mars and Titan, and an analogous result is presented here for Venus. The rate of entropy production in an MEP state is shown to be independent of rotation rate if the advective capability xi is sufficiently large (as for the four examples in the solar system), or if the rotation rate omega is sufficiently small. The model indicates, however, that the dynamical constraint does influence the MEP state when xi is small, which might be the case for some extrasolar planets. Finally, results from the model developed here are compared with previous numerical simulations in which the effect of varying surface drag coefficient on entropy production was calculated. PMID:20368254

  3. Numerical Study of the Effects of Atmospheric and Wake Turbulence on Wind Turbine Dynamics

    SciTech Connect

    Churchfield, M. J.; Lee, S.; Michalakes, J.; Moriarty, P. J.

    2012-01-01

    Although the atmospheric sciences community has been studying the effects of atmospheric stability and surface roughness on the planetary boundary layer for some time, their effects on wind turbine dynamics have not been well studied. In this study, we performed numerical experiments to explore some of the effects of atmospheric stability and surface roughness on wind turbine dynamics. We used large-eddy simulation to create atmospheric winds and compute the wind turbine flows, and we modeled the wind turbines as revolving and flexible actuator lines coupled to a wind turbine structural and system dynamic model. We examined the structural moments about the wind turbine blade, low-speed shaft, and nacelle; power production; and wake evolution when large 5-MW turbines are subjected to winds generated from low- and high-surface roughness levels representative of offshore and onshore conditions, respectively, and also neutral and unstable atmospheric conditions. In addition, we placed a second turbine 7 rotor diameters downwind of the first one so that we could explore wake effects under these different conditions. The results show that the turbulent structures generated within the atmospheric boundary layer wind simulations cause isolated loading events at least as significant as when a turbine is waked by an upwind turbine. The root-mean-square (RMS) turbine loads are consistently larger when the surface roughness is higher. The RMS blade-root out-of-plane bending moment and low-speed shaft torque are higher when the atmospheric boundary layer is unstable as compared with when it is neutral. However, the RMS yaw moments are either equal or reduced in the unstable case as compared with the neutral case. For a given surface roughness, the ratio of power produced by the downwind turbine relative to that of the upwind turbine is 15-20% higher when the conditions are unstable as compared with neutral. For a given atmospheric stability, this power ratio is 10% higher with

  4. Megafauna and frozen soil: the drivers of atmospheric CH4 dynamics

    NASA Astrophysics Data System (ADS)

    Zimov, N.; Zimov, S. A.

    2010-12-01

    During the last deglaciation (LD) a strong increase in atmospheric methane (CH4) concentrations occurred simultaneously with a rise in Greenland temperatures indicating that in the north, during this time period, strong CH4 sources “awakened”, as additionally documented by the appearance of a strong gradient between northern (Greenland) and southern (Antarctica) hemisphere atmospheric CH4 concentrations. This rise could not be caused by wetland expansion. A reconstruction of peatland formation dynamics has indicated that wetlands on Earth were few in LD and only actively expanded 10,000 yr BP, after atmospheric CH4 concentrations began to decline. Destabilization of methane clathrates also could not be the source for atmospheric CH4 increase. Geological CH4 (including methane clathrates) has the highest deuterium content (δD) among all of the known sources of CH4 while atmospheric CH4 δD values determined for the LD were record low. To explain recorded atmospheric CH4 and its isotopic dynamics required a strong northern source, which was active only during the LD and that provided very low δD CH4 values. Such a source is permafrost thawing under anaerobic conditions (or better stated soils of mammoth steppe-tundra ecosystems). Permafrost thawing is the strongest, among known, wetland sources (usually over 100g CH4/m2yr) and has a unique isotopic signature (δD = -400 per mil (-338 to -479 per mil), δ13C = -73 per mil (-58 to -99 per mil)). The main sources of atmospheric CH4 have different isotopic signatures (δ13C, δD). The isotopic content of atmospheric CH4 is a simple function of the weight average for all of the sources. Inclusion of permafrost source into a budget model of the atmospheric methane and its isotopes allowed us to reconstruct the dynamics of methane’s main sources. Model indicated geological source to be negligible as in LGM so and in LD and Holocene. During the glaciation, the largest methane source was megafauna, whose 1

  5. Ensemble Simulations with Coupled Atmospheric Dynamic and Dispersion Models: Illustrating Uncertainties in Dosage Simulations.

    NASA Astrophysics Data System (ADS)

    Warner, Thomas T.; Sheu, Rong-Shyang; Bowers, James F.; Sykes, R. Ian; Dodd, Gregory C.; Henn, Douglas S.

    2002-05-01

    Ensemble simulations made using a coupled atmospheric dynamic model and a probabilistic Lagrangian puff dispersion model were employed in a forensic analysis of the transport and dispersion of a toxic gas that may have been released near Al Muthanna, Iraq, during the Gulf War. The ensemble study had two objectives, the first of which was to determine the sensitivity of the calculated dosage fields to the choices that must be made about the configuration of the atmospheric dynamic model. In this test, various choices were used for model physics representations and for the large-scale analyses that were used to construct the model initial and boundary conditions. The second study objective was to examine the dispersion model's ability to use ensemble inputs to predict dosage probability distributions. Here, the dispersion model was used with the ensemble mean fields from the individual atmospheric dynamic model runs, including the variability in the individual wind fields, to generate dosage probabilities. These are compared with the explicit dosage probabilities derived from the individual runs of the coupled modeling system. The results demonstrate that the specific choices made about the dynamic-model configuration and the large-scale analyses can have a large impact on the simulated dosages. For example, the area near the source that is exposed to a selected dosage threshold varies by up to a factor of 4 among members of the ensemble. The agreement between the explicit and ensemble dosage probabilities is relatively good for both low and high dosage levels. Although only one ensemble was considered in this study, the encouraging results suggest that a probabilistic dispersion model may be of value in quantifying the effects of uncertainties in a dynamic-model ensemble on dispersion model predictions of atmospheric transport and dispersion.

  6. A moist aquaplanet variant of the Held-Suarez test for atmospheric model dynamical cores

    NASA Astrophysics Data System (ADS)

    Thatcher, D. R.; Jablonowski, C.

    2015-09-01

    A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the Held-Suarez (HS) test that was developed for dry simulations on a flat Earth and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the non-linear dynamics-physics moisture feedbacks without the complexity of full physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary layer mixing, and the exchange of latent and sensible heat between the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of NCAR's Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics-dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. The new moist variant of the HS test can be considered a test case of intermediate complexity.

  7. The dynamic surface tension of atmospheric aerosol surfactants reveals new aspects of cloud activation

    PubMed Central

    Nozière, Barbara; Baduel, Christine; Jaffrezo, Jean-Luc

    2014-01-01

    The activation of aerosol particles into cloud droplets in the Earth’s atmosphere is both a key process for the climate budget and a main source of uncertainty. Its investigation is facing major experimental challenges, as no technique can measure the main driving parameters, the Raoult’s term and surface tension, σ, for sub-micron atmospheric particles. In addition, the surfactant fraction of atmospheric aerosols could not be isolated until recently. Here we present the first dynamic investigation of the total surfactant fraction of atmospheric aerosols, evidencing adsorption barriers that limit their gradient (partitioning) in particles and should enhance their cloud-forming efficiency compared with current models. The results also show that the equilibration time of surfactants in sub-micron atmospheric particles should be beyond the detection of most on-line instruments. Such instrumental and theoretical shortcomings would be consistent with atmospheric and laboratory observations and could have limited the understanding of cloud activation until now. PMID:24566451

  8. On the interplay of gas dynamics and the electromagnetic field in an atmospheric Ar/H2 microwave plasma torch

    NASA Astrophysics Data System (ADS)

    Synek, Petr; Obrusník, Adam; Hübner, Simon; Nijdam, Sander; Zajíčková, Lenka

    2015-04-01

    A complementary simulation and experimental study of an atmospheric pressure microwave torch operating in pure argon or argon/hydrogen mixtures is presented. The modelling part describes a numerical model coupling the gas dynamics and mixing to the electromagnetic field simulations. Since the numerical model is not fully self-consistent and requires the electron density as an input, quite extensive spatially resolved Stark broadening measurements were performed for various gas compositions and input powers. In addition, the experimental part includes Rayleigh scattering measurements, which are used for the validation of the model. The paper comments on the changes in the gas temperature and hydrogen dissociation with the gas composition and input power, showing in particular that the dependence on the gas composition is relatively strong and non-monotonic. In addition, the work provides interesting insight into the plasma sustainment mechanism by showing that the power absorption profile in the plasma has two distinct maxima: one at the nozzle tip and one further upstream.

  9. Chemical Composition of Atmospheric Aerosols Above a Pristine South East Asian Rainforest

    NASA Astrophysics Data System (ADS)

    Robinson, N. H.; Allan, J. D.; Williams, P. I.; Coe, H.; Hamilton, J.; Chen, Q.; Martin, S.; Trembath, J.

    2009-04-01

    The tropics emit a huge amount of volatile organic compounds (VOCs) into the Earth's atmosphere. The processes by which these gases are oxidised to form secondary organic aerosol (SOA) are currently not well understood or quantified. Intensive field measurements were carried out as part of the Oxidant and Particle Photochemical Processes (OP3) and the Aerosol Coupling in the Earth System (ACES) projects around pristine rainforest in Malaysian Borneo. This is the first campaign of its type in a South East Asian rainforest. We present detailed organic aerosol composition measurements made using an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) at Bukit Atur, a Global Atmosphere Watch site located in the Danum Valley Conservation Area. This is a state-of-the-art field deployable instrument that can provide real time composition, mass loading and aerodynamic particle sizing information. In addition, the mass spectral resolution is sufficient to perform an analysis of the elemental composition of the organic species present. Other tools such as positive matrix factorisation (PMF) have been used to help assess the relative source contributions to the organic aerosol. A suite of supporting aerosol and gas phase measurements were made, including size resolved number concentration measurements with Differential Mobility Particle Sizer (DMPS), as well as absorption measurements made with a Multi-Angle Absorption Photometer (MAAP). The ground site data are compared with Aerodyne Compact Time of Flight Aerosol Mass Spectrometer (C-ToF-AMS) measurements made on the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft. Airborne measurements were made above pristine rainforest surrounding the Danum Valley site, as well as nearby oil palm agricultural sites and palm oil rendering plants. Airborne hygroscopicity was measured using a Droplet Measurement Technology Cloud Condensation Nuclei counter (DMT CCN counter) in

  10. Dynamic fracture behaviour in fibre-reinforced cementitious composites

    NASA Astrophysics Data System (ADS)

    Yu, Rena C.; Cifuentes, Héctor; Rivero, Ignacio; Ruiz, Gonzalo; Zhang, Xiaoxin

    2016-08-01

    The object of this work is to simulate the dynamic fracture propagation in fibre-reinforced cementitious composites, in particular, in steel fibre reinforced concrete (SFRC). Beams loaded in a three-point bend configuration through a drop-weight impact device are considered. A single cohesive crack is assumed to propagate at the middle section; the opening of this crack is governed by a rate-dependent cohesive law; the fibres around the fracture plane are explicitly represented through truss elements. The fibre pull-out behaviour is depicted by an equivalent constitutive law, which is obtained from an analytical load-slip curve. The obtained load-displacement curves and crack propagation velocities are compared with their experimental counterparts. The good agreement with experimental data testifies to the feasibility of the proposed methodology and paves the way to its application in a multi-scale framework.

  11. Molecular Dynamics Modeling of Carbon Nanotubes and Their Composites

    NASA Astrophysics Data System (ADS)

    Jensen, Lars R.; Pyrz, Ryszard

    2004-06-01

    The tensile modulus of individual nanotubes and nanotube-polypropylene composites has been determined using molecular dynamics simulations. Simulations of individual single-walled carbon nanotubes showed that their tensile modulus was dependent on the tube structure and the diameter if the diameter was below 1,6 nm. The tensile modulus was determined for an infinite single-walled carbon nanotube embedded in an amorphous polypropylene matrix and for a finite and capped single-walled carbon nanotube embedded in a polypropylene matrix. For the infinite nanotube-polypropylene system the modulus was found to correspond to the one given by the Voigt approximation. For the finite nanotube-polypropylene system the reinforcing effect of the nanotube was not very pronounced. A pull out simulation showed that the length of the nanotube in the simulation was much smaller than the critical length and hence no load transfer between the nanotube and the matrix existed.

  12. The dynamic behaviour of postbuckled composite plates under acoustic excitation

    NASA Technical Reports Server (NTRS)

    Ng, C. F.; White, R. G.

    1988-01-01

    The Rayleigh-Ritz method was used to find the postbuckling static displacement pattern of a composite plane (CFRP) under uniaxial in-plane compression of uniform edge-shortening. The resonance frequencies and mode shapes at various postbuckled states are then evaluated by eigenvalue analysis of the dynamical matrix equation consisting of up-dated tangential stiffness matrix at corresponding static configuration. The theoretical results are compared with experimental results obtained in 16-layered CFRP laminate of aspect ratio 1.5. The resonance frequencies and mode shapes obtained are used to interpret the multimodal and nonlinear strain responses to high level of acoustic excitation. The dominance of second-mode contribution and softening-spring behavior are found in the strain response of postbuckled plates.

  13. The experimental characterization of particle dynamics in solid composite propellants

    NASA Astrophysics Data System (ADS)

    Moore, Joseph Elijah

    There are many parameters affecting the size and behavior of aluminum (Al) droplets on and near the burning surface of composite solid propellants. Multiple points of view are studied in the current investigation. The first is in the development of a Statistical Image Correlation Velocimeter (SICV) to analyze the velocity of exhaust particles and gases leaving the burning surface. Many of the analysis techniques used in the validation of the SICV software are then used to conduct further analysis including additional propellants. The next portion of the study looks at the effect of changing two of the formulation parameters in the propellant: the metal fuel content, and the polymer binder composition. Al/Nickel (Ni) clad particles are used as an additive to the conventional Al powder. Titanium-Boron (Ti-B) is also studied as another potential intermetallic additive. The nature of the binder is studied by examining the differences between propellants made with hydroxyl-terminated polybutadiene (HTPB) and dicyclopentadiene (DCPD) binders. Strand burns are conducted in the open atmosphere as well as in a windowed combustion vessel at pressures ranging from atmospheric to 700 psig. The burning surface linear regression rate, as well as size of the agglomerated metal fuel particles leaving the surface is measured using macro- and microscopic high speed imaging followed by video analysis using modeling tools and digital particle sizing algorithms. It is shown that the partial replacement of Al with Al/Ni clad particles decreases the average size of the agglomerated particles and increases the propellant burning rate. An optimum fraction likely exists. It is also shown that ball milling, or mechanical activation, of the Al/Ni particles leads to a further increase in the burning rate of the propellant. This is likely due to a decrease in the ignition temperature of the material after it has undergone mechanical activation. Analysis of binder-specific samples reveals that

  14. Mercury Dynamics across the Ocean- Young Sea Ice- Atmosphere Interface in the Western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Chaulk, A. H.; Armstrong, D.; Wang, F.; Stern, G.

    2009-12-01

    Mercury is a global contaminant and has become an increasing concern in the Arctic marine ecosystems. Methyl mercury is highly toxic, biomagnifies in food webs, and is found in elevated levels in marine mammals in some locations. Major research initiatives have been undertaken in recent years to understand the sources and pathways for mercury bioaccumulation in the Arctic marine ecosystems. One major scientific dispute is on the net contribution of the atmospherically transported mercury. Atmospheric mercury depletion events (AMDEs) provide a possible pathway of increased atmospheric mercury deposition from the atmosphere to the surface. Although direct deposition can occur in open leads, much of the ocean surface is ice-covered at the time when AMDEs occur. The current understanding of mercury dynamics lacks data on mercury concentrations and distribution in sea ice and brine. As part of the International Polar Year Circumpolar Flaw Lead System Study (IPY-CFL), sea ice (new, first year, and multi-year) and brine drainage were sampled at various drifting and landfast ice stations in the western Arctic Ocean and Beaufort Sea throughout the 2008 Arctic AMDE season. Total mercury concentration in brine ranged from 71.2 ng/L to 2.7 ng/L, decreasing from shallow sack holes near the surface to deeper holes near the bottom, and was always much higher than that in the underlying seawater (typically around 0.2 ng/L). Bulk ice cores showed similar profiles with higher mercury concentrations in the surface layer, particularly in the surface frazil layer. Sea ice texture, salinity, and brine volume fraction have all been shown to impact the distribution of mercury within sea ice. Evidence also suggests that atmospheric deposition, although possible, seems relatively unimportant in mercury enrichment in the surface of first year sea ice. In the era of global climate change Arctic sea ice is undergoing rapid change; this changing ice regime will have an effect on the mercury

  15. Moisture dynamics in the cloudy and polluted tropical atmosphere: The Cloud Aerosol Radiative Forcing Dynamics Experiment (CARDEX)

    NASA Astrophysics Data System (ADS)

    Wilcox, E. M.; Thomas, R. M.; Praveen, P. S.; Pistone, K.; Bender, F.; Feng, Y.; Ramanathan, V.

    2012-12-01

    Aerosols are well known to modify the microphysical properties of clouds. This modification is expected to yield brighter clouds that cover a greater area. However, observations from satellites show little inter-hemispheric difference in cloud optical thickness and liquid water path in spite of the clear inter-hemispheric difference in aerosol optical thickness. Furthermore, comparisons of observations with global atmospheric models suggest that models that parameterize the mechanisms of aerosol nucleation of cloud drops but do not resolve cloud-scale dynamics may be overestimating the magnitude of aerosol effects on cloud radiative forcing. Resolving these discrepancies requires a deeper understanding of the factors determining the transport of moisture to the cloud layer and the effects of aerosols on that transport. Towards this goal, we have conducted a new field experiment to study the moisture dynamics in the boundary layer and lower troposphere of the polluted and cloudy tropical atmosphere. The Cloud Aerosol Radiative Forcing Dynamics Experiment (CARDEX) was conducted during the winter of 2012 at the Maldives Climate Observatory - Hanimaadhoo in the tropical northern Indian Ocean during the period of extensive outflow of the South Asian pollution. Pollution in the CARDEX region has been well documented to both modify the microphysical properties of low clouds and strongly absorb solar radiation with significant consequences for the lower atmosphere and surface radiative energy budgets. Three unmanned aerial vehicles (UAVs) flew nearly 60 research flights instrumented to measure turbulent latent and sensible heat fluxes, aerosol concentrations, and cloud microphysical properties. Airborne measurements were enhanced with continuous surface monitoring of surface turbulent heat fluxes, aerosol concentrations and physical properties, surface remote sensing of cloud water amount and aerosol profiles, and model analyses of aerosols and dynamics with WRFchem. This

  16. A Petascale Non-Hydrostatic Atmospheric Dynamical Core in the HOMME Framework

    SciTech Connect

    Tufo, Henry

    2015-09-15

    The High-Order Method Modeling Environment (HOMME) is a framework for building scalable, conserva- tive atmospheric models for climate simulation and general atmospheric-modeling applications. Its spatial discretizations are based on Spectral-Element (SE) and Discontinuous Galerkin (DG) methods. These are local methods employing high-order accurate spectral basis-functions that have been shown to perform well on massively parallel supercomputers at any resolution and scale particularly well at high resolutions. HOMME provides the framework upon which the CAM-SE community atmosphere model dynamical-core is constructed. In its current incarnation, CAM-SE employs the hydrostatic primitive-equations (PE) of motion, which limits its resolution to simulations coarser than 0.1 per grid cell. The primary objective of this project is to remove this resolution limitation by providing HOMME with the capabilities needed to build nonhydrostatic models that solve the compressible Euler/Navier-Stokes equations.

  17. Experimental Studies of the Distribution of Minor Constituents and Dynamic Processes in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Goodman, Jindra

    1999-01-01

    Minor constituents play an important role in atmospheric chemistry and serve as tracers in transport and mixing studies in tropospheric-stratospheric exchange processes. Measurements of trace gases are essential to an understanding of the mechanisms by which minor constituents originating in the troposphere, both naturally occurring and anthropogenic, reach the stratosphere. Many of these gases are sources of species directly involved in the chemistry of ozone depletion in the stratosphere and ozone generation in the troposphere. Some contribute to the warming of the atmosphere. Data on tracer distributions are important in the development of models for predicting photochemical effects in the stratosphere and troposphere. Data on atmospheric dynamics are important for the development of models for predicting the transport of photochemical species and for characterizing the nature of stratospheric motions.

  18. Dynamics of Bacterial Community Composition in the Malaria Mosquito's Epithelia

    PubMed Central

    Tchioffo, Majoline T.; Boissière, Anne; Abate, Luc; Nsango, Sandrine E.; Bayibéki, Albert N.; Awono-Ambéné, Parfait H.; Christen, Richard; Gimonneau, Geoffrey; Morlais, Isabelle

    2016-01-01

    The Anopheles midgut hosts diverse bacterial communities and represents a complex ecosystem. Several evidences indicate that mosquito midgut microbiota interferes with malaria parasite transmission. However, the bacterial composition of salivary glands and ovaries, two other biologically important tissues, has not been described so far. In this study, we investigated the dynamics of the bacterial communities in the mosquito tissues from emerging mosquitoes until 8 days after a blood meal containing Plasmodium falciparum gametocytes and described the temporal colonization of the mosquito epithelia. Bacterial communities were identified in the midgut, ovaries, and salivary glands of individual mosquitoes using pyrosequencing of the 16S rRNA gene. We found that the mosquito epithelia share a core microbiota, but some bacteria taxa were more associated with one or another tissue at a particular time point. The bacterial composition in the tissues of emerging mosquitoes varied according to the breeding site, indicating that some bacteria are acquired from the environment. Our results revealed temporal variations in the bacterial community structure, possibly as a result of the mosquito physiological changes. The abundance of Serratia significantly correlated with P. falciparum infection both in the midgut and salivary glands of malaria challenged mosquitoes, which suggests that interactions occur between microbes and parasites. These bacteria may represent promising targets for vector control strategies. Overall, this study points out the importance of characterizing bacterial communities in malaria mosquito vectors. PMID:26779155

  19. Dynamic Mesh CFD Simulations of Orion Parachute Pendulum Motion During Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Halstrom, Logan D.; Schwing, Alan M.; Robinson, Stephen K.

    2016-01-01

    This paper demonstrates the usage of computational fluid dynamics to study the effects of pendulum motion dynamics of the NASAs Orion Multi-Purpose Crew Vehicle parachute system on the stability of the vehicles atmospheric entry and decent. Significant computational fluid dynamics testing has already been performed at NASAs Johnson Space Center, but this study sought to investigate the effect of bulk motion of the parachute, such as pitching, on the induced aerodynamic forces. Simulations were performed with a moving grid geometry oscillating according to the parameters observed in flight tests. As with the previous simulations, OVERFLOW computational fluid dynamics tool is used with the assumption of rigid, non-permeable geometry. Comparison to parachute wind tunnel tests is included for a preliminary validation of the dynamic mesh model. Results show qualitative differences in the flow fields of the static and dynamic simulations and quantitative differences in the induced aerodynamic forces, suggesting that dynamic mesh modeling of the parachute pendulum motion may uncover additional dynamic effects.

  20. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect

    Prusa, Joseph

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the physics of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer- reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  1. Dynamic model constraints on oxygen-17 depletion in atmospheric O2 after a snowball Earth

    PubMed Central

    Cao, Xiaobin; Bao, Huiming

    2013-01-01

    A large perturbation in atmospheric CO2 and O2 or bioproductivity will result in a drastic pulse of 17O change in atmospheric O2, as seen in the Marinoan Oxygen-17 Depletion (MOSD) event in the immediate aftermath of a global deglaciation 635 Mya. The exact nature of the perturbation, however, is debated. Here we constructed a coupled, four-box, and quick-response biosphere–atmosphere model to examine both the steady state and dynamics of the MOSD event. Our model shows that the ultra-high CO2 concentrations proposed by the “snowball’ Earth hypothesis produce a typical MOSD duration of less than 106 y and a magnitude of 17O depletion reaching approximately −35‰. Both numbers are in remarkable agreement with geological constraints from South China and Svalbard. Moderate CO2 and low O2 concentration (e.g., 3,200 parts per million by volume and 0.01 bar, respectively) could produce distinct sulfate 17O depletion only if postglacial marine bioproductivity was impossibly low. Our dynamic model also suggests that a snowball in which the ocean is isolated from the atmosphere by a continuous ice cover may be distinguished from one in which cracks in the ice permit ocean–atmosphere exchange only if partial pressure of atmospheric O2 is larger than 0.02 bar during the snowball period and records of weathering-derived sulfate are available for the very first few tens of thousands of years after the onset of the meltdown. In any case, a snowball Earth is a precondition for the observed MOSD event. PMID:23898167

  2. Dynamic model constraints on oxygen-17 depletion in atmospheric O2 after a snowball Earth.

    PubMed

    Cao, Xiaobin; Bao, Huiming

    2013-09-01

    A large perturbation in atmospheric CO2 and O2 or bioproductivity will result in a drastic pulse of (17)O change in atmospheric O2, as seen in the Marinoan Oxygen-17 Depletion (MOSD) event in the immediate aftermath of a global deglaciation 635 Mya. The exact nature of the perturbation, however, is debated. Here we constructed a coupled, four-box, and quick-response biosphere-atmosphere model to examine both the steady state and dynamics of the MOSD event. Our model shows that the ultra-high CO2 concentrations proposed by the "snowball' Earth hypothesis produce a typical MOSD duration of less than 10(6) y and a magnitude of (17)O depletion reaching approximately -35‰. Both numbers are in remarkable agreement with geological constraints from South China and Svalbard. Moderate CO2 and low O2 concentration (e.g., 3,200 parts per million by volume and 0.01 bar, respectively) could produce distinct sulfate (17)O depletion only if postglacial marine bioproductivity was impossibly low. Our dynamic model also suggests that a snowball in which the ocean is isolated from the atmosphere by a continuous ice cover may be distinguished from one in which cracks in the ice permit ocean-atmosphere exchange only if partial pressure of atmospheric O2 is larger than 0.02 bar during the snowball period and records of weathering-derived sulfate are available for the very first few tens of thousands of years after the onset of the meltdown. In any case, a snowball Earth is a precondition for the observed MOSD event. PMID:23898167

  3. Morphology and Chemical composition of Atmospheric Particles over Semi-Arid region (Jaipur, Rajasthan) of India

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Agnihotri, R.; Yadav, P.; Singh, S.; Tawale, J. S.; Rashmi, R.; Prasad, M.; Arya, B. C.; Mishra, N.

    2012-12-01

    Uncertainties associated with the radiative forcing of atmospheric dust particles is highest, owing to lack of region-specific dust morphology (particle shape, size) and mineralogy (chemical composition) database, needed for modeling their optical properties (Mishra and Tripathi, 2008). To fill this gap for the Indian region, we collected atmospheric particles (with aerodynamic size <5um, PM5 and a few bulk particles; TSP) from seven sites of Jaipur and nearby locales (semi-arid region, in the vicinity of Thar Desert of Rajasthan) at varying altitude, during late winters of ca. 2012. PM5 particles were collected on Teflon filters (for bulk chemical analyses), while pure Tin substrates (~1×1 mm2) were used for investigating individual particle morphology. Using Scanning Electron Microscope equipped with Energy Dispersive X ray (SEM-EDX) facility at NPL, images of individual particles were recorded and the morphological parameters (e.g. Aspect ratio; AR, Circulatory parameter; CIR.) were retrieved following Okada et al. (2001), whereas chemical compositions of individual particles were determined by EDX and bulk samples by X ray fluorescence (XRF). The geometrical size distributions of atmospheric particles were generated for each site. Based on NIST (National Institute of Standard and Technology, USA) morphology database, the site-specific individual particle shapes reveal predominance of "Layered" (calcite and quartz rich), "Angular" structures (quartz rich) and "Flattened" particles over all the sites. Particles were found to be highly non-spherical with irregular shapes (CIR varying from 1 to 0.22 with median value ~0.76; AR varying from 1 to 5.4 with median value ~1.64). Noteworthy to mention, that unit values of AR and CIR represent spherical particles. Chemical analyses of PM5 particles revealed dominance of crustal elements e.g. Si, Al, Fe, Ca, Mg, in general. Particles over Kukas Hill (27.027° N, 75.919° E; ~800 MAGL) showed highest Fe mass fractions (~43

  4. Dynamic composition, shaping and organization of plastid nucleoids

    PubMed Central

    Powikrowska, Marta; Oetke, Svenja; Jensen, Poul E.; Krupinska, Karin

    2014-01-01

    In this article recent progress on the elucidation of the dynamic composition and structure of plastid nucleoids is reviewed from a structural perspective. Plastid nucleoids are compact structures of multiple copies of different forms of ptDNA, RNA, enzymes for replication and gene expression as well as DNA binding proteins. Although early electron microscopy suggested that plastid DNA is almost free of proteins, it is now well established that the DNA in nucleoids similarly as in the nuclear chromatin is associated with basic proteins playing key roles in organization of the DNA architecture and in regulation of DNA associated enzymatic activities involved in transcription, replication, and recombination. This group of DNA binding proteins has been named plastid nucleoid associated proteins (ptNAPs). Plastid nucleoids are unique with respect to their variable number, genome copy content and dynamic distribution within different types of plastids. The mechanisms underlying the shaping and reorganization of plastid nucleoids during chloroplast development and in response to environmental conditions involve posttranslational modifications of ptNAPs, similarly to those changes known for histones in the eukaryotic chromatin, as well as changes in the repertoire of ptNAPs, as known for nucleoids of bacteria. Attachment of plastid nucleoids to membranes is proposed to be important not only for regulation of DNA availability for replication and transcription, but also for the coordination of photosynthesis and plastid gene expression. PMID:25237313

  5. Evolution of the volatile compounds of ripened sausages as a function of both storage time and composition of packaging atmosphere.

    PubMed

    Summo, Carmine; Caponio, Francesco; Tricarico, Francesco; Pasqualone, Antonella; Gomes, Tommaso

    2010-11-01

    An experimental investigation was carried out to study the evolution of the volatile compounds of ripened sausages as a function of both storage time (time) and composition of packaging atmosphere (MAP). Ripened sausages, prepared at an industrial plant, were packed applying three different atmosphere compositions and were stored for three months. The obtained data evinced that the evolution of the volatile compounds was significantly related to the variable time more than to the variable MAP. The main volatile compounds were those derived from spices. Among them, Δ3-carene was the most abundant and a significant decrease was observed during storage (p<0.05). The volatile compounds derived from lipid autoxidation showed generally a significant increase during storage, suggesting the raise of lipid oxidation also at low oxygen concentration. Moreover, octanal and nonanal were significantly influenced by the atmosphere composition, with the highest values in samples packed at the lowest CO2 concentration. PMID:20678868

  6. An Overview of Atmospheric Composition OSSE Activities at NASA's Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    daSilva, Arlinda

    2012-01-01

    A model-based Observing System Simulation Experiment (OSSE) is a framework for numerical experimentation in which observables are simulated from fields generated by an earth system model, including a parameterized description of observational error characteristics. Simulated observations can be used for sampling studies, quantifying errors in analysis or retrieval algorithms, and ultimately being a planning tool for designing new observing missions. While this framework has traditionally been used to assess the impact of observations on numerical weather prediction, it has a much broader applicability, in particular to aerosols and chemical constituents. In this talk we will give a general overview of Observing System Simulation Experiments (OSSE) activities at NASA's Global Modeling and Assimilation Office, with focus on its emerging atmospheric composition component.

  7. Venus upper atmosphere neutral composition - Preliminary results from the Pioneer Venus orbiter

    NASA Technical Reports Server (NTRS)

    Niemann, H. B.; Hartle, R. E.; Kasprzak, W. T.; Spencer, N. W.; Hunten, D. M.; Carignan, G. R.

    1979-01-01

    Measurements in situ of the neutral composition and temperature of the thermosphere of Venus are being made with a quadrupole mass spectrometer on the Pioneer Venus orbiter. The presence of many gases, including the major constituents CO2, CO, N2, O, and He has been confirmed. Carbon dioxide is the most abundant constituent at altitudes below about 155 kilometers in the terminator region. Above this altitude atomic oxygen is the major constituent, with O/CO2 ratios in the upper atmosphere being greater than was commonly expected. Isotope ratios of O and C are close to terrestrial values. The temperature inferred from scale heights above 180 kilometers is about 400 K on the dayside near the evening terminator at a solar zenith angle of about 69 deg. It decreases to about 230 K when the solar zenith angle is about 90 deg.

  8. A thirty year record of the isotopic composition of atmospheric methane from North America

    NASA Astrophysics Data System (ADS)

    Rice, A. L.; Teama, D. G.; Roeger, F. H.; Butenhoff, C. L.; Khalil, A. K.

    2012-12-01

    Methane (CH4) is one of the most important greenhouse gases after water vapor and carbon dioxide. Its atmospheric concentration increased from 650 ppb during the preindustrial era to nearly 1800 ppb in the present day due to human activities such as rice cultivation, animal husbandry, biomass burning, and fossil fuel production and use. Since the 1980s, the long-term growth rate of atmospheric CH4 slowed dramatically consistent with a leveling off of CH4 sources with significant interannual variability over this period. One powerful tool to constrain changes in sources and sinks is the use of stable isotopes of atmospheric CH4 because of the distinct values of carbon isotope (δ13C) and hydrogen isotope (δD) ratios in CH4 sources and characteristic isotopic fractionation effects in sinks. Measurements of the long-term trend of the isotopic composition of CH4 can improve the constraint of changes to the CH4 budget from microbial sources (e.g., wetlands, ruminants, and rice agriculture, δ13C ~-60 ‰, δD ~-300‰), fossil sources (e.g. natural gas and coal mining, δ13C ~-40‰, δD ~-200‰), and biomass burning (δ13C ~-25‰, δD ~-100‰). In this work, we present measurements of δ13C and δD of atmospheric CH4 from a unique archive of more than 200 air samples collected at Cape Meares, Oregon (45.5°N, 124°W) from 1978 to 1998. The measurements from this archive indicate enrichments in both isotope tracers over this period which average 0.017 (±0.002) ‰yr-1 for δ13C and 0.68 (±0.04) ‰yr-1 for δD. Seasonal cycles in δ13C and δD are also evident with amplitudes of ~ 0.3 ‰ and ~ 4 ‰, respectively; maximum values are found May-July and minimum values September-December, consistent with previous results from the mid-latitude northern hemisphere. Combining our results with more recent timeseries since 1988 from Olympic Peninsula (WA, 48°N), Montana de Oro (CA, 35°N), and Niwot Ridge (CO, 40°N) provides a composite record of the isotopic

  9. Jupiter's atmospheric composition and cloud structure deduced from absorption bands in reflected sunlight

    NASA Technical Reports Server (NTRS)

    Sato, M.; Hansen, J. E.

    1979-01-01

    The spectrum of sunlight reflected by Jupiter is analyzed by comparing observations of Woodman (1979) with multiple-scattering computations. The analysis yields information on the vertical cloud structure at several latitudes and on the abundance of CH4 and NH3 in the atmosphere of Jupiter. The abundances of CH4 and NH3 suggest that all ices and rocks are overabundant on Jupiter by a factor of 2 or more, providing an important constraint on models for the formation of Jupiter from the primitive solar nebula. The pressure level of the clouds, the gaseous NH3 abundance, the mean temperature profile, and the Clausius-Clapeyron relation suggest that these clouds are predominantly ammonia crystals with the cloud bottom at 600-700 mb. A diffuse distribution of aerosols exists between 150 and 500 mb, and the spectral variation of albedo reflects a changing bulk absorption coefficient of the material composing the aerosols and is diagnostic of the aerosol composition.

  10. Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation

    NASA Astrophysics Data System (ADS)

    Mahaffy, P. R.; Benna, M.; Elrod, M.; Yelle, R. V.; Bougher, S. W.; Stone, S. W.; Jakosky, B. M.

    2015-11-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) Neutral Gas and Ion Mass Spectrometer (NGIMS) provides sensitive detections of neutral gas and ambient ion composition. NGIMS measurements of nine atomic and molecular neutral species, and their variation with altitude, latitude, and solar zenith angle are reported over several months of operation of the MAVEN mission. Sampling NGIMS signals from multiple neutral species every several seconds reveals persistent and unexpectedly large amplitude density structures. The scale height temperatures are mapped over the course of the first few months of the mission from high down to midlatitudes. NGIMS measurements near the homopause of 40Ar/N2 ratios agree with those reported by the Sample Analysis at Mars investigation and allow the altitude of the homopause for the most abundant gases to be established.

  11. The CEOS Atmospheric Composition Constellation: Enhancing the Value of Space-Based Observations

    NASA Technical Reports Server (NTRS)

    Eckman, Richard; Zehner, Claus; Al-Saadi, Jay

    2015-01-01

    The Committee on Earth Observation Satellites (CEOS) coordinates civil space-borne observations of the Earth. Participating agencies strive to enhance international coordination and data exchange and to optimize societal benefit. In recent years, CEOS has collaborated closely with the Group on Earth Observations (GEO) in implementing the Global Earth Observing System of Systems (GEOSS) space-based objectives. The goal of the CEOS Atmospheric Composition Constellation (ACC) is to collect and deliver data to improve monitoring, assessment and predictive capabilities for changes in the ozone layer, air quality and climate forcing associated with changes in the environment through coordination of existing and future international space assets. A project to coordinate and enhance the science value of a future constellation of geostationary sensors measuring parameters relevant to air quality supports the forthcoming European Sentinel-4, Korean GEMS, and US TEMPO missions. Recommendations have been developed for harmonization to mutually improve data quality and facilitate widespread use of the data products.

  12. Formation and chemical composition of atmospheric aerosols in an equatorial forest area

    NASA Astrophysics Data System (ADS)

    Clairac, B.; Delmas, R.; Cros, B.; Cachier, H.; Buat-Menard, P.

    1988-05-01

    The physical properties and the chemical composition of atmospheric aerosols have been studied in an equatorial region in the southern Congo (Africa). Field experiments were conducted between 1978 and 1983 in the equatorial forest of the Mayombe during periods where the influence of biomass burning was minimum. The results indicate that the forest is a net source of both fine particles resulting primarily from gas-to-particle conversion and coarse particles produced by mechanical processes. Carbonaceous matter is the major component of these biogenic particles but the forest is also a significant source of sulfate, nitrate, ammonium and potassium. Half of this carbon is attached to submicron particles and likely derives from organic gaseous precursors naturally emitted by the local biosphere.

  13. Human population and atmospheric carbon dioxide growth dynamics: Diagnostics for the future

    NASA Astrophysics Data System (ADS)

    Hüsler, A. D.; Sornette, D.

    2014-10-01

    We analyze the growth rates of human population and of atmospheric carbon dioxide by comparing the relative merits of two benchmark models, the exponential law and the finite-time-singular (FTS) power law. The later results from positive feedbacks, either direct or mediated by other dynamical variables, as shown in our presentation of a simple endogenous macroeconomic dynamical growth model describing the growth dynamics of coupled processes involving human population (labor in economic terms), capital and technology (proxies by CO2 emissions). Human population in the context of our energy intensive economies constitutes arguably the most important underlying driving variable of the content of carbon dioxide in the atmosphere. Using some of the best databases available, we perform empirical analyses confirming that the human population on Earth has been growing super-exponentially until the mid-1960s, followed by a decelerated sub-exponential growth, with a tendency to plateau at just an exponential growth in the last decade with an average growth rate of 1.0% per year. In contrast, we find that the content of carbon dioxide in the atmosphere has continued to accelerate super-exponentially until 1990, with a transition to a progressive deceleration since then, with an average growth rate of approximately 2% per year in the last decade. To go back to CO2 atmosphere contents equal to or smaller than the level of 1990 as has been the broadly advertised goals of international treaties since 1990 requires herculean changes: from a dynamical point of view, the approximately exponential growth must not only turn to negative acceleration but also negative velocity to reverse the trend.

  14. A method for the analysis of nonlinearities in aircraft dynamic response to atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Sidwell, K.

    1976-01-01

    An analytical method is developed which combines the equivalent linearization technique for the analysis of the response of nonlinear dynamic systems with the amplitude modulated random process (Press model) for atmospheric turbulence. The method is initially applied to a bilinear spring system. The analysis of the response shows good agreement with exact results obtained by the Fokker-Planck equation. The method is then applied to an example of control-surface displacement limiting in an aircraft with a pitch-hold autopilot.

  15. Fine mode aerosol composition at three long-term atmospheric monitoring sites in the Amazon Basin

    SciTech Connect

    Artaxo, P.; Gerab, F.; Yamasoe, M.A.; Martins, J.V.

    1994-11-01

    The Amazon Basin tropical rain forest is a key region to study processes that are changing the composition of the global atmosphere, including the large amount of fine mode aerosol particles emitted during biomass burning that might influence the global atmosphere. Three background monitoring stations, Alta Floresta, Cuiaba, and Serra do Navio, are operating continuously measuring aerosol composition. Fine (particle diameter less than 2.0 microns) and coarse (particle diameter greater than 2.0 microns and less than 10 microns) mode aerosol particles were collected using stacked filter units. Particle-induced X-ray emission was used to measure concentrations of up to 20 elements in the fine mode: Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr, and Pb. Soot carbon and gravimetric mass analysis were also performed. Absolute Principal Factor Analysis (APFA) has derived absolute elemental source profiles. APFA showed four aerosol particle components: soil dust (Al, Ca, Ti, Mn, Fe), biomass burning (soot, fine mode mass concentration, K, Cl), natural primary biogenic particles with gas-to-particle component (K, S, Ca, Mn, Zn), and marine aerosol (Cl). Biogenic and biomass burning aerosol particles dominate the fine mode mass concentration, with the presence of K, P, S, Cl, Zn, Br, and fine mode mass concentration (FPM). At the Alta Floresta and Cuiaba sites, during the dry season, a strong component of biomass burning is observed. Inhalable particulate matter (particle diameter less than 10 microns) mass concentration up to 700 micrograms/cu m was measured. Fine particle mass concentration alone can go as high as 400 micrograms/cu m for large regions.

  16. Comparison of Dynamic Characteristics for an Inflatable Solar Concentrator in Atmospheric and Thermal Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Slade, Kara N.; Tinker, Michael L.; Lassiter, John O.; Engberg, Robert

    2000-01-01

    Dynamic testing of an inflatable solar concentrator structure in a thermal vacuum chamber as well as in ambient laboratory conditions is described in detail. Unique aspects of modal testing for the extremely lightweight inflatable are identified, including the use of a noncontacting laser vibrometer measurement system. For the thermal vacuum environment, mode shapes and frequency response functions are compared for three different test article inflation pressures at room temperature. Modes that persist through all the inflation pressure regimes are identified, as well as modes that are unique for each pressure. In atmospheric pressure and room temperature conditions, dynamic measurements were obtained for the expected operational inflation pressure of 0.5 psig. Experimental mode shapes and frequency response functions for ambient conditions are described and compared to the 0.5 psig results from the thermal vacuum tests. Only a few mode shapes were identified that occurred in both vacuum and atmospheric environments. This somewhat surprising result is discussed in detail, and attributed at least partly to 1.) large differences in modal damping, and 2.) significant differences in the mass of air contained by the structure, in the two environments. Results of this investigation point out the necessity of testing inflatable space structures in vacuum conditions before they can be launched. Ground testing in atmospheric pressure is not sufficient for predicting on-orbit dynamics of non-rigidized inflatable systems.

  17. Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition.

    PubMed Central

    Clark, Deborah A

    2004-01-01

    How tropical rainforests are responding to the ongoing global changes in atmospheric composition and climate is little studied and poorly understood. Although rising atmospheric carbon dioxide (CO2) could enhance forest productivity, increased temperatures and drought are likely to diminish it. The limited field data have produced conflicting views of the net impacts of these changes so far. One set of studies has seemed to point to enhanced carbon uptake; however, questions have arisen about these findings, and recent experiments with tropical forest trees indicate carbon saturation of canopy leaves and no biomass increase under enhanced CO2. Other field observations indicate decreased forest productivity and increased tree mortality in recent years of peak temperatures and drought (strong El Niño episodes). To determine current climatic responses of forests around the world tropics will require careful annual monitoring of ecosystem performance in representative forests. To develop the necessary process-level understanding of these responses will require intensified experimentation at the whole-tree and stand levels. Finally, a more complete understanding of tropical rainforest carbon cycling is needed for determining whether these ecosystems are carbon sinks or sources now, and how this status might change during the next century. PMID:15212097

  18. Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia)

    NASA Astrophysics Data System (ADS)

    Timofeyev, Yury; Virolainen, Yana; Makarova, Maria; Poberovsky, Anatoly; Polyakov, Alexander; Ionov, Dmitry; Osipov, Sergey; Imhasin, Hamud

    2016-05-01

    Since early 2009, high-resolution solar absorption spectra have been recorded at the Peterhof station (59.88°N, 29.82°E) of Saint Petersburg State University located in the suburbs of St. Petersburg. Measurements are made with the Fourier Transform Infrared (FTIR) system, which consists of Bruker IFS 125HR instrument (with maximum spectral resolution of 0.005 cm-1) and self-designed solar tracker. We derived total column (TC) of a dozen of atmospheric gases from recorded spectra and performed the error analysis of these retrievals. Furthermore, we analysed the temporal variability of the important climatically active gases, such as H2O, CH4, O3, CO, and NO2 near St. Petersburg and compared our retrievals with independent ground-based and satellite data, as well as with the results of EMAC model numerical simulations. Currently, the results of our measurements and the measuring system are under validation for entering the international Network for the Detection of Atmospheric Composition Change (NDACC).

  19. The composition and structure of white dwarf atmospheres revealed by extreme ultraviolet spectroscopy

    NASA Technical Reports Server (NTRS)

    Barstow, Martin A.; Hubeny, Ivan; Lanz, Thierry; Holberg, Jay B.; Sion, Edward M.

    1995-01-01

    The ROentgen SATellite (ROSAT) and Extreme UltraViolet Explorer (EUVE) all-sky surveys have resulted in an important change in our understanding of the general composition of hydrogen-rich DA white dwarf atmospheres, with the photospheric opacity dominated by heavy elements rather than helium in the hottest stars (T > 40, 000 K). Most stars cooler than 40,000 K have more or less pure H atmospheres. However, one question, which has not been resolved, concerned the specific nature of the heavy elements and the role of helium in the hottest white dwarfs. One view of white dwarf evolution requires that H-rich DA stars form by gravitational settling of He from either DAO or He-rich central stars of planetary nebulae. In this case, the youngest (hottest) DA white dwarfs may still contain visible traces of He. Spectroscopic observations now available with EUVE provide a crucial test of these ideas. Analysis of data from the EUVE Guest Observer programme and EUVE public archive allows quantitative consideration of the sources of EUV opacity and places limits on the abundance of He which may be present.

  20. Orbit and Atmospheric Composition of the Warm Sub-Saturn EPIC-2037b

    NASA Astrophysics Data System (ADS)

    Petigura, Erik; Deck, Katherine; Benneke, Bjoern; Knutson, Heather; Deming, Drake; Werner, Michael; Livingston, John; Crossfield, Ian

    2015-10-01

    We propose a joint Spitzer/HST proposal to observe transits of two warm, sub-Saturn sized planets orbiting EPIC-203771098 (EPIC-2037 hereafter), a bright G dwarf observed by K2. EPIC-2037b and c are 5.7±0.6 and 7.6±0.8 Earth-radii. Sine the two planets are close to the 2:1 mean-motion resonance, transit timing variations (TTVs) are expected to be large (several hours). Our proposed Spitzer transit observations will yield precise transit times for EPIC-2037b and c. We will model the TTVs to constrain the eccentricities of EPIC-2037b and c which are linked to the formation pathway for this system. EPIC-2037b and c have low densities of 0.4 g/cc and 0.2 g/cc, respectively. Their large size and low surface gravities make these planets favorable targets for transmission spectroscopy by Spitzer, HST, and JWST. In addition to their favorable observability, the planets have low equilibrium temperatures of ~710 K and ~560 K, respectively. These temperatures have not been well-explored in previous studies with transmission spectroscopy. While over a dozen HST+Spitzer transmission spectra have been published in the literature, only GJ1214b, GJ346b, HAT-P-11b, and HAT-P-12b have comparable temperatures. While Spitzer can detect wavelength-dependent variation in transit depth, the Spitzer measurements alone cannot discriminate between various atmospheric compositions. Therefore we propose to use HST/WFC3 to probe the atmosphere of EPIC-2037b. The HST transmission spectrum will probe water vapor in the atmosphere, which reflects the planet?s oxygen abundance, a proxy for the planet?s heavy element enrichment.

  1. Atmospheric Composition of Weak G Band Stars: CNO and Li Abundances

    NASA Astrophysics Data System (ADS)

    Adamczak, Jens; Lambert, David L.

    2013-03-01

    We determined the chemical composition of a large sample of weak G band stars—a rare class of G and K giants of intermediate mass with unusual abundances of C, N, and Li. We have observed 24 weak G band stars with the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory and derived spectroscopic abundances for C, N, O, and Li, as well as for selected elements from Na-Eu. The results show that the atmospheres of weak G band stars are highly contaminated with CN-cycle products. The C underabundance is about a factor of 20 larger than for normal giants and the 12C/13C ratio approaches the CN-cycle equilibrium value. In addition to the striking CN-cycle signature the strong N overabundance may indicate the presence of partially ON-cycled material in the atmospheres of the weak G band stars. The exact mechanism responsible for the transport of the elements to the surface has yet to be identified but could be induced by rapid rotation of the main sequence progenitors of the stars. The unusually high Li abundances in some of the stars are an indicator for Li production by the Cameron-Fowler mechanism. A quantitative prediction of a weak G band star's Li abundance is complicated by the strong temperature sensitivity of the mechanism and its participants. In addition to the unusual abundances of CN-cycle elements and Li, we find an overabundance of Na that is in accordance with the NeNa chain running in parallel with the CN cycle. Apart from these peculiarities, the element abundances in a weak G band star's atmosphere are consistent with those of normal giants.

  2. Optical properties, morphology and elemental composition of atmospheric particles at T1 supersite on MILAGRO campaign

    NASA Astrophysics Data System (ADS)

    Carabali, G.; Mamani-Paco, R.; Castro, T.; Peralta, O.; Herrera, E.; Trujillo, B.

    2012-03-01

    Atmospheric particles were sampled at T1 supersite during MILAGRO campaign, in March 2006. T1 was located at the north of Mexico City (MC). Aerosol sampling was done by placing copper grids for Transmission Electron Microscope (TEM) on the last five of an 8-stage MOUDI cascade impactor. Samples were obtained at different periods to observe possible variations on morphology. Absorption and scattering coefficients, as well as particle concentrations (0.01-3 μm aerodynamic diameter) were measured simultaneously using a PSAP absorption photometer, a portable integrating nephelometer, and a CPC particle counter. Particle images were acquired at different magnifications using a CM 200 Phillips TEM-EDAX system, and then calculated the border-based fractal dimension. Also, Energy Dispersive X-Ray Spectroscopy (EDS) was used to determine the elemental composition of particles. The morphology of atmospheric particles for two aerodynamic diameters (0.18 and 1.8 μm) was compared using border-based fractal dimension to relate it to the other particle properties, because T1-generated particles have optical, morphological and chemical properties different from those transported by the MC plume. Particles sampled under MC pollution influence showed not much variability, suggesting that more spherical particles (border-based fractal dimension close to 1.0) are more common in larger sizes (d50 = 1.8 μm), which may be attributed to aerosol aging and secondary aerosol formation. Between 06:00 and 09:00 a.m., smaller particles (d50 = 0.18 μm) had more irregular shapes resulting in higher border-based fractal dimensions (1.2-1.3) for samples with more local influence. EDS analysis in d50 = 0.18 μm particles showed high contents of carbonaceous material, Si, Fe, K, and Co. Perhaps, this indicates an impact from industrial and vehicle emissions on atmospheric particles at T1.

  3. Optical phase curves as diagnostics for aerosol composition in exoplanetary atmospheres

    NASA Astrophysics Data System (ADS)

    Oreshenko, Maria; Heng, Kevin; Demory, Brice-Olivier

    2016-04-01

    Optical phase curves have become one of the common probes of exoplanetary atmospheres, but the information they encode has not been fully elucidated. Building on a diverse body of work, we upgrade the Flexible Modelling System to include scattering in the two-stream, dual-band approximation and generate plausible, three-dimensional structures of irradiated atmospheres to study the radiative effects of aerosols or condensates. In the optical, we treat the scattering of starlight using a generalization of Beer's law that allows for a finite Bond albedo to be prescribed. In the infrared, we implement the two-stream solutions and include scattering via an infrared scattering parameter. We present a suite of four-parameter general circulation models for Kepler-7b and demonstrate that its climatology is expected to be robust to variations in optical and infrared scattering. The westward and eastward shifts of the optical and infrared phase curves, respectively, are shown to be robust outcomes of the simulations. Assuming micron-sized particles and a simplified treatment of local brightness, we further show that the peak offset of the optical phase curve is sensitive to the composition of the aerosols or condensates. However, to within the measurement uncertainties, we cannot distinguish between aerosols made of silicates (enstatite or forsterite), iron, corundum or titanium oxide, based on a comparison to the measured peak offset (41° ± 12°) of the optical phase curve of Kepler-7b. Measuring high-precision optical phase curves will provide important constraints on the atmospheres of cloudy exoplanets and reduce degeneracies in interpreting their infrared spectra.

  4. Atmospheric control on isotopic composition and d-excess in water vapor over ocean surface

    NASA Astrophysics Data System (ADS)

    Fan, Naixin

    For decades, stable isotopes of water have been used as proxies to infer the variation of the hydrological cycle. However, it is still not clear how various atmospheric processes quantitatively control kinetic fractionation during evaporation over the ocean. Understanding kinetic fractionation is important in that the interpretation of the isotopic composition record preserved in ice cores and precipitation relies in part on the isotopic information at the moisture source. In addition, the isotopic composition of vapor contains information about variation of atmospheric processes such as turbulence and change in moisture source region which is useful for studying meteorological processes and climate change. In this study the isotopic composition of water vapor in the marine boundary layer (MBL) over the ocean was investigated using a combination of a newly developed marine boundary layer (MBL) model and observational data. The new model has a more realistic MBL structure than previous models and includes new features such as vertical advection of air and diffusion coefficients that vary continuously in the vertical direction. A robust linear relationship between deltaD and delta18O was found in observational oceanic water vapor data and the model can well capture the characteristics of this relationship. The individual role of atmospheric processes or variables on deltaD, delta18O and d-excess was quantitatively investigated and an overview of the combined effect of all the meteorological processes is provided. In particular, we emphasize that the properties of subsiding air (such as its mixing ratio and isotopic values) are crucial to the isotopic composition of surface water vapor. Relative humidity has been used to represent the moisture deficit that drives evaporative isotopic fluxes, however, we argue that it has serious limitations in explaining d-excess variation as latitude varies. We introduce a new quantity Gd=SST-Td, the difference between the sea

  5. Modeling Io's Sublimation-Driven Atmosphere: Gas Dynamics and Radiation Emission

    SciTech Connect

    Walker, Andrew C.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.; Moore, Chris H.; Stewart, Benedicte; Gratiy, Sergey L.; Levin, Deborah A.

    2008-12-31

    Io's sublimation-driven atmosphere is modeled using the direct simulation Monte Carlo method. These rarefied gas dynamics simulations improve upon earlier models by using a three-dimensional domain encompassing the entire planet computed in parallel. The effects of plasma impact heating, planetary rotation, and inhomogeneous surface frost are investigated. Circumplanetary flow is predicted to develop from the warm subsolar region toward the colder night-side. The non-equilibrium thermal structure of the atmosphere, including vibrational and rotational temperatures, is also presented. Io's rotation leads to an asymmetric surface temperature distribution which is found to strengthen circumplanetary flow near the dusk terminator. Plasma heating is found to significantly inflate the atmosphere on both day- and night-sides. The plasma energy flux also causes high temperatures at high altitudes but permits relatively cooler temperatures at low altitudes near the dense subsolar point due to plasma energy depletion. To validate the atmospheric model, a radiative transfer model was developed utilizing the backward Monte Carlo method. The model allows the calculation of the atmospheric radiation from emitting/absorbing and scattering gas using an arbitrary scattering law and an arbitrary surface reflectivity. The model calculates the spectra in the {nu}{sub 2} vibrational band of SO{sub 2} which are then compared to the observational data.

  6. Effects of atmospheric composition on respiratory behavior, weight loss, and appearance of Camembert-type cheeses during chamber ripening.

    PubMed

    Picque, D; Leclercq-Perlat, M-N; Corrieu, G

    2006-08-01

    Respiratory activity, weight loss, and appearance of Camembert-type cheeses were studied during chamber ripening in relation to atmospheric composition. Cheese ripening was carried out in chambers under continuously renewed, periodically renewed, or nonrenewed gaseous atmospheres or under a CO(2) concentration kept constant at either 2 or 6% throughout the chamber-ripening process. It was found that overall atmospheric composition, and especially CO(2) concentration, of the ripening chamber affected respiratory activity. When CO(2) was maintained at either 2 or 6%, O(2) consumption and CO(2) production (and their kinetics) were higher compared with ripening trials carried out without regulating CO(2) concentration over time. Global weight loss was maximal under continuously renewed atmospheric conditions. In this case, the airflow increased exchanges between cheeses and the atmosphere. The ratio between water evaporation and CO(2) release also depended on atmospheric composition, especially CO(2) concentration. The thickening of the creamy underrind increased more quickly when CO(2) was present in the chamber from the beginning of the ripening process. However, CO(2) concentrations higher than 2% negatively influenced the appearance of the cheeses. PMID:16840643

  7. Water cycle dynamic increases resilience of vegetation under higher atmospheric carbon dioxide concentration

    NASA Astrophysics Data System (ADS)

    Lemordant, L. A.; Gentine, P.; Stéfanon, M.; Drobinski, P. J.; Fatichi, S.

    2015-12-01

    Plant stomata couple the energy, water and carbon cycles. Photosynthesis requires stomata to open to take up carbon dioxide. In the process water vapor is released as transpiration. As atmospheric CO2 concentration rises, for the same amount of CO2 uptake, less water vapor is transpired, translating into higher water use efficiency. Reduced water vapor losses will increase soil water storage if the leaf area coverage remains similar. This will in turn alter the surface energy partitioning: more heat will be dissipated as sensible heat flux, resulting in possibly higher surface temperatures. In contrast with this common hypothesis, our study shows that the water saved during the growing season by increased WUE can be mobilized by the vegetation and help reduce the maximum temperature of mid-latitude heat waves. The large scale meteorological conditions of 2003 are the basis of four regional model simulations coupling an atmospheric model to a surface model. We performed two simulations with respectively 2003 (CTL) and 2100 (FUT) atmospheric CO2 applied to both the atmospheric and surface models. A third (RAD) and a fourth (FER) simulations are run with 2100 CO2 concentration applied to respectively the atmospheric model only and the surface model only. RAD investigates the impact of the radiative forcing, and FER the response to vegetation CO2 fertilization. Our results show that the water saved through higher water use efficiency during the growing season enabled by higher atmospheric carbon dioxide concentrations helps the vegetation to cope during severe heat and dryness conditions in the summer of mid-latitude climate. These results demonstrate that consideration of the vegetation carbon cycle is essential to model the seasonal water cycle dynamic and land-atmosphere interactions, and enhance the accuracy of the model outputs especially for extreme events. They also have important implications for the future of agriculture, water resources management, ecosystems

  8. 10-year record of atmospheric composition in the high Himalayas: source, transport and impact

    NASA Astrophysics Data System (ADS)

    Bonasoni, Paolo; Laj, Paolo; Marinoni, Angela; Cristofanelli, Paolo; Maione, Michela; Putero, Davide; Calzolari, Francescopiero; Decesari, Stefano; Facchini, Maria Cristina; Fuzzi, Sandro; Gobbi, Gianpaolo; Sellegri, Karine; Verza, Gianpietro; Vuillermoz, Elisa; Arduini, Jgor

    2016-04-01

    occurrence of pollution transport and high rate of new particle formation events in this region. Here we provide an overview of the main scientific results obtained during these ten years of research. In particular, we will discuss the impact of atmospheric transport and monsoon variability on atmospheric composition by disentangling the role played by mountain breeze system and synoptic-scale transport. We will provide specific information about the role of stratospheric intrusions, long-range mineral dust transport and open biomass burning emissions in determining the variability of ozone, aerosol and equivalent black carbon concentrations. The effect of particle nucleation processes on aerosol number concentrations will be shown. Finally, we discuss the climatic impact of aerosols observed at NCO-P both in terms of direct atmospheric radiative forcing and black carbon deposition on Himalayan snow.

  9. Atmospheric dust loads and their elemental composition at a background site in India.

    PubMed

    Negi, B S; Jha, S K; Chavan, S B; Sadasivan, S; Goyal, A; Sapru, M L; Bhat, C L

    2002-01-01

    Air particulate samples collected during 1995-96 at a background site situated on the east coast of Thar Desert in Rajsthan State of India were analysed for atmospheric dust loads (Suspended Particulate Matter) and elemental composition. The values of SPM ranged from 9 microg M(-3) to 97 microg M(-3) with an average of 43 microg M(-3) except a few episodic values, which were 3 to 5 times higher than the average during summer months. The results for elemental composition of the particulate samples showed that the concentrations of anthropogenic toxic trace elements viz. Br, Cr, Pb, Sb, Se and Zn are lower by a factor of 2 to 10 as compared to urban areas. The high enrichment factors for anthropogenic elements viz. Br, Pb, Sb and Zn show an input from coal/wood fuel burning and vehicular pollution at the sampling site. The depletion of Si in SPM samples shows long distance transport of dust to the sampling site. PMID:11878626

  10. Studies of the Composition of Atmospheric Secondary Organic Aerosol Formed From the Photooxidation of Isoprene

    NASA Astrophysics Data System (ADS)

    Hildebrandt, L.; Surratt, J. D.; Kroll, J. H.; Ng, N. L.; Flagan, R. C.; Seinfeld, J. H.

    2005-12-01

    Oxidation of isoprene (2-methyl-1,3-butadiene) may contribute substantially to the formation of secondary organic aerosol (SOA) on regional as well as global scales. Knowledge of the chemical composition of the aerosol formed from isoprene photooxidation may elucidate the chemistry of isoprene SOA formation, which at present is poorly understood. We analyze the composition of isoprene SOA formed from the irradiation of isoprene/H2O2/air mixtures in a smog chamber with and without the addition of NOx and/or precursor seed. For quantitative analysis of the SOA products, we use liquid chromatography/mass spectrometry in both electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) modes. We use a matrix assisted laser desorption ionization- time of flight mass spectrometer (MALDI-TOFMS), an electrospray ionization- ion trap mass spectrometer (ESI-ITMS), as well as an accurate mass spectrometer with an ESI ionization source to assist in the qualitative identification of the SOA product species. We find that the photooxidation of isoprene produces oligomeric species of molecular weight up to over 500 Daltons. High NOx experiments in general form higher molecular weight species than those experiments in which no NOx was added to the chamber. Furthermore, the product distribution of SOA formed in high NOx experiments is in general more oligomeric in nature, and it features an oligomer with oligomeric unit of 102 Daltons, likely methyl butene diol formed from isoprene photooxidation.

  11. Tracking atmospheric boundary layer dynamics with water vapor D-excess observations

    NASA Astrophysics Data System (ADS)

    Parkes, Stephen; McCabe, Matthew; Griffiths, Alan; Wang, Lixin

    2015-04-01

    Stable isotope water vapor observations present a history of hydrological processes that have impacted on an air mass. Consequently, there is scope to improve our knowledge of how different processes impact on humidity budgets by determining the isotopic end members of these processes and combining them with in-situ water vapor measurements. These in-situ datasets are still rare and cover a limited geographical expanse, so expanding the available data can improve our ability to define isotopic end members and knowledge about atmospheric humidity dynamics. Using data collected from an intensive field campaign across a semi-arid grassland site in eastern Australia, we combine multiple methods including in-situ stable isotope observations to study humidity dynamics associated with the growth and decay of the atmospheric boundary layer and the stable nocturnal boundary layer. The deuterium-excess (D-excess) in water vapor is traditionally thought to reflect the sea surface temperature and relative humidity at the point of evaporation over the oceans. However, a number of recent studies suggest that land-atmosphere interactions are also important in setting the D-excess of water vapor. These studies have shown a highly robust diurnal cycle for the D-excess over a range of sites that could be exploited to better understand variations in atmospheric humidity associated with boundary layer dynamics. In this study we use surface radon concentrations as a tracer of surface layer dynamics and combine these with the D-excess observations. The radon concentrations showed an overall trend that was inversely proportional to the D-excess, with early morning entrainment of air from the residual layer of the previous day both diluting the radon concentration and increasing the D-excess, followed by accumulation of radon at the surface and a decrease in the D-excess as the stable nocturnal layer developed in the late afternoon and early evening. The stable nocturnal boundary layer

  12. 2D photochemical modeling of Saturn's stratosphere. Part I: Seasonal variation of atmospheric composition without meridional transport

    NASA Astrophysics Data System (ADS)

    Hue, V.; Cavalié, T.; Dobrijevic, M.; Hersant, F.; Greathouse, T. K.

    2015-09-01

    Saturn's axial tilt of 26.7° produces seasons in a similar way as on Earth. Both the stratospheric temperature and composition are affected by this latitudinally varying insolation along Saturn's orbital path. A new time-dependent 2D photochemical model is presented to study the seasonal evolution of Saturn's stratospheric composition. This study focuses on the impact of the seasonally variable thermal field on the main stratospheric C2-hydrocarbon chemistry (C2H2 and C2H6) using a realistic radiative climate model. Meridional mixing and advective processes are implemented in the model but turned off in the present study for the sake of simplicity. The results are compared to a simple study case where a latitudinally and temporally steady thermal field is assumed. Our simulations suggest that, when the seasonally variable thermal field is accounted for, the downward diffusion of the seasonally produced hydrocarbons is faster due to the seasonal compression of the atmospheric column during winter. This effect increases with increasing latitudes which experience the most important thermal changes in the course of the seasons. The seasonal variability of C2H2 and C2H6 therefore persists at higher-pressure levels with a seasonally-variable thermal field. Cassini limb-observations of C2H2 and C2H6 (Guerlet, S. et al. [2009]. Icarus 203, 214-232) are reasonably well-reproduced from the equator to 40° in both hemispheres in the 0.1-1 mbar pressure range. At lower pressure levels, the models only fit the Cassini observations in the northern hemisphere, from the equator to 40°N. Beyond 40° in both hemispheres, deviations from the pure photochemical predictions, mostly in the southern hemisphere, suggest the presence of large-scale stratospheric dynamics.

  13. Modeling Atmosphere Composition and Determining Explosibility in a Sealed Coal Mine Volume

    NASA Astrophysics Data System (ADS)

    Cheng, Jianwei; Luo, Yi

    2014-03-01

    Explosions originated from or around the sealed areas in underground coal mines present a serious safety threat. The explosibility of the mine atmosphere depends on the composition of oxygen, combustible and inert gases. In additional, the composition in the inaccessible sealed areas change with time under various factors, such as gases emissions, air leakage, inert gases injected, etc. In order to improve mine safety, in this paper, a mathematical model based on the control volume approach to simulate the atmosphere compositions is developed, and the expanded Coward explosibility triangle diagram is used to assess the mine gas explosion risk. A computer program is developed to carry out the required computations and to display the results. In addition, the USBM explosibility diagram is also included in the program to serve as a double check. Wybuchy powstające wewnątrz lub wokół zamkniętych (odizolowanych) regionów w podziemnych kopalniach węgla stanowią poważne zagrożenie. Możliwość wystąpienia wybuchu powietrza kopalnianego uzależniona jest od proporcji zawartego w nim tlenu, gazów palnych i gazów obojętnych. Ponadto, skład atmosfery wewnątrz zamkniętych odizolowanych przestrzeni ulega zmianom w czasie pod wpływem różnorakich czynników: wydzielanie gazów, przecieki powietrza, doprowadzanie gazów obojętnych. Dla poprawy bezpieczeństwa pracy w kopalni opracowano model matematyczny bazujący na metodzie objętości kontrolnej dla symulacji składu powietrza. Rozszerzony wykres Cowarda wskazujący skłonność do wybuchu wykorzystany został do oszacowania ryzyka wystąpienia wybuchu gazów kopalnianych. Opracowano program komputerowy który wykonuje niezbędne obliczenia i wyświetla wyniki. Ponadto, dla dodatkowego potwierdzenia wyników wykorzystano wykres USBM obrazujący niebezpieczeństwo wybuchu

  14. Titan atmosphere models, 1973. [Saturn satellite

    NASA Technical Reports Server (NTRS)

    Divine, N.

    1974-01-01

    The composition and structure of the atmosphere of Titan, based on theory and on spectroscopic and infrared data, is reviewed for the development of numerical engineering models. Light, nominal, and heavy atmospheres are described and tabulated, and their profiles of radius, temperature, pressure, and density are illustrated. Corresponding descriptions of atmospheric dynamics, condensates and surfaces are outlined.

  15. The Effect of Stratospheric Water Vapor in Large Volcanic Eruptions on Climate and Atmospheric Composition

    NASA Astrophysics Data System (ADS)

    Case, P. A.; Tsigaridis, K.; LeGrande, A. N.

    2015-12-01

    Large, explosive volcanic eruptions that inject material into the stratosphere have a significant impact on atmospheric composition and climate. Understanding and generalizing these effects is crucial to the development of climate models. Previously, volcanic forcing was crudely parameterized in all climate models which may be a source of large error in past-climate simulations. Here we investigate how water vapor, in addition to sulfur dioxide, from volcanic eruptions affect atmospheric chemistry and climate using NASA's atmospheric general circulation model GISS Model-E2. Three simulations were considered: a control run with no eruption, a run with a summertime dry eruption of 18 Tg of SO2, and a run with a summertime eruption containing 150 MT of water vapor in addition to 18 Tg of SO2.These amounts roughly approximate the mass of water and SO2 injected during the 1991 Mt. Pinatubo eruption. They were also injected at the same geographic location, directly into 10-layers of the lower to mid stratosphere. Each simulation was set in a pre-industrial atmosphere and monthly averages from the control were subtracted from the data in order to avoid signals from anthropogenic and meteorological effects, respectively. Comparing the dry and wet eruptions, there is a quicker forming but shorter lived sulfate aerosol population from the eruption containing water vapor. It was also observed that the aerosols spread more evenly between the Northern and Southern hemispheres when water was added to the eruption, compared to the dry eruption which was mostly contained in the Northern hemisphere. These differences more rapidly increase sulfate aerosol optical depth and cause a climatic effect of a quicker, shorter-lived decrease in surface temperatures and increase in stratospheric temperatures. The quicker signal from the wet eruption matches observations more closely than that of the dry eruption. This understanding will help in generalizing the climatic effects of volcanoes

  16. Influences of land-ocean-atmosphere dynamics and emissions sectors on atmospheric chemical transport during VOCALS REx

    NASA Astrophysics Data System (ADS)

    Spak, S.; Mena, M.; Carmichael, G. R.

    2009-12-01

    Measurements and modeling from the VOCALS REx campaign have identified a range of transport regimes based on synoptic meteorology, and suggested roles for the marine boundary layer inversion, downslope katabatic winds from the Andean cordillera, and Hadley cell subsidence as primary causes for observed aerosol and trace gas concentration gradients over the Southeast Pacific. This study employs atmospheric chemical transport modeling and airmass trajectory analyses to more directly address the influence of orographic winds, boundary layer dynamics, coastal circulations, and large-scale circulation by the subtropical high on the diurnal and episodic variability of pollution transport in the region. Using hourly simulations with the Weather Research and Forecasting model and the STEM chemical transport model at 12 km x 12 km resolution, we introduce tracer emissions within and above the boundary layer at representative locations--including the western slopes of the Andes, on-shore and off-shore coastal areas, metropolitan Santiago, the Chilean altiplano, and the free troposphere over the open ocean--and follow their transport and fate throughout the REx experiment of October-November 2008. Comparison between trajectories and tracer concentrations illustrate long range airmass history and allow for an understanding of the representativeness of instantaneous trajectories on transport phenomena. We further assess the contributions of emissions from power generation, copper smelters, natural sources, and anthropogenic area sources to aerosol concentrations over the Southeast Pacific, identifying their role in each transport regime.

  17. Dynamics and predictability of a low-order wind-driven ocean - atmosphere model

    NASA Astrophysics Data System (ADS)

    Vannitsem, Stéphane

    2013-04-01

    The dynamics of a low order coupled wind-driven Ocean-Atmosphere (OA) system is investigated with emphasis on its predictability properties. The low-order coupled deterministic system is composed of a baroclinic atmosph