Science.gov

Sample records for dynamic causal model

  1. Analysing connectivity with Granger causality and dynamic causal modelling

    PubMed Central

    Friston, Karl; Moran, Rosalyn; Seth, Anil K

    2013-01-01

    This review considers state-of-the-art analyses of functional integration in neuronal macrocircuits. We focus on detecting and estimating directed connectivity in neuronal networks using Granger causality (GC) and dynamic causal modelling (DCM). These approaches are considered in the context of functional segregation and integration and — within functional integration — the distinction between functional and effective connectivity. We review recent developments that have enjoyed a rapid uptake in the discovery and quantification of functional brain architectures. GC and DCM have distinct and complementary ambitions that are usefully considered in relation to the detection of functional connectivity and the identification of models of effective connectivity. We highlight the basic ideas upon which they are grounded, provide a comparative evaluation and point to some outstanding issues. PMID:23265964

  2. Dynamic causal models and autopoietic systems.

    PubMed

    David, Olivier

    2007-01-01

    Dynamic Causal Modelling (DCM) and the theory of autopoietic systems are two important conceptual frameworks. In this review, we suggest that they can be combined to answer important questions about self-organising systems like the brain. DCM has been developed recently by the neuroimaging community to explain, using biophysical models, the non-invasive brain imaging data are caused by neural processes. It allows one to ask mechanistic questions about the implementation of cerebral processes. In DCM the parameters of biophysical models are estimated from measured data and the evidence for each model is evaluated. This enables one to test different functional hypotheses (i.e., models) for a given data set. Autopoiesis and related formal theories of biological systems as autonomous machines represent a body of concepts with many successful applications. However, autopoiesis has remained largely theoretical and has not penetrated the empiricism of cognitive neuroscience. In this review, we try to show the connections that exist between DCM and autopoiesis. In particular, we propose a simple modification to standard formulations of DCM that includes autonomous processes. The idea is to exploit the machinery of the system identification of DCMs in neuroimaging to test the face validity of the autopoietic theory applied to neural subsystems. We illustrate the theoretical concepts and their implications for interpreting electroencephalographic signals acquired during amygdala stimulation in an epileptic patient. The results suggest that DCM represents a relevant biophysical approach to brain functional organisation, with a potential that is yet to be fully evaluated. PMID:18575681

  3. Dynamical Causal Modeling from a Quantum Dynamical Perspective

    NASA Astrophysics Data System (ADS)

    Demiralp, Emre; Demiralp, Metin

    2010-09-01

    Recent research suggests that any set of first order linear vector ODEs can be converted to a set of specific vector ODEs adhering to what we have called "Quantum Harmonical Form (QHF)". QHF has been developed using a virtual quantum multi harmonic oscillator system where mass and force constants are considered to be time variant and the Hamiltonian is defined as a conic structure over positions and momenta to conserve the Hermiticity. As described in previous works, the conversion to QHF requires the matrix coefficient of the first set of ODEs to be a normal matrix. In this paper, this limitation is circumvented using a space extension approach expanding the potential applicability of this method. Overall, conversion to QHF allows the investigation of a set of ODEs using mathematical tools available to the investigation of the physical concepts underlying quantum harmonic oscillators. The utility of QHF in the context of dynamical systems and dynamical causal modeling in behavioral and cognitive neuroscience is briefly discussed.

  4. Dynamical Causal Modeling from a Quantum Dynamical Perspective

    SciTech Connect

    Demiralp, Emre; Demiralp, Metin

    2010-09-30

    Recent research suggests that any set of first order linear vector ODEs can be converted to a set of specific vector ODEs adhering to what we have called ''Quantum Harmonical Form (QHF)''. QHF has been developed using a virtual quantum multi harmonic oscillator system where mass and force constants are considered to be time variant and the Hamiltonian is defined as a conic structure over positions and momenta to conserve the Hermiticity. As described in previous works, the conversion to QHF requires the matrix coefficient of the first set of ODEs to be a normal matrix. In this paper, this limitation is circumvented using a space extension approach expanding the potential applicability of this method. Overall, conversion to QHF allows the investigation of a set of ODEs using mathematical tools available to the investigation of the physical concepts underlying quantum harmonic oscillators. The utility of QHF in the context of dynamical systems and dynamical causal modeling in behavioral and cognitive neuroscience is briefly discussed.

  5. Foliations and 2+1 causal dynamical triangulation models

    SciTech Connect

    Konopka, Tomasz

    2006-01-15

    The original models of causal dynamical triangulations construct space-time by arranging a set of simplices in layers separated by a fixed timelike distance. The importance of the foliation structure in the 2+1 dimensional model is studied by considering variations in which this property is relaxed. It turns out that the fixed-lapse condition can be equivalently replaced by a set of global constraints that have geometrical interpretation. On the other hand, the introduction of new types of simplices that puncture the foliating sheets in general leads to different low-energy behavior compared to the original model.

  6. Tractography-based priors for dynamic causal models

    PubMed Central

    Stephan, Klaas Enno; Tittgemeyer, Marc; Knösche, Thomas R.; Moran, Rosalyn J.; Friston, Karl J.

    2009-01-01

    Functional integration in the brain rests on anatomical connectivity (the presence of axonal connections) and effective connectivity (the causal influences mediated by these connections). The deployment of anatomical connections provides important constraints on effective connectivity, but does not fully determine it, because synaptic connections can be expressed functionally in a dynamic and context-dependent fashion. Although it is generally assumed that anatomical connectivity data is important to guide the construction of neurobiologically realistic models of effective connectivity; the degree to which these models actually profit from anatomical constraints has not yet been formally investigated. Here, we use diffusion weighted imaging and probabilistic tractography to specify anatomically informed priors for dynamic causal models (DCMs) of fMRI data. We constructed 64 alternative DCMs, which embodied different mappings between the probability of an anatomical connection and the prior variance of the corresponding of effective connectivity, and fitted them to empirical fMRI data from 12 healthy subjects. Using Bayesian model selection, we show that the best model is one in which anatomical probability increases the prior variance of effective connectivity parameters in a nonlinear and monotonic (sigmoidal) fashion. This means that the higher the likelihood that a given connection exists anatomically, the larger one should set the prior variance of the corresponding coupling parameter; hence making it easier for the parameter to deviate from zero and represent a strong effective connection. To our knowledge, this study provides the first formal evidence that probabilistic knowledge of anatomical connectivity can improve models of functional integration. PMID:19523523

  7. Gradient-based MCMC samplers for dynamic causal modelling

    PubMed Central

    Sengupta, Biswa; Friston, Karl J.; Penny, Will D.

    2016-01-01

    In this technical note, we derive two MCMC (Markov chain Monte Carlo) samplers for dynamic causal models (DCMs). Specifically, we use (a) Hamiltonian MCMC (HMC-E) where sampling is simulated using Hamilton’s equation of motion and (b) Langevin Monte Carlo algorithm (LMC-R and LMC-E) that simulates the Langevin diffusion of samples using gradients either on a Euclidean (E) or on a Riemannian (R) manifold. While LMC-R requires minimal tuning, the implementation of HMC-E is heavily dependent on its tuning parameters. These parameters are therefore optimised by learning a Gaussian process model of the time-normalised sample correlation matrix. This allows one to formulate an objective function that balances tuning parameter exploration and exploitation, furnishing an intervention-free inference scheme. Using neural mass models (NMMs)—a class of biophysically motivated DCMs—we find that HMC-E is statistically more efficient than LMC-R (with a Riemannian metric); yet both gradient-based samplers are far superior to the random walk Metropolis algorithm, which proves inadequate to steer away from dynamical instability. PMID:26213349

  8. Dynamic causal modelling for functional near-infrared spectroscopy

    PubMed Central

    Tak, S.; Kempny, A.M.; Friston, K.J.; Leff, A.P.; Penny, W.D.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging technique for measuring changes in cerebral hemoglobin concentration via optical absorption changes. Although there is great interest in using fNIRS to study brain connectivity, current methods are unable to infer the directionality of neuronal connections. In this paper, we apply Dynamic Causal Modelling (DCM) to fNIRS data. Specifically, we present a generative model of how observed fNIRS data are caused by interactions among hidden neuronal states. Inversion of this generative model, using an established Bayesian framework (variational Laplace), then enables inference about changes in directed connectivity at the neuronal level. Using experimental data acquired during motor imagery and motor execution tasks, we show that directed (i.e., effective) connectivity from the supplementary motor area to the primary motor cortex is negatively modulated by motor imagery, and this suppressive influence causes reduced activity in the primary motor cortex during motor imagery. These results are consistent with findings of previous functional magnetic resonance imaging (fMRI) studies, suggesting that the proposed method enables one to infer directed interactions in the brain mediated by neuronal dynamics from measurements of optical density changes. PMID:25724757

  9. Nonlinear Dynamic Causal Models for fMRI

    PubMed Central

    Stephan, Klaas Enno; Kasper, Lars; Harrison, Lee M.; Daunizeau, Jean; den Ouden, Hanneke E.M.; Breakspear, Michael; Friston, Karl J.

    2009-01-01

    Models of effective connectivity characterize the influence that neuronal populations exert over each other. Additionally, some approaches, for example Dynamic Causal Modelling (DCM) and variants of Structural Equation Modelling, describe how effective connectivity is modulated by experimental manipulations. Mathematically, both are based on bilinear equations, where the bilinear term models the effect of experimental manipulations on neuronal interactions. The bilinear framework, however, precludes an important aspect of neuronal interactions that has been established with invasive electrophysiological recording studies; i.e., how the connection between two neuronal units is enabled or gated by activity in other units. These gating processes are critical for controlling the gain of neuronal populations and are mediated through interactions between synaptic inputs (e.g. by means of voltage-sensitive ion channels). They represent a key mechanism for various neurobiological processes, including top-down (e.g. attentional) modulation, learning and neuromodulation. This paper presents a nonlinear extension of DCM that models such processes (to second order) at the neuronal population level. In this way, the modulation of network interactions can be assigned to an explicit neuronal population. We present simulations and empirical results that demonstrate the validity and usefulness of this model. Analyses of synthetic data showed that nonlinear and bilinear mechanisms can be distinguished by our extended DCM. When applying the model to empirical fMRI data from a blocked attention to motion paradigm, we found that attention-induced increases in V5 responses could be best explained as a gating of the V1→V5 connection by activity in posterior parietal cortex. Furthermore, we analysed fMRI data from an event-related binocular rivalry paradigm and found that interactions amongst percept-selective visual areas were modulated by activity in the middle frontal gyrus. In both

  10. Exploring manual asymmetries during grasping: a dynamic causal modeling approach

    PubMed Central

    Begliomini, Chiara; Sartori, Luisa; Miotto, Diego; Stramare, Roberto; Motta, Raffaella; Castiello, Umberto

    2015-01-01

    Recording of neural activity during grasping actions in macaques showed that grasp-related sensorimotor transformations are accomplished in a circuit constituted by the anterior part of the intraparietal sulcus (AIP), the ventral (F5) and the dorsal (F2) region of the premotor area. In humans, neuroimaging studies have revealed the existence of a similar circuit, involving the putative homolog of macaque areas AIP, F5, and F2. These studies have mainly considered grasping movements performed with the right dominant hand and only a few studies have measured brain activity associated with a movement performed with the left non-dominant hand. As a consequence of this gap, how the brain controls for grasping movement performed with the dominant and the non-dominant hand still represents an open question. A functional magnetic resonance imaging (fMRI) experiment has been conducted, and effective connectivity (dynamic causal modeling, DCM) was used to assess how connectivity among grasping-related areas is modulated by hand (i.e., left and right) during the execution of grasping movements toward a small object requiring precision grasping. Results underlined boosted inter-hemispheric couplings between dorsal premotor cortices during the execution of movements performed with the left rather than the right dominant hand. More specifically, they suggest that the dorsal premotor cortices may play a fundamental role in monitoring the configuration of fingers when grasping movements are performed by either the right and the left hand. This role becomes particularly evident when the hand less-skilled (i.e., the left hand) to perform such action is utilized. The results are discussed in light of recent theories put forward to explain how parieto-frontal connectivity is modulated by the execution of prehensile movements. PMID:25759677

  11. Introduction to Causal Dynamical Triangulations

    NASA Astrophysics Data System (ADS)

    Görlich, Andrzej

    The method of causal dynamical triangulations is a non-perturbative and background-independent approach to quantum theory of gravity. In this review we present recent results obtained within the four dimensional model of causal dynamical triangulations. We describe the phase structure of the model and demonstrate how a macroscopic four-dimensional de Sitter universe emerges dynamically from the full gravitational path integral. We show how to reconstruct the effective action describing scale factor fluctuations from Monte Carlo data.

  12. Dynamic causal models of neural system dynamics: current state and future extensions

    PubMed Central

    Stephan, Klaas E.; Harrison, Lee M.; Kiebel, Stefan J.; David, Olivier; Penny, Will D.; Friston, Karl J.

    2009-01-01

    Complex processes resulting from the interaction of multiple elements can rarely be understood by analytical scientific approaches alone; additionally, mathematical models of system dynamics are required. This insight, which disciplines like physics have embraced for a long time already, is gradually gaining importance in the study of cognitive processes by functional neuroimaging. In this field, causal mechanisms in neural systems are described in terms of effective connectivity. Recently, Dynamic Causal Modelling (DCM) was introduced as a generic method to estimate effective connectivity from neuroimaging data in a Bayesian fashion. One of the key advantages of DCM over previous methods is that it distinguishes between neural state equations and modality-specific forward models that translate neural activity into a measured signal. Another strength is its natural relation to Bayesian Model Selection (BMS) procedures. In this article, we review the conceptual and mathematical basis of DCM and its implementation for functional magnetic resonance imaging data and event-related potentials. After introducing the application of BMS in the context of DCM, we conclude with an outlook to future extensions of DCM. These extensions are guided by the long-term goal of using dynamic system models for pharmacological and clinical applications, particularly with regard to synaptic plasticity. PMID:17426386

  13. Quantum causal modelling

    NASA Astrophysics Data System (ADS)

    Costa, Fabio; Shrapnel, Sally

    2016-06-01

    Causal modelling provides a powerful set of tools for identifying causal structure from observed correlations. It is well known that such techniques fail for quantum systems, unless one introduces ‘spooky’ hidden mechanisms. Whether one can produce a genuinely quantum framework in order to discover causal structure remains an open question. Here we introduce a new framework for quantum causal modelling that allows for the discovery of causal structure. We define quantum analogues for core features of classical causal modelling techniques, including the causal Markov condition and faithfulness. Based on the process matrix formalism, this framework naturally extends to generalised structures with indefinite causal order.

  14. Multivariate dynamical systems models for estimating causal interactions in fMRI

    PubMed Central

    Ryali, Srikanth; Supekar, Kaustubh; Chen, Tianwen; Menon, Vinod

    2010-01-01

    Analysis of dynamical interactions between distributed brain areas is of fundamental importance for understanding cognitive information processing. However, estimating dynamic causal interactions between brain regions using functional magnetic resonance imaging (fMRI) poses several unique challenges. For one, fMRI measures Blood Oxygenation Level Dependent (BOLD) signals, rather than the underlying latent neuronal activity. Second, regional variations in the hemodynamic response function (HRF) can significantly influence estimation of casual interactions between them. Third, causal interactions between brain regions can change with experimental context over time. To overcome these problems, we developed a novel state-space Multivariate Dynamical Systems (MDS) model to estimate intrinsic and experimentally-induced modulatory causal interactions between multiple brain regions. A probabilistic graphical framework is then used to estimate the parameters of MDS as applied to fMRI data. We show that MDS accurately takes into account regional variations in the HRF and estimates dynamic causal interactions at the level of latent signals. We develop and compare two estimation procedures using maximum likelihood estimation (MLE) and variational Bayesian (VB) approaches for inferring model parameters. Using extensive computer simulations, we demonstrate that, compared to Granger causal analysis (GCA), MDS exhibits superior performance for a wide range of signal to noise ratios (SNRs), sample length and network size. Our simulations also suggest that GCA fails to uncover causal interactions when there is a conflict between the direction of intrinsic and modulatory influences. Furthermore, we show that MDS estimation using VB methods is more robust and performs significantly better at low SNRs and shorter time series than MDS with MLE. Our study suggests that VB estimation of MDS provides a robust method for estimating and interpreting causal network interactions in fMRI data

  15. A Dynamic Causal Modeling Analysis of the Effective Connectivities Underlying Top-Down Letter Processing

    ERIC Educational Resources Information Center

    Liu, Jiangang; Li, Jun; Rieth, Cory A.; Huber, David E.; Tian, Jie; Lee, Kang

    2011-01-01

    The present study employed dynamic causal modeling to investigate the effective functional connectivity between regions of the neural network involved in top-down letter processing. We used an illusory letter detection paradigm in which participants detected letters while viewing pure noise images. When participants detected letters, the response…

  16. Making the Case for Causal Dynamical Triangulations

    NASA Astrophysics Data System (ADS)

    Cooperman, Joshua H.

    2015-11-01

    The aim of the causal dynamical triangulations approach is to define nonperturbatively a quantum theory of gravity as the continuum limit of a lattice-regularized model of dynamical geometry. My aim in this paper is to give a concise yet comprehensive, impartial yet personal presentation of the causal dynamical triangulations approach.

  17. Gradient-free MCMC methods for dynamic causal modelling

    PubMed Central

    Sengupta, Biswa; Friston, Karl J.; Penny, Will D.

    2015-01-01

    In this technical note we compare the performance of four gradient-free MCMC samplers (random walk Metropolis sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in terms of the number of independent samples they can produce per unit computational time. For the Bayesian inversion of a single-node neural mass model, both adaptive and population-based samplers are more efficient compared with random walk Metropolis sampler or slice-sampling; yet adaptive MCMC sampling is more promising in terms of compute time. Slice-sampling yields the highest number of independent samples from the target density — albeit at almost 1000% increase in computational time, in comparison to the most efficient algorithm (i.e., the adaptive MCMC sampler). PMID:25776212

  18. Causal Discovery of Dynamic Systems

    ERIC Educational Resources Information Center

    Voortman, Mark

    2010-01-01

    Recently, several philosophical and computational approaches to causality have used an interventionist framework to clarify the concept of causality [Spirtes et al., 2000, Pearl, 2000, Woodward, 2005]. The characteristic feature of the interventionist approach is that causal models are potentially useful in predicting the effects of manipulations.…

  19. Stochastic dynamic causal modelling of fMRI data: Should we care about neural noise?

    PubMed Central

    Daunizeau, J.; Stephan, K.E.; Friston, K.J.

    2012-01-01

    Dynamic causal modelling (DCM) was introduced to study the effective connectivity among brain regions using neuroimaging data. Until recently, DCM relied on deterministic models of distributed neuronal responses to external perturbation (e.g., sensory stimulation or task demands). However, accounting for stochastic fluctuations in neuronal activity and their interaction with task-specific processes may be of particular importance for studying state-dependent interactions. Furthermore, allowing for random neuronal fluctuations may render DCM more robust to model misspecification and finesse problems with network identification. In this article, we examine stochastic dynamic causal models (sDCM) in relation to their deterministic counterparts (dDCM) and highlight questions that can only be addressed with sDCM. We also compare the network identification performance of deterministic and stochastic DCM, using Monte Carlo simulations and an empirical case study of absence epilepsy. For example, our results demonstrate that stochastic DCM can exploit the modelling of neural noise to discriminate between direct and mediated connections. We conclude with a discussion of the added value and limitations of sDCM, in relation to its deterministic homologue. PMID:22579726

  20. Tracking slow modulations in synaptic gain using dynamic causal modelling: Validation in epilepsy

    PubMed Central

    Papadopoulou, Margarita; Leite, Marco; van Mierlo, Pieter; Vonck, Kristl; Lemieux, Louis; Friston, Karl; Marinazzo, Daniele

    2015-01-01

    In this work we propose a proof of principle that dynamic causal modelling can identify plausible mechanisms at the synaptic level underlying brain state changes over a timescale of seconds. As a benchmark example for validation we used intracranial electroencephalographic signals in a human subject. These data were used to infer the (effective connectivity) architecture of synaptic connections among neural populations assumed to generate seizure activity. Dynamic causal modelling allowed us to quantify empirical changes in spectral activity in terms of a trajectory in parameter space — identifying key synaptic parameters or connections that cause observed signals. Using recordings from three seizures in one patient, we considered a network of two sources (within and just outside the putative ictal zone). Bayesian model selection was used to identify the intrinsic (within-source) and extrinsic (between-source) connectivity. Having established the underlying architecture, we were able to track the evolution of key connectivity parameters (e.g., inhibitory connections to superficial pyramidal cells) and test specific hypotheses about the synaptic mechanisms involved in ictogenesis. Our key finding was that intrinsic synaptic changes were sufficient to explain seizure onset, where these changes showed dissociable time courses over several seconds. Crucially, these changes spoke to an increase in the sensitivity of principal cells to intrinsic inhibitory afferents and a transient loss of excitatory–inhibitory balance. PMID:25498428

  1. Developmental maturation of dynamic causal control signals in higher-order cognition: a neurocognitive network model.

    PubMed

    Supekar, Kaustubh; Menon, Vinod

    2012-02-01

    Cognitive skills undergo protracted developmental changes resulting in proficiencies that are a hallmark of human cognition. One skill that develops over time is the ability to problem solve, which in turn relies on cognitive control and attention abilities. Here we use a novel multimodal neurocognitive network-based approach combining task-related fMRI, resting-state fMRI and diffusion tensor imaging (DTI) to investigate the maturation of control processes underlying problem solving skills in 7-9 year-old children. Our analysis focused on two key neurocognitive networks implicated in a wide range of cognitive tasks including control: the insula-cingulate salience network, anchored in anterior insula (AI), ventrolateral prefrontal cortex and anterior cingulate cortex, and the fronto-parietal central executive network, anchored in dorsolateral prefrontal cortex and posterior parietal cortex (PPC). We found that, by age 9, the AI node of the salience network is a major causal hub initiating control signals during problem solving. Critically, despite stronger AI activation, the strength of causal regulatory influences from AI to the PPC node of the central executive network was significantly weaker and contributed to lower levels of behavioral performance in children compared to adults. These results were validated using two different analytic methods for estimating causal interactions in fMRI data. In parallel, DTI-based tractography revealed weaker AI-PPC structural connectivity in children. Our findings point to a crucial role of AI connectivity, and its causal cross-network influences, in the maturation of dynamic top-down control signals underlying cognitive development. Overall, our study demonstrates how a unified neurocognitive network model when combined with multimodal imaging enhances our ability to generalize beyond individual task-activated foci and provides a common framework for elucidating key features of brain and cognitive development. The

  2. Influence of Resting Venous Blood Volume Fraction on Dynamic Causal Modeling and System Identifiability.

    PubMed

    Hu, Zhenghui; Ni, Pengyu; Wan, Qun; Zhang, Yan; Shi, Pengcheng; Lin, Qiang

    2016-01-01

    Changes in BOLD signals are sensitive to the regional blood content associated with the vasculature, which is known as V0 in hemodynamic models. In previous studies involving dynamic causal modeling (DCM) which embodies the hemodynamic model to invert the functional magnetic resonance imaging signals into neuronal activity, V0 was arbitrarily set to a physiolog-ically plausible value to overcome the ill-posedness of the inverse problem. It is interesting to investigate how the V0 value influences DCM. In this study we addressed this issue by using both synthetic and real experiments. The results show that the ability of DCM analysis to reveal information about brain causality depends critically on the assumed V0 value used in the analysis procedure. The choice of V0 value not only directly affects the strength of system connections, but more importantly also affects the inferences about the network architecture. Our analyses speak to a possible refinement of how the hemody-namic process is parameterized (i.e., by making V0 a free parameter); however, the conditional dependencies induced by a more complex model may create more problems than they solve. Obtaining more realistic V0 information in DCM can improve the identifiability of the system and would provide more reliable inferences about the properties of brain connectivity. PMID:27389074

  3. Influence of Resting Venous Blood Volume Fraction on Dynamic Causal Modeling and System Identifiability

    PubMed Central

    Hu, Zhenghui; Ni, Pengyu; Wan, Qun; Zhang, Yan; Shi, Pengcheng; Lin, Qiang

    2016-01-01

    Changes in BOLD signals are sensitive to the regional blood content associated with the vasculature, which is known as V0 in hemodynamic models. In previous studies involving dynamic causal modeling (DCM) which embodies the hemodynamic model to invert the functional magnetic resonance imaging signals into neuronal activity, V0 was arbitrarily set to a physiolog-ically plausible value to overcome the ill-posedness of the inverse problem. It is interesting to investigate how the V0 value influences DCM. In this study we addressed this issue by using both synthetic and real experiments. The results show that the ability of DCM analysis to reveal information about brain causality depends critically on the assumed V0 value used in the analysis procedure. The choice of V0 value not only directly affects the strength of system connections, but more importantly also affects the inferences about the network architecture. Our analyses speak to a possible refinement of how the hemody-namic process is parameterized (i.e., by making V0 a free parameter); however, the conditional dependencies induced by a more complex model may create more problems than they solve. Obtaining more realistic V0 information in DCM can improve the identifiability of the system and would provide more reliable inferences about the properties of brain connectivity. PMID:27389074

  4. Synchronizaton and causality across time-scales of observed and modelled ENSO dynamics

    NASA Astrophysics Data System (ADS)

    Jajcay, Nikola; Kravtsov, Sergey; Tsonis, Anastasios A.; Paluš, Milan

    2016-04-01

    Phase-phase and phase-amplitude interactions between dynamics on different temporal scales has been observed in ENSO dynamics, captured by the NINO3.4 index, using the approach for identification of cross-scale interactions introduced recently by Paluš [1]. The most pronounced interactions across scales are phase coherence and phase-phase causality in which the annual cycle influences the dynamics on the quasibiennial scale. The phase of slower phenomena on the scale 4-6 years influences not only the combination frequencies around the period one year, but also the phase of the annual cycle and also the amplitude of the oscillations in the quasibiennial range. In order to understand these nonlinear phenomena we investigate cross-scale interactions in synthetic, modelled NINO3.4 time series. The models taken into account were a selection of 96 historic runs from CMIP5 project, and two low-dimensional models - parametric recharge oscillator (PRO) [2], which is a two-dimensional dynamical model and a data-driven model based on the idea of linear inverse models [3]. The latter is a statistical model, in our setting 25-dimensional. While the two dimensions of the PRO model are not enough to capture all the cross-scale interactions, the results from the data-driven model are more promising and they resemble the interactions found in NINO3.4 measured data set. We believe that combination of models of different complexity will help to uncover mechanisms of the cross-scale interactions which might be the key for better understanding of the irregularities in the ENSO dynamics. This study is supported by the Ministry of Education, Youth and Sports of the Czech Republic within the Program KONTAKT II, Project No. LH14001. [1] M. Palus, Phys. Rev. Let. 112 078702 (2014) [2] K. Stein et al., J. Climate, 27, 14 (2014) [3] Kondrashov et al., J. Climate, 18, 21 (2005)

  5. Hydrostatic equilibrium of causally consistent and dynamically stable neutron star models

    NASA Astrophysics Data System (ADS)

    Negi, P. S.

    2008-08-01

    We show that the mass-radius (M-R) relation corresponding to the stiffest equation of state (EOS) does not provide the necessary and sufficient condition of dynamical stability for equilibrium configurations, because such configurations cannot satisfy the `compatibility criterion'. In this regard, we construct sequences composed of core-envelope models such that, like the central condition belonging to the stiffest EOS, each member of these sequences satisfies the extreme case of the causality condition, v = c = 1, at the centre. We thereafter show that the M-R relation corresponding to the said core-envelope model sequences can provide the necessary and sufficient condition of dynamical stability only when the `compatibility criterion' for these sequences is `appropriately' satisfied. However, the `compatibility criterion' can remain satisfied even when the M-R relation does not provide the necessary and sufficient condition of dynamical stability for the equilibrium configurations. In continuation of the results of a previous study, these results explicitly show that the `compatibility criterion' independently provides, in general, the necessary and sufficient condition of hydrostatic equilibrium for any regular sequence. In addition to its fundamental result, this study can explain simultaneously the higher and the lower values of the glitch healing parameter observed for the Crab-like and Vela-like pulsars respectively, on the basis of the starquake model of glitch generation.

  6. Evaluating Causal Models.

    ERIC Educational Resources Information Center

    Watt, James H., Jr.

    Pointing out that linear causal models can organize the interrelationships of a large number of variables, this paper contends that such models are particularly useful to mass communication research, which must by necessity deal with complex systems of variables. The paper first outlines briefly the philosophical requirements for establishing a…

  7. Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating.

    PubMed

    Cooray, Gerald K; Sengupta, Biswa; Douglas, Pamela K; Friston, Karl

    2016-01-15

    Seizure activity in EEG recordings can persist for hours with seizure dynamics changing rapidly over time and space. To characterise the spatiotemporal evolution of seizure activity, large data sets often need to be analysed. Dynamic causal modelling (DCM) can be used to estimate the synaptic drivers of cortical dynamics during a seizure; however, the requisite (Bayesian) inversion procedure is computationally expensive. In this note, we describe a straightforward procedure, within the DCM framework, that provides efficient inversion of seizure activity measured with non-invasive and invasive physiological recordings; namely, EEG/ECoG. We describe the theoretical background behind a Bayesian belief updating scheme for DCM. The scheme is tested on simulated and empirical seizure activity (recorded both invasively and non-invasively) and compared with standard Bayesian inversion. We show that the Bayesian belief updating scheme provides similar estimates of time-varying synaptic parameters, compared to standard schemes, indicating no significant qualitative change in accuracy. The difference in variance explained was small (less than 5%). The updating method was substantially more efficient, taking approximately 5-10min compared to approximately 1-2h. Moreover, the setup of the model under the updating scheme allows for a clear specification of how neuronal variables fluctuate over separable timescales. This method now allows us to investigate the effect of fast (neuronal) activity on slow fluctuations in (synaptic) parameters, paving a way forward to understand how seizure activity is generated. PMID:26220742

  8. Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating

    PubMed Central

    Cooray, Gerald K.; Sengupta, Biswa; Douglas, Pamela K.; Friston, Karl

    2016-01-01

    Seizure activity in EEG recordings can persist for hours with seizure dynamics changing rapidly over time and space. To characterise the spatiotemporal evolution of seizure activity, large data sets often need to be analysed. Dynamic causal modelling (DCM) can be used to estimate the synaptic drivers of cortical dynamics during a seizure; however, the requisite (Bayesian) inversion procedure is computationally expensive. In this note, we describe a straightforward procedure, within the DCM framework, that provides efficient inversion of seizure activity measured with non-invasive and invasive physiological recordings; namely, EEG/ECoG. We describe the theoretical background behind a Bayesian belief updating scheme for DCM. The scheme is tested on simulated and empirical seizure activity (recorded both invasively and non-invasively) and compared with standard Bayesian inversion. We show that the Bayesian belief updating scheme provides similar estimates of time-varying synaptic parameters, compared to standard schemes, indicating no significant qualitative change in accuracy. The difference in variance explained was small (less than 5%). The updating method was substantially more efficient, taking approximately 5–10 min compared to approximately 1–2 h. Moreover, the setup of the model under the updating scheme allows for a clear specification of how neuronal variables fluctuate over separable timescales. This method now allows us to investigate the effect of fast (neuronal) activity on slow fluctuations in (synaptic) parameters, paving a way forward to understand how seizure activity is generated. PMID:26220742

  9. Detection of Motor Changes in Huntington's Disease Using Dynamic Causal Modeling.

    PubMed

    Minkova, Lora; Scheller, Elisa; Peter, Jessica; Abdulkadir, Ahmed; Kaller, Christoph P; Roos, Raymund A; Durr, Alexandra; Leavitt, Blair R; Tabrizi, Sarah J; Klöppel, Stefan

    2015-01-01

    Deficits in motor functioning are one of the hallmarks of Huntington's disease (HD), a genetically caused neurodegenerative disorder. We applied functional magnetic resonance imaging (fMRI) and dynamic causal modeling (DCM) to assess changes that occur with disease progression in the neural circuitry of key areas associated with executive and cognitive aspects of motor control. Seventy-seven healthy controls, 62 pre-symptomatic HD gene carriers (preHD), and 16 patients with manifest HD symptoms (earlyHD) performed a motor finger-tapping fMRI task with systematically varying speed and complexity. DCM was used to assess the causal interactions among seven pre-defined regions of interest, comprising primary motor cortex, supplementary motor area (SMA), dorsal premotor cortex, and superior parietal cortex. To capture heterogeneity among HD gene carriers, DCM parameters were entered into a hierarchical cluster analysis using Ward's method and squared Euclidian distance as a measure of similarity. After applying Bonferroni correction for the number of tests, DCM analysis revealed a group difference that was not present in the conventional fMRI analysis. We found an inhibitory effect of complexity on the connection from parietal to premotor areas in preHD, which became excitatory in earlyHD and correlated with putamen atrophy. While speed of finger movements did not modulate the connection from caudal to pre-SMA in controls and preHD, this connection became strongly negative in earlyHD. This second effect did not survive correction for multiple comparisons. Hierarchical clustering separated the gene mutation carriers into three clusters that also differed significantly between these two connections and thereby confirmed their relevance. DCM proved useful in identifying group differences that would have remained undetected by standard analyses and may aid in the investigation of between-subject heterogeneity. PMID:26635585

  10. Detection of Motor Changes in Huntington's Disease Using Dynamic Causal Modeling

    PubMed Central

    Minkova, Lora; Scheller, Elisa; Peter, Jessica; Abdulkadir, Ahmed; Kaller, Christoph P.; Roos, Raymund A.; Durr, Alexandra; Leavitt, Blair R.; Tabrizi, Sarah J.; Klöppel, Stefan; Coleman, A.

    2015-01-01

    Deficits in motor functioning are one of the hallmarks of Huntington's disease (HD), a genetically caused neurodegenerative disorder. We applied functional magnetic resonance imaging (fMRI) and dynamic causal modeling (DCM) to assess changes that occur with disease progression in the neural circuitry of key areas associated with executive and cognitive aspects of motor control. Seventy-seven healthy controls, 62 pre-symptomatic HD gene carriers (preHD), and 16 patients with manifest HD symptoms (earlyHD) performed a motor finger-tapping fMRI task with systematically varying speed and complexity. DCM was used to assess the causal interactions among seven pre-defined regions of interest, comprising primary motor cortex, supplementary motor area (SMA), dorsal premotor cortex, and superior parietal cortex. To capture heterogeneity among HD gene carriers, DCM parameters were entered into a hierarchical cluster analysis using Ward's method and squared Euclidian distance as a measure of similarity. After applying Bonferroni correction for the number of tests, DCM analysis revealed a group difference that was not present in the conventional fMRI analysis. We found an inhibitory effect of complexity on the connection from parietal to premotor areas in preHD, which became excitatory in earlyHD and correlated with putamen atrophy. While speed of finger movements did not modulate the connection from caudal to pre-SMA in controls and preHD, this connection became strongly negative in earlyHD. This second effect did not survive correction for multiple comparisons. Hierarchical clustering separated the gene mutation carriers into three clusters that also differed significantly between these two connections and thereby confirmed their relevance. DCM proved useful in identifying group differences that would have remained undetected by standard analyses and may aid in the investigation of between-subject heterogeneity. PMID:26635585

  11. Investigating the functional role of callosal connections with dynamic causal models

    PubMed Central

    Stephan, Klaas E.; Penny, Will D.; Marshall, John C.; Fink, Gereon R.; Friston, Karl J.

    2009-01-01

    The anatomy of the corpus callosum has been described in considerable detail. Tracing studies in animals and human post-mortem experiments are currently complemented by diffusion-weighted imaging, which enables non-invasive investigations of callosal connectivity to be conducted. In contrast to the wealth of anatomical data, little is known about the principles by which inter-hemispheric integration is mediated by callosal connections. Most importantly, we lack insights into the mechanisms that determine the functional role of callosal connections in a context-dependent fashion. These mechanisms can now be disclosed by models of effective connectivity that explain neuroimaging data from paradigms which manipulate inter-hemispheric interactions. In this article, we demonstrate that Dynamic Causal Modeling (DCM), in conjunction with Bayesian model selection (BMS), is a powerful approach to disentangling the various factors that determine the functional role of callosal connections. We first review the theoretical foundations of DCM and BMS before demonstrating the application of these techniques to empirical data from a single subject. PMID:16394145

  12. Connectivity-based neurofeedback: dynamic causal modeling for real-time fMRI.

    PubMed

    Koush, Yury; Rosa, Maria Joao; Robineau, Fabien; Heinen, Klaartje; W Rieger, Sebastian; Weiskopf, Nikolaus; Vuilleumier, Patrik; Van De Ville, Dimitri; Scharnowski, Frank

    2013-11-01

    Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized brain activity within a region of interest. Here, we overcome this limitation by presenting near real-time dynamic causal modeling in order to provide feedback information based on connectivity between brain areas rather than activity within a single brain area. Using a visual-spatial attention paradigm, we show that participants can voluntarily control a feedback signal that is based on the Bayesian model comparison between two predefined model alternatives, i.e. the connectivity between left visual cortex and left parietal cortex vs. the connectivity between right visual cortex and right parietal cortex. Our new approach thus allows for training voluntary control over specific functional brain networks. Because most mental functions and most neurological disorders are associated with network activity rather than with activity in a single brain region, this novel approach is an important methodological innovation in order to more directly target functionally relevant brain networks. PMID:23668967

  13. Dynamic causal modeling of touch-evoked potentials in the rubber hand illusion.

    PubMed

    Zeller, Daniel; Friston, Karl J; Classen, Joseph

    2016-09-01

    The neural substrate of bodily ownership can be disclosed by the rubber hand illusion (RHI); namely, the illusory self-attribution of an artificial hand that is induced by synchronous tactile stimulation of the subject's hand that is hidden from view. Previous studies have pointed to the premotor cortex (PMC) as a pivotal area in such illusions. To investigate the effective connectivity between - and within - sensory and premotor areas involved in bodily perceptions, we used dynamic causal modeling of touch-evoked responses in 13 healthy subjects. Each subject's right hand was stroked while viewing their own hand ("REAL"), or an artificial hand presented in an anatomically plausible ("CONGRUENT") or implausible ("INCONGRUENT") position. Bayesian model comparison revealed strong evidence for a differential involvement of the PMC in the generation of touch-evoked responses under the three conditions, confirming a crucial role of PMC in bodily self-attribution. In brief, the extrinsic (forward) connection from left occipital cortex to left PMC was stronger for CONGRUENT and INCONGRUENT as compared to REAL, reflecting the augmentation of bottom-up visual input when multisensory integration is challenged. Crucially, intrinsic connectivity in the primary somatosensory cortex (S1) was attenuated in the CONGRUENT condition, during the illusory percept. These findings support predictive coding models of the functional architecture of multisensory integration (and attenuation) in bodily perceptual experience. PMID:27241481

  14. Characterising seizures in anti-NMDA-receptor encephalitis with dynamic causal modelling

    PubMed Central

    Cooray, Gerald K.; Sengupta, Biswa; Douglas, Pamela; Englund, Marita; Wickstrom, Ronny; Friston, Karl

    2015-01-01

    We characterised the pathophysiology of seizure onset in terms of slow fluctuations in synaptic efficacy using EEG in patients with anti-N-methyl-d-aspartate receptor (NMDA-R) encephalitis. EEG recordings were obtained from two female patients with anti-NMDA-R encephalitis with recurrent partial seizures (ages 19 and 31). Focal electrographic seizure activity was localised using an empirical Bayes beamformer. The spectral density of reconstructed source activity was then characterised with dynamic causal modelling (DCM). Eight models were compared for each patient, to evaluate the relative contribution of changes in intrinsic (excitatory and inhibitory) connectivity and endogenous afferent input. Bayesian model comparison established a role for changes in both excitatory and inhibitory connectivity during seizure activity (in addition to changes in the exogenous input). Seizures in both patients were associated with a sequence of changes in inhibitory and excitatory connectivity; a transient increase in inhibitory connectivity followed by a transient increase in excitatory connectivity and a final peak of excitatory–inhibitory balance at seizure offset. These systematic fluctuations in excitatory and inhibitory gain may be characteristic of (anti NMDA-R encephalitis) seizures. We present these results as a case study and replication to motivate analyses of larger patient cohorts, to see whether our findings generalise and further characterise the mechanisms of seizure activity in anti-NMDA-R encephalitis. PMID:26032883

  15. Combining optogenetic stimulation and fMRI to validate a multivariate dynamical systems model for estimating causal brain interactions.

    PubMed

    Ryali, Srikanth; Shih, Yen-Yu Ian; Chen, Tianwen; Kochalka, John; Albaugh, Daniel; Fang, Zhongnan; Supekar, Kaustubh; Lee, Jin Hyung; Menon, Vinod

    2016-05-15

    State-space multivariate dynamical systems (MDS) (Ryali et al. 2011) and other causal estimation models are being increasingly used to identify directed functional interactions between brain regions. However, the validity and accuracy of such methods are poorly understood. Performance evaluation based on computer simulations of small artificial causal networks can address this problem to some extent, but they often involve simplifying assumptions that reduce biological validity of the resulting data. Here, we use a novel approach taking advantage of recently developed optogenetic fMRI (ofMRI) techniques to selectively stimulate brain regions while simultaneously recording high-resolution whole-brain fMRI data. ofMRI allows for a more direct investigation of causal influences from the stimulated site to brain regions activated downstream and is therefore ideal for evaluating causal estimation methods in vivo. We used ofMRI to investigate whether MDS models for fMRI can accurately estimate causal functional interactions between brain regions. Two cohorts of ofMRI data were acquired, one at Stanford University and the University of California Los Angeles (Cohort 1) and the other at the University of North Carolina Chapel Hill (Cohort 2). In each cohort, optical stimulation was delivered to the right primary motor cortex (M1). General linear model analysis revealed prominent downstream thalamic activation in Cohort 1, and caudate-putamen (CPu) activation in Cohort 2. MDS accurately estimated causal interactions from M1 to thalamus and from M1 to CPu in Cohort 1 and Cohort 2, respectively. As predicted, no causal influences were found in the reverse direction. Additional control analyses demonstrated the specificity of causal interactions between stimulated and target sites. Our findings suggest that MDS state-space models can accurately and reliably estimate causal interactions in ofMRI data and further validate their use for estimating causal interactions in f

  16. Combining optogenetic stimulation and fMRI to validate a multivariate dynamical systems model for estimating causal brain interactions

    PubMed Central

    Ryali, Srikanth; Ian Shih, Yen-Yu; Chen, Tianwen; Kochalka, John; Albaugh, Daniel; Fang, Zhongnan; Supekar, Kaustubh; Lee, Jin Hyung; Menon, Vinod

    2016-01-01

    State-space multivariate dynamical systems (MDS) (Ryali et al., 2011) and other causal estimation models are being increasingly used to identify directed functional interactions between brain regions. However, the validity and accuracy of such methods is poorly understood. Performance evaluation based on computer simulations of small artificial causal networks can address this problem to some extent, but they often involve simplifying assumptions that reduce biological validity of the resulting data. Here, we use a novel approach taking advantage of recently developed optogenetic fMRI (ofMRI) techniques to selectively stimulate brain regions while simultaneously recording high-resolution whole-brain fMRI data. ofMRI allows for a more direct investigation of causal influences from the stimulated site to brain regions activated downstream and is therefore ideal for evaluating causal estimation methods in vivo. We used ofMRI to investigate whether MDS models for fMRI can accurately estimate causal functional interactions between brain regions. Two cohorts of ofMRI data were acquired, one at Stanford University and the University of California Los Angeles (Cohort 1) and the other at the University of North Carolina Chapel Hill (Cohort 2). In each cohort optical stimulation was delivered to the right primary motor cortex (M1). General linear model analysis revealed prominent downstream thalamic activation in Cohort 1, and caudate-putamen (CPu) activation in Cohort 2. MDS accurately estimated causal interactions from M1 to thalamus and from M1 to CPu in Cohort 1 and Cohort 2, respectively. As predicted, no causal influences were found in the reverse direction. Additional control analyses demonstrated the specificity of causal interactions between stimulated and target sites. Our findings suggest that MDS state-space models can accurately and reliably estimate causal interactions in ofMRI data and further validate their use for estimating causal interactions in fMRI. More

  17. Inhibitory Behavioral Control: A Stochastic Dynamic Causal Modeling Study Using Network Discovery Analysis

    PubMed Central

    Steinberg, Joel L.; Cunningham, Kathryn A.; Lane, Scott D.; Kramer, Larry A.; Narayana, Ponnada A.; Kosten, Thomas R.; Bechara, Antoine; Moeller, F. Gerard

    2015-01-01

    Abstract This study employed functional magnetic resonance imaging (fMRI)-based dynamic causal modeling (DCM) to study the effective (directional) neuronal connectivity underlying inhibitory behavioral control. fMRI data were acquired from 15 healthy subjects while they performed a Go/NoGo task with two levels of NoGo difficulty (Easy and Hard NoGo conditions) in distinguishing spatial patterns of lines. Based on the previous inhibitory control literature and the present fMRI activation results, 10 brain regions were postulated as nodes in the effective connectivity model. Due to the large number of potential interconnections among these nodes, the number of models for final analysis was reduced to a manageable level for the whole group by conducting DCM Network Discovery, which is a recently developed option within the Statistical Parametric Mapping software package. Given the optimum network model, the DCM Network Discovery analysis found that the locations of the driving input into the model from all the experimental stimuli in the Go/NoGo task were the amygdala and the hippocampus. The strengths of several cortico-subcortical connections were modulated (influenced) by the two NoGo conditions. Specifically, connectivity from the middle frontal gyrus (MFG) to hippocampus was enhanced by the Easy condition and further enhanced by the Hard NoGo condition, possibly suggesting that compared with the Easy NoGo condition, stronger control from MFG was needed for the hippocampus to discriminate/learn the spatial pattern in order to respond correctly (inhibit), during the Hard NoGo condition. PMID:25336321

  18. Inhibitory behavioral control: a stochastic dynamic causal modeling study using network discovery analysis.

    PubMed

    Ma, Liangsuo; Steinberg, Joel L; Cunningham, Kathryn A; Lane, Scott D; Kramer, Larry A; Narayana, Ponnada A; Kosten, Thomas R; Bechara, Antoine; Moeller, F Gerard

    2015-04-01

    This study employed functional magnetic resonance imaging (fMRI)-based dynamic causal modeling (DCM) to study the effective (directional) neuronal connectivity underlying inhibitory behavioral control. fMRI data were acquired from 15 healthy subjects while they performed a Go/NoGo task with two levels of NoGo difficulty (Easy and Hard NoGo conditions) in distinguishing spatial patterns of lines. Based on the previous inhibitory control literature and the present fMRI activation results, 10 brain regions were postulated as nodes in the effective connectivity model. Due to the large number of potential interconnections among these nodes, the number of models for final analysis was reduced to a manageable level for the whole group by conducting DCM Network Discovery, which is a recently developed option within the Statistical Parametric Mapping software package. Given the optimum network model, the DCM Network Discovery analysis found that the locations of the driving input into the model from all the experimental stimuli in the Go/NoGo task were the amygdala and the hippocampus. The strengths of several cortico-subcortical connections were modulated (influenced) by the two NoGo conditions. Specifically, connectivity from the middle frontal gyrus (MFG) to hippocampus was enhanced by the Easy condition and further enhanced by the Hard NoGo condition, possibly suggesting that compared with the Easy NoGo condition, stronger control from MFG was needed for the hippocampus to discriminate/learn the spatial pattern in order to respond correctly (inhibit), during the Hard NoGo condition. PMID:25336321

  19. The functional anatomy of schizophrenia: A dynamic causal modeling study of predictive coding.

    PubMed

    Fogelson, Noa; Litvak, Vladimir; Peled, Avi; Fernandez-del-Olmo, Miguel; Friston, Karl

    2014-09-01

    This paper tests the hypothesis that patients with schizophrenia have a deficit in selectively attending to predictable events. We used dynamic causal modeling (DCM) of electrophysiological responses - to predictable and unpredictable visual targets - to quantify the effective connectivity within and between cortical sources in the visual hierarchy in 25 schizophrenia patients and 25 age-matched controls. We found evidence for marked differences between normal subjects and schizophrenia patients in the strength of extrinsic backward connections from higher hierarchical levels to lower levels within the visual system. In addition, we show that not only do schizophrenia subjects have abnormal connectivity but also that they fail to adjust or optimize this connectivity when events can be predicted. Thus, the differential intrinsic recurrent connectivity observed during processing of predictable versus unpredictable targets was markedly attenuated in schizophrenia patients compared with controls, suggesting a failure to modulate the sensitivity of neurons responsible for passing sensory information of prediction errors up the visual cortical hierarchy. The findings support the proposed role of abnormal connectivity in the neuropathology and pathophysiology of schizophrenia. PMID:24998031

  20. Silent Expectations: Dynamic Causal Modeling of Cortical Prediction and Attention to Sounds That Weren't

    PubMed Central

    Noreika, Valdas; Gueorguiev, David; Shtyrov, Yury; Bekinschtein, Tristan A.; Henson, Richard

    2016-01-01

    There is increasing evidence that human perception is realized by a hierarchy of neural processes in which predictions sent backward from higher levels result in prediction errors that are fed forward from lower levels, to update the current model of the environment. Moreover, the precision of prediction errors is thought to be modulated by attention. Much of this evidence comes from paradigms in which a stimulus differs from that predicted by the recent history of other stimuli (generating a so-called “mismatch response”). There is less evidence from situations where a prediction is not fulfilled by any sensory input (an “omission” response). This situation arguably provides a more direct measure of “top-down” predictions in the absence of confounding “bottom-up” input. We applied Dynamic Causal Modeling of evoked electromagnetic responses recorded by EEG and MEG to an auditory paradigm in which we factorially crossed the presence versus absence of “bottom-up” stimuli with the presence versus absence of “top-down” attention. Model comparison revealed that both mismatch and omission responses were mediated by increased forward and backward connections, differing primarily in the driving input. In both responses, modeling results suggested that the presence of attention selectively modulated backward “prediction” connections. Our results provide new model-driven evidence of the pure top-down prediction signal posited in theories of hierarchical perception, and highlight the role of attentional precision in strengthening this prediction. SIGNIFICANCE STATEMENT Human auditory perception is thought to be realized by a network of neurons that maintain a model of and predict future stimuli. Much of the evidence for this comes from experiments where a stimulus unexpectedly differs from previous ones, which generates a well-known “mismatch response.” But what happens when a stimulus is unexpectedly omitted altogether? By measuring the brain

  1. Aging into Perceptual Control: A Dynamic Causal Modeling for fMRI Study of Bistable Perception

    PubMed Central

    Dowlati, Ehsan; Adams, Sarah E.; Stiles, Alexandra B.; Moran, Rosalyn J.

    2016-01-01

    Aging is accompanied by stereotyped changes in functional brain activations, for example a cortical shift in activity patterns from posterior to anterior regions is one hallmark revealed by functional magnetic resonance imaging (fMRI) of aging cognition. Whether these neuronal effects of aging could potentially contribute to an amelioration of or resistance to the cognitive symptoms associated with psychopathology remains to be explored. We used a visual illusion paradigm to address whether aging affects the cortical control of perceptual beliefs and biases. Our aim was to understand the effective connectivity associated with volitional control of ambiguous visual stimuli and to test whether greater top-down control of early visual networks emerged with advancing age. Using a bias training paradigm for ambiguous images we found that older participants (n = 16) resisted experimenter-induced visual bias compared to a younger cohort (n = 14) and that this resistance was associated with greater activity in prefrontal and temporal cortices. By applying Dynamic Causal Models for fMRI we uncovered a selective recruitment of top-down connections from the middle temporal to Lingual gyrus (LIN) by the older cohort during the perceptual switch decision following bias training. In contrast, our younger cohort did not exhibit any consistent connectivity effects but instead showed a loss of driving inputs to orbitofrontal sources following training. These findings suggest that perceptual beliefs are more readily controlled by top-down strategies in older adults and introduce age-dependent neural mechanisms that may be important for understanding aberrant belief states associated with psychopathology. PMID:27064235

  2. Assessing parameter identifiability for dynamic causal modeling of fMRI data.

    PubMed

    Arand, Carolin; Scheller, Elisa; Seeber, Benjamin; Timmer, Jens; Klöppel, Stefan; Schelter, Björn

    2015-01-01

    Deterministic dynamic causal modeling (DCM) for fMRI data is a sophisticated approach to analyse effective connectivity in terms of directed interactions between brain regions of interest. To date it is difficult to know if acquired fMRI data will yield precise estimation of DCM parameters. Focusing on parameter identifiability, an important prerequisite for research questions on directed connectivity, we present an approach inferring if parameters of an envisaged DCM are identifiable based on information from fMRI data. With the freely available "attention to motion" dataset, we investigate identifiability of two DCMs and show how different imaging specifications impact on identifiability. We used the profile likelihood, which has successfully been applied in systems biology, to assess the identifiability of parameters in a DCM with specified scanning parameters. Parameters are identifiable when minima of the profile likelihood as well as finite confidence intervals for the parameters exist. Intermediate epoch duration, shorter TR and longer session duration generally increased the information content in the data and thus improved identifiability. Irrespective of biological factors such as size and location of a region, attention should be paid to densely interconnected regions in a DCM, as those seem to be prone to non-identifiability. Our approach, available in the DCMident toolbox, enables to judge if the parameters of an envisaged DCM are sufficiently determined by underlying data without priors as opposed to primarily reflecting the Bayesian priors in a SPM-DCM. Assessments with the DCMident toolbox prior to a study will lead to improved identifiability of the parameters and thus might prevent suboptimal data acquisition. Thus, the toolbox can be used as a preprocessing step to provide immediate statements on parameter identifiability. PMID:25750612

  3. Altered retrieval of melodic information in congenital amusia: insights from dynamic causal modeling of MEG data.

    PubMed

    Albouy, Philippe; Mattout, Jérémie; Sanchez, Gaëtan; Tillmann, Barbara; Caclin, Anne

    2015-01-01

    Congenital amusia is a neuro-developmental disorder that primarily manifests as a difficulty in the perception and memory of pitch-based materials, including music. Recent findings have shown that the amusic brain exhibits altered functioning of a fronto-temporal network during pitch perception and short-term memory. Within this network, during the encoding of melodies, a decreased right backward frontal-to-temporal connectivity was reported in amusia, along with an abnormal connectivity within and between auditory cortices. The present study investigated whether connectivity patterns between these regions were affected during the short-term memory retrieval of melodies. Amusics and controls had to indicate whether sequences of six tones that were presented in pairs were the same or different. When melodies were different only one tone changed in the second melody. Brain responses to the changed tone in "Different" trials and to its equivalent (original) tone in "Same" trials were compared between groups using Dynamic Causal Modeling (DCM). DCM results confirmed that congenital amusia is characterized by an altered effective connectivity within and between the two auditory cortices during sound processing. Furthermore, right temporal-to-frontal message passing was altered in comparison to controls, with notably an increase in "Same" trials. An additional analysis in control participants emphasized that the detection of an unexpected event in the typically functioning brain is supported by right fronto-temporal connections. The results can be interpreted in a predictive coding framework as reflecting an abnormal prediction error sent by temporal auditory regions towards frontal areas in the amusic brain. PMID:25698955

  4. Inhibitory behavioral control: A stochastic dynamic causal modeling study comparing cocaine dependent subjects and controls

    PubMed Central

    Ma, Liangsuo; Steinberg, Joel L.; Cunningham, Kathryn A.; Lane, Scott D.; Bjork, James M.; Neelakantan, Harshini; Price, Amanda E.; Narayana, Ponnada A.; Kosten, Thomas R.; Bechara, Antoine; Moeller, F. Gerard

    2015-01-01

    Cocaine dependence is associated with increased impulsivity in humans. Both cocaine dependence and impulsive behavior are under the regulatory control of cortico-striatal networks. One behavioral laboratory measure of impulsivity is response inhibition (ability to withhold a prepotent response) in which altered patterns of regional brain activation during executive tasks in service of normal performance are frequently found in cocaine dependent (CD) subjects studied with functional magnetic resonance imaging (fMRI). However, little is known about aberrations in specific directional neuronal connectivity in CD subjects. The present study employed fMRI-based dynamic causal modeling (DCM) to study the effective (directional) neuronal connectivity associated with response inhibition in CD subjects, elicited under performance of a Go/NoGo task with two levels of NoGo difficulty (Easy and Hard). The performance on the Go/NoGo task was not significantly different between CD subjects and controls. The DCM analysis revealed that prefrontal–striatal connectivity was modulated (influenced) during the NoGo conditions for both groups. The effective connectivity from left (L) anterior cingulate cortex (ACC) to L caudate was similarly modulated during the Easy NoGo condition for both groups. During the Hard NoGo condition in controls, the effective connectivity from right (R) dorsolateral prefrontal cortex (DLPFC) to L caudate became more positive, and the effective connectivity from R ventrolateral prefrontal cortex (VLPFC) to L caudate became more negative. In CD subjects, the effective connectivity from L ACC to L caudate became more negative during the Hard NoGo conditions. These results indicate that during Hard NoGo trials in CD subjects, the ACC rather than DLPFC or VLPFC influenced caudate during response inhibition. PMID:26082893

  5. Inhibitory behavioral control: A stochastic dynamic causal modeling study comparing cocaine dependent subjects and controls.

    PubMed

    Ma, Liangsuo; Steinberg, Joel L; Cunningham, Kathryn A; Lane, Scott D; Bjork, James M; Neelakantan, Harshini; Price, Amanda E; Narayana, Ponnada A; Kosten, Thomas R; Bechara, Antoine; Moeller, F Gerard

    2015-01-01

    Cocaine dependence is associated with increased impulsivity in humans. Both cocaine dependence and impulsive behavior are under the regulatory control of cortico-striatal networks. One behavioral laboratory measure of impulsivity is response inhibition (ability to withhold a prepotent response) in which altered patterns of regional brain activation during executive tasks in service of normal performance are frequently found in cocaine dependent (CD) subjects studied with functional magnetic resonance imaging (fMRI). However, little is known about aberrations in specific directional neuronal connectivity in CD subjects. The present study employed fMRI-based dynamic causal modeling (DCM) to study the effective (directional) neuronal connectivity associated with response inhibition in CD subjects, elicited under performance of a Go/NoGo task with two levels of NoGo difficulty (Easy and Hard). The performance on the Go/NoGo task was not significantly different between CD subjects and controls. The DCM analysis revealed that prefrontal-striatal connectivity was modulated (influenced) during the NoGo conditions for both groups. The effective connectivity from left (L) anterior cingulate cortex (ACC) to L caudate was similarly modulated during the Easy NoGo condition for both groups. During the Hard NoGo condition in controls, the effective connectivity from right (R) dorsolateral prefrontal cortex (DLPFC) to L caudate became more positive, and the effective connectivity from R ventrolateral prefrontal cortex (VLPFC) to L caudate became more negative. In CD subjects, the effective connectivity from L ACC to L caudate became more negative during the Hard NoGo conditions. These results indicate that during Hard NoGo trials in CD subjects, the ACC rather than DLPFC or VLPFC influenced caudate during response inhibition. PMID:26082893

  6. Altered retrieval of melodic information in congenital amusia: insights from dynamic causal modeling of MEG data

    PubMed Central

    Albouy, Philippe; Mattout, Jérémie; Sanchez, Gaëtan; Tillmann, Barbara; Caclin, Anne

    2015-01-01

    Congenital amusia is a neuro-developmental disorder that primarily manifests as a difficulty in the perception and memory of pitch-based materials, including music. Recent findings have shown that the amusic brain exhibits altered functioning of a fronto-temporal network during pitch perception and short-term memory. Within this network, during the encoding of melodies, a decreased right backward frontal-to-temporal connectivity was reported in amusia, along with an abnormal connectivity within and between auditory cortices. The present study investigated whether connectivity patterns between these regions were affected during the short-term memory retrieval of melodies. Amusics and controls had to indicate whether sequences of six tones that were presented in pairs were the same or different. When melodies were different only one tone changed in the second melody. Brain responses to the changed tone in “Different” trials and to its equivalent (original) tone in “Same” trials were compared between groups using Dynamic Causal Modeling (DCM). DCM results confirmed that congenital amusia is characterized by an altered effective connectivity within and between the two auditory cortices during sound processing. Furthermore, right temporal-to-frontal message passing was altered in comparison to controls, with notably an increase in “Same” trials. An additional analysis in control participants emphasized that the detection of an unexpected event in the typically functioning brain is supported by right fronto-temporal connections. The results can be interpreted in a predictive coding framework as reflecting an abnormal prediction error sent by temporal auditory regions towards frontal areas in the amusic brain. PMID:25698955

  7. Causal Rasch models

    PubMed Central

    Stenner, A. Jackson; Fisher, William P.; Stone, Mark H.; Burdick, Donald S.

    2013-01-01

    Rasch's unidimensional models for measurement show how to connect object measures (e.g., reader abilities), measurement mechanisms (e.g., machine-generated cloze reading items), and observational outcomes (e.g., counts correct on reading instruments). Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates the form and substance of permissible interventions. Rasch analysis, absent construct theory and an associated specification equation, is a black box in which understanding may be more illusory than not. Finally, the quantitative hypothesis can be tested by comparing theory-based trade-off relations with observed trade-off relations. Only quantitative variables (as measured) support such trade-offs. Note that to test the quantitative hypothesis requires more than manipulation of the algebraic equivalencies in the Rasch model or descriptively fitting data to the model. A causal Rasch model involves experimental intervention/manipulation on either reader ability or text complexity or a conjoint intervention on both simultaneously to yield a successful prediction of the resultant observed outcome (count correct). We conjecture that when this type of manipulation is introduced for individual reader text encounters and model predictions are consistent with observations, the quantitative hypothesis is sustained. PMID:23986726

  8. Spin foam models as energetic causal sets

    NASA Astrophysics Data System (ADS)

    Cortês, Marina; Smolin, Lee

    2016-04-01

    Energetic causal sets are causal sets endowed by a flow of energy-momentum between causally related events. These incorporate a novel mechanism for the emergence of space-time from causal relations [M. Cortês and L. Smolin, Phys. Rev. D 90, 084007 (2014); Phys. Rev. D 90, 044035 (2014)]. Here we construct a spin foam model which is also an energetic causal set model. This model is closely related to the model introduced in parallel by Wolfgang Wieland in [Classical Quantum Gravity 32, 015016 (2015)]. What makes a spin foam model also an energetic causal set is Wieland's identification of new degrees of freedom analogous to momenta, conserved at events (or four-simplices), whose norms are not mass, but the volume of tetrahedra. This realizes the torsion constraints, which are missing in previous spin foam models, and are needed to relate the connection dynamics to those of the metric, as in general relativity. This identification makes it possible to apply the new mechanism for the emergence of space-time to a spin foam model. Our formulation also makes use of Markopoulou's causal formulation of spin foams [arXiv:gr-qc/9704013]. These are generated by evolving spin networks with dual Pachner moves. This endows the spin foam history with causal structure given by a partial ordering of the events which are dual to four-simplices.

  9. Effective connectivity: Influence, causality and biophysical modeling

    PubMed Central

    Valdes-Sosa, Pedro A.; Roebroeck, Alard; Daunizeau, Jean; Friston, Karl

    2011-01-01

    This is the final paper in a Comments and Controversies series dedicated to “The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution”. We argue that discovering effective connectivity depends critically on state-space models with biophysically informed observation and state equations. These models have to be endowed with priors on unknown parameters and afford checks for model Identifiability. We consider the similarities and differences among Dynamic Causal Modeling, Granger Causal Modeling and other approaches. We establish links between past and current statistical causal modeling, in terms of Bayesian dependency graphs and Wiener–Akaike–Granger–Schweder influence measures. We show that some of the challenges faced in this field have promising solutions and speculate on future developments. PMID:21477655

  10. Multivariate dynamical systems-based estimation of causal brain interactions in fMRI: Group-level validation using benchmark data, neurophysiological models and human connectome project data

    PubMed Central

    Ryali, Srikanth; Chen, Tianwen; Supekar, Kaustubh; Tu, Tao; Kochlka, John; Cai, Weidong; Menon, Vinod

    2016-01-01

    Background Causal estimation methods are increasingly being used to investigate functional brain networks in fMRI, but there are continuing concerns about the validity of these methods. New Method Multivariate Dynamical Systems (MDS) is a state-space method for estimating dynamic causal interactions in fMRI data. Here we validate MDS using benchmark simulations as well as simulations from a more realistic stochastic neurophysiological model. Finally, we applied MDS to investigate dynamic casual interactions in a fronto-cingulate-parietal control network using Human Connectome Project (HCP) data acquired during performance of a working memory task. Crucially, since the ground truth in experimental data is unknown, we conducted novel stability analysis to determine robust causal interactions within this network. Results MDS accurately recovered dynamic causal interactions with an area under receiver operating characteristic (AUC) above 0.7 for benchmark datasets and AUC above 0.9 for datasets generated using the neurophysiological model. In experimental fMRI data, bootstrap procedures revealed a stable pattern of causal influences from the anterior insula to other nodes of the fronto-cingulate-parietal network. Comparison with Existing Methods MDS is effective in estimating dynamic causal interactions in both the benchmark and neurophysiological model based datasets in terms of AUC, sensitivity and false positive rates. Conclusions Our findings demonstrate that MDS can accurately estimate causal interactions in fMRI data. Neurophysiological models and stability analysis provide a general framework for validating computational methods designed to estimate causal interactions in fMRI. The right anterior insula functions as a causal hub during working memory. PMID:27015792

  11. Modeling the dynamics of disaster evolution along causality networks with cycle chains

    NASA Astrophysics Data System (ADS)

    Li, Jian; Chen, Changkun

    2014-05-01

    A model for describing the evolution process of disasters, especially for disaster causality networks with cycle chains, has been developed. In the model, the impacts from the causative nodes, self-recovery behaviors, repair by government, internal noise and impacts outside the system have been taken into consideration. In particular, the cumulative effect of the inducing relationship between the causative node and its son node, due to cycle chain, has been quantified by the new model. Based on the proposed model, a parametric study, covering a range of conditional probability of directed inducing links, delay coefficient for disaster evolution and self-recovery coefficient during the recovery process, has been conducted by means of simulations. The results of these simulations point towards a phase transition of the disaster system with cycle chains when increasing conditional probability of directed inducing links or self-recovery coefficient. Particularly, we observe a critical conditional probability of directed inducing links and a critical self-recovery coefficient, beyond which, the whole system may be out of control after certain evolution time, regardless of the fact that the initial disturbance has disappeared. In addition, it is interesting to find that increasing delay coefficient cannot suppress the disaster evolution completely, for a disaster system that is potentially out of control due to the self-reinforce of cycle chains. Of course, the disaster evolution velocity drops when increasing delay coefficient, and this has a positive significance on disaster rescue. Further, it also illustrates that it is a bad strategy to arrange the total rescue resources uniformly during the disaster rescue process, while the strategy that disseminating more resources on the nodes in cycle chains and arranging the rescue resources in line with the potential maximum deviation of nodes, will have higher efficiency. With our model, it is possible for people to get an

  12. Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models

    PubMed Central

    Daunizeau, J.; Friston, K.J.; Kiebel, S.J.

    2009-01-01

    In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power. PMID:19862351

  13. Causal reasoning with mental models

    PubMed Central

    Khemlani, Sangeet S.; Barbey, Aron K.; Johnson-Laird, Philip N.

    2014-01-01

    This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex. PMID:25389398

  14. Causal reasoning with mental models.

    PubMed

    Khemlani, Sangeet S; Barbey, Aron K; Johnson-Laird, Philip N

    2014-01-01

    This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex. PMID:25389398

  15. Causal Models of Literacy Acquisition.

    ERIC Educational Resources Information Center

    Goetz, Ernest T.; And Others

    1992-01-01

    Examines seven articles that employed path analysis to test causal models of the acquisition of literacy or the reading-writing relationship. Reveals that, although such analysis holds promise for a better understanding of the components of literacy, several potential difficulties remain for those attempting to synthesize this body of literature.…

  16. Modeling of causality with metamaterials

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor I.

    2013-02-01

    Hyperbolic metamaterials may be used to model a 2 + 1-dimensional Minkowski space-time in which the role of time is played by one of the spatial coordinates. When a metamaterial is built and illuminated with a coherent extraordinary laser beam, the stationary pattern of light propagation inside the metamaterial may be treated as a collection of particle world lines, which represents a complete ‘history’ of this 2 + 1-dimensional space-time. While this model may be used to build interesting space-time analogs, such as metamaterial ‘black holes’ and a metamaterial ‘big bang’, it lacks causality: since light inside the metamaterial may propagate back and forth along the ‘timelike’ spatial coordinate, events in the ‘future’ may affect events in the ‘past’. Here we demonstrate that a more sophisticated metamaterial model may fix this deficiency via breaking the mirror and temporal (PT) symmetries of the original model and producing one-way propagation along the ‘timelike’ spatial coordinate. The resulting 2 + 1-dimensional Minkowski space-time appears to be causal. This scenario may be considered as a metamaterial model of the Wheeler-Feynman absorber theory of causality.

  17. Profiling neuronal ion channelopathies with non-invasive brain imaging and dynamic causal models: Case studies of single gene mutations

    PubMed Central

    Gilbert, Jessica R.; Symmonds, Mkael; Hanna, Michael G.; Dolan, Raymond J.; Friston, Karl J.; Moran, Rosalyn J.

    2016-01-01

    Clinical assessments of brain function rely upon visual inspection of electroencephalographic waveform abnormalities in tandem with functional magnetic resonance imaging. However, no current technology proffers in vivo assessments of activity at synapses, receptors and ion-channels, the basis of neuronal communication. Using dynamic causal modeling we compared electrophysiological responses from two patients with distinct monogenic ion channelopathies and a large cohort of healthy controls to demonstrate the feasibility of assaying synaptic-level channel communication non-invasively. Synaptic channel abnormality was identified in both patients (100% sensitivity) with assay specificity above 89%, furnishing estimates of neurotransmitter and voltage-gated ion throughput of sodium, calcium, chloride and potassium. This performance indicates a potential novel application as an adjunct for clinical assessments in neurological and psychiatric settings. More broadly, these findings indicate that biophysical models of synaptic channels can be estimated non-invasively, having important implications for advancing human neuroimaging to the level of non-invasive ion channel assays. PMID:26342528

  18. The Newtonian approximation in Causal Dynamical Triangulations

    NASA Astrophysics Data System (ADS)

    Getchell, Adam

    2015-04-01

    I review how to derive Newton's law of universal gravitation from the Weyl strut between two Chazy-Curzon particles. I also briefly review Causal Dynamical Triangulations (CDT), a method for evaluating the path integral from canonical quantum gravity using Regge calculus and restrictions of the class of simplicial manifolds evaluated to those with a defined time foliation, thus enforcing a causal structure. I then discuss how to apply this approach to Causal Dynamical Triangulations, in particular modifying the algorithm to keep two simplicial submanifolds with curvature (i.e. mass) a fixed distance from each other, modulo regularized deviations and across all time slices. I then discuss how to determine if CDT produces an equivalent Weyl strut, which can then be used to obtain the Newtonian limit. I wrap up with a brief discussion of computational methods and code development.

  19. Dynamic causal modelling of eye movements during pursuit: Confirming precision-encoding in V1 using MEG.

    PubMed

    Adams, Rick A; Bauer, Markus; Pinotsis, Dimitris; Friston, Karl J

    2016-05-15

    This paper shows that it is possible to estimate the subjective precision (inverse variance) of Bayesian beliefs during oculomotor pursuit. Subjects viewed a sinusoidal target, with or without random fluctuations in its motion. Eye trajectories and magnetoencephalographic (MEG) data were recorded concurrently. The target was periodically occluded, such that its reappearance caused a visual evoked response field (ERF). Dynamic causal modelling (DCM) was used to fit models of eye trajectories and the ERFs. The DCM for pursuit was based on predictive coding and active inference, and predicts subjects' eye movements based on their (subjective) Bayesian beliefs about target (and eye) motion. The precisions of these hierarchical beliefs can be inferred from behavioural (pursuit) data. The DCM for MEG data used an established biophysical model of neuronal activity that includes parameters for the gain of superficial pyramidal cells, which is thought to encode precision at the neuronal level. Previous studies (using DCM of pursuit data) suggest that noisy target motion increases subjective precision at the sensory level: i.e., subjects attend more to the target's sensory attributes. We compared (noisy motion-induced) changes in the synaptic gain based on the modelling of MEG data to changes in subjective precision estimated using the pursuit data. We demonstrate that imprecise target motion increases the gain of superficial pyramidal cells in V1 (across subjects). Furthermore, increases in sensory precision - inferred by our behavioural DCM - correlate with the increase in gain in V1, across subjects. This is a step towards a fully integrated model of brain computations, cortical responses and behaviour that may provide a useful clinical tool in conditions like schizophrenia. PMID:26921713

  20. Dynamic causal modelling of eye movements during pursuit: Confirming precision-encoding in V1 using MEG

    PubMed Central

    Adams, Rick A.; Bauer, Markus; Pinotsis, Dimitris; Friston, Karl J.

    2016-01-01

    This paper shows that it is possible to estimate the subjective precision (inverse variance) of Bayesian beliefs during oculomotor pursuit. Subjects viewed a sinusoidal target, with or without random fluctuations in its motion. Eye trajectories and magnetoencephalographic (MEG) data were recorded concurrently. The target was periodically occluded, such that its reappearance caused a visual evoked response field (ERF). Dynamic causal modelling (DCM) was used to fit models of eye trajectories and the ERFs. The DCM for pursuit was based on predictive coding and active inference, and predicts subjects' eye movements based on their (subjective) Bayesian beliefs about target (and eye) motion. The precisions of these hierarchical beliefs can be inferred from behavioural (pursuit) data. The DCM for MEG data used an established biophysical model of neuronal activity that includes parameters for the gain of superficial pyramidal cells, which is thought to encode precision at the neuronal level. Previous studies (using DCM of pursuit data) suggest that noisy target motion increases subjective precision at the sensory level: i.e., subjects attend more to the target's sensory attributes. We compared (noisy motion-induced) changes in the synaptic gain based on the modelling of MEG data to changes in subjective precision estimated using the pursuit data. We demonstrate that imprecise target motion increases the gain of superficial pyramidal cells in V1 (across subjects). Furthermore, increases in sensory precision – inferred by our behavioural DCM – correlate with the increase in gain in V1, across subjects. This is a step towards a fully integrated model of brain computations, cortical responses and behaviour that may provide a useful clinical tool in conditions like schizophrenia. PMID:26921713

  1. Anterior Cingulate Cortico-Hippocampal Dysconnectivity in Unaffected Relatives of Schizophrenia Patients: A Stochastic Dynamic Causal Modeling Study.

    PubMed

    Xi, Yi-Bin; Li, Chen; Cui, Long-Biao; Liu, Jian; Guo, Fan; Li, Liang; Liu, Ting-Ting; Liu, Kang; Chen, Gang; Xi, Min; Wang, Hua-Ning; Yin, Hong

    2016-01-01

    Familial risk plays a significant role in the etiology of schizophrenia (SZ). Many studies using neuroimaging have demonstrated structural and functional alterations in relatives of SZ patients, with significant results found in diverse brain regions involving the anterior cingulate cortex (ACC), caudate, dorsolateral prefrontal cortex (DLPFC), and hippocampus. This study investigated whether unaffected relatives of first episode SZ differ from healthy controls (HCs) in effective connectivity measures among these regions. Forty-six unaffected first-degree relatives of first episode SZ patients-according to the DSM-IV-were studied. Fifty HCs were included for comparison. All subjects underwent resting state functional magnetic resonance imaging (fMRI). We used stochastic dynamic causal modeling (sDCM) to estimate the directed connections between the left ACC, right ACC, left caudate, right caudate, left DLPFC, left hippocampus, and right hippocampus. We used Bayesian parameter averaging (BPA) to characterize the differences. The BPA results showed hyperconnectivity from the left ACC to right hippocampus and hypoconnectivity from the right ACC to right hippocampus in SZ relatives compared to HCs. The pattern of anterior cingulate cortico-hippocampal connectivity in SZ relatives may be a familial feature of SZ risk, appearing to reflect familial susceptibility for SZ. PMID:27512370

  2. Anterior Cingulate Cortico-Hippocampal Dysconnectivity in Unaffected Relatives of Schizophrenia Patients: A Stochastic Dynamic Causal Modeling Study

    PubMed Central

    Xi, Yi-Bin; Li, Chen; Cui, Long-Biao; Liu, Jian; Guo, Fan; Li, Liang; Liu, Ting-Ting; Liu, Kang; Chen, Gang; Xi, Min; Wang, Hua-Ning; Yin, Hong

    2016-01-01

    Familial risk plays a significant role in the etiology of schizophrenia (SZ). Many studies using neuroimaging have demonstrated structural and functional alterations in relatives of SZ patients, with significant results found in diverse brain regions involving the anterior cingulate cortex (ACC), caudate, dorsolateral prefrontal cortex (DLPFC), and hippocampus. This study investigated whether unaffected relatives of first episode SZ differ from healthy controls (HCs) in effective connectivity measures among these regions. Forty-six unaffected first-degree relatives of first episode SZ patients—according to the DSM-IV—were studied. Fifty HCs were included for comparison. All subjects underwent resting state functional magnetic resonance imaging (fMRI). We used stochastic dynamic causal modeling (sDCM) to estimate the directed connections between the left ACC, right ACC, left caudate, right caudate, left DLPFC, left hippocampus, and right hippocampus. We used Bayesian parameter averaging (BPA) to characterize the differences. The BPA results showed hyperconnectivity from the left ACC to right hippocampus and hypoconnectivity from the right ACC to right hippocampus in SZ relatives compared to HCs. The pattern of anterior cingulate cortico-hippocampal connectivity in SZ relatives may be a familial feature of SZ risk, appearing to reflect familial susceptibility for SZ. PMID:27512370

  3. Effective connectivity during animacy perception – dynamic causal modelling of Human Connectome Project data

    PubMed Central

    Hillebrandt, Hauke; Friston, Karl J.; Blakemore, Sarah-Jayne

    2014-01-01

    Biological agents are the most complex systems humans have to model and predict. In predictive coding, high-level cortical areas inform sensory cortex about incoming sensory signals, a comparison between the predicted and actual sensory feedback is made, and information about unpredicted sensory information is passed forward to higher-level areas. Predictions about animate motion – relative to inanimate motion – should result in prediction error and increase signal passing from lower level sensory area MT+/V5, which is responsive to all motion, to higher-order posterior superior temporal sulcus (pSTS), which is selectively activated by animate motion. We tested this hypothesis by investigating effective connectivity in a large-scale fMRI dataset from the Human Connectome Project. 132 participants viewed animations of triangles that were designed to move in a way that appeared animate (moving intentionally), or inanimate (moving in a mechanical way). We found that forward connectivity from V5 to the pSTS increased, and inhibitory self-connection in the pSTS decreased, when viewing intentional motion versus inanimate motion. These prediction errors associated with animate motion may be the cause for increased attention to animate stimuli found in previous studies. PMID:25174814

  4. Effective connectivity during animacy perception--dynamic causal modelling of Human Connectome Project data.

    PubMed

    Hillebrandt, Hauke; Friston, Karl J; Blakemore, Sarah-Jayne

    2014-01-01

    Biological agents are the most complex systems humans have to model and predict. In predictive coding, high-level cortical areas inform sensory cortex about incoming sensory signals, a comparison between the predicted and actual sensory feedback is made, and information about unpredicted sensory information is passed forward to higher-level areas. Predictions about animate motion - relative to inanimate motion - should result in prediction error and increase signal passing from lower level sensory area MT+/V5, which is responsive to all motion, to higher-order posterior superior temporal sulcus (pSTS), which is selectively activated by animate motion. We tested this hypothesis by investigating effective connectivity in a large-scale fMRI dataset from the Human Connectome Project. 132 participants viewed animations of triangles that were designed to move in a way that appeared animate (moving intentionally), or inanimate (moving in a mechanical way). We found that forward connectivity from V5 to the pSTS increased, and inhibitory self-connection in the pSTS decreased, when viewing intentional motion versus inanimate motion. These prediction errors associated with animate motion may be the cause for increased attention to animate stimuli found in previous studies. PMID:25174814

  5. Identifying effective connectivity parameters in simulated fMRI: a direct comparison of switching linear dynamic system, stochastic dynamic causal, and multivariate autoregressive models

    PubMed Central

    Smith, Jason F.; Chen, Kewei; Pillai, Ajay S.; Horwitz, Barry

    2013-01-01

    The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potentially attempting to identify different aspects of connectivity. Commonalities of connectivity definitions across methods upon which base direct comparisons can be difficult to derive. Here, we explicitly define “effective connectivity” using a common set of observation and state equations that are appropriate for three connectivity methods: dynamic causal modeling (DCM), multivariate autoregressive modeling (MAR), and switching linear dynamic systems for fMRI (sLDSf). In addition while deriving this set, we show how many other popular functional and effective connectivity methods are actually simplifications of these equations. We discuss implications of these connections for the practice of using one method to simulate data for another method. After mathematically connecting the three effective connectivity methods, simulated fMRI data with varying numbers of regions and task conditions is generated from the common equation. This simulated data explicitly contains the type of the connectivity that the three models were intended to identify. Each method is applied to the simulated data sets and the accuracy of parameter identification is analyzed. All methods perform above chance levels at identifying correct connectivity parameters. The sLDSf method was superior in parameter estimation accuracy to both DCM and MAR for all types of comparisons. PMID:23717258

  6. Causality

    NASA Astrophysics Data System (ADS)

    Pearl, Judea

    2000-03-01

    Written by one of the pre-eminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artifical intelligence, business, epidemiology, social science and economics. Students in these areas will find natural models, simple identification procedures, and precise mathematical definitions of causal concepts that traditional texts have tended to evade or make unduly complicated. This book will be of interest to professionals and students in a wide variety of fields. Anyone who wishes to elucidate meaningful relationships from data, predict effects of actions and policies, assess explanations of reported events, or form theories of causal understanding and causal speech will find this book stimulating and invaluable.

  7. Final Report for Dynamic Models for Causal Analysis of Panel Data. Dynamic Analysis of Event Histories. Part III, Chapter 1.

    ERIC Educational Resources Information Center

    Tuma, Nancy Brandon; Hannan, Michael T.

    The document, part of a series of chapters described in SO 011 759, examines sociological research methods for the study of change. The advantages and procedures for dynamic analysis of event-history data (data giving the number, timing, and sequence of changes in a categorical dependent variable) are considered. The authors argue for grounding…

  8. A Causal Model of Faculty Research Productivity.

    ERIC Educational Resources Information Center

    Bean, John P.

    A causal model of faculty research productivity was developed through a survey of the literature. Models of organizational behavior, organizational effectiveness, and motivation were synthesized into a causal model of productivity. Two general types of variables were assumed to affect individual research productivity: institutional variables and…

  9. On a renormalization group scheme for causal dynamical triangulations

    NASA Astrophysics Data System (ADS)

    Cooperman, Joshua H.

    2016-03-01

    The causal dynamical triangulations approach aims to construct a quantum theory of gravity as the continuum limit of a lattice-regularized model of dynamical geometry. A renormalization group scheme—in concert with finite size scaling analysis—is essential to this aim. Formulating and implementing such a scheme in the present context raises novel and notable conceptual and technical problems. I explored these problems, and, building on standard techniques, suggested potential solutions in a previous paper (Cooperman, arXiv:gr-qc/1410.0026). As an application of these solutions, I now propose a renormalization group scheme for causal dynamical triangulations. This scheme differs significantly from that studied recently by Ambjørn, Görlich, Jurkiewicz, Kreienbuehl, and Loll.

  10. Granger causality for state-space models

    NASA Astrophysics Data System (ADS)

    Barnett, Lionel; Seth, Anil K.

    2015-04-01

    Granger causality has long been a prominent method for inferring causal interactions between stochastic variables for a broad range of complex physical systems. However, it has been recognized that a moving average (MA) component in the data presents a serious confound to Granger causal analysis, as routinely performed via autoregressive (AR) modeling. We solve this problem by demonstrating that Granger causality may be calculated simply and efficiently from the parameters of a state-space (SS) model. Since SS models are equivalent to autoregressive moving average models, Granger causality estimated in this fashion is not degraded by the presence of a MA component. This is of particular significance when the data has been filtered, downsampled, observed with noise, or is a subprocess of a higher dimensional process, since all of these operations—commonplace in application domains as diverse as climate science, econometrics, and the neurosciences—induce a MA component. We show how Granger causality, conditional and unconditional, in both time and frequency domains, may be calculated directly from SS model parameters via solution of a discrete algebraic Riccati equation. Numerical simulations demonstrate that Granger causality estimators thus derived have greater statistical power and smaller bias than AR estimators. We also discuss how the SS approach facilitates relaxation of the assumptions of linearity, stationarity, and homoscedasticity underlying current AR methods, thus opening up potentially significant new areas of research in Granger causal analysis.

  11. Assessing Dynamic Spectral Causality by Lagged Adaptive Directed Transfer Function and Instantaneous Effect Factor

    PubMed Central

    Xu, Haojie; Lu, Yunfeng; Zhu, Shanan

    2014-01-01

    It is of significance to assess the dynamic spectral causality among physiological signals. Several practical estimators adapted from spectral Granger causality have been exploited to track dynamic causality based on the framework of time-varying multivariate autoregressive (tvMVAR) models. The non-zero covariance of the model’s residuals has been used to describe the instantaneous effect phenomenon in some causality estimators. However, for the situations with Gaussian residuals in some autoregressive models, it is challenging to distinguish the directed instantaneous causality if the sufficient prior information about the “causal ordering” is missing. Here, we propose a new algorithm to assess the time-varying causal ordering of tvMVAR model under the assumption that the signals follow the same acyclic causal ordering for all time lags and to estimate the instantaneous effect factor (IEF) value in order to track the dynamic directed instantaneous connectivity. The time-lagged adaptive directed transfer function (ADTF) is also estimated to assess the lagged causality after removing the instantaneous effect. In the present study, we firstly investigated the performance of the causal-ordering estimation algorithm and the accuracy of IEF value. Then, we presented the results of IEF and time-lagged ADTF method by comparing with the conventional ADTF method through simulations of various propagation models. Statistical analysis results suggest that the new algorithm could accurately estimate the causal ordering and give a good estimation of the IEF values in the Gaussian residual conditions. Meanwhile, the time-lagged ADTF approach is also more accurate in estimating the time-lagged dynamic interactions in a complex nervous system after extracting the instantaneous effect. In addition to the simulation studies, we applied the proposed method to estimate the dynamic spectral causality on real visual evoked potential (VEP) data in a human subject. Its usefulness in

  12. Compact Representations of Extended Causal Models

    ERIC Educational Resources Information Center

    Halpern, Joseph Y.; Hitchcock, Christopher

    2013-01-01

    Judea Pearl (2000) was the first to propose a definition of actual causation using causal models. A number of authors have suggested that an adequate account of actual causation must appeal not only to causal structure but also to considerations of "normality." In Halpern and Hitchcock (2011), we offer a definition of actual causation…

  13. Learning Dynamic Bayesian Networks for Analyzing Causal Relationship Between o-Economic Index

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Li, Yu-Jie; Wang, Shuang-Cheng

    Dynamic Bayesian networks is a powerful tool in modeling multivariate stochastic processes. At present, the methods of learning dynamic Bayesian network structure have low efficiency and reliability and can not make certain the causal direction of all edges. In this paper, an high effective and reliable and practical method of learning dynamic Bayesian network structure is presented to find dynamic causal knowledge from data. Firstly, a maximal likelihood tree is built from data. Then a causal tree is obtained by orienting the edges of the maximal likelihood tree and the variables can be sorted in the light of the causal tree. Finally, a dynamic Bayesian network structure can be established based on the causal order of variables and local search & scoring method by finding father nodes of a node.

  14. Causality analysis in business performance measurement system using system dynamics methodology

    NASA Astrophysics Data System (ADS)

    Yusof, Zainuridah; Yusoff, Wan Fadzilah Wan; Maarof, Faridah

    2014-07-01

    One of the main components of the Balanced Scorecard (BSC) that differentiates it from any other performance measurement system (PMS) is the Strategy Map with its unidirectional causality feature. Despite its apparent popularity, criticisms on the causality have been rigorously discussed by earlier researchers. In seeking empirical evidence of causality, propositions based on the service profit chain theory were developed and tested using the econometrics analysis, Granger causality test on the 45 data points. However, the insufficiency of well-established causality models was found as only 40% of the causal linkages were supported by the data. Expert knowledge was suggested to be used in the situations of insufficiency of historical data. The Delphi method was selected and conducted in obtaining the consensus of the causality existence among the 15 selected expert persons by utilizing 3 rounds of questionnaires. Study revealed that only 20% of the propositions were not supported. The existences of bidirectional causality which demonstrate significant dynamic environmental complexity through interaction among measures were obtained from both methods. With that, a computer modeling and simulation using System Dynamics (SD) methodology was develop as an experimental platform to identify how policies impacting the business performance in such environments. The reproduction, sensitivity and extreme condition tests were conducted onto developed SD model to ensure their capability in mimic the reality, robustness and validity for causality analysis platform. This study applied a theoretical service management model within the BSC domain to a practical situation using SD methodology where very limited work has been done.

  15. Causality, Confirmation, Credulity, and Structural Equation Modeling.

    ERIC Educational Resources Information Center

    Biddle, Bruce J.; Marlin, Marjorie M.

    1987-01-01

    Defines structural equation modeling (SEM) and points out its relation to other more familiar data-analytic techniques, as well as some of the potentials and pitfalls of SEM in the analysis of developmental data. Discussion focuses on causal modeling, path diagrams, ordinary least-squares regression analysis, and powerful methods for model…

  16. Exploring Causal Models of Educational Achievement.

    ERIC Educational Resources Information Center

    Parkerson, Jo Ann; And Others

    1984-01-01

    This article evaluates five causal model of educational productivity applied to learning science in a sample of 882 fifth through eighth graders. Each model explores the relationship between achievement and a combination of eight constructs: home environment, peer group, media, ability, social environment, time on task, motivation, and…

  17. Applying Causal Discovery to the Output of Climate Models - What Can We Learn from the Causal Signatures?

    NASA Astrophysics Data System (ADS)

    Ebert-Uphoff, I.; Hammerling, D.; Samarasinghe, S.; Baker, A. H.

    2015-12-01

    The framework of causal discovery provides algorithms that seek to identify potential cause-effect relationships from observational data. The output of such algorithms is a graph structure that indicates the potential causal connections between the observed variables. Originally developed for applications in the social sciences and economics, causal discovery has been used with great success in bioinformatics and, most recently, in climate science, primarily to identify interaction patterns between compound climate variables and to track pathways of interactions between different locations around the globe. Here we apply causal discovery to the output data of climate models to learn so-called causal signatures from the data that indicate interactions between the different atmospheric variables. These causal signatures can act like fingerprints for the underlying dynamics and thus serve a variety of diagnostic purposes. We study the use of the causal signatures for three applications: 1) For climate model software verification we suggest to use causal signatures as a means of detecting statistical differences between model runs, thus identifying potential errors and supplementing the Community Earth System Model Ensemble Consistency Testing (CESM-ECT) tool recently developed at NCAR for CESM verification. 2) In the context of data compression of model runs, we will test how much the causal signatures of the model outputs changes after different compression algorithms have been applied. This may result in additional means to determine which type and amount of compression is acceptable. 3) This is the first study applying causal discovery simultaneously to a large number of different atmospheric variables, and in the process of studying the resulting interaction patterns for the two aforementioned applications, we expect to gain some new insights into their relationships from this approach. We will present first results obtained for Applications 1 and 2 above.

  18. A Quantum Probability Model of Causal Reasoning

    PubMed Central

    Trueblood, Jennifer S.; Busemeyer, Jerome R.

    2012-01-01

    People can often outperform statistical methods and machine learning algorithms in situations that involve making inferences about the relationship between causes and effects. While people are remarkably good at causal reasoning in many situations, there are several instances where they deviate from expected responses. This paper examines three situations where judgments related to causal inference problems produce unexpected results and describes a quantum inference model based on the axiomatic principles of quantum probability theory that can explain these effects. Two of the three phenomena arise from the comparison of predictive judgments (i.e., the conditional probability of an effect given a cause) with diagnostic judgments (i.e., the conditional probability of a cause given an effect). The third phenomenon is a new finding examining order effects in predictive causal judgments. The quantum inference model uses the notion of incompatibility among different causes to account for all three phenomena. Psychologically, the model assumes that individuals adopt different points of view when thinking about different causes. The model provides good fits to the data and offers a coherent account for all three causal reasoning effects thus proving to be a viable new candidate for modeling human judgment. PMID:22593747

  19. [Effective connectivity within the default mode network modulated by methylphenidate using dynamic causal modeling on resting-state functional magnetic resonance imaging].

    PubMed

    Xu, Fang-Fang; Han, Lu; He, Hong-Jian; Zhu, Yi-Hong; Zhong, Jian-Hui

    2016-06-25

    The effective connectivity of default mode network (DMN) and its change after taking methylphenidate (MPH) were investigated in this study based on resting-state functional magnetic resonance imaging. Dynamic causal modeling (DCM) was applied to compare the effective connectivity between the conditions of taking MPH and placebo for 18 healthy male volunteers. Started with the network structural basis provided by a recent literature, endogenous low frequency fluctuation signals (0.01-0.08 Hz) of each node of DMN were taken as the driving input, and thirty-two possible models were designed according to the modulation effect of MPH on different connections between nodes. Model fitting and Bayesian model selection were performed to find the winning model and corresponding parameters. Our results indicated that the effective connectivity from medial prefrontal cortex (MPFC) to posterior cingulated cortex (PCC), from left/right inferior parietal lobule (L/RIPL) to MPFC, and from RIPL to PCC were excitatory, whereas the connectivity from LIPL to PCC was inhibitory. Further t-test statistics on connectivity parameters found that MPH significantly reduced the link from RIPL to MPFC in DMN (t = 2.724, P = 0.016) and changed the weak excitatory state to inhibitory state. However, it had no significant effect on other connections. In all, our results demonstrated that MPH modulates the effective connectivity within DMN in resting state. PMID:27350198

  20. A Causal Model of Faculty Turnover Intentions.

    ERIC Educational Resources Information Center

    Smart, John C.

    1990-01-01

    A causal model assesses the relative influence of individual attributes, institutional characteristics, contextual-work environment variables, and multiple measures of job satisfaction on faculty intentions to leave their current institutions. Factors considered include tenure status, age, institutional status, governance style, organizational…

  1. Impaired Bottom-Up Effective Connectivity Between Amygdala and Subgenual Anterior Cingulate Cortex in Unmedicated Adolescents with Major Depression: Results from a Dynamic Causal Modeling Analysis.

    PubMed

    Musgrove, Donald R; Eberly, Lynn E; Klimes-Dougan, Bonnie; Basgoze, Zeynep; Thomas, Kathleen M; Mueller, Bryon A; Houri, Alaa; Lim, Kelvin O; Cullen, Kathryn R

    2015-12-01

    Major depressive disorder (MDD) is a significant contributor to lifetime disability and frequently emerges in adolescence, yet little is known about the neural mechanisms of MDD in adolescents. Dynamic causal modeling (DCM) analysis is an innovative tool that can shed light on neural network abnormalities. A DCM analysis was conducted to test several frontolimbic effective connectivity models in 27 adolescents with MDD and 21 healthy adolescents. The best neural model for each person was identified using Bayesian model selection. The findings revealed that the two adolescent groups fit similar optimal neural models. The best across-groups model was then used to infer upon both within-group and between-group tests of intrinsic and modulation parameters of the network connections. First, for model validation, within-group tests revealed robust evidence for bottom-up connectivity, but less evidence for strong top-down connectivity in both groups. Second, we tested for differences between groups on the validated parameters of the best model. This revealed that adolescents with MDD had significantly weaker bottom-up connectivity in one pathway, from amygdala to sgACC (p=0.008), than healthy controls. This study provides the first examination of effective connectivity using DCM within neural circuitry implicated in emotion processing in adolescents with MDD. These findings aid in advancing understanding the neurobiology of early-onset MDD during adolescence and have implications for future research investigating how effective connectivity changes across contexts, with development, over the course of the disease, and after intervention. PMID:26050933

  2. Causality in Psychiatry: A Hybrid Symptom Network Construct Model.

    PubMed

    Young, Gerald

    2015-01-01

    Causality or etiology in psychiatry is marked by standard biomedical, reductionistic models (symptoms reflect the construct involved) that inform approaches to nosology, or classification, such as in the DSM-5 [Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; (1)]. However, network approaches to symptom interaction [i.e., symptoms are formative of the construct; e.g., (2), for posttraumatic stress disorder (PTSD)] are being developed that speak to bottom-up processes in mental disorder, in contrast to the typical top-down psychological construct approach. The present article presents a hybrid top-down, bottom-up model of the relationship between symptoms and mental disorder, viewing symptom expression and their causal complex as a reciprocally dynamic system with multiple levels, from lower-order symptoms in interaction to higher-order constructs affecting them. The hybrid model hinges on good understanding of systems theory in which it is embedded, so that the article reviews in depth non-linear dynamical systems theory (NLDST). The article applies the concept of emergent circular causality (3) to symptom development, as well. Conclusions consider that symptoms vary over several dimensions, including: subjectivity; objectivity; conscious motivation effort; and unconscious influences, and the degree to which individual (e.g., meaning) and universal (e.g., causal) processes are involved. The opposition between science and skepticism is a complex one that the article addresses in final comments. PMID:26635639

  3. Causality in Psychiatry: A Hybrid Symptom Network Construct Model

    PubMed Central

    Young, Gerald

    2015-01-01

    Causality or etiology in psychiatry is marked by standard biomedical, reductionistic models (symptoms reflect the construct involved) that inform approaches to nosology, or classification, such as in the DSM-5 [Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; (1)]. However, network approaches to symptom interaction [i.e., symptoms are formative of the construct; e.g., (2), for posttraumatic stress disorder (PTSD)] are being developed that speak to bottom-up processes in mental disorder, in contrast to the typical top-down psychological construct approach. The present article presents a hybrid top-down, bottom-up model of the relationship between symptoms and mental disorder, viewing symptom expression and their causal complex as a reciprocally dynamic system with multiple levels, from lower-order symptoms in interaction to higher-order constructs affecting them. The hybrid model hinges on good understanding of systems theory in which it is embedded, so that the article reviews in depth non-linear dynamical systems theory (NLDST). The article applies the concept of emergent circular causality (3) to symptom development, as well. Conclusions consider that symptoms vary over several dimensions, including: subjectivity; objectivity; conscious motivation effort; and unconscious influences, and the degree to which individual (e.g., meaning) and universal (e.g., causal) processes are involved. The opposition between science and skepticism is a complex one that the article addresses in final comments. PMID:26635639

  4. The Specification of Causal Models with Tetrad IV: A Review

    ERIC Educational Resources Information Center

    Landsheer, J. A.

    2010-01-01

    Tetrad IV is a program designed for the specification of causal models. It is specifically designed to search for causal relations, but also offers the possibility to estimate the parameters of a structural equation model. It offers a remarkable graphical user interface, which facilitates building, evaluating, and searching for causal models. The…

  5. Indications of de Sitter spacetime from classical sequential growth dynamics of causal sets

    SciTech Connect

    Ahmed, Maqbool; Rideout, David

    2010-04-15

    A large class of the dynamical laws for causal sets described by a classical process of sequential growth yields a cyclic universe, whose cycles of expansion and contraction are punctuated by single 'origin elements' of the causal set. We present evidence that the effective dynamics of the immediate future of one of these origin elements, within the context of the sequential growth dynamics, yields an initial period of de Sitter-like exponential expansion, and argue that the resulting picture has many attractive features as a model of the early universe, with the potential to solve some of the standard model puzzles without any fine-tuning.

  6. A Quantitative Causal Model Theory of Conditional Reasoning

    ERIC Educational Resources Information Center

    Fernbach, Philip M.; Erb, Christopher D.

    2013-01-01

    The authors propose and test a causal model theory of reasoning about conditional arguments with causal content. According to the theory, the acceptability of modus ponens (MP) and affirming the consequent (AC) reflect the conditional likelihood of causes and effects based on a probabilistic causal model of the scenario being judged. Acceptability…

  7. Anterior cingulate cortex-related connectivity in first-episode schizophrenia: a spectral dynamic causal modeling study with functional magnetic resonance imaging

    PubMed Central

    Cui, Long-Biao; Liu, Jian; Wang, Liu-Xian; Li, Chen; Xi, Yi-Bin; Guo, Fan; Wang, Hua-Ning; Zhang, Lin-Chuan; Liu, Wen-Ming; He, Hong; Tian, Ping; Yin, Hong; Lu, Hongbing

    2015-01-01

    Understanding the neural basis of schizophrenia (SZ) is important for shedding light on the neurobiological mechanisms underlying this mental disorder. Structural and functional alterations in the anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), hippocampus, and medial prefrontal cortex (MPFC) have been implicated in the neurobiology of SZ. However, the effective connectivity among them in SZ remains unclear. The current study investigated how neuronal pathways involving these regions were affected in first-episode SZ using functional magnetic resonance imaging (fMRI). Forty-nine patients with a first-episode of psychosis and diagnosis of SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision—were studied. Fifty healthy controls (HCs) were included for comparison. All subjects underwent resting state fMRI. We used spectral dynamic causal modeling (DCM) to estimate directed connections among the bilateral ACC, DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian parameter averaging (BPA) in addition to classical inference (t-test). In addition to common effective connectivity in these two groups, HCs displayed widespread significant connections predominantly involved in ACC not detected in SZ patients, but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary, spectral DCM revealed the pattern of effective connectivity involving ACC in patients with first-episode SZ. This study provides a potential link between SZ and dysfunction of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant connectivity among these cognition and emotion-related regions. PMID:26578933

  8. Dysconnectivity Within the Default Mode in First-Episode Schizophrenia: A Stochastic Dynamic Causal Modeling Study With Functional Magnetic Resonance Imaging

    PubMed Central

    Bastos-Leite, António J.; Ridgway, Gerard R.; Silveira, Celeste; Norton, Andreia; Reis, Salomé; Friston, Karl J.

    2015-01-01

    We report the first stochastic dynamic causal modeling (sDCM) study of effective connectivity within the default mode network (DMN) in schizophrenia. Thirty-three patients (9 women, mean age = 25.0 years, SD = 5) with a first episode of psychosis and diagnosis of schizophrenia—according to the Diagnostic and Statistic Manual of Mental Disorders, 4th edition, revised criteria—were studied. Fifteen healthy control subjects (4 women, mean age = 24.6 years, SD = 4) were included for comparison. All subjects underwent resting state functional magnetic resonance imaging (fMRI) interspersed with 2 periods of continuous picture viewing. The anterior frontal (AF), posterior cingulate (PC), and the left and right parietal nodes of the DMN were localized in an unbiased fashion using data from 16 independent healthy volunteers (using an identical fMRI protocol). We used sDCM to estimate directed connections between and within nodes of the DMN, which were subsequently compared with t tests at the between subject level. The excitatory effect of the PC node on the AF node and the inhibitory self-connection of the AF node were significantly weaker in patients (mean values = 0.013 and −0.048 Hz, SD = 0.09 and 0.05, respectively) relative to healthy subjects (mean values = 0.084 and −0.088 Hz, SD = 0.15 and 0.77, respectively; P < .05). In summary, sDCM revealed reduced effective connectivity to the AF node of the DMN—reflecting a reduced postsynaptic efficacy of prefrontal afferents—in patients with first-episode schizophrenia. PMID:24939881

  9. A causal model of adolescent depression.

    PubMed

    Brage, D; Meredith, W

    1994-07-01

    We examined how family strengths, parent-adolescent communication, self-esteem, loneliness, age, and gender interrelate, and how this interaction influences depression in adolescents. The data were collected on a written questionnaire completed by 156 adolescents who were attending public schools in four communities in the midwestern United States. We developed a causal model to explicate the relationships among the variables hypothesized to affect adolescent depression and analyzed the data using path analysis via the LISREL VII program. Results showed a good fit of the model to the data. Loneliness and self-esteem had a direct effect on adolescent depression. Self-esteem had an indirect effect on depression through loneliness. Age directly and indirectly influenced depression through loneliness. Gender was significantly related to depression through self-esteem. Family strengths indirectly affected depression through self-esteem. PMID:7932297

  10. Hypothesis Formulation, Model Interpretation, and Model Equivalence: Implications of a Mereological Causal Interpretation of Structural Equation Models

    ERIC Educational Resources Information Center

    Markus, Keith A.

    2008-01-01

    One can distinguish statistical models used in causal modeling from the causal interpretations that align them with substantive hypotheses. Causal modeling typically assumes an efficient causal interpretation of the statistical model. Causal modeling can also make use of mereological causal interpretations in which the state of the parts…

  11. Causal models of trip replanning in TravTek

    SciTech Connect

    Schryver, J.C.

    1998-07-01

    The TravTek operational field test was conducted to evaluate the effectiveness of route planning, route guidance and various navigational aiding modalities for Advanced Traveler Information Systems in ground vehicles. A causal network was constructed in order to achieve a better understanding of the dependencies among variables implicated in the replanning process. Causal inferences were modeled using path analysis techniques. The original Yoked Driver study reported that addition of real-time navigation planning did not increase trip efficiency during initial trip planning. Data mining of the relatively complete database revealed that the incidence of dynamic trip replanning was only 0.51% or 1 out of every 198 trips. Nevertheless, the replanning acceptance rate was 92.8%, suggesting that less conservative criteria might have been acceptable to drivers. Several points can be made based upon the path analysis techniques. Drivers who rejected better route offers were more likely to be male renters; rejected routes were apparently offered at earlier times with a lower predicted time savings and fewer maneuvers. Failure to accept a better route also apparently resulted in fewer wrong-turn deviations. Contrary to expectations, wrong-turn count and time loss appeared as semi-independent hubs in the resultant causal network. Implications of the path analysis are discussed. Proposals for in-vehicle information systems are formulated to increase driver participation as co-planner, and increase the likelihood that trip replanning will positively impact trip efficiency.

  12. Final Report for Dynamic Models for Causal Analysis of Panel Data. Models for Change in Quantitative Variables, Part I Deterministic Models. Part II, Chapter 3.

    ERIC Educational Resources Information Center

    Hannan, Michael T.

    This document is part of a series of chapters described in SO 011 759. Addressing the question of effective models to measure change and the change process, the author suggests that linear structural equation systems may be viewed as steady state outcomes of continuous-change models and have rich sociological grounding. Two interpretations of the…

  13. Manifest Variable Granger Causality Models for Developmental Research: A Taxonomy

    ERIC Educational Resources Information Center

    von Eye, Alexander; Wiedermann, Wolfgang

    2015-01-01

    Granger models are popular when it comes to testing hypotheses that relate series of measures causally to each other. In this article, we propose a taxonomy of Granger causality models. The taxonomy results from crossing the four variables Order of Lag, Type of (Contemporaneous) Effect, Direction of Effect, and Segment of Dependent Series…

  14. Spatiotemporal causal modeling for the management of Dengue Fever

    NASA Astrophysics Data System (ADS)

    Yu, Hwa-Lung; Huang, Tailin; Lee, Chieh-Han

    2015-04-01

    Increasing climatic extremes have caused growing concerns about the health effects and disease outbreaks. The association between climate variation and the occurrence of epidemic diseases play an important role on a country's public health systems. Part of the impacts are direct casualties associated with the increasing frequency and intensity of typhoons, the proliferation of disease vectors and the short-term increase of clinic visits on gastro-intestinal discomforts, diarrhea, dermatosis, or psychological trauma. Other impacts come indirectly from the influence of disasters on the ecological and socio-economic systems, including the changes of air/water quality, living environment and employment condition. Previous risk assessment studies on dengue fever focus mostly on climatic and non-climatic factors and their association with vectors' reproducing pattern. The public-health implication may appear simple. Considering the seasonal changes and regional differences, however, the causality of the impacts is full of uncertainties. Without further investigation, the underlying dengue fever risk dynamics may not be assessed accurately. The objective of this study is to develop an epistemic framework for assessing dynamic dengue fever risk across space and time. The proposed framework integrates cross-departmental data, including public-health databases, precipitation data over time and various socio-economic data. We explore public-health issues induced by typhoon through literature review and spatiotemporal analytic techniques on public health databases. From those data, we identify relevant variables and possible causal relationships, and their spatiotemporal patterns derived from our proposed spatiotemporal techniques. Eventually, we create a spatiotemporal causal network and a framework for modeling dynamic dengue fever risk.

  15. Analysis of sampling artifacts on the Granger causality analysis for topology extraction of neuronal dynamics

    PubMed Central

    Zhou, Douglas; Zhang, Yaoyu; Xiao, Yanyang; Cai, David

    2014-01-01

    Granger causality (GC) is a powerful method for causal inference for time series. In general, the GC value is computed using discrete time series sampled from continuous-time processes with a certain sampling interval length τ, i.e., the GC value is a function of τ. Using the GC analysis for the topology extraction of the simplest integrate-and-fire neuronal network of two neurons, we discuss behaviors of the GC value as a function of τ, which exhibits (i) oscillations, often vanishing at certain finite sampling interval lengths, (ii) the GC vanishes linearly as one uses finer and finer sampling. We show that these sampling effects can occur in both linear and non-linear dynamics: the GC value may vanish in the presence of true causal influence or become non-zero in the absence of causal influence. Without properly taking this issue into account, GC analysis may produce unreliable conclusions about causal influence when applied to empirical data. These sampling artifacts on the GC value greatly complicate the reliability of causal inference using the GC analysis, in general, and the validity of topology reconstruction for networks, in particular. We use idealized linear models to illustrate possible mechanisms underlying these phenomena and to gain insight into the general spectral structures that give rise to these sampling effects. Finally, we present an approach to circumvent these sampling artifacts to obtain reliable GC values. PMID:25126067

  16. Final Report for Dynamic Models for Causal Analysis of Panel Data. Models for Change in Quantitative Variables, Part II Scholastic Models. Part II, Chapter 4.

    ERIC Educational Resources Information Center

    Hannan, Michael T.

    This document is part of a series of chapters described in SO 011 759. Stochastic models for the sociological analysis of change and the change process in quantitative variables are presented. The author lays groundwork for the statistical treatment of simple stochastic differential equations (SDEs) and discusses some of the continuities of…

  17. Causality and quantum criticality in long-range lattice models

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mohammad F.; Gong, Zhe-Xuan; Foss-Feig, Michael; Gorshkov, Alexey V.

    2016-03-01

    Long-range quantum lattice systems often exhibit drastically different behavior than their short-range counterparts. In particular, because they do not satisfy the conditions for the Lieb-Robinson theorem, they need not have an emergent relativistic structure in the form of a light cone. Adopting a field-theoretic approach, we study the one-dimensional transverse-field Ising model with long-range interactions, and a fermionic model with long-range hopping and pairing terms, explore their critical and near-critical behavior, and characterize their response to local perturbations. We deduce the dynamic critical exponent, up to the two-loop order within the renormalization group theory, which we then use to characterize the emergent causal behavior. We show that beyond a critical value of the power-law exponent of the long-range couplings, the dynamics effectively becomes relativistic. Various other critical exponents describing correlations in the ground state, as well as deviations from a linear causal cone, are deduced for a wide range of the power-law exponent.

  18. A Causal Model of Factors Influencing Faculty Use of Technology

    ERIC Educational Resources Information Center

    Meyer, Katrina A.; Xu, Yonghong Jade

    2009-01-01

    Based on earlier studies using the 1999 and 2004 National Study of Postsecondary Faculty (NSOPF) data [1, 2], a causal model explaining faculty technology use was constructed. Path analysis was used to test the causal effects of age, gender, highest degree, discipline (health science or not), recent research productivity, and teaching load on…

  19. Causal information quantification of prominent dynamical features of biological neurons.

    PubMed

    Montani, Fernando; Baravalle, Roman; Montangie, Lisandro; Rosso, Osvaldo A

    2015-12-13

    Neurons tend to fire a spike when they are near a bifurcation from the resting state to spiking activity. It is a delicate balance between noise, dynamic currents and initial condition that determines the phase diagram of neural activity. Many possible ionic mechanisms can be accounted for as the source of spike generation. Moreover, the biophysics and the dynamics behind it can usually be described through a phase diagram that involves membrane voltage versus the activation variable of the ionic channel. In this paper, we present a novel methodology to characterize the dynamics of this system, which takes into account the fine temporal 'structures' of the complex neuronal signals. This allows us to accurately distinguish the most fundamental properties of neurophysiological neurons that were previously described by Izhikevich considering the phase-space trajectory, using a time causal space: statistical complexity versus Fisher information versus Shannon entropy. PMID:26527819

  20. Causal dynamical triangulation with extended interactions in 1+1 dimensions

    NASA Astrophysics Data System (ADS)

    Fuji, Hiroyuki; Sato, Yuki; Watabiki, Yoshiyuki

    2011-10-01

    We study the Causal Dynamical Triangulation (CDT) with extended interactions in 1 + 1 dimensions applying the method in the non-critical String Field Theory (SFT) constructed by Ishibashi and Kawai. For this model, we solve Schwinger-Dyson's Equation (SDE) for disk amplitude perturbatively, and find a matrix model in the continuum limit reproducing the SDE in the non-critical SFT approach as the loop equation.

  1. Causal Inferences with Group Based Trajectory Models

    ERIC Educational Resources Information Center

    Haviland, Amelia M.; Nagin, Daniel S.

    2005-01-01

    A central theme of research on human development and psychopathology is whether a therapeutic intervention or a turning-point event, such as a family break-up, alters the trajectory of the behavior under study. This paper lays out and applies a method for using observational longitudinal data to make more confident causal inferences about the…

  2. Causal interpretation rules for encoding and decoding models in neuroimaging.

    PubMed

    Weichwald, Sebastian; Meyer, Timm; Özdenizci, Ozan; Schölkopf, Bernhard; Ball, Tonio; Grosse-Wentrup, Moritz

    2015-04-15

    Causal terminology is often introduced in the interpretation of encoding and decoding models trained on neuroimaging data. In this article, we investigate which causal statements are warranted and which ones are not supported by empirical evidence. We argue that the distinction between encoding and decoding models is not sufficient for this purpose: relevant features in encoding and decoding models carry a different meaning in stimulus- and in response-based experimental paradigms.We show that only encoding models in the stimulus-based setting support unambiguous causal interpretations. By combining encoding and decoding models trained on the same data, however, we obtain insights into causal relations beyond those that are implied by each individual model type. We illustrate the empirical relevance of our theoretical findings on EEG data recorded during a visuo-motor learning task. PMID:25623501

  3. Nonlinear parametric model for Granger causality of time series

    NASA Astrophysics Data System (ADS)

    Marinazzo, Daniele; Pellicoro, Mario; Stramaglia, Sebastiano

    2006-06-01

    The notion of Granger causality between two time series examines if the prediction of one series could be improved by incorporating information of the other. In particular, if the prediction error of the first time series is reduced by including measurements from the second time series, then the second time series is said to have a causal influence on the first one. We propose a radial basis function approach to nonlinear Granger causality. The proposed model is not constrained to be additive in variables from the two time series and can approximate any function of these variables, still being suitable to evaluate causality. Usefulness of this measure of causality is shown in two applications. In the first application, a physiological one, we consider time series of heart rate and blood pressure in congestive heart failure patients and patients affected by sepsis: we find that sepsis patients, unlike congestive heart failure patients, show symmetric causal relationships between the two time series. In the second application, we consider the feedback loop in a model of excitatory and inhibitory neurons: we find that in this system causality measures the combined influence of couplings and membrane time constants.

  4. Model Averaging for Improving Inference from Causal Diagrams

    PubMed Central

    Hamra, Ghassan B.; Kaufman, Jay S.; Vahratian, Anjel

    2015-01-01

    Model selection is an integral, yet contentious, component of epidemiologic research. Unfortunately, there remains no consensus on how to identify a single, best model among multiple candidate models. Researchers may be prone to selecting the model that best supports their a priori, preferred result; a phenomenon referred to as “wish bias”. Directed acyclic graphs (DAGs), based on background causal and substantive knowledge, are a useful tool for specifying a subset of adjustment variables to obtain a causal effect estimate. In many cases, however, a DAG will support multiple, sufficient or minimally-sufficient adjustment sets. Even though all of these may theoretically produce unbiased effect estimates they may, in practice, yield somewhat distinct values, and the need to select between these models once again makes the research enterprise vulnerable to wish bias. In this work, we suggest combining adjustment sets with model averaging techniques to obtain causal estimates based on multiple, theoretically-unbiased models. We use three techniques for averaging the results among multiple candidate models: information criteria weighting, inverse variance weighting, and bootstrapping. We illustrate these approaches with an example from the Pregnancy, Infection, and Nutrition (PIN) study. We show that each averaging technique returns similar, model averaged causal estimates. An a priori strategy of model averaging provides a means of integrating uncertainty in selection among candidate, causal models, while also avoiding the temptation to report the most attractive estimate from a suite of equally valid alternatives. PMID:26270672

  5. Effects of question formats on causal judgments and model evaluation

    PubMed Central

    Smithson, Michael

    2015-01-01

    Evaluation of causal reasoning models depends on how well the subjects’ causal beliefs are assessed. Elicitation of causal beliefs is determined by the experimental questions put to subjects. We examined the impact of question formats commonly used in causal reasoning research on participant’s responses. The results of our experiment (Study 1) demonstrate that both the mean and homogeneity of the responses can be substantially influenced by the type of question (structure induction versus strength estimation versus prediction). Study 2A demonstrates that subjects’ responses to a question requiring them to predict the effect of a candidate cause can be significantly lower and more heterogeneous than their responses to a question asking them to diagnose a cause when given an effect. Study 2B suggests that diagnostic reasoning can strongly benefit from cues relating to temporal precedence of the cause in the question. Finally, we evaluated 16 variations of recent computational models and found the model fitting was substantially influenced by the type of questions. Our results show that future research in causal reasoning should place a high priority on disentangling the effects of question formats from the effects of experimental manipulations, because that will enable comparisons between models of causal reasoning uncontaminated by method artifact. PMID:25954225

  6. Final Report for Dynamic Models for Causal Analysis of Panel Data. Alternative Estimation Procedures for Event-History Analysis: A Monte Carlo Study. Part III, Chapter 5.

    ERIC Educational Resources Information Center

    Carroll, Glenn R.; And Others

    This document is part of a series of chapters described in SO 011 759. The chapter examines the merits of four estimators in the causal analysis of event-histories (data giving the number, timing, and sequence of changes in a categorical dependent variable). The four procedures are ordinary least squares, Kaplan-Meier least squares, maximum…

  7. A Typology of Causal Models for Plate Tectonics: Inferential Power and Barriers to Understanding.

    ERIC Educational Resources Information Center

    Gobert, Janice D.

    2000-01-01

    Analyzes fifth grade students' diagrams and explanations for the spatial, causal, and dynamic processes inside the earth. Identifies and characterizes the different types of student models for the inside of the earth, and characterizes the reasoning associated with these models. (Contains 74 references.) (Author/YDS)

  8. The Mental Representation of Causal Conditional Reasoning: Mental Models or Causal Models

    ERIC Educational Resources Information Center

    Ali, Nilufa; Chater, Nick; Oaksford, Mike

    2011-01-01

    In this paper, two experiments are reported investigating the nature of the cognitive representations underlying causal conditional reasoning performance. The predictions of causal and logical interpretations of the conditional diverge sharply when inferences involving "pairs" of conditionals--such as "if P[subscript 1] then Q" and "if P[subscript…

  9. Impact of topology in causal dynamical triangulations quantum gravity

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Drogosz, Z.; Gizbert-Studnicki, J.; Görlich, A.; Jurkiewicz, J.; Nemeth, D.

    2016-08-01

    We investigate the impact of spatial topology in 3 +1 -dimensional causal dynamical triangulations (CDT) by performing numerical simulations with toroidal spatial topology instead of the previously used spherical topology. In the case of spherical spatial topology, we observed in the so-called phase C an average spatial volume distribution n (t ) which after a suitable time redefinition could be identified as the spatial volume distribution of the four-sphere. Imposing toroidal spatial topology, we find that the average spatial volume distribution n (t ) is constant. By measuring the covariance matrix of spatial volume fluctuations, we determine the form of the effective action. The difference compared to the spherical case is that the effective potential has changed such that it allows a constant average n (t ) . This is what we observe and this is what one would expect from a minisuperspace GR action, where only the scale factor is kept as dynamical variable. Although no background geometry is put in by hand, the full quantum theory of CDT is also with toroidal spatial toplogy able to identify a classical background geometry around which there are well-defined quantum fluctuations.

  10. A Novel Extended Granger Causal Model Approach Demonstrates Brain Hemispheric Differences during Face Recognition Learning

    PubMed Central

    Ge, Tian; Kendrick, Keith M.; Feng, Jianfeng

    2009-01-01

    Two main approaches in exploring causal relationships in biological systems using time-series data are the application of Dynamic Causal model (DCM) and Granger Causal model (GCM). These have been extensively applied to brain imaging data and are also readily applicable to a wide range of temporal changes involving genes, proteins or metabolic pathways. However, these two approaches have always been considered to be radically different from each other and therefore used independently. Here we present a novel approach which is an extension of Granger Causal model and also shares the features of the bilinear approximation of Dynamic Causal model. We have first tested the efficacy of the extended GCM by applying it extensively in toy models in both time and frequency domains and then applied it to local field potential recording data collected from in vivo multi-electrode array experiments. We demonstrate face discrimination learning-induced changes in inter- and intra-hemispheric connectivity and in the hemispheric predominance of theta and gamma frequency oscillations in sheep inferotemporal cortex. The results provide the first evidence for connectivity changes between and within left and right inferotemporal cortexes as a result of face recognition learning. PMID:19936225

  11. Granger causality revisited

    PubMed Central

    Friston, Karl J.; Bastos, André M.; Oswal, Ashwini; van Wijk, Bernadette; Richter, Craig; Litvak, Vladimir

    2014-01-01

    This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative (state-space) models of neuronal dynamics, we show how their Volterra kernels prescribe the second-order statistics of their response to random fluctuations; characterised in terms of cross-spectral density, cross-covariance, autoregressive coefficients and directed transfer functions. These quantities in turn specify Granger causality — providing a direct (analytic) link between the parameters of a generative model and the expected Granger causality. We use this link to show that Granger causality measures based upon autoregressive models can become unreliable when the underlying dynamics is dominated by slow (unstable) modes — as quantified by the principal Lyapunov exponent. However, nonparametric measures based on causal spectral factors are robust to dynamical instability. We then demonstrate how both parametric and nonparametric spectral causality measures can become unreliable in the presence of measurement noise. Finally, we show that this problem can be finessed by deriving spectral causality measures from Volterra kernels, estimated using dynamic causal modelling. PMID:25003817

  12. Causation or only correlation? Application of causal inference graphs for evaluating causality in nano-QSAR models

    NASA Astrophysics Data System (ADS)

    Sizochenko, Natalia; Gajewicz, Agnieszka; Leszczynski, Jerzy; Puzyn, Tomasz

    2016-03-01

    In this paper, we suggest that causal inference methods could be efficiently used in Quantitative Structure-Activity Relationships (QSAR) modeling as additional validation criteria within quality evaluation of the model. Verification of the relationships between descriptors and toxicity or other activity in the QSAR model has a vital role in understanding the mechanisms of action. The well-known phrase ``correlation does not imply causation'' reflects insight statistically correlated with the endpoint descriptor may not cause the emergence of this endpoint. Hence, paradigmatic shifts must be undertaken when moving from traditional statistical correlation analysis to causal analysis of multivariate data. Methods of causal discovery have been applied for broader physical insight into mechanisms of action and interpretation of the developed nano-QSAR models. Previously developed nano-QSAR models for toxicity of 17 nano-sized metal oxides towards E. coli bacteria have been validated by means of the causality criteria. Using the descriptors confirmed by the causal technique, we have developed new models consistent with the straightforward causal-reasoning account. It was proven that causal inference methods are able to provide a more robust mechanistic interpretation of the developed nano-QSAR models.In this paper, we suggest that causal inference methods could be efficiently used in Quantitative Structure-Activity Relationships (QSAR) modeling as additional validation criteria within quality evaluation of the model. Verification of the relationships between descriptors and toxicity or other activity in the QSAR model has a vital role in understanding the mechanisms of action. The well-known phrase ``correlation does not imply causation'' reflects insight statistically correlated with the endpoint descriptor may not cause the emergence of this endpoint. Hence, paradigmatic shifts must be undertaken when moving from traditional statistical correlation analysis to causal

  13. Developing a Causal Model from Liver Function Test Data

    NASA Astrophysics Data System (ADS)

    Inada, Masanori; Terano, Takao

    As Active Mining is a new concept among data mining and/or knowledge discovery in databases communities, in order to validate the effectiveness, it is important to carry out empirical studies using practical data. Based on the concept of Active User Reaction, this paper develops a causal model from liver function test data in a medical domain. To develop the model, we have set a problem to predict the values of ICG (indocyanine green) test from given observation data and experts' background knowledge. We therefore employ a framework of meta-learning and structural equation modeling. In this paper meta-learning means learning about mined results from multiple data-mining techniques. Structural equation modeling enables us to describe flexible models from background knowledge. The construction of the causal model contains two phases: meta-learning and the model building. The meta-learning phase utilizes both the linear regression and the neural network as data mining techniques, then examines the predictability on the given data set. Mining models are n-folded learned from the training data set. Each of the prediction accuracy of the mining models is compared using with the testing data. On the model building phase, we use structural equation modeling to develop a causal model based on results of meta-learning and background knowledge. We again compare the accuracy of the causal model with each of the mining models. Consequently we have developed the causal model, which is comprehensible and have good predictive performance, via the meta-learning phase. Through the empirical study, we have got the conclusion that the framework of meta-learning is effective in data mining in a difficult medical domain.

  14. Causal Latent Markov Model for the Comparison of Multiple Treatments in Observational Longitudinal Studies

    ERIC Educational Resources Information Center

    Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio

    2016-01-01

    We extend to the longitudinal setting a latent class approach that was recently introduced by Lanza, Coffman, and Xu to estimate the causal effect of a treatment. The proposed approach enables an evaluation of multiple treatment effects on subpopulations of individuals from a dynamic perspective, as it relies on a latent Markov (LM) model that is…

  15. Enhancing scientific reasoning by refining students' models of multivariable causality

    NASA Astrophysics Data System (ADS)

    Keselman, Alla

    Inquiry learning as an educational method is gaining increasing support among elementary and middle school educators. In inquiry activities at the middle school level, students are typically asked to conduct investigations and infer causal relationships about multivariable causal systems. In these activities, students usually demonstrate significant strategic weaknesses and insufficient metastrategic understanding of task demands. Present work suggests that these weaknesses arise from students' deficient mental models of multivariable causality, in which effects of individual features are neither additive, nor constant. This study is an attempt to develop an intervention aimed at enhancing scientific reasoning by refining students' models of multivariable causality. Three groups of students engaged in a scientific investigation activity over seven weekly sessions. By creating unique combinations of five features potentially involved in earthquake mechanism and observing associated risk meter readings, students had to find out which of the features were causal, and to learn to predict earthquake risk. Additionally, students in the instructional and practice groups engaged in self-directed practice in making scientific predictions. The instructional group also participated in weekly instructional sessions on making predictions based on multivariable causality. Students in the practice and instructional conditions showed small to moderate improvement in their attention to the evidence and in their metastrategic ability to recognize effective investigative strategies in the work of other students. They also demonstrated a trend towards making a greater number of valid inferences than the control group students. Additionally, students in the instructional condition showed significant improvement in their ability to draw inferences based on multiple records. They also developed more accurate knowledge about non-causal features of the system. These gains were maintained

  16. The methodology of Dynamic Uncertain Causality Graph for intelligent diagnosis of vertigo.

    PubMed

    Dong, Chunling; Wang, Yanjun; Zhang, Qin; Wang, Ningyu

    2014-01-01

    Vertigo is a common complaint with many potential causes involving otology, neurology and general medicine, and it is fairly difficult to distinguish the vertiginous disorders from each other accurately even for experienced physicians. Based on comprehensive investigations to relevant characteristics of vertigo, we propose a diagnostic modeling and reasoning methodology using Dynamic Uncertain Causality Graph. The symptoms, signs, findings of examinations, medical histories, etiology and pathogenesis, and so on, are incorporated in the diagnostic model. A modularized modeling scheme is presented to reduce the difficulty in model construction, providing multiple perspectives and arbitrary granularity for disease causality representations. We resort to the "chaining" inference algorithm and weighted logic operation mechanism, which guarantee the exactness and efficiency of diagnostic reasoning under situations of incomplete and uncertain information. Moreover, the causal insights into underlying interactions among diseases and symptoms intuitively demonstrate the reasoning process in a graphical manner. These solutions make the conclusions and advices more explicable and convincing, further increasing the objectivity of clinical decision-making. Verification experiments and empirical evaluations are performed with clinical vertigo cases. The results reveal that, even with incomplete observations, this methodology achieves encouraging diagnostic accuracy and effectiveness. This study provides a promising assistance tool for physicians in diagnosis of vertigo. PMID:24176413

  17. Causal Indicator Models: Unresolved Issues of Construction and Evaluation

    ERIC Educational Resources Information Center

    West, Stephen G.; Grimm, Kevin J.

    2014-01-01

    These authors agree with Bainter and Bollen that causal effects represents a useful measurement structure in some applications. The structure of the science of the measurement problem should determine the model; the measurement model should not determine the science. They also applaud Bainter and Bollen's important reminder that the full…

  18. The TETRAD Project: Constraint Based Aids to Causal Model Specification.

    ERIC Educational Resources Information Center

    Scheines, Richard; Spirtes, Peter; Glymour, Clark; Meek, Christopher; Richardson, Thomas

    1998-01-01

    The TETRAD for constraint-based aids to causal model specification project and related work in computer science aims to apply standards of rigor and precision to the problem of using data and background knowledge to make inferences about a model's specifications. Several algorithms that are implemented in the TETRAD II program are presented. (SLD)

  19. What Is the Latent Variable in Causal Indicator Models?

    ERIC Educational Resources Information Center

    Howell, Roy D.

    2014-01-01

    Building on the work of Bollen (2007) and Bollen & Bauldry (2011), Bainter and Bollen (this issue) clarifies several points of confusion in the literature regarding causal indicator models. This author would certainly agree that the effect indicator (reflective) measurement model is inappropriate for some indicators (such as the social…

  20. Models of Causation and the Semantics of Causal Verbs

    ERIC Educational Resources Information Center

    Wolff, Phillip; Song, Grace

    2003-01-01

    This research examines the relationship between the concept of CAUSE as it is characterized in psychological models of causation and the meaning of causal verbs, such as the verb "cause" itself. According to focal set models of causation ([Cheng (1997]; [Cheng and Novick (1991 and Cheng and Novick (1992]), the concept of CAUSE should be more…

  1. An Isometric Dynamics for a Causal Set Approach to Discrete Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Gudder, S.

    2015-12-01

    We consider a covariant causal set approach to discrete quantum gravity. We first review the microscopic picture of this approach. In this picture a universe grows one element at a time and its geometry is determined by a sequence of integers called the shell sequence. We next present the macroscopic picture which is described by a sequential growth process. We introduce a model in which the dynamics is governed by a quantum transition amplitude. The amplitude satisfies a stochastic and unitary condition and the resulting dynamics becomes isometric. We show that the dynamics preserves stochastic states. By "doubling down" on the dynamics we obtain a unitary group representation and a natural energy operator. These unitary operators are employed to define canonical position and momentum operators.

  2. Causal Model Progressions as a Foundation for Intelligent Learning Environments.

    ERIC Educational Resources Information Center

    White, Barbara Y.; Frederiksen, John R.

    This paper describes the theoretical underpinnings and architecture of a new type of learning environment that incorporates features of microworlds and of intelligent tutoring systems. The environment is based on a progression of increasingly sophisticated causal models that simulate domain phenomena, generate explanations, and serve as student…

  3. Quantum Supersymmetric Models in the Causal Approach

    NASA Astrophysics Data System (ADS)

    Grigore, Dan-Radu

    2007-04-01

    We consider the massless supersymmetric vector multiplet in a purely quantum framework. First order gauge invariance determines uniquely the interaction Lagrangian as in the case of Yang-Mills models. Going to the second order of perturbation theory produces an anomaly which cannot be eliminated. We make the analysis of the model working only with the component fields.

  4. Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome

    PubMed Central

    Oliveira, Ana Paula; Dimopoulos, Sotiris; Busetto, Alberto Giovanni; Christen, Stefan; Dechant, Reinhard; Falter, Laura; Haghir Chehreghani, Morteza; Jozefczuk, Szymon; Ludwig, Christina; Rudroff, Florian; Schulz, Juliane Caroline; González, Asier; Soulard, Alexandre; Stracka, Daniele; Aebersold, Ruedi; Buhmann, Joachim M; Hall, Michael N; Peter, Matthias; Sauer, Uwe; Stelling, Jörg

    2015-01-01

    Cells react to nutritional cues in changing environments via the integrated action of signaling, transcriptional, and metabolic networks. Mechanistic insight into signaling processes is often complicated because ubiquitous feedback loops obscure causal relationships. Consequently, the endogenous inputs of many nutrient signaling pathways remain unknown. Recent advances for system-wide experimental data generation have facilitated the quantification of signaling systems, but the integration of multi-level dynamic data remains challenging. Here, we co-designed dynamic experiments and a probabilistic, model-based method to infer causal relationships between metabolism, signaling, and gene regulation. We analyzed the dynamic regulation of nitrogen metabolism by the target of rapamycin complex 1 (TORC1) pathway in budding yeast. Dynamic transcriptomic, proteomic, and metabolomic measurements along shifts in nitrogen quality yielded a consistent dataset that demonstrated extensive re-wiring of cellular networks during adaptation. Our inference method identified putative downstream targets of TORC1 and putative metabolic inputs of TORC1, including the hypothesized glutamine signal. The work provides a basis for further mechanistic studies of nitrogen metabolism and a general computational framework to study cellular processes. PMID:25888284

  5. Models and Moves: Focusing on Dimensions of Causal Complexity To Achieve Deeper Scientific Understanding.

    ERIC Educational Resources Information Center

    Perkins, David N.; Grotzer, Tina A.

    This paper presents the results of a research project based on the Understandings of Consequence Project. This study motivated students to engage in inquiry in science classrooms. The complexity of the models is divided into four categories--underlying causality, relational causality, probabilistic causality, and emergent causality--and provides…

  6. Measured, modeled, and causal conceptions of fitness

    PubMed Central

    Abrams, Marshall

    2012-01-01

    This paper proposes partial answers to the following questions: in what senses can fitness differences plausibly be considered causes of evolution?What relationships are there between fitness concepts used in empirical research, modeling, and abstract theoretical proposals? How does the relevance of different fitness concepts depend on research questions and methodological constraints? The paper develops a novel taxonomy of fitness concepts, beginning with type fitness (a property of a genotype or phenotype), token fitness (a property of a particular individual), and purely mathematical fitness. Type fitness includes statistical type fitness, which can be measured from population data, and parametric type fitness, which is an underlying property estimated by statistical type fitnesses. Token fitness includes measurable token fitness, which can be measured on an individual, and tendential token fitness, which is assumed to be an underlying property of the individual in its environmental circumstances. Some of the paper's conclusions can be outlined as follows: claims that fitness differences do not cause evolution are reasonable when fitness is treated as statistical type fitness, measurable token fitness, or purely mathematical fitness. Some of the ways in which statistical methods are used in population genetics suggest that what natural selection involves are differences in parametric type fitnesses. Further, it's reasonable to think that differences in parametric type fitness can cause evolution. Tendential token fitnesses, however, are not themselves sufficient for natural selection. Though parametric type fitnesses are typically not directly measurable, they can be modeled with purely mathematical fitnesses and estimated by statistical type fitnesses, which in turn are defined in terms of measurable token fitnesses. The paper clarifies the ways in which fitnesses depend on pragmatic choices made by researchers. PMID:23112804

  7. Causal mediation analyses with rank preserving models.

    PubMed

    Have, Thomas R Ten; Joffe, Marshall M; Lynch, Kevin G; Brown, Gregory K; Maisto, Stephen A; Beck, Aaron T

    2007-09-01

    We present a linear rank preserving model (RPM) approach for analyzing mediation of a randomized baseline intervention's effect on a univariate follow-up outcome. Unlike standard mediation analyses, our approach does not assume that the mediating factor is also randomly assigned to individuals in addition to the randomized baseline intervention (i.e., sequential ignorability), but does make several structural interaction assumptions that currently are untestable. The G-estimation procedure for the proposed RPM represents an extension of the work on direct effects of randomized intervention effects for survival outcomes by Robins and Greenland (1994, Journal of the American Statistical Association 89, 737-749) and on intervention non-adherence by Ten Have et al. (2004, Journal of the American Statistical Association 99, 8-16). Simulations show good estimation and confidence interval performance by the proposed RPM approach under unmeasured confounding relative to the standard mediation approach, but poor performance under departures from the structural interaction assumptions. The trade-off between these assumptions is evaluated in the context of two suicide/depression intervention studies. PMID:17825022

  8. Final Report for Dynamic Models for Causal Analysis of Panel Data. Internal Politics of Growth and Decline. Part II, Chapter 2.

    ERIC Educational Resources Information Center

    Hannan, Michael T.; Freeman, John

    The document, part of a series of chapters described in SO 011 759, describes a model that incorporates organizational politics and environmental dependence into a study of the effects of growth and decline on the number of school personnel. The first section describes the original model which assumes that as the number of students in a district…

  9. On inference of causality for discrete state models in a multiscale context

    PubMed Central

    Gerber, Susanne; Horenko, Illia

    2014-01-01

    Discrete state models are a common tool of modeling in many areas. E.g., Markov state models as a particular representative of this model family became one of the major instruments for analysis and understanding of processes in molecular dynamics (MD). Here we extend the scope of discrete state models to the case of systematically missing scales, resulting in a nonstationary and nonhomogeneous formulation of the inference problem. We demonstrate how the recently developed tools of nonstationary data analysis and information theory can be used to identify the simultaneously most optimal (in terms of describing the given data) and most simple (in terms of complexity and causality) discrete state models. We apply the resulting formalism to a problem from molecular dynamics and show how the results can be used to understand the spatial and temporal causality information beyond the usual assumptions. We demonstrate that the most optimal explanation for the appropriately discretized/coarse-grained MD torsion angles data in a polypeptide is given by the causality that is localized both in time and in space, opening new possibilities for deploying percolation theory and stochastic subgridscale modeling approaches in the area of MD. PMID:25267630

  10. Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data

    PubMed Central

    Havlicek, Martin; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.

    2015-01-01

    Increasing interest in understanding dynamic interactions of brain neural networks leads to formulation of sophisticated connectivity analysis methods. Recent studies have applied Granger causality based on standard multivariate autoregressive (MAR) modeling to assess the brain connectivity. Nevertheless, one important flaw of this commonly proposed method is that it requires the analyzed time series to be stationary, whereas such assumption is mostly violated due to the weakly nonstationary nature of functional magnetic resonance imaging (fMRI) time series. Therefore, we propose an approach to dynamic Granger causality in the frequency domain for evaluating functional network connectivity in fMRI data. The effectiveness and robustness of the dynamic approach was significantly improved by combining a forward and backward Kalman filter that improved estimates compared to the standard time-invariant MAR modeling. In our method, the functional networks were first detected by independent component analysis (ICA), a computational method for separating a multivariate signal into maximally independent components. Then the measure of Granger causality was evaluated using generalized partial directed coherence that is suitable for bivariate as well as multivariate data. Moreover, this metric provides identification of causal relation in frequency domain, which allows one to distinguish the frequency components related to the experimental paradigm. The procedure of evaluating Granger causality via dynamic MAR was demonstrated on simulated time series as well as on two sets of group fMRI data collected during an auditory sensorimotor (SM) or auditory oddball discrimination (AOD) tasks. Finally, a comparison with the results obtained from a standard time-invariant MAR model was provided. PMID:20561919

  11. Optimal causal inference: Estimating stored information and approximating causal architecture

    NASA Astrophysics Data System (ADS)

    Still, Susanne; Crutchfield, James P.; Ellison, Christopher J.

    2010-09-01

    We introduce an approach to inferring the causal architecture of stochastic dynamical systems that extends rate-distortion theory to use causal shielding—a natural principle of learning. We study two distinct cases of causal inference: optimal causal filtering and optimal causal estimation. Filtering corresponds to the ideal case in which the probability distribution of measurement sequences is known, giving a principled method to approximate a system's causal structure at a desired level of representation. We show that in the limit in which a model-complexity constraint is relaxed, filtering finds the exact causal architecture of a stochastic dynamical system, known as the causal-state partition. From this, one can estimate the amount of historical information the process stores. More generally, causal filtering finds a graded model-complexity hierarchy of approximations to the causal architecture. Abrupt changes in the hierarchy, as a function of approximation, capture distinct scales of structural organization. For nonideal cases with finite data, we show how the correct number of the underlying causal states can be found by optimal causal estimation. A previously derived model-complexity control term allows us to correct for the effect of statistical fluctuations in probability estimates and thereby avoid overfitting.

  12. Development of a causal model for elder mistreatment.

    PubMed

    Pickering, Carolyn E Ziminski; Phillips, Linda R

    2014-01-01

    Elder mistreatment (EM) is an act committed by a person in a trusted relationship with an elderly person. Through the process of theory synthesis, a new model was developed, which explains the development of aggression (physical and verbal) toward elders by adult children in EM. The proposed model is set within the context of intimate partner violence and emphasizes that rather than arising in caregiving, aggression may be evident in the pre-caregiving relationship and continue into caregiving situations. An understanding of the causal origins of EM is essential in designing intervention to help families have healthy relationships. PMID:24547693

  13. Who Is the Dynamic Duo? How Infants Learn about the Identity of Objects in a Causal Chain

    ERIC Educational Resources Information Center

    Rakison, David H.; Smith, Gabriel Tobin; Ali, Areej

    2016-01-01

    Four experiments investigated infants' and adults' knowledge of the identity of objects in a causal sequence of events. In Experiments 1 and 2, 18- and 22-month-olds in the visual habituation procedure were shown a 3-step causal chain event in which the relation between an object's part (dynamic or static) and its causal role was either consistent…

  14. Risk-Based Causal Modeling of Airborne Loss of Separation

    NASA Technical Reports Server (NTRS)

    Geuther, Steven C.; Shih, Ann T.

    2015-01-01

    Maintaining safe separation between aircraft remains one of the key aviation challenges as the Next Generation Air Transportation System (NextGen) emerges. The goals of the NextGen are to increase capacity and reduce flight delays to meet the aviation demand growth through the 2025 time frame while maintaining safety and efficiency. The envisioned NextGen is expected to enable high air traffic density, diverse fleet operations in the airspace, and a decrease in separation distance. All of these factors contribute to the potential for Loss of Separation (LOS) between aircraft. LOS is a precursor to a potential mid-air collision (MAC). The NASA Airspace Operations and Safety Program (AOSP) is committed to developing aircraft separation assurance concepts and technologies to mitigate LOS instances, therefore, preventing MAC. This paper focuses on the analysis of causal and contributing factors of LOS accidents and incidents leading to MAC occurrences. Mid-air collisions among large commercial aircraft are rare in the past decade, therefore, the LOS instances in this study are for general aviation using visual flight rules in the years 2000-2010. The study includes the investigation of causal paths leading to LOS, and the development of the Airborne Loss of Separation Analysis Model (ALOSAM) using Bayesian Belief Networks (BBN) to capture the multi-dependent relations of causal factors. The ALOSAM is currently a qualitative model, although further development could lead to a quantitative model. ALOSAM could then be used to perform impact analysis of concepts and technologies in the AOSP portfolio on the reduction of LOS risk.

  15. Wess-Zumino model in the causal approach

    NASA Astrophysics Data System (ADS)

    Grigore, D. R.

    2001-07-01

    The Wess Zumino model is analysed in the framework of the causal approach of Epstein Glaser. The condition of invariance with respect to supersymmetry transformations is similar to gauge invariance in the Zürich formulation. We prove that this invariance condition can be implemented in all orders of perturbation theory, i.e. the anomalies are absent in all orders. This result is of a purely algebraic nature. We work consistently in the quantum framework based on the Bogoliubov axioms of perturbation theory, so no Grassmann variables are necessary.

  16. Interference between Cues Requires a Causal Scenario: Favorable Evidence for Causal Reasoning Models in Learning Processes

    ERIC Educational Resources Information Center

    Luque, David; Cobos, Pedro L.; Lopez, Francisco J.

    2008-01-01

    In an interference-between-cues design (IbC), the expression of a learned Cue A-Outcome 1 association has been shown to be impaired if another cue, B, is separately paired with the same outcome in a second learning phase. The present study examined whether IbC could be caused by associative mechanisms independent of causal reasoning processes.…

  17. Causal Inference and Model Selection in Complex Settings

    NASA Astrophysics Data System (ADS)

    Zhao, Shandong

    Propensity score methods have become a part of the standard toolkit for applied researchers who wish to ascertain causal effects from observational data. While they were originally developed for binary treatments, several researchers have proposed generalizations of the propensity score methodology for non-binary treatment regimes. In this article, we firstly review three main methods that generalize propensity scores in this direction, namely, inverse propensity weighting (IPW), the propensity function (P-FUNCTION), and the generalized propensity score (GPS), along with recent extensions of the GPS that aim to improve its robustness. We compare the assumptions, theoretical properties, and empirical performance of these methods. We propose three new methods that provide robust causal estimation based on the P-FUNCTION and GPS. While our proposed P-FUNCTION-based estimator preforms well, we generally advise caution in that all available methods can be biased by model misspecification and extrapolation. In a related line of research, we consider adjustment for posttreatment covariates in causal inference. Even in a randomized experiment, observations might have different compliance performance under treatment and control assignment. This posttreatment covariate cannot be adjusted using standard statistical methods. We review the principal stratification framework which allows for modeling this effect as part of its Bayesian hierarchical models. We generalize the current model to add the possibility of adjusting for pretreatment covariates. We also propose a new estimator of the average treatment effect over the entire population. In a third line of research, we discuss the spectral line detection problem in high energy astrophysics. We carefully review how this problem can be statistically formulated as a precise hypothesis test with point null hypothesis, why a usual likelihood ratio test does not apply for problem of this nature, and a doable fix to correctly

  18. Searching for a continuum limit in causal dynamical triangulation quantum gravity

    NASA Astrophysics Data System (ADS)

    Ambjorn, J.; Coumbe, D. N.; Gizbert-Studnicki, J.; Jurkiewicz, J.

    2016-05-01

    We search for a continuum limit in the causal dynamical triangulation approach to quantum gravity by determining the change in lattice spacing using two independent methods. The two methods yield similar results that may indicate how to tune the relevant couplings in the theory in order to take a continuum limit.

  19. A developmental approach to learning causal models for cyber security

    NASA Astrophysics Data System (ADS)

    Mugan, Jonathan

    2013-05-01

    To keep pace with our adversaries, we must expand the scope of machine learning and reasoning to address the breadth of possible attacks. One approach is to employ an algorithm to learn a set of causal models that describes the entire cyber network and each host end node. Such a learning algorithm would run continuously on the system and monitor activity in real time. With a set of causal models, the algorithm could anticipate novel attacks, take actions to thwart them, and predict the second-order effects flood of information, and the algorithm would have to determine which streams of that flood were relevant in which situations. This paper will present the results of efforts toward the application of a developmental learning algorithm to the problem of cyber security. The algorithm is modeled on the principles of human developmental learning and is designed to allow an agent to learn about the computer system in which it resides through active exploration. Children are flexible learners who acquire knowledge by actively exploring their environment and making predictions about what they will find,1, 2 and our algorithm is inspired by the work of the developmental psychologist Jean Piaget.3 Piaget described how children construct knowledge in stages and learn new concepts on top of those they already know. Developmental learning allows our algorithm to focus on subsets of the environment that are most helpful for learning given its current knowledge. In experiments, the algorithm was able to learn the conditions for file exfiltration and use that knowledge to protect sensitive files.

  20. Final Report for Dynamic Models for Causal Analysis of Panel Data. Quality of Maximum Likelihood Estimates of Parameters in a Log-Linear Rate Model. Part III, Chapter 3.

    ERIC Educational Resources Information Center

    Fennell, Mary L.; And Others

    This document is part of a series of chapters described in SO 011 759. This chapter reports the results of Monte Carlo simulations designed to analyze problems of using maximum likelihood estimation (MLE: see SO 011 767) in research models which combine longitudinal and dynamic behavior data in studies of change. Four complications--censoring of…

  1. A first look at transition amplitudes in (2 + 1)-dimensional causal dynamical triangulations

    NASA Astrophysics Data System (ADS)

    Cooperman, Joshua H.; Miller, Jonah M.

    2014-02-01

    We study a lattice regularization of the gravitational path integral—causal dynamical triangulations—for (2 + 1)-dimensional Einstein gravity with positive cosmological constant in the presence of past and future spacelike boundaries of fixed intrinsic geometries. For spatial topology of a 2-sphere, we determine the form of the Einstein-Hilbert action supplemented by the Gibbons-Hawking-York boundary terms within the Regge calculus of causal triangulations. Employing this action we numerically simulate a variety of transition amplitudes from the past boundary to the future boundary. To the extent that we have so far investigated them, these transition amplitudes appear consistent with the gravitational effective action previously found to characterize the ground state of quantum spacetime geometry within the Euclidean de Sitter-like phase. Certain of these transition amplitudes convincingly demonstrate that the so-called stalks present in this phase are numerical artifacts of the lattice regularization, seemingly indicate that the quantization technique of causal dynamical triangulations differs in detail from that of the no-boundary proposal of Hartle and Hawking, and possibly represent the first numerical simulations of portions of temporally unbounded quantum spacetime geometry within the causal dynamical triangulations approach. We also uncover tantalizing evidence suggesting that Lorentzian not Euclidean de Sitter spacetime dominates the ground state on sufficiently large scales.

  2. Bulk viscosity and relaxation time of causal dissipative relativistic fluid dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Xu-Guang; Kodama, Takeshi; Koide, Tomoi; Rischke, Dirk H.

    2011-02-01

    The microscopic formulas of the bulk viscosity ζ and the corresponding relaxation time τΠ in causal dissipative relativistic fluid dynamics are derived by using the projection operator method. In applying these formulas to the pionic fluid, we find that the renormalizable energy-momentum tensor should be employed to obtain consistent results. In the leading-order approximation in the chiral perturbation theory, the relaxation time is enhanced near the QCD phase transition, and τΠ and ζ are related as τΠ=ζ/[β{(1/3-cs2)(ɛ+P)-2(ɛ-3P)/9}], where ɛ, P, and cs are the energy density, pressure, and velocity of sound, respectively. The predicted ζ and τΠ should satisfy the so-called causality condition. We compare our result with the results of the kinetic calculation by Israel and Stewart and the string theory, and confirm that all three approaches are consistent with the causality condition.

  3. Counterfactuals and Causal Models: Introduction to the Special Issue

    ERIC Educational Resources Information Center

    Sloman, Steven A.

    2013-01-01

    Judea Pearl won the 2010 Rumelhart Prize in computational cognitive science due to his seminal contributions to the development of Bayes nets and causal Bayes nets, frameworks that are central to multiple domains of the computational study of mind. At the heart of the causal Bayes nets formalism is the notion of a counterfactual, a representation…

  4. Cause and Event: Supporting Causal Claims through Logistic Models

    ERIC Educational Resources Information Center

    O'Connell, Ann A.; Gray, DeLeon L.

    2011-01-01

    Efforts to identify and support credible causal claims have received intense interest in the research community, particularly over the past few decades. In this paper, we focus on the use of statistical procedures designed to support causal claims for a treatment or intervention when the response variable of interest is dichotomous. We identify…

  5. Scheduling with partial orders and a causal model

    NASA Technical Reports Server (NTRS)

    Boddy, Mark; Carciofini, Jim; Hadden, George D.

    1993-01-01

    In an ongoing project at Honeywell SRC, we are constructing a prototype scheduling system for a NASA domain using the 'Time Map Manager' (TMM). The TMM representations are flexible enough to permit the representation of precedence constraints, metric constraints between activities, and constraints relative to a variety of references (e.g., Mission Elapsed Time vs. Mission Day). The TMM also supports a simple form of causal reasoning (projection), dynamic database updates, and monitoring specified database properties as changes occur over time. The greatest apparent advantage to using the TMM is the flexibility added to the scheduling process: schedules are constructed by a process of 'iterative refinement,' in which scheduling decisions correspond to constraining an activity either with respect to another activity or with respect to one time line. The schedule becomes more detailed as activities and constraints are added. Undoing a scheduling decision means removing a constraint, not removing an activity from a specified place on the time line. For example, we can move an activity around on the time line by deleting constraints and adding new ones.

  6. Assessing the Influence of an Individual Event in Complex Fault Spreading Network Based on Dynamic Uncertain Causality Graph.

    PubMed

    Dong, Chunling; Zhao, Yue; Zhang, Qin

    2016-08-01

    Identifying the pivotal causes and highly influential spreaders in fault propagation processes is crucial for improving the maintenance decision making for complex systems under abnormal and emergency situations. A dynamic uncertain causality graph-based method is introduced in this paper to explicitly model the uncertain causalities among system components, identify fault conditions, locate the fault origins, and predict the spreading tendency by means of probabilistic reasoning. A new algorithm is proposed to assess the impacts of an individual event by investigating the corresponding node's time-variant betweenness centrality and the strength of global causal influence in the fault propagation network. The algorithm does not depend on the whole original and static network but on the real-time spreading behaviors and dynamics, which makes the algorithm to be specifically targeted and more efficient. Experiments on both simulated networks and real-world systems demonstrate the accuracy, effectiveness, and comprehensibility of the proposed method for the fault management of power grids and other complex networked systems. PMID:27101619

  7. Effect of science teaching on the young child's concept of piagetian physical causality: Animism and dynamism

    NASA Astrophysics Data System (ADS)

    Wolfinger, Donna M.

    The purpose of this research was to determine whether the young child's understanding of physical causality is affected by school science instruction. Sixty-four subjects, four and one-half through seven years of age, received 300 min of instruction designed to affect the subject's conception of causality as reflected in animism and dynamism. Instruction took place for 30 min per day on ten successive school days. Pretesting was done to allow a stratified random sample to be based on vocabulary level and developmental stage as well as on age and gender. Post-testing consisted of testing of developmental level and level within the causal relations of animism and dynamism. Significant differences (1.05 level) were found between the experimental and control groups for animism. Within the experimental group, males differed significantly (1.001 level) from females. The elimination of animism appeared to have occurred. For dynamism, significant differences (0.05 level) were found only between concrete operational subjects in the experimental and control groups, indicating a concrete level of operations was necessary if dynamism was to be affected. However, a review of interview protocols indicated that subjects classified as nonanimistic had learned to apply a definition rather than to think in a nonanimistic manner.

  8. Modeling the Causal Regulation of Transversely Accelerated Ion (TAI) Outflows

    NASA Astrophysics Data System (ADS)

    Varney, R. H.; Wiltberger, M. J.; Zhang, B.; Schmitt, P.; Lotko, W.

    2013-12-01

    TAIs are generated by wave particle interactions driven by waves at temporal and spatial scales which are inaccessible in global coupled geospace models. So far attempts to include TAI outflows in global models have focused on the use of empirical correlations between observed outflow fluxes and various inputs such as DC Poynting flux, Alfvénic Poynting flux, and electron precipitation fluxes. These treatments ignore feedbacks between the outflow and the state of the ionosphere and assume the spatial and temporal distributions of the outflows are identical to those of their drivers. This work presents an alternative approach which can overcome these deficiencies while still being sufficiently computationally efficient to couple into a global modeling framework. TAIs are incorporated into a 3-D fluid model of the ionosphere and polar wind by modeling them as a separate fluid which obeys transport equations appropriate for monoenergetic conic distributions. The characteristics of the TAI outflow produced depend on the assumed transverse heating rates and the 'promotion rate' which connects the TAI fluid to the thermal O+ fluid. Using drivers extracted from runs of the Coupled Magnetosphere Ionosphere Thermosphere (CMIT) model, different strategies for causally regulating these free parameters are explored. The model can reproduce many of the observed features of TAI outflows but also exhibits physical attributes that empirical relationships alone miss. These characteristics include flux limiting of the outflow from below when intense outflow creates high-altitude cavities, time delays between the onset of transverse heating and the appearance of outflow, and spatial distributions of outflow which are different from the spatial distributions of the applied transverse heating and which depend on the ionospheric convection pattern.

  9. Causal Modeling--Path Analysis a New Trend in Research in Applied Linguistics

    ERIC Educational Resources Information Center

    Rastegar, Mina

    2006-01-01

    This article aims at discussing a new statistical trend in research in applied linguistics. This rather new statistical procedure is causal modeling--path analysis. The article demonstrates that causal modeling--path analysis is the best statistical option to use when the effects of a multitude of L2 learners' variables on language achievement are…

  10. Reconstructing Constructivism: Causal Models, Bayesian Learning Mechanisms, and the Theory Theory

    ERIC Educational Resources Information Center

    Gopnik, Alison; Wellman, Henry M.

    2012-01-01

    We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework…

  11. Sensory Impairments and Autism: A Re-Examination of Causal Modelling

    ERIC Educational Resources Information Center

    Gerrard, Sue; Rugg, Gordon

    2009-01-01

    Sensory impairments are widely reported in autism, but remain largely unexplained by existing models. This article examines Kanner's causal reasoning and identifies unsupported assumptions implicit in later empirical work. Our analysis supports a heterogeneous causal model for autistic characteristics. We propose that the development of a…

  12. Modeling earthquake dynamics

    NASA Astrophysics Data System (ADS)

    Charpentier, Arthur; Durand, Marilou

    2015-07-01

    In this paper, we investigate questions arising in Parsons and Geist (Bull Seismol Soc Am 102:1-11, 2012). Pseudo causal models connecting magnitudes and waiting times are considered, through generalized regression. We do use conditional model (magnitude given previous waiting time, and conversely) as an extension to joint distribution model described in Nikoloulopoulos and Karlis (Environmetrics 19: 251-269, 2008). On the one hand, we fit a Pareto distribution for earthquake magnitudes, where the tail index is a function of waiting time following previous earthquake; on the other hand, waiting times are modeled using a Gamma or a Weibull distribution, where parameters are functions of the magnitude of the previous earthquake. We use those two models, alternatively, to generate the dynamics of earthquake occurrence, and to estimate the probability of occurrence of several earthquakes within a year or a decade.

  13. The causal pie model: an epidemiological method applied to evolutionary biology and ecology.

    PubMed

    Wensink, Maarten; Westendorp, Rudi G J; Baudisch, Annette

    2014-05-01

    A general concept for thinking about causality facilitates swift comprehension of results, and the vocabulary that belongs to the concept is instrumental in cross-disciplinary communication. The causal pie model has fulfilled this role in epidemiology and could be of similar value in evolutionary biology and ecology. In the causal pie model, outcomes result from sufficient causes. Each sufficient cause is made up of a "causal pie" of "component causes". Several different causal pies may exist for the same outcome. If and only if all component causes of a sufficient cause are present, that is, a causal pie is complete, does the outcome occur. The effect of a component cause hence depends on the presence of the other component causes that constitute some causal pie. Because all component causes are equally and fully causative for the outcome, the sum of causes for some outcome exceeds 100%. The causal pie model provides a way of thinking that maps into a number of recurrent themes in evolutionary biology and ecology: It charts when component causes have an effect and are subject to natural selection, and how component causes affect selection on other component causes; which partitions of outcomes with respect to causes are feasible and useful; and how to view the composition of a(n apparently homogeneous) population. The diversity of specific results that is directly understood from the causal pie model is a test for both the validity and the applicability of the model. The causal pie model provides a common language in which results across disciplines can be communicated and serves as a template along which future causal analyses can be made. PMID:24963386

  14. Estimators for Clustered Education RCTs Using the Neyman Model for Causal Inference

    ERIC Educational Resources Information Center

    Schochet, Peter Z.

    2013-01-01

    This article examines the estimation of two-stage clustered designs for education randomized control trials (RCTs) using the nonparametric Neyman causal inference framework that underlies experiments. The key distinction between the considered causal models is whether potential treatment and control group outcomes are considered to be fixed for…

  15. Causal Agency Theory: Reconceptualizing a Functional Model of Self-Determination

    ERIC Educational Resources Information Center

    Shogren, Karrie A.; Wehmeyer, Michael L.; Palmer, Susan B.; Forber-Pratt, Anjali J.; Little, Todd J.; Lopez, Shane

    2015-01-01

    This paper introduces Causal Agency Theory, an extension of the functional model of self-determination. Causal Agency Theory addresses the need for interventions and assessments pertaining to selfdetermination for all students and incorporates the significant advances in understanding of disability and in the field of positive psychology since the…

  16. Does teaching students how to explicitly model the causal structure of systems improve their understanding of these systems?

    NASA Astrophysics Data System (ADS)

    Jensen, Eva

    2014-07-01

    If students really understand the systems they study, they would be able to tell how changes in the system would affect a result. This demands that the students understand the mechanisms that drive its behaviour. The study investigates potential merits of learning how to explicitly model the causal structure of systems. The approach and performance of 15 system dynamics students who are taught to explicitly model the causal structure of the systems they study were compared with the approach and performance of 22 engineering students, who generally did not receive such training. The task was to bring a computer-simulated predator-and-prey ecology to equilibrium. The system dynamics students were significantly more likely than the engineering students to correctly frame the problem. They were not much better at solving the task, however. It seemed that they had only learnt how to make models and not how to use them for reasoning.

  17. A Novel Approach for Identifying Causal Models of Complex Diseases from Family Data

    PubMed Central

    Park, Leeyoung; Kim, Ju H.

    2015-01-01

    Causal models including genetic factors are important for understanding the presentation mechanisms of complex diseases. Familial aggregation and segregation analyses based on polygenic threshold models have been the primary approach to fitting genetic models to the family data of complex diseases. In the current study, an advanced approach to obtaining appropriate causal models for complex diseases based on the sufficient component cause (SCC) model involving combinations of traditional genetics principles was proposed. The probabilities for the entire population, i.e., normal–normal, normal–disease, and disease–disease, were considered for each model for the appropriate handling of common complex diseases. The causal model in the current study included the genetic effects from single genes involving epistasis, complementary gene interactions, gene–environment interactions, and environmental effects. Bayesian inference using a Markov chain Monte Carlo algorithm (MCMC) was used to assess of the proportions of each component for a given population lifetime incidence. This approach is flexible, allowing both common and rare variants within a gene and across multiple genes. An application to schizophrenia data confirmed the complexity of the causal factors. An analysis of diabetes data demonstrated that environmental factors and gene–environment interactions are the main causal factors for type II diabetes. The proposed method is effective and useful for identifying causal models, which can accelerate the development of efficient strategies for identifying causal factors of complex diseases. PMID:25701286

  18. Seeing Perfectly Fitting Factor Models That Are Causally Misspecified: Understanding That Close-Fitting Models Can Be Worse

    ERIC Educational Resources Information Center

    Hayduk, Leslie

    2014-01-01

    Researchers using factor analysis tend to dismiss the significant ill fit of factor models by presuming that if their factor model is close-to-fitting, it is probably close to being properly causally specified. Close fit may indeed result from a model being close to properly causally specified, but close-fitting factor models can also be seriously…

  19. Visual Causal Models Enhance Clinical Explanations of Treatments for Generalized Anxiety Disorder

    PubMed Central

    Kim, Nancy S.; Khalife, Danielle; Judge, Kelly A.; Paulus, Daniel J.; Jordan, Jake T.; Yopchick, Jennelle E.

    2013-01-01

    A daily challenge in clinical practice is to adequately explain disorders and treatments to patients of varying levels of literacy in a time-limited situation. Drawing jointly upon research on causal reasoning and multimodal theory, the authors asked whether adding visual causal models to clinical explanations promotes patient learning. Participants were 86 people currently or formerly diagnosed with a mood disorder and 104 lay people in Boston, Massachusetts, USA, who were randomly assigned to receive either a visual causal model (dual-mode) presentation or auditory-only presentation of an explanation about generalized anxiety disorder and its treatment. Participants' knowledge was tested before, immediately after, and 4 weeks after the presentation. Patients and lay people learned significantly more from visual causal model presentations than from auditory-only presentations, and visual causal models were perceived to be helpful. Participants retained some information 4 weeks after the presentation, although the advantage of visual causal models did not persist in the long term. In conclusion, dual-mode presentations featuring visual causal models yield significant relative gains in patient comprehension immediately after the clinical session, at a time when the authors suggest that patients may be most willing to begin the recommended treatment plan. PMID:24093349

  20. A Bayesian Nonparametric Causal Model for Regression Discontinuity Designs

    ERIC Educational Resources Information Center

    Karabatsos, George; Walker, Stephen G.

    2013-01-01

    The regression discontinuity (RD) design (Thistlewaite & Campbell, 1960; Cook, 2008) provides a framework to identify and estimate causal effects from a non-randomized design. Each subject of a RD design is assigned to the treatment (versus assignment to a non-treatment) whenever her/his observed value of the assignment variable equals or…

  1. Causal biological network database: a comprehensive platform of causal biological network models focused on the pulmonary and vascular systems

    PubMed Central

    Boué, Stéphanie; Talikka, Marja; Westra, Jurjen Willem; Hayes, William; Di Fabio, Anselmo; Park, Jennifer; Schlage, Walter K.; Sewer, Alain; Fields, Brett; Ansari, Sam; Martin, Florian; Veljkovic, Emilija; Kenney, Renee; Peitsch, Manuel C.; Hoeng, Julia

    2015-01-01

    With the wealth of publications and data available, powerful and transparent computational approaches are required to represent measured data and scientific knowledge in a computable and searchable format. We developed a set of biological network models, scripted in the Biological Expression Language, that reflect causal signaling pathways across a wide range of biological processes, including cell fate, cell stress, cell proliferation, inflammation, tissue repair and angiogenesis in the pulmonary and cardiovascular context. This comprehensive collection of networks is now freely available to the scientific community in a centralized web-based repository, the Causal Biological Network database, which is composed of over 120 manually curated and well annotated biological network models and can be accessed at http://causalbionet.com. The website accesses a MongoDB, which stores all versions of the networks as JSON objects and allows users to search for genes, proteins, biological processes, small molecules and keywords in the network descriptions to retrieve biological networks of interest. The content of the networks can be visualized and browsed. Nodes and edges can be filtered and all supporting evidence for the edges can be browsed and is linked to the original articles in PubMed. Moreover, networks may be downloaded for further visualization and evaluation. Database URL: http://causalbionet.com PMID:25887162

  2. Conditional spectrum computation incorporating multiple causal earthquakes and ground-motion prediction models

    USGS Publications Warehouse

    Lin, Ting; Harmsen, Stephen C.; Baker, Jack W.; Luco, Nicolas

    2013-01-01

    The conditional spectrum (CS) is a target spectrum (with conditional mean and conditional standard deviation) that links seismic hazard information with ground-motion selection for nonlinear dynamic analysis. Probabilistic seismic hazard analysis (PSHA) estimates the ground-motion hazard by incorporating the aleatory uncertainties in all earthquake scenarios and resulting ground motions, as well as the epistemic uncertainties in ground-motion prediction models (GMPMs) and seismic source models. Typical CS calculations to date are produced for a single earthquake scenario using a single GMPM, but more precise use requires consideration of at least multiple causal earthquakes and multiple GMPMs that are often considered in a PSHA computation. This paper presents the mathematics underlying these more precise CS calculations. Despite requiring more effort to compute than approximate calculations using a single causal earthquake and GMPM, the proposed approach produces an exact output that has a theoretical basis. To demonstrate the results of this approach and compare the exact and approximate calculations, several example calculations are performed for real sites in the western United States. The results also provide some insights regarding the circumstances under which approximate results are likely to closely match more exact results. To facilitate these more precise calculations for real applications, the exact CS calculations can now be performed for real sites in the United States using new deaggregation features in the U.S. Geological Survey hazard mapping tools. Details regarding this implementation are discussed in this paper.

  3. Causal reasoning with forces

    PubMed Central

    Wolff, Phillip; Barbey, Aron K.

    2015-01-01

    Causal composition allows people to generate new causal relations by combining existing causal knowledge. We introduce a new computational model of such reasoning, the force theory, which holds that people compose causal relations by simulating the processes that join forces in the world, and compare this theory with the mental model theory (Khemlani et al., 2014) and the causal model theory (Sloman et al., 2009), which explain causal composition on the basis of mental models and structural equations, respectively. In one experiment, the force theory was uniquely able to account for people's ability to compose causal relationships from complex animations of real-world events. In three additional experiments, the force theory did as well as or better than the other two theories in explaining the causal compositions people generated from linguistically presented causal relations. Implications for causal learning and the hierarchical structure of causal knowledge are discussed. PMID:25653611

  4. Causal modelling applied to the risk assessment of a wastewater discharge.

    PubMed

    Paul, Warren L; Rokahr, Pat A; Webb, Jeff M; Rees, Gavin N; Clune, Tim S

    2016-03-01

    Bayesian networks (BNs), or causal Bayesian networks, have become quite popular in ecological risk assessment and natural resource management because of their utility as a communication and decision-support tool. Since their development in the field of artificial intelligence in the 1980s, however, Bayesian networks have evolved and merged with structural equation modelling (SEM). Unlike BNs, which are constrained to encode causal knowledge in conditional probability tables, SEMs encode this knowledge in structural equations, which is thought to be a more natural language for expressing causal information. This merger has clarified the causal content of SEMs and generalised the method such that it can now be performed using standard statistical techniques. As it was with BNs, the utility of this new generation of SEM in ecological risk assessment will need to be demonstrated with examples to foster an understanding and acceptance of the method. Here, we applied SEM to the risk assessment of a wastewater discharge to a stream, with a particular focus on the process of translating a causal diagram (conceptual model) into a statistical model which might then be used in the decision-making and evaluation stages of the risk assessment. The process of building and testing a spatial causal model is demonstrated using data from a spatial sampling design, and the implications of the resulting model are discussed in terms of the risk assessment. It is argued that a spatiotemporal causal model would have greater external validity than the spatial model, enabling broader generalisations to be made regarding the impact of a discharge, and greater value as a tool for evaluating the effects of potential treatment plant upgrades. Suggestions are made on how the causal model could be augmented to include temporal as well as spatial information, including suggestions for appropriate statistical models and analyses. PMID:26832914

  5. A Bio-Inspired Memory Model Embedded with a Causality Reasoning Function for Structural Fault Location

    PubMed Central

    Zheng, Wei; Wu, Chunxian

    2015-01-01

    Structural health monitoring (SHM) is challenged by massive data storage pressure and structural fault location. In response to these issues, a bio-inspired memory model that is embedded with a causality reasoning function is proposed for fault location. First, the SHM data for processing are divided into three temporal memory areas to control data volume reasonably. Second, the inherent potential of the causal relationships in structural state monitoring is mined. Causality and dependence indices are also proposed to establish the mechanism of quantitative description of the reason and result events. Third, a mechanism of causality reasoning is developed for the reason and result events to locate faults in a SHM system. Finally, a deformation experiment conducted on a steel spring plate demonstrates that the proposed model can be applied to real-time acquisition, compact data storage, and system fault location in a SHM system. Moreover, the model is compared with some typical methods based on an experimental benchmark dataset. PMID:25798991

  6. Expectations and Interpretations During Causal Learning

    PubMed Central

    Luhmann, Christian C.; Ahn, Woo-kyoung

    2012-01-01

    In existing models of causal induction, 4 types of covariation information (i.e., presence/absence of an event followed by presence/absence of another event) always exert identical influences on causal strength judgments (e.g., joint presence of events always suggests a generative causal relationship). In contrast, we suggest that, due to expectations developed during causal learning, learners give varied interpretations to covariation information as it is encountered and that these interpretations influence the resulting causal beliefs. In Experiments 1A–1C, participants’ interpretations of observations during a causal learning task were dynamic, expectation based, and, furthermore, strongly tied to subsequent causal judgments. Experiment 2 demonstrated that adding trials of joint absence or joint presence of events, whose roles have been traditionally interpreted as increasing causal strengths, could result in decreased overall causal judgments and that adding trials where one event occurs in the absence of another, whose roles have been traditionally interpreted as decreasing causal strengths, could result in increased overall causal judgments. We discuss implications for traditional models of causal learning and how a more top-down approach (e.g., Bayesian) would be more compatible with the current findings. PMID:21534705

  7. Dynamic Uncertain Causality Graph for Knowledge Representation and Probabilistic Reasoning: Directed Cyclic Graph and Joint Probability Distribution.

    PubMed

    Zhang, Qin

    2015-07-01

    Probabilistic graphical models (PGMs) such as Bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning. Dynamic uncertain causality graph (DUCG) is a newly presented model of PGMs, which can be applied to fault diagnosis of large and complex industrial systems, disease diagnosis, and so on. The basic methodology of DUCG has been previously presented, in which only the directed acyclic graph (DAG) was addressed. However, the mathematical meaning of DUCG was not discussed. In this paper, the DUCG with directed cyclic graphs (DCGs) is addressed. In contrast, BN does not allow DCGs, as otherwise the conditional independence will not be satisfied. The inference algorithm for the DUCG with DCGs is presented, which not only extends the capabilities of DUCG from DAGs to DCGs but also enables users to decompose a large and complex DUCG into a set of small, simple sub-DUCGs, so that a large and complex knowledge base can be easily constructed, understood, and maintained. The basic mathematical definition of a complete DUCG with or without DCGs is proved to be a joint probability distribution (JPD) over a set of random variables. The incomplete DUCG as a part of a complete DUCG may represent a part of JPD. Examples are provided to illustrate the methodology. PMID:25781960

  8. Challenges to inferring causality from viral information dispersion in dynamic social networks

    NASA Astrophysics Data System (ADS)

    Ternovski, John

    2014-06-01

    Understanding the mechanism behind large-scale information dispersion through complex networks has important implications for a variety of industries ranging from cyber-security to public health. With the unprecedented availability of public data from online social networks (OSNs) and the low cost nature of most OSN outreach, randomized controlled experiments, the "gold standard" of causal inference methodologies, have been used with increasing regularity to study viral information dispersion. And while these studies have dramatically furthered our understanding of how information disseminates through social networks by isolating causal mechanisms, there are still major methodological concerns that need to be addressed in future research. This paper delineates why modern OSNs are markedly different from traditional sociological social networks and why these differences present unique challenges to experimentalists and data scientists. The dynamic nature of OSNs is particularly troublesome for researchers implementing experimental designs, so this paper identifies major sources of bias arising from network mutability and suggests strategies to circumvent and adjust for these biases. This paper also discusses the practical considerations of data quality and collection, which may adversely impact the efficiency of the estimator. The major experimental methodologies used in the current literature on virality are assessed at length, and their strengths and limits identified. Other, as-yetunsolved threats to the efficiency and unbiasedness of causal estimators--such as missing data--are also discussed. This paper integrates methodologies and learnings from a variety of fields under an experimental and data science framework in order to systematically consolidate and identify current methodological limitations of randomized controlled experiments conducted in OSNs.

  9. A causal model of positive health practices: the relationship between approach and replication.

    PubMed

    Yarcheski, A; Mahon, N E

    1989-01-01

    This study supports the position that causal models developed a priori preclude replication with varied samples. Based on a critique of a study of positive health practices among adults (Muhlenkamp & Sayles, 1986), a causal model of positive health practices for adolescents was developed a priori from a theoretical formulation. Using data from a sample of 165 adolescents who responded to the Personal Lifestyle Questionnaire, the Rosenberg Self-Esteem Scale, Part 2 of the Personal Resource Questionnaire which measures a social support system, and a demographic data sheet, the intercorrelations among the study variables were analyzed using correlation coefficients. The causal model was then tested with the adolescent data using the LISREL VI program. The results showed a relatively good fit of the model to the data via a number of indicators. The model was then applied to data published from adults (Muhlenkamp & Sayles) using the LISREL VI program. The results indicated that there was a relatively poor fit of the model to the adult data, thus demonstrating the problem of replicating causal models with varied samples when the correct approach to causal modeling is used. The discussion focuses on theoretical and methodological reasons for the findings. PMID:2928152

  10. Investigating Causality Between Interacting Brain Areas with Multivariate Autoregressive Models of MEG Sensor Data

    PubMed Central

    Michalareas, George; Schoffelen, Jan-Mathijs; Paterson, Gavin; Gross, Joachim

    2013-01-01

    Abstract In this work, we investigate the feasibility to estimating causal interactions between brain regions based on multivariate autoregressive models (MAR models) fitted to magnetoencephalographic (MEG) sensor measurements. We first demonstrate the theoretical feasibility of estimating source level causal interactions after projection of the sensor-level model coefficients onto the locations of the neural sources. Next, we show with simulated MEG data that causality, as measured by partial directed coherence (PDC), can be correctly reconstructed if the locations of the interacting brain areas are known. We further demonstrate, if a very large number of brain voxels is considered as potential activation sources, that PDC as a measure to reconstruct causal interactions is less accurate. In such case the MAR model coefficients alone contain meaningful causality information. The proposed method overcomes the problems of model nonrobustness and large computation times encountered during causality analysis by existing methods. These methods first project MEG sensor time-series onto a large number of brain locations after which the MAR model is built on this large number of source-level time-series. Instead, through this work, we demonstrate that by building the MAR model on the sensor-level and then projecting only the MAR coefficients in source space, the true casual pathways are recovered even when a very large number of locations are considered as sources. The main contribution of this work is that by this methodology entire brain causality maps can be efficiently derived without any a priori selection of regions of interest. Hum Brain Mapp, 2013. © 2012 Wiley Periodicals, Inc. PMID:22328419

  11. A restricted dimer model on a two-dimensional random causal triangulation

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Durhuus, B.; Wheater, J. F.

    2014-09-01

    We introduce a restricted hard dimer model on a random causal triangulation that is exactly solvable and generalizes a model recently proposed by Atkin and Zohren (2012 Phys. Lett. B 712 445-50). We show that the latter model exhibits unusual behaviour at its multicritical point; in particular, its Hausdorff dimension equals 3 and not 3/2 as would be expected from general scaling arguments. When viewed as a special case of the generalized model introduced here we show that this behaviour is not generic and therefore is not likely to represent the true behaviour of the full dimer model on a random causal triangulation.

  12. How to Be Causal: Time, Spacetime and Spectra

    ERIC Educational Resources Information Center

    Kinsler, Paul

    2011-01-01

    I explain a simple definition of causality in widespread use, and indicate how it links to the Kramers-Kronig relations. The specification of causality in terms of temporal differential equations then shows us the way to write down dynamical models so that their causal nature "in the sense used here" should be obvious to all. To extend existing…

  13. Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation.

    PubMed

    Freistühler, Heinrich; Temple, Blake

    2014-06-01

    CURRENT THEORIES OF DISSIPATION IN THE RELATIVISTIC REGIME SUFFER FROM ONE OF TWO DEFICITS: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier-Stokes-Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ,η,ζ, corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress-energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor. PMID:24910526

  14. Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation

    PubMed Central

    Freistühler, Heinrich; Temple, Blake

    2014-01-01

    Current theories of dissipation in the relativistic regime suffer from one of two deficits: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier–Stokes–Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ,η,ζ, corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress–energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor. PMID:24910526

  15. Systemic risk and causality dynamics of the world international shipping market

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Podobnik, Boris; Kenett, Dror Y.; Eugene Stanley, H.

    2014-12-01

    Various studies have reported that many economic systems have been exhibiting an increase in the correlation between different market sectors, a factor that exacerbates the level of systemic risk. We measure this systemic risk of three major world shipping markets, (i) the new ship market, (ii) the second-hand ship market, and (iii) the freight market, as well as the shipping stock market. Based on correlation networks during three time periods, that prior to the financial crisis, during the crisis, and after the crisis, minimal spanning trees (MSTs) and hierarchical trees (HTs) both exhibit complex dynamics, i.e., different market sectors tend to be more closely linked during financial crisis. Brownian distance correlation and Granger causality test both can be used to explore the directional interconnectedness of market sectors, while Brownian distance correlation captures more dependent relationships, which are not observed in the Granger causality test. These two measures can also identify and quantify market regression periods, implying that they contain predictive power for the current crisis.

  16. Final Report for Dynamic Models for Causal Analysis of Panel Data. The Impact of Measurement Error in the Analysis of Log-Linear Rate Models: Monte Carlo Findings. Part III, Chapter 4.

    ERIC Educational Resources Information Center

    Carroll, Glenn R.; And Others

    This document is part of a series of chapters described in SO 011 759. The chapter advocates the analysis of event-histories (data giving the number, timing, and sequence of changes in a categorical dependent variable) with maximum likelihood estimators (MLE) applied to log-linear rate models. Results from a Monte Carlo investigation of the impact…

  17. Promoting Causal Agency: The Self-Determination Learning Model of Instruction.

    ERIC Educational Resources Information Center

    Wehmeyer, Michael L.; Palmer, Susan B.; Agran, Martin; Mithaug, Dennis E.; Martin, James E.

    2000-01-01

    This article introduces a model of teaching, The Self-Determined Learning Model of Instruction, incorporating principles of self-determination, which enables teachers to teach students to become causal agents in their own lives. Results from a field test indicate students (N=40) receiving instruction from teachers using the model attained…

  18. A Tool To Support Failure Mode And Effects Analysis Based On Causal Modelling And Reasoning

    NASA Astrophysics Data System (ADS)

    Underwood, W. E.; Laib, S. L.

    1987-05-01

    A prototype knowledge-based system has been developed that supports Failure Mode & Effects Analysis (FMEA). The knowledge base consists of causal models of components and a representation for coupling these components into assemblies and systems. The causal models are qualitative models. They allow reasoning as to whether variables are increasing, decreasing or steady. The analysis strategies used by the prototype allow it to determine the effects of failure modes on the function of the part, the failure effect on the assembly the part is contained in, and the effect on the subsystem containing the assembly.

  19. Sex and Self-Control Theory: The Measures and Causal Model May Be Different

    ERIC Educational Resources Information Center

    Higgins, George E.; Tewksbury, Richard

    2006-01-01

    This study examines the distribution differences across sexes in key measures of self-control theory and differences in a causal model. Using cross-sectional data from juveniles ("n" = 1,500), the study shows mean-level differences in many of the self-control, risky behavior, and delinquency measures. Structural equation modeling findings support…

  20. Spatial-temporal causal modeling: a data centric approach to climate change attribution (Invited)

    NASA Astrophysics Data System (ADS)

    Lozano, A. C.

    2010-12-01

    Attribution of climate change has been predominantly based on simulations using physical climate models. These approaches rely heavily on the employed models and are thus subject to their shortcomings. Given the physical models’ limitations in describing the complex system of climate, we propose an alternative approach to climate change attribution that is data centric in the sense that it relies on actual measurements of climate variables and human and natural forcing factors. We present a novel class of methods to infer causality from spatial-temporal data, as well as a procedure to incorporate extreme value modeling into our methodology in order to address the attribution of extreme climate events. We develop a collection of causal modeling methods using spatio-temporal data that combine graphical modeling techniques with the notion of Granger causality. “Granger causality” is an operational definition of causality from econometrics, which is based on the premise that if a variable causally affects another, then the past values of the former should be helpful in predicting the future values of the latter. In its basic version, our methodology makes use of the spatial relationship between the various data points, but treats each location as being identically distributed and builds a unique causal graph that is common to all locations. A more flexible framework is then proposed that is less restrictive than having a single causal graph common to all locations, while avoiding the brittleness due to data scarcity that might arise if one were to independently learn a different graph for each location. The solution we propose can be viewed as finding a middle ground by partitioning the locations into subsets that share the same causal structures and pooling the observations from all the time series belonging to the same subset in order to learn more robust causal graphs. More precisely, we make use of relationships between locations (e.g. neighboring

  1. A conditional Granger causality model approach for group analysis in functional MRI

    PubMed Central

    Zhou, Zhenyu; Wang, Xunheng; Klahr, Nelson J.; Liu, Wei; Arias, Diana; Liu, Hongzhi; von Deneen, Karen M.; Wen, Ying; Lu, Zuhong; Xu, Dongrong; Liu, Yijun

    2011-01-01

    Granger causality model (GCM) derived from multivariate vector autoregressive models of data has been employed for identifying effective connectivity in the human brain with functional MR imaging (fMRI) and to reveal complex temporal and spatial dynamics underlying a variety of cognitive processes. In the most recent fMRI effective connectivity measures, pairwise GCM has commonly been applied based on single voxel values or average values from special brain areas at the group level. Although a few novel conditional GCM methods have been proposed to quantify the connections between brain areas, our study is the first to propose a viable standardized approach for group analysis of an fMRI data with GCM. To compare the effectiveness of our approach with traditional pairwise GCM models, we applied a well-established conditional GCM to pre-selected time series of brain regions resulting from general linear model (GLM) and group spatial kernel independent component analysis (ICA) of an fMRI dataset in the temporal domain. Datasets consisting of one task-related and one resting-state fMRI were used to investigate connections among brain areas with the conditional GCM method. With the GLM detected brain activation regions in the emotion related cortex during the block design paradigm, the conditional GCM method was proposed to study the causality of the habituation between the left amygdala and pregenual cingulate cortex during emotion processing. For the resting-state dataset, it is possible to calculate not only the effective connectivity between networks but also the heterogeneity within a single network. Our results have further shown a particular interacting pattern of default mode network (DMN) that can be characterized as both afferent and efferent influences on the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC). These results suggest that the conditional GCM approach based on a linear multivariate vector autoregressive (MVAR) model can achieve

  2. Using an Analogy To Model Causal Mechanisms in a Complex Text.

    ERIC Educational Resources Information Center

    Clement, Catherine A.; Yanowitz, Karen L.

    2003-01-01

    Two experiments examined the role of analogy in the development of a situation model of a target passage, specifically, whether an analogous source text could improve comprehension and inferencing about causal mechanisms in the target. Responses of analogy subjects were more likely to include given and inferred information that comprised the…

  3. Pretense, Counterfactuals, and Bayesian Causal Models: Why What Is Not Real Really Matters

    ERIC Educational Resources Information Center

    Weisberg, Deena S.; Gopnik, Alison

    2013-01-01

    Young children spend a large portion of their time pretending about non-real situations. Why? We answer this question by using the framework of Bayesian causal models to argue that pretending and counterfactual reasoning engage the same component cognitive abilities: disengaging with current reality, making inferences about an alternative…

  4. Causal Analysis to Enhance Creative Problem-Solving: Performance and Effects on Mental Models

    ERIC Educational Resources Information Center

    Hester, Kimberly S.; Robledo, Issac C.; Barrett, Jamie D.; Peterson, David R.; Hougen, Dean P.; Day, Eric A.; Mumford, Michael D.

    2012-01-01

    In recent years, it has become apparent that knowledge is a critical component of creative thought. One form of knowledge that might be particularly important to creative thought relies on the mental models people employ to understand novel, ill-defined problems. In this study, undergraduates were given training in the use of causal relationships…

  5. The Impact of School Leadership on School Level Factors: Validation of a Causal Model

    ERIC Educational Resources Information Center

    Kruger, Meta L.; Witziers, Bob; Sleegers, Peter

    2007-01-01

    This study aims to contribute to a better understanding of the antecedents and effects of educational leadership, and of the influence of the principal's leadership on intervening and outcome variables. A path analysis was conducted to test and validate a causal model. The results show no direct or indirect effects of educational leadership on…

  6. Implications of Three Causal Models for the Measurement of Halo Error.

    ERIC Educational Resources Information Center

    Fisicaro, Sebastiano A.; Lance, Charles E.

    1990-01-01

    Three conceptual definitions of halo error are reviewed in the context of causal models of halo error. A corrected correlational measurement of halo error is derived, and the traditional and corrected measures are compared empirically for a 1986 study of 52 undergraduate students' ratings of a lecturer's performance. (SLD)

  7. A Causal Modeling Approach to the Analysis of Course Evaluation Data.

    ERIC Educational Resources Information Center

    Wolfe, Mary L.

    Five causal models relating several aspects of end-of-term student evaluation of a graduate course in nursing research methods were proposed and tested empirically. The course evaluation form consisted of four Likert-type subscales, on which students rated the following aspects of the course: (1) the extent to which the course met its objectives;…

  8. Dropouts and Turnover: The Synthesis and Test of a Causal Model of Student Attrition.

    ERIC Educational Resources Information Center

    Bean, John P.

    1980-01-01

    The determinants of student attrition in higher education institutions are investigated using a causal model which synthesized research findings on job turnover and on student attrition. Many male/female differences were found but three surrogate measures for pay were found for both sexes to be related to intent to leave. (Author/LC)

  9. The Effects of Time-Limitations and Peer Relationships on Adult Student Learning: A Causal Model.

    ERIC Educational Resources Information Center

    Lundberg, Carol

    Using data from 4,644 undergraduates, this study tested a causal model identifying effects of social integration, age, and time limiting characteristics on adult student learning. Time limiting characteristics included such constraints as off-campus responsibilities and relationships. Educationally related peer relationships were the strongest…

  10. Causal Models for Mediation Analysis: An Introduction to Structural Mean Models.

    PubMed

    Zheng, Cheng; Atkins, David C; Zhou, Xiao-Hua; Rhew, Isaac C

    2015-01-01

    Mediation analyses are critical to understanding why behavioral interventions work. To yield a causal interpretation, common mediation approaches must make an assumption of "sequential ignorability." The current article describes an alternative approach to causal mediation called structural mean models (SMMs). A specific SMM called a rank-preserving model (RPM) is introduced in the context of an applied example. Particular attention is given to the assumptions of both approaches to mediation. Applying both mediation approaches to the college student drinking data yield notable differences in the magnitude of effects. Simulated examples reveal instances in which the traditional approach can yield strongly biased results, whereas the RPM approach remains unbiased in these cases. At the same time, the RPM approach has its own assumptions that must be met for correct inference, such as the existence of a covariate that strongly moderates the effect of the intervention on the mediator and no unmeasured confounders that also serve as a moderator of the effect of the intervention or the mediator on the outcome. The RPM approach to mediation offers an alternative way to perform mediation analysis when there may be unmeasured confounders. PMID:26717122

  11. Causal Modeling for Indirect Cost Management at Universities and Colleges.

    ERIC Educational Resources Information Center

    Muir, Albert E.

    1980-01-01

    The logical sequence of one set of propositions regarding the association among proposal output, negotiated indirect cost rates, and overhead recovery, using a sample of 24 institutions of higher education within the SUNY system, is investigated. A model for estimating overhead a year in advance is presented. (Author/MLW)

  12. [Representation of relations between television watching and delinquency within the scope of causal analysis models].

    PubMed

    Scheungrab, M

    1990-01-01

    The subject of research coucerns causal relationships between variables of consuming home videos and television and different indicators of delinquency ("acceptance of social norms" (NORM-AK), "perceived risk of punishment" (DEL-RISK), "severity of negative consequences" (NEG-VAL), "acceptance of illegitimate means" (ILLEG-M)). Additionally, factors of influence external to media are taken into consideration which are connected with delinquency according to criminologic results, i.e. variables of communication and variables of the family life and the structure of the family. The model is tested by a sample of N = 305 male pupils of a Regensburg vocational school with methods analysing causality ("2-Stage-Least-Square" (2-SLS) and "Latent variables path analysis with partial least squares estimation" (LVPLS)). The 2-SLS-estimates largely confirm the causal relationships supposed in the model. The results are, three significantly positive indirect connections from the preference for violence of home videos to the main indicator of delinquency ILLEG-M (by way of the variables "consumption of home videos" put on the Index, NEG-VAL and DEL-RISK). The direct influence of the preference for violence on television on ILLEG-M is confirmed, whereas the direct path from the popularity of violent video films to ILLEG-M cannot be proved. The LVPLS-results essentially correspond to the relationship shown by 2-SLS; in addition the LVPLS-estimates also confirm direct causal relationships between the latent variables "consumption of violent video films" and "delinquency proneness". PMID:2132917

  13. Reconstructing constructivism: Causal models, Bayesian learning mechanisms and the theory theory

    PubMed Central

    Gopnik, Alison; Wellman, Henry M.

    2012-01-01

    We propose a new version of the “theory theory” grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and non-technical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists. PMID:22582739

  14. Reconstructing constructivism: causal models, Bayesian learning mechanisms, and the theory theory.

    PubMed

    Gopnik, Alison; Wellman, Henry M

    2012-11-01

    We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and nontechnical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and the psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists. PMID:22582739

  15. Causality issues of particle detector models in QFT and quantum optics

    NASA Astrophysics Data System (ADS)

    Martín-Martínez, Eduardo

    2015-11-01

    We analyze the constraints that causality imposes on some of the particle detector models employed in quantum field theory in general and, in particular, on those used in quantum optics (or superconducting circuits) to model atoms interacting with light. Namely, we show that disallowing faster-than-light communication can impose severe constraints on the applicability of particle detector models in three different common scenarios: (1) when the detectors are spatially smeared, (2) when a UV cutoff is introduced in the theory and (3) under one of the most typical approximations made in quantum optics: the rotating-wave approximation. We identify the scenarios in which the models' causal behavior can and cannot be cured.

  16. Invited commentary: Agent-based models for causal inference—reweighting data and theory in epidemiology.

    PubMed

    Hernán, Miguel A

    2015-01-15

    The relative weights of empirical facts (data) and assumptions (theory) in causal inference vary across disciplines. Typically, disciplines that ask more complex questions tend to better tolerate a greater role of theory and modeling in causal inference. As epidemiologists move toward increasingly complex questions, Marshall and Galea (Am J Epidemiol. 2015;181(2):92-99) support a reweighting of data and theory in epidemiologic research via the use of agent-based modeling. The parametric g-formula can be viewed as an intermediate step between traditional epidemiologic methods and agent-based modeling and therefore is a method that can ease the transition toward epidemiologic methods that rely heavily on modeling. PMID:25480820

  17. Uncertainty in Propensity Score Estimation: Bayesian Methods for Variable Selection and Model Averaged Causal Effects

    PubMed Central

    Zigler, Corwin Matthew; Dominici, Francesca

    2014-01-01

    Causal inference with observational data frequently relies on the notion of the propensity score (PS) to adjust treatment comparisons for observed confounding factors. As decisions in the era of “big data” are increasingly reliant on large and complex collections of digital data, researchers are frequently confronted with decisions regarding which of a high-dimensional covariate set to include in the PS model in order to satisfy the assumptions necessary for estimating average causal effects. Typically, simple or ad-hoc methods are employed to arrive at a single PS model, without acknowledging the uncertainty associated with the model selection. We propose three Bayesian methods for PS variable selection and model averaging that 1) select relevant variables from a set of candidate variables to include in the PS model and 2) estimate causal treatment effects as weighted averages of estimates under different PS models. The associated weight for each PS model reflects the data-driven support for that model’s ability to adjust for the necessary variables. We illustrate features of our proposed approaches with a simulation study, and ultimately use our methods to compare the effectiveness of surgical vs. nonsurgical treatment for brain tumors among 2,606 Medicare beneficiaries. Supplementary materials are available online. PMID:24696528

  18. Review of aerospace engineering cost modelling: The genetic causal approach

    NASA Astrophysics Data System (ADS)

    Curran, R.; Raghunathan, S.; Price, M.

    2004-11-01

    The primary intention of this paper is to review the current state of the art in engineering cost modelling as applied to aerospace. This is a topic of current interest and in addressing the literature, the presented work also sets out some of the recognised definitions of cost that relate to the engineering domain. The paper does not attempt to address the higher-level financial sector but rather focuses on the costing issues directly relevant to the engineering process, primarily those of design and manufacture. This is of more contemporary interest as there is now a shift towards the analysis of the influence of cost, as defined in more engineering related terms; in an attempt to link into integrated product and process development (IPPD) within a concurrent engineering environment. Consequently, the cost definitions are reviewed in the context of the nature of cost as applicable to the engineering process stages: from bidding through to design, to manufacture, to procurement and ultimately, to operation. The linkage and integration of design and manufacture is addressed in some detail. This leads naturally to the concept of engineers influencing and controlling cost within their own domain rather than trusting this to financers who have little control over the cause of cost. In terms of influence, the engineer creates the potential for cost and in a concurrent environment this requires models that integrate cost into the decision making process.

  19. Edge replacement and minimality as models of causal inference in children.

    PubMed

    Buchanan, David W; Sobel, David M

    2014-01-01

    Recently, much research has focused on causal graphical models (CGMs) as a computational-level description of how children represent cause and effect. While this research program has shown promise, there are aspects of causal reasoning that CGMs have difficulty accommodating. We propose a new formalism that amends CGMs. This edge replacement grammar formalizes one existing and one novel theoretical commitment. The existing idea is that children are determinists, in the sense that they believe that apparent randomness comes from hidden complexity, rather than inherent nondeterminism in the world. The new idea is that children think of causation as a branching process: causal relations grow not directly from the cause, but from existing relations between the cause and other effects. We have shown elsewhere that these two commitments together, when formalized, can explain and quantitatively fit the otherwise puzzling effect of nonindependence observed in the adult causal reasoning literature. We then test the qualitative predictions of this new formalism on children in a series of three experiments. PMID:24851350

  20. Granger causality analysis with nonuniform sampling and its application to pulse-coupled nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Yaoyu; Xiao, Yanyang; Zhou, Douglas; Cai, David

    2016-04-01

    The Granger causality (GC) analysis is an effective approach to infer causal relations for time series. However, for data obtained by uniform sampling (i.e., with an equal sampling time interval), it is known that GC can yield unreliable causal inference due to aliasing if the sampling rate is not sufficiently high. To solve this unreliability issue, we consider the nonuniform sampling scheme as it can mitigate against aliasing. By developing an unbiased estimation of power spectral density of nonuniformly sampled time series, we establish a framework of spectrum-based nonparametric GC analysis. Applying this framework to a general class of pulse-coupled nonlinear networks and utilizing some particular spectral structure possessed by these nonlinear network data, we demonstrate that, for such nonlinear networks with nonuniformly sampled data, reliable GC inference can be achieved at a low nonuniform mean sampling rate at which the traditional uniform sampling GC may lead to spurious causal inference.

  1. Modeling and Encoding Clinical Causal Relationships in a Medical Knowledge Base

    PubMed Central

    Blum, Robert L.

    1983-01-01

    This paper presents a method for the computer modeling and encoding of clinical causal relationships (CR's). This method draws on the theory of multivariate linear models and path analysis. The representation was used to encode medical CR's derived empirically from a clinical database by the RX computer project described in SCAMC82. The emphasis in the representation is on capturing the intensities of effects and the variation in the effects across a patient population. This information is used by RX in determining the validity of other CR's. The representation uses a directed graph formalism in which the nodes are frames and the arcs contain seven descriptive features of individual CR's: intensity, distribution, direction, mathematical form, setting, validity, and evidence. Because natural systems (such as the human body) are inherently probabilistic, linear models are useful in representing causal flow in them.

  2. Calculating and Understanding: Formal Models and Causal Explanations in Science, Common Reasoning and Physics Teaching

    NASA Astrophysics Data System (ADS)

    Besson, Ugo

    2010-03-01

    This paper presents an analysis of the different types of reasoning and physical explanation used in science, common thought, and physics teaching. It then reflects on the learning difficulties connected with these various approaches, and suggests some possible didactic strategies. Although causal reasoning occurs very frequently in common thought and daily life, it has long been the subject of debate and criticism among philosophers and scientists. In this paper, I begin by providing a description of some general tendencies of common reasoning that have been identified by didactic research. Thereafter, I briefly discuss the role of causality in science, as well as some different types of explanation employed in the field of physics. I then present some results of a study examining the causal reasoning used by students in solid and fluid mechanics. The differences found between the types of reasoning typical of common thought and those usually proposed during instruction can create learning difficulties and impede student motivation. Many students do not seem satisfied by the mere application of formal laws and functional relations. Instead, they express the need for a causal explanation, a mechanism that allows them to understand how a state of affairs has come about. I discuss few didactic strategies aimed at overcoming these problems, and describe, in general terms, two examples of mechanics teaching sequences which were developed and tested in different contexts. The paper ends with a reflection on the possible role to be played in physics learning by intuitive and imaginative thought, and the use of simple explanatory models based on physical analogies and causal mechanisms.

  3. Mediation Analysis With Intermediate Confounding: Structural Equation Modeling Viewed Through the Causal Inference Lens

    PubMed Central

    De Stavola, Bianca L.; Daniel, Rhian M.; Ploubidis, George B.; Micali, Nadia

    2015-01-01

    The study of mediation has a long tradition in the social sciences and a relatively more recent one in epidemiology. The first school is linked to path analysis and structural equation models (SEMs), while the second is related mostly to methods developed within the potential outcomes approach to causal inference. By giving model-free definitions of direct and indirect effects and clear assumptions for their identification, the latter school has formalized notions intuitively developed in the former and has greatly increased the flexibility of the models involved. However, through its predominant focus on nonparametric identification, the causal inference approach to effect decomposition via natural effects is limited to settings that exclude intermediate confounders. Such confounders are naturally dealt with (albeit with the caveats of informality and modeling inflexibility) in the SEM framework. Therefore, it seems pertinent to revisit SEMs with intermediate confounders, armed with the formal definitions and (parametric) identification assumptions from causal inference. Here we investigate: 1) how identification assumptions affect the specification of SEMs, 2) whether the more restrictive SEM assumptions can be relaxed, and 3) whether existing sensitivity analyses can be extended to this setting. Data from the Avon Longitudinal Study of Parents and Children (1990–2005) are used for illustration. PMID:25504026

  4. Recursive causality in evolution: a model for epigenetic mechanisms in cancer development.

    PubMed

    Haslberger, A; Varga, F; Karlic, H

    2006-01-01

    Interactions between adaptative and selective processes are illustrated in the model of recursive causality as defined in Rupert Riedl's systems theory of evolution. One of the main features of this theory also termed as theory of evolving complexity is the centrality of the notion of 'recursive' or 'feedback' causality - 'the idea that every biological effect in living systems, in some way, feeds back to its own cause'. Our hypothesis is that "recursive" or "feedback" causality provides a model for explaining the consequences of interacting genetic and epigenetic mechanisms which are known to play a key role in development of cancer. Epigenetics includes any process that alters gene activity without changes of the DNA sequence. The most important epigenetic mechanisms are DNA-methylation and chromatin remodeling. Hypomethylation of so-called oncogenes and hypermethylation of tumor suppressor genes appear to be critical determinants of cancer. Folic acid, vitamin B12 and other nutrients influence the function of enzymes that participate in various methylation processes by affecting the supply of methyl groups into a variety of molecules which may be directly or indirectly associated with cancerogenesis. We present an example from our own studies by showing that vitamin D3 has the potential to de-methylate the osteocalcin-promoter in MG63 osteosarcoma cells. Consequently, a stimulation of osteocalcin synthesis can be observed. The above mentioned enzymes also play a role in development and differentiation of cells and organisms and thus illustrate the close association between evolutionary and developmental mechanisms. This enabled new ways to understand the interaction between the genome and environment and may improve biomedical concepts including environmental health aspects where epigenetic and genetic modifications are closely associated. Recent observations showed that methylated nucleotides in the gene promoter may serve as a target for solar UV

  5. Combining ICA and Granger causality: a novel tool for investigation of brain dynamics and brain oscillations using fNIRS measurements

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen

    2014-03-01

    Identifying directional influences in neural circuits from functional near infrared spectroscopy (fNIRS) recordings presents one of the main challenges for understanding brain dynamics. In this study a new strategy that combines Granger causality mapping (GCM) and independent component analysis (ICA) is proposed to reveal complex neural network dynamics underlying cognitive processes with fNIRS measurements. The GCM-ICA algorithm implements the following two procedures: (i) extraction of the region of interests (ROIs) of cortical activations by ICA, and (ii) estimation of the direct causal influences in local brain networks using Granger causality among voxels of ROIs. Our results show the use of GCM in conjunction with ICA is able to effectively capture the brain network dynamics in time-frequency domain with significantly reduced computational cost. We thus suggest that the GCM-ICA technique is a potentially valuable tool that could be used for the investigation of directional causality influences of brain network dynamics in biophotonics fields.

  6. From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology

    USGS Publications Warehouse

    Eisenhauer, Nico; Powell, Jeff R; Grace, James B.; Bowker, Matthew A.

    2015-01-01

    In this perspectives paper we highlight a heretofore underused statistical method in soil ecological research, structural equation modeling (SEM). SEM is commonly used in the general ecological literature to develop causal understanding from observational data, but has been more slowly adopted by soil ecologists. We provide some basic information on the many advantages and possibilities associated with using SEM and provide some examples of how SEM can be used by soil ecologists to shift focus from describing patterns to developing causal understanding and inspiring new types of experimental tests. SEM is a promising tool to aid the growth of soil ecology as a discipline, particularly by supporting research that is increasingly hypothesis-driven and interdisciplinary, thus shining light into the black box of interactions belowground.

  7. Establishing Causality Using Longitudinal Hierarchical Linear Modeling: An Illustration Predicting Achievement From Self-Control

    PubMed Central

    Duckworth, Angela Lee; Tsukayama, Eli; May, Henry

    2010-01-01

    The predictive validity of personality for important life outcomes is well established, but conventional longitudinal analyses cannot rule out the possibility that unmeasured third-variable confounds fully account for the observed relationships. Longitudinal hierarchical linear models (HLM) with time-varying covariates allow each subject to serve as his or her own control, thus eliminating between-individual confounds. HLM also allows the directionality of the causal relationship to be tested by reversing time-lagged predictor and outcome variables. We illustrate these techniques through a series of models that demonstrate that within-individual changes in self-control over time predict subsequent changes in GPA but not vice-versa. The evidence supporting a causal role for self-control was not moderated by IQ, gender, ethnicity, or income. Further analyses rule out one time-varying confound: self-esteem. The analytic approach taken in this study provides the strongest evidence to date for the causal role of self-control in determining achievement. PMID:20976121

  8. Ecological Interventionist Causal Models in Psychosis: Targeting Psychological Mechanisms in Daily Life.

    PubMed

    Reininghaus, Ulrich; Depp, Colin A; Myin-Germeys, Inez

    2016-03-01

    Integrated models of psychotic disorders have posited a number of putative psychological mechanisms that may contribute to the development of psychotic symptoms, but it is only recently that a modest amount of experience sampling research has provided evidence on their role in daily life, outside the research laboratory. A number of methodological challenges remain in evaluating specificity of potential causal links between a given psychological mechanism and psychosis outcomes in a systematic fashion, capitalizing on longitudinal data to investigate temporal ordering. In this article, we argue for testing ecological interventionist causal models that draw on real world and real-time delivered, ecological momentary interventions for generating evidence on several causal criteria (association, time order, and direction/sole plausibility) under real-world conditions, while maximizing generalizability to social contexts and experiences in heterogeneous populations. Specifically, this approach tests whether ecological momentary interventions can (1) modify a putative mechanism and (2) produce changes in the mechanism that lead to sustainable changes in intended psychosis outcomes in individuals' daily lives. Future research using this approach will provide translational evidence on the active ingredients of mobile health and in-person interventions that promote sustained effectiveness of ecological momentary interventions and, thereby, contribute to ongoing efforts that seek to enhance effectiveness of psychological interventions under real-world conditions. PMID:26707864

  9. Model-free causality analysis of cardiovascular variability detects the amelioration of autonomic control in Parkinson's disease patients undergoing mechanical stimulation.

    PubMed

    Bassani, Tito; Bari, Vlasta; Marchi, Andrea; Tassin, Stefano; Dalla Vecchia, Laura; Canesi, Margherita; Barbic, Franca; Furlan, Raffaello; Porta, Alberto

    2014-07-01

    We tested the hypothesis that causality analysis, applied to the spontaneous beat-to-beat variability of heart period (HP) and systolic arterial pressure (SAP), can identify the improvement of autonomic control linked to plantar mechanical stimulation in patients with Parkinson's disease (PD). A causality index, measuring the strength of the association from SAP to HP variability, and derived according to the Granger paradigm (i.e. SAP causes HP if the inclusion of SAP into the set of signals utilized to describe cardiovascular interactions improves the prediction of HP series), was calculated using both linear model-based (MB) and nonlinear model-free (MF) approaches. Univariate HP and SAP variability indices in time and frequency domains, and bivariate descriptors of the HP-SAP variability interactions were computed as well. We studied ten PD patients (age range: 57-78 years; Hoehn-Yahr scale: 2-3; six males, four females) without orthostatic hypotension or symptoms of orthostatic intolerance and 'on-time' according to their habitual pharmacological treatment. PD patients underwent recordings at rest in a supine position and during a head-up tilt before, and 24 h after, mechanical stimulation was applied to the plantar surface of both feet. The MF causality analysis indicated a greater involvement of baroreflex in regulating HP-SAP variability interactions after mechanical stimulation. Remarkably, MB causality and more traditional univariate or bivariate techniques could not detect changes in cardiovascular regulation after mechanical stimulation, thus stressing the importance of accounting for nonlinear dynamics in PD patients. Due to the higher statistical power of MF causality we suggest its exploitation to monitor the baroreflex control improvement in PD patients, and we encourage the clinical application of the Granger causality approach to evaluate the modification of the autonomic control in relation to the application of a pharmacological treatment, a

  10. Relativistic dynamics of quasistable states. II. Differentiable representations of the causal Poincare semigroup

    SciTech Connect

    Wickramasekara, S.

    2009-07-15

    We construct two rigged Hilbert spaces that furnish differentiable representations of the causal Poincare semigroup. These rigged Hilbert spaces provide the mathematical foundation for a theory of relativistic quasistable states that synthesizes the S-matrix description of resonance scattering with the Bakamjian-Thomas construction for interacting relativistic quantum systems.

  11. Determining Stochasticity and Causality of Vegetation Dynamics in the Southwestern Amazon: Non-linear Time Series Analysis and Dynamic Factor Analysis of EVI2 Data

    NASA Astrophysics Data System (ADS)

    Klarenberg, G.

    2015-12-01

    Infrastructure projects such as road paving have proven to bring a variety of (mainly) socio-economic advantages to countries and populations. However, many studies have also highlighted the negative socio-economic and biophysical effects that these developments have at local, regional and even larger scales. The "MAP" area (Madre de Dios in Peru, Acre in Brazil, and Pando in Bolivia) is a biodiversity hotspot in the southwestern Amazon where sections of South America's Inter-Oceanic Highway were paved between 2006 and 2010. We are interested in vegetation dynamics in the area since it plays an important role in ecosystem functions and ecosystem services in socio-ecological systems: it provides information on productivity and structure of the forest. In preparation of more complex and mechanistic simulation of vegetation, non-linear time series analysis and Dynamic Factor Analysis (DFA) was conducted on Enhanced Vegetation Index (EVI) time series - which is a remote sensing product and provides information on vegetation dynamics as it detects chlorophyll (productivity) and structural change. Time series of 30 years for EVI2 (from MODIS and AVHRR) were obtained for 100 communities in the area. Through specific time series cluster analysis of the vegetation data, communities were clustered to facilitate data analysis and pattern recognition. The clustering is spatially consistent, and appears to be driven by median road paving progress - which is different for each cluster. Non-linear time series analysis (multivariate singular spectrum analysis, MSSA) separates common signals (or low-dimensional attractors) across clusters. Despite the presence of this deterministic structure though, time series behavior is mostly stochastic. Granger causality analysis between EVI2 and possible response variables indicates which variables (and with what lags) are to be included in DFA, resulting in unique Dynamic Factor Models for each cluster.

  12. A Causal, Data-driven Approach to Modeling the Kepler Data

    NASA Astrophysics Data System (ADS)

    Wang, Dun; Hogg, David W.; Foreman-Mackey, Daniel; Schölkopf, Bernhard

    2016-09-01

    Astronomical observations are affected by several kinds of noise, each with its own causal source; there is photon noise, stochastic source variability, and residuals coming from imperfect calibration of the detector or telescope. The precision of NASA Kepler photometry for exoplanet science—the most precise photometric measurements of stars ever made—appears to be limited by unknown or untracked variations in spacecraft pointing and temperature, and unmodeled stellar variability. Here, we present the causal pixel model (CPM) for Kepler data, a data-driven model intended to capture variability but preserve transit signals. The CPM works at the pixel level so that it can capture very fine-grained information about the variation of the spacecraft. The CPM models the systematic effects in the time series of a pixel using the pixels of many other stars and the assumption that any shared signal in these causally disconnected light curves is caused by instrumental effects. In addition, we use the target star’s future and past (autoregression). By appropriately separating, for each data point, the data into training and test sets, we ensure that information about any transit will be perfectly isolated from the model. The method has four tuning parameters—the number of predictor stars or pixels, the autoregressive window size, and two L2-regularization amplitudes for model components, which we set by cross-validation. We determine values for tuning parameters that works well for most of the stars and apply the method to a corresponding set of target stars. We find that CPM can consistently produce low-noise light curves. In this paper, we demonstrate that pixel-level de-trending is possible while retaining transit signals, and we think that methods like CPM are generally applicable and might be useful for K2, TESS, etc., where the data are not clean postage stamps like Kepler.

  13. Toward a formalized account of attitudes: The Causal Attitude Network (CAN) model.

    PubMed

    Dalege, Jonas; Borsboom, Denny; van Harreveld, Frenk; van den Berg, Helma; Conner, Mark; van der Maas, Han L J

    2016-01-01

    This article introduces the Causal Attitude Network (CAN) model, which conceptualizes attitudes as networks consisting of evaluative reactions and interactions between these reactions. Relevant evaluative reactions include beliefs, feelings, and behaviors toward the attitude object. Interactions between these reactions arise through direct causal influences (e.g., the belief that snakes are dangerous causes fear of snakes) and mechanisms that support evaluative consistency between related contents of evaluative reactions (e.g., people tend to align their belief that snakes are useful with their belief that snakes help maintain ecological balance). In the CAN model, the structure of attitude networks conforms to a small-world structure: evaluative reactions that are similar to each other form tight clusters, which are connected by a sparser set of "shortcuts" between them. We argue that the CAN model provides a realistic formalized measurement model of attitudes and therefore fills a crucial gap in the attitude literature. Furthermore, the CAN model provides testable predictions for the structure of attitudes and how they develop, remain stable, and change over time. Attitude strength is conceptualized in terms of the connectivity of attitude networks and we show that this provides a parsimonious account of the differences between strong and weak attitudes. We discuss the CAN model in relation to possible extensions, implication for the assessment of attitudes, and possibilities for further study. PMID:26479706

  14. The Reactive-Causal Architecture: Introducing an Emotion Model along with Theories of Needs

    NASA Astrophysics Data System (ADS)

    Aydin, Ali Orhan; Orgun, Mehmet Ali

    In the entertainment application area, one of the major aims is to develop believable agents. To achieve this aim, agents should be highly autonomous, situated, flexible, and display affect. The Reactive-Causal Architecture (ReCau) is proposed to simulate these core attributes. In its current form, ReCau cannot explain the effects of emotions on intelligent behaviour. This study aims is to further improve the emotion model of ReCau to explain the effects of emotions on intelligent behaviour. This improvement allows ReCau to be emotional to support the development of believable agents.

  15. Exploratory Causal Analysis in Bivariate Time Series Data

    NASA Astrophysics Data System (ADS)

    McCracken, James M.

    Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments and data analysis techniques are required for identifying causal information and relationships directly from observational data. This need has lead to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. In this thesis, the existing time series causality method of CCM is extended by introducing a new method called pairwise asymmetric inference (PAI). It is found that CCM may provide counter-intuitive causal inferences for simple dynamics with strong intuitive notions of causality, and the CCM causal inference can be a function of physical parameters that are seemingly unrelated to the existence of a driving relationship in the system. For example, a CCM causal inference might alternate between ''voltage drives current'' and ''current drives voltage'' as the frequency of the voltage signal is changed in a series circuit with a single resistor and inductor. PAI is introduced to address both of these limitations. Many of the current approaches in the times series causality literature are not computationally straightforward to apply, do not follow directly from assumptions of probabilistic causality, depend on assumed models for the time series generating process, or rely on embedding procedures. A new approach, called causal leaning, is introduced in this work to avoid these issues. The leaning is found to provide causal inferences that agree with intuition for both simple systems and more complicated empirical examples, including space weather data sets. The leaning may provide a clearer interpretation of the results than those from existing time series causality tools. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in times series data

  16. Erythropoietin Dose and Mortality in Hemodialysis Patients: Marginal Structural Model to Examine Causality

    PubMed Central

    Streja, Elani; Park, Jongha; Chan, Ting-Yan; Lee, Janet; Soohoo, Melissa; Rhee, Connie M.; Arah, Onyebuchi A.; Kalantar-Zadeh, Kamyar

    2016-01-01

    It has been previously reported that a higher erythropoiesis stimulating agent (ESA) dose in hemodialysis patients is associated with adverse outcomes including mortality; however the causal relationship between ESA and mortality is still hotly debated. We hypothesize ESA dose indeed exhibits a direct linear relationship with mortality in models of association implementing the use of a marginal structural model (MSM), which controls for time-varying confounding and examines causality in the ESA dose-mortality relationship. We conducted a retrospective cohort study of 128 598 adult hemodialysis patients over a 5-year follow-up period to evaluate the association between weekly ESA (epoetin-α) dose and mortality risk. A MSM was used to account for baseline and time-varying covariates especially laboratory measures including hemoglobin level and markers of malnutrition-inflammation status. There was a dose-dependent positive association between weekly epoetin-α doses ≥18 000 U/week and mortality risk. Compared to ESA dose of <6 000 U/week, adjusted odds ratios (95% confidence interval) were 1.02 (0.94–1.10), 1.08 (1.00–1.18), 1.17 (1.06–1.28), 1.27 (1.15–1.41), and 1.52 (1.37–1.69) for ESA dose of 6 000 to <12 000, 12 000 to <18 000, 18 000 to <24 000, 24 000 to <30 000, and ≥30 000 U/week, respectively. High ESA dose may be causally associated with excessive mortality, which is supportive of guidelines which advocate for conservative management of ESA dosing regimen in hemodialysis patients. PMID:27298736

  17. Erythropoietin Dose and Mortality in Hemodialysis Patients: Marginal Structural Model to Examine Causality.

    PubMed

    Streja, Elani; Park, Jongha; Chan, Ting-Yan; Lee, Janet; Soohoo, Melissa; Rhee, Connie M; Arah, Onyebuchi A; Kalantar-Zadeh, Kamyar

    2016-01-01

    It has been previously reported that a higher erythropoiesis stimulating agent (ESA) dose in hemodialysis patients is associated with adverse outcomes including mortality; however the causal relationship between ESA and mortality is still hotly debated. We hypothesize ESA dose indeed exhibits a direct linear relationship with mortality in models of association implementing the use of a marginal structural model (MSM), which controls for time-varying confounding and examines causality in the ESA dose-mortality relationship. We conducted a retrospective cohort study of 128 598 adult hemodialysis patients over a 5-year follow-up period to evaluate the association between weekly ESA (epoetin-α) dose and mortality risk. A MSM was used to account for baseline and time-varying covariates especially laboratory measures including hemoglobin level and markers of malnutrition-inflammation status. There was a dose-dependent positive association between weekly epoetin-α doses ≥18 000 U/week and mortality risk. Compared to ESA dose of <6 000 U/week, adjusted odds ratios (95% confidence interval) were 1.02 (0.94-1.10), 1.08 (1.00-1.18), 1.17 (1.06-1.28), 1.27 (1.15-1.41), and 1.52 (1.37-1.69) for ESA dose of 6 000 to <12 000, 12 000 to <18 000, 18 000 to <24 000, 24 000 to <30 000, and ≥30 000 U/week, respectively. High ESA dose may be causally associated with excessive mortality, which is supportive of guidelines which advocate for conservative management of ESA dosing regimen in hemodialysis patients. PMID:27298736

  18. Modulating reconsolidation: a link to causal systems-level dynamics of human memories

    PubMed Central

    Sandrini, Marco; Cohen, Leonardo G.; Censor, Nitzan

    2015-01-01

    A vital property of the brain is its plasticity, which manifests as changes in behavioral performance. Invasive studies at the cellular level in animal models reveal time-restricted windows during which existing memories that are reactivated become susceptible to modification through reconsolidation, and evidence suggests similar effects in humans. In this review, we summarize recent work utilizing noninvasive brain stimulation in humans to uncover the systems-level mechanisms underlying memory reconsolidation. This novel understanding of memory dynamics may have far reaching clinical implications, including the potential to modulate reconsolidation in patients with memory disorders. PMID:26170029

  19. Darwin's diagram of divergence of taxa as a causal model for the origin of species.

    PubMed

    Bouzat, Juan L

    2014-03-01

    On the basis that Darwin's theory of evolution encompasses two logically independent processes (common descent and natural selection), the only figure in On the Origin of Species (the Diagram of Divergence of Taxa) is often interpreted as illustrative of only one of these processes: the branching patterns representing common ancestry. Here, I argue that Darwin's Diagram of Divergence of Taxa represents a broad conceptual model of Darwin's theory, illustrating the causal efficacy of natural selection in producing well-defined varieties and ultimately species. The Tree Diagram encompasses the idea that natural selection explains common descent and the origin of organic diversity, thus representing a comprehensive model of Darwin's theory on the origin of species. I describe Darwin's Tree Diagram in relation to his argumentative strategy under the vera causa principle, and suggest that the testing of his theory based on the evidence from the geological record, the geographical distribution of organisms, and the mutual affinities of organic beings can be framed under the hypothetico-deductive method. Darwin's Diagram of Divergence of Taxa therefore represents a broad conceptual model that helps understanding the causal construction of Darwin's theory of evolution, the structure of his argumentative strategy, and the nature of his scientific methodology. PMID:24672902

  20. Dynamical evidence for causality between galactic cosmic rays and interannual variation in global temperature.

    PubMed

    Tsonis, Anastasios A; Deyle, Ethan R; May, Robert M; Sugihara, George; Swanson, Kyle; Verbeten, Joshua D; Wang, Geli

    2015-03-17

    As early as 1959, it was hypothesized that an indirect link between solar activity and climate could be mediated by mechanisms controlling the flux of galactic cosmic rays (CR) [Ney ER (1959) Nature 183:451-452]. Although the connection between CR and climate remains controversial, a significant body of laboratory evidence has emerged at the European Organization for Nuclear Research [Duplissy J, et al. (2010) Atmos Chem Phys 10:1635-1647; Kirkby J, et al. (2011) Nature 476(7361):429-433] and elsewhere [Svensmark H, Pedersen JOP, Marsh ND, Enghoff MB, Uggerhøj UI (2007) Proc R Soc A 463:385-396; Enghoff MB, Pedersen JOP, Uggerhoj UI, Paling SM, Svensmark H (2011) Geophys Res Lett 38:L09805], demonstrating the theoretical mechanism of this link. In this article, we present an analysis based on convergent cross mapping, which uses observational time series data to directly examine the causal link between CR and year-to-year changes in global temperature. Despite a gross correlation, we find no measurable evidence of a causal effect linking CR to the overall 20th-century warming trend. However, on short interannual timescales, we find a significant, although modest, causal effect between CR and short-term, year-to-year variability in global temperature that is consistent with the presence of nonlinearities internal to the system. Thus, although CR do not contribute measurably to the 20th-century global warming trend, they do appear as a nontraditional forcing in the climate system on short interannual timescales. PMID:25733877

  1. Regional dynamics of forest canopy change and underlying causal processes in the contiguous U.S.

    NASA Astrophysics Data System (ADS)

    Schleeweis, Karen; Goward, Samuel N.; Huang, Chengquan; Masek, Jeffrey G.; Moisen, Gretchen; Kennedy, Robert E.; Thomas, Nancy E.

    2013-07-01

    history of forest change processes is written into forest age and distribution and affects earth systems at many scales. No one data set has been able to capture the full forest disturbance and land use record through time, so in this study, we combined multiple lines of evidence to examine trends, for six US regions, in forest area affected by harvest, fire, wind, insects, and forest conversion to urban/surburban use. We built an integrated geodatabase for the contiguous U.S. (CONUS) with data spanning the nation and decades, from remote sensing observations of forest canopy dynamics, geospatial data sets on disturbance and conversion, and statistical inventories, to evaluate relationships between canopy change observations and casual processes at multiple scales. Results show the variability of major change processes through regions across decades. Harvest affected more forest area than any other major change processes in the North East, North Central, Southeast, and South central regions. In the Pacific Coast and Intermountain West, more forest area was affected by harvest than forest fires. Canopy change rates at regional scales confounded the trends of individual forest change processes, showing the importance of landscape scale data. Local spikes in observed canopy change rates were attributed to wind and fire events, as well as volatile harvest regimes. This study improves the geographic model of forest change processes by updating regional trends for major disturbance and conversion processes and combining data on the dynamics of fire, wind, insects, harvest, and conversion into one integrated geodatabase for the CONUS.

  2. Causal Analysis After Haavelmo

    PubMed Central

    Heckman, James; Pinto, Rodrigo

    2014-01-01

    Haavelmo's seminal 1943 and 1944 papers are the first rigorous treatment of causality. In them, he distinguished the definition of causal parameters from their identification. He showed that causal parameters are defined using hypothetical models that assign variation to some of the inputs determining outcomes while holding all other inputs fixed. He thus formalized and made operational Marshall's (1890) ceteris paribus analysis. We embed Haavelmo's framework into the recursive framework of Directed Acyclic Graphs (DAGs) used in one influential recent approach to causality (Pearl, 2000) and in the related literature on Bayesian nets (Lauritzen, 1996). We compare the simplicity of an analysis of causality based on Haavelmo's methodology with the complex and nonintuitive approach used in the causal literature of DAGs—the “do-calculus” of Pearl (2009). We discuss the severe limitations of DAGs and in particular of the do-calculus of Pearl in securing identification of economic models. We extend our framework to consider models for simultaneous causality, a central contribution of Haavelmo. In general cases, DAGs cannot be used to analyze models for simultaneous causality, but Haavelmo's approach naturally generalizes to cover them. PMID:25729123

  3. Promoting the organ donor card: a causal model of persuasion effects.

    PubMed

    Skumanich, S A; Kintsfather, D P

    1996-08-01

    Due to the present critical shortage of donor organs available for transplantation, effective communication strategies are necessary to heighten public commitment to donation. The promotion of organ donor card-signing may be a successful vehicle in the achievement of this goal. Based on the Elaboration Likelihood Model of persuasion effects, evidence of the motivation for organ donor card-signing, and examination of previous donation message tests, this study proposes and tests a causal model of response to organ donor card appeals. The inter-relationship of values, empathy arousal, and issue involvement was found to be a significant driving force in the persuasive process for the behavioral intention to sign an organ donor card. Implications of these findings for future research are addressed. PMID:8844941

  4. Causal modeling of secondary science students' intentions to enroll in physics

    NASA Astrophysics Data System (ADS)

    Crawley, Frank E.; Black, Carolyn B.

    The purpose of this study was to explore the utility of the theory of planned behavior model developed by social psychologists for understanding and predicting the behavioral intentions of secondary science students regarding enrolling in physics. In particular, the study used a three-stage causal model to investigate the links from external variables to behavioral, normative, and control beliefs; from beliefs to attitudes, subjective norm, and perceived behavioral control; and from attitudes, subjective norm, and perceived behavioral control to behavioral intentions. The causal modeling method was employed to verify the underlying causes of secondary science students' interest in enrolling physics as predicted in the theory of planned behavior. Data were collected from secondary science students (N = 264) residing in a central Texas city who were enrolled in earth science (8th grade), biology (9th grade), physical science (10th grade), or chemistry (11th grade) courses. Cause-and-effect relationships were analyzed using path analysis to test the direct effects of model variables specified in the theory of planned behavior. Results of this study indicated that students' intention to enroll in a high school physics course was determined by their attitude toward enrollment and their degree of perceived behavioral control. Attitude, subjective norm, and perceived behavioral control were, in turn, formed as a result of specific beliefs that students held about enrolling in physics. Grade level and career goals were found to be instrumental in shaping students' attitude. Immediate family members were identified as major referents in the social support system for enrolling in physics. Course and extracurricular conflicts and the fear of failure were shown to be the primary beliefs obstructing students' perception of control over physics enrollment. Specific recommendations are offered to researchers and practitioners for strengthening secondary school students

  5. Structure-Based Statistical Mechanical Model Accounts for the Causality and Energetics of Allosteric Communication.

    PubMed

    Guarnera, Enrico; Berezovsky, Igor N

    2016-03-01

    Allostery is one of the pervasive mechanisms through which proteins in living systems carry out enzymatic activity, cell signaling, and metabolism control. Effective modeling of the protein function regulation requires a synthesis of the thermodynamic and structural views of allostery. We present here a structure-based statistical mechanical model of allostery, allowing one to observe causality of communication between regulatory and functional sites, and to estimate per residue free energy changes. Based on the consideration of ligand free and ligand bound systems in the context of a harmonic model, corresponding sets of characteristic normal modes are obtained and used as inputs for an allosteric potential. This potential quantifies the mean work exerted on a residue due to the local motion of its neighbors. Subsequently, in a statistical mechanical framework the entropic contribution to allosteric free energy of a residue is directly calculated from the comparison of conformational ensembles in the ligand free and ligand bound systems. As a result, this method provides a systematic approach for analyzing the energetics of allosteric communication based on a single structure. The feasibility of the approach was tested on a variety of allosteric proteins, heterogeneous in terms of size, topology and degree of oligomerization. The allosteric free energy calculations show the diversity of ways and complexity of scenarios existing in the phenomenology of allosteric causality and communication. The presented model is a step forward in developing the computational techniques aimed at detecting allosteric sites and obtaining the discriminative power between agonistic and antagonistic effectors, which are among the major goals in allosteric drug design. PMID:26939022

  6. Structure-Based Statistical Mechanical Model Accounts for the Causality and Energetics of Allosteric Communication

    PubMed Central

    Guarnera, Enrico; Berezovsky, Igor N.

    2016-01-01

    Allostery is one of the pervasive mechanisms through which proteins in living systems carry out enzymatic activity, cell signaling, and metabolism control. Effective modeling of the protein function regulation requires a synthesis of the thermodynamic and structural views of allostery. We present here a structure-based statistical mechanical model of allostery, allowing one to observe causality of communication between regulatory and functional sites, and to estimate per residue free energy changes. Based on the consideration of ligand free and ligand bound systems in the context of a harmonic model, corresponding sets of characteristic normal modes are obtained and used as inputs for an allosteric potential. This potential quantifies the mean work exerted on a residue due to the local motion of its neighbors. Subsequently, in a statistical mechanical framework the entropic contribution to allosteric free energy of a residue is directly calculated from the comparison of conformational ensembles in the ligand free and ligand bound systems. As a result, this method provides a systematic approach for analyzing the energetics of allosteric communication based on a single structure. The feasibility of the approach was tested on a variety of allosteric proteins, heterogeneous in terms of size, topology and degree of oligomerization. The allosteric free energy calculations show the diversity of ways and complexity of scenarios existing in the phenomenology of allosteric causality and communication. The presented model is a step forward in developing the computational techniques aimed at detecting allosteric sites and obtaining the discriminative power between agonistic and antagonistic effectors, which are among the major goals in allosteric drug design. PMID:26939022

  7. The causal model approach to nutritional problems: an effective tool for research and action at the local level.

    PubMed Central

    Tonglet, R.; Mudosa, M.; Badashonderana, M.; Beghin, I.; Hennart, P.

    1992-01-01

    Reported are the results of a case study from Kirotshe rural health district, Northern Kivu, Zaire, where a workshop on the causal model approach to nutrition was organized in 1987. The model has since been used in the field for research design, training of health professionals, nutrition intervention, and community development. The rationale behind this approach is reviewed, the experience accumulated from Kirotshe district is described, and the ways in which the causal model contributes to comprehensive health and nutrition care are discussed. The broad range of possible policy implications of this approach underlines its usefulness for future action. PMID:1486667

  8. Causality and cosmic inflation

    SciTech Connect

    Vachaspati, Tanmay; Trodden, Mark

    2000-01-15

    In the context of inflationary models with a pre-inflationary stage, in which the Einstein equations are obeyed, the null energy condition is satisfied, and spacetime topology is trivial, we argue that homogeneity on super-Hubble scales must be assumed as an initial condition. Models in which inflation arises from field dynamics in a Friedmann-Robertson-Walker background fall into this class but models in which inflation originates at the Planck epoch may evade this conclusion. Our arguments rest on causality and general relativistic constraints on the structure of spacetime. We discuss modifications to existing scenarios that may avoid the need for initial large-scale homogeneity. (c) 1999 The American Physical Society.

  9. Examining the Theory of Planned Behavior Applied to Condom Use: The Effect-Indicator vs. Causal-Indicator Models

    PubMed Central

    Carmack, Chakema C.; Lewis-Moss, Rhonda K.

    2010-01-01

    The authors investigated whether a causal-indicator model or an effect-indicator model of the theory of planned behavior (TPB) is more suitable for predicting behavioral intention and for which behaviors. No previous studies have evaluated this question using the same sample and same behavior. In this study, African American adolescents ages 12–17 participating in risk reduction classes were assessed on their initial attitudes, norms, perceived control, and intention regarding condom use. Second-order structural equation modeling indicated that the effect-indicator model exhibited superior fit above the causal-indicator model. Furthermore, modeling the behavioral antecedents in a causal way may not be as accurate due to the underlying uni-dimensional nature of attitudes, subjective norms, and control. The TPB was not disconfirmed as a suitable model for African American adolescents’ regarding condom use. Prevention programs may benefit by focusing on adolescent behavior change with regard to the global components in order to influence more specific concepts of these social cognitions. Editors’ Strategic Implications: Despite limitations including correlational data, this study yields implications for prevention programming and, more broadly, an important theoretical elaboration on effect-indicator and causal-indicator models of the TPB. PMID:19949867

  10. Applying a Multiple Group Causal Indicator Modeling Framework to the Reading Comprehension Skills of Third, Seventh, and Tenth Grade Students

    ERIC Educational Resources Information Center

    Tighe, Elizabeth L.; Wagner, Richard K.; Schatschneider, Christopher

    2015-01-01

    This study demonstrates the utility of applying a causal indicator modeling framework to investigate important predictors of reading comprehension in third, seventh, and tenth grade students. The results indicated that a 4-factor multiple indicator multiple indicator cause (MIMIC) model of reading comprehension provided adequate fit at each grade…

  11. Causal Inference in Occupational Epidemiology: Accounting for the Healthy Worker Effect by Using Structural Nested Models

    PubMed Central

    Naimi, Ashley I.; Richardson, David B.; Cole, Stephen R.

    2013-01-01

    In a recent issue of the Journal, Kirkeleit et al. (Am J Epidemiol. 2013;177(11):1218–1224) provided empirical evidence for the potential of the healthy worker effect in a large cohort of Norwegian workers across a range of occupations. In this commentary, we provide some historical context, define the healthy worker effect by using causal diagrams, and use simulated data to illustrate how structural nested models can be used to estimate exposure effects while accounting for the healthy worker survivor effect in 4 simple steps. We provide technical details and annotated SAS software (SAS Institute, Inc., Cary, North Carolina) code corresponding to the example analysis in the Web Appendices, available at http://aje.oxfordjournals.org/. PMID:24077092

  12. A causal model of post-traumatic stress disorder: disentangling predisposed from acquired neural abnormalities.

    PubMed

    Admon, Roee; Milad, Mohammed R; Hendler, Talma

    2013-07-01

    Discriminating neural abnormalities into the causes versus consequences of psychopathology would enhance the translation of neuroimaging findings into clinical practice. By regarding the traumatic encounter as a reference point for disease onset, neuroimaging studies of post-traumatic stress disorder (PTSD) can potentially allocate PTSD neural abnormalities to either predisposing (pre-exposure) or acquired (post-exposure) factors. Based on novel research strategies in PTSD neuroimaging, including genetic, environmental, twin, and prospective studies, we provide a causal model that accounts for neural abnormalities in PTSD, and outline its clinical implications. Current data suggest that abnormalities within the amygdala and dorsal anterior cingulate cortex represent predisposing risk factors for developing PTSD, whereas dysfunctional hippocampal-ventromedial prefrontal cortex (vmPFC) interactions may become evident only after having developed the disorder. PMID:23768722

  13. Accounting for Uncertainty in Confounder and Effect Modifier Selection when Estimating Average Causal Effects in Generalized Linear Models

    PubMed Central

    Wang, Chi; Dominici, Francesca; Parmigiani, Giovanni; Zigler, Corwin Matthew

    2015-01-01

    Summary Confounder selection and adjustment are essential elements of assessing the causal effect of an exposure or treatment in observational studies. Building upon work by Wang et al. (2012) and Lefebvre et al. (2014), we propose and evaluate a Bayesian method to estimate average causal effects in studies with a large number of potential confounders, relatively few observations, likely interactions between confounders and the exposure of interest, and uncertainty on which confounders and interaction terms should be included. Our method is applicable across all exposures and outcomes that can be handled through generalized linear models. In this general setting, estimation of the average causal effect is different from estimation of the exposure coefficient in the outcome model due to non-collapsibility. We implement a Bayesian bootstrap procedure to integrate over the distribution of potential confounders and to estimate the causal effect. Our method permits estimation of both the overall population causal effect and effects in specified subpopulations, providing clear characterization of heterogeneous exposure effects that may vary considerably across different covariate profiles. Simulation studies demonstrate that the proposed method performs well in small sample size situations with 100 to 150 observations and 50 covariates. The method is applied to data on 15060 US Medicare beneficiaries diagnosed with a malignant brain tumor between 2000 and 2009 to evaluate whether surgery reduces hospital readmissions within thirty days of diagnosis. PMID:25899155

  14. Causality Analysis: Identifying the Leading Element in a Coupled Dynamical System.

    PubMed

    BozorgMagham, Amir E; Motesharrei, Safa; Penny, Stephen G; Kalnay, Eugenia

    2015-01-01

    Physical systems with time-varying internal couplings are abundant in nature. While the full governing equations of these systems are typically unknown due to insufficient understanding of their internal mechanisms, there is often interest in determining the leading element. Here, the leading element is defined as the sub-system with the largest coupling coefficient averaged over a selected time span. Previously, the Convergent Cross Mapping (CCM) method has been employed to determine causality and dominant component in weakly coupled systems with constant coupling coefficients. In this study, CCM is applied to a pair of coupled Lorenz systems with time-varying coupling coefficients, exhibiting switching between dominant sub-systems in different periods. Four sets of numerical experiments are carried out. The first three cases consist of different coupling coefficient schemes: I) Periodic-constant, II) Normal, and III) Mixed Normal/Non-normal. In case IV, numerical experiment of cases II and III are repeated with imposed temporal uncertainties as well as additive normal noise. Our results show that, through detecting directional interactions, CCM identifies the leading sub-system in all cases except when the average coupling coefficients are approximately equal, i.e., when the dominant sub-system is not well defined. PMID:26125157

  15. Programs as Causal Models: Speculations on Mental Programs and Mental Representation

    ERIC Educational Resources Information Center

    Chater, Nick; Oaksford, Mike

    2013-01-01

    Judea Pearl has argued that counterfactuals and causality are central to intelligence, whether natural or artificial, and has helped create a rich mathematical and computational framework for formally analyzing causality. Here, we draw out connections between these notions and various current issues in cognitive science, including the nature of…

  16. Three Cs in Measurement Models: Causal Indicators, Composite Indicators, and Covariates

    ERIC Educational Resources Information Center

    Bollen, Kenneth A.; Bauldry, Shawn

    2011-01-01

    In the last 2 decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that one can classify indicators into 2 categories: effect (reflective) indicators and causal (formative) indicators. We argue that the dichotomous view is too simple. Instead, there are effect indicators and 3 types of…

  17. Empirical evaluation of the conceptual model underpinning a regional aquatic long-term monitoring program using causal modelling

    USGS Publications Warehouse

    Irvine, Kathryn M.; Miller, Scott; Al-Chokhachy, Robert K.; Archer, Erik; Roper, Brett B.; Kershner, Jeffrey L.

    2015-01-01

    Conceptual models are an integral facet of long-term monitoring programs. Proposed linkages between drivers, stressors, and ecological indicators are identified within the conceptual model of most mandated programs. We empirically evaluate a conceptual model developed for a regional aquatic and riparian monitoring program using causal models (i.e., Bayesian path analysis). We assess whether data gathered for regional status and trend estimation can also provide insights on why a stream may deviate from reference conditions. We target the hypothesized causal pathways for how anthropogenic drivers of road density, percent grazing, and percent forest within a catchment affect instream biological condition. We found instream temperature and fine sediments in arid sites and only fine sediments in mesic sites accounted for a significant portion of the maximum possible variation explainable in biological condition among managed sites. However, the biological significance of the direct effects of anthropogenic drivers on instream temperature and fine sediments were minimal or not detected. Consequently, there was weak to no biological support for causal pathways related to anthropogenic drivers’ impact on biological condition. With weak biological and statistical effect sizes, ignoring environmental contextual variables and covariates that explain natural heterogeneity would have resulted in no evidence of human impacts on biological integrity in some instances. For programs targeting the effects of anthropogenic activities, it is imperative to identify both land use practices and mechanisms that have led to degraded conditions (i.e., moving beyond simple status and trend estimation). Our empirical evaluation of the conceptual model underpinning the long-term monitoring program provided an opportunity for learning and, consequently, we discuss survey design elements that require modification to achieve question driven monitoring, a necessary step in the practice of

  18. Causality-weighted active learning for abnormal event identification based on the topic model

    NASA Astrophysics Data System (ADS)

    Fan, Yawen; Zheng, Shibao; Yang, Hua; Zhang, Chongyang; Su, Hang

    2012-07-01

    Abnormal event identification in crowded scenes is a fundamental task for video surveillance. However, it is still challenging for most current approaches because of the general insufficiency of labeled data for training, particularly for abnormal data. We propose a novel active-supervised joint topic model for learning activity and training sample collection. First, a multi-class topic model is constructed based on the initial training data. Then the remaining unlabeled data stream is surveyed. The system actively decides whether it can label a new sample by itself or if it has to ask a human annotator. After each query, the current model is incrementally updated. To alleviate class imbalance, causality-weighted method is applied to both likelihood and uncertainty sampling for active learning. Furthermore, a combination of a new measure termed query entropy and the overall classification accuracy is used for assessing the model performance. Experimental results on two real-world traffic videos for abnormal event identification tasks demonstrate the effectiveness of the proposed method.

  19. Modeling Climate Dynamically

    ERIC Educational Resources Information Center

    Walsh, Jim; McGehee, Richard

    2013-01-01

    A dynamical systems approach to energy balance models of climate is presented, focusing on low order, or conceptual, models. Included are global average and latitude-dependent, surface temperature models. The development and analysis of the differential equations and corresponding bifurcation diagrams provides a host of appropriate material for…

  20. Effects of Student-Generated Diagrams versus Student-Generated Summaries on Conceptual Understanding of Causal and Dynamic Knowledge in Plate Tectonics.

    ERIC Educational Resources Information Center

    Gobert, Janice D.; Clement, John J.

    1999-01-01

    Grade five students' (n=58) conceptual understanding of plate tectonics was measured by analysis of student-generated summaries and diagrams, and by posttest assessment of both the spatial/static and causal/dynamic aspects of the domain. The diagram group outperformed the summary and text-only groups on the posttest measures. Discusses the effects…

  1. Calibrating the pixel-level Kepler imaging data with a causal data-driven model

    NASA Astrophysics Data System (ADS)

    Wang, Dun; Foreman-Mackey, Daniel; Hogg, David W.; Schölkopf, Bernhard

    2015-01-01

    In general, astronomical observations are affected by several kinds of noise, each with it's own causal source; there is photon noise, stochastic source variability, and residuals coming from imperfect calibration of the detector or telescope. In particular, the precision of NASA Kepler photometry for exoplanet science—the most precise photometric measurements of stars ever made—appears to be limited by unknown or untracked variations in spacecraft pointing and temperature, and unmodeled stellar variability. Here we present the Causal Pixel Model (CPM) for Kepler data, a data-driven model intended to capture variability but preserve transit signals. The CPM works at the pixel level (not the photometric measurement level); it can capture more fine-grained information about the variation of the spacecraft than is available in the pixel-summed aperture photometry. The basic idea is that CPM predicts each target pixel value from a large number of pixels of other stars sharing the instrument variabilities while not containing any information on possible transits at the target star. In addition, we use the target star's future and past (auto-regression). By appropriately separating the data into training and test sets, we ensure that information about any transit will be perfectly isolated from the fitting of the model. The method has four hyper-parameters (the number of predictor stars, the auto-regressive window size, and two L2-regularization amplitudes for model components), which we set by cross-validation. We determine a generic set of hyper-parameters that works well on most of the stars with 11≤V≤12 mag and apply the method to a corresponding set of target stars with known planet transits. We find that we can consistently outperform (for the purposes of exoplanet detection) the Kepler Pre-search Data Conditioning (PDC) method for exoplanet discovery, often improving the SNR by a factor of two. While we have not yet exhaustively tested the method at other

  2. Testing the Causal Links between School Climate, School Violence, and School Academic Performance: A Cross-Lagged Panel Autoregressive Model

    ERIC Educational Resources Information Center

    Benbenishty, Rami; Astor, Ron Avi; Roziner, Ilan; Wrabel, Stephani L.

    2016-01-01

    The present study explores the causal link between school climate, school violence, and a school's general academic performance over time using a school-level, cross-lagged panel autoregressive modeling design. We hypothesized that reductions in school violence and climate improvement would lead to schools' overall improved academic performance.…

  3. A Causal Modelling Approach to the Development of Theory-Based Behaviour Change Programmes for Trial Evaluation

    ERIC Educational Resources Information Center

    Hardeman, Wendy; Sutton, Stephen; Griffin, Simon; Johnston, Marie; White, Anthony; Wareham, Nicholas J.; Kinmonth, Ann Louise

    2005-01-01

    Theory-based intervention programmes to support health-related behaviour change aim to increase health impact and improve understanding of mechanisms of behaviour change. However, the science of intervention development remains at an early stage. We present a causal modelling approach to developing complex interventions for evaluation in…

  4. Does Teaching Students How to Explicitly Model the Causal Structure of Systems Improve Their Understanding of These Systems?

    ERIC Educational Resources Information Center

    Jensen, Eva

    2014-01-01

    If students really understand the systems they study, they would be able to tell how changes in the system would affect a result. This demands that the students understand the mechanisms that drive its behaviour. The study investigates potential merits of learning how to explicitly model the causal structure of systems. The approach and…

  5. Posttraumatic stress disorder among female Vietnam veterans: a causal model of etiology.

    PubMed Central

    Fontana, A; Schwartz, L S; Rosenheck, R

    1997-01-01

    OBJECTIVES: The Vietnam and Persian Gulf wars have awakened people to the realization that military service can be traumatizing for women as well as men. This study investigated the etiological roles of both war and sexual trauma in the development of chronic posttraumatic stress disorder among female Vietnam veterans. METHODS: Data from the National Vietnam Veterans Readjustment Study for 396 Vietnam theater women and 250 Vietnam era women were analyzed with structural equation modeling. RESULTS: An etiological model with highly satisfactory fit and parsimony was developed. Exposure to war trauma contributed to the probability of posttraumatic stress disorder in theater women, as did sexual trauma in both theater and era women. Lack of social support at the time of homecoming acted as a powerful mediator of trauma for both groups of women. CONCLUSIONS: Within the constraints and assumptions of causal modeling, there is evidence that both war trauma and sexual trauma are powerful contributors to the development of posttraumatic stress disorder among female Vietnam veterans. PMID:9103092

  6. The development of causal categorization.

    PubMed

    Hayes, Brett K; Rehder, Bob

    2012-08-01

    Two experiments examined the impact of causal relations between features on categorization in 5- to 6-year-old children and adults. Participants learned artificial categories containing instances with causally related features and noncausal features. They then selected the most likely category member from a series of novel test pairs. Classification patterns and logistic regression were used to diagnose the presence of independent effects of causal coherence, causal status, and relational centrality. Adult classification was driven primarily by coherence when causal links were deterministic (Experiment 1) but showed additional influences of causal status when links were probabilistic (Experiment 2). Children's classification was based primarily on causal coherence in both cases. There was no effect of relational centrality in either age group. These results suggest that the generative model (Rehder, 2003a) provides a good account of causal categorization in children as well as adults. PMID:22462547

  7. Causality and headache triggers

    PubMed Central

    Turner, Dana P.; Smitherman, Todd A.; Martin, Vincent T.; Penzien, Donald B.; Houle, Timothy T.

    2013-01-01

    Objective The objective of this study was to explore the conditions necessary to assign causal status to headache triggers. Background The term “headache trigger” is commonly used to label any stimulus that is assumed to cause headaches. However, the assumptions required for determining if a given stimulus in fact has a causal-type relationship in eliciting headaches have not been explicated. Methods A synthesis and application of Rubin’s Causal Model is applied to the context of headache causes. From this application the conditions necessary to infer that one event (trigger) causes another (headache) are outlined using basic assumptions and examples from relevant literature. Results Although many conditions must be satisfied for a causal attribution, three basic assumptions are identified for determining causality in headache triggers: 1) constancy of the sufferer; 2) constancy of the trigger effect; and 3) constancy of the trigger presentation. A valid evaluation of a potential trigger’s effect can only be undertaken once these three basic assumptions are satisfied during formal or informal studies of headache triggers. Conclusions Evaluating these assumptions is extremely difficult or infeasible in clinical practice, and satisfying them during natural experimentation is unlikely. Researchers, practitioners, and headache sufferers are encouraged to avoid natural experimentation to determine the causal effects of headache triggers. Instead, formal experimental designs or retrospective diary studies using advanced statistical modeling techniques provide the best approaches to satisfy the required assumptions and inform causal statements about headache triggers. PMID:23534872

  8. Taking Emergence Seriously: The Centrality of Circular Causality for Dynamic Systems Approaches to Development

    ERIC Educational Resources Information Center

    Witherington, David C.

    2011-01-01

    The dynamic systems (DS) approach has emerged as an influential and potentially unifying metatheory for developmental science. Its central platform--the argument against design--suggests that structure spontaneously and without prescription emerges through self-organization. In one of the most prominent accounts of DS, Thelen and her colleagues…

  9. Reasoning the Causality of City Sprawl, Traffic Congestion, and Green Land Disappearance in Taiwan Using the CLD Model

    PubMed Central

    Chen, Mei-Chih; Chang, Kaowen

    2014-01-01

    Many city governments choose to supply more developable land and transportation infrastructure with the hope of attracting people and businesses to their cities. However, like those in Taiwan, major cities worldwide suffer from traffic congestion. This study applies the system thinking logic of the causal loops diagram (CLD) model in the System Dynamics (SD) approach to analyze the issue of traffic congestion and other issues related to roads and land development in Taiwan’s cities. Comparing the characteristics of development trends with yearbook data for 2002 to 2013 for all of Taiwan’s cities, this study explores the developing phenomenon of unlimited city sprawl and identifies the cause and effect relationships in the characteristics of development trends in traffic congestion, high-density population aggregation in cities, land development, and green land disappearance resulting from city sprawl. This study provides conclusions for Taiwan’s cities’ sustainability and development (S&D). When developing S&D policies, during decision making processes concerning city planning and land use management, governments should think with a holistic view of carrying capacity with the assistance of system thinking to clarify the prejudices in favor of the unlimited developing phenomena resulting from city sprawl. PMID:25383609

  10. Warp drive and causality

    NASA Astrophysics Data System (ADS)

    Everett, Allen E.

    1996-06-01

    Alcubierre recently exhibited a spacetime which, within the framework of general relativity, allows travel at superluminal speeds if matter with a negative energy density can exist, and conjectured that it should be possible to use similar techniques to construct a theory containing closed causal loops and, thus, travel backwards in time. We verify this conjecture by exhibiting a simple modification of Alcubierre's model, requiring no additional assumptions, in which causal loops are possible. We also note that this mechanism for generating causal loops differs in essential ways from that discovered by Gott involving cosmic strings.