Science.gov

Sample records for dynamic contrast-enhanced mri

  1. [MRI with dynamic contrast enhancement in brain tumors].

    PubMed

    Panfilenko, A F; Iakovlev, S A; Pozdniakov, A V; Tiumin, L A; Shcherbuk, A Iu

    2013-01-01

    Magnetic resonance imaging (MRI) is the leading method of radiation diagnosis of brain tumors. In conditions of the artificial contrast enhancement there are more clearly differentiated the boundaries of the tumor node on the back of peritumorous edema and identified structural features of the tumor. The purpose of this study was to examine indicators of the dynamics of accumulation and removal of contrast agents by brain tumors in MRI technique with dynamic contrast and identify opportunities of this method in the differential diagnosis of various types of tumors. PMID:23814831

  2. Optimal contrast enhancement liquid for dynamic MRI of swallowing.

    PubMed

    Ohkubo, M; Higaki, T; Nishikawa, K; Otonari-Yamamoto, M; Sugiyama, T; Ishida, R; Wakoh, M

    2016-09-01

    Several dynamic magnetic resonance imaging (MRI) techniques to observe swallowing and their parameters have been reported. Although these studies used several contrast enhancement liquids, no studies were conducted to investigate the most suitable liquids. The purpose of this study was to identify the optimal contrast enhancement liquid for dynamic MRI of swallowing. MRI was performed using a new sequence consisting of true fast imaging with steady-state precession, generalised auto-calibrating partially parallel acquisition and a keyhole imaging technique. Seven liquids were studied, including pure distilled water, distilled water with thickener at 10, 20 and 30 mg mL(-1) concentrations and oral MRI contrast medium at 1, 2 or 3 mg mL(-1) . Distilled water showed the highest signal intensity. There were statistically significant differences among the following contrast media: distilled water with thickener at 20 mg mL(-1) and the oral MRI contrast medium at 2 mg mL(-1) and 1 mg mL(-1) . It can be concluded that the optimal liquid for dynamic MRI of swallowing is a water-based substance that allows variations in viscosity. PMID:27328011

  3. Dynamic contrast-enhanced MRI evaluation of cerebral cavernous malformations.

    PubMed

    Hart, Blaine L; Taheri, Saeid; Rosenberg, Gary A; Morrison, Leslie A

    2013-10-01

    The aim of this study is to quantitatively evaluate the behavior of CNS cavernous malformations (CCMs) using a dynamic contrast-enhanced MRI (DCEMRI) technique sensitive for slow transfer rates of gadolinium. The prospective study was approved by the institutional review board and was HIPPA compliant. Written informed consent was obtained from 14 subjects with familial CCMs (4 men and 10 women, ages 22-76 years, mean 48.1 years). Following routine anatomic MRI of the brain, DCEMRI was performed for six slices, using T1 mapping with partial inversion recovery (TAPIR) to calculate T1 values, following administration of 0.025 mmol/kg gadolinium DTPA. The transfer rate (Ki) was calculated using the Patlak model, and Ki within CCMs was compared to normal-appearing white matter as well as to 17 normal control subjects previously studied. All subjects had typical MRI appearance of CCMs. Thirty-nine CCMs were studied using DCEMRI. Ki was low or normal in 12 lesions and elevated from 1.4 to 12 times higher than background in the remaining 27 lesions. Ki ranged from 2.1E-6 to 9.63E-4 min(-1), mean 3.55E-4. Normal-appearing white matter in the CCM patients had a mean Ki of 1.57E-4, not statistically different from mean WM Ki of 1.47E-4 in controls. TAPIR-based DCEMRI technique permits quantifiable assessment of CCMs in vivo and reveals considerable differences not seen with conventional MRI. Potential applications include correlation with biologic behavior such as lesion growth or hemorrage, and measurement of drug effects. PMID:24323376

  4. Dynamic Contrast-Enhanced MRI of Cervical Cancers: Temporal Percentile Screening of Contrast Enhancement Identifies Parameters for Prediction of Chemoradioresistance

    SciTech Connect

    Andersen, Erlend K.F.; Hole, Knut Hakon; Lund, Kjersti V.; Sundfor, Kolbein; Kristensen, Gunnar B.; Lyng, Heidi; Malinen, Eirik

    2012-03-01

    Purpose: To systematically screen the tumor contrast enhancement of locally advanced cervical cancers to assess the prognostic value of two descriptive parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods and Materials: This study included a prospectively collected cohort of 81 patients who underwent DCE-MRI with gadopentetate dimeglumine before chemoradiotherapy. The following descriptive DCE-MRI parameters were extracted voxel by voxel and presented as histograms for each time point in the dynamic series: normalized relative signal increase (nRSI) and normalized area under the curve (nAUC). The first to 100th percentiles of the histograms were included in a log-rank survival test, resulting in p value and relative risk maps of all percentile-time intervals for each DCE-MRI parameter. The maps were used to evaluate the robustness of the individual percentile-time pairs and to construct prognostic parameters. Clinical endpoints were locoregional control and progression-free survival. The study was approved by the institutional ethics committee. Results: The p value maps of nRSI and nAUC showed a large continuous region of percentile-time pairs that were significantly associated with locoregional control (p < 0.05). These parameters had prognostic impact independent of tumor stage, volume, and lymph node status on multivariate analysis. Only a small percentile-time interval of nRSI was associated with progression-free survival. Conclusions: The percentile-time screening identified DCE-MRI parameters that predict long-term locoregional control after chemoradiotherapy of cervical cancer.

  5. Clustered breast microcalcifications: Evaluation by dynamic contrast-enhanced subtraction MRI

    SciTech Connect

    Gilles, R.; Tardivon, A.A.; Vanel, D.; Guinebretiere, J.M.; Arriagada, R.

    1996-01-01

    Our goal was to evaluate dynamic contrast-enhanced subtraction MRI in the diagnosis of isolated clustered calcifications of the breast. One hundred seventy-two patients underwent surgical biopsy for isolated clustered breast calcifications. Their mammograms showed round (n = 88) or linear/irregular (n = 84) microcalcifications. All patients had a preoperative Gd-DOTA-enhanced subtraction dynamic study. Any early contrast enhancement in the breast parenchyma concomitant with early enhancement of normal vessels was considered positive. Fifty-eight in situ carcinomas, 22 invasive carcinomas, and 92 benign lesions were found at histological analysis. Dynamic MR sequences showed early contrast enhancement in 76 of 80 malignant lesions (sensitivity 95%) and in 45 of 92 benign lesions (specificity 51%). Two invasive and two intraductal carcinomas did not show early contrast enhancement. Three independent observers agreed in rating early contrast enhancement in 143 of 172 lesions. Poor specificity limits the diagnostic accuracy of dynamic contrast-enhanced subtraction MRI in distinguishing benign from malignant microcalcifications on mammography. 8 refs., 2 figs., 2 tabs.

  6. De-enhancing the dynamic contrast-enhanced breast MRI for robust registration.

    PubMed

    Zheng, Yuanjie; Yu, Jingyi; Kambhamettu, Chandra; Englander, Sarah; Schnall, Mitchell D; Shen, Dinggang

    2007-01-01

    Dynamic enhancement causes serious problems for registration of contrast enhanced breast MRI, due to variable uptakes of agent on different tissues or even same tissues in the breast. We present an iterative optimization algorithm to de-enhance the dynamic contrast-enhanced breast MRI and then register them for avoiding the effects of enhancement on image registration. In particular, the spatially varying enhancements are modeled by a Markov Random Field, and estimated by a locally smooth function with boundaries using a graph cut algorithm. The de-enhanced images are then registered by conventional B-spline based registration algorithm. These two steps benefit from each other and are repeated until the results converge. Experimental results show that our two-step registration algorithm performs much better than conventional mutual information based registration algorithm. Also, the effects of tumor shrinking in the conventional registration algorithms can be effectively avoided by our registration algorithm. PMID:18051148

  7. Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification.

    PubMed

    Agner, Shannon C; Soman, Salil; Libfeld, Edward; McDonald, Margie; Thomas, Kathleen; Englander, Sarah; Rosen, Mark A; Chin, Deanna; Nosher, John; Madabhushi, Anant

    2011-06-01

    Dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) of the breast has emerged as an adjunct imaging tool to conventional X-ray mammography due to its high detection sensitivity. Despite the increasing use of breast DCE-MRI, specificity in distinguishing malignant from benign breast lesions is low, and interobserver variability in lesion classification is high. The novel contribution of this paper is in the definition of a new DCE-MRI descriptor that we call textural kinetics, which attempts to capture spatiotemporal changes in breast lesion texture in order to distinguish malignant from benign lesions. We qualitatively and quantitatively demonstrated on 41 breast DCE-MRI studies that textural kinetic features outperform signal intensity kinetics and lesion morphology features in distinguishing benign from malignant lesions. A probabilistic boosting tree (PBT) classifier in conjunction with textural kinetic descriptors yielded an accuracy of 90%, sensitivity of 95%, specificity of 82%, and an area under the curve (AUC) of 0.92. Graph embedding, used for qualitative visualization of a low-dimensional representation of the data, showed the best separation between benign and malignant lesions when using textural kinetic features. The PBT classifier results and trends were also corroborated via a support vector machine classifier which showed that textural kinetic features outperformed the morphological, static texture, and signal intensity kinetics descriptors. When textural kinetic attributes were combined with morphologic descriptors, the resulting PBT classifier yielded 89% accuracy, 99% sensitivity, 76% specificity, and an AUC of 0.91. PMID:20508965

  8. Assessment of blood–brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review

    PubMed Central

    Heye, Anna K.; Culling, Ross D.; Valdés Hernández, Maria del C.; Thrippleton, Michael J.; Wardlaw, Joanna M.

    2014-01-01

    There is increasing recognition of the importance of blood–brain barrier (BBB) disruption in aging, dementia, stroke and multiple sclerosis in addition to more commonly-studied pathologies such as tumors. Dynamic contrast-enhanced MRI (DCE-MRI) is a method for studying BBB disruption in vivo. We review pathologies studied, scanning protocols and data analysis procedures to determine the range of available methods and their suitability to different pathologies. We systematically review the existing literature up to February 2014, seeking studies that assessed BBB integrity using T1-weighted DCE-MRI techniques in animals and humans in normal or abnormal brain tissues. The literature search provided 70 studies that were eligible for inclusion, involving 417 animals and 1564 human subjects in total. The pathologies most studied are intracranial neoplasms and acute ischemic strokes. There are large variations in the type of DCE-MRI sequence, the imaging protocols and the contrast agents used. Moreover, studies use a variety of different methods for data analysis, mainly based on model-free measurements and on the Patlak and Tofts models. Consequently, estimated KTrans values varied widely. In conclusion, DCE-MRI is shown to provide valuable information in a large variety of applications, ranging from common applications, such as grading of primary brain tumors, to more recent applications, such as assessment of subtle BBB dysfunction in Alzheimer's disease. Further research is required in order to establish consensus-based recommendations for data acquisition and analysis and, hence, improve inter-study comparability and promote wider use of DCE-MRI. PMID:25379439

  9. DCE@urLAB: a dynamic contrast-enhanced MRI pharmacokinetic analysis tool for preclinical data

    PubMed Central

    2013-01-01

    Background DCE@urLAB is a software application for analysis of dynamic contrast-enhanced magnetic resonance imaging data (DCE-MRI). The tool incorporates a friendly graphical user interface (GUI) to interactively select and analyze a region of interest (ROI) within the image set, taking into account the tissue concentration of the contrast agent (CA) and its effect on pixel intensity. Results Pixel-wise model-based quantitative parameters are estimated by fitting DCE-MRI data to several pharmacokinetic models using the Levenberg-Marquardt algorithm (LMA). DCE@urLAB also includes the semi-quantitative parametric and heuristic analysis approaches commonly used in practice. This software application has been programmed in the Interactive Data Language (IDL) and tested both with publicly available simulated data and preclinical studies from tumor-bearing mouse brains. Conclusions A user-friendly solution for applying pharmacokinetic and non-quantitative analysis DCE-MRI in preclinical studies has been implemented and tested. The proposed tool has been specially designed for easy selection of multi-pixel ROIs. A public release of DCE@urLAB, together with the open source code and sample datasets, is available at http://www.die.upm.es/im/archives/DCEurLAB/. PMID:24180558

  10. Semi-quantitative assessment of pulmonary perfusion in children using dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Thong, William E.; Ou, Phalla

    2013-03-01

    This paper addresses the study of semi-quantitative assessment of pulmonary perfusion acquired from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in a study population mainly composed of children with pulmonary malformations. The automatic analysis approach proposed is based on the indicator-dilution theory introduced in 1954. First, a robust method is developed to segment the pulmonary artery and the lungs from anatomical MRI data, exploiting 2D and 3D mathematical morphology operators. Second, the time-dependent contrast signal of the lung regions is deconvolved by the arterial input function for the assessment of the local hemodynamic system parameters, ie. mean transit time, pulmonary blood volume and pulmonary blood flow. The discrete deconvolution method implements here a truncated singular value decomposition (tSVD) method. Parametric images for the entire lungs are generated as additional elements for diagnosis and quantitative follow-up. The preliminary results attest the feasibility of perfusion quantification in pulmonary DCE-MRI and open an interesting alternative to scintigraphy for this type of evaluation, to be considered at least as a preliminary decision in the diagnostic due to the large availability of the technique and to the non-invasive aspects.

  11. Using Dynamic Contrast Enhanced MRI to Quantitatively Characterize Maternal Vascular Organization in the Primate Placenta

    PubMed Central

    Frias, A.E.; Schabel, M.C.; Roberts, V.H.J.; Tudorica, A.; Grigsby, P.L.; Oh, K.Y.; Kroenke, C. D.

    2015-01-01

    Purpose The maternal microvasculature of the primate placenta is organized into 10-20 perfusion domains that are functionally optimized to facilitate nutrient exchange to support fetal growth. This study describes a dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) method for identifying vascular domains, and quantifying maternal blood flow in them. Methods A rhesus macaque on the 133rd day of pregnancy (G133, term=165 days) underwent Doppler ultrasound (US) procedures, DCE-MRI, and Cesarean-section delivery. Serial T1-weighted images acquired throughout intravenous injection of a contrast reagent (CR) bolus were analyzed to obtain CR arrival time maps of the placenta. Results Watershed segmentation of the arrival time map identified 16 perfusion domains. The number and location of these domains corresponded to anatomical cotyledonary units observed following delivery. Analysis of the CR wave front through each perfusion domain enabled determination of volumetric flow, which ranged from 9.03 to 44.9 mL/sec (25.2 ± 10.3 mL/sec). These estimates are supported by Doppler US results. Conclusions The DCE-MRI analysis described here provides quantitative estimates of the number of maternal perfusion domains in a primate placenta, and estimates flow within each domain. Anticipated extensions of this technique are to the study placental function in nonhuman primate models of obstetric complications. PMID:24753177

  12. The dynamic of FUS-induced BBB Opening in Mouse Brain assessed by contrast enhanced MRI

    NASA Astrophysics Data System (ADS)

    Jenne, Jürgen W.; Krafft, Axel J.; Maier, Florian; Krause, Marie N.; Kleber, Susanne; Huber, Peter E.; Martin-Villalba, Ana; Bock, Michael

    2010-03-01

    Focused ultrasound (FUS) in combination with the administration of gas-filled microbubbles, can induce a localized and reversible opening of the blood brain barrier (BBB). Contrast enhanced magnetic resonance imaging (MRI) has been demonstrated as a precise tool to monitor such a local BBB disruption. However, the opening/closing mechanisms of the BBB with FUS are still largely unknown. In this ongoing project, we study the BBB opening dynamics in mouse brain comparing an interstitial and an intravascular MR contrast agent (CA). FUS in mouse brain was performed with an MRI compatible treatment setup (1.7 MHz fix-focus US transducer, f' = 68 mm, NA = 0.44; focus: 8.1 mm length; O/ = 1.1 mm) in a 1.5 T whole body MRI system. For BBB opening, forty 10 ms-long FUS-pulses were applied at a repetition rate of 1 Hz at 1 MPa. The i.v. administration of the micro bubbles (50 μl SonoVue®) was started simultaneously with FUS exposure. To analyze the BBB opening process, short-term and long-term MRI signal dynamics of the interstitial MR contrast agent Magnevist® and the intravascular CA Vasovist® (Bayer-Schering) were studied. To assess short-term signal dynamics, T1-weighted inversion recovery turbo FLASH images (1s) were repeatedly acquired. Repeated 3D FLASH acquisitions (90 s) were used to assess long-term MRI signal dynamics. The short-term MRI signal enhancements showed comparable time constants for both types of MR contrast agents: 1.1 s (interstitial) vs. 0.8 s (intravascular). This time constant may serve as a time constant of the BBB opening process with the given FUS exposure parameters. For the long-term signal dynamics the intravascular CA (62±10 min) showed a fife times greater time constant as the interstitial contrast agent (12±10 min). This might be explained by the high molecular weight (˜60 kDa) of the intravascular Vasovist due to its reversible binding to blood serum albumin resulting in a prolonged half-life in the blood stream compared to the

  13. Quantifying heterogeneity of lesion uptake in dynamic contrast enhanced MRI for breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Karahaliou, A.; Vassiou, K.; Skiadopoulos, S.; Kanavou, T.; Yiakoumelos, A.; Costaridou, L.

    2009-07-01

    The current study investigates whether texture features extracted from lesion kinetics feature maps can be used for breast cancer diagnosis. Fifty five women with 57 breast lesions (27 benign, 30 malignant) were subjected to dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) on 1.5T system. A linear-slope model was fitted pixel-wise to a representative lesion slice time series and fitted parameters were used to create three kinetic maps (wash out, time to peak enhancement and peak enhancement). 28 grey level co-occurrence matrices features were extracted from each lesion kinetic map. The ability of texture features per map in discriminating malignant from benign lesions was investigated using a Probabilistic Neural Network classifier. Additional classification was performed by combining classification outputs of most discriminating feature subsets from the three maps, via majority voting. The combined scheme outperformed classification based on individual maps achieving area under Receiver Operating Characteristics curve 0.960±0.029. Results suggest that heterogeneity of breast lesion kinetics, as quantified by texture analysis, may contribute to computer assisted tissue characterization in DCE-MRI.

  14. Dynamic contrast-enhanced quantitative susceptibility mapping with ultrashort echo time MRI for evaluating renal function.

    PubMed

    Xie, Luke; Layton, Anita T; Wang, Nian; Larson, Peder E Z; Zhang, Jeff L; Lee, Vivian S; Liu, Chunlei; Johnson, G Allan

    2016-01-15

    Dynamic contrast-enhanced (DCE) MRI can provide key insight into renal function. DCE MRI is typically achieved through an injection of a gadolinium (Gd)-based contrast agent, which has desirable T1 quenching and tracer kinetics. However, significant T2* blooming effects and signal voids can arise when Gd becomes very concentrated, especially in the renal medulla and pelvis. One MRI sequence designed to alleviate T2* effects is the ultrashort echo time (UTE) sequence. In the present study, we observed T2* blooming in the inner medulla of the mouse kidney, despite using UTE at an echo time of 20 microseconds and a low dose of 0.03 mmol/kg Gd. We applied quantitative susceptibility mapping (QSM) and resolved the signal void into a positive susceptibility signal. The susceptibility values [in parts per million (ppm)] were converted into molar concentrations of Gd using a calibration curve. We determined the concentrating mechanism (referred to as the concentrating index) as a ratio of maximum Gd concentration in the inner medulla to the renal artery. The concentrating index was assessed longitudinally over a 17-wk course (3, 5, 7, 9, 13, 17 wk of age). We conclude that the UTE-based DCE method is limited in resolving extreme T2* content caused by the kidney's strong concentrating mechanism. QSM was able to resolve and confirm the source of the blooming effect to be the large positive susceptibility of concentrated Gd. UTE with QSM can complement traditional magnitude UTE and offer a powerful tool to study renal pathophysiology. PMID:26447222

  15. Assessment of vessel permeability by combining dynamic contrast-enhanced and arterial spin labeling MRI.

    PubMed

    Liu, Ho-Ling; Chang, Ting-Ting; Yan, Feng-Xian; Li, Cheng-He; Lin, Yu-Shi; Wong, Alex M

    2015-06-01

    The forward volumetric transfer constant (K(trans)), a physiological parameter extracted from dynamic contrast-enhanced (DCE) MRI, is weighted by vessel permeability and tissue blood flow. The permeability × surface area product per unit mass of tissue (PS) in brain tumors was estimated in this study by combining the blood flow obtained through pseudo-continuous arterial spin labeling (PCASL) and K(trans) obtained through DCE MRI. An analytical analysis and a numerical simulation were conducted to understand how errors in the flow and K(trans) estimates would propagate to the resulting PS. Fourteen pediatric patients with brain tumors were scanned on a clinical 3-T MRI scanner. PCASL perfusion imaging was performed using a three-dimensional (3D) fast-spin-echo readout module to determine blood flow. DCE imaging was performed using a 3D spoiled gradient-echo sequence, and the K(trans) map was obtained with the extended Tofts model. The numerical analysis demonstrated that the uncertainty of PS was predominantly dependent on that of K(trans) and was relatively insensitive to the flow. The average PS values of the whole tumors ranged from 0.006 to 0.217 min(-1), with a mean of 0.050 min(-1) among the patients. The mean K(trans) value was 18% lower than the PS value, with a maximum discrepancy of 25%. When the parametric maps were compared on a voxel-by-voxel basis, the discrepancies between PS and K(trans) appeared to be heterogeneous within the tumors. The PS values could be more than two-fold higher than the K(trans) values for voxels with high K(trans) levels. This study proposes a method that is easy to implement in clinical practice and has the potential to improve the quantification of the microvascular properties of brain tumors. PMID:25880892

  16. Differentiation of solid pancreatic tumors by using dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Choi, Seung Joon; Kim, Hyung Sik; Park, Hyunjin

    2014-01-01

    Distinguishing among different solid pancreatic tumor types, pancreatic ductal adenocarcinomas, neuroendocrine tumors (NETs), and solid pseudopapillary tumors (SPTs) is important, as the treatment options are vastly different. This study compared characteristics of solid pancreatic tumors by using dynamic contrast enhanced magnetic resonance imaging (MRI). Fifty patients underwent MR imaging of pancreatic masses with a histopathology that was later confirmed as an adenocarcinoma (n = 27), a NET (n = 16), and a SPT (n = 7). For qualitative analysis, two reviewers evaluated the morphologic features of the tumors: locations, margins, shapes, contained products, pancreatic ductal dilatation, and grade of signal intensity (SI). For the quantitative analysis, all phases of the MR images were co-registered using proprietary image registration software; thus, a region of interest (ROI) defined on one phase could be re-applied in other phases. The following four ratios were considered: tumor-to-uninvolved pancreas SI ratio, percent SI change, tumor-touninvolved pancreas enhancement index, and arterial-to-delayed washout rate. The areas under the receiver operating characteristic (ROC) curves were assessed for the four ratios. Adenocarcinomas had ill-defined margins, irregular shapes, and ductal dilatation compared with NETs and SPTs (P < 0.001). The tumor-to-uninvolved pancreas ratio on all dynamic phases was significantly higher for NETs than for both adenocarcinomas and SPTs (P < 0.05). Percentage SI changes of pancreatic tumors on the pancreatic and the portal venous phases were significantly higher for NETs than for both adenocarcinomas and SPTs (P < 0.05). A significant difference between NETs and adenocarcinomas was also found with respect to the tumor-to-uninvolved pancreas enhancement index and arterial-to-delayed washout rate. The percentage SI changes in the pancreatic phase and the arterial-to-delayed washout rate best distinguished between adenocarcinomas and

  17. DCEMRI.jl: a fast, validated, open source toolkit for dynamic contrast enhanced MRI analysis

    PubMed Central

    Li, Xia; Arlinghaus, Lori R.; Yankeelov, Thomas E.; Welch, E. Brian

    2015-01-01

    We present a fast, validated, open-source toolkit for processing dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data. We validate it against the Quantitative Imaging Biomarkers Alliance (QIBA) Standard and Extended Tofts-Kety phantoms and find near perfect recovery in the absence of noise, with an estimated 10–20× speedup in run time compared to existing tools. To explain the observed trends in the fitting errors, we present an argument about the conditioning of the Jacobian in the limit of small and large parameter values. We also demonstrate its use on an in vivo data set to measure performance on a realistic application. For a 192 × 192 breast image, we achieved run times of <1 s. Finally, we analyze run times scaling with problem size and find that the run time per voxel scales as O(N1.9), where N is the number of time points in the tissue concentration curve. DCEMRI.jl was much faster than any other analysis package tested and produced comparable accuracy, even in the presence of noise. PMID:25922795

  18. Improved parameter extraction and classification for dynamic contrast enhanced MRI of prostate

    NASA Astrophysics Data System (ADS)

    Haq, Nandinee Fariah; Kozlowski, Piotr; Jones, Edward C.; Chang, Silvia D.; Goldenberg, S. Larry; Moradi, Mehdi

    2014-03-01

    Magnetic resonance imaging (MRI), particularly dynamic contrast enhanced (DCE) imaging, has shown great potential in prostate cancer diagnosis and prognosis. The time course of the DCE images provides measures of the contrast agent uptake kinetics. Also, using pharmacokinetic modelling, one can extract parameters from the DCE-MR images that characterize the tumor vascularization and can be used to detect cancer. A requirement for calculating the pharmacokinetic DCE parameters is estimating the Arterial Input Function (AIF). One needs an accurate segmentation of the cross section of the external femoral artery to obtain the AIF. In this work we report a semi-automatic method for segmentation of the cross section of the femoral artery, using circular Hough transform, in the sequence of DCE images. We also report a machine-learning framework to combine pharmacokinetic parameters with the model-free contrast agent uptake kinetic parameters extracted from the DCE time course into a nine-dimensional feature vector. This combination of features is used with random forest and with support vector machine classi cation for cancer detection. The MR data is obtained from patients prior to radical prostatectomy. After the surgery, wholemount histopathology analysis is performed and registered to the DCE-MR images as the diagnostic reference. We show that the use of a combination of pharmacokinetic parameters and the model-free empirical parameters extracted from the time course of DCE results in improved cancer detection compared to the use of each group of features separately. We also validate the proposed method for calculation of AIF based on comparison with the manual method.

  19. Impact of uncertainty in longitudinal T1 measurements on quantification of dynamic contrast-enhanced MRI.

    PubMed

    Aryal, Madhava P; Chenevert, Thomas L; Cao, Yue

    2016-04-01

    The objective of this study was to assess the uncertainty in T1 measurement, by estimating the repeatability coefficient (RC) from two repeated scans, in normal appearing brain tissues employing two different T1 mapping methods. All brain MRI scans were performed on a 3 T MR scanner in 10 patients who had low grade/benign tumors and partial brain radiation therapy (RT) without chemotherapy, at pre-RT, 3 weeks into RT, end RT (6 weeks) and 11, 33, and 85 weeks after RT. T1-weighted images were acquired using (1) a spoiled gradient echo sequence with two flip angles (2FA: 5° and 15°) and (2) a progressive saturation recovery sequence (pSR) with five different TR values (100-2000 ms). Manually drawn volumes of interest (VOIs) included left and right normal putamen and thalamus in gray matter, and frontal and parietal white matter, which were distant from tumors and received a total of accumulated radiation doses less than 5 Gy at 3 weeks. No significant changes or even trends in mean T1 from pre-RT to 3 weeks into RT in these VOIs (p ≥ 0.11, Wilcoxon sign test) allowed us to calculate the repeatability statistics of between-subject means of squares, within-subject means of squares, F-score, and RC. The 2FA method produced RCs in the range of (9.7-11.7)% in gray matter and (12.2-14.5)% in white matter; while the pSR method led to RCs ranging from 10.9 to 17.9% in gray matter and 7.5 to 10.3% in white matter. The overall mean (±SD) RCs produced by the two methods, 12.0 (±1.6)% for 2FA and 12.0 (±3.8)% for pSR, were not significantly different (p = 0.97). A similar repeatability in T1 measurement produced by the time efficient 2FA method compared with the time consuming pSR method demonstrates that the 2FA method is desirable to integrate into dynamic contrast-enhanced MRI for rapid acquisition. PMID:27358934

  20. Automated segmentation of reference tissue for prostate cancer localization in dynamic contrast enhanced MRI

    NASA Astrophysics Data System (ADS)

    Vos, Pieter C.; Hambrock, Thomas; Barentsz, Jelle O.; Huisman, Henkjan J.

    2010-03-01

    For pharmacokinetic (PK) analysis of Dynamic Contrast Enhanced (DCE) MRI the arterial input function needs to be estimated. Previously, we demonstrated that PK parameters have a significant better discriminative performance when per patient reference tissue was used, but required manual annotation of reference tissue. In this study we propose a fully automated reference tissue segmentation method that tackles this limitation. The method was tested with our Computer Aided Diagnosis (CADx) system to study the effect on the discriminating performance for differentiating prostate cancer from benign areas in the peripheral zone (PZ). The proposed method automatically segments normal PZ tissue from DCE derived data. First, the bladder is segmented in the start-to-enhance map using the Otsu histogram threshold selection method. Second, the prostate is detected by applying a multi-scale Hessian filter to the relative enhancement map. Third, normal PZ tissue was segmented by threshold and morphological operators. The resulting segmentation was used as reference tissue to estimate the PK parameters. In 39 consecutive patients carcinoma, benign and normal tissue were annotated on MR images by a radiologist and a researcher using whole mount step-section histopathology as reference. PK parameters were computed for each ROI. Features were extracted from the set of ROIs using percentiles to train a support vector machine that was used as classifier. Prospective performance was estimated by means of leave-one-patient-out cross validation. A bootstrap resampling approach with 10,000 iterations was used for estimating the bootstrap mean AUCs and 95% confidence intervals. In total 42 malignant, 29 benign and 37 normal regions were annotated. For all patients, normal PZ was successfully segmented. The diagnostic accuracy obtained for differentiating malignant from benign lesions using a conventional general patient plasma profile showed an accuracy of 0.64 (0.53-0.74). Using the

  1. Development and characterization of a dynamic lesion phantom for the quantitative evaluation of dynamic contrast-enhanced MRI

    PubMed Central

    Freed, Melanie; de Zwart, Jacco A.; Hariharan, Prasanna; R. Myers, Matthew; Badano, Aldo

    2011-01-01

    Purpose: To develop a dynamic lesion phantom that is capable of producing physiological kinetic curves representative of those seen in human dynamic contrast-enhanced MRI (DCE-MRI) data. The objective of this phantom is to provide a platform for the quantitative comparison of DCE-MRI protocols to aid in the standardization and optimization of breast DCE-MRI. Methods: The dynamic lesion consists of a hollow, plastic mold with inlet and outlet tubes to allow flow of a contrast agent solution through the lesion over time. Border shape of the lesion can be controlled using the lesion mold production method. The configuration of the inlet and outlet tubes was determined using fluid transfer simulations. The total fluid flow rate was determined using x-ray images of the lesion for four different flow rates (0.25, 0.5, 1.0, and 1.5 ml∕s) to evaluate the resultant kinetic curve shape and homogeneity of the contrast agent distribution in the dynamic lesion. High spatial and temporal resolution x-ray measurements were used to estimate the true kinetic curve behavior in the dynamic lesion for benign and malignant example curves. DCE-MRI example data were acquired of the dynamic phantom using a clinical protocol. Results: The optimal inlet and outlet tube configuration for the lesion molds was two inlet molds separated by 30° and a single outlet tube directly between the two inlet tubes. X-ray measurements indicated that 1.0 ml∕s was an appropriate total fluid flow rate and provided truth for comparison with MRI data of kinetic curves representative of benign and malignant lesions. DCE-MRI data demonstrated the ability of the phantom to produce realistic kinetic curves. Conclusions: The authors have constructed a dynamic lesion phantom, demonstrated its ability to produce physiological kinetic curves, and provided estimations of its true kinetic curve behavior. This lesion phantom provides a tool for the quantitative evaluation of DCE-MRI protocols, which may lead to

  2. Diffusion-weighted imaging and dynamic contrast-enhanced MRI in assessing response and recurrent disease in gynaecological malignancies.

    PubMed

    Hameeduddin, Ayshea; Sahdev, Anju

    2015-01-01

    Magnetic resonance imaging (MRI) has an established role in imaging pelvic gynaecological malignancies. It is routinely used in staging endometrial and cervical cancer, characterizing adnexal masses, selecting optimal treatment, monitoring treatment and detecting recurrent disease. MRI has also been shown to have an excellent performance and an evolving role in surveillance of patients after chemoradiotherapy in cervical cancer, post-trachelectomy, detecting early recurrence and planning exenterative surgery in isolated central recurrences in both cervical and endometrial cancer and in young patients on surveillance for medically managed endometrial cancer. However, conventional MRI still has limitations when the morphological appearance of early recurrent or residual disease overlaps with normal pelvic anatomy or treatment effects in the pelvis. In particular, after chemoradiotherapy for cervical cancer, distinguishing between radiotherapy changes and residual or early recurrent disease within the cervix or the vaginal vault can be challenging on conventional MRI alone. Therefore, there is an emerging need for functional imaging to overcome these limitations. The purpose of this paper is to discuss the emerging functional MRI techniques and their applications in predicting treatment response, detecting residual disease and early recurrent disease to optimize the treatment options available using diffusion-weighted imaging and dynamic contrast enhancement particularly in cervical and endometrial cancer. PMID:25889065

  3. Pretreatment Dynamic Contrast-Enhanced MRI Improves Prediction of Early Distant Metastases in Patients With Nasopharyngeal Carcinoma

    PubMed Central

    Chin, Shy-Chyi; Lin, Chien-Yu; Huang, Bing-Shen; Tsang, Ngan-Ming; Fan, Kang-Hsing; Ku, Yi-Kang; Hsu, Cheng-Lung; Chan, Sheng-Chieh; Huang, Shiang-Fu; Li, Cheng-He; Tseng, Hsiao-Jung; Liao, Chun-Ta; Liu, Ho-Ling; Sung, Kyunghyun

    2016-01-01

    Abstract The identification of early distant metastases (DM) in patients with newly diagnosed, previously untreated nasopharyngeal carcinoma (NPC) plays an important role in selecting the most appropriate treatment approach. Here, we sought to investigate the predictive value of distinct MRI parameters for the detection of early DM. Between November 2010 and June 2011, a total of 51 newly diagnosed NPC patients were included. All of the study participants were followed until December 2014 at a single institution after completion of therapy. DM was defined as early when they were detected on pretreatment FDG-PET scans or within 6 months after initial diagnosis. The following parameters were tested for their ability to predict early DM: pretreatment FDG-PET standardized uptake value (SUV), MRI-derived AJCC tumor staging, tumor volume, and dynamic contrast-enhanced (DCE) values. The DCE-derived ve was defined as the volume fraction of the extravascular, extracellular space. Compared with patients without early DM, patients with early DM had higher SUV, tumor volume, DCE mean (median) ve, ve skewness, ve kurtosis, and the largest mean ve selected among sequential slices (P < 0.05). No differences were identified when early DM were defined only according to the results of pretreatment FDG-PET. Among different quantitative DCE parameters, the mean ve had the highest area under curve (AUC, 0.765). However, the AUCs of SUV, tumor volume, mean ve, ve skewness, ve kurtosis, or the largest mean ve selected among the sequential slices did not differ significantly from one another (P = 0.82). Taken together, our results suggest that DCE-derived ve may be a useful parameter in combination with SUV and tumor volume for predicting early DM. Dynamic contrast-enhanced MRI may be complementary to FDG-PET for selecting the most appropriate treatment approach in NPC patients. PMID:26871776

  4. Association between dynamic contrast enhanced MRI imaging features and WHO histopathological grade in patients with invasive ductal breast cancer

    PubMed Central

    HUANG, JUAN; YU, JIANQUN; PENG, YULAN

    2016-01-01

    The present study aimed to investigate the dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) and World Health Organization (WHO) histopathological grade in patients with invasive ductal breast cancer. A retrospective analysis on the results of DCE-MRI of 92 patients, who were diagnosed with invasive ductal breast cancer following surgery or biopsy, and these results were correlated with WHO histopathological grade. The statistical analysis demonstrated that the tumor size, shape and characteristics of early enhancement were associated with the WHO histopathological grade: The larger the lesion's long diameter, the higher the WHO histopathological grade; the WHO histopathological grades of round and oval masses were relatively lower, while those of lobulated and irregular masses were higher; and tumors with heterogeneous and ring-like enhancement exhibited higher WHO histopathological grades, while those of homogeneous enhancement were lower. The lesion's margin shape was not associated with the WHO histopathological grade. The present study demonstrates that features of DCE-MRI and WHO histopathological grade in patients with invasive ductal breast cancer are correlated, and these MRI features could be used to evaluate the biological behavior and prognosis of lesions. PMID:27123145

  5. The Role of Dynamic Contrast-Enhanced MRI in a Child with Sport-Induced Avascular Necrosis of the Scaphoid: A Case Report and Literature Review

    PubMed Central

    Jong, Bob; Tilman, Pieter

    2016-01-01

    Avascular necrosis (AVN) of the scaphoid in children is very rare and there is currently no consensus when conservative or operative treatment is indicated. A 10-year-old boy, practicing karate, presented with acute pain in his left wrist after falling on the outstretched hand. Imaging showed a scaphoid waist fracture with signs of an ongoing AVN. The diagnosis of AVN was confirmed with signal loss of the scaphoid on MRI T1. A dynamic contrast-enhanced MRI was performed for further assessment of the proximal pole vascularity and treatment planning. As dynamic contrast-enhanced MRI showed fair perfusion of the proximal pole, an adequate healing potential with conservative treatment was estimated. We achieved union and good function with cast immobilization for fourteen weeks. This case study showed dynamic contrast-enhanced MRI to be a valuable tool in assessing whether conservative or operative treatment is indicated to achieve union and good functional outcome. PMID:27529045

  6. A dimensionless dynamic contrast enhanced MRI parameter for intra-prostatic tumour target volume delineation: initial comparison with histology

    NASA Astrophysics Data System (ADS)

    Hrinivich, W. Thomas; Gibson, Eli; Gaed, Mena; Gomez, Jose A.; Moussa, Madeleine; McKenzie, Charles A.; Bauman, Glenn S.; Ward, Aaron D.; Fenster, Aaron; Wong, Eugene

    2014-03-01

    Purpose: T2 weighted and diffusion weighted magnetic resonance imaging (MRI) show promise in isolating prostate tumours. Dynamic contrast enhanced (DCE)-MRI has also been employed as a component in multi-parametric tumour detection schemes. Model-based parameters such as Ktrans are conventionally used to characterize DCE images and require arterial contrast agent (CR) concentration. A robust parameter map that does not depend on arterial input may be more useful for target volume delineation. We present a dimensionless parameter (Wio) that characterizes CR wash-in and washout rates without requiring arterial CR concentration. Wio is compared to Ktrans in terms of ability to discriminate cancer in the prostate, as demonstrated via comparison with histology. Methods: Three subjects underwent DCE-MRI using gadolinium contrast and 7 s imaging temporal resolution. A pathologist identified cancer on whole-mount histology specimens, and slides were deformably registered to MR images. The ability of Wio maps to discriminate cancer was determined through receiver operating characteristic curve (ROC) analysis. Results: There is a trend that Wio shows greater area under the ROC curve (AUC) than Ktrans with median AUC values of 0.74 and 0.69 respectively, but the difference was not statistically significant based on a Wilcoxon signed-rank test (p = 0.13). Conclusions: Preliminary results indicate that Wio shows potential as a tool for Ktrans QA, showing similar ability to discriminate cancer in the prostate as Ktrans without requiring arterial CR concentration.

  7. Investigating the Influence of Flip Angle and k-Space Sampling on Dynamic Contrast-Enhanced MRI Breast Examinations

    PubMed Central

    Ledger, Araminta E.W.; Borri, Marco; Pope, Romney J.E.; Scurr, Erica D.; Wallace, Toni; Richardson, Cheryl; Usher, Marianne; Allen, Steven; Wilson, Robin M.; Thomas, Karen; deSouza, Nandita M.; Leach, Martin O.; Schmidt, Maria A.

    2014-01-01

    Rationale and Objectives To retrospectively investigate the effect of flip angle (FA) and k-space sampling on the performance of dynamic contrast-enhanced (DCE-) magnetic resonance imaging (MRI) breast sequences. Materials and Methods Five DCE-MRI breast sequences were evaluated (10°, 14°, and 18° FAs; radial or linear k-space sampling), with 7–10 patients in each group (n = 45). All sequences were compliant with current technical breast screening guidelines. Contrast agent (CA) uptake curves were constructed from the right mammary artery for each examination. Maximum relative enhancement, Emax, and time-to-peak enhancement, Tmax, were measured and compared between protocols (analysis of variance and Mann–Whitney). For each sequence, calculated values of maximum relative enhancement, Ecalc, were derived from the Bloch equations and compared to Emax. Fat suppression performance (residual bright fat and chemical shift artifact) was rated for each examination and compared between sequences (Fisher exact tests). Results Significant differences were identified between DCE-MRI sequences. Emax increased significantly at higher FAs and with linear k-space sampling (P < .0001; P = .001). Radial protocols exhibited greater Tmax than linear protocols at FAs of both 14° (P = .025) and 18° (P < .0001), suggesting artificially flattened uptake curves. Good correlation was observed between Ecalc and Emax (r = 0.86). Fat suppression failure was more pronounced at an FA of 18° (P = .008). Conclusions This retrospective approach is validated as a tool to compare and optimize breast DCE-MRI sequences. Alterations in FA and k-space sampling result in significant differences in CA uptake curve shape which could potentially affect diagnostic interpretation. These results emphasize the need for careful parameter selection and greater standardization of breast DCE-MRI sequences. PMID:25179563

  8. Dynamic Contrast-Enhanced MRI Kinetics of Invasive Breast Cancer: A Potential Prognostic Marker for Radiation Therapy

    SciTech Connect

    Loiselle, Christopher R.; Eby, Peter R.; DeMartini, Wendy B.; Peacock, Sue M.S.; Bittner, Nathan; Lehman, Constance D.; Kim, Janice N.

    2010-04-15

    Purpose: Our goal was to determine the correlations between dynamic contrast-enhanced MRI (DCE-MRI) kinetics of breast cancers and axillary nodal status (ANS) which may have prognostic value in designing radiation therapy recommendations. Methods and Materials: A retrospective review identified 167 consecutive patients treated with external beam radiotherapy for invasive breast cancer from Jan 1, 2006 to Nov 1, 2007. Patients with DCE-MRI kinetic data from our institution who underwent axillary surgical staging prior to chemotherapy were included. ANS was assessed as positive or negative by pathology record review. For each primary cancer, maximum tumor diameter and kinetic values for initial peak enhancement (PE), percent initial rapid enhancement (RE), and percent delayed washout enhancement (WE) were measured with a computer-aided evaluation program. Univariate, multivariate, and receiver operating characteristic curve analyses were performed according to the ANS. Results: Forty-six patients met study criteria, with 32 (70%) node-negative and 14 (30%) node-positive patients. Median PE was significantly greater in node-positive patients (209%) than in node-negative patients (138%, p = 0.0027). Similarly, median RE was significantly greater in node-positive patients (57%) than in node-negative patients (27%, p = 0.0436). WE was not different between groups (p = 0.9524). Median maximum tumor diameter was greater in node-positive patients (26 mm) than in node-negative patients (15 mm, p = 0.015). Multivariate analysis showed that only PE trended toward significance (p = 0.18). Conclusions: DCE-MRI kinetics of primary breast cancers correlate with ANS. Multivariate analysis demonstrates the correlation is not due simply to underlying lesion size. If validated prospectively, DCE-MRI kinetics may aid as a tool in selecting patients or designing fields for radiation therapy.

  9. Noninvasive assessment of tumor microenvironment using dynamic contrast enhanced MRI and 18F- fluoromisonidazole PET imaging in neck nodal metastases

    PubMed Central

    Jansen, Jacobus F. A.; Schöder, Heiko; Lee, Nancy Y.; Wang, Ya; Pfister, David. G.; Fury, Matthew G.; Stambuk, Hilda. E.; Humm, John L.; Koutcher, Jason A.; Shukla-Dave, Amita

    2009-01-01

    Purpose Pretreatment multimodality imaging can provide useful anatomical and functional data about tumors, including perfusion and possibly hypoxia status. The purpose of our study was to assess non-invasively the tumor microenvironment of neck nodal metastases in patients with head and neck (HN) cancer by investigating the relationship between tumor perfusion measured using Dynamic Contrast Enhanced MRI (DCE-MRI) and hypoxia measured by 18F-fluoromisonidazole (18F-FMISO) PET. Methods and Materials Thirteen newly diagnosed HN cancer patients with metastatic neck nodes underwent DCE-MRI and 18F-FMISO PET imaging prior to chemotherapy and radiation therapy. The matched regions of interests from both modalities were analyzed. To examine the correlations between DCE-MRI parameters and standard uptake value (SUV) measurements from 18F-FMISO PET, the non-parametric Spearman correlation coefficient was calculated. Furthermore, DCE-MRI parameters were compared between nodes with 18F-FMISO uptake and nodes with no 18F-FMISO uptake using Mann-Whitney U tests. Results For the 13 patients, a total of 18 nodes were analyzed. The nodal size strongly correlated with the 18F-FMISO SUV (ρ=0.74, p<0.001). There was a strong negative correlation between the median kep (ρ=−0.58, p=0.042) and the 18F-FMISO SUV. Hypoxic nodes (moderate to severe 18F-FMISO uptake) had significantly lower median Ktrans (p=0.049) and median kep (p=0.027) values than did non-hypoxic nodes (no 18F-FMISO uptake). Conclusion This initial evaluation of the preliminary results support the hypothesis that in metastatic neck lymph nodes, hypoxic nodes are poorly perfused (i.e., have significantly lower kep and Ktrans values) compared to non-hypoxic nodes. PMID:19906496

  10. Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques.

    PubMed

    Calcagno, Claudia; Lobatto, Mark E; Dyvorne, Hadrien; Robson, Philip M; Millon, Antoine; Senders, Max L; Lairez, Olivier; Ramachandran, Sarayu; Coolen, Bram F; Black, Alexandra; Mulder, Willem J M; Fayad, Zahi A

    2015-10-01

    Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI studies of atherosclerosis have been limited to two-dimensional (2D) multi-slice imaging. Although providing the high spatial resolution required to image the arterial vessel wall, these approaches do not allow the quantification of plaque permeability with extensive anatomical coverage, an essential feature when imaging heterogeneous diseases, such as atherosclerosis. To our knowledge, we present the first systematic evaluation of three-dimensional (3D), high-resolution, DCE-MRI for the extensive quantification of plaque permeability along an entire vascular bed, with validation in atherosclerotic rabbits. We compare two acquisitions: 3D turbo field echo (TFE) with motion-sensitized-driven equilibrium (MSDE) preparation and 3D turbo spin echo (TSE). We find 3D TFE DCE-MRI to be superior to 3D TSE DCE-MRI in terms of temporal stability metrics. Both sequences show good intra- and inter-observer reliability, and significant correlation with ex vivo permeability measurements by Evans Blue near-infrared fluorescence (NIRF). In addition, we explore the feasibility of using compressed sensing to accelerate 3D DCE-MRI of atherosclerosis, to improve its temporal resolution and therefore the accuracy of permeability quantification. Using retrospective under-sampling and reconstructions, we show that compressed sensing alone may allow the acceleration of 3D DCE-MRI by up to four-fold. We anticipate that the development of high-spatial-resolution 3D DCE-MRI with prospective compressed sensing acceleration may allow for the more accurate and extensive quantification of atherosclerotic plaque permeability along an entire vascular bed. We foresee that this approach may allow for

  11. Respiratory Motion-Compensated Radial Dynamic Contrast-Enhanced (DCE)-MRI of Chest and Abdominal Lesions

    PubMed Central

    Lin, Wei; Guo, Junyu; Rosen, Mark A.; Song, Hee Kwon

    2016-01-01

    Dynamic contrast-enhanced (DCE)-MRI is becoming an increasingly important tool for evaluating tumor vascularity and assessing the effectiveness of emerging antiangiogenic and antivascular agents. In chest and abdominal regions, however, respiratory motion can seriously degrade the achievable image quality in DCE-MRI studies. The purpose of this work is to develop a respiratory motion-compensated DCE-MRI technique that combines the self-gating properties of radial imaging with the reconstruction flexibility afforded by the golden-angle view-order strategy. Following radial data acquisition, the signal at k-space center is first used to determine the respiratory cycle, and consecutive views during the expiratory phase of each respiratory period (34–55 views, depending on the breathing rate) are grouped into individual segments. Residual intra-segment translation of lesion is subsequently compensated for by an autofocusing technique that optimizes image entropy, while intersegment translation (among different respiratory cycles) is corrected using 3D image correlation. The resulting motion-compensated, undersampled dynamic image series is then processed to reduce image streaking and to enhance the signal-to-noise ratio (SNR) prior to perfusion analysis, using either the k-space-weighted image contrast (KWIC) radial filtering technique or principal component analysis (PCA). The proposed data acquisition scheme also allows for high framerate arterial input function (AIF) sampling and free-breathing baseline T1 mapping. The performance of the proposed radial DCE-MRI technique is evaluated in subjects with lung and liver lesions, and results demonstrate that excellent pixelwise perfusion maps can be obtained with the proposed methodology. PMID:18956465

  12. Angiogenic response of locally advanced breast cancer to neoadjuvant chemotherapy evaluated with parametric histogram from dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Chang, Yeun-Chung; Huang, Chiun-Sheng; Liu, Yi-Jui; Chen, Jyh-Horng; Lu, Yen-Shen; Tseng, Wen-Yih I.

    2004-08-01

    The aim of this study was to evaluate angiogenic compositions and tumour response in the course of neoadjuvant chemotherapy in patients with locally advanced breast cancer (LABC) using dynamic contrast-enhanced (DCE) MRI. Thirteen patients with LABC underwent serial DCE MRI during the course of chemotherapy. DCE MRI was quantified using a two-compartment model on a pixel-by-pixel basis. Analysis of parametric histograms of amplitude, exchange rate kout and peak enhancement over the whole tumour was performed. The distribution patterns of histograms were correlated with the tumour response. Initial kurtosis and standard deviation of amplitude before chemotherapy correlated with tumour response, r = 0.63 and r = 0.61, respectively. Comparing the initial values with the values after the first course of chemotherapy, tumour response was associated with a decrease in standard deviation of amplitude (r = 0.79), and an increase in kurtosis and a decrease in standard deviation of kout (r = 0.57 and 0.57, respectively). Comparing the initial values with the values after completing the chemotherapy, tumours with better response were associated with an increase in kurtosis (r = 0.62), a decrease in mean (r = 0.84) and standard deviation (r = 0.77) of amplitude, and a decrease in mean of peak enhancement (r = 0.71). Our results suggested that tumours with better response tended to alter their internal compositions from heterogeneous to homogeneous distributions and a decrease in peak enhancement after chemotherapy. Serial analyses of parametric histograms of DCE MRI-derived angiogenic parameters are potentially useful to monitor the response of angiogenic compositions of a tumour throughout the course of chemotherapy, and might predict tumour response early in the course.

  13. Joint estimation of shape and deformation for the detection of lesions in dynamic contrast-enhanced breast MRI

    NASA Astrophysics Data System (ADS)

    Hong, Byung-Woo

    2013-11-01

    We propose a mathematical framework for simultaneously delineating the boundary of object and estimating its temporal motion in the application of lesion detection in a dynamic contrast-enhanced (DCE) breast MRI sequence where both the appearance and the shape of region of interest is assumed to change in time. A unified energy functional for a joint segmentation and registration is proposed based on the assumption that the statistical properties of dynamic intensity curves within a region of interest are homogeneous. Our algorithm is designed to provide the morphological properties of the enhanced region and its dynamic intensity profiles, called kinetic signatures, in the analysis of DCE imagery since these features are considered as significant cues in understanding images. The proposed energy comprises a combination of a segmentation energy and a registration energy. The segmentation energy is developed based on a convex formulation being insensitive to the initialization. The registration energy is designed to compensate motion artifacts that are usually involved in the temporal imaging procedure. The major objective of this work is to provide a mathematical framework for a joint segmentation and registration on a dynamic sequence of images, and we demonstrate the mutual benefit of the estimation of temporal deformations for the registration step and the localization of regions of interest for the segmentation step. The effectiveness of the developed algorithm has been demonstrated on a number of clinical DCE breast MRI data in the application of breast lesion detection and the results show its potential to improve the accuracy and the efficiency in the diagnosis of breast cancer.

  14. Joint estimation of shape and deformation for the detection of lesions in dynamic contrast-enhanced breast MRI.

    PubMed

    Hong, Byung-Woo

    2013-11-01

    We propose a mathematical framework for simultaneously delineating the boundary of object and estimating its temporal motion in the application of lesion detection in a dynamic contrast-enhanced (DCE) breast MRI sequence where both the appearance and the shape of region of interest is assumed to change in time. A unified energy functional for a joint segmentation and registration is proposed based on the assumption that the statistical properties of dynamic intensity curves within a region of interest are homogeneous. Our algorithm is designed to provide the morphological properties of the enhanced region and its dynamic intensity profiles, called kinetic signatures, in the analysis of DCE imagery since these features are considered as significant cues in understanding images. The proposed energy comprises a combination of a segmentation energy and a registration energy. The segmentation energy is developed based on a convex formulation being insensitive to the initialization. The registration energy is designed to compensate motion artifacts that are usually involved in the temporal imaging procedure. The major objective of this work is to provide a mathematical framework for a joint segmentation and registration on a dynamic sequence of images, and we demonstrate the mutual benefit of the estimation of temporal deformations for the registration step and the localization of regions of interest for the segmentation step. The effectiveness of the developed algorithm has been demonstrated on a number of clinical DCE breast MRI data in the application of breast lesion detection and the results show its potential to improve the accuracy and the efficiency in the diagnosis of breast cancer. PMID:24140912

  15. MRI contrast enhancement using Magnetic Carbon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chaudhary, Rakesh P.; Kangasniemi, Kim; Takahashi, Masaya; Mohanty, Samarendra K.; Koymen, Ali R.; Department of Physics, University of Texas at Arlington Team; University of Texas Southwestern Medical Center Team

    2014-03-01

    In recent years, nanotechnology has become one of the most exciting forefront fields in cancer diagnosis and therapeutics such as drug delivery, thermal therapy and detection of cancer. Here, we report development of core (Fe)-shell (carbon) nanoparticles with enhanced magnetic properties for contrast enhancement in MRI imaging. These new classes of magnetic carbon nanoparticles (MCNPs) are synthesized using a bottom-up approach in various organic solvents, using the electric plasma discharge generated in the cavitation field of an ultrasonic horn. Gradient echo MRI images of well-dispersed MCNP-solutions (in tube) were acquired. For T2 measurements, a multi echo spin echo sequence was performed. From the slope of the 1/T2 versus concentration plot, the R2 value for different CMCNP-samples was measured. Since MCNPs were found to be extremely non-reactive, and highly absorbing in NIR regime, development of carbon-based MRI contrast enhancement will allow its simultaneous use in biomedical applications. We aim to localize the MCNPs in targeted tissue regions by external DC magnetic field, followed by MRI imaging and subsequent photothermal therapy.

  16. Quality assurance in MRI breast screening: comparing signal-to-noise ratio in dynamic contrast-enhanced imaging protocols.

    PubMed

    Kousi, Evanthia; Borri, Marco; Dean, Jamie; Panek, Rafal; Scurr, Erica; Leach, Martin O; Schmidt, Maria A

    2016-01-01

    MRI has been extensively used in breast cancer staging, management and high risk screening. Detection sensitivity is paramount in breast screening, but variations of signal-to-noise ratio (SNR) as a function of position are often overlooked. We propose and demonstrate practical methods to assess spatial SNR variations in dynamic contrast-enhanced (DCE) breast examinations and apply those methods to different protocols and systems. Four different protocols in three different MRI systems (1.5 and 3.0 T) with receiver coils of different design were employed on oil-filled test objects with and without uniformity filters. Twenty 3D datasets were acquired with each protocol; each dataset was acquired in under 60 s, thus complying with current breast DCE guidelines. In addition to the standard SNR calculated on a pixel-by-pixel basis, we propose other regional indices considering the mean and standard deviation of the signal over a small sub-region centred on each pixel. These regional indices include effects of the spatial variation of coil sensitivity and other structured artefacts. The proposed regional SNR indices demonstrate spatial variations in SNR as well as the presence of artefacts and sensitivity variations, which are otherwise difficult to quantify and might be overlooked in a clinical setting. Spatial variations in SNR depend on protocol choice and hardware characteristics. The use of uniformity filters was shown to lead to a rise of SNR values, altering the noise distribution. Correlation between noise in adjacent pixels was associated with data truncation along the phase encoding direction. Methods to characterise spatial SNR variations using regional information were demonstrated, with implications for quality assurance in breast screening and multi-centre trials. PMID:26605957

  17. Quality assurance in MRI breast screening: comparing signal-to-noise ratio in dynamic contrast-enhanced imaging protocols

    NASA Astrophysics Data System (ADS)

    Kousi, Evanthia; Borri, Marco; Dean, Jamie; Panek, Rafal; Scurr, Erica; Leach, Martin O.; Schmidt, Maria A.

    2016-01-01

    MRI has been extensively used in breast cancer staging, management and high risk screening. Detection sensitivity is paramount in breast screening, but variations of signal-to-noise ratio (SNR) as a function of position are often overlooked. We propose and demonstrate practical methods to assess spatial SNR variations in dynamic contrast-enhanced (DCE) breast examinations and apply those methods to different protocols and systems. Four different protocols in three different MRI systems (1.5 and 3.0 T) with receiver coils of different design were employed on oil-filled test objects with and without uniformity filters. Twenty 3D datasets were acquired with each protocol; each dataset was acquired in under 60 s, thus complying with current breast DCE guidelines. In addition to the standard SNR calculated on a pixel-by-pixel basis, we propose other regional indices considering the mean and standard deviation of the signal over a small sub-region centred on each pixel. These regional indices include effects of the spatial variation of coil sensitivity and other structured artefacts. The proposed regional SNR indices demonstrate spatial variations in SNR as well as the presence of artefacts and sensitivity variations, which are otherwise difficult to quantify and might be overlooked in a clinical setting. Spatial variations in SNR depend on protocol choice and hardware characteristics. The use of uniformity filters was shown to lead to a rise of SNR values, altering the noise distribution. Correlation between noise in adjacent pixels was associated with data truncation along the phase encoding direction. Methods to characterise spatial SNR variations using regional information were demonstrated, with implications for quality assurance in breast screening and multi-centre trials.

  18. Value of Dynamic Contrast-Enhanced MRI to Detect Local Tumor Recurrence in Primary Head and Neck Cancer Patients.

    PubMed

    Choi, Young Jun; Lee, Jeong Hyun; Sung, Yu Sub; Yoon, Ra Gyoung; Park, Ji Eun; Nam, Soon Yuhl; Baek, Jung Hwan

    2016-05-01

    Treatment failures in head and neck cancer patients are mainly related to locoregional tumor recurrence. The objective of the present study was to evaluate the diagnostic accuracy of model-free dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to detect local recurrence during the surveillance of head and neck cancer patients.Our retrospective study enrolled 24 patients with primary head and neck cancer who had undergone definitive treatment. Patients were grouped into local recurrence (n = 12) or posttreatment change (n = 12) groups according to the results of biopsy or clinicoradiologic follow-up. The types of time-signal intensity (TSI) curves were classified as follows: "progressive increment" as type I, "plateau" as type II, and "washout" as type III. TSI curve types and their parameters (i.e., wash-in, Emax, Tmax, area under the curve [AUC]60, AUC90, and AUC120) were compared between the 2 study groups.The distributions of TSI curve types for local recurrence versus posttreatment change were statistically significant (P < 0.001) (i.e., 0% vs 83.3% for type I, 58.3% vs 16.7% for type II, and 41.7% vs 0% for type III). There were statistically significant differences in Emax, Tmax, and all of the AUC parameters between 2 groups (P < 0.0083 [0.05/6]). Receiver operating characteristic (ROC) curve analyses indicated that the TSI curve type was the best predictor of local recurrence with a sensitivity of 100% (95% CI, 73.5-100.0) and a specificity of 83.3% (95% CI, 51.6-97.9) (cutoff with type II).Model-free DCE-MRI using TSI curves and TSI curve-derived parameters detects local recurrence in head and neck cancer patients with a high diagnostic accuracy. PMID:27175712

  19. SU-D-303-03: Impact of Uncertainty in T1 Measurements On Quantification of Dynamic Contrast Enhanced MRI

    SciTech Connect

    Aryal, M; Cao, Y

    2015-06-15

    Purpose: Quantification of dynamic contrast enhanced (DCE) MRI requires native longitudinal relaxation time (T1) measurement. This study aimed to assess uncertainty in T1 measurements using two different methods. Methods and Materials: Brain MRI scans were performed on a 3T scanner in 9 patients who had low grade/benign tumors and partial brain radiotherapy without chemotherapy at pre-RT, week-3 during RT (wk-3), end-RT, and 1, 6 and 18 months after RT. T1-weighted images were acquired using gradient echo sequences with 1) 2 different flip angles (50 and 150), and 2) 5 variable TRs (100–2000ms). After creating quantitative T1 maps, average T1 was calculated in regions of interest (ROI), which were distant from tumors and received a total of accumulated radiation doses < 5 Gy at wk-3. ROIs included left and right normal Putamen and Thalamus (gray matter: GM), and frontal and parietal white matter (WM). Since there were no significant or even a trend of T1 changes from pre-RT to wk-3 in these ROIs, a relative repeatability coefficient (RC) of T1 as a measure of uncertainty was estimated in each ROI using the data pre-RT and at wk-3. The individual T1 changes at later time points were evaluated compared to the estimated RCs. Results: The 2-flip angle method produced small RCs in GM (9.7–11.7%) but large RCs in WM (12.2–13.6%) compared to the saturation-recovery (SR) method (11.0–17.7% for GM and 7.5–11.2% for WM). More than 81% of individual T1 changes were within T1 uncertainty ranges defined by RCs. Conclusion: Our study suggests that the impact of T1 uncertainty on physiological parameters derived from DCE MRI is not negligible. A short scan with 2 flip angles is able to achieve repeatability of T1 estimates similar to a long scan with 5 different TRs, and is desirable to be integrated in the DCE protocol. Present study was supported by National Institute of Health (NIH) under grant numbers; UO1 CA183848 and RO1 NS064973.

  20. Added value of diffusion-weighted MRI in detection of cervical cancer recurrence: comparison with morphologic and dynamic contrast-enhanced MRI sequences

    PubMed Central

    Lucas, Rita; Dias, João Lopes; Cunha, Teresa Margarida

    2015-01-01

    PURPOSE We aimed to evaluate the added value of diffusion-weighted imaging (DWI) to standard magnetic resonance imaging (MRI) for detecting post-treatment cervical cancer recurrence. The detection accuracy of T2-weighted (T2W) images was compared with that of T2W MRI combined with either dynamic contrast-enhanced (DCE) MRI or DWI. METHODS Thirty-eight women with clinically suspected uterine cervical cancer recurrence more than six months after treatment completion were examined with 1.5 Tesla MRI including T2W, DCE, and DWI sequences. Disease was confirmed histologically and correlated with MRI findings. The diagnostic performance of T2W imaging and its combination with either DCE or DWI were analyzed. Sensitivity, positive predictive value, and accuracy were calculated. RESULTS Thirty-six women had histologically proven recurrence. The accuracy for recurrence detection was 80% with T2W/DCE MRI and 92.1% with T2W/DWI. The addition of DCE sequences did not significantly improve the diagnostic ability of T2W imaging, and this sequence combination misclassified two patients as falsely positive and seven as falsely negative. The T2W/DWI combination revealed a positive predictive value of 100% and only three false negatives. CONCLUSION The addition of DWI to T2W sequences considerably improved the diagnostic ability of MRI. Our results support the inclusion of DWI in the initial MRI protocol for the detection of cervical cancer recurrence, leaving DCE sequences as an option for uncertain cases. PMID:26200480

  1. Dynamic contrast-enhanced MRI serves as a predictor of HIFU treatment outcome for uterine fibroids with hyperintensity in T2-weighted images

    PubMed Central

    ZHAO, WEN-PENG; CHEN, JIN-YUN; CHEN, WEN-ZHI

    2016-01-01

    The aim of the present study was to investigate the efficacy of dynamic contrast-enhanced magnetic resonance imaging (MRI) in predicting the outcome of using ultrasound-guided high-intensity focused ultrasound (USgHIFU) ablation for the treatment of uterine fibroids with T2 hyperintensity under MRI. A total of 131 uterine fibroids from 131 patients that appeared hyperintense under T2-weighted MRI were analyzed. The uterine fibroids were subjectively categorized into slight, irregular or regular enhancement groups, according to pretreatment dynamic contrast-enhanced MRI in the arterial phase within 60 sec after the injection of gadolinium. The non-perfused volume (NPV), which is indicative of successful ablation, was represented as the non-perfused area inside the uterine fibroids on enhanced MRI scans following treatment. Additionally, the treatment duration, treatment efficiency, sonication duration, energy efficiency ratio and any adverse events were recorded. The results indicated that the average NPV ratio for all the treated fibroids was 68.5%, while the average NPV ratios for fibroids with slight, irregular or regular enhancement were 84.7, 70.6 and 57.1%, respectively. Fibroids with regular enhancement were associated with the lowest NPV ratio and the lowest treatment efficiency, but exhibited the highest energy effect ratio and an elevated risk of severe adverse effects. The results of the present study indicate that hyperintense uterine fibroids with slight and irregular enhancement in the arterial phase of dynamic contrast-enhanced MRI are suitable for USgHIFU treatment. By contrast, uterine fibroids with regular enhancement were associated with the lowest treatment efficacy and safety. PMID:26889263

  2. Dynamic Contrast-Enhanced MRI Using a Macromolecular MR Contrast Agent (P792): Evaluation of Antivascular Drug Effect in a Rabbit VX2 Liver Tumor Model

    PubMed Central

    Park, Hee Sun; Lee, Jeong Min; Kim, Young Il; Woo, Sungmin; Yoon, Jung Hwan; Choi, Jin-Young; Choi, Byung Ihn

    2015-01-01

    Objective To evaluate the utility of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using macromolecular contrast agent (P792) for assessment of vascular disrupting drug effect in rabbit VX2 liver tumor models. Materials and Methods This study was approved by our Institutional Animal Care and Use Committee. DCE-MRI was performed with 3-T scanner in 13 VX2 liver tumor-bearing rabbits, before, 4 hours after, and 24 hours after administration of vascular disrupting agent (VDA), using gadomelitol (P792, n = 7) or low molecular weight contrast agent (gadoterate meglumine [Gd-DOTA], n = 6). P792 was injected at a of dose 0.05 mmol/kg, while that of Gd-DOTA was 0.2 mmol/kg. DCE-MRI parameters including volume transfer coefficient (Ktrans) and initial area under the gadolinium concentration-time curve until 60 seconds (iAUC) of tumors were compared between the 2 groups at each time point. DCE-MRI parameters were correlated with tumor histopathology. Reproducibility in measurement of DCE-MRI parameters and image quality of source MR were compared between groups. Results P792 group showed a more prominent decrease in Ktrans and iAUC at 4 hours and 24 hours, as compared to the Gd-DOTA group. Changes in DCE-MRI parameters showed a weak correlation with histologic parameters (necrotic fraction and microvessel density) in both groups. Reproducibility of DCE-MRI parameters and overall image quality was not significantly better in the P792 group, as compared to the Gd-DOTA group. Conclusion Dynamic contrast-enhanced magnetic resonance imaging using a macromolecular contrast agent shows changes of hepatic perfusion more clearly after administration of the VDA. Gadolinium was required at smaller doses than a low molecular contrast agent. PMID:26357497

  3. Quantitative Measurement of Blood-Brain Barrier Permeability in Human Using Dynamic Contrast-Enhanced MRI with Fast T1 Mapping

    PubMed Central

    Taheri, Saeid; Gasparovic, Charles; Shah, Nadim Jon; Rosenberg, Gary A.

    2016-01-01

    Breakdown of the blood-brain barrier (BBB), occurring in many neurological diseases, has been difficult to measure noninvasively in humans. Dynamic contrast-enhanced magnetic resonance imaging measures BBB permeability. However, important technical challenges remain and normative data from healthy humans is lacking. We report the implementation of a method for measuring BBB permeability, originally developed in animals, to estimate BBB permeability in both healthy subjects and patients with white matter pathology. Fast T1 mapping was used to measure the leakage of contrast agent Gadolinium diethylene triamine pentaacetic acid (Gd-DTPA) from plasma into brain. A quarter of the standard Gd-DTPA dose for dynamic contrast-enhanced magnetic resonance imaging was found to give both sufficient contrast-to-noise and high T1 sensitivity. The Patlak graphical approach was used to calculate the permeability from changes in 1/T1. Permeability constants were compared with cerebrospinal fluid albumin index. The upper limit of the 95% confidence interval for white matter BBB permeability for normal subjects was 3 × 10−4 L/g min. MRI measurements correlated strongly with levels of cerebrospinal fluid albumin in those subjects undergoing lumbar puncture. Dynamic contrast-enhanced magnetic resonance imaging with low dose Gd-DTPA and fast T1 imaging is a sensitive method to measure subtle differences in BBB permeability in humans and may have advantages over techniques based purely on the measurement of pixel contrast changes. PMID:21413067

  4. Predicting response before initiation of neoadjuvant chemotherapy in breast cancer using new methods for the analysis of dynamic contrast enhanced MRI (DCE MRI) data

    NASA Astrophysics Data System (ADS)

    DeGrandchamp, Joseph B.; Whisenant, Jennifer G.; Arlinghaus, Lori R.; Abramson, V. G.; Yankeelov, Thomas E.; Cárdenas-Rodríguez, Julio

    2016-03-01

    The pharmacokinetic parameters derived from dynamic contrast enhanced (DCE) MRI have shown promise as biomarkers for tumor response to therapy. However, standard methods of analyzing DCE MRI data (Tofts model) require high temporal resolution, high signal-to-noise ratio (SNR), and the Arterial Input Function (AIF). Such models produce reliable biomarkers of response only when a therapy has a large effect on the parameters. We recently reported a method that solves the limitations, the Linear Reference Region Model (LRRM). Similar to other reference region models, the LRRM needs no AIF. Additionally, the LRRM is more accurate and precise than standard methods at low SNR and slow temporal resolution, suggesting LRRM-derived biomarkers could be better predictors. Here, the LRRM, Non-linear Reference Region Model (NRRM), Linear Tofts model (LTM), and Non-linear Tofts Model (NLTM) were used to estimate the RKtrans between muscle and tumor (or the Ktrans for Tofts) and the tumor kep,TOI for 39 breast cancer patients who received neoadjuvant chemotherapy (NAC). These parameters and the receptor statuses of each patient were used to construct cross-validated predictive models to classify patients as complete pathological responders (pCR) or non-complete pathological responders (non-pCR) to NAC. Model performance was evaluated using area under the ROC curve (AUC). The AUC for receptor status alone was 0.62, while the best performance using predictors from the LRRM, NRRM, LTM, and NLTM were AUCs of 0.79, 0.55, 0.60, and 0.59 respectively. This suggests that the LRRM can be used to predict response to NAC in breast cancer.

  5. Dynamic contrast-enhanced MRI and CT provide comparable measurement of blood-brain barrier permeability in a rodent stroke model.

    PubMed

    Merali, Zamir; Wong, Teser; Leung, Jackie; Gao, Meah MingYang; Mikulis, David; Kassner, Andrea

    2015-10-01

    In the current management of acute ischemic stroke (AIS), clinical criteria are used to estimate the risk of hemorrhagic transformation (HT), which is a devastating early complication. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and computed tomography (DCE-CT) may serve as physiologically-based decision making tools to more reliably assess the risk of HT. Before these tools can be properly validated, the comparability of the blood-brain barrier (BBB) permeability measurements they generate should be assessed. Sixteen rats were subjected to a transient middle cerebral artery occlusion before successively undergoing DCE-CT and DCE-MRI at 24-hours. BBB permeability (K(trans)) values were generated from both modalities. A correlation of R=0.677 was found (p<0.01) and the resulting relationship was [DCE-CT=(0.610*DCE-MRI)+4.140]. A variance components analysis found the intra-rat coefficient of variation to be 0.384 and 0.258 for K(trans) values from DCE-MRI and DCE-CT respectively. Permeability measures from DCE-CT were 22% higher than those from DCE-MRI. The results of this study demonstrate for the first time comparability between DCE-CT and DCE-MRI in the assessment of AIS. These results may provide a foundation for future clinical trials making combined use of these modalities. PMID:26117703

  6. Optimized time-resolved imaging of contrast kinetics (TRICKS) in dynamic contrast-enhanced MRI after peptide receptor radionuclide therapy in small animal tumor models.

    PubMed

    Haeck, Joost; Bol, Karin; Bison, Sander; van Tiel, Sandra; Koelewijn, Stuart; de Jong, Marion; Veenland, Jifke; Bernsen, Monique

    2015-01-01

    Anti-tumor efficacy of targeted peptide-receptor radionuclide therapy (PRRT) relies on several factors, including functional tumor vasculature. Little is known about the effect of PRRT on tumor vasculature. With dynamic contrast-enhanced (DCE-) MRI, functional vasculature is imaged and quantified using contrast agents. In small animals DCE-MRI is a challenging application. We optimized a clinical sequence for fast hemodynamic acquisitions, time-resolved imaging of contrast kinetics (TRICKS), to obtain DCE-MRI images at both high spatial and high temporal resolution in mice and rats. Using TRICKS, functional vasculature was measured prior to PRRT and longitudinally to investigate the effect of treatment on tumor vascular characteristics. Nude mice bearing H69 tumor xenografts and rats bearing syngeneic CA20948 tumors were used to study perfusion following PRRT administration with (177) lutetium octreotate. Both semi-quantitative and quantitative parameters were calculated. Treatment efficacy was measured by tumor-size reduction. Optimized TRICKS enabled MRI at 0.032 mm(3) voxel size with a temporal resolution of less than 5 s and large volume coverage, a substantial improvement over routine pre-clinical DCE-MRI studies. Tumor response to therapy was reflected in changes in tumor perfusion/permeability parameters. The H69 tumor model showed pronounced changes in DCE-derived parameters following PRRT. The rat CA20948 tumor model showed more heterogeneity in both treatment outcome and perfusion parameters. TRICKS enabled the acquisition of DCE-MRI at both high temporal resolution (Tres ) and spatial resolutions relevant for small animal tumor models. With the high Tres enabled by TRICKS, accurate pharmacokinetic data modeling was feasible. DCE-MRI parameters revealed changes over time and showed a clear relationship between tumor size and Ktrans . PMID:25995102

  7. Dynamic Contrast-Enhanced MRI Parameters as Biomarkers in Assessing Head and Neck Lesions After Chemoradiotherapy Using a Wide-Bore 3 Tesla Scanner.

    PubMed

    Lerant, Gergely; Sarkozy, Peter; Takacsi-Nagy, Zoltan; Polony, Gabor; Tamas, Laszlo; Toth, Erika; Boer, Andras; Javor, Laszlo; Godeny, Maria

    2015-09-01

    Pilot studies have shown promising results in characterizing head and neck tumors (HNT) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), differentiating between malignant and benign lesions and evaluating changes in response to chemoradiotherapy (CRT). Our aim was to find DCE-MRI parameters, biomarkers in evaluating the post-CRT status. Two hundred and five patients with head and neck lesions were examined with DCE-MRI sequences. The time intensity curves (TIC) were extracted and processed to acquire time-to-peak (TTP), relative maximum enhancement (RME), relative wash-out (RWO), and two new parameters attack and decay. These parameters were analyzed using univariate tests in SPSS (Statistical Package for the Social Sciences, version 17, SPSS Inc. Chicago, USA) to identify parameters that could be used to infer tumor malignancy and post-CRT changes. Multiple parameters of curve characteristics were significantly different between malignant tumors after CRT (MACRT) and changes caused by CRT. The best-performing biomarkers were the attack and the decay. We also found multiple significant (p < 0.05) parameters for both the benign and malignant status as well as pre- and post-CRT status. Our large cohort of data supports the increasing role of DCE-MRI in HNT differentiation, particularly for the assessment of post-CRT status along with accurate morphological imaging. PMID:25920367

  8. An investigation into the effects of temporal resolution on hepatic dynamic contrast-enhanced MRI in volunteers and in patients with hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Gill, Andrew B.; Black, Richard T.; Bowden, David J.; Priest, Andrew N.; Graves, Martin J.; Lomas, David J.

    2014-06-01

    This study investigated the effect of temporal resolution on the dual-input pharmacokinetic (PK) modelling of dynamic contrast-enhanced MRI (DCE-MRI) data from normal volunteer livers and from patients with hepatocellular carcinoma. Eleven volunteers and five patients were examined at 3 T. Two sections, one optimized for the vascular input functions (VIF) and one for the tissue, were imaged within a single heart-beat (HB) using a saturation-recovery fast gradient echo sequence. The data was analysed using a dual-input single-compartment PK model. The VIFs and/or uptake curves were then temporally sub-sampled (at interval ▵t = [2-20] s) before being subject to the same PK analysis. Statistical comparisons of tumour and normal tissue PK parameter values using a 5% significance level gave rise to the same study results when temporally sub-sampling the VIFs to HB < ▵t <4 s. However, sub-sampling to ▵t > 4 s did adversely affect the statistical comparisons. Temporal sub-sampling of just the liver/tumour tissue uptake curves at ▵t ≤ 20 s, whilst using high temporal resolution VIFs, did not substantially affect PK parameter statistical comparisons. In conclusion, there is no practical advantage to be gained from acquiring very high temporal resolution hepatic DCE-MRI data. Instead the high temporal resolution could be usefully traded for increased spatial resolution or SNR.

  9. Intra-Tumor Distribution and Test-Retest Comparisons of Physiological Parameters quantified by Dynamic Contrast-Enhanced MRI in Rat U251 Glioma

    PubMed Central

    Aryal, Madhava P.; Nagaraja, Tavarekere N.; Brown, Stephen L.; Lu, Mei; Bagher-Ebadian, Hassan; Ding, Guangliang; Panda, Swayamprava; Keenan, Kelly; Cabral, Glauber; Mikkelsen, Tom; Ewing, James R.

    2014-01-01

    The distribution of dynamic contrast enhanced MRI (DCE-MRI) parametric estimates in a rat U251 glioma model was analyzed. Using Magnevist as contrast agent (CA), 17 nude rats implanted with U251 cerebral glioma were studied by DCE-MRI twice in a 24 h interval. A data-driven analysis selected one of three models to estimate either: 1) CA plasma volume (vp), 2) vp and forward volume transfer constant (Ktrans; or 3) vp, Ktrans, and interstitial volume fraction (ve), constituting Models 1, 2 and 3, respectively. CA interstitial distribution volume (VD) was estimated in Model 3 regions by Logan plots. Regions of interest (ROIs) were selected by model. In the Model 3 ROI, descriptors of parameter distributions – mean, median, variance and skewness – were calculated and compared between the two time points for repeatability. All distributions of parametric estimates in Model 3 ROIs were positively skewed. Test-retest differences between population summaries for any parameter were not significant (p≥0.10; Wilcoxon signed-rank and paired t tests). This and similar measures of parametric distribution and test-retest variance from other tumor models can be used to inform the choice of biomarkers that best summarize tumor status and treatment effects. PMID:25125367

  10. NOTE: Characterizing early contrast uptake of ductal carcinoma in situ with high temporal resolution dynamic contrast-enhanced MRI of the breast: a pilot study

    NASA Astrophysics Data System (ADS)

    Jansen, S. A.; Fan, X.; Medved, M.; Abe, H.; Shimauchi, A.; Yang, C.; Zamora, M.; Foxley, S.; Olopade, O. I.; Karczmar, G. S.; Newstead, G. M.

    2010-10-01

    Improvements in the reliable diagnosis of preinvasive ductal carcinoma in situ (DCIS) by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) are needed. In this study, we present a new characterization of early contrast kinetics of DCIS using high temporal resolution (HiT) DCE-MRI and compare it with other breast lesions and normal parenchyma. Forty patients with mammographic calcifications suspicious for DCIS were selected for HiT imaging using T1-weighted DCE-MRI with ~7 s temporal resolution for 90 s post-contrast injection. Pixel-based and whole-lesion kinetic curves were fit to an empirical mathematical model (EMM) and several secondary kinetic parameters derived. Using the EMM parameterized and fitted concentration time curve for subsequent analysis allowed for calculation of kinetic parameters that were less susceptible to fluctuations due to noise. The parameters' initial area under the curve (iAUC) and contrast concentration at 1 min (C1 min) provided the highest diagnostic accuracy in the task of distinguishing pathologically proven DCIS from normal tissue. There was a trend for DCIS lesions with solid architectural pattern to exhibit a negative slope at 1 min (i.e. increased washout rate) compared to those with a cribriform pattern (p < 0.04). This pilot study demonstrates the feasibility of quantitative analysis of early contrast kinetics at high temporal resolution and points to the potential for such an analysis to improve the characterization of DCIS.

  11. Quantitative Myocardial Perfusion with Dynamic Contrast-Enhanced Imaging in MRI and CT: Theoretical Models and Current Implementation

    PubMed Central

    Handayani, A.; Dijkstra, H.; Prakken, N. H. J.; Slart, R. H. J. A.; Oudkerk, M.; Van Ooijen, P. M. A.; Vliegenthart, R.; Sijens, P. E.

    2016-01-01

    Technological advances in magnetic resonance imaging (MRI) and computed tomography (CT), including higher spatial and temporal resolution, have made the prospect of performing absolute myocardial perfusion quantification possible, previously only achievable with positron emission tomography (PET). This could facilitate integration of myocardial perfusion biomarkers into the current workup for coronary artery disease (CAD), as MRI and CT systems are more widely available than PET scanners. Cardiac PET scanning remains expensive and is restricted by the requirement of a nearby cyclotron. Clinical evidence is needed to demonstrate that MRI and CT have similar accuracy for myocardial perfusion quantification as PET. However, lack of standardization of acquisition protocols and tracer kinetic model selection complicates comparison between different studies and modalities. The aim of this overview is to provide insight into the different tracer kinetic models for quantitative myocardial perfusion analysis and to address typical implementation issues in MRI and CT. We compare different models based on their theoretical derivations and present the respective consequences for MRI and CT acquisition parameters, highlighting the interplay between tracer kinetic modeling and acquisition settings. PMID:27088083

  12. Quantitative Myocardial Perfusion with Dynamic Contrast-Enhanced Imaging in MRI and CT: Theoretical Models and Current Implementation.

    PubMed

    Pelgrim, G J; Handayani, A; Dijkstra, H; Prakken, N H J; Slart, R H J A; Oudkerk, M; Van Ooijen, P M A; Vliegenthart, R; Sijens, P E

    2016-01-01

    Technological advances in magnetic resonance imaging (MRI) and computed tomography (CT), including higher spatial and temporal resolution, have made the prospect of performing absolute myocardial perfusion quantification possible, previously only achievable with positron emission tomography (PET). This could facilitate integration of myocardial perfusion biomarkers into the current workup for coronary artery disease (CAD), as MRI and CT systems are more widely available than PET scanners. Cardiac PET scanning remains expensive and is restricted by the requirement of a nearby cyclotron. Clinical evidence is needed to demonstrate that MRI and CT have similar accuracy for myocardial perfusion quantification as PET. However, lack of standardization of acquisition protocols and tracer kinetic model selection complicates comparison between different studies and modalities. The aim of this overview is to provide insight into the different tracer kinetic models for quantitative myocardial perfusion analysis and to address typical implementation issues in MRI and CT. We compare different models based on their theoretical derivations and present the respective consequences for MRI and CT acquisition parameters, highlighting the interplay between tracer kinetic modeling and acquisition settings. PMID:27088083

  13. Quantitative assessment of regional cerebral blood flow by dynamic susceptibility contrast-enhanced MRI, without the need for arterial blood signals

    NASA Astrophysics Data System (ADS)

    Enmi, Jun-ichiro; Kudomi, Nobuyuki; Hayashi, Takuya; Yamamoto, Akihide; Iguchi, Satoshi; Moriguchi, Tetsuaki; Hori, Yuki; Koshino, Kazuhiro; Zeniya, Tsutomu; Shah, Nadim Jon; Yamada, Naoaki; Iida, Hidehiro

    2012-12-01

    In dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI), an arterial input function (AIF) is usually obtained from a time-concentration curve (TCC) of the cerebral artery. This study was aimed at developing an alternative technique for reconstructing AIF from TCCs of multiple brain regions. AIF was formulated by a multi-exponential function using four parameters, and the parameters were determined so that the AIF curves convolved with a model of tissue response reproduced the measured TCCs for 20 regions. Systematic simulations were performed to evaluate the effects of possible error sources. DSC-MRI and positron emission tomography (PET) studies were performed on 14 patients with major cerebral artery occlusion. Cerebral blood flow (CBF) images were calculated from DSC-MRI data, using our novel method alongside conventional AIF estimations, and compared with those from 15O-PET. Simulations showed that the calculated CBF values were sensitive to variations in the assumptions regarding cerebral blood volume. Nevertheless, AIFs were reasonably reconstructed for all patients. The difference in CBF values between DSC-MRI and PET was -2.2 ± 7.4 ml/100 g/min (r = 0.55, p < 0.01) for our method, versus -0.2 ± 8.2 ml/100 g/min (r = 0.47, p = 0.01) for the conventional method. The difference in the ratio of affected to unaffected hemispheres between DSC-MRI and PET was 0.07 ± 0.09 (r = 0.82, p < 0.01) for our method, versus 0.07 ± 0.09 (r = 0.83, p < 0.01) for the conventional method. The contrasts in CBF images from our method were the same as those from the conventional method. These findings suggest the feasibility of assessing CBF without arterial blood signals.

  14. Significance of Additional Non-Mass Enhancement in Patients with Breast Cancer on Preoperative 3T Dynamic Contrast Enhanced MRI of the Breast

    PubMed Central

    Cho, Yun Hee; Cho, Kyu Ran; Park, Eun Kyung; Seo, Bo Kyoung; Woo, Ok Hee; Cho, Sung Bum; Bae, Jeoung Won

    2016-01-01

    Background In preoperative assessment of breast cancer, MRI has been shown to identify more additional breast lesions than are detectable using conventional imaging techniques. The characterization of additional lesions is more important than detection for optimal surgical treatment. Additional breast lesions can be included in focus, mass, and non-mass enhancement (NME) on MRI. According to the fifth edition of the breast imaging reporting and data system (BI-RADS®), which includes several changes in the NME descriptors, few studies to date have evaluated NME in preoperative assessment of breast cancer. Objectives We investigated the diagnostic accuracy of BI-RADS descriptors in predicting malignancy for additional NME lesions detected on preoperative 3T dynamic contrast enhanced MRI (DCE-MRI) in patients with newly diagnosed breast cancer. Patients and Methods Between January 2008 and December 2012, 88 patients were enrolled in our study, all with NME lesions other than the index cancer on preoperative 3T DCE-MRI and all with accompanying histopathologic examination. The MRI findings were analyzed according to the BI-RADS MRI lexicon. We evaluated the size, distribution, internal enhancement pattern, and location of NME lesions relative to the index cancer (i.e., same quadrant, different quadrant, or contralateral breast). Results On histopathologic analysis of the 88 NME lesions, 73 (83%) were malignant and 15 (17%) were benign. Lesion size did not differ significantly between malignant and benign lesions (P = 0.410). Malignancy was more frequent in linear (P = 0.005) and segmental (P = 0.011) distributions, and benignancy was more frequent in focal (P = 0.004) and regional (P < 0.001) NME lesions. The highest positive predictive value (PPV) for malignancy occurred in segmental (96.8%), linear (95.1%), clustered ring (100%), and clumped (92.0%) enhancement. Asymmetry demonstrated a high positive predictive value of 85.9%. The frequency of malignancy was higher

  15. Dynamic Contrast Enhanced MRI Assessing the Antiangiogenic Effect of Silencing HIF-1α with Targeted Multifunctional ECO/siRNA Nanoparticles.

    PubMed

    Malamas, Anthony S; Jin, Erlei; Gujrati, Maneesh; Lu, Zheng-Rong

    2016-07-01

    Stabilization of hypoxia inducible factor 1α (HIF-1α), a biomarker of hypoxia, in hypoxic tumors mediates a variety of downstream genes promoting tumor angiogenesis and cancer cell survival as well as invasion, and compromising therapeutic outcome. In this study, dynamic contrast enhanced MRI (DCE-MRI) with a biodegradable macromolecular MRI contrast agent was used to noninvasively assess the antiangiogenic effect of RGD-targeted multifunctional lipid ECO/siHIF-1α nanoparticles in a mouse HT29 colon cancer model. The RGD-targeted ECO/siHIF-1α nanoparticles resulted in over 50% reduction in tumor size after intravenous injection at a dose of 2.0 mg of siRNA/kg every 3 days for 3 weeks compared to a saline control. DCE-MRI revealed significant decline in vascularity and over a 70% reduction in the tumor blood flow, permeability-surface area product, and plasma volume fraction vascular parameters in the tumor treated with the targeted ECO/siHIF-1α nanoparticles. The treatment with targeted ECO/siRNA nanoparticles resulted in significant silencing of HIF-1α expression at the protein level, which also significantly suppressed the expression of VEGF, Glut-1, HKII, PDK-1, LDHA, and CAIX, which are all important players in tumor angiogenesis, glycolytic metabolism, and pH regulation. By possessing the ability to elicit a multifaceted effect on tumor biology, silencing HIF-1α with RGD-targeted ECO/siHIF-1α nanoparticles has great promise as a single therapy or in combination with traditional chemotherapy or radiation strategies to improve cancer treatment. PMID:27264671

  16. Identifying Triple-Negative Breast Cancer Using Background Parenchymal Enhancement Heterogeneity on Dynamic Contrast-Enhanced MRI: A Pilot Radiomics Study

    PubMed Central

    Wang, Jeff; Kato, Fumi; Oyama-Manabe, Noriko; Li, Ruijiang; Cui, Yi; Tha, Khin Khin; Yamashita, Hiroko; Kudo, Kohsuke; Shirato, Hiroki

    2015-01-01

    Objectives To determine the added discriminative value of detailed quantitative characterization of background parenchymal enhancement in addition to the tumor itself on dynamic contrast-enhanced (DCE) MRI at 3.0 Tesla in identifying “triple-negative" breast cancers. Materials and Methods In this Institutional Review Board-approved retrospective study, DCE-MRI of 84 women presenting 88 invasive carcinomas were evaluated by a radiologist and analyzed using quantitative computer-aided techniques. Each tumor and its surrounding parenchyma were segmented semi-automatically in 3-D. A total of 85 imaging features were extracted from the two regions, including morphologic, densitometric, and statistical texture measures of enhancement. A small subset of optimal features was selected using an efficient sequential forward floating search algorithm. To distinguish triple-negative cancers from other subtypes, we built predictive models based on support vector machines. Their classification performance was assessed with the area under receiver operating characteristic curve (AUC) using cross-validation. Results Imaging features based on the tumor region achieved an AUC of 0.782 in differentiating triple-negative cancers from others, in line with the current state of the art. When background parenchymal enhancement features were included, the AUC increased significantly to 0.878 (p<0.01). Similar improvements were seen in nearly all subtype classification tasks undertaken. Notably, amongst the most discriminating features for predicting triple-negative cancers were textures of background parenchymal enhancement. Conclusions Considering the tumor as well as its surrounding parenchyma on DCE-MRI for radiomic image phenotyping provides useful information for identifying triple-negative breast cancers. Heterogeneity of background parenchymal enhancement, characterized by quantitative texture features on DCE-MRI, adds value to such differentiation models as they are strongly

  17. Value of intravoxel incoherent motion and dynamic contrast-enhanced MRI for predicting the early and short-term responses to chemoradiotherapy in nasopharyngeal carcinoma

    PubMed Central

    Hou, Jing; Yu, Xiaoping; Hu, Yin; Li, Feiping; Xiang, Wang; Wang, Lanlan; Wang, Hui; Lu, Qiang; Zhang, Zhongping; Zeng, Wenbin

    2016-01-01

    Abstract The aim of the study was to investigate the value of intravoxel incoherent motion diffusion-weighted magnetic resonance imaging (IVIM-DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting the early and short-term responses to chemoradiotherapy (CRT) in patients with nasopharyngeal carcinoma (NPC). Forty-three NPC patients underwent IVIM-DWI and DCE-MRI at baseline (pretreatment) and after the first cycle of induction chemotherapy (posttreatment). Based on whether locoregional lesions were identified, patients were divided into the residual and nonresidual groups at the end of CRT and into the good-responder and poor-responder groups 6 months after the end of CRT. The pretreatment and posttreatment IVIM-DWI parameters (ADC, D, D∗, and f) and DCE-MRI parameters (Ktrans, Kep, and Ve) values and their percentage changes (Δ%) were compared between the residual and nonresidual groups and between the good-responder and poor-responder groups. None of perfusion-related parametric values derived from either DCE-MRI or IVIM-DWI showed significant differences either between the residual and nonresidual groups or between the good-responder and poor-responder groups. The nonresidual group exhibited lower pre-ADC, lower pre-D, and higher Δ%D values than did the residual group (all P <0.05). The good-responder group had lower pre-D and pre-ADC values than did the poor-responder group (both P <0.05). Based on receiver operating characteristic (ROC) curve analysis, pre-D had the highest area under the curve in predicting both the early and short-term responses to CRT for NPC patients (0.817 and 0.854, respectively). IVIM-DWI is more valuable than DCE-MRI in predicting the early and short-term response to CRT for NPC, and furthermore diffusion-related IVIM-DWI parameters (pre-ADC, pre-D, and Δ%D) are more powerful than perfusion-related parameters derived from both IVIM-DWI and DCE-MRI. PMID:27583847

  18. Value of intravoxel incoherent motion and dynamic contrast-enhanced MRI for predicting the early and short-term responses to chemoradiotherapy in nasopharyngeal carcinoma.

    PubMed

    Hou, Jing; Yu, Xiaoping; Hu, Yin; Li, Feiping; Xiang, Wang; Wang, Lanlan; Wang, Hui; Lu, Qiang; Zhang, Zhongping; Zeng, Wenbin

    2016-08-01

    The aim of the study was to investigate the value of intravoxel incoherent motion diffusion-weighted magnetic resonance imaging (IVIM-DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting the early and short-term responses to chemoradiotherapy (CRT) in patients with nasopharyngeal carcinoma (NPC).Forty-three NPC patients underwent IVIM-DWI and DCE-MRI at baseline (pretreatment) and after the first cycle of induction chemotherapy (posttreatment). Based on whether locoregional lesions were identified, patients were divided into the residual and nonresidual groups at the end of CRT and into the good-responder and poor-responder groups 6 months after the end of CRT. The pretreatment and posttreatment IVIM-DWI parameters (ADC, D, D*, and f) and DCE-MRI parameters (K, Kep, and Ve) values and their percentage changes (Δ%) were compared between the residual and nonresidual groups and between the good-responder and poor-responder groups.None of perfusion-related parametric values derived from either DCE-MRI or IVIM-DWI showed significant differences either between the residual and nonresidual groups or between the good-responder and poor-responder groups. The nonresidual group exhibited lower pre-ADC, lower pre-D, and higher Δ%D values than did the residual group (all P <0.05). The good-responder group had lower pre-D and pre-ADC values than did the poor-responder group (both P <0.05). Based on receiver operating characteristic (ROC) curve analysis, pre-D had the highest area under the curve in predicting both the early and short-term responses to CRT for NPC patients (0.817 and 0.854, respectively).IVIM-DWI is more valuable than DCE-MRI in predicting the early and short-term response to CRT for NPC, and furthermore diffusion-related IVIM-DWI parameters (pre-ADC, pre-D, and Δ%D) are more powerful than perfusion-related parameters derived from both IVIM-DWI and DCE-MRI. PMID:27583847

  19. Computer-assisted identification and volumetric quantification of dynamic contrast enhancement in brain MRI: an interactive system

    NASA Astrophysics Data System (ADS)

    Wu, Shandong; Avgeropoulos, Nicholas G.; Rippe, David J.

    2013-03-01

    We present a dedicated segmentation system for tumor identification and volumetric quantification in dynamic contrast brain magnetic resonance (MR) scans. Our goal is to offer a practically useful tool at the end of clinicians in order to boost volumetric tumor assessment. The system is designed to work in an interactive mode such that maximizes the integration of computing capacity and clinical intelligence. We demonstrate the main functions of the system in terms of its functional flow and conduct preliminary validation using a representative pilot dataset. The system is inexpensive, user-friendly, easy to deploy and integrate with picture archiving and communication systems (PACS), and possible to be open-source, which enable it to potentially serve as a useful assistant for radiologists and oncologists. It is anticipated that in the future the system can be integrated into clinical workflow so that become routine available to help clinicians make more objective interpretations of treatment interventions and natural history of disease to best advocate patient needs.

  20. Functional Lung MRI in Chronic Obstructive Pulmonary Disease: Comparison of T1 Mapping, Oxygen-Enhanced T1 Mapping and Dynamic Contrast Enhanced Perfusion

    PubMed Central

    Jobst, Bertram J.; Triphan, Simon M. F.; Sedlaczek, Oliver; Anjorin, Angela; Kauczor, Hans Ulrich; Biederer, Jürgen; Ley-Zaporozhan, Julia; Ley, Sebastian; Wielpütz, Mark O.

    2015-01-01

    Purpose Monitoring of regional lung function in interventional COPD trials requires alternative endpoints beyond global parameters such as FEV1. T1 relaxation times of the lung might allow to draw conclusions on tissue composition, blood volume and oxygen fraction. The aim of this study was to evaluate the potential value of lung Magnetic resonance imaging (MRI) with native and oxygen-enhanced T1 mapping for the assessment of COPD patients in comparison with contrast enhanced perfusion MRI. Materials and Methods 20 COPD patients (GOLD I-IV) underwent a coronal 2-dimensional inversion recovery snapshot flash sequence (8 slices/lung) at room air and during inhalation of pure oxygen, as well as dynamic contrast-enhanced first-pass perfusion imaging. Regional distribution of T1 at room air (T1), oxygen-induced T1 shortening (ΔT1) and peak enhancement were rated by 2 chest radiologists in consensus using a semi-quantitative 3-point scale in a zone-based approach. Results Abnormal T1 and ΔT1 were highly prevalent in the patient cohort. T1 and ΔT1 correlated positively with perfusion abnormalities (r = 0.81 and r = 0.80; p&0.001), and with each other (r = 0.80; p<0.001). In GOLD stages I and II ΔT1 was normal in 16/29 lung zones with mildly abnormal perfusion (15/16 with abnormal T1). The extent of T1 (r = 0.45; p<0.05), ΔT1 (r = 0.52; p<0.05) and perfusion abnormalities (r = 0.52; p<0.05) showed a moderate correlation with GOLD stage. Conclusion Native and oxygen-enhanced T1 mapping correlated with lung perfusion deficits and severity of COPD. Under the assumption that T1 at room air correlates with the regional pulmonary blood pool and that oxygen-enhanced T1 reflects lung ventilation, both techniques in combination are principally suitable to characterize ventilation-perfusion imbalance. This appears valuable for the assessment of regional lung characteristics in COPD trials without administration of i.v. contrast. PMID:25822195

  1. Dynamic Contrast-Enhanced MRI of the Prostate With High Spatiotemporal Resolution Using Compressed Sensing, Parallel Imaging, and Continuous Golden-Angle Radial Sampling: Preliminary Experience

    PubMed Central

    Rosenkrantz, Andrew B.; Geppert, Christian; Grimm, Robert; Block, Tobias K.; Glielmi, Christian; Feng, Li; Otazo, Ricardo; Ream, Justin M.; Romolo, Melanie Moccaldi; Taneja, Samir S.; Sodickson, Daniel K.; Chandarana, Hersh

    2014-01-01

    Purpose To demonstrate dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) of the prostate with both high spatial and temporal resolution via a combination of golden-angle radial k-space sampling, compressed sensing, and parallel-imaging reconstruction (GRASP), and to compare image quality and lesion depiction between GRASP and conventional DCE in prostate cancer patients. Materials and Methods Twenty prostate cancer patients underwent two 3T prostate MRI examinations on separate dates, one using standard DCE (spatial resolution 3.0 × 1.9 × 1.9 mm, temporal resolution 5.5 sec) and the other using GRASP (spatial resolution 3.0 × 1.1 × 1.1 mm, temporal resolution 2.3 sec). Two radiologists assessed measures of image quality and dominant lesion size. The experienced reader recorded differences in contrast arrival times between the dominant lesion and benign prostate. Results Compared with standard DCE, GRASP demonstrated significantly better clarity of the capsule, peripheral/ transition zone boundary, urethra, and periprostatic vessels; image sharpness; and lesion conspicuity for both readers (P<0.001–0.020). GRASP showed improved interreader correlation for lesion size (GRASP: r=0.691–0.824, standard: r=0.495–0.542). In 8/20 cases, only GRASP showed earlier contrast arrival in tumor than benign; in no case did only standard DCE show earlier contrast arrival in tumor. Conclusion High spatiotemporal resolution prostate DCE is possible with GRASP, which has the potential to improve image quality and lesion depiction as compared with standard DCE. PMID:24833417

  2. Dynamic Contrast-Enhanced MRI in Head-and-Neck Cancer: The Impact of Region of Interest Selection on the Intra- and Interpatient Variability of Pharmacokinetic Parameters

    SciTech Connect

    Craciunescu, Oana I.; Yoo, David S.; Cleland, Esi; Muradyan, Naira; Carroll, Madeline D.; MacFall, James R.; Barboriak, Daniel P.; Brizel, David M.

    2012-03-01

    Purpose: Dynamic contrast-enhanced (DCE) MRI-extracted parameters measure tumor microvascular physiology and are usually calculated from an intratumor region of interest (ROI). Optimal ROI delineation is not established. The valid clinical use of DCE-MRI requires that the variation for any given parameter measured within a tumor be less than that observed between tumors in different patients. This work evaluates the impact of tumor ROI selection on the assessment of intra- and interpatient variability. Method and Materials: Head and neck cancer patients received initial targeted therapy (TT) treatment with erlotinib and/or bevacizumab, followed by radiotherapy and concurrent cisplatin with synchronous TT. DCE-MRI data from Baseline and the end of the TT regimen (Lead-In) were analyzed to generate the vascular transfer function (K{sup trans}), the extracellular volume fraction (v{sub e}), and the initial area under the concentration time curve (iAUC{sub 1min}). Four ROI sampling strategies were used: whole tumor or lymph node (Whole), the slice containing the most enhancing voxels (SliceMax), three slices centered in SliceMax (Partial), and the 5% most enhancing contiguous voxels within SliceMax (95Max). The average coefficient of variation (aCV) was calculated to establish intrapatient variability among ROI sets and interpatient variability for each ROI type. The average ratio between each intrapatient CV and the interpatient CV was calculated (aRCV). Results: Baseline primary/nodes aRCVs for different ROIs not including 95Max were, for all three MR parameters, in the range of 0.14-0.24, with Lead-In values between 0.09 and 0.2, meaning a low intrapatient vs. interpatient variation. For 95Max, intrapatient CVs approximated interpatient CVs, meaning similar data dispersion and higher aRCVs (0.6-1.27 for baseline) and 0.54-0.95 for Lead-In. Conclusion: Distinction between different patient's primary tumors and/or nodes cannot be made using 95Max ROIs. The other three

  3. Contrast Enhanced MRI in the Diagnosis of HCC

    PubMed Central

    Niendorf, Eric; Spilseth, Benjamin; Wang, Xiao; Taylor, Andrew

    2015-01-01

    Hepatocellular carcinoma (HCC) is the 6th most common cancer worldwide. Imaging plays a critical role in HCC screening and diagnosis. Initial screening of patients at risk for HCC is performed with ultrasound. Confirmation of HCC can then be obtained by Computed Tomography (CT) or Magnetic Resonance Imaging (MRI), due to the relatively high specificity of both techniques. This article will focus on reviewing MRI techniques for imaging HCC, felt by many to be the exam of choice for HCC diagnosis. MRI relies heavily upon the use of gadolinium-based contrast agents and while primarily extracellular gadolinium-based contrast agents are used, there is an emerging role of hepatobiliary contrast agents in HCC imaging. The use of other non-contrast enhanced MRI techniques for assessing HCC will also be discussed and these MRI strategies will be reviewed in the context of the pathophysiology of HCC to help understand the MR imaging appearance of HCC. PMID:26854161

  4. Dynamic Contrast-Enhanced MRI of Gd-albumin Delivery to the Rat Hippocampus In Vivo by Convection-Enhanced Delivery

    PubMed Central

    Kim, Jung Hwan; Astary, Garrett W.; Nobrega, Tatiana L.; Kantorovich, Svetlana; Carney, Paul R.; Mareci, Thomas H.; Sarntinoranont, Malisa

    2013-01-01

    Convection enhanced delivery (CED) shows promise in treating neurological diseases due to its ability to circumvent the blood-brain barrier (BBB) and deliver therapeutics directly to the parenchyma of the central nervous system (CNS). Such a drug delivery method may be useful in treating CNS disorders involving the hippocampus such temporal lobe epilepsy and gliomas; however, the influence of anatomical structures on infusate distribution is not fully understood. As a surrogate for therapeutic agents, we used gadolinium-labeled-albumin (Gd-albumin) tagged with Evans blue dye to observe the time dependence of CED infusate distributions into the rat dorsal and ventral hippocampus in vivo with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). For finer anatomical detail, final distribution volumes (Vd) of the infusate were observed with high-resolution T1-weighted MR imaging and light microscopy of fixed brain sections. Dynamic images demonstrated that Gd-albumin preferentially distributed within the hippocampus along neuroanatomical structures with less fluid resistance and less penetration was observed in dense cell layers. Furthermore, significant leakage into adjacent cerebrospinal fluid (CSF) spaces such as the hippocampal fissure, velum interpositum and midbrain cistern occurred toward the end of infusion. Vd increased linearly with infusion volume (Vi) at a mean Vd/Vi ratio of 5.51 ± 0.55 for the dorsal hippocampus infusion and 5.30 ± 0.83 for the ventral hippocampus infusion. This study demonstrated the significant effects of tissue structure and CSF space boundaries on infusate distribution during CED. PMID:22687936

  5. Assessment of Blood-Brain Barrier Permeability by Dynamic Contrast-Enhanced MRI in Transient Middle Cerebral Artery Occlusion Model after Localized Brain Cooling in Rats

    PubMed Central

    Kim, Eun Soo; Kwon, Mi Jung; Lee, Phil Hye; Ju, Young-Su; Yoon, Dae Young; Kim, Hye Jeong; Lee, Kwan Seop

    2016-01-01

    Objective The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Materials and Methods Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20℃) infusion group, and localized warm-saline (37℃) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Results Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min-1 vs. 0.07 ± 0.02 min-1, p = 0.661 for Ktrans; 0.30 ± 0.05 min-1 vs. 0.37 ± 0.11 min-1, p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Conclusion Localized brain cooling (20℃) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37℃) infusion group. PMID:27587960

  6. T1-Weighted Dynamic Contrast-Enhanced MRI as a Noninvasive Biomarker of Epidermal Growth Factor Receptor vIII Status

    PubMed Central

    Arevalo-Perez, J.; Thomas, A.A.; Kaley, T.; Lyo, J.; Peck, K.K.; Holodny, A.I.; Mellinghoff, I.K.; Shi, W.; Zhang, Z.; Young, R.J.

    2016-01-01

    BACKGROUND AND PURPOSE Epidermal growth factor receptor variant III is a common mutation in glioblastoma, found in approximately 25% of tumors. Epidermal growth factor receptor variant III may accelerate angiogenesis in malignant gliomas. We correlated T1-weighted dynamic contrast-enhanced MR imaging perfusion parameters with epidermal growth factor receptor variant III status. MATERIALS AND METHODS Eighty-two consecutive patients with glioblastoma and known epidermal growth factor receptor variant III status who had dynamic contrast-enhanced MR imaging before surgery were evaluated. Volumes of interest were drawn around the entire enhancing tumor on contrast T1-weighted images and then were transferred onto coregistered dynamic contrast-enhanced MR imaging perfusion maps. Histogram analysis with normalization was performed to determine the relative mean, 75th percentile, and 90th percentile values for plasma volume and contrast transfer coefficient. A Wilcoxon rank sum test was applied to assess the relationship between baseline perfusion parameters and positive epidermal growth factor receptor variant III status. The receiver operating characteristic method was used to select the cutoffs of the dynamic contrast-enhanced MR imaging perfusion parameters. RESULTS Increased relative plasma volume and increased relative contrast transfer coefficient parameters were both significantly associated with positive epidermal growth factor receptor variant III status. For epidermal growth factor receptor variant III–positive tumors, relative plasma volume mean was 9.3 and relative contrast transfer coefficient mean was 6.5; for epidermal growth factor receptor variant III–negative tumors, relative plasma volume mean was 3.6 and relative contrast transfer coefficient mean was 3.7 (relative plasma volume mean, P < .001, and relative contrast transfer coefficient mean, P = .008). The predictive powers of relative plasma volume histogram metrics outperformed those of the

  7. Reproducibility of Dynamic Contrast-Enhanced MRI in Renal Cell Carcinoma: A Prospective Analysis on Intra- and Interobserver and Scan-Rescan Performance of Pharmacokinetic Parameters.

    PubMed

    Wang, Haiyi; Su, Zihua; Ye, Huiyi; Xu, Xiao; Sun, Zhipeng; Li, Lu; Duan, Feixue; Song, Yuanyuan; Lambrou, Tryphon; Ma, Lin

    2015-09-01

    The objective of this study was to investigate the intra- and interobserver as well as scan-rescan reproducibility of quantitative parameters of renal cell carcinomas (RCCs) with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). A total of 21 patients with clear cell RCCs (17 men, 4 woman; age 37-69 years, mean age 54.6 years, mean size, 5.0 ± 2.2 cm) were prospectively recruited from September 2012 to November 2012. Patients underwent paired DCE-MRI studies on a 3.0 T MR system with an interval of 48 to 72 hours. The extended-Tofts model and population-based arterial input function were used to calculate kinetic parameters. Three observers defined the 2-dimensional whole-tumor region of interest at the slice with the maximum diameter of the RCC. Intraobserver and scan-rescan differences were assessed using paired t tests, whereas interobserver differences using two-way analysis of variance. Intra- and interobserver reproducibility and scan-rescan reproducibility were evaluated using within-subject coefficient of variation (wCoV) and intraclass correlation coefficient (ICC). There were no significant intra-, interobserver, or scan-rescan differences in parameters (all P > 0.05). All ICCs for intra- and interobserver agreements were >0.75 (P < 0.05), whereas the scan-rescan agreement was moderate to good; V(e) (0.764, 95% confidence interval [CI]: 0.378-0.925) and K(ep) (0.906, 95% CI: 0.710-0.972) had higher ICC than K(trans) (0.686; 95% CI: 0.212-0.898) and V(p) (0.657; 95% CI: 0.164-0.888). In intra- and interobserver variability analyses, all parameters except V(p) had low wCoV values. K(trans) and V(e) had slightly lower intraobserver wCoV (1.2% and 0.9%) compared with K(ep) (3.7%), whereas all 3 of these parameters had similar interobserver wCoV values (2.5%, 3.1%, and 2.9%, respectively). Regarding scan-rescan variability, K(trans) and K(ep) showed slightly higher variation (15.6% and 15.4%) than V(e) (10.1%). V(p) had the largest

  8. Image fusion for dynamic contrast enhanced magnetic resonance imaging

    PubMed Central

    Twellmann, Thorsten; Saalbach, Axel; Gerstung, Olaf; Leach, Martin O; Nattkemper, Tim W

    2004-01-01

    Background Multivariate imaging techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been shown to provide valuable information for medical diagnosis. Even though these techniques provide new information, integrating and evaluating the much wider range of information is a challenging task for the human observer. This task may be assisted with the use of image fusion algorithms. Methods In this paper, image fusion based on Kernel Principal Component Analysis (KPCA) is proposed for the first time. It is demonstrated that a priori knowledge about the data domain can be easily incorporated into the parametrisation of the KPCA, leading to task-oriented visualisations of the multivariate data. The results of the fusion process are compared with those of the well-known and established standard linear Principal Component Analysis (PCA) by means of temporal sequences of 3D MRI volumes from six patients who took part in a breast cancer screening study. Results The PCA and KPCA algorithms are able to integrate information from a sequence of MRI volumes into informative gray value or colour images. By incorporating a priori knowledge, the fusion process can be automated and optimised in order to visualise suspicious lesions with high contrast to normal tissue. Conclusion Our machine learning based image fusion approach maps the full signal space of a temporal DCE-MRI sequence to a single meaningful visualisation with good tissue/lesion contrast and thus supports the radiologist during manual image evaluation. PMID:15494072

  9. PERIPATELLAR SYNOVITIS: COMPARISON BETWEEN NON-CONTRAST-ENHANCED AND CONTRAST-ENHANCED MRI AND ASSOCIATION WITH PAIN. THE MOST STUDY

    PubMed Central

    Crema, Michel D.; Felson, David T.; Roemer, Frank W.; Niu, Jingbo; Marra, Monica D.; Zhang, Yuqing; Lynch, John A.; El-Khoury, Georges Y.; Lewis, Cora E.; Guermazi, Ali

    2013-01-01

    Purpose To assess the diagnostic performance of signal changes in Hoffa's fat pad (HFP) assessed on non-contrast-enhanced (CE) MRI in detecting synovitis, and the association of pain with signal changes in Hoffa’s fat pad on non-CE MRI and peripatellar synovial thickness on CE MRI. Methods The Multicenter Osteoarthritis (MOST) Study is an observational study of individuals who have or are at high risk for knee OA. All subjects with available non-CE and CE MRIs were included. Signal changes in HFP were scored from 0 to 3 in 2 regions using non-CE MRI. Synovial thickness was scored from 0 to 2 on CE MRI in 5 peripatellar regions. Sensitivity, specificity and accuracy of HFP signal changes were calculated considering synovial thickness on CE MRI as the reference standard. We used logistic regression to assess the associations of HFP changes (non-CE MRI) and synovial thickness (CE MRI) with pain from walking up or down stairs, after adjusting for potential confounders. Results A total of 393 subjects were included. Sensitivity of infrapatellar and intercondylar signal changes in HFP was high (71% and 88%), but specificity was low (55% and 30%). No significant associations were found between HFP changes on non-CE MRI and pain. Grade 2 synovial thickness assessed on CE MRI was significantly associated with pain after adjustments for potential confounders. Conclusion Signal changes in HFP detected on non-CE MRI are a sensitive but non-specific surrogate for the assessment of synovitis. CE MRI identifies associations with pain better than non-CE MRI. PMID:23277189

  10. Efficient Hilbert transform-based alternative to Tofts physiological models for representing MRI dynamic contrast-enhanced images in computer-aided diagnosis of prostate cancer

    NASA Astrophysics Data System (ADS)

    Boehm, Kevin M.; Wang, Shijun; Burtt, Karen E.; Turkbey, Baris; Weisenthal, Samuel; Pinto, Peter; Choyke, Peter; Wood, Bradford J.; Petrick, Nicholas; Sahiner, Berkman; Summers, Ronald M.

    2015-03-01

    In computer-aided diagnosis (CAD) systems for prostate cancer, dynamic contrast enhanced (DCE) magnetic resonance imaging is useful for distinguishing cancerous and benign tissue. The Tofts physiological model is a commonly used representation of the DCE image data, but the parameters require extensive computation. Hence, we developed an alternative representation based on the Hilbert transform of the DCE images. The time maximum of the Hilbert transform, a binary metric of early enhancement, and a pre-DCE value was assigned to each voxel and appended to a standard feature set derived from T2-weighted images and apparent diffusion coefficient maps. A cohort of 40 patients was used for training the classifier, and 20 patients were used for testing. The AUC was calculated by pooling the voxel-wise prediction values and comparing with the ground truth. The resulting AUC of 0.92 (95% CI [0.87 0.97]) is not significantly different from an AUC calculated using Tofts physiological models of 0.92 (95% CI [0.87 0.97]), as validated by a Wilcoxon signed rank test on each patient's AUC (p = 0.19). The time required for calculation and feature extraction is 11.39 seconds (95% CI [10.95 11.82]) per patient using the Hilbert-based feature set, two orders of magnitude faster than the 1319 seconds (95% CI [1233 1404]) required for the Tofts parameter-based feature set (p<0.001). Hence, the features proposed herein appear useful for CAD systems integrated into clinical workflows where efficiency is important.

  11. Synthesis and characterization of magnetoliposomes for MRI contrast enhancement.

    PubMed

    Faria, M R; Cruz, M M; Gonçalves, M C; Carvalho, A; Feio, G; Martins, M B F

    2013-03-25

    This work assesses the characteristics of magnetoliposomes of soybean phosphatidylcholine (SPC):cholesterol (Chol) loaded with superparamagnetic iron oxide nanoparticles (IONPs) stabilized with tetramethylammonium hydroxide (TMAOH) and their capacity to enhance magnetic resonance imaging (MRI) contrast. Magnetoliposomes of SPC were used for comparative studies. IONPs and magnetoliposomes were characterized using transmission electron microscopy, dynamic light scattering, SQUID magnetometry, FTIR and MRI. The saturation magnetization at 10K was ~0.06 Am(2)/kg for SPC:Chol magnetoliposomes with 7 g iron oxide/mol of lipid and ~0.05 Am(2)/kg for SPC magnetoliposomes with 21 g iron oxide/mol of lipid. As these values are associated with the number of incorporated magnetic IONPs, the saturation magnetization is 1.2 times higher for magnetoliposomes of SPC:Chol as compared with magnetoliposomes of SPC alone. The behavior of temperature dependence in both cases is typical of superparamagnetic particles. FTIR spectra evidence the increase of magnetoliposome membrane ordering with the presence of Chol. Principal component analysis (PCA) applied to FTIR spectra evidenced a clear distinction between scores for SPC:Chol, and SPC magnetoliposomes and for SPC empty liposomes. PCA applied to FTIR data differentiate magnetoliposomes from empty liposomes. MR images of aqueous phantoms obtained with and without magnetoliposomes, clearly evidence their effect on T2 image weighting. PMID:23422275

  12. Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) of photodynamic therapy (PDT) outcome and associated changes in the blood-brain barrier following Pc 4-PDT of glioma in an athymic nude rat model

    NASA Astrophysics Data System (ADS)

    Belle, Vaijayantee; Anka, Ali; Cross, Nathan; Thompson, Paul; Mott, Eric; Sharma, Rahul; Gray, Kayla; Zhang, Ruozhen; Xu, Yueshuo; Sun, Jiayang; Flask, Chris A.; Oleinick, Nancy L.; Dean, David

    2012-02-01

    Introduction: Dynamic Contrast-Enhanced-Magnetic Resonance Imaging (DCE-MRI) appears to provide an unambiguous means of tracking the outcome of photodynamic therapy (PDT) of brain tumors with the photosensitizer Pc 4. The increase in Gd enhancement observed after Pc 4-PDT may be due to a temporary opening of the blood-brain-barrier which, as noted by others, may offer a therapeutic window. Methods: We injected 2.5 x 105 U87 cells into the brains of 9 athymic nude rats. After 8-9 days peri-tumor DCE-MRI images were acquired on a 7.0 T microMRI scanner before and after the administration of 150 μL Gd. DCE-MRI scans were repeated three times following Pc 4-PDT. Results: The average, normalized peak enhancement in the tumor region, approximately 30-90 seconds after Gd administration, was 1.31 times greater than baseline (0.03 Standard Error [SE]) prior to PDT and was 1.44 (0.02 SE) times baseline in the first Post-PDT scans (Day 11), a statistically significant (p ~ 0.014, N=8) increase over the Pre- PDT scans, and was 1.38 (0.02 SE) times baseline in the second scans (Day 12), also a statistically significant (p ~ 0.008, N=7) increase. Observations were mixed in the third Post-PDT scans (Day 13), averaging 1.29 (0.03 SE) times baseline (p ~ 0.66, N=7). Overall a downward trend in enhancement was observed from the first to the third Post-PDT scans. Discussion: DCE-MRI may provide an unambiguous indication of brain tumor PDT outcome. The initial increase in DCE-MRI signal may correlate with a temporary, PDT-induced opening of the blood-brain-barrier, creating a potential therapeutic window.

  13. IMRT boost dose planning on dominant intraprostatic lesions: Gold marker-based three-dimensional fusion of CT with dynamic contrast-enhanced and {sup 1}H-spectroscopic MRI

    SciTech Connect

    Lin, Emile N.J.T. van . E-mail: E.vanLin@rther.umcn.nl; Fuetterer, Jurgen J.; Heijmink, Stijn W.T.P.J.; Vight, Lisette P. van der; Hoffmann, Aswin L.; Kollenburg, Peter van; Huisman, Henk Jan J.; Scheenen, Tom W.J.; Witjes, J. Alfred; Leer, Jan Willem; Barentsz, Jelle O.; Visser, Andries G.

    2006-05-01

    Purpose: To demonstrate the theoretical feasibility of integrating two functional prostate magnetic resonance imaging (MRI) techniques (dynamic contrast-enhanced MRI [DCE-MRI] and {sup 1}H-spectroscopic MRI [MRSI]) into inverse treatment planning for definition and potential irradiation of a dominant intraprostatic lesion (DIL) as a biologic target volume for high-dose intraprostatic boosting with intensity-modulated radiotherapy (IMRT). Methods and Materials: In 5 patients, four gold markers were implanted. An endorectal balloon was inserted for both CT and MRI. A DIL volume was defined by DCE-MRI and MRSI using different prostate cancer-specific physiologic (DCE-MRI) and metabolic (MRSI) parameters. CT-MRI registration was performed automatically by matching three-dimensional gold marker surface models with the iterative closest point method. DIL-IMRT plans, consisting of whole prostate irradiation to 70 Gy and a DIL boost to 90 Gy, and standard IMRT plans, in which the whole prostate was irradiated to 78 Gy were generated. The tumor control probability and rectal wall normal tissue complication probability were calculated and compared between the two IMRT approaches. Results: Combined DCE-MRI and MRSI yielded a clearly defined single DIL volume (range, 1.1-6.5 cm{sup 3}) in all patients. In this small, selected patient population, no differences in tumor control probability were found. A decrease in the rectal wall normal tissue complication probability was observed in favor of the DIL-IMRT plan versus the plan with IMRT to 78 Gy. Conclusion: Combined DCE-MRI and MRSI functional image-guided high-dose intraprostatic DIL-IMRT planned as a boost to 90 Gy is theoretically feasible. The preliminary results have indicated that DIL-IMRT may improve the therapeutic ratio by decreasing the normal tissue complication probability with an unchanged tumor control probability. A larger patient population, with more variations in the number, size, and localization of the DIL

  14. Dynamic contrast-enhanced MRI detects acute radiotherapy-induced alterations in mandibular microvasculature: prospective assessment of imaging biomarkers of normal tissue injury

    PubMed Central

    Sandulache, Vlad C.; Hobbs, Brian P.; Mohamed, Abdallah S.R.; Frank, Steven J.; Song, Juhee; Ding, Yao; Ger, Rachel; Court, Laurence E.; Kalpathy-Cramer, Jayashree; Hazle, John D.; Wang, Jihong; Awan, Musaddiq J.; Rosenthal, David I.; Garden, Adam S.; Gunn, G. Brandon; Colen, Rivka R.; Elshafeey, Nabil; Elbanan, Mohamed; Hutcheson, Katherine A.; Lewin, Jan S.; Chambers, Mark S.; Hofstede, Theresa M.; Weber, Randal S.; Lai, Stephen Y.; Fuller, Clifton D.

    2016-01-01

    Normal tissue toxicity is an important consideration in the continued development of more effective external beam radiotherapy (EBRT) regimens for head and neck tumors. The ability to detect EBRT-induced changes in mandibular bone vascularity represents a crucial step in decreasing potential toxicity. To date, no imaging modality has been shown to detect changes in bone vascularity in real time during treatment. Based on our institutional experience with multi-parametric MRI, we hypothesized that DCE-MRI can provide in-treatment information regarding EBRT-induced changes in mandibular vascularity. Thirty-two patients undergoing EBRT treatment for head and neck cancer were prospectively imaged prior to, mid-course, and following treatment. DCE-MRI scans were co-registered to dosimetric maps to correlate EBRT dose and change in mandibular bone vascularity as measured by Ktrans and Ve. DCE-MRI was able to detect dose-dependent changes in both Ktrans and Ve in a subset of patients. One patient who developed ORN during the study period demonstrated decreases in Ktrans and Ve following treatment completion. We demonstrate, in a prospective imaging trial, that DCE-MRI can detect dose-dependent alterations in mandibular bone vascularity during chemoradiotherapy, providing biomarkers that are physiological correlates of acute of acute mandibular vascular injury and recovery temporal kinetics. PMID:27499209

  15. Dynamic contrast-enhanced MRI detects acute radiotherapy-induced alterations in mandibular microvasculature: prospective assessment of imaging biomarkers of normal tissue injury.

    PubMed

    2016-01-01

    Normal tissue toxicity is an important consideration in the continued development of more effective external beam radiotherapy (EBRT) regimens for head and neck tumors. The ability to detect EBRT-induced changes in mandibular bone vascularity represents a crucial step in decreasing potential toxicity. To date, no imaging modality has been shown to detect changes in bone vascularity in real time during treatment. Based on our institutional experience with multi-parametric MRI, we hypothesized that DCE-MRI can provide in-treatment information regarding EBRT-induced changes in mandibular vascularity. Thirty-two patients undergoing EBRT treatment for head and neck cancer were prospectively imaged prior to, mid-course, and following treatment. DCE-MRI scans were co-registered to dosimetric maps to correlate EBRT dose and change in mandibular bone vascularity as measured by Ktrans and Ve. DCE-MRI was able to detect dose-dependent changes in both Ktrans and Ve in a subset of patients. One patient who developed ORN during the study period demonstrated decreases in Ktrans and Ve following treatment completion. We demonstrate, in a prospective imaging trial, that DCE-MRI can detect dose-dependent alterations in mandibular bone vascularity during chemoradiotherapy, providing biomarkers that are physiological correlates of acute of acute mandibular vascular injury and recovery temporal kinetics. PMID:27499209

  16. Targeted Multifunctional Nanoparticles cure and image Brain Tumors: Selective MRI Contrast Enhancement and Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Kopelman, Raoul

    2008-03-01

    Aimed at targeted therapy and imaging of brain tumors, our approach uses targeted, multi-functional nano-particles (NP). A typical nano-particle contains a biologically inert, non-toxic matrix, biodegradable and bio-eliminable over a long time period. It also contains active components, such as fluorescent chemical indicators, photo-sensitizers, MRI contrast enhancement agents and optical imaging dyes. In addition, its surface contains molecular targeting units, e.g. peptides or antibodies, as well as a cloaking agent, to prevent uptake by the immune system, i.e. enabling control of the plasma residence time. These dynamic nano-platforms (DNP) contain contrast enhancement agents for the imaging (MRI, optical, photo-acoustic) of targeted locations, i.e. tumors. Added to this are targeted therapy agents, such as photosensitizers for photodynamic therapy (PDT). A simple protocol, for rats implanted with human brain cancer, consists of tail injection with DNPs, followed by 5 min red light illumination of the tumor region. It resulted in excellent cure statistics for 9L glioblastoma.

  17. Tumor Metabolism and Perfusion in Head and Neck Squamous Cell Carcinoma: Pretreatment Multimodality Imaging With {sup 1}H Magnetic Resonance Spectroscopy, Dynamic Contrast-Enhanced MRI, and [{sup 18}F]FDG-PET

    SciTech Connect

    Jansen, Jacobus F.A.; Schoeder, Heiko; Lee, Nancy Y.; Stambuk, Hilda E.; Wang Ya; Fury, Matthew G.; Patel, Senehal G.; Pfister, David G.; Shah, Jatin P.; Koutcher, Jason A.; Shukla-Dave, Amita

    2012-01-01

    Purpose: To correlate proton magnetic resonance spectroscopy ({sup 1}H-MRS), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and {sup 18}F-labeled fluorodeoxyglucose positron emission tomography ([{sup 18}F]FDG PET) of nodal metastases in patients with head and neck squamous cell carcinoma (HNSCC) for assessment of tumor biology. Additionally, pretreatment multimodality imaging was evaluated for its efficacy in predicting short-term response to treatment. Methods and Materials: Metastatic neck nodes were imaged with {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET in 16 patients with newly diagnosed HNSCC, before treatment. Short-term patient radiological response was evaluated at 3 to 4 months. Correlations among {sup 1}H-MRS (choline concentration relative to water [Cho/W]), DCE-MRI (volume transfer constant [K{sup trans}]; volume fraction of the extravascular extracellular space [v{sub e}]; and redistribution rate constant [k{sub ep}]), and [{sup 18}F]FDG PET (standard uptake value [SUV] and total lesion glycolysis [TLG]) were calculated using nonparametric Spearman rank correlation. To predict short-term responses, logistic regression analysis was performed. Results: A significant positive correlation was found between Cho/W and TLG ({rho} = 0.599; p = 0.031). Cho/W correlated negatively with heterogeneity measures of standard deviation std(v{sub e}) ({rho} = -0.691; p = 0.004) and std(k{sub ep}) ({rho} = -0.704; p = 0.003). Maximum SUV (SUVmax) values correlated strongly with MRI tumor volume ({rho} = 0.643; p = 0.007). Logistic regression indicated that std(K{sup trans}) and SUVmean were significant predictors of short-term response (p < 0.07). Conclusion: Pretreatment multimodality imaging using {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET is feasible in HNSCC patients with nodal metastases. Additionally, combined DCE-MRI and [{sup 18}F]FDG PET parameters were predictive of short-term response to treatment.

  18. Tumor Characterization with Dynamic Contrast Enhanced Magnetic Resonance Imaging and Biodegradable Macromolecular Contrast Agents in Mice

    PubMed Central

    Wu, Xueming; Feng, Yi; Jeong, Eun-Kee; Emerson, Lyska; Lu, Zheng-Rong

    2009-01-01

    Purpose To investigate the efficacy of polydisulfide-based biodegradable macromolecular contrast agents of different degradability and molecular weight for tumor characterization based on angiogenesis using dynamic contrast enhanced MRI (DCE-MRI). Methods Biodegradable macromolecular MRI contrast agents, GDCC and GDCP, with molecular weight of 20 and 70 KDa were evaluated for tumor characterization. The DCE-MRI studies were performed in nude mice bearing MDA PCa 2b and PC-3 human prostate tumor xenografts. Tumor angiogenic kinetic parameters, endothelium transfer coefficient (Ktrans) and fractional tumor plasma volume (fPV), were calculated from the DCE-MRI data using a two-compartment model. Results There was no significant difference in the fPV values between two tumor models estimated with the same agent except for GDCC-70. The Ktrans values in both tumor models decreased with increasing molecular weight of the agents. GDCC-70 showed a higher Ktrans values than GDCP-70 due to high degradability of the former in both tumor models (p < 0.05). The Ktrans values of MDA PCa 2b tumors were significantly higher than those of PC-3 tumors estimated by Gd(DTPA-BMA), GDCC-20, GDCC-70, GDCP-70, and albumin-(Gd-DTPA) (p < 0.05). Conclusions The polydisulfide based biodegradable macromolecular MRI contrast agents are promising in tumor characterization with dynamic contrast enhanced MRI. PMID:19597972

  19. Nonrigid registration and classification of the kidneys in 3D dynamic contrast enhanced (DCE) MR images

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Ghafourian, Pegah; Sharma, Puneet; Salman, Khalil; Martin, Diego; Fei, Baowei

    2012-02-01

    We have applied image analysis methods in the assessment of human kidney perfusion based on 3D dynamic contrast-enhanced (DCE) MRI data. This approach consists of 3D non-rigid image registration of the kidneys and fuzzy C-mean classification of kidney tissues. The proposed registration method reduced motion artifacts in the dynamic images and improved the analysis of kidney compartments (cortex, medulla, and cavities). The dynamic intensity curves show the successive transition of the contrast agent through kidney compartments. The proposed method for motion correction and kidney compartment classification may be used to improve the validity and usefulness of further model-based pharmacokinetic analysis of kidney function.

  20. Metabolomics of Breast Cancer Using High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopy: Correlations with 18F-FDG Positron Emission Tomography-Computed Tomography, Dynamic Contrast-Enhanced and Diffusion-Weighted Imaging MRI

    PubMed Central

    Yoon, Haesung; Yoon, Dahye; Yun, Mijin; Choi, Ji Soo; Park, Vivian Youngjean; Kim, Eun-Kyung; Jeong, Joon; Koo, Ja Seung; Yoon, Jung Hyun; Moon, Hee Jung; Kim, Suhkmann; Kim, Min Jung

    2016-01-01

    Purpose Our goal in this study was to find correlations between breast cancer metabolites and conventional quantitative imaging parameters using high-resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) and to find breast cancer subgroups that show high correlations between metabolites and imaging parameters. Materials and methods Between August 2010 and December 2013, we included 53 female patients (mean age 49.6 years; age range 32–75 years) with a total of 53 breast lesions assessed by the Breast Imaging Reporting and Data System. They were enrolled under the following criteria: breast lesions larger than 1 cm in diameter which 1) were suspicious for malignancy on mammography or ultrasound (US), 2) were pathologically confirmed to be breast cancer with US-guided core-needle biopsy (CNB) 3) underwent 3 Tesla MRI with dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) and positron emission tomography-computed tomography (PET-CT), and 4) had an attainable immunohistochemistry profile from CNB. We acquired spectral data by HR-MAS MRS with CNB specimens and expressed the data as relative metabolite concentrations. We compared the metabolites with the signal enhancement ratio (SER), maximum standardized FDG uptake value (SUV max), apparent diffusion coefficient (ADC), and histopathologic prognostic factors for correlation. We calculated Spearman correlations and performed a partial least squares-discriminant analysis (PLS-DA) to further classify patient groups into subgroups to find correlation differences between HR-MAS spectroscopic values and conventional imaging parameters. Results In a multivariate analysis, the PLS-DA models built with HR-MAS MRS metabolic profiles showed visible discrimination between high and low SER, SUV, and ADC. In luminal subtype breast cancer, compared to all cases, high SER, ADV, and SUV were more closely clustered by visual assessment. Multiple metabolites were correlated with SER and SUV in

  1. Clinical Utility of Multimodality Imaging with Dynamic Contrast-Enhanced MRI, Diffusion-Weighted MRI, and 18F-FDG PET/CT for the Prediction of Neck Control in Oropharyngeal or Hypopharyngeal Squamous Cell Carcinoma Treated with Chemoradiation

    PubMed Central

    Chan, Sheng-Chieh; Lin, Yu-Chun; Yen, Tzu-Chen; Liao, Chun-Ta; Chang, Joseph Tung-Chieh; Ko, Sheung-Fat; Wang, Hung- Ming; Chang, Chee-Jen; Wang, Jiun-Jie

    2014-01-01

    The clinical usefulness of pretreatment imaging techniques for predicting neck control in patients with oropharyngeal or hypopharyngeal squamous cell carcinoma (OHSCC) treated with chemoradiation remains unclear. In this prospective study, we investigated the role of pretreatment dynamic contrast-enhanced perfusion MR imaging (DCE-PWI), diffusion-weighted MR imaging (DWI), and [18F]fluorodeoxyglucose-positron emission tomography (18F-FDG PET)/CT derived imaging markers for the prediction of neck control in OHSCC patients treated with chemoradiation. Patients with untreated OHSCC scheduled for chemoradiation between August, 2010 and July, 2012 were eligible for the study. Clinical variables and the following imaging parameters of metastatic neck lymph nodes were examined in relation to neck control: transfer constant, volume of blood plasma, and volume of extracellular extravascular space (Ve) on DCE-PWI; apparent diffusion coefficient (ADC) on DWI; maximum standardized uptake value, metabolic tumor volume, and total lesion glycolysis on 18F-FDG PET/CT. There were 69 patients (37 with oropharynx SCC and 32 with hypopharynx SCC) with successful pretreatment DCE-PWI and DWI available for analysis. After a median follow-up of 31 months, 25 (36.2%) participants had neck failure. Multivariate analysis identified hemoglobin level <14.3 g/dL (P = 0.019), Ve <0.23 (P = 0.040), and ADC >1.14×10−3 mm2/s (P = 0.003) as independent prognostic factors for 3-year neck control. A prognostic scoring system was formulated by summing up the three significant predictors of neck control. Patients with scores of 2–3 had significantly poorer neck control and overall survival rates than patients with scores of 0–1. We conclude that hemoglobin levels, Ve, and ADC are independent pretreatment prognostic factors for neck control in OHSCC treated with chemoradiation. Their combination may identify a subgroup of patients at high risk of developing neck failure. PMID:25531391

  2. Comparison Between Perfusion Computed Tomography and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Rectal Cancer

    SciTech Connect

    Kierkels, Roel G.J.; Backes, Walter H.; Janssen, Marco H.M.; Buijsen, Jeroen; Beets-Tan, Regina G.H.; Lambin, Philippe; Lammering, Guido; Oellers, Michel C.; Aerts, Hugo J.W.L.

    2010-06-01

    Purpose: To compare pretreatment scans with perfusion computed tomography (pCT) vs. dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in rectal tumors. Methods and Materials: Nineteen patients diagnosed with rectal cancer were included in this prospective study. All patients underwent both pCT and DCE-MRI. Imaging was performed on a dedicated 40-slice CT-positron emission tomography system and a 3-T MRI system. Dynamic contrast enhancement was measured in tumor tissue and the external iliac artery. Tumor perfusion was quantified in terms of pharmacokinetic parameters: transfer constant K{sup trans}, fractional extravascular-extracellular space v{sub e}, and fractional plasma volume v{sub p}. Pharmacokinetic parameter values and their heterogeneity (by 80% quantile value) were compared between pCT and DCE-MRI. Results: Tumor K{sup trans} values correlated significantly for the voxel-by-voxel-derived median (Kendall's tau correlation, tau = 0.81, p < 0.001) and 80% quantile (tau = 0.54, p = 0.04), as well as for the averaged uptake (tau = 0.58, p = 0.03). However, no significant correlations were found for v{sub e} and v{sub p} derived from the voxel-by-voxel-derived median and 80% quantile and derived from the averaged uptake curves. Conclusions: This study demonstrated for the first time that pCT provides K{sup trans} values comparable to those of DCE-MRI. However, no correlation was found for the v{sub e} and v{sub p} parameters between CT and MRI. Computed tomography can serve as an alternative modality to MRI for the in vivo evaluation of tumor angiogenesis in terms of the transfer constant K{sup trans}.

  3. Dynamic Contrast-Enhanced CT in Patients with Pancreatic Cancer.

    PubMed

    Eriksen, Rie Ø; Strauch, Louise S; Sandgaard, Michael; Kristensen, Thomas S; Nielsen, Michael B; Lauridsen, Carsten A

    2016-01-01

    The aim of this systematic review is to provide an overview of the use of Dynamic Contrast-enhanced Computed Tomography (DCE-CT) in patients with pancreatic cancer. This study was composed according to the PRISMA guidelines 2009. The literature search was conducted in PubMed, Cochrane Library, EMBASE, and Web of Science databases to identify all relevant publications. The QUADAS-2 tool was implemented to assess the risk of bias and applicability concerns of each included study. The initial literature search yielded 483 publications. Thirteen articles were included. Articles were categorized into three groups: nine articles concerning primary diagnosis or staging, one article about tumor response to treatment, and three articles regarding scan techniques. In exocrine pancreatic tumors, measurements of blood flow in eight studies and blood volume in seven studies were significantly lower in tumor tissue, compared with measurements in pancreatic tissue outside of tumor, or normal pancreatic tissue in control groups of healthy volunteers. The studies were heterogeneous in the number of patients enrolled and scan protocols. Perfusion parameters measured and analyzed by DCE-CT might be useful in the investigation of characteristic vascular patterns of exocrine pancreatic tumors. Further clinical studies are desired for investigating the potential of DCE-CT in pancreatic tumors. PMID:27608045

  4. Immobilized Contrast Enhanced (ICE) MRI: Gadolinium-based long-term MR Contrast Enhancement of the Vein Graft Vessel Wall*

    PubMed Central

    Mitsouras, Dimitris; Vemula, Praveen Kumar; Yu, Peng; Tao, Ming; Nguyen, Binh T.; Campagna, Christina M.; Karp, Jeffrey M.; Mulkern, Robert V.; Ozaki, C. Keith; Rybicki, Frank J.

    2010-01-01

    An implantable MR contrast agent that can be covalently immobilized on tissue during surgery has been developed. The rationale is that a durable increase in tissue contrast using an implantable contrast agent can enhance post-surgical tissue differentiation using MRI. For small vessel (e.g., vein graft) MRI, the direct benefit of such permanent “labeling” of the vessel wall by modification of its relaxation properties is to achieve more efficient imaging. This efficiency can be realized as either increased contrast leading to more accurate delineation of vessel wall and lesion tissue boundaries, or, faster imaging without penalizing contrast-to-noise ratio, or a combination thereof. We demonstrate, for the first time, stable long-term MRI enhancement using such an exogenous contrast mechanism based on immobilizing a modified Gd-DTPA complex on a human vein using a covalent amide bond. Signal enhancement due to the covalently immobilized contrast agent is demonstrated for excised human vein specimens imaged at 3T, and its long-term stability is demonstrated during a 4-month incubation period. PMID:20859994

  5. Cardiac Amyloidosis: Typical Imaging Findings and Diffuse Myocardial Damage Demonstrated by Delayed Contrast-Enhanced MRI

    SciTech Connect

    Sueyoshi, Eijun Sakamoto, Ichiro; Okimoto, Tomoaki; Hayashi, Kuniaki; Tanaka, Kyouei; Toda, Genji

    2006-08-15

    Amyloidosis is a rare systemic disease. However, involvement of the heart is a common finding and is the most frequent cause of death in amyloidosis. We report the sonographic, scintigraphic, and MRI features of a pathologically proven case of cardiac amyloidosis. Delayed contrast-enhanced MR images, using an inversion recovery prepped gradient-echo sequence, revealed diffuse enhancement in the wall of both left and right ventricles. This enhancement suggested expansion of the extracellular space of the myocardium caused by diffuse myocardial necrosis secondary to deposition of amyloid.

  6. Water-dispersible ascorbic-acid-coated magnetite nanoparticles for contrast enhancement in MRI

    NASA Astrophysics Data System (ADS)

    Sreeja, V.; Jayaprabha, K. N.; Joy, P. A.

    2015-04-01

    Superparamagnetic iron oxide nanoparticles of size ~5 nm surface functionalized with ascorbic acid (vitamin C) form a stable dispersion in water with a hydrodynamic size of ~30 nm. The anti-oxidant property of ascorbic acid is retained after capping, as evidenced from the capability of converting methylene blue to its reduced leuco form. NMR relaxivity studies show that the ascorbic-acid-coated superparamagnetic iron oxide aqueous nanofluid is suitable as a contrast enhancement agent for MRI applications, coupled with the excellent biocompatibility and medicinal values of ascorbic acid.

  7. Dynamic contrast-enhanced magnetic resonance imaging of the sarcopenic muscle

    PubMed Central

    Nicolato, Elena; Farace, Paolo; Asperio, Roberto M; Marzola, Pasquina; Lunati, Ernesto; Sbarbati, Andrea; Osculati, Francesco

    2002-01-01

    Background Studies about capillarity of the aged muscle provided conflicting results and no data are currently available about the magnetic resonance imaging (MRI) in vivo characteristics of the microvascular bed in aged rats. We have studied age-related modifications of the skeletal muscle by in vivo T2-relaxometry and dynamic contrast-enhanced magnetic resonance imaging (CE-MRI) at high field intensity (4.7 T). The aim of the work was to test the hypothesis that the ageing process involves microvessels in skeletal muscle. Methods The study was performed in 4-month-old (n = 6) and 20-month-old (n = 6) rats. Results At MRI examination, the relaxation time T2 of the gastrocnemius muscle showed no significant difference between these two groups. The kinetic of contrast penetration in the tissue showed that in 4-month-old rats the enhancement values of the signal intensity at different time-points were significantly higher than those found in senescent rats. Conclusion The reported finding suggests that there is a modification of the microcirculatory function in skeletal muscle of aged rats. This work also demonstrates that CE-MRI allows for an in vivo quantification of the multiple biological processes involving the skeletal muscle during aging. Therefore, CE-MRI could represent a further tool for the follow up of tissue modification and therapeutic intervention both in patients with sarcopenia and in experimental models of this pathology. PMID:12049675

  8. Quantitative analysis of dynamic contrast-enhanced MR images based on Bayesian P-splines.

    PubMed

    Schmid, Volker J; Whitcher, Brandon; Padhani, Anwar R; Yang, Guang-Zhong

    2009-06-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is an important tool for detecting subtle kinetic changes in cancerous tissue. Quantitative analysis of DCE-MRI typically involves the convolution of an arterial input function (AIF) with a nonlinear pharmacokinetic model of the contrast agent concentration. Parameters of the kinetic model are biologically meaningful, but the optimization of the nonlinear model has significant computational issues. In practice, convergence of the optimization algorithm is not guaranteed and the accuracy of the model fitting may be compromised. To overcome these problems, this paper proposes a semi-parametric penalized spline smoothing approach, where the AIF is convolved with a set of B-splines to produce a design matrix using locally adaptive smoothing parameters based on Bayesian penalized spline models (P-splines). It has been shown that kinetic parameter estimation can be obtained from the resulting deconvolved response function, which also includes the onset of contrast enhancement. Detailed validation of the method, both with simulated and in vivo data, is provided. PMID:19272996

  9. Role of Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Staging of Bladder Cancer

    PubMed Central

    Rabie, Elham; Izadpanahi, Mohammad-Hossein; Dayani, Mohammad-Ali

    2016-01-01

    Introduction Dynamic Contrast Enhanced (DCE)-Magnetic Resonance Imaging (MRI) is a useful technique in which rapid enhancement of tumour by uptake of the contrast agent compared to bladder wall. Aim To evaluate the accuracy of dynamic gadolinium-enhanced MRI in staging of bladder cancer through differentiating superficial tumours from invasive tumours and organ-confined tumours from non-organ-confined tumours. In addition, the benefits of DCE-MRI in diagnosis of tumour progression steps were investigated. Materials and Methods This was a quasi-experimental study in which 45 patients (95.55% men and 4.45% women) were enrolled. Patients with confirmed transitional cell carcinoma by histopathology findings were imaged using 1.5 Tesla MRI systems. Pathology results were considered as the standard reference. Tumour stage was determined by imaging findings and compared with pathologic findings after radical cystectomy. Data were analysed by SPSS version 16 and the level of significance in all tests was considered p<0.001. Results The most common stage that was seen in pathology and MRI findings was T3b. Kappa agreement coefficient between MRI and pathology was 0.7 (p<0.001). The accuracy of MRI in differentiating superficial tumours (≤T1) from invasive tumours (≥ T2a), and organ-confined tumours (≤T2b) from non-organ-confined tumours (≥T3b) was 0.97 and 0.84, respectively. The overall accuracy of MRI was 0.77 (p<0.001). Totally, 10 cases of disagreement between MRI and pathological staging were found, eight (80%) of which were overestimated and two cases (20%) underestimated. MRI detection rate was 0% in stage Ta, 100% in stage T1, 66.7% in stage T2, 86.7% in stage T3, and 100% in stage T4. The sensitivity and specificity of MRI in differentiating superficial tumours from invasive tumours were 0.97 and 1, respectively, and in differentiating organ-confined tumours from non-organ-confined tumours were 0.94 and 0.77, respectively. The Spearman’s correlation

  10. Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Localization of Recurrent Prostate Cancer After External Beam Radiotherapy

    SciTech Connect

    Haider, Masoom A. Chung, Peter; Sweet, Joan; Toi, Ants; Jhaveri, Kartik; Menard, Cynthia; Warde, Padraig; Trachtenberg, John; Lockwood, Gina M.Math.; Milosevic, Michael

    2008-02-01

    Purpose: To compare the performance of T2-weighted (T2w) imaging and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) of the prostate gland in the localization of recurrent prostate cancer in patients with biochemical failure after external beam radiotherapy (EBRT). Methods and Materials: T2-weighted imaging and DCE MRI were performed in 33 patients with suspected relapse after EBRT. Dynamic contrast-enhanced MRI was performed with a temporal resolution of 95 s. Voxels enhancing at 46 s after injection to a greater degree than the mean signal intensity of the prostate at 618 s were considered malignant. Results from MRI were correlated with biopsies from six regions in the peripheral zone (PZ) (base, mid, and apex). The percentage of biopsy core positive for malignancy from each region was correlated with the maximum diameter of the tumor on DCE MRI with a linear regression model. Results: On a sextant basis, DCE MRI had significantly better sensitivity (72% [21of 29] vs. 38% [11 of 29]), positive predictive value (46% [21 of 46] vs. 24% [11 of 45]) and negative predictive value (95% [144 of 152] vs. 88% [135 of 153] than T2w imaging. Specificities were high for both DCE MRI and T2w imaging (85% [144 of 169] vs. 80% [135 of 169]). There was a linear relationship between tumor diameters on DCE MRI and the percentage of cancer tissue in the corresponding biopsy core (r = 0.9, p < 0.001), with a slope of 1.2. Conclusions: Dynamic contrast-enhanced MRI performs better than T2w imaging in the detection and localization of prostate cancer in the peripheral zone after EBRT. This may be helpful in the planning of salvage therapy.

  11. Automated lesion detection in dynamic contrast enhanced magnetic resonance imaging of breast

    NASA Astrophysics Data System (ADS)

    Liang, Xi; Kotagiri, Romamohanarao; Frazer, Helen; Yang, Qing

    2015-03-01

    We propose an automated method in detecting lesions to assist radiologists in interpreting dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) of breast. The aim is to highlight the suspicious regions of interest to reduce the searching time of the lesions and the possibility of radiologists overlooking small regions. In our method, we locate the suspicious regions by applying a threshold on essential features. The features are normalized to reduce the variation between patients. Support vector machine classifier is then applied to exclude normal tissues from these regions, using both kinetic and morphological features extracted in the lesions. In the evaluation of the system on 21 patients with 50 lesions, all lesions were successfully detected with 5.02 false positive regions per breast.

  12. Visualization of 3D geometric models of the breast created from contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Leader, J. Ken, III; Wang, Xiao Hui; Chang, Yuan-Hsiang; Chapman, Brian E.

    2002-05-01

    Contrast enhanced breast MRI is currently used as an adjuvant modality to x-ray mammography because of its ability to resolve ambiguities and determine the extent of malignancy. This study described techniques to create and visualize 3D geometric models of abnormal breast tissue. MRIs were performed on a General Electric 1.5 Tesla scanner using dual phased array breast coils. Image processing tasks included: 1) correction of image inhomogeneity caused by the coils, 2) segmentation of normal and abnormal tissue, and 3) modeling and visualization of the segmented tissue. The models were visualized using object-based surface rendering which revealed characteristics critical to differentiating benign from malignant tissue. Surface rendering illustrated the enhancement distribution and enhancement patterns. The modeling process condensed the multi-slice MRI data information and standardized its interpretation. Visualizing the 3D models should improve the radiologist's and/or surgeon's impression of the 3D shape, extent, and accessibility of the malignancy compared to viewing breast MRI data slice by slice.

  13. Use of computational fluid dynamics in the design of dynamic contrast enhanced imaging phantoms.

    PubMed

    Hariharan, Prasanna; Freed, Melanie; Myers, Matthew R

    2013-09-21

    Phantoms for dynamic contrast enhanced (DCE) imaging modalities such as DCE computed tomography (DCE-CT) and DCE magnetic resonance imaging (DCE-MRI) are valuable tools for evaluating and comparing imaging systems. It is important for the contrast-agent distribution within the phantom to possess a time dependence that replicates a curve observed clinically, known as the 'tumor-enhancement curve'. It is also important for the concentration field within the lesion to be as uniform as possible. This study demonstrates how computational fluid dynamics (CFD) can be applied to achieve these goals within design constraints. The distribution of the contrast agent within the simulated phantoms was investigated in relation to the influence of three factors of the phantom design. First, the interaction between the inlets and the uniformity of the contrast agent within the phantom was modeled. Second, pumps were programmed using a variety of schemes and the resultant dynamic uptake curves were compared to tumor-enhancement curves obtained from clinical data. Third, the effectiveness of pulsing the inlet flow rate to produce faster equilibration of the contrast-agent distribution was quantified. The models employed a spherical lesion and design constraints (lesion diameter, inlet-tube size and orientation, contrast-agent flow rates and fluid properties) taken from a recently published DCE-MRI phantom study. For DCE-MRI in breast cancer detection, where the target tumor-enhancement curve varies on the scale of hundreds of seconds, optimizing the number of inlet tubes and their orientation was found to be adequate for attaining concentration uniformity and reproducing the target tumor-enhancement curve. For DCE-CT in liver tumor detection, where the tumor-enhancement curve varies on a scale of tens of seconds, the use of an iterated inlet condition (programmed into the pump) enabled the phantom to reproduce the target tumor-enhancement curve within a few per cent beyond about 6

  14. Use of computational fluid dynamics in the design of dynamic contrast enhanced imaging phantoms

    NASA Astrophysics Data System (ADS)

    Hariharan, Prasanna; Freed, Melanie; Myers, Matthew R.

    2013-09-01

    Phantoms for dynamic contrast enhanced (DCE) imaging modalities such as DCE computed tomography (DCE-CT) and DCE magnetic resonance imaging (DCE-MRI) are valuable tools for evaluating and comparing imaging systems. It is important for the contrast-agent distribution within the phantom to possess a time dependence that replicates a curve observed clinically, known as the ‘tumor-enhancement curve’. It is also important for the concentration field within the lesion to be as uniform as possible. This study demonstrates how computational fluid dynamics (CFD) can be applied to achieve these goals within design constraints. The distribution of the contrast agent within the simulated phantoms was investigated in relation to the influence of three factors of the phantom design. First, the interaction between the inlets and the uniformity of the contrast agent within the phantom was modeled. Second, pumps were programmed using a variety of schemes and the resultant dynamic uptake curves were compared to tumor-enhancement curves obtained from clinical data. Third, the effectiveness of pulsing the inlet flow rate to produce faster equilibration of the contrast-agent distribution was quantified. The models employed a spherical lesion and design constraints (lesion diameter, inlet-tube size and orientation, contrast-agent flow rates and fluid properties) taken from a recently published DCE-MRI phantom study. For DCE-MRI in breast cancer detection, where the target tumor-enhancement curve varies on the scale of hundreds of seconds, optimizing the number of inlet tubes and their orientation was found to be adequate for attaining concentration uniformity and reproducing the target tumor-enhancement curve. For DCE-CT in liver tumor detection, where the tumor-enhancement curve varies on a scale of tens of seconds, the use of an iterated inlet condition (programmed into the pump) enabled the phantom to reproduce the target tumor-enhancement curve within a few per cent beyond about

  15. Dynamic Contrast-Enhanced Magnetic Resonance Imaging of the Metastatic Potential of Melanoma Xenografts

    SciTech Connect

    Ovrebo, Kirsti Marie; Ellingsen, Christine; Galappathi, Kanthi; Rofstad, Einar K.

    2012-05-01

    Purpose: Gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA)-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been suggested as a useful noninvasive method for characterizing the physiologic microenvironment of tumors. In the present study, we investigated whether Gd-DTPA-based DCE-MRI has the potential to provide biomarkers for hypoxia-associated metastatic dissemination. Methods and Materials: C-10 and D-12 melanoma xenografts were used as experimental tumor models. Pimonidazole was used as a hypoxia marker. A total of 60 tumors were imaged, and parametric images of K{sup trans} (volume transfer constant of Gd-DTPA) and v{sub e} (fractional distribution volume of Gd-DTPA) were produced by pharmacokinetic analysis of the DCE-MRI series. The host mice were killed immediately after DCE-MRI, and the primary tumor and the lungs were resected and prepared for histologic assessment of the fraction of pimonidazole-positive hypoxic tissue and the presence of lung metastases, respectively. Results: Metastases were found in 11 of 26 mice with C-10 tumors and 14 of 34 mice with D-12 tumors. The primary tumors of the metastatic-positive mice had a greater fraction of hypoxic tissue (p = 0.00031, C-10; p < 0.00001, D-12), a lower median K{sup trans} (p = 0.0011, C-10; p < 0.00001, D-12), and a lower median v{sub e} (p = 0.014, C-10; p = 0.016, D-12) than the primary tumors of the metastatic-negative mice. Conclusions: These findings support the clinical attempts to establish DCE-MRI as a method for providing biomarkers for tumor aggressiveness and suggests that primary tumors characterized by low K{sup trans} and low v{sub e} values could have a high probability of hypoxia-associated metastatic spread.

  16. 3D GRASE pulsed arterial spin labeling at multiple inflow times in patients with long arterial transit times: comparison with dynamic susceptibility-weighted contrast-enhanced MRI at 3 Tesla

    PubMed Central

    Martin, Steve Z; Madai, Vince I; von Samson-Himmelstjerna, Federico C; Mutke, Matthias A; Bauer, Miriam; Herzig, Cornelius X; Hetzer, Stefan; Günther, Matthias; Sobesky, Jan

    2015-01-01

    Pulsed arterial spin labeling (PASL) at multiple inflow times (multi-TIs) is advantageous for the measurement of brain perfusion in patients with long arterial transit times (ATTs) as in steno-occlusive disease, because bolus-arrival-time can be measured and blood flow measurements can be corrected accordingly. Owing to its increased signal-to-noise ratio, a combination with a three-dimensional gradient and spin echo (GRASE) readout allows acquiring a sufficient number of multi-TIs within a clinically feasible acquisition time of 5 minutes. We compared this technique with the clinical standard dynamic susceptibility-weighted contrast-enhanced imaging–magnetic resonance imaging in patients with unilateral stenosis >70% of the internal carotid or middle cerebral artery (MCA) at 3 Tesla. We performed qualitative (assessment by three expert raters) and quantitative (region of interest (ROI)/volume of interest (VOI) based) comparisons. In 43 patients, multi-TI PASL-GRASE showed perfusion alterations with moderate accuracy in the qualitative analysis. Quantitatively, moderate correlation coefficients were found for the MCA territory (ROI based: r=0.52, VOI based: r=0.48). In the anterior cerebral artery (ACA) territory, a readout related right-sided susceptibility artifact impaired correlation (ROI based: r=0.29, VOI based: r=0.34). Arterial transit delay artifacts were found only in 12% of patients. In conclusion, multi-TI PASL-GRASE can correct for arterial transit delay in patients with long ATTs. These results are promising for the transfer of ASL to the clinical practice. PMID:25407272

  17. Dynamic contrast-enhanced magnetic resonance imaging of radiation therapy-induced microcirculation changes in rectal cancer

    SciTech Connect

    Lussanet, Quido G. de . E-mail: qdlu@rdia.azm.nl; Backes, Walter H.; Griffioen, Arjan W.; Padhani, Anwar R.; Baeten, Coen I.; Baardwijk, Angela van; Lambin, Philippe; Beets, Geerard L.; Engelshoven, Jos van; Beets-Tan, Regina G.H.

    2005-12-01

    Purpose: Dynamic contrast-enhanced T1-weighted magnetic resonance imaging (DCE-MRI) allows noninvasive evaluation of tumor microvasculature characteristics. This study evaluated radiation therapy related microvascular changes in locally advanced rectal cancer by DCE-MRI and histology. Methods and Materials: Dynamic contrast-enhanced-MRI was performed in 17 patients with primary rectal cancer. Seven patients underwent 25 fractions of 1.8 Gy radiation therapy (RT) (long RT) before DCE-MRI and 10 did not. Of these 10, 3 patients underwent five fractions of 5 Gy RT (short RT) in the week before surgery. The RT treated and nontreated groups were compared in terms of endothelial transfer coefficient (K{sup PS}, measured by DCE-MRI), microvessel density (MVD) (scored by immunoreactivity to CD31 and CD34), and tumor cell and endothelial cell proliferation (scored by immunoreactivity to Ki67). Results: Tumor K{sup PS} was 77% (p = 0.03) lower in the RT-treated group. Histogram analyses showed that RT reduced both magnitude and intratumor heterogeneity of K{sup PS} (p = 0.01). MVD was significantly lower (37%, p 0.03) in tumors treated with long RT than in nonirradiated tumors, but this was not the case with short RT. Endothelial cell proliferation was reduced with short RT (81%, p = 0.02) just before surgery, but not with long RT (p > 0.8). Tumor cell proliferation was reduced with both long (57%, p < 0.001) and short RT (52%, p = 0.002). Conclusion: Dynamic contrast-enhanced-MRI-derived K{sup PS} values showed significant radiation therapy related reductions in microvessel blood flow in locally advanced rectal cancer. These findings may be useful in evaluating effects of radiation combination therapies (e.g., chemoradiation or RT combined with antiangiogenesis therapy), to account for effects of RT alone.

  18. Implementation of propeller, spiral, and variable density spiral methods for dynamic contrast enhanced magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ahunbay, Ergun Emin

    2001-09-01

    Previous studies showed that dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is a valuable tool for the prognosis and diagnosis of cancer, however it requires a tradeoff between temporal and spatial resolution. The ultimate goal of this dissertation is to compare the temporal performance of three methods (spiral, propeller and variable density spiral), given a certain spatial resolution requirement, for the DCE-MRI. These methods show distinction from the conventional MRI methods in their k-space coverage. Propeller and Variable Density Spiral methods use an approach of oversampling the center of k-space, updating the central 13-20% of the radial k-space more frequently than the peripheries. The reason for this is that most of the image data resides in the central part of k-space. Spiral method, on the other hand approaches the problem by updating the overall k-space as fast as possible, faster than the conventional methods. Comparison is performed mainly by computer simulations, where ground truth is known. In addition to computer simulations, these three methods are compared in- vivo, by tracking the DCE-MRI signal amplitude variation with time for each method on a healthy volunteer's liver. One limitation of the spiral and variable density spiral imaging methods is the effect of off-resonance frequencies on image quality. For these spiral based methods, long readout times are desired to have short overall imaging times and high temporal resolution. However, for long readout times, off resonance frequencies blur the images and reduce the spatial resolution. In this dissertation a new method is proposed which is less complicated than most other methods, and reaches an acceptable level of accuracy with less amount of CPU time compared to previously effective methods.

  19. Comparison between PUN and Tofts models in the quantification of dynamic contrast-enhanced MR imaging

    NASA Astrophysics Data System (ADS)

    Mazzetti, S.; Gliozzi, A. S.; Bracco, C.; Russo, F.; Regge, D.; Stasi, M.

    2012-12-01

    Dynamic contrast-enhanced study in magnetic resonance imaging (DCE-MRI) is an important tool in oncology to visualize tissues vascularization and to define tumour aggressiveness on the basis of an altered perfusion and permeability. Pharmacokinetic models are generally used to extract hemodynamic parameters, providing a quantitative description of the contrast uptake and wash-out. Empirical functions can also be used to fit experimental data without the need of any assumption about tumour physiology, as in pharmacokinetic models, increasing their diagnostic utility, in particular when automatic diagnosis systems are implemented on the basis of an MRI multi-parametric approach. Phenomenological universalities (PUN) represent a novel tool for experimental research and offer a simple and systematic method to represent a set of data independent of the application field. DCE-MRI acquisitions can thus be advantageously evaluated by the extended PUN class, providing a convenient diagnostic tool to analyse functional studies, adding a new set of features for the classification of malignant and benign lesions in computer aided detection systems. In this work the Tofts pharmacokinetic model and the class EU1 generated by the PUN description were compared in the study of DCE-MRI of the prostate, evaluating complexity of model implementation, goodness of fitting results, classification performances and computational cost. The mean R2 obtained with the EU1 and Tofts model were equal to 0.96 and 0.90, respectively, and the classification performances achieved by the EU1 model and the Tofts implementation discriminated malignant from benign tissues with an area under the receiver operating characteristic curve equal to 0.92 and 0.91, respectively. Furthermore, the EU1 model has a simpler functional form which reduces implementation complexity and computational time, requiring 6 min to complete a patient elaboration process, instead of 8 min needed for the Tofts model analysis.

  20. Optimal Analysis Method for Dynamic Contrast-Enhanced Diffuse Optical Tomography

    PubMed Central

    Ghijsen, Michael; Lin, Yuting; Hsing, Mitchell; Nalcioglu, Orhan; Gulsen, Gultekin

    2011-01-01

    Diffuse Optical Tomography (DOT) is an optical imaging modality that has various clinical applications. However, the spatial resolution and quantitative accuracy of DOT is poor due to strong photon scatting in biological tissue. Structural a priori information from another high spatial resolution imaging modality such as Magnetic Resonance Imaging (MRI) has been demonstrated to significantly improve DOT accuracy. In addition, a contrast agent can be used to obtain differential absorption images of the lesion by using dynamic contrast enhanced DOT (DCE-DOT). This produces a relative absorption map that consists of subtracting a reconstructed baseline image from reconstructed images in which optical contrast is included. In this study, we investigated and compared different reconstruction methods and analysis approaches for regular endogenous DOT and DCE-DOT with and without MR anatomical a priori information for arbitrarily-shaped objects. Our phantom and animal studies have shown that superior image quality and higher accuracy can be achieved using DCE-DOT together with MR structural a priori information. Hence, implementation of a combined MRI-DOT system to image ICG enhancement can potentially be a promising tool for breast cancer imaging. PMID:21811492

  1. Contrast-enhanced dynamic magnetic resonance nephrography in healthy dogs.

    PubMed

    Fonseca-Matheus, J M; Pérez-García, C C; Ginja, M M D; Altónaga, J R; Orden, M A; Gonzalo-Orden, J M

    2011-09-01

    Twenty-three healthy mixed-breed male adult dogs were examined using serial magnetic resonance (MR) renograms. The images were obtained using a dynamic gradient-echo, fast SPGR, T1-weighted sequence and low doses of gadolinium chelates (0.025 mmol/kg). Time-intensity curves were obtained to assess typical urinary excretion parameters, namely, time to vascular peak (TVP), time to vascular drop (TVD), time to glomerular peak (TGP), parenchymal phase length (PPL), gradient of parenchymal phase (GPP) and pattern of excretory segment. The mean TVP, TVD, TGP and PPL were 31.6±11.8, 43.4±11.2, 154.0±36.2 and 115.2±37.7s, respectively. The GPP was 24.1±8.6% of signal intensity per min. The excretory segment was concave in all cases, and at the end of the examination, 87.1% of kidneys had shown a reduction in signal intensity of 50%. This MR nephrography protocol can provide adequate time-intensity curve parameters for the urinary system of dogs, offers excellent anatomical detail, and represents an alternative to radionuclide nephrography. PMID:20810295

  2. Automatic indicator dilution curve extraction in dynamic-contrast enhanced imaging using spectral clustering

    NASA Astrophysics Data System (ADS)

    Saporito, Salvatore; Herold, Ingeborg HF; Houthuizen, Patrick; van den Bosch, Harrie CM; Korsten, Hendrikus HM; van Assen, Hans C.; Mischi, Massimo

    2015-07-01

    Indicator dilution theory provides a framework for the measurement of several cardiovascular parameters. Recently, dynamic imaging and contrast agents have been proposed to apply the method in a minimally invasive way. However, the use of contrast-enhanced sequences requires the definition of regions of interest (ROIs) in the dynamic image series; a time-consuming and operator dependent task, commonly performed manually. In this work, we propose a method for the automatic extraction of indicator dilution curves, exploiting the time domain correlation between pixels belonging to the same region. Individual time intensity curves were projected into a low dimensional subspace using principal component analysis; subsequently, clustering was performed to identify the different ROIs. The method was assessed on clinically available DCE-MRI and DCE-US recordings, comparing the derived IDCs with those obtained manually. The robustness to noise of the proposed approach was shown on simulated data. The tracer kinetic parameters derived on real images were in agreement with those obtained from manual annotation. The presented method is a clinically useful preprocessing step prior to further ROI-based cardiac quantifications.

  3. Assessment of Tumor Radioresponsiveness and Metastatic Potential by Dynamic Contrast-Enhanced Magnetic Resonance Imaging

    SciTech Connect

    Ovrebo, Kirsti Marie; Gulliksrud, Kristine; Mathiesen, Berit; Rofstad, Einar K.

    2011-09-01

    Purpose: It has been suggested that gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA)-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) may provide clinically useful biomarkers for personalized cancer treatment. In this preclinical study, we investigated the potential of DCE-MRI as a noninvasive method for assessing the radioresponsiveness and metastatic potential of tumors. Methods and Materials: R-18 melanoma xenografts growing in BALB/c nu/nu mice were used as experimental tumor models. Fifty tumors were subjected to DCE-MRI, and parametric images of K{sup trans} (the volume transfer constant of Gd-DTPA) and v{sub e} (the fractional distribution volume of Gd-DTPA) were produced by pharmacokinetic analysis of the DCE-MRI series. The tumors were irradiated after the DCE-MRI, either with a single dose of 10 Gy for detection of radiobiological hypoxia (30 tumors) or with five fractions of 4 Gy in 48 h for assessment of radioresponsiveness (20 tumors). The host mice were then euthanized and examined for lymph node metastases, and the primary tumors were resected for measurement of cell survival in vitro. Results: Tumors with hypoxic cells showed significantly lower K{sup trans} values than tumors without significant hypoxia (p < 0.0001, n = 30), and K{sup trans} decreased with increasing cell surviving fraction for tumors given fractionated radiation treatment (p < 0.0001, n = 20). Tumors in metastasis-positive mice had significantly lower K{sup trans} values than tumors in metastasis-negative mice (p < 0.0001, n = 50). Significant correlations between v{sub e} and tumor hypoxia, radioresponsiveness, or metastatic potential could not be detected. Conclusions: R-18 tumors with low K{sup trans} values are likely to be resistant to radiation treatment and have a high probability of developing lymph node metastases. The general validity of these observations should be investigated further by studying preclinical tumor models with biological

  4. In-Vivo Imaging of Cell Migration Using Contrast Enhanced MRI and SVM Based Post-Processing

    PubMed Central

    Budinsky, Lubos; Fabry, Ben

    2015-01-01

    The migration of cells within a living organism can be observed with magnetic resonance imaging (MRI) in combination with iron oxide nanoparticles as an intracellular contrast agent. This method, however, suffers from low sensitivity and specificty. Here, we developed a quantitative non-invasive in-vivo cell localization method using contrast enhanced multiparametric MRI and support vector machines (SVM) based post-processing. Imaging phantoms consisting of agarose with compartments containing different concentrations of cancer cells labeled with iron oxide nanoparticles were used to train and evaluate the SVM for cell localization. From the magnitude and phase data acquired with a series of T2*-weighted gradient-echo scans at different echo-times, we extracted features that are characteristic for the presence of superparamagnetic nanoparticles, in particular hyper- and hypointensities, relaxation rates, short-range phase perturbations, and perturbation dynamics. High detection quality was achieved by SVM analysis of the multiparametric feature-space. The in-vivo applicability was validated in animal studies. The SVM detected the presence of iron oxide nanoparticles in the imaging phantoms with high specificity and sensitivity with a detection limit of 30 labeled cells per mm3, corresponding to 19 μM of iron oxide. As proof-of-concept, we applied the method to follow the migration of labeled cancer cells injected in rats. The combination of iron oxide labeled cells, multiparametric MRI and a SVM based post processing provides high spatial resolution, specificity, and sensitivity, and is therefore suitable for non-invasive in-vivo cell detection and cell migration studies over prolonged time periods. PMID:26656497

  5. Development of a dynamic flow imaging phantom for dynamic contrast-enhanced CT

    SciTech Connect

    Driscoll, B.; Keller, H.; Coolens, C.

    2011-08-15

    Purpose: Dynamic contrast enhanced CT (DCE-CT) studies with modeling of blood flow and tissue perfusion are becoming more prevalent in the clinic, with advances in wide volume CT scanners allowing the imaging of an entire organ with sub-second image frequency and sub-millimeter accuracy. Wide-spread implementation of perfusion DCE-CT, however, is pending fundamental validation of the quantitative parameters that result from dynamic contrast imaging and perfusion modeling. Therefore, the goal of this work was to design and construct a novel dynamic flow imaging phantom capable of producing typical clinical time-attenuation curves (TACs) with the purpose of developing a framework for the quantification and validation of DCE-CT measurements and kinetic modeling under realistic flow conditions. Methods: The phantom is based on a simple two-compartment model and was printed using a 3D printer. Initial analysis of the phantom involved simple flow measurements and progressed to DCE-CT experiments in order to test the phantoms range and reproducibility. The phantom was then utilized to generate realistic input TACs. A phantom prediction model was developed to compute the input and output TACs based on a given set of five experimental (control) parameters: pump flow rate, injection pump flow rate, injection contrast concentration, and both control valve positions. The prediction model is then inversely applied to determine the control parameters necessary to generate a set of desired input and output TACs. A protocol was developed and performed using the phantom to investigate image noise, partial volume effects and CT number accuracy under realistic flow conditionsResults: This phantom and its surrounding flow system are capable of creating a wide range of physiologically relevant TACs, which are reproducible with minimal error between experiments ({sigma}/{mu} < 5% for all metrics investigated). The dynamic flow phantom was capable of producing input and output TACs using

  6. Review of dynamic contrast-enhanced ultrasound guidance in ablation therapy for hepatocellular carcinoma

    PubMed Central

    Minami, Yasunori; Kudo, Masatoshi

    2011-01-01

    Local ablative techniques-percutaneous ethanol injection, microwave coagulation therapy and radiofrequency ablation (RFA)-have been developed to treat unresectable hepatocellular carcinoma (HCC). The success rate of percutaneous ablation therapy for HCC depends on correct targeting of the tumor via an imaging technique. However, probe insertion often is not completely accurate for small HCC nodules, which are poorly defined on conventional B-mode ultrasound (US) alone. Thus, multiple sessions of ablation therapy are frequently required in difficult cases. By means of two breakthroughs in US technology, harmonic imaging and the development of second-generation contrast agents, dynamic contrast-enhanced harmonic US imaging with an intravenous contrast agent can depict tumor vascularity sensitively and accurately, and is able to evaluate small hypervascular HCCs even when B-mode US cannot adequately characterize the tumors. Therefore, dynamic contrast-enhanced US can facilitate RFA electrode placement in hypervascular HCC, which is poorly depicted by B-mode US. The use of dynamic contrast-enhanced US guidance in ablation therapy for liver cancer is an efficient approach. Here, we present an overview of the current status of dynamic contrast-enhanced US-guided ablation therapy, and summarize the current indications and outcomes of reported clinical use in comparison with that of other modalities. PMID:22174544

  7. Dynamic Contrast-Enhanced Magnetic Resonance Imaging Reveals Stress-Induced Angiogenesis in MCF7 Human Breast Tumors

    NASA Astrophysics Data System (ADS)

    Furman-Haran, Edna; Margalit, Raanan; Grobgeld, Dov; Degani, Hadassa

    1996-06-01

    The mechanism of contrast enhancement of tumors using magnetic resonance imaging was investigated in MCF7 human breast cancer implanted in nude mice. Dynamic contrast-enhanced images recorded at high spatial resolution were analyzed by an image analysis method based on a physiological model, which included the blood circulation, the tumor, the remaining tissues, and clearance via the kidneys. This analysis enabled us to map in rapidly enhancing regions within the tumor, the capillary permeability factor (capillary permeability times surface area per voxel volume) and the fraction of leakage space. Correlation of these maps with T2-weighted spin echo images, with histopathology, and with immunohistochemical staining of endothelial cells demonstrated the presence of dense permeable microcapillaries in the tumor periphery and in intratumoral regions that surrounded necrotic loci. The high leakage from the intratumoral permeable capillaries indicated an induction of a specific angiogenic process associated with stress conditions that cause necrosis. This induction was augmented in tumors responding to tamoxifen treatment. Determination of the distribution and extent of this stress-induced angiogenic activity by contrast-enhanced MRI might be of diagnostic and of prognostic value.

  8. Dynamic contrast-enhanced magnetic resonance imaging reveals stress-induced angiogenesis in MCF7 human breast tumors.

    PubMed

    Furman-Haran, E; Margalit, R; Grobgeld, D; Degani, H

    1996-06-25

    The mechanism of contrast enhancement of tumors using magnetic resonance imaging was investigated in MCF7 human breast cancer implanted in nude mice. Dynamic contrast-enhanced images recorded at high spatial resolution were analyzed by an image analysis method based on a physiological model, which included the blood circulation, the tumor, the remaining tissues, and clearance via the kidneys. This analysis enabled us to map in rapidly enhancing regions within the tumor, the capillary permeability factor (capillary permeability times surface area per voxel volume) and the fraction of leakage space. Correlation of these maps with T2-weighted spin echo images, with histopathology, and with immunohistochemical staining of endothelial cells demonstrated the presence of dense permeable microcapillaries in the tumor periphery and in intratumoral regions that surrounded necrotic loci. The high leakage from the intratumoral permeable capillaries indicated an induction of a specific angiogenic process associated with stress conditions that cause necrosis. This induction was augmented in tumors responding to tamoxifen treatment. Determination of the distribution and extent of this stress-induced angiogenic activity by contrast-enhanced MRI might be of diagnostic and of prognostic value. PMID:8692800

  9. Use of Myometrium as an Internal Reference for Endometrial and Cervical Cancer on Multiphase Contrast-Enhanced MRI

    PubMed Central

    Lin, Chia-Ni; Liao, Yu-San; Chen, Wen-Chang; Wang, Yue-Sheng; Lee, Li-Wen

    2016-01-01

    Background Myometrial smooth muscle is normally within the field of view for the gynecological imaging. This study aimed to investigate the use of normal myometrium as an internal reference for endometrial and cervical cancer during multiphase contrast-enhanced magnetic resonance imaging (MCE-MRI) and to explore whether this information regarding tumor enhancement relative to the myometrium could be used to discriminate between endometrial and cervical cancer. Methods MRI images, before and after contrast enhancement, were analyzed in newly diagnosed cervical (n = 18) and endometrial cancer (n = 19) patients. Signal intensities (SIs) from tumor tissue and non-neoplastic myometrium were measured using imaging software. Results The relative signal for cervical cancer was approximately 30% higher than that of endometrial cancer after contrast administration. The area under receiver operating characteristic curve for SI, relative signal enhancement, and tumor to myometrium contrast ratio (as used to discriminate between cervical cancer and endometrial cancer) was 0.7807, 0.7456 and 0.7895, respectively. There was no difference in SI of the normal myometrium between endometrial and cervical cancer patients prior to and after contrast administration. Using non-tumorous myometrium as an internal reference, the tumor to myometrium contrast ratio was significantly higher in tumor tissue from cervical cancer compared with that from endometrial cancer at 25 s post contrast enhancement (p = 0.0016), with an optimal sensitivity of 72.22% and specificity of 84.21%. Conclusion With SI normalized to baseline or normal myometrium, tumor tissue from cervical cancer patients showed significant hyperintensity compared with that of tumor tissue from endometrial cancer patients after contrast enhancement, yielding acceptable performance. The use of the myometrium as an internal reference may provide an alternative method to analyze MCE-MRI data. PMID:27326456

  10. Dynamic contrast-enhanced magnetic resonance imaging: fundamentals and application to the evaluation of the peripheral perfusion

    PubMed Central

    Gordon, Yaron; Partovi, Sasan; Müller-Eschner, Matthias; Amarteifio, Erick; Bäuerle, Tobias; Weber, Marc-André; Kauczor, Hans-Ulrich

    2014-01-01

    Introduction The ability to ascertain information pertaining to peripheral perfusion through the analysis of tissues’ temporal reaction to the inflow of contrast agent (CA) was first recognized in the early 1990’s. Similar to other functional magnetic resonance imaging (MRI) techniques such as arterial spin labeling (ASL) and blood oxygen level-dependent (BOLD) MRI, dynamic contrast-enhanced MRI (DCE-MRI) was at first restricted to studies of the brain. Over the last two decades the spectrum of ailments, which have been studied with DCE-MRI, has been extensively broadened and has come to include pathologies of the heart notably infarction, stroke and further cerebral afflictions, a wide range of neoplasms with an emphasis on antiangiogenic treatment and early detection, as well as investigations of the peripheral vascular and musculoskeletal systems. Applications to peripheral perfusion DCE-MRI possesses an unparalleled capacity to quantitatively measure not only perfusion but also other diverse microvascular parameters such as vessel permeability and fluid volume fractions. More over the method is capable of not only assessing blood flowing through an organ, but in contrast to other noninvasive methods, the actual tissue perfusion. These unique features have recently found growing application in the study of the peripheral vascular system and most notably in the diagnosis and treatment of peripheral arterial occlusive disease (PAOD). Review outline The first part of this review will elucidate the fundamentals of data acquisition and interpretation of DCE-MRI, two areas that often remain baffling to the clinical and investigating physician because of their complexity. The second part will discuss developments and exciting perspectives of DCE-MRI regarding the assessment of perfusion in the extremities. Emerging clinical applications of DCE-MRI will be reviewed with a special focus on investigation of physiology and pathophysiology of the microvascular and

  11. Major mouse placental compartments revealed by diffusion-weighted MRI, contrast-enhanced MRI, and fluorescence imaging

    PubMed Central

    Solomon, Eddy; Avni, Reut; Hadas, Ron; Raz, Tal; Garbow, Joel Richard; Bendel, Peter; Frydman, Lucio; Neeman, Michal

    2014-01-01

    Mammalian models, and mouse studies in particular, play a central role in our understanding of placental development. Magnetic resonance imaging (MRI) could be a valuable tool to further these studies, providing both structural and functional information. As fluid dynamics throughout the placenta are driven by a variety of flow and diffusion processes, diffusion-weighted MRI could enhance our understanding of the exchange properties of maternal and fetal blood pools—and thereby of placental function. These studies, however, have so far been hindered by the small sizes, the unavoidable motions, and the challenging air/water/fat heterogeneities, associated with mouse placental environments. The present study demonstrates that emerging methods based on the spatiotemporal encoding (SPEN) of the MRI information can robustly overcome these obstacles. Using SPEN MRI in combination with albumin-based contrast agents, we analyzed the diffusion behavior of developing placentas in a cohort of mice. These studies successfully discriminated the maternal from the fetal blood flows; the two orders of magnitude differences measured in these fluids’ apparent diffusion coefficients suggest a nearly free diffusion behavior for the former and a strong flow-based component for the latter. An intermediate behavior was observed by these methods for a third compartment that, based on maternal albumin endocytosis, was associated with trophoblastic cells in the interphase labyrinth. Structural features associated with these dynamic measurements were consistent with independent intravital and ex vivo fluorescence microscopy studies and are discussed within the context of the anatomy of developing mouse placentas. PMID:24969421

  12. Major mouse placental compartments revealed by diffusion-weighted MRI, contrast-enhanced MRI, and fluorescence imaging.

    PubMed

    Solomon, Eddy; Avni, Reut; Hadas, Ron; Raz, Tal; Garbow, Joel Richard; Bendel, Peter; Frydman, Lucio; Neeman, Michal

    2014-07-15

    Mammalian models, and mouse studies in particular, play a central role in our understanding of placental development. Magnetic resonance imaging (MRI) could be a valuable tool to further these studies, providing both structural and functional information. As fluid dynamics throughout the placenta are driven by a variety of flow and diffusion processes, diffusion-weighted MRI could enhance our understanding of the exchange properties of maternal and fetal blood pools--and thereby of placental function. These studies, however, have so far been hindered by the small sizes, the unavoidable motions, and the challenging air/water/fat heterogeneities, associated with mouse placental environments. The present study demonstrates that emerging methods based on the spatiotemporal encoding (SPEN) of the MRI information can robustly overcome these obstacles. Using SPEN MRI in combination with albumin-based contrast agents, we analyzed the diffusion behavior of developing placentas in a cohort of mice. These studies successfully discriminated the maternal from the fetal blood flows; the two orders of magnitude differences measured in these fluids' apparent diffusion coefficients suggest a nearly free diffusion behavior for the former and a strong flow-based component for the latter. An intermediate behavior was observed by these methods for a third compartment that, based on maternal albumin endocytosis, was associated with trophoblastic cells in the interphase labyrinth. Structural features associated with these dynamic measurements were consistent with independent intravital and ex vivo fluorescence microscopy studies and are discussed within the context of the anatomy of developing mouse placentas. PMID:24969421

  13. Dynamic Contrast-enhanced MR Imaging in Renal Cell Carcinoma: Reproducibility of Histogram Analysis on Pharmacokinetic Parameters

    PubMed Central

    Wang, Hai-yi; Su, Zi-hua; Xu, Xiao; Sun, Zhi-peng; Duan, Fei-xue; Song, Yuan-yuan; Li, Lu; Wang, Ying-wei; Ma, Xin; Guo, Ai-tao; Ma, Lin; Ye, Hui-yi

    2016-01-01

    Pharmacokinetic parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been increasingly used to evaluate the permeability of tumor vessel. Histogram metrics are a recognized promising method of quantitative MR imaging that has been recently introduced in analysis of DCE-MRI pharmacokinetic parameters in oncology due to tumor heterogeneity. In this study, 21 patients with renal cell carcinoma (RCC) underwent paired DCE-MRI studies on a 3.0 T MR system. Extended Tofts model and population-based arterial input function were used to calculate kinetic parameters of RCC tumors. Mean value and histogram metrics (Mode, Skewness and Kurtosis) of each pharmacokinetic parameter were generated automatically using ImageJ software. Intra- and inter-observer reproducibility and scan–rescan reproducibility were evaluated using intra-class correlation coefficients (ICCs) and coefficient of variation (CoV). Our results demonstrated that the histogram method (Mode, Skewness and Kurtosis) was not superior to the conventional Mean value method in reproducibility evaluation on DCE-MRI pharmacokinetic parameters (K trans & Ve) in renal cell carcinoma, especially for Skewness and Kurtosis which showed lower intra-, inter-observer and scan-rescan reproducibility than Mean value. Our findings suggest that additional studies are necessary before wide incorporation of histogram metrics in quantitative analysis of DCE-MRI pharmacokinetic parameters. PMID:27380733

  14. Dynamic Contrast-enhanced MR Imaging in Renal Cell Carcinoma: Reproducibility of Histogram Analysis on Pharmacokinetic Parameters.

    PubMed

    Wang, Hai-Yi; Su, Zi-Hua; Xu, Xiao; Sun, Zhi-Peng; Duan, Fei-Xue; Song, Yuan-Yuan; Li, Lu; Wang, Ying-Wei; Ma, Xin; Guo, Ai-Tao; Ma, Lin; Ye, Hui-Yi

    2016-01-01

    Pharmacokinetic parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been increasingly used to evaluate the permeability of tumor vessel. Histogram metrics are a recognized promising method of quantitative MR imaging that has been recently introduced in analysis of DCE-MRI pharmacokinetic parameters in oncology due to tumor heterogeneity. In this study, 21 patients with renal cell carcinoma (RCC) underwent paired DCE-MRI studies on a 3.0 T MR system. Extended Tofts model and population-based arterial input function were used to calculate kinetic parameters of RCC tumors. Mean value and histogram metrics (Mode, Skewness and Kurtosis) of each pharmacokinetic parameter were generated automatically using ImageJ software. Intra- and inter-observer reproducibility and scan-rescan reproducibility were evaluated using intra-class correlation coefficients (ICCs) and coefficient of variation (CoV). Our results demonstrated that the histogram method (Mode, Skewness and Kurtosis) was not superior to the conventional Mean value method in reproducibility evaluation on DCE-MRI pharmacokinetic parameters (K( trans) &Ve) in renal cell carcinoma, especially for Skewness and Kurtosis which showed lower intra-, inter-observer and scan-rescan reproducibility than Mean value. Our findings suggest that additional studies are necessary before wide incorporation of histogram metrics in quantitative analysis of DCE-MRI pharmacokinetic parameters. PMID:27380733

  15. Dynamic contrast-enhanced magnetic resonance imaging for prediction of response to neoadjuvant chemotherapy in breast cancer

    NASA Astrophysics Data System (ADS)

    Fu, Juzhong; Fan, Ming; Zheng, Bin; Shao, Guoliang; Zhang, Juan; Li, Lihua

    2016-03-01

    Breast cancer is the second leading cause of women death in the United States. Currently, Neoadjuvant Chemotherapy (NAC) has become standard treatment paradigms for breast cancer patients. Therefore, it is important to find a reliable non-invasive assessment and prediction method which can evaluate and predict the response of NAC on breast cancer. The Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) approach can reflect dynamic distribution of contrast agent in tumor vessels, providing important basis for clinical diagnosis. In this study, the efficacy of DCE-MRI on evaluation and prediction of response to NAC in breast cancer was investigated. To this end, fifty-seven cases of malignant breast cancers with MRI examination both before and after two cycle of NAC were analyzed. After pre-processing approach for segmenting breast lesions and background regions, 126-dimensional imaging features were extracted from DCE-MRI. Statistical analyses were then performed to evaluate the associations between the extracted DCE-MRI features and the response to NAC. Specifically, pairwise t test was used to calculate differences of imaging features between MRI examinations before-and-after NAC. Moreover, the associations of these image features with response to NAC were assessed using logistic regression. Significant association are found between response to NAC and the features of lesion morphology and background parenchymal enhancement, especially the feature of background enhancement in normal side of breast (P=0.011). Our study indicate that DCE-MRI features can provide candidate imaging markers to predict response of NAC in breast cancer.

  16. Optimized dynamic contrast-enhanced cone-beam CT for target visualization during liver SBRT

    NASA Astrophysics Data System (ADS)

    Jones, Bernard L.; Altunbas, Cem; Kavanagh, Brian; Schefter, Tracey; Miften, Moyed

    2014-03-01

    The pharmacokinetic behavior of iodine contrast agents makes it difficult to achieve significant enhancement during contrast-enhanced cone-beam CT (CE-CBCT). This study modeled this dynamic behavior to optimize CE-CBCT and improve the localization of liver lesions for SBRT. We developed a model that allows for controlled study of changing iodine concentrations using static phantoms. A projection database consisting of multiple phantom images of differing iodine/scan conditions was built. To reconstruct images of dynamic hepatic concentrations, hepatic contrast enhancement data from conventional CT scans were used to re-assemble the projections to match the expected amount of contrast. In this way the effect of various parameters on image quality was isolated, and using our dynamic model we found parameters for iodine injection, CBCT scanning, and injection/scanning timing which optimize contrast enhancement. Increasing the iodine dose, iodine injection rate, and imaging dose led to significant increases in signal-to-noise ratio (SNR). Reducing the CBCT imaging time also increased SNR, as the image can be completed before the iodine exits the liver. Proper timing of image acquisition played a significant role, as a 30 second error in start time resulted in a 40% SNR decrease. The effect of IV contrast is severely degraded in CBCT, but there is promise that, with optimization of the injection and scan parameters to account for iodine pharmacokinetics, CE-CBCT which models venous-phase blood flow kinetics will be feasible for accurate localization of liver lesions.

  17. Dynamic contrast-enhanced ultrasound of slaughterhouse porcine livers in machine perfusion.

    PubMed

    Izamis, Maria-Louisa; Efstathiades, Andreas; Keravnou, Christina; Leen, Edward L; Averkiou, Michalakis A

    2014-09-01

    The aim of this study was to enable investigations into novel imaging and surgical techniques by developing a readily accessible, versatile liver machine perfusion system. Slaughterhouse pig livers were used, and dynamic contrast-enhanced ultrasound was introduced to optimize the procurement process and provide real-time perfusion monitoring. The system comprised a single pump, oxygenator, bubble trap and two flowmeters for pressure-controlled perfusion of the vessels using an off-the-shelf perfusate at room temperature. Successful livers exhibited homogeneous perfusion in both the portal vein and hepatic artery with dynamic contrast-enhanced ultrasound, which correlated with stable oxygen uptake, bile production and hepatic resistance and normal histology at the end of 3 h of perfusion. Dynamic contrast-enhanced ultrasound revealed perfusion abnormalities invisible to the naked eye, thereby providing context to the otherwise systemic biochemical/hemodynamic measurements and focal biopsy findings. The model developed here is a simple, cost-effective approach for stable ex vivo whole-organ machine perfusion. PMID:25023101

  18. DyCoH: an innovative tool to dynamic contrast enhancement analysis.

    PubMed

    Russo, Valentina; Setola, Roberto; Del Vescovo, Riccardo; Grasso, Rosario Francesco; Zobel, Bruno Beomonte

    2007-01-01

    Contrast-Enhancement (CE) is an innovative approach, used in radiological framework, to evaluate the vascularization of the diseases. This non-invasive method determines the nature of a diseases, analysing the perfusion' dynamic of contrast media in the tissues. In this paper we present an innovative tool named DyCoH (Dynamic Contrast Enhancement). This software, being specifically designed for this type of analysis, provides to medical doctor, in a very user-friendly framework, all the information needed to perform the CE analysis. DyCoH produces four inspectionable colour-maps that radiologists can use to identify the most relevant areas over which dynamically evaluates the contrast enhancement curve. However, the most interesting feature of DyCoH is its capability to manage, into a single framework, DICOM images produced by US, CT and MR of different vendors, allowing to support many types of clinical tests and to compare results provided by different diagnostic devices. Clinical tests have shown the effectiveness of the software and its capability to concretely support CE diagnoses. PMID:18001889

  19. Dynamic Contrast-Enhanced MR Microscopy: Functional Imaging in Preclinical Models of Cancer

    NASA Astrophysics Data System (ADS)

    Subashi, Ergys

    Dynamic contrast-enhanced (DCE) MRI has been widely used as a quantitative imaging method for monitoring tumor response to therapy. The pharmacokinetic parameters derived from this technique have been used in more than 100 phase I trials and investigator led studies. The simultaneous challenges of increasing the temporal and spatial resolution, in a setting where the signal from the much smaller voxel is weaker, have made this MR technique difficult to implement in small-animal imaging.Existing preclinical DCE-MRI protocols acquire a limited number of slices resulting in potentially lost information in the third dimension. Furthermore, drug efficacy studies measuring the effect of an anti-angiogenic treatment, often compare the derived biomarkers on manually selected tumor regions or over the entire volume. These measurements include domains where the interpretation of the biomarkers may be unclear (such as in necrotic areas). This dissertation describes and compares a family of four-dimensional (3D spatial + time), projection acquisition, keyhole-sampling strategies that support high spatial and temporal resolution. An interleaved 3D radial trajectory with a quasi-uniform distribution of points in k-space was used for sampling temporally resolved datasets. These volumes were reconstructed with three different k-space filters encompassing a range of possible keyhole strategies. The effect of k-space filtering on spatial and temporal resolution was studied in phantoms and in vivo. The statistical variation of the DCE-MRI measurement is analyzed by considering the fundamental sources of error in the MR signal intensity acquired with the spoiled gradient-echo (SPGR) pulse sequence. Finally, the technique was applied for measuring the extent of the opening of the blood-brain barrier in a mouse model of pediatric glioma and for identifying regions of therapeutic effect in a model of colorectal adenocarcinoma. It is shown that 4D radial keyhole imaging does not degrade

  20. Intracranial Hypertension as an Acute Complication of Aseptic Meningoencephalitis with Leptomeningeal Contrast Enhancement on FLAIR MRI

    PubMed Central

    Wolf, Marc E.; Eisele, Philipp; Schweizer, Yvonne; Alonso, Angelika; Gass, Achim; Hennerici, Michael G.; Szabo, Kristina

    2016-01-01

    We report a case of a 19-year-old woman who developed intracranial hypertension as an unusual clinical complication of severe aseptic meningoencephalitis probably due to a diminished cerebrospinal fluid reabsorption capacity or leptomeningeal transudation as a consequence of blood-brain barrier dysfunction. These severe inflammatory changes were accompanied by prominent leptomeningeal contrast enhancement best visualized on fluid-attenuated inversion recovery magnetic resonance imaging. In such a prolonged course, a continuous lumbar drainage might be a temporary option to provide rapid symptom relief to the patient. PMID:26889150

  1. A novel method for viability assessment by cinematographic and late contrast enhanced MRI

    NASA Astrophysics Data System (ADS)

    Gao, Gang; Cockshott, Paul W.; Martin, Thomas N.; Foster, John E.; Elliott, Alex; Dargie, Henry; Groenning, Bjoern A.

    2004-04-01

    Using cardiac magnetic resonance (MR) imaging, a combination of late contrast enhanced MR (ceMR) and cinematographic (CINE) images, a myocardial viability score can be derived. At present this score is produced by visual evaluation of wall motion abnormalities in combination with presence or absence of late hyper enhancement (LE) on ceMR. We set out to develop and validate image processing techniques derived from stereo vision capable of reducing the observer dependence and improving accuracy in the diagnosis of viable myocardium.

  2. Intracranial Hypertension as an Acute Complication of Aseptic Meningoencephalitis with Leptomeningeal Contrast Enhancement on FLAIR MRI.

    PubMed

    Wolf, Marc E; Eisele, Philipp; Schweizer, Yvonne; Alonso, Angelika; Gass, Achim; Hennerici, Michael G; Szabo, Kristina

    2016-01-01

    We report a case of a 19-year-old woman who developed intracranial hypertension as an unusual clinical complication of severe aseptic meningoencephalitis probably due to a diminished cerebrospinal fluid reabsorption capacity or leptomeningeal transudation as a consequence of blood-brain barrier dysfunction. These severe inflammatory changes were accompanied by prominent leptomeningeal contrast enhancement best visualized on fluid-attenuated inversion recovery magnetic resonance imaging. In such a prolonged course, a continuous lumbar drainage might be a temporary option to provide rapid symptom relief to the patient. PMID:26889150

  3. DUSTER: dynamic contrast enhance up-sampled temporal resolution analysis method.

    PubMed

    Liberman, Gilad; Louzoun, Yoram; Artzi, Moran; Nadav, Guy; Ewing, James R; Ben Bashat, Dafna

    2016-05-01

    Dynamic contrast enhanced (DCE) MRI using Tofts' model for estimating vascular permeability is widely accepted, yet inter-tissue differences in bolus arrival time (BAT) are generally ignored. In this work we propose a method, incorporating the BAT in the analysis, demonstrating its applicability and advantages in healthy subjects and patients. A method for DCE Up Sampled TEmporal Resolution (DUSTER) analysis is proposed which includes: baseline T1 map using DESPOT1 analyzed with flip angle (FA) correction; preprocessing; raw-signal-to-T1-to-concentration time curves (CTC) conversion; automatic arterial input function (AIF) extraction at temporal super-resolution; model fitting with model selection while incorporating BAT in the pharmacokinetic (PK) model, and fits contrast agent CTC while using exhaustive search in the BAT dimension in super-resolution. The method was applied to simulated data and to human data from 17 healthy subjects, six patients with glioblastoma, and two patients following stroke. BAT values were compared to time-to-peak (TTP) values extracted from dynamic susceptibility contrast imaging. Results show that the method improved the AIF estimation and allowed extraction of the BAT with a resolution of 0.8 s. In simulations, lower mean relative errors were detected for all PK parameters extracted using DUSTER compared to analysis without BAT correction (vp:5% vs. 20%, Ktrans: 9% vs. 24% and Kep: 8% vs. 17%, respectively), and BAT estimates demonstrated high correlations (r = 0.94, p < 1e− 10) with true values. In real data, high correlations between BAT values were detected when extracted from data acquired with high temporal resolution (2 s) and sub-sampled standard resolution data (6 s) (mean r = 0.85,p < 1e− 10). BAT and TTP values were significantly correlated in the different brain regions in healthy subjects (mean r = 0.72,p = < 1e− 3), as were voxel-wise comparisons in patients (mean r = 0.89, p < 1e− 10). In conclusion

  4. Dynamic Vascular Pattern (DVP), a quantification tool for contrast enhanced ultrasound.

    PubMed

    Cui, X W; Ignee, A; Jedrzejczyk, M; Dietrich, C F

    2013-05-01

    Contrast-enhanced ultrasound (CEUS) is widely applied in tumour diagnosis, especially for focal liver lesions (FLL), due to its high sensitivity and specificity. According to the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) CEUS guidelines (2012) and non-liver guidelines (2011), the majority of tumours, regardless of location, show specific CEUS enhancement patterns that can distinguish benign from malignant lesions. However, even experienced clinicians evaluating FLL may find occasional irregularities in these patterns, due to particular FLL pathologies, that make a definitive diagnosis difficult. Hence, there is a need to train physicians to utilize contrast enhancement kinetics to aid in the correct interpretation of data from CEUS examinations in patients with divergent liver tumour pathologies. Here we report on a CEUS quantitation software, SonoLiver®, to verify and improve diagnostic accuracy in the characterization of suspicious liver lesions through the analysis of dynamic vascular patterns (DVP). PMID:23681894

  5. Texture analysis on parametric maps derived from dynamic contrast-enhanced magnetic resonance imaging in head and neck cancer

    PubMed Central

    Jansen, Jacobus FA; Lu, Yonggang; Gupta, Gaorav; Lee, Nancy Y; Stambuk, Hilda E; Mazaheri, Yousef; Deasy, Joseph O; Shukla-Dave, Amita

    2016-01-01

    AIM: To investigate the merits of texture analysis on parametric maps derived from pharmacokinetic modeling with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) as imaging biomarkers for the prediction of treatment response in patients with head and neck squamous cell carcinoma (HNSCC). METHODS: In this retrospective study, 19 HNSCC patients underwent pre- and intra-treatment DCE-MRI scans at a 1.5T MRI scanner. All patients had chemo-radiation treatment. Pharmacokinetic modeling was performed on the acquired DCE-MRI images, generating maps of volume transfer rate (Ktrans) and volume fraction of the extravascular extracellular space (ve). Image texture analysis was then employed on maps of Ktrans and ve, generating two texture measures: Energy (E) and homogeneity. RESULTS: No significant changes were found for the mean and standard deviation for Ktrans and ve between pre- and intra-treatment (P > 0.09). Texture analysis revealed that the imaging biomarker E of ve was significantly higher in intra-treatment scans, relative to pretreatment scans (P < 0.04). CONCLUSION: Chemo-radiation treatment in HNSCC significantly reduces the heterogeneity of tumors. PMID:26834947

  6. Increased microcirculation detected by dynamic contrast-enhanced magnetic resonance imaging is of prognostic significance in asymptomatic myeloma.

    PubMed

    Hillengass, Jens; Ritsch, Judith; Merz, Maximilian; Wagner, Barbara; Kunz, Christina; Hielscher, Thomas; Laue, Hendrik; Bäuerle, Tobias; Zechmann, Christian M; Ho, Anthony D; Schlemmer, Heinz-Peter; Goldschmidt, Hartmut; Moehler, Thomas M; Delorme, Stefan

    2016-07-01

    This prospective study aimed to investigate the prognostic significance of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) as a non-invasive imaging technique delivering the quantitative parameters amplitude A (reflecting blood volume) and exchange rate constant kep (reflecting vascular permeability) in patients with asymptomatic monoclonal plasma cell diseases. We analysed DCE-MRI parameters in 33 healthy controls and 148 patients with monoclonal gammopathy of undetermined significance (MGUS) or smouldering multiple myeloma (SMM) according to the 2003 IMWG guidelines. All individuals underwent standardized DCE-MRI of the lumbar spine. Regions of interest were drawn manually on T1-weighted images encompassing the bone marrow of each of the 5 lumbar vertebrae sparing the vertebral vessel. Prognostic significance for median of amplitude A (univariate: P < 0·001, hazard ratio (HR) 2·42, multivariate P = 0·02, HR 2·7) and exchange rate constant kep (univariate P = 0·03, HR 1·92, multivariate P = 0·46, HR 1·5) for time to progression of 79 patients with SMM was found. Patients with amplitude A above the optimal cut-off point of 0·89 arbitrary units had a 2-year progression rate into symptomatic disease of 80%. In conclusion, DCE-MRI parameters are of prognostic significance for time to progression in patients with SMM but not in individuals with MGUS. PMID:26991959

  7. An evaluation of four parametric models of contrast enhancement for dynamic magnetic resonance imaging of the breast.

    PubMed

    Gal, Yaniv; Mehnert, Andrew; Bradley, Andrew; McMahon, Kerry; Crozier, Stuart

    2007-01-01

    This paper presents an empirical evaluation of the goodness-of-fit (GOF) of four parametric models of contrast enhancement for dynamic resonance imaging of the breast: the Tofts, Brix, and Hayton pharmacokinetic models, and a novel empiric model. The goodness-of-fit of each model was evaluated with respect to: (i) two model-fitting algorithms (Levenberg-Marquardt and Nelder-Mead) and two fitting tolerances; and (ii) temporal resolution. In the first case the GOF was measured using data from three dynamic contrast-enhanced (DCE) MRI data sets from routine clinical examinations: one case with benign enhancement, one with malignant enhancement, and one with normal findings. Results are presented for fits to both the whole breast volume and to a selected region of interest. In the second case the GOF was measured by first fitting the models to several temporally sub-sampled versions of a custom high temporal resolution data set (subset of the breast volume containing a malignant lesion), and then comparing the fitted results to the original full temporal resolution data. Our results demonstrate that under the various optimization conditions considered, in general, both the proposed empiric model and the Hayton model fit the data equally well and that both of these models fit the data better than the Tofts and Brix models. PMID:18001891

  8. Novel ways to noninvasively detect inflammation of the myocardium: contrast-enhanced MRI and myocardial contrast echocardiography

    PubMed Central

    van den Brink, M.R.; Geluk, C.A.; Lindner, J.R.; Velthuis, B.K.; Vonken, E.J.; Cramer, M.J.M.

    2003-01-01

    Both contrast-enhanced magnetic resonance imaging (CE-MRI) and myocardial contrast echocardiography (MCE) are promising tools to detect cardiac inflammation. CE-MRI can be used to characterise the location and extent of myocardial inflammation, since areas of abnormal signal enhancement associated with regional wall motion abnormalities reliably indicate areas of active myocarditis. In MCE, chemically composed microbubbles can be visualised by ultrasound and used to determine the status of the cardiac microvasculature. If there is any inflammation the microbubbles will be phagocytosed by neutrophils and monocytes, thus enabling the degree of inflammation to be assessed. These noninvasive techniques may allow early diagnosis and accurate evaluation of myocardial inflammation. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:25696203

  9. Efficiency of Non-Contrast-Enhanced Liver Imaging Sequences Added to Initial Rectal MRI in Rectal Cancer Patients

    PubMed Central

    Kwon, Gene-hyuk; Kim, Kyung Ah; Hwang, Seong Su; Park, Soo Youn; Kim, Hyun A.; Choi, Sun Young; Kim, Ji Woong

    2015-01-01

    Purpose The purpose of this study was to estimate the value of addition of liver imaging to initial rectal magnetic resonance imaging (MRI) for detection of liver metastasis and evaluate imaging predictors of a high risk of liver metastasis on rectal MRI. Methods We enrolled 144 patients who from October 2010 to May 2013 underwent rectal MRI with T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) (b values = 50, 500, and 900 s/mm2) of the liver and abdominopelvic computed tomography (APCT) for the initial staging of rectal cancer. Two reviewers scored the possibility of liver metastasis on different sets of liver images (T2WI, DWI, and combined T2WI and DWI) and APCT and reached a conclusion by consensus for different analytic results. Imaging features from rectal MRI were also analyzed. The diagnostic performances of CT and an additional liver scan to detect liver metastasis were compared. Multivariate logistic regression to determine independent predictors of liver metastasis among rectal MRI features and tumor markers was performed. This retrospective study was approved by the Institutional Review Board, and the requirement for informed consent was waived. Results All sets of liver images were more effective than APCT for detecting liver metastasis, and DWI was the most effective. Perivascular stranding and anal sphincter invasion were statistically significant for liver metastasis (p = 0.0077 and p = 0.0471), while extramural vascular invasion based on MRI (mrEMVI) was marginally significant (p = 0.0534). Conclusion The addition of non-contrast-enhanced liver imaging, particularly DWI, to initial rectal MRI in rectal cancer patients could facilitate detection of liver metastasis without APCT. Perivascular stranding, anal sphincter invasion, and mrEMVI detected on rectal MRI were important imaging predictors of liver metastasis. PMID:26348217

  10. Continuous Dynamic Registration of Microvascularization of Liver Tumors with Contrast-Enhanced Ultrasound

    PubMed Central

    Wiesinger, Isabel; Stroszczynski, Christian; Wiggermann, Philipp; Jung, Ernst-Michael

    2014-01-01

    Aim. To evaluate the diagnostic value of quantification of liver tumor microvascularization using contrast-enhanced ultrasound (CEUS) measured continuously from the arterial phase to the late phase (3 minutes). Material and Methods. We present a retrospective analysis of 20 patients with malignant (n = 13) or benign (n = 7) liver tumors. The tumors had histopathologically been proven or clearly identified using contrast-enhanced reference imaging with either 1.5 T MRI (liver specific contrast medium) or triphase CT and follow-up. CEUS was performed using a multifrequency transducer (1–5 MHz) and a bolus injection of 2.4 mL sulphur hexafluoride microbubbles. A retrospective perfusion analysis was performed to determine TTP (time-to-peak), RBV (regional blood volume), RBF (regional blood flow), and Peak. Results. Statistics revealed a significant difference (P < 0.05) between benign and malignant tumors in the RBV, RBF, and Peak but not in TTP (P = 0.07). Receiver operating curves (ROC) were generated for RBV, RBF, Peak, and TTP with estimated ROC areas of 0.97, 0.96, 0.98, and 0.76, respectively. Conclusion. RBV, RBF, and Peak continuously measured over a determined time period of 3 minutes could be of valuable support in differentiating malignant from benign liver tumors. PMID:24991432

  11. Evaluation of liver parenchyma and perfusion using dynamic contrast-enhanced computed tomography and contrast-enhanced ultrasonography in captive green iguanas (Iguana iguana) under general anesthesia

    PubMed Central

    2014-01-01

    Background Contrast-enhanced diagnostic imaging techniques are considered useful in veterinary and human medicine to evaluate liver perfusion and focal hepatic lesions. Although hepatic diseases are a common occurrence in reptile medicine, there is no reference to the use of contrast-enhanced ultrasound (CEUS) and contrast-enhanced computed tomography (CECT) to evaluate the liver in lizards. Therefore, the aim of this study was to evaluate the pattern of change in echogenicity and attenuation of the liver in green iguanas (Iguana iguana) after administration of specific contrast media. Results An increase in liver echogenicity and density was evident during CEUS and CECT, respectively. In CEUS, the mean ± SD (median; range) peak enhancement was 19.9% ± 7.5 (18.3; 11.7-34.6). Time to peak enhancement was 134.0 ± 125.1 (68.4; 59.6-364.5) seconds. During CECT, first visualization of the contrast medium was at 3.6 ± 0.5 (4; 3-4) seconds in the aorta, 10.7 ± 2.2 (10.5; 7-14) seconds in the hepatic arteries, and 15 ± 4.5 (14.5; 10-24) seconds in the liver parenchyma. Time to peak was 14.1 ± 3.4 (13; 11-21) and 31 ± 9.6 (29; 23-45) seconds in the aorta and the liver parenchyma, respectively. Conclusion CEUS and dynamic CECT are practical means to determine liver hemodynamics in green iguanas. Distribution of contrast medium in iguana differed from mammals. Specific reference ranges of hepatic perfusion for diagnostic evaluation of the liver in iguanas are necessary since the use of mammalian references may lead the clinician to formulate incorrect diagnostic suspicions. PMID:24885935

  12. Prediction of radiosensitivity in primary central nervous system germ cell tumors using dynamic contrast-enhanced magnetic resonance imaging

    PubMed Central

    Feng, Chenlu; Qiu, Xiaoguang; Qian, Tianyi; Lin, Yan; Zhou, Jian; Sui, Binbin

    2015-01-01

    Objective To evaluate the feasibility of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for predicting tumor response to radiotherapy in patients with suspected primary central nervous system (CNS) germ cell tumors (GCTs). Methods DCE-MRI parameters of 35 patients with suspected primary CNS GCTs were obtained prior to diagnostic radiation, using the Tofts and Kermode model. Radiosensitivity was determined in tumors diagnosed 2 weeks after radiation by observing changes in tumor size and markers as a response to MRI. Taking radiosensitivity as the gold standard, the cut-off value of DCE-MRI parameters was measured by receiver operating characteristic (ROC) curve. Diagnostic accuracy of DCE-MRI parameters for predicting radiosensitivity was evaluated by ROC curve. Results A significant elevation in transfer constant (Ktrans) and extravascular extracellular space (Ve) (P=0.000), as well as a significant reduction in rate constant (Kep) (P=0.000) was observed in tumors. Ktrans, relative Ktrans, and relative Kep of the responsive group were significantly higher than non-responsive groups. No significant difference was found in Kep, Ve, and relative Ve between the two groups. Relative Ktrans showed the best diagnostic value in predicting radiosensitivity with a sensitivity of 100%, specificity of 91.7%, positive predictive value (PPV) of 95.8%, and negative predictive value (NPV) of 100%. Conclusions Relative Ktrans appeared promising in predicting tumor response to radiation therapy (RT). It is implied that DCE-MRI pre-treatment is a requisite step in diagnostic procedures and a novel and reliable approach to guide clinical choice of RT. PMID:26157319

  13. Pretreatment Evaluation of Microcirculation by Dynamic Contrast-Enhanced Magnetic Resonance Imaging Predicts Survival in Primary Rectal Cancer Patients

    SciTech Connect

    DeVries, Alexander Friedrich; Piringer, Gudrun; Kremser, Christian; Judmaier, Werner; Saely, Christoph Hubert; Lukas, Peter; Öfner, Dietmar

    2014-12-01

    Purpose: To investigate the prognostic value of the perfusion index (PI), a microcirculatory parameter estimated from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), which integrates information on both flow and permeability, to predict overall survival and disease-free survival in patients with primary rectal cancer. Methods and Materials: A total of 83 patients with stage cT3 rectal cancer requiring neoadjuvant chemoradiation were investigated with DCE-MRI before start of therapy. Contrast-enhanced dynamic T{sub 1} mapping was obtained, and a simple data analysis strategy based on the calculation of the maximum slope of the tissue concentration–time curve divided by the maximum of the arterial input function was used as a measure of tumor microcirculation (PI), which integrates information on both flow and permeability. Results: In 39 patients (47.0%), T downstaging (ypT0-2) was observed. During a mean (±SD) follow-up period of 71 ± 29 months, 58 patients (69.9%) survived, and disease-free survival was achieved in 45 patients (54.2%). The mean PI (PImean) averaged over the group of nonresponders was significantly higher than for responders. Additionally, higher PImean in age- and gender-adjusted analyses was strongly predictive of therapy nonresponse. Most importantly, PImean strongly and significantly predicted disease-free survival (unadjusted hazard ratio [HR], 1.85 [ 95% confidence interval, 1.35-2.54; P<.001)]; HR adjusted for age and sex, 1.81 [1.30-2.51]; P<.001) as well as overall survival (unadjusted HR 1.42 [1.02-1.99], P=.040; HR adjusted for age and sex, 1.43 [1.03-1.98]; P=.034). Conclusions: This analysis identifies PImean as a novel biomarker that is predictive for therapy response, disease-free survival, and overall survival in patients with primary locally advanced rectal cancer.

  14. Dynamic contrast-enhanced diffuse optical tomography (DCE-DOT): experimental validation with a dynamic phantom

    PubMed Central

    Unlu, Mehmet Burcin; Lin, Yuting; Gulsen, Gultekin

    2010-01-01

    Dynamic contrast-enhanced diffuse optical tomography (DCE-DOT) can provide spatially resolved enhancement kinetics of an optical contrast agent. We undertook a systematic phantom study to evaluate the effects of the geometrical parameters such as the depth and size of the inclusion as well as the optical parameters of the background on the recovered enhancement kinetics of the most commonly used optical contrast agent, indocyanine green (ICG). For this purpose a computer-controlled dynamic phantom was constructed. An ICG–intralipid–water mixture was circulated through the inclusions while the DCE-DOT measurements were acquired with a temporal resolution of 16 s. The same dynamic study was repeated using inclusions of different sizes located at different depths. In addition to this, the effect of non-scattering regions was investigated by placing a second inclusion filled with water in the background. The phantom studies confirmed that although the peak enhancement varied substantially for each case, the recovered injection and dilution rates obtained from the percentage enhancement maps agreed within 15% independent of not only the depth and the size of the inclusion but also the presence of a non-scattering region in the background. Although no internal structural information was used in these phantom studies, it may be necessary to use it for small objects buried deep in tissue. However, the different contrast mechanisms of optical and other imaging modalities as well as imperfect co-registration between both modalities may lead to potential errors in the structural a priori. Therefore, the effect of erroneous selection of structural priors was investigated as the final step. Again, the injection and dilution rates obtained from the percentage enhancement maps were also immune to the systematic errors introduced by erroneous selection of the structural priors, e.g. choosing the diameter of the inclusion 20% smaller increased the peak enhancement 60% but

  15. Hepatic schwannoma: imaging findings on CT, MRI and contrast-enhanced ultrasonography.

    PubMed

    Ota, Yu; Aso, Kazunobu; Watanabe, Kenji; Einama, Takahiro; Imai, Koji; Karasaki, Hidenori; Sudo, Ryuji; Tamaki, Yosui; Okada, Mituyoshi; Tokusashi, Yosihiko; Kono, Toru; Miyokawa, Naoyuki; Haneda, Masakazu; Taniguchi, Masahiko; Furukawa, Hiroyuki

    2012-09-21

    A primary benign schwannoma of the liver is extremely rare and is difficult to preoperatively discriminate from a malignant tumor. We compared the imaging and pathological findings, and examined the possibility of preoperatively diagnosing a benign liver schwannoma. A 72-year-old woman was admitted to our hospital because of a 4.6-cm mass in the liver. A malignant tumor was suspected, and a right hepatectomy was performed. After this, the diagnosis of a primary benign schwannoma of the liver was made through pathological examination. Contrast-enhanced ultrasonography (CEUS) with Sonazoid showed minute blood flows into the septum and solid areas of the tumor in the vascular phase; most likely due to increased arterial flow associated with infiltration of chronic inflammatory cells. In the postvascular phase, CEUS showed contrast defect of cystic areas and delayed enhancement of solid areas; most likely due to aggregation of siderophores. Because discriminating between a benign and malignant schwannoma of the liver is difficult, surgery is generally recommended. However, the two key findings from CEUS may be useful in discriminating ancient schwannoma by recognizing the hemorrhage involved in the secondary degeneration and aggregation of siderophores. PMID:23002371

  16. Hepatic schwannoma: Imaging findings on CT, MRI and contrast-enhanced ultrasonography

    PubMed Central

    Ota, Yu; Aso, Kazunobu; Watanabe, Kenji; Einama, Takahiro; Imai, Koji; Karasaki, Hidenori; Sudo, Ryuji; Tamaki, Yosui; Okada, Mituyoshi; Tokusashi, Yosihiko; Kono, Toru; Miyokawa, Naoyuki; Haneda, Masakazu; Taniguchi, Masahiko; Furukawa, Hiroyuki

    2012-01-01

    A primary benign schwannoma of the liver is extremely rare and is difficult to preoperatively discriminate from a malignant tumor. We compared the imaging and pathological findings, and examined the possibility of preoperatively diagnosing a benign liver schwannoma. A 72-year-old woman was admitted to our hospital because of a 4.6-cm mass in the liver. A malignant tumor was suspected, and a right hepatectomy was performed. After this, the diagnosis of a primary benign schwannoma of the liver was made through pathological examination. Contrast-enhanced ultrasonography (CEUS) with Sonazoid showed minute blood flows into the septum and solid areas of the tumor in the vascular phase; most likely due to increased arterial flow associated with infiltration of chronic inflammatory cells. In the postvascular phase, CEUS showed contrast defect of cystic areas and delayed enhancement of solid areas; most likely due to aggregation of siderophores. Because discriminating between a benign and malignant schwannoma of the liver is difficult, surgery is generally recommended. However, the two key findings from CEUS may be useful in discriminating ancient schwannoma by recognizing the hemorrhage involved in the secondary degeneration and aggregation of siderophores. PMID:23002371

  17. Radiogenomic analysis of breast cancer: dynamic contrast enhanced - magnetic resonance imaging based features are associated with molecular subtypes

    NASA Astrophysics Data System (ADS)

    Wang, Shijian; Fan, Ming; Zhang, Juan; Zheng, Bin; Wang, Xiaojia; Li, Lihua

    2016-03-01

    Breast cancer is one of the most common malignant tumor with upgrading incidence in females. The key to decrease the mortality is early diagnosis and reasonable treatment. Molecular classification could provide better insights into patient-directed therapy and prognosis prediction of breast cancer. It is known that different molecular subtypes have different characteristics in magnetic resonance imaging (MRI) examination. Therefore, we assumed that imaging features can reflect molecular information in breast cancer. In this study, we investigated associations between dynamic contrasts enhanced MRI (DCE-MRI) features and molecular subtypes in breast cancer. Sixty patients with breast cancer were enrolled and the MR images were pre-processed for noise reduction, registration and segmentation. Sixty-five dimensional imaging features including statistical characteristics, morphology, texture and dynamic enhancement in breast lesion and background regions were semiautomatically extracted. The associations between imaging features and molecular subtypes were assessed by using statistical analyses, including univariate logistic regression and multivariate logistic regression. The results of multivariate regression showed that imaging features are significantly associated with molecular subtypes of Luminal A (p=0.00473), HER2-enriched (p=0.00277) and Basal like (p=0.0117), respectively. The results indicated that three molecular subtypes are correlated with DCE-MRI features in breast cancer. Specifically, patients with a higher level of compactness or lower level of skewness in breast lesion are more likely to be Luminal A subtype. Besides, the higher value of the dynamic enhancement at T1 time in normal side reflect higher possibility of HER2-enriched subtype in breast cancer.

  18. Comparison of dynamic contrast-enhanced and diffusion weighted magnetic resonance image in staging and grading of carcinoma bladder with histopathological correlation

    PubMed Central

    Gupta, Neetika; Sureka, Binit; Kumar, Mittal Mahesh; Malik, Amita; Bhushan, Thukral Brij; Mohanty, N. K.

    2015-01-01

    Background: Bladder cancer is the second most common neoplasm of the urinary tract worldwide. Dynamic contrast-enhanced and diffusion-weighted MRI has been introduced in clinical MRI protocols of bladder cancer because of its accuracy in staging and grading. Aim: To evaluate and compare accuracy of Dynamic contrast enhanced (DCE) and Diffusion weighted (DW) MRI for preoperative T staging of urinary bladder cancer and find correlation between apparent diffusion coefficient (ADC) and maximum enhancement with histological grade. Materials and Methods: Sixty patients with bladder cancer were included in study. All patients underwent Magnetic Resonance Imaging (MRI) on a 1.5-T scanner with a phased-array pelvic coil. MR images were evaluated and assigned a stage which was compared with the histolopathological staging. ADC value and maximum enhancement curve were used based on previous studies. Subsequently histological grade was compared with MR characteristics. Results: The extent of agreement between the radiologic staging and histopathological staging was relatively greater with the DW-MRI (κ=0.669) than DCE-MRI (κ=0.619). The sensitivity, specificity, and accuracy are maximum and similar for stage T4 tumors in both DCEMRI (100.0, 96.2 and 96.7) and DW-MRI (100.0, 96.2 and 96.7) while minimum for stage T2 tumors - DCEMRI (83.3, 72.2, and 76.7) and DWI-MRI (91.7, 72.2, and 80). Conclusion: MRI is an effective tool for determining T stage and histological grade of urinary bladder cancers. Stage T2a and T2b can be differentiated only by DCE-MRI. Results were more accurate when both ADC and DCE-MRI were used together and hence a combined approach is suggested. PMID:25835087

  19. Why a standard contrast-enhanced MRI might be useful in intracranial internal carotid artery stenosis.

    PubMed

    Oeinck, Maximilian; Rozeik, Christoph; Wattchow, Jens; Meckel, Stephan; Schlageter, Manuel; Beeskow, Christel; Reinhard, Matthias

    2016-06-01

    In patients with ischemic stroke of unknown cause cerebral vasculitis is a rare but relevant differential diagnosis, especially when signs of intracranial artery stenosis are found and laboratory findings show systemic inflammation. In such cases, high-resolution T1w vessel wall magnetic resonance imaging (MRI; 'black blood' technique) at 3 T is preferentially performed, but may not be available in every hospital. We report a case of an 84-year-old man with right hemispheric transient ischemic attack and signs of distal occlusion in the right internal carotid artery (ICA) in duplex sonography. Standard MRI with contrast agent pointed the way to the correct diagnosis since it showed an intramural contrast uptake in the right ICA and both vertebral arteries. Temporal artery biopsy confirmed the suspected diagnosis of a giant cell arteritis and dedicated vessel wall MRI performed later supported the suspected intracranial large artery inflammation. Our case also shows that early diagnosis and immunosuppressive therapy may not always prevent disease progression, as our patient suffered several infarcts in the left middle cerebral artery (MCA) territory with consecutive high-grade hemiparesis of the right side within the following four months. PMID:26988083

  20. In vivo Imaging of Optic Nerve Fiber Integrity by Contrast-Enhanced MRI in Mice

    PubMed Central

    Herrmann, Karl-Heinz; Reichenbach, Jürgen R.; Witte, Otto W.; Weih, Falk; Kretz, Alexandra; Haenold, Ronny

    2014-01-01

    The rodent visual system encompasses retinal ganglion cells and their axons that form the optic nerve to enter thalamic and midbrain centers, and postsynaptic projections to the visual cortex. Based on its distinct anatomical structure and convenient accessibility, it has become the favored structure for studies on neuronal survival, axonal regeneration, and synaptic plasticity. Recent advancements in MR imaging have enabled the in vivo visualization of the retino-tectal part of this projection using manganese mediated contrast enhancement (MEMRI). Here, we present a MEMRI protocol for illustration of the visual projection in mice, by which resolutions of (200 µm)3 can be achieved using common 3 Tesla scanners. We demonstrate how intravitreal injection of a single dosage of 15 nmol MnCl2 leads to a saturated enhancement of the intact projection within 24 hr. With exception of the retina, changes in signal intensity are independent of coincided visual stimulation or physiological aging. We further apply this technique to longitudinally monitor axonal degeneration in response to acute optic nerve injury, a paradigm by which Mn2+ transport completely arrests at the lesion site. Conversely, active Mn2+ transport is quantitatively proportionate to the viability, number, and electrical activity of axon fibers. For such an analysis, we exemplify Mn2+ transport kinetics along the visual path in a transgenic mouse model (NF-κB p50KO) displaying spontaneous atrophy of sensory, including visual, projections. In these mice, MEMRI indicates reduced but not delayed Mn2+ transport as compared to wild type mice, thus revealing signs of structural and/or functional impairments by NF-κB mutations. In summary, MEMRI conveniently bridges in vivo assays and post mortem histology for the characterization of nerve fiber integrity and activity. It is highly useful for longitudinal studies on axonal degeneration and regeneration, and investigations of mutant mice for genuine or

  1. Porcine Ex Vivo Liver Phantom for Dynamic Contrast-Enhanced Computed Tomography: Development and Initial Results

    PubMed Central

    Thompson, Scott M.; Giraldo, Juan C. Ramirez; Knudsen, Bruce; Grande, Joseph P.; Christner, Jodie A.; Xu, Man; Woodrum, David A.; McCollough, Cynthia H.; Callstrom, Matthew R.

    2011-01-01

    Objectives To demonstrate the feasibility of developing a fixed, dual-input, biological liver phantom for dynamic contrast-enhanced computed tomography (CT) imaging and to report initial results of use of the phantom for quantitative CT perfusion imaging. Materials and Methods Porcine livers were obtained from completed surgical studies and perfused with saline and fixative. The phantom was placed in a body-shaped, CT-compatible acrylic container and connected to a perfusion circuit fitted with a contrast injection port. Flow-controlled contrast-enhanced imaging experiments were performed using a 128-slice and 64 slice, dual-source multidetector CT scanners. CT angiography protocols were employed to obtain portal venous and hepatic arterial vascular enhancement, reproduced over a period of four to six months. CT perfusion protocols were employed at different input flow rates to correlate input flow with calculated tissue perfusion, to test reproducibility and demonstrate the feasibility of simultaneous dual input liver perfusion. Histologic analysis of the liver phantom was also performed. Results CT angiogram 3D reconstructions demonstrated homogenous tertiary and quaternary branching of the portal venous system out to the periphery of all lobes of the liver as well as enhancement of the hepatic arterial system to all lobes of the liver and gallbladder throughout the study period. For perfusion CT, the correlation between the calculated mean tissue perfusion in a volume of interest and input pump flow rate was excellent (R2 = 0.996) and color blood flow maps demonstrated variations in regional perfusion in a narrow range. Repeat perfusion CT experiments demonstrated reproducible time-attenuation curves and dual-input perfusion CT experiments demonstrated that simultaneous dual input liver perfusion is feasible. Histologic analysis demonstrated that the hepatic microvasculature and architecture appeared intact and well preserved at the completion of four to six

  2. Retrieval of Brain Tumors with Region-Specific Bag-of-Visual-Words Representations in Contrast-Enhanced MRI Images

    PubMed Central

    Huang, Meiyan; Yang, Wei; Yu, Mei; Lu, Zhentai; Feng, Qianjin; Chen, Wufan

    2012-01-01

    A content-based image retrieval (CBIR) system is proposed for the retrieval of T1-weighted contrast-enhanced MRI (CE-MRI) images of brain tumors. In this CBIR system, spatial information in the bag-of-visual-words model and domain knowledge on the brain tumor images are considered for the representation of brain tumor images. A similarity metric is learned through a distance metric learning algorithm to reduce the gap between the visual features and the semantic concepts in an image. The learned similarity metric is then used to measure the similarity between two images and then retrieve the most similar images in the dataset when a query image is submitted to the CBIR system. The retrieval performance of the proposed method is evaluated on a brain CE-MRI dataset with three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor). The experimental results demonstrate that the mean average precision values of the proposed method range from 90.4% to 91.5% for different views (transverse, coronal, and sagittal) with an average value of 91.0%. PMID:23243462

  3. Automated scoring of regional lung perfusion in children from contrast enhanced 3D MRI

    NASA Astrophysics Data System (ADS)

    Heimann, Tobias; Eichinger, Monika; Bauman, Grzegorz; Bischoff, Arved; Puderbach, Michael; Meinzer, Hans-Peter

    2012-03-01

    MRI perfusion images give information about regional lung function and can be used to detect pulmonary pathologies in cystic fibrosis (CF) children. However, manual assessment of the percentage of pathologic tissue in defined lung subvolumes features large inter- and intra-observer variation, making it difficult to determine disease progression consistently. We present an automated method to calculate a regional score for this purpose. First, lungs are located based on thresholding and morphological operations. Second, statistical shape models of left and right children's lungs are initialized at the determined locations and used to precisely segment morphological images. Segmentation results are transferred to perfusion maps and employed as masks to calculate perfusion statistics. An automated threshold to determine pathologic tissue is calculated and used to determine accurate regional scores. We evaluated the method on 10 MRI images and achieved an average surface distance of less than 1.5 mm compared to manual reference segmentations. Pathologic tissue was detected correctly in 9 cases. The approach seems suitable for detecting early signs of CF and monitoring response to therapy.

  4. Assessment of metastatic liver disease in patients with primary extrahepatic tumors by contrast-enhanced sonography versus CT and MRI

    PubMed Central

    Dietrich, Christoph F; Kratzer, Wolfgang; Strobel, Deike; Danse, Etienne; Fessl, Robert; Bunk, Alfred; Vossas, Udo; Hauenstein, Karlheinz; Koch, Wilhelm; Blank, Wolfgang; Oudkerk, Matthijs; Hahn, Dietbert; Greis, Christian

    2006-01-01

    AIM: To evaluate contrast-enhanced ultrasonography (CEUS) using SonoVue® in the detection of liver metastases in patients with known extrahepatic primary tumors versus the combined gold standard comprising CT, MRI and clinical/histological data. METHODS: It is an international multicenter study, and there were 12 centres and 125 patients (64 males, 61 females, aged 59 ± 11 years) involved, with 102 patients per protocol. Primary tumors were colorectal in 35 %, breast in 27 %, pancreatic in 17 % and others in 21 %. CEUS using SonoVue® was employed with a low-mechanical-index technique and contrast-specific software using Siemens Elegra, Philips HDI 5000 and Acuson Sequoia; continuous scanning for at least five minutes. RESULTS: CEUS with SonoVue® increased significantly the number of focal liver lesions detected versus unenhanced sonography. In 31.4 % of the patients, more lesions were found after contrast enhancement. The total numbers of lesions detected were comparable with CEUS (55), triple-phase spiral CT (61) and MRI with a liver-specific contrast agent (53). Accuracy of detection of metastatic disease (i.e. at least one metastatic lesion) was significantly higher for CEUS (91.2 %) than for unenhanced sonography (81.4 %) and was similar to that of triple-phase spiral CT (89.2 %). In 53 patients whose CEUS examination was negative, a follow-up examination 3-6 mo later confirmed the absence of metastatic lesions in 50 patients (94.4 %). CONCLUSION: CEUS is proved to be reliable in the detection of liver metastases in patients with known extrahepatic primary tumors and suspected liver lesions. PMID:16586537

  5. Medullary hemangioblastoma in a child with von Hippel-Lindau disease: vascular tumor perfusion depicted by arterial spin labeling and dynamic contrast-enhanced imaging.

    PubMed

    Goo, Hyun Woo; Ra, Young-Shin

    2015-07-01

    Medullary hemangioblastoma is very rare in children. Based on small nodular enhancement with peritumoral edema and without dilated feeding arteries on conventional MRI, hemangioblastoma, pilocytic astrocytoma, oligodendroglioma, and ganglioglioma were included in the differential diagnosis of the medullary tumor. In this case report, the authors emphasize the diagnostic value of arterial spin labeling and dynamic contrast-enhanced MRI in demonstrating vascular tumor perfusion of hemangioblastoma in a 12-year-old boy who was later found to have von Hippel-Lindau disease. PMID:25885801

  6. Dynamic contrast enhanced CT in nodule characterization: How we review and report.

    PubMed

    Qureshi, Nagmi R; Shah, Andrew; Eaton, Rosemary J; Miles, Ken; Gilbert, Fiona J

    2016-01-01

    Incidental indeterminate solitary pulmonary nodules (SPN) that measure less than 3 cm in size are an increasingly common finding on computed tomography (CT) worldwide. Once identified there are a number of imaging strategies that can be performed to help with nodule characterization. These include interval CT, dynamic contrast enhanced computed tomography (DCE-CT), (18)F-fluorodeoxyglucose positron emission tomography-computed tomography ((18)F-FDG-PET-CT). To date the most cost effective and efficient non-invasive test or combination of tests for optimal nodule characterization has yet to be determined.DCE-CT is a functional test that involves the acquisition of a dynamic series of images of a nodule before and following the administration of intravenous iodinated contrast medium. This article provides an overview of the current indications and limitations of DCE- CT in nodule characterization and a systematic approach to how to perform, analyse and interpret a DCE-CT scan. PMID:27430260

  7. Segmentation and classification of breast tumor using dynamic contrast-enhanced MR images.

    PubMed

    Zheng, Yuanjie; Baloch, Sajjad; Englander, Sarah; Schnall, Mitchell D; Shen, Dinggang

    2007-01-01

    Accuracy of automatic cancer diagnosis is largely determined by two factors, namely, the precision of tumor segmentation, and the suitability of extracted features for discrimination between malignancy and benignancy. In this paper, we propose a new framework for accurate characterization of tumors in contrast enhanced MR images. First, a new graph cut based segmentation algorithm is developed for refining coarse manual segmentation, which allows precise identification of tumor regions. Second, by considering serial contrast-enhanced images as a single spatio-temporal image, a spatio-temporal model of segmented tumor is constructed to extract Spatio-Temporal Enhancement Patterns (STEPs). STEPs are designed to capture not only dynamic enhancement and architectural features, but also spatial variations of pixel-wise temporal enhancement of the tumor. While temporal enhancement features are extracted through Fourier transform, the resulting STEP framework captures spatial patterns of temporal enhancement features via moment invariants and rotation invariant Gabor textures. High accuracy of the proposed framework is a direct consequence of this two pronged approach, which is validated through experiments yielding, for instance, an area of 0.97 under the ROC curve. PMID:18044593

  8. Bipolar radiofrequency ablation for liver tumors: comparison of contrast-enhanced ultrasound with contrast-enhanced MRI/CT in the posttreatment imaging evaluation

    PubMed Central

    Bo, Xiao-Wan; Xu, Hui-Xiong; Sun, Li-Ping; Zheng, Shu-Guang; Guo, Le-Hang; Lu, Feng; Wu, Jian; Xu, Xiao-Hong

    2014-01-01

    Objective: The aim of the study was to assess the role of contrast-enhanced ultrasound (CEUS) in treatment response evaluation after percutaneous bipolar radiofrequency ablation (BRFA) for liver tumors. Methods: From May 2012 to May 2014, 39 patients with 73 tumors were treated by BRFA. One month after the treatment, CEUS and CEMRI/CECT were conducted to evaluate the treatment response. The results of CEUS were compared with CEMRI/CECT. Results: Of the 73 tumors ablated, eight (11.0%) were found to have residual viable tumor tissue and 65 (89.0%) were successfully ablated based on CEMRI/CECT within 1-month after ablation. CEUS detected seven of the eight residual tumors and 63 of 65 completely ablated tumors. The sensitivity, specificity, positive predictive value, negative predictive value and accuracy of CEUS were 87.5% (7/8), 96.9% (63/65), 77.8% (7/9), 98.4% (63/64) and 95.9% (70/73), respectively. The complete ablation (CR) rates for the tumors ≤3.0 cm, 3.1-5.0 cm, and >5.0 cm were 96.6% (58/60), 63.6% (7/11), and 0% (0/2), respectively (P<0.001). CR rates were 94.7% (36/38) for primary liver tumors and 82.9% (29/35) for metastatic liver tumors (P=0.212), and were 97.4% (38/39) for the tumors with curative treatment intention and 79.4% (27/34) for those with palliative treatment intention (P=0.037). Major complication was not encountered in this series. Conclusions: BRFA is an effective technique of percutaneous ablation for liver tumors and CEUS can be used to assess its therapeutic effect accurately. PMID:25337258

  9. PEG-g-poly(GdDTPA-co-L-cystine): effect of PEG chain length on in vivo contrast enhancement in MRI.

    PubMed

    Mohs, Aaron M; Zong, Yuda; Guo, Junyu; Parker, Dennis L; Lu, Zheng-Rong

    2005-01-01

    Biodegradable macromolecular Gd(III) complexes, Gd-DTPA cystine copolymers (GDCP), were grafted with PEG of different sizes to modify the physicochemical properties and in vivo MRI contrast enhancement of the agents and to study the effect of PEG chain length on these properties. Three new PEG-grafted biodegradable macromolecular gadolinium(III) complexes were synthesized and characterized as blood pool MRI contrast agents. One of three different lengths of MPEG-NH(2) (MW = 550, 1000, and 2000) was grafted to the backbone of GDCP to yield PEG(n)()-g-poly(GdDTPA-co-l-cystine), PEG(n)()-GDCP. The PEG chain length did not dramatically alter the T(1) relaxivity, r(1), of the modified agents. The MRI enhancement profile of PEG(n)()-GDCP with different PEG sizes was significantly different in mice with respect to both signal intensity and clearance profiles. PEG(2000)-GDCP showed more prominent enhancement in the blood pool for a longer period of time than either PEG(1000)-GDCP or PEG(550)-GDCP. In the kidney, PEG(2000)-GDCP had less enhancement at 2 min than PEG(1000)-GDCP, but both PEG(550)-GDCP and PEG(1000)-GDCP showed a more pronounced signal decay thereafter. The three agents behaved similarly in the liver, as compared to that in the heart. All three agents showed little enhancement in the muscle. Chemical grafting with PEG of different chain lengths is an effective approach to modify the physiochemistry and in vivo contrast enhancement dynamics of the biodegradable macromolecular contrast agents. The novel agents are promising for further clinical development for cardiovascular and cancer MR imaging. PMID:16004476

  10. Analysis of pharmacokinetics of Gd-DTPA for dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Taheri, Saeid; Shah, N Jon; Rosenberg, Gary A

    2016-09-01

    The pharmacokinetics (PK) of the contrast agent Gd-DTPA administered intravenously (i.v.) for contrast-enhanced MR imaging (DCE-MRI) is an important factor for quantitative data acquisition. We studied the effect of various initial bolus doses on the PK of Gd-DTPA and analyzed population PK of a lower dose for intra-subject variations in DCE-MRI. First, fifteen subjects (23-85years, M/F) were randomly divided into four groups for DCE-MRI with different Gd-DTPA dose: group-I, 0.1mmol/kg, n=4; group-II, 0.05mmol/kg, n=4; group-III, 0.025mmol/kg, n=4; and group-IV, 0.0125mmol/kg, n=3. Sequential fast T1 mapping sequence, after a bolus i.v. Gd-DTPA administered, and a linear T1-[Gd-DTPA] relationship were used to estimate the PK of Gd-DTPA. Secondly, MR-acquired PKs of Gd-DTPA from 58 subjects (28-80years, M/F) were collected retrospectively, from an ongoing study of the brain using DCE-MRI with Gd-DTPA at 0.025mmol/kg, to statistically analyze population PK of Gd-DTPA. We found that the PK of Gd-DTPA (i.v. 0.025mmol/kg) had a half-life of 37.3±6.6min, and was a better fit into a linear T1-[Gd-DTPA] relationship than higher doses (up to 0.1mmol/kg). The area under the curve (AUC) for 0.025mmol/kg was 3.37±0.46, which was a quarter of AUC of 0.1mmol/kg. In population analysis, a dose of 0.025mmol/kg of Gd-DTPA provided less than 5% subject-dependent variation in the PK of Gd-DTPA. Administration of 0.025mmol/kg Gd-DTPA enabled us to estimate [Gd-DTPA] from T1 by using a linear relationship that has a lower estimation error compared to a non-linear relationship. DCE-MRI with a quarter dose of Gd-DTPA is more sensitive to detect changes in [Gd-DTPA]. PMID:27109487

  11. Analysis of Pharmacokinetics of Gd-DTPA for Dynamic Contrast-enhanced Magnetic Resonance Imaging

    PubMed Central

    Taheri, Saeid; Jon Shah, N.; Rosenberg, Gary A.

    2016-01-01

    The pharmacokinetics (PK) of the contrast agent Gd-DTPA administered intravenously (i.v.) for contrast-enhanced MR imaging (DCE-MRI) is an important factor for quantitative data acquisition. We studied the effect of various initial bolus doses on the PK of Gd-DTPA and analyzed population PK of a lower dose for intra-subject variations in DCE-MRI. First, fifteen subjects (23–85 years, M/F) were randomly divided into four groups for DCE-MRI with different Gd-DTPA dose: group-I, 0.1mmol/kg, n=4; group-II, 0.05 mmol/kg, n=4; group-III, 0.025mmol/kg, n=4; and group-IV, 0.0125 mmol/kg, n=3. Sequential fast T1 mapping sequence, after a bolus i.v. Gd-DTPA administered, and a linear T1-[Gd-DTPA] relationship were used to estimate the PK of Gd-DTPA. Secondly, MR-acquired PK of Gd-DTPA from 58 subjects (28–80 years, M/F) were collected retrospectively, from an ongoing study of the brain using DCE-MRI with Gd-DTPA at 0.025 mmol/kg, to statistically analyze population PK of Gd-DTPA. We found that the PK of Gd-DTPA (i.v. 0.025 mmol/kg) had a half-life of 37.3 ± 6.6 mins, and was a better fit into a linear T1-[Gd-DTPA] relationship than higher doses (up to 0.1 mmol/kg). The area under the curve (AUC) for 0.025 mmol/kg was 3.37± 0.46, which was a quarter of AUC of 0.1 mmol/kg. In population analysis, a dose of 0.025 mmol/kg of Gd-DTPA provided less than 5% subject-dependent variation in the PK of Gd-DTPA. Administration of 0.025 mmol/kg Gd-DTPA enable us to estimate [Gd-DTPA] from T1 by using a linear relationship that has a lower estimation error compared to a non-linear relationship. DCE-MRI with a quarter dose of Gd-DTPA is more sensitive to detect changes in [Gd-DTPA]. PMID:27109487

  12. Kinetic Curve Type Assessment for Classification of Breast Lesions Using Dynamic Contrast-Enhanced MR Imaging

    PubMed Central

    Chen, Jun-Ming; Zhang, Geoffrey; Liao, Yen-Hsiu; Huang, Tzung-Chi

    2016-01-01

    Objective The aim of this study was to employ a kinetic model with dynamic contrast enhancement-magnetic resonance imaging to develop an approach that can efficiently distinguish malignant from benign lesions. Materials and Methods A total of 43 patients with 46 lesions who underwent breast dynamic contrast enhancement-magnetic resonance imaging were included in this retrospective study. The distribution of malignant to benign lesions was 31/15 based on histological results. This study integrated a single-compartment kinetic model and dynamic contrast enhancement-magnetic resonance imaging to generate a kinetic modeling curve for improving the accuracy of diagnosis of breast lesions. Kinetic modeling curves of all different lesions were analyzed by three experienced radiologists and classified into one of three given types. Receiver operating characteristic and Kappa statistics were used for the qualitative method. The findings of the three radiologists based on the time-signal intensity curve and the kinetic curve were compared. Results An average sensitivity of 82%, a specificity of 65%, an area under the receiver operating characteristic curve of 0.76, and a positive predictive value of 82% and negative predictive value of 63% was shown with the kinetic model (p = 0.017, 0.052, 0.068), as compared to an average sensitivity of 80%, a specificity of 55%, an area under the receiver operating characteristic of 0.69, and a positive predictive value of 79% and negative predictive value of 57% with the time-signal intensity curve method (p = 0.003, 0.004, 0.008). The diagnostic consistency of the three radiologists was shown by the κ-value, 0.857 (p<0.001) with the method based on the time-signal intensity curve and 0.826 (p<0.001) with the method of the kinetic model. Conclusions According to the statistic results based on the 46 lesions, the kinetic modeling curve method showed higher sensitivity, specificity, positive and negative predictive values as compared with

  13. Validation of Dynamic Contrast-Enhanced Ultrasound in Predicting Outcomes of Antiangiogenic Therapy for Solid Tumors

    PubMed Central

    Lassau, Nathalie; Bonastre, Julia; Kind, Michèle; Vilgrain, Valérie; Lacroix, Joëlle; Cuinet, Marie; Taieb, Sophie; Aziza, Richard; Sarran, Antony; Labbe-Devilliers, Catherine; Gallix, Benoit; Lucidarme, Olivier; Ptak, Yvette; Rocher, Laurence; Caquot, Louis-Michel; Chagnon, Sophie; Marion, Denis; Luciani, Alain; Feutray, Sylvaine; Uzan-Augui, Joëlle; Coiffier, Benedicte; Benastou, Baya; Koscielny, Serge

    2014-01-01

    Objectives Dynamic contrast-enhanced ultrasound (DCE-US) has been used in single-center studies to evaluate tumor response to antiangiogenic treatments: the change of area under the perfusion curve (AUC), a criterion linked to blood volume, was consistently correlated with the Response Evaluation Criteria in Solid Tumors response. The main objective here was to do a multicentric validation of the use of DCE-US to evaluate tumor response in different solid tumor types treated by several antiangiogenic agents. A secondary objective was to evaluate the costs of the procedure. Materials and Methods This prospective study included patients from 2007 to 2010 in 19 centers (8 teaching hospitals and 11 comprehensive cancer centers). All patients treated with antiangiogenic therapy were eligible. Dynamic contrast-enhanced ultrasound examinations were performed at baseline as well as on days 7, 15, 30, and 60. For each examination, a perfusion curve was recorded during 3 minutes after injection of a contrast agent. Change from baseline at each time point was estimated for each of 7 fitted criteria. The main end point was freedom from progression (FFP). Criterion/time-point combinations with the strongest correlation with FFP were analyzed further to estimate an optimal cutoff point. Results A total of 1968 DCE-US examinations in 539 patients were analyzed. The median follow-up was 1.65 years. Variations from baseline were significant at day 30 for several criteria, with AUC having the most significant association with FFP (P = 0.00002). Patients with a greater than 40% decrease in AUC at day 30 had better FFP (P = 0.005) and overall survival (P = 0.05). The mean cost of each DCE-US was 180€, which corresponds to $250 using the current exchange rate. Conclusions Dynamic contrast-enhanced ultrasound is a new functional imaging technique that provides a validated criterion, namely, the change of AUC from baseline to day 30, which is predictive of tumor progression in a large

  14. Relationship between particulate matter exposure and atherogenic profile in "Ground Zero" workers as shown by dynamic contrast enhanced MR imaging.

    PubMed

    Mani, Venkatesh; Wong, Stephanie K; Sawit, Simonette T; Calcagno, Claudia; Maceda, Cynara; Ramachandran, Sarayu; Fayad, Zahi A; Moline, Jacqueline; McLaughlin, Mary Ann

    2013-04-01

    In this pilot study, we hypothesize that dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has the potential to evaluate differences in atherosclerosis profiles in patients subjected to high (initial dust cloud) and low (after 13 September 2001) particulate matter (PM) exposure. Exposure to PM may be associated with adverse health effects leading to increased morbidity. Law enforcement workers were exposed to high levels of particulate pollution after working at "Ground Zero" and may exhibit accelerated atherosclerosis. 31 subjects (28 male) with high (n = 19) or low (n = 12) exposure to PM underwent DCE-MRI. Demographics (age, gender, family history, hypertension, diabetes, BMI, and smoking status), biomarkers (lipid profiles, hs-CRP, BP) and ankle-brachial index (ABI) measures (left and right) were obtained from all subjects. Differences between the high and low exposures were compared using independent samples t test. Using linear forward stepwise regression with information criteria model, independent predictors of increased area under curve (AUC) from DCE-MRI were determined using all variables as input. Confidence interval of 95 % was used and variables with p > 0.1 were eliminated. p < 0.05 was considered significant. Subjects with high exposure (HE) had significantly higher DCE-MRI AUC uptake (increased neovascularization) compared to subjects with lower exposure (LE). (AUC: 2.65 ± 0.63 HE vs. 1.88 ± 0.69 LE, p = 0.016). Except for right leg ABI, none of the other parameters were significantly different between the two groups. Regression model indicated that only HE to PM, CRP > 3.0 and total cholesterol were independently associated with increased neovascularization (in decreasing order of importance, all p < 0.026). HE to PM may increase plaque neovascularization, and thereby potentially indicate worsening atherogenic profile of "Ground Zero" workers. PMID:23179748

  15. Bolus arrival time and its effect on tissue characterization with dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Mehrtash, Alireza; Gupta, Sandeep N; Shanbhag, Dattesh; Miller, James V; Kapur, Tina; Fennessy, Fiona M; Kikinis, Ron; Fedorov, Andriy

    2016-01-01

    Matching the bolus arrival time (BAT) of the arterial input function (AIF) and tissue residue function (TRF) is necessary for accurate pharmacokinetic (PK) modeling of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). We investigated the sensitivity of volume transfer constant ([Formula: see text]) and extravascular extracellular volume fraction ([Formula: see text]) to BAT and compared the results of four automatic BAT measurement methods in characterization of prostate and breast cancers. Variation in delay between AIF and TRF resulted in a monotonous change trend of [Formula: see text] and [Formula: see text] values. The results of automatic BAT estimators for clinical data were all comparable except for one BAT estimation method. Our results indicate that inaccuracies in BAT measurement can lead to variability among DCE-MRI PK model parameters, diminish the quality of model fit, and produce fewer valid voxels in a region of interest. Although the selection of the BAT method did not affect the direction of change in the treatment assessment cohort, we suggest that BAT measurement methods must be used consistently in the course of longitudinal studies to control measurement variability. PMID:26989759

  16. VEGFR-1 targeted DNAzyme via transcatheter arterial delivery influences tumor vasculature assessed through dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Zhang, Liqing; Zhao, Wei; Liang, Chen; Yi, Xiaoping; Pei, Yigang; Lin, Yiting; He, Jiang; Li, Wenzheng

    2016-09-01

    DNAzymes are synthetic single-stranded DNA oligonucleotides that bind and cleave target mRNA in a sequence-specific manner. Although the therapeutic potential has been demonstrated in both preclinical and clinical settings, the efficient delivery and in vivo assessment of the DNAzyme efficacy remain the vital unsolved issue. In the present study, we examined the feasibility of using transcatheter arterial chemoembolization (TACE) strategy to deliver a DNAzyme targeting VEGFR-1 and monitoring its effect on tumor angiogenesis in vivo via dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). In a rabbit liver cancer model (VX2), we showed that the DNAzyme was efficiently delivered into the tumor by TACE. DCE-MRI revealed that the VEGFR-1-targeted DNAzyme affected the tumor vasculature through inhibiting VEGFR-1 expression in vivo, which was reflected by a reduction of Ktrans and Kep, the parameters of tumor microvascular permeability. Our findings offer an efficient strategy of delivery and assessment of the VEGFR-1 DNAzyme, and further demonstrate the feasibility of DNAzyme for cancer therapy. PMID:27431919

  17. Potential for Differentiation of Pseudoprogression From True Tumor Progression With Dynamic Susceptibility-Weighted Contrast-Enhanced Magnetic Resonance Imaging Using Ferumoxytol vs. Gadoteridol: A Pilot Study

    SciTech Connect

    Gahramanov, Seymur; Raslan, Ahmed M.; Muldoon, Leslie L.; Hamilton, Bronwyn E.; Rooney, William D.; Varallyay, Csanad G.; Njus, Jeffrey M.; Haluska, Marianne; Neuwelt, Edward A.

    2011-02-01

    Purpose: We evaluated dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging (DSC-MRI) using gadoteridol in comparison to the iron oxide nanoparticle blood pool agent, ferumoxytol, in patients with glioblastoma multiforme (GBM) who received standard radiochemotherapy (RCT). Methods and Materials: Fourteen patients with GBM received standard RCT and underwent 19 MRI sessions that included DSC-MRI acquisitions with gadoteridol on Day 1 and ferumoxytol on Day 2. Relative cerebral blood volume (rCBV) values were calculated from DSC data obtained from each contrast agent. T1-weighted acquisition post-gadoteridol administration was used to identify enhancing regions. Results: In seven MRI sessions of clinically presumptive active tumor, gadoteridol-DSC showed low rCBV in three and high rCBV in four, whereas ferumoxytol-DSC showed high rCBV in all seven sessions (p = 0.002). After RCT, seven MRI sessions showed increased gadoteridol contrast enhancement on T1-weighted scans coupled with low rCBV without significant differences between contrast agents (p = 0.9). Based on post-gadoteridol T1-weighted scans, DSC-MRI, and clinical presentation, four patterns of response to RCT were observed: regression, pseudoprogression, true progression, and mixed response. Conclusion: We conclude that DSC-MRI with a blood pool agent such as ferumoxytol may provide a better monitor of tumor rCBV than DSC-MRI with gadoteridol. Lesions demonstrating increased enhancement on T1-weighted MRI coupled with low ferumoxytol rCBV are likely exhibiting pseudoprogression, whereas high rCBV with ferumoxytol is a better marker than gadoteridol for determining active tumor. These interesting pilot observations suggest that ferumoxytol may differentiate tumor progression from pseudoprogression and warrant further investigation.

  18. Diagnostic value of dynamic contrast-enhanced magnetic resonance imaging in rectal cancer and its correlation with tumor differentiation

    PubMed Central

    SHEN, FU; LU, JIANPING; CHEN, LUGUANG; WANG, ZHEN; CHEN, YUKUN

    2016-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a novel imaging modality that can be used to reflect the microcirculation, although its value in diagnosing rectal cancer is unknown. The present study aimed to explore the clinical application of DCE-MRI in the preoperative diagnosis of rectal cancer, and its correlation with tumor differentiation. To achieve this, 40 pathologically confirmed patients with rectal cancer and 15 controls were scanned using DCE-MRI. The Tofts model was applied to obtain the perfusion parameters, including the plasma to extravascular volume transfer (Ktrans), the extravascular to plasma volume transfer (Kep), the extravascular fluid volume (Ve) and the initial area under the enhancement curve (iAUC). Receiver-operating characteristic (ROC) curves were plotted to determine the diagnostic value. The results demonstrated that the time-signal intensity curve of the rectal cancer lesion exhibited an outflow pattern. The Ktrans, Kep, Ve, and iAUC values were higher in the cancer patients compared with controls (P<0.05). The intraclass correlation coefficients of Ktrans, Kep, Ve and iAUC, as measured by two independent radiologists, were 0.991, 0.988, 0.972 and 0.984, respectively (all P<0.001), indicating a good consistency. The areas under the ROC curves for Ktrans and iAUC were both >0.9, resulting in a sensitivity and specificity of 100% and 93.3% for Ktrans, and of 92.5%, and 93.3% or 100%, for iAUC, respectively. In the 40 rectal cancer cases, there was a moderate correlation between Ktrans and iAUC, and pathological differentiation (0.3

  19. Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for contrast enhanced MRI diagnosis of solid tumors.

    PubMed

    Mi, Peng; Kokuryo, Daisuke; Cabral, Horacio; Kumagai, Michiaki; Nomoto, Takahiro; Aoki, Ichio; Terada, Yasuko; Kishimura, Akihiro; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2014-01-28

    Organic-inorganic hybrid nanoparticles with calcium phosphate (CaP) core and PEGylated shell were developed to incorporate magnetic resonance imaging (MRI) contrast agent diethylenetriaminepentaacetic acid gadolinium (III) (Gd-DTPA) for noninvasive diagnosis of solid tumors. A two-step preparation method was applied to elaborate hybrid nanoparticles with a z-average hydrodynamic diameter about 80nm, neutral surface ξ-potential and high colloidal stability in physiological environments by self-assembly of poly(ethylene glycol)-b-poly(aspartic acid) block copolymer, Gd-DTPA, and CaP in aqueous solution, followed with hydrothermal treatment. Incorporation into the hybrid nanoparticles allowed Gd-DTPA to show significant enhanced retention ratio in blood circulation, leading to high accumulation in tumor positions due to enhanced permeability and retention (EPR) effect. Moreover, Gd-DTPA revealed above 6 times increase of relaxivity in the nanoparticle system compared to free form, and eventually, selective and elevated contrast enhancements in the tumor positions were observed. These results indicate the high potential of Gd-DTPA-loaded PEGylated CaP nanoparticles as a novel contrast agent for noninvasive cancer diagnosis. PMID:24211705

  20. Clinical application of pharmacokinetic analysis as a biomarker of solitary pulmonary nodules: Dynamic contrast enhanced MR imaging

    PubMed Central

    Mamata, Hatsuho; Tokuda, Junichi; Gill, Ritu R.; Padera, Robert F.; Lenkinski, Robert E.; Sugarbaker, David J.; Butler, James P.; Hatabu, Hiroto

    2011-01-01

    The purpose of this study is to evaluate perfusion indices and pharmacokinetic parameters in solitary pulmonary nodules (SPNs). Thirty patients of 34 enrolled with SPNs (15–30 mm) were evaluated in this study. T1 and T2-weighted structural images and 2D turbo FLASH perfusion images were acquired with shallow free breathing. B-spline non-rigid image registration and optimization by χ2 test against pharmacokinetic model curve were performed on dynamic contrast enhanced (DCE) MRI. This allowed pixel-by-pixel calculation of kep, the rate constant for tracer transport to and from plasma and the extravascular extracellular space (EES). Mean transit time (MTT), time-to-peak (TTP), initial slope (IS), and maximum enhancement (Emax) were calculated from time-intensity curves fitted to a gamma variate function. After blinded data analysis, correlation with tissue histology from surgical resection or biopsy samples was performed. Histologic evaluation revealed 25 malignant and 5 benign SPNs. All benign SPNs had kep <1.0 min−1. Nineteen of 25 (76%) malignant SPNs showed kep > 1.0 min−1. Sensitivity to diagnose malignant SPNs at a cutoff of kep = 1.0 min−1 was 76%, specificity was 100%, positive predictive value (PPV) was 100%, negative predictive value (NPV) was 45%, and accuracy was 80%. Of all indices studied, kep was the most significant in differentiating malignant from benign SPNs. PMID:22231729

  1. Quantification of traumatic meningeal injury using dynamic contrast enhanced (DCE) fluid-attenuated inversion recovery (FLAIR) imaging

    NASA Astrophysics Data System (ADS)

    Castro, Marcelo A.; Williford, Joshua P.; Cota, Martin R.; MacLaren, Judy M.; Dardzinski, Bernard J.; Latour, Lawrence L.; Pham, Dzung L.; Butman, John A.

    2016-03-01

    Traumatic meningeal injury is a novel imaging marker of traumatic brain injury, which appears as enhancement of the dura on post-contrast T2-weighted FLAIR images, and is likely associated with inflammation of the meninges. Dynamic Contrast Enhanced MRI provides a better discrimination of abnormally perfused regions. A method to properly identify those regions is presented. Images of seventeen patients scanned within 96 hours of head injury with positive traumatic meningeal injury were normalized and aligned. The difference between the pre- and last post-contrast acquisitions was segmented and voxels in the higher class were spatially clustered. Spatial and morphological descriptors were used to identify the regions of enhancement: a) centroid; b) distance to the brain mask from external voxels; c) distance from internal voxels; d) size; e) shape. The method properly identified thirteen regions among all patients. The method failed in one case due to the presence of a large brain lesion that altered the mask boundaries. Most false detections were correctly rejected resulting in a sensitivity and specificity of 92.9% and 93.6%, respectively.

  2. Dynamic contrast-enhanced ultrasonography (DCE-US) and anti-angiogenic treatments.

    PubMed

    Lassau, Nathalie; Chami, Linda; Chebil, Mohamed; Benatsou, Baya; Bidault, Sophie; Girard, Elizabeth; Abboud, Ghassen; Roche, Alain

    2011-01-01

    Dynamic contrast-enhanced ultrasonography (DCE-US) is a current functional imaging technique enabling a quantitative assessment of tumor perfusion using raw linear data. DCE-US allows calculating several parameters as slope of wash-in or area under the curve representing, respectively, blood flow or blood volume. Decrease of vascularization can easily be detected in responders after 1 or 2 weeks of anti-angiogenic treatment for gastrointestinal stromal tumors (GIST), renal cell carcinoma (RCC), and hepatocellular carcinoma (HCC) and is correlated with progression-free survival and overall survival in RCC or HCC. DCE-US is supported by the French National Cancer Institute (INCa), which is currently studying the technique in metastatic breast cancer, melanoma, colon cancer, gastrointestinal stromal tumors and renal cell carcinoma, as well as in primary hepatocellular carcinoma, to establish the optimal perfusion parameters and timing for quantitative anticancer efficacy assessments. Currently 479 patients are included in 19 centers and the preliminary results on 400 patients with 1096 DCE-US demonstrated that the area under the curve (AUC) quantified at 1 month could be a robust parameter to predict response at 6 months. PMID:21276407

  3. SElf-gated Non-Contrast-Enhanced FUnctional Lung imaging (SENCEFUL) using a quasi-random fast low-angle shot (FLASH) sequence and proton MRI.

    PubMed

    Fischer, André; Weick, Stefan; Ritter, Christian O; Beer, Meinrad; Wirth, Clemens; Hebestreit, Helge; Jakob, Peter M; Hahn, Dietbert; Bley, Thorsten; Köstler, Herbert

    2014-08-01

    Obtaining functional information on the human lung is of tremendous interest in the characterization of lung defects and pathologies. However, pulmonary ventilation and perfusion maps usually require contrast agents and the application of electrocardiogram (ECG) triggering and breath holds to generate datasets free of motion artifacts. This work demonstrates the possibility of obtaining highly resolved perfusion-weighted and ventilation-weighted images of the human lung using proton MRI and the SElf-gated Non-Contrast-Enhanced FUnctional Lung imaging (SENCEFUL) technique. The SENCEFUL technique utilizes a two-dimensional fast low-angle shot (FLASH) sequence with quasi-random sampling of phase-encoding (PE) steps for data acquisition. After every readout, a short additional acquisition of the non-phase-encoded direct current (DC) signal necessary for self-gating was added. By sorting the quasi-randomly acquired data according to respiratory and cardiac phase derived from the DC signal, datasets of representative respiratory and cardiac cycles could be accurately reconstructed. By application of the Fourier transform along the temporal dimension, functional maps (perfusion and ventilation) were obtained. These maps were compared with dynamic contrast-enhanced (DCE, perfusion) as well as standard Fourier decomposition (FD, ventilation) reference datasets. All datasets were additionally scored by two experienced radiologists to quantify image quality. In addition, one initial patient examination using SENCEFUL was performed. Functional images of healthy volunteers and a patient diagnosed with hypoplasia of the left pulmonary artery and left-sided pulmonary fibrosis were successfully obtained. Perfusion-weighted images corresponded well to DCE-MRI data; ventilation-weighted images offered a significantly better depiction of the lung periphery compared with standard FD. Furthermore, the SENCEFUL technique hints at a potential clinical relevance by successfully detecting

  4. Dynamic contrast-enhanced magnetic resonance imaging in patients with pulmonary arterial hypertension.

    PubMed

    Swift, Andrew J; Telfer, Adam; Rajaram, Smitha; Condliffe, Robin; Marshall, Helen; Capener, Dave; Hurdman, Judith; Elliot, Charlie; Kiely, David G; Wild, Jim M

    2014-03-01

    Dynamic contrast-enhanced (DCE) time-resolved magnetic resonance (MR) imaging is a technique whereby the passage of an intravenous contrast bolus can be tracked through the pulmonary vascular system. The aim of this study was to investigate the prognostic significance of DCE-MR pulmonary blood transit times in patients with pulmonary arterial hypertension (PAH). Seventy-nine patients diagnosed with PAH underwent pulmonary DCE imaging at 1.5 T using a time-resolved three-dimensional spoiled gradient echo sequence. The prognostic significance of two DCE parameters, full width at half maximum (FWHM) of the first-pass clearance curve and pulmonary transit time (PTT), along with demographic and invasive catheter measurements, was evaluated by univariate and bivariate Cox proportional hazards regression and Kaplan-Meier analysis. DCE-MR transit times were most closely correlated with cardiac index (CI) and pulmonary vascular resistance index (PVRI) and were both found to be accurate for detecting reduced CI (FWHM area under the curve [AUC] at receiver operating characteristic analysis = 0.91 and PTT AUC = 0.92, respectively) and for detecting elevated PVRI (FWHM AUC = 0.88 and PTT AUC = 0.84, respectively). During the follow-up period, 25 patients died. Patients with longer measurements of FWHM (P = 0.0014) and PTT (P = 0.004) were associated with poor outcome at Kaplan-Meier analysis, and both parameters were strong predictors of adverse outcome from Cox proportional hazards analysis (P = 0.013 and 0.010, respectively). At bivariate analysis, DCE measurements predicted mortality independent of age, gender, and World Health Organization functional class; however, invasive hemodynamic indexes CI, PVRI, and DCE measurements were not independent of one another. In conclusion, DCE-MR transit times predict mortality in patients with PAH and are closely associated with clinical gold standards CI and PVRI. PMID:25006422

  5. Dynamic contrast-enhanced ultrasound for differential diagnosis of submandibular gland disease.

    PubMed

    Strieth, Sebastian; Siedek, Vanessa; Rytvina, Margarita; Gürkov, Robert; Berghaus, Alexander; Clevert, Dirk-André

    2014-01-01

    Intensity-time gradients (ITGs) of contrast-enhanced ultrasound (CEUS) can be used for non-invasive monitoring of gland-preserving treatment effects in sialolithiasis-related chronic sialadenitis as well as for imaging vascularization in tumors. The aim of this clinical trial was to evaluate feasibility to distinguish different entities of submandibular gland disease including inflammatory alterations of the submandibular gland as well as benign and malignant tumors. In this prospective clinical study, ITGs in 30 patients with sialolithiasis-related chronic sialadenitis or an unilateral submandibular mass and 18 disease-free submandibular gland controls were quantitatively analyzed by CEUS using the contrast agent SonoVue. In addition, clinical complaints according to visual analog scales (VAS) were documented. VAS data documented significantly less complaints only in benign tumors compared with the other pathologies of the submandibular gland. In parallel, CEUS-derived ITGs revealed significantly reduced ITGs only in benign tumors (n = 5) compared to the controls (n = 18). Despite of comparably reduced wash-in velocities in malignant lesions (n = 3) statistical significance was not reached. Chronic sialadenitis (n = 18) and its sclerosing variant (Küttner tumor, n = 4) revealed comparable ITGs as controls. Tumors of the submandibular gland present with reduced functional microcirculatory networks comparing with healthy gland controls and chronically inflamed submandibular glands. Thus, dynamic CEUS-derived ITGs in combination with conventional clinical measures--for example VAS--appear as a safe and promising strategy for non-invasive diagnostic workup of submandibular lesions and warrant further validation in a larger set of patients. PMID:23625388

  6. Automatic motion estimation using flow parameters for dynamic contrast-enhanced ultrasound

    NASA Astrophysics Data System (ADS)

    Barrois, Guillaume; Coron, Alain; Lucidarme, Olivier; Bridal, S. Lori

    2015-03-01

    Dynamic contrast-enhanced ultrasound (DCE-US) sequences are subject to motion which can disturb functional flow quantification. This can make estimated parameters more variable or unreliable. Methods that compensate for motion are therefore desirable. The most commonly used motion correction techniques in DCE-US register the images in the sequence with respect to a user-selected reference image. However, this image may not include all features that are representative of the whole sequence. Moreover, image-based registration neglects pertinent, functional-flow information contained in the DCE-US sequence. An operator-free method is proposed that combines the motion estimation and flow-parameter quantification (M/Q method) in a single mathematical framework. This method is based on a realistic multiplicative model of the DCE-US noise. By computing likelihood in this model, motion and flow parameters are both estimated iteratively. First, the maximization is accomplished by estimating functional and motion parameters. Then, a final registration based on a non-parametric temporal smoothing of the sequence is performed. This method is compared to a conventional (mutual information) registration method where all the images of the sequence are registered with respect to a reference image chosen by an expert. The two methods are evaluated on simulated sequences and DCE-US sequences acquired in patients (N = 15). The M/Q method demonstrates significantly (p < 0.05) lower Dice coefficients and Hausdorff distance than the conventional method on the simulated data sets. On the in vivo sequences analysed, the M/Q methods outperformed the conventional method in terms of mean Dice and Hausdorff distance on 80% of the sequences, and in terms of standard deviation of Dice and Hausdorff distance on 87% of the sequences.

  7. Preoperative diagnosis and staging of rectal cancer using diffusion-weighted and water imaging combined with dynamic contrast-enhanced scanning

    PubMed Central

    ZHAO, QILI; LIU, LIJIAN; WANG, QIUYAN; LIANG, ZEXIA; SHI, GAOFENG

    2014-01-01

    The aim of the present study was to evaluate the value of diffusion-weighted imaging (DWI) and water imaging combined with dynamic contrast-enhanced scanning for the preoperative diagnosis and staging of rectal cancer. In total, 72 patients with pathologically confirmed rectal cancer were selected for examination using magnetic resonance imaging (MRI) with phased-array coils, DWI, water imaging and dynamic contrast-enhanced scanning. The patients were divided into two groups, experimental (simple enhanced scanning plus diffusion combined with water imaging) and control (simple enhanced scanning), for the pathological observations. The sensitivity, specificity and accuracy for the T staging of the carcinomas using scan enhancement with DWI and the evaluation of cancer using water imaging were 98.5% (65/66), 66.7% (4/6) and 95.8% (69/72), respectively, and the accuracy for N staging was 89%. Whereas, the sensitivity, specificity and accuracy for the T staging of the carcinomas using simple scan enhancement were 85.7% (42/49), 78.3% (18/23) and 83.3% (60/72), respectively, and the accuracy for N staging was 61%. Therefore, the combination of multiple MRI techniques may be of high value for the early diagnosis and exact staging of rectal cancer. PMID:25360178

  8. Radiation protection issues in dynamic contrast-enhanced (perfusion) computed tomography.

    PubMed

    Brix, Gunnar; Lechel, Ursula; Nekolla, Elke; Griebel, Jürgen; Becker, Christoph

    2015-12-01

    Dynamic contrast-enhanced (DCE) CT studies are increasingly used in both medical care and clinical trials to improve diagnosis and therapy management of the most common life-threatening diseases: stroke, coronary artery disease and cancer. It is thus the aim of this review to briefly summarize the current knowledge on deterministic and stochastic radiation effects relevant for patient protection, to present the essential concepts for determining radiation doses and risks associated with DCE-CT studies as well as representative results, and to discuss relevant aspects to be considered in the process of justification and optimization of these studies. For three default DCE-CT protocols implemented at a latest-generation CT system for cerebral, myocardial and cancer perfusion imaging, absorbed doses were measured by thermoluminescent dosimeters at an anthropomorphic body phantom and compared with thresholds for harmful (deterministic) tissue reactions. To characterize stochastic radiation risks of patients from these studies, life-time attributable cancer risks (LAR) were estimated using sex-, age-, and organ-specific risk models based on the hypothesis of a linear non-threshold dose-response relationship. For the brain, heart and pelvic cancer studies considered, local absorbed doses in the imaging field were about 100-190 mGy (total CTDI(vol), 200 mGy), 15-30 mGy (16 mGy) and 80-270 mGy (140 mGy), respectively. According to a recent publication of the International Commission on Radiological Protection (ICRP Publication 118, 2012), harmful tissue reactions of the cerebro- and cardiovascular systems as well as of the lenses of the eye become increasingly important at radiation doses of more than 0.5 Gy. The LARs estimated for the investigated cerebral and myocardial DCE-CT scenarios are less than 0.07% for males and 0.1% for females at an age of exposure of 40 years. For the considered tumor location and protocol, the corresponding LARs are more than 6 times as high

  9. Application of contrast-enhanced T1-weighted MRI-based 3D reconstruction of the dural tail sign in meningioma resection.

    PubMed

    You, Binsheng; Cheng, Yanhao; Zhang, Jian; Song, Qimin; Dai, Chao; Heng, Xueyuan; Fei, Chang

    2016-07-01

    OBJECT The goal of this study was to investigate the significance of contrast-enhanced T1-weighted (T1W) MRI-based 3D reconstruction of dural tail sign (DTS) in meningioma resection. METHODS Between May 2013 and August 2014, 18 cases of convexity and parasagittal meningiomas showing DTS on contrast-enhanced T1W MRI were selected. Contrast-enhanced T1W MRI-based 3D reconstruction of DTS was conducted before surgical treatment. The vertical and anteroposterior diameters of DTS on the contrast-enhanced T1W MR images and 3D reconstruction images were measured and compared. Surgical incisions were designed by referring to the 3D reconstruction and MR images, and then the efficiency of the 2 methods was evaluated with assistance of neuronavigation. RESULTS Three-dimensional reconstruction of DTS can reveal its overall picture. In most cases, the DTS around the tumor is uneven, whereas the DTS around the dural vessels presents longer extensions. There was no significant difference (p > 0.05) between the vertical and anteroposterior diameters of DTS measured on the contrast-enhanced T1W MR and 3D reconstruction images. The 3D images of DTS were more intuitive, and the overall picture of DTS could be revealed in 1 image, which made it easier to design the incision than by using the MR images. Meanwhile, assessment showed that the incisions designed using 3D images were more accurate than those designed using MR images (ridit analysis by SAS, F = 7.95; p = 0.008). Pathological examination showed that 34 dural specimens (except 2 specimens from 1 tumor) displayed tumor invasion. The distance of tumor cell invasion was 1.0-21.6 mm (5.4 ± 4.41 mm [mean ± SD]). Tumor cell invasion was not observed at the dural resection margin in all 36 specimens. CONCLUSIONS Contrast-enhanced T1W MRI-based 3D reconstruction can intuitively and accurately reveal the size and shape of DTS, and thus provides guidance for designing meningioma incisions. PMID:26654184

  10. Regorafenib Effects on Human Colon Carcinoma Xenografts Monitored by Dynamic Contrast-Enhanced Computed Tomography with Immunohistochemical Validation

    PubMed Central

    Cyran, Clemens C.; Kazmierczak, Philipp M.; Hirner, Heidrun; Moser, Matthias; Ingrisch, Michael; Havla, Lukas; Michels, Alexandra; Eschbach, Ralf; Schwarz, Bettina; Reiser, Maximilian F.; Bruns, Christiane J.; Nikolaou, Konstantin

    2013-01-01

    Objective To investigate dynamic contrast-enhanced computed tomography for monitoring the effects of regorafenib on experimental colon carcinomas in rats by quantitative assessments of tumor microcirculation parameters with immunohistochemical validation. Materials and Methods Colon carcinoma xenografts (HT-29) implanted subcutaneously in female athymic rats (n = 15) were imaged at baseline and after a one-week treatment with regorafenib by dynamic contrast-enhanced computed tomography (128-slice dual-source computed tomography). The therapy group (n = 7) received regorafenib daily (10 mg/kg bodyweight). Quantitative parameters of tumor microcirculation (plasma flow, mL/100 mL/min), endothelial permeability (PS, mL/100 mL/min), and tumor vascularity (plasma volume, %) were calculated using a 2-compartment uptake model. Dynamic contrast-enhanced computed tomography parameters were validated with immunohistochemical assessments of tumor microvascular density (CD-31), tumor cell apoptosis (TUNEL), and proliferation (Ki-67). Results Regorafenib suppressed tumor vascularity (15.7±5.3 to 5.5±3.5%; p<0.05) and tumor perfusion (12.8±2.3 to 8.8±2.9 mL/100 mL/min; p = 0.063). Significantly lower microvascular density was observed in the therapy group (CD-31; 48±10 vs. 113±25, p<0.05). In regorafenib-treated tumors, significantly more apoptotic cells (TUNEL; 11844±2927 vs. 5097±3463, p<0.05) were observed. Dynamic contrast-enhanced computed tomography tumor perfusion and tumor vascularity correlated significantly (p<0.05) with microvascular density (CD-31; r = 0.84 and 0.66) and inversely with apoptosis (TUNEL; r = −0.66 and −0.71). Conclusions Regorafenib significantly suppressed tumor vascularity (plasma volume) quantified by dynamic contrast-enhanced computed tomography in experimental colon carcinomas in rats with good-to-moderate correlations to an immunohistochemical gold standard. Tumor response biomarkers assessed by dynamic contrast-enhanced

  11. Characterization of bone perfusion by dynamic contrast-enhanced magnetic resonance imaging and positron emission tomography in the Dunkin-Hartley guinea pig model of advanced osteoarthritis.

    PubMed

    Dyke, Jonathan P; Synan, Michael; Ezell, Paula; Ballon, Douglas; Racine, Jennifer; Aaron, Roy K

    2015-03-01

    This study characterizes changes in subchondral bone circulation in OA and examines relationships to bone structure and cartilage degeneration in Dunkin-Hartley guinea pigs. We have used dynamic contrast-enhanced MRI (DCE-MRI) and PET, with pharmacokinetic modeling, to characterize subchondral bone perfusion. Assessments are made of perfusion kinetics and vascular permeability by MRI, and blood volume and flow, and radionuclide incorporation into bone, by PET. These parameters are compared to cartilage lesion severity and bone histomorphometry. Assessments of intraosseous thrombi are made morphologically. Prolonged signal enhancement during the clearance phase of MRI correlated with OA severity and suggested venous stasis. Vascular permeability was not increased indicating that transvascular migration of contrast agent was not responsible for signal enhancement. Intraosseous thrombi were not observed. Decreased perfusion associated with severe OA was confirmed by PET and was associated with reduced radionuclide incorporation and osteoporosis. MRI and PET can be used to characterize kinetic parameters of circulation in OA and correlate them with subchondral bone metabolism of interest to the pathophysiology of OA. The significance of these observations may lie in alterations induced in the expression of cytokines by OA osteoblasts that are related to bone remodeling and cartilage breakdown. PMID:25410523

  12. Characterization of Bone Perfusion by Dynamic Contrast-Enhanced Magnetic Resonance Imaging and Positron Emission Tomography in the Dunkin-Hartley Guinea Pig Model of Advanced Osteoarthritis

    PubMed Central

    Dyke, Jonathan P.; Synan, Michael; Ezell, Paula; Ballon, Douglas; Racine, Jennifer; Aaron, Roy K.

    2014-01-01

    Purpose This study characterizes changes in subchondral bone circulation in OA and examines relationships to bone structure and cartilage degeneration in Dunkin-Hartley guinea pigs. Methods We have used dynamic contrast-enhanced MRI (DCE-MRI) and PET, with pharmacokinetic modeling, to characterize subchondral bone perfusion. Assessments are made of perfusion kinetics and vascular permeability by MRI, and blood volume and flow, and radionuclide incorporation into bone, by PET. These parameters are compared to cartilage lesion severity and bone histomorphometry. Assessments of intraosseous thrombi are made morphologically. Results Prolonged signal enhancement during the clearance phase of MRI correlated with OA severity and suggested venous stasis. Vascular permeability was not increased indicating that transvascular migration of contrast agent was not responsible for signal enhancement. Intraosseous thrombi were not observed. Decreased perfusion associated with severe OA was confirmed by PET and was associated with reduced radionuclide incorporation and osteoporosis. Discussion MRI and PET can be used to characterize kinetic parameters of circulation in OA and correlate them with subchondral bone metabolism of interest to the pathophysiology of OA. The significance of these observations may lie in alterations induced in the expression of cytokines by OA osteoblasts that are related to bone remodeling and cartilage breakdown. PMID:25410523

  13. Dynamic Contrast-Enhanced Magnetic Resonance Imaging as a Predictor of Outcome in Head-and-Neck Squamous Cell Carcinoma Patients With Nodal Metastases

    SciTech Connect

    Shukla-Dave, Amita; Lee, Nancy Y.; Jansen, Jacobus F.A.; Thaler, Howard T.; Stambuk, Hilda E.; Fury, Matthew G.; Patel, Snehal G.; Moreira, Andre L.; Sherman, Eric; Karimi, Sasan; Wang, Ya; Kraus, Dennis; Shah, Jatin P.; Pfister, David G.; and others

    2012-04-01

    Purpose: Dynamic contrast-enhanced MRI (DCE-MRI) can provide information regarding tumor perfusion and permeability and has shown prognostic value in certain tumors types. The goal of this study was to assess the prognostic value of pretreatment DCE-MRI in head and neck squamous cell carcinoma (HNSCC) patients with nodal disease undergoing chemoradiation therapy or surgery. Methods and Materials: Seventy-four patients with histologically proven squamous cell carcinoma and neck nodal metastases were eligible for the study. Pretreatment DCE-MRI was performed on a 1.5T MRI. Clinical follow-up was a minimum of 12 months. DCE-MRI data were analyzed using the Tofts model. DCE-MRI parameters were related to treatment outcome (progression-free survival [PFS] and overall survival [OS]). Patients were grouped as no evidence of disease (NED), alive with disease (AWD), dead with disease (DOD), or dead of other causes (DOC). Prognostic significance was assessed using the log-rank test for single variables and Cox proportional hazards regression for combinations of variables. Results: At last clinical follow-up, for Stage III, all 12 patients were NED. For Stage IV, 43 patients were NED, 4 were AWD, 11 were DOD, and 4 were DOC. K{sup trans} is volume transfer constant. In a stepwise Cox regression, skewness of K{sup trans} (volume transfer constant) was the strongest predictor for Stage IV patients (PFS and OS: p <0.001). Conclusion: Our study shows that skewness of K{sup trans} was the strongest predictor of PFS and OS in Stage IV HNSCC patients with nodal disease. This study suggests an important role for pretreatment DCE-MRI parameter K{sup trans} as a predictor of outcome in these patients.

  14. Noninvasive Monitoring of Microvascular Changes With Partial Irradiation Using Dynamic Contrast-Enhanced and Blood Oxygen Level-Dependent Magnetic Resonance Imaging

    SciTech Connect

    Lin, Yu-Chun; Wang, Jiun-Jie; Hong, Ji-Hong; Lin, Yi-Ping; Lee, Chung-Chi; Wai, Yau-Yau; Ng, Shu-Hang; Wu, Yi-Ming; Wang, Chun-Chieh

    2013-04-01

    Purpose: The microvasculature of a tumor plays an important role in its response to radiation therapy. Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) and blood oxygen level-dependent (BOLD) MRI are both sensitive to vascular characteristics. The present study proposed a partial irradiation approach to a xenograft tumor to investigate the intratumoral response to radiation therapy using DCE and BOLD MRI. Methods and Materials: TRAMP-C1 tumors were grown in C57BL/6J mice. Partial irradiation was performed on the distal half of the tumor with a single dose of 15 Gy. DCE MRI was performed to derive the endothelium transfer constant, K{sup trans}, using pharmacokinetic analysis. BOLD MRI was performed using quantitative R2* measurements with carbogen breathing. The histology of the tumor was analyzed using hematoxylin and eosin staining and CD31 staining to detect endothelial cells. The differences between the irradiated and nonirradiated regions of the tumor were assessed using K{sup trans} values, ΔR2* values in response to carbogen and microvascular density (MVD) measurements. Results: A significantly increased K{sup trans} and reduced BOLD response to carbogen were found in the irradiated region of the tumor compared with the nonirradiated region (P<.05). Histologic analysis showed a significant aggregation of giant cells and a reduced MVD in the irradiated region of the tumor. The radiation-induced difference in the BOLD response was associated with differences in MVD and K{sup trans}. Conclusions: We demonstrated that DCE MRI and carbogen-challenge BOLD MRI can detect differential responses within a tumor that may potentially serve as noninvasive imaging biomarkers to detect microvascular changes in response to radiation therapy.

  15. Dynamic contrast-enhanced magnetic resonance imaging: definitive imaging of placental function?

    PubMed

    Chalouhi, G E; Deloison, B; Siauve, N; Aimot, S; Balvay, D; Cuenod, C A; Ville, Y; Clément, O; Salomon, L J

    2011-02-01

    The placenta constitutes a complex circulatory interface between the mother and fetus, but the relationship between the maternal and fetal circulation is still very difficult to study in vivo. There is growing evidence that magnetic resonance imaging (MRI) is useful and safe during pregnancy, and MRI is increasingly used for fetal and placental anatomical imaging. MRI functional imaging is now a modern obstetric tool and has the potential to provide new insights into the physiology of the human placenta. Placental perfusion has been studied during the first pass of an MR contrast agent, by arterial spin labeling, diffusion imaging, T1 and T2 relaxation time measurement using echo-planar imaging, and by a combination of magnetization transfer with established stereological methods. The BOLD (blood oxygen level-dependent) effect offers new perspectives for functional MRI evaluation of the placenta. PMID:20851065

  16. Dynamic Contrast-Enhanced Magnetic Resonance Imaging as a Prognostic Factor in Predicting Event-free and Overall Survival for Pediatric Patients with Osteosarcoma

    PubMed Central

    Guo, Junyu; Reddick, Wilburn E.; Glass, John O.; Ji, Qing; Billups, Catherine A.; Wu, Jianrong; Hoffer, Fredric A.; Kaste, Sue C.; Jenkins, Jesse J.; Flores, Ximena C. Ortega; Quintana, Juan; Villarroel, Milena; Daw, Najat C.

    2011-01-01

    BACKGROUND This study was conducted to prospectively evaluate dynamic contrast-enhanced MRI (DCE-MRI) as an early imaging indicator of tumor histologic response to preoperative chemotherapy and as a possible prognostic factor for event-free survival (EFS) and overall survival in pediatric patients with newly diagnosed nonmetastatic osteosarcoma (OS) treated on a single multi-institutional phase II trial. METHODS Three serial DCE-MRI examinations at week 0 (prior to treatment), week 9, and week 12 (tumor resection) were performed in 69 patients with nonmetastatic osteosarcoma to monitor the response to preoperative chemotherapy. DCE-MRI kinetic parameters (Ktrans, kep, ve, and vp) and corresponding differences (ΔKtrans, Δkep, Δve, and Δvp) of averaged kinetic parameters between outer and inner half tumor were calculated to assess their associations with tumor histologic response, EFS, and overall survival. RESULTS Ktrans, ve, vp, and kep significantly decreased from week 0 to week 9 and week 12. Ktrans, vp, and Δkep at week 9 were significantly different between responders and nonresponders, P=0.046, 0.021, and 0.008, respectively. These three parameters were indicative of histologic response. Δve at week 0 was a significant prognostic factor for both EFS (P=0.02) and overall survival (P=0.03). CONCLUSIONS DCE-MRI was a prognostic factor for EFS and overall survival before treatment on this trial and indicative of histologic response to neoadjuvant therapy. Further studies are needed to verify these findings with other treatment regimens and establish the potential role of DCE-MRI in the development of risk-adapted therapy for osteosarcoma. PMID:22180392

  17. Modifications in Dynamic Contrast-Enhanced Magnetic Resonance Imaging Parameters After α-Particle-Emitting {sup 227}Th-trastuzumab Therapy of HER2-Expressing Ovarian Cancer Xenografts

    SciTech Connect

    Heyerdahl, Helen; Røe, Kathrine; Brevik, Ellen Mengshoel; Dahle, Jostein

    2013-09-01

    Purpose: The purpose of this study was to investigate the effect of α-particle-emitting {sup 227}Th-trastuzumab radioimmunotherapy on tumor vasculature to increase the knowledge about the mechanisms of action of {sup 227}Th-trastuzumab. Methods and Materials: Human HER2-expressing SKOV-3 ovarian cancer xenografts were grown bilaterally in athymic nude mice. Mice with tumor volumes 253 ± 36 mm{sup 3} (mean ± SEM) were treated with a single injection of either {sup 227}Th-trastuzumab at a dose of 1000 kBq/kg body weight (treated group, n=14 tumors) or 0.9% NaCl (control group, n=10 tumors). Dynamic T1-weighted contrast-enhanced magnetic resonance imaging (DCEMRI) was used to study the effect of {sup 227}Th-trastuzumab on tumor vasculature. DCEMRI was performed before treatment and 1, 2, and 3 weeks after therapy. Tumor contrast-enhancement curves were extracted voxel by voxel and fitted to the Brix pharmacokinetic model. Pharmacokinetic parameters for the tumors that underwent radioimmunotherapy were compared with the corresponding parameters of control tumors. Results: Significant increases of k{sub ep}, the rate constant of diffusion from the extravascular extracellular space to the plasma (P<.05), and k{sub el,} the rate of clearance of contrast agent from the plasma (P<.01), were seen in the radioimmunotherapy group 2 and 3 weeks after injection, compared with the control group. The product of k{sub ep} and the amplitude parameter A, associated with increased vessel permeability and perfusion, was also significantly increased in the radioimmunotherapy group 2 and 3 weeks after injection (P<.01). Conclusions: Pharmacokinetic modeling of MRI contrast-enhancement curves evidenced significant alterations in parameters associated with increased tumor vessel permeability and tumor perfusion after {sup 227}Th-trastuzumab treatment of HER2-expressing ovarian cancer xenografts.

  18. Reconstruction of cerebral hemodynamics with dynamic contrast-enhanced time-resolved near-infrared measurements before and during ischemia

    NASA Astrophysics Data System (ADS)

    Elliott, Jonathan T.; Diop, Mamadou; Morrison, Laura B.; Lee, Ting-Yim; St. Lawrence, Keith

    2013-03-01

    We present a dynamic contrast-enhanced near-infrared (DCE-NIR) technique that is capable of non-invasive quantification of cerebral hemodynamics in adults. The challenge of removing extracerebral contamination is overcome through the use of multi-distance time-resolved DCE-NIR combined with the kinetic deconvolution optical reconstruction (KDOR) analytical method. As proof-of-principle, cerebral blood flow, cerebral blood volume and mean transit time recovered with DCE-NIR are compared with CT perfusion values in an adult pig during normocapnia, hypocapnia, and ischemia. Measurements of blood flow acquired with DCE-NIR were compared against concomitant measurements using CT Perfusion.

  19. Early Therapy Evaluation of Combined Cetuximab and Irinotecan in Orthotopic Pancreatic Tumor Xenografts by Dynamic Contrast-Enhanced Magnetic Resonance Imaging

    PubMed Central

    Kim, Hyunki; Folks, Karri D.; Guo, Lingling; Sellers, Jeffery C.; Fineberg, Naomi S.; Stockard, Cecil R.; Grizzle, William E.; Buchsbaum, Donald J.; Morgan, Desiree E.; George, James F.; Zinn, Kurt R.

    2014-01-01

    Early pancreatic cancer response following cetuximab and/or irinotecan therapies was measured by serial dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) before and during therapy. Groups 1 to 4 (n = 6/group) of SCID mice bearing orthotopic pancreatic adenocarcinoma xenografts expressing luciferase were treated with phosphate-buffered saline, cetuximab, irinotecan, or cetuximab combined with irinotecan, respectively, twice weekly for 3 weeks. DCE-MRI was performed on days 0, 1, 2, and 3 after therapy initiation, whereas anatomic magnetic resonance imaging was performed on days 0, 1, 2, 3, 6, and 13. Bioluminescence imaging was performed on days 0 and 21. At day 21, all tumors were collected for further histologic analyses (Ki-67 and CD31 staining), whereas tumor dimensions were measured by calipers. The Ktrans values in the 0.5 mm–thick peripheral tumor region were calculated, and the changes in Ktrans during the 3 days posttherapy were compared to tumor volume changes, bioluminescent signal changes, and histologic findings. The Ktrans changes in the peripheral tumor region after 3 days of therapy were linearly correlated with 21-day decreases in tumor volume (p < .001), bioluminescent signal (p = .050), microvessel densities (p = .002), and proliferating cell densities (p = .001). This study supports the clinical use of DCE-MRI for pancreatic cancer patients for early assessment of an anti–epidermal growth factor receptor therapy combined with chemotherapy. PMID:21496446

  20. Quantifying Tumor Vascular Heterogeneity with Dynamic Contrast-Enhanced Magnetic Resonance Imaging: A Review

    PubMed Central

    Yang, Xiangyu; Knopp, Michael V.

    2011-01-01

    Tumor microvasculature possesses a high degree of heterogeneity in its structure and function. These features have been demonstrated to be important for disease diagnosis, response assessment, and treatment planning. The exploratory efforts of quantifying tumor vascular heterogeneity with DCE-MRI have led to promising results in a number of studies. However, the methodological implementation in those studies has been highly variable, leading to multiple challenges in data quality and comparability. This paper reviews several heterogeneity quantification methods, with an emphasis on their applications on DCE-MRI pharmacokinetic parametric maps. Important methodological and technological issues in experimental design, data acquisition, and analysis are also discussed, with the current opportunities and efforts for standardization highlighted. PMID:21541193

  1. Facile non-hydrothermal synthesis of oligosaccharides coated sub-5 nm magnetic iron oxide nanoparticles with dual MRI contrast enhancement effect

    PubMed Central

    Huang, Jing; Wang, Liya; Zhong, Xiaodong; Li, Yuancheng; Yang, Lily

    2014-01-01

    Ultrafine sub-5 nm magnetic iron oxide nanoparticles coated with oligosaccharides (SIO) with dual T1-T2 weighted contrast enhancing effect and fast clearance has been developed as magnetic resonance imaging (MRI) contrast agent. Excellent water solubility, biocompatibility and high stability of such sub-5 nm SIO nanoparticles were achieved by using the “in-situ polymerization” coating method, which enables glucose forming oligosaccharides directly on the surface of hydrophobic iron oxide nanocrystals. Reported ultrafine SIO nanoparticles exhibit a longitudinal relaxivity (r1) of 4.1 mM−1s−1 and a r1/r2 ratio of 0.25 at 3 T (clinical field strength), rendering improved T1 or “brighter” contrast enhancement in T1-weighted MRI in addition to typical T2 or “darkening” contrast of conventional iron oxide nanoparticles. Such dual contrast effect can be demonstrated in liver imaging with T2 “darkening” contrast in the liver parenchyma but T1 “bright” contrast in the hepatic vasculature. More importantly, this new class of ultrafine sub-5 nm iron oxide nanoparticles showed much faster body clearance than those with larger sizes, promising better safety for clinical applications. PMID:25181490

  2. Protein composition alters in vivo resorption of PEG-based hydrogels as monitored by contrast-enhanced MRI.

    PubMed

    Berdichevski, Alexandra; Shachaf, Yonatan; Wechsler, Roni; Seliktar, Dror

    2015-02-01

    We report on the use of magnetic resonance imaging (MRI)-based non-invasive monitoring to document the role of protein adjuvants in hydrogel implant integration in vivo. Polyethylene glycol (PEG) hydrogels were formed with different protein constituents, including albumin, fibrinogen and gelatin. The hydrogels were designed to exhibit similar material properties, including modulus, swelling and hydrolytic degradation kinetics. The in vivo resorption properties of these PEG-based hydrogels, which contained a tethered gadolinium contrast agent, were characterized by MRI and histology, and compared to their in vitro characteristics. MRI data revealed that PEG-Albumin implants remained completely intact throughout the experiments, PEG-Fibrinogen implants lost about 10% of their volume and PEG-Gelatin implants underwent prominent swelling and returned to their initial volume by day 25. Fully synthetic PEG-diacrylate (PEG-DA) control hydrogels lost about half of their volume after 25 days in vivo. Transverse MRI cross-sections of the implants revealed distinct mechanisms of the hydrogel's biodegradation: PEG-Fibrinogen and PEG-Albumin underwent surface erosion, whereas PEG-Gelatin and PEG-DA hydrogels mainly underwent bulk degradation. Histological findings substantiated the MRI data and demonstrated significant cellular response towards PEG-DA and PEG-Gelatin scaffolds with relatively low reaction towards PEG-Fibrinogen and PEG-Albumin hydrogels. These findings demonstrate that PEG-protein hydrogels can degrade via a different mechanism than PEG hydrogels, and that this difference can be linked to a reduced foreign body response. PMID:25542788

  3. Assessment of Semiquantitative Parameters of Dynamic Contrast-Enhanced Perfusion MR Imaging in Differentiation of Subtypes of Renal Cell Carcinoma

    PubMed Central

    Abdel Razek, Ahmed Abdel Khalek; Mousa, Amani; Farouk, Ahmed; Nabil, Nancy

    2016-01-01

    Summary Background To assess semiquantitative parameters of dynamic contrast-enhanced perfusion MR imaging (DCE) in differentiation of subtypes of renal cell carcinoma (RCC). Material/Methods Prospective study conducted upon 34 patients (27 M, 7 F, aged 25–72 ys: mean 45 ys) with RCC. Abdominal dynamic contrast-enhanced gradient-recalled echo MR sequence after administration of gadopentetate dimeglumine was obtained. The time signal intensity curve (TIC) of the lesion was created with calculation of enhancement ratio (ER), and washout ratio (WR). Results The subtypes of RCC were as follows: clear cell carcinomas (n=23), papillary carcinomas (n=6), and chromophobe carcinomas (n=5). The mean ER of clear cell, papillary and chromophobe RCC were 188±49.7, 35±8.9, and 120±41.6 respectively. The mean WR of clear cell, papillary and chromophobe RCCs were 28.6±6.8, 47.6±5.7 and 42.7±10, respectively. There was a significant difference in ER (P=0.001) and WR (P=0.001) between clear cell RCC and other subtypes of RCC. The threshold values of ER and WR used for differentiating clear cell RCC from other subtypes of RCC were 142 and 38 with areas under the curve of 0.937 and 0.895, respectively. Conclusions We concluded that ER and WR are semiquantitative perfusion parameters useful in differentiation of clear cell RCC from chromophobe and papillary RCCs. PMID:27026793

  4. Computational fluid dynamics modelling of perfusion measurements in dynamic contrast-enhanced computed tomography: development, validation and clinical applications

    NASA Astrophysics Data System (ADS)

    Peladeau-Pigeon, M.; Coolens, C.

    2013-09-01

    Dynamic contrast-enhanced computed tomography (DCE-CT) is an imaging tool that aids in evaluating functional characteristics of tissue at different stages of disease management: diagnostic, radiation treatment planning, treatment effectiveness, and monitoring. Clinical validation of DCE-derived perfusion parameters remains an outstanding problem to address prior to perfusion imaging becoming a widespread standard as a non-invasive quantitative measurement tool. One approach to this validation process has been the development of quality assurance phantoms in order to facilitate controlled perfusion ex vivo. However, most of these systems fail to establish and accurately replicate physiologically relevant capillary permeability and exchange performance. The current work presents the first step in the development of a prospective suite of physics-based perfusion simulations based on coupled fluid flow and particle transport phenomena with the goal of enhancing the understanding of clinical contrast agent kinetics. Existing knowledge about a controllable, two-compartmental fluid exchange phantom was used to validate the computational fluid dynamics (CFD) simulation model presented herein. The sensitivity of CFD-derived contrast uptake curves to contrast injection parameters, including injection duration and flow rate, were quantified and found to be within 10% accuracy. The CFD model was employed to evaluate two commonly used clinical kinetic algorithms used to derive perfusion parameters: Fick's principle and the modified Tofts model. Neither kinetic model was able to capture the true transport phenomena it aimed to represent but if the overall contrast concentration after injection remained identical, then successive DCE-CT evaluations could be compared and could indeed reflect differences in regional tissue flow. This study sets the groundwork for future explorations in phantom development and pharmaco-kinetic modelling, as well as the development of novel contrast

  5. Dynamic contrast-enhanced and fat suppressed magnetic resonance imaging in suspected recurrent carcinoma of the breast: preliminary experience.

    PubMed

    Kerslake, R W; Fox, J N; Carleton, P J; Imrie, M J; Cook, A M; Bowsley, S J; Horsman, A

    1994-12-01

    20 women with suspected recurrent breast cancer who had undergone previous breast-conserving operations were investigated using dynamic contrast-enhanced gradient echo (GRE) and fat suppressed spin echo (SE) magnetic resonance (MR) imaging. Histologically confirmed recurrent tumour was readily recognized on dynamic GRE scans by virtue of rapid, early and avid enhancement. Benign scars enhanced more slowly and reached lower magnitudes of enhancement. Fat suppressed SE images, which were typically acquired 10 min after contrast administration, were sensitive for the detection of tumour recurrence but lacked specificity. Early scanning after contrast administration offers the best prospects for distinguishing tumour recurrence from benign scarring. The criteria used to distinguish these two entities are highly dependent on the scan technique and the time at which images are obtained post-contrast. PMID:7874413

  6. Free-Breathing Contrast-Enhanced Multiphase MRI of the Liver Using a Combination of Compressed Sensing, Parallel Imaging, and Golden-Angle Radial Sampling

    PubMed Central

    Chandarana, Hersh; Feng, Li; Block, Tobias K.; Rosenkrantz, Andrew B.; Lim, Ruth P.; Babb, James S.; Sodickson, Daniel K.; Otazo, Ricardo

    2013-01-01

    Objective The objectives of this study were to develop a new method for free-breathing contrast-enhanced multiphase liver magnetic resonance imaging (MRI) using a combination of compressed sensing, parallel imaging, and radial k-space sampling and to demonstrate the feasibility of this method by performing image quality comparison with breath-hold cartesian T1-weighted (conventional) postcontrast acquisitions in healthy participants. Materials and Methods This Health Insurance Portability and Accountability Act–compliant prospective study received approval from the institutional review board. Eight participants underwent 3 separate contrast-enhanced fat-saturated T1-weighted gradient-echo MRI examinations with matching imaging parameters: conventional breath-hold examination with cartesian k-space sampling volumetric interpolate breath hold examination (BH-VIBE) and free-breathing acquisitions with interleaved angle-bisection and continuous golden-angle radial sampling schemes. Interleaved angle-bisection and golden-angle data from each 100 consecutive spokes were reconstructed using a combination of compressed sensing and parallel imaging (interleaved-angle radial sparse parallel [IARASP] and golden-angle radial sparse parallel [GRASP]) to generate multiple postcontrast phases. Arterial- and venous-phase BH-VIBE, IARASP, and GRASP reconstructions were evaluated by 2 radiologists in a blinded fashion. The readers independently assessed quality of enhancement (QE), overall image quality (IQ), and other parameters of image quality on a 5-point scale, with the highest score indicating the most desirable examination. Mixed model analysis of variance was used to compare each measure of image quality. Results Images of BH-VIBE and GRASP had significantly higher QE and IQ values compared with IARASP for both phases (P < 0.05). The differences in QE between BH-VIBE and GRASP for the arterial and venous phases were not significant (P > 0.05). Although GRASP had lower IQ

  7. Noninvasive Assessment of Tumor Microenvironment Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging and {sup 18}F-Fluoromisonidazole Positron Emission Tomography Imaging in Neck Nodal Metastases

    SciTech Connect

    Jansen, Jacobus; Schoeder, Heiko; Lee, Nancy Y.; Wang Ya

    2010-08-01

    Purpose: To assess noninvasively the tumor microenvironment of neck nodal metastases in patients with head-and-neck cancer by investigating the relationship between tumor perfusion measured using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and hypoxia measured by {sup 18}F-fluoromisonidazole ({sup 18}F-FMISO) positron emission tomography (PET). Methods and Materials: Thirteen newly diagnosed head-and-neck cancer patients with metastatic neck nodes underwent DCE-MRI and {sup 18}F-FMISO PET imaging before chemotherapy and radiotherapy. The matched regions of interests from both modalities were analyzed. To examine the correlations between DCE-MRI parameters and standard uptake value (SUV) measurements from {sup 18}F-FMISO PET, the nonparametric Spearman correlation coefficient was calculated. Furthermore, DCE-MRI parameters were compared between nodes with {sup 18}F-FMISO uptake and nodes with no {sup 18}F-FMISO uptake using Mann-Whitney U tests. Results: For the 13 patients, a total of 18 nodes were analyzed. The nodal size strongly correlated with the {sup 18}F-FMISO SUV ({rho} = 0.74, p < 0.001). There was a strong negative correlation between the median k{sub ep} (redistribution rate constant) value ({rho} = -0.58, p = 0.042) and the {sup 18}F-FMISO SUV. Hypoxic nodes (moderate to severe {sup 18}F-FMISO uptake) had significantly lower median K{sup trans} (volume transfer constant) (p = 0.049) and median k{sub ep} (p = 0.027) values than did nonhypoxic nodes (no {sup 18}F-FMISO uptake). Conclusion: This initial evaluation of the preliminary results support the hypothesis that in metastatic neck lymph nodes, hypoxic nodes are poorly perfused (i.e., have significantly lower K{sup trans} and k{sub ep} values) compared with nonhypoxic nodes.

  8. Relationship between particulate matter exposure and atherogenic profile in “Ground Zero” workers as shown by dynamic contrast enhanced MR imaging

    PubMed Central

    Wong, Stephanie K.; Sawit, Simonette T.; Calcagno, Claudia; Maceda, Cynara; Ramachandran, Sarayu; Fayad, Zahi A.; Moline, Jacqueline; McLaughlin, Mary Ann

    2013-01-01

    In this pilot study, we hypothesize that dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has the potential to evaluate differences in atherosclerosis profiles in patients subjected to high (initial dust cloud) and low (after 13 September 2001) particulate matter (PM) exposure. Exposure to PM may be associated with adverse health effects leading to increased morbidity. Law enforcement workers were exposed to high levels of particulate pollution after working at “Ground Zero” and may exhibit accelerated atherosclerosis. 31 subjects (28 male) with high (n = 19) or low (n = 12) exposure to PM underwent DCE-MRI. Demographics (age, gender, family history, hypertension, diabetes, BMI, and smoking status), biomarkers (lipid profiles, hs-CRP, BP) and ankle-brachial index (ABI) measures (left and right) were obtained from all subjects. Differences between the high and low exposures were compared using independent samples t test. Using linear forward stepwise regression with information criteria model, independent predictors of increased area under curve (AUC) from DCE-MRI were determined using all variables as input. Confidence interval of 95 % was used and variables with p > 0.1 were eliminated. p < 0.05 was considered significant. Subjects with high exposure (HE) had significantly higher DCE-MRI AUC uptake (increased neovascularization) compared to subjects with lower exposure (LE). (AUC: 2.65 ± 0.63 HE vs. 1.88 ± 0.69 LE, p = 0.016). Except for right leg ABI, none of the other parameters were significantly different between the two groups. Regression model indicated that only HE to PM, CRP > 3.0 and total cholesterol were independently associated with increased neovascularization (in decreasing order of importance, all p < 0.026). HE to PM may increase plaque neovascularization, and thereby potentially indicate worsening atherogenic profile of “Ground Zero” workers. PMID:23179748

  9. Focal Salvage Guided by T{sub 2}-Weighted and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Prostate Cancer Recurrences

    SciTech Connect

    Moman, Maaike R.; Berg, Cornelis A.T. van den; Boeken Kruger, Arto E.; Battermann, Jan J.; Moerland, Marinus A.; Heide, Uulke A. van der; Vulpen, Marco van

    2010-03-01

    Purpose: Salvage treatment of the entire prostate for local recurrent cancer after primary radiotherapy is associated with high toxicity rates. Our goal was to show that, using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for the visualization of a recurrence, focal salvage treatment can be performed, with, potentially, a reduction in toxicity. Methods and Materials: We performed MRI, including a DCE sequence, in 7 patients with biopsy-proven locally recurrent prostate cancer. The specific regions of interest suspect for containing tumor were delineated using DCE and T{sub 2}-weighted MRI scans. Subsequently, focal salvage high-dose-rate brachytherapy plans were created to illustrate the principle of focal salvage. Total salvage treatment plans were also created for comparison. Results: The transfer constant (K{sup trans}) values from the DCE were 0.33-0.67 min{sup -1} for areas suspect for tumor and 0.07-0.25 min{sup -1} for normal tissue. In 4 cases, a focal salvage plan could be generated; 93-100% of the gross tumor volume was covered with the prescribed dose, with relative sparing of the bladder, rectum, and urethra. In the total salvage plans, 24-53% of the gross tumor volume was covered, and the organs at risk received high doses. In 3 cases, a focal salvage plan could not be created because of multifocal tumor, seminal vesicle extension, or capsular extension. Conclusion: Focal salvage treatment plans can be created in patients with local recurrent prostate cancer after radiotherapy. DCE-MRI supports the localization of the target area. This could lead to less toxicity in patients with local recurrent prostate cancer.

  10. Intravoxel Incoherent Motion MR Imaging in the Head and Neck: Correlation with Dynamic Contrast-Enhanced MR Imaging and Diffusion-Weighted Imaging

    PubMed Central

    Xu, Xiao Quan; Choi, Young Jun; Sung, Yu Sub; Yoon, Ra Gyoung; Jang, Seung Won; Park, Ji Eun; Heo, Young Jin; Baek, Jung Hwan

    2016-01-01

    Objective To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. Materials and Methods We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D* and model-free parameters from the DCE-MRI (wash-in, Tmax, Emax, initial AUC60, whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. Results No correlation was found between f or D* and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p < 0.001, r = 0.980) and muscles (p = 0.013, r = 0.542), despite its significantly higher value than D. The difference between ADC and D showed significant correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D* (p > 0.05, respectively). Conclusion Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck. PMID:27587952

  11. The Impact of Arterial Input Function Determination Variations on Prostate Dynamic Contrast-Enhanced Magnetic Resonance Imaging Pharmacokinetic Modeling: A Multicenter Data Analysis Challenge

    PubMed Central

    Huang, Wei; Chen, Yiyi; Fedorov, Andriy; Li, Xia; Jajamovich, Guido H.; Malyarenko, Dariya I.; Aryal, Madhava P.; LaViolette, Peter S.; Oborski, Matthew J.; O'Sullivan, Finbarr; Abramson, Richard G.; Jafari-Khouzani, Kourosh; Afzal, Aneela; Tudorica, Alina; Moloney, Brendan; Gupta, Sandeep N.; Besa, Cecilia; Kalpathy-Cramer, Jayashree; Mountz, James M.; Laymon, Charles M.; Muzi, Mark; Schmainda, Kathleen; Cao, Yue; Chenevert, Thomas L.; Taouli, Bachir; Yankeelov, Thomas E.; Fennessy, Fiona; Li, Xin

    2016-01-01

    Dynamic contrast-enhanced MRI (DCE-MRI) has been widely used in tumor detection and therapy response evaluation. Pharmacokinetic analysis of DCE-MRI time-course data allows estimation of quantitative imaging biomarkers such as Ktrans(rate constant for plasma/interstitium contrast reagent (CR) transfer) and ve (extravascular and extracellular volume fraction). However, the use of quantitative DCE-MRI in clinical prostate imaging islimited, with uncertainty in arterial input function (AIF, i.e., the time rate of change of the concentration of CR in the blood plasma) determination being one of the primary reasons. In this multicenter data analysis challenge to assess the effects of variations in AIF quantification on estimation of DCE-MRI parameters, prostate DCE-MRI data acquired at one center from 11 prostate cancer patients were shared among nine centers. Each center used its site-specific method to determine the individual AIF from each data set and submitted the results to the managing center. Along with a literature population averaged AIF, these AIFs and their reference-tissue-adjusted variants were used by the managing center to perform pharmacokinetic analysis of the DCE-MRI data sets using the Tofts model (TM). All other variables including tumor region of interest (ROI) definition and pre-contrast T1 were kept the same to evaluate parameter variations caused by AIF variations only. Considerable pharmacokinetic parameter variations were observed with the within-subject coefficient of variation (wCV) of Ktrans obtained with unadjusted AIFs as high as 0.74. AIF-caused variations were larger in Ktrans than ve and both were reduced when reference-tissue-adjusted AIFs were used. The parameter variations were largely systematic, resulting in nearly unchanged parametric map patterns. The CR intravasation rate constant, kep (= Ktrans/ve), was less sensitive to AIF variation than Ktrans (wCV for unadjusted AIFs: 0.45 for kep vs. 0.74 for Ktrans), suggesting that it

  12. Revision of the theory of tracer transport and the convolution model of dynamic contrast enhanced magnetic resonance imaging

    PubMed Central

    Bammer, Roland; Stollberger, Rudolf

    2012-01-01

    Counterexamples are used to motivate the revision of the established theory of tracer transport. Then dynamic contrast enhanced magnetic resonance imaging in particular is conceptualized in terms of a fully distributed convection–diffusion model from which a widely used convolution model is derived using, alternatively, compartmental discretizations or semigroup theory. On this basis, applications and limitations of the convolution model are identified. For instance, it is proved that perfusion and tissue exchange states cannot be identified on the basis of a single convolution equation alone. Yet under certain assumptions, particularly that flux is purely convective at the boundary of a tissue region, physiological parameters such as mean transit time, effective volume fraction, and volumetric flow rate per unit tissue volume can be deduced from the kernel. PMID:17429633

  13. Effect of calibration on computerized analysis of prostate lesions using quantitative dynamic contrast-enhanced magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Vos, Pieter C.; Hambrock, Thomas; Fütterer, Jurgen J.; Hulsbergen-van de Kaa, C. A.; Barentsz, Jelle; Huisman, Henkjan H.

    2007-03-01

    In this study, we investigated the effect of different patient calibration methods on the performance of our CAD system when discriminating prostate cancer from non-malignant suspicious enhancing areas in the peripheral zone and the normal peripheral zone. Our database consisted of 34 consecutive patients with histologically proven adenocarcinoma of the prostate. Both carcinoma and normal tissue were annotated on MR images by a radiologist and a researcher using whole mount step-section histopathology as standard of reference. The annotated regions were used as regions of interest in the contrast enhanced MRI images. A feature set comprising pharmacokinetic parametes was extracted from the ROIs to train a support vector machine as classifier. The output of the classifier was used as a measure of likelihood of malignancy. General performance of the scheme was evaluated using the area under the ROC curve. The diagnostic accuracy obtained for differentiating normal peripheral zone and non-malignant suspicious enhancing areas from malignant lesions was 0.88 (0.81-0.95) when per patient calibration was performed, whereas fixed calibration resulted in a diagnostic accuracy of 0.77 (0.69-0.85). These preliminary results indicate that when per patient calibration is used, the performance is improved with statistical significance (p=0.026).

  14. Comparison of dynamic contrast-enhanced MR, ultrasound and optical imaging modalities to evaluate the antiangiogenic effect of PF-03084014 and sunitinib

    PubMed Central

    Zhang, Cathy C; Yan, Zhengming; Giddabasappa, Anand; Lappin, Patrick B; Painter, Cory L; Zhang, Qin; Li, Gang; Goodman, James; Simmons, Brett; Pascual, Bernadette; Lee, Joseph; Levkoff, Ted; Nichols, Tim; Xie, Zhiyong

    2014-01-01

    Noninvasive imaging has been widely applied for monitoring antiangiogenesis therapy in cancer drug discovery. In this report, we used different imaging modalities including high-frequency ultrasound (HFUS), dynamic contrast enhanced-MR (DCE-MR), and fluorescence molecular tomography (FMT) imaging systems to monitor the changes in the tumor vascular properties after treatment with γ-secretase inhibitor PF-03084014. Sunitinib was tested in parallel for comparison. In the MDA-MB-231Luc model, we demonstrated that antiangiogenesis was one of the contributing mechanisms for the therapeutic effect of PF-03084014. By immunohistochemistry and FITC-lectin perfusion assays, we showed that the vascular defects upon treatment with PF-03084014 were associated with Notch pathway modulation, evidenced by a decrease in the HES1 protein and by the changes in VEGFR2 and HIF1α levels, which indicates down-stream effects. Using a 3D power Doppler scanning method, ultrasound imaging showed that the% vascularity in the MDA-MB-231Luc tumor decreased significantly at 4 and 7 days after the treatment with PF-03084014. A decrease in the tumor vessel function was also observed through contrast-enhanced ultrasound imaging with microbubble injection. These findings were consistent with the PF-03084014-induced functional vessel changes measured by suppressing the Ktrans values using DCE-MRI. In contrast, the FMT imaging with the AngioSence 680EX failed to detect any treatment-associated tumor vascular changes. Sunitinib demonstrated an outcome similar to PF-03084014 in the tested imaging modalities. In summary, ultrasound and DCE-MR imaging successfully provided longitudinal measurement of the phenotypic and functional changes in tumor vasculature after treatment with PF-03084014 and sunitinib. PMID:24573979

  15. Tumor Heterogeneity in Lung Cancer: Assessment with Dynamic Contrast-enhanced MR Imaging.

    PubMed

    Yoon, Soon Ho; Park, Chang Min; Park, Sang Joon; Yoon, Jeong-Hwa; Hahn, Seokyung; Goo, Jin Mo

    2016-09-01

    Purpose To evaluate histogram and texture parameters on pretreatment dynamic contrast material-enhanced (DCE) magnetic resonance (MR) images in lung cancer in terms of temporal change, optimal time for analysis, and prognostic potential. Materials and Methods This retrospective study was approved by the institutional review board, and the requirement to obtain informed consent was waived. Thirty-eight patients with pathologically proved lung cancer undergoing standard pretreatment DCE MR imaging were included. A fat-suppressed, T1-weighted, volume-interpolated breath-hold MR sequence was performed every 30 seconds for 300 and 480 seconds after contrast material administration. A region of interest was manually drawn in the largest cross-sectional area of the tumor on DCE MR images to extract semiquantitative perfusion, histogram, and texture parameters. Predictability of 2-year progression-free survival (PFS) was analyzed by using the Kaplan-Meier method and Cox regression analysis. Results MR histogram and texture parameters increased rapidly 30-60 seconds after contrast material administration. Standard deviation and entropy then plateaued, whereas skewness and kurtosis rapidly decreased. Univariate Cox regression analysis revealed that standard deviation and entropy were significant predictors of survival; their statistical significance was preserved from 60 to 300 seconds, with the smallest P values (P ≤ .001) occurring from 120 to 180 seconds. At multivariate Cox regression analysis, entropy was the sole significant predictor of 2-year PFS (hazard ratio at 180 seconds, 10.098 [95% confidence interval: 1.579, 64.577], P = .015; hazard ratio at 120 seconds: 11.202 [95% confidence interval: 1.761, 71.260], P = .010). Conclusion Histogram and texture parameter changes varied after contrast material injection. The 120-180-second window after contrast material injection was optimal for MR imaging-derived texture parameter and entropy at DCE MR imaging. (©) RSNA

  16. Dynamic enhancement patterns of intrahepatic cholangiocarcinoma in cirrhosis on contrast-enhanced computed tomography: risk of misdiagnosis as hepatocellular carcinoma

    PubMed Central

    Li, Rui; Cai, Ping; Ma, Kuan-sheng; Ding, Shi-Yi; Guo, De-Yu; Yan, Xiao-Chu

    2016-01-01

    This study aimed to assess the features of intrahepatic cholangiocarcinoma (ICC) at computerized tomography (CT) and verify the risk of misdiagnosis of ICC as hepatocellular carcinoma (HCC) in cirrhosis. CT appearances of 98 histologically confirmed ICC nodules from 84 cirrhotic patients were retrospectively reviewed, taking into consideration the pattern and dynamic contrast uptake during the arterial, portal venous and delayed phases. During the arterial phase, 53 nodules (54.1%) showed peripheral rim-like enhancement, 35 (35.7%) hyperenhancement, 9 (9.2%) hypoenhancement and 1 (1.0%) isoenhancement. The ICC nodules showed heterogeneous dynamic contrast patterns, being progressive enhancement in 35 nodules (35.7%), stable enhancement in 28 nodules (28.6%), wash-in and wash-out pattern in 15 nodules (15.3%) and all other enhancement patterns in 20 nodules (20.4%). There were no significant differences in the dynamic vascular patterns of ICC according to nodule size (p > 0.05). ICC in cirrhosis has varied enhancement patterns at contrast-enhanced multiphase multidetector CT. Though the majority of ICC did not display typical radiological hallmarks of HCC, if dynamic CT scan was used as the sole modality for the non-invasive diagnosis of nodules in cirrhosis, the risk of misdiagnosis of ICC for HCC is not negligible. PMID:27226026

  17. Dynamic enhancement patterns of intrahepatic cholangiocarcinoma in cirrhosis on contrast-enhanced computed tomography: risk of misdiagnosis as hepatocellular carcinoma.

    PubMed

    Li, Rui; Cai, Ping; Ma, Kuan-Sheng; Ding, Shi-Yi; Guo, De-Yu; Yan, Xiao-Chu

    2016-01-01

    This study aimed to assess the features of intrahepatic cholangiocarcinoma (ICC) at computerized tomography (CT) and verify the risk of misdiagnosis of ICC as hepatocellular carcinoma (HCC) in cirrhosis. CT appearances of 98 histologically confirmed ICC nodules from 84 cirrhotic patients were retrospectively reviewed, taking into consideration the pattern and dynamic contrast uptake during the arterial, portal venous and delayed phases. During the arterial phase, 53 nodules (54.1%) showed peripheral rim-like enhancement, 35 (35.7%) hyperenhancement, 9 (9.2%) hypoenhancement and 1 (1.0%) isoenhancement. The ICC nodules showed heterogeneous dynamic contrast patterns, being progressive enhancement in 35 nodules (35.7%), stable enhancement in 28 nodules (28.6%), wash-in and wash-out pattern in 15 nodules (15.3%) and all other enhancement patterns in 20 nodules (20.4%). There were no significant differences in the dynamic vascular patterns of ICC according to nodule size (p > 0.05). ICC in cirrhosis has varied enhancement patterns at contrast-enhanced multiphase multidetector CT. Though the majority of ICC did not display typical radiological hallmarks of HCC, if dynamic CT scan was used as the sole modality for the non-invasive diagnosis of nodules in cirrhosis, the risk of misdiagnosis of ICC for HCC is not negligible. PMID:27226026

  18. Fractionated manganese injections: effects on MRI contrast enhancement and physiological measures in C57BL/6 mice.

    PubMed

    Grünecker, Barbara; Kaltwasser, Sebastian F; Peterse, Yorick; Sämann, Philipp G; Schmidt, Mathias V; Wotjak, Carsten T; Czisch, Michael

    2010-10-01

    Manganese-enhanced MRI (MEMRI) is an increasingly used imaging method in animal research, which enables improved T(1)-weighted tissue contrast. Furthermore accumulation of manganese in activated neurons allows visualization of neuronal activity. However, at higher concentrations manganese (Mn2+) exhibits toxic side effects that interfere with the animals' behaviour and well-being. Therefore, when optimizing MEMRI protocols, a compromise has to be found between minimizing side effects and intensifying image contrast. Recently, a low concentrated fractionated Mn2+ application scheme has been proposed as a promising alternative. In this study, we investigated effects of different fractionated Mn2+ dosing schemes on vegetative, behavioural and endocrine markers, and MEMRI signal contrast in C57BL/6N mice. Measurements of the animals' well-being included telemetric monitoring of body temperature and locomotion, control of weight and observation of behavioural parameters during the time course of the injection protocols. Corticosterone levels after Mn2+ application served as endocrine marker of the stress response. We compared three MnCl2  x 4H2O application protocols: 3 times 60 mg/kg with an inter-injection interval of 48 h, six times 30 mg/kg with an inter-injection interval of 48 h, and 8 times 30 mg/kg with an inter-injection interval of 24 h (referred to as 3 x 60/48, 6 x 30/48 and 8 x 30/24, respectively). Both the 6 x 30/48 and the 8 x 30/24 protocols showed attenuated effects on animals' well-being as compared to the 3 x 60/48 scheme. Best MEMRI signal contrast was observed for the 8 x 30/24 protocol. Together, these results argue for a fractionated application scheme such as 30 mg/kg every 24 h for 8 days to provide sufficient MEMRI signal contrast while minimizing toxic side effects and distress. PMID:20878969

  19. Functional imaging of the angiogenic switch in a transgenic mouse model of human breast cancer by dynamic contrast enhanced magnetic resonance imaging.

    PubMed

    Consolino, Lorena; Longo, Dario Livio; Dastrù, Walter; Cutrin, Juan Carlos; Dettori, Daniela; Lanzardo, Stefania; Oliviero, Salvatore; Cavallo, Federica; Aime, Silvio

    2016-07-15

    Tumour progression depends on several sequential events that include the microenvironment remodelling processes and the switch to the angiogenic phenotype, leading to new blood vessels recruitment. Non-invasive imaging techniques allow the monitoring of functional alterations in tumour vascularity and cellularity. The aim of this work was to detect functional changes in vascularisation and cellularity through Dynamic Contrast Enhanced (DCE) and Diffusion Weighted (DW) Magnetic Resonance Imaging (MRI) modalities during breast cancer initiation and progression of a transgenic mouse model (BALB-neuT mice). Histological examination showed that BALB-neuT mammary glands undergo a slow neoplastic progression from simple hyperplasia to invasive carcinoma, still preserving normal parts of mammary glands. DCE-MRI results highlighted marked functional changes in terms of vessel permeability (K(trans) , volume transfer constant) and vascularisation (vp , vascular volume fraction) in BALB-neuT hyperplastic mammary glands if compared to BALB/c ones. When breast tissue progressed from simple to atypical hyperplasia, a strong increase in DCE-MRI biomarkers was observed in BALB-neuT in comparison to BALB/c mice (K(trans)  = 5.3 ± 0.7E-4 and 3.1 ± 0.5E-4; vp  = 7.4 ± 0.8E-2 and 4.7 ± 0.6E-2 for BALB-neuT and BALB/c, respectively) that remained constant during the successive steps of the neoplastic transformation. Consistent with DCE-MRI observations, microvessel counting revealed a significant increase in tumour vessels. Our study showed that DCE-MRI estimates can accurately detect the angiogenic switch at early step of breast cancer carcinogenesis. These results support the view that this imaging approach is an excellent tool to characterize microvasculature changes, despite only small portions of the mammary glands developed neoplastic lesions in a transgenic mouse model. PMID:26941084

  20. Evaluating dynamic contrast-enhanced and photoacoustic CT to assess intra-tumor heterogeneity in xenograft mouse models

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Liu, Bo; Cao, Minsong; Reinecke, Dan; Dzemidzic, Mario; Liang, Yun; Kruger, Robert

    2006-03-01

    Purpose: To evaluate photoacoustic CT spectroscopy (PCT-S) and dynamic contrast-enhanced CT (DCE-CT) ability to measure parameters - oxygen saturation and vascular physiology - associated with the intra-tumor oxygenation status. Material and Methods: Breast (VEGF165 enhance MCF-7) and ovarian (SKOV3x) cancer cells were implanted into the fat pads and flanks of immune deficient mice and allowed to grow to a diameter of 8-15 mm. CT was used to determine physiological parameters by acquiring a sequence of scans over a 10 minute period after an i.v. injection of a radio-opaque contrast agent (Isovue). These time-dependent contrast-enhanced curves were fit to a two-compartmental model determining tumor perfusion, fractional plasma volume, permeability-surface area produce, and fractional interstitial volume on a voxel-by-voxel basis. After which, the tumors were imaged using photoacoustic CT (Optosonics, Inc., Indianapolis, IN 46202). The near infrared spectra (700-910 nm) within the vasculature was fit to linear combination of measured oxy- and deoxy-hemoglobin blood samples to obtain oxygen saturation levels (SaO II). Results: The PCT-S scanner was first calibrated using different samples of oxygenated blood, from which a statistical error ranging from 2.5-6.5% was measured and a plot of the hemoglobin dissociation curve was consistent with empirical formula. In vivo determination of tumor vasculature SaO II levels were measurably tracked, and spatially correlated to the periphery of the tumor. Tumor depend variations in SaO II - 0.32 (ovarian) and 0.60 (breast) - and in vascular physiology - perfusion, 1.03 and 0.063 mL/min/mL, and fractional plasma volume, 0.20 and 0.07 - were observed. Conclusion: Combined, PCT-S and CED-CT has the potential to measure intra-tumor levels of tumor oxygen saturation and vascular physiology, key parameters associated with hypoxia.

  1. Automatic classification of lung tumour heterogeneity according to a visual-based score system in dynamic contrast enhanced CT sequences

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Alessandro; Baiocco, Serena

    2016-03-01

    Computed tomography (CT) technologies have been considered for a long time as one of the most effective medical imaging tools for morphological analysis of body parts. Contrast Enhanced CT (CE-CT) also allows emphasising details of tissue structures whose heterogeneity, inspected through visual analysis, conveys crucial information regarding diagnosis and prognosis in several clinical pathologies. Recently, Dynamic CE-CT (DCE-CT) has emerged as a promising technique to perform also functional hemodynamic studies, with wide applications in the oncologic field. DCE-CT is based on repeated scans over time performed after intravenous administration of contrast agent, in order to study the temporal evolution of the tracer in 3D tumour tissue. DCE-CT pushes towards an intensive use of computers to provide automatically quantitative information to be used directly in clinical practice. This requires that visual analysis, representing the gold-standard for CT image interpretation, gains objectivity. This work presents the first automatic approach to quantify and classify the lung tumour heterogeneities based on DCE-CT image sequences, so as it is performed through visual analysis by experts. The approach developed relies on the spatio-temporal indices we devised, which also allow exploiting temporal data that enrich the knowledge of the tissue heterogeneity by providing information regarding the lesion status.

  2. Interobserver and Intraobserver Reproducibility with Volume Dynamic Contrast Enhanced Computed Tomography (DCE-CT) in Gastroesophageal Junction Cancer

    PubMed Central

    Lundsgaard Hansen, Martin; Fallentin, Eva; Axelsen, Thomas; Lauridsen, Carsten; Norling, Rikke; Svendsen, Lars Bo; Nielsen, Michael Bachmann

    2016-01-01

    The purpose of this study was to assess inter- and intra-observer reproducibility of three different analytic methods to evaluate quantitative dynamic contrast-enhanced computed tomography (DCE-CT) measures from gastroesophageal junctional cancer. Twenty-five DCE-CT studies with gastroesophageal junction cancer were selected from a previous longitudinal study. Three radiologists independently reviewed all scans, and one repeated the analysis eight months later for intraobserver analysis. Review of the scans consisted of three analysis methods: (I) Four, fixed small sized regions of interest (2-dimensional (2D) fixed ROIs) placed in the tumor periphery, (II) 2-dimensional regions of interest (2D-ROI) along the tumor border in the tumor center, and (III) 3-dimensional volumes of interest (3D-VOI) containing the entire tumor volume. Arterial flow, blood volume and permeability (ktrans) were recorded for each observation. Inter- and intra-observer variability were assessed by Intraclass Correlation Coefficient (ICC) and Bland-Altman statistics. Interobserver ICC was excellent for arterial flow (0.88), for blood volume (0.89) and for permeability (0.91) with 3D-VOI analysis. The 95% limits of agreement were narrower for 3D analysis compared to 2D analysis. Three-dimensional volume DCE-CT analysis of gastroesophageal junction cancer provides higher inter- and intra-observer reproducibility with narrower limits of agreement between readers compared to 2D analysis. PMID:26838804

  3. Multiplanar Dynamic Contrast-enhanced US Assessment of Blood Flow in a Rabbit Model of Testicular Torsion

    PubMed Central

    Paltiel, Harriet J.; Estrada, Carlos R.; Alomari, Ahmad I.; Stamoulis, Catherine; Passerotti, Carlo C.; Meral, F. Can; Lee, Richard S.; Clement, Gregory T.

    2013-01-01

    To assess correlation between multiplanar, dynamic contrast-enhanced US blood flow measurements and radiolabeled microsphere blood flow measurements, five groups of 6 rabbits underwent unilateral testicular torsion of 0, 180, 360, 540, or 720 degrees. Five US measurements per testis (3 transverse/2 longitudinal) were obtained preoperatively, immediately postoperatively, at 4 and 8 hours using linear transducers (7–4-MHz/center frequency 4.5 MHz/10 rabbits; 9–3-MHz/center frequency 5.5 MHz/20 rabbits). Björck’s linear least squares method fit the rise phase of mean pixel intensity over a 7-second period for each time curve. Slope of fit and intervention/control US pixel intensity ratios were calculated. Means of transverse, longitudinal, and combined transverse/longitudinal US ratios as a function of torsion degree were compared to radiolabeled microsphere ratios using Pearson’s correlation coefficient, ρ. There was high correlation between the two sets of ratios (ρ ≥ 0.88, p≤ 0.05) except for the transverse US ratio in the immediate postoperative period (ρ = 0.79, p = 0.11). These results hold promise for future clinical applications. PMID:24188690

  4. 3D lacunarity in multifractal analysis of breast tumor lesions in dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Soares, Filipe; Janela, Filipe; Pereira, Manuela; Seabra, João; Freire, Mário M

    2013-11-01

    Dynamic contrast-enhanced magnetic resonance (DCE-MR) of the breast is especially robust for the diagnosis of cancer in high-risk women due to its high sensitivity. Its specificity may be, however, compromised since several benign masses take up contrast agent as malignant lesions do. In this paper, we propose a novel method of 3D multifractal analysis to characterize the spatial complexity (spatial arrangement of texture) of breast tumors at multiple scales. Self-similar properties are extracted from the estimation of the multifractal scaling exponent for each clinical case, using lacunarity as the multifractal measure. These properties include several descriptors of the multifractal spectra reflecting the morphology and internal spatial structure of the enhanced lesions relatively to normal tissue. The results suggest that the combined multifractal characteristics can be effective to distinguish benign and malignant findings, judged by the performance of the support vector machine classification method evaluated by receiver operating characteristics with an area under the curve of 0.96. In addition, this paper confirms the presence of multifractality in DCE-MR volumes of the breast, whereby multiple degrees of self-similarity prevail at multiple scales. The proposed feature extraction and classification method have the potential to complement the interpretation of the radiologists and supply a computer-aided diagnosis system. PMID:24057004

  5. CAM-CM: a signal deconvolution tool for in vivo dynamic contrast-enhanced imaging of complex tissues

    PubMed Central

    Chen, Li; Chan, Tsung-Han; Choyke, Peter L.; Hillman, Elizabeth M. C.; Chi, Chong−Yung; Bhujwalla, Zaver M.; Wang, Ge; Wang, Sean S.; Szabo, Zsolt; Wang, Yue

    2011-01-01

    Summary:In vivo dynamic contrast-enhanced imaging tools provide non-invasive methods for analyzing various functional changes associated with disease initiation, progression and responses to therapy. The quantitative application of these tools has been hindered by its inability to accurately resolve and characterize targeted tissues due to spatially mixed tissue heterogeneity. Convex Analysis of Mixtures – Compartment Modeling (CAM-CM) signal deconvolution tool has been developed to automatically identify pure-volume pixels located at the corners of the clustered pixel time series scatter simplex and subsequently estimate tissue-specific pharmacokinetic parameters. CAM-CM can dissect complex tissues into regions with differential tracer kinetics at pixel-wise resolution and provide a systems biology tool for defining imaging signatures predictive of phenotypes. Availability: The MATLAB source code can be downloaded at the authors′ website www.cbil.ece.vt.edu/software.htm Contact: yuewang@vt.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21785131

  6. Multi-planar dynamic contrast-enhanced ultrasound assessment of blood flow in a rabbit model of testicular torsion.

    PubMed

    Paltiel, Harriet J; Estrada, Carlos R; Alomari, Ahmad I; Stamoulis, Catherine; Passerotti, Carlo C; Meral, F Can; Lee, Richard S; Clement, Gregory T

    2014-02-01

    To assess correlation between multi-planar, dynamic contrast-enhanced ultrasound (US) blood flow measurements and radiolabeled microsphere blood flow measurements, five groups of six rabbits underwent unilateral testicular torsion of 0°, 180°, 360°, 540° or 720°. Five US measurements per testis (three transverse/two longitudinal) were obtained pre-operatively and immediately and 4 and 8 h post-operatively using linear transducers (7-4 MHz/center frequency 4.5 MHz/10 rabbits; 9-3 MHz/center frequency 5.5 MHz/20 rabbits). Björck's linear least-squares method fit the rise phase of mean pixel intensity over a 7-s period for each time curve. Slope of fit and intervention/control US pixel intensity ratios were calculated. Means of transverse, longitudinal and combined transverse/longitudinal US ratios as a function of torsion degree were compared with radiolabeled microsphere ratios using Pearson's correlation coefficient, ρ. There was high correlation between the two sets of ratios (ρ ≥ 0.88, p ≤ 0.05), except for the transverse US ratio in the immediate post-operative period (ρ = 0.79, p = 0.11). These results hold promise for future clinical applications. PMID:24188690

  7. Dynamic contrast-enhanced ultrasonography (DCE-US): a new tool for the early evaluation of antiangiogenic treatment.

    PubMed

    Lassau, Nathalie; Chebil, Mohamed; Chami, Linda; Bidault, Sophie; Girard, Elizabeth; Roche, Alain

    2010-03-01

    Dynamic contrast-enhanced ultrasonography (DCE-US) is a new functional technique enabling a quantitative assessment of solid tumor perfusion using raw linear data. DCE-US allows the calculation of parameters as slope of wash-in or area under the curve (AUC) representing, respectively, blood flow or blood volume. Reduction in tumor vascularization can easily be detected in responders after 1 or 2 weeks and is correlated with progression-free survival and overall survival in renal cell carcinoma (RCC) and hepatocellular carcinoma (HCC). DCE-US is supported by the French National Cancer Institute (INCa), which is currently studying the technique in metastatic breast cancer, melanoma, colon cancer, gastrointestinal stromal tumors and renal cell carcinoma, as well as in primary hepatocellular carcinoma, to establish the optimal perfusion parameters and timing for quantitative anticancer efficacy assessments. Currently 490 patients are included in 20 centers and the preliminary results on 400 patients with 1,096 DCE-US demonstrated that AUC could be a robust parameter to predict response. PMID:20379790

  8. Improved Quantification of Cerebral Hemodynamics Using Individualized Time Thresholds for Assessment of Peak Enhancement Parameters Derived from Dynamic Susceptibility Contrast Enhanced Magnetic Resonance Imaging

    PubMed Central

    Nasel, Christian; Kalcher, Klaudius; Boubela, Roland; Moser, Ewald

    2014-01-01

    Purpose Assessment of cerebral ischemia often employs dynamic susceptibility contrast enhanced magnetic resonance imaging (DSC-MRI) with evaluation of various peak enhancement time parameters. All of these parameters use a single time threshold to judge the maximum tolerable peak enhancement delay that is supposed to reliably differentiate sufficient from critical perfusion. As the validity of this single threshold approach still remains unclear, in this study, (1) the definition of a threshold on an individual patient-basis, nevertheless (2) preserving the comparability of the data, was investigated. Methods The histogram of time-to-peak (TTP) values derived from DSC-MRI, the so-called TTP-distribution curve (TDC), was modeled using a double-Gaussian model in 61 patients without severe cerebrovascular disease. Particular model-based zf-scores were used to describe the arterial, parenchymal and venous bolus-transit phase as time intervals Ia,p,v. Their durations (delta Ia,p,v), were then considered as maximum TTP-delays of each phase. Results Mean-R2 for the model-fit was 0.967. Based on the generic zf-scores the proposed bolus transit phases could be differentiated. The Ip-interval reliably depicted the parenchymal bolus-transit phase with durations of 3.4 s–10.1 s (median = 4.3s), where an increase with age was noted (∼30 ms/year). Conclusion Individual threshold-adjustment seems rational since regular bolus-transit durations in brain parenchyma obtained from the TDC overlap considerably with recommended critical TTP-thresholds of 4 s–8 s. The parenchymal transit time derived from the proposed model may be utilized to individually correct TTP-thresholds, thereby potentially improving the detection of critical perfusion. PMID:25521121

  9. SU-E-J-182: A Feasibility Study Evaluating Automatic Identification of Gross Tumor Volume for Breast Cancer Radiotherapy Using Dynamic Contrast-Enhanced MR Imaging

    SciTech Connect

    Wang, C; Horton, J; Yin, F; Blitzblau, R; Palta, M; Chang, Z

    2014-06-01

    Purpose: To develop a computerized pharmacokinetic model-free Gross Tumor Volume (GTV) segmentation method based on dynamic contrastenhanced MRI (DCE-MRI) data that can improve physician GTV contouring efficiency. Methods: 12 patients with biopsy-proven early stage breast cancer with post-contrast enhanced DCE-MRI images were analyzed in this study. A fuzzy c-means (FCM) clustering-based method was applied to segment 3D GTV from pre-operative DCE-MRI data. A region of interest (ROI) is selected by a clinician/physicist, and the normalized signal evolution curves were calculated by dividing the signal intensity enhancement value at each voxel by the pre-contrast signal intensity value at the corresponding voxel. Three semi-quantitative metrics were analyzed based on normalized signal evolution curves: initial Area Under signal evolution Curve (iAUC), Immediate Enhancement Ratio (IER), and Variance of Enhancement Slope (VES). The FCM algorithm wass applied to partition ROI voxels into GTV voxels and non-GTV voxels by using three analyzed metrics. The partition map for the smaller cluster is then generated and binarized with an automatically calculated threshold. To reduce spurious structures resulting from background, a labeling operation was performed to keep the largest three-dimensional connected component as the identified target. Basic morphological operations including hole-filling and spur removal were useutilized to improve the target smoothness. Each segmented GTV was compared to that drawn by experienced radiation oncologists. An agreement index was proposed to quantify the overlap between the GTVs identified using two approaches and a thershold value of 0.4 is regarded as acceptable. Results: The GTVs identified by the proposed method were overlapped with the ones drawn by radiation oncologists in all cases, and in 10 out of 12 cases, the agreement indices were above the threshold of 0.4. Conclusion: The proposed automatic segmentation method was shown to

  10. Assessment of synovitis in the osteoarthritic knee: Comparison between manual segmentation, semiautomated segmentation, and semiquantitative assessment using contrast-enhanced fat-suppressed T1-weighted MRI.

    PubMed

    Fotinos-Hoyer, Amber Kassel; Guermazi, Ali; Jara, Hernán; Eckstein, Felix; Ozonoff, Al; Khard, Hussain; Norbash, Alexander; Bohndorf, Klaus; Roemer, Frank W

    2010-08-01

    Osteoarthritic joints regularly exhibit synovitis, which is ideally assessed on contrast-enhanced MRI. Manual segmentation is the reference standard for volumetric analysis but is labor intensive. The aim was to evaluate alternative semiautomated approaches of targeted thresholding and gaussian deconvolution. Volumetric and semiquantitative synovitis assessment was compared in addition. Thirty-two knees with osteoarthritis were scanned on a 1.5-T system. Synovitis volumes were plotted against each other and distributions fit with linear functions. The relationship between semiquantitative scores and synovitis volumes was assessed using Spearman's correlation coefficient. Semiautomated volume measurement was more time efficient than manual segmentation and showed a high correlation with manual analysis (R(2) = 0.88 and 0.82). Manual segmentation was correlated with summed and with maximum semiquantitative synovitis scores (rho = 0.71 and 0.47). In conclusion, semiautomated analysis provides comparable quantitative results when compared to manual segmentation but is approximately five times more time efficient. Semiquantitative assessment adds anatomic information on synovitis distribution. PMID:20665803

  11. Automatic ROI construction for analyzing time-signal intensity curve in dynamic contrast-enhanced MR imaging of the breast.

    PubMed

    Fujimoto, Koya; Ueda, Yasuyuki; Kudomi, Shohei; Yonezawa, Teppei; Fujimoto, Yuki; Ueda, Katsuhiko

    2016-01-01

    Our purpose in this study was to construct a 3-dimensional (3D) region of interest (ROI) for analyzing the time-signal intensity curve (TIC) semi-automatically in dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging of the breast. DCE-MR breast imaging datasets were acquired by a 3.0-Tesla MR system with the use of a 3D fast gradient echo sequence. The essential idea in the new method was to analyze each pixel and to construct an ROI made up of pixels with similar TICs. First, an analyst selected a starting point in the contrast media-enhanced tumor. Second, we calculated Pearson's correlation coefficients (CCs) between the TIC in the starting coordinate selected by the analyst and the TIC in the other coordinates. Third, ROI pixels were selected if their CC threshold satisfied a level of coefficient variation of the ROI determined by prior research performed in our institution. We made a retrospective review of patients who underwent breast DCE-MR examination for pre-operative diagnosis. To confirm the feasibility of the resulting 3D-ROI from TIC analysis, we compared Fischer's score obtained from 3D-ROI by applying a new method to a score obtained from a manually selected 2-dimensional (2D) ROI which was used during routine clinical examination. The Fischer's scores obtained from both the automatically selected 3D-ROI and the manually selected 2D-ROI showed almost equivalent results. Thus, we considered that the new method was comparable to the conventional method. Furthermore, the new method has the potential to be used for evaluation of the extent of tumors. PMID:26141767

  12. Synergistic Effect of Anti-Angiogenic and Radiation Therapy: Quantitative Evaluation with Dynamic Contrast Enhanced MR Imaging

    PubMed Central

    Koo, Hyun Jung; Lee, Myoungsun; Kim, Jin; Woo, Chul Woong; Jeong, Seong-Yun; Choi, Eun Kyung; Kim, Namkug; Lee, Jin Seong

    2016-01-01

    Purpose We assessed the effects of anti-angiogenic therapy (AAT) on radiation therapy (RT), evaluating the tumor growth and perfusion patterns on dynamic contrast enhanced MR (DCE-MR) images. Methods Thirteen nude mice with heterotopic xenograft cancer of human lung cancer cell line were used. To observe the interval change of the tumor size and demonstrate the time-signal intensity enhancement curve of the tumor, the mice were subdivided into four groups: control (n = 2), AAT (n = 2), RT (n = 5), and combined therapy (AART, n = 4). DCE-MR images were taken four weeks after treatment. Perfusion parameters were obtained based on the Brix model. To compare the interval size changes in the RT group with those in the AART group, repeated measures ANOVA was used. Perfusion parameters in both the RT and AART groups were compared using a Mann-Whitney U test. Results Tumor growth was more suppressed in AART group than in the other groups. Control group showed the rapid wash-in and wash-out pattern on DCE-MR images. In contrast to RT group with delayed and prolonged enhancement, both AAT and AART groups showed the rapid wash-in and plateau pattern. The signal intensity in the plateau/time to peak enhancement (P<0.016) and the maximum enhancement ratio (P<0.016) of AART group were higher than those of RT group. Conclusions AART showed synergistic effects in anticancer treatment. The pattern of the time-intensity curve on the DCE-MR images in each group implies that AAT might help maintain the perfusion in the cancer of AART group. PMID:26862906

  13. Measurement of glomerular filtration rate by dynamic contrast-enhanced magnetic resonance imaging using a subject-specific two-compartment model.

    PubMed

    Tipirneni-Sajja, Aaryani; Loeffler, Ralf B; Oesingmann, Niels; Bissler, John; Song, Ruitian; McCarville, Beth; Jones, Deborah P; Hudson, Melissa; Spunt, Sheri L; Hillenbrand, Claudia M

    2016-04-01

    Measuring glomerular filtration rate (GFR) by dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) as part of standard of care clinicalMRIexams (e.g., in pediatric solid tumor patients) has the potential to reduce diagnostic burden. However, enthusiasm for this relatively newGFRtest may be curbed by the limited amount of cross-calibration studies with referenceGFRtechniques and the vast variety ofMRtracer model algorithms causing confusion on the choice of model. To advanceMRI-basedGFRquantification via improvedGFRmodeling and comparison with associated(99m)Tc-DTPA-GFR, 29 long-term Wilms' tumor survivors (19.0-43.3 years, [median 32.0 ± 6.0 years]) treated with nephrectomy, nonnephrotoxic chemotherapy ± radiotherapy underwentMRIwith Gd-DTPAadministration and a(99m)Tc-DTPA GFRtest. ForDCE-MRI-basedGFRestimation, a subject-specific two-compartment (SS-2C) model was developed that uses individual hematocrit values, automatically defines subject-specific uptake intervals, and fits tracer-uptake curves by incorporating these measures. The association between reference(99m)Tc-DTPA GFRandMR-GFRs obtained bySS-2C, three published 2C uptake, and inflow-outflow models was investigated via linear regression analysis. Uptake intervals varied from 64 sec to 141 sec [96 sec ± 21 sec] and hematocrit values ranged from 30% to 49% [41% ± 4%]; these parameters can therefore not be assumed as constants in 2C modeling. OurMR-GFRestimates using theSS-2C model showed accordingly the highest correlation with(99m)Tc-DTPA-GFRs (R(2) = 0.76,P < 0.001) compared with other models (R(2)-range: 0.36-0.66). In conclusion,SS-2C modeling ofDCE-MRIdata improved the association betweenGFRobtained by(99m)Tc-DTPAand Gd-DTPA DCE-MRIto such a degree that this approach could turn into a viable, diagnosticGFRassay without radiation exposure to the patient. PMID:27081161

  14. An Exploratory Study Into the Role of Dynamic Contrast-Enhanced Magnetic Resonance Imaging or Perfusion Computed Tomography for Detection of Intratumoral Hypoxia in Head-and-Neck Cancer

    SciTech Connect

    Newbold, Kate Castellano, Isabel; Charles-Edwards, Elizabeth; Mears, Dorothy; Sohaib, Aslam; Leach, Martin; Rhys-Evans, Peter; Clarke, Peter; Fisher, Cyril; Harrington, Kevin; Nutting, Christopher

    2009-05-01

    Purpose: Hypoxia in patients with head-and-neck cancer (HNC) is well established and known to cause radiation resistance and treatment failure in the management of HNC. This study examines the role of parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and perfusion computed tomography (CT) as surrogate markers of intratumoral hypoxia, defined by using the exogenous marker of hypoxia pimonidazole and the endogenous marker carbonic anhydrase 9 (CA9). Methods and Materials: Patients with HNC underwent preoperative DCE-MRI, perfusion CT, and pimonidazole infusion. Imaging parameters were correlated with pimonidazole and CA9 staining. The strength of correlations was tested by using a two-tailed Spearman's rank correlation coefficient. Results: Twenty-three regions of interest were analyzed from the 7 patients who completed the DCE-MRI studies. A number of statistically significant correlations were seen between DCE-MRI parameters (volume transfer between blood plasma and extracellular extravascular space [EES], volume of EES, rate constant between EES and blood plasma, time at arrival of contrast inflow, time to peak, average gradient, and time to onset) and areas with a pimonidazole score of 4. In the case of CA9 staining, only a weak correlation was shown with wash-in rate. There were no significant correlations between perfusion CT parameters and pimonidazole staining or CA9 expression. Conclusion: Intratumoral hypoxia in patients with HNC may be predicted by using DCE-MRI; however, perfusion CT requires further investigation.

  15. Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle

    PubMed Central

    Hindel, Stefan; Sauerbrey, Anika; Maaß, Marc; Maderwald, Stefan; Schlamann, Marc; Lüdemann, Lutz

    2015-01-01

    The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF) was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles, as measured by the

  16. Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle.

    PubMed

    Hindel, Stefan; Sauerbrey, Anika; Maaß, Marc; Maderwald, Stefan; Schlamann, Marc; Lüdemann, Lutz

    2015-01-01

    The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF) was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles, as measured by the

  17. Dynamic contrast-enhanced x-ray CT measurement of cerebral blood volume in a rabbit tumor model

    NASA Astrophysics Data System (ADS)

    Cenic, Aleksa; Lee, Ting-Yim; Craen, Rosemary A.; Gelb, Adrian W.

    1998-07-01

    Cerebral blood volume (CBV) is a major determinant of intracranial pressure (ICP). Hyperventilation is commonly employed to reduce raised ICP (e.g. in brain tumour patients) presumably through its effect on CBV. With the advent of slip- ring CT scanners, dynamic contrast-enhanced imaging allows for the measurement of CBV with high spatial resolution. Using a two-compartment model to characterize the distribution of X- ray contrast agent in the brain, we have developed a non- equilibrium CT method to measure CBV in normal and pathological regions. We used our method to investigate the effect of hyperventilation on CBV during propofol anaesthesia in rabbits with implanted brain tumours. Eight New Zealand White rabbits with implanted VX2 carcinoma brain tumours were studied. For each rabbit, regional CBV measurements were initially made at normocapnia (PaCO2 40 mmHg) and then at hyperventilation (PaCO2 25 mmHg) during propofol anaesthesia. The head was positioned such that a coronal image through the brain incorporated a significant cross-section of the brain tumour as well as a radial artery in a forelimb. Images at the rate of 1 per second were acquired for 2 minutes as Omnipaque 300 (1.5 ml/kg rabbit weight) was injected via a peripheral vein. In these CT images, regions of interest in the brain tissue (e.g. tumour, contra-lateral normal, and peri-tumoural) and the radial artery were drawn. For each region, the mean CT number in pre-contrast images was subtracted from the mean CT number in post-contrast images to produce either the tissue contrast concentration curve, or the arterial contrast concentration curve. Using our non- equilibrium analysis method based on a two-compartment model, regional CBV values were determined from the measured contrast concentration curves. From our study, the mean CBV values [+/- SD] in the tumour, peri-tumoural, and contra-lateral normal regions during normocapnia were: 5.47 plus or minus 1.97, 3.28 plus or minus 1.01, and 1

  18. Preparation, Characterization and In Vivo Assessment of Gd-Albumin and Gd-Dendrimer Conjugates as Intravascular Contrast-Enhancing Agents for MRI

    PubMed Central

    Nwe, Kido; Milenic, Diane; Bryant, L. Henry; Regino, Celeste A. S.; Brechbiel, Martin W.

    2011-01-01

    We report in vivo and in vitro MRI properties of six gadolinium-dendrimer and gadolinium-albumin conjugates of derivatized acyclic diethylenetriamine-N,N’,N’,N’’, N’’-pentaacetic acid (1B4M) and macrocyclic 1,4,7,10-tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid (C-DOTA). The three albumin-based agents have comparable protein to chelate ratios (1:16–18) as well as molar relaxivity (8.8–10.4 mM−1s−1). The three dendrimer based agents have blood clearance half-lives ranging from 17 to 66 min while that of the three albumin-based agents are comparable to one another (40–47 min). The dynamic image obtained from use of the albumin conjugate based on the macrocycle (C-DOTA) showed a higher contrast compared to the remaining two albumin based agents. Our conclusion from all of the results is that the macrocyclic-based (DOTA) agents are more suitable than the acyclic-based (1B4M) agent for in vivo use based on their MRI properties combined with the kinetic inertness property associated with the more stable Gd(III) DOTA complex. PMID:21463567

  19. Quantification of dynamic contrast-enhanced ultrasound in HCC: prediction of response to a new combination therapy of sorafenib and panobinostat in advanced hepatocellular carcinoma.

    PubMed

    Knieling, Ferdinand; Waldner, Maximilian J; Goertz, Ruediger S; Strobel, Deike

    2012-01-01

    Here, we report the case of a patient, who showed an antitumour response to a new combination therapy of sorafenib and the histon deacetylase inhibitor panobinostat (LBH-589). D-CEUS (Dynamic contrast-enhanced ultrasonography) was able to predict response to the new therapy regime and may be an interesting tool in the early evaluation of response to therapy. It might be especially useful to differentiate between responders and non-responders of new-targeted pharmaceuticals like multikinase inhibitors in hepatocellular carcinomas. PMID:23257272

  20. Perfusion Estimated With Rapid Dynamic Contrast-Enhanced Magnetic Resonance Imaging Correlates Inversely With Vascular Endothelial Growth Factor Expression and Pimonidazole Staining in Head-and-Neck Cancer: A Pilot Study

    SciTech Connect

    Donaldson, Stephanie B.; Betts, Guy; Bonington, Suzanne C.; Homer, Jarrod J.; Slevin, Nick J.; Kershaw, Lucy E.; Valentine, Helen; West, Catharine M.L.; Buckley, David L.

    2011-11-15

    Purpose: To analyze, in a pilot study, rapidly acquired dynamic contrast-enhanced (DCE)-MRI data with a general two-compartment exchange tracer kinetic model and correlate parameters obtained with measurements of hypoxia and vascular endothelial growth factor (VEGF) expression in patients with squamous cell carcinoma of the head and neck. Methods and Materials: Eight patients were scanned before surgery. The DCE-MRI data were acquired with 1.5-s temporal resolution and analyzed using the two-compartment exchange tracer kinetic model to obtain estimates of parameters including perfusion and permeability surface area. Twelve to 16 h before surgery, patients received an intravenous injection of pimonidazole. Samples taken during surgery were used to determine the level of pimonidazole staining using immunohistochemistry and VEGF expression using quantitative real-time polymerase chain reaction. Correlations between the biological and imaging data were examined. Results: Of the seven tumors fully analyzed, those that were poorly perfused tended to have high levels of pimonidazole staining (r = -0.79, p = 0.03) and VEGF expression (r = -0.82, p = 0.02). Tumors with low permeability surface area also tended to have high levels of hypoxia (r = -0.75, p = 0.05). Hypoxic tumors also expressed higher levels of VEGF (r = 0.82, p = 0.02). Conclusions: Estimates of perfusion obtained with rapid DCE-MRI data in patients with head-and-neck cancer correlate inversely with pimonidazole staining and VEGF expression.

  1. Assessing response in breast cancer with dynamic contrast-enhanced magnetic resonance imaging: are signal intensity-time curves adequate?

    PubMed

    Woolf, David K; Padhani, Anwar R; Taylor, N Jane; Gogbashian, Andrew; Li, Sonia P; Beresford, Mark J; Ah-See, Mei-Lin; Stirling, James; Collins, David J; Makris, Andreas

    2014-09-01

    Quantitative DCE-MRI parameters including K(trans) (transfer constant min(-1)) can predict both response and outcome in breast cancer patients treated with neoadjuvant chemotherapy (NAC). Quantitative methods are time-consuming to calculate, requiring expensive software and interpretive expertise. For diagnostic purposes, signal intensity-time curves (SITCs) are used for tissue characterisation. In this study, we compare the ability of NAC-related changes in SITCs with K(trans) to predict response and outcomes. 73 women with primary breast cancer underwent DCE-MRI studies before and after two cycles of NAC. Patients received anthracycline and/or docetaxel-based chemotherapy. At completion of NAC, patients had local treatment with surgery & radiotherapy and further systemic treatments. SITCs for paired DCE-MRI studies were visually scored using a five-curve type classification schema encompassing wash-in and wash-out phases and correlated with K(trans) values and to the endpoints of pathological response, OS and DFS. 58 paired patients studies were evaluable. The median size by MRI measurement for 52 tumours was 38 mm (range 17-86 mm) at baseline and 26 mm (range 10-85 mm) after two cycles of NAC. Median baseline K(trans) (min(-1)) was 0.214 (range 0.085-0.469), and post-two cycles of NAC was 0.128 (range 0.013-0.603). SITC shapes were significantly related to K(trans) values both before (χ (2) = 43.3, P = 0.000) and after two cycles of NAC (χ (2) = 60.5, P = 0.000). Changes in curve shapes were significantly related to changes in K(trans) (χ (2) = 53.5, P = 0.000). Changes in curve shape were significantly correlated with clinical (P = 0.005) and pathological response (P = 0.005). Reductions in curve shape of ≥1 point were significant for overall improved survival using Kaplan-Meier analysis with a 5-year OS of 80.9 versus 68.6 % (P = 0.048). SITCs require no special software to generate and provide a useful method of assessing the

  2. Magnetic Resonance Imaging (MRI) with retrograde intralumen contrast enhancement of the rectum in diagnostics of rectovaginal fistulas after combination therapy of rectal cancer. Experience of application

    NASA Astrophysics Data System (ADS)

    Usova, A.; Frolova, I.; Afanasev, S.; Tarasova, A.; Molchanov, S.

    2016-02-01

    Experiment of use of MRI in diagnostics of rectovaginal fistulas after combination therapy of rectal cancer is shown on clinical examples. We used retrograde contrasting of a rectum with 150ml ultrasonic gel to make MRI more informative in case of low diagnostic efficiency of ultrasound, colonoscopy and gynecological examination.

  3. Evaluation of the characteristics of hepatic focal nodular hyperplasia: correlation between dynamic contrast-enhanced multislice computed tomography and pathological findings

    PubMed Central

    Zhang, Hai-Tao; Gao, Xin-Yi; Xu, Qin-Sha; Chen, Yu-Tang; Song, Yu-Piao; Yao, Zhen-Wei

    2016-01-01

    Objective To evaluate the characteristics of enhancement of focal nodular hyperplasia (FNH) of the liver by analyzing the dynamic contrast-enhanced multislice computed tomography (MSCT) features and correlating them with pathological findings. Patients and methods Nine males and 16 females with pathologically confirmed FNH and complete preoperative contrast-enhanced MSCT data were recruited for this study. The imaging features of FNH on the pre- and postcontrast MSCT were analyzed by two experienced radiologists by consensus. Results Pathology showed central scars and abnormal blood vessels in 17 and 21 of 25 lesions, respectively, while MSCT with multiphase enhancement showed central scars in eight of the 17 lesions (47.1%) and abnormal arteries or draining veins in 13 of the 21 lesions (61.9%). Furthermore, abnormal draining veins in five lesions were found to be diagnostic, which is another important finding. Conclusion Multiphase scanning can provide the panorama of FNH lesions and reveal their enhancement patterns and pathological characteristics. Abnormal blood vessels within or around the lesion are demonstrated more often than central scar, and both should be observed for FNH diagnosis. PMID:27578988

  4. Pilot study of non-contrast-enhanced MRI vs. ultrasound in renal transplant recipients with acquired cystic kidney disease: a prospective intra-individual comparison.

    PubMed

    Mühlfeld, Anja S; Lange, Christian; Kroll, Gisela; Floege, Jürgen; Krombach, Gabriele A; Kuhl, Christiane; Eitner, Frank; Schrading, Simone

    2013-01-01

    The incidence of renal cell carcinoma (RCC) after kidney transplantation is 15-fold increased. Acquired cystic kidney disease (ACKD) is one of the known risk factors. We performed a small pilot study to assess the role of non-enhanced magnetic resonance imaging (MRI) as a tool for intensified screening in renal transplant recipients with ACKD. Renal ultrasound was used to assess the native kidneys of 215 renal transplant recipients. Thirty patients with 54 kidneys, fulfilling the criteria of ACKD, underwent non-enhanced MRI at 1.5T using T2- and T1-weighed as well as diffusion-weighted sequences with a high spatial resolution. Among the 54 kidneys assessed by both methods, three RCCs were identified (6%). Of those, one RCC was detected by both imaging methods (33%), while two RCCs were diagnosed by MRI alone (67%). MRI identified an additional four proteinaceous or hemorrhagic cysts that did not fulfill the criteria for RCC but were classified as suspicious. All of these lesions were stable in size and appearance in follow-up studies. In conclusion, non-enhanced MRI was more sensitive than ultrasound in identifying RCCs and lesions suspicious for RCC and thus appears to be a useful secondary screening tool in patients with ACKD after renal transplantation. PMID:24118352

  5. Repeat Targeted Prostate Biopsy under Guidance of Multiparametric MRI-Correlated Real-Time Contrast-Enhanced Ultrasound for Patients with Previous Negative Biopsy and Elevated Prostate-Specific Antigen: A Prospective Study

    PubMed Central

    Jang, Dong Ryul; Jung, Dae Chul; Oh, Young Taik; Noh, Songmi; Han, Kyunghwa; Kim, Kiwook; Rha, Koon-Ho; Choi, Young Deuk; Hong, Sung Joon

    2015-01-01

    Objectives To prospectively determine whether multi-parametric MRI (mpMRI) - contrast-enhanced ultrasound (CEUS) correlated, imaging-guided target biopsy (TB) method could improve the detection of prostate cancer in re-biopsy setting of patients with prior negative biopsy. Methods From 2012 to 2014, a total of 42 Korean men with a negative result from previous systematic biopsy (SB) and elevated prostate-specific antigen underwent 3T mpMRI and real-time CEUS guided TB. Target lesions were determined by fusion of mpMRI and CEUS. Subsequently, 12-core SB was performed by a different radiologist. We compared core-based cancer detection rates (CaDR) using the generalized linear mixed model (GLIMMIX) for each biopsy method. Results Core-based CaDR was higher in TB (17.92%, 38 of 212 cores) than in SB (6.15%, 31 of 504 cores) (p < 0.0001; GLIMMIX). In the cancer-positive TB cores, CaDR with suspicious lesions by mpMRI was higher than that by CEUS (86.8% vs. 60.5%, p= 0.02; paired t-test) and concordant rate between mpMRI and CEUS was significantly different with discordant rate (48% vs. 52%, p=0.04; McNemar’s test). Conclusion The mpMRI-CEUS correlated TB technique for the repeat prostate biopsy of patients with prior negative biopsy can improve CaDR based on the number of cores taken. PMID:26083348

  6. Preparation and in vitro evaluation of folate-receptor-targeted SPION-polymer micelle hybrids for MRI contrast enhancement in cancer imaging

    NASA Astrophysics Data System (ADS)

    Mahajan, Shveta; Koul, Veena; Choudhary, Veena; Shishodia, Gauri; Bharti, Alok C.

    2013-01-01

    Polymer-SPION hybrids were investigated for receptor-mediated localization in tumour tissue. Superparamagnetic iron oxide nanoparticles (SPIONs) prepared by high-temperature decomposition of iron acetylacetonate were monodisperse (9.27 ± 3.37 nm), with high saturation magnetization of 76.8 emu g-1. Amphiphilic copolymers prepared from methyl methacrylate and PEG methacrylate by atom transfer radical polymerization were conjugated with folic acid (for folate-receptor specificity). The folate-conjugated polymer had a low critical micellar concentration (0.4 mg l-1), indicating stability of the micellar formulation. SPION-polymeric micelle clusters were prepared by desolvation of the SPION dispersion/polymer solution in water. Magnetic resonance imaging of the formulation revealed very good contrast enhancement, with transverse (T2) relaxivity of 260.4 mM-1 s-1. The biological evaluation of the SPION micelles included cellular viability assay (MTT) and uptake in HeLa cells. These studies demonstrated the potential use of these nanoplatforms for imaging and targeting.

  7. Motion compensation method using dynamic programming for quantification of neovascularization in carotid atherosclerotic plaques with contrast enhanced ultrasound (CEUS)

    NASA Astrophysics Data System (ADS)

    Akkus, Zeynettin; Hoogi, Assaf; Renaud, Guillaume; ten Kate, Gerrit L.; van den Oord, Stijn C. H.; Schinkel, Arend F. L.; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.

    2012-03-01

    Intraplaque neovascularization (IPN) has been linked with progressive atherosclerotic disease and plaque instability in several studies. Quantification of IPN may allow early detection of vulnerable plaques. A dedicated motion compensation method with normalized-cross-correlation (NCC) block matching combined with multidimensional (2D+time) dynamic programming (MDP) was developed for quantification of IPN in small plaques (<30% diameter stenosis). The method was compared to NCC block matching without MDP (forward tracking (FT)) and showed to improve motion tracking. Side-by-side CEUS and B-mode ultrasound images of carotid arteries were acquired by a Philips iU22 system with a L9-3 linear array probe. The motion pattern for the plaque region was obtained from the Bmode images with MDP. MDP results were evaluated in-vitro by a phantom and in-vivo by comparing to manual tracking of three experts for multibeat-image-sequences (MIS) of 11 plaques. In the in-vivo images, the absolute error was 72+/-55μm (mean+/-SD) for X (longitudinal) and 34+/-23μm for Y (radial). The method's success rate was visually assessed on 67 MIS. The tracking was considered failed if it deviated >2 pixels (~200μm) from true motion in any frame. Tracking was scored as fully successful in 63 MIS (94%) for MDP vs. 52(78%) for FT. The range of displacement over these 63 was 1045+/-471μm (X) and 395+/-216μm (Y). The tracking sporadically failed in 4 MIS (6%) due to poor image quality, jugular vein proximity and out-of-plane motion. Motion compensation showed improved lumen-plaque contrast separation. In conclusion, the proposed method is sufficiently accurate and successful for in vivo application.

  8. Optimized Preload Leakage-Correction Methods to Improve the Diagnostic Accuracy of Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR Imaging in Posttreatment Gliomas

    PubMed Central

    Hu, L.S.; Baxter, L.C.; Pinnaduwage, D.S.; Paine, T.L.; Karis, J.P.; Feuerstein, B.G.; Schmainda, K.M.; Dueck, A.C.; Debbins, J.; Smith, K.A.; Nakaji, P.; Eschbacher, J.M.; Coons, S.W.; Heiserman, J.E.

    2015-01-01

    BACKGROUND AND PURPOSE Relative cerebral blood volume (rCBV) accuracy can vary substantially depending on the dynamic susceptibility-weighted contrast-enhanced (DSC) acquisition and postprocessing methods, due to blood-brain barrier disruption and resulting T1-weighted leakage and T2-and/or T2*-weighted imaging (T2/T2*WI) residual effects. We set out to determine optimal DSC conditions that address these errors and maximize rCBV accuracy in differentiating posttreatment radiation effect (PTRE) and tumor. MATERIALS AND METHODS We recruited patients with previously treated high-grade gliomas undergoing image-guided re-resection of recurrent contrast-enhancing MR imaging lesions. Thirty-six surgical tissue samples were collected from 11 subjects. Preoperative 3T DSC used 6 sequential evenly timed acquisitions, each by using a 0.05-mmol/kg gadodiamide bolus. Preload dosing (PLD) and baseline subtraction (BLS) techniques corrected T1-weighted leakage and T2/T2*WI residual effects, respectively. PLD amount and incubation time increased with each sequential acquisition. Corresponding tissue specimen stereotactic locations were coregistered to DSC to measure localized rCBV under varying PLD amounts, incubation times, and the presence of BLS. rCBV thresholds were determined to maximize test accuracy (average of sensitivity and specificity) in distinguishing tumor (n = 21) and PTRE (n = 15) samples under the varying conditions. Receiver operator characteristic (ROC) areas under the curve (AUCs) were statistically compared. RESULTS The protocol that combined PLD (0.1-mmol/kg amount, 6-minute incubation time) and BLS correction methods maximized test AUC (0.99) and accuracy (95.2%) compared with uncorrected rCBV AUC (0.85) and accuracy (81.0%) measured without PLD and BLS (P = .01). CONCLUSIONS Combining PLD and BLS correction methods for T1-weighted and T2/T2*WI errors, respectively, enables highly accurate differentiation of PTRE and tumor growth. PMID:19749223

  9. Time-resolved Non-contrast Enhanced 4-D Dynamic MRA using Multi-bolus TrueFISP based Spin Tagging with Alternating Radiofrequency (True-STAR)

    PubMed Central

    Yan, Lirong; Salamon, Noriko; Wang, Danny JJ

    2013-01-01

    Purpose The goal of the present study was to introduce a new non-contrast enhanced 4D dynamic MR angiography (dMRA) technique termed multi-bolus TrueFISP based spin tagging with alternating radiofrequency (TrueSTAR). Methods Multi-bolus TrueSTAR was developed by taking advantage of the phenomenon that the steady-state signal of TrueFISP is minimally disturbed by periodically inserted magnetization preparations (e.g., spin tagging) that are sandwiched by 2 α/2 RF pulses. Both theoretical analysis and experimental studies were carried out to optimize the proposed method which was compared with both pulsed and pseudo-continuous arterial spin labeling (pCASL) based dMRA in healthy volunteers. Optimized multi-bolus dMRA was also applied in a patient with arteriovenous malformation (AVM) to demonstrate its potential clinical utility. Results Multi-bolus dMRA offered a prolonged tagging bolus compared to the standard single-bolus dMRA, and allowed improved visualization of the draining veins in the AVM patient. Compared to pCASL based dMRA, multi-bolus dMRA provided visualization of the full passage of the labeled blood with the flexibility for both static and dynamic MRA. Conclusion By combining the benefits of pulsed and pCASL based dMRA, multi-bolus TrueSTAR can prolong and enhance the tagging bolus without sacrificing imaging speed or temporal resolution. PMID:23440649

  10. Ultrasound Despeckling for Contrast Enhancement

    PubMed Central

    Tay, Peter C.; Garson, Christopher D.; Acton, Scott T.; Hossack, John A.

    2010-01-01

    Images produced by ultrasound systems are adversely hampered by a stochastic process known as speckle. A despeckling method based upon removing outlier is proposed. The method is developed to contrast enhance B-mode ultrasound images. The contrast enhancement is with respect to decreasing pixel variations in homogeneous regions while maintaining or improving differences in mean values of distinct regions. A comparison of the proposed despeckling filter is compared with the other well known despeckling filters. The evaluations of despeckling performance are based upon improvements to contrast enhancement, structural similarity, and segmentation results on a Field II simulated image and actual B-mode cardiac ultrasound images captured in vivo. PMID:20227984

  11. Ultrasound despeckling for contrast enhancement.

    PubMed

    Tay, Peter C; Garson, Christopher D; Acton, Scott T; Hossack, John A

    2010-07-01

    Images produced by ultrasound systems are adversely hampered by a stochastic process known as speckle. A despeckling method based upon removing outlier is proposed. The method is developed to contrast enhance B-mode ultrasound images. The contrast enhancement is with respect to decreasing pixel variations in homogeneous regions while maintaining or improving differences in mean values of distinct regions. A comparison of the proposed despeckling filter is compared with the other well known despeckling filters. The evaluations of despeckling performance are based upon improvements to contrast enhancement, structural similarity, and segmentation results on a Field II simulated image and actual B-mode cardiac ultrasound images captured in vivo. PMID:20227984

  12. Estimating blood-brain barrier opening in a rat model of hemorrhagic transformation with Patlak plots of Gd-DTPA contrast-enhanced MRI.

    PubMed

    Fenstermacher, J D; Knight, R A; Ewing, J R; Nagaraja, T; Nagesh, V; Yee, J S; Arniego, P A

    2003-01-01

    Patlak plot processing of Gd-shifted T1 relaxation-time images from a rat model of hemorrhagic transformation yielded estimates and maps of the blood-to-brain influx rate constant of Gd-DTPA (K1). The Patlak plots also produced a heretofore unrecognized parameter, the distribution space of the intravascular-Gd-shifted protons (Vp), an index of blood-to-tissue transfer of water. The K1 values for Gd-DTPA were very high for the regions of blood-brain barrier (BBB) opening and were similar to those of 14C-sucrose concurrently obtained by quantitative autoradiographic (QAR) analysis. In these same ROI's, Vp was five-fold greater than normal, which suggests that the permeability of the BBB to water was also increased. The 14C-sucrose space of distribution in the ischemic ROI's was around 8%, thus indicating a sizable interstitial space. The spatial resolving power of Gd-DTPA-deltaT1 imaging was rather good, although no match for 14C-sucrose-QAR. This study shows that quantitative deltaT1-MRI estimates of regional blood-brain transfer constants of Gd-DTPA and water distribution are possible when Patlak plots are employed to process the data. This approach may be useful for tracking the time-course of BBB barrier function in both animals and humans. PMID:14753399

  13. Feasibility of Single-Input Tracer Kinetic Modeling with Continuous-Time Formalism in Liver 4-Phase Dynamic Contrast-Enhanced CT

    PubMed Central

    Lee, Sang Ho; Ryu, Yasuji; Hayano, Koichi; Yoshida, Hiroyuki

    2015-01-01

    The modeling of tracer kinetics with use of low-temporal-resolution data is of central importance for patient dose reduction in dynamic contrast-enhanced CT (DCE-CT) study. Tracer kinetic models of the liver vary according to the physiologic assumptions imposed on the model, and they can substantially differ in the ways how the input for blood supply and tissue compartments are modeled. In this study, single-input flow-limited (FL), Tofts-Kety (TK), extended TK (ETK), Hayton-Brady (HB), two compartment exchange (2CX), and adiabatic approximation to the tissue homogeneity (AATH) models were applied to the analysis of liver 4-phase DCE-CT data with fully continuous-time parameter formulation, including the bolus arrival time. The bolus arrival time for the 2CX and AATH models was described by modifying the vascular transport operator theory. Initial results indicate that single-input tracer kinetic modeling is feasible for distinguishing between hepatocellular carcinoma and normal liver parenchyma. PMID:26236779

  14. High Spatial and Temporal Resolution Dynamic Contrast-Enhanced Magnetic Resonance Angiography (CE-MRA) using Compressed Sensing with Magnitude Image Subtraction

    PubMed Central

    Rapacchi, Stanislas; Han, Fei; Natsuaki, Yutaka; Kroeker, Randall; Plotnik, Adam; Lehman, Evan; Sayre, James; Laub, Gerhard; Finn, J Paul; Hu, Peng

    2014-01-01

    Purpose We propose a compressed-sensing (CS) technique based on magnitude image subtraction for high spatial and temporal resolution dynamic contrast-enhanced MR angiography (CE-MRA). Methods Our technique integrates the magnitude difference image into the CS reconstruction to promote subtraction sparsity. Fully sampled Cartesian 3D CE-MRA datasets from 6 volunteers were retrospectively under-sampled and three reconstruction strategies were evaluated: k-space subtraction CS, independent CS, and magnitude subtraction CS. The techniques were compared in image quality (vessel delineation, image artifacts, and noise) and image reconstruction error. Our CS technique was further tested on 7 volunteers using a prospectively under-sampled CE-MRA sequence. Results Compared with k-space subtraction and independent CS, our magnitude subtraction CS provides significantly better vessel delineation and less noise at 4X acceleration, and significantly less reconstruction error at 4X and 8X (p<0.05 for all). On a 1–4 point image quality scale in vessel delineation, our technique scored 3.8±0.4 at 4X, 2.8±0.4 at 8X and 2.3±0.6 at 12X acceleration. Using our CS sequence at 12X acceleration, we were able to acquire dynamic CE-MRA with higher spatial and temporal resolution than current clinical TWIST protocol while maintaining comparable image quality (2.8±0.5 vs. 3.0±0.4, p=NS). Conclusion Our technique is promising for dynamic CE-MRA. PMID:23801456

  15. Periodicity in tumor vasculature targeting kinetics of ligand-functionalized nanoparticles studied by dynamic contrast enhanced magnetic resonance imaging and intravital microscopy

    PubMed Central

    Cebulla, Jana; Huuse, Else Marie; Davies, Catharina de L.; Mulder, Willem J. M.; Larsson, Henrik B.W.; Haraldseth, Olav

    2014-01-01

    In the past two decades advances in the development of targeted nanoparticles have facilitated their application as molecular imaging agents and targeted drug delivery vehicles. Nanoparticle-enhanced molecular imaging of the angiogenic tumor vasculature has been of particular interest. Not only because angiogenesis plays an important role in various pathologies, but also since endothelial cell surface receptors are directly accessible for relatively large circulating nanoparticles. Typically, nanoparticle targeting towards these receptors is studied by analyzing the contrast distribution on tumor images acquired before and at set time points after administration. Although several exciting proof-of-concept studies demonstrated qualitative assessment of relative target concentration and distribution, these studies did not provide quantitative information on the nanoparticle targeting kinetics. These kinetics will not only depend on nanoparticle characteristics, but also on receptor binding and recycling. In this study, we monitored the in vivo targeting kinetics of αvβ3-integrin specific nanoparticles with intravital microscopy and dynamic contrast enhanced magnetic resonance imaging, and using compartment modeling we were able to quantify nanoparticle targeting rates. As such, this approach can facilitate optimization of targeted nanoparticle design and it holds promise for providing more quantitative information on in vivo receptor levels. Interestingly, we also observed a periodicity in the accumulation kinetics of αvβ3-integrin targeted nanoparticles and hypothesize that this periodicity is caused by receptor binding, internalization and recycling dynamics. Taken together, this demonstrates that our experimental approach provides new insights in in vivo nanoparticle targeting, which may proof useful for vascular targeting in general. PMID:23982332

  16. Radiochemotherapy-induced changes of tumour vascularity and blood supply estimated by dynamic contrast-enhanced CT and fractal analysis in malignant head and neck tumours

    PubMed Central

    Hietschold, V; Appold, S; von Kummer, R; Abolmaali, N

    2015-01-01

    Objective: To investigate radiochemotherapy (RChT)-induced changes of transfer coefficient (Ktrans) and relative tumour blood volume (rTBV) estimated by dynamic contrast-enhanced CT (DCE-CT) and fractal analysis in head and neck tumours (HNTs). Methods: DCE-CT was performed in 15 patients with inoperable HNTs before RChT, and after 2 and 5 weeks. The dynamics of Ktrans and rTBV as well as lacunarity, slope of log(lacunarity) vs log(box size), and fractal dimension were compared with tumour behaviour during RChT and in the 24-month follow-up. Results: In 11 patients, an increase of Ktrans and/or rTBV after 20 Gy followed by a decrease of both parameters after 50 Gy was noted. Except for one local recurrence, no tumour residue was found during the follow-up. In three patients with partial tumour reduction during RChT, a decrease of Ktrans accompanied by an increase in rTBV between 20 and 50 Gy was detected. In one patient with continuous elevation of both parameters, tumour progressed after RChT. Pre-treatment difference in intratumoral heterogeneity with its decline under RChT for the responders vs non-responders was observed. Conclusion: Initial growth of Ktrans and/or rTBV followed by further reduction of both parameters along with the decline of the slope of log(lacunarity) vs log(box size) was associated with positive radiochemotherapeutic response. Increase of Ktrans and/or rTBV under RChT indicated a poor outcome. Advances in knowledge: The modification of Ktrans and rTBV as measured by DCE-CT may be applied for the assessment of tumour sensitivity to chose RChT regimen and, consequently, to reveal clinical impact allowing individualization of RChT strategy in patients with HNT. PMID:25412001

  17. Contrast-Enhanced Endoscopic Ultrasound

    PubMed Central

    Dietrich, Christoph F.; Sharma, M.; Hocke, M.

    2012-01-01

    The European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) introduced guidelines on the use of contrast-enhanced ultrasound (CEUS) in 2004. This EFSUMB-document focused mainly on liver applications. However, new applications extending beyond the liver were developed thereafter. Increased interest in recent years in CEUS technique and in the application of CEUS in novel fields like endoscopic ultrasound (EUS) has revolutionized indications and applications. As a result, the EFSUMB initiated a new update of the guidelines in 2011 to include this additional knowledge. Some of the contrast-enhanced EUS (CE-EUS) indications are established, whereas others are preliminary; these latter indications are categorized as emergent CEUS applications since the available evidence is insufficient for general recommendation. This article focuses on the use of CE-EUS in various clinical settings. The reader will get an overview of current indications and possible applications of CE-EUS. This involves the introduction of different contrast studies including color Doppler techniques (known as contrast-enhanced high mechanical index endosonography or CEHMI-EUS) as well as more modern high-resolution contrast-enhanced techniques (known as contrast-enhanced low mechanical index endosonography or CELMI EUS). PMID:24949350

  18. Kinematic modeling and its implication in longitudinal chemotherapy study of tumor physiology: ovarian xenograft mouse model and contrast-enhanced dynamic CT (Honorable Mention Poster Award)

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Liang, Yun; Hutchins, Gary D.

    2004-04-01

    The purpose of this study is to demonstrate that dynamic CT provides the necessary sensitivity to quantify tumor physiology and differences in chemotherapeutic response. A compartmental mouse model utilizing measured contrast-enhanced dynamic CT scans is used to simulate systematic and statistical errors associated with tumor physiology: perfusion, permeability (PS), fractional plasma volume (fp), and fractional interstitial volume. The solute utilized is a small molecular weight radio-opaque contrast agent (isovue). For such an intravascular-interstitial medium, the kinematics simplifies to a two compartmental diffusive dominated set of coupled differential equations. Each combination of physiological parameters is repeatedly simulated fifteen times from which statistical errors calculated. The fractional change relative to the true value (systematic error) and standard deviation (statistical error) are plotted as a function of PS, fp, scanner temporal resolution and noise, and contrast media injection rates. By extrapolating from experimental data found in literature, a relative change in PS and fp of approximately 40% is required. Thus, the longitudinal response of two chemotherapeutic drugs under investigation - proteasome and IMPDH inhibitors - are hypothesized to induce different physiological responses. The first set of simulations varies PS from 0.05 to 0.40 mL/min/mL and fp from 0.01 to 0.07 mL/mL while holding all other physiological parameters constant. Errors in PS remain below 3% while statistical errors for fp increase significantly as the volume decreases toward 1-2%: errors remain less than 6% for fp>0.03 while increasing to above 15% for fp<0.02. The second set of simulations are performed quantifying the relationship between scanner temporal resolution and contrast media injection rate for various tumor permeabilities. For the majority of cases, the errors remain below 5%. As PS approaches perfusion, a total error less than 6% can be maintained

  19. Quantitative Evaluation of Diffusion and Dynamic Contrast-Enhanced MR in Tumor Parenchyma and Peritumoral Area for Distinction of Brain Tumors

    PubMed Central

    Zhao, Jing; Yang, Zhi-yun; Luo, Bo-ning; Yang, Jian-yong; Chu, Jian-ping

    2015-01-01

    Purpose To quantitatively evaluate the diagnostic efficiency of parameters from diffusion and dynamic contrast-enhanced MR which based on tumor parenchyma (TP) and peritumoral (PT) area in classification of brain tumors. Methods 45 patients (male: 23, female: 22; mean age: 46 y) were prospectively recruited and they underwent conventional, DCE-MR and DWI examination. With each tumor, 10–15 regions of interest (ROIs) were manually placed on TP and PT area. ADC and permeability parameters (Ktrans, Ve, Kep and iAUC) were calculated and their diagnostic efficiency was assessed. Results In TP, all permeability parameters and ADC value could significantly discriminate Low- from High grade gliomas (HGG) (p<0.001); among theses parameters, Ve demonstrated the highest diagnostic power (iAUC: 0.79, cut-off point: 0.15); the most sensitive and specific index for gliomas grading were Ktrans (84%) and Kep (89%). While, in PT area, only Ktrans could help in gliomas grading (P = 0.009, cut-off point: 0.03 min-1). Moreover, in TP, mean Ve and iAUC of primary central nervous system lymphoma (PCNSL) and metastases were significantly higher than that in HGG (p<0.003). Further, in PT area, mean Ktrans (p≤0.004) could discriminate PCNSL from HGG and ADC (p≤0.003) could differentiate metastases with HGG. Conclusions Quantitative ADC and permeability parameters from Diffusion and DCE-MR in TP and PT area, especially DCE-MR, can aid in gliomas grading and brain tumors discrimination. Their combined application is strongly recommended in the differential diagnosis of these tumor entities. PMID:26384329

  20. Integrated 18F-Fluorodeoxyglucose–Positron Emission Tomography/Dynamic Contrast-Enhanced Computed Tomography to Phenotype Non–Small Cell Lung Carcinoma

    PubMed Central

    Shastry, Manu; Miles, Kenneth A.; Win, Thida; Janes, Sam M.; Endozo, Raymond; Meagher, Marie; Ell, Peter J.; Groves, Ashley M.

    2012-01-01

    We applied modern molecular and functional imaging to the pretreatment assessment of lung cancer using combined dynamic contrast-enhanced computed tomography (DCE-CT) and 18F-fluorodeoxyglucose–positron emission tomography (18F-FDG-PET) to phenotype tumors. Seventy-four lung cancer patients were prospectively recruited for 18F-FDG-PET/DCE-CT using PET/64-detector CT. After technical failures, there were 64 patients (35 males, 29 females; mean age [± SD] 67.5 ± 7.9 years). DCE-CT yielded tumor peak enhancement (PE) and standardized perfusion value (SPV). The uptake of 18F-FDG quantified on PET as the standardized uptake value (SUVmax) assessed tumor metabolism. The median values for SUVmax and SPV were used to define four vascular-metabolic phenotypes. There were associations (Spearman rank correlation [rs]) between tumor size and vascular-metabolic parameters: SUVmax versus size (rs = .40, p = .001) and SUV/PE versus size (r = .43, p < .001). Patients with earlier-stage (I–IIA, n = 30) disease had mean (± SD) SUV/PE 0.36 ± 0.28 versus 0.56 ± 0.32 in later-stage (stage IIB–IV, n = 34) disease (p = .007). The low metabolism with high vascularity phenotype was significantly more common among adenocarcinomas (p = .018), whereas the high metabolism with high vascularity phenotype was more common among squamous cell carcinomas (p = .024). Other non–small cell lung carcinoma tumor types demonstrated a high prevalence of the high metabolism with low vascularity phenotype (p = .028). We show that tumor subtypes have different vascular-metabolic associations, which can be helpful clinically in managing lung cancer patients to hone targeted therapy. PMID:22954179

  1. Integrated 18F-fluorodeoxyglucose-positron emission tomography/dynamic contrast-enhanced computed tomography to phenotype non-small cell lung carcinoma.

    PubMed

    Shastry, Manu; Miles, Kenneth A; Win, Thida; Janes, Sam M; Endozo, Raymond; Meagher, Marie; Ell, Peter J; Groves, Ashley M

    2012-01-01

    We applied modern molecular and functional imaging to the pretreatment assessment of lung cancer using combined dynamic contrast-enhanced computed tomography (DCE-CT) and (18)F-fluorodeoxyglucose-positron emission tomography ((18)F-FDG-PET) to phenotype tumors. Seventy-four lung cancer patients were prospectively recruited for (18)F-FDG-PET/DCE-CT using PET/64-detector CT. After technical failures, there were 64 patients (35 males, 29 females; mean age [± SD] 67.5 ± 7.9 years). DCE-CT yielded tumor peak enhancement (PE) and standardized perfusion value (SPV). The uptake of (18)F-FDG quantified on PET as the standardized uptake value (SUV(max)) assessed tumor metabolism. The median values for SUV(max) and SPV were used to define four vascular-metabolic phenotypes. There were associations (Spearman rank correlation [rs]) between tumor size and vascular-metabolic parameters: SUV(max) versus size (rs  =  .40, p  =  .001) and SUV/PE versus size (r  =  .43, p < .001). Patients with earlier-stage (I-IIA, n  =  30) disease had mean (± SD) SUV/PE 0.36 ± 0.28 versus 0.56 ± 0.32 in later-stage (stage IIB-IV, n  =  34) disease (p  =  .007). The low metabolism with high vascularity phenotype was significantly more common among adenocarcinomas (p  =  .018), whereas the high metabolism with high vascularity phenotype was more common among squamous cell carcinomas (p  =  .024). Other non-small cell lung carcinoma tumor types demonstrated a high prevalence of the high metabolism with low vascularity phenotype (p  =  .028). We show that tumor subtypes have different vascular-metabolic associations, which can be helpful clinically in managing lung cancer patients to hone targeted therapy. PMID:22954179

  2. Early quantification of the therapeutic efficacy of the vascular disrupting agent, CKD-516, using dynamic contrast-enhanced ultrasonography in rabbit VX2 liver tumors

    PubMed Central

    2014-01-01

    Purpose: To evaluate the usefulness of dynamic contrast-enhanced ultrasonography (DCE-US) in the early quantification of hemodynamic change following administration of the vascular disrupting agent (VDA) CKD-516 using a rabbit VX2 liver tumor model. Methods: This study was approved by our institutional animal care and use committee. Eight VX2 liver-tumor-bearing rabbits were treated with intravenous CKD-516, and all underwent DCE-US using SonoVue before and again 2, 4, 6, and 24 hours following their treatment. The tumor perfusion parameters were obtained from the time-intensity curve of the DCE-US data. Repeated measures analysis of variance was performed to assess any significant change in tumor perfusion over time. Relative changes in the DCE-US parameters between the baseline and follow-up assessments were correlated with the relative changes in tumor size over the course of seven days using Pearson correlation. Results: CKD-516 treatment resulted in significant changes in the DCE-US parameters, including the peak intensity, total area under the time-intensity curve (AUCtotal), and AUC during wash-out (AUCout) over time (P<0.05). Pairwise comparison tests revealed that the AUCtotal and AUC during wash-in (AUCin) seen on the two-hour follow-up were significantly lower than the baseline values (P<0.05). However, none of early changes in the DCE-US parameters until 24-hour follow-up showed a significant correlation with the relative changes in tumor size during seven days after CKD-516 treatment. Conclusion: Our results suggest that a novel VDA (CKD-516) can cause disruption of tumor perfusion as early as two hours after treatment and that the therapeutic effect of CKD-516 treatment can be effectively quantified using DCE-US. PMID:24936491

  3. Scan-rescan reproducibility of quantitative assessment of inflammatory carotid atherosclerotic plaque using dynamic contrast-enhanced 3T CMR in a multi-center study

    PubMed Central

    2014-01-01

    Background The aim of this study is to investigate the inter-scan reproducibility of kinetic parameters in atherosclerotic plaque using dynamic contrast-enhanced (DCE) cardiovascular magnetic resonance (CMR) in a multi-center setting at 3T. Methods Carotid arteries of 51 subjects from 15 sites were scanned twice within two weeks on 3T scanners using a previously described DCE-CMR protocol. Imaging data with protocol compliance and sufficient image quality were analyzed to generate kinetic parameters of vessel wall, expressed as transfer constant (Ktrans) and plasma volume (vp). The inter-scan reproducibility was evaluated using intra-class correlation coefficient (ICC) and coefficient of variation (CV). Power analysis was carried out to provide sample size estimations for future prospective study. Results Ten (19.6%) subjects were found to suffer from protocol violation, and another 6 (11.8%) had poor image quality (n = 6) in at least one scan. In the 35 (68.6%) subjects with complete data, the ICCs of Ktrans and vp were 0.65 and 0.28, respectively. The CVs were 25% and 62%, respectively. The ICC and CV for vp improved to 0.73 and 28% in larger lesions with analyzed area larger than 25 mm2. Power analysis based on the measured CV showed that 50 subjects per arm are sufficient to detect a 20% difference in change of Ktrans over time between treatment arms with 80% power without consideration of the dropout rate. Conclusion The result of this study indicates that quantitative measurement from DCE-CMR is feasible to detect changes with a relatively modest sample size in a prospective multi-center study despite the limitations. The relative high dropout rate suggested the critical needs for intensive operator training, optimized imaging protocol, and strict quality control in future studies. PMID:25084698

  4. Assessment of synovitis with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in people with, or at high risk of, knee osteoarthritis: the MOST study

    PubMed Central

    Guermazi, Ali; Roemer, Frank W; Hayashi, Daichi; Crema, Michel D; Niu, Jingbo; Zhang, Yuqing; Marra, Monica D; Katur, Avinash; Lynch, John A; El-Khoury, George Y; Baker, Kristin; Hughes, Laura B; Nevitt, Michael C; Felson, David T

    2014-01-01

    Objectives To introduce a comprehensive and reliable scoring system for the assessment of whole-knee joint synovitis based on contrast-enhanced (CE) MRI. Methods Multicenter Osteoarthritis Study (MOST) is a cohort study of people with, or at high risk of, knee osteoarthritis (OA). Subjects are an unselected subset of MOST who volunteered for CE-MRI. Synovitis was assessed at 11 sites of the joint. Synovial thickness was scored semiquantitatively: grade 0 (<2 mm), grade 1 (2–4 mm) and grade 2 (>4 mm) at each site. Two musculoskeletal radiologists performed the readings and inter- and intrareader reliability was evaluated. Whole-knee synovitis was assessed by summing the scores from all sites. The association of Western Ontario and McMaster Osteoarthritis Index pain score with this summed score and with the maximum synovitis grade for each site was assessed. Results 400 subjects were included (mean age 58.8±7.0 years, body mass index 29.5±4.9 kg/m2, 46% women). For individual sites, intrareader reliability (weighted κ) was 0.67–1.00 for reader 1 and 0.60–1.00 for reader 2. Inter-reader agreement (κ) was 0.67–0.92. For the summed synovitis scores, intrareader reliability (intraclass correlation coefficient (ICC)) was 0.98 and 0.96 for each reader and inter-reader agreement (ICC) was 0.94. Moderate to severe synovitis in the parapatellar subregion was associated with the higher maximum pain score (adjusted OR (95% CI), 2.8 (1.4 to 5.4) and 3.1 (1.2 to 7.9), respectively). Conclusions A comprehensive semiquantitative scoring system for the assessment of whole-knee synovitis is proposed. It is reliable and identifies knees with pain, and thus is a potentially powerful tool for synovitis assessment in epidemiological OA studies. PMID:21187293

  5. Automated Voxel-Based Analysis of Volumetric Dynamic Contrast-Enhanced CT Data Improves Measurement of Serial Changes in Tumor Vascular Biomarkers

    SciTech Connect

    Coolens, Catherine; Driscoll, Brandon; Chung, Caroline; Shek, Tina; Gorjizadeh, Alborz; Ménard, Cynthia; Jaffray, David

    2015-01-01

    Objectives: Development of perfusion imaging as a biomarker requires more robust methodologies for quantification of tumor physiology that allow assessment of volumetric tumor heterogeneity over time. This study proposes a parametric method for automatically analyzing perfused tissue from volumetric dynamic contrast-enhanced (DCE) computed tomography (CT) scans and assesses whether this 4-dimensional (4D) DCE approach is more robust and accurate than conventional, region-of-interest (ROI)-based CT methods in quantifying tumor perfusion with preliminary evaluation in metastatic brain cancer. Methods and Materials: Functional parameter reproducibility and analysis of sensitivity to imaging resolution and arterial input function were evaluated in image sets acquired from a 320-slice CT with a controlled flow phantom and patients with brain metastases, whose treatments were planned for stereotactic radiation surgery and who consented to a research ethics board-approved prospective imaging biomarker study. A voxel-based temporal dynamic analysis (TDA) methodology was used at baseline, at day 7, and at day 20 after treatment. The ability to detect changes in kinetic parameter maps in clinical data sets was investigated for both 4D TDA and conventional 2D ROI-based analysis methods. Results: A total of 7 brain metastases in 3 patients were evaluated over the 3 time points. The 4D TDA method showed improved spatial efficacy and accuracy of perfusion parameters compared to ROI-based DCE analysis (P<.005), with a reproducibility error of less than 2% when tested with DCE phantom data. Clinically, changes in transfer constant from the blood plasma into the extracellular extravascular space (K{sub trans}) were seen when using TDA, with substantially smaller errors than the 2D method on both day 7 post radiation surgery (±13%; P<.05) and by day 20 (±12%; P<.04). Standard methods showed a decrease in K{sub trans} but with large uncertainty (111.6 ± 150.5) %. Conclusions

  6. Effect of Radiofrequency Transmit Field Correction on Quantitative Dynamic Contrast-enhanced MR Imaging of the Breast at 3.0 T.

    PubMed

    Bedair, Reem; Graves, Martin J; Patterson, Andrew J; McLean, Mary A; Manavaki, Roido; Wallace, Tess; Reid, Scott; Mendichovszky, Iosif; Griffiths, John; Gilbert, Fiona J

    2016-05-01

    Purpose To investigate the effects of radiofrequency transmit field (B1(+)) correction on (a) the measured T1 relaxation times of normal breast tissue and malignant lesions and (b) the pharmacokinetically derived parameters of malignant breast lesions at 3 T. Materials and Methods Ethics approval and informed consent were obtained. Between May 2013 and January 2014, 30 women (median age, 58 years; range, 32-83 years) with invasive ductal carcinoma of at least 10 mm were recruited to undergo dynamic contrast material-enhanced magnetic resonance (MR) imaging before surgery. B1(+) and T1 mapping sequences were performed to determine the effect of B1(+) correction on the native tissue relaxation time (T10) of fat, parenchyma, and malignant lesions in both breasts. Pharmacokinetic parameters were calculated before and after correction for B1(+) variations. Results were correlated with histologic grade by using the Kruskal-Wallis test. Results Measurements showed a mean 37% flip angle difference between the right and left breast, which resulted in a 61% T10 difference in fat and a 41.5% difference in parenchyma between the two breasts. The T1 of lesions in the right breast increased by 58%, whereas that of lesions in the left breast decreased by 30% after B1(+) correction. The whole-tumor transendothelial permeability across the vascular compartment(K(trans)) of lesions in the right breast decreased by 41%, and that of lesions in the left breast increased by 46% after correction. A systematic increase in K(trans) was observed, with significant differences found across the histologic grades (P < .001). The effect size of B1(+) correction on K(trans) calculation was large for lesions in the right breast and moderate for lesions in the left breast (Cohen effect size, d = 0.86 and d = 0.59, respectively). Conclusion B1(+) correction demonstrates a substantial effect on the results of quantitative dynamic contrast-enhanced analysis of breast tissue at 3 T, which propagates

  7. Monitoring the Effects of Anti-angiogenesis on the Radiation Sensitivity of Pancreatic Cancer Xenografts Using Dynamic Contrast-Enhanced Computed Tomography

    SciTech Connect

    Cao, Ning; Cao, Minsong; Chin-Sinex, Helen; Mendonca, Marc; Ko, Song-Chu; Stantz, Keith M.

    2014-02-01

    Purpose: To image the intratumor vascular physiological status of pancreatic tumors xenografts and their response to anti-angiogenic therapy using dynamic contrast-enhanced computed tomography (DCE-CT), and to identify parameters of vascular physiology associated with tumor x-ray sensitivity after anti-angiogenic therapy. Methods and Materials: Nude mice bearing human BxPC-3 pancreatic tumor xenografts were treated with 5 Gy of radiation therapy (RT), either a low dose (40 mg/kg) or a high dose (150 mg/kg) of DC101, the anti-VEGF receptor-2 anti-angiogenesis antibody, or with combination of low or high dose DC101 and 5 Gy RT (DC101-plus-RT). DCE-CT scans were longitudinally acquired over a 3-week period post-DC101 treatment. Parametric maps of tumor perfusion and fractional plasma volume (F{sub p}) were calculated and their averaged values and histogram distributions evaluated and compared to controls, from which a more homogeneous physiological window was observed 1-week post-DC101. Mice receiving a combination of DC101-plus-RT(5 Gy) were imaged baseline before receiving DC101 and 1 week after DC101 (before RT). Changes in perfusion and F{sub p} were compared with alternation in tumor growth delay for RT and DC101-plus-RT (5 Gy)-treated tumors. Results: Pretreatment with low or high doses of DC101 before RT significantly delayed tumor growth by an average 7.9 days compared to RT alone (P ≤ .01). The increase in tumor growth delay for the DC101-plus-RT-treated tumors was strongly associated with changes in tumor perfusion (ΔP>−15%) compared to RT treated tumors alone (P=.01). In addition, further analysis revealed a trend linking the tumor's increased growth delay to its tumor volume-to-DC101 dose ratio. Conclusions: DCE-CT is capable of monitoring changes in intratumor physiological parameter of tumor perfusion in response to anti-angiogenic therapy of a pancreatic human tumor xenograft that was associated with enhanced radiation response.

  8. Use of cardiac output to improve measurement of input function in quantitative dynamic contrast-enhanced MRI

    PubMed Central

    Zhang, Jeff L.; Rusinek, Henry; Bokacheva, Louisa; Chen, Qun; Storey, Pippa; Lee, Vivian S.

    2009-01-01

    Purpose: To validate a new method for converting MR arterial signal intensity versus time curves to arterial input functions (AIF). Materials and Methods: The method constrains AIF with patient's cardiac output (Q). Monte Carlo simulations of MR renography and tumor perfusion protocols were carried out for comparison with two alternative methods: direct measurement and population-averaged input function. MR renography was performed to assess the method's inter- and intra-day reproducibility for renal parameters. Results: In simulations of tumor perfusion, the precision of the parameters (Ktrans and ve) computed using the proposed method was improved by at least a factor of three compared to direct measurement. Similar improvements were obtained in simulations of MR renography. Volunteer study for testing inter-day reproducibility confirmed the improvement of precision in renal parameters when using the proposed method, compared to conventional methods. In another patient study (two injections within one session), the proposed method significantly increased the correlation coefficient (R) between GFR of the two exams (0.92 vs. 0.83), compared to direct measurement. Conclusion: A new method significantly improves the precision of DCE parameters. The method may be especially useful for analyzing repeated DCE examinations, such as monitoring tumor therapy or ACE-inhibitor renography. PMID:19711414

  9. Dynamic Contrast Enhanced MRI in Patients With Advanced Breast or Pancreatic Cancer With Metastases to the Liver or Lung

    ClinicalTrials.gov

    2014-05-28

    Acinar Cell Adenocarcinoma of the Pancreas; Duct Cell Adenocarcinoma of the Pancreas; Liver Metastases; Lung Metastases; Recurrent Breast Cancer; Recurrent Pancreatic Cancer; Stage IV Breast Cancer; Stage IV Pancreatic Cancer

  10. Contrast-enhanced refraction imaging

    NASA Astrophysics Data System (ADS)

    Hall, Christopher J.; Rogers, Keith D.; Lewis, Rob A.; Menk, Ralf Hendrik; Arfelli, Fulvia; Siu, Karen K.; Benci, A.; Kitchen, M.; Pillon, Alessandra; Rigon, Luigi; Round, Andrew J.; Hufton, Alan P.; Evans, Andrew; Pinder, Sarah E.; Evans, S.

    2004-01-01

    An attempt has been made, for the first time, to extend the capabilities of diffraction enhanced imaging (DEI) using low concentrations of a contrast agent. A phantom has been constructed to accommodate a systematic series of diluted bromine deoxyuridase (BrDU) samples in liquid form. This was imaged using a conventional DEI arrangement and at a range of energies traversing the Br K-edge. The images were analyzed to provide a quantitative measure of contrast as a function of X-ray energy and (BrDU) concentration. The results indicate that the particular experimental arrangement was not optimized to exploit the potential of this contrast enhancement and several suggestions are discussed to improve this further.

  11. Contrast enhancement of mail piece images

    NASA Astrophysics Data System (ADS)

    Shin, Yong-Chul; Sridhar, Ramalingam; Demjanenko, Victor; Palumbo, Paul W.; Hull, Jonathan J.

    1992-08-01

    A New approach to contrast enhancement of mail piece images is presented. The contrast enhancement is used as a preprocessing step in the real-time address block location (RT-ABL) system. The RT-ABL system processes a stream of mail piece images and locates destination address blocks. Most of the mail pieces (classified into letters) show high contrast between background and foreground. As an extreme case, however, the seasonal greeting cards usually use colored envelopes which results in reduced contrast osured by an error rate by using a linear distributed associative memory (DAM). The DAM is trained to recognize the spectra of three classes of images: with high, medium, and low OCR error rates. The DAM is not forced to make a classification every time. It is allowed to reject as unknown a spectrum presented that does not closely resemble any that has been stored in the DAM. The DAM was fairly accurate with noisy images but conservative (i.e., rejected several text images as unknowns) when there was little ground and foreground degradations without affecting the nondegraded images. This approach provides local enhancement which adapts to local features. In order to simplify the computation of A and (sigma) , dynamic programming technique is used. Implementation details, performance, and the results on test images are presented in this paper.

  12. Contrast-Enhanced Digital Mammography and Angiogenesis

    SciTech Connect

    Rosado-Mendez, I.; Palma, B. A.; Villasenor, Y.; Benitez-Bribiesca, L.; Brandan, M. E.

    2007-11-26

    Angiogenesis could be a means for pouring contrast media around tumors. In this work, optimization of radiological parameters for contrast-enhanced subtraction techniques in mammography has been performed. A modification of Lemacks' analytical formalism was implemented to model the X-ray absorption in the breast with contrast medium and detection by a digital image receptor. Preliminary results of signal-to-noise ratio analysis show the advantage of subtracting two images taken at different energies, one prior and one posterior to the injection of contrast medium. Preliminary experimental results using a custom-made phantom have shown good agreement with calculations. A proposal is presented for the clinical application of the optimized technique, which aims at finding correlations between angiogenesis indicators and dynamic variables of contrast medium uptake.

  13. Modeling the effects of contrast enhancement on target acquisition performance

    NASA Astrophysics Data System (ADS)

    Du Bosq, Todd W.; Fanning, Jonathan D.

    2008-04-01

    Contrast enhancement and dynamic range compression are currently being used to improve the performance of infrared imagers by increasing the contrast between the target and the scene content, by better utilizing the available gray levels either globally or locally. This paper assesses the range-performance effects of various contrast enhancement algorithms for target identification with well contrasted vehicles. Human perception experiments were performed to determine field performance using contrast enhancement on the U.S. Army RDECOM CERDEC NVESD standard military eight target set using an un-cooled LWIR camera. The experiments compare the identification performance of observers viewing linearly scaled images and various contrast enhancement processed images. Contrast enhancement is modeled in the US Army thermal target acquisition model (NVThermIP) by changing the scene contrast temperature. The model predicts improved performance based on any improved target contrast, regardless of feature saturation or enhancement. To account for the equivalent blur associated with each contrast enhancement algorithm, an additional effective MTF was calculated and added to the model. The measured results are compared with the predicted performance based on the target task difficulty metric used in NVThermIP.

  14. Improving synthesis and analysis prior blind compressed sensing with low-rank constraints for dynamic MRI reconstruction.

    PubMed

    Majumdar, Angshul

    2015-01-01

    In blind compressed sensing (BCS), both the sparsifying dictionary and the sparse coefficients are estimated simultaneously during signal recovery. A recent study adopted the BCS framework for recovering dynamic MRI sequences from under-sampled K-space measurements; the results were promising. Previous works in dynamic MRI reconstruction showed that, recovery accuracy can be improved by incorporating low-rank penalties into the standard compressed sensing (CS) optimization framework. Our work is motivated by these studies, and we improve upon the basic BCS framework by incorporating low-rank penalties into the optimization problem. The resulting optimization problem has not been solved before; hence we derive a Split Bregman type technique to solve the same. Experiments were carried out on real dynamic contrast enhanced MRI sequences. Results show that, with our proposed improvement, the reconstruction accuracy is better than BCS and other state-of-the-art dynamic MRI recovery algorithms. PMID:25179137

  15. Pre-Treatment Whole Blood Gene Expression Is Associated with 14-Week Response Assessed by Dynamic Contrast Enhanced Magnetic Resonance Imaging in Infliximab-Treated Rheumatoid Arthritis Patients

    PubMed Central

    MacIsaac, Kenzie D.; Baumgartner, Richard; Kang, Jia; Loboda, Andrey; Peterfy, Charles; DiCarlo, Julie; Riek, Jonathan; Beals, Chan

    2014-01-01

    Approximately 30% of rheumatoid arthritis patients achieve inadequate response to anti-TNF biologics. Attempts to identify molecular biomarkers predicting response have met with mixed success. This may be attributable, in part, to the variable and subjective disease assessment endpoints with large placebo effects typically used to classify patient response. Sixty-one patients with active RA despite methotrexate treatment, and with MRI-documented synovitis, were randomized to receive infliximab or placebo. Blood was collected at baseline and genome-wide transcription in whole blood was measured using microarrays. The primary endpoint in this study was determined by measuring the transfer rate constant (Ktrans) of a gadolinium-based contrast agent from plasma to synovium using MRI. Secondary endpoints included repeated clinical assessments with DAS28(CRP), and assessments of osteitis and synovitis by the RAMRIS method. Infliximab showed greater decrease from baseline in DCE-MRI Ktrans of wrist and MCP at all visits compared with placebo (P<0.001). Statistical analysis was performed to identify genes associated with treatment-specific 14-week change in Ktrans. The 256 genes identified were used to derive a gene signature score by averaging their log expression within each patient. The resulting score correlated with improvement of Ktrans in infliximab-treated patients and with deterioration of Ktrans in placebo-treated subjects. Poor responders showed high expression of activated B-cell genes whereas good responders exhibited a gene expression pattern consistent with mobilization of neutrophils and monocytes and high levels of reticulated platelets. This gene signature was significantly associated with clinical response in two previously published whole blood gene expression studies using anti-TNF therapies. These data provide support for the hypothesis that anti-TNF inadequate responders comprise a distinct molecular subtype of RA characterized by differences in pre

  16. The impact of increased mean airway pressure on contrast-enhanced MRI measurement of regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV), regional mean transit time (rMTT), and regional cerebrovascular resistance (rCVR) in human volunteers.

    PubMed

    Kolbitsch, C; Lorenz, I H; Hörmann, C; Schocke, M; Kremser, C; Zschiegner, F; Felber, S; Benzer, A

    2000-11-01

    Contrast-enhanced magnetic resonance imaging (MRI) measurement of cerebral perfusion is a diagnostic procedure increasingly gaining access to clinical practice not only in spontaneously breathing patients but also in mechanically ventilated patients. Effects of increased mean airway pressure on cerebral perfusion are entirely possible. Therefore, the present study used continuous positive airway pressure (CPAP) (12 cm H2O) to study the effects of increased mean airway pressure on cerebral perfusion in volunteers. CPAP significantly reduced regional cerebral blood flow (rCBF) and regional cerebral blood volume (rCBV) but increased regional mean transit time (rMTT) and regional cerebrovascular resistance (rCVR). Active vasoconstriction (e.g., arterial) and/or passive compression of capillary and/or venous vessel areas are the most likely underlying mechanisms. The number of interhemispheric differences in rCBF, rCBV, rMTT, and rCVR found at baseline rose when mean airway pressure was increased. These results, although obtained in volunteers, should be taken into consideration for the interpretation of contrast-enhanced MRI perfusion measurements in mechanically ventilated patients with an increased positive airway pressure. PMID:11098799

  17. Evaluation of Tumor-associated Stroma and Its Relationship with Tumor Hypoxia Using Dynamic Contrast-enhanced CT and (18)F Misonidazole PET in Murine Tumor Models.

    PubMed

    Koyasu, Sho; Tsuji, Yoshihisa; Harada, Hiroshi; Nakamoto, Yuji; Nobashi, Tomomi; Kimura, Hiroyuki; Sano, Kohei; Koizumi, Koji; Hamaji, Masatsugu; Togashi, Kaori

    2016-03-01

    Purpose To determine the relationship between the fractional interstitial volume (Fis), as calculated at dynamic contrast material-enhanced (DCE) computed tomography (CT), and tumor-associated stroma and to analyze its spatial relationship with tumor hypoxia in several xenograft tumor models. Materials and Methods All animal experiments were approved by the animal research committee. Mice with three different xenograft tumors (U251, CFPAC-1, and BxPC-3; n = 6, n = 8, and n = 6, respectively) underwent DCE CT then hypoxia imaging with fluorine 18 ((18)F) fluoromisonidazole (FMISO) positron emission tomography (PET) within 24 hours. Immunohistochemical analysis was performed in harvested tumors to detect hypoxia markers and to quantify microvascular and stromal density. Two DCE CT parameters (amount of interstitial space associated with the amount of stroma [Fis] and flow velocity [Fv]) were identified and quantitatively validated by using immunohistochemistry. FMISO uptake within the tumor was also assessed in relation to DCE CT parameters. Imaging and immunohistochemical parameters were assessed by using the Kruskal-Wallis test, Wilcoxon rank-sum test with Bonferroni correction, and Pearson correlation coefficient. Results Almost no α-smooth muscle actin-positive cells were found in the U251 xenograft, while abundant stroma was found in the entire BxPC-3 xenograft and in the periphery of the CFPAC-1 xenograft. Quantitative analysis showed a significant correlation (R = 0.83, P < .0001) between Fis and stromal density. FMISO uptake had a negative correlation with Fis (R = -0.58, P < .0001) and Fv (R = -0.53, P < .0001). Conclusion DCE CT can be used to quantify parameters associated with tumor-associated stroma. Tumor hypoxia was Complementarily localized in tumor-associated stroma in these models. (©) RSNA, 2015 Online supplemental material is available for this article. PMID:26393963

  18. Contrast-enhanced perfusion magnetic resonance imaging for head and neck squamous cell carcinoma: a systematic review.

    PubMed

    Noij, Daniel P; de Jong, Marcus C; Mulders, Lieven G M; Marcus, Johannes T; de Bree, Remco; Lavini, Cristina; de Graaf, Pim; Castelijns, Jonas A

    2015-02-01

    This systematic review gives an extensive overview of the current state of perfusion-weighted magnetic resonance imaging (MRI) for head and neck squamous cell carcinoma (HNSCC). Pubmed and Embase were searched for literature until July 2014 assessing the diagnostic and prognostic performance of perfusion-weighted MRI in HNSCC. Twenty-one diagnostic and 12 prognostic studies were included for qualitative analysis. Four studies used a T2(∗) sequence for dynamic susceptibility (DSC)-MRI, 29 studies used T1-based sequences for dynamic contrast enhanced (DCE)-MRI. Included studies suffered from a great deal of heterogeneity in study methods showing a wide range of diagnostic and prognostic performance. Therefore we could not perform any useful meta-analysis. Perfusion-weighted MRI shows potential in some aspects of diagnosing HNSCC and predicting prognosis. Three studies reported significant correlations between hypoxia and tumor heterogeneity in perfusion parameters (absolute correlation coefficient |ρ|>0.6, P<0.05). Two studies reported synergy between perfusion-weighted MRI and positron emission tomography (PET) parameters. Four studies showed a promising role for response prediction early after the start of chemoradiotherapy. In two studies perfusion-weighted MRI was useful in the detection of residual disease. However more research with uniform study and analysis protocols with larger sample sizes is needed before perfusion-weighted MRI can be used in clinical practice. PMID:25467775

  19. Limitations of contrast enhancement for infrared target identification

    NASA Astrophysics Data System (ADS)

    Du Bosq, Todd W.; Fanning, Jonathan D.

    2009-05-01

    Contrast enhancement and dynamic range compression are currently being used to improve the performance of infrared imagers by increasing the contrast between the target and the scene content. Automatic contrast enhancement techniques do not always achieve this improvement. In some cases, the contrast can increase to a level of target saturation. This paper assesses the range-performance effects of contrast enhancement for target identification as a function of image saturation. Human perception experiments were performed to determine field performance using contrast enhancement on the U.S. Army RDECOM CERDEC NVESD standard military eight target set using an un-cooled LWIR camera. The experiments compare the identification performance of observers viewing contrast enhancement processed images at various levels of saturation. Contrast enhancement is modeled in the U.S. Army thermal target acquisition model (NVThermIP) by changing the scene contrast temperature. The model predicts improved performance based on any improved target contrast, regardless of specific feature saturation or enhancement. The measured results follow the predicted performance based on the target task difficulty metric used in NVThermIP for the non-saturated cases. The saturated images reduce the information contained in the target and performance suffers. The model treats the contrast of the target as uniform over spatial frequency. As the contrast is enhanced, the model assumes that the contrast is enhanced uniformly over the spatial frequencies. After saturation, the spatial cues that differentiate one tank from another are located in a limited band of spatial frequencies. A frequency dependent treatment of target contrast is needed to predict performance of over-processed images.

  20. Deformation corrected compressed sensing (DC-CS): a novel framework for accelerated dynamic MRI

    PubMed Central

    Lingala, Sajan Goud; DiBella, Edward; Jacob, Mathews

    2015-01-01

    We propose a novel deformation corrected compressed sensing (DC-CS) framework to recover contrast enhanced dynamic magnetic resonance images from undersampled measurements. We introduce a formulation that is capable of handling a wide class of sparsity/compactness priors on the deformation corrected dynamic signal. In this work, we consider example compactness priors such as sparsity in temporal Fourier domain, sparsity in temporal finite difference domain, and nuclear norm penalty to exploit low rank structure. Using variable splitting, we decouple the complex optimization problem to simpler and well understood sub problems; the resulting algorithm alternates between simple steps of shrinkage based denoising, deformable registration, and a quadratic optimization step. Additionally, we employ efficient continuation strategies to reduce the risk of convergence to local minima. The decoupling enabled by the proposed scheme enables us to apply this scheme to contrast enhanced MRI applications. Through experiments on numerical phantom and in vivo myocardial perfusion MRI datasets, we observe superior image quality of the proposed DC-CS scheme in comparison to the classical k-t FOCUSS with motion estimation/correction scheme, and demonstrate reduced motion artifacts over classical compressed sensing schemes that utilize the compact priors on the original deformation uncorrected signal. PMID:25095251

  1. Pulmonary transit time measurement by contrast-enhanced ultrasound in left ventricular dyssynchrony

    PubMed Central

    Saporito, Salvatore; Mischi, Massimo; van Assen, Hans C; Bouwman, R Arthur; de Lepper, Anouk G W; van den Bosch, Harrie C M; Korsten, Hendrikus H M; Houthuizen, Patrick

    2016-01-01

    Background Pulmonary transit time (PTT) is an indirect measure of preload and left ventricular function, which can be estimated using the indicator dilution theory by contrast-enhanced ultrasound (CEUS). In this study, we first assessed the accuracy of PTT-CEUS by comparing it with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Secondly, we tested the hypothesis that PTT-CEUS correlates with the severity of heart failure, assessed by MRI and N-terminal pro-B-type natriuretic peptide (NT-proBNP). Methods and results Twenty patients referred to our hospital for cardiac resynchronization therapy (CRT) were enrolled. DCE-MRI, CEUS, and NT-proBNP measurements were performed within an hour. Mean transit time (MTT) was obtained by estimating the time evolution of indicator concentration within regions of interest drawn in the right and left ventricles in video loops of DCE-MRI and CEUS. PTT was estimated as the difference of the left and right ventricular MTT. Normalized PTT (nPTT) was obtained by multiplication of PTT with the heart rate. Mean PTT-CEUS was 10.5±2.4s and PTT-DCE-MRI was 10.4±2.0s (P=0.88). The correlations of PTT and nPTT by CEUS and DCE-MRI were strong; r=0.75 (P=0.0001) and r=0.76 (P=0.0001), respectively. Bland–Altman analysis revealed a bias of 0.1s for PTT. nPTT-CEUS correlated moderately with left ventricle volumes. The correlations for PTT-CEUS and nPTT-CEUS were moderate to strong with NT-proBNP; r=0.54 (P=0.022) and r=0.68 (P=0.002), respectively. Conclusions (n)PTT-CEUS showed strong agreement with that by DCE-MRI. Given the good correlation with NT-proBNP level, (n)PTT-CEUS may provide a novel, clinically feasible measure to quantify the severity of heart failure. Clinical Trial Registry: NCT01735838 PMID:27249553

  2. Microtesla MRI with dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Zotev, Vadim S.; Owens, Tuba; Matlashov, Andrei N.; Savukov, Igor M.; Gomez, John J.; Espy, Michelle A.

    2010-11-01

    Magnetic resonance imaging at microtesla fields is a promising imaging method that combines the pre-polarization technique and broadband signal reception by superconducting quantum interference device (SQUID) sensors to enable in vivo MRI at microtesla-range magnetic fields similar in strength to the Earth magnetic field. Despite significant advances in recent years, the potential of microtesla MRI for biomedical imaging is limited by its insufficient signal-to-noise ratio due to a relatively low sample polarization. Dynamic nuclear polarization (DNP) is a widely used approach that allows polarization enhancement by 2-4 orders of magnitude without an increase in the polarizing field strength. In this work, the first implementation of microtesla MRI with Overhauser DNP and SQUID signal detection is described. The first measurements of carbon-13 NMR spectra at microtesla fields are also reported. The experiments were performed at the measurement field of 96 μT, corresponding to Larmor frequency of 4 kHz for protons and 1 kHz for carbon-13. The Overhauser DNP was carried out at 3.5-5.7 mT fields using rf irradiation at 120 MHz. Objects for imaging included water phantoms and a cactus plant. Aqueous solutions of metabolically relevant sodium bicarbonate, pyruvate, alanine, and lactate, labeled with carbon-13, were used for NMR studies. All the samples were doped with TEMPO free radicals. The Overhauser DNP enabled nuclear polarization enhancement by factor as large as -95 for protons and as large as -200 for carbon-13, corresponding to thermal polarizations at 0.33 T and 1.1 T fields, respectively. These results demonstrate that SQUID-based microtesla MRI can be naturally combined with Overhauser DNP in one system, and that its signal-to-noise performance is greatly improved in this case. They also suggest that microtesla MRI can become an efficient tool for in vivo imaging of hyperpolarized carbon-13, produced by low-temperature dissolution DNP.

  3. Contrast enhancement via texture region based histogram equalization

    NASA Astrophysics Data System (ADS)

    Singh, Kuldeep; Vishwakarma, Dinesh K.; Singh Walia, Gurjit; Kapoor, Rajiv

    2016-08-01

    This paper presents two novel contrast enhancement approaches using texture regions-based histogram equalization (HE). In HE-based contrast enhancement methods, the enhanced image often contains undesirable artefacts because an excessive number of pixels in the non-textured areas heavily bias the histogram. The novel idea presented in this paper is to suppress the impact of pixels in non-textured areas and to exploit texture features for the computation of histogram in the process of HE. The first algorithm named as Dominant Orientation-based Texture Histogram Equalization (DOTHE), constructs the histogram of the image using only those image patches having dominant orientation. DOTHE categories image patches into smooth, dominant or non-dominant orientation patches by using the image variance and singular value decomposition algorithm and utilizes only dominant orientation patches in the process of HE. The second method termed as Edge-based Texture Histogram Equalization, calculates significant edges in the image and constructs the histogram using the grey levels present in the neighbourhood of edges. The cumulative density function of the histogram formed from texture features is mapped on the entire dynamic range of the input image to produce the contrast-enhanced image. Subjective as well as objective performance assessment of proposed methods is conducted and compared with other existing HE methods. The performance assessment in terms of visual quality, contrast improvement index, entropy and measure of enhancement reveals that the proposed methods outperform the existing HE methods.

  4. Contrast-enhanced ultrasound: The evolving applications

    PubMed Central

    Xu, Hui-Xiong

    2009-01-01

    Contrast-enhanced ultrasound (CEUS) is a major breakthrough for ultrasound imaging in recent years. By using a microbubble contrast agent and contrast-specific imaging software, CEUS is able to depict the micro- and macro-circulation of the targeted organ, which in turn leads to improved performance in diagnosis. Due to the special dual blood supply system in the liver, CEUS is particularly suitable for liver imaging. It is evident that CEUS facilitates improvement for characterization of focal liver lesions (FLLs), detection of liver malignancy, guidance for interventional procedures, and evaluation of treatment response after local therapies. CEUS has been demonstrated to be equal to contrast-enhanced computed tomography or magnetic resonance imaging for the characterization of FLLs. In addition, the applicability of CEUS has expanded to non-liver structures such as gallbladder, bile duct, pancreas, kidney, spleen, breast, thyroid, and prostate. The usefulness of CEUS in these applications is confirmed by extensive literature production. Novel applications include detecting bleeding sites and hematomas in patients with abdominal trauma, guiding percutaneous injection therapy and therefore achieving the goal of using interventional ultrasonography in managing splenic trauma, assessing the activity of Crohn’s disease, and detecting suspected endoleaks after endovascular abdominal aneurysm repair. Contrast-enhanced intraoperative ultrasound (US) and intracavitary use of CEUS have been developed and clinically studied. The potential use of CEUS involves sentinel lymph node detection, drug or gene delivery, and molecular imaging. In conclusion, the advent of CEUS has greatly enhanced the usefulness of US and even changed the status of US in clinical practice. The application of CEUS in the clinic is continuously evolving and it is expected that its use will be expanded further in the future. PMID:21160717

  5. Contrast enhanced ultrasound of breast cancer

    PubMed Central

    Cassano, E; Rizzo, S; Bozzini, A; Menna, S; Bellomi, M

    2006-01-01

    The importance of ultrasound examination in the diagnosis of breast cancer has been widely demonstrated. During the last few years, the introduction of ultrasound contrast media has been considered a promising tool for studying the vascular pattern of focal lesions within the breast. Our purpose was to assess whether contrast-enhanced (CE) ultrasound examination, performed using specific contrast imaging modes, can be helpful for detection and characterization of breast lesions, and for prediction of the response of breast cancer to therapy. PMID:16478698

  6. Contrast enhanced ultrasound of breast cancer.

    PubMed

    Cassano, E; Rizzo, S; Bozzini, A; Menna, S; Bellomi, M

    2006-01-01

    The importance of ultrasound examination in the diagnosis of breast cancer has been widely demonstrated. During the last few years, the introduction of ultrasound contrast media has been considered a promising tool for studying the vascular pattern of focal lesions within the breast. Our purpose was to assess whether contrast-enhanced (CE) ultrasound examination, performed using specific contrast imaging modes, can be helpful for detection and characterization of breast lesions, and for prediction of the response of breast cancer to therapy. PMID:16478698

  7. Radiologic Findings of Ductal Carcinoma in Situ Arising Within a Juvenile Fibroadenoma: Mammographic, Sonographic and Dynamic Contrast-Enhanced Breast MRI Features.

    PubMed

    Park, Eun Kyung; Cho, Kyu Ran; Seo, Bo Kyoung; Woo, Ok Hee; Lee, Jeong Hyeon; Song, Sung Eun; Bae, Jeong Won

    2015-04-01

    Juvenile fibroadenoma is an uncommon histologic variant of fibroadenoma that frequently shows a remarkable and rapid growth. The development of a carcinoma within a fibroadenoma, either in situ or invasive, is a rare condition. We encountered a 36-year-old woman with a palpable mass in the right breast. The radiologic findings were indicative of a fibroadenoma in the breast. Sonographic guided biopsy using a 14G core needle revealed the presence of ductal carcinoma in situ (DCIS) within the juvenile fibroadenoma. Focal excision was performed and the patient underwent radiation therapy in the right breast after surgery. PMID:26060554

  8. Radiologic Findings of Ductal Carcinoma in Situ Arising Within a Juvenile Fibroadenoma: Mammographic, Sonographic and Dynamic Contrast-Enhanced Breast MRI Features

    PubMed Central

    Park, Eun Kyung; Cho, Kyu Ran; Seo, Bo Kyoung; Woo, Ok Hee; Lee, Jeong Hyeon; Song, Sung Eun; Bae, Jeong Won

    2015-01-01

    Juvenile fibroadenoma is an uncommon histologic variant of fibroadenoma that frequently shows a remarkable and rapid growth. The development of a carcinoma within a fibroadenoma, either in situ or invasive, is a rare condition. We encountered a 36-year-old woman with a palpable mass in the right breast. The radiologic findings were indicative of a fibroadenoma in the breast. Sonographic guided biopsy using a 14G core needle revealed the presence of ductal carcinoma in situ (DCIS) within the juvenile fibroadenoma. Focal excision was performed and the patient underwent radiation therapy in the right breast after surgery. PMID:26060554

  9. Dynamic contrast-enhanced CT of head and neck tumors: perfusion measurements using a distributed-parameter tracer kinetic model. Initial results and comparison with deconvolution-based analysis

    NASA Astrophysics Data System (ADS)

    Bisdas, Sotirios; Konstantinou, George N.; Sherng Lee, Puor; Thng, Choon Hua; Wagenblast, Jens; Baghi, Mehran; San Koh, Tong

    2007-10-01

    The objective of this work was to evaluate the feasibility of a two-compartment distributed-parameter (DP) tracer kinetic model to generate functional images of several physiologic parameters from dynamic contrast-enhanced CT data obtained of patients with extracranial head and neck tumors and to compare the DP functional images to those obtained by deconvolution-based DCE-CT data analysis. We performed post-processing of DCE-CT studies, obtained from 15 patients with benign and malignant head and neck cancer. We introduced a DP model of the impulse residue function for a capillary-tissue exchange unit, which accounts for the processes of convective transport and capillary-tissue exchange. The calculated parametric maps represented blood flow (F), intravascular blood volume (v1), extravascular extracellular blood volume (v2), vascular transit time (t1), permeability-surface area product (PS), transfer ratios k12 and k21, and the fraction of extracted tracer (E). Based on the same regions of interest (ROI) analysis, we calculated the tumor blood flow (BF), blood volume (BV) and mean transit time (MTT) by using a modified deconvolution-based analysis taking into account the extravasation of the contrast agent for PS imaging. We compared the corresponding values by using Bland-Altman plot analysis. We outlined 73 ROIs including tumor sites, lymph nodes and normal tissue. The Bland-Altman plot analysis revealed that the two methods showed an accepted degree of agreement for blood flow, and, thus, can be used interchangeably for measuring this parameter. Slightly worse agreement was observed between v1 in the DP model and BV but even here the two tracer kinetic analyses can be used interchangeably. Under consideration of whether both techniques may be used interchangeably was the case of t1 and MTT, as well as for measurements of the PS values. The application of the proposed DP model is feasible in the clinical routine and it can be used interchangeably for measuring

  10. Contrast enhanced ultrasound of sentinel lymph nodes

    PubMed Central

    Cui, XinWu; Ignee, Andre; Nielsen, Michael Bachmann; Schreiber-Dietrich, Dagmar; De Molo, Chiara; Pirri, Clara; Jedrzejczyk, Maciej

    2013-01-01

    Sentinel lymph nodes are the first lymph nodes in the region that receive lymphatic drainage from a primary tumor. The detection or exclusion of sentinel lymph node micrometastases is critical in the staging of cancer, especially breast cancer and melanoma because it directly affects patient's prognosis and surgical management. Currently, intraoperative sentinel lymph node biopsies using blue dye and radioisotopes are the method of choice for the detection of sentinel lymph node with high identification rate. In contrast, conventional ultrasound is not capable of detecting sentinel lymph nodes in most cases. Contrast enhanced ultrasound with contrast specific imaging modes has been used for the evaluation and diagnostic work-up of peripherally located suspected lymphadenopathy. The method allows for real-time analysis of all vascular phases and the visualization of intranodal focal “avascular” areas that represent necrosis or deposits of neoplastic cells. In recent years, a number of animal and human studies showed that contrast enhanced ultrasound can be also used for the detection of sentinel lymph node, and may become a potential application in clinical routine. Several contrast agents have been used in those studies, including albumin solution, hydroxyethylated starch, SonoVue®, Sonazoid® and Definity®. This review summarizes the current knowledge about the use of ultrasound techniques in detection and evaluation of sentinel lymph node. PMID:26675994

  11. Optimization of subcutaneous vein contrast enhancement

    NASA Astrophysics Data System (ADS)

    Zeman, Herbert D.; Lovhoiden, Gunnar; Deshmukh, Harshal

    2000-05-01

    A technique for enhancing the contrast of subcutaneous veins has been demonstrated. This techniques uses a near IR light source and one or more IR sensitive CCD TV cameras to produce a contrast enhanced image of the subcutaneous veins. This video image of the veins is projected back onto the patient's skin using a n LCD video projector. The use of an IR transmitting filter in front of the video cameras prevents any positive feedback from the visible light from the video projector from causing instabilities in the projected image. The demonstration contrast enhancing illuminator has been tested on adults and children, both Caucasian and African-American, and it enhances veins quite well in all cases. The most difficult cases are those where significant deposits of subcutaneous fat are present which make the veins invisible under normal room illumination. Recent attempts to see through fat using different IR wavelength bands and both linearly and circularly polarized light were unsuccessful. The key to seeing through fat turns out to be a very diffuse source of RI light. Results on adult and pediatric subjects are shown with this new IR light source.

  12. Quantitative contrast-enhanced optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Winetraub, Yonatan; SoRelle, Elliott D.; Liba, Orly; de la Zerda, Adam

    2016-01-01

    We have developed a model to accurately quantify the signals produced by exogenous scattering agents used for contrast-enhanced Optical Coherence Tomography (OCT). This model predicts distinct concentration-dependent signal trends that arise from the underlying physics of OCT detection. Accordingly, we show that real scattering particles can be described as simplified ideal scatterers with modified scattering intensity and concentration. The relation between OCT signal and particle concentration is approximately linear at concentrations lower than 0.8 particle per imaging voxel. However, at higher concentrations, interference effects cause signal to increase with a square root dependence on the number of particles within a voxel. Finally, high particle concentrations cause enough light attenuation to saturate the detected signal. Predictions were validated by comparison with measured OCT signals from gold nanorods (GNRs) prepared in water at concentrations ranging over five orders of magnitude (50 fM to 5 nM). In addition, we validated that our model accurately predicts the signal responses of GNRs in highly heterogeneous scattering environments including whole blood and living animals. By enabling particle quantification, this work provides a valuable tool for current and future contrast-enhanced in vivo OCT studies. More generally, the model described herein may inform the interpretation of detected signals in modalities that rely on coherence-based detection or are susceptible to interference effects.

  13. Contrast Enhancement by Nonlinear Diffusion Filtering.

    PubMed

    Liang, Zhetong; Liu, Weijian; Yao, Ruohe

    2016-02-01

    To enhance the visual quality of an image that is degraded by uneven light, an effective method is to estimate the illumination component and compress it. Some previous methods have either defects of halo artifacts or contrast loss in the enhanced image due to incorrect estimation. In this paper, we discuss this problem and propose a novel method to estimate the illumination. The illumination is obtained by iteratively solving a nonlinear diffusion equation. During the diffusion process, surround suppression is embedded in the conductance function to specially enhance the diffusive strength in textural areas of the image. The proposed estimation method has the following two merits: 1) the boundary areas are preserved in the illumination, and thus halo artifacts are prevented and 2) the textural details are preserved in the reflectance to not suffer from illumination compression, which contributes to the contrast enhancement in the result. Experimental results show that the proposed algorithm achieves excellent performance in artifact removal and local contrast enhancement. PMID:26685234

  14. Image contrast enhancement using Chebyshev wavelet moments

    NASA Astrophysics Data System (ADS)

    Uchaev, Dm. V.; Uchaev, D. V.; Malinnikov, V. A.

    2015-12-01

    A new algorithm for image contrast enhancement in the Chebyshev moment transform (CMT) domain is introduced. This algorithm is based on a contrast measure that is defined as the ratio of high-frequency to zero-frequency content in the bands of CMT matrix. Our algorithm enables to enhance a large number of high-spatial-frequency coefficients, that are responsible for image details, without severely degrading low-frequency contributions. To enhance high-frequency Chebyshev coefficients we use a multifractal spectrum of scaling exponents (SEs) for Chebyshev wavelet moment (CWM) magnitudes, where CWMs are multiscale realization of Chebyshev moments (CMs). This multifractal spectrum is very well suited to extract meaningful structures on images of natural scenes, because these images have a multifractal character. Experiments with test images show some advantages of the proposed algorithm as compared to other widely used image enhancement algorithms. The main advantage of our algorithm is the following: the algorithm very well highlights image details during image contrast enhancement.

  15. Contrast enhanced ultrasound of renal masses

    PubMed Central

    Ignee, Andre; Straub, Bernd; Schuessler, Gudrun; Dietrich, Christoph Frank

    2010-01-01

    Contrast enhanced ultrasound (CEUS) has gained clinical importance over the last years for the characterization of hepatic masses. Its role in extrahepatic indications has been investigated repeatedly but has been less comprehensively studied. Currently more than 50% of renal masses are incidentally diagnosed, mostly by B-mode ultrasound. The method of choice for characterization of renal lesions is contrast enhanced computed tomography (CECT). In the case of cystic lesions CECT refers to the Bosniak classification for cystic lesions to assess the risk of malignant behavior. The majority of masses are renal cell carcinoma, but the exact proportion is controversial. Disadvantages of CECT are a significant risk for patients with impaired renal function, allergic reactions and hyperthyroidism due to iodinated contrast agents. Several studies concerning CEUS for the characterization of both solid and cystic renal lesions have been published, but prospective multicenter studies are missing, the presented data being mainly descriptive. The aim of the this manuscript is to review the current literature for CEUS in renal masses, to summarize the available data and focus on possible concepts for studies in the future. PMID:21160736

  16. Sparse decomposition learning based dynamic MRI reconstruction

    NASA Astrophysics Data System (ADS)

    Zhu, Peifei; Zhang, Qieshi; Kamata, Sei-ichiro

    2015-02-01

    Dynamic MRI is widely used for many clinical exams but slow data acquisition becomes a serious problem. The application of Compressed Sensing (CS) demonstrated great potential to increase imaging speed. However, the performance of CS is largely depending on the sparsity of image sequence in the transform domain, where there are still a lot to be improved. In this work, the sparsity is exploited by proposed Sparse Decomposition Learning (SDL) algorithm, which is a combination of low-rank plus sparsity and Blind Compressed Sensing (BCS). With this decomposition, only sparsity component is modeled as a sparse linear combination of temporal basis functions. This enables coefficients to be sparser and remain more details of dynamic components comparing learning the whole images. A reconstruction is performed on the undersampled data where joint multicoil data consistency is enforced by combing Parallel Imaging (PI). The experimental results show the proposed methods decrease about 15~20% of Mean Square Error (MSE) compared to other existing methods.

  17. Improved dynamic MRI reconstruction by exploiting sparsity and rank-deficiency.

    PubMed

    Majumdar, Angshul

    2013-06-01

    In this paper we address the problem of dynamic MRI reconstruction from partially sampled K-space data. Our work is motivated by previous studies in this area that proposed exploiting the spatiotemporal correlation of the dynamic MRI sequence by posing the reconstruction problem as a least squares minimization regularized by sparsity and low-rank penalties. Ideally the sparsity and low-rank penalties should be represented by the l(0)-norm and the rank of a matrix; however both are NP hard penalties. The previous studies used the convex l(1)-norm as a surrogate for the l(0)-norm and the non-convex Schatten-q norm (0dynamic MRI sequence by solving a least squares minimization problem regularized by l(p)-norm as the sparsity penalty and Schatten-q norm as the low-rank penalty. There are no efficient algorithms to solve the said problems. In this paper, we derive efficient algorithms to solve them. The experiments have been carried out on Dynamic Contrast Enhanced (DCE) MRI datasets. Both quantitative and qualitative analysis indicates the superiority of our proposed improvement over the existing methods. PMID:23218793

  18. Contrast-Enhanced Magnetic Resonance Imaging in Pediatric Patients: Review and Recommendations for Current Practice

    PubMed Central

    Bhargava, Ravi; Hahn, Gabriele; Hirsch, Wolfgang; Kim, Myung-Joon; Mentzel, Hans-Joachim; Olsen, Øystein E.; Stokland, Eira; Triulzi, Fabio; Vazquez, Elida

    2013-01-01

    Magnetic resonance imaging (MRI), frequently with contrast enhancement, is the preferred imaging modality for many indications in children. Practice varies widely between centers, reflecting the rapid pace of change and the need for further research. Guide-line changes, for example on contrast-medium choice, require continued practice reappraisal. This article reviews recent developments in pediatric contrast-enhanced MRI and offers recommendations on current best practice. Nine leading pediatric radiologists from internationally recognized radiology centers convened at a consensus meeting in Bordeaux, France, to discuss applications of contrast-enhanced MRI across a range of indications in children. Review of the literature indicated that few published data provide guidance on best practice in pediatric MRI. Discussion among the experts concluded that MRI is preferred over ionizing-radiation modalities for many indications, with advantages in safety and efficacy. Awareness of age-specific adaptations in MRI technique can optimize image quality. Gadolinium-based contrast media are recommended for enhancing imaging quality. The choice of most appropriate contrast medium should be based on criteria of safety, tolerability, and efficacy, characterized in age-specific clinical trials and personal experience. PMID:25114547

  19. Contrast-enhanced ultrasound in oncology

    PubMed Central

    Rasmussen, F.

    2011-01-01

    Abstract In patients with known malignant disease, 51% of liver lesions less than 1.5 cm turn out to be benign. Whether the probability of malignancy is high or low, further investigations are often necessary to definitely exclude malignancy. Contrast-enhanced ultrasonography has a prominent role in lesion characterization with a diagnostic accuracy comparable with computed tomography and magnetic resonance imaging. Anti-angiogenic treatment is common in most oncological institutions and the response evaluation is a new challenge with a research focus on the change in tumour vasculature and perfusion. In planning biopsies, CEUS can identify necrotic and viable areas of tumours and improve the diagnostic accuracy. PMID:22186152

  20. Contrast-enhanced and targeted ultrasound

    PubMed Central

    Postema, Michiel; Gilja, Odd Helge

    2011-01-01

    Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested. PMID:21218081

  1. Contrast-enhanced and targeted ultrasound.

    PubMed

    Postema, Michiel; Gilja, Odd Helge

    2011-01-01

    Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested. PMID:21218081

  2. Real-Time Contrast Enhancement to Improve Speech Recognition

    PubMed Central

    Alexander, Joshua M.; Jenison, Rick L.; Kluender, Keith R.

    2011-01-01

    An algorithm that operates in real-time to enhance the salient features of speech is described and its efficacy is evaluated. The Contrast Enhancement (CE) algorithm implements dynamic compressive gain and lateral inhibitory sidebands across channels in a modified winner-take-all circuit, which together produce a form of suppression that sharpens the dynamic spectrum. Normal-hearing listeners identified spectrally smeared consonants (VCVs) and vowels (hVds) in quiet and in noise. Consonant and vowel identification, especially in noise, were improved by the processing. The amount of improvement did not depend on the degree of spectral smearing or talker characteristics. For consonants, when results were analyzed according to phonetic feature, the most consistent improvement was for place of articulation. This is encouraging for hearing aid applications because confusions between consonants differing in place are a persistent problem for listeners with sensorineural hearing loss. PMID:21949736

  3. Real-time contrast enhancement to improve speech recognition.

    PubMed

    Alexander, Joshua M; Jenison, Rick L; Kluender, Keith R

    2011-01-01

    An algorithm that operates in real-time to enhance the salient features of speech is described and its efficacy is evaluated. The Contrast Enhancement (CE) algorithm implements dynamic compressive gain and lateral inhibitory sidebands across channels in a modified winner-take-all circuit, which together produce a form of suppression that sharpens the dynamic spectrum. Normal-hearing listeners identified spectrally smeared consonants (VCVs) and vowels (hVds) in quiet and in noise. Consonant and vowel identification, especially in noise, were improved by the processing. The amount of improvement did not depend on the degree of spectral smearing or talker characteristics. For consonants, when results were analyzed according to phonetic feature, the most consistent improvement was for place of articulation. This is encouraging for hearing aid applications because confusions between consonants differing in place are a persistent problem for listeners with sensorineural hearing loss. PMID:21949736

  4. Triple-energy contrast enhanced digital mammography

    NASA Astrophysics Data System (ADS)

    Puong, Sylvie; Milioni de Carvalho, Pablo; Muller, Serge

    2010-04-01

    With the injection of iodine, Contrast Enhanced Digital Mammography (CEDM) provides functional information about breast tumour angiogenesis that can potentially help in cancer diagnosis. In order to generate iodine images in which the gray level is proportional to the iodine thickness, temporal and dual-energy approaches have already been considered. The dual-energy method offers the advantage of less patient motion artifacts and better comfort during the exam. However, this approach requires knowledge of the breast thickness at each pixel. Generally, as compression is applied, the breast thickness at each pixel is taken as the compression thickness. Nevertheless, in the breast border region, this assumption is not correct anymore and this causes inaccuracies in the iodine image. Triple-Energy CEDM could overcome these limitations by providing supplemental information in the form of a third image acquired with a different spectrum than the other two. This precludes the need of a priori knowledge of the breast thickness. Moreover, with Triple-Energy CEDM, breast thickness and glandularity maps could potentially be derived. In this study, we first focused on the method to recombine the three images in order to generate the iodine image, analyzing the performance of either quadratic, cubic or conic recombination functions. Then, we studied the optimal acquisition spectra in order to maximize the iodine SDNR in the recombined image for a given target total glandular dose. The concept of Triple-Energy CEDM was validated on simulated textured images and poly-energetic images acquired with a conventional X-ray mammography tube.

  5. Dual-energy contrast-enhanced digital mammography in routine clinical practice in 2013.

    PubMed

    Badr, S; Laurent, N; Régis, C; Boulanger, L; Lemaille, S; Poncelet, E

    2014-03-01

    To date, analysis of the vascularisation of breast lesions mainly relies on MR imaging. However, the accessibility of MRI is sometimes limited and has led to the development of new means of imaging, such as dual-energy contrast-enhanced mammography, which provides data on the vascularisation of the breast along with the usual morphological information. The purpose of this paper is to present this new imaging technique as well as the recent references, illustrated by clinical reports derived from our everyday practice to focus on the advantages and disadvantages of this new breast exploration. Dual-energy contrast-enhanced mammography is a recent, seemingly promising technique, in the management of breast cancer. The main advantages consist of its easy installation, the good tolerance and the comfort in the interpretation of difficult to read mammograms. However, the indications and the role of dual-energy contrast-enhanced mammography still have to be determined within the diagnostic strategy of breast tumours. New studies are expected, especially to compare dual-energy contrast-enhanced mammography with breast MRI. PMID:24238816

  6. Golden-Angle Radial Sparse Parallel MRI: Combination of Compressed Sensing, Parallel Imaging, and Golden-Angle Radial Sampling for Fast and Flexible Dynamic Volumetric MRI

    PubMed Central

    Feng, Li; Grimm, Robert; Block, Kai Tobias; Chandarana, Hersh; Kim, Sungheon; Xu, Jian; Axel, Leon; Sodickson, Daniel K.; Otazo, Ricardo

    2013-01-01

    Purpose To develop a fast and flexible free-breathing dynamic volumetric MRI technique, iterative Golden-angle RAdial Sparse Parallel MRI (iGRASP), that combines compressed sensing, parallel imaging, and golden-angle radial sampling. Methods Radial k-space data are acquired continuously using the golden-angle scheme and sorted into time series by grouping an arbitrary number of consecutive spokes into temporal frames. An iterative reconstruction procedure is then performed on the undersampled time series where joint multicoil sparsity is enforced by applying a total-variation constraint along the temporal dimension. Required coil-sensitivity profiles are obtained from the time-averaged data. Results iGRASP achieved higher acceleration capability than either parallel imaging or coil-by-coil compressed sensing alone. It enabled dynamic volumetric imaging with high spatial and temporal resolution for various clinical applications, including free-breathing dynamic contrast-enhanced imaging in the abdomen of both adult and pediatric patients, and in the breast and neck of adult patients. Conclusion The high performance and flexibility provided by iGRASP can improve clinical studies that require robustness to motion and simultaneous high spatial and temporal resolution. PMID:24142845

  7. High Temporal Resolution Dynamic MRI and Arterial Input Function for Assessment of GFR in Pediatric Subjects

    PubMed Central

    Yoruk, Umit; Saranathan, Manojkumar; Loening, Andreas M; Hargreaves, Brian A; Vasanawala, Shreyas S

    2015-01-01

    Purpose To introduce a respiratory-gated high-spatiotemporal-resolution dynamic-contrast-enhanced MRI technique and a high-temporal-resolution aortic input function (HTR-AIF) estimation method for glomerular filtration rate (GFR) assessment in children. Methods A high-spatiotemporal-resolution DCE-MRI method with view-shared reconstruction was modified to incorporate respiratory-gating, and an AIF estimation method that uses a fraction of the k-space data from each respiratory period was developed (HTR-AIF). The method was validated using realistic digital phantom simulations and demonstrated on clinical subjects. The GFR estimates using HTR-AIF were compared to estimates obtained by using an AIF derived directly from the view-shared images. Results Digital phantom simulations showed that using the HTR-AIF technique gives more accurate AIF estimates (RMSE = 0.0932) compared to the existing estimation method (RMSE = 0.2059) that used view-sharing (VS). For simulated GFR > 27 ml/min, GFR estimation error was between 32% and 17% using view-shared AIF, whereas estimation error was less than 10% using HTR-AIF. In all clinical subjects, the HTR-AIF method resulted in higher GFR estimations than the view-shared method. Conclusion The HTR-AIF method improves the accuracy of both the AIF and GFR estimates derived from the respiratory-gated acquisitions, and makes GFR estimation feasible in free-breathing pediatric subjects. PMID:25946307

  8. High temporal resolution dynamic contrast MRI in a high risk group for placenta accreta.

    PubMed

    Tanaka, Y O; Sohda, S; Shigemitsu, S; Niitsu, M; Itai, Y

    2001-06-01

    Antenatal diagnosis of placenta accreta with MR is not easy even now because T2-weighted images (T2WI) cannot differentiate chorionic villi from decidua basalis. We performed dynamic contrast MRI to study whether trophoblastic villi could be separately demonstrated from the decidua basalis, and whether the contrast resolution between the placenta and myometrium could improve compared to T2WI. Six pregnant women with prior cesarean section were examined at 34-38 gestational weeks. Sagittal T2-weighted images with fast spin echo sequences and dynamic contrast studies with fast field echo sequence every 10-14 s after contrast injection were performed. We analyzed the enhancing pattern of the placenta and compared the contrast between placenta and myometrium. We reviewed medical records to identify complications during the placental delivery and the complications of their newborns. In the early phase after contrast enhancement, multiple foci of the strong lobular enhancement were observed in all cases. Other parts of placenta were slowly but strongly enhanced following them. We speculated that the former corresponded to intervillous space and the latter decidua basalis. The contrast between placenta and myometrium tended to be distinct near the inner cervical os on both T2WI and dynamic contrast study. On the other hand, it was indistinct in the upper part of the uterine body on T2WI despite it was clearly demonstrated on dynamic contrast study. The placentae were delivered without any complication in all cases. Although two neonates showed fetal distress, none of the infant remained any sequelae at the time of the discharge. The other four were well although one of them complicated with meconium staining. As dynamic contrast MRI can differentiate chorionic villi and decidua basalis, and can provide excellent contrast between placenta and myometrium at anywhere within the uterus, it may be a promising technique for antepartum diagnosis of the placenta accreta. PMID

  9. Nanoparticles and nanostructured carriers for drug delivery and contrast enhancement

    NASA Astrophysics Data System (ADS)

    Godage, Olga S.; Bucharskaya, Alla B.; Navolokin, Nikita A.; German, Sergey V.; Zuev, Viktor V.; Terentyuk, Georgy S.; Maslyakova, Galina N.; Gorin, Dmitry A.

    2016-04-01

    Currently, nanotechnologies are widely used in science and industry. It is known that the application of drug delivery nanostructured carriers for biomedicine is one of the promising areas of nanotechnology. Nanostructured carriers can be used in the diagnosis process for detecting a neoplastic tumor cells in peripheral blood, for contrast enhancement on magnetic resonance imaging (MRI), as well as for targeted drug delivery to tumor tissues. Agents for the targeted delivery (nanoparticles, liposomes, microcapsules, and etc) can affect the healthy tissues and organs, cause side effects and have a toxic effect. Therefore, it necessary to study the morphological changes that occur not only in the "target", such as a tumor, but also the internal organs, taking place under the influence of both the agents for targeted drug delivery and physical impact induced remote controlled drug release. Thus , the aim of our work is selection of the most promising agents for targeted drug delivery to tumor and contrast agents for in vivo visualization of tumor tissue boundaries , as well as their impact on the organs and tissues as results of nanostructured object biodistribution.

  10. The Use of Dynamic Tracer Concentration in Veins for Quantitative DCE-MRI Kinetic Analysis in Head and Neck

    PubMed Central

    Yuan, Jing; Chow, Steven Kwok Keung; Zhang, Qinwei; Yeung, David Ka Wai; Ahuja, Anil T.; King, Ann D.

    2013-01-01

    Background Head and neck Magnetic Resonance (MR) Images are vulnerable to the arterial blood in-flow effect. To compensate for this effect and enhance accuracy and reproducibility, dynamic tracer concentration in veins was proposed and investigated for quantitative dynamic contrast-enhanced (DCE) MRI analysis in head and neck. Methodology 21 patients with head and neck tumors underwent DCE-MRI at 3T. An automated method was developed for blood vessel selection and separation. Dynamic concentration-time-curves (CTCs) in arteries and veins were used for the Tofts model parameter estimations. The estimation differences by using CTCs in arteries and veins were compared. Artery and vein voxels were accurately separated by the automated method. Remarkable inter-slice tracer concentration differences were found in arteries while the inter-slice concentration differences in veins were moderate. Tofts model fitting by using the CTCs in arteries and veins produced significantly different parameter estimations. The individual artery CTCs resulted in large (>50% generally) inter-slice parameter estimation variations. Better inter-slice consistency was achieved by using the vein CTCs. Conclusions The use of vein CTCs helps to compensate for arterial in-flow effect and reduce kinetic parameter estimation error and inconsistency for head and neck DCE-MRI. PMID:23527281

  11. A Metric for Reducing False Positives in the Computer-Aided Detection of Breast Cancer from Dynamic Contrast-Enhanced Magnetic Resonance Imaging Based Screening Examinations of High-Risk Women.

    PubMed

    Levman, Jacob E D; Gallego-Ortiz, Cristina; Warner, Ellen; Causer, Petrina; Martel, Anne L

    2016-02-01

    Magnetic resonance imaging (MRI)-enabled cancer screening has been shown to be a highly sensitive method for the early detection of breast cancer. Computer-aided detection systems have the potential to improve the screening process by standardizing radiologists to a high level of diagnostic accuracy. This retrospective study was approved by the institutional review board of Sunnybrook Health Sciences Centre. This study compares the performance of a proposed method for computer-aided detection (based on the second-order spatial derivative of the relative signal intensity) with the signal enhancement ratio (SER) on MRI-based breast screening examinations. Comparison is performed using receiver operating characteristic (ROC) curve analysis as well as free-response receiver operating characteristic (FROC) curve analysis. A modified computer-aided detection system combining the proposed approach with the SER method is also presented. The proposed method provides improvements in the rates of false positive markings over the SER method in the detection of breast cancer (as assessed by FROC analysis). The modified computer-aided detection system that incorporates both the proposed method and the SER method yields ROC results equal to that produced by SER while simultaneously providing improvements over the SER method in terms of false positives per noncancerous exam. The proposed method for identifying malignancies outperforms the SER method in terms of false positives on a challenging dataset containing many small lesions and may play a useful role in breast cancer screening by MRI as part of a computer-aided detection system. PMID:26293705

  12. A contrast enhancement technique for low light images

    NASA Astrophysics Data System (ADS)

    Singh, Ankita; Gupta, K. K.

    2016-03-01

    Digital Imagery systems are traditionally bad in low light conditions. In this paper, a new algorithm for contrast improvement is proposed. The algorithm consists of two stages. The first stage is decomposing the input image into four subbands by applying two-dimensional discrete wavelet transform and estimates the singular value matrix of sub band image. The second stage is that it reconstructs the enhanced image by applying the inverse DWT. The technique is compared with conventional image equalization technique such as standard General Histogram Equalization (GHE) and other state-of-the-art techniques such as Quadrant Dynamic Histogram Equalization (QDHE), Singular-Value-Wavelet based image Equalization (SVWE) and Singular Value Equalization (SVE) on the basis of their Peak Signal to Noise Ratio (PSNR) and Root Mean Square Error (RMSE) values. The simulation results indicated that the image contrast enhanced by the purposed method was higher than that of the images enhanced by the other conventional state-of-the-art techniques.

  13. Development of contrast-enhanced rodent imaging using functional CT

    NASA Astrophysics Data System (ADS)

    Liang, Yun; Stantz, Keith M.; Krishnamurthi, Ganapathy; Steinmetz, Rosemary; Hutchins, Gary D.

    2003-05-01

    Micro-computed tomography (microCT) is capable of obtaining high-resolution images of skeletal tissues. However its image contrast among soft tissues remains inadequate for tumor detection. High speed functional computed tomography will be needed to image tumors by employing x-ray contrast medium. The functional microCT development will not only facilitate the image contrast enhancement among different tissues but also provide information of tumor physiology. To demonstrate the feasibility of functional CT in mouse imaging, sequential computed tomography is performed in mice after contrast material administration using a high-speed clinical CT scanner. Although the resolution of the clinical scanner is not sufficient to dissolve the anatomic details of rodents, bulky physiological parameters in major organs such as liver, kidney, pancreas, and ovaries (testicular) can be examined. For data analysis, a two-compartmental model is employed and implemented to characterize the tissue physiological parameters (regional blood flow, capillary permeability, and relative compartment volumes.) The measured contrast dynamics in kidneys are fitted with the compartmental model to derive the kidney tissue physiology. The study result suggests that it is feasible to extract mouse tissue physiology using functional CT imaging technology.

  14. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography.

    PubMed

    Demi, Libertario; van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2015-11-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization. PMID:26459771

  15. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-11-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization.

  16. Angiogenic response of MCF7 human breast cancer to hormonal treatment: assessment by dynamic GdDTPA-enhanced MRI at high spatial resolution.

    PubMed

    Furman-Haran, E; Margalit, R; Maretzek, A F; Degani, H

    1996-01-01

    Dynamic gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA)-enhanced MRI was followed during growth and regression of MCF7 human breast tumors implanted in nude mice in the presence of estrogen and tamoxifen, respectively. Gradient-echo and spin-echo sequences were applied at a temporal resolution of 12 and 100 seconds, respectively, and a spatial resolution of 195 x 390 x 1000 microns. Maps of initial rates of contrast enhancement demonstrated stimulation of local growth of permeable microcapillaries at regions bordering necrotic areas, resulting from tamoxifen treatment. This localized angiogenic stimulation was confirmed by immunohistochemical staining of endothelial cells. After 1 week of tamoxifen treatment, the fraction of tumor pixels exhibiting rapid initial rate of contrast enhancement increased significantly from .28 +/- .05 to .46 +/- .06. In parallel, the fraction of tumor area showing contrast enhancement 3 minutes after Gd-DTPA injection also increased significantly, from .42 +/- .06 to .58 +/- .06. On the basis of these changes, it was possible to assess the response to tamoxifen therapy at an early stage. PMID:8851428

  17. Temporal subtraction contrast-enhanced dedicated breast CT

    NASA Astrophysics Data System (ADS)

    Gazi, Peymon M.; Aminololama-Shakeri, Shadi; Yang, Kai; Boone, John M.

    2016-09-01

    The development of a framework of deformable image registration and segmentation for the purpose of temporal subtraction contrast-enhanced breast CT is described. An iterative histogram-based two-means clustering method was used for the segmentation. Dedicated breast CT images were segmented into background (air), adipose, fibroglandular and skin components. Fibroglandular tissue was classified as either normal or contrast-enhanced then divided into tiers for the purpose of categorizing degrees of contrast enhancement. A variant of the Demons deformable registration algorithm, intensity difference adaptive Demons (IDAD), was developed to correct for the large deformation forces that stemmed from contrast enhancement. In this application, the accuracy of the proposed method was evaluated in both mathematically-simulated and physically-acquired phantom images. Clinical usage and accuracy of the temporal subtraction framework was demonstrated using contrast-enhanced breast CT datasets from five patients. Registration performance was quantified using normalized cross correlation (NCC), symmetric uncertainty coefficient, normalized mutual information (NMI), mean square error (MSE) and target registration error (TRE). The proposed method outperformed conventional affine and other Demons variations in contrast enhanced breast CT image registration. In simulation studies, IDAD exhibited improvement in MSE (0–16%), NCC (0–6%), NMI (0–13%) and TRE (0–34%) compared to the conventional Demons approaches, depending on the size and intensity of the enhancing lesion. As lesion size and contrast enhancement levels increased, so did the improvement. The drop in the correlation between the pre- and post-contrast images for the largest enhancement levels in phantom studies is less than 1.2% (150 Hounsfield units). Registration error, measured by TRE, shows only submillimeter mismatches between the concordant anatomical target points in all patient studies. The algorithm was

  18. Temporal subtraction contrast-enhanced dedicated breast CT.

    PubMed

    Gazi, Peymon M; Aminololama-Shakeri, Shadi; Yang, Kai; Boone, John M

    2016-09-01

    The development of a framework of deformable image registration and segmentation for the purpose of temporal subtraction contrast-enhanced breast CT is described. An iterative histogram-based two-means clustering method was used for the segmentation. Dedicated breast CT images were segmented into background (air), adipose, fibroglandular and skin components. Fibroglandular tissue was classified as either normal or contrast-enhanced then divided into tiers for the purpose of categorizing degrees of contrast enhancement. A variant of the Demons deformable registration algorithm, intensity difference adaptive Demons (IDAD), was developed to correct for the large deformation forces that stemmed from contrast enhancement. In this application, the accuracy of the proposed method was evaluated in both mathematically-simulated and physically-acquired phantom images. Clinical usage and accuracy of the temporal subtraction framework was demonstrated using contrast-enhanced breast CT datasets from five patients. Registration performance was quantified using normalized cross correlation (NCC), symmetric uncertainty coefficient, normalized mutual information (NMI), mean square error (MSE) and target registration error (TRE). The proposed method outperformed conventional affine and other Demons variations in contrast enhanced breast CT image registration. In simulation studies, IDAD exhibited improvement in MSE (0-16%), NCC (0-6%), NMI (0-13%) and TRE (0-34%) compared to the conventional Demons approaches, depending on the size and intensity of the enhancing lesion. As lesion size and contrast enhancement levels increased, so did the improvement. The drop in the correlation between the pre- and post-contrast images for the largest enhancement levels in phantom studies is less than 1.2% (150 Hounsfield units). Registration error, measured by TRE, shows only submillimeter mismatches between the concordant anatomical target points in all patient studies. The algorithm was

  19. MRI dynamic range and its compatibility with signal transmission media

    NASA Astrophysics Data System (ADS)

    Gabr, Refaat E.; Schär, Michael; Edelstein, Arthur D.; Kraitchman, Dara L.; Bottomley, Paul A.; Edelstein, William A.

    2009-06-01

    As the number of MRI phased array coil elements grows, interactions among cables connecting them to the system receiver become increasingly problematic. Fiber optic or wireless links would reduce electromagnetic interference, but their dynamic range (DR) is generally less than that of coaxial cables. Raw MRI signals, however, have a large DR because of the high signal amplitude near the center of k-space. Here, we study DR in MRI in order to determine the compatibility of MRI multicoil imaging with non-coaxial cable signal transmission. Since raw signal data are routinely discarded, we have developed an improved method for estimating the DR of MRI signals from conventional magnitude images. Our results indicate that the DR of typical surface coil signals at 3 T for human subjects is less than 88 dB, even for three-dimensional acquisition protocols. Cardiac and spine coil arrays had a maximum DR of less than 75 dB and head coil arrays less than 88 dB. The DR derived from magnitude images is in good agreement with that measured from raw data. The results suggest that current analog fiber optic links, with a spurious-free DR of 60-70 dB at 500 kHz bandwidth, are not by themselves adequate for transmitting MRI data from volume or array coils with DR ˜90 dB. However, combining analog links with signal compression might make non-coaxial cable signal transmission viable.

  20. Dynamic MRI of the TMJ under physical load

    PubMed Central

    Hopfgartner, A J; Tymofiyeva, O; Ehses, P; Rottner, K; Boldt, J; Richter, E-J; Jakob, P M

    2013-01-01

    Objectives: The objective of this study was to examine the kinematics of structures of the temporomandibular joint (TMJ) under physiological load while masticating. Methods: Radial MRI was chosen as a fast imaging method to dynamically capture the motions of the joint’s anatomy. The technique included a golden ratio-based increment angle and a sliding window reconstruction. The measurements were performed on 22 subjects with and without deformation/displacement of the intra-articular disc while they were biting on a cooled caramel toffee. Results: The reconstructed dynamic images provided sufficient information about the size and localization of the disc as well as the change of the intra-articular distance with and without loading. Conclusions: The feasibility of the golden ratio-based radial MRI technique to dynamically capture the anatomy of the TMJ under physical load was demonstrated in this initial study. PMID:23975114

  1. Is Contrast Enhanced Ultrasound (CEUS) ready for use in daily practice for evaluation of focal liver lesions?

    PubMed

    Sporea, Ioan; Şirli, Roxana

    2014-03-01

    Abdominal ultrasound is one of the most popular imaging methods due to its feasibility, low cost and accessibility. Contrast Enhanced Ultrasound (CEUS) with second generation contrast agents became in the last years a useful tool for the characterization of focal liver lesions (FLL) so that EFSUMB issued guidelines for its use in clinical practice. Several large studies proved that CEUS has similar performance to more expensive imaging methods such as contrast enhanced CT and contrast enhanced MRI for the characterization of FLL. Also, several studies proved that CEUS is cost-effective as a first-line imaging method. Considering all these data, we think that CEUS is ready to be used in daily practice for the evaluation of FLL. PMID:24567923

  2. Contrast-enhanced ultrasonography in Takayasu arteritis: watching and monitoring the arterial inflammation.

    PubMed

    Herlin, Bastien; Baud, Jean-Michel; Chadenat, Marie-Laure; Pico, Fernando

    2015-01-01

    A 43-year-old man was diagnosed with Takayasu arteritis, and treated with methotrexate and corticosteroids. While under treatment and with normal biological inflammatory parameters, he experienced an ischaemic stroke, successfully treated with intravenous thrombolysis (alteplase). The B-mode ultrasound examination revealed circumferential wall thickening of the left common carotid artery. Contrast-enhanced ultrasonography showed a progressive arterial wall enhancement of the left common carotid artery. This pathological enhancement indicates neovascularisation of the arterial wall, which is supposed to correlate with active vascular inflammation. After an increase in immunosuppressive treatment, follow-up contrast-enhanced ultrasonography no longer showed artery wall enhancement. Contrast-enhanced ultrasound examination is an inexpensive, reproducible and minimally invasive method, providing dynamic information on arterial wall neovascularisation and thus inflammation. This case illustrates that contrast-enhanced ultrasonography can be a useful tool for the management and follow-up of Takayasu arteritis, and its use as a marker of disease activity and arterial inflammation in Takayasu arteritis should be evaluated in further studies. PMID:26452525

  3. Could contrast-enhanced CT detect STEMI prior to electrocardiogram?

    PubMed

    Sabbagh, Chadi; Rahi, Mayda; Baz, Maria; Haddad, Fadi; Helwe, Omar; Aoun, Noel; Ibrahim, Tony; Abdo, Lynn

    2015-01-01

    We present here a case in which contrast-enhanced computed tomography (CT) was the first diagnostic tool to detect myocardial hypoperfusion in a patient with atypical symptoms and normal electrocardiogram (ECG) on admission. An ST-segment elevation was detected thereafter on a second ECG realized several minutes after CT with raised troponin levels. Percutaneous coronary intervention was performed after failure of thrombolysis and confirmed occlusion of the left anterior descending artery. Further studies are needed to evaluate the role of high-resolution contrast-enhanced CT with or without coronary angiography in the workup of suspected myocardial infarction in the setting of a normal ECG. PMID:25085282

  4. Intrarenal Reflux: Diagnosis at Contrast-Enhanced Voiding Urosonography.

    PubMed

    Colleran, Gabrielle C; Barnewolt, Carol E; Chow, Jeanne S; Paltiel, Harriet J

    2016-08-01

    Vesicoureteral reflux (VUR) is a childhood condition that is usually diagnosed by fluoroscopic voiding cystourethrography (VCUG). Intrarenal reflux (IRR) of infected urine is believed to play an important role in the pathogenesis of reflux-associated pyelonephritis and subsequent parenchymal scarring and is traditionally depicted by fluoroscopic VCUG. This case series describes the phenomenon of IRR occurring in association with VUR in 4 children as depicted by contrast-enhanced voiding urosonography. The ability of contrast-enhanced voiding urosonography to show IRR when it occurs in conjunction with VUR compares favorably to that of fluoroscopic VCUG. PMID:27371375

  5. Computerized Image Analysis for Identifying Triple-Negative Breast Cancers and Differentiating Them from Other Molecular Subtypes of Breast Cancer on Dynamic Contrast-enhanced MR Images: A Feasibility Study

    PubMed Central

    Agner, Shannon C.; Rosen, Mark A.; Englander, Sarah; Tomaszewski, John E.; Feldman, Michael D.; Zhang, Paul; Mies, Carolyn; Schnall, Mitchell D.

    2014-01-01

    Purpose To determine the feasibility of using a computer-aided diagnosis (CAD) system to differentiate among triple-negative breast cancer, estrogen receptor (ER)–positive cancer, human epidermal growth factor receptor type 2 (HER2)–positive cancer, and benign fibroadenoma lesions on dynamic contrast material–enhanced (DCE) magnetic resonance (MR) images. Materials and Methods This is a retrospective study of prospectively acquired breast MR imaging data collected from an institutional review board–approved, HIPAA-compliant study between 2002 and 2007. Written informed consent was obtained from all patients. The authors collected DCE MR images from 65 women with 76 breast lesions who had been recruited into a larger study of breast MR imaging. The women had triple-negative (n = 21), ER-positive (n = 25), HER2-positive (n = 18), or fibroadenoma (n = 12) lesions. All lesions were classified as Breast Imaging Reporting and Data System category 4 or higher on the basis of previous imaging. Images were subject to quantitative feature extraction, feed-forward feature selection by means of linear discriminant analysis, and lesion classification by using a support vector machine classifier. The area under the receiver operating characteristic curve (Az) was calculated for each of five lesion classification tasks involving triple-negative breast cancers. Results For each pair-wise lesion type comparison, linear discriminant analysis helped identify the most discriminatory features, which in conjunction with a support vector machine classifier yielded an Az of 0.73 (95% confidence interval [CI]: 0.59, 0.87) for triple-negative cancer versus all non–triple-negative lesions, 0.74 (95% CI: 0.60, 0.88) for triple-negative cancer versus ER- and HER2-positive cancer, 0.77 (95% CI: 0.63, 0.91) for triple-negative versus ER-positive cancer, 0.74 (95% CI: 0.58, 0.89) for triple-negative versus HER2-positive cancer, and 0.97 (95% CI: 0.91, 1.00) for triple-negative cancer

  6. Feasibility of automated pancreas segmentation based on dynamic MRI

    PubMed Central

    Gou, S; Wu, J; Liu, F; Lee, P; Rapacchi, S; Hu, P

    2014-01-01

    Objective: MRI-guided radiotherapy is particularly attractive for abdominal targets with low CT contrast. To fully utilize this modality for pancreas tracking, automated segmentation tools are needed. A hybrid gradient, region growth and shape constraint (hGReS) method to segment two-dimensional (2D) upper abdominal dynamic MRI (dMRI) is developed for this purpose. Methods: 2D coronal dynamic MR images of two healthy volunteers were acquired with a frame rate of 5 frames per second. The regions of interest (ROIs) included the liver, pancreas and stomach. The first frame was used as the source where the centres of the ROIs were manually annotated. These centre locations were propagated to the next dMRI frame. Four-neighborhood region transfer growth was performed from these initial seeds before refinement using shape constraints. Results from hGReS and two other automated segmentation methods using integrated edge detection and region growth (IER) and level set, respectively, were compared with manual contours using Dice's index (DI). Results: For the first patient, the hGReS resulted in the organ segmentation accuracy as a measure by the DI (0.77) for the pancreas, superior to the level set method (0.72) and IER (0.71). The hGReS was shown to be reproducible on the second subject, achieving a DI of 0.82, 0.92 and 0.93 for the pancreas, stomach and liver, respectively. Motion trajectories derived from the hGReS were highly correlated to respiratory motion. Conclusion: We have shown the feasibility of automated segmentation of the pancreas anatomy on dMRI. Advances in knowledge: Using the hybrid method improves segmentation robustness of low-contrast images. PMID:25270713

  7. The Feasibility of Contrast-Enhanced Ultrasound During Uterine Artery Embolization: A Pilot Study

    SciTech Connect

    Dorenberg, Eric J. Jakobsen, Jarl A.; Brabrand, Knut; Hafsahl, Geir; Smith, Hans-Jorgen

    2007-09-15

    Purpose. To evaluate the feasibility of using contrast-enhanced ultrasound (CEUS) during uterine artery embolization (UAE) in order to define the correct end-point of embolization with complete devascularization of all fibroids. Methods. In this prospective study of 10 consecutive women undergoing UAE, CEUS was performed in the angiographic suite during embolization. When the angiographic end-point, defined as the 'pruned-tree' appearance of the uterine arteries was reached, CEUS was performed while the angiographic catheters to both uterine arteries were kept in place. The decision whether or not to continue the embolization was based on the findings at CEUS. The results of CEUS were compared with those of contrast-enhanced magnetic resonance imaging (MRI) 1 day as well as 3 months following UAE. Results. CEUS was successfully performed in all women. In 4 cases injection of particles was continued based on the findings at CEUS despite angiographically complete embolization. CEUS imaging at completion of UAE correlated well with the findings at MRI. Conclusion. The use of CEUS during UAE is feasible and may increase the quality of UAE.

  8. MRI-Guided Target Motion Assessment using Dynamic Automatic Segmentation

    NASA Astrophysics Data System (ADS)

    Saenz, Daniel L.

    Motion significantly impacts the radiotherapy process and represents one of the persisting problems in treatment delivery. In order to improve motion management techniques and implement future image guided radiotherapy tools such as MRI-guidance, automatic segmentation algorithms hold great promise. Such algorithms are attractive due to their direct measurement accuracy, speed, and ability to assess motion trajectories for daily treatment plan modifications. We developed and optimized an automatic segmentation technique to enable target tracking using MR cines, 4D-MRI, and 4D-CT. This algorithm overcomes weaknesses in automatic contouring such as lack of image contrast, subjectivity, slow speed, and lack of differentiating feature vectors by the use of morphological processing. The software is enhanced with predictive parameter capabilities and dynamic processing. The 4D-MRI images are acquired by applying a retrospective phase binning approach to radially-acquired MR image projections. The quantification of motion is validated with a motor phantom undergoing a known trajectory in 4D-CT, 4D-MRI, and in MR cines from the ViewRay MR-Guided RT system. In addition, a clinical case study demonstrates wide-reaching implications of the software to segment lesions in the brain and lung as well as critical structures such as the liver. Auto-segmentation results from MR cines of canines correlate well with manually drawn contours, both in terms of Dice similarity coefficient and agreement of extracted motion trajectories.

  9. Integration of DCE-MRI and DW-MRI Quantitative Parameters for Breast Lesion Classification

    PubMed Central

    Fusco, Roberta; Sansone, Mario; Filice, Salvatore; Granata, Vincenza; Catalano, Orlando; Amato, Daniela Maria; Di Bonito, Maurizio; D'Aiuto, Massimiliano; Capasso, Immacolata; Rinaldo, Massimo; Petrillo, Antonella

    2015-01-01

    Objective. The purpose of our study was to evaluate the diagnostic value of an imaging protocol combining dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI) in patients with suspicious breast lesions. Materials and Methods. A total of 31 breast lesions (15 malignant and 16 benign proved by histological examination) in 26 female patients were included in this study. For both DCE-MRI and DW-MRI model free and model based parameters were computed pixel by pixel on manually segmented ROIs. Statistical procedures included conventional linear analysis and more advanced techniques for classification of lesions in benign and malignant. Results. Our findings indicated no strong correlation between DCE-MRI and DW-MRI parameters. Results of classification analysis show that combining of DCE parameters or DW-MRI parameter, in comparison of single feature, does not yield a dramatic improvement of sensitivity and specificity of the two techniques alone. The best performance was obtained considering a full combination of all features. Moreover, the classification results combining all features are dominated by DCE-MRI features alone. Conclusion. The combination of DWI and DCE-MRI does not show a potential to dramatically increase the sensitivity and specificity of breast MRI. DCE-MRI alone gave the same performance as in combination with DW-MRI. PMID:26339597

  10. Contrast-enhanced ultrasound in differentiating malignant from benign portal vein thrombosis in hepatocellular carcinoma

    PubMed Central

    Tarantino, Luciano; Ambrosino, Pasquale; Di Minno, Matteo Nicola Dario

    2015-01-01

    Portal vein thrombosis (PVT) may occur in liver cirrhosis patients. Malignant PVT is a common complication in cirrhotic patients with concomitant hepatocellular carcinoma (HCC) and, in some cases, it may be even the initial sign of an undetected HCC. Detection of malignant PVT in a patient with liver cirrhosis heavily affects the therapeutic strategy. Gray-scale ultrasound (US) is widely unreliable for differentiating benign and malignant thrombi. Although effective for this differential diagnosis, fine-needle biopsy remains an invasive technique. Sensitivity of color-doppler US in detection of malignant thrombi is highly dependent on the size of the thrombus. Contrast-enhanced computed tomography (CT) and contrast-enhanced magnetic resonance (MRI) can be useful to assess the nature of portal thrombus, while limited data are currently available about the role of positron emission tomography (PET) and PET-CT. In contrast with CT, MRI, PET, and PET-CT, contrast-enhanced ultrasound (CEUS) is a fast, effective, well tolerated and cheap technique, that can be performed even in the same session in which the thrombus has been detected. CEUS can be performed bedside and can be available also in transplanted patients. Moreover, CT and MRI only yield a snapshot analysis during contrast diffusion, while CEUS allows for a continuous real-time imaging of the microcirculation that lasts several minutes, so that the whole arterial phase and the late parenchymal phase of the contrast diffusion can be analyzed continuously by real-time US scanning. Continuous real-time monitoring of contrast diffusion entails an easy detection of thrombus maximum enhancement. Moreover, continuous quantitative analyses of enhancement (wash in - wash out studies) by CEUS during contrast diffusion is nowadays available in most CEUS machines, thus giving a more sophisticated and accurate evaluation of the contrast distribution and an increased confidence in diagnosis in difficult cases. In conclusion

  11. Contrast-enhanced photoacoustic tomography of human joints

    NASA Astrophysics Data System (ADS)

    Tian, Chao; Keswani, Rahul K.; Gandikota, Girish; Rosania, Gus R.; Wang, Xueding

    2016-03-01

    Photoacoustic tomography (PAT) provides a unique tool to diagnose inflammatory arthritis. However, the specificity and sensitivity of PAT based on endogenous contrasts is limited. The development of contrast enhanced PAT imaging modalities in combination with small molecule contrast agents could lead to improvements in diagnosis and treatment of joint disease. Accordingly, we adapted and tested a PAT clinical imaging system for imaging the human joints, in combination with a novel PAT contrast agent derived from an FDA-approved small molecule drug. Imaging results based on a photoacoustic and ultrasound (PA/US) dual-modality system revealed that this contrast-enhanced PAT imaging system may offer additional information beyond single-modality PA or US imaging system, for the imaging, diagnosis and assessment of inflammatory arthritis.

  12. Diffeomorphic Registration of Images with Variable Contrast Enhancement

    PubMed Central

    Janssens, Guillaume; Jacques, Laurent; Orban de Xivry, Jonathan; Geets, Xavier; Macq, Benoit

    2011-01-01

    Nonrigid image registration is widely used to estimate tissue deformations in highly deformable anatomies. Among the existing methods, nonparametric registration algorithms such as optical flow, or Demons, usually have the advantage of being fast and easy to use. Recently, a diffeomorphic version of the Demons algorithm was proposed. This provides the advantage of producing invertible displacement fields, which is a necessary condition for these to be physical. However, such methods are based on the matching of intensities and are not suitable for registering images with different contrast enhancement. In such cases, a registration method based on the local phase like the Morphons has to be used. In this paper, a diffeomorphic version of the Morphons registration method is proposed and compared to conventional Morphons, Demons, and diffeomorphic Demons. The method is validated in the context of radiotherapy for lung cancer patients on several 4D respiratory-correlated CT scans of the thorax with and without variable contrast enhancement. PMID:21197460

  13. Contrast-enhanced ultrasonography of the normal canine adrenal gland.

    PubMed

    Pey, Pascaline; Vignoli, Massimo; Haers, Hendrik; Duchateau, Luc; Rossi, Federica; Saunders, Jimmy H

    2011-01-01

    Contrast-enhanced ultrasonography is useful in differentiating adrenal gland adenomas from nonadenomatous lesions in human patients. The purposes of this study were to evaluate the feasibility and to describe contrast-enhanced ultrasonography of the normal canine adrenal gland. Six healthy female Beagles were injected with an intravenous bolus of a lipid-shelled contrast agent (SonoVue(®) ). The aorta enhanced immediately followed by the renal artery and then the adrenal gland. Adrenal gland enhancement was uniform, centrifugal, and rapid from the medulla to the cortex. When maximum enhancement was reached, a gradual homogeneous decrease in echogenicity of the adrenal gland began and simultaneously enhancement of the phrenicoabdominal vessels was observed. While enhancement kept decreasing in the adrenal parenchyma, the renal vein, caudal vena cava, and phrenicoabdominal vein were characterized by persistent enhancement until the end of the study. A second contrast enhancement was observed, corresponding to the refilling time. Objective measurements were performed storing the images for off-line image analysis using Image J (ImageJ(©) ). The shape of the time-intensity curve reflecting adrenal perfusion was similar in all dogs. Ratios of the values of the cortex and the medulla to the values of the renal artery were characterized by significant differences from initial upslope to the peak allowing differentiation between the cortex and the medulla for both adrenal glands only in this time period. Contrast-enhanced ultrasonography of the adrenal glands is feasible in dogs and the optimal time for adrenal imaging is between 5 and 90 s after injection. PMID:21521396

  14. Quantitative Evaluation of the Reticuloendothelial System Function with Dynamic MRI

    PubMed Central

    Liu, Ting; Choi, Hoon; Zhou, Rong; Chen, I-Wei

    2014-01-01

    Purpose To evaluate the reticuloendothelial system (RES) function by real-time imaging blood clearance as well as hepatic uptake of superparamagnetic iron oxide nanoparticle (SPIO) using dynamic magnetic resonance imaging (MRI) with two-compartment pharmacokinetic modeling. Materials and Methods Kinetics of blood clearance and hepatic accumulation were recorded in young adult male 01b74 athymic nude mice by dynamic T2* weighted MRI after the injection of different doses of SPIO nanoparticles (0.5, 3 or 10 mg Fe/kg). Association parameter, Kin, dissociation parameter, Kout, and elimination constant, Ke, derived from dynamic data with two-compartment model, were used to describe active binding to Kupffer cells and extrahepatic clearance. The clodrosome and liposome were utilized to deplete macrophages and block the RES function to evaluate the capability of the kinetic parameters for investigation of macrophage function and density. Results The two-compartment model provided a good description for all data and showed a low sum squared residual for all mice (0.27±0.03). A lower Kin, a lower Kout and a lower Ke were found after clodrosome treatment, whereas a lower Kin, a higher Kout and a lower Ke were observed after liposome treatment in comparison to saline treatment (P<0.005). Conclusion Dynamic SPIO-enhanced MR imaging with two-compartment modeling can provide information on RES function on both a cell number and receptor function level. PMID:25090653

  15. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization.

    PubMed

    Chiu, Chung-Cheng; Ting, Chih-Chung

    2016-01-01

    Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods. PMID:27338412

  16. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization

    PubMed Central

    Chiu, Chung-Cheng; Ting, Chih-Chung

    2016-01-01

    Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods. PMID:27338412

  17. Adaptive image contrast enhancement algorithm for point-based rendering

    NASA Astrophysics Data System (ADS)

    Xu, Shaoping; Liu, Xiaoping P.

    2015-03-01

    Surgical simulation is a major application in computer graphics and virtual reality, and most of the existing work indicates that interactive real-time cutting simulation of soft tissue is a fundamental but challenging research problem in virtual surgery simulation systems. More specifically, it is difficult to achieve a fast enough graphic update rate (at least 30 Hz) on commodity PC hardware by utilizing traditional triangle-based rendering algorithms. In recent years, point-based rendering (PBR) has been shown to offer the potential to outperform the traditional triangle-based rendering in speed when it is applied to highly complex soft tissue cutting models. Nevertheless, the PBR algorithms are still limited in visual quality due to inherent contrast distortion. We propose an adaptive image contrast enhancement algorithm as a postprocessing module for PBR, providing high visual rendering quality as well as acceptable rendering efficiency. Our approach is based on a perceptible image quality technique with automatic parameter selection, resulting in a visual quality comparable to existing conventional PBR algorithms. Experimental results show that our adaptive image contrast enhancement algorithm produces encouraging results both visually and numerically compared to representative algorithms, and experiments conducted on the latest hardware demonstrate that the proposed PBR framework with the postprocessing module is superior to the conventional PBR algorithm and that the proposed contrast enhancement algorithm can be utilized in (or compatible with) various variants of the conventional PBR algorithm.

  18. Algorithms for contrast enhancement of electronic portal images

    NASA Astrophysics Data System (ADS)

    Díez, S.; Sánchez, S.

    2015-11-01

    An implementation of two new automatized image processing algorithms for contrast enhancement of portal images is presented as suitable tools which facilitate the setup verification and visualization of patients during radiotherapy treatments. In the first algorithm, called Automatic Segmentation and Histogram Stretching (ASHS), the portal image is automatically segmented in two sub-images delimited by the conformed treatment beam: one image consisting of the imaged patient obtained directly from the radiation treatment field, and the second one is composed of the imaged patient outside it. By segmenting the original image, a histogram stretching can be independently performed and improved in both regions. The second algorithm involves a two-step process. In the first step, a Normalization to Local Mean (NLM), an inverse restoration filter is applied by dividing pixel by pixel a portal image by its blurred version. In the second step, named Lineally Combined Local Histogram Equalization (LCLHE), the contrast of the original image is strongly improved by a Local Contrast Enhancement (LCE) algorithm, revealing the anatomical structures of patients. The output image is lineally combined with a portal image of the patient. Finally the output images of the previous algorithms (NLM and LCLHE) are lineally combined, once again, in order to obtain a contrast enhanced image. These two algorithms have been tested on several portal images with great results.

  19. Contrast-Enhanced Ultrasound Imaging for the Detection of Focused Ultrasound-Induced Blood-Brain Barrier Opening

    PubMed Central

    Fan, Ching-Hsiang; Lin, Wun-Hao; Ting, Chien-Yu; Chai, Wen-Yen; Yen, Tzu-Chen; Liu, Hao-Li; Yeh, Chih-Kuang

    2014-01-01

    The blood-brain barrier (BBB) can be transiently and locally opened by focused ultrasound (FUS) in the presence of microbubbles (MBs). Various imaging modalities and contrast agents have been used to monitor this process. Unfortunately, direct ultrasound imaging of BBB opening with MBs as contrast agent is not feasible, due to the inability of MBs to penetrate brain parenchyma. However, FUS-induced BBB opening is accompanied by changes in blood flow and perfusion, suggesting the possibility of perfusion-based ultrasound imaging. Here we evaluated the use of MB destruction-replenishment, which was originally developed for analysis of ultrasound perfusion kinetics, for verifying and quantifying FUS-induced BBB opening. MBs were intravenously injected and the BBB was disrupted by 2 MHz FUS with burst-tone exposure at 0.5-0.7 MPa. A perfusion kinetic map was estimated by MB destruction-replenishment time-intensity curve analysis. Our results showed that the scale and distribution of FUS-induced BBB opening could be determined at high resolution by ultrasound perfusion kinetic analysis. The accuracy and sensitivity of this approach was validated by dynamic contrast-enhanced MRI. Our successful demonstration of ultrasound imaging to monitor FUS-induced BBB opening provides a new approach to assess FUS-dependent brain drug delivery, with the benefit of high temporal resolution and convenient integration with the FUS device. PMID:25161701

  20. Usefulness of contrast-enhanced magnetic resonance imaging for evaluating solitary pulmonary nodules

    PubMed Central

    2008-01-01

    Abstract Evaluation of solitary pulmonary nodules (SPNs) poses a challenge to radiologists. Chest computed tomography (CT) is considered the standard technique for assessing morphologic findings and intrathoracic spread of an SPN. Although the clinical role of magnetic resonance imaging (MRI) for SPNs remains limited, considerable experience has been gained with MRI of thoracic diseases. Dynamic MRI and dynamic CT are useful for differentiating between malignant and benign SPNs (especially tuberculomas and hamartomas). Furthermore, dynamic MRI is useful for assessing tumor vascularity, interstitium, and vascular endothelial growth factor expression, and for predicting survival outcome among patients with peripheral pulmonary carcinoma. These advantages make dynamic MRI a promising method and a potential biomarker for characterizing tumor response to anti-angiogenic treatment as well as for predicting survival outcomes after treatment. PMID:18331971

  1. Molecular Dynamics Underlie the Nature of MRI Signals: The NMR Shutter-Speed

    NASA Astrophysics Data System (ADS)

    Springer, Charles S., Jr.

    2007-03-01

    Motions of the spin-bearing molecules can have profound effects on the very nature (the exponentiality) of the macroscopic NMR signal. Quantitative mechanistic protocols often involve varying the equilibrium molecular kinetics (usually by temperature change) relative to the ``NMR time-scale'' (SS-1), usually ill-defined as the absolute difference of resonance frequencies [|δφ|] in sites between which spins are exchanged. This holds true for the equilibrium water molecule exchange between tissue compartments and distinct populations. However, in vivo studies must [by regulation] be isothermal, and the tissue ^1H2O MRI signals remain essentially isochronous [δφ = 0]. In NMR, an equilibrium process is manifest in the context of its ``exchange condition.'' It only ``appears'' to be fast or slow by comparison of its actual rate constant with its system ``shutter-speed'' (SS). [A nonzero δφ is the first, but not only, SS: its dimension is reciprocal time.] The process kinetics can be measured only if its NMR condition is varied at least partway between the fast- and slow exchange limits. In an isothermal study with no catalyst, this can be accomplished only by varying the pertinent SS. An MRI contrast reagent (CR) increases the laboratory frame ^1H2O relaxation rate constant, Ri [≡ (Ti)-1; i = 1,2]. For an isochronous exchange process, the SS is the intrinsic |δRi| for the sites. In quantitative dynamic-contrast-enhanced (DCE) studies, analytical pharmacokinetic modeling is accomplished on region-of-interest (ROI) or pixel by pixel ^1H2O signal time-courses following bolus CR injections. Accounting for the equilibrium transendothelial and transcytolemmal water interchange processes (a three-site exchange situation) is crucial for modeling accuracy: the relevant SS values vary during the CR bolus passage. This is so for DCE studies of cancer, multiple sclerosis, and myocardial blood flow variation. It is necessary for the successful discrimination of malignant

  2. Assessment of contrast enhanced respiration managed cone-beam CT for image guided radiotherapy of intrahepatic tumors

    SciTech Connect

    Jensen, Nikolaj K. G.; Stewart, Errol; Lock, Michael; Fisher, Barbara; Kozak, Roman; Chen, Jeff; Lee, Ting-Yim; Wong, Eugene

    2014-05-15

    Purpose: Contrast enhancement and respiration management are widely used during image acquisition for radiotherapy treatment planning of liver tumors along with respiration management at the treatment unit. However, neither respiration management nor intravenous contrast is commonly used during cone-beam CT (CBCT) image acquisition for alignment prior to radiotherapy. In this study, the authors investigate the potential gains of injecting an iodinated contrast agent in combination with respiration management during CBCT acquisition for liver tumor radiotherapy. Methods: Five rabbits with implanted liver tumors were subjected to CBCT with and without motion management and contrast injection. The acquired CBCT images were registered to the planning CT to determine alignment accuracy and dosimetric impact. The authors developed a simulation tool for simulating contrast-enhanced CBCT images from dynamic contrast enhanced CT imaging (DCE-CT) to determine optimal contrast injection protocols. The tool was validated against contrast-enhanced CBCT of the rabbit subjects and was used for five human patients diagnosed with hepatocellular carcinoma. Results: In the rabbit experiment, when neither motion management nor contrast was used, tumor centroid misalignment between planning image and CBCT was 9.2 mm. This was reduced to 2.8 mm when both techniques were employed. Tumors were not visualized in clinical CBCT images of human subjects. Simulated contrast-enhanced CBCT was found to improve tumor contrast in all subjects. Different patients were found to require different contrast injections to maximize tumor contrast. Conclusions: Based on the authors’ animal study, respiration managed contrast enhanced CBCT improves IGRT significantly. Contrast enhanced CBCT benefits from patient specific tracer kinetics determined from DCE-CT.

  3. Contrast enhanced pulmonary magnetic resonance angiography for pulmonary embolism: Building a successful program.

    PubMed

    Nagle, Scott K; Schiebler, Mark L; Repplinger, Michael D; François, Christopher J; Vigen, Karl K; Yarlagadda, Rajkumar; Grist, Thomas M; Reeder, Scott B

    2016-03-01

    The performance of contrast enhanced pulmonary magnetic resonance angiography (MRA) for the diagnosis of pulmonary embolism (PE) is an effective non-ionizing alternative to contrast enhanced computed tomography and nuclear medicine ventilation/perfusion scanning. However, the technical success of these exams is very dependent on careful attention to the details of the MRA acquisition protocol and requires reader familiarity with MRI and its artifacts. Most practicing radiologists are very comfortable with the performance and interpretation of computed tomographic angiography (CTA) performed to detect pulmonary embolism but not all are as comfortable with the use of MRA in this setting. The purpose of this review is to provide the general radiologist with the tools necessary to build a successful pulmonary embolism MRA program. This review will cover in detail image acquisition, image interpretation, and some key elements of outreach that help to frame the role of MRA to consulting clinicians and hospital administrators. It is our aim that this resource will help build successful clinical pulmonary embolism MRA programs that are well received by patients and physicians, reduce the burden of medical imaging radiation, and maintain good patient outcomes. PMID:26860667

  4. Multiple functional nanoprobe for contrast-enhanced bimodal cellular imaging and targeted therapy.

    PubMed

    Meng, Hong-Min; Lu, Limin; Zhao, Xu-Hua; Chen, Zhuo; Zhao, Zilong; Yang, Chan; Zhang, Xiao-Bing; Tan, Weihong

    2015-04-21

    Many one-photon fluorescence-based theranostic nanosystems have been developed for simultaneous therapeutic intervention/monitoring for various types of cancers. However, for early diagnosis of cancer, two-photon fluorescence microscopy (TPFM) can realize deep-tissue imaging with higher spatial resolution. In this study, we first report a multiple functional nanoprobe for contrast-enhanced bimodal cellular imaging and targeted therapy. Components of the nanoprobe include (1) two-photon dye-doped mesoporous silica nanoparticles (TPD-MSNs); (2) MnO2 nanosheets that act as a (i) gatekeeper for TPD-MSNs, (ii) quencher for TP fluorescence, and (iii) contrast agent for MRI; (3) cancer cell-targeting aptamers. Guided by aptamers, TPD-MSNs are rapidly internalized into the target cells. Next, intracellular glutathione reduces MnO2 to Mn(2+) ions, resulting in contrast-enhanced TP fluorescence and magnetic resonance signal for cellular imaging. Meanwhile, preloaded doxorubicin and Chlorin e6 are released for chemotherapy and photodynamic therapy, respectively, with a synergistic effect and significantly enhanced therapeutic efficacy. PMID:25791340

  5. MRI in multiple myeloma: a pictorial review of diagnostic and post-treatment findings.

    PubMed

    Dutoit, Julie C; Verstraete, Koenraad L

    2016-08-01

    Magnetic resonance imaging (MRI) is increasingly being used in the diagnostic work-up of patients with multiple myeloma. Since 2014, MRI findings are included in the new diagnostic criteria proposed by the International Myeloma Working Group. Patients with smouldering myeloma presenting with more than one unequivocal focal lesion in the bone marrow on MRI are considered having symptomatic myeloma requiring treatment, regardless of the presence of lytic bone lesions. However, bone marrow evaluation with MRI offers more than only morphological information regarding the detection of focal lesions in patients with MM. The overall performance of MRI is enhanced by applying dynamic contrast-enhanced MRI and diffusion weighted imaging sequences, providing additional functional information on bone marrow vascularization and cellularity.This pictorial review provides an overview of the most important imaging findings in patients with monoclonal gammopathy of undetermined significance, smouldering myeloma and multiple myeloma, by performing a 'total' MRI investigation with implications for the diagnosis, staging and response assessment. Main message • Conventional MRI diagnoses multiple myeloma by assessing the infiltration pattern. • Dynamic contrast-enhanced MRI diagnoses multiple myeloma by assessing vascularization and perfusion. • Diffusion weighted imaging evaluates bone marrow composition and cellularity in multiple myeloma. • Combined morphological and functional MRI provides optimal bone marrow assessment for staging. • Combined morphological and functional MRI is of considerable value in treatment follow-up. PMID:27164915

  6. Dynamic fMRI of a decision-making task

    NASA Astrophysics Data System (ADS)

    Singh, Manbir; Sungkarat, Witaya

    2008-03-01

    A novel fMRI technique has been developed to capture the dynamics of the evolution of brain activity during complex tasks such as those designed to evaluate the neural basis of decision-making under different situations. A task called the Iowa Gambling Task was used as an example. Six normal human volunteers were studied. The task was presented inside a 3T MRI and a dynamic fMRI study of the approximately 2s period between the beginning and end of the decision-making period was conducted by employing a series of reference functions, separated by 200 ms, designed to capture activation at different time-points within this period. As decision-making culminates with a button-press, the timing of the button press was chosen as the reference (t=0) and corresponding reference functions were shifted backward in steps of 200ms from this point up to the time when motor activity from the previous button press became predominant. SPM was used to realign, high-pass filter (cutoff 200s), normalize to the Montreal Neurological Institute (MNI) Template using a 12 parameter affine/non-linear transformation, 8mm Gaussian smoothing, and event-related General Linear Model analysis for each of the shifted reference functions. The t-score of each activated voxel was then examined to find its peaking time. A random effect analysis (p<0.05) showed prefrontal, parietal and bi-lateral hippocampal activation peaking at different times during the decision making period in the n=6 group study.

  7. Optimization of Polarimetric Contrast Enhancement Based on Fisher Criterion

    NASA Astrophysics Data System (ADS)

    Deng, Qiming; Chen, Jiong; Yang, Jian

    The optimization of polarimetric contrast enhancement (OPCE) is a widely used method for maximizing the received power ratio of a desired target versus an undesired target (clutter). In this letter, a new model of the OPCE is proposed based on the Fisher criterion. By introducing the well known two-class problem of linear discriminant analysis (LDA), the proposed model is to enlarge the normalized distance of mean value between the target and the clutter. In addition, a cross-iterative numerical method is proposed for solving the optimization with a quadratic constraint. Experimental results with the polarimetric SAR (POLSAR) data demonstrate the effectiveness of the proposed method.

  8. Recent Experiences and Advances in Contrast-Enhanced Subharmonic Ultrasound

    PubMed Central

    Eisenbrey, John R.; Liu, Ji-Bin; Forsberg, Flemming

    2015-01-01

    Nonlinear contrast-enhanced ultrasound imaging schemes strive to suppress tissue signals in order to better visualize nonlinear signals from blood-pooling ultrasound contrast agents. Because tissue does not generate a subharmonic response (i.e., signal at half the transmit frequency), subharmonic imaging has been proposed as a method for isolating ultrasound microbubble signals while suppressing surrounding tissue signals. In this paper, we summarize recent advances in the use of subharmonic imaging in vivo. These advances include the implementation of subharmonic imaging on linear and curvilinear arrays, intravascular probes, and three-dimensional probes for breast, renal, liver, plaque, and tumor imaging. PMID:26090430

  9. Dynamic deformable models for 3D MRI heart segmentation

    NASA Astrophysics Data System (ADS)

    Zhukov, Leonid; Bao, Zhaosheng; Gusikov, Igor; Wood, John; Breen, David E.

    2002-05-01

    Automated or semiautomated segmentation of medical images decreases interstudy variation, observer bias, and postprocessing time as well as providing clincally-relevant quantitative data. In this paper we present a new dynamic deformable modeling approach to 3D segmentation. It utilizes recently developed dynamic remeshing techniques and curvature estimation methods to produce high-quality meshes. The approach has been implemented in an interactive environment that allows a user to specify an initial model and identify key features in the data. These features act as hard constraints that the model must not pass through as it deforms. We have employed the method to perform semi-automatic segmentation of heart structures from cine MRI data.

  10. Uterus segmentation in dynamic MRI using LBP texture descriptors

    NASA Astrophysics Data System (ADS)

    Namias, R.; Bellemare, M.-E.; Rahim, M.; Pirró, N.

    2014-03-01

    Pelvic floor disorders cover pathologies of which physiopathology is not well understood. However cases get prevalent with an ageing population. Within the context of a project aiming at modelization of the dynamics of pelvic organs, we have developed an efficient segmentation process. It aims at alleviating the radiologist with a tedious one by one image analysis. From a first contour delineating the uterus-vagina set, the organ border is tracked along a dynamic mri sequence. The process combines movement prediction, local intensity and texture analysis and active contour geometry control. Movement prediction allows a contour intitialization for next image in the sequence. Intensity analysis provides image-based local contour detection enhanced by local binary pattern (lbp) texture descriptors. Geometry control prohibits self intersections and smoothes the contour. Results show the efficiency of the method with images produced in clinical routine.

  11. GPU accelerated dynamic functional connectivity analysis for functional MRI data.

    PubMed

    Akgün, Devrim; Sakoğlu, Ünal; Esquivel, Johnny; Adinoff, Bryon; Mete, Mutlu

    2015-07-01

    Recent advances in multi-core processors and graphics card based computational technologies have paved the way for an improved and dynamic utilization of parallel computing techniques. Numerous applications have been implemented for the acceleration of computationally-intensive problems in various computational science fields including bioinformatics, in which big data problems are prevalent. In neuroimaging, dynamic functional connectivity (DFC) analysis is a computationally demanding method used to investigate dynamic functional interactions among different brain regions or networks identified with functional magnetic resonance imaging (fMRI) data. In this study, we implemented and analyzed a parallel DFC algorithm based on thread-based and block-based approaches. The thread-based approach was designed to parallelize DFC computations and was implemented in both Open Multi-Processing (OpenMP) and Compute Unified Device Architecture (CUDA) programming platforms. Another approach developed in this study to better utilize CUDA architecture is the block-based approach, where parallelization involves smaller parts of fMRI time-courses obtained by sliding-windows. Experimental results showed that the proposed parallel design solutions enabled by the GPUs significantly reduce the computation time for DFC analysis. Multicore implementation using OpenMP on 8-core processor provides up to 7.7× speed-up. GPU implementation using CUDA yielded substantial accelerations ranging from 18.5× to 157× speed-up once thread-based and block-based approaches were combined in the analysis. Proposed parallel programming solutions showed that multi-core processor and CUDA-supported GPU implementations accelerated the DFC analyses significantly. Developed algorithms make the DFC analyses more practical for multi-subject studies with more dynamic analyses. PMID:25805449

  12. Fuzzy pulmonary vessel segmentation in contrast enhanced CT data

    NASA Astrophysics Data System (ADS)

    Kaftan, Jens N.; Kiraly, Atilla P.; Bakai, Annemarie; Das, Marco; Novak, Carol L.; Aach, Til

    2008-03-01

    Pulmonary vascular tree segmentation has numerous applications in medical imaging and computer-aided diagnosis (CAD), including detection and visualization of pulmonary emboli (PE), improved lung nodule detection, and quantitative vessel analysis. We present a novel approach to pulmonary vessel segmentation based on a fuzzy segmentation concept, combining the strengths of both threshold and seed point based methods. The lungs of the original image are first segmented and a threshold-based approach identifies core vessel components with a high specificity. These components are then used to automatically identify reliable seed points for a fuzzy seed point based segmentation method, namely fuzzy connectedness. The output of the method consists of the probability of each voxel belonging to the vascular tree. Hence, our method provides the possibility to adjust the sensitivity/specificity of the segmentation result a posteriori according to application-specific requirements, through definition of a minimum vessel-probability required to classify a voxel as belonging to the vascular tree. The method has been evaluated on contrast-enhanced thoracic CT scans from clinical PE cases and demonstrates overall promising results. For quantitative validation we compare the segmentation results to randomly selected, semi-automatically segmented sub-volumes and present the resulting receiver operating characteristic (ROC) curves. Although we focus on contrast enhanced chest CT data, the method can be generalized to other regions of the body as well as to different imaging modalities.

  13. Adaptive sigmoid function bihistogram equalization for image contrast enhancement

    NASA Astrophysics Data System (ADS)

    Arriaga-Garcia, Edgar F.; Sanchez-Yanez, Raul E.; Ruiz-Pinales, Jose; Garcia-Hernandez, Ma. de Guadalupe

    2015-09-01

    Contrast enhancement plays a key role in a wide range of applications including consumer electronic applications, such as video surveillance, digital cameras, and televisions. The main goal of contrast enhancement is to increase the quality of images. However, most state-of-the-art methods induce different types of distortion such as intensity shift, wash-out, noise, intensity burn-out, and intensity saturation. In addition, in consumer electronics, simple and fast methods are required in order to be implemented in real time. A bihistogram equalization method based on adaptive sigmoid functions is proposed. It consists of splitting the image histogram into two parts that are equalized independently by using adaptive sigmoid functions. In order to preserve the mean brightness of the input image, the parameter of the sigmoid functions is chosen to minimize the absolute mean brightness metric. Experiments on the Berkeley database have shown that the proposed method improves the quality of images and preserves their mean brightness. An application to improve the colorfulness of images is also presented.

  14. Optimal exposure techniques for iodinated contrast enhanced breast CT

    NASA Astrophysics Data System (ADS)

    Glick, Stephen J.; Makeev, Andrey

    2016-03-01

    Screening for breast cancer using mammography has been very successful in the effort to reduce breast cancer mortality, and its use has largely resulted in the 30% reduction in breast cancer mortality observed since 1990 [1]. However, diagnostic mammography remains an area of breast imaging that is in great need for improvement. One imaging modality proposed for improving the accuracy of diagnostic workup is iodinated contrast-enhanced breast CT [2]. In this study, a mathematical framework is used to evaluate optimal exposure techniques for contrast-enhanced breast CT. The ideal observer signal-to-noise ratio (i.e., d') figure-of-merit is used to provide a task performance based assessment of optimal acquisition parameters under the assumptions of a linear, shift-invariant imaging system. A parallel-cascade model was used to estimate signal and noise propagation through the detector, and a realistic lesion model with iodine uptake was embedded into a structured breast background. Ideal observer performance was investigated across kVp settings, filter materials, and filter thickness. Results indicated many kVp spectra/filter combinations can improve performance over currently used x-ray spectra.

  15. Versatile utilization of real-time intraoperative contrast-enhanced ultrasound in cranial neurosurgery: technical note and retrospective case series.

    PubMed

    Lekht, Ilya; Brauner, Noah; Bakhsheshian, Joshua; Chang, Ki-Eun; Gulati, Mittul; Shiroishi, Mark S; Grant, Edward G; Christian, Eisha; Zada, Gabriel

    2016-03-01

    OBJECTIVE Intraoperative contrast-enhanced ultrasound (iCEUS) offers dynamic imaging and provides functional data in real time. However, no standardized protocols or validated quantitative data exist to guide its routine use in neurosurgery. The authors aimed to provide further clinical data on the versatile application of iCEUS through a technical note and illustrative case series. METHODS Five patients undergoing craniotomies for suspected tumors were included. iCEUS was performed using a contrast agent composed of lipid shell microspheres enclosing perflutren (octafluoropropane) gas. Perfusion data were acquired through a time-intensity curve analysis protocol obtained using iCEUS prior to biopsy and/or resection of all lesions. RESULTS Three primary tumors (gemistocytic astrocytoma, glioblastoma multiforme, and meningioma), 1 metastatic lesion (melanoma), and 1 tumefactive demyelinating lesion (multiple sclerosis) were assessed using real-time iCEUS. No intraoperative complications occurred following multiple administrations of contrast agent in all cases. In all neoplastic cases, iCEUS replicated enhancement patterns observed on preoperative Gd-enhanced MRI, facilitated safe tumor debulking by differentiating neoplastic tissue from normal brain parenchyma, and helped identify arterial feeders and draining veins in and around the surgical cavity. Intraoperative CEUS was also useful in guiding a successful intraoperative needle biopsy of a cerebellar tumefactive demyelinating lesion obtained during real-time perfusion analysis. CONCLUSIONS Intraoperative CEUS has potential for safe, real-time, dynamic contrast-based imaging for routine use in neurooncological surgery and image-guided biopsy. Intraoperative CEUS eliminates the effect of anatomical distortions associated with standard neuronavigation and provides quantitative perfusion data in real time, which may hold major implications for intraoperative diagnosis, tissue differentiation, and quantification of

  16. Consistency analysis of contrast-enhanced ultrasound and contrast-enhanced CT in diagnosis of small hepatocellular carcinoma

    PubMed Central

    Liu, Jun-Jie; Li, Hong-Xue; Chen, Zhao-Bei; Yang, Wei-Ping; Zhao, Sheng-Fa; Chen, Jie; Bai, Tao; Li, Hang; Li, Le-Qun

    2015-01-01

    To compare the consistency of contrast-enhanced ultrasound (CEUS) and contrast-enhance CT (CECT) in diagnosis of 1~2 cm and 2.1~3 cm small hepatocellular carcinoma (HCC) and evaluate the value of CEUS in diagnosis of HCC. Methods: A total of 74 patients (89 lesions) with small HCC and cirrhosis background were retrospectively analyzed. All of the eighty-nine lesions were confirmed by histopathological examination of surgical samples or needle biopsy. All the cases were divided into 1~2 cm group and 2.1~3 cm group. The CEUS and CECT enhanced pattern and diagnosis results of the two groups were compared and the consistency between the two imaging methods were statistically analyzed. Results: In the diagnosis of 1.0-2.0 cm HCC, CEUS and CECT had a moderate consistency in arterial phase, CEUS showed a tolerable consistency with CECT in portal venous and delayphase. The two imaging methods have a better consistency for the diagnosis in 2.1-3.0 cm HCC. Conclusion: CEUS can be used as a supplement to provide important diagnostic information in clinical practice when positive results or definite diagnoses cannot obtain. PMID:26885093

  17. Evaluation of blunt pancreatic injury with contrast-enhanced ultrasonography in comparison with contrast-enhanced computed tomography

    PubMed Central

    SONG, QING; TANG, JIE; LV, FA-QIN; ZHANG, YAN; JIAO, ZI-YU; LIU, QIANG; LUO, YU-KUN

    2013-01-01

    The aim of the present study was to evaluate acute blunt pancreatic injury using contrast-enhanced ultrasonography (CEUS) in comparison with contrast-enhanced computed tomography (CECT). Superficial and deep lesions were established by blunt pancreatic injury in 40 Chinese Guangxi Bama miniature pigs. Conventional ultrasound (US), CEUS and CECT were performed to detect traumatic lesions in the pancreas. A total of 40 lesions were established, including 20 deep lesions and 20 superficial lesions. US identified 21 of the 40 lesions, including 7 of the 20 superficial and 14 of the 20 deep lesions. CEUS identified 34 of the 40 lesions, including 14 of the 20 superficial and 20 of the 20 deep lesions. CECT identified 33 of the 40 lesions, including 13 of the 20 superficial and 20 of the 20 deep lesions. The detection rate of acute blunt pancreatic injury using CEUS was significantly higher compared with that using US (85 vs. 52.5%, P<0.05), however there was no significant difference in the detection rate of pancreatic lesions between CEUS and CECT (85 vs. 82.5%, P>0.05). CEUS improves the diagnostic levels of conventional US and is comparable with CECT scans in the diagnosis of blunt pancreatic injury. PMID:23737899

  18. Contrast-Enhanced Ultrasonography in Crohn's Disease Diagnostics.

    PubMed

    Białecki, Marcin; Białecka, Agnieszka; Laskowska, Katarzyna; Liebert, Ariel; Kłopocka, Maria; Serafin, Zbigniew

    2015-06-01

    The chronic nature of Crohn's disease (CD) implicates necessity of multiple control assessments throughout patient's life. It is accepted that in patients with CD requiring disease monitoring, magnetic resonance enterography (MRE) and computed tomography enterography (CTE) are--apart from endoscopy--imaging studies of first choice. In practice, diagnostic imaging of patients with CD is troublesome, since MRE is an expensive and complicated study, and CTE exposes patients to high doses of ionizing radiation. Therefore, there is a need for new, both non-invasive and effective, methods of imaging in CD. Contrast-Enhanced Ultrasonography (CEUS) is a relatively new method using gas-filled microbubbles serving as contrast agent. It allows for detailed assessment of blood perfusion within intestine wall and peri-intestinal tissues, which enables detection and monitoring of inflammation and its qualitative assessment. The purpose of this paper is to describe CEUS examination technique and its clinical applications in patients with Crohn's disease. PMID:26902030

  19. Microvascular contrast enhancement in optical coherence tomography using microbubbles

    NASA Astrophysics Data System (ADS)

    Assadi, Homa; Demidov, Valentin; Karshafian, Raffi; Douplik, Alexandre; Vitkin, I. Alex

    2016-07-01

    Gas microbubbles (MBs) are investigated as intravascular optical coherence tomography (OCT) contrast agents. Agar + intralipid scattering tissue phantoms with two embedded microtubes were fabricated to model vascular blood flow. One was filled with human blood, and the other with a mixture of human blood + MB. Swept-source structural and speckle variance (sv) OCT images, as well as speckle decorrelation times, were evaluated under both no-flow and varying flow conditions. Faster decorrelation times and higher structural and svOCT image contrasts were detected in the presence of MB in all experiments. The effects were largest in the svOCT imaging mode, and uniformly diminished with increasing flow velocity. These findings suggest the feasibility of utilizing MB for tissue hemodynamic investigations and for microvasculature contrast enhancement in OCT angiography.

  20. Contrast-enhanced imaging of cerebral vasculature with laser speckle

    NASA Astrophysics Data System (ADS)

    Murari, K.; Li, N.; Rege, A.; Jia, X.; All, A.; Thakor, N.

    2007-08-01

    High-resolution cerebral vasculature imaging has applications ranging from intraoperative procedures to basic neuroscience research. Laser speckle, with spatial contrast processing, has recently been used to map cerebral blood flow. We present an application of the technique using temporal contrast processing to image cerebral vascular structures with a field of view a few millimeters across and approximately 20 μm resolution through a thinned skull. We validate the images using fluorescent imaging and demonstrate a factor of 2-4 enhancement in contrast-to-noise ratios over reflectance imaging using white or spectrally filtered green light. The contrast enhancement enables the perception of approximately 10%-30% more vascular structures without the introduction of any contrast agent.

  1. Image contrast enhancement based on a local standard deviation model

    SciTech Connect

    Chang, Dah-Chung; Wu, Wen-Rong

    1996-12-31

    The adaptive contrast enhancement (ACE) algorithm is a widely used image enhancement method, which needs a contrast gain to adjust high frequency components of an image. In the literature, the gain is usually inversely proportional to the local standard deviation (LSD) or is a constant. But these cause two problems in practical applications, i.e., noise overenhancement and ringing artifact. In this paper a new gain is developed based on Hunt`s Gaussian image model to prevent the two defects. The new gain is a nonlinear function of LSD and has the desired characteristic emphasizing the LSD regions in which details are concentrated. We have applied the new ACE algorithm to chest x-ray images and the simulations show the effectiveness of the proposed algorithm.

  2. Contrast enhancing solution for use in confocal microscopy

    DOEpatents

    Tannous, Zeina; Torres, Abel; Gonzalez, Salvador

    2006-10-31

    A method of optically detecting a tumor during surgery. The method includes imaging at least one test point defined on the tumor using a first optical imaging system to provide a first tumor image. The method further includes excising a first predetermined layer of the tumor for forming an in-vivo defect area. A predetermined contrast enhancing solution is disposed on the in-vivo defect area, which is adapted to interact with at least one cell anomaly, such as basal cell carcinoma, located on the in-vivo defect area for optically enhancing the cell anomaly. Thereafter the defect area can be optically imaged to provide a clear and bright representation of the cell anomaly to aid a surgeon while surgically removing the cell anomaly.

  3. Contrast enhanced ultrasound (CEUS) in blunt abdominal trauma

    PubMed Central

    2013-01-01

    In the assessment of polytrauma patient, an accurate diagnostic study protocol with high sensitivity and specificity is necessary. Computed Tomography (CT) is the standard reference in the emergency for evaluating the patients with abdominal trauma. Ultrasonography (US) has a high sensitivity in detecting free fluid in the peritoneum, but it does not show as much sensitivity for traumatic parenchymal lesions. The use of Contrast-Enhanced Ultrasound (CEUS) improves the accuracy of the method in the diagnosis and assessment of the extent of parenchymal lesions. Although the CEUS is not feasible as a method of first level in the diagnosis and management of the polytrauma patient, it can be used in the follow-up of traumatic injuries of abdominal parenchymal organs (liver, spleen and kidneys), especially in young people or children. PMID:23902930

  4. Contrast-enhanced ultrasound (CEUS) in blunt abdominal trauma.

    PubMed

    Miele, Vittorio; Piccolo, Claudia Lucia; Galluzzo, Michele; Ianniello, Stefania; Sessa, Barbara; Trinci, Margherita

    2016-01-01

    Baseline ultrasound is essential in the early assessment of patients with a huge haemoperitoneum undergoing an immediate abdominal surgery; nevertheless, even with a highly experienced operator, it is not sufficient to exclude parenchymal injuries. More recently, a new ultrasound technique using second generation contrast agents, named contrast-enhanced ultrasound (CEUS) has been developed. This technique allows all the vascular phase to be performed in real time, increasing ultrasound capability to detect parenchymal injuries, enhancing some qualitative findings, such as lesion extension, margins and its relationship with capsule and vessels. CEUS has been demonstrated to be almost as sensitive as contrast-enhanced CT in the detection of traumatic injuries in patients with low-energy isolated abdominal trauma, with levels of sensitivity and specificity up to 95%. Several studies demonstrated its ability to detect lesions occurring in the liver, spleen, pancreas and kidneys and also to recognize active bleeding as hyperechoic bands appearing as round or oval spots of variable size. Its role seems to be really relevant in paediatric patients, thus avoiding a routine exposure to ionizing radiation. Nevertheless, CEUS is strongly operator dependent, and it has some limitations, such as the cost of contrast media, lack of panoramicity, the difficulty to explore some deep regions and the poor ability to detect injuries to the urinary tract. On the other hand, it is timesaving, and it has several advantages, such as its portability, the safety of contrast agent, the lack to ionizing radiation exposure and therefore its repeatability, which allows follow-up of those traumas managed conservatively, especially in cases of fertile females and paediatric patients. PMID:26607647

  5. Contrast-enhanced microwave detection and treatment of breast cancer

    NASA Astrophysics Data System (ADS)

    Gao, Fuqiang

    Contrast agents and heating agents have been proposed for microwave breast tumor imaging and treatment, respectively. The dielectric properties of the tumor are altered with contrast agents or heating agents that locally accumulate in the tumor. The resulting change in dielectric properties of the tumor has the potential to enhance the sensitivity of microwave imaging of breast tumors and increase the efficiency and selectivity of microwave thermal therapy of breast tumors. This dissertation addresses several key challenges in contrast-enhanced microwave imaging and treatment of breast tumors. Carbon nanotubes (CNTs) have been shown to enhance both the relative permittivity and effective conductivity of the host medium, and are promising as theranostic (integrated therapeutic and diagnostic) agents. Thus, our properties characterization work focuses on CNT dispersions. We performed in vitro microwave dielectric properties and heating response characterization of dispersions of CNTs treated by different functionalization methods and identified a CNT formulation that is very promising as a microwave theranostic agent. Stable dispersions of CNTs with concentrations up to 20 mg/ml are obtained with this formulation, and the enhanced microwave properties of these dispersions are extraordinary compared to the control. We also conducted in vivo dielectric properties characterization of mouse tumors with intra-tumoral injections of CNT dispersions and confirmed that the presence of CNTs increases the dielectric properties of the tumor. In parallel, we developed a contrast-enhanced microwave breast tumor imaging algorithm using sparse reconstruction methods. We demonstrated that this algorithm accurately localizes small tumors in 3D numerical breast phantoms. We also demonstrated the experimental feasibility of this method using physical breast phantoms. Lastly, we studied the sensitivity of the distorted Born iterative method (DBIM) to initial guesses and developed a

  6. Increased contrast enhancing lesion activity in relapsing–remitting multiple sclerosis migraine patients☆

    PubMed Central

    Graziano, Elliot; Hagemeier, Jesper; Weinstock-Guttman, Bianca; Ramasamy, Deepa P.; Zivadinov, Robert

    2015-01-01

    Background and objectives While the literature supports the idea that multiple sclerosis (MS) and migraine are related, the exact mechanism(s) of this association is not well understood. Observations of increased contrast enhancing (CE) lesion activity in individual MS patients suffering from migraine prompted us to determine a relationship between migraine and MRI outcomes in a large cohort of MS patients. Methods We included 509 MS and 64 clinically isolated syndrome (CIS) patients and 251 age- and sex-matched healthy individuals (HIs) who obtained 3 T MRI and were assessed for history of migraine. Number and volume of T2, T1 and CE lesions and brain volume measures were determined. The MRI findings were analyzed adjusting for key covariates and correcting for multiple comparisons. Results More MS (22.2%) and CIS (17.2%) patients had migraine, compared to HIs (14.6%, p = 0.067). More MS patients with migraine presented with CE lesions compared to those without (35.4% vs. 23.7%, p = 0.013). MS migraine patients had significantly increased number (p = 0.019) and volume (p = 0.022) of CE lesions compared to those without. In the regression analysis, MS migraine patients had an increased number of CE lesions (B = 1.242, p = 0.001), specifically those with relapsing–remitting disease course (B = 1.377, p = 0.001). No significant association of other MRI measures and migraine was found in MS and CIS patients or in HIs. Conclusions Our findings suggest an increased inflammatory pathobiology in MS patients with migraine headaches requiring possibly more frequent MRIs and also more efficient anti-inflammatory treatment. PMID:26448911

  7. MRI

    MedlinePlus

    ... scan is an imaging test that uses powerful magnets and radio waves to create pictures of the ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  8. Contrast-enhanced ultrasound in the diagnosis of nodules in liver cirrhosis.

    PubMed

    Kim, Tae Kyoung; Jang, Hyun-Jung

    2014-04-01

    Contrast-enhanced ultrasound (CEUS) using microbubble contrast agents are useful for the diagnosis of the nodules in liver cirrhosis. CEUS can be used as a problem-solving method for indeterminate nodules on computed tomography (CT) or magnetic resonance imaging (MRI) or as an initial diagnostic test for small newly detected liver nodules. CEUS has unique advantages over CT and MRI including no renal excretion of contrast, real-time imaging capability, and purely intravascular contrast. Hepatocellular carcinoma (HCC) is characterized by arterial-phase hypervascularity and later washout (negative enhancement). Benign nodules such as regenerative nodules or dysplastic nodules are usually isoechoic or slightly hypoechoic in the arterial phase and isoechoic in the late phase. However, there are occasional HCC lesions with atypical enhancement including hypovascular HCC and hypervascular HCC without washout. Cholangiocarcinomas are infrequently detected during HCC surveillance and mostly show rim-like or diffuse hypervascularity followed by rapid washout. Hemangiomas are often found at HCC surveillance and are easily diagnosed by CEUS. CEUS can be effectively used in the diagnostic work-up of small nodules detected at HCC surveillance. CEUS is also useful to differentiate malignant and benign venous thrombosis and to guide and monitor the local ablation therapy for HCC. PMID:24707142

  9. Contrast-enhanced ultrasound in the diagnosis of nodules in liver cirrhosis

    PubMed Central

    Kim, Tae Kyoung; Jang, Hyun-Jung

    2014-01-01

    Contrast-enhanced ultrasound (CEUS) using microbubble contrast agents are useful for the diagnosis of the nodules in liver cirrhosis. CEUS can be used as a problem-solving method for indeterminate nodules on computed tomography (CT) or magnetic resonance imaging (MRI) or as an initial diagnostic test for small newly detected liver nodules. CEUS has unique advantages over CT and MRI including no renal excretion of contrast, real-time imaging capability, and purely intravascular contrast. Hepatocellular carcinoma (HCC) is characterized by arterial-phase hypervascularity and later washout (negative enhancement). Benign nodules such as regenerative nodules or dysplastic nodules are usually isoechoic or slightly hypoechoic in the arterial phase and isoechoic in the late phase. However, there are occasional HCC lesions with atypical enhancement including hypovascular HCC and hypervascular HCC without washout. Cholangiocarcinomas are infrequently detected during HCC surveillance and mostly show rim-like or diffuse hypervascularity followed by rapid washout. Hemangiomas are often found at HCC surveillance and are easily diagnosed by CEUS. CEUS can be effectively used in the diagnostic work-up of small nodules detected at HCC surveillance. CEUS is also useful to differentiate malignant and benign venous thrombosis and to guide and monitor the local ablation therapy for HCC. PMID:24707142

  10. EFFECT OF SEDATION ON CONTRAST-ENHANCED ULTRASONOGRAPHY OF THE SPLEEN IN HEALTHY DOGS.

    PubMed

    Rossi, Federica; Fina, Caroline; Stock, Emmelie; Vanderperren, Katrien; Duchateau, Luc; Saunders, Jimmy H

    2016-05-01

    Contrast-enhanced ultrasound of the spleen enables the dynamic assessment of the perfusion of this organ, however, both subjective and quantitative evaluation can be strongly influenced by sedative agent administration. The purpose of this prospective, experimental study was to test effects of two sedative agents on splenic perfusion during contrast-enhanced ultrasound of the spleen in a sample of healthy dogs. Contrast-enhanced ultrasound of the spleen was repeated in six healthy Beagles following a cross-over study design comparing three protocols: awake, butorphanol 0.2 mg/Kg intramuscular (IM), and dexmedetomidine 500 μg/m(2) IM. After intravenous injection of a phospholipid stabilized sulfur hexafluoride microbubble solution (SonoVue®, Bracco Imaging, Milano, Italy), the enhancement intensity and perfusion pattern of the splenic parenchyma were assessed and perfusion parameters were calculated. Normal spleen was slightly heterogeneous in the early phase, but the parenchyma was homogeneous at a later phase. Sedation with butorphanol did not modify perfusion of the spleen. Dexmedetomidine significantly reduced splenic enhancement, providing diffuse parenchymal hypoechogenicity during the entire examination. Measured parameters were significantly modified, with increased arrival time (AT; (< 0.0001) and time to peak (TTP; P < 0.0001), and decreased peak intensity (PI; P = 0.0108), wash-in (P = 0.0014), and area under the curve (AUC; P = 0.0421). Findings supported the use of butorphanol and contraindicated the use of dexmedetomidine as sedatives for splenic contrast ultrasound procedures in dogs. Short-term and diffuse heterogeneity of the spleen in the early venous phase was determined to be a normal finding. PMID:26777031

  11. FDG-Avid Portal Vein Tumor Thrombosis from Hepatocellular Carcinoma in Contrast-Enhanced FDG PET/CT

    PubMed Central

    Nguyen, Xuan Canh; Nguyen, Dinh Song Huy; Ngo, Van Tan; Maurea, Simone

    2015-01-01

    Objective(s): In this study, we aimed to describe the characteristics of portal vein tumor thrombosis (PVTT), complicating hepatocellular carcinoma (HCC) in contrast-enhanced FDG PET/CT scan. Methods: In this retrospective study, 9 HCC patients with FDG-avid PVTT were diagnosed by contrast-enhanced fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT), which is a combination of dynamic liver CT scan, multiphase imaging, and whole-body PET scan. PET and CT DICOM images of patients were imported into the PET/CT imaging system for the re-analysis of contrast enhancement and FDG uptake in thrombus, the diameter of the involved portal vein, and characteristics of liver tumors and metastasis. Results: Two patients with previously untreated HCC and 7 cases with previously treated HCC had FDG-avid PVTT in contrast-enhanced FDG PET/CT scan. During the arterial phase of CT scan, portal vein thrombus showed contrast enhancement in 8 out of 9 patients (88.9%). PET scan showed an increased linear FDG uptake along the thrombosed portal vein in all patients. The mean greatest diameter of thrombosed portal veins was 1.8 ± 0.2 cm, which was significantly greater than that observed in normal portal veins (P<0.001). FDG uptake level in portal vein thrombus was significantly higher than that of blood pool in the reference normal portal vein (P=0.001). PVTT was caused by the direct extension of liver tumors. All patients had visible FDG-avid liver tumors in contrast-enhanced images. Five out of 9 patients (55.6%) had no extrahepatic metastasis, 3 cases (33.3%) had metastasis of regional lymph nodes, and 1 case (11.1%) presented with distant metastasis. The median estimated survival time of patients was 5 months. Conclusion: The intraluminal filling defect consistent with thrombous within the portal vein, expansion of the involved portal vein, contrast enhancement, and linear increased FDG uptake of the thrombus extended from liver tumor are findings of FDG

  12. Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation.

    PubMed

    Irving, Benjamin; Franklin, James M; Papież, Bartłomiej W; Anderson, Ewan M; Sharma, Ricky A; Gleeson, Fergus V; Brady, Sir Michael; Schnabel, Julia A

    2016-08-01

    Rectal tumour segmentation in dynamic contrast-enhanced MRI (DCE-MRI) is a challenging task, and an automated and consistent method would be highly desirable to improve the modelling and prediction of patient outcomes from tissue contrast enhancement characteristics - particularly in routine clinical practice. A framework is developed to automate DCE-MRI tumour segmentation, by introducing: perfusion-supervoxels to over-segment and classify DCE-MRI volumes using the dynamic contrast enhancement characteristics; and the pieces-of-parts graphical model, which adds global (anatomic) constraints that further refine the supervoxel components that comprise the tumour. The framework was evaluated on 23 DCE-MRI scans of patients with rectal adenocarcinomas, and achieved a voxelwise area-under the receiver operating characteristic curve (AUC) of 0.97 compared to expert delineations. Creating a binary tumour segmentation, 21 of the 23 cases were segmented correctly with a median Dice similarity coefficient (DSC) of 0.63, which is close to the inter-rater variability of this challenging task. A second study is also included to demonstrate the method's generalisability and achieved a DSC of 0.71. The framework achieves promising results for the underexplored area of rectal tumour segmentation in DCE-MRI, and the methods have potential to be applied to other DCE-MRI and supervoxel segmentation problems. PMID:27054278

  13. Nonlinear Dynamic Causal Models for fMRI

    PubMed Central

    Stephan, Klaas Enno; Kasper, Lars; Harrison, Lee M.; Daunizeau, Jean; den Ouden, Hanneke E.M.; Breakspear, Michael; Friston, Karl J.

    2009-01-01

    Models of effective connectivity characterize the influence that neuronal populations exert over each other. Additionally, some approaches, for example Dynamic Causal Modelling (DCM) and variants of Structural Equation Modelling, describe how effective connectivity is modulated by experimental manipulations. Mathematically, both are based on bilinear equations, where the bilinear term models the effect of experimental manipulations on neuronal interactions. The bilinear framework, however, precludes an important aspect of neuronal interactions that has been established with invasive electrophysiological recording studies; i.e., how the connection between two neuronal units is enabled or gated by activity in other units. These gating processes are critical for controlling the gain of neuronal populations and are mediated through interactions between synaptic inputs (e.g. by means of voltage-sensitive ion channels). They represent a key mechanism for various neurobiological processes, including top-down (e.g. attentional) modulation, learning and neuromodulation. This paper presents a nonlinear extension of DCM that models such processes (to second order) at the neuronal population level. In this way, the modulation of network interactions can be assigned to an explicit neuronal population. We present simulations and empirical results that demonstrate the validity and usefulness of this model. Analyses of synthetic data showed that nonlinear and bilinear mechanisms can be distinguished by our extended DCM. When applying the model to empirical fMRI data from a blocked attention to motion paradigm, we found that attention-induced increases in V5 responses could be best explained as a gating of the V1→V5 connection by activity in posterior parietal cortex. Furthermore, we analysed fMRI data from an event-related binocular rivalry paradigm and found that interactions amongst percept-selective visual areas were modulated by activity in the middle frontal gyrus. In both

  14. Multilattice sampling strategies for region of interest dynamic MRI.

    PubMed

    Rilling, Gabriel; Tao, Yuehui; Marshall, Ian; Davies, Mike E

    2013-08-01

    A multilattice sampling approach is proposed for dynamic MRI with Cartesian trajectories. It relies on the use of sampling patterns composed of several different lattices and exploits an image model where only some parts of the image are dynamic, whereas the rest is assumed static. Given the parameters of such an image model, the methodology followed for the design of a multilattice sampling pattern adapted to the model is described. The multi-lattice approach is compared to single-lattice sampling, as used by traditional acceleration methods such as UNFOLD (UNaliasing by Fourier-Encoding the Overlaps using the temporal Dimension) or k-t BLAST, and random sampling used by modern compressed sensing-based methods. On the considered image model, it allows more flexibility and higher accelerations than lattice sampling and better performance than random sampling. The method is illustrated on a phase-contrast carotid blood velocity mapping MR experiment. Combining the multilattice approach with the KEYHOLE technique allows up to 12× acceleration factors. Simulation and in vivo undersampling results validate the method. Compared to lattice and random sampling, multilattice sampling provides significant gains at high acceleration factors. PMID:23172794

  15. Role of contrast enhanced ultrasound in hepatic imaging.

    PubMed

    Dhamija, Ekta; Paul, Shashi B

    2014-01-01

    Grey scale ultrasound (US) is the first line imaging modality used for the evaluation of liver by the radiologists and clinicians worldwide. It is a simple, inexpensive, safe and an easily available technique. US has the ability to delineate the hepatic parenchyma and differentiate the cystic from solid hepatic lesions. However, it has limited accuracy in the detection and characterization of focal liver lesions (FLL). CEUS is a major breakthrough in ultrasound imaging which evolved with the aim of overcoming these limitations of US. With the use of ultrasound contrast agents (UCAs), CEUS has the ability to detect the intranodular hemodynamics and thereby provide information of the enhancement pattern of the lesion resulting in reliable characterization of the FLL. This capability brings it at par with the cross sectional contrast enhanced imaging techniques of computed tomography and magnetic resonance imaging. UCAs are safe, non-nephrotoxic and thus can be used to evaluate patients with renal failure as well. The technique of CEUS is simple, requires few minutes to perform, portable, lacks ionising radiation and above all is a cost-effective modality. These advantages have made CEUS an established modality for hepatic imaging. Besides detection and characterization of FLL, it also plays a vital role in the management and repeated follow up of treated patients of FLL. Newer clinical applications of CEUS with promising results are also being unravelled . This review highlights the multifaceted role of CEUS in hepatic imaging and its upcoming clinical applications. PMID:26012317

  16. Adaptive windowing in contrast-enhanced intravascular ultrasound imaging.

    PubMed

    Lindsey, Brooks D; Martin, K Heath; Jiang, Xiaoning; Dayton, Paul A

    2016-08-01

    Intravascular ultrasound (IVUS) is one of the most commonly-used interventional imaging techniques and has seen recent innovations which attempt to characterize the risk posed by atherosclerotic plaques. One such development is the use of microbubble contrast agents to image vasa vasorum, fine vessels which supply oxygen and nutrients to the walls of coronary arteries and typically have diameters less than 200μm. The degree of vasa vasorum neovascularization within plaques is positively correlated with plaque vulnerability. Having recently presented a prototype dual-frequency transducer for contrast agent-specific intravascular imaging, here we describe signal processing approaches based on minimum variance (MV) beamforming and the phase coherence factor (PCF) for improving the spatial resolution and contrast-to-tissue ratio (CTR) in IVUS imaging. These approaches are examined through simulations, phantom studies, ex vivo studies in porcine arteries, and in vivo studies in chicken embryos. In phantom studies, PCF processing improved CTR by a mean of 4.2dB, while combined MV and PCF processing improved spatial resolution by 41.7%. Improvements of 2.2dB in CTR and 37.2% in resolution were observed in vivo. Applying these processing strategies can enhance image quality in conventional B-mode IVUS or in contrast-enhanced IVUS, where signal-to-noise ratio is relatively low and resolution is at a premium. PMID:27161022

  17. Color contrast enhancement method of infrared polarization fused image

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Xie, Chen

    2015-10-01

    As the traditional color fusion method based on color transfer algorithm has an issue that the color of target and background is similar. A kind of infrared polarization image color fusion method based on color contrast enhancement was proposed. Firstly the infrared radiation intensity image and the polarization image were color fused, and then color transfer technology was used between color reference image and initial fused image in the YCbCr color space. Secondly Otsu segmentation method was used to extract the target area image from infrared polarization image. Lastly the H,S,I component of the color fusion image which obtained by color transfer was adjusted to obtain the final fused image by using target area in the HSI space. Experimental results show that, the fused result which obtained by the proposed method is rich in detail and makes the contrast of target and background more outstanding. And then the ability of target detection and identification can be improved by the method.

  18. Contrast-enhanced ultrasound of histologically proven hepatic epithelioid hemangioendothelioma

    PubMed Central

    Dong, Yi; Wang, Wen-Ping; Cantisani, Vito; D’Onofrio, Mirko; Ignee, Andre; Mulazzani, Lorenzo; Saftoiu, Adrian; Sparchez, Zeno; Sporea, Ioan; Dietrich, Christoph F

    2016-01-01

    AIM: To analyze contrast-enhanced ultrasound (CEUS) features of histologically proven hepatic epithelioid hemangioendothelioma (HEHE) in comparison to other multilocular benign focal liver lesions (FLL). METHODS: Twenty-five patients with histologically proven HEHE and 45 patients with histologically proven multilocular benign FLL were retrospectively reviewed. Four radiologists assessed the CEUS enhancement pattern in consensus. RESULTS: HEHE manifested as a single (n = 3) or multinodular (n = 22) FLL. On CEUS, HEHE showed rim-like (18/25, 72%) or heterogeneous hyperenhancement (7/25, 28%) in the arterial phase and hypoenhancement (25/25, 100%) in the portal venous and late phases (PVLP), a sign of malignancy. Eighteen patients showed central unenhanced areas (18/25, 72%); in seven patients (7/25, 28%), more lesions were detected in the PVLP. In contrast, all patients with hemangioma and focal nodular hyperplasia showed hyperenhancement as the most distinctive feature (P < 0.01). CONCLUSION: CEUS allows for characterization of unequivocal FLL. By analyzing the hypoenhancement in the PVLP, CEUS can determine the malignant nature of HEHE. PMID:27217705

  19. Intraoperative Contrast Enhanced Ultrasound Evaluates the Grade of Glioma

    PubMed Central

    Cheng, Ling-Gang; He, Wen; Zhang, Hong-Xia; Song, Qian; Ning, Bin; Li, Hui-Zhan; He, Yan; Lin, Song

    2016-01-01

    Objective. The aim of our study was to investigate the value of intraoperative contrast enhanced ultrasound (CEUS) for evaluating the grade of glioma and the correlation between microvessel density (MVD) and vascular endothelial growth factor (VEGF). Methods. We performed intraoperative conventional ultrasound (CUS) and CEUS on 88 patients with gliomas. All of the patients have undergone surgery and obtained the results of pathology. All patients have undergone intraoperative CUS and CEUS to compare the characteristics of different grade gliomas and the results of CUS and CEUS were compared with pathological results. Results. The time to start (TTS) and time to peak (TTP) of low grade glioma (LGG) were similar to those of edema and normal brain surrounding glioma. The enhanced extent of LGG was higher than that of the normal brain and edema. The TTS and TTP of high grade glioma were earlier than those of the edema and normal brain surrounding glioma. The enhancement of HGG was higher than that of LGG. The absolute peak intensity (API) was correlated with MVD and VEGF. Conclusion. Intraoperative CEUS could help in determining boundary of peritumoral brain edema of glioma. Intraoperative CEUS parameters in cerebral gliomas could indirectly reflect the information of MVD and VEGF. PMID:27069921

  20. Nature-inspired nanoformulations for contrast-enhanced in vivo MR imaging of macrophages

    PubMed Central

    Sigalov, Alexander B.

    2014-01-01

    Magnetic resonance imaging (MRI) of macrophages in atherosclerosis requires the use of contrast-enhancing agents. Reconstituted lipoprotein particles that mimic native high density lipoproteins (HDL) are a versatile delivery platform for Gd-based contrast agents (GBCA) but require targeting moieties to direct the particles to macrophages. In this study, a naturally occurring methionine oxidation in the major HDL protein, apolipoprotein (apo) A-I, was exploited as a novel way to target HDL to macrophages. We also tested if fully functional GBCA-HDL can be generated using synthetic apo A-I peptides. The fluorescence and MRI studies reveal that specific oxidation of apo A-I or its peptides increases the in vitro macrophage uptake of GBCA-HDL by 2–3 times. The in vivo imaging studies using an apo E-deficient mouse model of atherosclerosis and a 3.0T MRI system demonstrate that this modification significantly improves atherosclerotic plaque detection using GBCA-HDL. At 24 h post-injection of 0.05 mmol Gd/kg GBCA-HDL containing oxidized apo A-I or its peptides, the atherosclerotic wall/muscle normalized enhancement ratios were 90% and 120%, respectively, while those of GBCA-HDL containing their unmodified counterparts were 35% and 45%, respectively. Confocal fluorescence microscopy confirms the accumulation of GBCA-HDL containing oxidized apo A-I or its peptides in intraplaque macrophages. Together, the results of this study confirm the hypothesis that specific oxidation of apo A-I targets GBCA-HDL to macrophages in vitro and in vivo. Furthermore, our observation that synthetic peptides can functionally replace the native apo A-I protein in HDL further encourages the development of these contrast agents for macrophage imaging. PMID:24729189

  1. Contrast enhanced ultrasonography in assessing the treatment response to transarterial chemoembolization in patients with hepatocellular carcinoma.

    PubMed

    Sparchez, Zeno; Mocan, Tudor; Radu, Pompilia; Anton, Ofelia; Bolog, Nicolae

    2016-03-01

    The last decades have known continuous development of therapeutic strategies in hepatocellular carcinoma (HCC). Unfortunately the disease it still not diagnosed until it is already at an intermediate or even an advanced disease. In these circumstances transarterial chemoembolization (TACE) is considered an effective treatment for HCC. The most important independent prognostic factor of both disease free survival and overall survival is the presence of complete necrosis. Therefore, treatment outcomes are dictated by the proper use of radiological imaging. Current guidelines recommend contrast enhanced computer tomography (CECT) as the standard imaging technique for evaluating the therapeutic response in patients with HCC after TACE. One of the most important disadvantage of CECT is the overestimation of tumor response. As an attempt to overcome this limitation contrast enhanced ultrasound (CEUS) has gained particular attention as an imaging modality in HCC patients after TACE. Of all available imaging modalities, CEUS performs better in the early and very early assessment of TACE especially after lipiodol TACE. As any other imaging techniques CEUS has disadvantages especially in hypovascular tumors or in cases of tumor multiplicity. Not far from now the current limitations of CEUS will be overcome by the new CEUS techniques that are already tested in clinical practice such as dynamic CEUS with quantification, three-dimensional CEUS or fusion techniques. PMID:26962561

  2. Multi-slice MRI with the dynamic multi-coil technique.

    PubMed

    Juchem, Christoph; Nahhass, Omar M; Nixon, Terence W; de Graaf, Robin A

    2015-11-01

    To date, spatial encoding for MRI is based on linear X, Y and Z field gradients generated by dedicated X, Y and Z wire patterns. We recently introduced the dynamic multi-coil technique (DYNAMITE) for the generation of magnetic field shapes for biomedical MR applications from a set of individually driven localized coils. The benefits for B0 magnetic field homogenization have been shown, as well as proof of principle of radial and algebraic MRI. In this study the potential of DYNAMITE MRI is explored further and the first multi-slice MRI implementation in which all gradient fields are purely DYNAMITE based is presented. The obtained image fidelity is shown to be virtually identical to that of a conventional MRI system with dedicated X, Y and Z gradient coils. Comparable image quality is a milestone towards the establishment of fully functional DYNAMITE MRI (and shim) systems. PMID:26419649

  3. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    SciTech Connect

    Demi, Libertario Sloun, Ruud J. G. van; Mischi, Massimo; Wijkstra, Hessel

    2015-10-28

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO{sup ®} UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  4. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-10-01

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO® UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  5. Accelerating PS model-based dynamic cardiac MRI using compressed sensing.

    PubMed

    Zhang, Xiaoyong; Xie, Guoxi; Shi, Caiyun; Su, Shi; Zhang, Yongqin; Liu, Xin; Qiu, Bensheng

    2016-02-01

    High spatiotemporal resolution MRI is a challenging topic in dynamic MRI field. Partial separability (PS) model has been successfully applied to dynamic cardiac MRI by exploiting data redundancy. However, the model requires substantial preprocessing data to accurately estimate the model parameters before image reconstruction. Since compressed sensing (CS) is a potential technique to accelerate MRI by reducing the number of acquired data, the combination of PS and CS, named as Stepped-SparsePS, was introduced to accelerate the preprocessing data acquisition of PS in this work. The proposed Stepped-SparsePS method sequentially reconstructs a set of aliased dynamic images in each channel based on PS model and then the final dynamic images from the aliased images using CS. The results from numerical simulations and in vivo experiments demonstrate that Stepped-SparsePS could significantly reduce data acquisition time while preserving high spatiotemporal resolution. PMID:26552006

  6. Safety and Efficacy of Gadobutrol for Contrast-enhanced Magnetic Resonance Imaging of the Central Nervous System: Results from a Multicenter, Double-blind, Randomized, Comparator Study

    PubMed Central

    Gutierrez, Juan E; Rosenberg, Martin; Seemann, Jörg; Breuer, Josy; Haverstock, Daniel; Agris, Jacob; Balzer, Thomas; Anzalone, Nicoletta

    2015-01-01

    PURPOSE Contrast-enhanced magnetic resonance imaging (MRI) of the central nervous system (CNS) with gadolinium-based contrast agents (GBCAs) is standard of care for CNS imaging and diagnosis because of the visualization of lesions that cause blood–brain barrier breakdown. Gadobutrol is a macrocyclic GBCA with high concentration and high relaxivity. The objective of this study was to compare the safety and efficacy of gadobutrol 1.0 M vs unenhanced imaging and vs the approved macrocyclic agent gadoteridol 0.5 M at a dose of 0.1 mmol/kg bodyweight. MATERIALS AND METHODS Prospective, multicenter, double-blind, crossover trial in patients who underwent unenhanced MRI followed by enhanced imaging with gadobutrol or gadoteridol. Three blinded readers assessed the magnetic resonance images. The primary efficacy variables included number of lesions detected, degree of lesion contrast-enhancement, lesion border delineation, and lesion internal morphology. RESULTS Of the 402 treated patients, 390 patients received study drugs. Lesion contrast-enhancement, lesion border delineation, and lesion internal morphology were superior for combined unenhanced/gadobutrol-enhanced imaging vs unenhanced imaging (P < 0.0001 for all). Compared with gadoteridol, gadobutrol was non-inferior for all primary variables and superior for lesion contrast-enhancement, as well as sensitivity and accuracy for detection of malignant disease. The percentage of patients with at least one drug-related adverse event was similar for gadobutrol (10.0%) and gadoteridol (9.7%). CONCLUSION Gadobutrol is an effective and well-tolerated macrocyclic contrast agent for MRI of the CNS. Gadobutrol demonstrates greater contrast-enhancement and improved sensitivity and accuracy for detection of malignant disease than gadoteridol, likely because of its higher relaxivity. PMID:25922578

  7. Diagnostic value of dynamic and morphologic breast MRI analysis in the diagnosis of breast cancer

    PubMed Central

    Stusińska, Małgorzata; Szabo-Moskal, Jadwiga; Bobek-Billewicz, Barbara

    2014-01-01

    Summary Background Mammography is the most widely used method of breast imaging. However, its low sensitivity poses a problem. Breast MRI is one of so the called “complementary” breast imaging methods. The purpose of this study was to improve the specificity of breast MRI by combining 2 methods: dynamic and morphologic analysis of enhancing lesions. Material/Methods 222 women aged 19–76 years, who underwent breast MRI examination between November 2002 and April 2004 at the Radiology Department of Oncology Center in Bydgoszcz, were included in this study. Results The pathological examination revealed cancer in 55 women (25%). No cancer was found in 167 women (75%), 56 of which were verified pathologically, 111 by cytology and/or during follow-up (at least 24 months). Results of breast MRI were positive in 80 women (36%), in 54 of which cancer was found during pathological examination, 26 breast MRI results were false positive. Sensitivity and specificity of breast MRI for dynamic analysis were 87% and 72%, respectively; in case of morphologic analysis 98% and 74%, respectively. The combined dynamic and morphologic analysis achieved high (84%) specificity without loss of sensitivity (98%). The difference in specificity between the evaluated methods was statistically significant (p<0.05). Conclusions The combined dynamic and morphologic breast MRI analysis is a useful method for the diagnosis of breast cancer. PMID:24847391

  8. Discrete Dynamic Bayesian Network Analysis of fMRI Data

    PubMed Central

    Burge, John; Lane, Terran; Link, Hamilton; Qiu, Shibin; Clark, Vincent P.

    2010-01-01

    We examine the efficacy of using discrete Dynamic Bayesian Networks (dDBNs), a data-driven modeling technique employed in machine learning, to identify functional correlations among neuroanatomical regions of interest. Unlike many neuroimaging analysis techniques, this method is not limited by linear and/or Gaussian noise assumptions. It achieves this by modeling the time series of neuroanatomical regions as discrete, as opposed to continuous, random variables with multinomial distributions. We demonstrated this method using an fMRI dataset collected from healthy and demented elderly subjects and identify correlates based on a diagnosis of dementia. The results are validated in three ways. First, the elicited correlates are shown to be robust over leave-one-out cross-validation and, via a Fourier bootstrapping method, that they were not likely due to random chance. Second, the dDBNs identified correlates that would be expected given the experimental paradigm. Third, the dDBN's ability to predict dementia is competitive with two commonly employed machine-learning classifiers: the support vector machine and the Gaussian naïve Bayesian network. We also verify that the dDBN selects correlates based on non-linear criteria. Finally, we provide a brief analysis of the correlates elicited from Buckner et al.'s data that suggests that demented elderly subjects have reduced involvement of entorhinal and occipital cortex and greater involvement of the parietal lobe and amygdala in brain activity compared with healthy elderly (as measured via functional correlations among BOLD measurements). Limitations and extensions to the dDBN method are discussed. PMID:17990301

  9. Molecular Optical Coherence Tomography Contrast Enhancement and Imaging

    NASA Astrophysics Data System (ADS)

    Oldenburg, Amy L.; Applegate, Brian E.; Tucker-Schwartz, Jason M.; Skala, Melissa C.; Kim, Jongsik; Boppart, Stephen A.

    Histochemistry began as early as the nineteenth century, with the development of synthetic dyes that provided spatially mapped chemical contrast in tissue [1]. Stains such as hematoxylin and eosin, which contrast cellular nuclei and cytoplasm, greatly aid in the interpretation of microscopy images. An analogous development is currently taking place in biomedical imaging, whereby techniques adapted for MRI, CT, and PET now provide in vivo molecular imaging over the entire human body, aiding in both fundamental research discovery and in clinical diagnosis and treatment monitoring. Because OCT offers a unique spatial scale that is intermediate between microscopy and whole-body biomedical imaging, molecular contrast OCT (MCOCT) also has great potential for providing new insight into in vivo molecular processes. The strength of MCOCT lies in its ability to isolate signals from a molecule or contrast agent from the tissue scattering background over large scan areas at depths greater than traditional microscopy techniques while maintaining high resolution.

  10. Liver-specific agents for contrast-enhanced MRI: role in oncological imaging

    PubMed Central

    Thian, Yee Liang; Riddell, Angela M.

    2013-01-01

    Abstract Liver-specific magnetic resonance (MR) contrast agents are increasingly used in evaluation of the liver. They are effective in detection and morphological characterization of lesions, and can be useful for evaluation of biliary tree anatomy and liver function. The typical appearances and imaging pitfalls of various tumours at MR imaging performed with these agents can be understood by the interplay of pharmacokinetics of these contrast agents and transporter expression of the tumour. This review focuses on the applications of these agents in oncological imaging. PMID:24434892

  11. A Population Approach to Characterize Interferon Beta-1b Effect on Contrast Enhancing Lesions in Patients With Relapsing Remitting Multiple Sclerosis

    PubMed Central

    Gulati, A; Bagnato, F; Villoslada, P; Velez de Mendizabal, N

    2015-01-01

    In patients with relapsing-remitting multiple sclerosis (RRMS), interferon beta-1b (IFNβ-1b) reduces the occurrence of contrast enhancing lesions (CELs) on magnetic resonance imaging (MRI). Questions remain on the stability of IFNβ-1b effect over time and its action beyond the reduction of CELs. In this study, we described the IFNβ-1b effect by a mixed effects model, quantifying the interpatient variability associated with its parameters. Using a negative binomial distribution model as a natural history model, the effect of IFNβ-1b was evaluated using different mathematical functions of time. IFNβ-1b produced a decrease in the expected CEL numbers, inhibiting the formation of new CELs but did not promote the resolution of the already-formed ones. Based on the final selected model, simulations were carried out to optimize the combined IFNβ-1b-corticosteroid therapy as a proof-of-concept. In summary, we provide evidence on the dynamics of CELs under IFNβ-1b treatment that can be used to monitor the effects of therapies in MS. PMID:26225255

  12. A Population Approach to Characterize Interferon Beta-1b Effect on Contrast Enhancing Lesions in Patients With Relapsing Remitting Multiple Sclerosis.

    PubMed

    Gulati, A; Bagnato, F; Villoslada, P; Velez de Mendizabal, N

    2015-05-01

    In patients with relapsing-remitting multiple sclerosis (RRMS), interferon beta-1b (IFNβ-1b) reduces the occurrence of contrast enhancing lesions (CELs) on magnetic resonance imaging (MRI). Questions remain on the stability of IFNβ-1b effect over time and its action beyond the reduction of CELs. In this study, we described the IFNβ-1b effect by a mixed effects model, quantifying the interpatient variability associated with its parameters. Using a negative binomial distribution model as a natural history model, the effect of IFNβ-1b was evaluated using different mathematical functions of time. IFNβ-1b produced a decrease in the expected CEL numbers, inhibiting the formation of new CELs but did not promote the resolution of the already-formed ones. Based on the final selected model, simulations were carried out to optimize the combined IFNβ-1b-corticosteroid therapy as a proof-of-concept. In summary, we provide evidence on the dynamics of CELs under IFNβ-1b treatment that can be used to monitor the effects of therapies in MS. PMID:26225255

  13. Competitive Advantage of PET/MRI

    PubMed Central

    Jadvar, Hossein; Colletti, Patrick M.

    2013-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. PMID:23791129

  14. Competitive advantage of PET/MRI.

    PubMed

    Jadvar, Hossein; Colletti, Patrick M

    2014-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. PMID:23791129

  15. Contrast enhancement in 1p/19q-codeleted anaplastic oligodendrogliomas is associated with 9p loss, genomic instability, and angiogenic gene expression

    PubMed Central

    Reyes-Botero, German; Dehais, Caroline; Idbaih, Ahmed; Martin-Duverneuil, Nadine; Lahutte, Marion; Carpentier, Catherine; Letouzé, Eric; Chinot, Olivier; Loiseau, Hugues; Honnorat, Jerome; Ramirez, Carole; Moyal, Elisabeth; Figarella-Branger, Dominique; Ducray, François; Desenclos, Christine; Sevestre, Henri; Menei, Philippe; Michalak, Sophie; Al Nader, Edmond; Godard, Joel; Viennet, Gabriel; Carpentier, Antoine; Eimer, Sandrine; Dam-Hieu, Phong; Quintin-Roué, Isabelle; Guillamo, Jean-Sebastien; Lechapt-Zalcman, Emmanuelle; Kemeny, Jean-Louis; Verrelle, Pierre; Faillot, Thierry; Gaultier, Claude; Tortel, Marie Christine; Christov, Christo; Le Guerinel, Caroline; Aubriot-Lorton, Marie-Hélène; Ghiringhelli, Francois; Berger, François; Lacroix, Catherine; Parker, Fabrice; Dubois, François; Maurage, Claude-Alain; Gueye, Edouard-Marcel; Labrousse, Francois; Jouvet, Anne; Bauchet, Luc; Rigau, Valérie; Beauchesne, Patrick; Vignaud, Jean-Michel; Campone, Mario; Loussouarn, Delphine; Fontaine, Denys; Vandenbos, Fanny; Campello, Chantal; Roger, Pascal; Fesneau, Melanie; Heitzmann, Anne; Delattre, Jean-Yves; Elouadhani, Selma; Mokhtari, Karima; Polivka, Marc; Ricard, Damien; Levillain, Pierre-Marie; Wager, Michel; Colin, Philippe; Diebold, Marie-Danièle; Chiforeanu, Dan; Vauleon, Elodie; Langlois, Olivier; Laquerriere, Annie; Motsuo Fotso, Marie Janette; Peoc'h, Michel; Andraud, Marie; Mouton, Servane; Chenard, Marie-Pierre; Noel, Georges; Desse, Nicolas; Soulard, Raoulin; Amiel-Benouaich, Alexandra; Uro-Coste, Emmanuelle; Dhermain, Frederic

    2014-01-01

    Background The aim of this study was to correlate MRI features and molecular characteristics in anaplastic oligodendrogliomas (AOs). Methods The MRI characteristics of 50 AO patients enrolled in the French national network for high-grade oligodendroglial tumors were analyzed. The genomic profiles and IDH mutational statuses were assessed using high-resolution single-nucleotide polymorphism arrays and direct sequencing, respectively. The gene expression profiles of 25 1p/19q-codeleted AOs were studied on Affymetrix expression arrays. Results Most of the cases were frontal lobe contrast-enhanced tumors (52%), but the radiological presentations of these cases were heterogeneous, ranging from low-grade glioma-like aspects (26%) to glioblastoma-like aspects (22%). The 1p/19q codeletion (n = 39) was associated with locations in the frontal lobe (P = .001), with heterogeneous intratumoral signal intensities (P = .003) and with no or nonmeasurable contrast enhancements (P = .01). The IDH wild-type AOs (n = 7) more frequently displayed ringlike contrast enhancements (P = .03) and were more frequently located outside of the frontal lobe (P = .01). However, no specific imaging pattern could be identified for the 1p/19q-codeleted AO or the IDH-mutated AO. Within the 1p/19q-codeleted AO, the contrast enhancement was associated with larger tumor volumes (P = .001), chromosome 9p loss and CDKN2A loss (P = .006), genomic instability (P = .03), and angiogenesis-related gene expression (P < .001), particularly for vascular endothelial growth factor A and angiopoietin 2. Conclusion In AOs, the 1p/19q codeletion and the IDH mutation are associated with preferential (but not with specific) imaging characteristics. Within 1p/19q-codeleted AO, imaging heterogeneity is related to additional molecular alterations, especially chromosome 9p loss, which is associated with contrast enhancement and larger tumor volume. PMID:24353325

  16. Peripheral primitive neuroectodermal tumor: Dynamic CT, MRI and clinicopathological characteristics - analysis of 36 cases and review of the literature

    PubMed Central

    Tan, Yan; Zhang, Hui; Ma, Guo-lin; Xiao, En-hua; Wang, Xiao-chun

    2014-01-01

    Background The peripheral primitive neuroectodermal tumor (pPNET) is a rare malignant tumor originating from neuroectoderm. The accurate diagnosis is essential for the treatment of pPNET. Methods we performed the largest cases of retrospective analysis thus far to review the unique computed tomography (CT), magnetic resonance imaging (MRI), and clinicopathological features of pPNET. The tumor location, morphological features, signal intensity, contrast enhancement characteristics, and involvement of local soft tissues of 36 pPNETs were assessed. Results Our results showed that there were more men (25/36) than women pPNETs patients. Unenhanced MRI (16 cases) showed that 14 cases were isointense and 2 cases were hypointense on T1WI. Nine cases were isointense and 7 were hyperintense on T2WI. Most pPNETs had heterogeneous signal intensity with small necrosis (CT: 31/36; MRI: 14/16) as well as heterogeneous enhancement (CT: 34/30; MRI: 15/16). The tumors usually had ill-defined borders and irregular shapes (CT: 30/36; MRI: 15/16). Pathologic exam showed small areas of necrosis in all tumors. Conclusions The diagnosis of pPNET should be suggested in young men when the imaging depicts a single large ill-defined solid mass with small area of necrosis, especially for those whose images show iso-intense on T1WI and T2WI and have heterogeneous enhancement. PMID:25587032

  17. Usefulness of double dose contrast-enhanced magnetic resonance imaging for clear delineation of gross tumor volume in stereotactic radiotherapy treatment planning of metastatic brain tumors: a dose comparison study

    PubMed Central

    Subedi, Kalloo Sharma; Takahashi, Takeo; Yamano, Takafumi; Saitoh, Jun-ichi; Nishimura, Keiichiro; Suzuki, Yoshiyuki; Ohno, Tatsuya; Nakano, Takashi

    2013-01-01

    The purpose of this study was to compare the size and clearness of gross tumor volumes (GTVs) of metastatic brain tumors on T1-weighted magnetic resonance images between a single dose contrast administration protocol and a double dose contrast administration protocol to determine the optimum dose of contrast-enhancement for clear delineation of GTV in stereotactic radiotherapy (SRT). A total of 28 small metastatic brain tumors were evaluated in 13 patients by intra-individual comparison of GTV measurements using single dose and double dose contrast-enhanced thin-slice (1-mm) magnetic resonance imaging (MRI). All patients had confirmed histological types of primary tumors and had undergone hypo-fractionated SRT for metastatic brain tumors. The mean tumor diameter with single dose and double dose contrast-enhancement was 12.0 ± 1.1 mm and 13.2 ± 1.1 mm respectively (P < 0.001). The mean incremental ratio (MIR) obtained by comparing mean tumor diameters was 11.2 ± 0.02 %. The mean volume of GTV-1 (single dose contrast-enhancement) and GTV-2 (double dose contrast-enhancement) was 1.38 ± 0.41 ml and 1.59 ± 0.45 ml respectively (P < 0.01). The MIR by comparing mean tumor volumes was 32.3 ± 0.4 %. The MIR of GTV-1 with < 1ml volume and GTV-1 with > 1ml volume was 41.8 ± 0.05 % and 12.4 ± 0.03 % respectively (P < 0.001). We conclude that double dose contrast-enhanced thin-slice MRI is a more useful technique than single dose contrast-enhanced thin-slice MRI, especially for clear delineation of GTVs of small metastatic brain tumors in treatment planning of highly precise SRT. PMID:22843378

  18. Low-rank and Sparse Matrix Decomposition for Accelerated Dynamic MRI with Separation of Background and Dynamic Components

    PubMed Central

    Otazo, Ricardo; Candès, Emmanuel; Sodickson, Daniel K.

    2014-01-01

    Purpose To apply the low-rank plus sparse (L+S) matrix decomposition model to reconstruct undersampled dynamic MRI as a superposition of background and dynamic components in various problems of clinical interest. Theory and Methods The L+S model is natural to represent dynamic MRI data. Incoherence between k−t space (acquisition) and the singular vectors of L and the sparse domain of S is required to reconstruct undersampled data. Incoherence between L and S is required for robust separation of background and dynamic components. Multicoil L+S reconstruction is formulated using a convex optimization approach, where the nuclear-norm is used to enforce low-rank in L and the l1-norm to enforce sparsity in S. Feasibility of the L+S reconstruction was tested in several dynamic MRI experiments with true acceleration including cardiac perfusion, cardiac cine, time-resolved angiography, abdominal and breast perfusion using Cartesian and radial sampling. Results The L+S model increased compressibility of dynamic MRI data and thus enabled high acceleration factors. The inherent background separation improved background suppression performance compared to conventional data subtraction, which is sensitive to motion. Conclusion The high acceleration and background separation enabled by L+S promises to enhance spatial and temporal resolution and to enable background suppression without the need of subtraction or modeling. PMID:24760724

  19. Automatic image equalization and contrast enhancement using Gaussian mixture modeling.

    PubMed

    Celik, Turgay; Tjahjadi, Tardi

    2012-01-01

    In this paper, we propose an adaptive image equalization algorithm that automatically enhances the contrast in an input image. The algorithm uses the Gaussian mixture model to model the image gray-level distribution, and the intersection points of the Gaussian components in the model are used to partition the dynamic range of the image into input gray-level intervals. The contrast equalized image is generated by transforming the pixels' gray levels in each input interval to the appropriate output gray-level interval according to the dominant Gaussian component and the cumulative distribution function of the input interval. To take account of the hypothesis that homogeneous regions in the image represent homogeneous silences (or set of Gaussian components) in the image histogram, the Gaussian components with small variances are weighted with smaller values than the Gaussian components with larger variances, and the gray-level distribution is also used to weight the components in the mapping of the input interval to the output interval. Experimental results show that the proposed algorithm produces better or comparable enhanced images than several state-of-the-art algorithms. Unlike the other algorithms, the proposed algorithm is free of parameter setting for a given dynamic range of the enhanced image and can be applied to a wide range of image types. PMID:21775265

  20. Magnetomotive molecular probes for targeted contrast enhancement and therapy

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen A.

    2011-03-01

    The diagnostic, interrogational, and therapeutic potential of molecular probes is rapidly being investigated and exploited across virtually every biomedical imaging modality. While many types of probes enhance contrast or delivery therapy by static localization to targeted sites, significant potential exists for utilizing dynamic molecular probes. Recent examples include molecular beacons, photoactivatable probes, or controlled switchable drug-releasing particles, to name a few. In this review, we describe a novel class of dynamic molecular probes that rely on the application and control of localized external magnetic fields. These magnetomotive molecular probes can provide optical image contrast through a modulated scattering signal, can interrogate the biomechanical properties of their viscoelastic microenvironment by tracking their underdamped oscillatory step-response to applied fields, and can potentially delivery therapy through nanometer-to-micrometer mechanical displacement or local hyperthermia. This class of magnetomotive agents includes not only magnetic iron-oxide nanoparticles, but also new magnetomotive microspheres or nanostructures with embedded iron-oxide agents. In vitro three-dimensional cell assays and in vivo targeting studies in animal tumor models have demonstrated the potential for multimodal detection and imaging, using magnetic resonance imaging for whole-body localization, and magnetomotive optical coherence tomography for high-resolution localization and imaging.

  1. Hue-preserving local contrast enhancement and illumination compensation for outdoor color images

    NASA Astrophysics Data System (ADS)

    Tektonidis, Marco; Monnin, David; Christnacher, Frank

    2015-10-01

    Real-time applications in the field of security and defense use dynamic color camera systems to gain a better understanding of outdoor scenes. To enhance details and improve the visibility in images it is required to per- form local image processing, and to reduce lightness and color inconsistencies between images acquired under different illumination conditions it is required to compensate illumination effects. We introduce an automatic hue-preserving local contrast enhancement and illumination compensation approach for outdoor color images. Our approach is based on a shadow-weighted intensity-based Retinex model which enhances details and compensates the illumination effect on the lightness of an image. The Retinex model exploits information from a shadow detection approach to reduce lightness halo artifacts on shadow boundaries. We employ a hue-preserving color transformation to obtain a color image based on the original color information. To reduce color inconsistencies between images acquired under different illumination conditions we process the saturation using a scaling function. The approach has been successfully applied to static and dynamic color image sequences of outdoor scenes and an experimental comparison with previous Retinex-based approaches has been carried out.

  2. Reduction of reconstruction time for time-resolved spiral 3D contrast-enhanced magnetic resonance angiography using parallel computing.

    PubMed

    Kressler, Bryan; Spincemaille, Pascal; Prince, Martin R; Wang, Yi

    2006-09-01

    Time-resolved 3D MRI with high spatial and temporal resolution can be achieved using spiral sampling and sliding-window reconstruction. Image reconstruction is computationally intensive because of the need for data regridding, a large number of temporal phases, and multiple RF receiver coils. Inhomogeneity blurring correction for spiral sampling further increases the computational work load by an order of magnitude, hindering the clinical utility of spiral trajectories. In this work the reconstruction time is reduced by a factor of >40 compared to reconstruction using a single processor. This is achieved by using a cluster of 32 commercial off-the-shelf computers, commodity networking hardware, and readily available software. The reconstruction system is demonstrated for time-resolved spiral contrast-enhanced (CE) peripheral MR angiography (MRA), and a reduction of reconstruction time from 80 min to 1.8 min is achieved. PMID:16892189

  3. Evolving role of MRI in Crohn's disease.

    PubMed

    Yacoub, Joseph H; Obara, Piotr; Oto, Aytekin

    2013-06-01

    MR enterography is playing an evolving role in the evaluation of small bowel Crohn's disease (CD). Standard MR enterography includes a combination of rapidly acquired T2 sequence, balanced steady-state acquisition, and contrast enhanced T1-weighted gradient echo sequence. The diagnostic performance of these sequences has been shown to be comparable, and in some respects superior, to other small bowel imaging modalities. The findings of CD on MR enterography have been well described in the literature. New and emerging techniques such as diffusion-weighted imaging (DWI), dynamic contrast enhanced MRI (DCE-MRI), cinematography, and magnetization transfer, may lead to improved accuracy in characterizing the disease. These advanced techniques can provide quantitative parameters that may prove to be useful in assessing disease activity, severity, and response to treatment. In the future, MR enterography may play an increasing role in management decisions for patients with small bowel CD; however, larger studies are needed to validate these emerging MRI parameters as imaging biomarkers. PMID:23712842

  4. ¹⁸F-FDG PET/CT and contrast enhanced CT in differential diagnosis between leiomyoma and gastrointestinal stromal tumor.

    PubMed

    Hirose, Yasumitus; Kaida, Hayato; Kawahara, Akihiko; Kurata, Seiji; Ishibashi, Masatoshi; Abe, Toshi

    2015-01-01

    In a 49 years old woman a large abdominal tumor was diagnosed by abdominal ultrasound. Dynamic contrast-enhanced computed tomography (CECT) showed a large tumor with minute calcification and poor contrast enhancement in the left abdominal cavity. The fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography (¹⁸F-FDG PET/CT) scan showed low ¹⁸F-FDG uptake in the tumor. The SUV max (early image) was 1.90, and that of the delayed image was 2.86. A gastrointestinal stromal tumor (GIST) was suspected. Tumor resection revealed that it was a leiomyoma originating in the major curvature of the stomach. In conclusion, the findings of low ¹⁸F-FDG uptake on ¹⁸F-FDG PET and poor contrast enhancement on CECT in a gastric submucosal tumor suggested of a gastric leiomyoma rather than GIST. PMID:26574696

  5. Computational Fluid Dynamics Simulations of Contrast Agent Bolus Dispersion in a Coronary Bifurcation: Impact on MRI-Based Quantification of Myocardial Perfusion

    PubMed Central

    Schmidt, Regine; Graafen, Dirk; Weber, Stefan; Schreiber, Laura M.

    2013-01-01

    Contrast-enhanced first-pass magnetic resonance imaging (MRI) in combination with a tracer kinetic model, for example, MMID4, can be used to determine myocardial blood flow (MBF) and myocardial perfusion reserve (MPR). Typically, the arterial input function (AIF) required for this methodology is estimated from the left ventricle (LV). Dispersion of the contrast agent bolus might occur between the LV and the myocardial tissue. Negligence of bolus dispersion could cause an error in MBF determination. The aim of this study was to investigate the influence of bolus dispersion in a simplified coronary bifurcation geometry including one healthy and one stenotic branch on the quantification of MBF and MPR. Computational fluid dynamics (CFD) simulations were combined with MMID4. Different inlet boundary conditions describing pulsatile and constant flows for rest and hyperemia and differing outflow conditions have been investigated. In the bifurcation region, the increase of the dispersion was smaller than inside the straight vessels. A systematic underestimation of MBF values up to −16.1% for pulsatile flow and an overestimation of MPR up to 7.5% were found. It was shown that, under the conditions considered in this study, bolus dispersion can significantly influence the results of quantitative myocardial MR-perfusion measurements. PMID:23533541

  6. Contrast-enhanced ultrasonographic findings in three dogs with lung lobe torsion

    PubMed Central

    CAIVANO, Domenico; BIRETTONI, Francesco; BUFALARI, Antonello; MONTE, Valentina DE; ANGELI, Giovanni; GIORGI, Maria Elena; PATATA, Valentina; PORCIELLO, Francesco

    2015-01-01

    Lung lobe torsion is rare but life-threatening condition in the dog. Thoracic radiographs and conventional ultrasonography cannot be conclusive for the diagnosis, and computed tomography is useful but is limited by cost and availability. This report describes the findings of contrast-enhanced ultrasonography in 3 dogs with lung lobe torsion. Contrast-enhanced ultrasonography showed the absence or reduction of pulmonary vascularization secondary to twisting of the lung lobe around its bronchovascular pedicle in all three dogs. Moreover, contrast-enhanced ultrasonography distinguished partial pulmonary atelectasis from a lung lobe torsion. These preliminary results suggest that contrast-enhanced ultrasonography can improve the accuracy of conventional ultrasonography for detection of pulmonary blood flow compromise in dogs with lung lobe torsion. PMID:26498403

  7. Dyke Award. Evaluation of contrast-enhanced MR imaging in a brain-abscess model.

    PubMed

    Runge, V M; Clanton, J A; Price, A C; Herzer, W A; Allen, J H; Partain, C L; James, A E

    1985-01-01

    An alpha-streptococcus brain abscess was produced in five dogs and studied with magnetic resonance (MR) imaging (0.5 T) and computed tomography (CT). Non-contrast- and contrast-enhanced CT scans were obtained using gadolinium diethylenetriamine-pentaacetic acid (Gd DTPA) for MR imaging and meglumine iothalamate for CT scanning. Each animal was evaluated in the early and later cerebritis stages of abscess evolution. On MR, the area of cerebritis enhanced after administration of Gd DTPA in a manner similar to that observed with contrast-enhanced CT. However, contrast enhancement was greater on the MR examination. Early lesions in two animals were detected only with contrast-enhanced MR imaging. This experience suggests that intravenously administered agents such as Gd DTPA should increase the diagnostic potential of MR imaging in neurologic diseases, especially those altering the blood-brain barrier. PMID:3920873

  8. Learning and predicting brain dynamics from fMRI: a spectral approach

    NASA Astrophysics Data System (ADS)

    Meyer, François

    2007-09-01

    Traditional neuroimaging experiments, dictated by the dogma of functional specialization, aim at identifying regions of the brain that are maximally correlated with a simple cognitive or sensory stimulus. Very recently, functional MRI (fMRI) has been used to infer subjective experience and brain states of subjects immersed in natural environments. These environments are rich with uncontrolled stimuli and resemble real life experiences. Conventional methods of analysis of neuroimaging data fail to unravel the complex activity that natural environments elicit. The contribution of this work is a novel method to predict action and sensory experiences of a subject from fMRI. This method relies on an embedding that provides an optimal coordinate system to reduce the dimensionality of the fMRI dataset while preserving its intrinsic dynamics. We learn a set of time series that are implicit functions of the fMRI data, and predict the values of these times series in the future from the knowledge of the fMRI data only. We conducted several experiments with the datasets of the 2007 Pittsburgh Experience Based Cognition competition.

  9. A new hardware-efficient algorithm and reconfigurable architecture for image contrast enhancement.

    PubMed

    Huang, Shih-Chia; Chen, Wen-Chieh

    2014-10-01

    Contrast enhancement is crucial when generating high quality images for image processing applications, such as digital image or video photography, liquid crystal display processing, and medical image analysis. In order to achieve real-time performance for high-definition video applications, it is necessary to design efficient contrast enhancement hardware architecture to meet the needs of real-time processing. In this paper, we propose a novel hardware-oriented contrast enhancement algorithm which can be implemented effectively for hardware design. In order to be considered for hardware implementation, approximation techniques are proposed to reduce these complex computations during performance of the contrast enhancement algorithm. The proposed hardware-oriented contrast enhancement algorithm achieves good image quality by measuring the results of qualitative and quantitative analyzes. To decrease hardware cost and improve hardware utilization for real-time performance, a reduction in circuit area is proposed through use of parameter-controlled reconfigurable architecture. The experiment results show that the proposed hardware-oriented contrast enhancement algorithm can provide an average frame rate of 48.23 frames/s at high definition resolution 1920 × 1080. PMID:25148665

  10. Effortful Pitch Glide: A Potential New Exercise Evaluated by Dynamic MRI

    ERIC Educational Resources Information Center

    Miloro, Keri Vasquez; Pearson, William G., Jr.; Langmore, Susan E.

    2014-01-01

    Purpose: The purpose of this study was to compare the biomechanics of the effortful pitch glide (EPG) with swallowing using dynamic MRI. The EPG is a combination of a pitch glide and a pharyngeal squeeze maneuver for targeting laryngeal and pharyngeal muscles. The authors hypothesized that the EPG would elicit significantly greater structural…

  11. Si-strip photon counting detectors for contrast-enhanced spectral mammography

    NASA Astrophysics Data System (ADS)

    Chen, Buxin; Reiser, Ingrid; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasi; Chen, Chin-Tu; Iwanczyk, Jan S.; Barber, William C.

    2015-08-01

    We report on the development of silicon strip detectors for energy-resolved clinical mammography. Typically, X-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a-Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting Si strip detectors. The required performance for mammography in terms of the output count rate, spatial resolution, and dynamic range must be obtained with sufficient field of view for the application, thus requiring the tiling of pixel arrays and particular scanning techniques. Room temperature Si strip detector, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the X-ray energy ranges of the application. We present our methods and results from the optimization of Si-strip detectors for contrast enhanced spectral mammography. We describe the method being developed for quantifying iodine contrast using the energy-resolved detector with fixed thresholds. We demonstrate the feasibility of the method by scanning an iodine phantom with clinically relevant contrast levels.

  12. Dynamic Three-Dimensional Shoulder Mri during Active Motion for Investigation of Rotator Cuff Diseases

    PubMed Central

    Tempelaere, Christine; Pierrart, Jérome; Lefèvre-Colau, Marie-Martine; Vuillemin, Valérie; Cuénod, Charles-André; Hansen, Ulrich; Mir, Olivier; Skalli, Wafa; Gregory, Thomas

    2016-01-01

    Background MRI is the standard methodology in diagnosis of rotator cuff diseases. However, many patients continue to have pain despite treatment, and MRI of a static unloaded shoulder seems insufficient for best diagnosis and treatment. This study evaluated if Dynamic MRI provides novel kinematic data that can be used to improve the understanding, diagnosis and best treatment of rotator cuff diseases. Methods Dynamic MRI provided real-time 3D image series and was used to measure changes in the width of subacromial space, superior-inferior translation and anterior-posterior translation of the humeral head relative to the glenoid during active abduction. These measures were investigated for consistency with the rotator cuff diseases classifications from standard MRI. Results The study included: 4 shoulders with massive rotator cuff tears, 5 shoulders with an isolated full-thickness supraspinatus tear, 5 shoulders with tendinopathy and 6 normal shoulders. A change in the width of subacromial space greater than 4mm differentiated between rotator cuff diseases with tendon tears (massive cuff tears and supraspinatus tear) and without tears (tendinopathy) (p = 0.012). The range of the superior-inferior translation was higher in the massive cuff tears group (6.4mm) than in normals (3.4mm) (p = 0.02). The range of the anterior-posterior translation was higher in the massive cuff tears (9.2 mm) and supraspinatus tear (9.3 mm) shoulders compared to normals (3.5mm) and tendinopathy (4.8mm) shoulders (p = 0.05). Conclusion The Dynamic MRI enabled a novel measure; ‘Looseness’, i.e. the translation of the humeral head on the glenoid during an abduction cycle. Looseness was better able at differentiating different forms of rotator cuff disease than a simple static measure of relative glenohumeral position. PMID:27434235

  13. Functional MRI and CT biomarkers in oncology.

    PubMed

    Winfield, J M; Payne, G S; deSouza, N M

    2015-04-01

    Imaging biomarkers derived from MRI or CT describe functional properties of tumours and normal tissues. They are finding increasing numbers of applications in diagnosis, monitoring of response to treatment and assessment of progression or recurrence. Imaging biomarkers also provide scope for assessment of heterogeneity within and between lesions. A wide variety of functional parameters have been investigated for use as biomarkers in oncology. Some imaging techniques are used routinely in clinical applications while others are currently restricted to clinical trials or preclinical studies. Apparent diffusion coefficient, magnetization transfer ratio and native T1 relaxation time provide information about structure and organization of tissues. Vascular properties may be described using parameters derived from dynamic contrast-enhanced MRI, dynamic contrast-enhanced CT, transverse relaxation rate (R2*), vessel size index and relative blood volume, while magnetic resonance spectroscopy may be used to probe the metabolic profile of tumours. This review describes the mechanisms of contrast underpinning each technique and the technical requirements for robust and reproducible imaging. The current status of each biomarker is described in terms of its validation, qualification and clinical applications, followed by a discussion of the current limitations and future perspectives. PMID:25578953

  14. Bolus-tracking MRI with a simultaneous T1- and T2*-measurement.

    PubMed

    Sourbron, S; Heilmann, M; Biffar, A; Walczak, C; Vautier, J; Volk, A; Peller, M

    2009-09-01

    The aim of this study was to propose and evaluate a methodology to analyze simultaneously acquired T2*-weighted dynamic susceptibility contrast (DSC) MRI and T(1)-weighted dynamic contrast enhanced (DCE) MRI data. Two generalized models of T2*-relaxation are proposed to account for tracer leakage, and a two-compartment exchange model is used to separate tracer in intra- and extravascular spaces. The methods are evaluated using data extracted from ROIs in three mice with subcutaneously implanted human colorectal tumors. Comparing plasma flow values obtained from DCE-MRI and DSC-MRI data defines a practical experimental paradigm to measure T2*-relaxivities, and reveals a factor of 15 between values in tissue and blood. Comparing mean transit time values obtained from DCE-MRI and DSC-MRI without leakage correction, indicates a significant reduction of susceptibility weighting in DSC-MRI during tracer leakage. A one-parameter gradient correction model provides a good approximation for this susceptibility loss, but redundancy of the parameter limits the practical potential of this model for DSC-MRI. Susceptibility loss is modeled more accurately with a variable T2*-relaxivity, which allows to extract new parameters that cannot be derived from DSC-MRI or DCE-MRI alone. They reflect the cellular and vessel geometry, and thus may lead to a more complete characterization of tissue structure. PMID:19585599

  15. Interplay between Functional Connectivity and Scale-Free Dynamics in Intrinsic fMRI Networks

    PubMed Central

    Ciuciu, Philippe; Abry, Patrice; He, Biyu J.

    2014-01-01

    Studies employing functional connectivity-type analyses have established that spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals are organized within large-scale brain networks. Meanwhile, fMRI signals have been shown to exhibit 1/f-type power spectra – a hallmark of scale-free dynamics. We studied the interplay between functional connectivity and scale-free dynamics in fMRI signals, utilizing the fractal connectivity framework – a multivariate extension of the univariate fractional Gaussian noise model, which relies on a wavelet formulation for robust parameter estimation. We applied this framework to fMRI data acquired from healthy young adults at rest and performing a visual detection task. First, we found that scale-invariance existed beyond univariate dynamics, being present also in bivariate cross-temporal dynamics. Second, we observed that frequencies within the scale-free range do not contribute evenly to inter-regional connectivity, with a systematically stronger contribution of the lowest frequencies, both at rest and during task. Third, in addition to a decrease of the Hurst exponent and inter-regional correlations, task performance modified cross-temporal dynamics, inducing a larger contribution of the highest frequencies within the scale-free range to global correlation. Lastly, we found that across individuals, a weaker task modulation of the frequency contribution to inter-regional connectivity was associated with better task performance manifesting as shorter and less variable reaction times. These findings bring together two related fields that have hitherto been studied separately – resting-state networks and scale-free dynamics, and show that scale-free dynamics of human brain activity manifest in cross-regional interactions as well. PMID:24675649

  16. Signal enhancement ratio (SER) quantified from breast DCE-MRI and breast cancer risk

    NASA Astrophysics Data System (ADS)

    Wu, Shandong; Kurland, Brenda F.; Berg, Wendie A.; Zuley, Margarita L.; Jankowitz, Rachel C.; Sumkin, Jules; Gur, David

    2015-03-01

    Breast magnetic resonance imaging (MRI) is recommended as an adjunct to mammography for women who are considered at elevated risk of developing breast cancer. As a key component of breast MRI, dynamic contrast-enhanced MRI (DCE-MRI) uses a contrast agent to provide high intensity contrast between breast tissues, making it sensitive to tissue composition and vascularity. Breast DCE-MRI characterizes certain physiologic properties of breast tissue that are potentially related to breast cancer risk. Studies have shown that increased background parenchymal enhancement (BPE), which is the contrast enhancement occurring in normal cancer-unaffected breast tissues in post-contrast sequences, predicts increased breast cancer risk. Signal enhancement ratio (SER) computed from pre-contrast and post-contrast sequences in DCE-MRI measures change in signal intensity due to contrast uptake over time and is a measure of contrast enhancement kinetics. SER quantified in breast tumor has been shown potential as a biomarker for characterizing tumor response to treatments. In this work we investigated the relationship between quantitative measures of SER and breast cancer risk. A pilot retrospective case-control study was performed using a cohort of 102 women, consisting of 51 women who had diagnosed with unilateral breast cancer and 51 matched controls (by age and MRI date) with a unilateral biopsy-proven benign lesion. SER was quantified using fully-automated computerized algorithms and three SER-derived quantitative volume measures were compared between the cancer cases and controls using logistic regression analysis. Our preliminary results showed that SER is associated with breast cancer risk, after adjustment for the Breast Imaging Reporting and Data System (BI-RADS)-based mammographic breast density measures. This pilot study indicated that SER has potential for use as a risk factor for breast cancer risk assessment in women at elevated risk of developing breast cancer.

  17. Determination of contrast media administration to achieve a targeted contrast enhancement in CT

    NASA Astrophysics Data System (ADS)

    Sahbaee, Pooyan; Li, Yuan; Segars, Paul; Marin, Daniele; Nelson, Rendon; Samei, Ehsan

    2015-03-01

    Contrast enhancement is a key component of CT imaging and offer opportunities for optimization. The design and optimization of new techniques however requires orchestration with the scan parameters and further a methodology to relate contrast enhancement and injection function. In this study, we used such a methodology to develop a method, analytical inverse method, to predict the required injection function to achieve a desired contrast enhancement in a given organ by incorporation of a physiologically based compartmental model. The method was evaluated across 32 different target contrast enhancement functions for aorta, kidney, stomach, small intestine, and liver. The results exhibited that the analytical inverse method offers accurate performance with error in the range of 10% deviation between the predicted and desired organ enhancement curves. However, this method is incapable of predicting the injection function based on the liver enhancement. The findings of this study can be useful in optimizing contrast medium injection function as well as the scan timing to provide more consistency in the way that the contrast enhanced CT examinations are performed. To our knowledge, this work is one of the first attempts to predict the contrast material injection function for a desired organ enhancement curve.

  18. Medical image visual appearance improvement using bihistogram Bezier curve contrast enhancement: data from the Osteoarthritis Initiative.

    PubMed

    Gan, Hong-Seng; Swee, Tan Tian; Abdul Karim, Ahmad Helmy; Sayuti, Khairil Amir; Abdul Kadir, Mohammed Rafiq; Tham, Weng-Kit; Wong, Liang-Xuan; Chaudhary, Kashif T; Ali, Jalil; Yupapin, Preecha P

    2014-01-01

    Well-defined image can assist user to identify region of interest during segmentation. However, complex medical image is usually characterized by poor tissue contrast and low background luminance. The contrast improvement can lift image visual quality, but the fundamental contrast enhancement methods often overlook the sudden jump problem. In this work, the proposed bihistogram Bezier curve contrast enhancement introduces the concept of "adequate contrast enhancement" to overcome sudden jump problem in knee magnetic resonance image. Since every image produces its own intensity distribution, the adequate contrast enhancement checks on the image's maximum intensity distortion and uses intensity discrepancy reduction to generate Bezier transform curve. The proposed method improves tissue contrast and preserves pertinent knee features without compromising natural image appearance. Besides, statistical results from Fisher's Least Significant Difference test and the Duncan test have consistently indicated that the proposed method outperforms fundamental contrast enhancement methods to exalt image visual quality. As the study is limited to relatively small image database, future works will include a larger dataset with osteoarthritic images to assess the clinical effectiveness of the proposed method to facilitate the image inspection. PMID:24977191

  19. Quantitative perfusion analysis in pancreatic contrast enhanced ultrasound (DCE-US): a promising tool for the differentiation between autoimmune pancreatitis and pancreatic cancer.

    PubMed

    Vitali, F; Pfeifer, L; Janson, C; Goertz, R S; Neurath, M F; Strobel, D; Wildner, D

    2015-10-01

    In the work-up of focal pancreatic lesions autoimmune pancreatitis (AIP) is a rare differential diagnosis to pancreatic cancer (PC) with similar clinical constellations. The aim of our study was to compare differences between proven AIP and PC using transabdominal dynamic contrast enhanced ultrasound (DCE-US). Therefore we recorded 3-minute-clips of CEUS examinations and analyzed perfusion parameters with VueBox®-quantification software. To obtain DCE-US Parameters, Regions-of-Interest were selected within the lesions and the surrounding pancreas parenchyma, serving as reference tissue. We compared 3 patients with AIP (mean age: 58 years; lesion mean size: 40 mm) to 17 patients with PC (mean age: 68 years; lesion mean size: 35.9 mm). Significant differences between PC and parenchyma could be found in the following parameters: Peak-Enhancement (PE), Wash-in-and-Wash-out-AUC, Wash-in Perfusion-Index. PE of AIP was comparable to normal parenchyma. The relation of PE between parenchyma and lesion (ΔPE) AIP and PC was significantly different [AIP: 0.21 (±0.06); PC: 0.81 (±0.1); p<0.01]. PE of neoplastic lesions was significantly lower as AIP and normal parenchyma (p<0.01). Therefore perfusion analysis in DCE-US can help to differentiate hypovascular PC from AIP presenting nearly isovascular time intensity curves. Diagnostic accuracy of DCE-US in this setting has to be validated in future prospective studies in comparison to CT and MRI. PMID:26480053

  20. Scale-Free and Multifractal Time Dynamics of fMRI Signals during Rest and Task

    PubMed Central

    Ciuciu, P.; Varoquaux, G.; Abry, P.; Sadaghiani, S.; Kleinschmidt, A.

    2012-01-01

    Scaling temporal dynamics in functional MRI (fMRI) signals have been evidenced for a decade as intrinsic characteristics of ongoing brain activity (Zarahn et al., 1997). Recently, scaling properties were shown to fluctuate across brain networks and to be modulated between rest and task (He, 2011): notably, Hurst exponent, quantifying long memory, decreases under task in activating and deactivating brain regions. In most cases, such results were obtained: First, from univariate (voxelwise or regionwise) analysis, hence focusing on specific cognitive systems such as Resting-State Networks (RSNs) and raising the issue of the specificity of this scale-free dynamics modulation in RSNs. Second, using analysis tools designed to measure a single scaling exponent related to the second order statistics of the data, thus relying on models that either implicitly or explicitly assume Gaussianity and (asymptotic) self-similarity, while fMRI signals may significantly depart from those either of those two assumptions (Ciuciu et al., 2008; Wink et al., 2008). To address these issues, the present contribution elaborates on the analysis of the scaling properties of fMRI temporal dynamics by proposing two significant variations. First, scaling properties are technically investigated using the recently introduced Wavelet Leader-based Multifractal formalism (WLMF; Wendt et al., 2007). This measures a collection of scaling exponents, thus enables a richer and more versatile description of scale invariance (beyond correlation and Gaussianity), referred to as multifractality. Also, it benefits from improved estimation performance compared to tools previously used in the literature. Second, scaling properties are investigated in both RSN and non-RSN structures (e.g., artifacts), at a broader spatial scale than the voxel one, using a multivariate approach, namely the Multi-Subject Dictionary Learning (MSDL) algorithm (Varoquaux et al., 2011) that produces a set of spatial components that

  1. k-t Group sparse: a method for accelerating dynamic MRI.

    PubMed

    Usman, M; Prieto, C; Schaeffter, T; Batchelor, P G

    2011-10-01

    Compressed sensing (CS) is a data-reduction technique that has been applied to speed up the acquisition in MRI. However, the use of this technique in dynamic MR applications has been limited in terms of the maximum achievable reduction factor. In general, noise-like artefacts and bad temporal fidelity are visible in standard CS MRI reconstructions when high reduction factors are used. To increase the maximum achievable reduction factor, additional or prior information can be incorporated in the CS reconstruction. Here, a novel CS reconstruction method is proposed that exploits the structure within the sparse representation of a signal by enforcing the support components to be in the form of groups. These groups act like a constraint in the reconstruction. The information about the support region can be easily obtained from training data in dynamic MRI acquisitions. The proposed approach was tested in two-dimensional cardiac cine MRI with both downsampled and undersampled data. Results show that higher acceleration factors (up to 9-fold), with improved spatial and temporal quality, can be obtained with the proposed approach in comparison to the standard CS reconstructions. PMID:21394781

  2. Advanced MRI Techniques in the Evaluation of Complex Cystic Breast Lesions

    PubMed Central

    Popli, Manju Bala; Gupta, Pranav; Arse, Devraj; Kumar, Pawan; Kaur, Prabhjot

    2016-01-01

    OBJECTIVE The purpose of this research work was to evaluate complex cystic breast lesions by advanced MRI techniques and correlating imaging with histologic findings. METHODS AND MATERIALS In a cross-sectional design from September 2013 to August 2015, 50 patients having sonographically detected complex cystic lesions of the breast were included in the study. Morphological characteristics were assessed. Dynamic contrast-enhanced MRI along with diffusion-weighted imaging and MR spectroscopy were used to further classify lesions into benign and malignant categories. All the findings were correlated with histopathology. RESULTS Of the 50 complex cystic lesions, 32 proved to be benign and 18 were malignant on histopathology. MRI features of heterogeneous enhancement on CE-MRI (13/18), Type III kinetic curve (13/18), reduced apparent diffusion coefficient (18/18), and tall choline peak (17/18) were strong predictors of malignancy. Thirteen of the 18 lesions showed a combination of Type III curve, reduced apparent diffusion coefficient value, and tall choline peak. CONCLUSIONS Advanced MRI techniques like dynamic imaging, diffusion-weighted sequences, and MR spectroscopy provide a high level of diagnostic confidence in the characterization of complex cystic breast lesion, thus allowing early diagnosis and significantly reducing patient morbidity and mortality. From our study, lesions showing heterogeneous contrast enhancement, Type III kinetic curve, diffusion restriction, and tall choline peak were significantly associated with malignant complex cystic lesions of the breast. PMID:27330299

  3. Quantitative Characterization of Inertial Confinement Fusion Capsules Using Phase Contrast Enhanced X-Ray Imaging

    SciTech Connect

    Kozioziemski, B J; Koch, J A; Barty, A; Martz, H E; Lee, W; Fezzaa, K

    2004-05-07

    Current designs for inertial confinement fusion capsules for the National Ignition Facility (NIF) consist of a solid deuterium-tritium (D-T) fuel layer inside of a copper doped beryllium capsule. Phase contrast enhanced x-ray imaging is shown to render the D-T layer visible inside the Be(Cu) capsule. Phase contrast imaging is experimentally demonstrated for several surrogate capsules and validates computational models. Polyimide and low density divinyl benzene foam capsules were imaged at the Advanced Photon Source synchrotron. The surrogates demonstrate that phase contrast enhanced imaging provides a method to characterize surfaces when absorption imaging cannot be used. Our computational models demonstrate that a rough surface can be accurately reproduced in phase contrast enhanced x-ray images.

  4. Non-invasive assessment of portal hypertension and liver fibrosis using contrast-enhanced ultrasonography.

    PubMed

    Maruyama, Hitoshi; Shiha, Gamal; Yokosuka, Osamu; Kumar, Ashish; Sharma, Barjesh Chander; Ibrahim, Alaa; Saraswat, Vivek; Lesmana, Cosmas Rinaldi A; Omata, Masao

    2016-03-01

    Portal hypertension and hepatic fibrosis are key pathophysiologies with major manifestations in cirrhosis. Although the degree of portal pressure and hepatic fibrosis are pivotal parameters, both are determined using invasive procedures. Ultrasound (US) is a simple and non-invasive technique that is available for use worldwide in the abdominal field. Because of its safety and easy of use, contrast-enhanced US is one of the most frequently used tools in the management of liver tumors for the detection and characterization of lesions, assessment of malignancy grade, and evaluation of therapeutic effects. This wide range of applications drives the practical use of contrast-enhanced US for evaluation of the severity of portal hypertension and hepatic fibrosis. The present article reviews the recent progress in contrast-enhanced US for the assessment of portal hypertension and hepatic fibrosis. PMID:26696585

  5. [3D real time contrast enhanced ultrasonography,a new technique].

    PubMed

    Dietrich, C F

    2002-02-01

    While 3D sonography has become established in gynecology, abdominal applications have been mainly restricted to case reports. However, recent advances in computer technology have supported the development of new systems with motion detection methods and image registration algorithms - making it possible to acquire 3D data without position sensors, before and after administration of contrast enhancing agents. Hepatic (and also splenic) applications involve the topographic localization of masses in relation to the vessels, e.g. hepatic veins and portal vein branches prior to surgical procedures (segment localization). 3D imaging in the characterization of liver tumors after administration of contrast enhancing agents could become of special importance. We report on the first use of 3D imaging of the liver and spleen under real time conditions in 10 patients, using contrast enhanced phase inversion imaging with low mechanical index, which may improve the detection rate and characterization of liver and splenic tumors. PMID:11898076

  6. Image of tumor metastasis and inflammatory lymph node enlargement by contrast-enhanced ultrasonography

    PubMed Central

    Aoki, Takaya; Moriyasu, Fuminori; Yamamoto, Kei; Shimizu, Masafumi; Yamada, Masahiko; Imai, Yasuharu

    2011-01-01

    AIM: To compare the difference between tumor-induced lymph node enlargement and inflammation-induced lymph node enlargement by contrast-enhanced ultrasonography and pathological findings. METHODS: A model of tumor-induced lymph node metastasis was prepared by embedding a VX2 tumor into the hind paws of white rabbits. A model of inflammation-induced enlargement was prepared by injecting a suspension of Escherichia coli into separate hind paws of white rabbits. Then, a solution of Sonazoid™ (GE Healthcare, Oslo, Norway) was injected subcutaneously in the proximity of the lesion followed by contrast-enhanced ultrasonography of the enlarged popliteal lymph nodes. RESULTS: In the contrast-enhanced ultrasonography of the tumor-induced metastasis model, the sentinel lymph node was imaged. An area of filling defect was observed in that enlarged lymph node. In the histology examination, the area of filling defect corresponded to the metastatic lesion of the tumor. Contrast-enhanced ultrasonography of the model on inflammation-induced lymph node enlargement, and that of the acute inflammation model performed 3-7 d later, revealed dense staining that was comparatively uniform. The pathological findings showed acute lymphadenitis mainly due to infiltration of inflammatory cells. Contrast-enhanced ultrasonography that was performed 28 d post-infection in the acute inflammation model showed speckled staining. Inflammation-induced cell infiltration and fiberization, which are findings of chronic lymphadenitis, were seen in the pathological findings. CONCLUSION: Sentinel lymph node imaging was made possible by subcutaneous injection of Sonazoid™. Contrast-enhanced ultrasonography was suggested to be useful in differentiating tumor-induced enlargement and inflammation-induced enlargement of lymph nodes. PMID:22224178

  7. Preliminary Analysis of Clinical Situations Involved in Quantification of Contrast-Enhanced Ultrasound in Crohn's Disease.

    PubMed

    Cheng, Wenjie; Gao, Xiang; Wang, Weili; Zhi, Min; Tang, Jian; Wen, Yan-Ling; Yu, Junli; Chen, Yao; Liu, Xiaoyin; Yang, Chuan; Hu, Pinjin; Liu, Guangjian

    2016-08-01

    To assess influencing factors for quantitative analysis of contrast-enhanced ultrasound (CEUS) in Crohn's disease (CD), dynamic CEUS examinations from 77 consecutive CD patients were recorded. Peak intensity (PI) values were calculated using the pre-installed quantification software of the ultrasound scanner. The influence of depth, pressure from the ultrasound probe and intraluminal gas was analyzed. The PI value of the anterior wall was lower than that of the posterior wall when the depth was ≤3.4 cm (17.9 dB vs. 21.3 dB; p < 0.05) or evident pressure was exerted (19.1 dB vs. 22.5 dB; p < 0.01). In the presence of intraluminal gas, the PI of the anterior wall was higher than that of the posterior wall (20.7 dB vs. 18.8 dB; p < 0.05). Nevertheless, no significant difference was found between the PI value of anterior and posterior walls when the depth was >3.4 cm (19.8 dB vs. 20.3 dB), moderate pressure was exerted (20.5 dB vs. 21.1 dB) or luminal gas was excluded between the two bowel walls (18.9 dB vs. 21.2 dB; p ≥ 0.05). The factors of depth, pressure from the ultrasound probe and intraluminal gas can affect the quantification results of CEUS. It is preferable to place the region of interest in the posterior wall when luminal gas is absent and in the anterior wall when luminal gas is present. In the latter case, more attention should be paid to reducing pressure by the ultrasound probe. PMID:27087694

  8. Atherosclerotic carotid lumen segmentation in combined B-mode and contrast enhanced ultrasound images

    NASA Astrophysics Data System (ADS)

    Akkus, Zeynettin; Carvalho, Diego D. B.; Klein, Stefan; van den Oord, Stijn C. H.; Schinkel, Arend F. L.; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.

    2014-03-01

    Patients with carotid atherosclerotic plaques carry an increased risk of cardiovascular events such as stroke. Ultrasound has been employed as a standard for diagnosis of carotid atherosclerosis. To assess atherosclerosis, the intima contour of the carotid artery lumen should be accurately outlined. For this purpose, we use simultaneously acquired side-by-side longitudinal contrast enhanced ultrasound (CEUS) and B-mode ultrasound (BMUS) images and exploit the information in the two imaging modalities for accurate lumen segmentation. First, nonrigid motion compensation is performed on both BMUS and CEUS image sequences, followed by averaging over the 150 time frames to produce an image with improved signal-to-noise ratio (SNR). After that, we segment the lumen from these images using a novel method based on dynamic programming which uses the joint histogram of the CEUS and BMUS pair of images to distinguish between background, lumen, tissue and artifacts. Finally, the obtained lumen contour in the improved-SNR mean image is transformed back to each time frame of the original image sequence. Validation was done by comparing manual lumen segmentations of two independent observers with automated lumen segmentations in the improved-SNR images of 9 carotid arteries from 7 patients. The root mean square error between the two observers was 0.17+/-0.10mm and between automated and average of manual segmentation of two observers was 0.19+/-0.06mm. In conclusion, we present a robust and accurate carotid lumen segmentation method which overcomes the complexity of anatomical structures, noise in the lumen, artifacts and echolucent plaques by exploiting the information in this combined imaging modality.

  9. Monitoring Antivascular Therapy in Head and Neck Cancer Xenografts using Contrast-enhanced MR and US Imaging

    PubMed Central

    Seshadri, Mukund; Sacadura, Nuno T.; Coulthard, Tonya

    2013-01-01

    Background The overall goal of this study was to non-invasively monitor changes in blood flow of squamous cell carcinoma of the head and neck (SCCHN) xenografts using contrast-enhanced magnetic resonance (MR) and ultrasound (US) imaging. Methods Experimental studies were performed on mice bearing FaDu tumors and SCCHN xenografts derived from human surgical tissue. MR examinations were performed using gadofosveset trisodium at 4.7T. Change in T1-relaxation rate of tumors (ΔR1) and tumor enhancement parameters (amplitude, area under the curve - AUC) were measured at baseline and 24 hours after treatment with a tumor-vascular disrupting agent (tumor-VDA), 5,6-dimethylxanthenone-4-acetic acid (DMXAA; ASA404) and correlated with tumor necrosis and treatment outcome. CE-US was performed using microbubbles (Vevo MicroMarker®) to assess the change in relative tumor blood volume following VDA treatment. Results A marked decrease (up to 68% of baseline) in T1-enhancement of FaDu tumors was observed one day after VDA therapy indicative of a reduction in blood flow. Early (24h) vascular response of individual tumors to VDA therapy detected by MRI correlated with tumor necrosis and volume estimates at 10 days post treatment. VDA treatment also resulted in a significant reduction in AUC and amplitude of patient tumor-derived SCCHN xenografts. Consistent with MRI observations, CE-US revealed a significant reduction in tumor blood volume of patient tumor-derived SCCHN xenografts after VDA therapy. Treatment with VDA resulted in a significant tumor growth inhibition of patient tumor derived SCCHN xenografts. Conclusions These findings demonstrate that both CE-MRI and CE-US allow monitoring of early changes in vascular function following VDA therapy. The results also demonstrate, for the first time, potent vascular disruptive and antitumor activity of DMXAA against patient tumor-derived head and neck carcinoma xenografts. PMID:21901534

  10. Contrast enhanced-magnetic resonance imaging as a surrogate to map verteporfin delivery in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Samkoe, Kimberley S.; Bryant, Amber; Gunn, Jason R.; Pereira, Stephen P.; Hasan, Tayyaba; Pogue, Brian W.

    2013-12-01

    The use of in vivo contrast-enhanced magnetic resonance (MR) imaging as a surrogate for photosensitizer (verteporfin) dosimetry in photodynamic therapy of pancreas cancer is demonstrated by correlating MR contrast uptake to ex vivo fluorescence images on excised tissue. An orthotopic pancreatic xenograft mouse model was used for the study. A strong correlation (r=0.57) was found for bulk intensity measurements of T1-weighted gadolinium enhancement and verteporfin fluorescence in the tumor region of interest. The use of contrast-enhanced MR imaging shows promise as a method for treatment planning and photosensitizer dosimetry in human photodynamic therapy (PDT) of pancreas cancer.

  11. Review of ultrasonography of malignant neck nodes: greyscale, Doppler, contrast enhancement and elastography.

    PubMed

    Ying, M; Bhatia, K S S; Lee, Y P; Yuen, H Y; Ahuja, A T

    2013-01-01

    Assessment of neck lymph nodes is essential in patients with head and neck cancers for predicting the patient's prognosis and selecting the appropriate treatment. Ultrasonography is a useful imaging tool in the assessment of neck lymph nodes. Greyscale ultrasonography assesses the size, distribution, and internal architecture of lymph nodes. Doppler ultrasonography evaluates the intranodal vascular pattern and resistance of lymph nodes. Contrast-enhanced ultrasonography provides information on lymph node parenchymal perfusion. Elastography allows qualitative and quantitative assessment of lymph node stiffness. This article reviews the value of greyscale, Doppler and contrast-enhanced ultrasonography as well as elastography in the assessment of malignant nodes in the neck. PMID:24434158

  12. Functional Flow Patterns and Static Blood Pooling in Tumors Revealed by Combined Contrast-Enhanced Ultrasound and Photoacoustic Imaging.

    PubMed

    Bar-Zion, Avinoam; Yin, Melissa; Adam, Dan; Foster, F Stuart

    2016-08-01

    Alterations in tumor perfusion and microenvironment have been shown to be associated with aggressive cancer phenotypes, raising the need for noninvasive methods of tracking these changes. Dynamic contrast-enhanced ultrasound (DCEUS) and photoacoustic (PA) imaging serve as promising candidates-one has the ability to measure tissue perfusion, whereas the other can be used to monitor tissue oxygenation and hemoglobin concentration. In this study, we investigated the relationship between the different functional parameters measured with DCEUS and PA imaging, using two morphologically different hind-limb tumor models and drug-induced alterations in an orthotopic breast tumor model. Imaging results showed some correlation between perfusion and oxygen saturation maps and the ability to sensitively monitor antivascular treatment. In addition, DCEUS measurements revealed different vascular densities in the core of specific tumors compared with their rims. Noncorrelated perfusion and hemoglobin concentration measurements facilitated discrimination between blood lakes and necrotic areas. Taken together, our results illustrate the utility of a combined contrast-enhanced ultrasound method with photoacoustic imaging to visualize blood flow patterns in tumors. Cancer Res; 76(15); 4320-31. ©2016 AACR. PMID:27325651

  13. Absolute perfusion measurements and associated iodinated contrast agent time course in brain metastasis: a study for contrast-enhanced radiotherapy

    PubMed Central

    Obeid, Layal; Deman, Pierre; Tessier, Alexandre; Balosso, Jacques; Estève, François; Adam, Jean- François

    2014-01-01

    Contrast-enhanced radiotherapy is an innovative treatment that combines the selective accumulation of heavy elements in tumors with stereotactic irradiations using medium energy X-rays. The radiation dose enhancement depends on the absolute amount of iodine reached in the tumor and its time course. Quantitative, postinfusion iodine biodistribution and associated brain perfusion parameters were studied in human brain metastasis as key parameters for treatment feasibility and quality. Twelve patients received an intravenous bolus of iodinated contrast agent (CA) (40 mL, 4 mL/s), followed by a steady-state infusion (160 mL, 0.5 mL/s) to ensure stable intratumoral amounts of iodine during the treatment. Absolute iodine concentrations and quantitative perfusion maps were derived from 40 multislice dynamic computed tomography (CT) images of the brain. The postinfusion mean intratumoral iodine concentration (over 30 minutes) reached 1.94±0.12 mg/mL. Reasonable correlations were obtained between these concentrations and the permeability surface area product and the cerebral blood volume. To our knowledge, this is the first quantitative study of CA biodistribution versus time in brain metastasis. The study shows that suitable and stable amounts of iodine can be reached for contrast-enhanced radiotherapy. Moreover, the associated perfusion measurements provide useful information for the patient recruitment and management processes. PMID:24447951

  14. Max CAPR: High-Resolution 3D Contrast-Enhanced MR Angiography With Acquisition Times Under 5 Seconds

    PubMed Central

    Haider, Clifton R.; Borisch, Eric A.; Glockner, James F.; Mostardi, Petrice M.; Rossman, Phillip J.; Young, Phillip M.; Riederer, Stephen J.

    2011-01-01

    High temporal and spatial resolution is desired in imaging of vascular abnormalities having short arterial-to-venous transit times. Methods that exploit temporal correlation to reduce the observed frame time demonstrate temporal blurring, obfuscating bolus dynamics. Previously, a Cartesian acquisition with projection reconstruction-like (CAPR) sampling method has been demonstrated for three-dimensional contrast-enhanced angiographic imaging of the lower legs using two-dimensional sensitivity-encoding acceleration and partial Fourier acceleration, providing 1mm isotropic resolution of the calves, with 4.9-sec frame time and 17.6-sec temporal footprint. In this work, the CAPR acquisition is further undersampled to provide a net acceleration approaching 40 by eliminating all view sharing. The tradeoff of frame time and temporal footprint in view sharing is presented and characterized in phantom experiments. It is shown that the resultant 4.9-sec acquisition time, three-dimensional images sets have sufficient spatial and temporal resolution to clearly portray arterial and venous phases of contrast passage. It is further hypothesized that these short temporal footprint sequences provide diagnostic quality images. This is tested and shown in a series of nine contrast-enhanced MR angiography patient studies performed with the new method. PMID:20715291

  15. Max CAPR: high-resolution 3D contrast-enhanced MR angiography with acquisition times under 5 seconds.

    PubMed

    Haider, Clifton R; Borisch, Eric A; Glockner, James F; Mostardi, Petrice M; Rossman, Phillip J; Young, Phillip M; Riederer, Stephen J

    2010-10-01

    High temporal and spatial resolution is desired in imaging of vascular abnormalities having short arterial-to-venous transit times. Methods that exploit temporal correlation to reduce the observed frame time demonstrate temporal blurring, obfuscating bolus dynamics. Previously, a Cartesian acquisition with projection reconstruction-like (CAPR) sampling method has been demonstrated for three-dimensional contrast-enhanced angiographic imaging of the lower legs using two-dimensional sensitivity-encoding acceleration and partial Fourier acceleration, providing 1mm isotropic resolution of the calves, with 4.9-sec frame time and 17.6-sec temporal footprint. In this work, the CAPR acquisition is further undersampled to provide a net acceleration approaching 40 by eliminating all view sharing. The tradeoff of frame time and temporal footprint in view sharing is presented and characterized in phantom experiments. It is shown that the resultant 4.9-sec acquisition time, three-dimensional images sets have sufficient spatial and temporal resolution to clearly portray arterial and venous phases of contrast passage. It is further hypothesized that these short temporal footprint sequences provide diagnostic quality images. This is tested and shown in a series of nine contrast-enhanced MR angiography patient studies performed with the new method. PMID:20715291

  16. Multivariate dynamical systems models for estimating causal interactions in fMRI

    PubMed Central

    Ryali, Srikanth; Supekar, Kaustubh; Chen, Tianwen; Menon, Vinod

    2010-01-01

    Analysis of dynamical interactions between distributed brain areas is of fundamental importance for understanding cognitive information processing. However, estimating dynamic causal interactions between brain regions using functional magnetic resonance imaging (fMRI) poses several unique challenges. For one, fMRI measures Blood Oxygenation Level Dependent (BOLD) signals, rather than the underlying latent neuronal activity. Second, regional variations in the hemodynamic response function (HRF) can significantly influence estimation of casual interactions between them. Third, causal interactions between brain regions can change with experimental context over time. To overcome these problems, we developed a novel state-space Multivariate Dynamical Systems (MDS) model to estimate intrinsic and experimentally-induced modulatory causal interactions between multiple brain regions. A probabilistic graphical framework is then used to estimate the parameters of MDS as applied to fMRI data. We show that MDS accurately takes into account regional variations in the HRF and estimates dynamic causal interactions at the level of latent signals. We develop and compare two estimation procedures using maximum likelihood estimation (MLE) and variational Bayesian (VB) approaches for inferring model parameters. Using extensive computer simulations, we demonstrate that, compared to Granger causal analysis (GCA), MDS exhibits superior performance for a wide range of signal to noise ratios (SNRs), sample length and network size. Our simulations also suggest that GCA fails to uncover causal interactions when there is a conflict between the direction of intrinsic and modulatory influences. Furthermore, we show that MDS estimation using VB methods is more robust and performs significantly better at low SNRs and shorter time series than MDS with MLE. Our study suggests that VB estimation of MDS provides a robust method for estimating and interpreting causal network interactions in fMRI data

  17. Evaluation of sorafenib for hepatocellular carcinoma by contrast-enhanced ultrasonography: A pilot study

    PubMed Central

    Shiozawa, Kazue; Watanabe, Manabu; Kikuchi, Yoshinori; Kudo, Takahide; Maruyama, Kenichi; Sumino, Yasukiyo

    2012-01-01

    AIM: To determine the usefulness of arrival time parametric imaging (AtPI) using contrast-enhanced ultrasonography (CEUS) with Sonazoid in evaluating early response to sorafenib for hepatocellular carcinoma (HCC). METHODS: Fourteen advanced HCC patients who received sorafenib 400/800 mg/d for at least 4 wk and were followed up by CEUS were enrolled in this study. CEUS was performed before treatment and 2 and 4 wk after treatment, and images of the target lesion in the arterial phase were recorded for each patient. The images were analyzed by AtPI. Color mapping (CM) images obtained by AtPI were compared before and after the treatment. In these CM images, the mean arrival time of the contrast agent in the region of interest from the starting point [mean time (MT)] was calculated. In each patient, differences between MT before and MT 2 and 4 wk after the treatment were compared with responses evaluated 4-8 wk after the treatment by dynamic computed tomography (CT), and statistical analysis was performed. Modified response evaluation criteria in solid tumors was used for the response evaluation. RESULTS: In CM images both 2 and 4 wk after the treatment, delays in the arrival time of the contrast agent were noted in 8 of the 14 patients. In the other 6 patients, no color changes were observed in the tumor, or red and/or yellow increase, suggesting a decrease in blood flow velocity between images 2 and 4 wk after the treatment and those before the treatment. Dynamic CT could be performed 4-8 wk after the treatment in 13 of the 14 patients. Median differences in the MT were 1.13 s and 1.015 s, 2 and 4 wk after the treatment, respectively, in the 8 patients who showed stable disease (SD)/partial response (PR) on dynamic CT. Median differences in the MT were -0.39 s and -0.95 s, 2 and 4 wk after the treatment, respectively, in the 5 patients who showed progressive disease (PD). Differences in the median MT between SD/PR and PD groups were significant 2 and 4 wk after the

  18. Rapid dynamic radial MRI via reference image enforced histogram constrained reconstruction

    NASA Astrophysics Data System (ADS)

    Gaass, Thomas; Bauman, Grzegorz; Potdevin, Guillaume; Noël, Peter B.; Haase, Axel

    2014-03-01

    Exploiting spatio-temporal redundancies in sub-Nyquist sampled dynamic MRI for the suppression of undersampling artifacts was shown to be of great success. However, temporally averaged and blurred structures in image space composite data poses the risk of false information in the reconstruction. Within this work we assess the possibility of employing the composite image histogram as a measure of undersampling artifacts and as basis of their suppression. The proposed algorithm utilizes a histogram, computed from a composite image within a dynamically acquired interleaved radial MRI measurement as reference to compensate for the impact of undersampling in temporally resolved data without the incorporation of temporal averaging. In addition an image space regularization utilizing a single frame low-resolution reconstruction is implemented to enforce overall contrast fidelity. The performance of the approach was evaluated on a simulated radial dynamic MRI acquisition and on two functional in vivo radial cardiac acquisitions. Results demonstrate that the algorithm maintained contrast properties, details and temporal resolution in the images, while effectively suppressing undersampling artifacts.

  19. Rapid dynamic radial MRI via reference image enforced histogram constrained reconstruction.

    PubMed

    Gaass, Thomas; Bauman, Grzegorz; Potdevin, Guillaume; Noël, Peter B; Haase, Axel

    2014-03-01

    Exploiting spatio-temporal redundancies in sub-Nyquist sampled dynamic MRI for the suppression of undersampling artifacts was shown to be of great success. However, temporally averaged and blurred structures in image space composite data poses the risk of false information in the reconstruction. Within this work we assess the possibility of employing the composite image histogram as a measure of undersampling artifacts and as basis of their suppression. The proposed algorithm utilizes a histogram, computed from a composite image within a dynamically acquired interleaved radial MRI measurement as reference to compensate for the impact of undersampling in temporally resolved data without the incorporation of temporal averaging. In addition an image space regularization utilizing a single frame low-resolution reconstruction is implemented to enforce overall contrast fidelity. The performance of the approach was evaluated on a simulated radial dynamic MRI acquisition and on two functional in vivo radial cardiac acquisitions. Results demonstrate that the algorithm maintained contrast properties, details and temporal resolution in the images, while effectively suppressing undersampling artifacts. PMID:24486719

  20. Susceptibility-Based Analysis Of Dynamic Gadolinium Bolus Perfusion MRI

    PubMed Central

    Bonekamp, David; Barker, Peter B.; Leigh, Richard; van Zijl, Peter C.M.; Li, Xu

    2014-01-01

    Purpose An algorithm is developed for the reconstruction of dynamic, gadolinium (Gd) bolus MR perfusion images of the human brain, based on quantitative susceptibility mapping (QSM). Methods The method is evaluated in 5 perfusion scans obtained from 4 different patients scanned at 3T, and compared to the conventional analysis based on changes in the transverse relaxation rate ΔR2* and to theoretical predictions. QSM images were referenced to ventricular CSF for each dynamic of the perfusion sequence. Results Images of cerebral blood flow and blood volume were successfully reconstructed from the QSM-analysis, and were comparable to those reconstructed using ΔR2*. The magnitudes of the Gd-associated susceptibility effects in gray and white matter were consistent with theoretical predictions. Conclusion QSM-based analysis may have some theoretical advantages compared to ΔR2*, including a simpler relationship between signal change and Gd concentration. However, disadvantages are its much lower contrast-to-noise ratio, artifacts due to respiration and other effects, and more complicated reconstruction methods. More work is required to optimize data acquisition protocols for QSM-based perfusion imaging. PMID:24604343

  1. Advanced MRI in malignant neoplasms of the uterus.

    PubMed

    Kido, Aki; Fujimoto, Koji; Okada, Tomohisa; Togashi, Kaori

    2013-02-01

    Conventional magnetic resonance imaging (MRI) such as T1-weighted and T2-weighted images of the female pelvis provide morphological information with excellent tissue contrast, which reflects the pathology of malignant diseases of the uterus. Owing to the recent improvement in hardware and software, in combination with extensive research in imaging techniques, not only MRI at higher magnetic field was facilitated, but also insight into tumor pathophysiology was provided. These methods include diffusion-weighted imaging (DWI), dynamic contrast-enhanced MRI (DCE-MRI) with pharmacokinetic analysis, and MR spectroscopy (MRS). The application of these techniques is expanding from the brain to the body because information on the tissue microenvironment and cytoarchitecture is helpful for lesion characterization, evaluation of treatment response after chemotherapy or radiation, differentiating posttherapeutic changes from residual active tumor, and for detecting recurrent cancer. These techniques may provide clues to optimize the treatment of patients with malignant diseases of the uterus. In the first half of this article we provide an overview of the technical aspects of MRI of the female pelvis, especially focusing on the state-of-the-art techniques such as 3 T MRI, DCE-MRI, DWI, etc. For the latter half we review the clinical aspects of these newly developed techniques, focusing on how these techniques are applicable, what has been revealed with respect to clinical impact, and the remaining problems. PMID:23355429

  2. Bayesian Inference for Functional Dynamics Exploring in fMRI Data.

    PubMed

    Guo, Xuan; Liu, Bing; Chen, Le; Chen, Guantao; Pan, Yi; Zhang, Jing

    2016-01-01

    This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI) data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM), Bayesian Connectivity Change Point Model (BCCPM), and Dynamic Bayesian Variable Partition Model (DBVPM), and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come. PMID:27034708

  3. Bayesian Inference for Functional Dynamics Exploring in fMRI Data

    PubMed Central

    Guo, Xuan; Liu, Bing; Chen, Le; Chen, Guantao

    2016-01-01

    This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI) data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM), Bayesian Connectivity Change Point Model (BCCPM), and Dynamic Bayesian Variable Partition Model (DBVPM), and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come. PMID:27034708

  4. Imaging of acquired cystic disease-associated renal cell carcinoma by contrast-enhanced ultrasonography with perflubutane microbubbles and positron emission tomography-computed tomography.

    PubMed

    Ishikawa, Isao; Morita, Kyoko; Hayama, Satoshi; Nakazawa, Tetsuya; Araki, Ichiro; Higashi, Kotaro; Miyazawa, Katsuhito; Suzuki, Koji; Nojima, Takayuki

    2011-02-01

    The preoperative assessment of renal cell carcinoma (RCC) complicated with acquired renal cystic disease in a 63-year-old male patient on long-term hemodialysis (30 years and 8 months) that was difficult because of no or poor contrast enhancement by dynamic CT scan is reported. Contrast-enhanced ultrasonography with perflubutane microbubbles and positron emission tomography-computed tomography (PET-CT) with 18F-fluorodeoxy glucose (FDG) in addition to dynamic CT were effective and useful for preoperative assessment of this patient. The pathological subtype of RCC in this patient was acquired cystic disease-associated RCC (ACD-associated RCC), which has been newly defined by Tickoo et al. (Am J Surg Pathol 30:141-153, 2006). PMID:20824295

  5. Role of contrast-enhanced ultrasound in evaluating the efficiency of ultrasound guided percutaneous microwave ablation in patients with renal cell carcinoma

    PubMed Central

    Li, Xin; Liang, Ping; Yu, Jie; Yu, Xiao-Ling; Liu, Fang-Yi; Cheng, Zhi-Gang; Han, Zhi-Yu

    2013-01-01

    Background The aim of the study was to evaluate the efficiency and feasibility of contrast-enhanced ultrasound (CEUS) with Sonovue in assessing of renal cell carcinomas (RCCs) following ultrasound (US)-guided percutaneous microwave ablation (MWA). Patinets and methods Seventy-nine patients (60 males and 19 females) with 83 lesions (mean size 3.2±1.6 cm) were treated by US-guided percutaneous MWA. The CEUS results of the third day after the ablation were compared with the synchronous contrast-enhanced computed tomography (CT)/magnetic resonance imaging (MRI) results and biopsy pathological results. The follow-up was performed by CEUS and CT/MRI after 1, 3, 6 months and every 6 months subsequently. The combination of clinical follow-up results and CT/MRI imaging findings was the reference standard of CEUS results for evaluating the therapeutic effect. The identification of residual or recurrence tumour was assessed by two blinded radiologists. Results On the third day after MWA, CEUS showed 68 of 83 lesions (68/83, 81.9%) successfully ablated and 15 of 83 (18.1%) with residual tumours. Among residual tumours, 13 (86.7%) were confirmed by contrast-enhanced CT/MRI findings and biopsy results. The sensitivity, specificity, accuracy, positive and negative predictive value of CEUS evaluating the short-term MWA effectiveness were 100%, 97.1%, 97.6%, 86.7% and 100%, respectively. During the six years follow-up (median 26 months), the CEUS showed recurrence in 7 patients, and six of them achieved consistent results on CEUS and CT/MRI imaging. The sensitivity, specificity, accuracy, positive and negative predictive value for CEUS evaluating long-term MWA effectiveness were 85.7%, 98.7%, 97.6%, 85.7% and 98.7%, respectively. Conclusions The post-procedural CEUS demonstrated as an effective and feasible method in evaluating a therapeutic effect of RCCs following MWA. PMID:24294186

  6. Linking Ventilation Heterogeneity Quantified via Hyperpolarized 3He MRI to Dynamic Lung Mechanics and Airway Hyperresponsiveness

    PubMed Central

    Lui, Justin K.; Parameswaran, Harikrishnan; Albert, Mitchell S.; Lutchen, Kenneth R.

    2015-01-01

    Advancements in hyperpolarized helium-3 MRI (HP 3He-MRI) have introduced the ability to render and quantify ventilation patterns throughout the anatomic regions of the lung. The goal of this study was to establish how ventilation heterogeneity relates to the dynamic changes in mechanical lung function and airway hyperresponsiveness in asthmatic subjects. In four healthy and nine mild-to-moderate asthmatic subjects, we measured dynamic lung resistance and lung elastance from 0.1 to 8 Hz via a broadband ventilation waveform technique. We quantified ventilation heterogeneity using a recently developed coefficient of variation method from HP 3He-MRI imaging. Dynamic lung mechanics and imaging were performed at baseline, post-challenge, and after a series of five deep inspirations. AHR was measured via the concentration of agonist that elicits a 20% decrease in the subject’s forced expiratory volume in one second compared to baseline (PC20) dose. The ventilation coefficient of variation was correlated to low-frequency lung resistance (R = 0.647, P < 0.0001), the difference between high and low frequency lung resistance (R = 0.668, P < 0.0001), and low-frequency lung elastance (R = 0.547, P = 0.0003). In asthmatic subjects with PC20 values <25 mg/mL, the coefficient of variation at baseline exhibited a strong negative trend (R = -0.798, P = 0.02) to PC20 dose. Our findings were consistent with the notion of peripheral rather than central involvement of ventilation heterogeneity. Also, the degree of AHR appears to be dependent on the degree to which baseline airway constriction creates baseline ventilation heterogeneity. HP 3He-MRI imaging may be a powerful predictor of the degree of AHR and in tracking the efficacy of therapy. PMID:26569412

  7. Association between bilateral asymmetry of kinetic features computed from the DCE-MRI images and breast cancer

    NASA Astrophysics Data System (ADS)

    Yang, Qian; Li, Lihua; Zhang, Juan; Zhang, Chengjie; Zheng, Bin

    2013-03-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of breast yields high sensitivity but relatively lower specificity. To improve diagnostic accuracy of DCE-MRI, we investigated the association between bilateral asymmetry of kinetic features computed from the left and right breasts and breast cancer detection with the hypothesis that due to the growth of angiogenesis associated with malignant lesions, the average dynamic contrast enhancement computed from the breasts depicting malignant lesions should be higher than negative or benign breasts. To test this hypothesis, we assembled a database involving 130 DCE-MRI examinations including 81 malignant and 49 benign cases. We developed a computerized scheme that automatically segments breast areas depicted on MR images and computes kinetic features related to the bilateral asymmetry of contrast enhancement ratio between two breasts. An artificial neural network (ANN) was then used to classify between malignant and benign cases. To identify the optimal approach to compute the bilateral kinetic feature asymmetry, we tested 4 different thresholds to select the enhanced pixels (voxels) from DCE-MRI images and compute the kinetic features. Using the optimal threshold, the ANN had a classification performance measured by the area under the ROC curve of AUC=0.79+/-0.04. The positive and negative predictive values were 0.75 and 0.67, respectively. The study suggested that the bilateral asymmetry of kinetic features or contrast enhancement of breast background tissue could provide valuable supplementary information to distinguish between the malignant and benign cases, which can be fused into existing computer-aided detection schemes to improve classification performance.

  8. The Value of Contrast-Enhanced Ultrasonography and Contrast-Enhanced CT in the Diagnosis of Malignant Renal Cystic Lesions: A Meta-Analysis

    PubMed Central

    Lan, Dong; Qu, Hong-Chen; Li, Ning; Zhu, Xing-Wang; Liu, Yi-Li; Liu, Chun-Lai

    2016-01-01

    We compared the efficacy of contrast-enhanced ultrasound (CEUS) and contrast-enhanced computed tomography (CECT) for the diagnosis of renal cystic lesions via a meta-analysis to determine the value of CEUS in the prediction of the malignant potential of complex renal cysts. Eleven studies were evaluated: 4 control studies related to CEUS and CECT, 3 studies related to CEUS and 4 studies related to CECT. According to the random effects model, the pooled sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio for CEUS/CECT were 0.95/0.90, 0.79/0.85, 4.39/5.00, and 0.10/0.15, respectively. The areas under the summary receiver operating characteristic (AUCs-SROC) curves for the two methods were 94.24% and 93.39%, and the estimated Q values were 0.8805 and 0.8698, respectively. Comparing the Q index values of CEUS and CECT revealed no significant difference between the two methods (P>0.05). When compared with conventional CECT, CEUS is also useful for diagnosing renal cystic lesions in the clinic. PMID:27203086

  9. The Value of Contrast-Enhanced Ultrasonography and Contrast-Enhanced CT in the Diagnosis of Malignant Renal Cystic Lesions: A Meta-Analysis.

    PubMed

    Lan, Dong; Qu, Hong-Chen; Li, Ning; Zhu, Xing-Wang; Liu, Yi-Li; Liu, Chun-Lai

    2016-01-01

    We compared the efficacy of contrast-enhanced ultrasound (CEUS) and contrast-enhanced computed tomography (CECT) for the diagnosis of renal cystic lesions via a meta-analysis to determine the value of CEUS in the prediction of the malignant potential of complex renal cysts. Eleven studies were evaluated: 4 control studies related to CEUS and CECT, 3 studies related to CEUS and 4 studies related to CECT. According to the random effects model, the pooled sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio for CEUS/CECT were 0.95/0.90, 0.79/0.85, 4.39/5.00, and 0.10/0.15, respectively. The areas under the summary receiver operating characteristic (AUCs-SROC) curves for the two methods were 94.24% and 93.39%, and the estimated Q values were 0.8805 and 0.8698, respectively. Comparing the Q index values of CEUS and CECT revealed no significant difference between the two methods (P>0.05). When compared with conventional CECT, CEUS is also useful for diagnosing renal cystic lesions in the clinic. PMID:27203086

  10. Dynamic Susceptibility Contrast MRI with Localized Arterial Input Functions

    PubMed Central

    Lee, J.J.; Bretthorst, G.L.; Derdeyn, C.P.; Powers, W.J.; Videen, T.O.; Snyder, A.Z.; Markham, J.; Shimony, J.S.

    2010-01-01

    Compared to gold-standard measurements of cerebral perfusion with positron emission tomography (PET) using H2[15O] tracers, measurements with dynamic susceptibility contrast (DSC) MR are more accessible, less expensive and less invasive. However, existing methods for analyzing and interpreting data from DSC MR have characteristic disadvantages that include sensitivity to incorrectly modeled delay and dispersion in a single, global arterial input function (AIF). We describe a model of tissue microcirculation derived from tracer kinetics which estimates for each voxel a unique, localized AIF (LAIF). Parameters of the model were estimated using Bayesian probability theory and Markov-chain Monte Carlo, circumventing difficulties arising from numerical deconvolution. Applying the new method to imaging studies from a cohort of fourteen patients with chronic, atherosclerotic, occlusive disease showed strong correlations between perfusion measured by DSC MR with LAIF and perfusion measured by quantitative PET with H2[15O]. Regression to PET measurements enabled conversion of DSC MR to a physiological scale. Regression analysis for LAIF gave estimates of a scaling factor for quantitation which described perfusion accurately in patients with substantial variability in hemodynamic impairment. PMID:20432301

  11. Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma

    PubMed Central

    Hu, Leland S.; Ning, Shuluo; Eschbacher, Jennifer M.; Gaw, Nathan; Dueck, Amylou C.; Smith, Kris A.; Nakaji, Peter; Plasencia, Jonathan; Ranjbar, Sara; Price, Stephen J.; Tran, Nhan; Loftus, Joseph; Jenkins, Robert; O’Neill, Brian P.; Elmquist, William; Baxter, Leslie C.; Gao, Fei; Frakes, David; Karis, John P.; Zwart, Christine; Swanson, Kristin R.; Sarkaria, Jann; Wu, Teresa

    2015-01-01

    Background Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM. Methods We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set. Results We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients). Conclusion Multi-parametric MRI and texture analysis can help characterize and visualize GBM’s spatial histologic heterogeneity to identify regional tumor-rich biopsy targets. PMID:26599106

  12. Coronary artery calcium quantification from contrast enhanced CT using gemstone spectral imaging and material decomposition.

    PubMed

    Fuchs, Tobias A; Stehli, Julia; Dougoud, Svetlana; Sah, Bert-Ram; Bull, Sacha; Clerc, Olivier F; Possner, Mathias; Buechel, Ronny R; Gaemperli, Oliver; Kaufmann, Philipp A

    2014-10-01

    To explore the feasibility of coronary artery calcium (CAC) measurement from low-dose contrast enhanced coronary CT angiography (CCTA) as this may obviate the need for an unenhanced CT scan. 52 patients underwent unenhanced cardiac CT and prospectively ECG triggered contrast enhanced CCTA (Discovery HD 750, GE Healthcare, Milwaukee, WI, USA). The latter was acquired in single-source dual-energy mode [gemstone spectral imaging (GSI)]. Virtual unenhanced images were generated from GSI CCTA by monochromatic image reconstruction of 70 keV allowing selective iodine material suppression. CAC scores from virtual unenhanced CT were compared to standard unenhanced CT including a linear regression model. After iodine subtraction from the contrast enhanced CCTA the attenuation in the ascending aorta decreased significantly from 359 ± 61 to 54 ± 8 HU (P < 0.001), the latter comparing well to the value of 64 ± 55 HU found in the standard unenhanced CT (P = ns) confirming successful iodine subtraction. After introducing linear regression formula the mean values for Agatston, Volume and Mass scores of virtual unenhanced CT were 187 ± 321, 72 ± 114 mm(3), and 27 ± 46 mg/cm(3), comparing well to the values from standard unenhanced CT (187 ± 309, 72 ± 110 mm(3), and 27 ± 45 mg/cm(3)) yielding an excellent correlation (r = 0.96, r = 0.96, r = 0.92; P < 0.001). Mean estimated radiation dose revealed 0.83 ± 0.02 mSv from the unenhanced CT and 1.70 ± 0.53 mSv from the contrast enhanced CCTA. Single-source dual-energy scanning with GSI allows CAC quantification from low dose contrast enhanced CCTA by virtual iodine contrast subtraction. PMID:24993390

  13. Dynamic Glucose-Enhanced (DGE) MRI: Translation to Human Scanning and First Results in Glioma Patients

    PubMed Central

    Xu, Xiang; Yadav, Nirbhay N.; Knutsson, Linda; Hua, Jun; Kalyani, Rita; Hall, Erica; Laterra, John; Blakeley, Jaishri; Strowd, Roy; Pomper, Martin; Barker, Peter; Chan, Kannie; Liu, Guanshu; McMahon, Michael T.; Stevens, Robert D.; van Zijl, Peter C.M.

    2015-01-01

    Recent animal studies have shown that D-glucose is a potential biodegradable MRI contrast agent for imaging glucose uptake in tumors. Here, we show the first translation of that use of D-glucose to human studies. Chemical exchange saturation transfer (CEST) MRI at a single frequency offset optimized for detection of hydroxyl protons in D-glucose (glucoCEST) was used to image dynamic signal changes in the human brain at 7T during and after infusion of D-glucose. Dynamic glucose-enhanced (DGE) image data from four normal volunteers and three glioma patients showed strong signal enhancement in blood vessels, while the enhancement varied spatially over the tumor. Areas of enhancement differed spatially between DGE and conventional Gd-enhanced imaging, suggesting complementary image information content for these two types of agents. In addition, different tumor areas enhanced with D-glucose at different times post-infusion, suggesting a sensitivity to perfusion-related properties such as substrate delivery and blood-brain barrier (BBB) permeability. These preliminary results suggest that DGE MRI is feasible to study glucose uptake in humans, providing a time-dependent set of data that contains information regarding arterial input function (AIF), tissue perfusion, glucose transport across the BBB and cell membrane, and glucose metabolism. PMID:26779568

  14. Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR.

    PubMed

    Lingala, Sajan Goud; Hu, Yue; DiBella, Edward; Jacob, Mathews

    2011-05-01

    We introduce a novel algorithm to reconstruct dynamic magnetic resonance imaging (MRI) data from under-sampled k-t space data. In contrast to classical model based cine MRI schemes that rely on the sparsity or banded structure in Fourier space, we use the compact representation of the data in the Karhunen Louve transform (KLT) domain to exploit the correlations in the dataset. The use of the data-dependent KL transform makes our approach ideally suited to a range of dynamic imaging problems, even when the motion is not periodic. In comparison to current KLT-based methods that rely on a two-step approach to first estimate the basis functions and then use it for reconstruction, we pose the problem as a spectrally regularized matrix recovery problem. By simultaneously determining the temporal basis functions and its spatial weights from the entire measured data, the proposed scheme is capable of providing high quality reconstructions at a range of accelerations. In addition to using the compact representation in the KLT domain, we also exploit the sparsity of the data to further improve the recovery rate. Validations using numerical phantoms and in vivo cardiac perfusion MRI data demonstrate the significant improvement in performance offered by the proposed scheme over existing methods. PMID:21292593

  15. 4D tumor centroid tracking using orthogonal 2D dynamic MRI: Implications for radiotherapy planning

    SciTech Connect

    Tryggestad, Erik; Flammang, Aaron; Shea, Steven M.; Hales, Russell; Herman, Joseph; Lee, Junghoon; McNutt, Todd; Roland, Teboh; Wong, John

    2013-09-15

    Purpose: Current pretreatment, 4D imaging techniques are suboptimal in that they sample breathing motion over a very limited “snapshot” in time. Heretofore, long-duration, 4D motion characterization for radiotherapy planning, margin optimization, and validation have been impractical for safety reasons, requiring invasive markers imaged under x-ray fluoroscopy. To characterize 3D tumor motion and associated variability over durations more consistent with treatments, the authors have developed a practical dynamic MRI (dMRI) technique employing two orthogonal planes acquired in a continuous, interleaved fashion.Methods: 2D balanced steady-state free precession MRI was acquired continuously over 9–14 min at approximately 4 Hz in three healthy volunteers using a commercial 1.5 T system; alternating orthogonal imaging planes (sagittal, coronal, sagittal, etc.) were employed. The 2D in-plane pixel resolution was 2 × 2 mm{sup 2} with a 5 mm slice profile. Simultaneous with image acquisition, the authors monitored a 1D surrogate respiratory signal using a device available with the MRI system. 2D template matching-based anatomic feature registration, or tracking, was performed independently in each orientation. 4D feature tracking at the raw frame rate was derived using spline interpolation.Results: Tracking vascular features in the lung for two volunteers and pancreatic features in one volunteer, the authors have successfully demonstrated this method. Registration error, defined here as the difference between the sagittal and coronal tracking result in the SI direction, ranged from 0.7 to 1.6 mm (1σ) which was less than the acquired image resolution. Although the healthy volunteers were instructed to relax and breathe normally, significantly variable respiration was observed. To demonstrate potential applications of this technique, the authors subsequently explored the intrafraction stability of hypothetical tumoral internal target volumes and 3D spatial probability

  16. Effective Connectivity Modeling for fMRI: Six Issues and Possible Solutions Using Linear Dynamic Systems

    PubMed Central

    Smith, Jason F.; Pillai, Ajay; Chen, Kewei; Horwitz, Barry

    2012-01-01

    Analysis of directionally specific or causal interactions between regions in functional magnetic resonance imaging (fMRI) data has proliferated. Here we identify six issues with existing effective connectivity methods that need to be addressed. The issues are discussed within the framework of linear dynamic systems for fMRI (LDSf). The first concerns the use of deterministic models to identify inter-regional effective connectivity. We show that deterministic dynamics are incapable of identifying the trial-to-trial variability typically investigated as the marker of connectivity while st