Science.gov

Sample records for dynamic diffusion bonding

  1. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  2. Diffusion bonding aeroengine components

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. A.; Broughton, T.

    1988-10-01

    The use of diffusion bonding processes at Rolls-Royce for the manufacture of titanium-alloy aircraft engine components and structures is described. A liquid-phase diffusion bonding process called activated diffusion bonding has been developed for the manufacture of the hollow titanium wide chord fan blade. In addition, solid-state diffusion bonding is being used in the manufacture of hollow vane/blade airfoil constructions mainly in conjunction with superplastic forming and hot forming techniques.

  3. Dynamics of supercritical methanol of varying density from first principles simulations: Hydrogen bond fluctuations, vibrational spectral diffusion, and orientational relaxation

    NASA Astrophysics Data System (ADS)

    Yadav, Vivek Kumar; Chandra, Amalendu

    2013-06-01

    A first principles study of the dynamics of supercritical methanol is carried out by means of ab initio molecular dynamics simulations. In particular, the fluctuation dynamics of hydroxyl stretch frequencies, hydrogen bonds, dangling hydroxyl groups, and orientation of methanol molecules are investigated for three different densities at 523 K. Apart from the dynamical properties, various equilibrium properties of supercritical methanol such as the local density distributions and structural correlations, hydrogen bonding aspects, frequency-structure correlations, and dipole distributions of methanol molecules are also investigated. In addition to the density dependence of various equilibrium and dynamical properties, their dependencies on dispersion interactions are also studied by carrying out additional simulations using a dispersion corrected density functional for all the systems. It is found that the hydrogen bonding between methanol molecules decreases significantly as we move to the supercritical state from the ambient one. The inclusion of dispersion interactions is found to increase the number of hydrogen bonds to some extent. Calculations of the frequency-structure correlation coefficient reveal that a statistical correlation between the hydroxyl stretch frequency and the nearest hydrogen-oxygen distance continues to exist even at supercritical states of methanol, although it is weakened with increase of temperature and decrease of density. In the supercritical state, the frequency time correlation function is found to decay with two time scales: One around or less than 100 fs and the other in the region of 250-700 fs. It is found that, for supercritical methanol, the times scales of vibrational spectral diffusion are determined by an interplay between the dynamics of hydrogen bonds, dangling OD groups, and inertial rotation of methanol molecules and the roles of these various components are found to vary with density of the supercritical solvent. Effects

  4. Diffusion bonding of mismatch dental alloys.

    PubMed

    Liu, Honghua; Ni, Jiahua; Wu, Luhai; He, Guo

    2010-04-01

    The diffusion bonding of Ti-6Al-4V and Co-Cr-Mo dental alloys has been investigated in terms of the atoms diffusion, the microstructure evolution, and the bonding strength. The bonding performance reveals asymmetry diffusion profiles for both the Co and Cr in Ti-6Al-4V and the Ti in Co-Cr-Mo alloy. Their diffusion coefficients (Arrhenius relations) have been established based on the experiments. Co and Cr diffusion into Ti-6Al-4V leads to alpha --> beta transformation and the intermetallics-formation. Maximum bonding strength occurs at about 840 degrees C. The bonding joint fails under the shear stress in the Ti-6Al-4V side near the bonding interface in brittle manner. The intermetallics in the diffusion layer together with the unbonded areas and other flaws in the bonding interface are responsible for the shear brittle fracture, which also weaken the bonding strength. PMID:19957358

  5. Diffusion bonding of Stratapax for drill bits

    SciTech Connect

    Middleton, J.N.; Finger, J.T.

    1983-01-01

    A process has been developed for the diffusion bonding of General Electric's Stratapax drill blanks to support studs for cutter assemblies in drill bits. The diffusion bonding process is described and bond strength test data are provided for a variety of materials. The extensive process details, provided in the Appendices, should be sufficient to enable others to successfully build diffusion-bonded drill bit cutter assemblies.

  6. Diffusion bonding of superplastic aluminum alloys

    SciTech Connect

    Sunwoo, A.J.

    1993-12-01

    Ability to diffusion bond aluminum alloys, in particular superplastic aluminum alloys, will complete the technology-base that is strongly needed to enhance the use of superplastic forming (SPF) technology. Concurrent diffusion bonding (DB)-SPF is considered to be an energy-saving manufacturing process since it simplifies the production of complex components. Moreover, because of increased design flexibility, overall manufacturing cost and component weight are significantly reduced. Diffusion bonding is an attractive manufacturing option for applications where the preservation of the base metal microstructure and, in turn, mechanical properties is imperative in the bond area. The process utilizes either the solid state or transient liquid phase (TLP) bonding to produce a bond with microstructure continuity in the joint. In addition, there is no localized thermal gradient present to induce distortion or to create residual stresses in the component, thereby increasing structural integrity.

  7. Hydrogen bond dynamics in bulk alcohols

    SciTech Connect

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics–quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid—alcohols—has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  8. Diffusion bonding of aluminium alloy, 8090

    SciTech Connect

    Sunwoo, A. )

    1994-08-15

    Ability to diffusion bond aluminum (Al) alloys, in particular superplastic aluminum alloys, will complete the technology-base that is strongly needed to enhance the use of superplastic forming (SPF) technology. Diffusion bonding (DB) is an attractive manufacturing option for applications where the preservation of the base metal microstructure and, in turn, mechanical properties is important in the bond area. As the technology moves from the laboratory to production, the DB process has to be production-feasible and cost-effective. At the Lawrence Livermore National Laboratory, the DB study of SPF Al alloys has been initiated. This paper describes the effect of surface chemistry on the DB properties of the Al alloy, 8090 (2.4Li-1.18Cu-0.57Mg-0.14Zr-Al). The integrity of the diffusion bonds was evaluated for both interlayered and bare surfaces. Two interlayer elements, copper (Cu) and zinc (Zn), were compared. Although the eutectic temperature of Al-Cu is 548 C, a thin Cu layer in contact with 8090 has been shown to lower its eutectic temperature to [approximately]521 C. In 8090, Cu is one of the primary alloying elements but has a limited solubility in Al at the bonding temperature. Zinc, on the other hand, forms a considerably lower eutectic (380 C) with Al and is highly soluble in Al. The diffusivity of Zn in Al is much faster than that of Cu, but Zn forms a more thermodynamically stable oxide. These subtle metallurgical differences will affect the transient liquid phase (TLP) formation at the interface, which will subsequently influence the bond quality.

  9. Photoinduced hydrogen-bonding dynamics.

    PubMed

    Chu, Tian-Shu; Xu, Jinmei

    2016-09-01

    Hydrogen bonding dynamics has received extensive research attention in recent years due to the significant advances in femtolaser spectroscopy experiments and quantum chemistry calculations. Usually, photoexcitation would cause changes in the hydrogen bonding formed through the interaction between hydrogen donor and acceptor molecules on their ground electronic states, and such transient strengthening or weakening of hydrogen bonding could be crucial for the photophysical transformations and the subsequent photochemical reactions that occurred on a time scale from tens of femtosecond to a few nanoseconds. In this article, we review the combined experimental and theoretical studies focusing on the ultrafast electronic and vibrational hydrogen bonding dynamics. Through these studies, new mechanisms and proposals and common rules have been put forward to advance our understanding of the hydrogen bondings dynamics in a variety of important photoinduced phenomena like photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer processes, chemosensor fluorescence sensing, rearrangements of the hydrogen-bond network including forming and breaking hydrogen bond in water. Graphical Abstract We review the recent advances on exploring the photoinduced hydrogen bonding dynamics in solutions through a joint approach of laser spectroscopy and theoretical calculation. The reviewed studies have put forward a new mechanism, new proposal, and new rule for a variety of photoinduced phenomena such as photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer, chemosensor fluorescence sensing, and rearrangements of the hydrogen-bond network in water. PMID:27491849

  10. Hydrogen Bonding Slows Down Surface Diffusion of Molecular Glasses.

    PubMed

    Chen, Yinshan; Zhang, Wei; Yu, Lian

    2016-08-18

    Surface-grating decay has been measured for three organic glasses with extensive hydrogen bonding: sorbitol, maltitol, and maltose. For 1000 nm wavelength gratings, the decay occurs by viscous flow in the entire range of temperature studied, covering the viscosity range 10(5)-10(11) Pa s, whereas under the same conditions, the decay mechanism transitions from viscous flow to surface diffusion for organic glasses of similar molecular sizes but with no or limited hydrogen bonding. These results indicate that extensive hydrogen bonding slows down surface diffusion in organic glasses. This effect arises because molecules can preserve hydrogen bonding even near the surface so that the loss of nearest neighbors does not translate into a proportional decrease of the kinetic barrier for diffusion. This explanation is consistent with a strong correlation between liquid fragility and the surface enhancement of diffusion, both reporting resistance of a liquid to dynamic excitation. Slow surface diffusion is expected to hinder any processes that rely on surface transport, for example, surface crystal growth and formation of stable glasses by vapor deposition. PMID:27404465

  11. Using Diffusion Bonding in Making Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Sager, Frank E.

    2003-01-01

    A technique for the fabrication of piezoelectric actuators that generate acceptably large forces and deflections at relatively low applied voltages involves the stacking and diffusion bonding of multiple thin piezoelectric layers coated with film electrodes. The present technique stands in contrast to an older technique in which the layers are bonded chemically, by use of urethane or epoxy agents. The older chemical-bonding technique entails several disadvantages, including the following: It is difficult to apply the bonding agents to the piezoelectric layers. It is difficult to position the layers accurately and without making mistakes. There is a problem of disposal of hazardous urethane and epoxy wastes. The urethane and epoxy agents are nonpiezoelectric materials. As such, they contribute to the thickness of a piezoelectric laminate without contributing to its performance; conversely, for a given total thickness, the performance of the laminate is below that of a unitary piezoelectric plate of the same thickness. The figure depicts some aspects of the fabrication of a laminated piezoelectric actuator by the present diffusion- bonding technique. First, stock sheets of the piezoelectric material are inspected and tested. Next, the hole pattern shown in the figure is punched into the sheets. Alternatively, if the piezoelectric material is not a polymer, then the holes are punched in thermoplastic films. Then both faces of each punched piezoelectric sheet or thermoplastic film are coated with a silver-ink electrode material by use of a silkscreen printer. The electrode and hole patterns are designed for minimal complexity and minimal waste of material. After a final electrical test, all the coated piezoelectric layers (or piezoelectric layers and coated thermoplastic films) are stacked in an alignment jig, which, in turn, is placed in a curved press for the diffusion-bonding process. In this process, the stack is pressed and heated at a specified curing temperature

  12. Femtosecond dynamics in hydrogen-bonded solvents

    SciTech Connect

    Castner, E.W. Jr.; Chang, Y.J.

    1993-09-01

    We present results on the ultrafast dynamics of pure hydrogen-bonding solvents, obtained using femtosecond Fourier-transform optical-heterodyne-detected, Raman-induced Kerr effect spectroscopy. Solvent systems we have studied include the formamides, water, ethylene glycol, and acetic acid. Inertial and diffusive motions are clearly resolved. We comment on the effect that such ultrafast solvent motions have on chemical reactions in solution.

  13. Signal analysis approach to ultrasonic evaluation of diffusion bond quality

    SciTech Connect

    Chinn, D; Thomas, G

    1999-06-08

    Solid state bonds like the diffusion bond are attractive techniques for joining dissimilar materials since they are not prone to the defects that occur with fusion welding. Ultrasonic methods can detect the presence of totally unbonded regions but have difficulty sensing poor bonded areas where the substrates are in intimate contact. Standard ultrasonic imaging is based on amplitude changes in the signal reflected from the bond interface. Unfortunately amplitude alone is not sensitive to bond quality. We demonstrated that there is additional information in the ultrasonic signal that correlates with bond quality. In our approach we interrogated a set of dissimilar diffusion bonded samples with broad band ultrasonic signals. The signals were digitally processed and the characteristics of the signals that corresponded to bond quality were determined. These characteristics or features were processed with pattern recognition algorithms to produce predictions of bond quality. The predicted bond quality was then compared with the destructive measurement to assess the classification capability of the ultrasonic technique

  14. Signal analysis approach to ultrasonic evaluation of diffusion bond quality

    SciTech Connect

    Thomas, Graham; Chinn, Diane

    1999-12-02

    Solid state bonds like the diffusion bond are attractive techniques for joining dissimilar materials since they are not prone to the defects that occur with fusion welding. Ultrasonic methods can detect the presence of totally unbonded regions but have difficulty sensing poor bonded areas where the substrates are in intimate contact. Standard ultrasonic imaging is based on amplitude changes in the signal reflected from the bond interface. Unfortunately, amplitude alone is not sensitive to bond quality. We demonstrated that there is additional information in the ultrasonic signal that correlates with bond quality. In our approach, we interrogated a set of dissimilar diffusion bonded samples with broad band ultrasonic signals. The signals were digitally processed and the characteristics of the signals that corresponded to bond quality were determined. These characteristics or features were processed with pattern recognition algorithms to produce predictions of bond quality. The predicted bond quality was then compared with the destructive measurement to assess the classification capability of the ultrasonic technique.

  15. Isostatic diffusion bonding of IN-718SPF sheet

    SciTech Connect

    McKimpson, M.G.; Campbell, J.R.

    1996-12-31

    Isostatic diffusion bonding represents a potentially attractive technique for joining superplastically-formable nickel-base alloys such as Inconel alloy 718SPF sheet. Isostatic diffusion bonding trials have been carried out on Inconel alloy 718SPF/Inconel alloy 718SPF couples at temperatures ranging from 950 C (1,750 F) to 1,150 C (2,100 F) and isostatic pressures ranging up to 415 MPa (60,000 psi). Materials bonded at 1,150 C and 414 MPa exhibited room temperature shear strengths nearly comparable to those of the parent metal, but also showed substantial grain growth in the base metal away from the bond plane. Materials bonded at lower temperatures exhibited similar strengths with substantially less grain coarsening. Metallographic and mechanical testing results obtained on these diffusion bonded Inconel alloy 718SPF materials are presented and compared with existing diffusion bonding models.

  16. Diffusion Bonding of Silicon Carbide for MEMS-LDI Applications

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, J. Douglas

    2007-01-01

    A robust joining approach is critically needed for a Micro-Electro-Mechanical Systems-Lean Direct Injector (MEMS-LDI) application which requires leak free joints with high temperature mechanical capability. Diffusion bonding is well suited for the MEMS-LDI application. Diffusion bonds were fabricated using titanium interlayers between silicon carbide substrates during hot pressing. The interlayers consisted of either alloyed titanium foil or physically vapor deposited (PVD) titanium coatings. Microscopy shows that well adhered, crack free diffusion bonds are formed under optimal conditions. Under less than optimal conditions, microcracks are present in the bond layer due to the formation of intermetallic phases. Electron microprobe analysis was used to identify the reaction formed phases in the diffusion bond. Various compatibility issues among the phases in the interlayer and substrate are discussed. Also, the effects of temperature, pressure, time, silicon carbide substrate type, and type of titanium interlayer and thickness on the microstructure and composition of joints are discussed.

  17. Diffusion Bonding of Silicon Carbide Ceramics using Titanium Interlayers

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, James D.

    2006-01-01

    Robust joining approaches for silicon carbide ceramics are critically needed to fabricate leak free joints with high temperature mechanical capability. In this study, titanium foils and physical vapor deposited (PVD) titanium coatings were used to form diffusion bonds between SiC ceramics using hot pressing. Silicon carbide substrate materials used for bonding include sintered SiC and two types of CVD SiC. Microscopy results show the formation of well adhered diffusion bonds. The bond strengths as determined from pull tests are on the order of several ksi, which is much higher than required for a proposed application. Microprobe results show the distribution of silicon, carbon, titanium, and other minor elements across the diffusion bond. Compositions of several phases formed in the joint region were identified. Potential issues of material compatibility and optimal bond formation will also be discussed.

  18. Aggregation dynamics of molecular bonds between compliant materials.

    PubMed

    Jiang, Hongyuan; Qian, Jin; Lin, Yuan; Ni, Yong; He, Linghui

    2015-04-14

    In this paper, we develop a mechanochemical modeling framework in which the spatial-temporal evolution of receptor-ligand bonds takes place at the interface between two compliant media in the presence of an externally applied tensile load. Bond translocation, dissociation and association occur simultaneously, resulting in dynamic aggregation of molecular bonds that is regulated by mechanical factors such as material compliance and applied stress. The results show that bond aggregation is energetically favorable in the out-of-equilibrium process with convoluted time scales from bond diffusion and reaction. Material stiffness is predicted to contribute to adhesion growth and an optimal level of applied stress leads to the maximized size of bond clusters for integrin-based adhesion, consistent with related experimental observations on focal adhesions of cell-matrix interactions. The stress distribution within bond clusters is generally non-uniform and governed by the stress concentration index. PMID:25706682

  19. Ultrasonic NDE of titanium diffusion bonds using signal phase

    NASA Astrophysics Data System (ADS)

    Escobar-Ruiz, E.; Cawley, P.; Nagy, P. B.; Collison, I.; Wright, D.

    2013-01-01

    Diffusion bonding is a highly advantageous solid-state welding method. However, its full exploitation in titanium components is currently limited by a lack of robust NDE techniques capable of detecting anything but gross bond-line defects. A novel ultrasonic technique has been developed to address this lack of capability. This technique, based on the ultrasonic signal phase, has been demonstrated in a `single-sided' scenario where only one side of the diffusion bond was accessible. Samples with differing degrees of bond quality were evaluated, and excellent agreement was found between the single-sided and double-sided experiments.

  20. Ultrasonic evaluation of beryllium-copper diffusion bonds

    SciTech Connect

    Jamieson, E.E.

    2000-06-08

    A study was performed to compare the effectiveness of several advanced ultrasonic techniques when used to determine the strength of diffusion bonded beryllium-copper, which heretofore have each been applied to only a few material systems. The use of integrated backscatter calculations, frequency domain reflection coefficients, and time-of-flight variance was compared in their ability to characterize the bond strength in a series of beryllium-copper diffusion bond samples having a wide variation in bond quality. Correlation of integrated backscatter calculations and time-of-flight variance with bond strength was good. Some correlation of the slope of the frequency based reflection coefficient was shown for medium and high strength bonds, while its Y-intercept showed moderate correlation for all bond strengths.

  1. Application of diffusion bonding to electronic interconnection of flatpack leads

    NASA Technical Reports Server (NTRS)

    Korb, R. W.; Lardenoit, V. F.

    1973-01-01

    Diffusion-bonded joints between gold-plated Kovar leads and indium-plated copper circuit pads offer some advantages for electronic circuit packaging. Test results show that consistent high strength bonds stronger than the copper circuit foil are achieved by parallel-gap bonding at relatively low power settings. The bonds are basically formed by the alloying of the gold, indium and copper at the bond interface. Other low melting metals such as tin can also be used; however, tin does not offer the ease of bonding that results in consistent separation of the copper foil during pull testing. The investigation was conducted in three parts consisting of: (1) an evaluation of the physical strength of resulting bonds at ambient and elevated temperature, (2) a metallurgical analysis of bonds using scanning electron microscopy and nondispersive X-ray analysis, and (3) evaluation and development of various schemes for multiple lead flatpack bonding.

  2. Joining of Silicon Carbide: Diffusion Bond Optimization and Characterization

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay

    2008-01-01

    Joining and integration methods are critically needed as enabling technologies for the full utilization of advanced ceramic components in aerospace and aeronautics applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. In the application, several SiC substrates with different hole patterns to form fuel and combustion air channels are bonded to form the injector. Diffusion bonding is a joining approach that offers uniform bonds with high temperature capability, chemical stability, and high strength. Diffusion bonding was investigated with the aid of titanium foils and coatings as the interlayer between SiC substrates to aid bonding. The influence of such variables as interlayer type, interlayer thickness, substrate finish, and processing time were investigated. Optical microscopy, scanning electron microscopy, and electron microprobe analysis were used to characterize the bonds and to identify the reaction formed phases.

  3. Metal honeycomb to porous wireform substrate diffusion bond evaluation

    NASA Technical Reports Server (NTRS)

    Vary, A.; Moorhead, P. E.; Hull, D. R.

    1982-01-01

    Two nondestructive techniques were used to evaluate diffusion bond quality between a metal foil honeycomb and porous wireform substrate. The two techniques, cryographics and acousto-ultrasonics, are complementary in revealing variations of bond integrity and quality in shroud segments from an experimental aircraft turbine engine.

  4. Fabrication and Characterization of Diffusion Bonds for Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Halbig, Michael; Singh, Mrityunjay; Martin, Richard E.; Cosgriff, Laura M.

    2007-01-01

    Diffusion bonds of silicon carbide (SiC) were fabricated using several different types of titanium (Ti) based interlayers between the SiC substrates. The interlayers were an alloyed Ti foil, a pure Ti foil, and a physically vapor deposited (PVD) Ti coating. Microscopy was conducted to evaluate the cross-sections of the resulting bonds. Microprobe analysis identified reaction formed phases in the diffusion bonded region. Uniform and well adhered bonds were formed between the SiC substrates. In the case where the alloyed Ti foil or a thick Ti coating (i.e. 20 micron) was used as the interlayer, microcracks and several phases were present in the diffusion bonds. When a thinner interlayer was used (i.e. 10 micron PVD Ti), no microcracks were observed and only two reaction formed phases were present. The two phases were preferred and fully reacted phases that did not introduce thermal stresses or microcracks during the cool-down stage after processing. Diffusion bonded samples were evaluated with the non-destructive evaluation (NDE) methods of pulsed thermography and immersion ultrasonic testing. Joined SiC substrates that were fully bonded and that had simulated bond flaws in the interlayer were also evaluated using immersion ultrasound. Pull testing was conducted on the bonds to determine the tensile strength. To demonstrate the joining approach for a complex multilayered component for a low NOx injector application, the diffusion bonding approach was used to join three 4" diameter SiC discs that contained complex fuel and air flow channels.

  5. Functional systems with orthogonal dynamic covalent bonds.

    PubMed

    Wilson, Adam; Gasparini, Giulio; Matile, Stefan

    2014-03-21

    This review summarizes the use of orthogonal dynamic covalent bonds to build functional systems. Dynamic covalent bonds are unique because of their dual nature. They can be as labile as non-covalent interactions or as permanent as covalent bonds, depending on conditions. Examples from nature, reaching from the role of disulfides in protein folding to thioester exchange in polyketide biosynthesis, indicate how dynamic covalent bonds are best used in functional systems. Several synthetic functional systems that employ a single type of dynamic covalent bonds have been reported. Considering that most functional systems make simultaneous use of several types of non-covalent interactions together, one would expect the literature to contain many examples in which different types of dynamic covalent bonds are similarly used in tandem. However, the incorporation of orthogonal dynamic covalent bonds into functional systems is a surprisingly rare and recent development. This review summarizes the available material comprehensively, covering a remarkably diverse collection of functions. However, probably more revealing than the specific functions addressed is that the questions asked are consistently quite unusual, very demanding and highly original, focusing on molecular systems that can self-sort, self-heal, adapt, exchange, replicate, transcribe, or even walk and "think" (logic gates). This focus on adventurous chemistry off the beaten track supports the promise that with orthogonal dynamic covalent bonds we can ask questions that otherwise cannot be asked. The broad range of functions and concepts covered should appeal to the supramolecular organic chemist but also to the broader community. PMID:24287608

  6. Diffusion bonding of the oxide dispersion strengthened steel PM2000

    NASA Astrophysics Data System (ADS)

    Sittel, Wiebke; Basuki, Widodo W.; Aktaa, Jarir

    2013-11-01

    Ferritic oxide dispersion strengthened (ODS) steels are well suited as structural materials, e.g. for claddings in fission reactors and for plasma facing components in fusion power plants due to their high mechanical and oxidation stability at high temperatures and their high irradiation resistance. PM2000 is an iron based ODS ferritic steel with homogeneously distributed nanometric yttria particles. Melting joining techniques are not suitable for such ODS materials because of the precipitation and agglomeration of the oxide particles and hence the loss of their strengthening effect. Solid state diffusion bonding is thus chosen to join PM2000 and is investigated in this work with a focus on oxide particles. The diffusion bonding process is aided by the computational modeling, including the influence of the ODS particles. For modeling the microstructure stability and the creep behavior of PM2000 at various, diffusion bonding relevant temperatures (50-80% Tm) are investigated. Particle distribution (TEM), strength (tensile test) and toughness (Charpy impact test) obtained at temperatures relevant for bonding serve as input for the prediction of optimal diffusion bonding parameters. The optimally bonded specimens show comparable strength and toughness relative to the base material.

  7. Al-Ge Diffusion Bonding for Hermetic Sealing Application

    NASA Astrophysics Data System (ADS)

    Chidambaram, Vivek; Wickramanayaka, Sunil

    2015-07-01

    The high-temperature requirement of Al-Ge eutectic bonding stands as a major obstacle to its wider acceptance for hermetic sealing application in the microelectromechanical systems packaging industry, in particular for temperature-sensitive devices. It has been demonstrated that a reduction in bonding temperature is feasible without compromising the hermeticity. The change in the mode of bonding from eutectic to solid-state diffusion did not have a dramatic impact on the bonding quality. However, this resulted in a substantial increase in bonding time. The shear strength also deteriorated as a result of the decrease in thickness of the reaction interface. However, the shear strength still complied with military standards. It has been confirmed that a hermetic seal could still be achieved without any solidification occurring at the interface. This is feasible since the interdiffusion coefficients of Al in (Ge) phase and Ge in (Al) phase are closer and are comparable to diffusion between solid-solution phases of identical metals such as in Au-Au, Cu-Cu, and Si-Si bonding, which are generally used for such hermetic sealing application. An appropriate stacking mechanism for Al-Ge diffusion bonding is identified to overcome the limitations with respect to surface topography.

  8. Evaluation of ultrasonic signals from diffusion and eutectic bond interfaces

    NASA Astrophysics Data System (ADS)

    Brown, C. M.

    1980-12-01

    A research program is in progress at Rocky Flats to determine correlations between ultrasonic signal content and diffusion or eutectic bond joint condition, and to develop a computer-controlled scanning, data acquisition and analysis system which utilizes these correlations and waveform analysis techniques. The initial efforts to determine effective ultrasonic waveform parameters to characterize the strength of bond interfaces is complete. A development version of a computer-controlled, automated scanning and data acquisition system is in operation.

  9. Femtosecond 2DIR spectroscopy of the nitrile stretching vibration of thiocyanate anions in liquid-to-supercritical heavy water. Spectral diffusion and libration-induced hydrogen-bond dynamics.

    PubMed

    Czurlok, Denis; von Domaros, Michael; Thomas, Martin; Gleim, Jeannine; Lindner, Jörg; Kirchner, Barbara; Vöhringer, Peter

    2015-11-28

    Femtosecond two-dimensional infrared (2DIR) spectroscopy was carried out to study the dynamics of vibrational spectral diffusion of the nitrile stretching vibration of thiocyanate anions (S-C≡N(-)) dissolved in liquid-to-supercritical heavy water (D2O). The 2DIR line shapes were used to extract through a nodal slope analysis quantitative information about the correlation function for temporal fluctuations of the CN-stretching frequency. The inverse nodal slope could be fitted phenomenologically by a simple double-exponential decay whose predominant component had a time constant ranging between 300 fs and 1 ps depending on the temperature. The temperature dependence is interpreted in terms of solvent structural fluctuations that are driven by the librational motions of the D2O molecules located in the first solvation shell of the anion. Complementary molecular dynamics simulations of the SCN(-)/D2O system indicate that the breaking and making of hydrogen-bonds between the terminal N-atom of the anion and the D2O molecules are induced by the same solvent-shell librational degrees of freedom that drive the vibrational line broadening dynamics seen in the 2DIR experiment. PMID:26486475

  10. A local view of bonding and diffusion at metal surfaces

    SciTech Connect

    Feibelman, P.J.

    1996-09-01

    First-principles density functional calculations and corresponding experimental results underline the importance of basic chemical concepts, such as coordination, valence saturation and promotion-hybridization energetics, in understanding bonding and diffusion of atoms at and on metal surfaces. Several examples are reviewed, including outer-layer relaxations of clean hcp(0001) surfaces, liquid-metal-embrittlement energetics, separation energies of metal-adatom dimers, concerted substitutional self-diffusion on fcc(001) surfaces, and adsorption and diffusion barrier sites for adatoms near steps.

  11. Partial transient liquid phase diffusion bonding of Zircaloy-4 to stabilized austenitic stainless steel 321

    SciTech Connect

    Atabaki, M. Mazar; Hanzaei, A. Talebi

    2010-10-15

    An innovative method was applied for bonding Zircaloy-4 to stabilized austenitic stainless steel 321 using an active titanium interlayer. Specimens were joined by a partial transient liquid phase diffusion bonding method in a vacuum furnace at different temperatures under 1 MPa dynamic pressure of contact. The influence of different bonding temperatures on the microstructure, microindentation hardness, joint strength and interlayer thickness has been studied. The diffusion of Fe, Cr, Ni and Zr has been investigated by scanning electron microscopy and energy dispersive spectroscopy elemental analyses. Results showed that control of the heating and cooling rate and 20 min soaking at 1223 K produces a perfect joint. However, solid-state diffusion of the melting point depressant elements into the joint metal causes the solid/liquid interface to advance until the joint is solidified. The tensile strength of all the bonded specimens was found around 480-670 MPa. Energy dispersive spectroscopy studies indicated that the melting occurred along the interface of the bonded specimens as a result of the transfer of atoms between the interlayer and the matrix during bonding. This technique provides a reliable method of bonding zirconium alloy to stainless steel.

  12. Phase transformation diffusion bonding of titanium alloy with stainless steel

    SciTech Connect

    Qin, B. . E-mail: jjj-jenny@163.com; Sheng, G.M.; Huang, J.W.; Zhou, B.; Qiu, S.Y.; Li, C.

    2006-01-15

    Phase transformation diffusion bonding between a titanium alloy (TA17) and an austenitic stainless steel (0Cr18Ni9Ti) has been carried out in vacuum. Relationships between the bonding parameters and the tensile strength of the joints were investigated, and the optimum bond parameters were obtained: maximum cyclic temperature = 890 deg. C, minimum cyclic temperature = 800 deg. C, number of cycles = 10, bonding pressure = 5 MPa and heating rate = 30 deg. C/s. The maximum tensile strength of the joint was 307 MPa. The reaction products and the interface structure of the joints were investigated by light optical and scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The study indicated the existence of {sigma} phase, Fe{sub 2}Ti, Fe-Ti intermetallic and {beta}-Ti in the reaction zone. The presence of the brittle Fe-Ti intermetallic phase lowered both the strength and the ductility of the phase transformation diffusion-bonded joint significantly.

  13. Morphology, topography, and hardness of diffusion bonded sialon to AISI 420 at different bonding time

    NASA Astrophysics Data System (ADS)

    Ibrahim, Nor Nurulhuda Md.; Hussain, Patthi; Awang, Mokhtar

    2015-07-01

    Sialon and AISI 420 martensitic stainless steel were diffusion bonded in order to study the effect of bonding time on reaction layer's growth. Joining of these materials was conducted at 1200°C under a uniaxial pressure of 17 MPa in a vacuum ranging from 5.0 to 8.0×10-6 Torr with bonding time varied for 0.5, 2, and 3 h. Thicker reaction layer was formed in longer bonded sample since the elements from sialon could diffuse further into the steel. Sialon retained its microstructure but it was affected at the initial contact with the steel to form the new interface layer. Diffusion layer grew toward the steel and it was segregated with the parent steel as a result of the difference in properties between these regions. The segregation formed a stream-like structure and its depth decreased when the bonding time was increased. The microstructure of the steel transformed into large grain size with precipitates. Prolonging the bonding time produced more precipitates in the steel and reduced the steel thickness as well. Interdiffusions of elements occurred between the joined materials and the concentrations were decreasing toward the steel and vice versa. Silicon easily diffused into the steel because it possessed lower ionization potential compared to nitrogen. Formation of silicide and other compounds such as carbides were detected in the interface layer and steel grain boundary, respectively. These compounds were harmful due to silicide brittleness and precipitation of carbides in the grain boundary might cause intergranular corrosion cracking. Sialon retained its hardness but it dropped very low at the interface layer. The absence of crack at the joint in all samples could be contributed from the ductility characteristic of the reaction layer which compensated the residual stress that was formed upon the cooling process.

  14. Joining of Silicon Carbide Through the Diffusion Bonding Approach

    NASA Technical Reports Server (NTRS)

    Halbig, Michael .; Singh, Mrityunjay

    2009-01-01

    In order for ceramics to be fully utilized as components for high-temperature and structural applications, joining and integration methods are needed. Such methods will allow for the fabrication the complex shapes and also allow for insertion of the ceramic component into a system that may have different adjacent materials. Monolithic silicon carbide (SiC) is a ceramic material of focus due to its high temperature strength and stability. Titanium foils were used as an interlayer to form diffusion bonds between chemical vapor deposited (CVD) SiC ceramics with the aid of hot pressing. The influence of such variables as interlayer thickness and processing time were investigated to see which conditions contributed to bonds that were well adhered and crack free. Optical microscopy, scanning electron microscopy, and electron microprobe analysis were used to characterize the bonds and to identify the reaction formed phases.

  15. Modeling the Hydrogen Bond within Molecular Dynamics

    ERIC Educational Resources Information Center

    Lykos, Peter

    2004-01-01

    The structure of a hydrogen bond is elucidated within the framework of molecular dynamics based on the model of Rahman and Stillinger (R-S) liquid water treatment. Thus, undergraduates are exposed to the powerful but simple use of classical mechanics to solid objects from a molecular viewpoint.

  16. Mo/Ti Diffusion Bonding for Making Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey; Kisor, Adam; Caillat, Thierry; Lara, Liana; Ravi, Vilupanur; Firdosy, Samad; Fleuiral, Jean-Pierre

    2007-01-01

    An all-solid-state diffusion bonding process that exploits the eutectoid reaction between molybdenum and titanium has been developed for use in fabricating thermoelectric devices based on skutterudite compounds. In essence, the process is one of heating a flat piece of pure titanium in contact with a flat piece of pure molybdenum to a temperature of about 700 C while pushing the pieces together with a slight pressure [a few psi (of the order of 10 kPa)]. The process exploits the energy of mixing of these two metals to form a strong bond between them. These two metals were selected partly because the bonds formed between them are free of brittle intermetallic phases and are mechanically and chemically stable at high temperatures. The process is a solution of the problem of bonding hot-side metallic interconnections (denoted hot shoes in thermoelectric jargon) to titanium-terminated skutterudite n and p legs during the course of fabrication of a unicouple, which is the basic unit cell of a thermoelectric device (see figure). The hot-side operating temperature required for a skutterudite thermoelectric device is 700 C. This temperature precludes the use of brazing to attach the hot shoe; because brazing compounds melt at lower temperatures, the hot shoe would become detached during operation. Moreover, the decomposition temperature of one of the skutterudite compounds is 762 C; this places an upper limit on the temperature used in bonding the hot shoe. Molybdenum was selected as the interconnection metal because the eutectoid reaction between it and the titanium at the ends of the p and n legs has characteristics that are well suited for this application. In addition to being suitable for use in the present bonding process, molybdenum has high electrical and thermal conductivity and excellent thermal stability - characteristics that are desired for hot shoes of thermoelectric devices. The process takes advantage of the chemical potential energy of mixing between

  17. Delayed mechanical failure of silver-interlayer diffusion bonds

    SciTech Connect

    Kassner, M.E. ); Rosen, R.S.; Henshall, G.A. . Physical Metallurgy and Joining Section)

    1990-12-01

    Silver-interlayer diffusion bonds were fabricated using planar-magnetron sputtering (PMS). The bonds exhibit very high tensile strengths, despite the soft interlayer, because of the constraint by the base metal. However, these joints undergo delayed failure at relatively low tensile stresses at ambient temperatures, apparently by a ductile microvoid coalescence mechanism at the bond interfaces. Two classes of delayed tensile failure were investigated. In the first case, the applied stress does not produced any plastic deformation in the base metal, and failure appears to be controlled by time-dependent plasticity within the silver interlayer as a result of the effective stress in the interlayer. The plasticity causes cavity nucleation and, eventually, interlinkage and failure. In the second case, time-dependent plasticity is observed in base metals, and concomitant shear occurs within the softer silver under a high triaxial stress state. Here, the time-dependent plasticity of the base metal accelerates plasticity and failure in the interlayer. These models were substantiated by careful analysis of the stress and temperature dependence of the rupture times, finite element analysis of the stress state within the interlayer, and microscopy of the fracture surfaces and interfaces loaded to various fractions of the expected rupture times. These findings are applicable to bonds in which the interlayers are prepared by processes other than physical vapor deposition.

  18. Diffusion-bonded electrodes for chronic neural stimulation.

    PubMed

    Shah, Kedar G; Lee, Kye Young; Tolosa, Vanessa; Tooker, Angela; Felix, Sarah; Pannu, Satinderpall

    2014-01-01

    We report a novel method to fabricate chronic neural interfaces with the intent to combine the reliability and lifetime of bulk metal electrodes, with the miniaturization and mechanical flexibility of thin-film polymer microelectrode arrays. 10 μm thick platinum discs were laser cut from a foil into the shape of individual electrodes, and coated with gold on the backside. The discs were bonded to a microelectrode array with gold bond pads via gold-gold inter-diffusion using a flipchip bonder. Electrode bonding and adhesion was characterized using mechanical shear testing and electrical testing. Electrode performance was characterized in vitro using electrochemical impedance spectroscopy and cyclic voltammetry. Biphasic electrical pulsing experiments were conducted on the bonded electrodes to study degradation of the electrode; the preliminary results show that the electrodes can withstand at least 4,900 million pulses with no adverse electrochemical or visual degradation. Overall, this is a promising new method for fabricating chronic neural electrodes for stimulation or recording that combines the reliability of commercial bulk electrodes with the miniaturization and versatility of microfabricated technologies. PMID:25569992

  19. Diffusion Bonding and Characterization of a Dispersion Strengthened Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Cooke, Kavian Omar

    Aluminum metal matrix composites (Al-MMC's) containing silicon carbide or alumina particle reinforcements are used extensively in automotive and aircraft industries. The addition of a reinforcing phase has led to significant improvements in the mechanical properties of these alloys. However, despite substantial improvements in the properties, the lack of a reliable joining method has restricted their full potential. The differences in physical and metallurgical properties between the ceramic phase and the Al-MMC, prevents the successful application of the fusion welding processes, conventionally used for joining monolithic aluminum alloys. Therefore, alternative techniques that prevent microstructural changes in the base metal need to be developed. In this study, the transient liquid phase diffusion bonding and eutectic bonding of a particle reinforced Al 6061-MMC was investigated to identify a method that could control particle segregation within the joint and increase the final joint strength. The results showed that TLP bonding using Ni-foil was possible at 600°C for 10 minutes using a pressure of 0.01 MPa. However, characterization of the bond interface showed a wide particle segregated zone due to the "pushing effect" of the solid/liquid interface during isothermal solidification stage of bonding. The presence of this particle segregated zone was shown to cause low joint strengths. In order to overcome these problems, TLP bonding was performed using electrodeposited coatings of Ni and Ni-Al 2O3 as a way of controlling the volume of eutectic liquid formed at the joint. Theoretical and experimental work showed that the use of thin coatings was successful in reducing the width of the segregated zone formed at the joint and this had the effect of increasing joint shear strength values. Furthermore, lower bonding temperature could also be used as a method of reducing particle segregation and therefore, a Cu-Sn interlayer was used to form a eutectic bond. The

  20. Replicator dynamics with diffusion on multiplex networks

    NASA Astrophysics Data System (ADS)

    Requejo, R. J.; Díaz-Guilera, A.

    2016-08-01

    In this study we present an extension of the dynamics of diffusion in multiplex graphs, which makes the equations compatible with the replicator equation with mutations. We derive an exact formula for the diffusion term, which shows that, while diffusion is linear for numbers of agents, it is necessary to account for nonlinear terms when working with fractions of individuals. We also derive the transition probabilities that give rise to such macroscopic behavior, completing the bottom-up description. Finally, it is shown that the usual assumption of constant population sizes induces a hidden selective pressure due to the diffusive dynamics, which favors the increase of fast diffusing strategies.

  1. The diffusion bonding of silicon carbide and boron carbide using refractory metals

    SciTech Connect

    Cockeram, B.V.

    1999-10-01

    Joining is an enabling technology for the application of structural ceramics at high temperatures. Metal foil diffusion bonding is a simple process for joining silicon carbide or boron carbide by solid-state, diffusive conversion of the metal foil into carbide and silicide compounds that produce bonding. Metal diffusion bonding trials were performed using thin foils (5 {micro}m to 100 {micro}m) of refractory metals (niobium, titanium, tungsten, and molybdenum) with plates of silicon carbide (both {alpha}-SiC and {beta}-SiC) or boron carbide that were lapped flat prior to bonding. The influence of bonding temperature, bonding pressure, and foil thickness on bond quality was determined from metallographic inspection of the bonds. The microstructure and phases in the joint region of the diffusion bonds were evaluated using SEM, microprobe, and AES analysis. The use of molybdenum foil appeared to result in the highest quality bond of the metal foils evaluated for the diffusion bonding of silicon carbide and boron carbide. Bonding pressure appeared to have little influence on bond quality. The use of a thinner metal foil improved the bond quality. The microstructure of the bond region produced with either the {alpha}-SiC and {beta}-SiC polytypes were similar.

  2. The metallurgical integrity of the frit vent assembly diffusion bond

    NASA Astrophysics Data System (ADS)

    Ulrich, G. B.

    1994-06-01

    Iridium alloy clad vent sets (CVS's) are now being made by Energy Systems at the Oak Ridge Y-12 Plant. These CVS's are being made for the US Department of Energy's (NE-53) General Purpose Heat Source- Radioisotope Thermoelectric Generator (GPHS-RTG) program, which is to supply electrical power for the National Aeronautics and Space Administration's Cassini mission to Saturn. A GPHS-RTG has 72 CVS'. Each CVS encapsulates one (238)PuO2 fuel pellet. The helium gas produced from the alpha decay of the (238)Pu is vented through a nominal 0.45-mm-diam hole in the vent cup of each CVS. A frit vent assembly that is electron beam welded over the vent hole allows helium gas to escape but prevents plutonia fines from exiting. The metallurgical integrity of frit vent assemblies produced by Martin Marietta Energy Systems, Inc. (Energy Systems) were compared with those produced earlier by EG&G-Mound Applied Technology, Inc. (EG&G-MAT). Scanning electron microscope (SEM) photographs were taken (at magnifications of from 126x to 1,000x) of the starting frit vent powder and the diffusion-bonded powder in finished frit vent assemblies produced by Energy Systems and EG&G-MAT. Frit vent assemblies also were metallographically prepared and visually examined/photographed at magnifications of from 50x to 1,000x. The SEM and metallographic examinations of the particle-to-particle and particle-to-foil component diffusion bonds indicated that the Energy Systems-produced and EG&G-MAT-produced frit vent assemblies have comparable metallurgical integrity. Statistical analysis of the Energy Systems production data shows that the frit vent manufacturing yield is 91%.

  3. The metallurgical integrity of the frit vent assembly diffusion bond

    SciTech Connect

    Ulrich, G.B.

    1994-06-01

    Iridium alloy clad vent sets (CVSs) are now being made by Energy Systems at the Oak Ridge Y-12 Plant. These CVSs are being made for the US Department of Energy`s (NE-53) General Purpose Heat Source- Radioisotope Thermoelectric Generator (GPHS-RTG) program, which is to supply electrical power for the National Aeronautics and Space Administration`s Cassini mission to Saturn. A GPHS-RTG has 72 CVSs. Each CVS encapsulates one {sup 238}PuO{sub 2} fuel pellet. The helium gas produced from the alpha decay of the {sup 238}Pu is vented through a nominal 0.45-mm-diam hole in the vent cup of each CVS. A frit vent assembly that is electron beam welded over the vent hole allows helium gas to escape but prevents plutonia fines from exiting. The metallurgical integrity of frit vent assemblies produced by Martin Marietta Energy Systems, Inc. (Energy Systems) were compared with those produced earlier by EG&G-Mound Applied Technology, Inc. (EG&G-MAT). Scanning electron microscope (SEM) photographs were taken (at magnifications of from 126X to 1,000X) of the starting frit vent powder and the diffusion-bonded powder in finished frit vent assemblies produced by Energy Systems and EG&G-MAT. Frit vent assemblies also were metallographically prepared and visually examined/photographed at magnifications of from 50X to 1,000X. The SEM and metallographic examinations of the particle-to-particle and particle-to-foil component diffusion bonds indicated that the Energy Systems-produced and EG&G-MAT-produced frit vent assemblies have comparable metallurgical integrity. Statistical analysis of the Energy Systems production data shows that the frit vent manufacturing yield is 91%.

  4. Dynamics and diffusion mechanism of low-density liquid silicon

    SciTech Connect

    Shen, B.; Wang, Z. Y.; Dong, F.; Guo, Y. R.; Zhang, R. J.; Zheng, Y. X.; Wang, S. Y.; Wang, C. Z.; Ho, K. M.; Chen, L. Y.

    2015-11-05

    A first-order phase transition from a high-density liquid to a low-density liquid has been proposed to explain the various thermodynamic anomies of water. It also has been proposed that such liquid–liquid phase transition would exist in supercooled silicon. Computer simulation studies show that, across the transition, the diffusivity drops roughly 2 orders of magnitude, and the structures exhibit considerable tetrahedral ordering. The resulting phase is a highly viscous, low-density liquid silicon. Investigations on the atomic diffusion of such a novel form of liquid silicon are of high interest. Here we report such diffusion results from molecular dynamics simulations using the classical Stillinger–Weber (SW) potential of silicon. We show that the atomic diffusion of the low-density liquid is highly correlated with local tetrahedral geometries. We also show that atoms diffuse through hopping processes within short ranges, which gradually accumulate to an overall random motion for long ranges as in normal liquids. There is a close relationship between dynamical heterogeneity and hopping process. We point out that the above diffusion mechanism is closely related to the strong directional bonding nature of the distorted tetrahedral network. Here, our work offers new insights into the complex behavior of the highly viscous low density liquid silicon, suggesting similar diffusion behaviors in other tetrahedral coordinated liquids that exhibit liquid–liquid phase transition such as carbon and germanium.

  5. Dynamics and diffusion mechanism of low-density liquid silicon

    DOE PAGESBeta

    Shen, B.; Wang, Z. Y.; Dong, F.; Guo, Y. R.; Zhang, R. J.; Zheng, Y. X.; Wang, S. Y.; Wang, C. Z.; Ho, K. M.; Chen, L. Y.

    2015-11-05

    A first-order phase transition from a high-density liquid to a low-density liquid has been proposed to explain the various thermodynamic anomies of water. It also has been proposed that such liquid–liquid phase transition would exist in supercooled silicon. Computer simulation studies show that, across the transition, the diffusivity drops roughly 2 orders of magnitude, and the structures exhibit considerable tetrahedral ordering. The resulting phase is a highly viscous, low-density liquid silicon. Investigations on the atomic diffusion of such a novel form of liquid silicon are of high interest. Here we report such diffusion results from molecular dynamics simulations using themore » classical Stillinger–Weber (SW) potential of silicon. We show that the atomic diffusion of the low-density liquid is highly correlated with local tetrahedral geometries. We also show that atoms diffuse through hopping processes within short ranges, which gradually accumulate to an overall random motion for long ranges as in normal liquids. There is a close relationship between dynamical heterogeneity and hopping process. We point out that the above diffusion mechanism is closely related to the strong directional bonding nature of the distorted tetrahedral network. Here, our work offers new insights into the complex behavior of the highly viscous low density liquid silicon, suggesting similar diffusion behaviors in other tetrahedral coordinated liquids that exhibit liquid–liquid phase transition such as carbon and germanium.« less

  6. Protein Dynamical Transition: Role of Methyl Dynamics and Local Diffusion

    NASA Astrophysics Data System (ADS)

    Krishnan, M.; Schulz, R.; Smith, Jeremy C.

    2009-03-01

    The temperature-dependent protein dynamical transition is investigated using the Instanteous Normal mode analysis (INM) and molecular dynamics (MD) simulation of crystalline myoglobin and Toxin II. The onset of anharmonic dynamics in myoglobin is observed at 150 K, far below the much-studied solvent-activated dynamical transition at 220 K. A significant fraction of methyl groups exhibit nanosecond anharmonic rotational jump diffusion at 150 K indicating the essential role of methyl dynamics in the low-temperature onset of anharmonic protein dynamics. The methyl groups that exhibit many rotational excitations are located near xenon cavities, suggesting that cavities in proteins act as activation centers of anharmonic dynamics. INM analysis of Toxin II indicates the presence of non-zero barrier-crossing, diffusive degrees of freedom accessible to the protein below the dynamical transition. The number of these diffusive degrees of freedom increases abruptly at the dynamical transition. In summary, the present investigation suggests that local diffusive processes (for example, methyl dynamics) are activated at low temperatures (much below 220 K) leading to global diffusive protein dynamics (this involves excitation of many protein atoms) at the dynamical transition.

  7. Fluorescence Correlation Spectroscopy to Study Diffusion of Polymer Chains within Layered Hydrogen-Bonded Polymer Films

    NASA Astrophysics Data System (ADS)

    Pristinski, Denis; Kharlampieva, Evguenia; Sukhishvili, Svetlana

    2002-03-01

    Fluorescence Correlation Spectroscopy (FCS) has been used to probe molecular motions within polymer multilayers formed by hydrogen-bonding sequential self-assembly. Polyethylene glycol (PEG) molecules were end-labeled with the fluorescent tags, and self-assembled with polymethacrylic acid (PMAA) using layer-by-layer deposition. We have found that molecules included in the top adsorbed layer have significant mobility at the millisecond time scale, probably due to translational diffusion. However, their dynamics deviate from classical Brownian motion with a single diffusion time. Possible reasons for the deviation are discussed. We found that motions were significantly slowed with increasing depth within the PEG/PMAA multilayer. This phenomena occured in a narrow pH range around 4.0 in which intermolecular interactions were relatively weak.

  8. Statics and dynamics of magnetocapillary bonds

    NASA Astrophysics Data System (ADS)

    Lagubeau, Guillaume; Grosjean, Galien; Darras, Alexis; Lumay, Geoffroy; Hubert, Maxime; Vandewalle, Nicolas

    2016-05-01

    When ferromagnetic particles are suspended at an interface under magnetic fields, dipole-dipole interactions compete with capillary attraction. This combination of forces has recently given promising results towards controllable self-assemblies as well as low-Reynolds-number swimming systems. The elementary unit of these assemblies is a pair of particles. Although equilibrium properties of this interaction are well described, the dynamics remain unclear. In this paper, the properties of magnetocapillary bonds are determined by probing them with magnetic perturbations. Two deformation modes are evidenced and discussed. These modes exhibit resonances whose frequencies can be detuned to generate nonreciprocal motion. A model is proposed that can become the basis for elaborate collective behaviors.

  9. Diffusion bonding of Ti coated Zircaloy-4 and 316-L stainless steel

    SciTech Connect

    Akhter, J.I. Ahmad, M.; Ali, G.

    2009-03-15

    Diffusion bonding of Zircaloy-4 and Type 316-L stainless steel was carried out by coating the joining surfaces with Ti to minimize the interlayer effect. Bonding heat treatments were carried out in vacuum at 1000 deg. C for 4 h and 1050 deg. C for 1 h. The microstructure of the diffusion zone was investigated by scanning electron microscopy and the phases in the diffusion zone were analyzed by energy dispersive spectroscopy. It is observed that Ti coating at the interface produced a dendritic structure in the diffusion zone formed in the Zircaloy-4. The concentration of the dendrites increases with an increase in bonding temperature.

  10. Modeling and experimental evaluation of the diffusion bonding of the oxide dispersion strengthened steel PM2000

    NASA Astrophysics Data System (ADS)

    Sittel, Wiebke; Basuki, Widodo W.; Aktaa, Jarir

    2015-10-01

    A modeling based optimization process of the solid state diffusion bonding is presented for joining ferritic oxide dispersion strengthened steels PM2000. An optimization study employing varying bonding temperatures and pressures results in almost the same strength and toughness of the bonded compared to the as received material. TEM investigations of diffusion bonded samples show a homogeneous distribution of oxide particles at the bonding seam similar to that in the bulk. Hence, no loss in strength or creep resistance due to oxide particle agglomeration is found, as verified by the mechanical properties observed for the joint.

  11. Si-H bond dynamics in hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Scharff, R. Jason; McGrane, Shawn D.

    2007-08-01

    The ultrafast structural dynamics of the Si-H bond in the rigid solvent environment of an amorphous silicon thin film is investigated using two-dimensional infrared four-wave mixing techniques. The two-dimensional infrared (2DIR) vibrational correlation spectrum resolves the homogeneous line shapes ( <2.5cm-1 linewidth) of the 0→1 and 1→2 vibrational transitions within the extensively inhomogeneously broadened ( 78cm-1 linewidth) Si-H vibrational band. There is no spectral diffusion evident in correlation spectra obtained at 0.2, 1, and 4ps waiting times. The Si-H stretching mode anharmonic shift is determined to be 84cm-1 and decreases slightly with vibrational frequency. The 1→2 linewidth increases with vibrational frequency. Frequency dependent vibrational population times measured by transient grating spectroscopy are also reported. The narrow homogeneous line shape, large inhomogeneous broadening, and lack of spectral diffusion reported here present the ideal backdrop for using a 2DIR probe following electronic pumping to measure the transient structural dynamics implicated in the Staebler-Wronski degradation [Appl. Phys. Lett. 31, 292 (1977)] in a-Si:H based solar cells.

  12. The dynamics of unsteady detonation with diffusion

    SciTech Connect

    Aslam, Tariq Dennis; Romick, Christopher; Powers, Joseph

    2010-01-01

    Here we consider an unsteady detonation with diffusion included. This introduces an interaction between the reaction length scales and diffusion length scales. Detailed kinetics introduce multiple length scales as shown though the spatial eigenvalue analysis of hydrogen-oxygen system; the smallest length scale is {approx} 10{sup 7} m and the largest {approx} 10{sup -2} m; away from equilibrium, the breadth can be larger. In this paper, we consider a simpler set of model equations, similar to the inviscid reactive compressible fluid equations, but include diffusion (in the form of thermal/energy, momentum, and mass diffusion). We will seek to reveal how the complex dynamics already discovered in one-step systems in the inviscid limit changes with the addition of diffusion.

  13. Diffusion of small molecules in polymer nanocomposites: relationship between local free volume dynamics and penetrant diffusivity

    NASA Astrophysics Data System (ADS)

    Pryamitsyn, Victor; Ganesan, Venkat

    2011-03-01

    Polymer membranes are widely used as barrier or gas/vapors separation materials. Recent experiments have demonstrated that the barrier properties of the polymer nanocomposites (PNC) dramatically different from pure polymer. Usually such properties are quantified by the permeability P of the material to a penetrant which consists of two contributions: the penetrant solubility S and diffusivity D : P = S D In present work we only discuss term D . We use the Bond Fluctuation Model, which allows us to model the diffusivity of the penetrant, the dynamics of the polymer and the dynamics of the polymer free volume in a single framework. We modeled PNC's at different particle load and the penetrant size and found that addition of nanoparticles increseses the penetrant diffusivity and selectivity to the penetrant size. This increase is attributed to the free volume increase and the acceleration of the free volume relaxation in PNC relatively to the pure polymer. We have compared the penetrant diffusivity in a rubbery and glassy PNC's and found than the effect of the PNC load on diffusivity and selectivity is much stronger for the glassy system which is due to rubbery system D is controlled by the rate of matrix free volume relaxation and in glassy regime it is controlled by the static free volume percolation, which is more sensitive to the PNC load.

  14. The application of diffusion bonding in the manufacture of aeroengine components

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, J. A.

    Rolls-Royce has developed and optimized diffusion bonding processes for the manufacture of advanced titanium alloy aeroengine structures and components. Both categories of the joining technique - 'liquid-phase' and 'solid-state' - are being applied in the production of both static fabrications and complex rotating parts. In order to utilize diffusion bonding processes in a production environment, the process parameters which contribute to consistent formation of joints of the required strength have been critically examined. Process variables include temperature, pressure, time, surface roughness and, in the case of liquid-phase diffusion bonding, interlayer composition, density and thickness. Mechanical testing (tensile, impact and fatigue) complemented by metallography has predominantly been used to identify the permitted variations in the processes for the realistic and economical production manufacture of high quality lightweight aeroengine fabrications. The development of a high integrity bond via optimized diffusion bonding processes has been fundamental to the development of Rolls-Royce's unique wide chord fan design concept.

  15. Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces

    SciTech Connect

    James A. Smith; Jeffrey M. Lacy; Barry H. Rabin

    2014-07-01

    12. Other advances in QNDE and related topics: Preferred Session Laser-ultrasonics Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces 41st Annual Review of Progress in Quantitative Nondestructive Evaluation Conference QNDE Conference July 20-25, 2014 Boise Centre 850 West Front Street Boise, Idaho 83702 James A. Smith, Jeffrey M. Lacy, Barry H. Rabin, Idaho National Laboratory, Idaho Falls, ID ABSTRACT: The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) which is assigned with reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU. The new LEU fuel is based on a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to complete the fuel qualification process, the laser shock technique is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. The Laser Shockwave Technique (LST) is being investigated to characterize interface strength in fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However the deposition of laser energy into the containment layer on specimen’s surface is intractably complex. The shock wave energy is inferred from the velocity on the backside and the depth of the impression left on the surface from the high pressure plasma pulse created by the shock laser. To help quantify the stresses and strengths at the interface, a finite element model is being developed and validated by comparing numerical and experimental results for back face velocities and front face depressions with experimental results. This paper will report on initial efforts to develop a finite element model for laser

  16. Fabrication of joint Bi-2223/Ag superconducting tapes with BSCCO superconducting powders by diffusion bonding

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Zou, Guisheng; Wu, Aiping; Zhou, Fangbing; Ren, Jialie

    2010-05-01

    61-Filaments Bi-2223/Ag superconducting tapes have been successfully joined with BSCCO superconducting powder interlayer by diffusion bonding. The electrical properties of the diffusion bonding joints were tested by standard four probe method and the microstructures of the joints were also examined by SEM. Additionally, the phase constituents of the superconducting powders between the tapes before and after bonding process were evaluated by XRD analysis. The result shows that the diffusion bonding joints are superconductive. The microstructures of the joint display a good bonding with no cracks and discontinuities. The joining zones are mainly composed of Bi-2223 phase, Bi-2212 phase and a small amount of CuO, Ca 2PbO 4. At last, the phase transformations of the superconducting powders in the bonding process are discussed.

  17. A Batch Wafer Scale LIGA Assembly and Packaging Technique vai Diffusion Bonding

    SciTech Connect

    Christenson, T.R.; Schmale, D.T.

    1999-01-27

    A technique using diffusion bonding (or solid-state welding) has been used to achieve batch fabrication of two- level nickel LIGA structures. Interlayer alignment accuracy of less than 1 micron is achieved using press-fit gauge pins. A mini-scale torsion tester was built to measure the diffusion bond strength of LIGA formed specimens that has shown successful bonding at temperatures of 450"C at 7 ksi pressure with bond strength greater than 100 Mpa. Extensions to this basic process to allow for additional layers and thereby more complex assemblies as well as commensurate packaging are discussed.

  18. Dynamics of Hydrogen-Bonded Supramolecular Polymers

    NASA Astrophysics Data System (ADS)

    Buhler, Eric; Candau, Jean; Kolomiets, Elena; Lehn, Jean-Marie

    2010-03-01

    Supramolecular polymers formed from molecular recognition directed association between monomers bearing complementary hydrogen bonding groups were studied by rheology, small-angle neutron and light scattering experiments. The semiflexible fibers consist of few aggregated monomolecular wires. At T= 25 C the formation of branched aggregates occurs around the crossover concentration, C^*, between the dilute and semi-dilute regimes, whereas the classical behaviour of equilibrium polymers is observed at T=65 C. For semi-dilute solutions the steady-state flow curves showed a shear banding type instability, namely the occurrence of a stress plateau σp above a critical shear rate γ̂c. The values of σp and γ̂c were found to be of the same order of magnitude as those of the elastic plateau modulus and the inverse stress relaxation time, respectively. The above features are in agreement with the theoretical predictions based on the reptation model. Dynamic light scattering experiments showed the presence in the autocorrelation function of the concentration fluctuations of a slow viscoelastic relaxation process that is likely to be of Rouse type.

  19. Diffusion bonding and brazing of high purity copper for linear collider accelerator structures

    NASA Astrophysics Data System (ADS)

    Elmer, J. W.; Klingmann, J.; van Bibber, K.

    2001-05-01

    Diffusion bonding and brazing of high purity copper were investigated to develop procedures for joining precision machined copper components for the Next Linear Collider (NLC). Diffusion bonds were made over a range of temperatures from 400 °C to 1000 °C, under two different loading conditions [3.45 kPa (0.5 psi) and 3.45 MPa (500 psi)], and on two different diamond machined surface finishes. Brazes were made using pure silver, pure gold, and gold-nickel alloys, and different heating rates produced by both radiation and induction heating. Braze materials were applied by both physical vapor deposition (PVD) and conventional braze alloy shims. Results of the diffusion bonding experiments showed that bond strengths very near that of the copper base metal could be made at bonding temperatures of 700 °C or higher at 3.45 MPa bonding pressure. At lower temperatures, only partial strength diffusion bonds could be made. At low bonding pressures (3.45 kPa), full strength bonds were made at temperatures of 800 °C and higher, while no bonding (zero strength) was observed at temperatures of 700 °C and lower. Observations of the fracture surfaces of the diffusion bonded samples showed the effects of surface finish on the bonding mechanism. These observations clearly indicate that bonding began by point asperity contact, and flatter surfaces resulted in a higher percentage of bonded area under similar bonding conditions. Results of the brazing experiments indicated that pure silver worked very well for brazing under both conventional and high heating rate scenarios. Similarly, pure silver brazed well for both the PVD layers and the braze alloy shims. The gold and gold-containing brazes had problems, mainly due to the high diffusivity of gold in copper. These problems led to the necessity of overdriving the temperature to ensure melting, the presence of porosity in the joint, and very wide braze joints. Based on the overall findings of this study, a two-step joining method

  20. Diffusion bonding and its application to manufacturing. [for joining of metal parts

    NASA Technical Reports Server (NTRS)

    Spurgeon, W. M.

    1972-01-01

    In its simplest form diffusion bonding is accomplished by placing clean metal surfaces together under a sufficient load and heating. The natural interatomic attractive force between atoms transforms the interface into a natural grain boundary. Therefore, in principle, the properties of the bond area are identical to those of the parent metal. Other advantages of diffusion bonding over conventional methods of bonding include freedom from residual stresses, excessive deformation, foreign metals, or changed crystal structures. Stainless steels, nickel-base superalloys, and aluminum alloys have all been successfully joined. Complex hardware, including integrated flueric devices, jet engine servovalves, and porous woven structures have been fabricated. The processing involved is discussed, along with such theoretical considerations as the role of metal surfaces, the formation of metal contact junctions, and the mechanisms of material transport in diffusion bonding.

  1. In-process oxidation protection in fluxless brazing or diffusion bonding of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Okelly, K. P.; Featherston, A. B.

    1974-01-01

    Aluminum is cleaned of its oxide coating and is sealed immediately with polymeric material which makes it suitable for fluxless brazing or diffusion bonding. Time involved between cleaning and brazing is no longer critical factor.

  2. Method of fluxless brazing and diffusion bonding of aluminum containing components

    NASA Technical Reports Server (NTRS)

    Featherston, A. B.; Okelly, K. P. (Inventor)

    1976-01-01

    A method of diffusion bonding and fluxless brazing of aluminum containing components is reported. The aluminum surfaces are freed of any aluminum oxide coating and are coated with a polymeric sealer which can be thermally removed leaving essentially no residue. The polymeric sealer is being removed in a substantially oxygen free environment, and the aluminum components are then being brazed or diffusion bonded without the use of a flux to remove oxide coating.

  3. A Diffusive Strategic Dynamics for Social Systems

    NASA Astrophysics Data System (ADS)

    Agliari, Elena; Burioni, Raffaella; Contucci, Pierluigi

    2010-05-01

    We propose a model for the dynamics of a social system, which includes diffusive effects and a biased rule for spin-flips, reproducing the effect of strategic choices. This model is able to mimic some phenomena taking place during marketing or political campaigns. Using a cost function based on the Ising model defined on the typical quenched interaction environments for social systems (Erdös-Renyi graph, small-world and scale-free networks), we find, by numerical simulations, that a stable stationary state is reached, and we compare the final state to the one obtained with standard dynamics, by means of total magnetization and magnetic susceptibility. Our results show that the diffusive strategic dynamics features a critical interaction parameter strictly lower than the standard one. We discuss the relevance of our findings in social systems.

  4. Diffusion bonding of IN 718 to VM 350 grade maraging steel

    NASA Technical Reports Server (NTRS)

    Crosby, S. R.; Biederman, R. R.; Reynolds, C. C.

    1972-01-01

    Diffusion bonding studies have been conducted on IN 718, VM 350 and the dissimilar alloy couple, IN 718 to maraging steel. The experimental processing parameters critical to obtaining consistently good diffusion bonds between IN 718 and VM 350 were determined. Interrelationships between temperature, pressure and surface preparation were explored for short bending intervals under vacuum conditions. Successful joining was achieved for a range of bonding cycle temperatures, pressures and surface preparations. The strength of the weaker parent material was used as a criterion for a successful tensile test of the heat treated bond. Studies of VM-350/VM-350 couples in the as-bonded condition showed a greater yielding and failure outside the bond region.

  5. Minimal model for dynamic bonding in colloidal transient networks

    NASA Astrophysics Data System (ADS)

    Krinninger, Philip; Fortini, Andrea; Schmidt, Matthias

    2016-04-01

    We investigate a model for colloidal network formation using Brownian dynamics computer simulations. Hysteretic springs establish transient bonds between particles with repulsive cores. If a bonded pair of particles is separated by a cutoff distance, the spring vanishes and reappears only if the two particles contact each other. We present results for the bond lifetime distribution and investigate the properties of the van Hove dynamical two-body correlation function. The model displays crossover from fluidlike dynamics, via transient network formation, to arrested quasistatic network behavior.

  6. Dynamic fracture toughnesses of reaction-bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Kobayashi, A. S.; Emery, A. F.; Liaw, B. M.

    1983-01-01

    The room-temperature dynamic fracture response of reaction-bonded silicon nitride is investigated using a hybrid experimental-numerical procedure. In this procedure, experimentally determined crack velocities are utilized to drive a dynamic finite-element code or dynamic finite-difference code in its generation mode in order to extract numerically the dynamic stress intensity factor of the fracturing specimen. Results show that the dynamic fracture toughness vs crack velocity relations of the two reaction-bonded silicon nitrides do not follow the general trend in those relations of brittle polymers and steel. A definite slow crack velocity during the initial phase of dynamic crack propagation is observed in reaction-bonded silicon nitride, which results in a nonunique dynamic fracture toughness vs crack velocity relation. In addition, it is found that a propagating crack will continue to propagate under a static stress intensity factor substantially lower than K(IC).

  7. The fabrication of all-silicon micro gas chromatography columns using gold diffusion eutectic bonding

    NASA Astrophysics Data System (ADS)

    Radadia, A. D.; Salehi-Khojin, A.; Masel, R. I.; Shannon, M. A.

    2010-01-01

    Temperature programming of gas chromatography (GC) separation columns accelerates the elution rate of chemical species through the column, increasing the speed of analysis, and hence making it a favorable technique to speedup separations in microfabricated GCs (micro-GC). Temperature-programmed separations would be preferred in an all-silicon micro-column compared to a silicon-Pyrex® micro-column given that the thermal conductivity and diffusivity of silicon is 2 orders of magnitude higher than Pyrex®. This paper demonstrates how to fabricate all-silicon micro-columns that can withstand the temperature cycling required for temperature-programmed separations. The columns were sealed using a novel bonding process where they were first bonded using a gold eutectic bond, then annealed at 1100 °C to allow gold diffusion into silicon and form what we call a gold diffusion eutectic bond. The gold diffusion eutectic-bonded micro-columns when examined using scanning electron microscopy (SEM), scanning acoustic microscopy (SAM) and blade insertion techniques showed bonding strength comparable to the previously reported anodic-bonded columns. Gas chromatography-based methane injections were also used as a novel way to investigate proper sealing between channels. A unique methane elution peak at various carrier gas inlet pressures demonstrated the suitability of gold diffusion eutectic-bonded channels as micro-GC columns. The application of gold diffusion eutectic-bonded all-silicon micro-columns to temperature-programmed separations (120 °C min-1) was demonstrated with the near-baseline separation of n-C6 to n-C12 alkanes in 35 s.

  8. Diffusion bonding of beryllium to CuCrZr for ITER applications.

    SciTech Connect

    Cadden, Charles H.; Puskar, Joseph David; Goods, Steven Howard

    2008-08-01

    Low temperature diffusion bonding of beryllium to CuCrZr was investigated for fusion reactor applications. Hot isostatic pressing was accomplished using various metallic interlayers. Diffusion profiles suggest that titanium is effective at preventing Be-Cu intermetallics. Shear strength measurements suggest that acceptable results were obtained at temperatures as low as 540C.

  9. Diffusion Dynamics in a Tevatron Store

    SciTech Connect

    Sen, Tanaji; /Fermilab

    2011-09-01

    A separator failure during a store in 2002 led to a drop in luminosity, to increased emittance growth and to a drop in beam lifetimes. We show that a simple diffusion model can be used to explain the changes in beam lifetimes. Emittance growth of beams when they are in collision occurs due to many sources: beam-beam interactions, magnetic nonlinearities, intra-beam scattering, scattering off the residual gas and possibly others. The dynamics of the emittance growth is complicated and it depends strongly on the tunes. It is not always clear that the dynamics can be described by a diffusion process at all particle amplitudes in each beam. However in one store early in Run II, there was a sudden drop in a separator voltage in the Tevatron and the subsequent enhanced emittance growth and intensity lifetime drop could be described by a simple diffusion model. In this report we analyze the luminosity drop, compare the measured value with the expected drop and analyze the change in beam lifetimes. We show how a simple model of diffusive emittance growth and a change in physical aperture provides a quantitative explanation for the change in lifetimes.

  10. The use of in-situ dilatometry in diffusion bonding studies

    SciTech Connect

    Tilford, S.; Ashworth, M.A.; Jacobs, M.H.

    1996-12-31

    The paper presents the results obtained from a study of the fundamental processes involved in HIP diffusion bonding with particular reference to the use of an in-situ dilatometer. The paper describes the operation of the dilatometer itself and its practical application to diffusion bonding of materials. The dilatometer has been used as an aid to identify the onset of plastic deformation in conjunction with a series of HIP cycles interrupted at selected points in the process cycle. The effect of temperature and pressure on process kinetics has also been investigated. The degree of diffusion bonding and the shape of the residual porosity has been determined by metallographic examination of bond cross-sections and by SEM and topographical analyses of fracture surfaces.

  11. Diffusion bonding of 410 stainless steel to copper using a nickel interlayer

    SciTech Connect

    Sabetghadam, H.; Hanzaki, A. Zarei; Araee, A.

    2010-06-15

    In the present work, plates of stainless steel (grade 410) were joined to copper ones through a diffusion bonding process using a nickel interlayer at a temperature range of 800-950 deg. C. The bonding was performed through pressing the specimens under a 12-MPa compression load and a vacuum of 10{sup -4} torr for 60 min. The results indicated the formation of distinct diffusion zones at both Cu/Ni and Ni/SS interfaces during the diffusion bonding process. The thickness of the reaction layer in both interfaces was increased by raising the processing temperature. The phase constitutions and their related microstructure at the Cu/Ni and Ni/SS diffusion bonding interfaces were studied using optical microscopy, scanning electron microscopy, X-ray diffraction and elemental analyses through energy dispersive spectrometry. The resulted penetration profiles were examined using a calibrated electron probe micro-analyzer. The diffusion transition regions near the Cu/Ni and Ni/SS interfaces consist of a complete solid solution zone and of various phases based on (Fe, Ni), (Fe, Cr, Ni) and (Fe, Cr) chemical systems, respectively. The diffusion-bonded joint processed at 900 deg. C showed the maximum shear strength of about 145 MPa. The maximum hardness was obtained at the SS-Ni interface with a value of about 432 HV.

  12. Diffuse-dynamic multiparameter diffractometry: A review

    NASA Astrophysics Data System (ADS)

    Molodkin, V. B.; Shpak, A. P.; Kovalchuk, M. V.; Nosik, V. L.; Machulin, V. F.

    2010-12-01

    The results reported at the Conference on Application of X-Rays, Synchrotron Radiation, Neutrons, and Electrons in Nano-, Bio-, Information-, and Cognitive Technologies (RSNE-NBIC 2009) are briefly reviewed. This review is based on a cycle of studies [1-6] where a new method for studying the structure of real crystals—diffuse-dynamic multiparameter diffractometry (DDMD)—was proposed and substantiated.

  13. LAMMPS framework for dynamic bonding and an application modeling DNA

    NASA Astrophysics Data System (ADS)

    Svaneborg, Carsten

    2012-08-01

    We have extended the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) to support directional bonds and dynamic bonding. The framework supports stochastic formation of new bonds, breakage of existing bonds, and conversion between bond types. Bond formation can be controlled to limit the maximal functionality of a bead with respect to various bond types. Concomitant with the bond dynamics, angular and dihedral interactions are dynamically introduced between newly connected triplets and quartets of beads, where the interaction type is determined from the local pattern of bead and bond types. When breaking bonds, all angular and dihedral interactions involving broken bonds are removed. The framework allows chemical reactions to be modeled, and use it to simulate a simplistic, coarse-grained DNA model. The resulting DNA dynamics illustrates the power of the present framework. Catalogue identifier: AEME_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEME_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence No. of lines in distributed program, including test data, etc.: 2 243 491 No. of bytes in distributed program, including test data, etc.: 771 Distribution format: tar.gz Programming language: C++ Computer: Single and multiple core servers Operating system: Linux/Unix/Windows Has the code been vectorized or parallelized?: Yes. The code has been parallelized by the use of MPI directives. RAM: 1 Gb Classification: 16.11, 16.12 Nature of problem: Simulating coarse-grain models capable of chemistry e.g. DNA hybridization dynamics. Solution method: Extending LAMMPS to handle dynamic bonding and directional bonds. Unusual features: Allows bonds to be created and broken while angular and dihedral interactions are kept consistent. Additional comments: The distribution file for this program is approximately 36 Mbytes and therefore is not delivered directly

  14. Origin of diffusion in Hamiltonian dynamics

    SciTech Connect

    Benisti, D.; Escande, D.F.

    1997-05-01

    Without invoking any kind of {open_quotes}loss of memory{close_quotes} hypothesis, a diffusion equation is derived for the Hamiltonian dynamics defined by H=p{sup 2}/2+(K/4{pi}{sup 2}){summation}{sub m={minus}M}{sup M}cos(q{minus}mt+{var_phi}{sub m}), where the {var_phi}{sub m}s are fixed random phases. The key point of the derivation is a property of locality for the waves inducing transport. Using perturbation theory, it is shown that only waves whose phase velocities satisfy {vert_bar}m{minus}p(t){vert_bar}{le}{alpha}(K/4{pi}{sup 2}){sup 2/3}, where {alpha} is a constant, approximately 5, play a relevant role for the statistical properties of the dynamics. This implies scaling properties for the dynamics, and leads to the understanding of the origin of force decorrelation and of diffusion, and to the prediction of their occurrence in time. Moreover, the convergence of the diffusion coefficient to its quasilinear value when K{r_arrow}{infinity} is shown, and is interpreted as the consequence of the crossover between two regimes of decorrelation that are of different natures. {copyright} {ital 1997 American Institute of Physics.}

  15. Diffusion bonding of a superplastic Inconel 718SPF superalloy by electroless nickel plating

    SciTech Connect

    Yeh, M.S.; Chang, C.B.; Chuang, T.H.

    2000-02-01

    Although intimate contact can be obtained for diffusion bonding of a superplastic Inconel 718SPF superalloy under a low pressure of 7 MPa, the precipitates formed at the interface retarded achievement of a sound joint. The shear strength was only 41.5 MPa for an overlap length of 12 T (T = 1.3 mm, sheet thickness). The diffusion bondability of t his Inconel 718SPF superalloy was enhanced by electroless nickel plating. In this situation, the bonding shear strength increased to 70.4 MPa for the same overlap length of 12 T under the same bonding condition, regardless of the roughness of the surface to be bonded. Upon decreasing the overlap length from 12 to 6T, the bonding strength remained constant.

  16. Dynamics of the chemical bond: inter- and intra-molecular hydrogen bond.

    PubMed

    Arunan, Elangannan; Mani, Devendra

    2015-01-01

    In this discussion, we show that a static definition of a 'bond' is not viable by looking at a few examples for both inter- and intra-molecular hydrogen bonding. This follows from our earlier work (Goswami and Arunan, Phys. Chem. Chem. Phys. 2009, 11, 8974) which showed a practical way to differentiate 'hydrogen bonding' from 'van der Waals interaction'. We report results from ab initio and atoms in molecules theoretical calculations for a series of Rg∙∙∙HX complexes (Rg=He/Ne/Ar and X=F/Cl/Br) and ethane-1,2-diol. Results for the Rg∙∙∙HX/DX complexes show that Rg∙∙∙DX could have a 'deuterium bond' even when Rg∙∙∙HX is not 'hydrogen bonded', according to the practical criterion given by Goswami and Arunan. Results for ethane-1,2-diol show that an 'intra-molecular hydrogen bond' can appear during a normal mode vibration which is dominated by the OO stretching, though a 'bond' is not found in the equilibrium structure. This dynamical 'bond' formation may nevertheless be important in ensuring the continuity of electron density across a molecule. In the former case, a vibration 'breaks' an existing bond and in the later case, a vibration leads to 'bond' formation. In both cases, the molecule/complex stays bound irrespective of what happens to this 'hydrogen bond'. Both these cases push the borders on the recent IUPAC recommendation on hydrogen bonding (Arunan et al. Pure. Appl. Chem. 2011, 83 1637) and justify the inclusive nature of the definition. PMID:25627627

  17. The effect of hydrogen bonds on diffusion mechanism of water inside single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Qu; Wang, Qi; Liu, Ying-Chun; Wu, Tao

    2014-06-01

    Nanopores can serve as a molecule channel for transport of fluid, where water diffusion differs remarkably from that of simple particles. Hydrogen bonds play an essential role in the diffusion anomaly. Detailed investigations are carried out on the systems of rigid (6, 6), (7, 7), (8, 8), (9, 9), and (10, 10) armchair carbon nanotubes, solvated with Lennard-Jones water fluids. The role of hydrogen bonds is examined by diffusivity statistics and animation snapshots. It is found that in small (6,6) CNT, hydrogen bonds tend to aggregate water into a wire and lead to rapid collective drift. Confinement can stabilize the hydrogen bond of water molecules and enhance its lifetime. In relatively smaller CNTs, the diffusion mechanism could be altered by the temperature. Moreover, in larger nanotubes hydrogen bonding network allows the water to form regional concentrated clusters. This allows water fluid in extremely low density exhibit rather slow self-diffusion motion. This fundamental study attempts to provide insights in understanding nanoscale delivery system in aqueous solution.

  18. Dynamical Crossover in Hot Dense Water: The Hydrogen Bond Role.

    PubMed

    Ranieri, Umbertoluca; Giura, Paola; Gorelli, Federico A; Santoro, Mario; Klotz, Stefan; Gillet, Philippe; Paolasini, Luigi; Koza, Michael Marek; Bove, Livia E

    2016-09-01

    We investigate the terahertz dynamics of liquid H2O as a function of pressure along the 450 K isotherm, by coupled quasielastic neutron scattering and inelastic X-ray scattering experiments. The pressure dependence of the single-molecule dynamics is anomalous in terms of both microscopic translation and rotation. In particular, the Stokes-Einstein-Debye equations are shown to be violated in hot water compressed to the GPa regime. The dynamics of the hydrogen bond network is only weakly affected by the pressure variation. The time scale of the structural relaxation driving the collective dynamics increases by a mere factor of 2 along the investigated isotherm, and the structural relaxation strength turns out to be almost pressure independent. Our results point at the persistence of the hydrogen bond network in hot dense water up to ice VII crystallization, thus questioning the long-standing perception that hydrogen bonds are broken in liquid water under the effect of compression. PMID:27479235

  19. Diffusion bonding titanium to stainless steel using Nb/Cu/Ni multi-interlayer

    SciTech Connect

    Li Peng; Li Jinglong; Xiong Jiangtao; Zhang Fusheng; Raza, Syed Hamid

    2012-06-15

    By using Nb/Cu/Ni structure as multi-interlayer, diffusion bonding titanium to austenitic stainless steel has been conducted. The effects of bonding temperature and bonding time on the interfacial microstructure were analyzed by scanning electron microscope equipped with energy dispersive spectroscope, and the joint strength was evaluated by tensile test. The results showed that Ni atoms aggregated at the Cu-Nb interface, which promoted Cu solution in Nb. This phenomenon forms a Cu-Nb solution strengthening effect. However, such effect would decay by using long bonding time that dilutes Ni atom aggregation, or be suppressed by using high bonding temperature that embrittles the Cu-Nb interface due to the formation of large grown intermetallic compounds. The sound joint was obtained by promoted parameters as 850 Degree-Sign C for 30-45 min, under which a bonding strength around 300 MPa could be obtained. - Highlights: Black-Right-Pointing-Pointer Titanium was diffusion bonded to stainless steel using Nb/Cu/Ni multi-interlayer. Black-Right-Pointing-Pointer The effects of bonding parameters on microstructure and joint strength were studied. Black-Right-Pointing-Pointer Nickel aggregation promotes Cu solution in Nb which can strengthen the joint. Black-Right-Pointing-Pointer The sound joint with strength of around 300 MPa was obtained by promoted parameters.

  20. Dynamic Ordering and Phase Segregation in Hydrogen-Bonded Polymers.

    PubMed

    Chen, Senbin; Binder, Wolfgang H

    2016-07-19

    Hydrogen bonds (H-bonds) constitute highly relevant structural units of molecular self-assembly. They bridge biological and synthetic sciences, implementing dynamic properties into materials and molecules, not achieved via purely covalent bonds. Phase segregation on the other hand represents another important assembly principle, responsible for, e.g., cell compartimentation, membrane-formation, and microphase segregation in polymers. Yet, despite the expanding elegant synthetic strategies of supramolecular polymers, the investigation of phase behavior of macromolecules driven by H-bonding forces still remains in its infancy. Compared to phase segregation arising from covalently linked block copolymers, the generation of phase segregated nanostructures via supramolecular polymers facilitates the design of novel functional materials, such as those with stimuli-responsive, self-healing, and erasable-material properties. We here discuss the phase segregation of H-bonding polymers in both the solution and solid state, wherein the molecular recognition elements are based on multiple H-bonding moieties, such as thymine/2,6-diamino-pyridine (THY/DAP), thymine/diamino triazine (THY/DAT), and barbiturate/Hamilton wedge (Ba/HW) elements. The specific aggregation of a series of different H-bonding polymers in solution, both linear and dendritic polymers, bearing heterocomplementary H-bonding moieties are described, in particular focusing on the issue of phase segregation. The exploitation of H-bonded supramolecular dendrons with segregating polymer chains leads to the formation of three-phase segregated hierarchical micelles in solution, purely linking the components via H-bonds, in turn displaying a versatile spectrum of segregated morphologies. We also focus on segregation effects of H-bonded amorphous and crystalline polymers: thus the formation of nanostructures, such as disordered micelles and well-ordered body centered cubic (BCC) packed spheres from telechelic polymers

  1. Effect of Surface Preparation on CLAM/CLAM Hot Isostatic Pressing diffusion bonding joints

    NASA Astrophysics Data System (ADS)

    Li, C.; Huang, Q.; Zhang, P.

    2009-04-01

    Surface preparation is essential for the Hot Isostatic Pressing (HIP) diffusion bonding of RAFM steels. Hot Isostatic Pressing (HIP) diffusion bonding experiments on China Low Activation Martensitic (CLAM) steel was performed to study the effect of surface preparation. A few approaches such as hand lapping, dry-milling and grinding etc., were used to prepare the faying surfaces of the HIP joints. Different sealing techniques were used as well. The HIP parameters were 150 MPa/3 h/1150 °C. After post HIP heat treatment (PHHT), the tensile and Charpy impact tests were carried out. The results showed that hand lapping was not suitable to prepare the faying surfaces of HIP diffusion bonding specimens although the surface roughness by hand lapping was very low.

  2. Diffusion Bonding of Silicon Carbide for a Micro-Electro-Mechanical Systems Lean Direct Injector

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, James D.

    2006-01-01

    Robust approaches for joining silicon carbide (SiC) to silicon carbide sub-elements have been developed for a micro-electro-mechanical systems lean direct injector (MEMS LDI) application. The objective is to join SiC sub-elements to form a leak-free injector that has complex internal passages for the flow and mixing of fuel and air. Previous bonding technology relied upon silicate glass interlayers that were not uniform or leak free. In a newly developed joining approach, titanium foils and physically vapor deposited titanium coatings were used to form diffusion bonds between SiC materials during hot pressing. Microscopy results show the formation of well adhered diffusion bonds. Initial tests show that the bond strength is much higher than required for the component system. Benefits of the joining technology are fabrication of leak free joints with high temperature and mechanical capability.

  3. Joint design for improved fatigue life of diffusion-bonded box-stiffened panels

    NASA Technical Reports Server (NTRS)

    Davis, R. C.; Moses, P. L.; Kanenko, R. S.

    1985-01-01

    Simple photoelastic models were used to identify a cross-section geometry that would eliminate the severe stress concentrations at the bond line between box stiffeners diffusion bonded to a panel skin. Experimental fatigue-test data from titanium test specimens quantified the allowable stress in terms of cycle life for various joint geometries. It is shown that the effect of stress concentration is reduced and an acceptable fatigue life is achieved.

  4. A link between structure, diffusion and rotations of hydrogen bonding tracers in ionic liquids.

    PubMed

    Araque, Juan C; Daly, Ryan P; Margulis, Claudio J

    2016-05-28

    When solutes are small compared to the size of the ions in an ionic liquid, energetic heterogeneities associated with charge enhanced (stiff) and charge depleted (soft) nanoenvironments are sampled. In a recent article [J. C. Araque et al., J. Phys. Chem. B 119(23), 7015-7029 (2015)], we explored large deviations from Stokes-Einstein translational diffusion caused by such a heterogeneity. The current article is set to explore the effect of soft and stiff solvent environments (i.e., structure) on OH-bond rotations in the case of water and small alcohols in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (Im1,2 (+)NTf2 (-)). Is solute rotational dynamics heterogeneous? If so, are solute rotations and translations coupled in the sense that stiff and soft solvent environments hinder or speed up both types of dynamics? For the systems studied here, there appears to be a clear connection between translations, rotations, and stiff/soft solvent environments. We also discuss interesting asymmetries of the correlation between solutes with anions and cations. PMID:27250313

  5. A link between structure, diffusion and rotations of hydrogen bonding tracers in ionic liquids

    NASA Astrophysics Data System (ADS)

    Araque, Juan C.; Daly, Ryan P.; Margulis, Claudio J.

    2016-05-01

    When solutes are small compared to the size of the ions in an ionic liquid, energetic heterogeneities associated with charge enhanced (stiff) and charge depleted (soft) nanoenvironments are sampled. In a recent article [J. C. Araque et al., J. Phys. Chem. B 119(23), 7015-7029 (2015)], we explored large deviations from Stokes-Einstein translational diffusion caused by such a heterogeneity. The current article is set to explore the effect of soft and stiff solvent environments (i.e., structure) on OH-bond rotations in the case of water and small alcohols in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([" separators="Im1,2 + ][" separators="NTf2- ]). Is solute rotational dynamics heterogeneous? If so, are solute rotations and translations coupled in the sense that stiff and soft solvent environments hinder or speed up both types of dynamics? For the systems studied here, there appears to be a clear connection between translations, rotations, and stiff/soft solvent environments. We also discuss interesting asymmetries of the correlation between solutes with anions and cations.

  6. Reaction-diffusion analysis for one-step plasma etching and bonding of microfluidic devices

    SciTech Connect

    Rosso, Michel; Steijn, Volkert van; Smet, Louis C. P. M. de; Sudhoelter, Ernst J. R.; Kreutzer, Michiel T.; Kleijn, Chris R.

    2011-04-25

    A self-similar reaction front develops in reactive ion etching when the ions penetrate channels of shallow height h. This relates to the patterning of microchannels using a single-step etching and bonding, as described by Rhee et al. [Lab Chip 5, 102 (2005)]. Experimentally, we report that the front location scales as x{sub f{approx}}ht{sup 1/2} and the width is time-invariant and scales as {delta}{approx}h. Mean-field reaction-diffusion theory and Knudsen diffusion give a semiquantitative understanding of these observations and allow optimization of etching times in relation to bonding requirements.

  7. Galactic civilizations - Population dynamics and interstellar diffusion

    NASA Technical Reports Server (NTRS)

    Newman, W. I.; Sagan, C.

    1981-01-01

    A model is developed of the interstellar diffusion of galactic civilizations which takes into account the population dynamics of such civilizations. The problem is formulated in terms of potential theory, with a family of nonlinear partial differential and difference equations specifying population growth and diffusion for an organism with advantageous genes that undergoes random dispersal while increasing in population locally, and a population at zero population growth. In the case of nonlinear diffusion with growth and saturation, it is found that the colonization wavefront from the nearest independently arisen galactic civilization can have reached the earth only if its lifetime exceeds 2.6 million years, or 20 million years if discretization can be neglected. For zero population growth, the corresponding lifetime is 13 billion years. It is concluded that the earth is uncolonized not because interstellar spacefaring civilizations are rare, but because there are too many worlds to be colonized in the plausible colonization lifetime of nearby civilizations, and that there exist no very old galactic civilizations with a consistent policy of the conquest of inhabited worlds.

  8. Molecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers

    DOE PAGESBeta

    Greathouse, Jeffery A.; Cygan, Randall T.; Fredrich, Joanne T.; Jerauld, Gary R.

    2016-01-20

    In this study, the diffusion of water and ions in the interlayer region of smectite clay minerals represents a direct probe of the type and strength of clay–fluid interactions. Interlayer diffusion also represents an important link between molecular simulation and macroscopic experiments. Here we use molecular dynamics simulation to investigate trends in cation and water diffusion in montmorillonite interlayers, looking specifically at the effects of layer charge, interlayer cation and cation charge (sodium or calcium), water content, and temperature. For Na-montmorillonite, the largest increase in ion and water diffusion coefficients occurs between the one-layer and two-layer hydrates, corresponding to themore » transition from inner-sphere to outer-sphere surface complexes. Calculated activation energies for ion and water diffusion in Na-montmorillonite are similar to each other and to the water hydrogen bond energy, suggesting the breaking of water–water and water–clay hydrogen bonds as a likely mechanism for interlayer diffusion. A comparison of interlayer diffusion with that of bulk electrolyte solutions reveals a clear trend of decreasing diffusion coefficient with increasing electrolyte concentration, and in most cases the interlayer diffusion results are nearly coincident with the corresponding bulk solutions. Trends in electrical conductivities computed from the ion diffusion coefficients are also compared.« less

  9. Transient liquid phase diffusion bonding of Udimet 720 for Stirling power converter applications

    NASA Technical Reports Server (NTRS)

    Mittendorf, Donald L.; Baggenstoss, William G.

    1992-01-01

    Udimet 720 has been selected for use on Stirling power converters for space applications. Because Udimet 720 is generally considered susceptible to strain age cracking if traditional fusion welding is used, other joining methods are being considered. A process for transient liquid phase diffusion bonding of Udimet 720 has been theoretically developed in an effort to eliminate the strain age crack concern. This development has taken into account such variables as final grain size, joint homogenization, joint efficiency related to bonding aid material, bonding aid material application method, and thermal cycle.

  10. Nonequilibrium fluctuations for linear diffusion dynamics.

    PubMed

    Kwon, Chulan; Noh, Jae Dong; Park, Hyunggyu

    2011-06-01

    We present the theoretical study on nonequilibrium (NEQ) fluctuations for diffusion dynamics in high dimensions driven by a linear drift force. We consider a general situation in which NEQ is caused by two conditions: (i) drift force not derivable from a potential function, and (ii) diffusion matrix not proportional to the unit matrix, implying nonidentical and correlated multidimensional noise. The former is a well-known NEQ source and the latter can be realized in the presence of multiple heat reservoirs or multiple noise sources. We develop a statistical mechanical theory based on generalized thermodynamic quantities such as energy, work, and heat. The NEQ fluctuation theorems are reproduced successfully. We also find the time-dependent probability distribution function exactly as well as the NEQ work production distribution P(W) in terms of solutions of nonlinear differential equations. In addition, we compute low-order cumulants of the NEQ work production explicitly. In two dimensions, we carry out numerical simulations to check out our analytic results and also to get P(W). We find an interesting dynamic phase transition in the exponential tail shape of P(W), associated with a singularity found in solutions of the nonlinear differential equation. Finally, we discuss possible realizations in experiments. PMID:21797340

  11. Chemically bonded ceramic matrix composites: Densification and conversion to diffusion bonding

    SciTech Connect

    Johnson, B.R.; Guelguen, M.A.; Kriven, W.M.

    1995-10-01

    Chemically bonded ceramics appear to be a promising alternative route for near-net shape fabrication of multi-phase ceramic matrix composites (CMC`s). The hydraulic (and refractory) properties of fine mono-calcium aluminate (CaAl{sub 2}O{sub 4}) powders were used as the chemically bonding matrix phase, while calcia stabilized zirconia powders were the second phase material. Samples containing up to 70 wt% (55 vol%) zirconia have been successfully compacted and sintered. Various processing techniques were evaluated. Processing was optimized based on material properties, dilatometry and simultaneous thermal analysis (DTA/TGA). The physical characteristics of this novel CMC were characterized by hardness, density, and fracture toughness testing. Microstructures were evaluated by SEM and phase identification was verified using XRD.

  12. The Breathing Orbital Valence Bond Method in Diffusion Monte Carlo: C-H Bond Dissociation ofAcetylene

    SciTech Connect

    Domin, D.; Braida, Benoit; Lester Jr., William A.

    2008-05-30

    This study explores the use of breathing orbital valence bond (BOVB) trial wave functions for diffusion Monte Carlo (DMC). The approach is applied to the computation of the carbon-hydrogen (C-H) bond dissociation energy (BDE) of acetylene. DMC with BOVB trial wave functions yields a C-H BDE of 132.4 {+-} 0.9 kcal/mol, which is in excellent accord with the recommended experimental value of 132.8 {+-} 0.7 kcal/mol. These values are to be compared with DMC results obtained with single determinant trial wave functions, using Hartree-Fock orbitals (137.5 {+-} 0.5 kcal/mol) and local spin density (LDA) Kohn-Sham orbitals (135.6 {+-} 0.5 kcal/mol).

  13. Thermomechanical analysis of diffusion-bonded tungsten/EUROFER97 with a vanadium interlayer

    NASA Astrophysics Data System (ADS)

    Basuki, Widodo Widjaja; Dahm, Ralf; Aktaa, Jarir

    2014-12-01

    Earlier basic investigations revealed that diffusion bonding between tungsten and RAFM-steel at a relatively low temperature using a thin low-activation vanadium interlayer having a CTE between that of the parent materials can significantly reduce the residual stresses and produce defect-free bond interfaces. The joint has a high strength as well as sufficient ductility and toughness especially at the test temperature of about 550 °C. To apply this knowledge in fusion power plants, particularly in divertors, an acceptable lifetime of such structural joints is required, since they are exposed to high thermomechanical cyclic loading. To simulate the possible operational conditions of a He-cooled divertor, diffusion-bonded specimens are loaded by thermal cycling in a temperature range between 350 °C and 500 °C and a constant tensile stress based on the calculation of the internal pressure of the divertor thimble. The aim of this experimental work is to check the resistance of the diffusion-bonded W/EUROFER97 against ratcheting during thermomechanical loading and analyze the evolution of microstructures of the joint especially along the bond interfaces.

  14. Ion diffusion at the bonding interface of undoped YAG/Yb:YAG composite ceramics

    NASA Astrophysics Data System (ADS)

    Fujioka, Kana; Sugiyama, Akira; Fujimoto, Yasushi; Kawanaka, Junji; Miyanaga, Noriaki

    2015-08-01

    Cation diffusion across a boundary between ytterbium (Yb)-doped and undoped yttrium aluminum garnet (YAG) ceramics was examined by electron microprobe analysis (EPMA). Polished Yb:YAG and undoped YAG ceramics were bonded by surface treatment with argon fast atom beam, and then heat-treated at 1400 or 1600 °C for 50 h or at 1400 °C for 10 h under vacuum. We obtained EPMA mapping images of the bonded samples that clearly showed the bulk and grain-boundary diffusion of Y and Yb ions. The number density profiles showed that the total diffusion distances of Yb and Y ions were almost equal and approximately 2 and 15 μm at 1400 and 1600 °C, respectively, and the dependence of diffusion distance on heating time was weak. The diffusion curves were well modeled by Harrison type B kinetics including bulk and grain-boundary diffusion. In addition, it was found that Si ions added to the samples as a sintering aid might be segregated at the grain boundary by heat treatment, and diffused only along grain boundaries.

  15. The influence of hydrogen bonding on the diffusion behaviour of diastereoisomeric tripeptide derivatives

    NASA Astrophysics Data System (ADS)

    Gröbel, Angela; Plass, Monika

    1999-05-01

    The diffusion behaviour of the diastereoisomers of Z-Ala-Phe-Val-OMe and Z-Ala-Leu-Val-OMe was studied in solutions of carbon tetrachloride and toluene. The capillary method according to Anderson was used for the diffusion experiment. The loss of the concentration of the tripeptide derivatives in the course of the time was monitored by infrared spectroscopy using their NH stretching vibrations. In general, the diffusion rate of the substances in toluene was 50-100 times larger than in carbon tetrachloride. Also the diastereoisomers differ in their diffusion properties. In carbon tetrachloride this effect is very small but still significant. It can be explained by the strong intramolecular hydrogen bonding of the peptides which leads to C 5 and C 7 rings. In toluene the different configuration of the compounds whose changes are connected with the change in their polar properties are responsible for the observed diffusion rates. The diffusion rate will be discussed in terms of equilibrium constants describing the intramolecular association behaviour and molecular descriptors of the tripeptide derivatives obtained from HPLC measurements in polar solvents. It will be shown that the diffusion rate correlates with the McGowan volume Vx and in part with the effective hydrogen bond acidity ∑ α2H.

  16. Repeatable mechanochemical activation of dynamic covalent bonds in thermoplastic elastomers.

    PubMed

    Imato, Keiichi; Kanehara, Takeshi; Nojima, Shiki; Ohishi, Tomoyuki; Higaki, Yuji; Takahara, Atsushi; Otsuka, Hideyuki

    2016-08-18

    Repeated mechanical scission and recombination of dynamic covalent bonds incorporated in segmented polyurethane elastomers are demonstrated by utilizing a diarylbibenzofuranone-based mechanophore and by the design of the segmented polymer structures. The repeated mechanochemical reactions can accompany clear colouration and simultaneous fading. PMID:27424868

  17. Modeling of hydrophilic wafer bonding by molecular dynamics simulations

    SciTech Connect

    Litton, David A.; Garofalini, Stephen H.

    2001-06-01

    The role of moisture in hydrophilic wafer bonding was modeled using molecular dynamics computer simulations of interface formation between amorphous silica surfaces. Three different surface treatments were used in order to determine the effect of moisture on the formation of siloxane (Si{endash}O{endash}Si) bridges across the interface at two temperatures. The three surface conditions that were studied were: (a) wet interfaces containing 1 monolayer of water adsorbed at the interface (based on the room temperature bulk density of water), (b) hydroxylated interfaces with concentrations of 3{endash}5 silanols/nm2 on each surface and no excess water molecules initially in the system, and (c) pristine interfaces that had only Si and O and no water or H present. The surfaces were slowly brought together and siloxane bond formation was monitored. In the pristine interfaces, siloxane bridges formed across the interface by the coalescence of various defect species in each surface. A bimodal distribution of siloxane bond angles formed during the first 2.5 Aa of approach after the first siloxane bond was formed. These bond angles were much lower than and higher than the bulk average, indicating the formation of less stable bonds. The hydroxylated (with no excess water) and wet surfaces showed a more uniform distribution of siloxane bond angles, with no highly reactive small bond angles forming. The presence of water molecules enhanced H-bond formation across the interface, but trapped water molecules inhibited formation of the strong siloxane bridges across the interface. In real systems, high temperatures are required to remove this trapped moisture. {copyright} 2001 American Institute of Physics.

  18. Ambient-temperature creep failure of silver-aided diffusion bonds between steel

    SciTech Connect

    Henshall, G.A.; Kassner, M.E.; Rosen, R.S.

    1990-01-15

    It has long been known that thin (e.g., 1 {mu}m {minus} 1 mm) interlayer bonds between higher strength base materials may have high ultimate tensile or rupture strengths despite the relatively low strength of the filler metal. The high strength of the joint is due to the mechanical constraint provided by the stronger base metals which restricts transverse contraction of the interlayer. The constraint produces a triaxial state or stress and reduces the effective stress, thus reducing the tendency for the interlayer to plastically deform. Plasticity of the base metal reduces the constraint and decreases the strength of the bond. The purpose of this work was twofold. First, the validity of the base-metal- accelerated'' delayed-failure theory for bonds utilizing plastic base metals was checked. Creep-rupture tests were performed on diffusion-bonded specimens using silver interlayers deposited by planar-magnetron sputtering (PMS), a physical vapor-deposition process. The PMS process was preferred because of the superior quality and strength of the bond and because this modern low-temperature joining process is increasingly utilized for joining ceramic and composite materials. The role of plastic base metals in the fracture process was further investigated by conducting tensile-rupture tests of diffusion bonds made with stainless steel base metals of different yield strengths, and therefore different creep rates. The second purpose was to determine whether delayed failure occurs in interlayer bonds between elastic base metals, which do not creep over the range of applied stresses. This question is particularly relevant since many alloys, ceramics and composites fall within this category. Again, ambient and near-ambient temperature creep-rupture tests were performed at a variety of stresses below the UTS of the bond. 25 refs., 7 figs.

  19. Hidden multiple bond effects in dynamic force spectroscopy.

    PubMed

    Getfert, Sebastian; Reimann, Peter

    2012-03-01

    In dynamic force spectroscopy, a (bio-)molecular complex is subjected to a steadily increasing force until the chemical bond breaks. Repeating the same experiment many times results in a broad distribution of rupture forces, whose quantitative interpretation represents a formidable theoretical challenge. In this study we address the situation that more than a single molecular bond is involved in one experimental run, giving rise to multiple rupture events that are even more difficult to analyze and thus are usually eliminated as far as possible from the further evaluation of the experimental data. We develop and numerically solve a detailed model of a complete dynamic force spectroscopy experiment including a possible clustering of molecules on the substrate surface, the formation of bonds, their dissociation under load, and the postprocessing of the force extension curves. We show that the data, remaining after elimination of obvious multiple rupture events, may still contain a considerable number of hidden multiple bonds, which are experimentally indistinguishable from true single bonds, but which have considerable effects on the resulting rupture force statistics and its consistent theoretical interpretation. PMID:22404941

  20. Hidden Multiple Bond Effects in Dynamic Force Spectroscopy

    PubMed Central

    Getfert, Sebastian; Reimann, Peter

    2012-01-01

    In dynamic force spectroscopy, a (bio-)molecular complex is subjected to a steadily increasing force until the chemical bond breaks. Repeating the same experiment many times results in a broad distribution of rupture forces, whose quantitative interpretation represents a formidable theoretical challenge. In this study we address the situation that more than a single molecular bond is involved in one experimental run, giving rise to multiple rupture events that are even more difficult to analyze and thus are usually eliminated as far as possible from the further evaluation of the experimental data. We develop and numerically solve a detailed model of a complete dynamic force spectroscopy experiment including a possible clustering of molecules on the substrate surface, the formation of bonds, their dissociation under load, and the postprocessing of the force extension curves. We show that the data, remaining after elimination of obvious multiple rupture events, may still contain a considerable number of hidden multiple bonds, which are experimentally indistinguishable from true single bonds, but which have considerable effects on the resulting rupture force statistics and its consistent theoretical interpretation. PMID:22404941

  1. Numerical study of diffusion on a random-mixed-bond lattice.

    PubMed

    Holder, Devora; Scher, Harvey; Berkowitz, Brian

    2008-03-01

    Diffusion on lattices with random mixed bonds in two and three dimensions is reconsidered using a random walk (RW) algorithm, which is equivalent to the master equation. In this numerical study the main focus is on the simple case of two different transition rates W(1),W(2) along bonds between sites. Although analysis of diffusion and transport on this type of disordered medium, especially for the case of one-bond pure percolation (i.e., W(1)=0 ), comprises a sizable subliterature, we exhibit additional basic results for the two-bond case: When the probability p of W(2) replacing W(1) in a lattice of W(1) bonds is below the percolation threshold p(c) , the mean square displacement r(2) is a nonlinear function of time t . A best fit to the lnr[(2) vs ln t plot is a straight line with the value of the slope varying with p,Delta,d , where Delta identical with W(2)/W(1) and d is the dimension, i.e., r(2) proportional, variant t(1+eta(p,Delta,d)) with eta>0 for Delta>1 . In other terms, all the diffusion (D identical with(r)(2)/2t proportional, variant t(eta)) is anomalous superdiffusion for p1 for d=2,3 . Previous work in the literature for d=2 with a different RW algorithm established an effective diffusion constant D(eff) , which was shown to scale as (p(c)-p)(1/2) . However, the anomalous nature (time dependence) of D(t) becomes manifest with an expanded regime of t , increased range of Delta , and the use of our algorithm. The nature of the superdiffusion is related to the percolation cluster geometry and Lévy walks. PMID:18517341

  2. Diffusion of Particle in Hyaluronan Solution, a Brownian Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Takasu, Masako; Tomita, Jungo

    2004-04-01

    Diffusion of a particle in hyaluronan solution is investigated using Brownian dynamics simulation. The slowing down of diffusion is observed, in accordance with the experimental results. The temperature dependence of the diffusion is calculated, and a turnover is obtained when the temperature is increased.

  3. Uniaxial diffusion bonding of CLAM/CLAM steels: Microstructure and mechanical performance

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaosheng; Liu, Yongchang; Yu, Liming; Liu, Chenxi; Sui, Guofa; Yang, Jianguo

    2015-06-01

    By performing a two-step uniaxial diffusion bonding, the reliable joining between CLAM/CLAM steels has been attained. The microstructures at the vicinity of the joint region and in base material were respectively investigated through OM, SEM and TEM. The joint interface was integrated, and no microstructural defects were observed. In the base material, small amount of austenite is retained as thin films between martensite laths, which was suggested to be related to the compressive deformation in diffusion bonding. As a candidate structural material for the first wall in fusion energy systems, the radiation resistance of CLAM steel would be deteriorated by the retained austenite. Tensile and impact tests were carried out to assess the reliability of the joints subjected to post bond heat treatment. All the tensile specimens fractured in the base CLAM steel, meaning the good joining between CLAM steels. However, due to the low impact absorbed energy of the joints, efforts should still be made to optimize the bonding technology and the post bond heat treatment further.

  4. Anomalous self-diffusion and sticky Rouse dynamics in associative protein hydrogels.

    PubMed

    Tang, Shengchang; Wang, Muzhou; Olsen, Bradley D

    2015-03-25

    Natural and synthetic materials based on associating polymers possess diverse mechanical behavior, transport properties and responsiveness to external stimuli. Although much is known about their dynamics on the molecular and macroscopic level, knowledge of self-diffusive dynamics of the network-forming constituents remains limited. Using forced Rayleigh scattering, anomalous self-diffusion is observed in model associating protein hydrogels originating from the interconversion between species that diffuse in both the molecular and associated state. The diffusion can be quantitatively modeled using a two-state model for polymers in the gel, where diffusivity in the associated state is critical to the super diffusive behavior. The dissociation time from bulk rheology measurements was 2-3 orders of magnitude smaller than the one measured by diffusion, because the former characterizes submolecular dissociation dynamics, whereas the latter depicts single protein molecules completely disengaging from the network. Rheological data also show a sticky Rouse-like relaxation at long times due to collective relaxation of large groups of proteins, suggesting mobility of associated molecules. This study experimentally demonstrates a hierarchy of relaxation processes in associating polymer networks, and it is anticipated that the results can be generalized to other associative systems to better understand the relationship of dynamics among sticky bonds, single molecules, and the entire network. PMID:25764061

  5. Diffusion Bonding Beryllium to Reduced Activation Ferritic Martensitic Steel: Development of Processes and Techniques

    NASA Astrophysics Data System (ADS)

    Hunt, Ryan Matthew

    Only a few materials are suitable to act as armor layers against the thermal and particle loads produced by magnetically confined fusion. These candidates include beryllium, tungsten, and carbon fiber composites. The armor layers must be joined to the plasma facing components with high strength bonds that can withstand the thermal stresses resulting from differential thermal expansion. While specific joints have been developed for use in ITER (an experimental reactor in France), including beryllium to CuCrZr as well as tungsten to stainless steel interfaces, joints specific to commercially relevant fusion reactors are not as well established. Commercial first wall components will likely be constructed front Reduced Activation Ferritic Martensitic (RAFM) steel, which will need to be coating with one of the three candidate materials. Of the candidates, beryllium is particularly difficult to bond, because it reacts during bonding with most elements to form brittle intermetallic compounds. This brittleness is unacceptable, as it can lead to interface crack propagation and delamination of the armor layer. I have attempted to overcome the brittle behavior of beryllium bonds by developing a diffusion bonding process of beryllium to RAFM steel that achieves a higher degree of ductility. This process utilized two bonding aids to achieve a robust bond: a. copper interlayer to add ductility to the joint, and a titanium interlayer to prevent beryllium from forming unwanted Be-Cu intermetallics. In addition, I conducted a series of numerical simulations to predict the effect of these bonding aids on the residual stress in the interface. Lastly, I fabricated and characterized beryllium to ferritic steel diffusion bonds using various bonding parameters and bonding aids. Through the above research, I developed a process to diffusion bond beryllium to ferritic steel with a 150 M Pa tensile strength and 168 M Pa shear strength. This strength was achieved using a Hot Isostatic

  6. Restoration of rhythmicity in diffusively coupled dynamical networks

    PubMed Central

    Zou, Wei; Senthilkumar, D. V.; Nagao, Raphael; Kiss, István Z.; Tang, Yang; Koseska, Aneta; Duan, Jinqiao; Kurths, Jürgen

    2015-01-01

    Oscillatory behaviour is essential for proper functioning of various physical and biological processes. However, diffusive coupling is capable of suppressing intrinsic oscillations due to the manifestation of the phenomena of amplitude and oscillation deaths. Here we present a scheme to revoke these quenching states in diffusively coupled dynamical networks, and demonstrate the approach in experiments with an oscillatory chemical reaction. By introducing a simple feedback factor in the diffusive coupling, we show that the stable (in)homogeneous steady states can be effectively destabilized to restore dynamic behaviours of coupled systems. Even a feeble deviation from the normal diffusive coupling drastically shrinks the death regions in the parameter space. The generality of our method is corroborated in diverse non-linear systems of diffusively coupled paradigmatic models with various death scenarios. Our study provides a general framework to strengthen the robustness of dynamic activity in diffusively coupled dynamical networks. PMID:26173555

  7. Restoration of rhythmicity in diffusively coupled dynamical networks.

    PubMed

    Zou, Wei; Senthilkumar, D V; Nagao, Raphael; Kiss, István Z; Tang, Yang; Koseska, Aneta; Duan, Jinqiao; Kurths, Jürgen

    2015-01-01

    Oscillatory behaviour is essential for proper functioning of various physical and biological processes. However, diffusive coupling is capable of suppressing intrinsic oscillations due to the manifestation of the phenomena of amplitude and oscillation deaths. Here we present a scheme to revoke these quenching states in diffusively coupled dynamical networks, and demonstrate the approach in experiments with an oscillatory chemical reaction. By introducing a simple feedback factor in the diffusive coupling, we show that the stable (in)homogeneous steady states can be effectively destabilized to restore dynamic behaviours of coupled systems. Even a feeble deviation from the normal diffusive coupling drastically shrinks the death regions in the parameter space. The generality of our method is corroborated in diverse non-linear systems of diffusively coupled paradigmatic models with various death scenarios. Our study provides a general framework to strengthen the robustness of dynamic activity in diffusively coupled dynamical networks. PMID:26173555

  8. Restoration of rhythmicity in diffusively coupled dynamical networks

    NASA Astrophysics Data System (ADS)

    Zou, Wei; Senthilkumar, D. V.; Nagao, Raphael; Kiss, István Z.; Tang, Yang; Koseska, Aneta; Duan, Jinqiao; Kurths, Jürgen

    2015-07-01

    Oscillatory behaviour is essential for proper functioning of various physical and biological processes. However, diffusive coupling is capable of suppressing intrinsic oscillations due to the manifestation of the phenomena of amplitude and oscillation deaths. Here we present a scheme to revoke these quenching states in diffusively coupled dynamical networks, and demonstrate the approach in experiments with an oscillatory chemical reaction. By introducing a simple feedback factor in the diffusive coupling, we show that the stable (in)homogeneous steady states can be effectively destabilized to restore dynamic behaviours of coupled systems. Even a feeble deviation from the normal diffusive coupling drastically shrinks the death regions in the parameter space. The generality of our method is corroborated in diverse non-linear systems of diffusively coupled paradigmatic models with various death scenarios. Our study provides a general framework to strengthen the robustness of dynamic activity in diffusively coupled dynamical networks.

  9. Dynamic heterogeneity in two-dimensional supercooled liquids: comparison of bond-breaking and bond-orientational correlations

    NASA Astrophysics Data System (ADS)

    Flenner, Elijah; Szamel, Grzegorz

    2016-07-01

    We compare the spatial correlations of bond-breaking events and bond-orientational relaxation in a model two-dimensional liquid undergoing Newtonian dynamics. We find that the relaxation time of the bond-breaking correlation function is much longer than the relaxation time of the bond-orientational correlation function and self-intermediate scattering function. However, the relaxation time of the bond-orientational correlation function increases faster with decreasing temperature than the relaxation time of the bond-breaking correlation function and the self-intermediate scattering function. Moreover, the dynamic correlation length that characterizes the size of correlated bond-orientational relaxation grows faster with decreasing temperature than the dynamic correlation length that characterizes the size of correlated bond-breaking events. We also examine the ensemble-dependent and ensemble-independent dynamic susceptibilities for both bond-breaking correlations and bond-orientational correlations. We find that for both correlations, the ensemble-dependent and ensemble-independent susceptibilities exhibit a maximum at nearly the same time, and this maximum occurs at a time slightly shorter than the peak position of the dynamic correlation length.

  10. Dynamic Nuclear Polarization as Kinetically Constrained Diffusion

    NASA Astrophysics Data System (ADS)

    Karabanov, A.; Wiśniewski, D.; Lesanovsky, I.; Köckenberger, W.

    2015-07-01

    Dynamic nuclear polarization (DNP) is a promising strategy for generating a significantly increased nonthermal spin polarization in nuclear magnetic resonance (NMR) and its applications that range from medicine diagnostics to material science. Being a genuine nonequilibrium effect, DNP circumvents the need for strong magnetic fields. However, despite intense research, a detailed theoretical understanding of the precise mechanism behind DNP is currently lacking. We address this issue by focusing on a simple instance of DNP—so-called solid effect DNP—which is formulated in terms of a quantum central spin model where a single electron is coupled to an ensemble of interacting nuclei. We show analytically that the nonequilibrium buildup of polarization heavily relies on a mechanism which can be interpreted as kinetically constrained diffusion. Beyond revealing this insight, our approach furthermore permits numerical studies of ensembles containing thousands of spins that are typically intractable when formulated in terms of a quantum master equation. We believe that this represents an important step forward in the quest of harnessing nonequilibrium many-body quantum physics for technological applications.

  11. Bonding dynamics of compliant microbump during ultrasonic bonding investigated by using Si strain gauge

    NASA Astrophysics Data System (ADS)

    Iwanabe, Keiichiro; Nakadozono, Kenichi; Senda, Yousuke; Asano, Tanemasa

    2016-06-01

    The bonding dynamics of a cone-shaped microbump during ultrasonic bonding are investigated by in situ measurements of the strain generated in a substrate using a piezoresistance strain sensor. The strain sensor is composed of a pair of p- and n-type piezoresistance gauges to extract strain components in the ultrasonic vibration along the plane parallel to the substrate surface and along the direction perpendicular to the surface. Flip-chip bonding is performed at room-temperature. The time evolution of the strain generated in the substrate according to the load-up of pressing force and application of ultrasonic vibration is clearly detected. The softening of the bump metal during the application of ultrasonic vibration is clearly observed. Results of a comparative study between the bonding of a cone-shaped microbump and that of a flat-top microbump suggest mechanical stress concentration near the top end of the cone-shaped microbump, which results in the transformation of the crystal texture of the bump from grains to fine crystallites.

  12. Influence of silicon dangling bonds on germanium thermal diffusion within SiO{sub 2} glass

    SciTech Connect

    Barba, D.; Martin, F.; Ross, G. G.; Cai, R. S.; Wang, Y. Q.; Demarche, J.; Terwagne, G.; Rosei, F.

    2014-03-17

    We study the influence of silicon dangling bonds on germanium thermal diffusion within silicon oxide and fused silica substrates heated to high temperatures. By using scanning electron microscopy and Rutherford backscattering spectroscopy, we determine that the lower mobility of Ge found within SiO{sub 2}/Si films can be associated with the presence of unsaturated SiO{sub x} chemical bonds. Comparative measurements obtained by x-ray photoelectron spectroscopy show that 10% of silicon dangling bonds can reduce Ge desorption by 80%. Thus, the decrease of the silicon oxidation state yields a greater thermal stability of Ge inside SiO{sub 2} glass, which could enable to considerably extend the performance of Ge-based devices above 1300 K.

  13. TEM Observation of the Ti Interlayer Between SiC Substrates During Diffusion Bonding

    NASA Technical Reports Server (NTRS)

    Tsuda, Hiroshi; Mori, Shigeo; Halbig, Michael C.; Singh, Mori

    2012-01-01

    Diffusion bonding was carried out to join SiC to SiC substrates using titanium interlayers. In this study, 10 m and 20 m thick physical vapor deposited (PVD) Ti surface coatings, and 10 and 20 m thick Ti foils were used. Diffusion bonding was performed at 1250 C for PVD Ti coatings and 1200 C for Ti foil. This study investigates the microstructures of the phases formed during diffusion bonding through TEM and selected-area diffraction analysis of a sample prepared with an FIB, which allows samples to be taken from the reacted area. In all samples, Ti3SiC2, Ti5Si3Cx and TiSi2 phases were identified. In addition, TiC and unknown phases also appeared in the samples in which Ti foils were used as interlayers. Furthermore, Ti3SiC2 phases show high concentration and Ti5Si3Cx formed less when samples were processed at a higher temperature and thinner interlayer samples were used. It appears that the formation of microcracks is caused by the presence of intermediate phase Ti5Si3Cx, which has anisotropic thermal expansion, and by the presence of an unidentified Ti-Si-C ternary phase with relatively low Si content.

  14. Deformation of diffusion-bonded bi-PST and directionally solidified crystals of TiAl

    SciTech Connect

    Kishida, K.; Johnson, D.R.; Masuda, Y.; Inui, H.; Yamaguchi, M.; Shimada, Y.

    1997-12-31

    With a data base now available on the microstructural characteristics and the deformation, fracture and macroscopic flow behavior of polysynthetically twinned (PST) crystals of {gamma}/{alpha}{sub 2} TiAl-base alloys, an approach to achieve a good combination of strength, ductility and toughness in {gamma}/{alpha}{sub 2} TiAl-base alloys was proposed using directional solidification (DS) techniques to produce a columnar grain material with the lamellar orientation aligned parallel to the growth direction. Such alignment of the lamellar microstructure was recently accomplished in {gamma}/{alpha}{sub 2} TiAl-base alloys of near equiatomic compositions using an appropriately oriented seed crystal from the Ti-Al-Si system. At the same time, bi-PST crystals, each containing a planar boundary parallel to the loading axis were prepared by directional solidification and diffusion bonding of two PST crystals. Such bi-PST crystals were deformed in tension at room temperature and their deformation behavior was examined in terms of the compatibility requirements imposed at the grain boundary and the interaction of the two component PST crystals. In this paper, (i) the current status of the DS processing efforts, (ii) some result of microscopic characterization of grain boundaries in diffusion bonded bi-PST crystals and (iii) results of deformation experiments of bi-PST crystals prepared by DS processing and diffusion bonding, will be reported.

  15. Investigations of diffusion-bonded stacked GaAs for infrared quasi-phasematched parametric oscillation

    SciTech Connect

    Gordon, L.A.; Eckardt, R.C.; Byer, R.L.

    1994-12-31

    The authors are developing the diffusion-bonded stacked (DBS) structure for quasi-phasematched interactions to meet the need for high power nonlinear conversions in the infrared. In the preliminary investigations, they have compared optical and thermal properties of some potential DBS materials. Theoretical projections of device performance were compared for DBS GaAs and ZnSe and birefringent crystals ZnGeP{sub 2} and AgGaSe{sub 2} for both second-harmonic generation (SHG) of 10-{micro}m radiation and 2-{micro}m pumped optical parametric oscillators (OPO`s). They are refining bonding processes for GaAs and have initial diffusion bonding results for ZnSe. They have fabricated and tested DBS GaAs structures for SHG, demonstrating that the crystal orientation is conserved during the bonding process, and that the nonlinear generation of the individual layers sums coherently. These studies indicate the DBS materials have potential for application in high-average-power OPO`s.

  16. Signatures of bond formation and bond scission dynamics in dissociative electron attachment to methane.

    PubMed

    Douguet, N; Slaughter, D S; Adaniya, H; Belkacem, A; Orel, A E; Rescigno, T N

    2015-10-14

    We present a combined experimental and theoretical investigation of the dynamics and angular dependence of dissociative electron attachment to methane. We show that a triply degenerate (T2) Feshbach resonance is responsible for the broad 10 eV dissociation peak in methane. This resonance alone is shown to correlate asymptotically to the various dissociation channels observed experimentally. The molecular-frame entrance amplitude for electron attachment is calculated for each component of the threefold degenerate resonance. By investigating the topology of the anion potential energy surfaces, we deduce the main pathways to two- and three-body breakup channels involving both bond scission and bond formation. The computed fragment angular distributions reproduce the main trends of the experimental measurements. PMID:26371546

  17. Diffusion ordered spectroscopy for resolution of double bonded cis, trans-isomers

    NASA Astrophysics Data System (ADS)

    Chaudhari, Sachin Rama; Suryaprakash, N.

    2012-06-01

    NMR spectroscopic separation of double bonded cis- and trans-isomers, that have different molecular shapes but identical mass have been carried out using Diffusion Ordered Spectroscopy (DOSY). The mixtures of fumaric acid and maleic acid, that have similar hydrodynamic radii, have resolved been 'on the basis of their diffusion coefficients arising due to their different tendencies to associate with micelles or reverse micelles. Sodium dodecyl sulfate (SDS) and Dioctyl sulfosuccinate sodium salt (AOT) have been used as the media to mimic the chromatographic conditions, modify the average mobility and to achieve differential diffusion rates. The best separation of the components has been achieved by Dioctyl sulfosuccinate sodium salt (AOT) in D2O solution.

  18. Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer

    SciTech Connect

    Atasoy, Evren; Kahraman, Nizamettin

    2008-10-15

    Titanium and low carbon steel plates were joined through diffusion bonding using a silver interlayer at various temperatures for various diffusion times. In order to determine the strength of the resulting joints, tensile-shear tests and hardness tests were applied. Additionally, optical, scanning electron microscopy examinations and energy dispersive spectrometry elemental analyses were carried out to determine the interface properties of the joint. The work showed that the highest interface strength was obtained for the specimens joined at 850 deg. C for 90 min. It was seen from the hardness results that the highest hardness value was obtained for the interlayer material and the hardness values on the both sides of the interlayer decreased gradually as the distance from the joint increased. In energy dispersive spectrometry analyses, it was seen that the amount of silver in the interlayer decreased markedly depending on the temperature rise. In addition, increasing diffusion time also caused some slight decrease in the amount of silver.

  19. Microstructural Characteristics of HIP-bonded Monolithic Nuclear Fuels with a Diffusion Barrier

    SciTech Connect

    Jan-Fong Jue; Dennis D. Keiser, Jr.; Cynthia R. Breckenridge; Glenn A. Moore; Mitchell K. Meyer

    2014-05-01

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative (GTRI) is developing an advanced monolithic fuel to convert US high performance research reactors to low-enriched uranium. Hot-isostatic-press bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U–Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between fuel meat, cladding, and diffusion barrier, as well as U–10Mo fuel meat and Al–6061 cladding were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are • A typical Zr diffusion barrier of thickness 25 µm • Transverse cross section that exhibits relatively equiaxed grains with an average grain diameter of 10 µm • Chemical banding, in some areas more than 100 µm in length, that is very pronounced in longitudinal (i.e., rolling) direction with Mo concentration varying from 7–13 wt% • Decomposed areas containing plate-shaped low-Mo phase • A typical Zr/cladding interaction layer of thickness 1-2 µm • A visible UZr2 bearing layer of thickness 1-2 µm • Mo-rich precipitates (mainly Mo2Zr, forming a layer in some areas) followed by a Mo-depleted sub-layer between the visible UZr2-bearing layer and the U–Mo matrix • No excessive interaction between cladding and the uncoated fuel edge • Cladding-to-cladding bonding that exhibits no cracks or porosity with second phases high in Mg, Si, and O decorating the bond line. • Some of these attributes might be critical to the

  20. Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier

    NASA Astrophysics Data System (ADS)

    Jue, Jan-Fong; Keiser, Dennis D.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.

    2014-05-01

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative is developing an advanced monolithic fuel to convert US high-performance research reactors to low-enriched uranium. Hot-isostatic-press (HIP) bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U-Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between the fuel meat, the cladding, and the diffusion barrier, as well as between the U-10Mo fuel meat and the Al-6061 cladding, were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are: diffusion barrier with a thickness of 25 μm. A transverse cross section that exhibits relatively equiaxed grains with an average grain diameter of 10 μm. Chemical banding, in some areas more than 100 μm in length, that is very pronounced in longitudinal (i.e., rolling) direction with Mo concentration varying from 7-13 wt.%. Decomposed areas containing plate-shaped low-Mo phase. A typical Zr/cladding interaction layer with a thickness of 1-2 μm. A visible UZr2 bearing layer with a thickness of 1-2 μm. Mo-rich precipitates (mainly Mo2Zr, forming a layer in some areas) followed by a Mo-depleted sub-layer between the visible UZr2-bearing layer and the U-Mo matrix. No excessive interaction between cladding and the uncoated fuel edge. Cladding-to-cladding bonding that exhibits no cracks or porosity with second phases high in Mg, Si, and O decorating the bond line. Some of these attributes might be

  1. Hydrogen bonding, structure, and dynamics of benzonitrile-water

    NASA Astrophysics Data System (ADS)

    Melandri, Sonia; Consalvo, Daniela; Caminati, Walther; Favero, Paolo G.

    1999-09-01

    Rotational transitions with high quantum numbers J and K of the 1:1 complex of benzonitrile with H2O and D2O have been investigated in the frequency range 60-78 GHz with the free jet absorption microwave technique to get detailed information on the unusual hydrogen bond and on the dynamics of the large amplitude motions of the water moiety. With respect to previous microwave studies [V. Storm, D. Consalvo, and H. Dreizler, Z. Naturforsch. A 52, 293 (1997); R. M. Helm, H.-P. Vogel, H. J. Neusser, V. Storm, D. Consalvo, and H. Dreizler, 52, 655 (1997); V. Storm, H. Dreizler, and D. Consalvo, Chem. Phys. 239, 109 (1998)] the position of the water oxygen has been confirmed and the planar configuration of the complex has been determined. The distance of the oxygen atom to the ortho hydrogen is 2.48 Å, the angle to the ortho C-H bond is 144° and the angle between the free hydrogen atom of water with the same C-H bond is 164°. A coupled analysis of the 0+ and 0- states observed for the normal species was performed and the experimental data were reproduced by a flexible model which allowed the determination of the barrier to internal rotation of water [V2=287(20) cm-1] and the structural relaxation associated with the dynamic process.

  2. Verification of the effect of surface preparation on Hot Isostatic Pressing diffusion bonding joints of CLAM steel

    NASA Astrophysics Data System (ADS)

    Zhao, Yanyun; Li, Chunjing; Huang, Bo; Liu, Shaojun; Huang, Qunying

    2014-12-01

    Hot Isostatic Pressing (HIP) diffusion bonding with CLAM steel is the primary candidate fabrication technique for the first wall (FW) of DFLL-TBM. Surface state is one of the key factors for the joints quality. The effect of surface state prepared with grinder and miller on HIP diffusion bonding joints of CLAM steel was investigated. HIP diffusion bonding was performed at 140 MPa and 1373 K within 3 h. The mechanical properties of the joints were investigated with instrumented Charpy V-notch impact tests and the microstructures of the joints were analyzed with scanning electron microscopy (SEM). The results showed that the milled samples with fine surface roughness were more suitable for CLAM steel HIP diffusion bonding.

  3. Rumor diffusion in an interests-based dynamic social network.

    PubMed

    Tang, Mingsheng; Mao, Xinjun; Guessoum, Zahia; Zhou, Huiping

    2013-01-01

    To research rumor diffusion in social friend network, based on interests, a dynamic friend network is proposed, which has the characteristics of clustering and community, and a diffusion model is also proposed. With this friend network and rumor diffusion model, based on the zombie-city model, some simulation experiments to analyze the characteristics of rumor diffusion in social friend networks have been conducted. The results show some interesting observations: (1) positive information may evolve to become a rumor through the diffusion process that people may modify the information by word of mouth; (2) with the same average degree, a random social network has a smaller clustering coefficient and is more beneficial for rumor diffusion than the dynamic friend network; (3) a rumor is spread more widely in a social network with a smaller global clustering coefficient than in a social network with a larger global clustering coefficient; and (4) a network with a smaller clustering coefficient has a larger efficiency. PMID:24453911

  4. Rumor Diffusion in an Interests-Based Dynamic Social Network

    PubMed Central

    Mao, Xinjun; Guessoum, Zahia; Zhou, Huiping

    2013-01-01

    To research rumor diffusion in social friend network, based on interests, a dynamic friend network is proposed, which has the characteristics of clustering and community, and a diffusion model is also proposed. With this friend network and rumor diffusion model, based on the zombie-city model, some simulation experiments to analyze the characteristics of rumor diffusion in social friend networks have been conducted. The results show some interesting observations: (1) positive information may evolve to become a rumor through the diffusion process that people may modify the information by word of mouth; (2) with the same average degree, a random social network has a smaller clustering coefficient and is more beneficial for rumor diffusion than the dynamic friend network; (3) a rumor is spread more widely in a social network with a smaller global clustering coefficient than in a social network with a larger global clustering coefficient; and (4) a network with a smaller clustering coefficient has a larger efficiency. PMID:24453911

  5. The dynamics of the turbopause. [variability of eddy diffusion

    NASA Technical Reports Server (NTRS)

    Roper, R. G.

    1974-01-01

    The investigation reported shows the variability of eddy diffusion at the turbopause on diurnal, seasonal, and solar cycle time scales, and also on latitude. Realistic vertical eddy diffusion profiles for the lower thermosphere are presented. The results of the studies illustrate the importance of global winds in the dynamics of the lower thermosphere. Difficulties regarding the direct measurement of eddy diffusivity in the lower thermosphere are discussed.

  6. Diffusive Dynamics of Nanoparticles in Arrays of Nanoposts

    SciTech Connect

    He, Kai; Korasani, Firoozeh; Thomas, Darrell Keith; Retterer, Scott T; Conrad, Jacinta; Krishnamoorti, Ramanan

    2013-01-01

    The diffusive dynamics of dilute dispersions of nanoparticles of diameter 200 400 nm were studied in microfabricated arrays of nanoposts using differential dynamic microscopy and single particle tracking. Posts of diameter 500 nm and height 10 m were spaced by 1.2 10 m on a square lattice. As the spacing between posts was decreased, the dynamics of the nanoparticles slowed. Moreover, the dynamics at all length scales were best represented by a stretched exponential rather than a simple exponential. Both the relative diffusivity and the stretching exponent decreased linearly with increased confinement and, equivalently, with decreased void volume. The slowing of the overall diffusive dynamics and the broadening distribution of nanoparticle displacements with increased confinement are consistent with the onset of cooperative dynamics.

  7. Fluid dynamics of double diffusive systems

    SciTech Connect

    Koseff, J.R.

    1988-05-01

    A study of mixing processes in doubly diffusive systems is being conducted. Continuous gradients of two diffusing components (heat and salinity) are being used as initial conditions, and forcing is introduced by lateral heating, surface shear and sloping boundaries. The goals of the proposed work include: quantification of the effects of finite amplitude disturbances on stable, double diffusive systems, particularly with respect to lateral heating, development of an improved understanding of the physical phenomena present in wind-driven shear flows in double diffusive stratified environments, increasing our knowledge-base on turbulent flow in stratified environments and how to represent it, and formulation of numerical code for such flows. The work is being carried out in a new experimental facility at Stanford and on laboratory minicomputers and CRAY computers. In particular we are focusing on the following key issues. The formation and propagation of double diffusive intrusions away from a heated wall and the effects of lateral heating on the double diffusive system; The interaction between the double diffusively influenced fluxes and the turbulence induced fluxes; The formation of gravitational intrusions; and The influence of double diffusive gradients on mixed layer deepening. The goals of the project were as follows. Physical experiments: Construct experimental facility; Modify and fabricate instrument rakes; Develop sampling and calibration software; Develop stratification techniques; Conduct flow visualization studies; Qualify wind tunnel over a range of wind speeds. Numerical experiments: Adapt REMIXCS to handle turbulent flows; Investigate approaches for specifying wind field; Perform calculations for low wind speeds. With the exception of the wind tunnel qualification, all the tasks have already been completed and we are now conducting quantitative experiments. 2 figs.

  8. The use of isostatic pressing to improve the strength of TLP diffusion bonds in aluminium-based composites

    SciTech Connect

    Shirzadi, A.A.; Wallach, E.R.

    1996-12-31

    Transient Liquid Phase (TLP) diffusion bonding of aluminium-SiC composites, using copper interlayers, was carried out under low bonding pressure to minimize plastic deformation. This was followed by solid-state diffusion bonding under relatively high pressure as a complementary process to improve joint strength and reliability. In the high pressure stage, plastic deformation was avoided by lateral constraint of the sample in order to build up a hydrostatic stress state, simulating hot isostatic pressing (hipping). The bonding temperature in a TLP process is usually determined by the temperature at which the liquid phase forms, e.g., the Al-Cu eutectic formation temperature in this case. In theory, it should be possible to vary the applied pressure in order to optimize bonding. However, the superplastic behavior of the material used in this work led to excessive deformation at the bonding temperature, with consequent restrictions on the bonding pressure and on the resulting bond strengths. The subsequent use of higher bonding pressures with minimal plastic deformation in the second stage of the process resulted in considerable improvements in bond strength. Bonds with shear strengths as high as 70% and 92% respectively of the shear strengths of two aluminium composites, 8090 Al/SiC and 359 Al/SiC (given the same thermal cycles including post solution treatment and ageing), have been achieved.

  9. In situ ESR study to detect the diffusion of free H and creation of dangling bonds in hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Das, U. K.; Yasuda, T.; Yamasaki, S.

    2001-06-01

    In situ electron spin resonance (ESR) was studied during exposure of hydrogenated amorphous silicon (a-Si:H) films to atomic hydrogen (H) generated by a remote plasma. A high diffusion coefficient of free atomic H (>10-10 cm2 s-1) is observed in a-Si:H films at the very initial stage of H treatment. The H creates additional dangling bonds (~1013 cm-2) during in-diffusion. The diffusion mechanism of such free H is a self-limiting process. The dangling bonds created at the very initial stage of H exposure act as the trapping sites for the impinging H atoms. Consequently, the effective diffusion coefficient (Deff) reduces with H treatment time. The Deff for plasma in-diffusion of H with a relatively wide time span reported in literature is considered to be the resultant of the diffusion coefficient of free H and the bonded H. The characteristic depth of dangling-bond distribution decreases with increasing H treatment temperature. The activated rate constants of db creation reactions dominate over the activated free-H diffusion to determine the distribution of additional dangling bonds at different treatment temperatures.

  10. Nuclear magnetic resonance study of the bonding and diffusion of CO chemisorbed on Pd

    SciTech Connect

    Shore, S.E.; Ansermet, J.; Slichter, C.P.; Sinfelt, J.H.

    1987-03-02

    The authors report use of /sup 17/O and /sup 13/C NMR to study the bonding of CO on Pd particles. By /sup 17/O-/sup 13/C double resonance, they measure the CO bond length to be 1.20 +- 0.03 A. The /sup 13/C resonance frequency is exceptionally high, 310 ppm above values typical for metal carbonyls. Evidence that the shift arises from electron-spin polarization is given from studies of the magnitude and the dependence on temperature and frequency of the /sup 13/C spin-lattice relaxation time. A diffusion enegy of 6 +- 2 kcal/mole, half that of CO on Pt, is deduced from motional narrowing of the /sup 13/C NMR line.

  11. Nuclear magnetic resonance study of the bonding and diffusion of CO chemisorbed on Pd

    NASA Astrophysics Data System (ADS)

    Shore, Susan E.; Ansermet, Jean-Philippe; Slichter, Charles P.; Sinfelt, John H.

    1987-03-01

    The authors report use of 17O and 13C NMR to study the bonding of CO on Pd particles. By 17-13C double resonance, they measure the CO bond length to be 1.20+/-0.03 Å. The 13C resonance frequency is exceptionally high, 310 ppm above values typical for metal carbonyls. Evidence that the shift arises from electron-spin polarization is given from studies of the magnitude and the dependence on temperature and frequency of the 13C spin-lattice relaxation time. A diffusion enegy of 6+/-2 kcal/mole, half that of CO on Pt, is deduced from motional narrowing of the 13C NMR line.

  12. Elastic stability of superplastically formed/diffusion-bonded orthogonally corrugated core sandwich plates

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1980-01-01

    The paper concerns the elastic buckling behavior of a newly developed superplastically formed/diffusion-bonded (SPF/DB) orthogonally corrugated core sandwich plate. Uniaxial buckling loads were calculated for this type of sandwich plate with simply supported edges by using orthotropic sandwich plate theory. The buckling behavior of this sandwich plate was then compared with that of an SPF/DB unidirectionally corrugated core sandwich plate under conditions of equal structural density. It was found that the buckling load for the former was considerably higher than that of the latter.

  13. Elastic constants for superplastically formed/diffusion-bonded corrugated sandwich core

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1980-01-01

    Formulas and associated graphs for evaluating the effective elastic constants for a superplastically formed/diffusion bonded (SPF/DB) corrugated sandwich core, are presented. A comparison of structural stiffnesses of the sandwich core and a honeycomb core under conditions of equal sandwich core density was made. The stiffness in the thickness direction of the optimum SPF/DB corrugated core (that is, triangular truss core) is lower than that of the honeycomb core, and that the former has higher transverse shear stiffness than the latter.

  14. Galactic civilizations: Population dynamics and interstellar diffusion

    NASA Technical Reports Server (NTRS)

    Newman, W. I.; Sagan, C.

    1978-01-01

    The interstellar diffusion of galactic civilizations is reexamined by potential theory; both numerical and analytical solutions are derived for the nonlinear partial differential equations which specify a range of relevant models, drawn from blast wave physics, soil science, and, especially, population biology. An essential feature of these models is that, for all civilizations, population growth must be limited by the carrying capacity of the environment. Dispersal is fundamentally a diffusion process; a density-dependent diffusivity describes interstellar emigration. Two models are considered: the first describing zero population growth (ZPG), and the second which also includes local growth and saturation of a planetary population, and for which an asymptotic traveling wave solution is found.

  15. Extracting the diffusion tensor from molecular dynamics simulation with Milestoning

    SciTech Connect

    Mugnai, Mauro L.; Elber, Ron

    2015-01-07

    We propose an algorithm to extract the diffusion tensor from Molecular Dynamics simulations with Milestoning. A Kramers-Moyal expansion of a discrete master equation, which is the Markovian limit of the Milestoning theory, determines the diffusion tensor. To test the algorithm, we analyze overdamped Langevin trajectories and recover a multidimensional Fokker-Planck equation. The recovery process determines the flux through a mesh and estimates local kinetic parameters. Rate coefficients are converted to the derivatives of the potential of mean force and to coordinate dependent diffusion tensor. We illustrate the computation on simple models and on an atomically detailed system—the diffusion along the backbone torsions of a solvated alanine dipeptide.

  16. Dynamic Fracture Behavior of Plastic-Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Fu, Hua; Li, Jun-Ling; Tan, Duo-Wang; Ifp, Caep Team

    2011-06-01

    Plastic-Bonded Explosives (PBX) are used as important energetic materials in nuclear or conventional weapons. Arms Warhead in the service process and the ballistic phase, may experience complex process such as long pulse and higher loading, compresson, tension and reciprocating compression - tension, friction with the projectile shell, which would lead to explosive deformation and fracture.And the dynamic deformation and fracture behavior of PBX subsequently affect reaction characteristics and initiation mechanism in explosives, then having influence on explosives safety. The dynamic fracure behavior of PBX are generally complex and not well studied or understood. In this paper, the dynamic fracture of explosives are conducted using a Kolsky bar. The Brazilian test, also known as a indirect tensile test or splitting test, is chosen as the test method. Tensile strength under different strain rates are obtained using quartz crystal embedded in rod end. The dynamic deformation and fracture process are captured in real-time by high-speed digital camera, and the displacement and strain fields distribution before specimen fracture are obtained by digital correlation method. Considering the non-uniform microstructure of explosives,the dynamic fracture behavior of explosive are simulated by discrete element method, the simulation results can reproduce the deformation and fracture process in Brazilian test using a maximum tensile strain criterion.

  17. Ultrafast internal dynamics of flexible hydrogen-bonded supramolecular complexes.

    PubMed

    Olschewski, Martin; Knop, Stephan; Seehusen, Jaane; Lindner, Jörg; Vöhringer, Peter

    2011-02-24

    Supramolecular chemistry is intimately linked to the dynamical interplay between intermolecular forces and intramolecular flexibility. Here, we studied the ultrafast equilibrium dynamics of a supramolecular hydrogen-bonded receptor-substrate complex, 18-crown-6 monohydrate, using Fourier transform infrared (FTIR) and two-dimensional infrared (2DIR) spectroscopy in combination with numerical simulations based on molecular mechanics, density functional theory, and transition state theory. The theoretical calculations suggest that the flexibility of the macrocyclic crown ether receptor is related to an ultrafast crankshaft isomerization occurring on a time scale of several picoseconds and that the OH stretching vibrations of the substrate can serve as internal probes for the receptor's flexibility. The importance of population transfer among the vibrational modes of a given binding motif and of chemical exchange between spectroscopically distinguishable binding motifs for shaping the two-dimensional infrared spectrum and its temporal evolution is discussed. PMID:21271721

  18. Deformable silicon membrane for dynamic linear laser beam diffuser

    NASA Astrophysics Data System (ADS)

    Masson, J.; Bich, A.; Herzig, H. P.; Bitterli, R.; Noell, W.; Scharf, T.; Voelkel, R.; Weible, K. J.; de Rooij, N. F.

    2010-02-01

    We present a dynamic laser beam shaper based on MEMS technology. We show a prototype of a dynamic diffuser made of single crystal silicon. A linearly deformable silicon micromembrane is used to diffuse a laser beam in one dimension. Resonance frequencies of the membrane can range from 1 kHz to 20 kHz. Mode shapes of the deformable mirror are excited using magnetic actuation. Diffusing angle can be tuned by adjusting the driving current in the membrane. We measured a diffusing angle of 1° for an applied current of 40 mA. The aluminum coated mirror can handle 140 W/cm2 of visible to infrared optical power. Application to smooth out interference pattern generated by a static diffuser is shown.

  19. Diffusion bonding of iron aluminide Fe{sub 72}Al{sub 28} using a copper interlayer

    SciTech Connect

    Torun, O.; Celikyuerek, I.; Guerler, R.

    2008-07-15

    An Fe{sub 72}Al{sub 28} alloy was diffusion-bonded using a copper interlayer under vacuum at 1075 deg. C for 1 h, 2 h, 4 h and 6 h durations at 3.2 MPa applied pressure. The bond microstructure was found to be composed of the copper rich interlayer, copper rich precipitates and the base metal. SEM-EDS studies indicated major diffusion of aluminium and iron atoms from Fe{sub 72}Al{sub 28} into the copper interlayer and copper atoms from the copper interlayer into the Fe{sub 72}Al{sub 28} matrix. SEM observations of fractured surfaces of the diffusion-bonded samples showed some plastic deformation and signs of good bonding. Cu{sub 3}Al and B{sub 2}-FeAl-based phases were identified by SEM-EDS and X-ray diffraction studies at the bond and on the fracture surfaces of all samples investigated. Good bonding was achieved with a maximum shear strength of 298 MPa which is 65% of the parent material shear strength for a sample diffusion-bonded for 6 h.

  20. Dynamics and pattern formation in a cancer network with diffusion

    NASA Astrophysics Data System (ADS)

    Zheng, Qianqian; Shen, Jianwei

    2015-10-01

    Diffusion is ubiquitous inside cells, and it is capable of inducing spontaneous pattern formation in reaction-diffusion systems on a spatially homogeneous domain. In this paper, we investigate the dynamics of a diffusive cancer network regulated by microRNA and obtain the condition that the network undergoes a Hopf bifurcation and a Turing pattern bifurcation. In addition, we also develop the amplitude equation of the network model by using Taylor series expansion, multi-scaling and further expansion in powers of a small parameter. As a result of these analyses, we obtain the explicit condition on how the dynamics of the diffusive cancer network evolve. These results reveal that this system has rich dynamics, such as spotted stripe and hexagon patterns. The bifurcation diagram helps us understand the biological mechanism in the cancer network. Finally, numerical simulations confirm our analytical results.

  1. Fluid dynamics of double diffusive systems

    NASA Astrophysics Data System (ADS)

    Koseff, J. R.

    1991-04-01

    A study of mixing processes in doubly diffusive systems is being conducted. Continuous gradients of two diffusing components (heat and salinity in our case) are being used as initial conditions, and forcing is introduced by lateral heatings and surface shear. The goals of the proposed work include: (1) quantification of the effects of finite amplitude disturbances on stable, double diffusive systems, particularly with respect to lateral heating, (2) development of an improved understanding of the physical phenomena present in wind-driven shear flows in double diffusive stratified environments, (3) increasing our knowledge-base on turbulent flow in stratified environments and how to represent it, and (4) formulation of a numerical code for such flows. The work is being carried out in an experimental facility which is located in the Stanford Environmental Fluid Mechanics Laboratory, and on laboratory minicomputers and CRAY computers. In particular, our overall goals are as follows: (1) develop more general stability and scaling criteria for the destabilization of doubly-stratified systems, (2) further study the variation of flow structure and scales with Rayleigh ratio and lateral heating ratio, (3) further delineate the mechanisms governing convective layer formation and merging, (4) study the mixing processes within the convective layers and across interfaces, and estimate the heat and mass fluxes in such a system, (5) quantify the effects of turbulence and coherent structures (due to a wind-driven surface shear) on a doubly stratified system, and (6) study the interaction between surface shear and side-wall heating destabilization mechanisms.

  2. Diffusion Bonding of Ti-6Al-4V Sheet with Ti-6Al-4V Foam for Biomedical Implant Applications

    NASA Astrophysics Data System (ADS)

    Hamilton, Brittany; Oppenheimer, Scott; Dunand, David C.; Lewis, Daniel

    2013-12-01

    Advanced metallic bone implants are designed to have a porous surface to improve osseointegration and reduce risks of loosening. An alternative approach to existing surface treatments to create a porous surface is to bond separately produced metallic foams onto the implant. To assess the feasibility of this approach, a Ti-6Al-4V foam was diffusion bonded onto bulk Ti-6Al-4V in an argon atmosphere at temperatures between 1173 K and 1223 K (900 °C and 950 °C) for times between 45 and 75 minutes. These specimens were tested in tension to determine bond quality: failures occurred in the foam, indicating a strong diffusion-bonded interface. The quality of the bond was confirmed by metallographic studies, indicating that this approach, which can also be applied to creating of sandwich with porous cores, is successful.

  3. Microstructure and mechanical strength of diffusion bonded joints between silicon carbide and F82H steel

    NASA Astrophysics Data System (ADS)

    Zhong, Zhihong; Hinoki, Tatsuya; Kohyama, Akira

    2011-10-01

    The combination of SiC and reduced activation ferritic/martensitic steels is attractive for fusion applications because it is expected to offer high thermal efficiency, high reliability and superior safety characteristic under a neutron irradiation environment. In this paper, diffusion bonding of SiC to F82H steel has been investigated. Direct joining of SiC to F82H was unsuccessful due to a large residual stress generated in the joint. A double W/Cu and a multiple W/Ni/Cu/Ni interlayer were used to reduce the residual stress, and encouraging results were obtained. The interfacial microstructure examination revealed that the various interfaces were bonded well. Diffusion products in the reaction zones were identified. The shear strength of the SiC/F82H joints measured by knife-edge tests at room temperature was found to increase with the increase in the joining temperature, and reached a maximum of 41.3 MPa. The fracture surfaces of the joints were also analyzed.

  4. Detailed analysis of surface asperity deformation mechanism in diffusion bonding of steel hollow structural components

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Li, H.; Li, M. Q.

    2016-05-01

    This study focused on the detailed analysis of surface asperity deformation mechanism in similar diffusion bonding as well as on the fabrication of high quality martensitic stainless steel hollow structural components. A special surface with regular patterns was processed to be joined so as to observe the extent of surface asperity deformation under different bonding pressures. Results showed that an undamaged hollow structural component has been obtained with full interfacial contact and the same shear strength to that of base material. Fracture surface characteristic combined with surface roughness profiles distinctly revealed the enhanced surface asperity deformation as the applied pressure increases. The influence of surface asperity deformation mechanism on joint formation was analyzed: (a) surface asperity deformation not only directly expanded the interfacial contact areas, but also released deformation heat and caused defects, indirectly accelerating atomic diffusion, then benefits to void shrinkage; (b) surface asperity deformation readily introduced stored energy difference between two opposite sides of interface grain boundary, resulting in strain induced interface grain boundary migration. In addition, the influence of void on interface grain boundary migration was analyzed in detail.

  5. Diffuse-charge dynamics in electrochemical systems

    NASA Astrophysics Data System (ADS)

    Bazant, Martin Z.; Thornton, Katsuyo; Ajdari, Armand

    2004-08-01

    The response of a model microelectrochemical system to a time-dependent applied voltage is analyzed. The article begins with a fresh historical review including electrochemistry, colloidal science, and microfluidics. The model problem consists of a symmetric binary electrolyte between parallel-plate blocking electrodes, which suddenly apply a voltage. Compact Stern layers on the electrodes are also taken into account. The Nernst-Planck-Poisson equations are first linearized and solved by Laplace transforms for small voltages, and numerical solutions are obtained for large voltages. The “weakly nonlinear” limit of thin double layers is then analyzed by matched asymptotic expansions in the small parameter ɛ=λD/L , where λD is the screening length and L the electrode separation. At leading order, the system initially behaves like an RC circuit with a response time of λDL/D (not λD2/D ), where D is the ionic diffusivity, but nonlinearity violates this common picture and introduces multiple time scales. The charging process slows down, and neutral-salt adsorption by the diffuse part of the double layer couples to bulk diffusion at the time scale, L2/D . In the “strongly nonlinear” regime (controlled by a dimensionless parameter resembling the Dukhin number), this effect produces bulk concentration gradients, and, at very large voltages, transient space charge. The article concludes with an overview of more general situations involving surface conduction, multicomponent electrolytes, and Faradaic processes.

  6. Interface microstructures in the diffusion bonding of a titanium alloy Ti 6242 to an Inconel 625

    SciTech Connect

    Aleman, B.; Gutierrez, I.; Urcola, J.J. . Dept. of Materials)

    1995-02-01

    Surveys carried out by some oil companies have shown a recent and clear trend toward drilling wells to greater depths. As the drilling for oil and gas gets deeper, the requirements of materials for tubing become more stringent, due to the rise in temperature and pressure and also because the tubes have to sustain their own weight. In this paper, Ti6242 alloy has been diffusion bonded to a superalloy INCONEL 625. The microstructures of the as-processed products have been analyzed using optical metallography, scanning electron microscope (SEM), and scanning transmission electron microscope (STEM) techniques. The interdiffusion of the different elements through the interface has been determined using energy-dispersive spectroscopy (EDS) microanalysis in both a SEM and a STEM. Several regions around the original interface have been observed. Starting from the superalloy INCONEL 625, first a sigma phase (Cr[sub 4]Ni[sub 3]Mo[sub 2]), followed by several phases like NbNi[sub 3], [eta]Ni[sub 3]Ti, Cr(20 pct Mo), [beta] Cr[sub 2]Ti, NiTi, TiO, TiNi, and Ti[sub 2]Ni intermetallics, just before the Ti6242 have been identified. Because the diffusion of Ni in Ti is faster than the diffusion of Ti in the superalloy, a Kirkendall effect was produced. The sequence of formation of the different phases were in agreement with the ternary Ti-Cr-Ni diagram.

  7. Observation of the slow, Debye-like relaxation in hydrogen-bonded liquids by dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Wang, Yangyang; Griffin, Philip J.; Holt, Adam; Fan, Fei; Sokolov, Alexei P.

    2014-03-01

    The slow, Debye-like relaxation in hydrogen-bonded liquids has largely remained a dielectric phenomenon and has thus far eluded observation by other experimental techniques. Here we report the first observation of a slow, Debye-like relaxation by both depolarized dynamic light scattering (DLS) and dielectric spectroscopy in a model hydrogen-bonded liquid, 2-ethyl-4-methylimidazole (2E4MIm). The relaxation times obtained by these two techniques are in good agreement and can be well explained by the Debye model of rotational diffusion. On the one hand, 2E4MIm is analogous to the widely studied monohydroxy alcohols in which transient chain-like supramolecular structure can be formed by hydrogen bonding. On the other hand, the hydrogen-bonded backbone of 2E4MIm is much more optically polarizable, making it possible to apply light scattering to study the dynamics of the supramolecular structure. These findings provide the missing evidence of the slow, Debye-like relaxation in DLS and open the venue for the application of dynamic light scattering to the study of supramolecular structures in hydrogen-bonded liquids.

  8. Time-reversible molecular dynamics algorithms with bond constraints

    NASA Astrophysics Data System (ADS)

    Toxvaerd, Søren; Heilmann, Ole J.; Ingebrigtsen, Trond; Schrøder, Thomas B.; Dyre, Jeppe C.

    2009-08-01

    Time-reversible molecular dynamics algorithms with bond constraints are derived. The algorithms are stable with and without a thermostat and in double precision as well as in single-precision arithmetic. Time reversibility is achieved by applying a central-difference expression for the velocities in the expression for Gauss' principle of least constraint. The imposed time symmetry results in a quadratic expression for the Lagrange multiplier. For a system of complex molecules with connected constraints the corresponding set of coupled quadratic equations is easily solved by a consecutive iteration scheme. The algorithms were tested on two models. One is a dumbbell model of Toluene, the other system consists of molecules with four connected constraints forming a triangle and a branch point of constraints. The equilibrium particle distributions and the mean-square particle displacements for the dumbbell model were compared to the corresponding functions obtained by GROMACS. The agreement is perfect within statistical error.

  9. Towards a unified description of the hydrogen bond network of liquid water: A dynamics based approach

    SciTech Connect

    Ozkanlar, Abdullah Zhou, Tiecheng; Clark, Aurora E.

    2014-12-07

    The definition of a hydrogen bond (H-bond) is intimately related to the topological and dynamic properties of the hydrogen bond network within liquid water. The development of a universal H-bond definition for water is an active area of research as it would remove many ambiguities in the network properties that derive from the fixed definition employed to assign whether a water dimer is hydrogen bonded. This work investigates the impact that an electronic-structure based definition, an energetic, and a geometric definition of the H-bond has upon both topological and dynamic network behavior of simulated water. In each definition, the use of a cutoff (either geometric or energetic) to assign the presence of a H-bond leads to the formation of transiently bonded or broken dimers, which have been quantified within the simulation data. The relative concentration of transient species, and their duration, results in two of the three definitions sharing similarities in either topological or dynamic features (H-bond distribution, H-bond lifetime, etc.), however no two definitions exhibit similar behavior for both classes of network properties. In fact, two networks with similar local network topology (as indicated by similar average H-bonds) can have dramatically different global network topology (as indicated by the defect state distributions) and altered H-bond lifetimes. A dynamics based correction scheme is then used to remove artificially transient H-bonds and to repair artificially broken bonds within the network such that the corrected network exhibits the same structural and dynamic properties for two H-bond definitions (the properties of the third definition being significantly improved). The algorithm described represents a significant step forward in the development of a unified hydrogen bond network whose properties are independent of the original hydrogen bond definition that is employed.

  10. Diffusive dynamics of nanoparticles in ultra-confined media

    SciTech Connect

    Jacob, Jack Deodato; Conrad, Jacinta; Krishnamoorti, Ramanan; Retterer, Scott T; He, Kai

    2015-01-01

    Differential dynamic microscopy (DDM) was used to investigate the diffusive dynamics of nanoparticles of diameter 200 400 nm that were strongly confined in a periodic square array of cylindrical nanoposts. The minimum distance between posts was 1.3 5 times the diameter of the nanoparticles. The image structure functions obtained from the DDM analysis were isotropic and could be fit by a stretched exponential function. The relaxation time scaled diffusively across the range of wave vectors studied, and the corresponding scalar diffusivities decreased monotonically with increased confinement. The decrease in diffusivity could be described by models for hindered diffusion that accounted for steric restrictions and hydrodynamic interactions. The stretching exponent decreased linearly as the nanoparticles were increasingly confined by the posts. Together, these results are consistent with a picture in which strongly confined nanoparticles experience a heterogeneous spatial environment arising from hydrodynamics and volume exclusion on time scales comparable to cage escape, leading to multiple relaxation processes and Fickian but non-Gaussian diffusive dynamics.

  11. Diffusive dynamics of nanoparticles in ultra-confined media

    DOE PAGESBeta

    Jacob, Jack Deodato; Conrad, Jacinta; Krishnamoorti, Ramanan; Retterer, Scott T; He, Kai

    2015-01-01

    Differential dynamic microscopy (DDM) was used to investigate the diffusive dynamics of nanoparticles of diameter 200 400 nm that were strongly confined in a periodic square array of cylindrical nanoposts. The minimum distance between posts was 1.3 5 times the diameter of the nanoparticles. The image structure functions obtained from the DDM analysis were isotropic and could be fit by a stretched exponential function. The relaxation time scaled diffusively across the range of wave vectors studied, and the corresponding scalar diffusivities decreased monotonically with increased confinement. The decrease in diffusivity could be described by models for hindered diffusion that accountedmore » for steric restrictions and hydrodynamic interactions. The stretching exponent decreased linearly as the nanoparticles were increasingly confined by the posts. Together, these results are consistent with a picture in which strongly confined nanoparticles experience a heterogeneous spatial environment arising from hydrodynamics and volume exclusion on time scales comparable to cage escape, leading to multiple relaxation processes and Fickian but non-Gaussian diffusive dynamics.« less

  12. Multiparticle collision dynamics for diffusion-influenced signaling pathways

    NASA Astrophysics Data System (ADS)

    Strehl, R.; Rohlf, K.

    2016-08-01

    An efficient yet accurate simulation method for modeling diffusion-influenced reaction networks is presented. The method extends existing reactive multiparticle collision dynamics by incorporating species-dependent diffusion coefficients, and developing theoretical expressions for the reactant-dependent diffusion control. This off-lattice particle-based mesoscopic simulation tool is particularly suited for problems in which detailed descriptions of particle trajectories and local reactions are required. Numerical simulations of an intracellular signaling pathway for bacterial chemotaxis are carried out to validate our approach, and to demonstrate its efficiency.

  13. Crossover from superdiffusive to diffusive dynamics in fluctuating light fields

    NASA Astrophysics Data System (ADS)

    Marqués, Manuel I.

    2016-06-01

    The expressions for the optical drag force, the equilibrium kinetic energy, and the diffusion constant of an electric dipole in a light field consisting of electromagnetic plane waves with polarizations randomly distributed and fluctuating phases are obtained. The drag force is proportional to the extinction cross section of the dipole and to the intensity. The diffusion constant does not depend on the amplitude of the electromagnetic field and is proportional to the time interval between fluctuations. Numerical simulations for the dynamics of a resonant dipole, initially at rest, show the crossover between the superdiffusive and the diffusive regimes theoretically predicted.

  14. Inferring Diffusion Dynamics from FCS in Heterogeneous Nuclear Environments

    PubMed Central

    Tsekouras, Konstantinos; Siegel, Amanda P.; Day, Richard N.; Pressé, Steve

    2015-01-01

    Fluorescence correlation spectroscopy (FCS) is a noninvasive technique that probes the diffusion dynamics of proteins down to single-molecule sensitivity in living cells. Critical mechanistic insight is often drawn from FCS experiments by fitting the resulting time-intensity correlation function, G(t), to known diffusion models. When simple models fail, the complex diffusion dynamics of proteins within heterogeneous cellular environments can be fit to anomalous diffusion models with adjustable anomalous exponents. Here, we take a different approach. We use the maximum entropy method to show—first using synthetic data—that a model for proteins diffusing while stochastically binding/unbinding to various affinity sites in living cells gives rise to a G(t) that could otherwise be equally well fit using anomalous diffusion models. We explain the mechanistic insight derived from our method. In particular, using real FCS data, we describe how the effects of cell crowding and binding to affinity sites manifest themselves in the behavior of G(t). Our focus is on the diffusive behavior of an engineered protein in 1) the heterochromatin region of the cell’s nucleus as well as 2) in the cell’s cytoplasm and 3) in solution. The protein consists of the basic region-leucine zipper (BZip) domain of the CCAAT/enhancer-binding protein (C/EBP) fused to fluorescent proteins. PMID:26153697

  15. Specific ions modulate diffusion dynamics of hydration water on lipid membrane surfaces.

    PubMed

    Song, Jinsuk; Franck, John; Pincus, Philip; Kim, Mahn Won; Han, Songi

    2014-02-12

    Effects of specific ions on the local translational diffusion of water near large hydrophilic lipid vesicle surfaces were measured by Overhauser dynamic nuclear polarization (ODNP). ODNP relies on an unpaired electron spin-containing probe located at molecular or surface sites to report on the dynamics of water protons within ~10 Å from the spin probe, which give rise to spectral densities for electron-proton cross-relaxation processes in the 10 GHz regime. This pushes nuclear magnetic resonance relaxometry to more than an order of magnitude higher frequencies than conventionally feasible, permitting the measurement of water moving with picosecond to subnanosecond correlation times. Diffusion of water within ~10 Å of, i.e., up to ~3 water layers around the spin probes located on hydrophilic lipid vesicle surfaces is ~5 times retarded compared to the bulk water translational diffusion. This directly reflects on the activation barrier for surface water diffusion, i.e., how tightly water is bound to the hydrophilic surface and surrounding waters. We find this value to be modulated by the presence of specific ions in solution, with its order following the known Hofmeister series. While a molecular description of how ions affect the hydration structure at the hydrophilic surface remains to be answered, the finding that Hofmeister ions directly modulate the surface water diffusivity implies that the strength of the hydrogen bond network of surface hydration water is directly modulated on hydrophilic surfaces. PMID:24456096

  16. The interstitialcy diffusion in FCC copper: A molecular dynamics study

    SciTech Connect

    Bukkuru, S. Rao, A. D. P.; Warrier, M.

    2015-06-24

    Damage of materials due to neutron irradiation occurs via energetic cascades caused by energetic primary knock-on atoms (PKA) created by the energetic neutron as it passes through the material. These cascades result in creation of Frenkel Pairs (interstitials and vacancies). The interstitials and vacancies diffuse and recombine to (I) nullify the damage when an interstitial recombines with a vacancy, (II) form interstitial clusters when two or more interstitials recombine, and (III) form vacancy clusters when several vacancies come together. The latter two processes result in change of material properties. Interstitial diffusion has reported time-scales of microseconds and vacancy diffusion has diffusion time-scales of the order of seconds. We have carried out molecular dynamics (MD) simulations of interstitial diffusion in crystal Cu to study the mechanism of diffusion. It is found that interstitialcy diffusion – wherein an interstitial displaces a lattice atom thereby making the lattice atom an interstitial – has time-scales of a few tens of pico-seconds. Therefore we propose that the “interstitialcy diffusion” mechanism could play a major part in the diffusive-recombinations of the Frenkel Pairs created during the cascade.

  17. Application of superplastically formed and diffusion bonded aluminum to a laminar flow control leading edge

    NASA Technical Reports Server (NTRS)

    Goodyear, M. D.

    1987-01-01

    NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. Laminar flow control was one such technology. Two approaches for achieving laminar flow were designed and manufactured under NASA sponsored programs: the perforated skin concept used at McDonnell Douglas and the slotted design used at Lockheed-Georgia. Both achieved laminar flow, with the slotted design to a lesser degree (JetStar flight test program). The latter design had several fabrication problems concerning springback and adhesive flow clogging the air flow passages. The Lockheed-Georgia Company accomplishments is documented in designing and fabricating a small section of a leading edge article addressing a simpler fabrication method to overcome the previous program's manufacturing problems, i.e., design and fabrication using advanced technologies such as diffusion bonding of aluminum, which has not been used on aerospace structures to date, and the superplastic forming of aluminum.

  18. Recovering position-dependent diffusion from biased molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ljubetič, Ajasja; Urbančič, Iztok; Štrancar, Janez

    2014-02-01

    All atom molecular dynamics (MD) models provide valuable insight into the dynamics of biophysical systems, but are limited in size or length by the high computational demands. The latter can be reduced by simulating long term diffusive dynamics (also known as Langevin dynamics or Brownian motion) of the most interesting and important user-defined parts of the studied system, termed collective variables (colvars). A few hundred nanosecond-long biased MD trajectory can therefore be extended to millisecond lengths in the colvars subspace at a very small additional computational cost. In this work, we develop a method for determining multidimensional anisotropic position- and timescale-dependent diffusion coefficients (D) by analysing the changes of colvars in an existing MD trajectory. As a test case, we obtained D for dihedral angles of the alanine dipeptide. An open source Mathematica® package, capable of determining and visualizing D in one or two dimensions, is available at https://github.com/lbf-ijs/DiffusiveDynamics. Given known free energy and D, the package can also generate diffusive trajectories.

  19. Recovering position-dependent diffusion from biased molecular dynamics simulations

    SciTech Connect

    Ljubetič, Ajasja; Urbančič, Iztok; Štrancar, Janez

    2014-02-28

    All atom molecular dynamics (MD) models provide valuable insight into the dynamics of biophysical systems, but are limited in size or length by the high computational demands. The latter can be reduced by simulating long term diffusive dynamics (also known as Langevin dynamics or Brownian motion) of the most interesting and important user-defined parts of the studied system, termed collective variables (colvars). A few hundred nanosecond-long biased MD trajectory can therefore be extended to millisecond lengths in the colvars subspace at a very small additional computational cost. In this work, we develop a method for determining multidimensional anisotropic position- and timescale-dependent diffusion coefficients (D) by analysing the changes of colvars in an existing MD trajectory. As a test case, we obtained D for dihedral angles of the alanine dipeptide. An open source Mathematica{sup ®} package, capable of determining and visualizing D in one or two dimensions, is available at https://github.com/lbf-ijs/DiffusiveDynamics . Given known free energy and D, the package can also generate diffusive trajectories.

  20. Recovering position-dependent diffusion from biased molecular dynamics simulations.

    PubMed

    Ljubetič, Ajasja; Urbančič, Iztok; Štrancar, Janez

    2014-02-28

    All atom molecular dynamics (MD) models provide valuable insight into the dynamics of biophysical systems, but are limited in size or length by the high computational demands. The latter can be reduced by simulating long term diffusive dynamics (also known as Langevin dynamics or Brownian motion) of the most interesting and important user-defined parts of the studied system, termed collective variables (colvars). A few hundred nanosecond-long biased MD trajectory can therefore be extended to millisecond lengths in the colvars subspace at a very small additional computational cost. In this work, we develop a method for determining multidimensional anisotropic position- and timescale-dependent diffusion coefficients (D) by analysing the changes of colvars in an existing MD trajectory. As a test case, we obtained D for dihedral angles of the alanine dipeptide. An open source Mathematica(®) package, capable of determining and visualizing D in one or two dimensions, is available at https://github.com/lbf-ijs/DiffusiveDynamics. Given known free energy and D, the package can also generate diffusive trajectories. PMID:24588150

  1. Exploring Electrostatic Effects on the Hydrogen Bond Network of Liquid Water through Many-Body Molecular Dynamics.

    PubMed

    Straight, Shelby C; Paesani, Francesco

    2016-08-25

    To probe the dynamic nature of the hydrogen bond network in water, linear and nonlinear infrared spectra of dilute HOD in H2O are computed from many-body molecular dynamics simulations with the MB-pol potential, which have been shown to accurately predict the properties of water from the gas to the condensed phase. The effects of various approximations to the many-body expansion of the dipole moment surface on the OD-stretch absorption line shapes are analyzed at different levels of theory. The interplay between effects associated with the variation of the HOD dipole moment and instantaneous nuclear configurations causes qualitative differences in the absorption profiles, which are traced back to how induction contributions are treated within the many-body formalism. Further analysis of the multidimensional infrared spectra demonstrates that the spectral diffusion of the OD stretching frequencies depends explicitly on the level of truncation in the many-body expansion of the dipole moment in the short-time regime that is associated with intact hydrogen-bond dynamics. In contrast, the long-time evolution of spectral diffusion, describing collective rearrangements of the hydrogen-bond network, is effectively independent of the details with which many-body contributions to the dipole moment are represented. PMID:27109247

  2. Multicomponent diffusion in molten LiCl-KCl: Dynamical correlations and divergent Maxwell-Stefan diffusivities

    NASA Astrophysics Data System (ADS)

    Chakraborty, Brahmananda; Wang, Jin; Eapen, Jacob

    2013-05-01

    Multicomponent diffusional mechanisms in the ternary LiCl-KCl system are elucidated using the Green-Kubo formalism and equilibrium molecular dynamics simulations. The Maxwell-Stefan (MS) diffusion matrix is evaluated from the Onsager dynamical matrix that contains the diffusion flux correlation functions. From the temporal behavior of the correlation functions, we observe that the Li-Li and Li-Cl ion pairs have a pronounced cage dynamics that remains noticeably strong even at high temperatures. Even though the Onsager coefficients, which are the time integrals of the diffusion flux correlation functions, portray a relatively smooth variation across various compositions and temperatures, we observe a sign change and a divergent-like behavior for the MS diffusivity of the K-Li ion pair at a temperature of ˜1100 K for the eutectic composition, and at a KCl mole fraction of ˜0.49 at 1043 K. Negative MS diffusivities, while unusual, are however shown to satisfy the nonnegative entropic constraints.

  3. Reactive diffusion bonding of Si3N4 to MA6000

    NASA Astrophysics Data System (ADS)

    Kaysser, W. A.; Frisch, A.; Zhang, W.; Petzow, G.

    The procedure for joining Si3N4 to the MA6000 superalloy by diffusion bonding during HIP is described. Due to the large thermal mismatch between both components, it was necessary to introduce multiphase interlayers to allow relaxation of thermal stresses. Calculations of the stress development and the results of experiments showed that stress relaxation by thin soft interlayers in Si3N4/MA6000 is very limited: during bonding of Si3N4 to metals suitable as interlayers, brittle reaction products often form at the metal/ceramic interfaces. Experiments were then performed with iron-based alloys with small thermal expansion coefficients at low temperatures, combined with V, Nb, and Hf-based layers, and the reactions at the layer interfaces and the fracture surfaces were investigated by SEM, EDX, and WDX. It was found that, in systems with low deformability of the stiff reaction layers, stress relaxation by controlled microcrack formation reduced the interfacial damage and improved the mechanical stability of the joints.

  4. Dynamic urea bond for the design of reversible and self-healing polymers

    PubMed Central

    Ying, Hanze; Zhang, Yanfeng; Cheng, Jianjun

    2014-01-01

    Polymers bearing dynamic covalent bonds may exhibit dynamic properties, such as self-healing, shape memory and environmental adaptation. However, most dynamic covalent chemistries developed so far require either catalyst or change of environmental conditions to facilitate bond reversion and dynamic property change in bulk materials. Here we report the rational design of hindered urea bonds (urea with bulky substituent attached to its nitrogen) and the use of them to make polyureas and poly(urethane-ureas) capable of catalyst-free dynamic property change and autonomous repairing at low temperature. Given the simplicity of the hindered urea bond chemistry (reaction of a bulky amine with an isocyanate), incorporation of the catalyst-free dynamic covalent urea bonds to conventional polyurea or urea-containing polymers that typically have stable bulk properties may further broaden the scope of applications of these widely used materials. PMID:24492620

  5. Diffusion and Segmental Dynamics of Double-Stranded DNA

    NASA Astrophysics Data System (ADS)

    Petrov, E. P.; Ohrt, T.; Winkler, R. G.; Schwille, P.

    2006-12-01

    Diffusion and segmental dynamics of the double-stranded λ-phage DNA polymer are quantitatively studied over the transition range from stiff to semiflexible chains. Spectroscopy of fluorescence fluctuations of single-end fluorescently labeled monodisperse DNA fragments unambiguously shows that double-stranded DNA in the length range of 102 2×104 base pairs behaves as a semiflexible polymer with segmental dynamics controlled by hydrodynamic interactions.

  6. Extracting the diffusion tensor from molecular dynamics simulation with Milestoning.

    PubMed

    Mugnai, Mauro L; Elber, Ron

    2015-01-01

    We propose an algorithm to extract the diffusion tensor from Molecular Dynamics simulations with Milestoning. A Kramers-Moyal expansion of a discrete master equation, which is the Markovian limit of the Milestoning theory, determines the diffusion tensor. To test the algorithm, we analyze overdamped Langevin trajectories and recover a multidimensional Fokker-Planck equation. The recovery process determines the flux through a mesh and estimates local kinetic parameters. Rate coefficients are converted to the derivatives of the potential of mean force and to coordinate dependent diffusion tensor. We illustrate the computation on simple models and on an atomically detailed system-the diffusion along the backbone torsions of a solvated alanine dipeptide. PMID:25573551

  7. Dynamic heterogeneity controls diffusion and viscosity near biological interfaces

    PubMed Central

    Pronk, Sander; Lindahl, Erik

    2014-01-01

    At a nanometer scale, the behavior of biological fluids is largely governed by interfacial physical chemistry. This may manifest as slowed or anomalous diffusion. Here we describe how measures developed for studying glassy systems allow quantitative measurement of interfacial effects on water dynamics, showing that correlated motions of particles near a surface result in a viscosity greater than anticipated from individual particle motions. This effect arises as a fundamental consequence of spatial heterogeneity on nanometer length scales and applies to any fluid near any surface. Increased interfacial viscosity also causes the classic finding that large solutes such as proteins diffuse much more slowly than predicted in bulk water. This has previously been treated via an empirical correction to the solute size: the hydrodynamic radius. Using measurements of quantities from theories of glass dynamics, we can now calculate diffusion constants from molecular details alone, eliminating the empirical correction factor. PMID:24398864

  8. A Dynamic Pathway for Stone-Wales Bond Rotation on Carbon Nanotubes through Diamond-Like Bonds

    NASA Technical Reports Server (NTRS)

    Wei, Chen-Yu; Srivastava, Deepak; Cho, Kyeong-Jae; Menon, Madhu

    2003-01-01

    A new lower energy barrier with a two-step pathway of Stone-Wales (SW) ,ond rotation on carbon nanotubes (CNTs) is found through molecular dynamics (MD) simulations of CNTs under tension. The first step involves going over to a stable sp3-like metastable configuration with half rotated and partially tilted C-C bond. The second step involves going over to the fully rotated C-C bond with the formation of a SW defect in the nanotube. The energy barrier for this two-step dynamic pathway is significantly lower than the previously known static barrier for in-plane rotation of the C-C bond on a tensile strained (> 4%) CNT.

  9. Random walk properties from lattice bond enumeration: Steady-state diffusion on two- and three-dimensional lattices with traps

    PubMed Central

    Shuler, Kurt E.; Mohanty, Udayan

    1982-01-01

    We have applied the lattice bond enumeration method to the calculation of the steady-state diffusion in a lattice with fixed traps. We show that, to first order in density of traps, our random walk calculations for the effective diffusion constant in lattices with periodically arrayed traps are in exact agreement with calculations carried out previously for randomly arrayed traps embedded in a three-dimensional continuum medium (fluid). Our lattice random walk results are independent of dimension for d > 1, and we conjecture that this is also true for the continuum diffusion model. PMID:16593215

  10. Diffusion and internal dynamics of proteins in crowded solutions

    NASA Astrophysics Data System (ADS)

    Roosen-Runge, Felix; Hennig, Marcus; Seydel, Tilo; Zhang, Fajun; Schreiber, Frank

    2013-03-01

    Protein function is determined through the interplay of structure, dynamics and the aqueous, but crowded cellular environment. We present a comprehensive study accessing the full hierarchy of protein dynamics in solutions, e.g. vibrations, interdomain motions and diffusion of the entire protein. Quasi-elastic neutron and dynamic light scattering experiments are performed and compared to theoretical predictions. In crowded solutions, both self diffusion Ds and collective diffusion Dc of protein solutions are well described by colloidal concepts, with Ds reduced to 20 % at ~ 20 % volume fraction. Separating the motion of the entire protein molecule, the internal motions are accessed under native conditions. We studied the dynamics before, during and after thermal denaturation, supporting the notion of protein unfolding with subsequent chain entanglement. While long-range motions are reduced in the denatured state, the local flexibility of side chains is found to be enhanced. The frameworks enable further experimental access to the relation of protein function and dynamics at fast time scales.

  11. Molecular dynamics simulations of temperature-dependent structures and dynamics of ethylammonium nitrate protic ionic liquid: The role of hydrogen bond

    NASA Astrophysics Data System (ADS)

    Huang, Yiping; Zhou, Guobing; Li, Yunzhi; Yang, Zhen; Shi, Man; Wang, Xueping; Chen, Xiangshu; Zhang, Fei; Li, Wei

    2016-06-01

    Molecular dynamics simulations have been employed to systematically investigate the structure and dynamics properties, hydrogen bond (HB) dynamics of protic ionic liquid (IL) ethylammonium nitrate (EAN) in the temperature range between 300 K and 400 K. The simulation results demonstrate clearly that the temperature almost has little influence on the structures of EAN IL, whereas the translational and the rotational motions of both cations and anions become much faster at higher temperatures. Furthermore, both anions and cations are found to display an obvious sub-diffusive behavior. These changes can be attributed to the temperature-dependent HB strength between the cations and the anions, where the strength of HBs decreases significantly with increasing temperature. Accordingly, the ion-pair association/dissociation dynamics decreases considerably with increasing temperature. Therefore, our simulations reveal at a molecular level that the HBs interactions play an essential role in determining the dynamics properties of protic ILs.

  12. Dynamic Characterization of Crystalline Supramolecular Rotors Assembled through Halogen Bonding.

    PubMed

    Catalano, Luca; Pérez-Estrada, Salvador; Terraneo, Giancarlo; Pilati, Tullio; Resnati, Giuseppe; Metrangolo, Pierangelo; Garcia-Garibay, Miguel A

    2015-12-16

    A modular molecular kit for the preparation of crystalline molecular rotors was devised from a set of stators and rotators to gain simple access to a large number of structures with different dynamic performance and physical properties. In this work, we have accomplished this with crystalline molecular rotors self-assembled by halogen bonding of diazabicyclo[2.2.2]octane, acting as a rotator, and a set of five fluorine-substituted iodobenzenes that take the role of the stator. Using variable-temperature (1)H T1 spin-lattice relaxation measurements, we have shown that all structures display ultrafast Brownian rotation with activation energies of 2.4-4.9 kcal/mol and pre-exponential factors of the order of (1-9) × 10(12) s(-1). Line shape analysis of quadrupolar echo (2)H NMR measurements in selected examples indicated rotational trajectories consistent with the 3-fold or 6-fold symmetric potential of the rotator. PMID:26583701

  13. Methanol diffusion in zeolite HY: a combined quasielastic neutron scattering and molecular dynamics simulation study.

    PubMed

    O'Malley, Alexander J; García Sakai, Victoria; Silverwood, Ian P; Dimitratos, Nikolaos; Parker, Stewart F; Catlow, C Richard A

    2016-06-29

    The diffusion of methanol in zeolite HY is studied using tandem quasielastic neutron scattering (QENS) experiments and molecular dynamics (MD) simulations at 300-400 K. The experimental diffusion coefficients were measured in the range 2-5 × 10(-10) m(2) s(-1) and simulated diffusion coefficients calculated in the range of 1.6-3.2 × 10(-9) m(2) s(-1). Activation energies were measured as 8.8 and 6.9 kJ mol(-1) using QENS and MD respectively. Differences may be attributed predominantly to the experimental use of a dealuminated HY sample, containing significant defects such as strongly adsorbing silanol nests, compared to a perfect simulated crystal containing only evenly distributed Brønsted acid sites. Experimental and simulated diffusivities measured in this study are lower than those obtained from those previously calculated in siliceous faujasite, due to methanol H-bonding to Brønsted acid sites as observed in the MD simulations. However, both experimental and simulated diffusivities were significantly higher than those obtained in NaX, due to the higher concentration of extraframework cations present in the previously studied structures. PMID:27249167

  14. Molecular dynamics simulations of hydrogen diffusion in aluminum

    DOE PAGESBeta

    Zhou, X. W.; El Gabaly, F.; Stavila, V.; Allendorf, M. D.

    2016-03-23

    In this study, hydrogen diffusion impacts the performance of solid-state hydrogen storage materials and contributes to the embrittlement of structural materials under hydrogen-containing environments. In atomistic simulations, the diffusion energy barriers are usually calculated using molecular statics simulations where a nudged elastic band method is used to constrain a path connecting the two end points of an atomic jump. This approach requires prior knowledge of the “end points”. For alloy and defective systems, the number of possible atomic jumps with respect to local atomic configurations is tremendous. Even when these jumps can be exhaustively studied, it is still unclear howmore » they can be combined to give an overall diffusion behavior seen in experiments. Here we describe the use of molecular dynamics simulations to determine the overall diffusion energy barrier from the Arrhenius equation. This method does not require information about atomic jumps, and it has additional advantages, such as the ability to incorporate finite temperature effects and to determine the pre-exponential factor. As a test case for a generic method, we focus on hydrogen diffusion in bulk aluminum. We find that the challenge of this method is the statistical variation of the results. However, highly converged energy barriers can be achieved by an appropriate set of temperatures, output time intervals (for tracking hydrogen positions), and a long total simulation time. Our results help elucidate the inconsistencies of the experimental diffusion data published in the literature. The robust approach developed here may also open up future molecular dynamics simulations to rapidly study diffusion properties of complex material systems in multidimensional spaces involving composition and defects.« less

  15. Post-processing interstitialcy diffusion from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Bhardwaj, U.; Bukkuru, S.; Warrier, M.

    2016-01-01

    An algorithm to rigorously trace the interstitialcy diffusion trajectory in crystals is developed. The algorithm incorporates unsupervised learning and graph optimization which obviate the need to input extra domain specific information depending on crystal or temperature of the simulation. The algorithm is implemented in a flexible framework as a post-processor to molecular dynamics (MD) simulations. We describe in detail the reduction of interstitialcy diffusion into known computational problems of unsupervised clustering and graph optimization. We also discuss the steps, computational efficiency and key components of the algorithm. Using the algorithm, thermal interstitialcy diffusion from low to near-melting point temperatures is studied. We encapsulate the algorithms in a modular framework with functionality to calculate diffusion coefficients, migration energies and other trajectory properties. The study validates the algorithm by establishing the conformity of output parameters with experimental values and provides detailed insights for the interstitialcy diffusion mechanism. The algorithm along with the help of supporting visualizations and analysis gives convincing details and a new approach to quantifying diffusion jumps, jump-lengths, time between jumps and to identify interstitials from lattice atoms.

  16. Transient Liquid-Phase Diffusion Bonding of Aluminum Metal Matrix Composite Using a Mixed Cu-Ni Powder Interlayer

    NASA Astrophysics Data System (ADS)

    Maity, Joydeep; Pal, Tapan Kumar

    2012-07-01

    In the present study, the transient liquid-phase diffusion bonding of an aluminum metal matrix composite (6061-15 wt.% SiCp) has been investigated for the first time using a mixed Cu-Ni powder interlayer at 560 °C, 0.2 MPa, for different holding times up to 6 h. The microstructure of the isothermally solidified zone contains equilibrium precipitate CuAl2, metastable precipitate Al9Ni2 in the matrix of α-solid solution along with the reinforcement particles (SiC). On the other hand, the microstructure of the central bond zone consists of equilibrium phases such as NiAl3, Al7Cu4Ni and α-solid solution along with SiC particles (without any segregation) and the presence of microporosities. During shear test, the crack originates from microporosities and propagates along the interphase interfaces resulting in poor bond strength for lower holding times. As the bonding time increases, with continual diffusion, the structural heterogeneity is diminished, and the microporosities are eliminated at the central bond zone. Accordingly, after 6-h holding, the microstructure of the central bond zone mainly consists of NiAl3 without any visible microporosity. This provides a joint efficiency of 84% with failure primarily occurring through decohesion at the SiC particle/matrix interface.

  17. Diffusion bonding of CMSX-4 to UDIMET 720 using PVD-coated interfaces and HIP

    SciTech Connect

    Larker, R.; Ockborn, J.; Selling, B.

    1999-07-01

    There is an increasing interest in development of manufacturing methods for Dual Property BLISKs (BLaded dISKs), consisting of creep resistant airfoils and fatigue resistant disks bonded together by a durable joint. Optimum heat treatments are, however, very different for creep resistant single crystal CMSX-4 and fatigue resistant polycrystalline Udimet 720 selected in this study, but fortunately the first aging treatment for CMSX-4 (1140 C, 2-6h, AC) is similar to the partial solution treatment of U 720 HS2 (1115 C, 4h, OQ). Based on this, diffusion bonding was performed by HIP at 1120 C and 200 MPa argon pressure for 4 h, followed by cooling to 400 C. Subsequently, a shortened Udimet 720 HS2 two-step aging treatment was adopted by heating to 650 C for 6 h followed by cooling to 400 C, heating to 760 C for 2 h, and finally cooling to R.T. under remaining HIP pressure. Plasma etching followed by thin (80 nm) PVD coating with either nickel or titanium were used to clean and protect the polished surfaces before joining. The selection of coatings was governed by the possibility to reduce oxidized nickel by flushing with hydrogen at 330 C during evacuation of the HIP capsules, and by the large solubility of oxygen in titanium. Hot tensile testing was performed at 750 C on both joined and reference materials subjected to the modified heat treatment. Initially solution treated Udimet 720 and CMSX-4 comprised the reference materials. The testing showed that joints with Ni-PV coatings were almost as strong as Udimet 720 (although with very limited elongation), while the joints with Ti-PVD coatings were weaker.

  18. Diffuse reflectance infrared spectroscopic identification of dispersant/particle bonding mechanisms in functional inks.

    PubMed

    Deiner, L Jay; Farjami, Elaheh

    2015-01-01

    In additive manufacturing, or 3D printing, material is deposited drop by drop, to create micron to macroscale layers. A typical inkjet ink is a colloidal dispersion containing approximately ten components including solvent, the nano to micron scale particles which will comprise the printed layer, polymeric dispersants to stabilize the particles, and polymers to tune layer strength, surface tension and viscosity. To rationally and efficiently formulate such an ink, it is crucial to know how the components interact. Specifically, which polymers bond to the particle surfaces and how are they attached? Answering this question requires an experimental procedure that discriminates between polymer adsorbed on the particles and free polymer. Further, the method must provide details about how the functional groups of the polymer interact with the particle. In this protocol, we show how to employ centrifugation to separate particles with adsorbed polymer from the rest of the ink, prepare the separated samples for spectroscopic measurement, and use Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS) for accurate determination of dispersant/particle bonding mechanisms. A significant advantage of this methodology is that it provides high level mechanistic detail using only simple, commonly available laboratory equipment. This makes crucial data available to almost any formulation laboratory. The method is most useful for inks composed of metal, ceramic, and metal oxide particles in the range of 100 nm or greater. Because of the density and particle size of these inks, they are readily separable with centrifugation. Further, the spectroscopic signatures of such particles are easy to distinguish from absorbed polymer. The primary limitation of this technique is that the spectroscopy is performed ex-situ on the separated and dried particles as opposed to the particles in dispersion. However, results from attenuated total reflectance spectra of the wet separated

  19. Void shrinking process and mechanisms of the diffusion bonded Ti-6Al-4V alloy with different surface roughness

    NASA Astrophysics Data System (ADS)

    Li, H.; Li, M. Q.; Kang, P. J.

    2016-01-01

    The diffusion bonding of Ti-6Al-4V alloy with different surface roughness was performed at 5 and 10 MPa. The influence of surface roughness on the void shrinking process and mechanisms was investigated. The average void size increases as the R a increases from 0.33 to 0.44 μm, while it decreases as the R a increases to 0.46 μm because of the decreasing of R λq. The void shrinking mechanisms were analyzed by using the dynamic model of void shrinking. Power-law creep is a dominant mechanism on void shrinking, of which the contribution decreases as the R a increases from 0.33 to 0.44 μm, while it increases as the R a increases to 0.46 μm. The influence of surface roughness on the contribution of plastic deformation and surface source mechanism on void shrinking is not significant while that on the contribution of interface source mechanism is dependent on the imposing pressure. The optimizing surface roughness is with a R a of 0.33 μm and R λq of 5.38 μm in this study.

  20. Method for producing components with internal architectures, such as micro-channel reactors, via diffusion bonding sheets

    DOEpatents

    Alman, David E.; Wilson, Rick D.; Davis, Daniel L.

    2011-03-08

    This invention relates to a method for producing components with internal architectures, and more particularly, this invention relates to a method for producing structures with microchannels via the use of diffusion bonding of stacked laminates. Specifically, the method involves weakly bonding a stack of laminates forming internal voids and channels with a first generally low uniaxial pressure and first temperature such that bonding at least between the asperites of opposing laminates occurs and pores are isolated in interfacial contact areas, followed by a second generally higher isostatic pressure and second temperature for final bonding. The method thereby allows fabrication of micro-channel devices such as heat exchangers, recuperators, heat-pumps, chemical separators, chemical reactors, fuel processing units, and combustors without limitation on the fin aspect ratio.

  1. Spf/db hollow core fan blade. [SuperPlastically Formed/Diffusion Bonded

    SciTech Connect

    Velicki, A.

    1993-08-31

    A hollow core rotor blade for a turbine engine, comprising: a generally airfoil-shaped outer structure comprised of a superplastically formed, diffusion bonded sheet material, the outer structure having a trailing edge and a leading edge and being comprised of a matrix structure, with generally longitudinally oriented composite fibers being embedded within the superplastically formed material to increase the bending stiffness of the blade, the leading edge having an outer surface; and a hollow core spacing enclosed by the outer structure; wherein the outer surface of the leading edge is formed from a single sheet of material and is therefore structurally continuous and seamless, thereby allowing the rotor blade to be relatively lightweight, efficient, and durable, wherein each surface layer is comprised of an antifretting material having sufficient strength to withstand stresses between the blade and rotor during engine operation and sufficient ductility for forming into the manufactured shape; and wherein the shim is disposed between the dovetail and the dovetail slot, such that a portion of the first surface layer of the shims contacts at least a portion of each side face of the dovetail, and such that a portion of the second surface layer of the shim contacts at least a portion of each side wall of the dovetail slot.

  2. Indirect Versus Direct Heating of Sheet Materials: Superplastic Forming and Diffusion Bonding Using Lasers

    NASA Astrophysics Data System (ADS)

    Jocelyn, Alan; Kar, Aravinda; Fanourakis, Alexander; Flower, Terence; Ackerman, Mike; Keevil, Allen; Way, Jerome

    2010-06-01

    Many from within manufacturing industry consider superplastic forming (SPF) to be ‘high tech’, but it is often criticized as too complicated, expensive, slow and, in general, an unstable process when compared to other methods of manipulating sheet materials. Perhaps, the fundamental cause of this negative perception of SPF, and also of diffusion bonding (DB), is the fact that the current process of SPF/DB relies on indirect sources of heating to produce the conditions necessary for the material to be formed. Thus, heat is usually derived from the electrically heated platens of hydraulic presses, to a lesser extent from within furnaces and, sometimes, from heaters imbedded in ceramic moulds. Recent evaluations of these isothermal methods suggest they are slow, thermally inefficient and inappropriate for the process. In contrast, direct heating of only the material to be formed by modern, electrically efficient, lasers could transform SPF/DB into the first choice of designers in aerospace, automotive, marine, medical, architecture and leisure industries. Furthermore, ‘variable temperature’ direct heating which, in theory, is possible with a laser beam(s) may provide a means to control material thickness distribution, a goal of enormous importance as fuel efficient, lightweight structures for transportation systems are universally sought. This paper compares, and contrasts, the two systems and suggests how a change to laser heating might be achieved.

  3. Untangling Knots Via Reaction-Diffusion Dynamics of Vortex Strings.

    PubMed

    Maucher, Fabian; Sutcliffe, Paul

    2016-04-29

    We introduce and illustrate a new approach to the unknotting problem via the dynamics of vortex strings in a nonlinear partial differential equation of reaction-diffusion type. To untangle a given knot, a Biot-Savart construction is used to initialize the knot as a vortex string in the FitzHugh-Nagumo equation. Remarkably, we find that the subsequent evolution preserves the topology of the knot and can untangle an unknot into a circle. Illustrative test case examples are presented, including the untangling of a hard unknot known as the culprit. Our approach to the unknotting problem has two novel features, in that it applies field theory rather than particle mechanics and uses reaction-diffusion dynamics in place of energy minimization. PMID:27176541

  4. Untangling Knots Via Reaction-Diffusion Dynamics of Vortex Strings

    NASA Astrophysics Data System (ADS)

    Maucher, Fabian; Sutcliffe, Paul

    2016-04-01

    We introduce and illustrate a new approach to the unknotting problem via the dynamics of vortex strings in a nonlinear partial differential equation of reaction-diffusion type. To untangle a given knot, a Biot-Savart construction is used to initialize the knot as a vortex string in the FitzHugh-Nagumo equation. Remarkably, we find that the subsequent evolution preserves the topology of the knot and can untangle an unknot into a circle. Illustrative test case examples are presented, including the untangling of a hard unknot known as the culprit. Our approach to the unknotting problem has two novel features, in that it applies field theory rather than particle mechanics and uses reaction-diffusion dynamics in place of energy minimization.

  5. Mesoscopic dynamics of diffusion-influenced enzyme kinetics.

    PubMed

    Chen, Jiang-Xing; Kapral, Raymond

    2011-01-28

    A particle-based mesoscopic model for enzyme kinetics is constructed and used to investigate the influence of diffusion on the reactive dynamics. Enzymes and enzyme-substrate complexes are modeled as finite-size soft spherical particles, while substrate, product, and solvent molecules are point particles. The system is evolved using a hybrid molecular dynamics-multiparticle collision dynamics scheme. Both the nonreactive and reactive dynamics are constructed to satisfy mass, momentum, and energy conservation laws, and reversible reaction steps satisfy detailed balance. Hydrodynamic interactions among the enzymes and complexes are automatically accounted for in the dynamics. Diffusion manifests itself in various ways, notably in power-law behavior in the evolution of the species concentrations. In accord with earlier investigations, regimes where the product production rate exhibits either monotonic or nonmonotonic behavior as a function of time are found. In addition, the species concentrations display both t(-1/2) and t(-3/2) power-law behavior, depending on the dynamical regime under investigation. For high enzyme volume fractions, cooperative effects influence the enzyme kinetics. The time dependent rate coefficient determined from the mass action rate law is computed and shown to depend on the enzyme concentration. Lifetime distributions of substrate molecules newly released in complex dissociation events are determined and shown to have either a power-law form for rebinding to the same enzyme from which they were released or an exponential form for rebinding to different enzymes. The model can be used and extended to explore a variety of issues related concentration effects and diffusion on enzyme kinetics. PMID:21280744

  6. Evaluation of Cu as an interlayer in Be/F82H diffusion bonds for ITER TBM

    NASA Astrophysics Data System (ADS)

    Hunt, R. M.; Goods, S. H.; Ying, A.; Dorn, C. K.; Abdou, M.

    2011-10-01

    Copper has been investigated as a potential interlayer material for diffusion bonds between beryllium and Reduced Activation Ferritic/Martensitic (RAFM) steel. Utilizing Hot Isostatic Pressing (HIP), copper was directly bonded to a RAFM steel, F82H, at 650 °C, 700 °C, 750 °C, 800 °C and 850 °C, under 103 MPa for 2 h. Interdiffusion across the bonded interface was limited to 1 μm or less, even at the highest HIP'ing temperature. Through mechanical testing it was found that samples HIP'ed at 750 °C and above remain bonded up to 211 MPa under tensile loading, at which point ductile failure occurred in the bulk copper. As titanium will be used as a barrier layer to prevent the formation of brittle Be/Cu intermetallics, additional annealing studies were performed on copper samples coated with a titanium thin film to study Ti/Cu interdiffusion characteristics. Samples were heated to temperatures between 650 °C and 850 °C for 2 h in order to mimic the range of likely HIP temperatures. A correlation was drawn between HIP temperature and diffusion depth for use in determining the minimum Ti film thickness necessary to block diffusion in the Be/F82H joint.

  7. Spatiotemporal mapping of diffusion dynamics and organization in plasma membranes

    NASA Astrophysics Data System (ADS)

    Bag, Nirmalya; Ng, Xue Wen; Sankaran, Jagadish; Wohland, Thorsten

    2016-09-01

    Imaging fluorescence correlation spectroscopy (FCS) and the related FCS diffusion law have been applied in recent years to investigate the diffusion modes of lipids and proteins in membranes. These efforts have provided new insights into the membrane structure below the optical diffraction limit, new information on the existence of lipid domains, and on the influence of the cytoskeleton on membrane dynamics. However, there has been no systematic study to evaluate how domain size, domain density, and the probe partition coefficient affect the resulting imaging FCS diffusion law parameters. Here, we characterize the effects of these factors on the FCS diffusion law through simulations and experiments on lipid bilayers and live cells. By segmenting images into smaller 7  ×  7 pixel areas, we can evaluate the FCS diffusion law on areas smaller than 2 µm and thus provide detailed maps of information on the membrane structure and heterogeneity at this length scale. We support and extend this analysis by deriving a mathematical expression to calculate the mean squared displacement (MSDACF) from the autocorrelation function of imaging FCS, and demonstrate that the MSDACF plots depend on the existence of nanoscopic domains. Based on the results, we derive limits for the detection of domains depending on their size, density, and relative viscosity in comparison to the surroundings. Finally, we apply these measurements to bilayers and live cells using imaging total internal reflection FCS and single plane illumination microscopy FCS.

  8. Dynamics of diffusive bubble growth in magmas: Isothermal case

    NASA Astrophysics Data System (ADS)

    Prousevitch, A. A.; Sahagian, D. L.; Anderson, A. T.

    1993-12-01

    We have conducted a parametric study and developed a new cell model describing diffusion-induced growth of closely spaced bubbles in magmatic sytems. The model accounts for (1) the effects of advection of melt resulting from bubble growth, and its affect on the local concentration profile; (2) dynamic resistence of the viscous melt during diffusive growth; (3) diffusion of volatiles in response to evolving concentration gradients; (4) mass balance between dissolved volatiles and gas inside the bubble; (5) changes in the equilibrium saturation concentration at the bubble-melt interface; (6) total pressure within the bubble consisting of ambient, surface tension, and dynamic pressures. The results of this study reveal that bubble growth depends strongly on ambient pressure, volatile oversaturation in the melt, and diffusivity coefficients, but only weakly on bubble separation and inital bubble radius. Increased volatile oversaturation increases growth rate to the point at which it actually reduces time for complete bubble growth. This counterintuitive result is due to significant advective volatile flux toward the bubble interface during growth. Viscosity controls growth dynamics only for cases of high viscosity (greater than 10(exp 4) Pa s). The documentation of the evolution of gas fraction in the melt and bubble wall thickness as a function of time makes it possible to estimate bubble disruption thresholds which bear on volcanic eruption mechanisms. Model results can be applied to the larger-scale problem of magmatic degassing in terms of bubble coalescence, flotation and the development of foams in magma chambers and vent systems, and ultimately to the dynamics of eruption mechanisms.

  9. Sodium diffusion through amorphous silica surfaces: a molecular dynamics study.

    PubMed

    Rarivomanantsoa, Michaël; Jund, Philippe; Jullien, Rémi

    2004-03-01

    We have studied the diffusion inside the silica network of sodium atoms initially located outside the surfaces of an amorphous silica film. We have focused our attention on structural and dynamical quantities, and we have found that the local environment of the sodium atoms is close to the local environment of the sodium atoms inside bulk sodo-silicate glasses obtained by quench. This is in agreement with recent experimental results. PMID:15267353

  10. Dynamics of Robertson–Walker spacetimes with diffusion

    SciTech Connect

    Alho, A.; Calogero, S.; Machado Ramos, M.P.; Soares, A.J.

    2015-03-15

    We study the dynamics of spatially homogeneous and isotropic spacetimes containing a fluid undergoing microscopic velocity diffusion in a cosmological scalar field. After deriving a few exact solutions of the equations, we continue by analyzing the qualitative behavior of general solutions. To this purpose we recast the equations in the form of a two dimensional dynamical system and perform a global analysis of the flow. Among the admissible behaviors, we find solutions that are asymptotically de-Sitter both in the past and future time directions and which undergo accelerated expansion at all times.

  11. Highly constrained polymer dynamics with an enhanced bond-fluctuation model

    NASA Astrophysics Data System (ADS)

    Bentrem, Frank; McFaul, Colin

    2010-03-01

    We introduce a generalization to the bond-fluctuation model for simulating polymer dynamics in a highly constrained environment. The technique is applied to the quenching of self-attracting polymer chains which demonstrates a three-fold collapse. Both the extent and dynamics of the collapse are greatly enhanced by using the generalized bond-fluctuation model where the bond length l = √8 (in units of the lattice spacing) is explicitly utilized. We also show that lattice effects in dense melts (φ> 0.5) are alleviated with this enhancement. Efficiency is maintained by implementing a simple check to prevent phantom chain dynamics.

  12. Convection-diffusion effects in marathon race dynamics

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Espinosa-Paredes, G.; Alvarez-Ramirez, J.

    2014-01-01

    In the face of the recent terrorist attack event on the 2013 Boston Marathon, the increasing participation of recreational runners in large marathon races has imposed important logistical and safety issues for organizers and city authorities. An accurate understanding of the dynamics of the marathon pack along the race course can provide important insights for improving safety and performance of these events. On the other hand, marathon races can be seen as a model of pedestrian movement under confined conditions. This work used data of the 2011 Chicago Marathon event for modeling the dynamics of the marathon pack from the corral zone to the finish line. By considering the marathon pack as a set of particles moving along the race course, the dynamics are modeled as a convection-diffusion partial differential equation with position-dependent mean velocity and diffusion coefficient. A least-squares problem is posed and solved with optimization techniques for fitting field data from the 2011 Chicago Marathon. It was obtained that the mean pack velocity decreases while the diffusion coefficient increases with distance. This means that the dispersion rate of the initially compact marathon pack increases as the marathon race evolves along the race course.

  13. Surface Diffusion of Single Polymer Chain Using Molecular Dynamics SIMULATION*

    NASA Astrophysics Data System (ADS)

    Desai, Tapan; Keblinski, Pawel; Kumar, Sanat; Granick, Steve

    2004-05-01

    Results of recent experiments on polymer chains adsorbed from dilute solution at solid-liquid interface show the power scaling law dependence of the chain diffusivity, D, as a function of the degree of polymerization, N, D ˜ N^3/2. By contrast, DNA molecules bound to fluid cationic lipid bilayers follows Rouse dynamics with D ˜ N^1. We used molecular dynamics simulations to gain an understanding of these dissimilar scaling behaviors. Our model systems contain chains comprised of N monomers connected by anharmonic springs described by the finite extendible nonlinear elastic, FENE potential, embedded into a solvent of N=1 monomers. Two types of simulations we performed: (i) the chain is confined to two dimensions, (ii) the three dimensional chain in the solvent is confined between two solids plates. With randomly placed impenetrable obstacles on the surface, the diffusion of 2D chains exhibits, D ˜ N^3/2 behavior, when the chain radius of gyration, Rg, is larger than half the distance between obstacles, and D ˜ N^1 for shorter chains. In the presence of an athermal solvent, the scaling exponent is 0.75 due to hydrodynamic forces, for the two-dimensional system. We will also discuss the nature of dynamic adsorption transition and effects of hydrodynamics forces on chain diffusion for the three-dimensional simulations.

  14. Effects of interface bonding and defects on boron diffusion at Si/SiO{sub 2} interface

    SciTech Connect

    Kim, Geun-Myeong; Oh, Young Jun; Chang, K. J.

    2013-12-14

    We perform first-principles density functional calculations to find the migration pathway and barrier for B diffusion at the Si/SiO{sub 2} interface. For various interface models, in which crystalline α-quartz or amorphous silica (a-SiO{sub 2}) is placed on Si, we examine stable and metastable configurations of B-related defects which play a role in B diffusion. While a substitutional B alone is immobile in Si, it tends to diffuse to the interface via an interstitialcy mechanism in the presence of a self-interstitial and then changes into an interstitial B in oxide via a kick-out mechanism, leaving the self-interstitial at the interface. At the defect-free interface, where bridging O atoms are inserted to remove interface dangling bonds, an interstitial B prefers to intervene between the interface Si and bridging O atoms and subsequently diffuses through the hollow space or along the network of the Si-O-Si bonds in oxide. The overall migration barriers are calculated to be 2.02–2.12 eV at the Si/α-quartz interface, while they lie in the range of 2.04 ± 0.44 eV at the Si/a-SiO{sub 2} interface, similar to that in α-quartz. The migration pathway and barrier are not significantly affected by interface defects such as suboxide bond and O protrusion, while dangling bonds in the suboxide region can increase the migration barrier by about 1.5 eV. The result that the interface generally does not hinder the B diffusion from Si to SiO{sub 2} assists in understanding the underlying mechanism for B segregation which commonly occurs at the Si/SiO{sub 2} interface.

  15. An investigation on microstructure evolution and mechanical properties during liquid state diffusion bonding of Al2024 to Ti–6Al–4V

    SciTech Connect

    Samavatian, Majid; Halvaee, Ayoub; Amadeh, Ahmad Ali; Khodabandeh, Alireza

    2014-12-15

    Joining mechanism of Ti/Al dissimilar alloys was studied during liquid state diffusion bonding process using Cu/Sn/Cu interlayer at 510 °C under vacuum of 7.5 × 10{sup −5} Torr for various bonding times. The microstructure and compositional changes in the joint zone were analyzed by scanning electron microscopy equipped with energy dispersive spectroscopy and X-ray diffraction. Microhardness and shear strength tests were also applied to study the mechanical properties of the joints. It was found that with an increase in bonding time, the elements of interlayer diffused into the parent metals and formed various intermetallic compounds at the interface. Diffusion process led to the isothermal solidification and the bonding evolution in the joint zone. The results from mechanical tests showed that microhardness and shear strength values have a straight relation with bonding time so that the maximum shear strength of joint was obtained for a bond made with 60 min bonding time. - Highlights: • Liquid state diffusion bonding of Al2024 to Ti–6Al–4V was performed successfully. • Diffusion of the elements caused the formation of various intermetallics at the interface. • Microhardness and shear strength values have a straight relation with bonding time. • The maximum shear strength reached to 36 MPa in 60 min bonding time.

  16. Modeling cytoskeletal flow over adhesion sites: competition between stochastic bond dynamics and intracellular relaxation.

    PubMed

    Sabass, Benedikt; Schwarz, Ulrich S

    2010-05-19

    In migrating cells, retrograde flow of the actin cytoskeleton is related to traction at adhesion sites located at the base of the lamellipodium. The coupling between the moving cytoskeleton and the stationary adhesions is mediated by the continuous association and dissociation of molecular bonds. We introduce a simple model for the competition between the stochastic dynamics of elastic bonds at the moving interface and relaxation within the moving actin cytoskeleton represented by an internal viscous friction coefficient. Using exact stochastic simulations and an analytical mean field theory, we show that the stochastic bond dynamics lead to biphasic friction laws as observed experimentally. At low internal dissipation, stochastic bond dynamics lead to a regime of irregular stick-and-slip motion. High internal dissipation effectively suppresses cooperative effects among bonds and hence stabilizes the adhesion. PMID:21386438

  17. Valence-bond description of chemical reactions on Born-Oppenheimer molecular dynamics trajectories

    NASA Astrophysics Data System (ADS)

    Noguchi, Nao; Nakano, Haruyuki

    2009-04-01

    The nature of chemical bonds on dynamic paths was investigated using the complete active space valence-bond (CASVB) method and the Born-Oppenheimer dynamics. To extract the chemical bond picture during reactions, a scheme to collect contributions from several VB (resonance) structures into a small numbers of indices was introduced. In this scheme, a tree diagram for the VB structures is constructed with the numbers of the ionic bonds treated as generation. A pair of VB structures is related to each other if one VB structure is transferred into the other by changing a covalent bond to an ionic bond. The former and latter VB structures are named parent and child structures, respectively. The weights of the bond pictures are computed as the sum of the CASVB occupation numbers running from the top generation to the bottom along the descent of the VB structures. Thus, a number of CASVB occupation numbers are collected into a small number of indices, and a clear bond picture may be obtained from the CASVB wave function. The scheme was applied to the hydrogen exchange reaction H2+F→H+HF and the Diels-Alder reaction C5H6(cyclopentadiene)+CH2=CH2(ethylene)→C7H10(norbornene). In both the reactions, the scheme gave a clear picture for the Born-Oppenheimer dynamics trajectories. The reconstruction of the bonds during reactions was well described by following the temporal changes in weight.

  18. Dynamics of the diffusive DM-DE interaction – Dynamical system approach

    NASA Astrophysics Data System (ADS)

    Haba, Zbigniew; Stachowski, Aleksander; Szydłowski, Marek

    2016-07-01

    We discuss dynamics of a model of an energy transfer between dark energy (DE) and dark matter (DM) . The energy transfer is determined by a non-conservation law resulting from a diffusion of dark matter in an environment of dark energy. The relativistic invariance defines the diffusion in a unique way. The system can contain baryonic matter and radiation which do not interact with the dark sector. We treat the Friedman equation and the conservation laws as a closed dynamical system. The dynamics of the model is examined using the dynamical systems methods for demonstration how solutions depend on initial conditions. We also fit the model parameters using astronomical observation: SNIa, H(z), BAO and Alcock-Paczynski test. We show that the model with diffuse DM-DE is consistent with the data.

  19. Multi-responsive coordination polymers utilising metal-stabilised, dynamic covalent imine bonds.

    PubMed

    García, Fátima; Pelss, Janis; Zuilhof, Han; Smulders, Maarten M J

    2016-07-12

    We report how the combination of dynamic covalent imine bonds and coordination bonds in a single polymer material not only imparts enhanced stability to the final polymer, but also allows the material to be sensitive to a range of stimuli, offering more fine-grained control over its properties. PMID:26879208

  20. The Structure and Properties of Diffusion Assisted Bonded Joints in 17-4 PH, Type 347, 15-5 PH and Nitronic 40 Stainless Steels

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1981-01-01

    Diffusion assisted bonds are formed in 17-4 PH, 15-5 PH, type 347 and Nitronic 40 stainless steels using electrodeposited copper as the bonding agent. The bonds are analyzed by conventional metallographic, electron microprobe analysis, and scanning electron microscopic techniques as well as Charpy V-notch impact tests at temperatures of 77 and 300 K. Results are discussed in terms of a postulated model for the bonding process.

  1. Brownian Dynamics Simulation of Macromolecule Diffusion in a Protocell

    NASA Astrophysics Data System (ADS)

    Ando, Tadashi; Skolnick, Jeffrey

    2011-01-01

    The interiors of all living cells are highly crowded with macro molecules, which differs considerably the thermodynamics and kinetics of biological reactions between in vivo and in vitro. For example, the diffusion of green fluorescent protein (GFP) in E. coli is ~10-fold slower than in dilute conditions. In this study, we performed Brownian dynamics (BD) simulations of rigid macromolecules in a crowded environment mimicking the cytosol of E. coli to study the motions of macromolecules. The simulation systems contained 35 70S ribosomes, 750 glycolytic enzymes, 75 GFPs, and 392 tRNAs in a 100 nm × 100 nm × 100 nm simulation box, where the macromolecules were represented by rigid-objects of one bead per amino acid or four beads per nucleotide models. Diffusion tensors of these molecules in dilute solutions were estimated by using a hydrodynamic theory to take into account the diffusion anisotropy of arbitrary shaped objects in the BD simulations. BD simulations of the system where each macromolecule is represented by its Stokes radius were also performed for comparison. Excluded volume effects greatly reduce the mobility of molecules in crowded environments for both molecular-shaped and equivalent sphere systems. Additionally, there were no significant differences in the reduction of diffusivity over the entire range of molecular size between two systems. However, the reduction in diffusion of GFP in these systems was still 4-5 times larger than for the in vivo experiment. We will discuss other plausible factors that might cause the large reduction in diffusion in vivo.

  2. Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics

    PubMed Central

    Kim, Yung Sam; Hochstrasser, Robin M.

    2010-01-01

    Following a survey of 2D IR principles this Feature Article describes recent experiments on the hydrogen-bond dynamics of small ions, amide-I modes, nitrile probes, peptides, reverse transcriptase inhibitors, and amyloid fibrils. PMID:19351162

  3. Molecular-dynamics simulation of hydrogen diffusion in palladium

    NASA Astrophysics Data System (ADS)

    Li, Yinggang; Wahnström, Göran

    1992-12-01

    Molecular-dynamics simulations for hydrogen diffusion in Pd are performed for a system consisting of 256 Pd atoms and 8 H atoms at the temperature T=623 K. Under these conditions detailed quasielastic-neutron-scattering (QNS) data are available. For the interatomic interactions we use the embedded-atom method (EAM), which incorporates some essential many-body effects in metals. Based on the EAM approach, the wave-vector dependence of the width of the QNS peak is investigated in detail. It is found that a single electronically adiabatic potential-energy surface cannot reproduce the observed wave-vector dependence. After incorporating the coupling of hydrogen atoms to the low-lying electron-hole pair excitations among the conduction electrons, close agreement with the experimental data is obtained. This is a strong indication that one has to go beyond the Born-Oppenheimer approximation in order to characterize correctly the diffusive motion of hydrogen in metals. To reveal the diffusive behavior in more detail, the residence time distribution and the correlation character in diffusion direction are investigated. We found that including the nonadiabatic corrections reduces the probability for the H atoms to move over several lattice sites without getting trapped in between. As a result, the motion of the H atoms becomes more similar to that assumed in the Chudley-Elliott model, which describes well the QNS data for the wave-vector dependence of the width.

  4. Reaction Diffusion Modeling of Calcium Dynamics with Realistic ER Geometry

    PubMed Central

    Means, Shawn; Smith, Alexander J.; Shepherd, Jason; Shadid, John; Fowler, John; Wojcikiewicz, Richard J. H.; Mazel, Tomas; Smith, Gregory D.; Wilson, Bridget S.

    2006-01-01

    We describe a finite-element model of mast cell calcium dynamics that incorporates the endoplasmic reticulum's complex geometry. The model is built upon a three-dimensional reconstruction of the endoplasmic reticulum (ER) from an electron tomographic tilt series. Tetrahedral meshes provide volumetric representations of the ER lumen, ER membrane, cytoplasm, and plasma membrane. The reaction-diffusion model simultaneously tracks changes in cytoplasmic and ER intraluminal calcium concentrations and includes luminal and cytoplasmic protein buffers. Transport fluxes via PMCA, SERCA, ER leakage, and Type II IP3 receptors are also represented. Unique features of the model include stochastic behavior of IP3 receptor calcium channels and comparisons of channel open times when diffusely distributed or aggregated in clusters on the ER surface. Simulations show that IP3R channels in close proximity modulate activity of their neighbors through local Ca2+ feedback effects. Cytoplasmic calcium levels rise higher, and ER luminal calcium concentrations drop lower, after IP3-mediated release from receptors in the diffuse configuration. Simulation results also suggest that the buffering capacity of the ER, and not restricted diffusion, is the predominant factor influencing average luminal calcium concentrations. PMID:16617072

  5. Diffusion Bonding of Microduplex Stainless Steel and Ti Alloy with and without Interlayer: Interface Microstructure and Strength Properties

    NASA Astrophysics Data System (ADS)

    Kundu, S.; Sam, S.; Mishra, B.; Chatterjee, S.

    2014-01-01

    The interface microstructure and strength properties of solid state diffusion bonding of microduplex stainless steel (MDSS) to Ti alloy (TiA) with and without a Ni alloy (NiA) intermediate material were investigated at 1173 K (900 °C) for 0.9 to 5.4 ks in steps of 0.9 ks in vacuum. The effects of bonding time on the microstructure of the bonded joint have been analyzed by light optical microscopy and scanning electron microscopy in the backscattered mode. In the direct bonded joints of MDSS and TiA, the layer-wise σ phase and the λ + FeTi phase mixture were observed at the bond interface when the joint was processed for 2.7 ks and above holding times. However, when NiA was used as an intermediate material, the results indicated that TiNi3, TiNi, and Ti2Ni are formed at the NiA-TiA interface, and the irregular shaped particles of Fe22Mo20Ni45Ti13 have been observed within the TiNi3 intermetallic layer. The stainless steel-NiA interface is free from intermetallics and the layer of austenitic phase was observed at the stainless steel side. A maximum tensile strength of ~520 MPa, shear strength of ~405 MPa, and impact toughness of ~18 J were obtained for the directly bonded joint when processed for 2.7 ks. However, when nickel base alloy was used as an intermediate material in the same materials, the bond tensile and shear strengths increase to ~640 and ~479 MPa, respectively, and the impact toughness to ~21 J when bonding was processed for 4.5 ks. Fracture surface observations in scanning electron microscopy using energy dispersive spectroscopy demonstrate that in MDSS-TiA joints, failure takes place through the FeTi + λ phase when bonding was processed for 2.7 ks; however, failure takes place through σ phase for the diffusion joints processed for 3.6 ks and above processing times. However, in MDSS-NiA-TiA joints, the fracture takes place through NiTi2 layer at the NiA-TiA interface for all bonding times.

  6. Effect of temperature and pressure on the structure, dynamics, and hydrogen bond properties of liquid N-methylacetamide: a molecular dynamics study.

    PubMed

    Pattanayak, Subrat Kumar; Prashar, Nidhi; Chowdhuri, Snehasis

    2011-04-21

    The structure and dynamical properties of liquid N-methylacetamides (NMA) are calculated at five different temperatures and at four different pressures using classical molecular dynamics simulations. Our results are analyzed in terms of pressure-induced changes in structural properties by investigating the radial distribution functions of different atoms in NMA molecule. It is found that the first peak and also the second peak of C-O and N-H are well defined even at higher temperature and pressure. It is also observed that the number of hydrogen bonds increase with application of pressure at a given temperature. On the other hand, the calculated hydrogen bond energy (E(HB)) shows that the stability of hydrogen bond decreases with increasing of pressure and temperature. Various dynamical properties associated with translational and rotational motion of neat NMA are calculated and the self-diffusion coefficient of NMA is found to be in excellent agreement with the experiment and the behavior is non-Arrhenius at low temperatures with application of pressures. The single particle orientational relaxation time for dipole vector and N-C vector are also calculated and it is found that the orientational relaxation time follows Arrhenius behavior with a variation of temperature and pressure. PMID:21513394

  7. Superplastic forming and diffusion bonding of rapidly solidified, dispersion strengthened aluminum alloys for elevated temperature structural applications

    NASA Technical Reports Server (NTRS)

    Ting, E. Y.; Kennedy, J. R.

    1989-01-01

    Rapidly solidified alloys, based upon the Al-Fe-V-Si system and designed for elevated temperature applications, were evaluated for superplasticity and diffusion bonding behavior. Alloys with 8, 16, 27, and 36 volume percent silicide dispersoids were produced; dispersoid condition was varied by rolling at 300, 400, and 500 C (572, 752, and 932 F). Superplastic behavior was evaluated at strain rates from 1 x 10(exp -6)/s to 8.5/s at elevated temperatures. The results indicate that there was a significant increase in elongation at higher strain rates and at temperatures above 600 C (1112 F). However, the exposure of the alloys to temperatures greater than 600 C (1112 F) resulted in the coarsening of the strengthening dispersoid and the degradation of mechanical properties. Diffusion bonding was possible using low gas pressure at temperatures greater than 600 C (1112 F) which also resulted in degraded properties. The bonding of Al-Fe-V-Si alloys to 7475 aluminum alloy was performed at 516 C (960 F) without significant degradation in microstructure. Bond strengths equal to 90 percent that of the base metal shear strength were achieved. The mechanical properties and microstructural characteristics of the alloys were investigated.

  8. A Mathematical Model of Diffusion-Limited Gas Bubble Dynamics in Tissue with Varying Diffusion Region Thickness

    NASA Technical Reports Server (NTRS)

    Srinivasan, R. Srini; Gerth, Wayne A.; Powell, Michael R.; Paloski, William H. (Technical Monitor)

    2000-01-01

    A three-region mathematical model of gas bubble dynamics has been shown suitable for describing diffusion-limited dynamics of more than one bubble in a given volume of extravascular tissue. The model is based on the dynamics of gas exchange between a bubble and a well-stirred tissue region through an intervening unperfused diffusion region previously assumed to have constant thickness and uniform gas diffusivity. As a result, the gas content of the diffusion region remains constant as the volume of the region increases with bubble growth, causing dissolved gas in the region to violate Henry's law. Earlier work also neglected the relationship between the varying diffusion region volume and the fixed total tissue volume, because only cases in which the diffusion region volume is a small fraction of the overall tissue volume were considered. We herein extend the three-region model to correct these theoretical inconsistencies by allowing both the thickness and gas content of the diffusion region to vary during bubble evolution. A postulated difference in gas diffusivity between an infinitesimally thin layer at the bubble surface and the remainder of the diffusion region leads to variation in diffusion region gas content and thickness during bubble growth and resolution. This variable thickness, differential diffusivity (VTDD) model can yield bubble lifetimes considerably longer than those yielded by earlier three-region models for given model and decompression parameters, and meets a need for theoretically consistent but relatively simple bubble dynamics models for use in studies of decompression sickness (DCS) in human subjects, Keywords: decompression sickness, gas diffusion in tissue, diffusivity

  9. Effect of ultrasonic capillary dynamics on the mechanics of thermosonic ball bonding.

    PubMed

    Huang, Yan; Shah, Aashish; Mayer, Michael; Zhou, Norman Y; Persic, John

    2010-01-01

    Microelectronic wire bonding is an essential step in today's microchip production. It is used to weld (bond) microwires to metallized pads of integrated circuits using ultrasound with hundreds of thousands of vibration cycles. Thermosonic ball bonding is the most popular variant of the wire bonding process and frequently investigated using finite element (FE) models that simplify the ultrasonic dynamics of the process with static or quasistatic boundary conditions. In this study, the ultrasonic dynamics of the bonding tool (capillary), made from Al(2)O(3), is included in a FE model. For more accuracy of the FE model, the main material parameters are measured. The density of the capillary was measured to be rho(cap) = 3552 +/- 100 kg/m(3). The elastic modulus of the capillary, E(cap) = 389 +/- 11 GPa, is found by comparing an auxiliary FE model of the free vibrating capillary with measured values. A capillary "nodding effect" is identified and found to be essential when describing the ultrasonic vibration shape. A main FE model builds on these results and adds bonded ball, pad, chip, and die attach components. There is excellent agreement between the main model and the ultrasonic force measured at the interface on a test chip with stress microsensors. Bonded ball and underpad stress results are reported. When adjusted to the same ultrasonic force, a simplified model without ultrasonic dynamics and with an infinitely stiff capillary tip is substantially off target by -40% for the maximum underpad stress. The compliance of the capillary causes a substantial inclination effect at the bonding interface between wire and pad. This oscillating inclination effect massively influences the stress fields under the pad and is studied in more detail. For more accurate results, it is therefore recommended to include ultrasonic dynamics of the bonding tool in mechanical FE models of wire bonding. PMID:20040450

  10. The effect of hydrogen bonding propensity and enantiomeric composition on the dynamics of supercooled ketoprofen - dielectric, rheological and NMR studies.

    PubMed

    Adrjanowicz, K; Kaminski, K; Tarnacka, M; Szutkowski, K; Popenda, L; Bartkowiak, G; Paluch, M

    2016-04-21

    The aim of this work is to analyze in detail the effect of small hydrogen bonding (HB) structures and enantiomeric composition on the dynamics of glass-forming liquid ketoprofen. For that purpose dielectric relaxation, rheological and NMR studies were performed. Investigated samples are racemic ketoprofen, a single enantiomer of ketoprofen and a racemic ketoprofen methyl ester with no tendency to form HB dimers. The combination of complementary experimental techniques enables us to show that macroscopic viscosity η and α-relaxation time τα have nearly the same temperature dependencies, whereas the relation between the viscosity (or molecular reorientation) and the translational self-diffusion coefficient violates Stokes-Einstein law already at high temperature. Additionally, based on dielectric relaxation studies performed on increased pressure we were able to identify similarities and key differences in the supercooled liquid dynamics of investigated materials affected by their tendency to form intermolecular hydrogen bonds. This includes the effect of pressure on the glass transition temperature Tg, changes in the fragility parameter m and activation volume ΔV, the role of thermal energy and density fluctuations in governing the viscous liquid dynamics (Ev/Ep ratio). Finally, we have also demonstrated that the dynamic behaviour of a single enantiomer and the racemic mixture of the same compound are very much alike. Nevertheless, some slight differences were observed, particularly in the τα(T) dependencies measured in the vicinity of glass transition both at ambient and elevated pressure. PMID:27035123

  11. Adiabatic invariants, diffusion and acceleration in rigid body dynamics

    NASA Astrophysics Data System (ADS)

    Borisov, Alexey V.; Mamaev, Ivan S.

    2016-03-01

    The onset of adiabatic chaos in rigid body dynamics is considered. A comparison of the analytically calculated diffusion coefficient describing probabilistic effects in the zone of chaos with a numerical experiment is made. An analysis of the splitting of asymptotic surfaces is performed and uncertainty curves are constructed in the Poincaré-Zhukovsky problem. The application of Hamiltonian methods to nonholonomic systems is discussed. New problem statements are given which are related to the destruction of an adiabatic invariant and to the acceleration of the system (Fermi's acceleration).

  12. Dynamic hysteresis modeling including skin effect using diffusion equation model

    NASA Astrophysics Data System (ADS)

    Hamada, Souad; Louai, Fatima Zohra; Nait-Said, Nasreddine; Benabou, Abdelkader

    2016-07-01

    An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.

  13. Molecular dynamics simulations of interfacial interactions between small nanoparticles during diffusion-limited aggregation

    NASA Astrophysics Data System (ADS)

    Lu, Jing; Liu, Dongmei; Yang, Xiaonan; Zhao, Ying; Liu, Haixing; Tang, Huan; Cui, Fuyi

    2015-12-01

    Due to the limitations of experimental methods at the atomic level, research on the aggregation of small nanoparticles (D < 5 nm) in aqueous solutions is quite rare. The aggregation of small nanoparticles in aqueous solutions is very different than that of normal sized nanoparticles. The interfacial interactions play a dominant role in the aggregation of small nanoparticles. In this paper, molecular dynamics simulations, which can explore the microscopic behavior of nanoparticles during the diffusion-limited aggregation at an atomic level, were employed to reveal the aggregation mechanism of small nanoparticles in aqueous solutions. First, the aggregation processes and aggregate structure were depicted. Second, the particle-particle interaction and surface diffusion of nanoparticles during aggregation were investigated. Third, the water-mediated interactions during aggregation were ascertained. The results indicate that the aggregation of nanoparticle in aqueous solutions is affected by particle size. The strong particle-particle interaction and high surface diffusion result in the formation of particle-particle bonds of 2 nm TiO2 nanoparticles, and the water-mediated interaction plays an important role in the aggregation process of 3 and 4 nm TiO2 nanoparticles.

  14. Dynamics of diffuse oceanic plate boundaries: insensitivity to rheology

    NASA Astrophysics Data System (ADS)

    Zatman, Stephen; Gordon, Richard G.; Mutnuri, Kartik

    2005-07-01

    Diffuse plate boundaries, which are zones of deformation hundreds to thousands of kilometres wide, occur in both continental and oceanic lithosphere. Here, we build on our prior work in which we described analytic approximations to simple dynamical models that assume that the vertically averaged viscous force resisting deformation in diffuse oceanic plate boundaries (DOPBs) is described by either a linear Newtonian viscous rheology or a yield-stress (high-exponent power-law) rheology. An important observation is that the poles of relative rotation of adjacent component plates tend to lie in the diffuse plate boundary that separates them. A key cause of this tendency is that a faster spin is needed to balance a component of torque through the middle of a diffuse plate boundary than to balance an equal component of torque lying 90° from the middle of the diffuse boundary. The strength of that tendency depends on rheology, however, with the tendency being stronger for a yield-stress rheology than for a Newtonian viscous rheology. For the special case of the pole of rotation lying outside of and along the strike of the boundary, these large differences can be simply explained in terms of the distribution of boundary-perpendicular normal forces acting across the boundary. In the Newtonian case, the distribution of forces has an along-strike gradient that can balance a component of torque about the middle of the boundary, while in the yield-stress case, the distribution of forces has zero along-strike gradient and cannot balance a component of torque about the middle of the diffuse plate boundary. To expand our analysis to intermediate power laws of geophysical interest (i.e. power-law exponents of 3 to 30), as well as to investigate more thoroughly the behaviour for a high-exponent power law, we numerically integrate the force distribution to obtain the torques. Results for intermediate power laws resemble the yield-stress rheology much more than they resemble the

  15. An investigation on diffusion bonding of aluminum to copper using equal channel angular extrusion process.

    PubMed

    Eslami, P; Taheri, A Karimi

    2011-06-30

    A new method for production of bimetallic rods, utilizing the equal channel angular extrusion (ECAE) process has been introduced before by previous researchers, but no attempt has been made to assess the effect of different temperatures and holding times in order to achieve a diffusional bond between the mating surfaces. In present research copper sheathed aluminum rods have been ECAEed at room temperature and subsequently held at a constant ECAE pressure, at different temperatures and holding times to produce a diffusional bond between the copper sheath and the aluminum core. The bonding quality of the joints was examined by shear strength test and a sound bonding interface was achieved. Based on the results, a bonding temperature of 200 °C and holding time of 60-80 min yielded the highest shear strength value. PMID:21760654

  16. Development of a Low-Cost Process for Manufacturing of Ti-Metal Matrix Composite by Roll-Diffusion Bonding

    NASA Astrophysics Data System (ADS)

    Testani, C.; Ferraro, F.

    2010-06-01

    Composite materials with titanium-alloy matrix are currently the class of material with the highest specific resistance at temperatures up to 800 °C. The main hurdle to their application is their final cost. Even if it is clear that the costs of constituent materials are decreasing due to volume production effects, the production processing costs remain high due to the batch production approach. Centro Sviluppo Materiali’s (CSM) efforts have focused on the manufacturing process in order to obtain an innovative solution to reduce the manufacturing costs with respect to the hot isostatic pressing (HIP) process that represents the standard production process for this class of materials. The new approach can allow a cost reduction of about 40%; this result was obtained by developing an experimental “diffusion bonding” plant for co-rolling at high temperature in a superplastic rolling regime, sheets of titanium alloy and monofilament silicon carbide fabrics. The experimental pilot plant was proposed for patent with RM2006A000261 in May 2006. This paper describes the manufacturing phases and process results. Moreover, has been shown that the diffusion in the solid state was obtained in a process window that was at least 100 times faster than that of HIP. High-temperature tensile tests were carried out on specimens machined from metallic matrix composite materials produced with the roll-diffusion bonding (RDB) process. The samples produced were also submitted to electrochemical dissolution tests of the metallic matrix in order to verify the geometric integrity of the fibers inside the matrix after the bonding phase. The results achieved as well as the process knowledge acquired with the CSM pilot plant are the base for further development of industrial application of the titanium roll-diffusion bonding.

  17. Femtosecond Hydrogen Bond Dynamics of Bulk-like and Bound Water at Positively and Negatively Charged Lipid Interfaces Revealed by 2D HD-VSFG Spectroscopy.

    PubMed

    Singh, Prashant Chandra; Inoue, Ken-Ichi; Nihonyanagi, Satoshi; Yamaguchi, Shoichi; Tahara, Tahei

    2016-08-26

    Interfacial water in the vicinity of lipids plays an important role in many biological processes, such as drug delivery, ion transportation, and lipid fusion. Hence, molecular-level elucidation of the properties of water at lipid interfaces is of the utmost importance. We report the two-dimensional heterodyne-detected vibrational sum frequency generation (2D HD-VSFG) study of the OH stretch of HOD at charged lipid interfaces, which shows that the hydrogen bond dynamics of interfacial water differ drastically, depending on the lipids. The data indicate that the spectral diffusion of the OH stretch at a positively charged lipid interface is dominated by the ultrafast (<∼100 fs) component, followed by the minor sub-picosecond slow dynamics, while the dynamics at a negatively charged lipid interface exhibit sub-picosecond dynamics almost exclusively, implying that fast hydrogen bond fluctuation is prohibited. These results reveal that the ultrafast hydrogen bond dynamics at the positively charged lipid-water interface are attributable to the bulk-like property of interfacial water, whereas the slow dynamics at the negatively charged lipid interface are due to bound water, which is hydrogen-bonded to the hydrophilic head group. PMID:27482947

  18. Dynamic diffusion tensor measurements in muscle tissue using Single Line Multiple Echo Diffusion Tensor Acquisition Technique at 3T

    PubMed Central

    Baete, Steven H.; Cho, Gene; Sigmund, Eric E.

    2015-01-01

    When diffusion biomarkers display transient changes, i.e. in muscle following exercise, traditional diffusion tensor imaging (DTI) methods lack temporal resolution to resolve the dynamics. This paper presents an MRI method for dynamic diffusion tensor acquisitions on a clinical 3T scanner. This method, SL-MEDITATE (Single Line Multiple Echo Diffusion Tensor Acquisition Technique) achieves a high temporal resolution (4s) (1) by rapid diffusion encoding through the acquisition of multiple echoes with unique diffusion sensitization and (2) by limiting the readout to a single line volume. The method is demonstrated in a rotating anisotropic phantom, in a flow phantom with adjustable flow speed, and in in vivo skeletal calf muscle of healthy volunteers following a plantar flexion exercise. The rotating and flow-varying phantom experiments show that SL-MEDITATE correctly identifies the rotation of the first diffusion eigenvector and the changes in diffusion tensor parameter magnitudes, respectively. Immediately following exercise, the in vivo mean diffusivity (MD) time-courses show, before the well-known increase, an initial decrease which is not typically observed in traditional DTI. In conclusion, SL-MEDITATE can be used to capture transient changes in tissue anisotropy in a single line. Future progress might allow for dynamic DTI when combined with appropriate k-space trajectories and compressed sensing reconstruction. PMID:25900166

  19. Diffusion dynamics in the disordered Bose Hubbard model

    NASA Astrophysics Data System (ADS)

    Wadleigh, Laura; Russ, Philip; Demarco, Brian

    2016-05-01

    We explore the dynamics of diffusion for out-of-equilibrium superfluid, Mott insulator, and Bose glass states using an atomic realization of the disordered Bose Hubbard (DBH) model. Dynamics in strongly correlated systems, especially far from equilibrium, are not well understood. The introduction of disorder further complicates these systems. We realize the DBH model--which has been central to our understanding of quantum phase transitions in disordered systems--using ultracold Rubidium-87 atoms trapped in a cubic disordered optical lattice. By tightly focusing a beam into the center of the gas, we create a hole in the atomic density profile. We achieve Mott insulator, superfluid, or Bose glass states by varying the interaction and disorder strength, and measure the time evolution of the density profile after removing the central barrier. This allows us to infer diffusion rates from the velocities at the edge of the hole and to look for signatures of superfluid puddles in the Bose glass state. We acknowledge funding from NSF Grant PHY 15-05468, NSF Grant DGE-1144245, and ARO Grant W911NF-12-1-0462.

  20. Dynamics of Diffusion Flames in von Karman Swirling Flows Studied

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Williams, Forman A.

    2002-01-01

    Von Karman swirling flow is generated by the viscous pumping action of a solid disk spinning in a quiescent fluid media. When this spinning disk is ignited in an oxidizing environment, a flat diffusion flame is established adjacent to the disk, embedded in the boundary layer (see the preceding illustration). For this geometry, the conservation equations reduce to a system of ordinary differential equations, enabling researchers to carry out detailed theoretical models to study the effects of varying strain on the dynamics of diffusion flames. Experimentally, the spinning disk burner provides an ideal configuration to precisely control the strain rates over a wide range. Our original motivation at the NASA Glenn Research Center to study these flames arose from a need to understand the flammability characteristics of solid fuels in microgravity where slow, subbuoyant flows can exist, producing very small strain rates. In a recent work (ref. 1), we showed that the flammability boundaries are wider and the minimum oxygen index (below which flames cannot be sustained) is lower for the von Karman flow configuration in comparison to a stagnation-point flow. Adding a small forced convection to the swirling flow pushes the flame into regions of higher strain and, thereby, decreases the range of flammable strain rates. Experiments using downward facing, polymethylmethacrylate (PMMA) disks spinning in air revealed that, close to the extinction boundaries, the flat diffusion flame breaks up into rotating spiral flames (refs. 2 and 3). Remarkably, the dynamics of these spiral flame edges exhibit a number of similarities to spirals observed in biological systems, such as the electric pulses in cardiac muscles and the aggregation of slime-mold amoeba. The tail of the spiral rotates rigidly while the tip executes a compound, meandering motion sometimes observed in Belousov-Zhabotinskii reactions.

  1. Chaotic dynamics and diffusion in a piecewise linear equation

    NASA Astrophysics Data System (ADS)

    Shahrear, Pabel; Glass, Leon; Edwards, Rod

    2015-03-01

    Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.

  2. Chaotic dynamics and diffusion in a piecewise linear equation

    SciTech Connect

    Shahrear, Pabel; Glass, Leon; Edwards, Rod

    2015-03-15

    Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.

  3. Study of diffusion bond development in 6061 aluminum and its relationship to future high density fuels fabrication.

    SciTech Connect

    Prokofiev, I.; Wiencek, T.; McGann, D.

    1997-10-07

    Powder metallurgy dispersions of uranium alloys and silicides in an aluminum matrix have been developed by the RERTR program as a new generation of proliferation-resistant fuels. Testing is done with miniplate-type fuel plates to simulate standard fuel with cladding and matrix in plate-type configurations. In order to seal the dispersion fuel plates, a diffusion bond must exist between the aluminum coverplates surrounding the fuel meat. Four different variations in the standard method for roll-bonding 6061 aluminum were studied. They included mechanical cleaning, addition of a getter material, modifications to the standard chemical etching, and welding methods. Aluminum test pieces were subjected to a bend test after each rolling pass. Results, based on 400 samples, indicate that at least a 70% reduction in thickness is required to produce a diffusion bond using the standard rollbonding method versus a 60% reduction using the Type II method in which the assembly was welded 100% and contained open 9mm holes at frame corners.

  4. Dynamic MEMS-based linear (1D) diffusers for laser beam homogenizing and beam shaping

    NASA Astrophysics Data System (ADS)

    Masson, J.; Bich, A.; Noell, W.; Voelkel, R.; Weible, K. J.; De Rooij, N. F.

    2009-08-01

    We present a dynamic laser beam shaper based on MEMS technology. We show a prototype of a dynamic diffuser made of single crystal silicon. A linearly deformable silicon micromembrane is used to diffuse a laser beam in one dimension. Resonance frequencies of the membrane can range from 1 kHz to 100 kHz. Diffusing angle can be tuned by adjusting the driving voltage. We measured a diffusing angle of 0.16° for an actuation voltage of 20 V.

  5. Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient.

    PubMed

    Kowsari, M H; Alavi, Saman; Ashrafizaadeh, Mahmud; Najafi, Bijan

    2008-12-14

    Molecular dynamics simulations are used to study the dynamics and transport properties of 12 room-temperature ionic liquids of the 1-alkyl-3-methylimidazolium [amim](+) (alkyl = methyl, ethyl, propyl, and butyl) family with PF(6)(-), NO(3)(-), and Cl(-) counterions. The explicit atom transferable force field of Canongia Lopes et al. [J. Phys. Chem. B 108, 2038 (2004)] is used in the simulations. In this first part, the dynamics of the ionic liquids are characterized by studying the mean-square displacement (MSD) and the velocity autocorrelation function (VACF) for the centers of mass of the ions at 400 K. Trajectory averaging was employed to evaluate the diffusion coefficients at two temperatures from the linear slope of MSD(t) functions in the range of 150-300 ps and from the integration of the VACF(t) functions at 400 K. Detailed comparisons are made between the diffusion results from the MSD and VACF methods. The diffusion coefficients from the integration of the VACFs are closer to experimental values than the diffusion coefficients calculated from the slope of MSDs. Both methods can show good agreement with experiment in predicting relative trends in the diffusion coefficients and determining the role of the cation and anion structures on the dynamical behavior of this family of ionic liquids. The MSD and self-diffusion of relatively heavier imidazolium cations are larger than those of the lighter anions from the Einstein results, except for the case of [bmim][Cl]. The cationic transference number generally decreases with temperature, in good agreement with experiments. For the same anion, the cationic transference numbers decrease with increasing length of the alkyl chain, and for the same cation, the trends in the cationic transference numbers are [NO(3)](-) < [Cl](-) < [PF(6)](-). The trends in the diffusion coefficient in the series of cations with identical anions are [emim](+) > [pmim](+) > [bmim](+) and those for anions with identical cations are [NO(3

  6. Probing bonding and dynamics at heterogeneous adsorbate/graphene interfaces

    NASA Astrophysics Data System (ADS)

    Mattson, Eric

    Graphene-based materials are becoming an astoundingly promising choice for many relevant technological and environmental applications. Deriving graphene from the reduction of graphene oxide (GO) is becoming a popular and inexpensive route toward the synthesis of these materials. While the desired product from GO reduction is pristine graphene, defects and residual oxygen functional groups inherited from the parent GO render reduced graphene oxide (RGO) distinct from graphene. In this work, the structure and bonding for GO and RGO is investigated to the end of a working understanding of the composition and properties of these materials. In situ selected area electron diffraction and ex situ IR microspectroscopy are used to study, respectively, thermal and chemical reduction of GO. The residual oxygen functional groups are found to be predominantly epoxide, C-O-C, bonded oxygen. The role of these oxygen functional groups and the collective RGO in gas sensing applications is investigated by performing in situ IR spectromicroscopy studies of molecular adsorption onto RGO. NO2 and NH3 are the target molecules of interest; NH3 due to its widespread use in industry and NO2 is a a common byproducts in combustion reactions. Following adsorption of both molecules, numerous species are identified on the surface due to the heterogeneity of the substrate. Residual epoxide groups participate in reactions with the target molecules to produce additional surface species that have varying impacts on the conductivity of the substrate.

  7. Catastrophic fault diagnosis in dynamic systems using bond graph methods

    SciTech Connect

    Yarom, Tamar.

    1990-01-01

    Detection and diagnosis of faults has become a critical issue in high performance engineering systems as well as in mass-produced equipment. It is particularly helpful when the diagnosis can be made at the initial design level with respect to a prospective fault list. A number of powerful methods have been developed for aiding in the general fault analysis of designs. Catastrophic faults represent the limit case of complete local failure of connections or components. They result in the interruption of energy transfer between corresponding points in the system. In this work the conventional approach to fault detection and diagnosis is extended by means of bond-graph methods to a wide variety of engineering systems. Attention is focused on catastrophic fault diagnosis. A catastrophic fault dictionary is generated from the system model based on topological properties of the bond graph. The dictionary is processed by existing methods to extract a catastrophic fault report to aid the engineer in performing a design analysis.

  8. Dynamic Simulation of Backward Diffusion Based on Random Walk Theory

    NASA Astrophysics Data System (ADS)

    Dung, Vu Ba; Nguyen, Bui Huu

    2016-06-01

    Results of diffusion study in silicon showed that diffusion of the selfinterstitial and vacancy could be backward diffusion and their diffusivity could be negative [1]. The backward diffusion process and negative diffusivity is contrary to the fundamental laws of diffusion such as the law of Fick law, namely the diffusive flux of backward diffusion goes from regions of low concentration to regions of high concentration. The backward diffusion process have been explained [2]. In this paper, the backward diffusion process is simulated. Results is corresponding to theory and show that when thermal velocity of the low concentration area is greater than thermal velocity of the high concentration area, the backward diffusion can be occurred.

  9. Multicomponent diffusion in molten salt NaF-ZrF4: Dynamical correlations and Maxwell-Stefan diffusivities

    NASA Astrophysics Data System (ADS)

    Baig, Mohammad Saad; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    2016-05-01

    NaF-ZrF4 is used as a waste incinerator and as a coolant in Generation IV reactors.Structural and dynamical properties of molten NaF-ZrF4 system were studied along with Onsagercoefficients and Maxwell-Stefan (MS) Diffusivities applying Green-Kubo formalism and molecular dynamics (MD) simulations. The zirconium ions are found to be 8 fold coordinated with fluoride ions for all temperatures and concentrations. All the diffusive flux correlations show back-scattering. Even though the MS diffusivities are expected to depend very lightly on the composition because of decoupling of thermodynamic factor, the diffusivity ĐNa-F shows interesting behavior with the increase in concentration of ZrF4. This is because of network formation in NaF-ZrF4. Positive entropy constraints have been plotted to authenticate negative diffusivities observed.

  10. Thermal reliability of a bilayer of Ni(P)/Cu as a diffusion barrier for Cu/Sn/Cu bonding

    NASA Astrophysics Data System (ADS)

    Lee, Byunghoon; Jeon, Haseok; Lip Gan, Chee; Lee, Hoo-Jeong

    2016-06-01

    This study examines the effects of barrier layers on the aging behavior of Cu/Sn bonding for three-dimensional (3D) integration. We compare the behavior of different bonding structures [Cu/Sn with no barrier, Ni(P) barrier, and Ni(P)/Cu bilayer barrier] after aging samples at 150 °C for long durations (up to 900 h). While the samples with no barrier allowed extensive Cu diffusion and the formation of Kirkendall voids, the Ni(P) barrier samples broke down as Ni outdiffused into the Sn layer. The bilayer barrier samples demonstrated excellent aging stability with the thin Ni(P)/Cu bilayer effectively suppressing Ni outdiffusion.

  11. Intra-protein hydrogen bonding is dynamically stabilized by electronic polarization

    NASA Astrophysics Data System (ADS)

    Duan, Li L.; Mei, Ye; Zhang, Qing G.; Zhang, John Z. H.

    2009-03-01

    Molecular dynamics (MD) simulation has been carried out to study dynamical stability of intra-protein hydrogen bonds based on two set of atomic charges, the standard AMBER charge and the polarized protein-specific charge (PPC). The latter is derived from quantum mechanical calculation for protein in solution using a recently developed molecular fractionation with conjugate caps-Poisson-Boltzmann (MFCC-PB) approach and therefore includes electronic polarization effect of the protein at native structure. MD simulations are performed for a number of benchmark proteins containing helix and/or beta sheet secondary structures. The computational result shows that occupancy percentage of hydrogen bonds averaged over simulation time, as well as the number of hydrogen bonds as a function of simulation time, is consistently higher under PPC than AMBER charge. In particular, some intra-protein hydrogen bonds are found broken during MD simulation using AMBER charge but they are stable using PPC. The breaking of some intra-protein hydrogen bonds in AMBER simulation is responsible for deformation or denaturing of some local structures of proteins during MD simulation. The current study provides strong evidence that hydrogen bonding is dynamically more stable using PPC than AMBER charge, highlighting the stabilizing effect of electronic polarization on protein structure.

  12. An ab initio molecular dynamics study on hydrogen bonds between water molecules

    NASA Astrophysics Data System (ADS)

    Pan, Zhang; Chen, Jing; Lü, Gang; Geng, Yi-Zhao; Zhang, Hui; Ji, Qing

    2012-04-01

    The quantitative estimation of the total interaction energy of a molecular system containing hydrogen bonds (H bonds) depends largely on how to identify H bonding. The conventional geometric criteria of H bonding are simple and convenient in application, but a certain amount of non-H bonding cases are also identified as H bonding. In order to investigate the wrong identification, we carry out a systematic calculation on the interaction energy of two water molecules at various orientation angles and distances using ab initio molecular dynamics method with the dispersion correction for the Becke-Lee-Yang-Parr (BLYP) functionals. It is shown that, at many orientation angles and distances, the interaction energies of the two water molecules exceed the energy criterion of the H bond, but they are still identified as H-bonded by the conventional "distance-angle" criteria. It is found that in these non-H bonding cases the wrong identification is mainly caused by short-range interaction between the two neighbouring water molecules. We thus propose that, in addition to the conventional distance and angle criteria of H bonding, the distance dHṡṡṡH between the two neighbouring hydrogen atoms of the two water molecules should also be taken as a criterion, and the distance rOṡṡṡH between the hydrogen atom of the H-bond donor molecule and the oxygen atom of the acceptor molecule should be restricted by a lower limit. When dHṡṡṡH and rOṡṡṡH are small (e.g., dHṡṡṡH < 2.0 Å and rOṡṡṡH < 1.62 Å), the repulsion between the two neighbouring atoms increases the total energy of the two water molecules dramatically and apparently weakens the binding of the water dimer. A statistical analysis and comparison of the numbers of the H bonds identified by using different criteria have been conducted on a Car-Parrinello ab initio molecular dynamics simulation with dispersion correction for a system of 64 water molecules at near-ambient temperature. They

  13. Diffusion within α-CuI studied using ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mohn, Chris E.; Stølen, Svein; Hull, Stephen

    2009-08-01

    The structure and dynamics of superionic α-CuI are studied in detail by means of ab initio Born-Oppenheimer molecular dynamics simulations. The extreme cation disorder and a soft immobile face centred cubic sublattice are evident from the highly diffuse atomic density profiles. The Cu-Cu pair distribution function and distribution of Cu-I-Cu bond angles possess distinct peaks at 2.6 Å and 60° respectively, which are markedly lower than the values expected from the average cationic density, pointing to the presence of pronounced short-range copper-copper correlations. Comparison with lattice static calculations shows that these correlations and the marked shift in the cationic density profile in the lang111rang directions are associated with a locally distorted cation sublattice, and that the movements within the tetrahedral cavities involve rapid jumps into and out of shallow basins on the system potential energy surface. On average, the iodines are surrounded by three coppers within their first coordination shell, with the fourth copper being located in a transition zone between two neighbouring iodine cavities. However, time-resolved analysis reveals that the local structure actually involves a mixture of threefold-, fourfold- and fivefold-coordinated iodines. Examination of the ionic trajectories shows that the copper ions jump rapidly to nearest neighbouring tetrahedral cavities (aligned in the lang100rang directions) following a markedly curved trajectory and often involving short-lived (~1 ps) interstitial positions. The nature of the correlated diffusion underlying the unusually high fraction of coppers with short residence time can be attributed to the presence of a large number of 'unsuccessful' jumps and the likelihood of cooperative motion of pairs of coppers. The calculated diffusion coefficient at 750 K, DCu = 2.8 × 10-5 cm2 s-1, is in excellent agreement with that found experimentally.

  14. Hydrogen-bond dynamics and Fermi resonance in high-pressure methane filled ice.

    PubMed

    Klug, D D; Tse, J S; Liu, Zhenxian; Hemley, Russell J

    2006-10-21

    High-pressure, variable temperature infrared spectroscopy and first-principles calculations on the methane filled ice structure (MH-III) at high pressures are used to investigate the vibrational dynamics related to pressure induced modifications in hydrogen bonding. Infrared spectroscopy of isotopically dilute solutions of H(2)O in D(2)O is employed together with first-principles calculations to characterize proton dynamics with the pressure induced shortening of hydrogen bonds. A Fermi resonance is identified and shown to dominate the infrared spectrum in the pressure region between 10 and 30 GPa. Significant differences in the effects of the Fermi resonance observed between 10 and 300 K arise from the double-well potential energy surface of the hydrogen bond and quantum effects associated with the proton dynamics. PMID:17059274

  15. Hydrogen-bond Dynamics and Fermi Resonance in High-pressure Methane Filled Ice

    SciTech Connect

    Klug,D.; Tse, J.; Liu, Z.; Hemley, R.

    2006-01-01

    High-pressure, variable temperature infrared spectroscopy and first-principles calculations on the methane filled ice structure (MH-III) at high pressures are used to investigate the vibrational dynamics related to pressure induced modifications in hydrogen bonding. Infrared spectroscopy of isotopically dilute solutions of H{sub 2}O in D{sub 2}O is employed together with first-principles calculations to characterize proton dynamics with the pressure induced shortening of hydrogen bonds. A Fermi resonance is identified and shown to dominate the infrared spectrum in the pressure region between 10 and 30 GPa. Significant differences in the effects of the Fermi resonance observed between 10 and 300 K arise from the double-well potential energy surface of the hydrogen bond and quantum effects associated with the proton dynamics.

  16. Separation of strong (bond-breaking) from weak (dynamical) correlation

    NASA Astrophysics Data System (ADS)

    Kutzelnigg, Werner

    2012-06-01

    A CC (coupled-cluster) ansatz based on a GVB (generalized valence bond) or an APSG (antisymmetrized product of strongly orthogonal geminals) reference function arises naturally if one tries to treat strong correlations exactly (to infinite order), and weak correlations by TCC (traditional coupled cluster) theory. This ansatz is proposed as an alternative to MC-CC (multi-configuration coupled cluster) theory. One uses especially that APSG and GVB are of CC type, but allow to combine separability with the variation principle. The energy and the stationarity conditions are formulated in terms of spinfree density cumulants. The replacement operators corresponding to the APSG ansatz generate a Lie algebra which is a subalgebra of that of all replacement operators.

  17. Molecular dynamics simulation of C-C bond scission in polyethylene and linear alkanes: effects of the condensed phase.

    PubMed

    Popov, Konstantin V; Knyazev, Vadim D

    2014-03-27

    The reaction of C-C bond scission in polyethylene chains of various lengths was studied using molecular dynamics under the conditions of vacuum and condensed phase (polymer melt). A method of assigning meaningful rate constant values to condensed-phase bond scission reactions based on a kinetic mechanism accounting for dissociation, reverse recombination, and diffusional separation of fragments was developed. The developed method accounts for such condensed-phase phenomena as cage effects and diffusion of the decay products away from the reaction site. The results of C-C scission simulations indicate that per-bond rate constants decrease by an order of magnitude as the density of the system increases from vacuum to the normal density of a polyethylene melt. Additional calculations were performed to study the dependence of the rate constant on the length of the polymer chain under the conditions of the condensed phase. The calculations demonstrate that the rate constant is independent of the degree of polymerization if polyethylene samples of different lengths are kept at the same pressure. However, if instead molecular systems of different polyethylene chain lengths decompose under the conditions of the same density, shorter chains result in higher pressures and lower rate constants. The observed effect is attributed to a higher degree of molecular crowding (lower fraction of free intermolecular space available for molecular motion) in the case of shorter molecules. PMID:24571517

  18. Microstructure of arc brazed and diffusion bonded joints of stainless steel and SiC reinforced aluminum matrix composite

    NASA Astrophysics Data System (ADS)

    Elßner, M.; Weis, S.; Grund, T.; Wagner, G.; Habisch, S.; Mayr, P.

    2016-03-01

    Joint interfaces of aluminum and stainless steel often exhibit intermetallics of Al-Fe, which limit the joint strength. In order to reduce these brittle phases in joints of aluminum matrix composites (AMC) and stainless steel, diffusion bonding and arc brazing are used. Due to the absence of a liquid phase, diffusion welding can reduce the formation of these critical in- termetallics. For this joining technique, the influence of surface treatments and adjusted time- temperature-surface-pressure-regimes is investigated. On the other hand, arc brazing offers the advantage to combine a localized heat input with the application of a low melting filler and was conducted using the system Al-Ag-Cu. Results of the joining tests using both approaches are described and discussed with regard to the microstructure of the joints and the interfaces.

  19. Diffusion of innovations dynamics, biological growth and catenary function

    NASA Astrophysics Data System (ADS)

    Guseo, Renato

    2016-12-01

    The catenary function has a well-known role in determining the shape of chains and cables supported at their ends under the force of gravity. This enables design using a specific static equilibrium over space. Its reflected version, the catenary arch, allows the construction of bridges and arches exploiting the dual equilibrium property under uniform compression. In this paper, we emphasize a further connection with well-known aggregate biological growth models over time and the related diffusion of innovation key paradigms (e.g., logistic and Bass distributions over time) that determine self-sustaining evolutionary growth dynamics in naturalistic and socio-economic contexts. Moreover, we prove that the 'local entropy function', related to a logistic distribution, is a catenary and vice versa. This special invariance may be explained, at a deeper level, through the Verlinde's conjecture on the origin of gravity as an effect of the entropic force.

  20. Dynamic diffuse optical tomography imaging of peripheral arterial disease

    PubMed Central

    Khalil, Michael A.; Kim, Hyun K.; Kim, In-Kyong; Flexman, Molly; Dayal, Rajeev; Shrikhande, Gautam; Hielscher, Andreas H.

    2012-01-01

    Peripheral arterial disease (PAD) is the narrowing of arteries due to plaque accumulation in the vascular walls. This leads to insufficient blood supply to the extremities and can ultimately cause cell death. Currently available methods are ineffective in diagnosing PAD in patients with calcified arteries, such as those with diabetes. In this paper we investigate the potential of dynamic diffuse optical tomography (DDOT) as an alternative way to assess PAD in the lower extremities. DDOT is a non-invasive, non-ionizing imaging modality that uses near-infrared light to create spatio-temporal maps of oxy- and deoxy-hemoglobin in tissue. We present three case studies in which we used DDOT to visualize vascular perfusion of a healthy volunteer, a PAD patient and a diabetic PAD patient with calcified arteries. These preliminary results show significant differences in DDOT time-traces and images between all three cases, underscoring the potential of DDOT as a new diagnostic tool. PMID:23024920

  1. Structure and hydrogen bond dynamics of water-dimethyl sulfoxide mixtures by computer simulations

    NASA Astrophysics Data System (ADS)

    Luzar, Alenka; Chandler, David

    1993-05-01

    We have used two different force field models to study concentrated dimethyl sulfoxide (DMSO)-water solutions by molecular dynamics. The results of these simulations are shown to compare well with recent neutron diffraction experiments using H/D isotope substitution [A. K. Soper and A. Luzar, J. Chem. Phys. 97, 1320 (1992)]. Even for the highly concentrated 1 DMSO : 2 H2O solution, the water hydrogen-hydrogen radial distribution function, gHH(r), exhibits the characteristic tetrahedral ordering of water-water hydrogen bonds. Structural information is further obtained from various partial atom-atom distribution functions, not accessible experimentally. The behavior of water radial distribution functions, gOO(r) and gOH(r) indicate that the nearest neighbor correlations among remaining water molecules in the mixture increase with increasing DMSO concentration. No preferential association of methyl groups on DMSO is detected. The pattern of hydrogen bonding and the distribution of hydrogen bond lifetimes in the simulated mixtures is further investigated. Molecular dynamics results show that DMSO typically forms two hydrogen bonds with water molecules. Hydrogen bonds between DMSO and water molecules are longer lived than water-water hydrogen bonds. The hydrogen bond lifetimes determined by reactive flux correlation function approach are about 5 and 3 ps for water-DMSO and water-water pairs, respectively, in 1 DMSO : 2 H2O mixture. In contrast, for pure water, the hydrogen bond lifetime is about 1 ps. We discuss these times in light of experimentally determined rotational relaxation times. The relative values of the hydrogen bond lifetimes are consistent with a statistical (i.e., transition state theory) interpretation.

  2. Dynamic studies of proton diffusion in mesoscopic heterogeneous matrix

    PubMed Central

    Gutman, M.; Nachliel, E.; Kiryati, S.

    1992-01-01

    The thin water layer, as found in chloroplast or mitochondria, is confined between low dielectric amphypathic surfaces a few nm apart. The physical properties of this mesoscopic space, and how its dimensions affect the rate of chemical reactions proceeding in it, is the subject for this study. The method selected for this purpose is time resolved fluorometry which can monitor the reversible dissociation of a proton from excited molecule of pyranine (8 hydroxy pyrene 1,3,6 tri sulfonate) trapped in thin water layers of a multilamellar vesicle made of neutral or slightly charged phospholipids. The results were analyzed by a computer program of N. Agmon (Pines, E., D. Huppert, and N. Agmon. 1988. J. Am. Chem. Soc. 88:5620-5630) that simulates the diffusion of a proton, subjected to electrostatic attraction, in a thin water layer enclosed between low affinity, proton binding surfaces. The analysis determines the diffusion coefficient of the proton, the effective dielectric constant of the water and the water accessibility of the phosphomoieties of the lipids. These parameters were measured for various lipids [egg-phosphatidylcholine (egg PC), dipalmitoyl phosphatidylcholine (DPPC), cholesterol + DPPC (1:1) and egg PC plus phosphatidyl serine (9:1)] and under varying osmotic pressure which reduces the width of the water layer down to ∼10 ∼ across. We found that: (a) The effective dielectric constant of the aqueous layer, depending on the lipid composition, is ∼40. (b) The diffusion coefficient of the proton in the thin layer (30-10 ∼ across) is that measured in bulk water D = 9.3 10-5 cm2/s, indicating that the water retains its normal liquid state even on contact with the membrane. (c) The reactivity of the phosphomoiety, quantitated by rate of its reaction with proton, diminishes under lateral pressure which reduces the surface area per lipid. We find no evidence for abnormal dynamics of proton transfer at the lipid water interface which, by any mechanism

  3. Mechanism for hydrogen diffusion in amorphous silicon

    SciTech Connect

    Biswas, R.; Li, Q.; Pan, B.C.; Yoon, Y.

    1998-01-01

    Tight-binding molecular-dynamics calculations reveal a mechanism for hydrogen diffusion in hydrogenated amorphous silicon. Hydrogen diffuses through the network by successively bonding with nearby silicons and breaking their Si{endash}Si bonds. The diffusing hydrogen carries with it a newly created dangling bond. These intermediate transporting states are densely populated in the network, have lower energies than H at the center of stretched Si{endash}Si bonds, and can play a crucial role in hydrogen diffusion. {copyright} {ital 1998} {ital The American Physical Society}

  4. Molecular Dynamics Simulations Reveal that Water Diffusion between Graphene Oxide Layers is Slow

    NASA Astrophysics Data System (ADS)

    Devanathan, Ram; Chase-Woods, Dylan; Shin, Yongsoon; Gotthold, David W.

    2016-07-01

    Membranes made of stacked layers of graphene oxide (GO) hold the tantalizing promise of revolutionizing desalination and water filtration if selective transport of molecules can be controlled. We present the findings of an integrated study that combines experiment and molecular dynamics simulation of water intercalated between GO layers. We simulated a range of hydration levels from 1 wt.% to 23.3 wt.% water. The interlayer spacing increased upon hydration from 0.8 nm to 1.1 nm. We also synthesized GO membranes that showed an increase in layer spacing from about 0.7 nm to 0.8 nm and an increase in mass of about 15% on hydration. Water diffusion through GO layers is an order of magnitude slower than that in bulk water, because of strong hydrogen bonded interactions. Most of the water molecules are bound to OH groups even at the highest hydration level. We observed large water clusters that could span graphitic regions, oxidized regions and holes that have been experimentally observed in GO. Slow interlayer diffusion can be consistent with experimentally observed water transport in GO if holes lead to a shorter path length than previously assumed and sorption serves as a key rate-limiting step.

  5. Molecular Dynamics Simulations Reveal that Water Diffusion between Graphene Oxide Layers is Slow.

    PubMed

    Devanathan, Ram; Chase-Woods, Dylan; Shin, Yongsoon; Gotthold, David W

    2016-01-01

    Membranes made of stacked layers of graphene oxide (GO) hold the tantalizing promise of revolutionizing desalination and water filtration if selective transport of molecules can be controlled. We present the findings of an integrated study that combines experiment and molecular dynamics simulation of water intercalated between GO layers. We simulated a range of hydration levels from 1 wt.% to 23.3 wt.% water. The interlayer spacing increased upon hydration from 0.8 nm to 1.1 nm. We also synthesized GO membranes that showed an increase in layer spacing from about 0.7 nm to 0.8 nm and an increase in mass of about 15% on hydration. Water diffusion through GO layers is an order of magnitude slower than that in bulk water, because of strong hydrogen bonded interactions. Most of the water molecules are bound to OH groups even at the highest hydration level. We observed large water clusters that could span graphitic regions, oxidized regions and holes that have been experimentally observed in GO. Slow interlayer diffusion can be consistent with experimentally observed water transport in GO if holes lead to a shorter path length than previously assumed and sorption serves as a key rate-limiting step. PMID:27388562

  6. Molecular Dynamics Simulations Reveal that Water Diffusion between Graphene Oxide Layers is Slow

    PubMed Central

    Devanathan, Ram; Chase-Woods, Dylan; Shin, Yongsoon; Gotthold, David W.

    2016-01-01

    Membranes made of stacked layers of graphene oxide (GO) hold the tantalizing promise of revolutionizing desalination and water filtration if selective transport of molecules can be controlled. We present the findings of an integrated study that combines experiment and molecular dynamics simulation of water intercalated between GO layers. We simulated a range of hydration levels from 1 wt.% to 23.3 wt.% water. The interlayer spacing increased upon hydration from 0.8 nm to 1.1 nm. We also synthesized GO membranes that showed an increase in layer spacing from about 0.7 nm to 0.8 nm and an increase in mass of about 15% on hydration. Water diffusion through GO layers is an order of magnitude slower than that in bulk water, because of strong hydrogen bonded interactions. Most of the water molecules are bound to OH groups even at the highest hydration level. We observed large water clusters that could span graphitic regions, oxidized regions and holes that have been experimentally observed in GO. Slow interlayer diffusion can be consistent with experimentally observed water transport in GO if holes lead to a shorter path length than previously assumed and sorption serves as a key rate-limiting step. PMID:27388562

  7. Diffusion dynamics of synaptic molecules during inhibitory postsynaptic plasticity

    PubMed Central

    Petrini, Enrica Maria; Barberis, Andrea

    2014-01-01

    The plasticity of inhibitory transmission is expected to play a key role in the modulation of neuronal excitability and network function. Over the last two decades, the investigation of the determinants of inhibitory synaptic plasticity has allowed distinguishing presynaptic and postsynaptic mechanisms. While there has been a remarkable progress in the characterization of presynaptically-expressed plasticity of inhibition, the postsynaptic mechanisms of inhibitory long-term synaptic plasticity only begin to be unraveled. At postsynaptic level, the expression of inhibitory synaptic plasticity involves the rearrangement of the postsynaptic molecular components of the GABAergic synapse, including GABAA receptors, scaffold proteins and structural molecules. This implies a dynamic modulation of receptor intracellular trafficking and receptor surface lateral diffusion, along with regulation of the availability and distribution of scaffold proteins. This Review will focus on the mechanisms of the multifaceted molecular reorganization of the inhibitory synapse during postsynaptic plasticity, with special emphasis on the key role of protein dynamics to ensure prompt and reliable activity-dependent adjustments of synaptic strength. PMID:25294987

  8. Nano breathers and molecular dynamics simulations in hydrogen-bonded chains.

    PubMed

    Kavitha, L; Muniyappan, A; Prabhu, A; Zdravković, S; Jayanthi, S; Gopi, D

    2013-01-01

    Non-linear localization phenomena in biological lattices have attracted a steadily growing interest and their existence has been predicted in a wide range of physical settings. We investigate the non-linear proton dynamics of a hydrogen-bonded chain in a semi-classical limit using the coherent state method combined with a Holstein-Primakoff bosonic representation. We demonstrate that even a weak inherent discreteness in the hydrogen-bonded (HB) chain may drastically modify the dynamics of the non-linear system, leading to instabilities that have no analog in the continuum limit. We suggest a possible localization mechanism of polarization oscillations of protons in a hydrogen-bonded chain through modulational instability analysis. This mechanism arises due to the neighboring proton-proton interaction and coherent tunneling of protons along hydrogen bonds and/or around heavy atoms. We present a detailed analysis of modulational instability, and highlight the role of the interaction strength of neighboring protons in the process of bioenergy localization. We perform molecular dynamics simulations and demonstrate the existence of nanoscale discrete breather (DB) modes in the hydrogen-bonded chain. These highly localized and long-lived non-linear breather modes may play a functional role in targeted energy transfer in biological systems. PMID:23860832

  9. Scaling of the dynamics of flexible Lennard-Jones chains: Effects of harmonic bonds

    NASA Astrophysics Data System (ADS)

    Veldhorst, Arno A.; Dyre, Jeppe C.; Schrøder, Thomas B.

    2015-11-01

    The previous paper [A. A. Veldhorst et al., J. Chem. Phys. 141, 054904 (2014)] demonstrated that the isomorph theory explains the scaling properties of a liquid of flexible chains consisting of ten Lennard-Jones particles connected by rigid bonds. We here investigate the same model with harmonic bonds. The introduction of harmonic bonds almost completely destroys the correlations in the equilibrium fluctuations of the potential energy and the virial. According to the isomorph theory, if these correlations are strong a system has isomorphs, curves in the phase diagram along which structure, dynamics, and the excess entropy are invariant. The Lennard-Jones chain liquid with harmonic bonds does have curves in the phase diagram along which the structure and dynamics are invariant. The excess entropy is not invariant on these curves, which we refer to as "pseudoisomorphs." In particular, this means that Rosenfeld's excess-entropy scaling (the dynamics being a function of excess entropy only) does not apply for the Lennard-Jones chain with harmonic bonds.

  10. Bond orientation properties in lipid molecules of membranes: molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Rabinovich, Alexander L.; Lyubartsev, Alexander P.

    2014-05-01

    Atomistic molecular dynamics simulations have been carried out for 16 different fully hydrated phosphatidylcholine lipid bilayers, having 16 or 18 carbon atoms in fully saturated sn - 1 chain and from 18 to 22 carbon atoms in sn - 2 chain with different degree of unsaturation, with the purpose to investigate the effect of unsaturation on physical properties of lipid bilayers. Special attention has been paid to profiles of C-C and C-H bond order parameters of lipid molecules and the orientational fluctuations of these bond vectors. It was shown that the study of anisotropy degree of bond orientations probability distributions allows distinguishing extended regions with different types of angular fluctuations of bonds in a membrane formed by lipid molecules with unsaturated chains.

  11. Molecular Dynamics Study of Hsp90 and ADP: Hydrogen Bond Analysis for ADP Dissociation

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kazutomo; Saito, Hiroaki; Nagao, Hidemi

    The contacts between the N-terminal domain of heat shock protein 90 (N-Hsp90) and ADP involve both direct and water-mediated hydrogen bonds in X-ray crystallographic structure. We perform all-atom molecular dynamics (MD) simulations of N-Hsp90 and ADP to investigate the changes of the hydrogen bond lengths during ADP dissociation. We show the difference between the hydrogen bonds in the crystal structure and MD simulations. Moreover, the N6 group of ADP does not contact with the Cγ group of Asp93, and the hydrogen bonds between Asn51 side chain and ADP are stable in the early step of ADP dissociation.

  12. Hydrogen bonding in liquid methanol, methylamine, and methanethiol studied by molecular-dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kosztolányi, T.; Bakó, I.; Pálinkás, G.

    2003-03-01

    Molecular-dynamics computer simulations have been carried out on liquid methanol, methylamine, and methanethiol. The local structure of the liquids was studied based on radial distribution functions and the density projections of the neighboring molecules obtained on the basis of simulated molecular configurations. The extent of hydrogen bonding was investigated by direct analysis of the connectivity of molecules forming hydrogen-bonded clusters in these liquids. By this analysis, the methanol molecules were found to form linear chainlike structures. The local structure of hydrogen-bonded molecules of methylamine proved to be rather space filling due to the great extent of chain branching. Methanethiol molecules also proved to form hydrogen bonds forming small compact clusters. No evidence was found, however, for the clustering of hydrophobic methyl groups in any of the liquids. The quality of simulations was checked by derivation of neutron total and composite radial distribution functions and by comparison of those with available experimental data.

  13. An ab initio molecular dynamics study of the liquid-vapor interface of an aqueous NaCl solution: inhomogeneous density, polarity, hydrogen bonds, and frequency fluctuations of interfacial molecules.

    PubMed

    Choudhuri, Jyoti Roy; Chandra, Amalendu

    2014-11-21

    We have presented a first principles simulation study of the structural and dynamical properties of a liquid-vapor interfacial system of a concentrated (5.3 M) aqueous NaCl solution. We have used ab initio molecular dynamics to examine the structural and dynamical properties of the bulk and interfacial regions. The structural aspects of the system that have been considered here include the inhomogeneous density profiles of ions and water molecules, hydrogen bond distributions, orientational profiles, and also vibrational frequency distributions in the bulk and interfacial regions. It is found that the sodium ions are mostly located in the interior, while the chloride anions occupy a significant portion of the interface of the slab. The water dipoles at the interface prefer to orient parallel to the surface. The dynamical aspects of the interfaces are investigated in terms of diffusion, orientational relaxation, hydrogen bond dynamics, and vibrational spectral diffusion. The results of the interfacial dynamics are compared with those of the corresponding bulk region. It is observed that the interfacial molecules exhibit faster diffusion and orientational relaxation with respect to the bulk. However, the interfacial molecules are found to have longer hydrogen bond lifetimes than those of the bulk. We have also investigated the correlations of hydrogen bond relaxation with the vibrational frequency fluctuations of interfacial water molecules. PMID:25416903

  14. Photoresponsive Liquid Crystalline Epoxy Networks with Shape Memory Behavior and Dynamic Ester Bonds.

    PubMed

    Li, Yuzhan; Rios, Orlando; Keum, Jong K; Chen, Jihua; Kessler, Michael R

    2016-06-22

    Functional polymers are intelligent materials that can respond to a variety of external stimuli. However, these materials have not yet found widespread real world applications because of the difficulties in fabrication and the limited number of functional building blocks that can be incorporated into a material. Here, we demonstrate a simple route to incorporate three functional building blocks (azobenzene chromophores, liquid crystals, and dynamic covalent bonds) into an epoxy-based liquid crystalline network (LCN), in which an azobenzene-based epoxy monomer is polymerized with an aliphatic dicarboxylic acid to create exchangeable ester bonds that can be thermally activated. All three functional building blocks exhibited good compatibility, and the resulting materials exhibits various photomechanical, shape memory, and self-healing properties because of the azobenzene molecules, liquid crystals, and dynamic ester bonds, respectively. PMID:27245744

  15. Moderately nonlinear diffuse-charge dynamics under an ac voltage

    NASA Astrophysics Data System (ADS)

    Stout, Robert F.; Khair, Aditya S.

    2015-09-01

    The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of Vo/(kBT /e ) , where Vo is the amplitude of the driving voltage and kBT /e is the thermal voltage with kB as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D /λDL , where D is the ion diffusivity, λD is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O (Vo3) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in Vo. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing Vo. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer.

  16. Multicomponent diffusion in molten salt LiF-BeF{sub 2}: Dynamical correlations and Maxwell–Stefan diffusivities

    SciTech Connect

    Chakraborty, Brahmananda Ramaniah, Lavanya M.

    2015-06-24

    Applying Green–Kubo formalism and equilibrium molecular dynamics (MD) simulations, we have studied the dynamic correlation, Onsager coeeficients and Maxwell–Stefan (MS) Diffusivities of molten salt LiF-BeF{sub 2}, which is used as coolant in high temperature reactor. All the diffusive flux correlations show back-scattering or cage dynamics which becomes pronouced at higher temperature. Although the MS diffusivities are expected to depend very lightly on the composition due to decoupling of thermodynamic factor, the diffusivity Đ{sub Li-F} and Đ{sub Be-F} decreases sharply for higher concentration of LiF and BeF{sub 2} respectively. Interestingly, all three MS diffusivities have highest magnitude for eutectic mixture at 1000K (except Đ{sub Be-F} at lower LiF mole fraction) which is desirable from coolant point of view. Although the diffusivity for positive-positive ion pair is negative it is not in violation of the second law of thermodynamics as it satisfies the non-negative entropic constraints.

  17. On the ultrafast charge migration dynamics in isolated ionized halogen, chalcogen, pnicogen, and tetrel bonded clusters

    NASA Astrophysics Data System (ADS)

    Chandra, Sankhabrata; Rana, Bhaskar; Periyasamy, Ganga; Bhattacharya, Atanu

    2016-06-01

    Here we demonstrate, compare and contrast relaxation- and correlation-driven charge migration dynamics in halogen, chalcogen, pnicogen and tetrel bonded clusters, following their vertical ionization. For this work, we have selected different isolated A-X:NH3 clusters, where A represents F, Cl, CN and NH2 substituents and X features Cl, SH, PH2 and SiH3 to exhibit specific noncovalent bonding interaction. The charge migration dynamics in these clusters is studied using the density functional theory (DFT) with the wB97XD functional and the 6-31+G(d,p) basis set. Approximately 400-600 attosecond time scale is predicted for charge migration in (1:1) AX:NH3 complexes. Effects of basis set and intermolecular distance on the ultrafast charge migration dynamics through the halogen, chalcogen, pnicogen, and tetrel bonded clusters are also discussed. This is the first report on pure relaxation- and correlation-driven charge migration dynamics in chalcogen, pnicogen and tetrel bonded clusters.

  18. Diffusive dynamics of DNA unzipping in a nanopore.

    PubMed

    Stachiewicz, Anna; Molski, Andrzej

    2016-02-15

    When an electric field is applied to an insulating membrane, movement of charged particles through a nanopore is induced. The measured ionic current reports on biomolecules passing through the nanopore. In this work, we explored the kinetics of DNA unzipping in a nanopore using our coarse-grained model (Stachiewicz and Molski, J. Comput. Chem. 2015, 36, 947). Coarse graining allowed a more detailed analysis for a wider range of parameters than all-atom simulations. Dependence of the translocation mode (unzipping or distortion) on the pore diameter was examined, and the threshold voltages were estimated. We determined the potential of mean force, position-dependent diffusion coefficient, and position-dependent effective charge for the DNA unzipping. The three molecular profiles were correlated with the ionic current and molecular events. On the unzipping/translocation force profile, two energy maxima were found, one of them corresponding to the unzipping, and the other to the translocation barriers. The unzipping kinetics were further explored using Brownian dynamics. PMID:26519865

  19. Ice crystal growth in a dynamic thermal diffusion chamber

    NASA Technical Reports Server (NTRS)

    Keller, V. W.

    1980-01-01

    Ice crystals were grown in a supersaturated environment produced by a dynamic thermal diffusion chamber, which employed two horizontal plates separated by a distance of 2.5 cm. Air was circulated between and along the 1.2 m length of the plates past ice crystals which nucleated and grew from a fiber suspended vertically between the two plates. A zoom stereo microscope with a magnification which ranged from 3X to 80X and both 35 mm still photographs and 16 mm time lapse cine films taken through the microscope were used to study the variation of the shape and linear growth rate of ice crystals as a function of the ambient temperature, the ambient supersaturation, and the forced ventilation velocity. The ambient growth conditions were varied over the range of temperature 0 to -40 C, over the range of supersaturation 4% to 50% with respect to ice, and over the range of forced ventilation velocities 0 cm/s to 20 cm/s.

  20. Stochastic fire-diffuse-fire model with realistic cluster dynamics

    NASA Astrophysics Data System (ADS)

    Calabrese, Ana; Fraiman, Daniel; Zysman, Daniel; Ponce Dawson, Silvina

    2010-09-01

    Living organisms use waves that propagate through excitable media to transport information. Ca2+ waves are a paradigmatic example of this type of processes. A large hierarchy of Ca2+ signals that range from localized release events to global waves has been observed in Xenopus laevis oocytes. In these cells, Ca2+ release occurs trough inositol 1,4,5-trisphosphate receptors (IP3Rs) which are organized in clusters of channels located on the membrane of the endoplasmic reticulum. In this article we construct a stochastic model for a cluster of IP3R ’s that replicates the experimental observations reported in [D. Fraiman , Biophys. J. 90, 3897 (2006)10.1529/biophysj.105.075911]. We then couple this phenomenological cluster model with a reaction-diffusion equation, so as to have a discrete stochastic model for calcium dynamics. The model we propose describes the transition regimes between isolated release and steadily propagating waves as the IP3 concentration is increased.

  1. Slow-to-fast transition of hydrogen bond dynamics in acetamide hydration shell formation.

    PubMed

    D'Amico, Francesco; Rossi, Barbara; Camisasca, Gaia; Bencivenga, Filippo; Gessini, Alessandro; Principi, Emiliano; Cucini, Riccardo; Masciovecchio, Claudio

    2015-04-28

    The formation of a hydration shell in acetamide aqueous solution has been investigated by means of UV Raman spectroscopy. The experimental results reveal the existence of two distinct regimes of water dynamics. At high acetamide concentration water molecules show a structural and dynamical behavior consistent with the so-called iceberg model. Upon increasing the amount of water we observe the formation of a hydration shell marked by fastening of hydrogen-bond dynamics. Such a behavior may help to shed light on the scientific debate on how water rearranges around the hydrophobic portions of solute molecules (iceberg vs. non-iceberg models). PMID:25824617

  2. Diffusion bonding of an aluminum-copper alloy reinforced with silicon carbide particles (AA2014/SiC/13p) using metallic interlayers

    SciTech Connect

    Urena, A.; Gomez de Salazar, J.M.; Escalera, M.D.

    1996-12-01

    In this work, the application of solid state diffusion bonding to a SiC particulate reinforced aluminium-copper alloy (AA2014) has been studied. The use of metallic interlayers such as an aluminum-lithium alloy and pure silver, has been tested. Bonding interfaces were microstructural characterized using scanning electron (SEM) and transmission electron microscopies (TEM). Joint strengths were evaluated by shear mechanical tests, completed with fractographic studies to determine the failure mechanisms of each kind of joint.

  3. Moderately nonlinear diffuse-charge dynamics under an ac voltage.

    PubMed

    Stout, Robert F; Khair, Aditya S

    2015-09-01

    The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of V_{o}/(k_{B}T/e), where V_{o} is the amplitude of the driving voltage and k_{B}T/e is the thermal voltage with k_{B} as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D/λ_{D}L, where D is the ion diffusivity, λ_{D} is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O(V_{o}^{3}) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in V_{o}. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing V_{o}. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer. PMID:26465471

  4. Evaluation of superplastic forming and co-diffusion bonding of Ti-6Al-4V titanium alloy expanded sandwich structures

    NASA Technical Reports Server (NTRS)

    Arvin, G. H.; Israeli, L.; Stolpestad, J. H.; Stacher, G. W.

    1981-01-01

    The application of the superplastic forming/diffusion bonding (SPF/DB) process to supersonic cruise research is investigated. The capability of an SPF/DB titanium structure to meet the structural requirements of the inner wing area of the NASA arrow-wing advanced supersonic transport design is evaluated. Selection of structural concepts and their optimization for minimum weight, SPF/DB process optimization, fabrication of representative specimens, and specimen testing and evaluation are described. The structural area used includes both upper and lower wing panels, where the upper wing panel is used for static compression strength evaluation and the lower panel, in tension, is used for fracture mechanics evaluations. The individual test specimens, cut from six large panels, consist of 39 static specimens, 10 fracture mechanics specimens, and one each full size panel for compression stability and fracture mechanics testing. Tests are performed at temperatures of -54 C (-65 F), room temperature, and 260 C (500 F).

  5. Role of large-scale slip in mode II fracture of bimaterial interface produced by diffusion bonding

    NASA Astrophysics Data System (ADS)

    Fox, M. R.; Ghosh, A. K.

    2001-08-01

    Bimaterial interfaces present in diffusion-bonded (and in-situ) composites are often not flat interfaces. The unevenness of the interface can result not only from interface reaction products but also from long-range waviness associated with the surfaces of the component phases bonded together. Experimental studies aimed at determining interface mechanical properties generally ignore the departure in the local stress due to waviness and assume a theoretically flat interface. Furthermore, the commonly used testing methods involving superimposed tension often renders the interface so extremely brittle that if microplastic effects were present it becomes impossible to perceive them. This article examines the role of waviness of the interface and microplastic effects on crack initiation. To do this, a test was selected that provides significant stability against crack growth by superimposing compressive stresses. Mode II interface fracture was studied for NiAl/Mo model laminates using a recently developed asymmetrically loaded shear (ALS) interface shear test. The ALS test may be viewed as opposite of the laminate bend test. In the bend test, shear at the interface is created via tension on one surface of the bend, while in the ALS test, shear is created by compression on one side of the interface relative to the other. Normal to the interface, near the crack tip, an initially compressive state is replaced by slight tension due to Poisson’s expansion of the unbonded part of the compressed beam.

  6. Peptide dynamics by molecular dynamics simulation and diffusion theory method with improved basis sets

    NASA Astrophysics Data System (ADS)

    Hsu, Po Jen; Lai, S. K.; Rapallo, Arnaldo

    2014-03-01

    Improved basis sets for the study of polymer dynamics by means of the diffusion theory, and tests on a melt of cis-1,4-polyisoprene decamers, and a toluene solution of a 71-mer syndiotactic trans-1,2-polypentadiene were presented recently [R. Gaspari and A. Rapallo, J. Chem. Phys. 128, 244109 (2008)]. The proposed hybrid basis approach (HBA) combined two techniques, the long time sorting procedure and the maximum correlation approximation. The HBA takes advantage of the strength of these two techniques, and its basis sets proved to be very effective and computationally convenient in describing both local and global dynamics in cases of flexible synthetic polymers where the repeating unit is a unique type of monomer. The question then arises if the same efficacy continues when the HBA is applied to polymers of different monomers, variable local stiffness along the chain and with longer persistence length, which have different local and global dynamical properties against the above-mentioned systems. Important examples of this kind of molecular chains are the proteins, so that a fragment of the protein transthyretin is chosen as the system of the present study. This peptide corresponds to a sequence that is structured in β-sheets of the protein and is located on the surface of the channel with thyroxin. The protein transthyretin forms amyloid fibrils in vivo, whereas the peptide fragment has been shown [C. P. Jaroniec, C. E. MacPhee, N. S. Astrof, C. M. Dobson, and R. G. Griffin, Proc. Natl. Acad. Sci. U.S.A. 99, 16748 (2002)] to form amyloid fibrils in vitro in extended β-sheet conformations. For these reasons the latter is given considerable attention in the literature and studied also as an isolated fragment in water solution where both experimental and theoretical efforts have indicated the propensity of the system to form β turns or α helices, but is otherwise predominantly unstructured. Differing from previous computational studies that employed implicit

  7. Peptide dynamics by molecular dynamics simulation and diffusion theory method with improved basis sets.

    PubMed

    Hsu, Po Jen; Lai, S K; Rapallo, Arnaldo

    2014-03-14

    Improved basis sets for the study of polymer dynamics by means of the diffusion theory, and tests on a melt of cis-1,4-polyisoprene decamers, and a toluene solution of a 71-mer syndiotactic trans-1,2-polypentadiene were presented recently [R. Gaspari and A. Rapallo, J. Chem. Phys. 128, 244109 (2008)]. The proposed hybrid basis approach (HBA) combined two techniques, the long time sorting procedure and the maximum correlation approximation. The HBA takes advantage of the strength of these two techniques, and its basis sets proved to be very effective and computationally convenient in describing both local and global dynamics in cases of flexible synthetic polymers where the repeating unit is a unique type of monomer. The question then arises if the same efficacy continues when the HBA is applied to polymers of different monomers, variable local stiffness along the chain and with longer persistence length, which have different local and global dynamical properties against the above-mentioned systems. Important examples of this kind of molecular chains are the proteins, so that a fragment of the protein transthyretin is chosen as the system of the present study. This peptide corresponds to a sequence that is structured in β-sheets of the protein and is located on the surface of the channel with thyroxin. The protein transthyretin forms amyloid fibrils in vivo, whereas the peptide fragment has been shown [C. P. Jaroniec, C. E. MacPhee, N. S. Astrof, C. M. Dobson, and R. G. Griffin, Proc. Natl. Acad. Sci. U.S.A. 99, 16748 (2002)] to form amyloid fibrils in vitro in extended β-sheet conformations. For these reasons the latter is given considerable attention in the literature and studied also as an isolated fragment in water solution where both experimental and theoretical efforts have indicated the propensity of the system to form β turns or α helices, but is otherwise predominantly unstructured. Differing from previous computational studies that employed implicit

  8. Peptide dynamics by molecular dynamics simulation and diffusion theory method with improved basis sets

    SciTech Connect

    Hsu, Po Jen; Lai, S. K.; Rapallo, Arnaldo

    2014-03-14

    Improved basis sets for the study of polymer dynamics by means of the diffusion theory, and tests on a melt of cis-1,4-polyisoprene decamers, and a toluene solution of a 71-mer syndiotactic trans-1,2-polypentadiene were presented recently [R. Gaspari and A. Rapallo, J. Chem. Phys. 128, 244109 (2008)]. The proposed hybrid basis approach (HBA) combined two techniques, the long time sorting procedure and the maximum correlation approximation. The HBA takes advantage of the strength of these two techniques, and its basis sets proved to be very effective and computationally convenient in describing both local and global dynamics in cases of flexible synthetic polymers where the repeating unit is a unique type of monomer. The question then arises if the same efficacy continues when the HBA is applied to polymers of different monomers, variable local stiffness along the chain and with longer persistence length, which have different local and global dynamical properties against the above-mentioned systems. Important examples of this kind of molecular chains are the proteins, so that a fragment of the protein transthyretin is chosen as the system of the present study. This peptide corresponds to a sequence that is structured in β-sheets of the protein and is located on the surface of the channel with thyroxin. The protein transthyretin forms amyloid fibrils in vivo, whereas the peptide fragment has been shown [C. P. Jaroniec, C. E. MacPhee, N. S. Astrof, C. M. Dobson, and R. G. Griffin, Proc. Natl. Acad. Sci. U.S.A. 99, 16748 (2002)] to form amyloid fibrils in vitro in extended β-sheet conformations. For these reasons the latter is given considerable attention in the literature and studied also as an isolated fragment in water solution where both experimental and theoretical efforts have indicated the propensity of the system to form β turns or α helices, but is otherwise predominantly unstructured. Differing from previous computational studies that employed implicit

  9. Diffusion in a Cu-Zr metallic glass studied by microsecond-scale molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wang, C. Z.; Mendelev, M. I.; Zhang, F.; Kramer, M. J.; Ho, K. M.

    2015-05-01

    Icosahedral short-range order (ISRO) has been widely accepted to be dominant in Cu-Zr metallic glasses (MGs). However, the diffusion mechanism and correlation of ISRO and medium-range order (MRO) to diffusion in MGs remain largely unexplored. Here, we perform a long time annealing up to 1.8 μs in molecular dynamics simulations to study the diffusion mechanism and the relationship between atomic structures and the diffusion path in a C u64.5Z r35.5 MG. It is found that most of the diffusing events performed by the diffusing atoms are outside ISRO and the Bergman-type MRO. The long-range diffusion in MGs is highly heterogeneous, via collective diffusing events through the liquidlike channels in the glass. Our results clearly demonstrate a strong correlation between the atomic structures and transport in MGs.

  10. Large-scale dynamics of sandy coastlines: Diffusivity and instability

    NASA Astrophysics Data System (ADS)

    FalquéS, A.; Calvete, D.

    2005-03-01

    The dynamics of small-amplitude perturbations of an otherwise rectilinear coastline due to the wave-driven alongshore sediment transport is examined at large time and length scales (years and kilometers). A linear stability analysis is performed by using an extended one-line shoreline model with two main improvements: (1) the curvature of the coastline features is accounted for and (2) the coastline features are assumed to extend offshore as a bathymetric perturbation up to a finite distance. For high incidence angles, instability is found in accordance with Ashton et al. (2001). However, it is seen that instability is inhibited by high waves with long periods and gently sloping shorefaces so that in this case the coastline may be stable for any angle. Similarly, there is no instability if the bathymetric perturbation is confined very close to the coast. It is found that the traditional linearized one-line model (Larson et al., 1987) tends to overpredict the coastline diffusivity. The overprediction is small for the conditions leading to a stable coastline and for moderate incidence angles but can be very dramatic for the conditions favoring instability. An interesting finding is that high-angle waves instability has a dominant wavelength at the linear regime, which is in the order of 4-15 km, one to two orders of magnitude larger than the length scale of surf zone rhythmic features. Intriguingly, this is roughly the same range of the wavelength of some observed shoreline sand waves and, in particular, those observed along the Dutch coast. A model application to this coast is presented.

  11. Fabrication and evaluation of enhanced diffusion bonded titanium honeycomb core sandwich panels with titanium aluminide face sheets

    NASA Technical Reports Server (NTRS)

    Hoffmann, E. K.; Bird, R. K.; Bales, T. T.

    1989-01-01

    A joining process was developed for fabricating lightweight, high temperature sandwich panels for aerospace applications using Ti-14Al-21Nb face sheets and Ti-3Al-2.5V honeycomb core. The process, termed Enhanced Diffusion Bonding (EDB), relies on the formation of a eutectic liquid through solid-state diffusion at elevated temperatures and isothermal solidification to produce joints in thin-gage titanium and titanium aluminide structural components. A technique employing a maskant on the honeycomb core was developed which permitted electroplating a controlled amount of EDB material only on the edges of the honeycomb core in order to minimize the structural weight and metallurgical interaction effects. Metallurgical analyses were conducted to determine the interaction effects between the EDB materials and the constituents of the sandwich structure following EDB processing. The initial mechanical evaluation was conducted with butt joint specimens tested at temperatures from 1400 - 1700 F. Further mechanical evaluation was conducted with EDB sandwich specimens using flatwise tension tests at temperatures from 70 - 1100 F and edgewise compression tests at ambient temperature.

  12. Effects of interfacial bonding in the Si-carbon nanotube nanocomposite: A molecular dynamics approach

    NASA Astrophysics Data System (ADS)

    Kim, Byung-Hyun; Lee, Kwang-Ryeol; Chung, Yong-Chae; Gunn Lee, June

    2012-08-01

    We investigated the effects of interfacial bonding on the mechanical properties in the Si-carbon nanotube (CNT) nanocomposite by a molecular dynamics approach. To describe the system appropriately, we used a hybrid potential that includes Tersoff, AIREBO (adaptive intermolecular reactive empirical bond order), and Lennard-Jones potentials. With increasing bonding strength at the interface of Si matrix and CNT, toughness as well as Young's modulus and maximum strength increased steadily. CNT pull-out and load transfer on the strong CNT were identified as the main mechanisms for the enhanced properties. At optimum bonding, crack tip was deflected around CNT and the fracture proceeded in plastic mode through Si matrix owing to the strong reinforcement of CNT, and resulted in a further enhancement of toughness. At maximum bonding, however, only load transfer is operative and the fracture returned to brittle mode. We concluded that a strong interface as long as the CNT maintains its structural integrity is desirable to realize the optimum result.

  13. Car-Parrinello simulation of hydrogen bond dynamics in sodium hydrogen bissulfate

    NASA Astrophysics Data System (ADS)

    Pirc, Gordana; Stare, Jernej; Mavri, Janez

    2010-06-01

    We studied proton dynamics of a short hydrogen bond of the crystalline sodium hydrogen bissulfate, a hydrogen-bonded ferroelectric system. Our approach was based on the established Car-Parrinello molecular dynamics (CPMD) methodology, followed by an a posteriori quantization of the OH stretching motion. The latter approach is based on snapshot structures taken from CPMD trajectory, calculation of proton potentials, and solving of the vibrational Schrödinger equation for each of the snapshot potentials. The so obtained contour of the OH stretching band has the center of gravity at about 1540 cm-1 and a half width of about 700 cm-1, which is in qualitative agreement with the experimental infrared spectrum. The corresponding values for the deuterated form are 1092 and 600 cm-1, respectively. The hydrogen probability densities obtained by solving the vibrational Schrödinger equation allow for the evaluation of potential of mean force along the proton transfer coordinate. We demonstrate that for the present system the free energy profile is of the single-well type and features a broad and shallow minimum near the center of the hydrogen bond, allowing for frequent and barrierless proton (or deuteron) jumps. All the calculated time-averaged geometric parameters were in reasonable agreement with the experimental neutron diffraction data. As the present methodology for quantization of proton motion is applicable to a variety of hydrogen-bonded systems, it is promising for potential use in computational enzymology.

  14. "Zwitterionic Proton Sponge" Hydrogen Bonding Investigations on the Basis of Car-Parrinello Molecular Dynamics.

    PubMed

    Jezierska, Aneta; Panek, Jarosław J

    2015-06-22

    1,8-Bis(dimethylamino)-4,5-dihydroxynaphthalene has been investigated on the basis of static DFT computations and Car-Parrinello molecular dynamics. The simulations were performed in the gas phase and in the solid state. The studied "zwitterionic proton sponge" possesses two, short intramolecular hydrogen bonds (O-H···O and N-H···N) classified as Low Barrier Hydrogen Bonds (LBHBs); therefore, the system studied is strongly anharmonic. In addition, the compound exists as a "zwitterion" in solution and in the solid state, thus the intramolecular hydrogen bonds belong to the class of charge-assisted interactions. The applied quantum-chemical methods enabled investigations of metric and spectroscopic parameters of the molecule. The time-evolution investigations of the H-bonding showed a strong delocalization of the bridge protons and their high mobility, reflected in the low barriers on the free energy surfaces. Frequent proton transfer phenomena were noticed. The power spectra of atomic velocity were computed to analyze the vibrational features associated with O-H and N-H stretching. A broad absorption was indicated for both hydrogen bridges. For the first time, Car-Parrinello molecular dynamics results are reported for the compound, and they indicate a broad, shallow but not barrierless, potential well for each of the bridge protons. PMID:25965324

  15. Effect of Bonding Temperature on Phase Transformation of Diffusion-Bonded Joints of Duplex Stainless Steel and Ti-6Al-4V Using Nickel and Copper as Composite Intermediate Metals

    NASA Astrophysics Data System (ADS)

    Kundu, Sukumar; Thirunavukarasu, Gopinath; Chatterjee, Subrata; Mishra, Brajendra

    2015-12-01

    In the present study, the effect of bonding temperature on phase transformation of diffusion-bonded joints of duplex stainless steel (DSS) and Ti-6Al-4V (Ti64) using simultaneously both nickel (Ni) and copper (Cu) interlayers was investigated in the temperature range of 1148 K to 1223 K (875 °C to 950 °C) insteps of 25 K (25 °C) for 60 minutes under 4 MPa uniaxial pressure in vacuum. Interfaces were characterized by scanning electron microscopy and interdiffusion of the chemical species across the diffusion interfaces were witnessed by electron probe microanalysis. At 1148 K (875 °C), layer-wise Cu4Ti, Cu2Ti, Cu4Ti3, CuTi, and CuTi2 phases were observed at the Cu-Ti64 interface; however, DSS-Ni and Ni-Cu interfaces were free from any intermetallic. At 1173 K and 1198 K (900 °C and 925 °C), Cu interlayer could not restrict the diffusion of atoms from Ti64 to Ni, and vice versa; and Ni-Ti-based intermetallics were formed at the Ni-Cu interface and throughout the Cu zone as well; however, at 1223 K (950 °C), both Ni and Cu interlayers could not inhibit the diffusion of atoms from Ti64 to DSS, and vice versa. The maximum shear strength of ~377 MPa was obtained for the diffusion couple processed at 1148 K (875 °C) and strength of the bonded joints gradually decreased with the increasing bonding temperature due to the widening of brittle intermetallics at the diffusion zone. Fracture path indicated that failure took place through the Cu4Ti intermetallic at the Cu-Ti64 interface when bonding was processed at 1148 K (875 °C). When bonding was processed at 1173 K and 1198 K (900 °C and 925 °C), fracture took place through the Ni3Ti intermetallic at the Ni-(Ni + Cu + Ti64 diffusion reaction) interface; however, at 1223 K (950 °C), fracture morphology indicated the brittle nature and the fracture took place apparently through the σ phase at the DSS-(DSS + Ni + Cu + Ti64 diffusion reaction) interface.

  16. Exploiting Dynamic Bonds in Polymer-grafted Nanoparticle Networks to Create Mechanomutable, Reconfigurable Composites

    NASA Astrophysics Data System (ADS)

    Balazs, Anna C.; Hamer, Matthew J.; Iyer, Balaji V. S.; Yashin, Victor V.

    2015-03-01

    Via a new dynamic, three-dimensional computer model, we simulate the tensile deformation of polymer-grafted nanoparticles (PGNs) that are cross-linked by labile bonds, which can readily rupture and reform. For a range of relatively high strains, the network does not fail, but rather restructures into a stable, ordered structure. Within this network, the reshuffling of the labile bonds enables the formation of this new morphology. The studies reveal that the appropriate combination of stress-responsive hybrid materials and applied stress can yield distinct opportunities to dynamically switch between different structures, and thus, the properties of the material. Thus, the results provide guidelines for designing mechano-responsive hybrid materials that undergo controllable structural transitions through the application of applied forces.

  17. Dynamic Bonds in Covalently Crosslinked Polymer Networks for Photoactivated Strengthening and Healing.

    PubMed

    Gordon, Melissa B; French, Jonathan M; Wagner, Norman J; Kloxin, Christopher J

    2015-12-22

    A photoactivated-strengthening polymer network is reported. This approach incorporates dynamic bonds into the network architecture, which enables a secondary polymerization triggered by UV light. Three attributes of this material are demonstrated, including: i) there is simultaneous photoinduced strengthening and healing after the material is severed, ii) bulk property changes are spatially confined via photopatterning, and iii) there is permanent shape change post-irradiation. PMID:26524195

  18. Controlling Interfacial Dynamics: Covalent Bonding versus Physical Adsorption in Polymer Nanocomposites.

    PubMed

    Holt, Adam P; Bocharova, Vera; Cheng, Shiwang; Kisliuk, Alexander M; White, B Tyler; Saito, Tomonori; Uhrig, David; Mahalik, J P; Kumar, Rajeev; Imel, Adam E; Etampawala, Thusitha; Martin, Halie; Sikes, Nicole; Sumpter, Bobby G; Dadmun, Mark D; Sokolov, Alexei P

    2016-07-26

    It is generally believed that the strength of the polymer-nanoparticle interaction controls the modification of near-interface segmental mobility in polymer nanocomposites (PNCs). However, little is known about the effect of covalent bonding on the segmental dynamics and glass transition of matrix-free polymer-grafted nanoparticles (PGNs), especially when compared to PNCs. In this article, we directly compare the static and dynamic properties of poly(2-vinylpyridine)/silica-based nanocomposites with polymer chains either physically adsorbed (PNCs) or covalently bonded (PGNs) to identical silica nanoparticles (RNP = 12.5 nm) for three different molecular weight (MW) systems. Interestingly, when the MW of the matrix is as low as 6 kg/mol (RNP/Rg = 5.4) or as high as 140 kg/mol (RNP/Rg= 1.13), both small-angle X-ray scattering and broadband dielectric spectroscopy show similar static and dynamic properties for PNCs and PGNs. However, for the intermediate MW of 18 kg/mol (RNP/Rg = 3.16), the difference between physical adsorption and covalent bonding can be clearly identified in the static and dynamic properties of the interfacial layer. We ascribe the differences in the interfacial properties of PNCs and PGNs to changes in chain stretching, as quantified by self-consistent field theory calculations. These results demonstrate that the dynamic suppression at the interface is affected by the chain stretching; that is, it depends on the anisotropy of the segmental conformations, more so than the strength of the interaction, which suggests that the interfacial dynamics can be effectively tuned by the degree of stretching-a parameter accessible from the MW or grafting density. PMID:27337392

  19. Controlling Interfacial Dynamics: Covalent Bonding versus Physical Adsorption in Polymer Nanocomposites

    DOE PAGESBeta

    Holt, Adam P.; Bocharova, Vera; Cheng, Shiwang; Kisliuk, Alexander M.; White, B. Tyler; Saito, Tomonori; Uhrig, David; Mahalik, J. P.; Kumar, Rajeev; Imel, Adam E.; et al

    2016-06-23

    It is generally believed that the strength of the polymer nanoparticle interaction controls the modification of near-interface segmental mobility in polymer nanocomposites (PNCs). However, little is known about the effect of covalent bonding on the segmental dynamics and glass transition of matrix-free polymer-grafted nanoparticles (PGNs), especially when compared to PNCs. In this article, we directly compare the static and dynamic properties of poly(2-vinylpyridine)/silica-based nanocomposites with polymer chains either physically adsorbed (PNCs) or covalently bonded (PGNs) to identical silica nanoparticles (RNP = 12.5 nm) for three different molecular weight (MW) systems. Interestingly, when the MW of the matrix is as lowmore » as 6 kg/mol (RNP/Rg = 5.4) or as high as 140 kg/mol (RNP/Rg= 1.13), both small-angle X-ray scattering and broadband dielectric spectroscopy show similar static and dynamic properties for PNCs and PGNs. However, for the intermediate MW of 18 kg/mol (RNP/Rg = 3.16), the difference between physical adsorption and covalent bonding can be clearly identified in the static and dynamic properties of the interfacial layer. We ascribe the differences in the interfacial properties of PNCs and PGNs to changes in chain stretching, as quantified by self-consistent field theory calculations. These results demonstrate that the dynamic suppression at the interface is affected by the chain stretching; that is, it depends on the anisotropy of the segmental conformations, more so than the strength of the interaction, which suggests that the interfacial dynamics can be effectively tuned by the degree of stretching a parameter accessible from the MW or grafting density.« less

  20. Dynamic effects in friction and adhesion through cooperative rupture and formation of supramolecular bonds

    NASA Astrophysics Data System (ADS)

    Blass, Johanna; Albrecht, Marcel; Bozna, Bianca L.; Wenz, Gerhard; Bennewitz, Roland

    2015-04-01

    We introduce a molecular toolkit for studying the dynamics in friction and adhesion from the single molecule level to effects of multivalency. As experimental model system we use supramolecular bonds established by the inclusion of ditopic adamantane connector molecules into two surface-bound cyclodextrin molecules, attached to a tip of an atomic force microscope (AFM) and to a flat silicon surface. The rupture force of a single bond does not depend on the pulling rate, indicating that the fast complexation kinetics of adamantane and cyclodextrin are probed in thermal equilibrium. In contrast, the pull-off force for a group of supramolecular bonds depends on the unloading rate revealing a non-equilibrium situation, an effect discussed as the combined action of multivalency and cantilever inertia effects. Friction forces exhibit a stick-slip characteristic which is explained by the cooperative rupture of groups of host-guest bonds and their rebinding. No dependence of friction on the sliding velocity has been observed in the accessible range of velocities due to fast rebinding and the negligible delay of cantilever response in AFM lateral force measurements.We introduce a molecular toolkit for studying the dynamics in friction and adhesion from the single molecule level to effects of multivalency. As experimental model system we use supramolecular bonds established by the inclusion of ditopic adamantane connector molecules into two surface-bound cyclodextrin molecules, attached to a tip of an atomic force microscope (AFM) and to a flat silicon surface. The rupture force of a single bond does not depend on the pulling rate, indicating that the fast complexation kinetics of adamantane and cyclodextrin are probed in thermal equilibrium. In contrast, the pull-off force for a group of supramolecular bonds depends on the unloading rate revealing a non-equilibrium situation, an effect discussed as the combined action of multivalency and cantilever inertia effects. Friction

  1. Diffusion of Dissipative Correlation in the Dynamic Failure of Solids

    NASA Astrophysics Data System (ADS)

    Grady, Dennis

    A property identified as the dissipative action has found application as a unifying attribute underlying the dynamic failure of solid materials. Failure modes include tensile spall, impact-induced dynamic shear, shock compaction and steady shock-wave compression. The present work explores the possible application of Langevin dynamics and related statistical mechanical implications as underlying the extreme dynamic failure of solids.

  2. Effect of pressure on the structure and dynamics of hydrogen bonds in ethylene glycol-water mixtures: Numerical simulation data

    NASA Astrophysics Data System (ADS)

    Antipova, M. L.; Gurina, D. L.; Makarov, D. M.; Egorov, G. I.; Petrenko, V. E.

    2016-03-01

    Water-ethylene glycol mixtures containing from 0.002 to 0.998 mole fractions of ethylene glycol at T = 298.15 K and P = 0.1 and 100 MPa are simulated by means of classical molecular dynamics. Such structural and dynamic characteristics of hydrogen bonds as the average number and lifetime, along with the distribution of molecules over the number of hydrogen bonds, are calculated; their changes are analyzed, depending on the mixture's composition and pressure. It is shown that the components are characterized by a high degree of interpenetration and form a uniform infinite hydrogen-bonded cluster over the range of concentrations. It is found that the higher the concentration of ethylene glycol, the greater the stability of all hydrogen bonds. It is concluded that an increase in pressure lowers the number of hydrogen bonds, while the average lifetime of the remaining hydrogen bonds grows.

  3. Investigation on W/Fe diffusion bonding using Ti foil and Ti powder interlayer by SPS

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Yu; Luo, Lai-Ma; Zhang, Jun; Zan, Xiang; Zhu, Xiao-Yong; Luo, Guang-Nan; Wu, Yu-Cheng

    2015-12-01

    W/steel composites are being developed for potential application in He gas-cooled divertors and plasma-facing components in fusion reactors. In this study, the dissimilar metal joints between W and Fe were fabricated at 950 °C via spark plasma sintering method with Ti foil (Ti-F) and Ti powder (Ti-P) as the interlayer under Ar atmosphere for 5 min at 57 MPa. Microscopic structures of the W/Fe diffusion joints with Ti-F and Ti-P were investigated and compared via field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. Thermal cycling tests were employed to measure the thermal stability of different types of W/Ti/Fe samples. The hardness distribution across joining interfaces was also determined. After thermal cycling tests, a crack occurred along the W/Ti-P interface in the W/Ti-P/Fe samples, whereas the W/Ti-F/Fe samples were intact at the interfaces. Results revealed that Ti-F is more suitable as an interlayer than Ti-P, and the interfaces of the W/Ti-F/Fe samples have better thermal stability than those of the W/Ti-P/Fe ones.

  4. Nonadiabatic dynamics of floppy hydrogen bonded complexes: the case of the ionized ammonia dimer.

    PubMed

    Chalabala, Jan; Slavíček, Petr

    2016-07-27

    In the case of the ammonia dimer, we address the following questions: how ultrafast ionization dynamics is controlled by hydrogen bonding and whether we can control the products via selective ionization of a specific electron. We use quantum chemical calculations and ab initio non-adiabatic molecular dynamics simulations to model the femtosecond dynamics of the ammonia dimer upon ionization. The role of nuclear quantum effects and thermal fluctuations in predicting the structure of the dimer is emphasized; it is shown that the minimum energy and vibrationally averaged structures are rather different. The ground state structure subsequently controls the ionization dynamics. We describe reaction pathways, electronic population transfers and reaction yields with respect to ionization from different molecular orbitals. The simulations showed that the ionized ammonia dimer is highly unstable and its decay rate is primarily driven by the position of the electron hole. In the case of ground state ionization (i.e. the HOMO electron is ionized), the decay is likely to be preceded by a proton transfer (PT) channel yielding NH4(+) and NH2˙ fragments. The PT is less intense and slower compared with the ionized water dimer. After ionizing deeper lying electrons, mainly NH3(+)˙ and NH3 fragments are formed. Overall, our results show that the ionization dynamics of the ammonia and water dimers differ due to the nature of the hydrogen bond in these systems. PMID:27402376

  5. Diffusive Dynamics of Contact Formation in Disordered Polypeptides

    NASA Astrophysics Data System (ADS)

    Zerze, Gül H.; Mittal, Jeetain; Best, Robert B.

    2016-02-01

    Experiments measuring contact formation between probes in disordered chains provide information on the fundamental time scales relevant to protein folding. However, their interpretation usually relies on one-dimensional (1D) diffusion models, as do many experiments probing a single distance. Here, we use all-atom molecular simulations to capture both the time scales of contact formation, as well as the scaling with peptide length for tryptophan triplet quenching experiments, revealing the sensitivity of the experimental quenching times to the configurational space explored by the chain. We find a remarkable consistency between the results of the full calculation and from Szabo-Schulten-Schulten theory applied to a 1D diffusion model, supporting the validity of such models. The significant reduction in diffusion coefficient at the small probe separations which most influence quenching rate, suggests that contact formation and Förster resonance energy transfer correlation experiments provide complementary information on diffusivity.

  6. Diffusive Dynamics of Contact Formation in Disordered Polypeptides.

    PubMed

    Zerze, Gül H; Mittal, Jeetain; Best, Robert B

    2016-02-12

    Experiments measuring contact formation between probes in disordered chains provide information on the fundamental time scales relevant to protein folding. However, their interpretation usually relies on one-dimensional (1D) diffusion models, as do many experiments probing a single distance. Here, we use all-atom molecular simulations to capture both the time scales of contact formation, as well as the scaling with peptide length for tryptophan triplet quenching experiments, revealing the sensitivity of the experimental quenching times to the configurational space explored by the chain. We find a remarkable consistency between the results of the full calculation and from Szabo-Schulten-Schulten theory applied to a 1D diffusion model, supporting the validity of such models. The significant reduction in diffusion coefficient at the small probe separations which most influence quenching rate, suggests that contact formation and Förster resonance energy transfer correlation experiments provide complementary information on diffusivity. PMID:26919016

  7. Ethylene glycol revisited: Molecular dynamics simulations and visualization of the liquid and its hydrogen-bond network☆

    PubMed Central

    Kaiser, Alexander; Ismailova, Oksana; Koskela, Antti; Huber, Stefan E.; Ritter, Marcel; Cosenza, Biagio; Benger, Werner; Nazmutdinov, Renat; Probst, Michael

    2014-01-01

    Molecular dynamics simulations of liquid ethylene glycol described by the OPLS-AA force field were performed to gain insight into its hydrogen-bond structure. We use the population correlation function as a statistical measure for the hydrogen-bond lifetime. In an attempt to understand the complicated hydrogen-bonding, we developed new molecular visualization tools within the Vish Visualization shell and used it to visualize the life of each individual hydrogen-bond. With this tool hydrogen-bond formation and breaking as well as clustering and chain formation in hydrogen-bonded liquids can be observed directly. Liquid ethylene glycol at room temperature does not show significant clustering or chain building. The hydrogen-bonds break often due to the rotational and vibrational motions of the molecules leading to an H-bond half-life time of approximately 1.5 ps. However, most of the H-bonds are reformed again so that after 50 ps only 40% of these H-bonds are irreversibly broken due to diffusional motion. This hydrogen-bond half-life time due to diffusional motion is 80.3 ps. The work was preceded by a careful check of various OPLS-based force fields used in the literature. It was found that they lead to quite different angular and H-bond distributions. PMID:24748697

  8. Maxwell-Stefan diffusion and dynamical correlation in molten LiF-KF: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Jain, Richa Naja; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    2016-05-01

    In this work our main objective is to compute Dynamical correlations, Onsager coefficients and Maxwell-Stefan (MS) diffusivities for molten salt LiF-KF mixture at various thermodynamic states through Green-Kubo formalism for the first time. The equilibrium molecular dynamics (MD) simulations were performed using BHM potential for LiF-KF mixture. The velocity autocorrelations functions involving Li ions reflect the endurance of cage dynamics or backscattering with temperature. The magnitude of Onsager coefficients for all pairs increases with increase in temperature. Interestingly most of the Onsager coefficients has almost maximum magnitude at the eutectic composition indicating the most dynamic character of the eutectic mixture. MS diffusivity hence diffusion for all ion pairs increases in the system with increasing temperature. Smooth variation of the diffusivity values denies any network formation in the mixture. Also, the striking feature is the noticeable concentration dependence of MS diffusivity between cation-cation pair, ĐLi-K which remains negative for most of the concentration range but changes sign to become positive for higher LiF concentration. The negative MS diffusivity is acceptable as it satisfies the non-negative entropy constraint governed by 2nd law of thermodynamics. This high diffusivity also vouches the candidature of molten salt as a coolant.

  9. Neutron Crystallography, Molecular Dynamics, and Quantum Mechanics Studies of the Nature of Hydrogen Bonding in Cellulose I beta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the crystal structure of cellulose Ibeta, disordered hydrogen (H) bonding can be represented by the average of two mutually exclusive H bonding schemes that have been designated A and B. An unanswered question is whether A and B interconvert dynamically, or whether they are static but present in ...

  10. Dynamic effects in friction and adhesion through cooperative rupture and formation of supramolecular bonds.

    PubMed

    Blass, Johanna; Albrecht, Marcel; Bozna, Bianca L; Wenz, Gerhard; Bennewitz, Roland

    2015-05-01

    We introduce a molecular toolkit for studying the dynamics in friction and adhesion from the single molecule level to effects of multivalency. As experimental model system we use supramolecular bonds established by the inclusion of ditopic adamantane connector molecules into two surface-bound cyclodextrin molecules, attached to a tip of an atomic force microscope (AFM) and to a flat silicon surface. The rupture force of a single bond does not depend on the pulling rate, indicating that the fast complexation kinetics of adamantane and cyclodextrin are probed in thermal equilibrium. In contrast, the pull-off force for a group of supramolecular bonds depends on the unloading rate revealing a non-equilibrium situation, an effect discussed as the combined action of multivalency and cantilever inertia effects. Friction forces exhibit a stick-slip characteristic which is explained by the cooperative rupture of groups of host-guest bonds and their rebinding. No dependence of friction on the sliding velocity has been observed in the accessible range of velocities due to fast rebinding and the negligible delay of cantilever response in AFM lateral force measurements. PMID:25833225

  11. Molecular dissociation in the presence of catalysts: interpreting bond breaking as a quantum dynamical phase transition

    NASA Astrophysics Data System (ADS)

    Ruderman, A.; Dente, A. D.; Santos, E.; Pastawski, H. M.

    2015-08-01

    In this work we show that molecular chemical bond formation and dissociation in the presence of the d-band of a metal catalyst can be described as a quantum dynamical phase transition (QDPT). This agrees with DFT calculations that predict sudden jumps in some observables as the molecule breaks. According to our model this phenomenon emerges because the catalyst provides for a non-Hermitian Hamiltonian. We show that when the molecule approaches the surface, as occurs in the Heyrovsky reaction of H2, the bonding H2 orbital has a smooth crossover into a bonding molecular orbital built with the closest H orbital and the surface metal d-states. The same occurs for the antibonding state. Meanwhile, two resonances appear within the continuous spectrum of the d-band, which are associated with bonding and antibonding orbitals between the furthest H atom and the d-states at the second metallic layer. These move toward the band center, where they collapse into a pure metallic resonance and an almost isolated H orbital. This phenomenon constitutes a striking example of the non-trivial physics enabled when one deals with non-Hermitian Hamiltonian beyond the usual wide band approximation.

  12. Bond-bending forces in the crystal dynamics of Cs-Halides

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir Singh

    1984-02-01

    To investigate the dynamics of ionic crystals with CsCl-structure, a new 9-parameter bond-bending force model (BBFM) has been developed. The total potential energy of the system incorporates three types of interactions: (i) short-range repulsive interactions effective upto second nearest neighbours, (ii) bond-bending forces arising from the deformations in certain inter-bond angles, and (iii) long-range Coulomb interactions. The consistent values of the parameters effectively involved in the model have been determined by using the measured data on lattice constants, elastic constants, optical phonon frequencies and the lattice equilibrium condition. An application of the model is made to study the phonon dispersion relations, phonon density of states, and the Debye-characteristic temperature of CsCl, CsBr and CsI. The Brout sum rule is modified, and is used to calculate the compressibilities. Some assignments are also proposed, using the critical-point phonon analysis, to interpret the observed Raman peaks. The comparison of theoretical and existing experimental results reveals a good fit and emboldens our confidence in the utility of the bond-bending forces.

  13. Hydrogen-bond-dynamics-based switching of conductivity and magnetism: a phase transition caused by deuterium and electron transfer in a hydrogen-bonded purely organic conductor crystal.

    PubMed

    Ueda, Akira; Yamada, Shota; Isono, Takayuki; Kamo, Hiromichi; Nakao, Akiko; Kumai, Reiji; Nakao, Hironori; Murakami, Youichi; Yamamoto, Kaoru; Nishio, Yutaka; Mori, Hatsumi

    2014-08-27

    A hydrogen bond (H-bond) is one of the most fundamental and important noncovalent interactions in chemistry, biology, physics, and all other molecular sciences. Especially, the dynamics of a proton or a hydrogen atom in the H-bond has attracted increasing attention, because it plays a crucial role in (bio)chemical reactions and some physical properties, such as dielectricity and proton conductivity. Here we report unprecedented H-bond-dynamics-based switching of electrical conductivity and magnetism in a H-bonded purely organic conductor crystal, κ-D3(Cat-EDT-TTF)2 (abbreviated as κ-D). This novel crystal κ-D, a deuterated analogue of κ-H3(Cat-EDT-TTF)2 (abbreviated as κ-H), is composed only of a H-bonded molecular unit, in which two crystallographically equivalent catechol-fused ethylenedithiotetrathiafulvalene (Cat-EDT-TTF) skeletons with a +0.5 charge are linked by a symmetric anionic [O···D···O](-1)-type strong H-bond. Although the deuterated and parent hydrogen systems, κ-D and κ-H, are isostructural paramagnetic semiconductors with a dimer-Mott-type electronic structure at room temperature (space group: C2/c), only κ-D undergoes a phase transition at 185 K, to change to a nonmagnetic insulator with a charge-ordered electronic structure (space group: P1). The X-ray crystal structure analysis demonstrates that this dramatic switching of the electronic structure and physical properties originates from deuterium transfer or displacement within the H-bond accompanied by electron transfer between the Cat-EDT-TTF π-systems, proving that the H-bonded deuterium dynamics and the conducting TTF π-electron are cooperatively coupled. Furthermore, the reason why this unique phase transition occurs only in κ-D is qualitatively discussed in terms of the H/D isotope effect on the H-bond geometry and potential energy curve. PMID:25127315

  14. Molecular Dynamics Simulations of Grain Boundary and Bulk Diffusion in Metals.

    NASA Astrophysics Data System (ADS)

    Plimpton, Steven James

    Diffusion is a microscopic mass transport mechanism that underlies many important macroscopic phenomena affecting the structural, electrical, and mechanical properties of metals. This thesis presents results from atomistic simulation studies of diffusion both in bulk and in the fast diffusion paths known as grain boundaries. Using the principles of molecular dynamics single boundaries are studied and their structure and dynamic properties characterized. In particular, tilt boundary bicrystal and bulk models of fcc Al and bcc alpha-Fe are simulated. Diffusion coefficients and activation energies for atomic motion are calculated for both models and compared to experimental data. The influence of the interatomic pair potential on the diffusion is studied in detail. A universal relation between the melting temperature that a pair potential induces in a simulated bulk model and the potential energy barrier height for atomic hopping is derived and used to correlate results for a wide variety of pair potentials. Using these techniques grain boundary and bulk diffusion coefficients for any fcc material can be estimated from simple static calculations without the need to perform more time-consuming dynamic simulations. The influences of two other factors on grain boundary diffusion are also studied because of the interest of the microelectronics industry in the diffusion related reliability problem known as electromigration. The first factor, known to affect the self diffusion rate of Al, is the presence of Cu impurity atoms in Al tilt boundaries. The bicrystal model for Al is seeded randomly with Cu atoms and a simple hybrid Morse potential used to model the Al-Cu interaction. While some effect due to the Cu is noted, it is concluded that pair potentials are likely an inadequate approximation for the alloy system. The second factor studied is the effect of the boundary orientation angle on the diffusion rate. Symmetric bcc Fe boundaries are relaxed to find optimal

  15. Correlated dynamics between protein HN and HC bonds observed by NMR cross relaxation.

    PubMed

    Vögeli, Beat; Yao, Lishan

    2009-03-18

    Although collective dynamics of atom groups steer many biologically relevant processes in biomacromolecules, most atomic resolution motional studies focus on isolated bonds. In this study, a new method is introduced to assess correlated dynamics between bond vectors by cross relaxation nuclear magnetic resonance (NMR). Dipole-dipole cross correlated relaxation rates between intra- and inter-residual H(N)-N and H(alpha)-C(alpha) in the 56 residue protein GB3 are measured with high accuracy. It is demonstrated that the assumption of anisotropic molecular tumbling is necessary to evaluate rates accurately and predictions from the static structure using effective bond lengths of 1.041 and 1.117 A for H(N)-N and H(alpha)-C(alpha) are within 3% of both experimental intra- and inter-residual rates. Deviations are matched to models of different degrees of motional correlation. These models are based on previously determined orientations and motional amplitudes from residual dipolar couplings with high accuracy and precision. Clear evidence of correlated motion in the loops comprising residues 10-14, 20-22, and 47-50 and anticorrelated motion in the alpha helix comprising 23-38 is presented. Somewhat weaker correlation is observed in the beta strands 2-4, which have previously been shown to exhibit slow correlated motional modes. PMID:19235934

  16. Effect of temperature on fast hydrogen diffusion in iron: A path-integral quantum dynamics approach

    NASA Astrophysics Data System (ADS)

    Kimizuka, Hajime; Mori, Hideki; Ogata, Shigenobu

    2011-03-01

    Here we explicitly present the diffusion coefficients (D) and activation energies (Ea) of interstitial H in α-Fe over a temperature range of 100 to 1000 K. These values were predicted by applying path-integral molecular dynamics modeling based on first principles. The obtained D and Ea values exhibit clear non-Arrhenius temperature dependence and a transition from quantum to classical behavior at around 500 K. Our results show that the quantum effects not only significantly lower the diffusion barrier but also change the diffusion pathway even at room temperature; thus, fast diffusion becomes possible.

  17. Calculation of the coefficient and dynamics of water diffusion in graphite joints

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Liu, Wen-Bin

    2006-06-01

    The coefficient and dynamics of water diffusion in adhesive-graphite joints were calculated insitu with energy dispersive X-ray (EDX) analysis, a method that is significantly simpler than elemental analysis. Water diffusion coefficient and dynamics of adhesive-graphite joints treated by different surface treatment menthods were also investigated. Calculation results indicated that the water diffusion rate in adhesive-graphite joints treated by sandpaper was higher than that treated by chemical oxidation or by silane couple agent. Also the durability of graphite joints treated by coupling agent is superior to that treated by chemical oxidation or sandpaper burnishing.

  18. Static and Dynamic Effects of Lateral Carrier Diffusion in Semiconductor Lasers

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Electron and hole diffusions in the plane of semiconductor quantum wells play an important part in the static and dynamic operations of semiconductor lasers. It is well known that the value of diffusion coefficients affects the threshold pumping current of a semiconductor laser. At the same time, the strength of carrier diffusion process is expected to affect the modulation bandwidth of an AC-modulated laser. It is important not only to investigate the combined DC and AC effects due to carrier diffusion, but also to separate the AC effects from that of the combined effects in order to provide design insights for high speed modulation. In this presentation, we apply a hydrodynamic model developed by the present authors recently from the semiconductor Bloch equations. The model allows microscopic calculation of the lateral carrier diffusion coefficient, which is a nonlinear function of the carrier density and plasma temperature. We first studied combined AC and DC effects of lateral carrier diffusion by studying the bandwidth dependence on diffusion coefficient at a given DC current under small signal modulation. The results show an increase of modulation bandwidth with decrease in the diffusion coefficient. We simultaneously studied the effects of nonlinearity in the diffusion coefficient. To clearly identify how much of the bandwidth increase is a result of decrease in the threshold pumping current for smaller diffusion coefficient, thus an effective increase of DC pumping, we study the bandwidth dependence on diffusion coefficient at a given relative pumping. A detailed comparison of the two cases will be presented.

  19. Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin

    PubMed Central

    Saha, Suvrajit; Lee, Il-Hyung; Polley, Anirban; Groves, Jay T.; Rao, Madan; Mayor, Satyajit

    2015-01-01

    Molecular diffusion at the surface of living cells is believed to be predominantly driven by thermal kicks. However, there is growing evidence that certain cell surface molecules are driven by the fluctuating dynamics of cortical cytoskeleton. Using fluorescence correlation spectroscopy, we measure the diffusion coefficient of a variety of cell surface molecules over a temperature range of 24–37°C. Exogenously incorporated fluorescent lipids with short acyl chains exhibit the expected increase of diffusion coefficient over this temperature range. In contrast, we find that GPI-anchored proteins exhibit temperature-independent diffusion over this range and revert to temperature-dependent diffusion on cell membrane blebs, in cells depleted of cholesterol, and upon acute perturbation of actin dynamics and myosin activity. A model transmembrane protein with a cytosolic actin-binding domain also exhibits the temperature-independent behavior, directly implicating the role of cortical actin. We show that diffusion of GPI-anchored proteins also becomes temperature dependent when the filamentous dynamic actin nucleator formin is inhibited. However, changes in cortical actin mesh size or perturbation of branched actin nucleator Arp2/3 do not affect this behavior. Thus cell surface diffusion of GPI-anchored proteins and transmembrane proteins that associate with actin is driven by active fluctuations of dynamic cortical actin filaments in addition to thermal fluctuations, consistent with expectations from an “active actin-membrane composite” cell surface. PMID:26378258

  20. Molecular dynamics studies of the bonding properties of amorphous silicon nitride coatings on crystalline silicon

    NASA Astrophysics Data System (ADS)

    Butler, Keith T.; Lamers, Machteld P. W. E.; Weeber, Arthur W.; Harding, John H.

    2011-12-01

    In this paper we present molecular dynamics simulations of silicon nitride, both in bulk and as an interface to crystalline silicon. We investigate, in particular, the bonding structure of the silicon nitride and analyze the simulations to search for defective geometries which have been identified as potential charge carrier traps when silicon nitride forms an interface with silicon semiconductors. The simulations reveal how the bonding patterns in silicon nitride are dependent upon the stoichiometry of the system. Furthermore we demonstrate how having an "interphase", where the nitrogen content in silicon gradually reduces toward pure silicon across a boundary region, as opposed to an interface where there is an abrupt drop in nitrogen concentration at the boundary, can result in significantly different numbers of certain important carrier trap.

  1. Dynamical properties of semidilute solutions of hydrogen-bonded supramolecular polymers

    NASA Astrophysics Data System (ADS)

    Buhler, Eric; Candau, Sauveur-Jean; Kolomiets, Elena; Lehn, Jean-Marie

    2007-12-01

    The dynamical properties of semidilute solutions of supramolecular polymers formed from molecular recognition directed association between monomers bearing complementary hydrogen bonding groups were investigated by rheological and dynamic light scattering experiments. The steady-state flow curves showed a shear banding type instability, namely the occurrence of a stress plateau σp above a critical shear rate γ˙c . The values of σp and γ˙c were found to be of the same order of magnitude as those of the elastic plateau modulus and the inverse stress relaxation time, respectively. The above features are in agreement with the theoretical predictions based on the reptation model. Dynamic light scattering experiments showed the presence in the autocorrelation function of the concentration fluctuations of a slow viscoelastic relaxation process that is likely to be of Rouse type.

  2. Femtosecond two-dimensional infrared spectroscopy of synthetic hydrogen-bonded wires: From homogeneous to inhomogeneous dynamics

    NASA Astrophysics Data System (ADS)

    Knop, Stephan; Olschewski, Martin; Vöhringer, Peter

    2013-03-01

    Femtosecond two-dimensional infrared (2DIR) spectroscopy was carried out on stereo-selectively synthesized poly-alcohols featuring a quasi-linear array of hydrogen-bonds. From the 2DIR spectra pump-frequency-dependent vibrational lifetimes are extracted, which in turn reflect the strength of the coupling between the hydroxyls constituting the H-bonded chain. The line-broadening dynamics reflect uniquely the conformational control of the scaffold supporting the H-bond wire and the resulting structural flexibility of the hydrogen-bond network.

  3. Molecular dynamics study of diffusion of krypton in water at different temperatures

    NASA Astrophysics Data System (ADS)

    Bhandari, Dipendra; Adhikari, N. P.

    2016-04-01

    Molecular dynamics study of diffusion of two krypton atoms in 300 SPC/E water molecules at temperatures 293, 303, 313, 323 and 333 K has been carried out. Self-diffusion coefficient of krypton and water along with their mutual diffusion coefficients are estimated. Self-diffusion coefficient for krypton is calculated by using Mean Square Displacement (MSD) method and Velocity Autocorrelation (VACF) method, while that for water is calculated by using MSD method only. The mutual diffusion coefficient is estimated by using the Darken’s relation. The diffusion coefficients are found to follow the Arrhenius behavior. The structural properties of the system have been estimated by the study of solute-solute, solvent-solvent, and solute-solvent Radial Distribution Function (RDF).

  4. A molecular dynamics study of ethanol-water hydrogen bonding in binary structure I clathrate hydrate with CO2

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ohmura, Ryo; Ripmeester, John A.

    2011-02-01

    Guest-host hydrogen bonding in clathrate hydrates occurs when in addition to the hydrophilic moiety which causes the molecule to form hydrates under high pressure-low temperature conditions, the guests contain a hydrophilic, hydrogen bonding functional group. In the presence of carbon dioxide, ethanol clathrate hydrate has been synthesized with 10% of large structure I (sI) cages occupied by ethanol. In this work, we use molecular dynamics simulations to study hydrogen bonding structure and dynamics in this binary sI clathrate hydrate in the temperature range of 100-250 K. We observe that ethanol forms long-lived (>500 ps) proton-donating and accepting hydrogen bonds with cage water molecules from both hexagonal and pentagonal faces of the large cages while maintaining the general cage integrity of the sI clathrate hydrate. The presence of the nondipolar CO2 molecules stabilizes the hydrate phase, despite the strong and prevalent alcohol-water hydrogen bonding. The distortions of the large cages from the ideal form, the radial distribution functions of the guest-host interactions, and the ethanol guest dynamics are characterized in this study. In previous work through dielectric and NMR relaxation time studies, single crystal x-ray diffraction, and molecular dynamics simulations we have observed guest-water hydrogen bonding in structure II and structure H clathrate hydrates. The present work extends the observation of hydrogen bonding to structure I hydrates.

  5. Effect of Bonding Temperature on Interfacial Reaction and Mechanical Properties of Diffusion-Bonded Joint Between Ti-6Al-4V and 304 Stainless Steel Using Nickel as an Intermediate Material

    NASA Astrophysics Data System (ADS)

    Thirunavukarasu, Gopinath; Kundu, Sukumar; Mishra, Brajendra; Chatterjee, Subrata

    2014-04-01

    An investigation was carried out on the solid-state diffusion bonding between Ti-6Al-4V (TiA) and 304 stainless steel (SS) using pure nickel (Ni) of 200- μm thickness as an intermediate material prepared in vacuum in the temperature range from 973 K to 1073 K (700 °C to 800 °C) in steps of 298 K (25 °C) using uniaxial compressive pressure of 3 MPa and 60 minutes as bonding time. Scanning electron microscopy images, in backscattered electron mode, had revealed existence of layerwise Ti-Ni-based intermetallics such as either Ni3Ti or both Ni3Ti and NiTi at titanium alloy-nickel (TiA/Ni) interface, whereas nickel-stainless steel (Ni/SS) diffusion zone was free from intermetallic phases for all joints processed. Chemical composition of the reaction layers was determined in atomic percentage by energy dispersive spectroscopy and confirmed by X-ray diffraction study. Room-temperature properties of the bonded joints were characterized using microhardness evaluation and tensile testing. The maximum hardness value of ~800 HV was observed at TiA/Ni interface for the bond processed at 1073 K (800 °C). The hardness value at Ni/SS interface for all the bonds was found to be ~330 HV. Maximum tensile strength of ~206 MPa along with ~2.9 pct ductility was obtained for the joint processed at 1023 K (750 °C). It was observed from the activation study that the diffusion rate at TiA/Ni interface is lesser than that at the Ni/SS interface. From microhardness profile, fractured surfaces and fracture path, it was demonstrated that failure of the joints was initiated and propagated apparently at the TiA/Ni interface near Ni3Ti intermetallic phase.

  6. Diffusion dynamics of socially learned foraging techniques in squirrel monkeys.

    PubMed

    Claidière, Nicolas; Messer, Emily J E; Hoppitt, William; Whiten, Andrew

    2013-07-01

    Social network analyses and experimental studies of social learning have each become important domains of animal behavior research in recent years yet have remained largely separate. Here we bring them together, providing the first demonstration of how social networks may shape the diffusion of socially learned foraging techniques. One technique for opening an artificial fruit was seeded in the dominant male of a group of squirrel monkeys and an alternative technique in the dominant male of a second group. We show that the two techniques spread preferentially in the groups in which they were initially seeded and that this process was influenced by monkeys' association patterns. Eigenvector centrality predicted both the speed with which an individual would first succeed in opening the artificial fruit and the probability that they would acquire the cultural variant seeded in their group. These findings demonstrate a positive role of social networks in determining how a new foraging technique diffuses through a population. PMID:23810529

  7. Dynamics of Mesoscale Magnetic Field in Diffusive Shock Acceleration

    NASA Astrophysics Data System (ADS)

    Diamond, P. H.; Malkov, M. A.

    2007-01-01

    We present a theory for the generation of mesoscale (krg<<1, where rg is the cosmic-ray gyroradius) magnetic fields during diffusive shock acceleration. The decay or modulational instability of resonantly excited Alfvén waves scattering off ambient density perturbations in the shock environment naturally generates larger scale fields. For a broad spectrum of perturbations, the physical mechanism of energy transfer is random refraction, represented by the diffusion of Alfvén wave packets in k-space. The scattering field can be produced directly by the decay instability or by the Drury instability, a hydrodynamic instability driven by the cosmic-ray pressure gradient. This process is of interest to acceleration since it generates waves of longer wavelength, and so enables the confinement and acceleration of higher energy particles. This process also limits the intensity of resonantly generated turbulent magnetic fields on rg scales.

  8. Dynamic response of a pulsed Burke-Schumann diffusion flame

    NASA Technical Reports Server (NTRS)

    Sheu, Jyh-Cherng; Stocker, Dennis P.; Chen, Lea-Der

    1995-01-01

    Turbulent flames are often envisioned as an ensemble of random vortices interacting with the combustion process. A better understanding of the vortex-flame interactions therefore would be useful in improving the modeling of turbulent diffusion flames. Substantial simplification may be made by investigating controlled interactions in a laminar flame, as opposed to random interactions in a turbulent flame. The general goals of the research project are to improve our understanding of (1) the influence of buoyancy on co-flow diffusion flames and (2) the effects of buoyancy on vortex-flame interactions in co-flow diffusion flames. As a first step toward objective (2), we conducted a joint experimental and numerical investigation of the vortex-flame interaction. Vortices were produced by mechanically pulsing the fuel flow at a low frequency, e.g., 10 Hz. Experiments were conducted using a nonflickering Burke-Schumann flame in both microgravity (mu-g) and normal gravity (1g) as a means of varying the buoyant force without modification of the pressure (i.e., density). The effects of buoyant convection may then be determined by a comparison of the mu-g and 1g results. The mu-g results may also reveal the important mechanisms which are masked or overwhelmed by buoyant convection in 1g. A numerical investigation was conducted using a validated, time-accurate numerical code to study the underlying physics during the flame interaction and to assist the interpretation of the experimental results.

  9. Hydrogen Bond and Ligand Dissociation Dynamics in Fluoride Sensing of Re(I)-Polypyridyl Complex.

    PubMed

    Verma, Sandeep; Aute, Sunil; Das, Amitava; Ghosh, Hirendra N

    2015-11-25

    Hydrogen bonding interaction plays an essential role in the early phases of molecular recognition and colorimetric sensing of various anions in aprotic media. In this work, the host-guest interaction between fac-[Re(CO)3Cl(L)] with L = 4-([2,2'-bipyridin]-4-yl)phenol and fluoride ions is investigated for the hydrogen bond dynamics and the changing local coordination environment. The stoichiometric studies using (1)H NMR and ESI-MS spectroscopies have shown that proton transfer in the H-bonded phenol-fluoride complex activates the dissociation of the CO ligand in the Re(I) center. The phenol-to-phenolate conversion during formation of HF2(-) ion induces nucleophilic lability of the CO ligand which is probed by intraligand charge transfer (ILCT) and ligand-to-metal charge transfer (LMCT) transitions in transient absorption spectroscopy. After photoexcitation, phenol-phenoxide conversion rapidly equilibrates in 280 fs time scale and the ensuing excited state [Re(II)(bpy•(-)-phenolate¯) (CO)3Cl]* undergoes CO dissociation in the ultrafast time scale of ∼3 ps. A concerted mechanism of hydrogen cleavage and coordination change is established in anion sensing studies of the rhenium complex. PMID:26514688

  10. Molecular dynamics of neutral polymer bonding agent (NPBA) as revealed by solid-state NMR spectroscopy.

    PubMed

    Hu, Wei; Su, Yongchao; Zhou, Lei; Pang, Aimin; Cai, Rulin; Ma, Xingang; Li, Shenhui

    2013-01-01

    Neutral polymer bonding agent (NPBA) is one of the most promising polymeric materials, widely used in nitrate ester plasticized polyether (NEPE) propellant as bonding agent. The structure and dynamics of NPBA under different conditions of temperatures and sample processing are comprehensively investigated by solid state NMR (SSNMR). The results indicate that both the main chain and side chain of NPBA are quite rigid below its glass transition temperature (Tg). In contrast, above the Tg, the main chain remains relatively immobilized, while the side chains become highly flexible, which presumably weakens the interaction between bonding agent and the binder or oxidant fillers and in turn destabilizes the high modulus layer formed around the oxidant fillers. In addition, no obvious variation is found for the microstructure of NPBA upon aging treatment or soaking with acetone. These experimental results provide useful insights for understanding the structural properties of NPBA and its interaction with other constituents of solid composite propellants under different processing and working conditions. PMID:24451254

  11. Dynamic contrast-enhanced diffuse optical tomography (DCE-DOT): experimental validation with a dynamic phantom

    PubMed Central

    Unlu, Mehmet Burcin; Lin, Yuting; Gulsen, Gultekin

    2010-01-01

    Dynamic contrast-enhanced diffuse optical tomography (DCE-DOT) can provide spatially resolved enhancement kinetics of an optical contrast agent. We undertook a systematic phantom study to evaluate the effects of the geometrical parameters such as the depth and size of the inclusion as well as the optical parameters of the background on the recovered enhancement kinetics of the most commonly used optical contrast agent, indocyanine green (ICG). For this purpose a computer-controlled dynamic phantom was constructed. An ICG–intralipid–water mixture was circulated through the inclusions while the DCE-DOT measurements were acquired with a temporal resolution of 16 s. The same dynamic study was repeated using inclusions of different sizes located at different depths. In addition to this, the effect of non-scattering regions was investigated by placing a second inclusion filled with water in the background. The phantom studies confirmed that although the peak enhancement varied substantially for each case, the recovered injection and dilution rates obtained from the percentage enhancement maps agreed within 15% independent of not only the depth and the size of the inclusion but also the presence of a non-scattering region in the background. Although no internal structural information was used in these phantom studies, it may be necessary to use it for small objects buried deep in tissue. However, the different contrast mechanisms of optical and other imaging modalities as well as imperfect co-registration between both modalities may lead to potential errors in the structural a priori. Therefore, the effect of erroneous selection of structural priors was investigated as the final step. Again, the injection and dilution rates obtained from the percentage enhancement maps were also immune to the systematic errors introduced by erroneous selection of the structural priors, e.g. choosing the diameter of the inclusion 20% smaller increased the peak enhancement 60% but

  12. Two competing species in super-diffusive dynamical regimes

    NASA Astrophysics Data System (ADS)

    La Cognata, A.; Valenti, D.; Spagnolo, B.; Dubkov, A. A.

    2010-09-01

    The dynamics of two competing species within the framework of the generalized Lotka-Volterra equations, in the presence of multiplicative α-stable Lévy noise sources and a random time dependent interaction parameter, is studied. The species dynamics is characterized by two different dynamical regimes, exclusion of one species and coexistence of both, depending on the values of the interaction parameter, which obeys a Langevin equation with a periodically fluctuating bistable potential and an additive α-stable Lévy noise. The stochastic resonance phenomenon is analyzed for noise sources asymmetrically distributed. Finally, the effects of statistical dependence between multiplicative noise and additive noise on the dynamics of the two species are studied.

  13. Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics.

    PubMed

    Li, Qiaochu; Barrett, Devin G; Messersmith, Phillip B; Holten-Andersen, Niels

    2016-01-26

    Interactions between polymer molecules and inorganic nanoparticles can play a dominant role in nanocomposite material mechanics, yet control of such interfacial interaction dynamics remains a significant challenge particularly in water. This study presents insights on how to engineer hydrogel material mechanics via nanoparticle interface-controlled cross-link dynamics. Inspired by the adhesive chemistry in mussel threads, we have incorporated iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network to obtain hydrogels cross-linked via reversible metal-coordination bonds at Fe3O4 NP surfaces. Unique material mechanics result from the supra-molecular cross-link structure dynamics in the gels; in contrast to the previously reported fluid-like dynamics of transient catechol-Fe(3+) cross-links, the catechol-Fe3O4 NP structures provide solid-like yet reversible hydrogel mechanics. The structurally controlled hierarchical mechanics presented here suggest how to develop hydrogels with remote-controlled self-healing dynamics. PMID:26645284

  14. Bio-Inspired Composite Interfaces: Controlling Hydrogel Mechanics via Polymer-Nanoparticle Coordination Bond Dynamics

    NASA Astrophysics Data System (ADS)

    Holten-Andersen, Niels

    2015-03-01

    In soft nanocomposite materials, the effective interaction between polymer molecules and inorganic nanoparticle surfaces plays a critical role in bulk mechanical properties. However, controlling these interfacial interactions remains a challenge. Inspired by the adhesive chemistry in mussel threads, we present a novel approach to control composite mechanics via polymer-particle interfacial dynamics; by incorporating iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network the resulting hydrogels are crosslinked via reversible coordination bonds at Fe3O4 NP surfaces thereby providing a dynamic gel network with robust self-healing properties. By studying the thermally activated composite network relaxation processes we have found that the polymer-NP binding energy can be controlled by engineering both the organic and inorganic side of the interface.

  15. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering

    DOE PAGESBeta

    Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; Adams, Paul D.; Fraser, James S.; Terwilliger, Thomas C.

    2014-12-01

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculationsmore » of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. The decomposition of the MD model into protein and solvent components indicates that protein–solvent interactions contribute substantially to the overall diffuse intensity. In conclusion, diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.« less

  16. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering

    PubMed Central

    Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; Adams, Paul D.; Fraser, James S.; Terwilliger, Thomas C.

    2014-01-01

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. Decomposition of the MD model into protein and solvent components indicates that protein–solvent interactions contribute substantially to the overall diffuse intensity. We conclude that diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions. PMID:25453071

  17. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering

    SciTech Connect

    Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; Adams, Paul D.; Fraser, James S.; Terwilliger, Thomas C.

    2014-12-01

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. The decomposition of the MD model into protein and solvent components indicates that protein–solvent interactions contribute substantially to the overall diffuse intensity. In conclusion, diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.

  18. Long-time diffusivity of DNA chains in nanochannels: A Brownian dynamics study

    NASA Astrophysics Data System (ADS)

    Jain, Aashish; Dorfman, Kevin

    2015-03-01

    The simplest approach to calculate the diffusivity of any polymer chain is to use the double sum Kirkwood formula, which is based on preaveraging approximation of diffusion tensor. The error due to the preaveraging approximation has been reported by a number of researchers in the context of free solution by computing both Kirkwood diffusivity D (K) (also known as short-time diffusivity) and long-time diffusivity DL. In nanochannels, the main approach to compute the diffusivity is the Kirkwood formula. However, the error due to the preaveraging approximation is not known in a confined system. We use Brownian dynamics simulation algorithm with excluded volume and hydrodynamic interactions to calculate both short-time and long-time diffusivities of DNA chains in nanochannels, and compare them for a range of channel sizes and DNA chain sizes. Our results indicate that the long-time diffusivity is always smaller than the short-time diffusivity, which is consistent with the result obtained in free solution using linear response theory DL

  19. Particle Motion Analysis Reveals Nanoscale Bond Characteristics and Enhances Dynamic Range for Biosensing.

    PubMed

    Visser, Emiel W A; van IJzendoorn, Leo J; Prins, Menno W J

    2016-03-22

    Biofunctionalized colloidal particles are widely used as labels in bioanalytical assays, lab-on-chip devices, biophysical research, and in studies on live biological systems. With detection resolution going down to the level of single particles and single molecules, understanding the nature of the interaction of the particles with surfaces and substrates becomes of paramount importance. Here, we present a comprehensive study of motion patterns of colloidal particles maintained in close proximity to a substrate by short molecular tethers (40 nm). The motion of the particles (500-1000 nm) was optically tracked with a very high localization accuracy (below 3 nm). A surprisingly large variation in motion patterns was observed, which can be attributed to properties of the particle-molecule-substrate system, namely the bond number, the nature of the bond, particle protrusions, and substrate nonuniformities. Experimentally observed motion patterns were compared to numerical Monte Carlo simulations, revealing a close correspondence between the observed motion patterns and properties of the molecular system. Particles bound via single tethers show distinct disc-, ring-, and bell-shaped motion patterns, where the ring- and bell-shaped patterns are caused by protrusions on the particle in the direct vicinity of the molecular attachment point. Double and triple tethered particles exhibit stripe-shaped and triangular-shaped motion patterns, respectively. The developed motion pattern analysis allows for discrimination between particles bound by different bond types, which opens the possibility to improve the limit of detection and the dynamic range of bioanalytical assays, with a projected increase of dynamic range by nearly 2 orders of magnitude. PMID:26913834

  20. Probing surface hydrogen bonding and dynamics by natural abundance, multidimensional, 17O DNP-NMR spectroscopy

    DOE PAGESBeta

    Perras, Frederic A.; Chaudhary, Umesh; Slowing, Igor I.; Pruski, Marek

    2016-05-06

    Dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy is increasingly being used as a tool for the atomic-level characterization of surface sites. DNP surface-enhanced SSNMR spectroscopy of materials has, however, been limited to studying relatively receptive nuclei, and the particularly rare 17O nuclide, which is of great interest for materials science, has not been utilized. We demonstrate that advanced 17O SSNMR experiments can be performed on surface species at natural isotopic abundance using DNP. We use 17O DNP surface-enhanced 2D SSNMR to measure 17O{1H} HETCOR spectra as well as dipolar oscillations on a series of thermally treatedmore » mesoporous silica nanoparticle samples having different pore diameters. These experiments allow for a nonintrusive and unambiguous characterization of hydrogen bonding and dynamics at the surface of the material; no other single experiment can give such details about the interactions at the surface. Lastly, our data show that, upon drying, strongly hydrogen-bonded surface silanols, whose motions are greatly restricted by the interaction when compared to lone silanols, are selectively dehydroxylated.« less

  1. Dynamic bonding of metallic nanocontacts: Insights from experiments and atomistic simulations

    NASA Astrophysics Data System (ADS)

    Fernández, M. A.; Sabater, C.; Dednam, W.; Palacios, J. J.; Calvo, M. R.; Untiedt, C.; Caturla, M. J.

    2016-02-01

    The conductance across an atomically narrow metallic contact can be measured by using scanning tunneling microscopy. In certain situations, a jump in the conductance is observed right at the point of contact between the tip and the surface, which is known as "jump to contact" (JC). Such behavior provides a way to explore, at a fundamental level, how bonding between metallic atoms occurs dynamically. This phenomenon depends not only on the type of metal but also on the geometry of the two electrodes. For example, while some authors always find JC when approaching two atomically sharp tips of Cu, others find that a smooth transition occurs when approaching a Cu tip to an adatom on a flat surface of Cu. In an attempt to show that all these results are consistent, we make use of atomistic simulations; in particular, classical molecular dynamics together with density functional theory transport calculations to explore a number of possible scenarios. Simulations are performed for two different materials: Cu and Au in a [100] crystal orientation and at a temperature of 4.2 K. These simulations allow us to study the contribution of short- and long-range interactions to the process of bonding between metallic atoms, as well as to compare directly with experimental measurements of conductance, giving a plausible explanation for the different experimental observations. Moreover, we show a correlation between the cohesive energy of the metal, its Young's modulus, and the frequency of occurrence of a jump to contact.

  2. Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Microorganisms

    NASA Astrophysics Data System (ADS)

    Gollub, J. P.; Guasto, J. S.; Leptos, K. C.; Pesci, A. I.; Goldstein, R. E.

    2009-11-01

    We observe and statistically quantify the enhanced transport of passive tracer particles in suspensions of swimming microalgae, Chlamydomonas reinhardtii. These bi-flagellated, single-celled eukaryotes (10 μm diameter) swim with a breast-stroke motion of their flagella at speeds of about 100 μm/s and exhibit a heterogeneous trajectory shapes. Fluorescent tracer particles (2 μm diameter) allowed us to quantify the enhanced mixing caused by the swimmers, which is relevant to marine ecology. As the swimmer concentration increases, the probability density functions (PDFs) of tracer displacements develop strong exponential tails, and the Gaussian core broadens; the diffusivity grows linearly with concentration. For a given swimmer concentration, the displacement PDFs show self-similar behavior and diffusive scaling in time. High-speed imaging of tracer-swimmer interactions demonstrates the importance of flagellar beating in creating oscillatory flows that exceed Brownian motion out to about 5 cell radii from the swimmers.footnotetextK.C. Leptos et al., submitted to Phys. Rev. Lett (2009)

  3. Dynamics of diffuse pollution from US southern watersheds

    USGS Publications Warehouse

    Schreiber, J.D.; Rebich, R.A.; Cooper, C.M.

    2001-01-01

    To understand the effects of diffuse pollution information on the source of pollutants, quantities in transport, mode of transport, transient nature of the pollution event, and most importantly, a consideration of remediation efforts need to be known. For example, water quality research in the Yazoo Basin uplands in Mississippi has shown sediment loads from a conventional-till upland soybean watershed to be about 19,000kg/ha/yr, and responsible for 77-96% of P and N in transport. In contrast, sediment loads from a comparable no-till soybean watershed were only 500kg/ha/yr, transporting about 31% of P and N in transport. Sediment loads from a nearby forested area were low, about 200kg/ha/yr, but responsible for about 47-76% of P and N in transport. Transient pollution events are responsible for the transport of large quantities of sediment, nutrients, and pesticides; in some storm events nearly the annual load. Best management practices (BMPs) must be designed to remediate diffuse pollution and the transient nature of pollution events which can have a profound effect on the ecological health of steams and reservoirs. Copyright ?? 2001 .

  4. Turing pattern dynamics and adaptive discretization for a super-diffusive Lotka-Volterra model.

    PubMed

    Bendahmane, Mostafa; Ruiz-Baier, Ricardo; Tian, Canrong

    2016-05-01

    In this paper we analyze the effects of introducing the fractional-in-space operator into a Lotka-Volterra competitive model describing population super-diffusion. First, we study how cross super-diffusion influences the formation of spatial patterns: a linear stability analysis is carried out, showing that cross super-diffusion triggers Turing instabilities, whereas classical (self) super-diffusion does not. In addition we perform a weakly nonlinear analysis yielding a system of amplitude equations, whose study shows the stability of Turing steady states. A second goal of this contribution is to propose a fully adaptive multiresolution finite volume method that employs shifted Grünwald gradient approximations, and which is tailored for a larger class of systems involving fractional diffusion operators. The scheme is aimed at efficient dynamic mesh adaptation and substantial savings in computational burden. A numerical simulation of the model was performed near the instability boundaries, confirming the behavior predicted by our analysis. PMID:26219250

  5. Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers.

    PubMed

    Azhar, Mueed; Greiner, Andreas; Korvink, Jan G; Kauzlarić, David

    2016-06-28

    We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. After a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered. PMID:27369491

  6. Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers

    NASA Astrophysics Data System (ADS)

    Azhar, Mueed; Greiner, Andreas; Korvink, Jan G.; Kauzlarić, David

    2016-06-01

    We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. After a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered.

  7. Computation of the hindrance factor for the diffusion for nanoconfined ions: molecular dynamics simulations versus continuum-based models

    NASA Astrophysics Data System (ADS)

    Zhu, Haochen; Ghoufi, Aziz; Szymczyk, Anthony; Balannec, Béatrice; Morineau, Denis

    2012-06-01

    We report the self-diffusion coefficients and hindrance factor for the diffusion of ions into cylindrical hydrophilic silica nanopores (hydrated silica) determined from molecular dynamics (MD) simulations. We make a comparison with the hindered diffusion coefficients used in continuum-based models of nanofiltration (NF). Hindrance factors for diffusion estimated from the macroscopic hydrodynamic theory were found to be in fair quantitative agreement with MD simulations for a protonated pore, but they strongly overestimate diffusion inside a deprotonated pore.

  8. Relativistic dynamics of the Compton diffusion on a bound electron

    NASA Astrophysics Data System (ADS)

    Al Saleh, Salwa

    2016-05-01

    A covariant relativistic formalism for the electron-photon and nuclear dynamics is summarised making more accurate predictions in agreement with experiments for Compton scattering in shells with large electron binding energy. An exact solution for the Dirac equation for an electron in the nuclear Coulomb field is obtained, in order to write the relativistic dynamics for this QED process. This is a preparation for the calculation of the relativistic cross-section for Compton scattering on bound electrons, as a precision test for QED.

  9. Self Diffusion in Nano Filled Polymer Melts: a Molecular Dynamics Simulation Study

    NASA Astrophysics Data System (ADS)

    Desai, Tapan; Keblinski, Pawel

    2003-03-01

    SELF DIFFUSION IN NANO FILLED POLYMER MELTS: A MOLECULAR DYNAMICS SIMULATION STUDY* T. G. Desai,P. Keblinski, Material Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY. Using molecular dynamics simulations, we studied the dynamics of the polymeric systems containing immobile and analytically smooth spherical nanoparticles. Each chain consisted of N monomers connected by an anharmonic springs described by the finite extendible nonlinear elastic, FENE potential. The system comprises of 3nanoparticles and the rest by freely rotating but not overlapping chains. The longest chain studied has a Radius of gyration equal to particle size radius and comparable to inter-particle distance. There is no effect on the structural characteristics such as Radius of gyration or end to end distance due to the nanoparticles. Diffusion of polymeric chains is not affected by the presence of either attractive or repulsive nanoparticles. In all cases Rouse dynamics is observed for short chains with a crossover to reptation dynamics for longer chains.

  10. Measurement of nano-particle diffusion in the simulated dynamic light scattering by contrast of dynamic images

    NASA Astrophysics Data System (ADS)

    Wu, Xiaobin; Qiu, Jian; Luo, Kaiqing; Han, Peng

    2015-08-01

    Dynamic Light Scattering is used for measuring particle size distribution of nano-particle under Brownian motion. Signal is detected through a photomultiplier and processed by correlation analysis, and results are inverted at last. Method by using CCD camera can record the procedure of motion. However, there are several weaknesses such as low refresh speed and noise from CCD camera, and this method depends on particle size and detecting angle. A simulation of nano-particle under Brownian motion is proposed to record dynamic images, studies contrast of dynamic images which can represent speed of diffusion, and its characteristic under different conditions. The results show that through contrast of dynamic images diffusion coefficient can be obtained, which is independent on density of scattering volume.

  11. Anisotropic parallel self-diffusion coefficients near the calcite surface: A molecular dynamics study.

    PubMed

    Franco, Luís F M; Castier, Marcelo; Economou, Ioannis G

    2016-08-28

    Applying classical molecular dynamics simulations, we calculate the parallel self-diffusion coefficients of different fluids (methane, nitrogen, and carbon dioxide) confined between two {101̄4} calcite crystal planes. We have observed that the molecules close to the calcite surface diffuse differently in distinct directions. This anisotropic behavior of the self-diffusion coefficient is investigated for different temperatures and pore sizes. The ion arrangement in the calcite crystal and the strong interactions between the fluid particles and the calcite surface may explain the anisotropy in this transport property. PMID:27586936

  12. Dynamical tunneling versus fast diffusion for a non-convex Hamiltonian.

    PubMed

    Pittman, S M; Tannenbaum, E; Heller, E J

    2016-08-01

    This paper attempts to resolve the issue of the nature of the 0.01-0.1 cm(-1) peak splittings observed in high-resolution IR spectra of polyatomic molecules. One hypothesis is that these splittings are caused by dynamical tunneling, a quantum-mechanical phenomenon whereby energy flows between two disconnected regions of phase-space across dynamical barriers. However, a competing classical mechanism for energy flow is Arnol'd diffusion, which connects different regions of phase-space by a resonance network known as the Arnol'd web. The speed of diffusion is bounded by the Nekhoroshev theorem, which guarantees stability on exponentially long time scales if the Hamiltonian is steep. Here we consider a non-convex Hamiltonian that contains the characteristics of a molecular Hamiltonian, but does not satisfy the Nekhoroshev theorem. The diffusion along the Arnol'd web is expected to be fast for a non-convex Hamiltonian. While fast diffusion is an unlikely competitor for longtime energy flow in molecules, we show how dynamical tunneling dominates compared to fast diffusion in the nearly integrable regime for a non-convex Hamiltonian, as well as present a new kind of dynamical tunneling. PMID:27497557

  13. Dynamical tunneling versus fast diffusion for a non-convex Hamiltonian

    NASA Astrophysics Data System (ADS)

    Pittman, S. M.; Tannenbaum, E.; Heller, E. J.

    2016-08-01

    This paper attempts to resolve the issue of the nature of the 0.01-0.1 cm-1 peak splittings observed in high-resolution IR spectra of polyatomic molecules. One hypothesis is that these splittings are caused by dynamical tunneling, a quantum-mechanical phenomenon whereby energy flows between two disconnected regions of phase-space across dynamical barriers. However, a competing classical mechanism for energy flow is Arnol'd diffusion, which connects different regions of phase-space by a resonance network known as the Arnol'd web. The speed of diffusion is bounded by the Nekhoroshev theorem, which guarantees stability on exponentially long time scales if the Hamiltonian is steep. Here we consider a non-convex Hamiltonian that contains the characteristics of a molecular Hamiltonian, but does not satisfy the Nekhoroshev theorem. The diffusion along the Arnol'd web is expected to be fast for a non-convex Hamiltonian. While fast diffusion is an unlikely competitor for longtime energy flow in molecules, we show how dynamical tunneling dominates compared to fast diffusion in the nearly integrable regime for a non-convex Hamiltonian, as well as present a new kind of dynamical tunneling.

  14. Diffusion in a soft confining environment: Dynamic effects of thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Palmieri, Benoit; Safran, Samuel

    2013-03-01

    A dynamical model of a soft, thermally fluctuating two-dimensional tube is used to study the effect of thermal fluctuations of a confining environment on diffusive transport. The tube fluctuations in both space and time are driven by Brownian motion and suppressed by surface tension and the rigidity of the surrounding environment. The dynamical fluctuations modify the concentration profile boundary condition at the tube surface. They decrease the diffusive transport rate through the tube for two important cases: uniform tube fluctuations (wave vector, q = 0 mode) for finite tube lengths and fluctuations of any wave vector for infinitely long tubes.

  15. Diffusion in a soft confining environment: Dynamic effects of thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Palmieri, Benoit; Safran, Samuel A.

    2012-09-01

    A dynamical model of a soft, thermally fluctuating two-dimensional tube is used to study the effect of thermal fluctuations of a confining environment on diffusive transport. The tube fluctuations in both space and time are driven by Brownian motion and suppressed by surface tension and the rigidity of the surrounding environment. The dynamical fluctuations modify the concentration profile boundary condition at the tube surface. They decrease the diffusive transport rate through the tube for two important cases: uniform tube fluctuations (wave vector, q=0 mode) for finite tube lengths and fluctuations of any wave vector for infinitely long tubes.

  16. Anomalous diffusion in folding dynamics of minimalist protein landscape.

    PubMed

    Matsunaga, Yasuhiro; Li, Chun-Biu; Komatsuzaki, Tamiki

    2007-12-01

    A novel method is proposed to quantify collectivity at different space and time scales in multiscale dynamics of proteins. This is based on the combination of the principal component (PC) and the concept recently developed for multiscale dynamical systems called the finite size Lyapunov exponent. The method can differentiate the well-known apparent correlation along the low-indexed PCs in multidimensional Brownian systems from the correlated motion inherent to the system. As an illustration, we apply the method to a model protein of 46 amino beads with three different types of residues. We show how the motion of the model protein changes depending on the space scales and the choices of degrees of freedom. In particular, anomalous superdiffusion is revealed along the low-indexed PC in the unfolded state. The implication of superdiffusion in the process of folding is also discussed. PMID:18233416

  17. Emerging dynamics in neuronal networks of diffusively coupled hard oscillators.

    PubMed

    Ponta, L; Lanza, V; Bonnin, M; Corinto, F

    2011-06-01

    Oscillatory networks are a special class of neural networks where each neuron exhibits time periodic behavior. They represent bio-inspired architectures which can be exploited to model biological processes such as the binding problem and selective attention. In this paper we investigate the dynamics of networks whose neurons are hard oscillators, namely they exhibit the coexistence of different stable attractors. We consider a constant external stimulus applied to each neuron, which influences the neuron's own natural frequency. We show that, due to the interaction between different kinds of attractors, as well as between attractors and repellors, new interesting dynamics arises, in the form of synchronous oscillations of various amplitudes. We also show that neurons subject to different stimuli are able to synchronize if their couplings are strong enough. PMID:21411276

  18. Dynamical features of reaction-diffusion fronts in fractals.

    PubMed

    Méndez, Vicenç; Campos, Daniel; Fort, Joaquim

    2004-01-01

    The speed of front propagation in fractals is studied by using (i) the reduction of the reaction-transport equation into a Hamilton-Jacobi equation and (ii) the local-equilibrium approach. Different equations proposed for describing transport in fractal media, together with logistic reaction kinetics, are considered. Finally, we analyze the main features of wave fronts resulting from this dynamic process, i.e., why they are accelerated and what is the exact form of this acceleration. PMID:14995742

  19. Comparison of Diffusion Coefficients of Aryl Carbonyls and Aryl Alcohols in Hydroxylic Solvents. Evidence that the Diffusion of Ketyl Radicals in Hydrogen-Bonding Solvents is Not Anomalous?

    SciTech Connect

    Autrey, S Thomas ); Camaioni, Donald M. ); Kandanarachchi, Pramod H.; Franz, James A. )

    2000-12-01

    The diffusion coefficients of a benzyl-, sec-phenethyl-, and diphenylmethyl alcohol and the corresponding aryl carbonyls (benzaldehyde, acetophenone and benzophenone) were measured by Taylor's dispersion method in both ethyl and isopropyl alcohol. The experimental values are compared to published transient grating measurements of the corresponding aryl ketyl radicals (benzyl-, sec-phenethyl-, and diphenylmethyl-ketyl radical). In general, the diffusion coefficient of the aryl alcohols and the corresponding aryl ketyl radicals are equivalent within experimental error. This work shows that the diffusion of ketyl radicals is not anomalously slow and that aryl alcohols are significantly better models than the corresponding aryl ketones for analyzing the diffusion of aryl ketyl radicals in both ethyl and isopropyl alcohol. Empirical estimates of the diffusion coefficients of aryl alcohols using the Spernol-Wirtz and Wilke-Chang modifications to the Stokes-Einstein diffusion equation do not adequately account for the interactions between the aryl ketyl radicals or aryl alcohols with the hydroxylic solvents ethyl and isopropyl alcohol. The excellent agreement between the experimental diffusion coefficients of the aryl alcohols and the corresponding ketyl radicals show that the transient grating method can provide accurate estimates for the diffusion coefficients of transient species. This is especially important when a stable model is not available, for example the pyranyl radical.

  20. Dynamics of water at the interface in reverse micelles: measurements of spectral diffusion with two-dimensional infrared vibrational echoes.

    PubMed

    Fenn, Emily E; Wong, Daryl B; Giammanco, Chiara H; Fayer, M D

    2011-10-13

    Water dynamics inside of reverse micelles made from the surfactant Aerosol-OT (AOT) were investigated by observing spectral diffusion, orientational relaxation, and population relaxation using two-dimensional infrared (2D IR) vibrational echo spectroscopy and pump-probe experiments. The water pool sizes of the reverse micelles studied ranged in size from 5.8 to 1.7 nm in diameter. It is found that spectral diffusion, characterized by the frequency-frequency correlation function (FFCF), significantly changes as the water pool size decreases. For the larger reverse micelles (diameter 4.6 nm and larger), the 2D IR signal is composed of two spectral components: a signal from bulk-like core water, and a signal from water at the headgroup interface. Each of these signals (core water and interfacial water) is associated with a distinct FFCF. The FFCF of the interfacial water layer can be obtained using a modified center line slope (CLS) method that has been recently developed. The interfacial FFCFs for large reverse micelles have a single exponential decay (∼1.6 ps) to an offset plus a fast homogeneous component and are nearly identical for all large sizes. The observed ∼1.6 ps interfacial decay component is approximately the same as that found for bulk water and may reflect hydrogen bond rearrangement of bulk-like water molecules hydrogen bonded to the interfacial water molecules. The long time offset arises from dynamics that are too slow to be measured on the accessible experimental time scale. The influence of the chemical nature of the interface on spectral diffusion was explored by comparing data for water inside reverse micelles (5.8 nm water pool diameter) made from the surfactants AOT and Igepal CO-520. AOT has charged, sulfonate head groups, while Igepal CO-520 has neutral, hydroxyl head groups. It is found that spectral diffusion on the observable time scales is not overly sensitive to the chemical makeup of the interface. An intermediate-sized AOT reverse

  1. Dynamical Structure, Bonding, and Thermodynamics of the Superionic Sublattice in ∝-AgI

    SciTech Connect

    Wood, Brandon J.; Marzari, Nicola N.

    2006-10-17

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. We characterize the superionic phase transition and the lattice and electronic structures of the archetypal type-I superionic conductor ∝-AgI using extensive first-principles molecular dynamics calculations. We find that superionicity is signaled by a phase transition of the silver ions alone. In the superionic phase, the first silver shell surrounding an iodine displays a distinct dynamical structure that would escape a time-averaged characterization, and we capture this structure in a set of ordering rules. The electronic structure demonstrates a unique chemical signature of the weakest-bound silver in the first shell, which in turn is most likely to diffuse. Silver diffusion decreases upon melting, pointing to an unusual entropic contribution to the stability of the superionic phase.

  2. Dynamics of unbinding of cell adhesion molecules: transition from catch to slip bonds.

    PubMed

    Barsegov, V; Thirumalai, D

    2005-02-01

    The unbinding dynamics of complexes involving cell-adhesion molecules depends on the specific ligands. Atomic force microscopy measurements have shown that for the specific P-selectin-P-selectin glycoprotein ligand (sPSGL-1) the average bond lifetime t initially increases (catch bonds) at low (< or =10 pN) constant force, f, and decreases when f > 10 pN (slip bonds). In contrast, for the complex with G1 anti-P-selectin monoclonal antibody t monotonically decreases with f. To quantitatively map the energy landscape of such complexes we use a model that considers the possibility of redistribution of population from one force-free state to another force-stabilized bound state. The excellent agreement between theory and experiments allows us to extract energy landscape parameters by fitting the calculated curves to the lifetime measurements for both sPSGL-1 and G1. Surprisingly, the unbinding transition state for P-selectin-G1 complex is close (0.32 nm) to the bound state, implying that the interaction is brittle, i.e., once deformed, the complex fractures. In contrast, the unbinding transition state of the P-selectin-sPSGL-1 complex is far (approximately 1.5 nm) from the bound state, indicative of a compliant structure. Constant f energy landscape parameters are used to compute the distributions of unbinding times and unbinding forces as a function of the loading rate, rf. For a given rf, unbinding of sPSGL-1 occurs over a broader range of f with the most probable f being an order of magnitude less than for G1. The theory for cell adhesion complexes can be used to predict the outcomes of unbinding of other protein-protein complexes. PMID:15701706

  3. Dynamics of unbinding of cell adhesion molecules: Transition from catch to slip bonds

    PubMed Central

    Barsegov, V.; Thirumalai, D.

    2005-01-01

    The unbinding dynamics of complexes involving cell-adhesion molecules depends on the specific ligands. Atomic force microscopy measurements have shown that for the specific P-selectin–P-selectin glycoprotein ligand (sPSGL-1) the average bond lifetime 〈t〉 initially increases (catch bonds) at low (≤10 pN) constant force, f, and decreases when f > 10 pN (slip bonds). In contrast, for the complex with G1 anti-P-selectin monoclonal antibody 〈t〉 monotonically decreases with f. To quantitatively map the energy landscape of such complexes we use a model that considers the possibility of redistribution of population from one force-free state to another force-stabilized bound state. The excellent agreement between theory and experiments allows us to extract energy landscape parameters by fitting the calculated curves to the lifetime measurements for both sPSGL-1 and G1. Surprisingly, the unbinding transition state for P-selectin–G1 complex is close (0.32 nm) to the bound state, implying that the interaction is brittle, i.e., once deformed, the complex fractures. In contrast, the unbinding transition state of the P-selectin–sPSGL-1 complex is far (≈ 1.5 nm) from the bound state, indicative of a compliant structure. Constant f energy landscape parameters are used to compute the distributions of unbinding times and unbinding forces as a function of the loading rate, rf. For a given rf, unbinding of sPSGL-1 occurs over a broader range of f with the most probable f being an order of magnitude less than for G1. The theory for cell adhesion complexes can be used to predict the outcomes of unbinding of other protein–protein complexes. PMID:15701706

  4. Effects of temperature, salt concentration, and the protonation state on the dynamics and hydrogen-bond interactions of polyelectrolyte multilayers on lipid membranes.

    PubMed

    Lee, Hwankyu

    2016-03-01

    Polyelectrolyte multilayers, which consist of poly-l-lysines (PLL) and hyaluronic acids (HA), are simulated on phospholipid membranes with explicit water at different temperatures, salt concentrations, and protonation states of PLL that correspond to pH 7 or higher. PLL and HA polymers, which are initially sequentially deposited as three HA/PLL bilayers above the membrane, partially intermix with each other within 300 ns, and with a significant amount of water at almost half of its bulk density. With reduced protonation of amine groups of PLL, the polymers diffuse faster, especially at higher temperatures, and for 0%-protonation, disperse into the water, due to the many fewer hydrogen bonds between PLL and HA polymers. When PLL is protonated, the addition of salt ions weakens electrostatic interactions between PLL and HA and, at 0.5 M NaCl, eventually reduces the number of hydrogen bonds, which in experiments leads to hole formation inside the PLL/HA film. Multilayers are stabilized by hydrogen bonds, primarily between charged groups and to a lesser extent between uncharged groups. PLL and HA also electrostatically interact with lipid head groups of membranes which reduces the lateral mobility of membrane lipids, to an extent dependent on the salt concentration. These findings help quantitate the effects of temperature, salt, and the protonation state (or pH) on the stability and dynamics of multilayers and membranes, and show trends that compare favorably with the experimental observations of the swelling of multilayers. PMID:26871977

  5. Colorful surface architectures with three different types of dynamic covalent bonds: integration of anthocyanins, tritylium ions and flavins.

    PubMed

    Zhang, Kang-Da; Sakai, Naomi; Matile, Stefan

    2015-08-28

    Although they combine the best of covalent and non-covalent bonds, dynamic covalent bonds are usually not used together. Building on pioneering examples for functional systems with two orthogonal dynamic covalent bonds, we herein elaborate on multicomponent surface architectures that operate with three different types of dynamic covalent bonds. Disulfide exchange under basic conditions is used to grow single π stacks directly on oxide surfaces, hydrazone exchange under acidic conditions to add a second string or stack, and boronic-ester exchange under neutral conditions to build the third one. In this study, we show that this synthetic approach to complex systems provides access to emergent properties, as exemplified with ordered stacks of anthocyanins, pyrocatchol violet and riboflavins. The integration of anthocyanins, the central component of the pigments of plant flowers, is interesting to protect the blue flavylium cation against deprotonation, deplanarization and degradation. The integration of pyrocatchol violet is of interest to stabilize the blue, disfavored tritylium cation. The red riboflavin stacks are attractive because they generate high photocurrent. These colorful examples hint at the potential of synthetic methods that use three different types of dynamic covalent bonds in concert to build complex systems with emergent properties. PMID:26179486

  6. Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy

    NASA Astrophysics Data System (ADS)

    Zunino, Luciano; Bariviera, Aurelio F.; Guercio, M. Belén; Martinez, Lisana B.; Rosso, Osvaldo A.

    2016-08-01

    In this paper the permutation min-entropy has been implemented to unveil the presence of temporal structures in the daily values of European corporate bond indices from April 2001 to August 2015. More precisely, the informational efficiency evolution of the prices of fifteen sectorial indices has been carefully studied by estimating this information-theory-derived symbolic tool over a sliding time window. Such a dynamical analysis makes possible to obtain relevant conclusions about the effect that the 2008 credit crisis has had on the different European corporate bond sectors. It is found that the informational efficiency of some sectors, namely banks, financial services, insurance, and basic resources, has been strongly reduced due to the financial crisis whereas another set of sectors, integrated by chemicals, automobiles, media, energy, construction, industrial goods & services, technology, and telecommunications has only suffered a transitory loss of efficiency. Last but not least, the food & beverage, healthcare, and utilities sectors show a behavior close to a random walk practically along all the period of analysis, confirming a remarkable immunity against the 2008 financial crisis.

  7. Ab initio path-integral molecular dynamics and the quantum nature of hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Yexin, Feng; Ji, Chen; Xin-Zheng, Li; Enge, Wang

    2016-01-01

    The hydrogen bond (HB) is an important type of intermolecular interaction, which is generally weak, ubiquitous, and essential to life on earth. The small mass of hydrogen means that many properties of HBs are quantum mechanical in nature. In recent years, because of the development of computer simulation methods and computational power, the influence of nuclear quantum effects (NQEs) on the structural and energetic properties of some hydrogen bonded systems has been intensively studied. Here, we present a review of these studies by focussing on the explanation of the principles underlying the simulation methods, i.e., the ab initio path-integral molecular dynamics. Its extension in combination with the thermodynamic integration method for the calculation of free energies will also be introduced. We use two examples to show how this influence of NQEs in realistic systems is simulated in practice. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275008, 91021007, and 10974012) and the China Postdoctoral Science Foundation (Grant No. 2014M550005).

  8. Quantum dynamics of polyatomic dissociative chemisorption on transition metal surfaces: mode specificity and bond selectivity.

    PubMed

    Jiang, Bin; Yang, Minghui; Xie, Daiqian; Guo, Hua

    2016-06-27

    Dissociative chemisorption is the initial and often rate-limiting step in many heterogeneous processes. As a result, an in-depth understanding of the reaction dynamics of such processes is of great importance for the establishment of a predictive model of heterogeneous catalysis. Overwhelming experimental evidence has suggested that these processes have a non-statistical nature and excitations in various reactant modes have a significant impact on reactivity. A comprehensive characterization of the reaction dynamics requires a quantum mechanical treatment on a global potential energy surface. In this review, we summarize recent progress in constructing high-dimensional potential energy surfaces for polyatomic molecules interacting with transition metal surfaces based on the plane-wave density functional theory and in quantum dynamical studies of dissociative chemisorption on these potential energy surfaces. A special focus is placed on the mode specificity and bond selectivity in these gas-surface collisional processes, and their rationalization in terms of the recently proposed Sudden Vector Projection model. PMID:26100606

  9. Molecular dynamics simulation of surface segregation, diffusion and reaction phenomena in equiatomic Ni-Al systems

    NASA Astrophysics Data System (ADS)

    Evteev, A. V.; Levchenko, E. V.; Belova, I. V.; Murch, G. E.

    2012-12-01

    The molecular dynamics method is used to provide fundamental insights into surface segregation, bulk diffusion and alloying reaction phenomena in equiatomic Ni-Al systems. This knowledge can serve as a guide for the search and development of economic routes for controlling microstructure and properties of the intermetallic compound NiAl. This paper gives an overview of recent molecular dynamics simulations in the area along with other theoretical calculations and experimental measurements.

  10. Effect of solvent on proton location and dynamic behavior in short intramolecular hydrogen bonds studied by molecular dynamics simulations and NMR experiments

    NASA Astrophysics Data System (ADS)

    Mori, Yukie; Masuda, Yuichi

    2015-09-01

    Hydrogen phthalate anion has a short strong O-H-O hydrogen bond (H-bond). According to previous experimental studies, the H-bond is asymmetric and two tautomers are interconverted in aqueous solutions. In the present study, the effects of polar solvents on the H-bond in a zwitterionic hydrogen phthalate derivative 1 were investigated by quantum mechanics/molecular mechanics molecular dynamics (MD) simulations. The analyses of the trajectories for the methanol solution showed that the H-bonding proton tends to be located closer to the carboxylate group that forms fewer intermolecular H-bonds, than to the other carboxylate group and that the intramolecular proton transfer in 1 is triggered by the breakage and/or formation of an intermolecular H-bond. The enol form of dibenzoylmethane (2) also has a short H-bond, and the OH bond is reported to be rather long (>1.1 Å) in the crystal. In the present study, the effects of the solvent on the H-bond in 2 were investigated by molecular orbital (MO) calculations, MD simulations and nuclear magnetic resonance (NMR) spectroscopy. Density functional theory (DFT) calculations for 2 in vacuum indicated that the barrier height for the intramolecular proton transfer is almost the same as the zero-point energy of the vibrational ground state, resulting in broad distribution of the proton density along the H-bond, owing to the nuclear quantum effect. The OH distances were determined in CCl4, acetonitrile, and dimethylsulfoxide solutions from the magnetic dipolar interactions between the 17O and 1H nuclei monitoring the nuclear magnetic relaxation times of 1H. The experimental results indicated that the H-bond geometry of 2 is influenced by the interactions with dimethylsulfoxide, suggesting the formation of a bifurcated H-bond, which was supported by the DFT calculations. The MD simulations for the methanol solution of 2 showed that the asymmetry of the OH distance is correlated with the asymmetry in the electrostatic field of the

  11. How Local and Average Particle Diffusivities of Inhomogeneous Fluids Depend on Microscopic Dynamics.

    PubMed

    Bollinger, Jonathan A; Jain, Avni; Truskett, Thomas M

    2015-07-23

    Computer simulations and a stochastic Fokker-Planck equation based approach are used to compare the single-particle diffusion coefficients of equilibrium hard-sphere fluids exhibiting identical inhomogeneous static structure and governed by either Brownian (i.e., overdamped Langevin) or Newtonian microscopic dynamics. The physics of inhomogeneity is explored via the imposition of one-dimensional sinusoidal density profiles of different wavelengths and amplitudes. When imposed density variations are small in magnitude for distances on the scale of a particle diameter, bulk-like average correlations between local structure and mobility are observed. In contrast, when density variations are significant on that length scale, qualitatively different structure-mobility correlations emerge that are sensitive to the governing microscopic dynamics. Correspondingly, a previously proposed scaling between long-time diffusivities for bulk isotropic fluids of particles exhibiting Brownian versus Newtonian dynamics [Pond et al. Soft Matter 2011, 7, 9859-9862] cannot be generalized to describe the position-dependent behaviors of strongly inhomogeneous fluids. While average diffusivities in the inhomogeneous and homogeneous directions are coupled, their qualitative dependencies on inhomogeneity wavelength are sensitive to the details of the microscopic dynamics. Nonetheless, average diffusivities of the inhomogeneous fluids can be approximately predicted for either type of dynamics based on knowledge of bulk isotropic fluid behavior and how inhomogeneity modifies the distribution of available volume. Analogous predictions for average diffusivities of experimental, inhomogeneous colloidal dispersions (based on known bulk behavior) suggest that they will exhibit qualitatively different trends than those predicted by models governed by overdamped Langevin dynamics that do not account for hydrodynamic interactions. PMID:25350488

  12. Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy.

    PubMed

    Carbone, Fabrizio; Kwon, Oh-Hoon; Zewail, Ahmed H

    2009-07-10

    Chemical bonding dynamics are fundamental to the understanding of properties and behavior of materials and molecules. Here, we demonstrate the potential of time-resolved, femtosecond electron energy loss spectroscopy (EELS) for mapping electronic structural changes in the course of nuclear motions. For graphite, it is found that changes of milli-electron volts in the energy range of up to 50 electron volts reveal the compression and expansion of layers on the subpicometer scale (for surface and bulk atoms). These nonequilibrium structural features are correlated with the direction of change from sp2 [two-dimensional (2D) graphene] to sp3 (3D-diamond) electronic hybridization, and the results are compared with theoretical charge-density calculations. The reported femtosecond time resolution of four-dimensional (4D) electron microscopy represents an advance of 10 orders of magnitude over that of conventional EELS methods. PMID:19589997

  13. Persistence in a Random Bond Ising Model of Socio-Econo Dynamics

    NASA Astrophysics Data System (ADS)

    Jain, S.; Yamano, T.

    We study the persistence phenomenon in a socio-econo dynamics model using computer simulations at a finite temperature on hypercubic lattices in dimensions up to five. The model includes a "social" local field which contains the magnetization at time t. The nearest neighbour quenched interactions are drawn from a binary distribution which is a function of the bond concentration, p. The decay of the persistence probability in the model depends on both the spatial dimension and p. We find no evidence of "blocking" in this model. We also discuss the implications of our results for possible applications in the social and economic fields. It is suggested that the absence, or otherwise, of blocking could be used as a criterion to decide on the validity of a given model in different scenarios.

  14. Reversible CO2 Capture by Conjugated Ionic Liquids through Dynamic Covalent Carbon-Oxygen Bonds.

    PubMed

    Pan, Mingguang; Cao, Ningning; Lin, Wenjun; Luo, Xiaoyan; Chen, Kaihong; Che, Siying; Li, Haoran; Wang, Congmin

    2016-09-01

    The strong chemisorption of CO2 is always accompanied by a high absorption enthalpy, and traditional methods to reduce the absorption enthalpy lead to decreased CO2 capacities. Through the introduction of a large π-conjugated structure into the anion, a dual-tuning approach for the improvement of CO2 capture by anion-functionalized ionic liquids (ILs) resulted in a high capacity of up to 0.96 molCO2  mol-1IL and excellent reversibility. The increased capacity and improved desorption were supported by quantum chemical calculations, spectroscopic investigations, and thermogravimetric analysis. The increased capacity may be a result of the strengthened dynamic covalent bonds in these π-electron-conjugated structures through anion aggregation upon the uptake of CO2 , and the improved desorption originates from the charge dispersion of interaction sites through the large π-electron delocalization. These results provide important insights into effective strategies for CO2 capture. PMID:27458723

  15. Photoinduced charge-transfer dynamics simulations in noncovalently bonded molecular aggregates.

    PubMed

    Medrano, Carlos R; Oviedo, M Belén; Sánchez, Cristián G

    2016-06-01

    The rational design of new materials as prototype systems for organic solar cells remains challenging. Perylene diimide has emerged as a promising material to replace fullerene derivatives because of its synthetic flexibility, leading to the manipulation of their optical properties. As a result of their fused aromatic core that favors π-π stacking interactions, the aggregation of these molecules can reach highly ordered nanostructures as one-dimensional nanofibers, with a fast photoinduced charge transfer mechanism. In this article, we present an atomistic description of the photoexcited exciton dynamics in noncovalently bonded perylene diimides by time integration of the electron density in the presence of external time varying electric fields. We show that our approach is able to capture and explain the physics that underlies the charge transport mechanism through perylene diimide aggregates. PMID:27189740

  16. Hierarchical modeling of diffusive transport through nanochannels by coupling molecular dynamics with finite element method

    NASA Astrophysics Data System (ADS)

    Ziemys, A.; Kojic, M.; Milosevic, M.; Kojic, N.; Hussain, F.; Ferrari, M.; Grattoni, A.

    2011-06-01

    We present a successful hierarchical modeling approach which accounts for interface effects on diffusivity, ignored in classical continuum theories. A molecular dynamics derived diffusivity scaling scheme is incorporated into a finite element method to model transport through a nanochannel. In a 5 nm nanochannel, the approach predicts 2.2 times slower mass release than predicted by Fick's law by comparing time spent to release 90% of mass. The scheme was validated by predicting experimental glucose diffusion through a nanofluidic membrane with a correlation coefficient of 0.999. Comparison with experiments through a nanofluidic membrane showed interface effects to be crucial. We show robustness of our discrete continuum model in addressing complex diffusion phenomena in biomedical and engineering applications by providing flexible hierarchical coupling of molecular scale effects and preserving computational finite element method speed.

  17. A new method of optimal design for a two-dimensional diffuser by using dynamic programming

    NASA Technical Reports Server (NTRS)

    Gu, Chuangang; Zhang, Moujin; Chen, XI; Miao, Yongmiao

    1991-01-01

    A new method for predicting the optimal velocity distribution on the wall of a two dimensional diffuser is presented. The method uses dynamic programming to solve the optimal control problem with inequality constraints of state variables. The physical model of optimization is designed to prevent the separation of the boundary layer while approaching the maximum pressure ratio in a diffuser of a specified length. The computational results are in fair agreement with the experimental ones. Optimal velocity distribution on a diffuser wall is said to occur when the flow decelerates quickly at first and then smoothly, while the flow is near separation, but always protected from it. The optimal velocity distribution can be used to design the contour of the diffuser.

  18. Shape optimization of the diffuser blade of an axial blood pump by computational fluid dynamics.

    PubMed

    Zhu, Lailai; Zhang, Xiwen; Yao, Zhaohui

    2010-03-01

    Computational fluid dynamics (CFD) has been a viable and effective way to predict hydraulic performance, flow field, and shear stress distribution within a blood pump. We developed an axial blood pump with CFD and carried out a CFD-based shape optimization of the diffuser blade to enhance pressure output and diminish backflow in the impeller-diffuser connecting region at a fixed design point. Our optimization combined a computer-aided design package, a mesh generator, and a CFD solver in an automation environment with process integration and optimization software. A genetic optimization algorithm was employed to find the pareto-optimal designs from which we could make trade-off decisions. Finally, a set of representative designs was analyzed and compared on the basis of the energy equation. The role of the inlet angle of the diffuser blade was analyzed, accompanied by its relationship with pressure output and backflow in the impeller-diffuser connecting region. PMID:20447042

  19. Accelerated molecular dynamics and equation-free methods for simulating diffusion in solids.

    SciTech Connect

    Deng, Jie; Zimmerman, Jonathan A.; Thompson, Aidan Patrick; Brown, William Michael; Plimpton, Steven James; Zhou, Xiao Wang; Wagner, Gregory John; Erickson, Lindsay Crowl

    2011-09-01

    Many of the most important and hardest-to-solve problems related to the synthesis, performance, and aging of materials involve diffusion through the material or along surfaces and interfaces. These diffusion processes are driven by motions at the atomic scale, but traditional atomistic simulation methods such as molecular dynamics are limited to very short timescales on the order of the atomic vibration period (less than a picosecond), while macroscale diffusion takes place over timescales many orders of magnitude larger. We have completed an LDRD project with the goal of developing and implementing new simulation tools to overcome this timescale problem. In particular, we have focused on two main classes of methods: accelerated molecular dynamics methods that seek to extend the timescale attainable in atomistic simulations, and so-called 'equation-free' methods that combine a fine scale atomistic description of a system with a slower, coarse scale description in order to project the system forward over long times.

  20. Macromolecular Crowding Studies of Amino Acids Using NMR Diffusion Measurements and Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Virk, Amninder; Stait-Gardner, Timothy; Willis, Scott; Torres, Allan; Price, William

    2015-02-01

    Molecular crowding occurs when the total concentration of macromolecular species in a solution is so high that a considerable proportion of the volume is physically occupied and therefore not accessible to other molecules. This results in significant changes in the solution properties of the molecules in such systems. Macromolecular crowding is ubiquitous in biological systems due to the generally high intracellular protein concentrations. The major hindrance to understanding crowding is the lack of direct comparison of experimental data with theoretical or simulated data. Self-diffusion is sensitive to changes in the molecular weight and shape of the diffusing species, and the available diffusion space (i.e., diffusive obstruction). Consequently, diffusion measurements are a direct means for probing crowded systems including the self-association of molecules. In this work, nuclear magnetic resonance measurements of the self-diffusion of four amino acids (glycine, alanine, valine and phenylalanine) up to their solubility limit in water were compared directly with molecular dynamics simulations. The experimental data were then analyzed using various models of aggregation and obstruction. Both experimental and simulated data revealed that the diffusion of both water and the amino acids were sensitive to the amino acid concentration. The direct comparison of the simulated and experimental data afforded greater insights into the aggregation and obstruction properties of each amino acid.

  1. Computational analysis of the roles of biochemical reactions in anomalous diffusion dynamics

    NASA Astrophysics Data System (ADS)

    Naruemon, Rueangkham; Charin, Modchang

    2016-04-01

    Most biochemical processes in cells are usually modeled by reaction–diffusion (RD) equations. In these RD models, the diffusive process is assumed to be Gaussian. However, a growing number of studies have noted that intracellular diffusion is anomalous at some or all times, which may result from a crowded environment and chemical kinetics. This work aims to computationally study the effects of chemical reactions on the diffusive dynamics of RD systems by using both stochastic and deterministic algorithms. Numerical method to estimate the mean-square displacement (MSD) from a deterministic algorithm is also investigated. Our computational results show that anomalous diffusion can be solely due to chemical reactions. The chemical reactions alone can cause anomalous sub-diffusion in the RD system at some or all times. The time-dependent anomalous diffusion exponent is found to depend on many parameters, including chemical reaction rates, reaction orders, and chemical concentrations. Project supported by the Thailand Research Fund and Mahidol University (Grant No. TRG5880157), the Thailand Center of Excellence in Physics (ThEP), CHE, Thailand, and the Development Promotion of Science and Technology.

  2. Diffusion Coefficients from Molecular Dynamics Simulations in Binary and Ternary Mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Schnell, Sondre K.; Simon, Jean-Marc; Krüger, Peter; Bedeaux, Dick; Kjelstrup, Signe; Bardow, André; Vlugt, Thijs J. H.

    2013-07-01

    Multicomponent diffusion in liquids is ubiquitous in (bio)chemical processes. It has gained considerable and increasing interest as it is often the rate limiting step in a process. In this paper, we review methods for calculating diffusion coefficients from molecular simulation and predictive engineering models. The main achievements of our research during the past years can be summarized as follows: (1) we introduced a consistent method for computing Fick diffusion coefficients using equilibrium molecular dynamics simulations; (2) we developed a multicomponent Darken equation for the description of the concentration dependence of Maxwell-Stefan diffusivities. In the case of infinite dilution, the multicomponent Darken equation provides an expression for [InlineEquation not available: see fulltext.] which can be used to parametrize the generalized Vignes equation; and (3) a predictive model for self-diffusivities was proposed for the parametrization of the multicomponent Darken equation. This equation accurately describes the concentration dependence of self-diffusivities in weakly associating systems. With these methods, a sound framework for the prediction of mutual diffusion in liquids is achieved.

  3. A comparison of molecular dynamics and diffuse interface model predictions of Lennard-Jones fluid evaporation

    SciTech Connect

    Barbante, Paolo; Frezzotti, Aldo; Gibelli, Livio

    2014-12-09

    The unsteady evaporation of a thin planar liquid film is studied by molecular dynamics simulations of Lennard-Jones fluid. The obtained results are compared with the predictions of a diffuse interface model in which capillary Korteweg contributions are added to hydrodynamic equations, in order to obtain a unified description of the liquid bulk, liquid-vapor interface and vapor region. Particular care has been taken in constructing a diffuse interface model matching the thermodynamic and transport properties of the Lennard-Jones fluid. The comparison of diffuse interface model and molecular dynamics results shows that, although good agreement is obtained in equilibrium conditions, remarkable deviations of diffuse interface model predictions from the reference molecular dynamics results are observed in the simulation of liquid film evaporation. It is also observed that molecular dynamics results are in good agreement with preliminary results obtained from a composite model which describes the liquid film by a standard hydrodynamic model and the vapor by the Boltzmann equation. The two mathematical model models are connected by kinetic boundary conditions assuming unit evaporation coefficient.

  4. Investigation of cation self-diffusion mechanisms in UO2±x using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Boyarchenkov, A. S.; Potashnikov, S. I.; Nekrasov, K. A.; Kupryazhkin, A. Ya.

    2013-11-01

    This article is devoted to investigation of cation self-diffusion mechanisms, taking place in UO2, UO2+x, and UO2-x crystals simulated under periodic (PBC) and isolated (IBC) boundary conditions using the method of molecular dynamics in the approximation of rigid ions and pair interactions. It is shown that under PBC the cations diffuse via an exchange mechanism (with the formation of Frenkel defects) with activation energy of 15-22 eV, while under IBC there is competition between the exchange and vacancy (via Schottky defects) diffusion mechanisms, which give the effective activation energy of 11-13 eV near the melting temperature of the simulated UO2.00 nanocrystals. Vacancy diffusion with lower activation energy of 6-7 eV was dominant in the non-stoichiometric crystals UO2.10, UO2.15 and UO1.85. Observations showed that a cation vacancy is accompanied by different number of anion vacancies depending on the deviation from stoichiometry: no vacancies in UO2.15, single vacancy in UO2.00 and four vacancies in UO1.85. The corresponding law of mass action formulas derived within the Lidiard-Matzke model allowed explaining the obtained activation energies and predicting a change in the activation energy within the temperature range of the superionic phase transition. The diffusion of cations on the surface of nanocrystals had activation energy of 3.1-3.6 eV. Obtain reliable cation diffusion coefficients for the uranium dioxide system without artificial defects (i.e. diffusion via intrinsic defect formation), using high-performance graphics processors and the original methodology, successfully tested on the diffusion of anions [17,4]. Identify and characterize the cation diffusion mechanisms occurring in the model crystals using visual observations and diffusing ions trajectory analysis. Study the effect of boundary conditions on the diffusion of cations, expecting that PBC will allow examining of the exchange diffusion mechanism, and that under IBC Schottky defects

  5. Dynamic of diffuse CO2 emission from Decepcion volcano, Antartica

    NASA Astrophysics Data System (ADS)

    Nolasco, D.; Padron, E.; Hernandez Perez, P. A.; Christian, F.; Kusakabe, M.; Wakita, H.

    2010-12-01

    Deception Island is a volcanic island located at the South Shetland Island off the Antartic Peninsula. It constitutes a back-arc stratovolcano with a basal diameter of ~ 30 Km, the volcano rises ~ 1400 m from the seafloor to the maximum height, Mt. Pond of 540 m above sea level and over half the island is covered by glaciers. This island has a horse-shoe shape with a large flooded caldera with a diameter of about 6x10 km and a maximum depth of 190 m. This caldera is open to the sea through a narrow channel of 500 m at Neptunes Bellows. Deception Island shows the most recent active volcanism, evidence of several eruptions since the late 18th century, and well-known eruptions in 1967, 1969 and 1970 caused serious damage to local scientific stations. The aim of this study is to estimate the CO2 emissions from the Deception volcano bay. In-situ measurements of CO2 efflux from the surface environment of Deception Bay were performed by means of a portable Non Dispersive Infrared spectrophotometer (NDIR) model LICOR Li800, following the accumulation chamber method coupled with a floating device. A total of 244 CO2 efflux measurements were performed in Deception bay in November and December, 2009. CO2 efflux values ranged from non-detectable up to 119,9 g m-2 d-1. To quantify the total CO2 emission from Deception Bay, a CO2 efflux map was constructed using sequential Gaussian simulations (sGs). Most of the studied area showed background levels of CO2 efflux (~4 g m-2 d-1), while peak levels (>20 g m-2 d-1) were mainly identified inside the Fumarole Bay, Telefon Bay and Pendulum Cove areas. The total CO2 emission from Deception Bay was estimated about 191 ± 9 t/d To study the temporal evolution of the CO2 efflux values at Fumarole bay, a two month time series of CO2 diffuse emission values was recorded by an automatic geochemical station, which was installed on December 8, 2009, which measured also soil temperature and humidity and meteorological parameters. CO2 values

  6. Fixation, transient landscape, and diffusion dilemma in stochastic evolutionary game dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Da; Qian, Hong

    2011-09-01

    Agent-based stochastic models for finite populations have recently received much attention in the game theory of evolutionary dynamics. Both the ultimate fixation and the pre-fixation transient behavior are important to a full understanding of the dynamics. In this paper, we study the transient dynamics of the well-mixed Moran process through constructing a landscape function. It is shown that the landscape playing a central theoretical “device” that integrates several lines of inquiries: the stable behavior of the replicator dynamics, the long-time fixation, and continuous diffusion approximation associated with asymptotically large population. Several issues relating to the transient dynamics are discussed: (i) multiple time scales phenomenon associated with intra- and inter-attractoral dynamics; (ii) discontinuous transition in stochastically stationary process akin to Maxwell construction in equilibrium statistical physics; and (iii) the dilemma diffusion approximation facing as a continuous approximation of the discrete evolutionary dynamics. It is found that rare events with exponentially small probabilities, corresponding to the uphill movements and barrier crossing in the landscape with multiple wells that are made possible by strong nonlinear dynamics, plays an important role in understanding the origin of the complexity in evolutionary, nonlinear biological systems.

  7. Effects of Heterogeneous Diffuse Fibrosis on Arrhythmia Dynamics and Mechanism

    PubMed Central

    Kazbanov, Ivan V.; ten Tusscher, Kirsten H. W. J.; Panfilov, Alexander V.

    2016-01-01

    Myocardial fibrosis is an important risk factor for cardiac arrhythmias. Previous experimental and numerical studies have shown that the texture and spatial distribution of fibrosis may play an important role in arrhythmia onset. Here, we investigate how spatial heterogeneity of fibrosis affects arrhythmia onset using numerical methods. We generate various tissue textures that differ by the mean amount of fibrosis, the degree of heterogeneity and the characteristic size of heterogeneity. We study the onset of arrhythmias using a burst pacing protocol. We confirm that spatial heterogeneity of fibrosis increases the probability of arrhythmia induction. This effect is more pronounced with the increase of both the spatial size and the degree of heterogeneity. The induced arrhythmias have a regular structure with the period being mostly determined by the maximal local fibrosis level. We perform ablations of the induced fibrillatory patterns to classify their type. We show that in fibrotic tissue fibrillation is usually of the mother rotor type but becomes of the multiple wavelet type with increase in tissue size. Overall, we conclude that the most important factor determining the formation and dynamics of arrhythmia in heterogeneous fibrotic tissue is the value of maximal local fibrosis. PMID:26861111

  8. Effects of Heterogeneous Diffuse Fibrosis on Arrhythmia Dynamics and Mechanism.

    PubMed

    Kazbanov, Ivan V; ten Tusscher, Kirsten H W J; Panfilov, Alexander V

    2016-01-01

    Myocardial fibrosis is an important risk factor for cardiac arrhythmias. Previous experimental and numerical studies have shown that the texture and spatial distribution of fibrosis may play an important role in arrhythmia onset. Here, we investigate how spatial heterogeneity of fibrosis affects arrhythmia onset using numerical methods. We generate various tissue textures that differ by the mean amount of fibrosis, the degree of heterogeneity and the characteristic size of heterogeneity. We study the onset of arrhythmias using a burst pacing protocol. We confirm that spatial heterogeneity of fibrosis increases the probability of arrhythmia induction. This effect is more pronounced with the increase of both the spatial size and the degree of heterogeneity. The induced arrhythmias have a regular structure with the period being mostly determined by the maximal local fibrosis level. We perform ablations of the induced fibrillatory patterns to classify their type. We show that in fibrotic tissue fibrillation is usually of the mother rotor type but becomes of the multiple wavelet type with increase in tissue size. Overall, we conclude that the most important factor determining the formation and dynamics of arrhythmia in heterogeneous fibrotic tissue is the value of maximal local fibrosis. PMID:26861111

  9. Transient Liquid Phase Diffusion Bonding of 6061Al-15 wt.% SiC p Composite Using Mixed Cu-Ag Powder Interlayer

    NASA Astrophysics Data System (ADS)

    Roy, Pallab; Pal, Tapan Kumar; Maity, Joydeep

    2016-06-01

    Microstructure and shear strength of transient liquid phase diffusion bonded (560 °C, 0.2 MPa) 6061Al-15 wt.% SiCp extruded composite using a 50-µm-thick mixed Cu-Ag powder interlayer have been investigated. During isothermal solidification that took 2 h for completion, a ternary liquid phase formed due to diffusion of Cu and Ag in Al. Subsequent cooling formed a ternary phase mixture (α-Al + CuAl2 + Ag2Al) upon eutectic solidification. With mixed Cu-Ag powder interlayer, isothermal solidification was faster than for pure Al joints made using a 50-µm-thick Cu foil interlayer and for the composite joints made using a 50-µm-thick Cu foil/powder interlayer under similar conditions. The presence of brittle eutectic phase mixture (CuAl2 + Ag2Al) led to poor joint strength at short TLP bonding times. The mixture disappeared upon isothermal solidification with a 2-h hold yielding improved joint strength even with solidification shrinkage in the joint. Increased holding time (6 h) erased shrinkage via solid state diffusion and yielded the highest joint strength (87 MPa) and fair joint efficiency (83%).

  10. Segmental dynamic heterogeneity of short-chain grafted-poly(dimethylsiloxane) by 1H spin-diffusion NMR

    NASA Astrophysics Data System (ADS)

    Bertmer, Marko; Demco, Dan E.; Wang, Mingfei; Melian, Claudiu; Marcean-Chelcea, Ramona I.; Fechete, Radu; Baias, Maria; Blümich, Bernhard

    2006-11-01

    Segmental dynamic heterogeneity of short-chain grafted poly(dimethylsiloxane) (PDMS) on pyrogenic silica was investigated using 1H NMR spin-diffusion. A double-quantum dipolar filter was employed for selection of the interface (rigid) region. One-dimensional spin-diffusion equations were solved numerically for a space distribution of spin diffusivity D( x) of the mobile PDMS chains. The degree of heterogeneity can be quantified by the parameters of Gaussian and exponential diffusivity distribution functions which yield similar diffusivities. The rigid and mobile domain sizes and spin diffusivities were correlated with the PDMS chain length, the temperature, and 1H residual dipolar couplings.

  11. Hydrogen bond perturbation in hen egg white lysozyme by external electromagnetic fields: A nonequilibrium molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Solomentsev, Gleb Y.; English, Niall J.; Mooney, Damian A.

    2010-12-01

    Nonequilibrium molecular dynamics simulations of a charge-neutral mutant of hen egg white lysozyme have been performed at 300 K and 1 bar in the presence of external microwave fields (2.45 to 100 GHz) of an rms electric field intensity of 0.05 V Å-1. A systematic study was carried out of the distributions of persistence times and energies of each intraprotein hydrogen bond in between breakage and reformation, in addition to overall persistence over 20 ns simulations, vis-à-vis equilibrium, zero-field conditions. It was found that localized translational motion for formally charged residues led to greater disruption of associated hydrogen bonds, although induced rotational motion of strongly dipolar residues also led to a degree of hydrogen bond perturbation. These effects were most apparent in the solvent exposed exterior of hen egg white lysozyme, in which the intraprotein hydrogen bonds tend to be weaker.

  12. Molecular dynamics simulation of diffusion coefficients and structural properties of some alkylbenzenes in supercritical carbon dioxide at infinite dilution

    SciTech Connect

    Wang, Jinyang; Zhong, Haimin; Qiu, Wenda; Chen, Liuping; Feng, Huajie

    2014-03-14

    The binary infinite dilute diffusion coefficients, D{sub 12}{sup ∞}, of some alkylbenzenes (Ph-C{sub n}, from Ph-H to Ph-C{sub 12}) from 313 K to 333 K at 15 MPa in supercritical carbon dioxide (scCO{sub 2}) have been studied by molecular dynamics (MD) simulation. The MD values agree well with the experimental ones, which indicate MD simulation technique is a powerful way to predict and obtain diffusion coefficients of solutes in supercritical fluids. Besides, the local structures of Ph-C{sub n}/CO{sub 2} fluids are further investigated by calculating radial distribution functions and coordination numbers. It qualitatively convinces that the first solvation shell of Ph-C{sub n} in scCO{sub 2} is significantly influenced by the structure of Ph-C{sub n} solute. Meanwhile, the mean end-to-end distance, the mean radius of gyration and dihedral angle distribution are calculated to gain an insight into the structural properties of Ph-C{sub n} in scCO{sub 2}. The abnormal trends of radial distribution functions and coordination numbers can be reasonably explained in term of molecular flexibility. Moreover, the computed results of dihedral angle clarify that flexibility of long-chain Ph-C{sub n} is the result of internal rotation of C-C single bond (σ{sub c-c}) in alkyl chain. It is interesting that compared with n-alkane, because of the existence of benzene ring, the flexibility of alkyl chain in Ph-C{sub n} with same carbon atom number is significantly reduced, as a result, the carbon chain dependence of diffusion behaviors for long-chain n-alkane (n ≥ 5) and long-chain Ph-C{sub n} (n ≥ 4) in scCO{sub 2} are different.

  13. Molecular dynamics simulation of diffusion coefficients and structural properties of some alkylbenzenes in supercritical carbon dioxide at infinite dilution.

    PubMed

    Wang, Jinyang; Zhong, Haimin; Feng, Huajie; Qiu, Wenda; Chen, Liuping

    2014-03-14

    The binary infinite dilute diffusion coefficients, D₁₂(∞), of some alkylbenzenes (Ph-C(n), from Ph-H to Ph-C12) from 313 K to 333 K at 15 MPa in supercritical carbon dioxide (scCO2) have been studied by molecular dynamics (MD) simulation. The MD values agree well with the experimental ones, which indicate MD simulation technique is a powerful way to predict and obtain diffusion coefficients of solutes in supercritical fluids. Besides, the local structures of Ph-C(n)/CO2 fluids are further investigated by calculating radial distribution functions and coordination numbers. It qualitatively convinces that the first solvation shell of Ph-C(n) in scCO2 is significantly influenced by the structure of Ph-C(n) solute. Meanwhile, the mean end-to-end distance, the mean radius of gyration and dihedral angle distribution are calculated to gain an insight into the structural properties of Ph-C(n) in scCO2. The abnormal trends of radial distribution functions and coordination numbers can be reasonably explained in term of molecular flexibility. Moreover, the computed results of dihedral angle clarify that flexibility of long-chain Ph-C(n) is the result of internal rotation of C-C single bond (σ(c-c)) in alkyl chain. It is interesting that compared with n-alkane, because of the existence of benzene ring, the flexibility of alkyl chain in Ph-C(n) with same carbon atom number is significantly reduced, as a result, the carbon chain dependence of diffusion behaviors for long-chain n-alkane (n ≥ 5) and long-chain Ph-C(n) (n ≥ 4) in scCO2 are different. PMID:24628176

  14. Ballistic-diffusive approximation for the thermal dynamics of metallic nanoparticles in nanocomposite materials

    SciTech Connect

    Shirdel-Havar, A. H. Masoudian Saadabad, R.

    2015-03-21

    Based on ballistic-diffusive approximation, a method is presented to model heat transfer in nanocomposites containing metal nanoparticles. This method provides analytical expression for the temperature dynamics of metallic nanoparticles embedded in a dielectric medium. In this study, nanoparticles are considered as spherical shells, so that Boltzmann equation is solved using ballistic-diffusive approximation to calculate the electron and lattice thermal dynamics in gold nanoparticles, while thermal exchange between the particles is taken into account. The model was used to investigate the influence of particle size and metal concentration of the medium on the electron and lattice thermal dynamics. It is shown that these two parameters are crucial in determining the nanocomposite thermal behavior. Our results showed that the heat transfer rate from nanoparticles to the matrix decreases as the nanoparticle size increases. On the other hand, increasing the metal concentration of the medium can also decrease the heat transfer rate.

  15. Proton dynamics in the hydrogen bonds of 4-amino-3,5-dihalogenobenzoic acid

    NASA Astrophysics Data System (ADS)

    Asaji, Tetsuo; Ueda, Kouhei; Oguni, Masaharu

    2015-08-01

    On the polycrystalline sample of 4-amino-3,5-dihalogenobenzoic acid, 4-NH2-3,5-X2C6H2COOH, which has a symmetric dimer structure in the crystal, the proton tunneling in the hydrogen bonds has been investigated by NQR and NMR spin-lattice relaxation times T1 measurements. Two 35Cl NQR lines of the X = Cl derivative show the existence of two crystallographically inequivalent chlorine atoms in the high-temperature phase, in consistency with the reported crystal structure. Below 138 K, each splits into a doublet indicating the symmetry breaking of the benzoic acid dimer. The proton dynamics was analyzed by a coherent and incoherent tunneling models, for the high- and low-temperature phases, respectively. The temperature dependence of the correlation time of proton translation was estimated. As for the X = I derivative, the proton dynamics was discussed similarly by 1H NMR T1 data by assuming occurrence of a phase transition at low-temperature.

  16. Simulation of intramolecular hydrogen bond dynamics in manzamine A as a sensitive test for charge distribution quality.

    PubMed

    Shulga, Dmitry A; Osolodkin, Dmitry I; Palyulin, Vladimir A; Zefirov, Nikolay S

    2012-03-01

    Subtle balance of inter- and intramolecular hydrogen bond strength in aqueous solutions often governs the structure and dynamics of molecular species used as potential drugs and in supramolecular applications. In silico molecular dynamics study of water solution of manzamine A has been performed with different atomic charges in order to investigate the influence of charge distribution choice on predicting qualitative and quantitative features of the simulated systems. Various well known charge schemes (MK-ESP, RESP, Mulliken, AMI-BCC, Gasteiger-Hückel, Gasteiger-Marsili, MMFF94, and Dynamic Electronegativity Relaxation - DENR) led to qualitatively different pictures of dynamic behavior of the intramolecular hydrogen bond. The reported calculation framework represents a relatively rare case where differences in charge distributions lead to noticeable differences in simulated properties, thus providing a useful test case for force field and charge distribution development, provided high quality experiments are conducted to use as references. PMID:22545399

  17. Quantification of sampling uncertainty for molecular dynamics simulation: Time-dependent diffusion coefficient in simple fluids

    NASA Astrophysics Data System (ADS)

    Kim, Changho; Borodin, Oleg; Karniadakis, George Em

    2015-12-01

    We analyze two standard methods to compute the diffusion coefficient of a tracer particle in a medium from molecular dynamics (MD) simulation, the velocity autocorrelation function (VACF) method, and the mean-squared displacement (MSD) method. We show that they are equivalent in the sense that they provide the same mean values with the same level of statistical errors. We obtain analytic expressions for the level of the statistical errors present in the time-dependent diffusion coefficient as well as the VACF and the MSD. Under the assumption that the velocity of the tracer particle is a Gaussian process, all results are expressed in terms of the VACF. Hence, the standard errors of all relevant quantities are computable once the VACF is obtained from MD simulation. By using analytic models described by the Langevin equations driven by Gaussian white noise and Poissonian white shot noise, we verify our theoretical error estimates and discuss the non-Gaussianity effect in the error estimates when the Gaussian process approximation does not hold exactly. For validation, we perform MD simulations for the self-diffusion of a Lennard-Jones fluid and the diffusion of a large and massive colloid particle suspended in the fluid. Our theoretical framework is also applicable to mesoscopic simulations, e.g., Langevin dynamics and dissipative particle dynamics.

  18. Molecular dynamics simulation of nanoscale surface diffusion of heterogeneous adatoms clusters

    NASA Astrophysics Data System (ADS)

    Muhammad, Imran; Fayyaz, Hussain; Muhammad, Rashid; Muhammad, Ismail; Hafeez, Ullah; Yongqing, Cai; M Arshad, Javid; Ejaz, Ahmad; S, A. Ahmad

    2016-07-01

    Molecular dynamics simulation employing the embedded atom method potential is utilized to investigate nanoscale surface diffusion mechanisms of binary heterogeneous adatoms clusters at 300 K, 500 K, and 700 K. Surface diffusion of heterogeneous adatoms clusters can be vital for the binary island growth on the surface and can be useful for the formation of alloy-based thin film surface through atomic exchange process. The results of the diffusion process show that at 300 K, the diffusion of small adatoms clusters shows hopping, sliding, and shear motion; whereas for large adatoms clusters (hexamer and above), the diffusion is negligible. At 500 K, small adatoms clusters, i.e., dimer, show almost all possible diffusion mechanisms including the atomic exchange process; however no such exchange is observed for adatoms clusters greater than dimer. At 700 K, the exchange mechanism dominates for all types of clusters, where Zr adatoms show maximum tendency and Ag adatoms show minimum or no tendency toward the exchange process. Separation and recombination of one or more adatoms are also observed at 500 K and 700 K. The Ag adatoms also occupy pop-up positions over the adatoms clusters for short intervals. At 700 K, the vacancies are also generated in the vicinity of the adatoms cluster, vacancy formation, filling, and shifting can be observed from the results.

  19. A simple non-chaotic map generating subdiffusive, diffusive, and superdiffusive dynamics.

    PubMed

    Salari, Lucia; Rondoni, Lamberto; Giberti, Claudio; Klages, Rainer

    2015-07-01

    Analytically tractable dynamical systems exhibiting a whole range of normal and anomalous deterministic diffusion are rare. Here, we introduce a simple non-chaotic model in terms of an interval exchange transformation suitably lifted onto the whole real line which preserves distances except at a countable set of points. This property, which leads to vanishing Lyapunov exponents, is designed to mimic diffusion in non-chaotic polygonal billiards that give rise to normal and anomalous diffusion in a fully deterministic setting. As these billiards are typically too complicated to be analyzed from first principles, simplified models are needed to identify the minimal ingredients generating the different transport regimes. For our model, which we call the slicer map, we calculate all its moments in position analytically under variation of a single control parameter. We show that the slicer map exhibits a transition from subdiffusion over normal diffusion to superdiffusion under parameter variation. Our results may help to understand the delicate parameter dependence of the type of diffusion generated by polygonal billiards. We argue that in different parameter regions the transport properties of our simple model match to different classes of known stochastic processes. This may shed light on difficulties to match diffusion in polygonal billiards to a single anomalous stochastic process. PMID:26232964

  20. Evaluation of ceramic and membrane diffusers under operating conditions with the dynamic offgas method.

    PubMed

    Libra, J A; Sahlmann, C; Schuchardt, A; Handschag, J; Wiesmann, U; Gnirss, R

    2005-01-01

    The aeration systems of two full-scale, activated-sludge basins were compared during a period of three years, under the same operating conditions, using dynamic offgas testing. Only the material of the diffuser was different (membrane versus ceramic-tube diffusers). The investigation has shown that, although the membrane diffusers have higher initial standard-oxygen-transfer efficiency (alphaSOTE) and standard-aeration efficiency (alphaSAE), these decreased over time, while the alphaSAE of the ceramic diffusers started lower, but increased slightly over the whole period. A cost comparison makes clear how important it is to evaluate the aeration system under process conditions. The operating costs were the dominant factor (approximately 10x higher than capital costs), and operating costs were approximately 20% higher for membrane versus ceramic diffusers. The poor performance of the membrane-tube diffusers under process conditions could be explained on the basis of the actual alphaAE values in the basin, not the standardized values. PMID:16274078

  1. An elemental mercury diffusion coefficient for natural waters determined by molecular dynamics simulation.

    PubMed

    Kuss, Joachim; Holzmann, Jörg; Ludwig, Ralf

    2009-05-01

    Mercury is a priority pollutant as its mobility between the hydrosphere and the atmosphere threatens the biosphere globally. The air-water gas transfer of elemental mercury (Hg0) is controlled by its diffusion through the water-side boundary layer and thus by its diffusion coefficient, D(Hg), the value of which, however, has not been established. Here, the diffusion of Hg0 in water was modeled by molecular dynamics (MD) simulation and the diffusion coefficient subsequently determined. Therefore the movement of either Hg(0) or xenon and 1000 model water molecules (TIP4P-Ew) were traced for time spans of 50 ns. The modeled D(Xe) of the monatomic noble gas agreed well with measured data; thus, MD simulation was assumed to be a reliable approach to determine D(Hg) for monatomic Hg(0) as well. Accordingly, Hg(0) diffusion was then simulated for freshwater and seawater, and the data were well-described by the equation of Eyring. The activation energies for the diffusion of Hg0 in freshwater was 17.0 kJ mol(-1) and in seawater 17.8 kJ mol(-1). The newly determined D(Hg) is clearly lower than the one previously used for an oceanic mercury budget. Thus, its incorporation into the model should lead to lower estimates of global ocean mercury emissions. PMID:19534132

  2. Coherent vibration and ultrafast dynamics upon bond formation in excited dimers of an Au(i) complex.

    PubMed

    Iwamura, Munetaka; Wakabayashi, Ryo; Maeba, Junichi; Nozaki, Koichi; Takeuchi, Satoshi; Tahara, Tahei

    2016-02-10

    Au-Au bond strengthening in photoexcited dimers of an Au(i) complex is captured in solution as oscillations of femtosecond absorption signals. The subsequent dynamics, when compared to the trimer's data, confirm that the bent-to-linear structural change of the trimer occurs in the first few picoseconds. PMID:26821585

  3. Rayleigh scattering correlation spectroscopy on diffusion dynamics of nanoparticles under intense laser irradiation

    NASA Astrophysics Data System (ADS)

    Hee, Ping-Yu; Uwada, Takayuki; Okano, Kazunori; Miura, Atsushi; Masuhara, Hiroshi

    2013-09-01

    Rayleigh scattering correlation microspectroscopy is developed and applied to study diffusion dynamics of some nanospheres in water. It was clearly found that the diffusion constant of gold nanoparticles decreased with increasing excitation laser power at the excitation wavelength of higher absorption cross section. This behavior was explained in terms of a coupling between laser trapping by the scattering excitation laser itself and laser heating of the particle. In the case of non-absorbing nanospheres such as silica and polystyrene, the excitation power dependence can be ascribed only to the laser trapping. Experimental setup is introduced, theoretical formulation is described, and future development of this measurement is considered.

  4. Non-diffusive spin dynamics in a two-dimensional electron gas

    SciTech Connect

    Weber, C.P.

    2010-04-28

    We describe measurements of spin dynamics in the two-dimensional electron gas in GaAs/GaAlAs quantum wells. Optical techniques, including transient spin-grating spectroscopy, are used to probe the relaxation rates of spin polarization waves in the wavevector range from zero to 6 x 10{sup 4} cm{sup -1}. We find that the spin polarization lifetime is maximal at nonzero wavevector, in contrast with expectation based on ordinary spin diffusion, but in quantitative agreement with recent theories that treat diffusion in the presence of spin-orbit coupling.

  5. Non-diffusive spin dynamics in a two-dimensional electrongas

    SciTech Connect

    Weber, Christopher P.; Orenstein, Joseph; Bernevig, B. Andrei; Zhang, Shou-Cheng; Stephens, Jason; Awschalom, David D.

    2006-12-12

    We describe measurements of spin dynamics in thetwo-dimensional electron gas in GaAs/GaAlAs quantum wells. Opticaltechniques, including transient spin-grating spectroscopy, are used toprobe the relaxation rates of spin polarization waves in the wavevectorrange from zero to 6E4 cm-1. We find that the spin polarization lifetimeis maximal at nonzero wavevector, in contrast with expectation based onordinary spin diffusion, but in quantitative agreement with recenttheories that treat diffusion in the presence of spin-orbitcoupling.

  6. Numerical Study of Buoyancy and Differential Diffusion Effects on the Structure and Dynamics of Triple Flames

    NASA Technical Reports Server (NTRS)

    Chen, J. -Y.; Echekki, T.

    1999-01-01

    Triple flames arise in a number of practical configurations where fuel and oxidizer are partially premixed, such as in the base of a lifted jet flame. Past experimental studies, theoretical analyses, and numerical modeling of triple flames suggested the potential role of triple flames in stabilizing turbulent flames and in promoting flame propagation. From recent numerical simulations of laminar triple flames, a strong influence of differential diffusion among species and heat on the triple flame structure has been gradually appreciated. This paper reports preliminary numerical results on the influence of gravity and differential diffusion effects on the structure and dynamics of triple flames with a one-step global irreversible chemistry model.

  7. Characterization of a transition in the transport dynamics of a diffusive sandpile by means of recurrence quantification analysis.

    PubMed

    Mier, J A; Sánchez, R; Newman, D E

    2016-08-01

    Recurrence quantification analysis (RQA) is used to characterize a dynamical transition that takes place in the diffusive sandpile. The transition happens when a combination of the drive strength, diffusivity, and overturning size exceeds a critical value. Above the transition, the self-similar transport dynamics associated to the classical (nondiffusive) sandpile is replaced by new transport dynamics dominated by near system-size, quasiperiodic avalanche events. The deterministic content of transport dynamics, as quantified by RQA, turns out to be quite different in both phases. The time series analyzed with RQA in this work correspond to local sand fluxes at different radial locations across the diffusive sandpile. PMID:27627267

  8. Dynamics of hydrogen-bonded liquids confined to mesopores: A dielectric and neutron spectroscopy study

    SciTech Connect

    Mel`nichenko, Y.B.; Schueller, J.; Richert, R.; Ewen, B.; Loong, C.

    1995-08-08

    In this paper we present and discuss experimental results on molecular mobility in propylene glycol and its three oligomers confined to the {similar_to}100 A pores of a controlled porous glass. The objective is to elucidate the finite size effects on the dynamics of hydrogen-bonded liquids of different molecular weights but identical chemical composition. The methods of dielectric and neutron spectroscopy have been employed to investigate both the low- and high-frequency features as a function of temperature. We find that all fluids in pores separate into two distinct liquid phases. (i) molecules physisorbed at the surface which exhibit a dramatic frustration of their mobility related to a substantial {ital positive} shift of the glass transition temperature {ital T}{sub {ital g}} by up to {Delta}{ital T}{sub {ital g}}{approx}+47 K; and (ii) relatively ``free`` molecules in the inner pore space subject to only moderate retardation of the {alpha} and normal mode relaxation and substantial broadening of the distribution of relaxation times. The shift in {ital T}{sub {ital g}} for the {alpha} process with {Delta}{ital T}{sub {ital g}}{approx}+5 K is maximal for the monomer liquid and gradually diminishes with increasing molecular weight or decreasing intermolecular hydrogen bonding. The inelastic neutron spectrum of confined propylene glycol shows the boson peak as expected in bulk strong and intermediate glass formers in the vicinity of {ital T}{sub {ital g}}. This effect can be attributed to the finite-size induced crossover from long wave vibrations characteristic of a continuous medium to localized vibrations in a confined geometry. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  9. Dielectric spectroscopy of a polymerizing liquid and the evolution of molecular dynamics with increase in the number of covalent bonds

    NASA Astrophysics Data System (ADS)

    Parthun, M. G.; Johari, G. P.

    1995-07-01

    Dielectric spectroscopy and calorimetry studies of a low viscosity, initially monomeric liquid undergoing spontaneous chemical reaction, to form a linear chain polymer while maintaining isothermal conditions, have been used to determine how the number of covalent bonds formed during the growth of a linear chain affects the dielectric permittivity, relaxation time, and the spectral shape. During this reaction, the static permittivity decreased and the relaxation time increased towards limiting values. As the number of covalent bonds increased towards the Avogadro number, the change in the complex permittivity as measured for a fixed frequency was phenomenologically similar to that observed on varying the frequency, although the exact formalisms in both cases differed. In both cases the relaxation function could be well described by a stretched exponential or sum of exponentials, with a width that decreased as the liquid's state changed from monomeric liquid to a fully reacted chain polymer. The observed increase in the relaxation time with the number of bonds formed seems consistent with the decrease in the configurational entropy or the number of accessible configurations available to the structure, under isothermal conditions. It decreases progressively more slowly as the number of covalent bonds in the structure increases. As this occurs, a second relaxation process at higher frequencies is revealed. The dielectric manifestation of the irreversible process of covalent bond formation is remarkably similar to that observed on supercooling a molecular or polymeric liquid. The study demonstrates how negative feedback between molecular diffusion and chemical reaction vitrifies a liquid isothermally.

  10. Role of the interfacial thermal barrier in the effective thermal diffusivity/conductivity of SiC-fiber-reinforced reaction-bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Bhatt, Hemanshu; Donaldson, Kimberly Y.; Hasselman, D. P. H.; Bhatt, R. T.

    1990-01-01

    Experimental thermal diffusivity data transverse to the fiber direction for composites composed of a reaction bonded silicon nitride matrix reinforced with uniaxially aligned carbon-coated silicon carbide fibers indicate the existence of a significant thermal barrier at the matrix-fiber interface. Calculations of the interfacial thermal conductances indicate that at 300 C and 1-atm N2, more than 90 percent of the heat conduction across the interface occurs by gaseous conduction. Good agreement is obtained between thermal conductance values for the oxidized composite at 1 atm calculated from the thermal conductivity of the N2 gas and those inferred from the data for the effective composite thermal conductivity.

  11. Chemical insight from density functional modeling of molecular adsorption: Tracking the bonding and diffusion of anthracene derivatives on Cu(111) with molecular orbitals

    NASA Astrophysics Data System (ADS)

    Wyrick, Jonathan; Einstein, T. L.; Bartels, Ludwig

    2015-03-01

    We present a method of analyzing the results of density functional modeling of molecular adsorption in terms of an analogue of molecular orbitals. This approach permits intuitive chemical insight into the adsorption process. Applied to a set of anthracene derivates (anthracene, 9,10-anthraquinone, 9,10-dithioanthracene, and 9,10-diselenonanthracene), we follow the electronic states of the molecules that are involved in the bonding process and correlate them to both the molecular adsorption geometry and the species' diffusive behavior. We additionally provide computational code to easily repeat this analysis on any system.

  12. Chemical insight from density functional modeling of molecular adsorption: Tracking the bonding and diffusion of anthracene derivatives on Cu(111) with molecular orbitals

    SciTech Connect

    Wyrick, Jonathan; Bartels, Ludwig; Einstein, T. L.

    2015-03-14

    We present a method of analyzing the results of density functional modeling of molecular adsorption in terms of an analogue of molecular orbitals. This approach permits intuitive chemical insight into the adsorption process. Applied to a set of anthracene derivates (anthracene, 9,10-anthraquinone, 9,10-dithioanthracene, and 9,10-diselenonanthracene), we follow the electronic states of the molecules that are involved in the bonding process and correlate them to both the molecular adsorption geometry and the species’ diffusive behavior. We additionally provide computational code to easily repeat this analysis on any system.

  13. Dynamical invariants in a non-Markovian quantum-state-diffusion equation

    NASA Astrophysics Data System (ADS)

    Luo, Da-Wei; Pyshkin, P. V.; Lam, Chi-Hang; Yu, Ting; Lin, Hai-Qing; You, J. Q.; Wu, Lian-Ao

    2015-12-01

    We find dynamical invariants for open quantum systems described by the non-Markovian quantum-state-diffusion (QSD) equation. In stark contrast to closed systems where the dynamical invariant can be identical to the system density operator, these dynamical invariants no longer share the equation of motion for the density operator. Moreover, the invariants obtained with a biorthonormal basis can be used to render an exact solution to the QSD equation and the corresponding non-Markovian dynamics without using master equations or numerical simulations. Significantly we show that we can apply these dynamical invariants to reverse engineering a Hamiltonian that is capable of driving the system to the target state, providing a different way to design control strategy for open quantum systems.

  14. On the Dynamics of Some Discretizations of Convection-Diffusion Equations

    NASA Technical Reports Server (NTRS)

    Sweby, Peter K.; Yee, H. C.; Rai, Man Mohan (Technical Monitor)

    1995-01-01

    Numerical discretizations of differential equations which model physical processes can possess dynamics quite different from that of the equations themselves. Recently the emphasis has been on the the dynamics of numerical discretizations for Ordinary Differential Equations (ODEs). For Partial Differential Equations (PDEs) using a method of lines approach the situation is more complex. First, the spatial discretisation may introduce dynamics not present in the original equations; second, the solution of the resulting system of ODEs is open to the modified dynamics of the ODE solver used. These two effects may interact in a complex manner. In this talk we present some results of our recent work on the dynamics of discretizations of convection-diffusion equations, including those produced using Total Variation Diminishing (TVD) schemes and adaptive grid techniques. A more general overview of the area may be found on our accompanying poster presentation.

  15. Role of interfacial carbon layer in the thermal diffusivity/conductivity of silicon carbide fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Hemanshu; Donaldson, Kimberly Y.; Hasselman, D. P. H.; Bhatt, Ramakrishna T.

    1992-01-01

    Experiments were carried out on samples of reaction-bonded silicon nitride uniaxially reinforced by SiC monofilaments with and without a 3-micron-thick carbon-rich coating. It is found that a combination of a carbon coatings on the fibers and an interfacial gap due to the thermal expansion mismatch in the composite can significantly (by a factor of 2) lower the effective thermal diffusivity in the direction transverse to the fiber. At atmospheric pressure, gaseous conduction across the interfacial gap makes a significant contribution to the heat transfer across the interface, indicated by significantly lower values of the effective thermal diffusivity under vacuum than in nitrogen or helium at atmospheric pressure.

  16. Hydrogen-bond vibrational and energetic dynamical properties in sI and sII clathrate hydrates and in ice Ih: Molecular dynamics insights.

    PubMed

    Chakraborty, Somendra Nath; English, Niall J

    2015-10-21

    Equilibrium molecular dynamics (MD) simulations have been performed on cubic (sI and sII) polymorphs of methane hydrate, and hexagonal ice (ice Ih), to study the dynamical properties of hydrogen-bond vibrations and hydrogen-bond self-energy. It was found that hydrogen-bond energies are greatest in magnitude in sI hydrates, followed by sII, and their energies are least in magnitude in ice Ih. This is consistent with recent MD-based findings on thermal conductivities for these various materials [N. J. English and J. S. Tse, Phys. Rev. Lett. 103, 015901 (2009)], in which the lower thermal conductivity of sI methane hydrate was rationalised in terms of more strained hydrogen-bond arrangements. Further, modes for vibration and energy-transfer via hydrogen bonds in sI hydrate were found to occur at higher frequencies vis-à-vis ice Ih and sII hydrate in both the water-librational and OH⋯H regions because of the more strained nature of hydrogen bonds therein. PMID:26493912

  17. Bond Formation and Bond Scission Dynamics in Polyatomic Molecules Revealed by Momentum Imaging Experiments and Electron Scattering Calculations

    NASA Astrophysics Data System (ADS)

    Slaughter, Daniel; Trevisan, Cynthia; Weyland, Marvin; Dorn, Alexander; Douguet, Nicolas; Orel, Ann; Adaniya, Hidehito; McCurdy, Bill; Belkacem, Ali; Rescigno, Tom

    2016-05-01

    We present combined experimental and theoretical studies of dissociative electron attachment (DEA) dynamics in methane and ammonia. DEA in each of these systems proceeds through electronic Feshbach resonances, where a valence electron is excited and captured with the incident electron in the lowest unoccupied orbital. In methane, one triply-degenerate resonance undergoes Jahn-Teller splitting through molecular distortions, leading to four observed final states, each having a 2-body and a 3-body dissociation with anionic products H- and CH2-and neutrals CH3, CH2, H2 or H. In ammonia, one resonance leads to H- + NH2 and NH2-+ H, the latter resulting from non-adiabatic charge transfer. A higher energy resonance leads directly to H- + NH2* and indirectly to NH2-+ H. We examine the dynamics of the transient anion in each of these processes. work supported by Chemical Sciences, Geosciences and Biosciences division of BES/DOE.

  18. Sub-diffusion and population dynamics of water confined in soft environments

    NASA Astrophysics Data System (ADS)

    Hanot, Samuel; Lyonnard, Sandrine; Mossa, Stefano

    2016-02-01

    We have studied by using molecular dynamics computer simulations the dynamics of water confined in ionic surfactant phases, ranging from well ordered lamellar structures to micelles at low and high water loading, respectively. We have analysed in depth the main dynamical features in terms of mean-squared displacements and intermediate scattering functions, and found clear evidence of sub-diffusive behaviour. We have identified water molecules lying at the charged interface with the hydrophobic confining matrix as the main factor responsible for this unusual feature, and given a comprehensive picture of dynamics based on a very precise analysis of lifetimes at the interface. We conclude by providing, for the first time to our knowledge, a unique framework for rationalizing the existence of important dynamical heterogeneities in fluids adsorbed in soft confining environments.We have studied by using molecular dynamics computer simulations the dynamics of water confined in ionic surfactant phases, ranging from well ordered lamellar structures to micelles at low and high water loading, respectively. We have analysed in depth the main dynamical features in terms of mean-squared displacements and intermediate scattering functions, and found clear evidence of sub-diffusive behaviour. We have identified water molecules lying at the charged interface with the hydrophobic confining matrix as the main factor responsible for this unusual feature, and given a comprehensive picture of dynamics based on a very precise analysis of lifetimes at the interface. We conclude by providing, for the first time to our knowledge, a unique framework for rationalizing the existence of important dynamical heterogeneities in fluids adsorbed in soft confining environments. Electronic supplementary information (ESI) available. See DOI: 10.1039/C5NR05853H

  19. Dynamics of supercooled water in nanotubes: cage correlation function and diffusion coefficient.

    PubMed

    Khademi, Mahdi; Kalia, Rajiv K; Sahimi, Muhammad

    2015-09-01

    Dynamics of low-temperature water in nanostructured materials is important to a variety of phenomena, ranging from transport in cement and asphaltene, to conformational dynamics of proteins in "crowded" cellular environments, survival of microorganisms at very low temperatures, and diffusion in nanogeoscience. Using silicon-carbide nanotubes as a prototype of nanostructured materials, extensive molecular dynamics simulations were carried out to study the cage correlation function C(t) and self-diffusivity D of supercooled water in the nanotubes. C(t), which measures changes in the atomic surroundings inside the nanotube, follows the Kohlrausch-Williams-Watts law, C(t)∼exp[-(t/τ)^{β}], where τ is a relaxation time and β is a topological exponent. For the temperature range 220Kdiffusivity manifests a transition around 230 K, very close to 228 K, the temperature at which a fragile-to-strong dynamic crossover is supposed to happen. Thus the results indicate that water does not freeze in the nanotube over the studied temperature range, and that the Stokes-Einstein relation breaks down. PMID:26465407

  20. Dynamics of supercooled water in nanotubes: Cage correlation function and diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Khademi, Mahdi; Kalia, Rajiv K.; Sahimi, Muhammad

    2015-09-01

    Dynamics of low-temperature water in nanostructured materials is important to a variety of phenomena, ranging from transport in cement and asphaltene, to conformational dynamics of proteins in "crowded" cellular environments, survival of microorganisms at very low temperatures, and diffusion in nanogeoscience. Using silicon-carbide nanotubes as a prototype of nanostructured materials, extensive molecular dynamics simulations were carried out to study the cage correlation function C (t ) and self-diffusivity D of supercooled water in the nanotubes. C (t ) , which measures changes in the atomic surroundings inside the nanotube, follows the Kohlrausch-Williams-Watts law, C (t ) ˜exp[-(t/τ ) β] , where τ is a relaxation time and β is a topological exponent. For the temperature range 220 Kdiffusivity manifests a transition around 230 K, very close to 228 K, the temperature at which a fragile-to-strong dynamic crossover is supposed to happen. Thus the results indicate that water does not freeze in the nanotube over the studied temperature range, and that the Stokes-Einstein relation breaks down.

  1. INTRODUCTION: Surface Dynamics, Phonons, Adsorbate Vibrations and Diffusion

    NASA Astrophysics Data System (ADS)

    Bruch, L. W.

    2004-07-01

    well infrared photodetectors (QWIPs) and resonant cavity-enhanced photodiodes (RCEPDs) based on dilute nitrides need to be investigated extensively. To date, most theoretical attention has been focused on understanding the band structure of the GaInAsN/GaAs system and on evaluating gain spectra and threshold conditions for 1.3 µm lasers. However, as our understanding of band structure and the effects of strain, defects, etc in dilute nitrides improves we can calculate the electrical and optical properties, including radiative and non-radiative recombination for the materials and structures of interest. The spontaneous and stimulated emission rates have already been calculated for GaInNAs at 1.3 µm by many authors, but extension to other dilute nitrides and other wavelength ranges still represents a major challenge. Many-body effects, including exchange-correlation effects, are essential for accurate models of gain spectra in lasers and optical amplifiers. The differential gain is a key parameter for laser modulation and remains an important subject of study as new materials and structures are explored. Similarly the differential refractive index and linewidth enhancement factor have strong influences on laser spectrum (chirp, linewidth), dynamics and noise, and these must also be studied theoretically. As regards to non-radiative recombination, in addition to recombination through defects, the Auger effect is of especial significance for wavelengths beyond 1 µm and is a worthy subject for theoretical study. The converse effect, impact ionization, is of key importance for avalanche photodiodes (APDs) and has yet to be evaluated for the dilute nitride materials. Inter-valence band absorption (IVBA) is of significance, as a possible cause of temperature sensitivity in lasers and this must be investigated theoretically in the dilute nitrides. Third-order non-linear optical coefficients should be calculated in order to assess the scope for all-optical signal processing

  2. Modified virtual internal bond model for concrete subjected to dynamic loading

    NASA Astrophysics Data System (ADS)

    Patil, Mayuri

    Concrete is often used as a primary material to build protective structures. There is a wide range of research work being performed to simulate the behavior of reinforced concrete under impact and blast loading. This behavior is studied from both material and structural points of view. The research study presented in this thesis focuses on material aspects of modeling. LS-DYNARTM is an effective software for modeling and finite element analysis of structural members. It allows the user to define the material through commercially available or user-defined constitutive material models. Each material model has a distinct set of parameters to define a material which is further assigned to elements and used for simulations. This research study presents a user defined material model called Modified Concrete Virtual Internal Bond Model (MC-VIB). The basic constitutive model of VIB assumes the body as a collection of randomly oriented material points interconnected by a network of internal bonds. The model was modified by several researchers for different purposes. This research presents the MC-VIB for concrete under dynamic loading and studies its implementation into LS-DYNARTM. The modifications include incorporation of shear behavior and accounting for the difference in behavior of concrete in tension and compression. This project includes the calibration of the model based on stress-strain behavior of single element and cylinder model of concrete. The parameters are based on concrete with a uniaxial compressive strength of 27.6 MPa (4 ksi). These numerical curves are compared to those obtained from conventionally used material models for concrete and standard curves obtained by accepted equations to check the accuracy of prediction. The material model available in LS-DYNARTM requires a number of input parameters to define concrete behavior. These properties are normally derived from actual tests performed on the concrete under consideration. Often the properties are

  3. Direct assessment of quantum nuclear effects on hydrogen bond strength by constrained-centroid ab initio path integral molecular dynamics.

    PubMed

    Walker, Brent; Michaelides, Angelos

    2010-11-01

    The impact of quantum nuclear effects on hydrogen (H-) bond strength has been inferred in earlier work from bond lengths obtained from path integral molecular dynamics (PIMD) simulations. To obtain a direct quantitative assessment of such effects, we use constrained-centroid PIMD simulations to calculate the free energy changes upon breaking the H-bonds in dimers of HF and water. Comparing ab initio simulations performed using PIMD and classical nucleus molecular dynamics (MD), we find smaller dissociation free energies with the PIMD method. Specifically, at 50 K, the H-bond in (HF)(2) is about 30% weaker when quantum nuclear effects are included, while that in (H(2)O)(2) is about 15% weaker. In a complementary set of simulations, we compare unconstrained PIMD and classical nucleus MD simulations to assess the influence of quantum nuclei on the structures of these systems. We find increased heavy atom distances, indicating weakening of the H-bond consistent with that observed by direct calculation of the free energies of dissociation. PMID:21054031

  4. Some applications of nonlinear diffusion to processing of dynamic evolution images

    SciTech Connect

    Goltsov, Alexey N.; Nikishov, Sergey A.

    1997-05-15

    Model nonlinear diffusion equation with the most simple Landau-Ginzburg free energy functional was applied to locate boundaries between meaningful regions of low-level images. The method is oriented to processing images of objects that are a result of dynamic evolution: images of different organs and tissues obtained by radiography and NMR methods, electron microscope images of morphogenesis fields, etc. In the methods developed by us, parameters of the nonlinear diffusion model are chosen on the basis of the preliminary treatment of the images. The parameters of the Landau-Ginzburg free energy functional are extracted from the structure factor of the images. Owing to such a choice of the model parameters, the image to be processed is located in the vicinity of the steady-state of the diffusion equation. The suggested method allows one to separate distinct structures having specific space characteristics from the whole image. The method was applied to processing X-ray images of the lung.

  5. Dynamic response of a carbon nanotube-based rotary nano device with different carbon-hydrogen bonding layout

    NASA Astrophysics Data System (ADS)

    Yin, Hang; Cai, Kun; Wan, Jing; Gao, Zhaoliang; Chen, Zhen

    2016-03-01

    In a nano rotational transmission system (RTS) which consists of a single walled carbon nanotube (SWCNT) as the motor and a coaxially arranged double walled carbon nanotube (DWCNT) as a bearing, the interaction between the motor and the rotor in bearing, which has great effects on the response of the RTS, is determined by their adjacent edges. Using molecular dynamics (MD) simulation, the interaction is analyzed when the adjacent edges have different carbon-hydrogen (Csbnd H) bonding layouts. In the computational models, the rotor in bearing and the motor with a specific input rotational speed are made from the same armchair SWCNT. Simulation results demonstrate that a perfect rotational transmission could happen when the motor and rotor have the same Csbnd H bonding layout on their adjacent ends. If only half or less of the carbon atoms on the adjacent ends are bonded with hydrogen atoms, the strong attraction between the lower speed (100 GHz) motor and rotor leads to a synchronous rotational transmission. If only the motor or the rotor has Csbnd H bonds on their adjacent ends, no rotational transmission happens due to weak interaction between the bonded hydrogen atoms on one end with the sp1 bonded carbon atoms on the other end.

  6. Trojan resonant dynamics, stability, and chaotic diffusion, for parameters relevant to exoplanetary systems

    NASA Astrophysics Data System (ADS)

    Páez, Rocío Isabel; Efthymiopoulos, Christos

    2015-02-01

    The possibility that giant extrasolar planets could have small Trojan co-orbital companions has been examined in the literature from both viewpoints of the origin and dynamical stability of such a configuration. Here we aim to investigate the dynamics of hypothetical small Trojan exoplanets in domains of secondary resonances embedded within the tadpole domain of motion. To this end, we consider the limit of a massless Trojan companion of a giant planet. Without other planets, this is a case of the elliptic restricted three body problem (ERTBP). The presence of additional planets (hereafter referred to as the restricted multi-planet problem, RMPP) induces new direct and indirect secular effects on the dynamics of the Trojan body. The paper contains a theoretical and a numerical part. In the theoretical part, we develop a Hamiltonian formalism in action-angle variables, which allows us to treat in a unified way resonant dynamics and secular effects on the Trojan body in both the ERTBP or the RMPP. In both cases, our formalism leads to a decomposition of the Hamiltonian in two parts, . , called the basic model, describes resonant dynamics in the short-period (epicyclic) and synodic (libration) degrees of freedom, while contains only terms depending trigonometrically on slow (secular) angles. is formally identical in the ERTBP and the RMPP, apart from a re-definition of some angular variables. An important physical consequence of this analysis is that the slow chaotic diffusion along resonances proceeds in both the ERTBP and the RMPP by a qualitatively similar dynamical mechanism. We found that this is best approximated by the paradigm of `modulational diffusion'. In the paper's numerical part, we then focus on the ERTBP in order to make a detailed numerical demonstration of the chaotic diffusion process along resonances. Using color stability maps, we first provide a survey of the resonant web for characteristic mass parameter values of the primary, in which the

  7. Sub-diffusion and trapped dynamics of neutral and charged probes in DNA-protein coacervates

    NASA Astrophysics Data System (ADS)

    Arfin, Najmul; Yadav, Avinash Chand; Bohidar, H. B.

    2013-11-01

    The physical mechanism leading to the formation of large intermolecular DNA-protein complexes has been studied. Our study aims to explain the occurrence of fast coacervation dynamics at the charge neutralization point, followed by the appearance of smaller complexes and slower coacervation dynamics as the complex experiences overcharging. Furthermore, the electrostatic potential and probe mobility was investigated to mimic the transport of DNA / DNA-protein complex in a DNA-protein complex coacervate medium [N. Arfin and H. B. Bohidar, J. Phys. Chem. B 116, 13192 (2012)] by assigning neutral, negative, or positive charge to the probe particle. The mobility of the neutral probe was maximal at low matrix concentrations and showed random walk behavior, while its mobility ceased at the jamming concentration of c = 0.6, showing sub-diffusion and trapped dynamics. The positively charged probe showed sub-diffusive random walk followed by trapped dynamics, while the negatively charged probe showed trapping with occasional hopping dynamics at much lower concentrations. Sub-diffusion of the probe was observed in all cases under consideration, where the electrostatic interaction was used exclusively as the dominant force involved in the dynamics. For neutral and positive probes, the mean square displacement ⟨R2⟩ exhibits a scaling with time as ⟨R2⟩ ˜ tα, distinguishing random walk and trapped dynamics at α = 0.64 ± 0.04 at c = 0.12 and c = 0.6, respectively. In addition, the same scaling factors with the exponent β = 0.64 ± 0.04 can be used to distinguish random walk and trapped dynamics for the neutral and positive probes using the relation between the number of distinct sites visited by the probe, S(t), which follows the scaling, S(t) ˜ tβ/ln (t). Our results established the occurrence of a hierarchy of diffusion dynamics experienced by a probe in a dense medium that is either charged or neutral.

  8. Sub-diffusion and trapped dynamics of neutral and charged probes in DNA-protein coacervates

    SciTech Connect

    Arfin, Najmul; Yadav, Avinash Chand; Bohidar, H. B.

    2013-11-15

    The physical mechanism leading to the formation of large intermolecular DNA-protein complexes has been studied. Our study aims to explain the occurrence of fast coacervation dynamics at the charge neutralization point, followed by the appearance of smaller complexes and slower coacervation dynamics as the complex experiences overcharging. Furthermore, the electrostatic potential and probe mobility was investigated to mimic the transport of DNA / DNA-protein complex in a DNA-protein complex coacervate medium [N. Arfin and H. B. Bohidar, J. Phys. Chem. B 116, 13192 (2012)] by assigning neutral, negative, or positive charge to the probe particle. The mobility of the neutral probe was maximal at low matrix concentrations and showed random walk behavior, while its mobility ceased at the jamming concentration of c = 0.6, showing sub-diffusion and trapped dynamics. The positively charged probe showed sub-diffusive random walk followed by trapped dynamics, while the negatively charged probe showed trapping with occasional hopping dynamics at much lower concentrations. Sub-diffusion of the probe was observed in all cases under consideration, where the electrostatic interaction was used exclusively as the dominant force involved in the dynamics. For neutral and positive probes, the mean square displacement 〈R{sup 2}〉 exhibits a scaling with time as 〈R{sup 2}〉 ∼ t{sup α}, distinguishing random walk and trapped dynamics at α = 0.64 ± 0.04 at c = 0.12 and c = 0.6, respectively. In addition, the same scaling factors with the exponent β = 0.64 ± 0.04 can be used to distinguish random walk and trapped dynamics for the neutral and positive probes using the relation between the number of distinct sites visited by the probe, S(t), which follows the scaling, S(t) ∼ t{sup β}/ln (t). Our results established the occurrence of a hierarchy of diffusion dynamics experienced by a probe in a dense medium that is either charged or neutral.

  9. Diffusion-assisted selective dynamical recoupling: A new approach to measure background gradients in magnetic resonance

    SciTech Connect

    Álvarez, Gonzalo A.; Shemesh, Noam; Frydman, Lucio

    2014-02-28

    Dynamical decoupling, a generalization of the original NMR spin-echo sequence, is becoming increasingly relevant as a tool for reducing decoherence in quantum systems. Such sequences apply non-equidistant refocusing pulses for optimizing the coupling between systems, and environmental fluctuations characterized by a given noise spectrum. One such sequence, dubbed Selective Dynamical Recoupling (SDR) [P. E. S. Smith, G. Bensky, G. A. Álvarez, G. Kurizki, and L. Frydman, Proc. Natl. Acad. Sci. 109, 5958 (2012)], allows one to coherently reintroduce diffusion decoherence effects driven by fluctuations arising from restricted molecular diffusion [G. A. Álvarez, N. Shemesh, and L. Frydman, Phys. Rev. Lett. 111, 080404 (2013)]. The fully-refocused, constant-time, and constant-number-of-pulses nature of SDR also allows one to filter out “intrinsic” T{sub 1} and T{sub 2} weightings, as well as pulse errors acting as additional sources of decoherence. This article explores such features when the fluctuations are now driven by unrestricted molecular diffusion. In particular, we show that diffusion-driven SDR can be exploited to investigate the decoherence arising from the frequency fluctuations imposed by internal gradients. As a result, SDR presents a unique way of probing and characterizing these internal magnetic fields, given an a priori known free diffusion coefficient. This has important implications in studies of structured systems, including porous media and live tissues, where the internal gradients may serve as fingerprints for the system's composition or structure. The principles of this method, along with full analytical solutions for the unrestricted diffusion-driven modulation of the SDR signal, are presented. The potential of this approach is demonstrated with the generation of a novel source of MRI contrast, based on the background gradients active in an ex vivo mouse brain. Additional features and limitations of this new method are discussed.

  10. Diffusion-assisted selective dynamical recoupling: A new approach to measure background gradients in magnetic resonance

    NASA Astrophysics Data System (ADS)

    Álvarez, Gonzalo A.; Shemesh, Noam; Frydman, Lucio

    2014-02-01

    Dynamical decoupling, a generalization of the original NMR spin-echo sequence, is becoming increasingly relevant as a tool for reducing decoherence in quantum systems. Such sequences apply non-equidistant refocusing pulses for optimizing the coupling between systems, and environmental fluctuations characterized by a given noise spectrum. One such sequence, dubbed Selective Dynamical Recoupling (SDR) [P. E. S. Smith, G. Bensky, G. A. Álvarez, G. Kurizki, and L. Frydman, Proc. Natl. Acad. Sci. 109, 5958 (2012)], allows one to coherently reintroduce diffusion decoherence effects driven by fluctuations arising from restricted molecular diffusion [G. A. Álvarez, N. Shemesh, and L. Frydman, Phys. Rev. Lett. 111, 080404 (2013)]. The fully-refocused, constant-time, and constant-number-of-pulses nature of SDR also allows one to filter out "intrinsic" T1 and T2 weightings, as well as pulse errors acting as additional sources of decoherence. This article explores such features when the fluctuations are now driven by unrestricted molecular diffusion. In particular, we show that diffusion-driven SDR can be exploited to investigate the decoherence arising from the frequency fluctuations imposed by internal gradients. As a result, SDR presents a unique way of probing and characterizing these internal magnetic fields, given an a priori known free diffusion coefficient. This has important implications in studies of structured systems, including porous media and live tissues, where the internal gradients may serve as fingerprints for the system's composition or structure. The principles of this method, along with full analytical solutions for the unrestricted diffusion-driven modulation of the SDR signal, are presented. The potential of this approach is demonstrated with the generation of a novel source of MRI contrast, based on the background gradients active in an ex vivo mouse brain. Additional features and limitations of this new method are discussed.

  11. Mathematical model of diffusion-limited gas bubble dynamics in unstirred tissue with finite volume

    NASA Technical Reports Server (NTRS)

    Srinivasan, R. Srini; Gerth, Wayne A.; Powell, Michael R.

    2002-01-01

    Models of gas bubble dynamics for studying decompression sickness have been developed by considering the bubble to be immersed in an extravascular tissue with diffusion-limited gas exchange between the bubble and the surrounding unstirred tissue. In previous versions of this two-region model, the tissue volume must be theoretically infinite, which renders the model inapplicable to analysis of bubble growth in a finite-sized tissue. We herein present a new two-region model that is applicable to problems involving finite tissue volumes. By introducing radial deviations to gas tension in the diffusion region surrounding the bubble, the concentration gradient can be zero at a finite distance from the bubble, thus limiting the tissue volume that participates in bubble-tissue gas exchange. It is shown that these deviations account for the effects of heterogeneous perfusion on gas bubble dynamics, and are required for the tissue volume to be finite. The bubble growth results from a difference between the bubble gas pressure and an average gas tension in the surrounding diffusion region that explicitly depends on gas uptake and release by the bubble. For any given decompression, the diffusion region volume must stay above a certain minimum in order to sustain bubble growth.

  12. A network of discrete events for the representation and analysis of diffusion dynamics

    NASA Astrophysics Data System (ADS)

    Pintus, Alberto M.; Pazzona, Federico G.; Demontis, Pierfranco; Suffritti, Giuseppe B.

    2015-11-01

    We developed a coarse-grained description of the phenomenology of diffusive processes, in terms of a space of discrete events and its representation as a network. Once a proper classification of the discrete events underlying the diffusive process is carried out, their transition matrix is calculated on the basis of molecular dynamics data. This matrix can be represented as a directed, weighted network where nodes represent discrete events, and the weight of edges is given by the probability that one follows the other. The structure of this network reflects dynamical properties of the process of interest in such features as its modularity and the entropy rate of nodes. As an example of the applicability of this conceptual framework, we discuss here the physics of diffusion of small non-polar molecules in a microporous material, in terms of the structure of the corresponding network of events, and explain on this basis the diffusivity trends observed. A quantitative account of these trends is obtained by considering the contribution of the various events to the displacement autocorrelation function.

  13. Chain Dynamics in Single Chain Limit by Rheological and Diffusion Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Qing; Wang, Shanfeng

    2004-03-01

    Our recent trace and self diffusion measurements , indicate (a) (b) that the molecular weight scaling of the self-diffusion coefficient is non-reptative for moderately entangled polymer melts as noted previously (c) but asymptotically approaches the reptative exponent of -2.0 for sufficiently entangled polymers, whereas the trace diffusion coefficient, measured by immersing a dilute amount of probe chains in a matrix of sufficiently entangled polymer of the same species, scales reptatively even for the probe chains of moderate entanglement. To further understand the behavior of probe chain dynamics in a matrix, we have measured the intrinsic viscosity and intrinsic storage and loss moduli of dilute solutions made of long chains (in dilution) and short chains, where both chain lengths can be much longer than the entanglement chain length. A rich variety of chain dynamics is observed including Stokes-Zimm behavior and Rouse like behavior as a function of the long and short chain lengths and concentration. (a) S.Q. Wang, Highlight Article, J. Polym. Sci. Polym. Phys., 41, 1589 (2003). (b) "Diffusion and Rheology of Binary Polymer Mixtures", S. Wang et al, Macromolecules, in press (2003). (c) T.P. Lodge, Phys. Rev. Lett. 83, 3218 (1999).

  14. Role of the BO bond in the reaction dynamics of BO+H 2→HBO+H

    NASA Astrophysics Data System (ADS)

    Sogas, J.; Albertí, M.; Giménez, X.; Aguilar, A.

    2001-10-01

    An extensive quasiclassical trajectory study of the dynamics of the title reaction has been carried out on a six-dimensional, analytical potential energy surface, with the goal of understanding the role of the BO bond. For this purpose, trajectories for different hypothetical isotopes of the BO molecule have been calculated, for selected rovibrational levels of the reactants, at low and moderate collision energies. For all these cases, a clear departure from the BO bond spectator behaviour, as well as an unexpected role of hindered rotation normal modes at the transition state, is found.

  15. Diffusive and re-orientation dynamics in lyotropic gels of self-assembled organic nanotubes

    NASA Astrophysics Data System (ADS)

    Wiegart, Lutz; Wiegart, Pierre; Caronna, Chiara

    2012-02-01

    It is known that dispersing lithocholic bile acid (LCA) in aqueous solutions of sodium hydroxide or ammonia leads to the formation of organic nanotubes with well-defined diameters on the nanometer scale. The suspensions appear to be tunable from liquid- to solid-like via the LCA concentration. The length of the tubes is decreasing as a function of temperature, favoring the formation of a phase where the tubes form hexagonally ordered bundles for an appropriate LCA concentration and temperature. In the present study, we have used X-ray Photon Correlation Spectroscopy (XCPS) to probe the diffusive dynamics of the nanotubes in these lyotropic gels under various conditions (concentration, counter ion, temperature). The multispeckle analysis of the coherent scattering pattern reveals domains in the sample with differing diffusive dynamics. The re-orientation process of different domains of nanotube bundles into a preferred parallel alignment has been observed.

  16. Random Vibration Tests for Prediction of Fatigue Life of Diffuser Structure for Gas Dynamic Laser

    NASA Astrophysics Data System (ADS)

    Maurer, O. F.; Banaszak, D. L.

    1980-01-01

    Static and dynamic strain measurements which were taken during test stand operations of the gas dynamic laser (GDL) for the AF Airborne Laser Laboratory indicated that higher than expected vibrational stress levels may possibly limit the fatigue life of the laser structure. Particularly the diffuser sidewall structure exhibited large amplitude random vibrations which were excited by the internal gas flow. The diffuser structure consists of two layers of brazed stainless steel, AISI-347, panels. Cooling ducts were milled into the outer face sheet. These in turn are backed by the inner face sheet. So called T-rail stiffeners silver-brazed to the outer face sheets add the required stiffness and divide the sidewall into smaller rectangular plate sections.

  17. Critical short-time dynamics in a system with interacting static and diffusive populations.

    PubMed

    Argolo, C; Quintino, Yan; Gleria, Iram; Lyra, M L

    2012-01-01

    We study the critical short-time dynamical behavior of a one-dimensional model where diffusive individuals can infect a static population upon contact. The model presents an absorbing phase transition from an active to an inactive state. Previous calculations of the critical exponents based on quasistationary quantities have indicated an unusual crossover from the directed percolation to the diffusive contact process universality classes. Here we show that the critical exponents governing the slow short-time dynamic evolution of several relevant quantities, including the order parameter, its relative fluctuations, and correlation function, reinforce the lack of universality in this model. Accurate estimates show that the critical exponents are distinct in the regimes of low and high recovery rates. PMID:22400516

  18. Fast dynamics and relaxation of colloidal drops during the drying process using multispeckle diffusing wave spectroscopy.

    PubMed

    Lee, Jeong Yong; Hwang, Ji Won; Jung, Hyun Wook; Kim, Sung Hyun; Lee, Seong Jae; Yoon, Kisun; Weitz, David A

    2013-01-22

    The fast dynamics generated by the Brownian motion of particles in colloidal drops, and the related relaxation during drying, which play key roles in suspension systems, were investigated incorporating multispeckle diffusing wave spectroscopy (MSDWS). MSDWS equipment was implemented to analyze the relaxation properties of suspensions under a nonergodic and nonstationary drying process, which cannot be elucidated by conventional light scattering methods, such as dynamic light scattering and diffusing wave spectroscopy. Rapid particle movement can be identified by the characteristic relaxation time, which is closely related to the Brownian motion due to thermal fluctuations of the particles. In the compacting stage of the drying process, the characteristic relaxation time increased gradually with the drying time because the particles in the colloidal drop were constrained by themselves. Moreover, variations of the initial concentration and particle size considerably affected the complete drying time and characteristic relaxation time, producing a shorter relaxation time for a low concentrated suspension with small particles. PMID:23281633

  19. Hydrogen-bond kinetics in liquid water

    NASA Astrophysics Data System (ADS)

    Luzar, Alenka; Chandler, David

    1996-01-01

    HYDROGEN bonds play a crucial role in the behaviour of water1-4 their spatial patterns and fluctuations characterize the structure and dynamics of the liquid5-7. The processes of breaking and making hydrogen bonds in the condensed phase can be probed indirectly by a variety of experimental techniques8, and more quantitative information can be obtained from computer simulations9. In particular, simulations have revealed that on long timescales the relaxation behaviour of hydrogen bonds in liquid water exhibit non-exponential kinetics7,10-13, suggesting that bond making and breaking are not simple processes characterized by well defined rate constants. Here we show that these kinetics can be understood in terms of an interplay between diffusion and hydrogen-bond dynamics. In our model, which can be extended to other hydrogen-bonded liquids, diffusion governs whether a specific pair of water molecules are near neighbours, and hydrogen bonds between such pairs form and persist at random with average lifetimes determined by rate constants for bond making and breaking.

  20. Analysis of the gas-dynamic performance of a vaned diffuser with given velocity distribution along the vane's surfaces

    NASA Astrophysics Data System (ADS)

    Kalinkevych, M.; Obukhov, O.; Obukhova, O.; Miroshnychenko, A.

    2015-08-01

    Extension of the effective range of vaned diffusers is one of the promising ways to improve the centrifugal compressor's stages which are used in numerous fields of industry. The new method of profiling of the diffuser vanes has been developed using Stratford's results and boundary layer theory by Loytsanskiy. The developed method is based on the solution of the inverse task of gas-dynamic using given velocity distribution along the vane's surface. Comparison of the results of numerical simulations for different diffusers has shown that the performance of the diffuser designed with the resulting velocity distribution are better. Influence of the vane profile, number of the vanes, diffuser outlet diameter and the diffuser width on diffuser characteristics has been investigated. The results of the simulations have been used to formulate recommendations on the design of high-effectiveness vaned diffusers for centrifugal stages of different types.

  1. Effect of Processing Temperature on the Texture and Shear Mechanical Properties of Diffusion Bonded Ti-6Al-4V Multilayer Laminates

    NASA Astrophysics Data System (ADS)

    Cepeda-Jiménez, Carmen M.; Orozco-Caballero, Alberto; Sarkeeva, Aigul; Kruglov, Aleksey; Lutfullin, Ramil; Ruano, Oscar A.; Carreño, Fernando

    2013-10-01

    Two multilayer materials based on Ti-6Al-4V alloy have been processed by diffusion bonding at two different temperatures [1023 K and 1173 K (750 °C and 900 °C)]. The influence of the processing temperature on microstructure, texture, and mechanical properties of the two multilayer materials has been analyzed. Scanning electron microscopy, X-ray diffraction, electron backscatter diffraction, and shear tests have been used as experimental techniques. The multilayer laminate processed at the lowest temperature of 1023 K (750 °C) exhibits mainly transversal texture in the longitudinal plane, which provides an anisotropic mechanical behavior, showing higher shear modulus and maximum shear strength under one of the shear test directions considered. In contrast, diffusion bonding at 1173 K (900 °C) leads to basal/transversal texture because of the partial α → β → α transformation, which provides more isotropic mechanical properties. Accordingly, this laminate shows similar shear modulus and maximum shear strength in different shear test orientations.

  2. Enzymatic hydroxylation of an unactivated methylene C-H bond guided by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Narayan, Alison R. H.; Jiménez-Osés, Gonzalo; Liu, Peng; Negretti, Solymar; Zhao, Wanxiang; Gilbert, Michael M.; Ramabhadran, Raghunath O.; Yang, Yun-Fang; Furan, Lawrence R.; Li, Zhe; Podust, Larissa M.; Montgomery, John; Houk, K. N.; Sherman, David H.

    2015-08-01

    The hallmark of enzymes from secondary metabolic pathways is the pairing of powerful reactivity with exquisite site selectivity. The application of these biocatalytic tools in organic synthesis, however, remains under-utilized due to limitations in substrate scope and scalability. Here, we report how the reactivity of a monooxygenase (PikC) from the pikromycin pathway is modified through computationally guided protein and substrate engineering, and applied to the oxidation of unactivated methylene C-H bonds. Molecular dynamics and quantum mechanical calculations were used to develop a predictive model for substrate scope, site selectivity and stereoselectivity of PikC-mediated C-H oxidation. A suite of menthol derivatives was screened computationally and evaluated through in vitro reactions, where each substrate adhered to the predicted models for selectivity and conversion to product. This platform was also expanded beyond menthol-based substrates to the selective hydroxylation of a variety of substrate cores ranging from cyclic to fused bicyclic and bridged bicyclic compounds.

  3. Enzymatic Hydroxylation of an Unactivated Methylene C–H Bond Guided by Molecular Dynamics Simulations

    PubMed Central

    Narayan, Alison R. H.; Jiménez-Osés, Gonzalo; Liu, Peng; Negretti, Solymar; Zhao, Wanxiang; Gilbert, Michael M.; Ramabhadran, Raghunath O.; Yang, Yun-Fang; Furan, Lawrence R.; Li, Zhe; Podust, Larissa M.; Montgomery, John; Houk, K. N.; Sherman, David H.

    2015-01-01

    The hallmark of enzymes from secondary metabolic pathways is the pairing of powerful reactivity with exquisite site selectivity. The application of these biocatalytic tools in organic synthesis, however, remains under-utilized due to limitations in substrate scope and scalability. Here we report the reactivity of a monooxygenase (PikC) from the pikromycin pathway is modified through computationally-guided protein and substrate engineering, and applied to the oxidation of unactivated methylene C-H bonds. Molecular dynamics and quantum mechanical calculations were employed to develop a predictive model for substrate scope, site selectivity, and stereoselectivity of PikC mediated C-H oxidation. A suite of menthol derivatives was screened computationally and evaluated through in vitro reactions where each substrate adhered to the predicted models for selectivity and conversion to product. This platform was also expanded beyond menthol-based substrates to the selective hydroxylation of a variety of substrate cores ranging from cyclic to fused bicyclic and bridged bicyclic compounds. PMID:26201742

  4. Transformation of the Strongly Hydrogen Bonded System into van der Waals one Reflected in Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Kamiński, K.; Kamińska, E.; Grzybowska, K.; Włodarczyk, P.; Pawlus, S.; Paluch, M.; Zioło, J.; Rzoska, S. J.; Pilch, J.; Kasprzycka, A.; Szeja, W.

    Dielectric relaxation studies on disaccharides lactose and octa-O-acetyl-lactose are reported. The latter is a hydrogen bonded system while the former is a van der Waals glass former. The transformation between them was arranged by substituting hydrogen atoms in lactose by acetyl groups. Hereby the influence of differences in bounding on dynamics of both systems is discussed. We showed that the faster secondary relaxation (labeled γ) in octa-O-acetyl-lactose has much lower amplitude than that of lactose. The relaxation time and activation energy remain unchanged in comparison to the γ- relaxation of lactose. We did not observe the slow secondary relaxation (labeled β), clearly visible in lactose, in its acethyl derivative. Detailed analysis of the dielectric spectra measured for octa-O-acetyl-lactose in its glassy state (not standard change in the shape of the γ- peak with lowering temperature) enabled us to provide probable explanation of our finding. No credible comparative analysis of the α- relaxation process of the lactose and octa-O-acetyl-lactose are presented, because loss spectra of the former carbohydrate were affected by the huge contribution of the dc conductivity. Notwithstanding, one can expect that octa-O-acetyl-lactose has lower glass transition temperature and steepness index than lactose.

  5. Molecular Dynamics Studies of Dislocations in CdTe Crystals from a New Bond Order Potential.

    PubMed

    Zhou, Xiaowang; Ward, Donald K; Wong, Bryan M; Doty, F Patrick; Zimmerman, Jonathan A

    2012-08-23

    Cd(1-x)Zn(x)Te (CZT) crystals are the leading semiconductors for radiation detection, but their application is limited by the high cost of detector-grade materials. High crystal costs primarily result from property nonuniformity that causes low manufacturing yield. Although tremendous efforts have been made in the past to reduce Te inclusions/precipitates in CZT, this has not resulted in an anticipated improvement in material property uniformity. Moreover, it is recognized that in addition to Te particles, dislocation cells can also cause electric field perturbations and the associated property nonuniformities. Further improvement of the material, therefore, requires that dislocations in CZT crystals be understood and controlled. Here, we use a recently developed CZT bond order potential to perform representative molecular dynamics simulations to study configurations, energies, and mobilities of 29 different types of possible dislocations in CdTe (i.e., x = 1) crystals. An efficient method to derive activation free energies and activation volumes of thermally activated dislocation motion will be explored. Our focus gives insight into understanding important dislocations in the material and gives guidance toward experimental efforts for improving dislocation network structures in CZT crystals. PMID:22962626

  6. Translational diffusion of water inside hydrophobic carbon micropores studied by neutron spectroscopy and molecular dynamics simulation

    DOE PAGESBeta

    Diallo, S. O.; Vlcek, L.; Mamontov, E.; Keum, J. K.; Chen, Jihua; Hayes, J. S.; Chialvo, A. A.

    2015-02-17

    When water molecules are confined to nanoscale spacings, such as in the nanometer-size pores of activated carbon fiber (ACF), their freezing point gets suppressed down to very low temperatures (~150 K), leading to a metastable liquid state with remarkable physical properties. Here we have investigated the ambient pressure diffusive dynamics of water in microporous Kynol ACF-10 (average pore size ~11.6 Å, with primarily slit-like pores) from temperature T = 280 K in its stable liquid state down to T = 230 K into the metastable supercooled phase. The observed characteristic relaxation times and diffusion coefficients are found to be, respectively, higher and lower than those in bulk water, indicating a slowing down of the water mobility with decreasing temperature. The observed temperature-dependent average relaxation time (more » $${{\\tau}}$$) when compared to previous findings indicate that it is the width of the slit pores-not their curvature-that primarily affects the dynamics of water for pore sizes larger than 10 Å. The experimental observations are compared to complementary molecular dynamics simulations of a model system, in which we studied the diffusion of water within the 11.6 Å gap of two parallel graphene sheets. We find generally a reasonable agreement between the observed and calculated relaxation times at the low momentum transfer Q (Q ≤ 0.9 Å-1). At high Q, however, where localized dynamics becomes relevant, this ideal system does not satisfactorily reproduce the measurements. Consequently, the simulations are compared to the experiments at low Q, where the two can be best reconciled. The best agreement is obtained for the diffusion parameter D associated with the hydrogen-site when a representative stretched exponential function, rather than the standard bimodal exponential model, is used to parametrize the self-correlation function I (Q,t).« less

  7. Numerical simulation of diffusion-controlled droplet growth Dynamical correlation effects

    NASA Technical Reports Server (NTRS)

    Beenakker, C. W. J.

    1986-01-01

    Diffusion-controlled coarsening (Ostwald ripening) of precipitated solutions is studied by numerical simulation. An algorithm is devised which exploits the screening of solute concentration fields, thereby removing the restriction to small systems of previous work. Simulation of the coarsening of 5000 droplets at 10-percent volume fraction reveals long-ranged dynamical correlations which broaden the droplet size-distribution function and increase the coarsening-rate coefficient.

  8. Relationship between maximum principle and dynamic programming for stochastic differential games of jump diffusions

    NASA Astrophysics Data System (ADS)

    Shi, Jingtao

    2014-04-01

    This paper is concerned with the relationship between maximum principle and dynamic programming for zero-sum stochastic differential games of jump diffusions. Under the assumption that the value function is smooth enough, relations among the adjoint processes, the generalised Hamiltonian function and the value function are given. A portfolio optimisation problem under model uncertainty in an incomplete financial market is discussed to show the applications of our result.

  9. Translational diffusion of water inside hydrophobic carbon micropores studied by neutron spectroscopy and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Diallo, S. O.; Vlcek, L.; Mamontov, E.; Keum, J. K.; Chen, Jihua; Hayes, J. S.; Chialvo, A. A.

    2015-02-01

    When water molecules are confined to nanoscale spacings, such as in the nanometer-size pores of activated carbon fiber (ACF), their freezing point gets suppressed down to very low temperatures (˜150 K ), leading to a metastable liquid state with remarkable physical properties. We have investigated the ambient pressure diffusive dynamics of water in microporous Kynol ACF-10 (average pore size ˜11.6 Å , with primarily slit-like pores) from temperature T =280 K in its stable liquid state down to T =230 K into the metastable supercooled phase. The observed characteristic relaxation times and diffusion coefficients are found to be, respectively, higher and lower than those in bulk water, indicating a slowing down of the water mobility with decreasing temperature. The observed temperature-dependent average relaxation time <τ > when compared to previous findings indicate that it is the width of the slit pores—not their curvature—that primarily affects the dynamics of water for pore sizes larger than 10 Å. The experimental observations are compared to complementary molecular dynamics simulations of a model system, in which we studied the diffusion of water within the 11.6 Å gap of two parallel graphene sheets. We find generally a reasonable agreement between the observed and calculated relaxation times at the low momentum transfer Q (Q ≤0.9 Å -1) . At high Q , however, where localized dynamics becomes relevant, this ideal system does not satisfactorily reproduce the measurements. Consequently, the simulations are compared to the experiments at low Q , where the two can be best reconciled. The best agreement is obtained for the diffusion parameter D associated with the hydrogen-site when a representative stretched exponential function, rather than the standard bimodal exponential model, is used to parametrize the self-correlation function I (Q ,t ) .

  10. Translational diffusion of water inside hydrophobic carbon micropores studied by neutron spectroscopy and molecular dynamics simulation.

    PubMed

    Diallo, S O; Vlcek, L; Mamontov, E; Keum, J K; Chen, Jihua; Hayes, J S; Chialvo, A A

    2015-02-01

    When water molecules are confined to nanoscale spacings, such as in the nanometer-size pores of activated carbon fiber (ACF), their freezing point gets suppressed down to very low temperatures (∼150K), leading to a metastable liquid state with remarkable physical properties. We have investigated the ambient pressure diffusive dynamics of water in microporous Kynol ACF-10 (average pore size ∼11.6Å, with primarily slit-like pores) from temperature T=280 K in its stable liquid state down to T=230 K into the metastable supercooled phase. The observed characteristic relaxation times and diffusion coefficients are found to be, respectively, higher and lower than those in bulk water, indicating a slowing down of the water mobility with decreasing temperature. The observed temperature-dependent average relaxation time 〈τ〉 when compared to previous findings indicate that it is the width of the slit pores-not their curvature-that primarily affects the dynamics of water for pore sizes larger than 10 Å. The experimental observations are compared to complementary molecular dynamics simulations of a model system, in which we studied the diffusion of water within the 11.6 Å gap of two parallel graphene sheets. We find generally a reasonable agreement between the observed and calculated relaxation times at the low momentum transfer Q(Q≤0.9Å(-1)). At high Q, however, where localized dynamics becomes relevant, this ideal system does not satisfactorily reproduce the measurements. Consequently, the simulations are compared to the experiments at low Q, where the two can be best reconciled. The best agreement is obtained for the diffusion parameter D associated with the hydrogen-site when a representative stretched exponential function, rather than the standard bimodal exponential model, is used to parametrize the self-correlation function I(Q,t). PMID:25768475

  11. Investigation of the diffuse ultraviolet background using satellite data: Dynamics explorer guest investigator program

    NASA Technical Reports Server (NTRS)

    Fix, J. D.

    1986-01-01

    The imaging instrumentation for the Dynamics Explorer Mission was designed primarily to obtain global auroral images. The instrument, however, was also used successfully to study marine bioluminescence, the geocorona, and the global distribution of atmospheric ozone. The imager has considerable potential for the study of astronomical sources of ultraviolet radiation as well. The data produced by the imager is used to study the brightness and isotrophy of the diffuse ultraviolet background.

  12. Translational diffusion of water inside hydrophobic carbon micropores studied by neutron spectroscopy and molecular dynamics simulation

    SciTech Connect

    Diallo, S. O.; Vlcek, L.; Mamontov, E.; Keum, J. K.; Chen, Jihua; Hayes, J. S.; Chialvo, A. A.

    2015-02-17

    When water molecules are confined to nanoscale spacings, such as in the nanometer-size pores of activated carbon fiber (ACF), their freezing point gets suppressed down to very low temperatures (~150 K), leading to a metastable liquid state with remarkable physical properties. Here we have investigated the ambient pressure diffusive dynamics of water in microporous Kynol ACF-10 (average pore size ~11.6 Å, with primarily slit-like pores) from temperature T = 280 K in its stable liquid state down to T = 230 K into the metastable supercooled phase. The observed characteristic relaxation times and diffusion coefficients are found to be, respectively, higher and lower than those in bulk water, indicating a slowing down of the water mobility with decreasing temperature. The observed temperature-dependent average relaxation time (${{\\tau}}$) when compared to previous findings indicate that it is the width of the slit pores-not their curvature-that primarily affects the dynamics of water for pore sizes larger than 10 Å. The experimental observations are compared to complementary molecular dynamics simulations of a model system, in which we studied the diffusion of water within the 11.6 Å gap of two parallel graphene sheets. We find generally a reasonable agreement between the observed and calculated relaxation times at the low momentum transfer Q (Q ≤ 0.9 Å-1). At high Q, however, where localized dynamics becomes relevant, this ideal system does not satisfactorily reproduce the measurements. Consequently, the simulations are compared to the experiments at low Q, where the two can be best reconciled. The best agreement is obtained for the diffusion parameter D associated with the hydrogen-site when a representative stretched exponential function, rather than the standard bimodal exponential model, is used to parametrize the self-correlation function I (Q,t).

  13. Multistability and spin diffusion enhanced lifetimes in dynamic nuclear polarization in a double quantum dot

    NASA Astrophysics Data System (ADS)

    Forster, F.; Mühlbacher, M.; Schuh, D.; Wegscheider, W.; Giedke, G.; Ludwig, S.

    2015-12-01

    The control of nuclear spins in quantum dots is essential to explore their many-body dynamics and exploit their prospects for quantum information processing. We present a unique combination of dynamic nuclear spin polarization and electric-dipole-induced spin resonance in an electrostatically defined double quantum dot (DQD) exposed to the strongly inhomogeneous field of two on-chip nanomagnets. Our experiments provide direct and unrivaled access to the nuclear spin polarization distribution and allow us to establish and characterize multiple fixed points. Further, we demonstrate polarization of the DQD environment by nuclear spin diffusion which significantly stabilizes the nuclear spins inside the DQD.

  14. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    SciTech Connect

    Miao, Yinglong; Baudry, Jerome Y

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  15. Transport dissipative particle dynamics model for mesoscopic advection- diffusion-reaction problems

    SciTech Connect

    Zhen, Li; Yazdani, Alireza; Tartakovsky, Alexandre M.; Karniadakis, George E.

    2015-07-07

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic DPD framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between particles, and an analytical formula is proposed to relate the mesoscopic concentration friction to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.

  16. Dynamics of Weak, Bifurcated and Strong Hydrogen Bonds in Lithium Nitrate Trihydrate

    SciTech Connect

    Werhahn, Jasper C.; Pandelov, S.; Xantheas, Sotiris S.; Iglev, H.

    2011-07-07

    The properties of three distinct types of hydrogen bonds, namely a weak, a bifurcated and a strong one, all present in/the LiNO3 (HDO)(D2O)2 hydrate lattice unit cell are studied using steady-state and time-resolved spectroscopy. The lifetimes of the OH stretching vibrations for the three individual bonds are 2.2 ps (weak), 1.7 ps (bifurcated), and 1.2 ps (strong), respectively. For the first time the properties of bifurcated H bonds can thus be unambiguously directly compared to those of weak and strong H bonds in the same system. The values of their OH stretching vibration lifetime, anharmonicity, red shift and bond strength lie between those for the strong and weak H bonds. The experimentally observed inhomogeneous broadening of their spectral signature is attributed to the coupling with a low frequency intermolecular wagging vibration/

  17. Microstructures and Mechanical Properties of Transient Liquid-Phase Diffusion-Bonded Ti3Al/TiAl Joints with TiZrCuNi Interlayer

    NASA Astrophysics Data System (ADS)

    Ren, H. S.; Xiong, H. P.; Pang, S. J.; Chen, B.; Wu, X.; Cheng, Y. Y.; Chen, B. Q.

    2016-04-01

    Transient liquid-phase diffusion bonding of Ti3Al-based alloy to TiAl intermetallics was conducted using Ti-13Zr-21Cu-9Ni (wt pct) interlayer foil. The joint microstructures were examined using a scanning electron microscope (SEM) equipped with an electron probe micro-analyzer (EPMA). The microhardness across the joint was measured and joint strengths were tested. The results show that the Ti3Al/TiAl joint mainly consists of Ti-rich phase, Ti2Al layer, α 2-Ti3Al band, and residual interlayer alloy dissolved with Al. The amount of residual interlayer at the central part of the joint is decreased with the increase of the bonding temperature, and meantime the Ti2Al and α 2-Ti3Al reaction bands close to the joined Ti3Al-based alloy become thickened gradually. Furthermore, the central part of the joint exhibits the maximum microhardness across the whole joint. The joints bonded at 1193 K (920 °C) for 600 seconds with a pressure of 2 MPa presented the maximum shear strength of 417 MPa at room temperature, and the strength of 234 MPa was maintained at 773 K (500 °C).

  18. Dynamic contact-free continuous-wave diffuse optical tomography system for the detection of vascular dynamics within the foot

    NASA Astrophysics Data System (ADS)

    Khalil, M. A.; Hoi, J.; Kim, H. K.; Hielscher, A. H.

    2013-03-01

    We present a dynamic contact-free continuous-wave diffuse optical tomography system for the detection and monitoring of peripheral arterial disease (PAD) in the foot. Peripheral Arterial Disease (PAD) is the narrowing of the functional area of the artery generally due to atherosclerosis. It affects between 8-12 million people in the United States and if untreated this can lead to ulceration, gangrene and ultimately amputation. Contact-Free imaging is highly desirable, due to the presence of ulcerations and gangrene in many patients affected by PAD. The system uses an electron multiplying charge coupled device (EMCCD) camera for detection to achieve a dynamic range of 86 dB with a frame rate of 1 Hz using 20 collimated source fibers and 2 wavelengths. We present first clinical results showing 3D images of total hemoglobin changes in response to a dynamic thigh cuff.

  19. Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling.

    PubMed

    Liu, Baoyu; Chen, Wei; Evavold, Brian D; Zhu, Cheng

    2014-04-10

    TCR-pMHC interactions initiate adaptive immune responses, but the mechanism of how such interactions under force induce T cell signaling is unclear. We show that force prolongs lifetimes of single TCR-pMHC bonds for agonists (catch bonds) but shortens those for antagonists (slip bonds). Both magnitude and duration of force are important, as the highest Ca(2+) responses were induced by 10 pN via both pMHC catch bonds whose lifetime peaks at this force and anti-TCR slip bonds whose maximum lifetime occurs at 0 pN. High Ca(2+) levels require early and rapid accumulation of bond lifetimes, whereas short-lived bonds that slow early accumulation of lifetimes correspond to low Ca(2+) responses. Our data support a model in which force on the TCR induces signaling events depending on its magnitude, duration, frequency, and timing, such that agonists form catch bonds that trigger the T cell digitally, whereas antagonists form slip bonds that fail to activate. PMID:24725404

  20. Solvent influence on cellulose 1,4-β-glycosidic bond cleavage: a molecular dynamics and metadynamics study.

    PubMed

    Loerbroks, Claudia; Boulanger, Eliot; Thiel, Walter

    2015-03-27

    We explore the influence of two solvents, namely water and the ionic liquid 1-ethyl-3-methylimidazolium acetate (EmimAc), on the conformations of two cellulose models (cellobiose and a chain of 40 glucose units) and the solvent impact on glycosidic bond cleavage by acid hydrolysis by using molecular dynamics and metadynamics simulations. We investigate the rotation around the glycosidic bond and ring puckering, as well as the anomeric effect and hydrogen bonds, in order to gauge the effect on the hydrolysis mechanism. We find that EmimAc eases hydrolysis through stronger solvent-cellulose interactions, which break structural and electronic barriers to hydrolysis. Our results indicate that hydrolysis in cellulose chains should start from the ends and not in the centre of the chain, which is less accessible to solvent. PMID:25689773

  1. Proton-driven spin diffusion in rotating solids via reversible and irreversible quantum dynamics

    PubMed Central

    Veshtort, Mikhail; Griffin, Robert G.

    2011-01-01

    Proton-driven spin diffusion (PDSD) experiments in rotating solids have received a great deal of attention as a potential source of distance constraints in large biomolecules. However, the quantitative relationship between the molecular structure and observed spin diffusion has remained obscure due to the lack of an accurate theoretical description of the spin dynamics in these experiments. We start with presenting a detailed relaxation theory of PDSD in rotating solids that provides such a description. The theory applies to both conventional and radio-frequency-assisted PDSD experiments and extends to the non-Markovian regime to include such phenomena as rotational resonance (R2). The basic kinetic equation of the theory in the non-Markovian regime has the form of a memory function equation, with the role of the memory function played by the correlation function. The key assumption used in the derivation of this equation expresses the intuitive notion of the irreversible dissipation of coherences in macroscopic systems. Accurate expressions for the correlation functions and for the spin diffusion constants are given. The theory predicts that the spin diffusion constants governing the multi-site PDSD can be approximated by the constants observed in the two-site diffusion. Direct numerical simulations of PDSD dynamics via reversible Liouville-von Neumann equation are presented to support and compliment the theory. Remarkably, an exponential decay of the difference magnetization can be observed in such simulations in systems consisting of only 12 spins. This is a unique example of a real physical system whose typically macroscopic and apparently irreversible behavior can be traced via reversible microscopic dynamics. An accurate value for the spin diffusion constant can be usually obtained through direct simulations of PDSD in systems consisting of two 13C nuclei and about ten 1H nuclei from their nearest environment. Spin diffusion constants computed by this method

  2. An analysis of hydrated proton diffusion in ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Tse, Ying-Lung Steve; Knight, Chris; Voth, Gregory A.

    2015-01-01

    A detailed understanding of the inherently multiscale proton transport process raises a number of scientifically challenging questions. For example, there remain many (partially addressed) questions on the molecular mechanism for long-range proton migration and the potential for the formation of long-lived traps giving rise to burst-and-rest proton dynamics. Using results from a sizeable collection of ab initio molecular dynamics (AIMD) simulations (totaling ˜2.7 ns) with various density functional approximations (Becke-Lee-Yang-Parr (BLYP), BLYP-D3, Hamprecht-Cohen-Tozer-Handy, B3LYP) and temperatures (300-330 K), equilibrium and dynamical properties of one excess proton and 128 water molecules are studied. Two features in particular (concerted hops and weak hydrogen-bond donors) are investigated to identify modes in the system that are strongly correlated with the onset of periods of burst-and-rest dynamics. The question of concerted hops seeks to identify those time scales over which long-range proton transport can be classified as a series of sequential water hopping events or as a near-simultaneous concerted process along compressed water wires. The coupling of the observed burst-and-rest dynamics with motions of a fourth neighboring water molecule (a weak hydrogen-bond donor) solvating the protonated water molecule is also investigated. The presence (absence) of hydrogen bonds involving this fourth water molecule before and after successful proton hopping events is found to be strongly correlated with periods of burst (rest) dynamics (and consistent with pre-solvation concepts). By analyzing several realizations of the AIMD trajectories on the 100-ps time scale, convergence of statistics can be assessed. For instance, it was observed that the probability for a fourth water molecule to approach the hydronium, if not already proximal at the beginning of the lifetime of the hydronium, is very low, indicative of the formation of stable void regions. Furthermore

  3. An analysis of hydrated proton diffusion in ab initio molecular dynamics

    SciTech Connect

    Tse, Ying-Lung Steve; Voth, Gregory A.; Knight, Chris

    2015-01-07

    A detailed understanding of the inherently multiscale proton transport process raises a number of scientifically challenging questions. For example, there remain many (partially addressed) questions on the molecular mechanism for long-range proton migration and the potential for the formation of long-lived traps giving rise to burst-and-rest proton dynamics. Using results from a sizeable collection of ab initio molecular dynamics (AIMD) simulations (totaling ∼2.7 ns) with various density functional approximations (Becke-Lee-Yang-Parr (BLYP), BLYP–D3, Hamprecht-Cohen-Tozer-Handy, B3LYP) and temperatures (300–330 K), equilibrium and dynamical properties of one excess proton and 128 water molecules are studied. Two features in particular (concerted hops and weak hydrogen-bond donors) are investigated to identify modes in the system that are strongly correlated with the onset of periods of burst-and-rest dynamics. The question of concerted hops seeks to identify those time scales over which long-range proton transport can be classified as a series of sequential water hopping events or as a near-simultaneous concerted process along compressed water wires. The coupling of the observed burst-and-rest dynamics with motions of a fourth neighboring water molecule (a weak hydrogen-bond donor) solvating the protonated water molecule is also investigated. The presence (absence) of hydrogen bonds involving this fourth water molecule before and after successful proton hopping events is found to be strongly correlated with periods of burst (rest) dynamics (and consistent with pre-solvation concepts). By analyzing several realizations of the AIMD trajectories on the 100-ps time scale, convergence of statistics can be assessed. For instance, it was observed that the probability for a fourth water molecule to approach the hydronium, if not already proximal at the beginning of the lifetime of the hydronium, is very low, indicative of the formation of stable void regions

  4. An analysis of hydrated proton diffusion in ab initio molecular dynamics.

    PubMed

    Tse, Ying-Lung Steve; Knight, Chris; Voth, Gregory A

    2015-01-01

    A detailed understanding of the inherently multiscale proton transport process raises a number of scientifically challenging questions. For example, there remain many (partially addressed) questions on the molecular mechanism for long-range proton migration and the potential for the formation of long-lived traps giving rise to burst-and-rest proton dynamics. Using results from a sizeable collection of ab initio molecular dynamics (AIMD) simulations (totaling ∼2.7 ns) with various density functional approximations (Becke-Lee-Yang-Parr (BLYP), BLYP-D3, Hamprecht-Cohen-Tozer-Handy, B3LYP) and temperatures (300-330 K), equilibrium and dynamical properties of one excess proton and 128 water molecules are studied. Two features in particular (concerted hops and weak hydrogen-bond donors) are investigated to identify modes in the system that are strongly correlated with the onset of periods of burst-and-rest dynamics. The question of concerted hops seeks to identify those time scales over which long-range proton transport can be classified as a series of sequential water hopping events or as a near-simultaneous concerted process along compressed water wires. The coupling of the observed burst-and-rest dynamics with motions of a fourth neighboring water molecule (a weak hydrogen-bond donor) solvating the protonated water molecule is also investigated. The presence (absence) of hydrogen bonds involving this fourth water molecule before and after successful proton hopping events is found to be strongly correlated with periods of burst (rest) dynamics (and consistent with pre-solvation concepts). By analyzing several realizations of the AIMD trajectories on the 100-ps time scale, convergence of statistics can be assessed. For instance, it was observed that the probability for a fourth water molecule to approach the hydronium, if not already proximal at the beginning of the lifetime of the hydronium, is very low, indicative of the formation of stable void regions. Furthermore

  5. Ionic conductivity in Gd-doped CeO2: Ab initio color-diffusion nonequilibrium molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Nilsson, Johan O.; Vekilova, Olga Yu.; Hellman, Olle; Klarbring, Johan; Simak, Sergei I.; Skorodumova, Natalia V.

    2016-01-01

    A first-principles nonequilibrium molecular dynamics (NEMD) study employing the color-diffusion algorithm has been conducted to obtain the bulk ionic conductivity and the diffusion constant of gadolinium-doped cerium oxide (GDC) in the 850-1150 K temperature range. Being a slow process, ionic diffusion in solids usually requires simulation times that are prohibitively long for ab initio equilibrium molecular dynamics. The use of the color-diffusion algorithm allowed us to substantially speed up the oxygen-ion diffusion. The key parameters of the method, such as field direction and strength as well as color-charge distribution, have been investigated and their optimized values for the considered system have been determined. The calculated ionic conductivity and diffusion constants are in good agreement with available experimental data.

  6. Phenomenological theory of the dynamics of polymer melts. I. Analytic treatment of self-diffusion

    NASA Astrophysics Data System (ADS)

    Skolnick, Jeffrey; Yaris, Robert; Kolinski, Andrzej

    1988-01-01

    In the context of dynamic Monte Carlo (MC) simulations on dense collections of polymer chains confined to a cubic lattice, the nature of the dynamic entanglements giving rise to the degree of polymerization n, dependence of the self-diffusion constant D˜n-2 is examined. Consistent with our previous simulation results, which failed to find evidence for reptation as the dominant mechanism of polymer melt motion [J. Chem. Phys. 86, 1567, 7164, 7174 (1987)], long-lived dynamic entanglement contacts between pairs of segments belonging to different chains are extremely rare and are mobile with respect to the laboratory fixed frame. It is suggested that dynamic entanglements involve the dragging of one chain by another through the melt for times on the order of the terminal relaxation time of the end-to-end vector. Employing the physical description provided by the MC simulation, the general expression of Hess [Macromolecules 19, 1395 (1986)] for the friction constant increment experienced by a polymer due to the other polymers forms the basis of a phenomenological derivation of D˜n-2 for monodisperse melts that does not require the existence of reptation. Rather, such behavior is dependent on the relatively benign assumptions that the long distance global motions of the chains are uncorrelated, that the dynamic contacts can be truncated at the pair level, and that the propagator describing the evolution between dynamic contacts contains a free Rouse chain component. The mean distance between dynamic entanglements is predicted to depend inversely on concentration, in agreement with experiment. Moreover, as the free Rouse component is frozen out, for chains greater than an entanglement length ne, a molecular weight independent glass transition is predicted. Extension to bidisperse melts predicts that the probe diffusion coefficient Dp depends on the matrix degree of polymerization, nm, as n-1m. Finally, comparison is made between the theoretical expressions and MC

  7. Effect of Interfacial Bonding on Interphase Properties in SiO2/Epoxy Nanocomposite: A Molecular Dynamics Simulation Study.

    PubMed

    Wang, Zhikun; Lv, Qiang; Chen, Shenghui; Li, Chunling; Sun, Shuangqing; Hu, Songqing

    2016-03-23

    Atomistic molecular dynamics simulations have been performed to explore the effect of interfacial bonding on the interphase properties of a nanocomposite system that consists of a silica nanoparticle and the highly cross-linked epoxy matrix. For the structural properties, results show that interfacial covalent bonding can broaden the interphase region by increasing the radial effect range of fluctuated mass density and oriented chains, as well as strengthen the interphase region by improving the thermal stability of interfacial van der Waals excluded volume and reducing the proportion of cis conformers of epoxy segments. The improved thermal stability of the interphase region in the covalently bonded model results in an increase of ∼21 K in the glass transition temperature (Tg) compared to that of the pure epoxy. It is also found that interfacial covalent bonding mainly restricts the volume thermal expansion of the model at temperatures near or larger than Tg. Furthermore, investigations from mean-square displacement and fraction of immobile atoms point out that interfacial covalent and noncovalent bonding induces lower and higher mobility of interphase atoms than that of the pure epoxy, respectively. The obtained critical interfacial bonding ratio when the interphase and matrix atoms have the same mobility is 5.8%. These results demonstrate that the glass transitions of the interphase and matrix will be asynchronous when the interfacial bonding ratio is not 5.8%. Specifically, the interphase region will trigger the glass transition of the matrix when the ratio is larger than 5.8%, whereas it restrains the glass transition of the matrix when the ratio is smaller than 5.8%. PMID:26927032

  8. The gravel-sand transition: Sediment dynamics in a diffuse extension

    NASA Astrophysics Data System (ADS)

    Venditti, Jeremy G.; Domarad, Natalia; Church, Michael; Rennie, Colin D.

    2015-06-01

    As gravel-bedded rivers fine in the downstream direction, they characteristically exhibit an abrupt transition from gravel- to sand-bedded conditions. The prevailing theory for why abrupt gravel-sand transitions emerge is based on bed load sorting of a bimodal sediment. The abruptness is thought to be a consequence of sand overwhelming the gravel-sand mixture once it reaches a critical coverage on the bed. The role suspension plays in the development of gravel-sand transitions has not been fully appreciated. The Fraser River, British Columbia, is an archetypical abrupt gravel-sand transition with a "diffuse extension" composed of a sand bed with some patches of gravel. We examine flow, shear stress, and suspended sediment flux in the diffuse extension to better understand sediment dynamics where the sand bed emerges. Sand is carried in suspension upstream of the primary abrupt gravel-sand transition, but in the diffuse extension, sand is moved as both bed load and suspended load. We do not observe downstream gradients in shear stress or suspended sand flux through the diffuse extension that would suggest a gradual "rain out" of sand moving downstream, which raises the question, how is the sand bed formed? Sediment advection length scales indicate that with the exception of very fine sand that moves as wash load in the diffuse extension, fractions coarser than the median sand size cannot be carried in suspension for more than one channel width. This suggests that sand is deposited en masse at the beginning of the diffuse extension, forming a sediment slug at low flood flows that is smeared downstream at high flood flows to form the sand reach.

  9. Rotational diffusion affects the dynamical self-assembly pathways of patchy particles.

    PubMed

    Newton, Arthur C; Groenewold, Jan; Kegel, Willem K; Bolhuis, Peter G

    2015-12-15

    Predicting the self-assembly kinetics of particles with anisotropic interactions, such as colloidal patchy particles or proteins with multiple binding sites, is important for the design of novel high-tech materials, as well as for understanding biological systems, e.g., viruses or regulatory networks. Often stochastic in nature, such self-assembly processes are fundamentally governed by rotational and translational diffusion. Whereas the rotational diffusion constant of particles is usually considered to be coupled to the translational diffusion via the Stokes-Einstein relation, in the past decade it has become clear that they can be independently altered by molecular crowding agents or via external fields. Because virus capsids naturally assemble in crowded environments such as the cell cytoplasm but also in aqueous solution in vitro, it is important to investigate how varying the rotational diffusion with respect to transitional diffusion alters the kinetic pathways of self-assembly. Kinetic trapping in malformed or intermediate structures often impedes a direct simulation approach of a kinetic network by dramatically slowing down the relaxation to the designed ground state. However, using recently developed path-sampling techniques, we can sample and analyze the entire self-assembly kinetic network of simple patchy particle systems. For assembly of a designed cluster of patchy particles we find that changing the rotational diffusion does not change the equilibrium constants, but significantly affects the dynamical pathways, and enhances (suppresses) the overall relaxation process and the yield of the target structure, by avoiding (encountering) frustrated states. Besides insight, this finding provides a design principle for improved control of nanoparticle self-assembly. PMID:26621742

  10. Rotational diffusion affects the dynamical self-assembly pathways of patchy particles

    PubMed Central

    Newton, Arthur C.; Groenewold, Jan; Kegel, Willem K.; Bolhuis, Peter G.

    2015-01-01

    Predicting the self-assembly kinetics of particles with anisotropic interactions, such as colloidal patchy particles or proteins with multiple binding sites, is important for the design of novel high-tech materials, as well as for understanding biological systems, e.g., viruses or regulatory networks. Often stochastic in nature, such self-assembly processes are fundamentally governed by rotational and translational diffusion. Whereas the rotational diffusion constant of particles is usually considered to be coupled to the translational diffusion via the Stokes–Einstein relation, in the past decade it has become clear that they can be independently altered by molecular crowding agents or via external fields. Because virus capsids naturally assemble in crowded environments such as the cell cytoplasm but also in aqueous solution in vitro, it is important to investigate how varying the rotational diffusion with respect to transitional diffusion alters the kinetic pathways of self-assembly. Kinetic trapping in malformed or intermediate structures often impedes a direct simulation approach of a kinetic network by dramatically slowing down the relaxation to the designed ground state. However, using recently developed path-sampling techniques, we can sample and analyze the entire self-assembly kinetic network of simple patchy particle systems. For assembly of a designed cluster of patchy particles we find that changing the rotational diffusion does not change the equilibrium constants, but significantly affects the dynamical pathways, and enhances (suppresses) the overall relaxation process and the yield of the target structure, by avoiding (encountering) frustrated states. Besides insight, this finding provides a design principle for improved control of nanoparticle self-assembly. PMID:26621742

  11. Protein dynamics from structural ensembles: Diffusive and activated contributions in a linear mode description

    NASA Astrophysics Data System (ADS)

    Copperman, Jeremy; Guenza, Marina

    2015-03-01

    We have developed a coarse-grained linear Langevin equation for protein dynamics, which describes proteins as semiflexible objects collapsed into the free energy well representing the folded state of the protein. Fundamental to this approach is the inclusion of internal dissipation, absent in any rigid-body hydrodynamical modeling scheme. The normal mode analytical solution naturally separates into global modes describing the anisotropic tumbling of the object, and internal modes which contain both diffusive and activated glass-like contributions. We show how cooperativity in the dynamical modes is related to the energy barriers to mode diffusion. While molecular dynamic simulations generate the most accurate structural ensembles, we show how sets of NMR conformers can be used to generate the structural ensemble needed as input to the theory, making the approach truly predictive in nature. Results are in good agreement when compared with both nuclear magnetic resonance relaxation, and time correlation functions calculated from molecular dynamic simulations. This material is based upon work partially supported by the National Science Foundation under Grant CHE-1362500.

  12. Real-time submillisecond single-molecule FRET dynamics of freely diffusing molecules with liposome tethering

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Yeol; Kim, Cheolhee; Lee, Nam Ki

    2015-04-01

    Single-molecule fluorescence resonance energy transfer (smFRET) is one of the powerful techniques for deciphering the dynamics of unsynchronized biomolecules. However, smFRET is limited in its temporal resolution for observing dynamics. Here, we report a novel method for observing real-time dynamics with submillisecond resolution by tethering molecules to freely diffusing 100-nm-sized liposomes. The observation time for a diffusing molecule is extended to 100 ms with a submillisecond resolution, which allows for direct analysis of the transition states from the FRET time trace using hidden Markov modelling. We measure transition rates of up to 1,500 s-1 between two conformers of a Holliday junction. The rapid diffusional migration of Deinococcus radiodurans single-stranded DNA-binding protein (SSB) on single-stranded DNA is resolved by FRET, faster than that of Escherichia coli SSB by an order of magnitude. Our approach is a powerful method for studying the dynamics and movements of biomolecules at submillisecond resolution.

  13. An Asymptotic Analysis of a 2-D Model of Dynamically Active Compartments Coupled by Bulk Diffusion

    NASA Astrophysics Data System (ADS)

    Gou, J.; Ward, M. J.

    2016-04-01

    A class of coupled cell-bulk ODE-PDE models is formulated and analyzed in a two-dimensional domain, which is relevant to studying quorum-sensing behavior on thin substrates. In this model, spatially segregated dynamically active signaling cells of a common small radius ɛ ≪ 1 are coupled through a passive bulk diffusion field. For this coupled system, the method of matched asymptotic expansions is used to construct steady-state solutions and to formulate a spectral problem that characterizes the linear stability properties of the steady-state solutions, with the aim of predicting whether temporal oscillations can be triggered by the cell-bulk coupling. Phase diagrams in parameter space where such collective oscillations can occur, as obtained from our linear stability analysis, are illustrated for two specific choices of the intracellular kinetics. In the limit of very large bulk diffusion, it is shown that solutions to the ODE-PDE cell-bulk system can be approximated by a finite-dimensional dynamical system. This limiting system is studied both analytically, using a linear stability analysis and, globally, using numerical bifurcation software. For one illustrative example of the theory, it is shown that when the number of cells exceeds some critical number, i.e., when a quorum is attained, the passive bulk diffusion field can trigger oscillations through a Hopf bifurcation that would otherwise not occur without the coupling. Moreover, for two specific models for the intracellular dynamics, we show that there are rather wide regions in parameter space where these triggered oscillations are synchronous in nature. Unless the bulk diffusivity is asymptotically large, it is shown that a diffusion-sensing behavior is possible whereby more clustered spatial configurations of cells inside the domain lead to larger regions in parameter space where synchronous collective oscillations between the small cells can occur. Finally, the linear stability analysis for these cell

  14. An Asymptotic Analysis of a 2-D Model of Dynamically Active Compartments Coupled by Bulk Diffusion

    NASA Astrophysics Data System (ADS)

    Gou, J.; Ward, M. J.

    2016-08-01

    A class of coupled cell-bulk ODE-PDE models is formulated and analyzed in a two-dimensional domain, which is relevant to studying quorum-sensing behavior on thin substrates. In this model, spatially segregated dynamically active signaling cells of a common small radius ɛ ≪ 1 are coupled through a passive bulk diffusion field. For this coupled system, the method of matched asymptotic expansions is used to construct steady-state solutions and to formulate a spectral problem that characterizes the linear stability properties of the steady-state solutions, with the aim of predicting whether temporal oscillations can be triggered by the cell-bulk coupling. Phase diagrams in parameter space where such collective oscillations can occur, as obtained from our linear stability analysis, are illustrated for two specific choices of the intracellular kinetics. In the limit of very large bulk diffusion, it is shown that solutions to the ODE-PDE cell-bulk system can be approximated by a finite-dimensional dynamical system. This limiting system is studied both analytically, using a linear stability analysis and, globally, using numerical bifurcation software. For one illustrative example of the theory, it is shown that when the number of cells exceeds some critical number, i.e., when a quorum is attained, the passive bulk diffusion field can trigger oscillations through a Hopf bifurcation that would otherwise not occur without the coupling. Moreover, for two specific models for the intracellular dynamics, we show that there are rather wide regions in parameter space where these triggered oscillations are synchronous in nature. Unless the bulk diffusivity is asymptotically large, it is shown that a diffusion-sensing behavior is possible whereby more clustered spatial configurations of cells inside the domain lead to larger regions in parameter space where synchronous collective oscillations between the small cells can occur. Finally, the linear stability analysis for these cell

  15. Relaxation and self-diffusion of supercooled liquids derived from picosecond timescale dynamics

    NASA Astrophysics Data System (ADS)

    Cicerone, Marcus; Zhi, Miaochan; Blakely, Brandon; Tyagi, Madhusudan

    We use neutron scattering and nonlinear optical measurements to investigate ps-ns timescale dynamics in liquid, supercooled liquid, and glassy states. The experimental observables show evidence of dynamic heterogeneity on this timescale that supports a facilitated dynamics picture. We obtain a direct measure of the concentration of molecular excitations, or mobile regions, as a function of time and temperature. Using a model broadly consistent with that proposed by Chandler and co-workers, we are able to quantitatively predict self-diffusion rates and Stokes Einstein violation deep in the supercooled regime directly from ps timescale and Angstrom - nanometer length scale measurements for all systems we have investigated. The model we employ also provides a clear physical mechanism for the Johari-Goldstein relaxation process

  16. A molecular dynamics study of nuclear quantum effect on the diffusion of hydrogen in condensed phase

    NASA Astrophysics Data System (ADS)

    Nagashima, Hiroki; Tsuda, Shin-ichi; Tsuboi, Nobuyuki; Koshi, Mitsuo; Hayashie, A. Koichi; Tokumasu, Takashi

    2014-10-01

    In this paper, the quantum effect of hydrogen molecule on its diffusivity is analyzed using Molecular Dynamics (MD) method. The path integral centroid MD (CMD) method is applied for the reproduction method of time evolution of the molecules. The diffusion coefficient of liquid hydrogen is calculated using the Green-Kubo method. The simulation is performed at wide temperature region and the temperature dependence of the quantum effect of hydrogen molecule is addressed. The calculation results are compared with those of classical MD results. As a result, it is confirmed that the diffusivity of hydrogen molecule is changed depending on temperature by the quantum effect. It is clarified that this result can be explained that the dominant factor by quantum effect on the diffusivity of hydrogen changes from the swollening the potential to the shallowing the potential well around 30 K. Moreover, it is found that this tendency is related to the temperature dependency of the ratio of the quantum kinetic energy and classical kinetic energy.

  17. Molecular dynamics calculation of rotational diffusion coefficient of a carbon nanotube in fluid.

    PubMed

    Cao, Bing-Yang; Dong, Ruo-Yu

    2014-01-21

    Rotational diffusion processes are correlated with nanoparticle visualization and manipulation techniques, widely used in nanocomposites, nanofluids, bioscience, and so on. However, a systematical methodology of deriving this diffusivity is still lacking. In the current work, three molecular dynamics (MD) schemes, including equilibrium (Green-Kubo formula and Einstein relation) and nonequilibrium (Einstein-Smoluchowski relation) methods, are developed to calculate the rotational diffusion coefficient, taking a single rigid carbon nanotube in fluid argon as a case. We can conclude that the three methods produce same results on the basis of plenty of data with variation of the calculation parameters (tube length, diameter, fluid temperature, density, and viscosity), indicative of the validity and accuracy of the MD simulations. However, these results have a non-negligible deviation from the theoretical predictions of Tirado et al. [J. Chem. Phys. 81, 2047 (1984)], which may come from several unrevealed factors of the theory. The three MD methods proposed in this paper can also be applied to other situations of calculating rotational diffusion coefficient. PMID:25669403

  18. A molecular dynamics study of nuclear quantum effect on the diffusion of hydrogen in condensed phase

    SciTech Connect

    Nagashima, Hiroki; Tokumasu, Takashi; Tsuda, Shin-ichi; Tsuboi, Nobuyuki; Koshi, Mitsuo; Hayashie, A. Koichi

    2014-10-06

    In this paper, the quantum effect of hydrogen molecule on its diffusivity is analyzed using Molecular Dynamics (MD) method. The path integral centroid MD (CMD) method is applied for the reproduction method of time evolution of the molecules. The diffusion coefficient of liquid hydrogen is calculated using the Green-Kubo method. The simulation is performed at wide temperature region and the temperature dependence of the quantum effect of hydrogen molecule is addressed. The calculation results are compared with those of classical MD results. As a result, it is confirmed that the diffusivity of hydrogen molecule is changed depending on temperature by the quantum effect. It is clarified that this result can be explained that the dominant factor by quantum effect on the diffusivity of hydrogen changes from the swollening the potential to the shallowing the potential well around 30 K. Moreover, it is found that this tendency is related to the temperature dependency of the ratio of the quantum kinetic energy and classical kinetic energy.

  19. Molecular dynamics calculation of rotational diffusion coefficient of a carbon nanotube in fluid

    NASA Astrophysics Data System (ADS)

    Cao, Bing-Yang; Dong, Ruo-Yu

    2014-01-01

    Rotational diffusion processes are correlated with nanoparticle visualization and manipulation techniques, widely used in nanocomposites, nanofluids, bioscience, and so on. However, a systematical methodology of deriving this diffusivity is still lacking. In the current work, three molecular dynamics (MD) schemes, including equilibrium (Green-Kubo formula and Einstein relation) and nonequilibrium (Einstein-Smoluchowski relation) methods, are developed to calculate the rotational diffusion coefficient, taking a single rigid carbon nanotube in fluid argon as a case. We can conclude that the three methods produce same results on the basis of plenty of data with variation of the calculation parameters (tube length, diameter, fluid temperature, density, and viscosity), indicative of the validity and accuracy of the MD simulations. However, these results have a non-negligible deviation from the theoretical predictions of Tirado et al. [J. Chem. Phys. 81, 2047 (1984)], which may come from several unrevealed factors of the theory. The three MD methods proposed in this paper can also be applied to other situations of calculating rotational diffusion coefficient.

  20. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems.

    PubMed

    Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-07-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers. PMID:26156459

  1. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-07-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.

  2. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems

    PubMed Central

    Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-01-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers. PMID:26156459

  3. Effects of Structured Ionomer Interfaces on Water Diffusion: Molecular Dynamics Simulation Insight

    NASA Astrophysics Data System (ADS)

    Aryal, Dipak; Perahia, Dvora; Grest, Gary

    The dynamics of solvent molecules across structured ionomers interfaces is crucial to innovative technologies with selective controlled transport. These polymers consist of ionizable blocks facilitating transport tethered to mechanical stability enhancing ones, where their incompatibility drives compounded interfaces. Here water penetration through the interface of an A-B-C-B-A co-polymer is probed by atomistic molecular dynamics simulations where C is a randomly sulfonated polystyrene with sulfonation fractions f = 0 to 0.55, B is poly (ethylene-r-propylene) and A is poly (t-butyl styrene). For f>0, a two-step process with slow diffusion at the early stages is observed where water molecules transverse the hydrophobic rich surface before reaching the hydrophilic regime. Water molecules then diffuse along the percolating network of the ionic center block. Increasing the temperature and sulfonation fraction enhances both the rate of diffusion and the overall water uptake. This work is partially supported by DOE: DE-SC007908.

  4. Population dynamics and wave propagation in a Lotka-Volterra system with spatial diffusion.

    PubMed

    Wang, Mao-Xiang; Lai, Pik-Yin

    2012-11-01

    We consider the competitive population dynamics of two species described by the Lotka-Volterra model in the presence of spatial diffusion. The model is described by the diffusion coefficient (d(α)) and proliferation rate (r(α)) of the species α (α = 1,2 is the species label). Propagating wave front solutions in one dimension are investigated analytically and by numerical solutions. It is found that the wave profiles and wave speeds are determined by the speed parameters, v(α) ≡ 2 sqrt [d(α)r(α)], of the two species, and the phase diagrams for various inter- and intracompetitive scenarios are determined. The steady wave front speeds are obtained analytically via nonlinear dynamics analysis and verified by numerical solutions. The effect of the intermediate stationary state is investigated and propagating wave profiles beyond the simple Fisher wave fronts are revealed. The wave front speed of a species can display abrupt increase as its speed parameter is increased. In particular for the case in which both species are aggressive, our results show that the speed parameter is the deciding factor that determines the ultimate surviving species, in contrast to the case without diffusion in which the final surviving species is decided by its initial population advantage. Possible relations to the biological relevance of modeling cancer development and wound healing are also discussed. PMID:23214815

  5. Diffusion of a self-interstitial atom in an ultrathin fcc film bonded to a rigid substrate

    NASA Astrophysics Data System (ADS)

    Shodja, Hossein M.; Tabatabaei, Maryam; Pahlevani, Ladan; Ostadhossein, Alireza

    2013-04-01

    The determination of the interstitial sites and saddle points corresponding to the diffusion of an interstitial atom in ultrathin face-centered cubic (fcc) film is of particular interest. The outcome is strongly influenced not only by the orientation of the free surface but also by the location of the defect with respect to the free surface and film-rigid substrate interface. In this article, an atomic-scale simulation is conducted to analyze the effects of depth on the out-of-plane interstitial mechanism of diffusion. To ensure reasonable accuracy and numerical convergence, the atomic interaction up to the second-nearest neighbor is considered. The ab initio examination of the above-mentioned problem associated with thin films requires a large supercell and is computationally time consuming. However, for the sake of demonstration, the values of the barrier height energy pertinent to a diffusing self-interstitial atom in the bulk material are computed using both the first principles density functional theory (DFT) and the developed technique, indicating reasonable correspondence.

  6. Temperature-dependent size exclusion chromatography for the in situ investigation of dynamic bonding/debonding reactions.

    PubMed

    Brandt, Josef; Guimard, Nathalie K; Barner-Kowollik, Christopher; Schmidt, Friedrich G; Lederer, Albena

    2013-11-01

    Polymers capable of dynamic bonding/debonding reactions are of great interest in modern day research. Potential applications can be found in the fields of self-healing materials or printable networks. Since temperature is often used as a stimulus for triggering reversible bonding reactions, an analysis operating at elevated temperatures is very useful for the in situ investigation of the reaction mechanism, as unwanted side effects can be minimized when performing the analyses at the same temperature at which the reactions occur. A temperature-dependent size exclusion chromatographic system (TD SEC) has been optimized for investigating the kinetics of retro Diels-Alder-based depolymerization of Diels-Alder polymers. The changing molecular weight distribution of the analyzed polymers during depolymerization gives valuable quantitative information on the kinetics of the reactions. Adequate data interpretation methods were developed for the correct evaluation of the chromatograms. The results are confirmed by high-temperature dynamic light scattering, thermogravimetric analysis, and time-resolved nuclear magnetic resonance spectroscopy at high temperatures. In addition, the SEC system and column material stability under application conditions were assessed using thermoanalysis methods, infrared spectroscopy, nitrogen physisorption, and scanning electron microscopy. The findings demonstrate that the system is stable and, thus, we can reliably characterize such dynamically bonding/debonding systems with TD SEC. PMID:23877179

  7. Hydrogen bond dynamics of superheated water and methanol by ultrafast IR-pump and EUV-photoelectron probe spectroscopy.

    PubMed

    Vöhringer-Martinez, E; Link, O; Lugovoy, E; Siefermann, K R; Wiederschein, F; Grubmüller, H; Abel, B

    2014-09-28

    Supercritical water and methanol have recently drawn much attention in the field of green chemistry. It is crucial to an understanding of supercritical solvents to know their dynamics and to what extent hydrogen (H) bonds persist in these fluids. Here, we show that with femtosecond infrared (IR) laser pulses water and methanol can be heated to temperatures near and above their critical temperature Tc and their molecular dynamics can be studied via ultrafast photoelectron spectroscopy at liquid jet interfaces with high harmonics radiation. As opposed to previous studies, the main focus here is the comparison between the hydrogen bonded systems of methanol and water and their interpretation by theory. Superheated water initially forms a dense hot phase with spectral features resembling those of monomers in gas phase water. On longer timescales, this phase was found to build hot aggregates, whose size increases as a function of time. In contrast, methanol heated to temperatures near Tc initially forms a broad distribution of aggregate sizes and some gas. These experimental features are also found and analyzed in extended molecular dynamics simulations. Additionally, the simulations enabled us to relate the origin of the different behavior of these two hydrogen-bonded liquids to the nature of the intermolecular potentials. The combined experimental and theoretical approach delivers new insights into both superheated phases and may contribute to understand their different chemical reactivities. PMID:25102451

  8. Chemical activity induces dynamical force with global structure in a reaction-diffusion-convection system.

    PubMed

    Mahara, Hitoshi; Okada, Koichi; Nomura, Atsushi; Miike, Hidetoshi; Sakurai, Tatsunari

    2009-07-01

    We found a rotating global structure induced by the dynamical force of local chemical activity in a thin solution layer of excitable Belousov-Zhabotinsky reaction coupled with diffusion. The surface flow and deformation associated with chemical spiral waves (wavelength about 1 mm) represents a global unidirectional structure and a global tilt in the entire Petri dish (100 mm in diameter), respectively. For these observations, we scanned the condition of hierarchal pattern selection. From this result, the bromomalonic acid has an important role to induce the rotating global structure. An interaction between a reaction-diffusion process and a surface-tension-driven effect leads to such hierarchal pattern with different scales. PMID:19658764

  9. Dynamical diffusion and renormalization group equation for the Fermi velocity in doped graphene

    NASA Astrophysics Data System (ADS)

    Ardenghi, J. S.; Bechthold, P.; Jasen, P.; Gonzalez, E.; Juan, A.

    2014-11-01

    The aim of this work is to study the electron transport in graphene with impurities by introducing a generalization of linear response theory for linear dispersion relations and spinor wave functions. Current response and density response functions are derived and computed in the Boltzmann limit showing that in the former case a minimum conductivity appears in the no-disorder limit. In turn, from the generalization of both functions, an exact relation can be obtained that relates both. Combining this result with the relation given by the continuity equation it is possible to obtain general functional behavior of the diffusion pole. Finally, a dynamical diffusion is computed in the quasistatic limit using the definition of relaxation function. A lower cutoff must be introduced to regularize infrared divergences which allow us to obtain a full renormalization group equation for the Fermi velocity, which is solved up to order O(ℏ2).

  10. Critical Role of Dynamic Flexibility in Ge-Containing Zeolites: Impact on Diffusion.

    PubMed

    Gutiérrez-Sevillano, Juan José; Calero, Sofía; Hamad, Said; Grau-Crespo, Ricardo; Rey, Fernando; Valencia, Susana; Palomino, Miguel; Balestra, Salvador R G; Ruiz-Salvador, A Rabdel

    2016-07-11

    Incorporation of germanium in zeolites is well known to confer static flexibility to their framework, by stabilizing the formation of small rings. In this work, we show that the flexibility associated to Ge atoms in zeolites goes beyond this static effect, manifesting also a clear dynamic nature, in the sense that it leads to enhanced molecular diffusion. Our study combines experimental and theoretical methods providing evidence for this effect, which has not been described previously, as well as a rationalization for it, based on atomistic grounds. We have used both pure-silica and silico-germanate ITQ-29 (LTA topology) zeolites as a case study. Based on our simulations, we identify the flexibility associated to the pore breathing-like behavior induced by the Ge atoms, as the key factor leading to the enhanced diffusion observed experimentally in Ge-containing zeolites. PMID:27305363

  11. Confinement and Diffusion Effects in Dynamical Nuclear Polarization in Low Dimensional Nanostructures

    NASA Astrophysics Data System (ADS)

    Henriksen, Dan; Tifrea, Ionel

    2012-02-01

    We investigate the dynamic nuclear polarization as it results from the hyperfine coupling between nonequilibrium electronic spins and nuclear spins in semiconductor nanostructures. The natural confinement provided by low dimensional nanostructures is responsible for an efficient nuclear spin - electron spin hyperfine coupling [1] and for a reduced value of the nuclear spin diffusion constant [2]. In the case of optical pumping, the induced nuclear spin polarization is position dependent even in the presence of nuclear spin diffusion. This effect should be measurable via optically induced nuclear magnetic resonance or time-resolved Faraday rotation experiments. We discuss the implications of our calculations for the case of GaAs quantum well structures.[4pt] [1] I. Tifrea and M. E. Flatt'e, Phys. Rev. B 84, 155319 (2011).[0pt] [2] A. Malinowski and R. T. Harley, Solid State Commun. 114, 419 (2000).

  12. Atomic packing and diffusion in Fe{sub 85}Si{sub 2}B{sub 9}P{sub 4} amorphous alloy analyzed by ab initio molecular dynamics simulation

    SciTech Connect

    Wang, Yaocen; Takeuchi, Akira; Makino, Akihiro; Liang, Yunye; Kawazoe, Yoshiyuki

    2015-05-07

    In the work reported in this paper, ab initio molecular dynamics simulation was performed on Fe{sub 85}Si{sub 2}B{sub 9}P{sub 4} amorphous alloy. Preferred atomic environment of the elements was analyzed with Voronoi polyhedrons. It showed that B and P atoms prefer less neighbors compared with Fe and Si, making them structurally incompatible with Fe rich structure and repulsive to the formation of α-Fe. However, due to the low bonding energy of B and P caused by low coordination number, the diffusion rates of them were considerably large, resulting in the requirement of fast annealing for achieving optimum nano-crystallization for its soft magnetic property. The simulation work also indicates that diffusion rate in amorphous alloy is largely determined by bonding energy rather than atomic size.

  13. Quantum dynamics study of fulvene double bond photoisomerization: The role of intramolecular vibrational energy redistribution and excitation energy

    SciTech Connect

    Blancafort, Lluis; Gatti, Fabien; Meyer, Hans-Dieter

    2011-10-07

    The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.

  14. Lateral diffusivity coefficients from the dynamics of a SF6 patch in a coastal environment

    NASA Astrophysics Data System (ADS)

    Kersalé, M.; Petrenko, A. A.; Doglioli, A. M.; Nencioli, F.; Bouffard, J.; Blain, S.; Diaz, F.; Labasque, T.; Quéguiner, B.; Dekeyser, I.

    2016-01-01

    The dispersion of a patch of the tracer sulfur hexafluoride (SF6) is used to assess the lateral diffusivity in the coastal waters of the western part of the Gulf of Lion (GoL), northwestern Mediterranean Sea, during the Latex10 experiment (September 2010). Immediately after the release, the spreading of the patch is associated with a strong decrease of the SF6 concentrations due to the gas exchange from the ocean to the atmosphere. This has been accurately quantified, evidencing the impact of the strong wind conditions during the first days of this campaign. Few days after the release, as the atmospheric loss of SF6 decreased, lateral diffusivity coefficient at spatial scales of 10 km has been computed using two approaches. First, the evolution of the patch with time was combined with a diffusion-strain model to obtain estimates of the strain rate (γ = 2.5 10- 6 s- 1) and of the lateral diffusivity coefficient (Kh = 23.2 m2 s- 1). Second, a steady state model was applied, showing Kh values similar to the previous method after a period of adjustment between 2 and 4.5 days. This implies that after such period, our computation of Kh becomes insensitive to the inclusion of further straining of the patch. Analysis of sea surface temperature satellite imagery shows the presence of a strong front in the study area. The front clearly affected the dynamics within the region and thus the temporal evolution of the patch. Our results are consistent with previous studies in open ocean and demonstrate the success and feasibility of those methods also under small-scale, rapidly-evolving dynamics typical of coastal environments.

  15. Dynamic properties and third order diffusion coefficients of ions in electrostatic fields

    NASA Astrophysics Data System (ADS)

    Koutselos, Andreas D.

    1997-05-01

    Velocity correlation functions and third order diffusion coefficients of ions moving in a buffer gas under the influence of an electrostatic field are determined via molecular dynamics simulation. For the closed shell system of K+ in Ar using a universal interaction model potential, the general form of the third order correlation functions is found to be monotonically decaying in time except in the cases of <ΔvZ(0)ΔvX(t)2>, <ΔvZ(0)ΔvY(t)2>, and <ΔvZ(0)ΔvZ(t)2>, with Δv(t)=v(t) - and the field in the z direction. These functions acquire positive slope at short times showing enhancement of correlations between instantaneous vz components of the ions and their future kinetic energies or velocity measures. This feature is shown to quantify the dynamics of correlations between velocity components suggested in the past by Ong, Hogan, Lam and Viehland [Phys. Rev. A 45, 3997 (1992)] in order to explain the form of an ion velocity distribution function calculated through a Monte Carlo simulation method. In addition, within a stochastic analysis which establishes a relation between velocity correlation functions and third order diffusion coefficients, only two independent components of the diffusion tensor, Q∥ and Q⊥, are predicted. We thereby calculate the Q⊥ component, which has not been determined so far, over a wide field range. The magnitudes of the resulting third order diffusion coefficients indicate that their contribution to the ion transport in usual drift-tube measurements should be very small.

  16. Correlated random walk on lattices. II. Tracer diffusion through a two-component dynamic background

    NASA Astrophysics Data System (ADS)

    Tahir-Kheli, R. A.

    1983-06-01

    A detailed calculation of frequency- and wave-vector-dependent correlation functions for an arbitrary tracer diffusing in a regular crystal against a background of hopping classical particles has recently been given by Tahir-Kheli and Elliott

    [Phys. Rev. B 27, 844 (1983)]
    . Here we present an important generalization of this work to a system with a dynamic background consisting of two arbitrary species of particles. In particular, the generalization includes a system where the tracer concentration itself is finite while an arbitrary concentration of other atoms is also present in the dynamic stream. The theory is exact to the leading nontrivial order in particle concentration xA and xB. In the intermediate-concentration regime, the theory incorporates dominant fluctuations from the mean field. The present model can serve to usefully describe incoherent neutron scattering in metal-hydride interstitial solutions such as MAxABxB with A,B≡H, D, and T and M≡Pd and Ti. Moreover, it can be used to treat tracer diffusion dynamics in nonstoichiometric metal oxides and, somewhat more simplistically, ionic conduction in the superionic state.

  17. Dynamical approach to anomalous diffusion: Response of Lévy processes to a perturbation

    NASA Astrophysics Data System (ADS)

    Trefán, György; Floriani, Elena; West, Bruce J.; Grigolini, Paolo

    1994-10-01

    Lévy statistics are derived from a dynamical system, which can be either Hamiltonian or not, using a master equation approach. We compare these predictions to the random walk approach recently developed by Zumofen and Klafter for both the nonstationary [Phys. Rev. E 47, 851 (1993)] and stationary [Physica A 196, 102 (1993)] case. We study the unperturbed dynamics of the system analytically and numerically and evaluate the time evolution of the second moment of the probability distribution. We also study the response of the dynamical system undergoing anomalous diffusion to an external perturbation and show that if the slow regression to equilibrium of the variable ``velocity'' is triggered by the perturbation, the process of diffusion of the ``space'' variable takes place under nonstationary conditions and a conductivity steadily increasing with time is generated in the early part of the response process. In the regime of extremely long times the conductivity becomes constant with a value, though, that does not correspond to the prescriptions of the ordinary Green-Kubo treatments.

  18. Dissipative particle dynamics study of translational diffusion of rigid-chain rodlike polymer in nematic phase

    NASA Astrophysics Data System (ADS)

    Zhao, Tongyang; Wang, Xiaogong

    2013-09-01

    In this study, dissipative particle dynamics (DPD) method was employed to investigate the translational diffusion of rodlike polymer in its nematic phase. The polymer chain was modeled by a rigid rod composed of consecutive DPD particles and solvent was represented by independent DPD particles. To fully understand the translational motion of the rods in the anisotropic phase, four diffusion coefficients, D_{||}u, D_ bot u, D_{||}n, D_ bot n were obtained from the DPD simulation. By definition, D_{||}n and D_ bot n denote the diffusion coefficients parallel and perpendicular to the nematic director, while D_{||}u and D_ bot u denote the diffusion coefficients parallel and perpendicular to the long axis of a rigid rod u. In the simulation, the velocity auto-correlation functions were used to calculate the corresponding diffusion coefficients from the simulated velocity of the rods. Simulation results show that the variation of orientational order caused by concentration and temperature changes has substantial influences on D_{||}u and D_ bot u. In the nematic phase, the changes of concentration and temperature will result in a change of local environment of rods, which directly influence D_{||}u and D_ bot u. Both D_{||}n and D_ bot n can be represented as averages of D_{||}u and D_ bot u, and the weighted factors are functions of the orientational order parameter S2. The effect of concentration and temperature on D_{||}n and D_ bot n demonstrated by the DPD simulation can be rationally interpreted by considering their influences on D_{||}u, D_ bot u and the order parameter S2.

  19. Dynamics of surface thermal expansion and diffusivity using two-color reflection transient gratings

    SciTech Connect

    Pennington, D.M.; Harris, C.B.

    1993-02-01

    We report ultrafast measurements of the dynamic thermal expansion of a surface and the temperature dependent surface thermal diffusivity using a two-color reflection transient grating technique. Studies were performed on p-type, n-type, and undoped GaAs(100) samples at several temperatures. Using a 75 fs ultraviolet probe with visible excitation beams, the electronic effects that dominate single color experiments become negligible; thus surface expansion due to heating and the subsequent contraction caused by cooling provide the dominant influence on the diffracted probe. The diffracted signal was composed of two components, thermal expansion of the surface and heat flow away from the surface, allowing the determination of the rate of expansion as well as the surface thermal diffusivity. At room temperature a signal rise due to thermal expansion was observed, corresponding to a maximum average displacement of {approx} 1 {angstrom} at 32 ps. Large fringe spacings were used, thus the dominant contributions to the signal were expansion and diffusion perpendicular to the surface. Values for the surface thermal diffusivity of GaAs were measured and found to be in reasonable agreement with bulk values above 50{degrees}K. Below 50{degrees}K, the diffusivity at the surface was more than an order of magnitude slower than in the bulk due to increased phonon boundary scattering. Comparison of the results with a straightforward thermal model yields good agreement over a range of temperatures (12--300{degrees}K). The applicability and advantages of the transient grating technique for studying photothermal and photoacoustic phenomena are discussed.

  20. Simple analytical forms of the perpendicular diffusion coefficient for two-component turbulence. II. Dynamical turbulence with constant correlation time

    SciTech Connect

    Shalchi, A.

    2014-01-10

    We explore perpendicular diffusion based on the unified nonlinear transport theory. In Paper I, we focused on magnetostatic turbulence, whereas in the present article we include dynamical turbulence effects. For simplicity, we assume a constant correlation time. We show that there is now a nonvanishing contribution of the slab modes. We explore the parameter regimes in which the turbulence dynamics becomes important for perpendicular diffusion. Analytical forms for the perpendicular diffusion coefficient are derived, which can be implemented easily in solar modulation or shock acceleration codes.

  1. Spatio-temporal filtration of dynamic CT data using diffusion filters

    NASA Astrophysics Data System (ADS)

    Bruder, H.; Raupach, R.; Klotz, E.; Stierstorfer, K.; Flohr, T.

    2009-02-01

    We present a method for spatio-temporal filtration of dynamic CT data, to increase the signal-to-noise ratio (SNR) of image data at the same time maintaining image quality, in particular spatial and temporal sharpness of the images. Alternatively, the radiation dose applied to the patient can be reduced at the same time maintaining the noise level and the image sharpness. In contrast to classical methods, which generally operate on the three spatial dimensions of image data, noise statistics is improved by extending the filtration to the temporal dimension. Our approach is based on nonlinear and anisotropic diffusion filters, which are based on a model of heat diffusion adapted to medical CT data. Bilateral filters are a special class of diffusion filters, which do not need iteration to reach a convergence image, but represent the fixed point of a dedicated diffusion filter. Spatio-temporal, anisotropic bilateral filters are developed and applied to dynamic CT image data. The potential was evaluated using data from perfusion CT and cardiac dual source CT (DSCT) data, respectively. It was shown, that in perfusion CT, SNR can be improved by a factor of 4 at the same radiation dose. On basis of clinical data it was shown, that alternatively the radiation dose to the patient can be reduced by a factor of at least 2. A more accurate evaluation of the perfusion parameters blood flow, blood volume and time-to-peak is supported. In DSCT noise statistics can be improved using more projection data than needed for image reconstruction, however, as a consequence the temporal resolution is significantly impaired. Due to the anisotropy of the spatio-temporal bilateral filter temporal contrast edges between adjacent time samples are preserved, at the same time substantially smoothing image data in homogeneous regions. Also temporal contrast edges are preserved, maintaining the very high temporal resolution of DSCT acquisitions (~ 80 ms). CT examinations of the heart require

  2. Control of X-ray Induced Electron and Nuclear Dynamics in Ammonia and Glycine Aqueous Solution via Hydrogen Bonding.

    PubMed

    Unger, Isaak; Hollas, Daniel; Seidel, Robert; Thürmer, Stephan; Aziz, Emad F; Slavíček, Petr; Winter, Bernd

    2015-08-20

    Recently, a new family of autoionization processes has been identified in aqueous phases. The processes are initiated by core-electron ionization of a solute molecule and involve proton transfer along the solute-solvent hydrogen bond. As a result, short-lived singly charged cations form with structures sharing a proton between solute and solvent molecules. These molecular transients decay by autoionization, which creates reactive dicationic species with the positive charges delocalized over the entire molecular entity. Here, we investigate the ultrafast electron and nuclear dynamics following the core ionization of hydrated ammonia and glycine. Both molecules serve as models for exploring the possible role of the nonlocal relaxation processes in the chemical reactivity at the interface between, for instance, a protein surface and aqueous solution. The nature of the postionization dynamical processes is revealed by high-accuracy Auger-electron spectroscopy measurements on liquid microjets in vacuum. The proton-transfer-mediated processes are identified by electron signals in the high-energy tail of the Auger spectra with no analogue in the Auger spectra of the corresponding gas-phase molecule. This high-energy tail is suppressed for deuterated molecules. Such an isotope effect is found to be smaller for aqueous ammonia as compared to the hydrated H2O molecule, wherein hydrogen bonds are strong. An even weaker hydrogen bonding for the hydrated amino groups in glycine results in a negligibly small proton transfer. The dynamical processes and species formed upon the nitrogen-1s core-level ionization are interpreted using methods of quantum chemistry and molecular dynamics. With the assistance of such calculations, we discuss the conditions for the proton-transfer-mediated relaxation processes to occur. We also consider the solvent librational dynamics as an alternative intermolecular ultrafast relaxation pathway. In addition, we provide experimental evidence for the

  3. Modeling Earth's Outer Radiation Belt Electron Dynamics---Radial Diffusion, Heating, and Loss

    NASA Astrophysics Data System (ADS)

    Tu, Weichao

    belt electrons at low altitudes demonstrate that the adiabatic flux drop of electrons during the storm main phase is both altitude and storm dependent. During the main phase of a moderate geomagnetic storm, due solely to adiabatic effects a satellite at low altitude sees either zero electron flux or a fractional flux drop depending on its altitude. To physically quantify the radial diffusion rate, we use power spectral density and global mode structure of the Ultra-Low-Frequency (ULF) waves, which are derived from the Lyon-Fedder-Mobarry (LFM) MHD simulation and validated by field data from real satellites. The calculated total diffusion rate is shown to be dominated by the contribution from magnetic field perturbations, and much less from the electric field. Fast diffusion generally occurs when solar wind dynamic pressure is high or nightside geomagnetic activity is strong and with higher diffusion rates at higher L regions. Work performed in this thesis provides realistic loss rate and radial diffusion rate of radiation belt electrons, as well as a comprehensive Fokker-Planck model that can take the loss and radial diffusion rates as inputs and then determine the internal heating rate with less uncertainty. By this approach, we will be able to quantitatively understand the relative contribution of radial diffusion, wave heating, and loss to the variations of radiation belt electrons.

  4. Strong bonding between sputtered bioglass-ceramic films and Ti-substrate implants induced by atomic inter-diffusion post-deposition heat-treatments

    NASA Astrophysics Data System (ADS)

    Stan, G. E.; Popa, A. C.; Galca, A. C.; Aldica, G.; Ferreira, J. M. F.

    2013-09-01

    Bioglasses (BG) are the inorganic materials exhibiting the highest indices of bioactivity. Their appliance as films for bio-functionalization of metallic implant surfaces has been regarded as an optimal solution for surpassing their limited bulk mechanical properties. This study reports on magnetron sputtering of alkali-free BG thin films by varying the target-to-substrate working distance, which proved to play an important role in determining the films’ properties. Post deposition heat-treatments at temperatures slightly above the glass transformation temperature were then applied to induce inter-diffusion processes at the BG/titanium substrate interface and strengthening the bonding as determined by pull-out adherence measurements. The morphological and structural features assessed by SEM-EDS, XRD, and FTIR revealed a good correlation between the formations of inter-metallic titanium silicide phases and the films’ bonding strength. The highest mean value of pull-out adherence (60.3 ± 4.6 MPa), which is adequate even for load-bearing biomedical applications, was recorded for films deposited at a working distance of 35 mm followed by a heat-treatment at 750 °C for 2 h in air. The experimental findings are explained on the basis of structural, compositional and thermodynamic considerations.

  5. Diffusion Rates for Hydrogen on Pd(111) from Molecular Quantum Dynamics Calculations.

    PubMed

    Firmino, Thiago; Marquardt, Roberto; Gatti, Fabien; Dong, Wei

    2014-12-18

    The van Hove formula for the dynamical structure factor (DSF) related to particle scattering at mobile adsorbates is extended to include the relaxation of the adsorbates' vibrational states. The total rate obtained from the DSF is assumed to be the sum of a diffusion and a relaxation rate. A simple kinetic model to support this assumption is presented. To illustrate its potential applicability, the formula is evaluated using wave functions, energies, and lifetimes of vibrational states obtained for H/Pd(111) from first-principle calculations. Results show that quantum effects can be expected to be important even at room temperature. PMID:26273973

  6. An electrically-activated dynamic tissue-equivalent phantom for assessment of diffuse optical imaging systems.

    PubMed

    Hebden, Jeremy C; Brunker, Joanna; Correia, Teresa; Price, Ben D; Gibson, Adam P; Everdell, N L

    2008-01-21

    A novel design of solid dynamic phantom with tissue-like optical properties is presented, which contains variable regions of contrast which are activated electrically. Reversible changes in absorption are produced by localized heating of targets impregnated with thermochromic pigment. A portable, battery-operated prototype has been constructed, and its optical and temporal characteristics have been investigated. The phantom has been developed as a means of assessing the performance of diffuse optical imaging systems, such as those used to monitor haemodynamic changes in the brain and other tissues. Images of the phantom have been reconstructed using data acquired with a continuous wave optical topography system. PMID:18184989

  7. An electrically-activated dynamic tissue-equivalent phantom for assessment of diffuse optical imaging systems

    NASA Astrophysics Data System (ADS)

    Hebden, Jeremy C.; Brunker, Joanna; Correia, Teresa; Price, Ben D.; Gibson, Adam P.; Everdell, N. L.

    2008-01-01

    A novel design of solid dynamic phantom with tissue-like optical properties is presented, which contains variable regions of contrast which are activated electrically. Reversible changes in absorption are produced by localized heating of targets impregnated with thermochromic pigment. A portable, battery-operated prototype has been constructed, and its optical and temporal characteristics have been investigated. The phantom has been developed as a means of assessing the performance of diffuse optical imaging systems, such as those used to monitor haemodynamic changes in the brain and other tissues. Images of the phantom have been reconstructed using data acquired with a continuous wave optical topography system.

  8. Dynamic diffuse optical tomography for assessing changes of breast tumors during neoadjuvant chemotherapy

    NASA Astrophysics Data System (ADS)

    Gunther, Jacqueline E.; Lim, Emerson; Kim, Hyun Keol; Brown, Mindy; Refice, Susan; Kalinsky, Kevin; Hershman, Dawn; Hielscher, Andreas H.

    2015-03-01

    We have developed a dynamic diffuse optical tomography imaging system that is capable of 3D imaging of both breasts simultaneously. In an ongoing study subjects receiving neoadjuvant chemotherapy are imaged at 6 time points throughout their 5-month treatment. At each time point the subjects preform a breath hold to observe the hemodynamic effects in the breasts. For each session the percent change of various hemodynamic parameters during the breath hold is determined. Preliminary results from show statistically significant differences in washout rates and deoxyhemoglobin changes at the 2-week imaging point between subjects that respond and do not respond to treatment.

  9. Water vapor diffusion effects on gas dynamics in a sonoluminescing bubble.

    PubMed

    Xu, Ning; Apfel, Robert E; Khong, Anthony; Hu, Xiwei; Wang, Long

    2003-07-01

    Calculations based on a consideration of gas diffusion of gas dynamics in a sonoluminescing bubble filled with a noble gas and water vapor are carried out. Xenon-, argon-, and helium-filled bubbles are studied. In the absence of shock waves, bubble temperatures are found to be decreased, a decrease attributable to the large heat capacity of water vapor. Peak bubble temperature reductions are seen in bubbles containing Xe or Ar but not in those containing He. Further extrapolations provide evidence for the occurrence of shock waves in bubbles with Xe and water vapor. No shock waves are observed in bubbles with Ar or He. PMID:12935248

  10. Interface Dynamics of a Metastable Mass-Conserving Spatially Extended Diffusion

    NASA Astrophysics Data System (ADS)

    Berglund, Nils; Dutercq, Sébastien

    2016-01-01

    We study the metastable dynamics of a discretised version of the mass-conserving stochastic Allen-Cahn equation. Consider a periodic one-dimensional lattice with N sites, and attach to each site a real-valued variable, which can be interpreted as a spin, as the concentration of one type of metal in an alloy, or as a particle density. Each of these variables is subjected to a local force deriving from a symmetric double-well potential, to a weak ferromagnetic coupling with its nearest neighbours, and to independent white noise. In addition, the dynamics is constrained to have constant total magnetisation or mass. Using tools from the theory of metastable diffusion processes, we show that the long-term dynamics of this system is similar to a Kawasaki-type exchange dynamics, and determine explicit expressions for its transition probabilities. This allows us to describe the system in terms of the dynamics of its interfaces, and to compute an Eyring-Kramers formula for its spectral gap. In particular, we obtain that the spectral gap scales like the inverse system size squared.

  11. Fast excited state dynamics in the isolated 7-azaindole-phenol H-bonded complex

    NASA Astrophysics Data System (ADS)

    Capello, Marcela C.; Broquier, Michel; Dedonder-Lardeux, Claude; Jouvet, Christophe; Pino, Gustavo A.

    2013-02-01

    The excited state dynamics of the H-bonded 7-azaindole-phenol complex (7AI-PhOH) has been studied by combination of picosecond pump and probe experiments, LIF measurements on the nanosecond time scale and ab initio calculations. A very short S1 excited state lifetime (30 ps) has been measured for the complex upon excitation of the 0_0^0 transition and the lifetime remains unchanged when the ν6 vibrational mode (0_0^0 + 127 cm-1) is excited. In addition, no UV-visible fluorescence was observed by exciting the complex with nanosecond pulses. Two possible deactivation channels have been investigated by ab initio calculations: first an excited state tautomerization assisted by a concerted double proton transfer (CDPT) and second an excited state concerted proton electron transfer (CPET) that leads to the formation of a radical pair (hydrogenated 7AIH• radical and phenoxy PhO• radical). Both channels, CDPT and CPET, seem to be opened according to the ab initio calculations. However, the analysis of the ensemble of experimental and theoretical evidence indicates that the excited state tautomerization assisted by CDPT is quite unlikely to be responsible for the fast S1 state deactivation. In contrast, the CPET mechanism is suggested to be the non-radiative process deactivating the S1 state of the complex. In this mechanism, the lengthening of the OH distance of the PhOH molecule induces an electron transfer from PhOH to 7AI that is followed by a proton transfer in the same kinetic step. This process leads to the formation of the radical pair (7AIH•ṡṡṡPhO•) in the electronically excited state through a very low barrier or to the ion pair (7AIH+ṡṡṡPhO-) in the ground state. Moreover, it should be noted that, according to the calculations the πσ* state, which is responsible for the H loss in the free PhOH molecule, does not seem to be involved at all in the quenching process of the 7AI-PhOH complex.

  12. N vacancy, self-interstitial diffusion, and Frenkel-pair formation/dissociation in TiN studied by ab-initio and classical molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sangiovanni, Davide G.; Alling, Björn; Hultman, Lars; Abrikosov, Igor A.

    2015-03-01

    We use ab-initio and classical molecular dynamics (AIMD, CMD) to simulate diffusion of N vacancy and N self-interstitial point-defects in B1 TiN. The physical properties of TiN, important material system for thin film and coatings applications, are largely dictated by concentration and mobility of point defects. We determine N dilute-point-defect diffusion pathways, activation energies, attempt frequencies, and diffusion coefficients as a function of temperature. In addition, MD simulations reveal an unanticipated atomistic process, which controls the spontaneous formation of N-self-interstitial/N-vacancy pairs (Frenkel pairs) in defect-free TiN. This entails that a N lattice atom leaves its bulk position and bonds to a neighboring N lattice atom. In most cases, Frenkel-pair NI and NV recombine within a fraction of ns; 50% of these processes result in the exchange of two nitrogen lattice atoms. Occasionally, however, Frenkel-pair N-interstitial atoms permanently escape from the anion vacancy site, thus producing unpaired NI and NV point defects. The Knut and Alice Wallenberg foundation (Isotope Project, 2011.0094), the Swedish Research Council (VR) Linköping Linnaeus Initiative LiLi-NFM (Grant 2008-6572), and the Swedish Government Strategic Research (Grant MatLiU 2009-00971).

  13. Diffusion Dynamics of Charged Dust Particles in Capacitively Coupled RF Discharge System

    SciTech Connect

    Chew, W. X.; Muniandy, S. V.; Wong, C. S.; Yap, S. L.; Tan, K. S.

    2011-03-30

    Dusty plasma is loosely defined as electron-ion plasma with additional charged components of micron-sized dust particles. In this study, we developed a particle diagnostic technique based on light scattering and particle tracking velocimetry to investigate the dynamics of micron-sized titanium oxide particles in Argon gas capacitively coupled rf-discharge. The particle trajectories are constructed from sequence of image frames and treated as sample paths of charged Brownian motion. At specific sets of plasma parameters, disordered liquid-like dust particle configuration are observed. Mean-square-displacement of the particle trajectories are determined to characterize the transport dynamics. We showed that the dust particles in disordered liquid phase exhibit anomalous diffusion with different scaling exponents for short and large time scales, indicating the presence of slow and fast modes which can be related to caging effect and dispersive transport, respectively.

  14. Fractional diffusion on circulant networks: emergence of a dynamical small world

    NASA Astrophysics Data System (ADS)

    Riascos, A. P.; Mateos, José L.

    2015-07-01

    In this paper, we study fractional random walks on networks defined from the equivalent of the fractional diffusion equation in graphs. We explore this process analytically in circulant networks; in particular, interacting cycles and limit cases such as a ring and a complete graph. From the spectra and the eigenvectors of the Laplacian matrix, we deduce explicit results for different quantities that characterize this dynamical process. We obtain analytical expressions for the fractional transition matrix, the fractional degrees and the average probability of return of the random walker. Also, we discuss the Kemeny constant, which gives the average number of steps necessary to reach any site of the network. Throughout this work, we analyze the mechanisms behind fractional transport on circulant networks and how this long-range process dynamically induces the small-world property in different structures.

  15. Molecular Dynamics and Monte Carlo simulations resolve apparent diffusion rate differences for proteins confined in nanochannels

    NASA Astrophysics Data System (ADS)

    Tringe, J. W.; Ileri, N.; Levie, H. W.; Stroeve, P.; Ustach, V.; Faller, R.; Renaud, P.

    2015-08-01

    We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage. Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.

  16. Quantum phase communication channels in the presence of static and dynamical phase diffusion

    NASA Astrophysics Data System (ADS)

    Trapani, Jacopo; Teklu, Berihu; Olivares, Stefano; Paris, Matteo G. A.

    2015-07-01

    We address quantum communication channels based on phase modulation of coherent states and analyze in detail the effects of static and dynamical (stochastic) phase diffusion. We evaluate mutual information for an ideal phase receiver and for a covariant phase-space-based receiver, and compare their performances by varying the number of symbols in the alphabet and/or the overall energy of the channel. Our results show that phase communication channels are generally robust against phase noise, especially for large alphabets in the low-energy regime. In the presence of dynamical (non-Markovian) noise the mutual information is preserved by the time correlation of the environment, and when the noise spectra are detuned with respect to the information carrier, revivals of mutual information appear.

  17. Pulsation-resolved deep tissue dynamics measured with diffusing-wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Jun; Jaillon, Franck; Dietsche, Gregor; Maret, Georg; Gisler, Thomas

    2006-08-01

    We present a technique for measuring transient microscopic dynamics within deep tissue with sub-second temporal resolution, using diffusing-wave spectroscopy with gated single-photon avalanche photodiodes (APDs) combined with standard ungated multi-tau correlators. Using the temporal autocorrelation function of a reference signal allows to correct the temporal intensity autocorrelation function of the sample signal for the distortions induced by the non-constant average photon count rate. We apply this technique to pulsation-synchronized measurements of tissue dynamics in humans. Measurements on the forearm show no dependence on the pulsation phase. In contrast, the decay rate of the DWS signal measured on the wrist over the radial artery shows a pulsation-induced modulation of 60-90% consistent with pulsatile variations of arterial erythrocyte flow velocity. This might make time-resolved DWS interesting as a sensitive and fast method for investigating deep tissue perfusion, e.g. in intensive care.

  18. Multicomponent Diffusion of Penetrant Mixtures in Rubbery Polymers: A Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Bringuier, Stefan; Varady, Mark; Knox, Craig; Cabalo, Jerry; Pearl, Thomas; Mantooth, Brent

    The importance of understanding transport of chemical species across liquid-solid boundaries is of particular interest in the decontamination of harmful chemicals absorbed within polymeric materials. To characterize processes associated with liquid-phase extraction of absorbed species from polymers, it is necessary to determine an appropriate physical description of species transport in multicomponent systems. The Maxwell-Stefan (M-S) formulation is a rigorous description of mass transport in multicomponent solutions, in which, mutual diffusivities determine the degree of relative motion between interacting molecules in response to a chemical potential gradient. The work presented focuses on the determination of M-S diffusivities from molecular dynamics (MD) simulations of nerve agent O-ethyl S-[2(diisopropylamino)ethyl] methylphosphonothioate (VX), water, and methanol mixtures within a poly(dimethylsiloxane) matrix. We investigate the composition dependence of M-S diffusivities and compare the results to values predicted using empirical relations for binary and ternary mixtures. Finally, we highlight the pertinent differences in molecular mechanisms associated with species transport and employ non-equilibrium MD to probe transport across the mixture-polymer interface.

  19. Effect of self-interstitial diffusion anisotropy in electron-irradiated zirconium: A cluster dynamics modeling

    NASA Astrophysics Data System (ADS)

    Christien, F.; Barbu, A.

    2005-11-01

    A model based on the cluster dynamics approach was proposed in [A. Hardouin Duparc, C. Moingeon, N. Smetniansky-de-Grande, A. Barbu, J. Nucl. Mater. 302 (2002) 143] to describe point defect agglomeration in metals under irradiation. This model is restricted to materials where point defect diffusion is isotropic and is thus not applicable to anisotropic metals such as zirconium. Following the approach proposed by Woo [C.H. Woo, J. Nucl. Mater. 159 (1988) 237], we extended in this work the model to the case where self-interstitial atoms (SIA) diffusion is anisotropic. The model was then applied to the loop microstructure evolution of a zirconium thin foil irradiated with electrons in a high-voltage microscope. First, the inputs were validated by comparing the numerical results with Hellio et al. experimental results [C. Hellio, C.H. de Novion, L. Boulanger, J. Nucl. Mater. 159 (1988) 368]. Further calculations were made to evidence the effect of the thin foil orientation on the dislocation loop microstructure under irradiation. The result is that it is possible to reproduce for certain orientations the 'unexpected' vacancy loop growth experimentally observed in electron-irradiated zirconium [M. Griffiths, M.H. Loretto, R.E. Sallmann, J. Nucl. Mater. 115 (1983) 313; J. Nucl. Mater. 115 (1983) 323; Philos. Mag. A 49 (1984) 613]. This effect is directly linked to SIA diffusion anisotropy.

  20. Investigations of interhydrogen bond dynamical coupling effects in the polarized IR spectra of acetanilide crystals.

    PubMed

    Flakus, Henryk T; Michta, Anna

    2010-02-01

    This Article presents the investigation results of the polarized IR spectra of the hydrogen bond in acetanilide (ACN) crystals measured in the frequency range of the proton and deuteron stretching vibration bands, nu(N-H) and nu(N-D). The basic spectral properties of the crystals were interpreted quantitatively in terms of the "strong-coupling" theory. The model of the centrosymmetric dimer of hydrogen bonds postulated by us facilitated the explanation of the well-developed, two-branch structure of the nu(N-H) and nu(N-D) bands as well as the isotopic dilution effects in the spectra. On the basis of the linear dichroic and temperature effects in the polarized IR spectra of ACN crystals, the H/D isotopic "self-organization" effects were revealed. A nonrandom distribution of hydrogen isotope atoms (H or D) in the lattice was deduced from the spectra of isotopically diluted ACN crystals. It was also determined that identical hydrogen isotope atoms occupy both hydrogen bonds in the dimeric systems, where each hydrogen bond belongs to a different chain. A more complex fine structure pattern of nu(N-H) and nu(N-D) bands in ACN spectra in comparison with the spectra of other secondary amides (e.g., N-methylacetamide) can be explained in terms of the "relaxation" theory of the IR spectra of hydrogen-bonded systems. PMID:20055492