Science.gov

Sample records for dynamic hopkinson bar

  1. Implementation of viscoelastic Hopkinson bars

    NASA Astrophysics Data System (ADS)

    Curry, R.; Cloete, T.; Govender, R.

    2012-08-01

    Knowledge of the properties of soft, viscoelastic materials at high strain rates are important in furthering our understanding of their role during blast or impact events. Testing these low impedance materials using a metallic split Hopkinson pressure bar setup results in poor signal to noise ratios due to impedance mismatching. These difficulties are overcome by using polymeric Hopkinson bars. Conventional Hopkinson bar analysis cannot be used on the polymeric bars due to the viscoelastic nature of the bar material. Implementing polymeric Hopkinson bars requires characterization of the viscoelastic properties of the material used. In this paper, 30 mm diameter Polymethyl Methacrylate bars are used as Hopkinson pressure bars. This testing technique is applied to polymeric foam called Divinycell H80 and H200. Although there is a large body of of literature containing compressive data, this rarely deals with strain rates above 250s-1 which becomes increasingly important when looking at the design of composite structures where energy absorption during impact events is high on the list of priorities. Testing of polymeric foams at high strain rates allows for the development of better constitutive models.

  2. Dynamic photoelasticity with a split Hopkinson pressure bar

    NASA Astrophysics Data System (ADS)

    Morris, David R.; Watson, A. J.

    1991-04-01

    To observe the behaviour of materials subject to impact shock loads, accurate high frequency measurements are vital. The measurement of ultra short pulses (less than 50 microseconds) can be carried out by means of electrical resistance strain guages (ERSGs) . The ERSG's also pick up electromagnetic interference signals. Dynamic photoelasticity was used as a check for the ERSG records. Dynamic photoelastic tests were carried out using a Barr and Stroud CP5 high speed rotating mirror camera. The timing of the event and illumination was critical. Important confirmatory results were obtained by this technique.

  3. Hopkinson pressure bar set-up for the measurement of Bauschinger effect under dynamic loading

    NASA Astrophysics Data System (ADS)

    Ruggiero, Andrew; Bonora, Nicola; Iannitti, Gianluca

    2013-06-01

    Metals and alloys show different stress-strain characteristics under reverse loading cycle (Bauschinger effect). The knowledge of the effective material response is important in impact dynamics where material is subjected to compression-tension loading as a result of stress wave propagation. In this paper an experimental set-up of the Hopkinson pressure bar to characterize the material response under dynamic loading cycle is presented. In the proposed configuration, in one single test, the sample is subjected to tension and compression loading with same absolute stress intensity and duration. Also this solution allows the possibility to select the load cycle sequence (tension-compression or compression-tension). Relationships to determine the stress, strain rate and strain from the elastic signals at the bars which are also effective for the second stress pulse, are presented. The method was verified with FEM and used to determine the Bauschinger effect for AISI 316L stainless steel.

  4. A regularized model for impact in explicit dynamics applied to the split Hopkinson pressure bar

    NASA Astrophysics Data System (ADS)

    Otto, Peter; De Lorenzis, Laura; Unger, Jörg F.

    2016-07-01

    In the numerical simulation of impact phenomena, artificial oscillations can occur due to an instantaneous change of velocity in the contact area. In this paper, a nonlinear penalty regularization is used to avoid these oscillations. A particular focus is the investigation of higher order methods in space and time to increase the computational efficiency. The spatial discretization is realized by higher order spectral element methods that are characterized by a diagonal mass matrix. The time integration scheme is based on half-explicit Runge-Kutta scheme of fourth order. For the conditionally stable scheme, the critical time step is influenced by the penalty regularization. A framework is presented to adjust the penalty stiffness and the time step for a specific mesh to avoid oscillations. The methods presented in this paper are applied to 1D-simulations of a split Hopkinson pressure bar, which is commonly used for the investigation of materials under dynamic loading.

  5. Experimental issues and interpretation of the necking phenomena in the dynamic characterization via Hopkinson bar

    NASA Astrophysics Data System (ADS)

    Mirone, Giuseppe; Corallo, Domenico

    2015-09-01

    The usual procedures for processing experimental data from Hopkinson bars (HB) are based on modeling hypotheses which, in some cases, may lead to considerable approximations. The effects of the specimen geometry and of the necking are analysed, both experimentally and by FE analyses, for assessing how much the conventional values of strain rate, strain and stress, based on strain gauges readings along the HB, are affected by approximations in different testing conditions. Also, from the way the necking affects the load/area ratio, useful considerations arise about the hardening response of metal alloys under high strain rates. The sensitivity of stress-strain curves to the time-translations of strain waves along the bars is assessed by comparing the above curves to others where the strain, the strain rate and the current cross section come from speed camera image analyses. This clearly shows that the effective strain rate in the most strained areas of the specimens is many times higher than the nominal value, and also allows to explore how much the engineering curve is poorly representative of the material response, due to strain localization in the post-necking phase. The necking-affected length compared to the total gauge length is also found to significantly influence the strain response of the specimens, in a way that can easily mislead the experimenters in the derivation of the material ductility. An empirical relationship, already found to be valid in the post-necking quasi-static regime for transforming the true stress (load / current area) into an estimation of the cross section-averaged equivalent stress, is also found to apply at high strain rates if only the appropriate considerations are done on the way the equivalent stress is considered.

  6. High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading.

    PubMed

    Hudspeth, M; Claus, B; Dubelman, S; Black, J; Mondal, A; Parab, N; Funnell, C; Hai, F; Qi, M L; Fezzaa, K; Luo, S N; Chen, W

    2013-02-01

    The successful process of amalgamating both the time-resolved imaging capabilities present at the Advanced Photon Source beamline 32ID-B and the proficiency of high-rate loading offered by the split Hopkinson or Kolsky compression/tension bar apparatus is discussed and verification of system effectiveness is expressed via dynamic experiments on various material systems. Single particle sand interaction along with glass cracking during dynamic compression, and fiber-epoxy interfacial failure, ligament-bone debonding, and single-crystal silicon fragmentation due to dynamic tension, were imaged with 0.5 μs temporal resolution and μm-level spatial resolution. Synchrotron x-ray phase contrast imaging of said material systems being loaded with the Kolsky bar apparatus demonstratively depicts the effectiveness of the novel union between these two powerful techniques, thereby allowing for in situ analysis of the interior of the material system during high-rate loading for a variety of applications. PMID:23464246

  7. Blast Quantification Using Hopkinson Pressure Bars.

    PubMed

    Clarke, Samuel D; Fay, Stephen D; Rigby, Samuel E; Tyas, Andrew; Warren, James A; Reay, Jonathan J; Fuller, Benjamin J; Gant, Matthew T A; Elgy, Ian D

    2016-01-01

    Near-field blast load measurement presents an issue to many sensor types as they must endure very aggressive environments and be able to measure pressures up to many hundreds of megapascals. In this respect the simplicity of the Hopkinson pressure bar has a major advantage in that while the measurement end of the Hopkinson bar can endure and be exposed to harsh conditions, the strain gauge mounted to the bar can be affixed some distance away. This allows protective housings to be utilized which protect the strain gauge but do not interfere with the measurement acquisition. The use of an array of pressure bars allows the pressure-time histories at discrete known points to be measured. This article also describes the interpolation routine used to derive pressure-time histories at un-instrumented locations on the plane of interest. Currently the technique has been used to measure loading from high explosives in free air and buried shallowly in various soils. PMID:27404117

  8. New experimental techniques with the split Hopkinson pressure bar

    SciTech Connect

    Frantz, C.E.; Follansbee, P.S.; Wright, W.J.

    1984-01-01

    The split Hopkinson pressure bar or Kolsky bar has provided for many years a technique for performing compression tests at strain rates approaching 10/sup 4/ s/sup -1/. At these strain rates, the small dimensions possible in a compression test specimen give an advantage over a dynamic tensile test by allowing the stress within the specimen to equilibrate within the shortest possible time. The maximum strain rates possible with this technique are limited by stress wave propagation in the elastic pressure bars as well as in the deforming specimen. This subject is reviewed in this paper, and it is emphasized that a slowly rising excitation is preferred to one that rises steeply. Experimental techniques for pulse shaping and a numerical procedure for correcting the raw data for wave dispersion in the pressure bars are presented. For tests at elevated temperature a bar mover apparatus has been developed which effectively brings the cold pressure bars into contact with the specimen, which is heated with a specially designed furnace, shortly before the pressure wave arrives. This procedure has been used successfully in tests at temperatures as high as 1000/sup 0/C.

  9. Strain rate change tests with the Split Hopkinson Bar method

    NASA Astrophysics Data System (ADS)

    Isakov, M.; Kokkonen, J.; Östman, K.; Kuokkala, V.-T.

    2016-05-01

    In this paper, methods to produce rapid strain rate changes for strain rate sensitivity measurements in Split Hopkinson Bar arrangements are presented and discussed. Two different cases are considered: a strain rate change test within the high strain rate region in compression, and a tension test incorporating a large strain rate jump directly from the low strain rate region to high strain rates. The former method is based on the loading wave amplitude manipulation, while the latter method is based on the incorporation of a low strain rate loading device into a Tensile Split Hopkinson Bar apparatus.

  10. Numerical Investigation of Dynamic Rock Fracture Toughness Determination Using a Semi-Circular Bend Specimen in Split Hopkinson Pressure Bar Testing

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Dai, F.; Xu, N. W.; Zhao, T.

    2016-03-01

    The International Society for Rock Mechanics (ISRM) has suggested a notched semi-circular bend technique in split Hopkinson pressure bar (SHPB) testing to determine the dynamic mode I fracture toughness of rock. Due to the transient nature of dynamic loading and limited experimental techniques, the dynamic fracture process associated with energy partitions remains far from being fully understood. In this study, the dynamic fracturing of the notched semi-circular bend rock specimen in SHPB testing is numerically simulated for the first time by the discrete element method (DEM) and evaluated in both microlevel and energy points of view. The results confirm the validity of this DEM model to reproduce the dynamic fracturing and the feasibility to simultaneously measure key dynamic rock fracture parameters, including initiation fracture toughness, fracture energy, and propagation fracture toughness. In particular, the force equilibrium of the specimen can be effectively achieved by virtue of a ramped incident pulse, and the fracture onset in the vicinity of the crack tip is found to synchronize with the peak force, both of which guarantee the quasistatic data reduction method employed to determine the dynamic fracture toughness. Moreover, the energy partition analysis indicates that simplifications, including friction energy neglect, can cause an overestimation of the propagation fracture toughness, especially under a higher loading rate.

  11. Improved specimen recovery in tensile split Hopkinson bar

    PubMed Central

    Isakov, Matti; Hiermaier, Stefan; Kuokkala, Veli-Tapani

    2014-01-01

    This paper presents an improved specimen recovery method for the tensile split Hopkinson bar (TSHB) technique. The method is based on the trapping of residual stress waves with the use of momentum trap bars. As is well known, successful momentum trapping in TSHB is highly sensitive to experimental uncertainties, especially on the incident bar side of the set-up. However, as is demonstrated in this paper, significant improvement in the reliability of specimen recovery is obtained by using two momentum trap bars in contact with the incident bar. This makes the trapping of the reflected wave insensitive to striker speed and removes the need for a precision set gap between the incident bar and the momentum trap. PMID:25071235

  12. Improved specimen recovery in tensile split Hopkinson bar.

    PubMed

    Isakov, Matti; Hiermaier, Stefan; Kuokkala, Veli-Tapani

    2014-08-28

    This paper presents an improved specimen recovery method for the tensile split Hopkinson bar (TSHB) technique. The method is based on the trapping of residual stress waves with the use of momentum trap bars. As is well known, successful momentum trapping in TSHB is highly sensitive to experimental uncertainties, especially on the incident bar side of the set-up. However, as is demonstrated in this paper, significant improvement in the reliability of specimen recovery is obtained by using two momentum trap bars in contact with the incident bar. This makes the trapping of the reflected wave insensitive to striker speed and removes the need for a precision set gap between the incident bar and the momentum trap. PMID:25071235

  13. Calibration of a Hopkinson Bar with a Transfer Standard

    DOE PAGESBeta

    Bateman, Vesta I.; Leisher, William B.; Brown, Fred A.; Davie, Neil T.

    1993-01-01

    A program requirement for field test temperatures that are beyond the test accelerometer operational limits of −30° F and +150° F required the calibration of accelerometers at high shock levels and at the temperature extremes of −50° F and +160° F. The purposes of these calibrations were to insure that the accelerometers operated at the field test temperatures and to provide an accelerometer sensitivity at each test temperature. Because there is no National Institute of Standards and Technology traceable calibration capability at shock levels of 5,000–15,000 g for the temperature extremes of −50° F and +160° F, a method for calibrating and certifying the Hopkinson barmore » with a transfer standard was developed. Time domain and frequency domain results are given that characterize the Hopkinson bar. The National Institute of Standards and Technology traceable accuracy for the standard accelerometer in shock is ±5%. The Hopkinson bar has been certified with an uncertainty of 6%.« less

  14. Analysis of Hopkinson bar pressure gage. Final report

    SciTech Connect

    Baylot, J.T.

    1993-01-01

    U.S. Army Engineer Waterways Experiment Station (WES) designed Hopkinson pressure bar gages were fielded on the Dilute Explosive Tile (DET) test along with New Mexico Engineering Research Institute (NMERI) designed bar gages and pressure gages manufactured by PCB Piezotronics, Inc. On the Mineral Find 3 (MF3) explosive test, WES bar gages were fielded along with pressure transducers manufactured by Kulite. The peak pressures recorded by the PCB ages were much higher than those recorded by the WES bar gages on the DET test. The peak stresses were higher for the Kulite gages than for the WES bar gages in the MF3 test. In each of these tests, the stresses recorded later in time for the bar gage were higher than those recorded for the other types of gages. The NMERI gages indicated that the pressure time-history had two significant peaks while the WES gages indicated only one significant peak. One-half of the surviving PCB gages agreed with the WES gages, while one-half agreed with the NMERI gages. Analytical and finite element (FE) calculations were performed to assess the response of the bar gages in these tests. The analytical solutions included only the bar and agreed extremely well with comparable FE calculations. These calculations indicated that the primary reason for the low peak stress readings in the bar gages was the lower frequency response capability of the recording system used to record the bar gage data. The calculations also indicated that the presence of water around the bar did not significantly affect the measured peak stress in the bar, and that the drag of the water past the bar did not cause significant forces to be developed in the bar.

  15. Using the split Hopkinson pressure bar to validate material models

    PubMed Central

    Church, Philip; Cornish, Rory; Cullis, Ian; Gould, Peter; Lewtas, Ian

    2014-01-01

    This paper gives a discussion of the use of the split-Hopkinson bar with particular reference to the requirements of materials modelling at QinetiQ. This is to deploy validated material models for numerical simulations that are physically based and have as little characterization overhead as possible. In order to have confidence that the models have a wide range of applicability, this means, at most, characterizing the models at low rate and then validating them at high rate. The split Hopkinson pressure bar (SHPB) is ideal for this purpose. It is also a very useful tool for analysing material behaviour under non-shock wave loading. This means understanding the output of the test and developing techniques for reliable comparison of simulations with SHPB data. For materials other than metals comparison with an output stress v strain curve is not sufficient as the assumptions built into the classical analysis are generally violated. The method described in this paper compares the simulations with as much validation data as can be derived from deployed instrumentation including the raw strain gauge data on the input and output bars, which avoids any assumptions about stress equilibrium. One has to take into account Pochhammer–Chree oscillations and their effect on the specimen and recognize that this is itself also a valuable validation test of the material model. PMID:25071238

  16. Using the split Hopkinson pressure bar to validate material models.

    PubMed

    Church, Philip; Cornish, Rory; Cullis, Ian; Gould, Peter; Lewtas, Ian

    2014-08-28

    This paper gives a discussion of the use of the split-Hopkinson bar with particular reference to the requirements of materials modelling at QinetiQ. This is to deploy validated material models for numerical simulations that are physically based and have as little characterization overhead as possible. In order to have confidence that the models have a wide range of applicability, this means, at most, characterizing the models at low rate and then validating them at high rate. The split Hopkinson pressure bar (SHPB) is ideal for this purpose. It is also a very useful tool for analysing material behaviour under non-shock wave loading. This means understanding the output of the test and developing techniques for reliable comparison of simulations with SHPB data. For materials other than metals comparison with an output stress v strain curve is not sufficient as the assumptions built into the classical analysis are generally violated. The method described in this paper compares the simulations with as much validation data as can be derived from deployed instrumentation including the raw strain gauge data on the input and output bars, which avoids any assumptions about stress equilibrium. One has to take into account Pochhammer-Chree oscillations and their effect on the specimen and recognize that this is itself also a valuable validation test of the material model. PMID:25071238

  17. On backward dispersion correction of Hopkinson pressure bar signals

    PubMed Central

    Tyas, A.; Ozdemir, Z.

    2014-01-01

    Elastic theory shows that wide spectrum signals in the Hopkinson pressure bar suffer two forms of distortion as they propagate from the loaded bar face. These must be accounted for if accurate determination of the impact load is to be possible. The first form of distortion is the well-known phase velocity dispersion effect. The second form, which can be equally deleterious, is the prediction that at high frequencies, the stress and strain generated in the bar varies with radial position on the cross section, even for a uniformly applied loading. We consider the consequences of these effects on our ability to conduct accurate backward dispersion correction of bar signals, that is, to derive the impact face load from the dispersed signal recorded at some other point on the bar. We conclude that there is an upper limit on the frequency for which the distortion effects can be accurately compensated, and that this can significantly affect the accuracy of experimental results. We propose a combination of experimental studies and detailed numerical modelling of the impact event and wave propagation along the bar to gain better understanding of the frequency content of the impact event, and help assess the accuracy of experimental predictions of impact face load. PMID:25071236

  18. Hopkinson bar techniques for the intermediate strain rate testing of bovine cortical bone

    PubMed Central

    Cloete, T. J.; Paul, G.; Ismail, E. B.

    2014-01-01

    Detailed knowledge of the dynamic viscoelastic properties of bone is required to understand the mechanisms of macroscopic bone fracture in humans, and other terrestrial mammals, during impact loading events (e.g. falls, vehicle accidents, etc.). While the dynamic response of bone has been studied for several decades, high-quality data remain limited, and it is only within the last decade that techniques for conducting dynamic compression tests on bone at near-constant strain rates have been developed. Furthermore, there appears to be a lack of published bone data in the intermediate strain rate (ISR) range (i.e. 1–100 s−1), which represents a regime in which many dynamic bone fractures occur. In this paper, preliminary results for the dynamic compression of bovine cortical bone in the ISR regime are presented. The results are obtained using two Hopkinson-bar-related techniques, namely the conventional split Hopkinson bar arrangement incorporating a novel cone-in-tube striker design, and the recently developed wedge bar apparatus. The experimental results show a rapid transition in the strain rate sensitive behaviour of bovine cortical bone in the ISR range. Finally, a new viscoelastic model is proposed that captures the observed transition behaviour. PMID:24711493

  19. The use of a beryllium Hopkinson bar to characterize a piezoresistive accelerometer in shock environments

    SciTech Connect

    Bateman, V.I.; Brown, F.A.; Davie, N.T.

    1996-03-01

    The characteristics of a piezoresistive accelerometer in shock environments are being studied at Sandia National Laboratories in the Mechanical Shock Testing Laboratory. A Hopkinson bar capability has been developed to extend our understanding of the piezoresistive accelerometer, in two mechanical configurations, in the high frequency, high shock environments where measurements are being made. In this paper, the beryllium Hopkinson bar configuration with a laser doppler vibrometer as the reference measurement is described. The in-axis performance of the piezoresistive accelerometer for frequencies of dc-50 kHz and shock magnitudes of up to 70,000 g as determined from measurements with a beryllium Hopkinson bar are presented. Preliminary results of characterizations of the accelerometers subjected to cross-axis shocks in a split beryllium Hopkinson bar configuration are presented.

  20. An experimental technique of split Hopkinson pressure bar using fiber micro-displacement interferometer system for any reflector

    NASA Astrophysics Data System (ADS)

    Fu, H.; Tang, X. R.; Li, J. L.; Tan, D. W.

    2014-04-01

    A novel non-contact measurement technique had been developed for the mechanical properties of materials in Split Hopkinson Pressure Bars (SHPB). Instead of the traditional strain gages mounted on the surfaces of bars, two shutters were mounted on the end of bars to directly measure interfacial velocity using Fiber Micro-Displacement Interferometer System for Any Reflector. Using the new technique, the integrated stress-strain responses could be determined. The experimental technique was validated by SHPB test simulation. The technique had been used to investigate the dynamic response of a brittle explosive material. The results showed that the new experimental technique could be applied to the dynamic behavior in SHPB test.

  1. Two-wave photon Doppler velocimetry measurements in direct impact Hopkinson pressure bar experiments

    NASA Astrophysics Data System (ADS)

    Lea, Lewis J.; Jardine, Andrew P.

    2015-09-01

    Direct impact Hopkinson pressure bar systems offer many potential advantages over split Hopkinson pressure bars, including access to higher strain rates, higher strains for equivalent striker velocity and system length, lower dispersion and faster achievement of force equilibrium. Currently advantages are gained at a significant cost: the fact that input bar data is unavailable removes all information about the striker impacted specimen face, preventing the determination of force equilibrium, and requiring approximations to be made on the sample deformation history. Recently photon Doppler velocimetry methods have been developed, which can replace strain gauges on Hopkinson bars. In this paper we discuss an experimental method and complementary data analysis for using Doppler velocimetry to measure surface velocities of the striker and output bars in a direct impact bar experiment, allowing similar data to be recorded as in a split bar system, with the same level of convenience. We discuss extracting velocity and force measurements, and improving the accuracy and convenience of Doppler velocimetry on Hopkinson bars. Results obtained using the technique are compared to equivalent split bar tests, showing improved stress measurements for the lowest and highest strains.

  2. An experimental technique of split Hopkinson pressure bar using fiber micro-displacement interferometer system for any reflector.

    PubMed

    Fu, H; Tang, X R; Li, J L; Tan, D W

    2014-04-01

    A novel non-contact measurement technique had been developed for the mechanical properties of materials in Split Hopkinson Pressure Bars (SHPB). Instead of the traditional strain gages mounted on the surfaces of bars, two shutters were mounted on the end of bars to directly measure interfacial velocity using Fiber Micro-Displacement Interferometer System for Any Reflector. Using the new technique, the integrated stress-strain responses could be determined. The experimental technique was validated by SHPB test simulation. The technique had been used to investigate the dynamic response of a brittle explosive material. The results showed that the new experimental technique could be applied to the dynamic behavior in SHPB test. PMID:24784672

  3. Application of the Split Hopkinson Resonant Bar Test for Seismic Property Characterization of Hydrate-bearing Sand Undergoing Water Saturation

    SciTech Connect

    Nakagawa, S.; Kneafsey, T.J.

    2011-05-03

    Conventional resonant bar tests allow the measurement of seismic properties of rocks and sediments at low frequencies (several kilohertz). However, the tests require a long, slender sample which is often difficult to obtain from the deep subsurface and weak and fractured formations. We present an alternative low-frequency measurement technique to the conventional resonant bar tests. This technique involves a jacketed core sample placed between a pair of long, metal extension rods with attached seismic source and receiver—the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the added length and mass to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The proposed “Split Hopkinson Resonant Bar (SHRB)” test is applied in two steps. In the first step, extension and torsion-mode resonance frequencies and attenuation of the system are measured. Then, numerical inversions for the compressional and shear wave velocities and attenuation are performed. We initially applied the SHRB test to synthetic materials (plastics) for testing its accuracy, then used it for measuring the seismic velocities and attenuation of a rock core containing supercritical CO{sub 2}, and a sediment core while methane hydrate formed in the pore space.

  4. Constant strain rate compression of bovine cortical bone on the Split-Hopkinson Pressure Bar.

    PubMed

    Bekker, A; Cloete, T J; Chinsamy-Turan, A; Nurick, G N; Kok, S

    2015-01-01

    Cortical bone is a visco-elastic material which implies that strain rate will affect its response. Although the Split-Hopkinson Pressure Bar is an accepted technique for determining the dynamic compressive properties of cortical bone it has been shown that the strain rate of compression does not remain constant throughout the duration of a classical experiment with a uniform striker. This raises concerns as to the measurement of smeared responses. This paper presents a shaped striker technique whereby the incident pulse can be shaped to attain a constant strain rate experiment for bovine bone. Shaped strikers offer benefits such as re-usability and increased test repeatability. A comparison of the stress-strain-strain rate responses attained through classical and constant strain rate experiments shows that the shape of the stress-strain curves from conventional experiments is adversely affected in the portion where the strain rate varies. The dynamic response corridors for the two tests are similar, however the ultimate properties are affected. It is concluded that the strain rate history should be presented with dynamic stress-strain responses since the instantaneous strain rate is a likely contributor to potential constitutive models. PMID:25492009

  5. Investigations on specimen design and mounting for Split Hopkinson Tension Bar (SHTB) experiments

    NASA Astrophysics Data System (ADS)

    Ledford, Noah; Paul, Hanna; Ganzenmüller, Georg; May, Michael; Höfemann, Matthias; Otto, Manuel; Petrinic, Nikica

    2015-09-01

    Split Hopkinson Tension Bar (SHTB) experiments can be used to test the material behavior with high strain rates in tension loading. The influence of the specimen mounting and the specimen design on the test results was investigated. Three mounting methods were tested. The best signal is achieve using a mounting based on form fit. The three tested specimen designs all lead to a valid fracture behavior, but result in a different local strain rate.

  6. Image-based stress and strain measurement of wood in the split-Hopkinson pressure bar

    NASA Astrophysics Data System (ADS)

    Moilanen, C. S.; Saarenrinne, P.; Engberg, B. A.; Björkqvist, T.

    2015-08-01

    The properties of wood must be considered when designing mechanical pulping machinery. The composition of wood within the annual ring is important. This paper proposes a novel image-based method to measure stress and planar strain distribution in soft, heterogeneous materials. The main advantage of this method in comparison to traditional methods that are based on strain gauges is that it captures local strain gradients and not only average strains. Wood samples were subjected to compression at strain rates of 1000-2500 s-1 in an encapsulated split-Hopkinson device. High-speed photography captured images at 50 000-100 000 Hz and different magnifications to achieve spatial resolutions of 2.9 to 9.7 µm pixels-1. The image-based analysis utilized an image correlation technique with a method that was developed for particle image velocimetry. The image analysis gave local strain distribution and average stress as a function of time. Two stress approximations, using the material properties of the split-Hopkinson bars and the displacement of the transmitter bar/sample interface, are presented. Strain gauges on the bars of the split-Hopkinson device give the reference average stress and strain. The most accurate image-based stress approximation differed from the strain gauge result by 5%.

  7. Application of photon Doppler velocimetry to direct impact Hopkinson pressure bars

    NASA Astrophysics Data System (ADS)

    Lea, Lewis J.; Jardine, Andrew P.

    2016-02-01

    Direct impact Hopkinson pressure bar systems offer many potential advantages over split Hopkinson pressure bars, including access to higher strain rates, higher strains for equivalent striker velocity and system length, lower dispersion, and faster achievement of force equilibrium. Currently, these advantages are gained at the expense of all information about the striker impacted specimen face, preventing the experimental determination of force equilibrium, and requiring approximations to be made on the sample deformation history. In this paper, we discuss an experimental method and complementary data analysis for using photon Doppler velocimetry to measure surface velocities of the striker and output bars in a direct impact bar experiment, allowing similar data to be recorded as in a split bar system. We discuss extracting velocity and force measurements, and the precision of measurements. Results obtained using the technique are compared to equivalent split bar tests, showing improved stress measurements for the lowest and highest strains in fully dense metals, and improvement for all strains in slow and non-equilibrating materials.

  8. Application of photon Doppler velocimetry to direct impact Hopkinson pressure bars.

    PubMed

    Lea, Lewis J; Jardine, Andrew P

    2016-02-01

    Direct impact Hopkinson pressure bar systems offer many potential advantages over split Hopkinson pressure bars, including access to higher strain rates, higher strains for equivalent striker velocity and system length, lower dispersion, and faster achievement of force equilibrium. Currently, these advantages are gained at the expense of all information about the striker impacted specimen face, preventing the experimental determination of force equilibrium, and requiring approximations to be made on the sample deformation history. In this paper, we discuss an experimental method and complementary data analysis for using photon Doppler velocimetry to measure surface velocities of the striker and output bars in a direct impact bar experiment, allowing similar data to be recorded as in a split bar system. We discuss extracting velocity and force measurements, and the precision of measurements. Results obtained using the technique are compared to equivalent split bar tests, showing improved stress measurements for the lowest and highest strains in fully dense metals, and improvement for all strains in slow and non-equilibrating materials. PMID:26931828

  9. Evaluation of a Hopkinson bar fly-away technique for high amplitude shock accelerometer calibration

    SciTech Connect

    Togami, T.C.; Bateman, V.I.; Brown, F.A.

    1997-11-01

    A split Hopkinson bar technique has been developed to evaluate the performance of accelerometers that measure large amplitude pulses. An evaluation of this technique has been conducted in the Mechanical Shock Laboratory at Sandia National Laboratories (SNL) to determine its use in the practical calibration of accelerometers. This evaluation consisted of three tasks. First, the quartz crystal was evaluated in a split Hopkinson bar configuration to evaluate the quartz gage`s sensitivity and frequency response at force levels of 18,000, 35,000 and 53,000 N at ambient temperature, {minus}48 C and +74 C. Secondly, the fly away technique was evaluated at shock amplitudes of 50,000, 100,000, 150,000 and 200,000 G (1 G = 9.81 m/s{sup 2}) at ambient temperature, {minus}48 C and +74 C. Lastly, the technique was performed using a NIST calibrated reference accelerometer. Comparisons of accelerations calculated from the quartz gage data and the measured acceleration data have shown very good agreement. Based on this evaluation, the authors expect this split Hopkinson fly away technique to be certified by the SNL Primary Standards Laboratory.

  10. High Strain Rate Characterization of Laminate Composites Using Direct-Tension Split Hopkinson Bar

    NASA Astrophysics Data System (ADS)

    Akkala, S.; Hommeida, A.; Brar, N. S.

    1999-06-01

    Data on high strain rate response of laminate composites is required to numerically simulate penetration/perforation events. Tension specimens of laminate composites can only be fabricated in dog-bone shape and, therefore, a direct tension Hopkinson bar configuration is more appropriate for acquiring high strain data. Launching a 6.35-mm wall thickness aluminum tube around 25.4 diameter aluminum incident bar produces the tension pulse in the incident bar. Ends of the composite specimens in the dog-bone configuration are placed in specially designed grips, which are screwed in the incident and transmitter bars. The configuration allows testing of specimens with threaded ends. Stress-strain data on 6061-T6 aluminum and titanium 6-4 at a strain rate of 10^3/s agree with the published data. High strain rate data on laminate composite specimens reinforced with graphite and glass fibers will be presented.

  11. High Strain Rate Characterization of Plastics and Foams Using Polymeric Split Hopkinson Bar

    NASA Astrophysics Data System (ADS)

    Sawas, Omar; Brar, N. S.

    1997-07-01

    High strain rate and high/low temperature response of engineered plastics and foams is relevant and important for the design and development of fighter aircraft canopies, submarine interiors and automobile exterior and interior systems. The mechanical impedance of conventional split Hopkinson bar materials (aluminum or steel) is extremely large compared to those of plastic or foam specimens. To overcome this difficulty of impedance mismatch we have developed the Polymeric Split Hopkinson Bar (PSHB). A viscoelastic model for cast acrylic bar material, which relates stresses and strains as well as particle velocity and strain, is developed to account for the wave dispersion along the bar. The model is verified by comparing the stress strain data on 1100 aluminum and polycarbonate specimens obtained using PSHB and conventional aluminum SHB. Stress-strain data at a strain rate of 103/s on low strength polyurethane foam (density = 0.57 g/cm3) following this technique show that the foam has a recoverable compressive strain of 0.4 at a stress of 2.9 MPa. High strain rate (2x102-2x103/s) data on polycarbonate, generic elastomer, and styrofoam will also be presented.

  12. Experimental and numerical investigations on the use of polymer Hopkinson pressure bars.

    PubMed

    Harrigan, John J; Ahonsi, Bright; Palamidi, Elisavet; Reid, Steve R

    2014-08-28

    Split Hopkinson pressure bar (SHPB) testing has traditionally been carried out using metal bars. For testing low stiffness materials such as rubbers or low strength materials such as low density cellular solids considered primarily herein, there are many advantages to replacing the metal bars with polymer bars. An investigation of a number of aspects associated with the accuracy of SHPB testing of these materials is reported. Test data are used to provide qualitative comparisons of accuracy using different bar materials and wave-separation techniques. Sample results from SHPB tests are provided for balsa, Rohacell foam and hydroxyl-terminated polybutadiene. The techniques used are verified by finite-element (FE) analysis. Experimentally, the material properties of the bars are determined from impact tests in the form of a complex elastic modulus without curve fitting to a rheological model. For the simulations, a rheological model is used to define the bar properties by curve fitting to the experimentally derived properties. Wave propagation in a polymer bar owing to axial impact of a steel bearing ball is simulated. The results indicate that the strain histories can be used to determine accurately the viscoelastic properties of polymer bars. An FE model of the full viscoelastic SHPB set-up is then used to simulate tests on hyperelastic materials. PMID:25071237

  13. Split Hopkinson Resonant Bar Test for Sonic-Frequency Acoustic Velocity and Attenuation Measurements of Small, Isotropic Geologic Samples

    SciTech Connect

    Nakagawa, S.

    2011-04-01

    Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver - the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 C, and concurrently with x-ray CT imaging. The described Split Hopkinson Resonant Bar (SHRB) test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples and a natural rock sample.

  14. A study of shock mitigating materials in a split Hopkinson bar configuration

    SciTech Connect

    Bateman, V.I.; Bell, R.G. III; Brown, F.A.; Hansen, N.R.

    1996-12-31

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125-fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these more sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reaches the electronics contained in the various mechanical system. As part of the investigation of packaging techniques, a two part study of shock mitigating materials is being conducted. This paper reports the first part of the shock mitigating materials study. A study to compare three thicknesses (0.125, 0.250, and 0.500 in.) of seventeen, unconfined materials for their shock mitigating characteristics has been completed with a split Hopkinson bar configuration. The nominal input as measured by strain gages on the incident Hopkinson bar is 50 fps {at} 100 {micro}s for these tests. It is hypothesized that a shock mitigating material has four purposes: to lengthen the shock pulse, to attenuate the shock pulse, to mitigate high frequency content in the shock pulse, and to absorb energy. Both time domain and frequency domain analyses of the split Hopkinson bar data have been performed to compare the materials` achievement of these purposes.

  15. High Strain Rate Testing of Rocks using a Split-Hopkinson-Pressure Bar

    NASA Astrophysics Data System (ADS)

    Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael; Nau, Siegfried; Hess, Sebastian

    2016-04-01

    Dynamic mechanical testing of rocks is important to define the onset of rate dependency of brittle failure. The strain rate dependency occurs through the propagation velocity limit (Rayleigh wave speed) of cracks and their reduced ability to coalesce, which, in turn, significantly increases the strength of the rock. We use a newly developed pressurized air driven Split-Hopkinson-Pressure Bar (SHPB), that is specifically designed for the investigation of high strain rate testing of rocks, consisting of several 10 to 50 cm long strikers and bar components of 50 mm in diameter and 2.5 meters in length each. The whole set up, composed of striker, incident- and transmission bar is available in aluminum, titanium and maraging steel to minimize the acoustic impedance contrast, determined by the change of density and speed of sound, to the specific rock of investigation. Dynamic mechanical parameters are obtained in compression as well as in spallation configuration, covering a wide spectrum from intermediate to high strain rates (100-103 s‑1). In SHPB experiments [1] one-dimensional longitudinal compressive pulses of diverse shapes and lengths - formed with pulse shapers - are used to generate a variety of loading histories under 1D states of stress in cylindrical rock samples, in order to measure the respective stress-strain response at specific strain rates. Subsequent microstructural analysis of the deformed samples is aimed at quantification fracture orientation, fracture pattern, fracture density, and fracture surface properties as a function of the loading rate. Linking mechanical and microstructural data to natural dynamic deformation processes has relevance for the understanding of earthquakes, landslides, impacts, and has several rock engineering applications. For instance, experiments on dynamic fragmentation help to unravel super-shear rupture events that pervasively pulverize rocks up to several hundred meters from the fault core [2, 3, 4]. The dynamic

  16. Copper damage modeling with the tensile hopkinson bar and gas gun

    SciTech Connect

    Tonks, D. L.; Thissell, W. R.; Trujillo, C. P.; Schwartz, D. S.

    2004-01-01

    Ductile damage nucleation in recovered copper tensile Hopkinson bar specimens has been modeled using the 2D EPIC code. The model has also been successfully applied to spallation gas gun data to greatly expand the pressure range. The split tensile Hopkinson pressure bar permits the creation of damage at fairly high strain rates (10{sup 4}/s) with large plastic strains (100%). Careful momentum trapping allows incipient damage states to be arrested and recovered for metallurgical examination. The use of notched samples allows the pressure - flow stress, or triaxiality, to be varied from 1/3 to about 1.2 to study the interplay of pressure and deviatoric stress. In this paper, we will concentrate on modeling the nucleation of ductile damage in pure copper (Hitachi). With the same material, we also study spallation in a gas gun experiment to obtain the nucleation stress under high pressure and small plastic strain. The goal of the modeling is to obtain a unified nucleation model suitable for both.

  17. A modified Hopkinson pressure bar experiment to evaluate a damped piezoresistive MEMS accelerometer.

    SciTech Connect

    Frew, Danny Joe; Duong, Henry

    2009-03-01

    We conducted a series of modified Hopkinson pressure bar (HPB) experiments to evaluate a new, damped, high-shock accelerometer that has recently been developed by PCB Piezotronics Inc. Pulse shapers were used to create a long duration, non-dispersive stress pulse in an aluminum bar that interacted with a tungsten disk at the end of the incident bar. We measured stress at the aluminum bar-disk interface with a quartz gage and measured acceleration at the free-end of the disk with an Endevco brand 7270A and the new PCB 3991 accelerometers. The rise-time of the incident stress pulse in the aluminum bar was long enough and the disk length short enough so that the response of the disk can be approximated closely as rigid-body motion; an experimentally verified analytical model has been shown previously to support this assumption. Since the cross-sectional area and mass of the disk were known, we calculated acceleration of the rigid-disk from the quartz-gage force measurement and Newton's Second Law of Motion. Comparisons of accelerations calculated from the quartz-gage data and measured acceleration data show excellent agreement for acceleration pulses with the PCB accelerometer for peak amplitudes between 4,000 and 40,000 Gs , rise times as short as 40 microsec, and pulse durations between 150 and 320 microsec.

  18. The Use of a Beryllium Hopkinson Bar to Characterize In-Axis and Cross-Axis Accelerometer Response in Shock Environments

    SciTech Connect

    Bateman, V.I.; Brown, F.A.

    1999-01-01

    The characteristics of a piezoresistive accelerometer in shock environments have been studied at Sandia National Laboratories in the Mechanical Shock Laboratory. A beryllium Hopkinson bar capability with diameters of 0.75 in. and 2.0 in has been developed to extend our understanding of the piezoresistive accelerometer, in two mechanical configurations, in the high frequency, high shock environments where measurements are being made. The in-axis performance of the piezoresistive accelerometer determined from measurements with a beryllium Hopkinson bar and a certified laser doppler vibrometer as the reference measurement is presented. The cross-axis performance of the accelerometer subjected to static compression on a beryllium cylinder, static strain on a steel beam, dynamic strain on a steel beam (ISA-RP 37.2, Paragraph 6.6), and compressive shocks in a split beryllium Hopkinson bar configuration is also presented. The performance of the accelerometer in a combined in-axis and cross-axis shock environment is shown for one configuration. Finally, a failure analysis conducted in cooperation with ENDEVCO gives a cause for the occasional unexplained failures that have occurred in some applications.

  19. Split Hopkinson bar measurement using high-speed full-spectrum fiber Bragg grating interrogation.

    PubMed

    Seng, Frederick; Hackney, Drew; Goode, Tyler; Shumway, LeGrand; Hammond, Alec; Shoemaker, George; Pankow, Mark; Peters, Kara; Schultz, Stephen

    2016-09-01

    The development and validation of a high-speed, full-spectrum measurement technique is described for fiber Bragg grating (FBG) sensors. A FBG is surface-mounted to a split-Hopkinson tensile bar specimen to induce high strain rates. The high strain gradients and large strains that indicate material failure are analyzed under high strain rates up to 500  s-1. The FBG is interrogated using a high-speed full-spectrum solid-state interrogator with a repetition rate of 100 kHz. The captured deformed spectra are analyzed for strain gradients using a default interior point algorithm in combination with the modified transfer matrix approach. This paper shows that by using high-speed full-spectrum interrogation of an FBG and the modified transfer matrix method, highly localized strain gradients and discontinuities can be measured without a direct line of sight. PMID:27607299

  20. Strain localization during tensile Hopkinson bar testing of commercially pure titanium and Ti6Al4V titanium alloy

    NASA Astrophysics Data System (ADS)

    Moćko, Wojciech; Kruszka, Leopold; Brodecki, Adam

    2015-09-01

    The goal of the analysis was to determine the strain localization for various specimen shapes (type A and type B according to PN-EN ISO 26203-1 standard) and different loading conditions, i.e. quasi- static and dynamic. Commercially pure titanium (Grade 2) and titanium alloy Ti6Al4V (Grade 5) were selected for the tests. Tensile loadings were applied out using servo-hydraulic testing machine and tensile Hopkinson bar with pre-tension. The results were recorded using ARAMIS system cameras and fast camera Phantom V1210, respectively at quasi-static and dynamic loading conditions. Further, specimens outline was determined on the basis of video data using TEMA MOTION software. The strain distribution on the specimen surface was estimated using digital image correlation method. The larger radius present in the specimen of type B in comparison to specimen of type A, results in slight increase of the elongation for commercially pure titanium at both quasi-static and dynamic loading conditions. However this effect disappears for Ti6Al4V alloy. The increase of the elongation corresponds to the stronger necking effect. Material softening due to increase of temperature induced by plastic work was observed at dynamic loading conditions. Moreover lower elongation at fracture point was found at high strain rates for both materials.

  1. Crack initiation at high loading rates applying the four-point bending split Hopkinson pressure bar technique

    NASA Astrophysics Data System (ADS)

    Henschel, Sebastian; Krüger, Lutz

    2015-09-01

    Dynamic crack initiation with crack-tip loading rates of K˙ ≈ 2.106MPa√ms-1 in a high strength G42CrMoS4 steel was investigated. To this end, a previously developed split Hopkinson pressure bar with four-point bending was utilised. V-notched and pre-cracked Charpy specimens were tested. The detection of dynamic crack initiation was performed by analysing the dynamic force equilibrium between the incident and the transmission bar. Additionally, the signal of a near-field strain gauge and high-speed photography were used to determine the instant of crack initiation. To account for vibrations of the sample, a dynamic analysis of the stress intensity factor was performed. The dynamic and static analyses of the tests produced nearly the same results when a force equilibrium was achieved. Fracture-surface analysis revealed that elongated MnS inclusions strongly affected both the dynamic crack initiation and growth. Blunting of the precrack did not take place when a group of MnS inclusions was located directly at the precrack tip. Due to the direction of the elongated MnS inclusions perpendicular to the direction of crack growth, the crack could be deflected. The comparison with a 42CrMo4 steel without elongated MnS inclusions revealed the detrimental effect in terms of resistance to crack initiation. Taking the loading-rate dependency into consideration, it was shown that there was no pronounced embrittlement due to the high loading rates.

  2. The use of a beryllium Hopkinson bar to characterize in-axis and cross-axis accelerometer response in shock environments

    SciTech Connect

    Bateman, V.I.; Brown, F.A.

    1997-05-01

    The characteristics of a piezoresistive accelerometer in shock environments are being studied at Sandia National Laboratories in the Mechanical Shock Testing Laboratory. A beryllium Hopkinson bar capability has been developed to extend the understanding of the piezoresistive accelerometer, in two mechanical configurations and with and without mechanical isolation, in the high frequency, high shock environments where measurements are being made. In this paper, recent measurements with beryllium single and split-Hopkinson bar configurations are described. The in axis performance of the piezoresistive accelerometer in mechanical isolation for frequencies of dc-30 kHz and shock magnitudes of up to 6,000 g as determined from measurements with a beryllium Hopkinson bar with a certified laser doppler vibrometer as the reference measurement are presented. Results of characterizations of the accelerometers subjected to cross axis shocks in a split beryllium Hopkinson bar configuration are also presented.

  3. Characterization and modeling of mechanical behavior of single crystal titanium deformed by split-Hopkinson pressure bar

    DOE PAGESBeta

    Morrow, B. M.; Lebensohn, R. A.; Trujillo, C. P.; Martinez, D. T.; Addessio, F. L.; Bronkhorst, C. A.; Lookman, T.; Cerreta, E. K.

    2016-07-01

    Single crystal titanium samples were dynamically loaded using split-Hopkinson pressure bar (SHPB) and the resulting microstructures were examined. Characterization of the twins and dislocations present in the microstructure was conducted to understand the pathway for observed mechanical behavior. Electron backscatter diffraction (EBSD) was used to measure textures and quantify twinning. Microstructures were profusely twinned after loading, and twin variants and corresponding textures were different as a function of initial orientation. Focused ion beam (FIB) foils were created to analyze dislocation content using transmission electron microscopy (TEM). Large amounts of dislocations were present, indicating that plasticity was achieved through slip andmore » twinning together. Viscoplastic self-consistent (VPSC) modeling was used to confirm the complex order of operations during deformation. The activation of different mechanisms was highly dependent upon crystal orientation. For [0001] and View the MathML source[101¯1]-oriented crystals, compressive twinning was observed, followed by secondary tensile twinning. Furthermore, dislocations though prevalent in the microstructure, contributed to final texture far less than twinning.« less

  4. A study of shock mitigating materials in a split Hopkinson bar configuration. Phase 1

    SciTech Connect

    Bateman, V.I.; Brown, F.A.; Hansen, N.R.

    1998-06-01

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125 fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these more sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reaches the electronics contained in the various mechanical systems. As part of the investigation of packaging techniques, a two phase study of shock mitigating materials is being conducted. The purpose of the first phase reported here is to examine the performance of a joint that consists of shock mitigating material sandwiched in between steel and to compare the performance of the shock mitigating materials. A split Hopkinson bar experimental configuration simulates this joint and has been used to study the shock mitigating characteristics of seventeen, unconfined materials. The nominal input for these tests is an incident compressive wave with 50 fps peak (1,500 {micro}{var_epsilon} peak) amplitude and a 100 {micro}s duration (measured at 10% amplitude).

  5. High-strain rate tensile characterization of graphite platelet reinforced vinyl ester based nanocomposites using split-Hopkinson pressure bar

    NASA Astrophysics Data System (ADS)

    Pramanik, Brahmananda

    The dynamic response of exfoliated graphite nanoplatelet (xGnP) reinforced and carboxyl terminated butadiene nitrile (CTBN) toughened vinyl ester based nanocomposites are characterized under both dynamic tensile and compressive loading. Dynamic direct tensile tests are performed applying the reverse impact Split Hopkinson Pressure Bar (SHPB) technique. The specimen geometry for tensile test is parametrically optimized by Finite Element Analysis (FEA) using ANSYS Mechanical APDLRTM. Uniform stress distribution within the specimen gage length has been verified using high-speed digital photography. The on-specimen strain gage installation is substituted by a non-contact Laser Occlusion Expansion Gage (LOEG) technique for infinitesimal dynamic tensile strain measurements. Due to very low transmitted pulse signal, an alternative approach based on incident pulse is applied for obtaining the stress-time history. Indirect tensile tests are also performed combining the conventional SHPB technique with Brazilian disk test method for evaluating cylindrical disk specimens. The cylindrical disk specimen is held snugly in between two concave end fixtures attached to the incident and transmission bars. Indirect tensile stress is estimated from the SHPB pulses, and diametrical transverse tensile strain is measured using LOEG. Failure diagnosis using high-speed digital photography validates the viability of utilizing this indirect test method for characterizing the tensile properties of the candidate vinyl ester based nanocomposite system. Also, quasi-static indirect tensile response agrees with previous investigations conducted using the traditional dog-bone specimen in quasi-static direct tensile tests. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Finally, the conventional compressive SHPB tests are performed. It is observed that both

  6. A modified split Hopkinson torsional bar system for correlated study of τ–γ relations, shear localization and microstructural evolution

    PubMed Central

    Yang, Rong; Zhang, Husheng; Shen, Letian; Xu, Yongbo; Bai, Yilong; Dodd, Bradley

    2014-01-01

    The conventional split Hopkinson torsional bar (SHTB) system consists of two bars, which can successfully produce the data for the construction of dynamic torsional shear stress and strain relationships. However, the system cannot provide reliable information on the progression of the deformed micro-structure during the test. The reverberation of waves in the bars and the tested specimen can spoil the microstructural pattern formed during the effective loading. This paper briefly reviews a modified version of the SHTB system consisting of four bars that has been developed. This modified system can eliminate the reverberation of waves in the specimen and provide only a single rectangular torsional stress pulse, thus it can properly freeze the microstructure formed during the effective period of loading in the specimen. By using the advantage of the modified SHTB system, together with a new design of specimen, it is possible to perform a correlated study of the dynamic stress–strain response, shear localization and the evolution of the microstructure at a fixed view-field (position) on a given specimen during the sequence of the loading time. The principles, experimental set-up and procedure, calibration and some preliminary results of the correlated study are reported in this paper. PMID:24711492

  7. Geomechanics of penetration :laboratory analog experiments using a modified split hopkinson pressure bar/impact testing procedure.

    SciTech Connect

    Holcomb, David Joseph; Gettemy, Glen L.; Bronowski, David R.

    2005-11-01

    This research continues previous efforts to re-focus the question of penetrability away from the behavior of the penetrator itself and toward understanding the dynamic, possibly strain-rate dependent, behavior of the affected materials. A modified split Hopkinson pressure bar technique is prototyped to determine the value of reproducing the stress states, and mechanical responses, of geomaterials observed in actual penetrator tests within a laboratory setting. Conceptually, this technique simulates the passage of the penetrator surface past any fixed point in the penetrator trajectory by allowing for a controlled stress-time function to be transmitted into a sample, thereby mimicking the 1D radial projection inherent to analyses of the cavity expansion problem. Test results from a suite of weak (unconfined compressive strength, or UCS, of 22 MPa) concrete samples, with incident strain rates of 100-250 s{sup -1}, show that the complex mechanical response includes both plastic and anelastic wave propagation, and is critically dependent on incident particle velocity and saturation state. For instance, examination of the transmitted stress-time data, and post-test volumetric measurements of pulverized material, provide independent estimates of the plasticized zone length (1-2 cm) formed for incident particle velocity of {approx}16.7 m/s. The results also shed light on the elastic or energy propagation property changes that occur in the concrete. For example, the pre- and post-test zero-stress elastic wave propagation velocities show that the Young's modulus drops from {approx}19 GPa to <8 GPa for material within the first centimeter from the plastic transition front, while the Young's modulus of the dynamically confined, axially-stressed (in 6-18 MPa range) plasticized material drops to 0.5-0.6 GPa. The data also suggest that the critical particle velocity for formation of a plastic zone in the weak concrete is 13-15 m/s, with increased saturation tending to increase

  8. Measurement of local strain and heat propagation during high-temperature testing in a split-Hopkinson tension bar system

    NASA Astrophysics Data System (ADS)

    Vilamosa, V.; Clausen, A. H.; Hopperstad, O. S.; Børvik, T.; Skjervold, S.

    2012-08-01

    Aluminium alloys are commonly used by the industry due to their good mechanical properties and their relatively low density. An accurate prediction of the behaviour of aluminium alloys under a wide range of temperatures and strain rates is important in numerical simulations of forming processes or applications involving adiabatic heating like penetration and crash situations. Several tests are needed at low, medium and high strain rates to study this behaviour. This paper will focus on the high strain rate test rig, which is a split- Hopkinson tension bar system (SHTB), the acquisition system for strain measurements, and a thermal analysis of the bars due to heating of the sample. A new way of doing local measurements with a high-speed camera will be presented. The thermal boundary conditions of the tests have been measured and simulated, and the results indicate that the stress wave propagation in the bars is not significantly affected by a local heating of the part of the bars which is closest to the sample.

  9. Development of a new testing equipment that combines the working principles of both the split Hopkinson bar and the drop weight testers.

    PubMed

    Adas, Rateb; Haiba, Majed

    2016-01-01

    In the current work, a new high strain rate tensile testing equipment is proposed. The equipment uses a pendulum device to generate an impact load and a three-bar mechanism to bring that load to act upon a specially designed specimen. As the standard impact testing apparatus uses pendulum device and the well-known SHB high strain rate tester adopts the above-mentioned mechanism, the introduced equipment can be dealt with as an impact apparatus in which the base that supports the V-shape specimen is replaced with the three-bar configuration that the traditional SHB uses. In order to demonstrate the applicability of the new tester, virtual design tools were used to determine the most appropriate configuration for it. Then, a detailed design was created, and a full-scale prototype was produced, calibrated, instrumented and tested. The obtained results demonstrate that the new tester is capable of axially straining steel specimens up to failure at a maximum rate of about 250 s(-1), which is reasonable when compared with a more established high strain rate testers. PMID:27504253

  10. Development of new Hopkinson's device dedicated to rib's bone characterisation

    NASA Astrophysics Data System (ADS)

    Mayeur, O.; Haugou, G.; Chaâri, F.; Delille, R.; Drazetic, P.; Markiewicz, E.

    2012-08-01

    This study presents an original approach for the design of adapted Hopkinson device dedicated to the characterisation of human ribs' cortical bone. The quasi-static study carried out on flat samples coming from this anatomical part highlighted the importance of the critical effect of sample shape and location on the accuracy of identify mechanical behaviour. The access to higher rates of strains, Hopkinson bars technique are classically required whatever compression or tension loadings. Classical designs of measurement bars are not suitable for this purpose due to the complexity of specimen's geometry (thickness variation). In this context, a new design of SHTB is studied here on the basis on a Finite Element approach of the set measurement bars/biological coupon. Finite Element simulations have been conducted using Abaqus explicit code by varying the design configuration. The comparison on input and output elastic waves suggests a set of small diameter bars in polyamide 66 for a better signal measurement.

  11. First application of the 3D-MHB on dynamic compressive behavior of UHPC

    NASA Astrophysics Data System (ADS)

    Cadoni, Ezio; Dotta, Matteo; Forni, Daniele; Riganti, Gianmario; Albertini, Carlo

    2015-09-01

    In order to study the dynamic behaviour of material in confined conditions a new machine was conceived and called 3D-Modified Hopkinson Bar (3D-MHB). It is a Modified Hopkinson Bar apparatus designed to apply dynamic loading in materials having a tri-axial stress state. It consists of a pulse generator system (with pre-tensioned bar and brittle joint), 1 input bar, and 5 output bars. The first results obtained on Ultra High Performance Concrete in compression with three different mono-axial compression states are presented. The results show how the pre-stress states minimize the boundary condition and a more uniform response is obtained.

  12. Dynamical and Kinematic Structure of Bars with Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Valluri, Monica

    2014-05-01

    Observational studies have shown that nearly 65% of disk galaxies in the local Universe are barred. Furthermore, there is evidence that nearly every galaxy with a substantial central light concentration contains a supermassive black hole. This implies that bars frequently (or perhaps always) co-exist with supermassive black holes. Our recent studies have shown that the dynamical influence of a bar (e.g. its ability to transport angular momentum) and its orbital structure alters the observable kinematics in galactic nuclei. I will describe independent yet complementary sets of simulations that show that the effect of a bar is to increase the velocity dispersion within the effective radius on average by between 7% and 12% depending on when the black hole forms relative to the formation of the bar. This predicted effect is somewhat less than previous claims of the offset observed in data. Our investigations of the orbital structure of N-body bars (using automated orbit classification methods that rely on orbital spectral analysis) show that their self-consistent distribution functions comprise significantly fewer varieties of orbits than have previously been found in analytic bar potentials. The principle orbit families of N-body bars bear surprising similarity to those of slowly rotating triaxial potentials. Finally, the presence of a galactic bar can result in an overestimate of the stellar dynamical measurement of the black hole mass. I will present a new stellar dynamical model for the nucleus of the galaxy NGC 4151 which illustrates some of the problems associated with measuring the black hole mass in this barred Seyfert I galaxy.

  13. Introducing a New 3D Dynamical Model for Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Jung, Christof; Zotos, Euaggelos E.

    2015-11-01

    The regular or chaotic dynamics of an analytical realistic three dimensional model composed of a spherically symmetric central nucleus, a bar and a flat disk is investigated. For describing the properties of the bar, we introduce a new simple dynamical model and we explore the influence on the character of orbits of all the involved parameters of it, such as the mass and the scale length of the bar, the major semi-axis and the angular velocity of the bar, as well as the energy. Regions of phase space with ordered and chaotic motion are identified in dependence on these parameters and for breaking the rotational symmetry. First, we study in detail the dynamics in the invariant plane z = pz = 0 using the Poincaré map as a basic tool and then study the full three-dimensional case using the Smaller Alignment index method as principal tool for distinguishing between order and chaos. We also present strong evidence obtained through the numerical simulations that our new bar model can realistically describe the formation and the evolution of the observed twin spiral structure in barred galaxies.

  14. A comparative study on the restrictions of dynamic test methods

    NASA Astrophysics Data System (ADS)

    Majzoobi, GH.; Lahmi, S.

    2015-09-01

    Dynamic behavior of materials is investigated using different devices. Each of the devices has some restrictions. For instance, the stress-strain curve of the materials can be captured at high strain rates only with Hopkinson bar. However, by using a new approach some of the other techniques could be used to obtain the constants of material models such as Johnson-Cook model too. In this work, the restrictions of some devices such as drop hammer, Taylor test, Flying wedge, Shot impact test, dynamic tensile extrusion and Hopkinson bars which are used to characterize the material properties at high strain rates are described. The level of strain and strain rate and their restrictions are very important in examining the efficiency of each of the devices. For instance, necking or bulging in tensile and compressive Hopkinson bars, fragmentation in dynamic tensile extrusion and petaling in Taylor test are restricting issues in the level of strain rate attainable in the devices.

  15. The Development of a Dual-Warhead Impact System for Dynamic Linearity Measurement of a High-g Micro-Electro-Mechanical-Systems (MEMS) Accelerometer.

    PubMed

    Shi, Yunbo; Yang, Zhicai; Ma, Zongmin; Cao, Huiliang; Kou, Zhiwei; Zhi, Dan; Chen, Yanxiang; Feng, Hengzhen; Liu, Jun

    2016-01-01

    Despite its extreme significance, dynamic linearity measurement for high-g accelerometers has not been discussed experimentally in previous research. In this study, we developed a novel method using a dual-warhead Hopkinson bar to measure the dynamic linearity of a high-g acceleration sensor with a laser interference impact experiment. First, we theoretically determined that dynamic linearity is a performance indicator that can be used to assess the quality merits of high-g accelerometers and is the basis of the frequency response. We also found that the dynamic linearity of the dual-warhead Hopkinson bar without an accelerometer is 2.5% experimentally. Further, we verify that dynamic linearity of the accelerometer is 3.88% after calibrating the Hopkinson bar with the accelerometer. The results confirm the reliability and feasibility of measuring dynamic linearity for high-g accelerometers using this method. PMID:27338383

  16. The Development of a Dual-Warhead Impact System for Dynamic Linearity Measurement of a High-g Micro-Electro-Mechanical-Systems (MEMS) Accelerometer

    PubMed Central

    Shi, Yunbo; Yang, Zhicai; Ma, Zongmin; Cao, Huiliang; Kou, Zhiwei; Zhi, Dan; Chen, Yanxiang; Feng, Hengzhen; Liu, Jun

    2016-01-01

    Despite its extreme significance, dynamic linearity measurement for high-g accelerometers has not been discussed experimentally in previous research. In this study, we developed a novel method using a dual-warhead Hopkinson bar to measure the dynamic linearity of a high-g acceleration sensor with a laser interference impact experiment. First, we theoretically determined that dynamic linearity is a performance indicator that can be used to assess the quality merits of high-g accelerometers and is the basis of the frequency response. We also found that the dynamic linearity of the dual-warhead Hopkinson bar without an accelerometer is 2.5% experimentally. Further, we verify that dynamic linearity of the accelerometer is 3.88% after calibrating the Hopkinson bar with the accelerometer. The results confirm the reliability and feasibility of measuring dynamic linearity for high-g accelerometers using this method. PMID:27338383

  17. Dynamic high-temperature Kolsky tension bar techniques

    NASA Astrophysics Data System (ADS)

    Song, Bo; Nelson, Kevin; Lipinski, Ronald; Bignell, John; Ulrich, G. B.; George, E. P.

    2015-09-01

    Kolsky tension bar techniques were modified for dynamic high-temperature tensile characterization of thin-sheet alloys. An induction coil heater was used to heat the specimen while a cooling system was applied to keep the bars at room temperature during heating. A preload system was developed to generate a small pretension load in the bar system during heating in order to compensate for the effect of thermal expansion generated in the high-temperature tensile specimen. A laser system was applied to directly measure the displacements at both ends of the tensile specimen in order to calculate the strain in the specimen. A pair of high-sensitivity semiconductor strain gages was used to measure the weak transmitted force due to the low flow stress in the thin specimen at elevated temperatures. As an example, the high-temperature Kolsky tension bar was used to characterize a DOP-26 iridium alloy in high-strain-rate tension at 860 s-1/1030 ∘C.

  18. Beam Dynamics Studies of Parallel-Bar Deflecting Cavities

    SciTech Connect

    S. Ahmed, G. Krafft, K. Detrick, S. Silva, J. Delayen, M. Spata ,M. Tiefenback, A. Hofler ,K. Beard

    2011-03-01

    We have performed three-dimensional simulations of beam dynamics for parallel-bar transverse electromagnetic mode (TEM) type RF separators: normal- and super-conducting. The compact size of these cavities as compared to conventional TM$_{110}$ type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a one- or two-cell superconducting structure are enough to produce the required vertical displacement at the Lambertson magnet. Both the normal and super-conducting structures show very small emittance dilution due to the vertical kick of the beam.

  19. Short-term dynamical evolution of grand-design spirals in barred galaxies

    NASA Astrophysics Data System (ADS)

    Baba, Junichi

    2015-12-01

    We investigate the short-term dynamical evolution of stellar grand-design spiral arms in barred spiral galaxiesusing a three-dimensional (3D) N-body/hydrodynamic simulation. Similar to previous numerical simulations of unbarred, multiple-arm spirals, we find that grand-design spiral arms in barred galaxies are not stationary, but rather dynamic. This means that the amplitudes, pitch angles, and rotational frequencies of the spiral arms are not constant, but change within a few hundred million years (i.e. the typical rotational period of a galaxy). We also find that the clear grand-design spirals in barred galaxies appear only when the spirals connect with the ends of the bar. Furthermore, we find that the short-term behaviour of spiral arms in the outer regions (R > 1.5-2 bar radius) can be explained by the swing amplification theory and that the effects of the bar are not negligible in the inner regions (R < 1.5-2 bar radius). These results suggest that although grand-design spiral arms in barred galaxies are affected by the stellar bar, the grand-design spiral arms essentially originate not as bar-driven stationary density waves, but rather as self-excited dynamic patterns. We imply that a rigidly rotating grand-design spiral could not be a reasonable dynamical model for investigating gas flows and cloud formation even in barred spiral galaxies.

  20. Dynamic and quasi-static measurements of C-4 and primasheet P1000 explosives

    SciTech Connect

    Brown, Geoffrey W; Thompson, Darla G; De Luca, Racci; Rae, Philip J; Cady, Carl M; Todd, Steven N

    2010-01-01

    We have measured dynamic and quasi-static mechanical properties of C-4 and Primasheet P1000 explosive materials to provide input data for modeling efforts. Primasheet P1000 is a pentaerythritol tetranitrate-based rubberized explosive. C-4 is a RDX-based moldable explosive. Dynamic measurements included acoustic and split-Hopkinson pressure bar tests. Quasi-static testing was done in compression on load frames and on a dynamic mechanical analyzer. Split-Hopkinson and quasi-static tests were done at five temperatures from -50 C to 50 C. Acoustic velocities were measured at, above, and below room temperature.

  1. Dynamic fragmentation of ferroelectric ceramics using the torsional Kolsky bar

    SciTech Connect

    Costin, L S; Grady, D E

    1983-10-01

    This paper studied the dynamic loading and subsequent fragmentation of four different load zirconate titanate (95/5 PZT) ferroelectric ceramics using a torsional Kolsky bar apparatus. Solid cylinders of the four materials were loaded in torsion at shear strain rates in the range 10/sup 2/ to 10/sup 3/s/sup -1/. Using the strain gage recordings of the incident, reflected and transmitted pulses, the energy required to fragment the specimen was determined for each test. In addition, the fragments resulting from each test were collected and analyzed by various technciques to determine their mass and size distributions. Results show some differences in particle distributions between the different batches of material. However, there is a more significant and consistent difference between the dynamic strength (as measured by the maximum shear stress) and the fragment mass distributions of the virgin material and the pressure depoled material, despite the fact that no differences were detected in the energy of fragmentation. Using earlier analytical results which relate the local kinetic energy of a potential fragment to the surface energy required to create that fragment, a relationship between the distribution of fragments from a test and material properties was derived. Results of tests on PZT as well as other materials such as oil shale, graphite, uranium dioxide and glass indicate a good correlation between the fragment distribution parameter, n, and material properties as predicted by the theory. Finally, the results are analyzed to determine the potential effects of internal stresses on the dynamic strength of the material and its fragmentation characteristics.

  2. 2-D stationary gas dynamics in a barred galaxy

    NASA Astrophysics Data System (ADS)

    Mulder, W. A.

    2015-06-01

    A code for solving the 2-D isothermal Euler equations of gas dynamics in a rotating disc is presented. The gravitational potential represents a weak bar and controls the flow. A damped Newton method solves the second-order upwind discretisation of the equations for a steady-state solution, using a consistent linearisation and a direct solver. Successive grid refinement, starting from a finite-volume grid with 8 by 8 cells, is applied to find solutions on subsequently finer meshes. On coarser meshes, a first-order spatial discretisation is used. The method obtains quadratic convergence once the solution approaches the steady state. The initial search is quick with the first-order scheme and slower with the second-order discretisation, up to 256 by 256 cells. Beyond, with 512 by 512 cells, the number of iterations becomes too large to be of practical use. Potential causes are discussed. The code can be applied as a tool for generating flow models if used on not too fine meshes.

  3. Dynamic tensile characterization of a 4330-V steel with kolsky bar techniques.

    SciTech Connect

    Song, Bo; Antoun, Bonnie R.; Connelly, Kevin

    2010-09-01

    There has been increasing demand to understand the stress-strain response as well as damage and failure mechanisms of materials under impact loading condition. Dynamic tensile characterization has been an efficient approach to acquire satisfactory information of mechanical properties including damage and failure of the materials under investigation. However, in order to obtain valid experimental data, reliable tensile experimental techniques at high strain rates are required. This includes not only precise experimental apparatus but also reliable experimental procedures and comprehensive data interpretation. Kolsky bar, originally developed by Kolsky in 1949 [1] for high-rate compressive characterization of materials, has been extended for dynamic tensile testing since 1960 [2]. In comparison to Kolsky compression bar, the experimental design of Kolsky tension bar has been much more diversified, particularly in producing high speed tensile pulses in the bars. Moreover, instead of directly sandwiching the cylindrical specimen between the bars in Kolsky bar compression bar experiments, the specimen must be firmly attached to the bar ends in Kolsky tensile bar experiments. A common method is to thread a dumbbell specimen into the ends of the incident and transmission bars. The relatively complicated striking and specimen gripping systems in Kolsky tension bar techniques often lead to disturbance in stress wave propagation in the bars, requiring appropriate interpretation of experimental data. In this study, we employed a modified Kolsky tension bar, newly developed at Sandia National Laboratories, Livermore, CA, to explore the dynamic tensile response of a 4330-V steel. The design of the new Kolsky tension bar has been presented at 2010 SEM Annual Conference [3]. Figures 1 and 2 show the actual photograph and schematic of the Kolsky tension bar, respectively. As shown in Fig. 2, the gun barrel is directly connected to the incident bar with a coupler. The cylindrical

  4. Dynamic tensile characterization of a 4330 steel with kolsky bar techniques.

    SciTech Connect

    Song, Bo; Antoun, Bonnie R.; Connelly, Kevin

    2010-08-01

    There has been increasing demand to understand the stress-strain response as well as damage and failure mechanisms of materials under impact loading condition. Dynamic tensile characterization has been an efficient approach to acquire satisfactory information of mechanical properties including damage and failure of the materials under investigation. However, in order to obtain valid experimental data, reliable tensile experimental techniques at high strain rates are required. This includes not only precise experimental apparatus but also reliable experimental procedures and comprehensive data interpretation. Kolsky bar, originally developed by Kolsky in 1949 [1] for high-rate compressive characterization of materials, has been extended for dynamic tensile testing since 1960 [2]. In comparison to Kolsky compression bar, the experimental design of Kolsky tension bar has been much more diversified, particularly in producing high speed tensile pulses in the bars. Moreover, instead of directly sandwiching the cylindrical specimen between the bars in Kolsky bar compression bar experiments, the specimen must be firmly attached to the bar ends in Kolsky tensile bar experiments. A common method is to thread a dumbbell specimen into the ends of the incident and transmission bars. The relatively complicated striking and specimen gripping systems in Kolsky tension bar techniques often lead to disturbance in stress wave propagation in the bars, requiring appropriate interpretation of experimental data. In this study, we employed a modified Kolsky tension bar, newly developed at Sandia National Laboratories, Livermore, CA, to explore the dynamic tensile response of a 4330-V steel. The design of the new Kolsky tension bar has been presented at 2010 SEM Annual Conference [3]. Figures 1 and 2 show the actual photograph and schematic of the Kolsky tension bar, respectively. As shown in Fig. 2, the gun barrel is directly connected to the incident bar with a coupler. The cylindrical

  5. Dynamics of membrane nanotubes coated with I-BAR

    PubMed Central

    Barooji, Younes F.; Rørvig-Lund, Andreas; Semsey, Szabolcs; Reihani, S. Nader S.; Bendix, Poul M.

    2016-01-01

    Membrane deformation is a necessary step in a number of cellular processes such as filopodia and invadopodia formation and has been shown to involve membrane shaping proteins containing membrane binding domains from the IRSp53-MIM protein family. In reconstituted membranes the membrane shaping domains can efficiently deform negatively charged membranes into tubules without any other proteins present. Here, we show that the IM domain (also called I-BAR domain) from the protein ABBA, forms semi-flexible nanotubes protruding into Giant Unilamellar lipid Vesicles (GUVs). By simultaneous quantification of tube intensity and tubular shape we find both the diameter and stiffness of the nanotubes. I-BAR decorated tubes were quantified to have a diameter of ~50 nm and exhibit no stiffening relative to protein free tubes of the same diameter. At high protein density the tubes are immobile whereas at lower density the tubes diffuse freely on the surface of the GUV. Bleaching experiments of the fluorescently tagged I-BAR confirmed that the mobility of the tubes correlates with the mobility of the I-BAR on the GUV membrane. Finally, at low density of I-BAR the protein upconcentrates within tubes protruding into the GUVs. This implies that I-BAR exhibits strong preference for negatively curved membranes. PMID:27444356

  6. Dynamics of membrane nanotubes coated with I-BAR.

    PubMed

    Barooji, Younes F; Rørvig-Lund, Andreas; Semsey, Szabolcs; Reihani, S Nader S; Bendix, Poul M

    2016-01-01

    Membrane deformation is a necessary step in a number of cellular processes such as filopodia and invadopodia formation and has been shown to involve membrane shaping proteins containing membrane binding domains from the IRSp53-MIM protein family. In reconstituted membranes the membrane shaping domains can efficiently deform negatively charged membranes into tubules without any other proteins present. Here, we show that the IM domain (also called I-BAR domain) from the protein ABBA, forms semi-flexible nanotubes protruding into Giant Unilamellar lipid Vesicles (GUVs). By simultaneous quantification of tube intensity and tubular shape we find both the diameter and stiffness of the nanotubes. I-BAR decorated tubes were quantified to have a diameter of ~50 nm and exhibit no stiffening relative to protein free tubes of the same diameter. At high protein density the tubes are immobile whereas at lower density the tubes diffuse freely on the surface of the GUV. Bleaching experiments of the fluorescently tagged I-BAR confirmed that the mobility of the tubes correlates with the mobility of the I-BAR on the GUV membrane. Finally, at low density of I-BAR the protein upconcentrates within tubes protruding into the GUVs. This implies that I-BAR exhibits strong preference for negatively curved membranes. PMID:27444356

  7. Dynamics of membrane nanotubes coated with I-BAR

    NASA Astrophysics Data System (ADS)

    Barooji, Younes F.; Rørvig-Lund, Andreas; Semsey, Szabolcs; Reihani, S. Nader S.; Bendix, Poul M.

    2016-07-01

    Membrane deformation is a necessary step in a number of cellular processes such as filopodia and invadopodia formation and has been shown to involve membrane shaping proteins containing membrane binding domains from the IRSp53-MIM protein family. In reconstituted membranes the membrane shaping domains can efficiently deform negatively charged membranes into tubules without any other proteins present. Here, we show that the IM domain (also called I-BAR domain) from the protein ABBA, forms semi-flexible nanotubes protruding into Giant Unilamellar lipid Vesicles (GUVs). By simultaneous quantification of tube intensity and tubular shape we find both the diameter and stiffness of the nanotubes. I-BAR decorated tubes were quantified to have a diameter of ~50 nm and exhibit no stiffening relative to protein free tubes of the same diameter. At high protein density the tubes are immobile whereas at lower density the tubes diffuse freely on the surface of the GUV. Bleaching experiments of the fluorescently tagged I-BAR confirmed that the mobility of the tubes correlates with the mobility of the I-BAR on the GUV membrane. Finally, at low density of I-BAR the protein upconcentrates within tubes protruding into the GUVs. This implies that I-BAR exhibits strong preference for negatively curved membranes.

  8. The Dynamical Relationship between the Bar and Spiral Patterns of NGC 1365

    NASA Astrophysics Data System (ADS)

    Speights, Jason C.; Rooke, Paul C.

    2016-07-01

    Theories that attempt to explain the dynamical relationship between bar and spiral patterns in galactic disks make different predictions about the radial profile of the pattern speed. These are tested for the H-alpha bar and spiral patterns of NGC 1365. The radial profile of the pattern speed is measured by fitting mathematical models that are based on the Tremaine–Weinberg method. The results show convincing evidence for the bar rotating at a faster rate than the spiral pattern, inconsistent with a global wave mode or a manifold. There is evidence for mode coupling of the bar and spiral patterns at the overlap of corotation and inner Lindblad resonances (ILRs), but the evidence is unreliable and inconsistent. The results are the most consistent with the bar and spiral patterns being dynamically distinct features. The pattern speed of the bar begins near an ILR and ends near the corotation resonance (CR). The radial profile of the pattern speed beyond the bar most closely resembles what is expected for coupled spiral modes and tidal interactions.

  9. The Dynamical Relationship Between the Bar and Spiral Patterns of NGC 1365

    NASA Astrophysics Data System (ADS)

    Speights, Jason

    2016-01-01

    Theories describing the dynamical relationship between bar and spiral patterns in galaxy disks make different predictions about the radial profile of the pattern speed. The purpose of this poster is to test these predictions for the bar and spiral patterns of NGC 1365. The pattern speed is measured by fitting different forms of the Tremaine-Weinberg equations to H-alpha intensity and velocity maps. The results are the most consistent with the currently observed bar and spiral patterns being dynamically distinct features. They show compelling evidence for the bar rotating faster than the spiral pattern, inconsistent with a global wave mode or a manifold. The evidence for mode coupling of the bar and spiral patterns is weak due to inconsistencies in the results for different solution methods. The bar pattern speed is approximately constant between the inner Lindblad and corotation resonances, demonstrating that the solutions can detect large-scale, rigid patterns. Beyond the bar, the results resemble what is expected for coupled spiral modes and tidal interactions.

  10. Gas dynamics in the Milky Way: the nuclear bar and the 3-kpc arms.

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, N. J.

    We discuss the results of the first model of the gas dynamics in the Milky Way in the presence of two bars: the large scale primary bar or boxy bulge and a secondary bar in the Galactic center region. We have obtained an accurate potential by modeling 2MASS star counts and we have used this potential to simulate the gas dynamics. As a first approximation we have used one single pattern speed Omega_p . The models with Omega_p =30-40 km s-1kpc and a primary bar orientation of 20º-35o reproduce successfully many characteristics of the observed longitude-velocity diagrams as the terminal velocity curve or the spiral arm tangent points. The Galactic Molecular Ring is not an actual ring but the inner part of the spiral arms, within corotation. The model reproduces quantitatively the `3-kpc arm' and the recently found far-side counterpart, which are the lateral arms that contour the bar. In the Galactic center region, the model reproduces the 1-kpc HI ring and the Central Molecular Zone (CMZ), which is the gas response to the secondary bar. In order to reproduce the observed parallelogram shape of the CO longitude velocity diagram of the CMZ, the secondary bar should be oriented by and angle of 60o-70o with respect to the Sun-GC line. The mass of the secondary bar amounts to (2-5.5) × 109 M_⊙, which is 10-25% of the mass of the primary bar.

  11. A Plausible Explanation for the Steep Redshift Decline in Barred Spirals: Dynamically Hot Disks

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Melbourne, J.; Kassin, S.; Elmegreen, D. M.; Elmegreen, B. G.; Athanassoula, E.; Abraham, R. G.; Ellis, R. S.; Weiner, B.

    2012-05-01

    We present the first observational evidence for the inhibition of bar formation in dispersion dominated (dynamically hot) galaxies. We compare the presence of galactic structures (bars) and the host galaxy kinematics in a sample of 200 disk galaxies from the All-Wavelength Extended Groth Strip International Survey (AEGIS) and the Deep Extragalactic Evolutionary Probe 2 (DEEP2) survey. We find that bars are preferentially found in galaxies that lie on the Tully-Fisher relationship and are rotation-dominated, whereas few bars are found in galaxies that are dispersion dominated. The data provide at least one explanation for the steep (x3) decline in the bar fraction from z=0 to z=0.84 previously observed in L* disk galaxies in the COSMOS field. In the COSMOS data, the decline in bars is primarily found in the low mass, late-type systems. A proposed explanation for the trend was that at higher redshifts, lower mass systems were more dispersion dominated because they were more easily harassed by the increased interaction and merger rate. The data presented here provides observational support for this hypothesis.

  12. Development of a miniature tensile Kolsky bar for dynamic testing of thin films

    NASA Astrophysics Data System (ADS)

    Paul, Jastin V.

    Mechanical properties such as yield stress and ultimate strength are most commonly obtained under quasi-static (strain rate of 10--4 s--1) loading conditions Materials such as metals, ceramics, and polymers may exhibit significant changes in mechanical response when subjected to high strain rate (102 --105 per second) conditions. The loading rate or strain rate can affect the material properties such as elastic modulus, yield strength, work hardening, and ductility. To ensure product quality and reliability under impact conditions, the mechanical responses of materials under dynamic loading conditions must be characterized. A Kolsky bar is a tool that can be used to study the uniaxial compressive constitutive behavior of materials under high strain rates. The goal of this thesis is to develop a miniature Tensile Kolsky bar that can be used to test materials with thickness on the order of 200 micrometers (thin foils). The system consists of a cylindrical launch tube with an internal striker, a rectangular incident bar and a transmitted bar. The specimen is held in pockets that were milled directly into the incident and transmitted bar. The rectangular incident and transmitted bars facilitate specimen and strain gage mounting. The rectangular section also provides a reduced cross sectional bar area compared to a bar of circular cross section with diameter equivalent to the width of the rectangular bar, which increases the system sensitivity. This thesis presents the detailed description of the miniature Kolsky bar device, specimen geometry, diagnostic techniques and different calibration and validation techniques used for developing the system. The Kolsky bar setup was used to test 99.9 percent pure magnesium at two different strain rates (5000 and 10000 per second). Specimens were cut from billets processed via the 4Bc equal channel angular extrusion route and were tested in three different directions: extrusion, longitudinal and transverse. The results from the

  13. Dynamic and quasi-static measurements of PBXN-5 and comp-B explosives

    SciTech Connect

    Brown, Geoffrey W; Ten Cate, James A; Deluca, Racci; Rae, Philip J; Todd, Steven N

    2009-03-12

    We have measured dynamic and quasi-static mechanical properties of PBXN-5 and Comp-B explosive materials to provide input data for modeling efforts. Dynamic measurements included acoustic and split-Hopkinson pressure bar tests. Quasi-static testing was done in compression on a load frame. Hopkinson bar and quasistatic testing was done at five temperatures from -50{sup o}C to 50{sup o}C. Our results were dominated by the low density of the samples and showed up as low acoustic velocities and lower strengths, as compared to other materials of the same or similar formulations. The effects seem to be consistent with the high porosity of the materials. The data do provide useful input to models that include density as a parameter and suggest caution when using measurements of ideal materials to predict behavior of damaged materials.

  14. Dynamic Characterization and Modeling of Potting Materials for Electronics Assemblies

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant; Lee, Gilbert; Santiago, Jaime

    2015-06-01

    Prediction of survivability of encapsulated electronic components subject to impact relies on accurate modeling. Both static and dynamic characterization of encapsulation material is needed to generate a robust material model. Current focus is on potting materials to mitigate high rate loading on impact. In this effort, encapsulation scheme consists of layers of polymeric material Sylgard 184 and Triggerbond Epoxy-20-3001. Experiments conducted for characterization of materials include conventional tension and compression tests, Hopkinson bar, dynamic material analyzer (DMA) and a non-conventional accelerometer based resonance tests for obtaining high frequency data. For an ideal material, data can be fitted to Williams-Landel-Ferry (WLF) model. A new temperature-time shift (TTS) macro was written to compare idealized temperature shift factor (WLF model) with experimental incremental shift factors. Deviations can be observed by comparison of experimental data with the model fit to determine the actual material behavior. Similarly, another macro written for obtaining Ogden model parameter from Hopkinson Bar tests indicates deviations from experimental high strain rate data. In this paper, experimental results for different materials used for mitigating impact, and ways to combine data from resonance, DMA and Hopkinson bar together with modeling refinements will be presented.

  15. Nonlinear dynamics and analysis of a four-bar linkage with clearance

    NASA Astrophysics Data System (ADS)

    Tang, Yuanguang; Chang, Zongyu; Dong, Xiaogang; Hu, Yafei; Yu, Zhenjiang

    2013-06-01

    In this paper, nonlinear dynamic behavior of a four-bar linkage considering clearance is studied. The dynamic model of the linkage with a clearance between coupler and rocker is developed firstly. Then the dynamic equations of this mechanism are solved by a numerical method. According to the calculated response, compliance, force and trajectory of pin in joint bearing are obtained. Effects of clearance magnitude and the relationship between a mechanism with clearance and without clearance are studied. By using Poincare Map, it is proved that strange attractors or chaos exist in the dynamic response. In addition, phenomena of chaos, periodic response and subharmonic response also can be found in the special condition. Bifurcation diagram is used to suggest that bifurcation and fractal phenomena exist in the dynamic response of this mechanism.

  16. Braid bar and island dynamics of the multi-threaded Rio Paraná, Argentina

    NASA Astrophysics Data System (ADS)

    Nicholas, A.; Ashworth, P.; Sandbach, S.; Amsler, M.; Best, J.; Hardy, R.; Lane, S.; Orfeo, O.; Parsons, D.; Reesink, A.; Sambrook Smith, G.; Szupiany, R.

    2012-04-01

    Here we report results from a three year study of channel dynamics and bar evolution in one of the World's largest rivers, the multi-threaded Rio Paraná, Argentina. The Rio Paraná is a sand-bed river (D50 ~ 0.35 mm) with a channel pattern that is characterised by stable vegetated islands, dynamic sandy braid bars, partially-coupled floodplain wetlands and, in many reaches, a dominant meandering thalweg. Mean channel width and depth at bankfull conditions are ~2-3 km and ~7-8 m, respectively. Thalweg scour depths are up to 25-30 m. Channel and bar morphodynamics were monitored during this study using a range of techniques including repeat bathymetric surveys, using single- and multi-beam echo sounding, acoustic Doppler current profiler surveys of flow structure and suspended sediment concentration, and analysis of historic bathymetric maps and satellite imagery. Channel hydrodynamics and morphodynamics were also investigated using a range of numerical modelling strategies. These included a 3D Computational Fluid Dynamics model, a 2D physically-based morphodynamic model that solves the shallow water form of the Navier-Stokes equations, and a reduced-complexity model that neglects much of the physics governing fluvial processes. Here we focus on a comparison of numerical model results and field evidence in order to evaluate which modelling strategies have the greatest potential for elucidating process-form relationships within the World's largest multi-threaded rivers. We show that all three modelling approaches are capable of predicting observed depth-mean flow structures within a 30 km study reach of the Rio Paraná. However, we conclude that models of intermediate complexity, based on the depth-averaged shallow water equations, may provide the most effective tools for simulating bar formation and river evolution over time periods of decades to centuries. Results from our morphodynamic model simulations and field data analysis provide insight into mechanisms of

  17. Modeling the dynamic properties of conventional and high-damping boring bars

    NASA Astrophysics Data System (ADS)

    Sortino, M.; Totis, G.; Prosperi, F.

    2013-01-01

    Nowadays, the availability of reliable mathematical models of machining system dynamics is a key issue for achieving high quality standards in precision machining. Dynamic models can indeed be applied for tooling system design, preventive evaluation of cutting process stability and optimization of cutting parameters. This is of particular concern in internal turning, where the cutting process is greatly affected by the compliance of the tooling system. In this paper, an innovative hybrid dynamic model of the tooling system in internal turning, based on FE beams and empirical models, is presented. The model was based on physical and geometrical assumptions and it was refined by using experimental observations derived from modal testing of boring bars with different geometries and made of different materials, i.e. alloy steel and high-damping carbide. The predicted modal parameters of the tooling system (tool tip static compliance, natural frequency and damping coefficient of the dominant mode) are in good accordance with experimental values.

  18. Gas Dynamics and Outflow in the Barred Starburst Galaxy NGC 1808 Revealed with ALMA

    NASA Astrophysics Data System (ADS)

    Salak, Dragan; Nakai, Naomasa; Hatakeyama, Takuya; Miyamoto, Yusuke

    2016-05-01

    NGC 1808 is a nearby barred starburst galaxy with an outflow from the nuclear region. To study the inflow and outflow processes related to star formation and dynamical evolution of the galaxy, we have carried out 12CO (J=1-0) mapping observations of the central r ∼ 4 kpc of NGC 1808 using the Atacama Large Millimeter/submillimeter Array. Four distinct components of molecular gas are revealed at high spatial resolution of 2″ (∼100 pc): (1) a compact (r < 200 pc) circumnuclear disk (CND), (2) r ∼ 500 pc ring, (3) gas-rich galactic bar, and (4) spiral arms. Basic geometric and kinematic parameters are derived for the central 1 kpc region using tilted-ring modeling. The derived rotation curve reveals multiple mass components that include (1) a stellar bulge, (2) a nuclear bar and molecular CND, and (3) an unresolved massive (∼107 M ⊙) core. Two systemic velocities, 998 km s‑1 for the CND and 964 km s‑1 for the 500 pc ring, are revealed, indicating a kinematic offset. The pattern speed of the primary bar, derived by using a cloud-orbit model, is 56 ± 11 km s‑1 kpc‑1. Noncircular motions are detected associated with a nuclear spiral pattern and outflow in the central 1 kpc region. The ratio of the mass outflow rate to the star formation rate is {\\dot{M}}{out}/{SFR}∼ 0.2 in the case of optically thin CO (1–0) emission in the outflow, suggesting low efficiency of star formation quenching.

  19. Definition of a dynamic optical sensor for measuring unsteady pressures

    SciTech Connect

    Chapuis, P.; Maillard, J.M.

    1996-12-31

    This study presents the authors` contribution to define an optical dynamic sensor. Given that the studies carried out are of an exploratory nature, the first task was to validate the mechanical behavior of the specimen body in the sensor and to check that the signals recorded were reproducible. To subject the sensor to deformation rates of 10 to 10{sup 2} per second, tests were carried out using the Kolsky-Hopkinson apparatus. The results show that specimen body responds in a satisfactory manner. This result leads the authors to opt for the use of a polarimetric apparatus using birefringent shaping fibers in order to limit the intrinsic sensitivity of the two-arm apparatus. The fact that the fiber is sensitive to deformation rates does not appear in the bibliographical references. They identified it on the basis of tests on the traction/compression machine by varying the load climb rate and on the basis of Hopkinson bar dynamic tests.

  20. Computer simulations of channel meandering and the formation of point bars: Linking channel dynamics to the preserved stratigraphy

    NASA Astrophysics Data System (ADS)

    Sun, T.; Covault, J. A.; Pyrcz, M.; Sullivan, M.

    2012-12-01

    Meandering rivers are probably one of the most recognizable geomorphic features on earth. As they meander across alluvial and delta plains, channels migrate laterally and develop point bars, splays, levees and other geomorphic and sedimentary features that compose substantial portions of the fill within many sedimentary basins. These basins can include hydrocarbon producing fields. Therefore, a good understanding of the processes of meandering channels and their associated deposits is critical for exploiting these reservoirs in the subsurface. In the past couple of decades, significant progress has been made in our understanding of the morphodynamics of channel meandering. Basic fluid dynamics and sediment transport (Ikeda and Parker, 1981; Howard, 1992) has shown that many characteristic features of meandering rivers, such as the meandering wavelength, growth rate and downstream migration rate, can be predicted quantitatively. As a result, a number of variations and improvement of the theory have emerged (e.g., Blondeaux and Seminara, 1985; Parker and Andrews, 1985, 1986; and Sun et al., 2001a, b).The main improvements include the recognition of so called "bar-bend" interactions, where the development of bars on the channel bed and their interactions with the channel bend is recognized as a primary cause for meandering channels to develop greater complexity than the classic goose-neck meander bend shapes, such as compound bend. Recently, Sun and others have shown that the spatial patterns of width variations in meandering channels can be explained by an extrinsic periodic flow variations coupled with the intrinsic bend instability dynamics. In contrast to the significant improvement of our understanding of channel meandering, little work has been done to link the geomorphic features of meandering channels to the geometry and heterogeneity of the deposits they form and ultimately preserves. A computer simulation model based on the work of Sun and others (1996, 2001

  1. MASSIVE CLUSTERS IN THE INNER REGIONS OF NGC 1365: CLUSTER FORMATION AND GAS DYNAMICS IN GALACTIC BARS

    SciTech Connect

    Elmegreen, Bruce G.; Galliano, Emmanuel; Alloin, Danielle E-mail: egallian@on.b

    2009-10-01

    Cluster formation and gas dynamics in the central regions of barred galaxies are not well understood. This paper reviews the environment of three 10{sup 7} M {sub sun} clusters near the inner Lindblad resonance (ILR) of the barred spiral NGC 1365. The morphology, mass, and flow of H I and CO gas in the spiral and barred regions are examined for evidence of the location and mechanism of cluster formation. The accretion rate is compared with the star formation rate to infer the lifetime of the starburst. The gas appears to move from inside corotation in the spiral region to looping filaments in the interbar region at a rate of approx6 M {sub sun} yr{sup -1} before impacting the bar dustlane somewhere along its length. The gas in this dustlane moves inward, growing in flux as a result of the accretion to approx40 M {sub sun} yr{sup -1} near the ILR. This inner rate exceeds the current nuclear star formation rate by a factor of 4, suggesting continued buildup of nuclear mass for another approx0.5 Gyr. The bar may be only 1-2 Gyr old. Extrapolating the bar flow back in time, we infer that the clusters formed in the bar dustlane outside the central dust ring at a position where an interbar filament currently impacts the lane. The ram pressure from this impact is comparable to the pressure in the bar dustlane, and both are comparable to the pressure in the massive clusters. Impact triggering is suggested. The isothermal assumption in numerical simulations seems inappropriate for the rarefaction parts of spiral and bar gas flows. The clusters have enough lower-mass counterparts to suggest they are part of a normal power-law mass distribution. Gas trapping in the most massive clusters could explain their [Ne II] emission, which is not evident from the lower-mass clusters nearby.

  2. Factors Influencing Local Membrane Curvature Induction by N-BAR Domains as Revealed by Molecular Dynamics Simulations

    PubMed Central

    Blood, Philip D.; Swenson, Richard D.; Voth, Gregory A.

    2008-01-01

    N-BAR domains are protein modules that bind to and induce curvature in membranes via a charged concave surface and N-terminal amphipathic helices. Recently, molecular dynamics simulations have demonstrated that the N-BAR domain can induce a strong local curvature that matches the curvature of the BAR domain surface facing the bilayer. Here we present further molecular dynamics simulations that examine in greater detail the roles of the concave surface and amphipathic helices in driving local membrane curvature. We find that the strong curvature induction observed in our previous simulations requires the stable presentation of the charged concave surface to the membrane and is not driven by the membrane-embedded amphipathic helices. Nevertheless, without these amphipathic helices embedded in the membrane, the N-BAR domain does not maintain a close association with the bilayer, and fails to drive membrane curvature. Increasing the membrane negative charge through the addition of PIP2 facilitates closer association with the membrane in the absence of embedded helices. At sufficiently high concentrations, amphipathic helices embedded in the membrane drive membrane curvature independently of the BAR domain. PMID:18469070

  3. Bar dimensions and bar shapes in estuaries

    NASA Astrophysics Data System (ADS)

    Leuven, Jasper; Kleinhans, Maarten; Weisscher, Steven; van der Vegt, Maarten

    2016-04-01

    Estuaries cause fascinating patterns of dynamic channels and shoals. Intertidal sandbars are valuable habitats, whilst channels provide access to harbors. We still lack a full explanation and classification scheme for the shapes and dimensions of bar patterns in natural estuaries, in contrast with bars in rivers. Analytical physics-based models suggest that bar length in estuaries increases with flow velocity, tidal excursion length or estuary width, depending on which model. However, these hypotheses were never validated for lack of data and experiments. We present a large dataset and determine the controls on bar shape and dimensions in estuaries, spanning bar lengths from centimeters (experiments) to 10s of kilometers length. First, we visually identified and classified 190 bars, measured their dimensions (width, length, height) and local braiding index. Data on estuarine geometry and tidal characteristics were obtained from governmental databases and literature on case studies. We found that many complex bars can be seen as simple elongated bars partly cut by mutually evasive ebb- and flood-dominated channels. Data analysis shows that bar dimensions scale with estuary dimensions, in particular estuary width. Breaking up the complex bars in simple bars greatly reduced scatter. Analytical bar theory overpredicts bar dimensions by an order of magnitude in case of small estuarine systems. Likewise, braiding index depends on local width-to-depth ratio, as was previously found for river systems. Our results suggest that estuary dimensions determine the order of magnitude of bar dimensions, while tidal characteristics modify this. We will continue to model bars numerically and experimentally. Our dataset on tidal bars enables future studies on the sedimentary architecture of geologically complex tidal deposits and enables studying effects of man-induced perturbations such as dredging and dumping on bar and channel patterns and habitats.

  4. A technique for combined dynamic compression-shear test

    NASA Astrophysics Data System (ADS)

    Zhao, P. D.; Lu, F. Y.; Chen, R.; Lin, Y. L.; Li, J. L.; Lu, L.; Sun, G. L.

    2011-03-01

    It is critically important to study the dynamic response of materials under a combined compression-shear loading for developing constitutive laws more accurately and fully. We present a novel technique to achieve the combined compression and shear loadings at high strain rates. The main apparatus consists of a strike bar, an incident bar, and two transmission bars. The close-to-specimen end of the incident bar is wedge-shaped with 90°. In each experiment, there are two identical specimens, respectively, agglutinated between one side of the wedge and one of transmission bars. When a loading impulse travels to specimens along the incident bar, because of the special geometrical shape, the specimen-incident bar interface gets an axial and a transverse velocity. Specimens endure a combined compression-shear loading at high strain rates. The compression stress and strain of the specimens are deduced from signals recorded by strain gages mounted on the bars. The shear stress is measured by two piezoelectric transducers of quartz (Y-cut with rotation angle 17.7°) embedded at the close-to-specimen end of transmission bars; the shear strain is measured with a novel optical technique, which is based on the luminous flux method. An analytic model was proposed and validated by the numerical simulations. The simulation results yield good agreement with the analytic results. The proposed technique was then validated through experiments carried out on lead specimens, by comparing experimental results with that of the split Hopkinson pressure bar experiments.

  5. Interactions between bar dynamics and herbaceous vegetation in gravel bed rivers: numerical simulations using BASEMENT

    NASA Astrophysics Data System (ADS)

    Siviglia, Annunziato; Tettamanti, Stefano; Bertoldi, Walter; Toffolon, Marco; Vetsch, David; Francalanci, Simona

    2014-05-01

    A new 2D morphodynamic model for gravel bed rivers have been used to investigate the interaction between alternate bar dynamics and herbaceous vegetation. In particular, bed topography evolution has been coupled with the growth of vegetation, included as a function of the access to ground water. Numerical simulations were performed using the code BASEMENT (Vetsch et al., 2013), with the addition of a new submodel, dealing with the numerical description of the vegetation. The vegetation was allowed to grow during the dry season on exposed areas, and the vertical distribution of peak biomass was modeled as a function of the bed elevation, using a simple analytical formulation, following Marani et al. (2013). Flow resistance was divided into a component exerted by the bed and a component exerted by vegetation (Crosato and Saleh, 2010; Li and Millar, 2011); in this way we reproduced both the decrease in bed shear stress, reducing the sediment transport capacity of the flow within the plants, and the increase in hydraulic resistance, reducing flow velocity. The model was applied to a hypothetical case study, with grain size, longitudinal slope, and hydrological regime similar to that of the Magra River (Italy). A straight river reach, 125 m wide and 20 km long was simulated. Starting from an initially flat configuration, the river developed its own bar morphology, under steady formative conditions. After reaching a dynamic equilibrium, we allowed the vegetation to grow and interact with the morphodynamic evolution, reproducing a sequence of floods and growing seasons at low flow. We assumed that vegetation can be uprooted only if the bed shear stress exceeds a fixed threshold. Different scenarios were examined, varying the effect of vegetation in terms of increased resistance and threshold for uprooting (i.e. added sediment cohesion). Preliminary results confirmed that the herbaceous vegetation has a stabilizing effect on river morphology. As the density and strength of

  6. The e{sup +}e{sup -}{yields}J/{psi}DD-bar, J/{psi}DD-bar* reactions with dynamically generated resonances

    SciTech Connect

    Gamermann, D.; Oset, E.

    2008-08-31

    In two recent reactions by Belle producing DD-bar and DD-bar* meson pairs, peaks above threshold have been measured in the differential cross sections, possibly indicating new resonances in these channels. We want to study such reactions from the point of view that the D meson pairs are produced from already known or predicted resonances below threshold. Our study shows that the peak in the DD-bar* production is not likely to be caused by the X(3872) resonance, but the peak seen in DD-bar invariant mass can be well described if the DD-bar pair comes from the already predicted scalar X(3700) resonance.

  7. Rotational reorientation dynamics at high pressures: rhodamine 6G in ethanol from 1 bar to 6 kbar

    SciTech Connect

    Philips, L.A.; Webb, S.P.; Yeh, S.W.; Clark, J.H.

    1985-01-03

    Picosecond, time-resolved fluorescence depolarization spectroscopy has been used to measure the rotational reorientation time (tau/sub or/) of electronically excited rhodamine 6G. When the dependence of tau/sub or/ on solvent viscosity for a series of linear alcohols is compared with that for ethanol as a function of pressure over the range from 1 bar to 6 kbar, substantially different rotational reorientation dynamics are found for identical macroscopic viscosities. 31 references, 2 figures, 2 tables.

  8. A test of the association of infrared activity with bars. [Intragalactic dynamics

    SciTech Connect

    Pompea, S.M.; Rieke, G.H. )

    1990-06-01

    The hypothesis that high FIR luminosities in noninteracting galaxies are dependent on material fed into their nuclei or into circumnuclear rings along bars can be tested by NIR imaging. A sample of 22 galaxies was selected from the Revised Shapley-Ames Catalog, that have FIR luminosities greater than 10 to the 10th lunar luminosities and hot colors between 60 and 100 microns, indicative of possible nuclear starbursts, but are not interacting or classified as Seyfert galaxies. Fifteen galaxies of the sample of 16 that are not clearly barred from optical data and are isolated were imaged at 1.6 micron and 2.2 microns. In an evaluation of the IR images, at least eight of these galaxies do not appear to have bars. Strong bars therefore do not appear to be an absolute requirement for high IR luminosity. 21 refs.

  9. A test of the association of infrared activity with bars. [intragalactic dynamics

    NASA Technical Reports Server (NTRS)

    Pompea, Stephen M.; Rieke, G. H.

    1990-01-01

    The hypothesis that high FIR luminosities in noninteracting galaxies are dependent on material fed into their nuclei or into circumnuclear rings along bars can be tested by NIR imaging. A sample of 22 galaxies was selected from the Revised Shapley-Ames Catalog, that have FIR luminosities greater than 10 to the 10th lunar luminosities and hot colors between 60 and 100 microns, indicative of possible nuclear starbursts, but are not interacting or classified as Seyfert galaxies. Fifteen galaxies of the sample of 16 that are not clearly barred from optical data and are isolated were imaged at 1.6 micron and 2.2 microns. In an evaluation of the IR images, at least eight of these galaxies do not appear to have bars. Strong bars therefore do not appear to be an absolute requirement for high IR luminosity.

  10. Dynamics of a nearshore bar system in the northern Adriatic: A video-based morphological classification

    NASA Astrophysics Data System (ADS)

    Armaroli, Clara; Ciavola, Paolo

    2011-03-01

    The aim of this paper is to define a simplified morphodynamic classification suitable for low energy beaches exposed to microtidal conditions. The study site is located in the northern Adriatic (in Italy), it is an almost 2 km-long rectilinear beach bordered at the northern edge by coastal structures and at the southern end by a small river inlet. The mechanisms related to the evolution of the submerged part of the beach were derived from video-monitoring using Argus technology. The morphodynamic evolution of the system was studied using an automatic procedure on images for the characterisation of nearshore bars that showed good correspondence with hand-based (visual) interpretation. To apply this automatic procedure, the bar's plan crest shape was mapped using cross-shore pixel luminosity transects traced on time-averaged video images. A careful sensitivity analysis was undertaken to determine the best spacing between transects for the correct tracing of the shape of the bar crest. The error associated to a transect spacing every 25 m resulted in being comparable with the pixel resolution in the area and with the error found comparing the video interpretation with bathymetric surveys. From the study of a four and a half year dataset (February 2003-May 2007), the submerged beach was found to be characterised by the presence of a single bar in the area next to coastal protection structures. However, moving southwards of these, inner and outer bars were present. The morphodynamics of the outer bar and its plan shape modifications were dominated by rhythmic forms. Occasionally, after high energy events, the bar became rectilinear but during the following lower energy periods rhythmicity was re-established, supporting the hypothesis of self-organization mechanisms. The cross-shore position of the bar's crests only showed limited cross-shore mobility through time.

  11. Equilibrium of a galactic bar. II. Stellar-dynamical counterparts of the S-type Riemann ellipsoids

    SciTech Connect

    Vandervoort, P.O.; Welty, D.E.

    1982-12-15

    The family of triaxial stellar systems described in Paper I of this series is generalized to include, in addition to the previous dependence on Jacobi's integral, a dependence of the distribution function on a second isolating integral of the motion of a star in the prevailing gravitational field. The second integral is approximated with the aid of a model of the stellar orbits which is valid in the absence of important resonances and which should be accurate in the systems of relatively small central concentration on which this investigation concentrates. The new stellar systems are stellar-dynamical counterparts of the classical S-type Riemann ellipsoids well known in the study of self-gravitating fluid systems, and, within the framework of stellar dynamics, they are also three-dimensional counterparts of the elliptical disks studied by Freeman and by Hunter. The Riemann-like stellar systems form an extensive family, and they exhibit a rich interplay of effects of the rotations of their triaxial figures and effects of the dependence of their distribution functions on the second integral of the motion. The family includes stellar-dynamical counterparts of the classical Maclaurin spheroids, Jacobi ellipsoids, and Dedekind ellipsoids. The study of triaxial, Riemann-like systems is related to the study of bar modes of oscillation in corresponding axisymmetric, Maclaurin-like systems. On the basis of this relationship, it is shown that an axisymmetric stellar system having the structure of a uniformly rotating polytrope of index n = 0.5 is dynamically unstable with respect to a bar mode if the ratio of the rotational kinetic energy to the magnitude of the gravitational potential energy exceeds 0.166.

  12. Experimental and numerical analysis of the dynamic behaviour in tension of an armour steel for applications in defence industry

    NASA Astrophysics Data System (ADS)

    Cadoni, Ezio; Dotta, Matteo; Forni, Daniele; Riganti, Gianmario; Kaufmann, Hanspeter

    2015-09-01

    The dynamic behaviour of armour steel in tension was investigated over a wide range of strain-rates on round specimens. The experiments were carried out by means of a Split Hopkinson Tensile Bar device and by a Hydro Pneumatic Machine. The target strain rate were set at the following six levels: 10-3, 5, 25, 100, 500 and 1000 s-1. Two material models were calibrated and used to replicate the experiments and to simulate blasting event on steel plate. Finally, the two responses are compared.

  13. The fate of Salicaceae seedlings related to the dynamics of alluvial bars during floods: differentiating bed erosion, uprooting and burying.

    NASA Astrophysics Data System (ADS)

    Wintenberger, C. L.; Rodrigues, S.; Bréhéret, J. G.; Juge, P.; Villar, M.

    2014-12-01

    Riparian vegetation is a key factor of the morphological evolution of river. In Europe, riparian Salicaceae is declining following the loss of potential recruitment areas associated with river management. As an exception for lowland rivers, the Loire River (France) shows, in its middle reaches, an efficient sexual regeneration of Populus nigra and Salix alba on bare sediments deposited during flood events. In the literature, the influence of hydrological patterns as a key factor of the seedlings survival is well documented. Some studies focused on seedlings ability to withstand flood constraints and detailed the effect of duration and intensity of floods but few studies characterized precisely the processes applied on seedlings. As a working hypothesis, we consider that three types of flood stresses can induce mortality of seedlings: (i) uprooting by drag applied on the seedlings without sediment erosion, (ii) erosion of the recruited areas and (iii) burying. The distinction of these three processes allows identifying the importance of survival factors due to a strong sediment dynamics (e.g. erosion height > root height) or to the anchorage and resprouting ability. The main issues are: what are the governing processes (type and intensity) determining survival or death of seedlings and which factor (fluvial dynamics vs. own characteristics of seedlings) controls their survival? In-situ measurements were performed on a forced alluvial bar (20.000 m2) to detail the bar dynamics (bathymetry, topography, scour/fill processes, grain size surveys, flow velocity) and to survey the associated recruitment. On 48 plots (1.410 m2) the density, height and species (P. nigra and S. alba) were surveyed the year of recruitment (after dry period) and the next year after flood period. We highlight the following phases of processes during floods. The erosion of substrate dominates at the beginning of the rising limb. The erosion or uprooting processes depend of the balance between

  14. Finite Element Simulations to Explore Assumptions in Kolsky Bar Experiments.

    SciTech Connect

    Crum, Justin

    2015-08-05

    The chief purpose of this project has been to develop a set of finite element models that attempt to explore some of the assumptions in the experimental set-up and data reduction of the Kolsky bar experiment. In brief, the Kolsky bar, sometimes referred to as the split Hopkinson pressure bar, is an experimental apparatus used to study the mechanical properties of materials at high strain rates. Kolsky bars can be constructed to conduct experiments in tension or compression, both of which are studied in this paper. The basic operation of the tension Kolsky bar is as follows: compressed air is inserted into the barrel that contains the striker; the striker accelerates towards the left and strikes the left end of the barrel producing a tensile stress wave that propogates first through the barrel and then down the incident bar, into the specimen, and finally the transmission bar. In the compression case, the striker instead travels to the right and impacts the incident bar directly. As the stress wave travels through an interface (e.g., the incident bar to specimen connection), a portion of the pulse is transmitted and the rest reflected. The incident pulse, as well as the transmitted and reflected pulses are picked up by two strain gauges installed on the incident and transmitted bars as shown. By interpreting the data acquired by these strain gauges, the stress/strain behavior of the specimen can be determined.

  15. Dynamic Tensile Strength of Coal under Dry and Saturated Conditions

    NASA Astrophysics Data System (ADS)

    Zhao, Yixin; Liu, Shimin; Jiang, Yaodong; Wang, Kai; Huang, Yaqiong

    2016-05-01

    The tensile failure characterization of dry and saturated coals under different impact loading conditions was experimentally investigated using a Split Hopkinson pressure bar. Indirect dynamic Brazilian disc tension tests for coals were carried out. The indirect tensile strengths for different bedding angles under different impact velocities, strain rates and loading rates are analyzed and discussed. A high-speed high-resolution digital camera was employed to capture and record the dynamic failure process of coal specimens. Based on the experimental results, it was found that the saturated specimens have stronger loading rate dependence than the dry specimens. The bedding angle has a smaller effect on the dynamic indirect tensile strength compared to the impact velocity. Both shear and tensile failures were observed in the tested coal specimens. Saturated coal specimens have higher indirect tensile strength than dry ones.

  16. Chatter resistance of non-uniform turning bars with attached dynamic absorbers—Analytical approach

    NASA Astrophysics Data System (ADS)

    Saffury, J.; Altus, E.

    2010-05-01

    Forced harmonic vibration of a non-uniform elastic beam with attached dynamic vibration absorbers (DVA) is studied. Analytical approximation of the solution is obtained by the functional perturbation method (FPM). The problem has application to cutting tools operations where the resistance of the tool holder against regenerative chatter can be enhanced by optimizing the real part of the frequency response function (FRF). A test case of a beam with step-like heterogeneity and single DVA at the tip shows that the FPM solution is very accurate for up to ˜40 percent deviation in both stiffness and mass density. Using the analytical results and Sims approach, optimal DVA tuning is found for each set of beam heterogeneity parameters by solving a set of nonlinear algebraic equations numerically. It is found that the optimum can be further improved by searching for the best step location. The system optimization is then expanded to a general heterogeneous beam with a DVA at its tip. The mass and stiffness distribution is optimized by applying the Lagrange variation method on the FPM solution yielding Fredholm integral equations. The optimized morphology is found to be approximately linear and far from the "intuitive" step-like one (Rivin and Kang, 1992) and yields better chatter-resistance.

  17. Dark Matter Trapping by Stellar Bars: The Shadow Bar

    NASA Astrophysics Data System (ADS)

    Petersen, Michael S.; Weinberg, Martin D.; Katz, Neal

    2016-09-01

    We investigate the complex interactions between the stellar disc and the dark-matter halo during bar formation and evolution using N-body simulations with fine temporal resolution and optimally chosen spatial resolution. We find that the forming stellar bar traps dark matter in the vicinity of the stellar bar into bar-supporting orbits. We call this feature the shadow bar. The shadow bar modifies both the location and magnitude of the angular momentum transfer between the disc and dark matter halo and adds 10 per cent to the mass of the stellar bar over 4 Gyr. The shadow bar is potentially observable by its density and velocity signature in spheroid stars and by direct dark matter detection experiments. Numerical tests demonstrate that the shadow bar can diminish the rate of angular momentum transport from the bar to the dark matter halo by more than a factor of three over the rate predicted by dynamical friction with an untrapped dark halo, and thus provides a possible physical explanation for the observed prevalence of fast bars in nature.

  18. Dynamic Tensile Failure of the Rock Interface Between Tuff and Basalt

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Feng, Xia-Ting; Chen, Rong; Xia, Kaiwen; Jin, Changyu

    2012-05-01

    The dynamic tensile strength properties of the rock interface and its host rocks sampled from the Baihetan Hydropower Station from Western China were measured using a split Hopkinson pressure bar (SHPB). The results were compared with those for its two host rocks. The dynamic tensile strengths of the two host rocks, tuff and basalt have typical loading rate dependence. However, the dynamic response of the rock interface is much more complicated and at a given loading rate, varies between those of tuff and basalt. To explain the observation, numerical simulation using the discrete element method (DEM) was conducted to determine the detailed tensile failure process of the rock interface. The numerical simulation verifies that the variation of the dynamic tensile strength of the rock interface is a result of the variation of the interface geometry.

  19. Dynamic Strength of Tantalum under impact

    NASA Astrophysics Data System (ADS)

    Glam, Benny; Werdiger, Meir; Pistinner, Shlomi

    2013-06-01

    Plane impact experiments of double shock and shock-rarefaction in Tantalum were carried out in a gas gun. VISAR diagnostics has been implemented to measure the particle velocity and the free surface velocity. The VISAR information was utilized to study the dynamic strength of Tantalum under compression and tension. The pressure in the experiments was below 35 GPa. In this pressure range the dominant mechanism is expected to be dislocation motion. A 1-d hydrodynamic code was used in order to match various strength models. As expected, both the Johnson-Cook and the Guinan-Steinberg models do not reproduce the experimental results. Therefore in this paper we compare the Zerilli-Armstrong model which has been recently calibrated at strain rate of 6 x 103 s-1 using the split Kowalsky-Hopkinson bar to our experimental results at strain rate of 106 s-1.

  20. A dynamic ball compression test for understanding rock crushing.

    PubMed

    Huang, S; Liu, H; Xia, K

    2014-12-01

    During crushing, rock particles are subjected to complicated loading. It is desired to establish the relation between the loading and the fragmentation parameters for better understanding rock crushing mechanism. In this work, a split Hopkinson pressure bar system in combination with high speed cameras is utilized in the dynamic ball compression test, in which the spherical rock sample is adopted to avoid the shape effect. Using elasticity theory, the loading rate and the dynamic indirect tensile strength are first calculated. With the aid of the moment-trap technique and high speed cameras, the surface energy is determined for each sample. The relations between the loading rate and the fragmentation parameters, i.e., the number of fragments and the surface energy are established. The application of this method to a granitic rock shows that it is flexible and can be applied to the crushing study of generic brittle solids. PMID:25554304

  1. Application of the dynamic characterization of metals in automotive industry

    NASA Astrophysics Data System (ADS)

    D'Aiuto, Fabio; De Caro, Daniele; Federici, Claudio; Tedesco, Michele M.; Ziggiotti, Alessandro; Cadoni, Ezio

    2015-09-01

    This paper presents the experimental methodology used by R&D EMEA - Global Materials Labs Department to test metals at high strain rate of 500 s-1. The implementation of dynamic results in commercial FEM Software LS - DYNA for crash simulation are presented. The effects of the strain rate on the tensile properties of metals, used in automotive field, are evaluated using results obtained from a direct tension split Hopkinson bar, built in collaboration with the University of Applied Sciences of Southern Switzerland DynaMat Lab. Finally the complete mechanical characterization of the Magnesium alloy AZ31B is presented, from static up to dynamic tests, showing its applications in FCA (Fiat Chrysler Automobiles), problems and future developments.

  2. Measurement of the $B^+\\rightarrow p \\bar{p} K^{+}$ Branching Fraction and Study of the Decay Dynamics

    SciTech Connect

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Imperial Coll., London /Iowa U. /Iowa State U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Naples U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /Pisa U. /INFN, Pisa /Prairie View A-M /Princeton U. /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Stony Brook /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Vanderbilt U. /Victoria U. /Warwick U. /Wisconsin U., Madison /Yale U.

    2005-07-06

    With a sample of 232 x 10{sup 6} {Upsilon}(4S) {yields} B{bar B} events collected with the BABAR detector, we study the decay B{sup +} {yields} p{bar p}K{sup +} excluding charmonium decays to p{bar p}. We measure a branching fraction {Beta}(B{sup +} {yields} p{bar p}K{sup +}) = (6.7 {+-} 0.5 {+-} 0.4) x 10{sup -6}. An enhancement at low p{bar p} mass is observed and the Dalitz plot asymmetry suggests dominance of the penguin amplitude in this B decay. We search for a pentaquark candidate {Theta}*{sup ++} decaying into pK{sup +} in the mass range 1.43 to 2.00 GeV/c{sup 2} and set limits on {Beta}(B{sup +} {yields} {Theta}*{sup ++} {bar p}) x {Beta}({Theta}*{sup ++} {yields} pK{sup +}) at the 10{sup -7} level.

  3. Barred beaches

    NASA Astrophysics Data System (ADS)

    Wijnberg, Kathelijne M.; Kroon, Aart

    2002-11-01

    Seven different bar types are distinguished to provide a framework for comparing morphodynamic studies conducted in different areas. Five types occur in semiprotected or open coast settings, of which two are intertidal and three are subtidal. Two types occur in highly protected settings. The occurrence of a certain bar type is generally determined by the wave energy and tidal range, although the nearshore slope may also be a differentiating boundary condition. The theory behind the generation, evolution and decay of bars has evolved most for the subtidal bars in the semiprotected and open coast settings, for which three types of competing mechanisms have been formulated (breakpoint, infragravity waves, self-organisational). Most research has focused on these processes on the time scale of storm events and post-storm recovery. However, to understand the longer-term behavior of bar systems, knowledge of the role of relaxation time and morphologic feedback is needed as well. At present, such knowledge is very limited. We think it can best be obtained from the analysis of long time series of morphology and forcing conditions, rather than from intensive field experiments. In case of a feedback-dominated response (self-organisational), we expect to find no correlation between the time series of external forcing and the morphologic response. In case of a relaxation time-dominated response, we do expect to find such a correlation, albeit filtered. This discussion is illustrated by a case study of the Dutch coast.

  4. Numerical Simulations of the Kolsky Compression Bar Test

    SciTech Connect

    Corona, Edmundo

    2015-10-01

    The Kolsky compression bar, or split Hopkinson pressure bar (SHPB), is an ex- perimental apparatus used to obtain the stress-strain response of material specimens at strain rates in the order of 10 2 to 10 4 1/s. Its operation and associated data re- duction are based on principles of one-dimensional wave propagation in rods. Second order effects such as indentation of the bars by the specimen and wave dispersion in the bars, however, can significantly affect aspects of the measured material response. Finite element models of the experimental apparatus were used here to demonstrate these two effects. A procedure proposed by Safa and Gary (2010) to account for bar indentation was also evaluated and shown to improve the estimation of the strain in the bars significantly. The use of pulse shapers was also shown to alleviate the effects of wave dispersion. Combining the two can lead to more reliable results in Kolsky compression bar testing.

  5. Size and Geometry Effects on the Mechanical Properties of Carrara Marble Under Dynamic Loadings

    NASA Astrophysics Data System (ADS)

    Zou, Chunjiang; Wong, Louis Ngai Yuen

    2016-05-01

    The effects of specimen size and geometry on the dynamic mechanical properties of Carrara marble including compressive strength, failure strain and elastic modulus are investigated in this research. Four different groups of specimens of different sizes and cross-sectional geometries are loaded under a wide range of strain rates by the split Hopkinson pressure bar setup. The experimental results indicate that all these mechanical properties are significantly influenced by the specimen size and geometry to different extent, hence highlighting the importance of taking into account of the specimen size and geometry in dynamic tests on rock materials. In addition, the transmission coefficient and the determination of strain rate under dynamic tests are discussed in detail.

  6. Measurement of the B0 -> Lambda-bar p pi Branching Fraction andStudy of the Decay Dynamics

    SciTech Connect

    Bondioli, M

    2006-08-16

    We present a measurement of the B{sup 0} {center_dot} {bar {Lambda}}p{pi}{sup -} branching fraction performed using the BABAR detector at the PEP-II asymmetric energy e{sup +}e{sup -} collider. Based on a 232 million B{bar B} pairs data sample we measure: {center_dot} (B{sup 0} {center_dot} {bar {Lambda}}p{pi}{sup -}) = [3.30 {center_dot} 0.53(stat.) {center_dot} 0.31 (syst.)] {center_dot} 10{sup -6}. A measurement of the differential spectrum as a function of the di-baryon invariant mass m({Lambda}p) is also presented; this shows a near-threshold enhancement similar to that observed in other baryonic B decays.

  7. Servohydraulic methods for mechanical testing in the Sub-Hopkinson rate regime up to strain rates of 500 1/s.

    SciTech Connect

    Crenshaw, Thomas B.; Boyce, Brad Lee

    2005-10-01

    Tensile and compressive stress-strain experiments on metals at strain rates in the range of 1-1000 1/s are relevant to many applications such as gravity-dropped munitions and airplane accidents. While conventional test methods cover strain rates up to {approx}10 s{sup -1} and split-Hopkinson and other techniques cover strain rates in excess of {approx}1000 s{sup -1}, there are no well defined techniques for the intermediate or ''Sub-Hopkinson'' strain-rate regime. The current work outlines many of the challenges in testing in the Sub-Hopkinson regime, and establishes methods for addressing these challenges. The resulting technique for obtaining intermediate rate stress-strain data is demonstrated in tension on a high-strength, high-toughness steel alloy (Hytuf) that could be a candidate alloy for earth penetrating munitions and in compression on a Au-Cu braze alloy.

  8. Experimental analysis of quasi-static and dynamic fracture initiation toughness of gy4 armor steel material

    NASA Astrophysics Data System (ADS)

    Ren, Peng; Guo, Zitao

    Quasi-static and dynamic fracture initiation toughness of gy4 armour steel material are investigated using three point bend specimen. The modified split Hopkinson pressure bar (SHPB) apparatus with digital image correlation (DIC) system is applied to dynamic loading experiments. Full-field deformation measurements are obtained by using DIC to elucidate on the strain fields associated with the mechanical response. A series of experiments are conducted at different strain rate ranging from 10-3 s-1 to 103 s-1, and the loading rate on the fracture initiation toughness is investigated. Specially, the scanning electron microscope imaging technique is used to investigate the fracture failure micromechanism of fracture surfaces. The gy4 armour steel material fracture toughness is found to be sensitive to strain rate and higher for dynamic loading as compared to quasi-static loading. This work is supported by National Nature Science Foundation under Grant 51509115.

  9. Dynamic high-temperature characterization of an iridium alloy in compression at high strain rates.

    SciTech Connect

    Song, Bo; Nelson, Kevin; Lipinski, Ronald J.; Bignell, John L.; Ulrich, G. B.; George, E. P.

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 10000 s-1) and temperatures (750ÀC and 1030ÀC). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  10. Dynamic compressive properties of bovine knee layered tissue

    NASA Astrophysics Data System (ADS)

    Nishida, Masahiro; Hino, Yuki; Todo, Mitsugu

    2015-09-01

    In Japan, the most common articular disease is knee osteoarthritis. Among many treatment methodologies, tissue engineering and regenerative medicine have recently received a lot of attention. In this field, cells and scaffolds are important, both ex vivo and in vivo. From the viewpoint of effective treatment, in addition to histological features, the compatibility of mechanical properties is also important. In this study, the dynamic and static compressive properties of bovine articular cartilage-cancellous bone layered tissue were measured using a universal testing machine and a split Hopkinson pressure bar method. The compressive behaviors of bovine articular cartilage-cancellous bone layered tissue were examined. The effects of strain rate on the maximum stress and the slope of stress-strain curves of the bovine articular cartilage-cancellous bone layered tissue were discussed.

  11. Dynamic mechanical characterization and modelling of polypropylene based organoclay nanocomposite

    NASA Astrophysics Data System (ADS)

    Wang, Kui; Matadi Boumbimba, Rodrigue; Bahlouli, Nadia; Ahzi, Said; Muller, René

    2015-09-01

    In order to investigate the dynamic behaviour of polypropylene based organoclay nanocomposite, the polypropylene matrix and a master batch of polypropylene modified anhydrid maleic were mixed by means of melt mixing technique. The experimental characterization was performed by using split Hopkinson pressure bars (SHPB), at different strain rates and temperatures. A significant increase of the yield stress of nanocomposite was shown with the present of organoclay, comparing to neat PP. A three-phase approach based on the micromechanical formulation of the cooperative model is proposed to model the yield behaviour of the polymer nanocomposite. Our proposed approach accounts for strain rate and temperature effects as well as the organoclay exfoliation effect. The predictions of models for the nanocomposite yield behaviour showed a good agreement with experimental data.

  12. Dynamic tensile response of a carbon-fiber-reinforced LCP composite and its temperature sensitivity

    NASA Astrophysics Data System (ADS)

    Shim, Victor P. W.; Yuan, J.; Lim, C. T.

    2001-06-01

    The tensile mechanical behavior of a short carbon fiber filled liquid crystalline polymer (LCP) composite, Vectra A230, was examined under static extension and dynamic loading at three temperatures. Dynamic tension was applied using a pendulum-type tensile spilt Hopkinson bar device. Specimens fabricated according to both the mould flow and transverse directions were tested. The stress-strain curves at various strain rates and temperatures were determined and found to be sensitive to strain rate as well as temperature for both types of specimens. With reference to the properties of pure LCP, mechanical anisotropy and fiber reinforcement effects were characterized and are discussed. Failed specimens were observed suing an optical microscope. Deformation and failure mechanisms in the microstructure of the LCP composite were studied to understand the effects of strain rate and temperature on material strength and failure strain.

  13. Strain-rate-dependent model for the dynamic compression of elastoplastic spheres

    NASA Astrophysics Data System (ADS)

    Burgoyne, Hayden A.; Daraio, Chiara

    2014-03-01

    We present a force-displacement contact model for the compressive loading of elastoplastic spheres. This model builds from the well known Hertz contact law for elastic, quasistatic compression to incorporate a material's strain-rate-dependent plasticity in order to describe collisions between particles. In the quasistatic regime, finite-element analysis is used to derive an empirical function of the material properties. A Johnson-Cook strain rate dependence is then included into the model to study dynamic effects. We validate the model using split Hopkinson bar experiments and show that the model can accurately simulate the force-displacement response of strain-rate-dependent elastoplastic spheres during dynamic compression and unloading.

  14. Strain-rate-dependent model for the dynamic compression of elastoplastic spheres.

    PubMed

    Burgoyne, Hayden A; Daraio, Chiara

    2014-03-01

    We present a force-displacement contact model for the compressive loading of elastoplastic spheres. This model builds from the well known Hertz contact law for elastic, quasistatic compression to incorporate a material's strain-rate-dependent plasticity in order to describe collisions between particles. In the quasistatic regime, finite-element analysis is used to derive an empirical function of the material properties. A Johnson-Cook strain rate dependence is then included into the model to study dynamic effects. We validate the model using split Hopkinson bar experiments and show that the model can accurately simulate the force-displacement response of strain-rate-dependent elastoplastic spheres during dynamic compression and unloading. PMID:24730833

  15. Modeling and Characterization of Dynamic Failure of Soda-lime Glass Under High Speed Impact

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Chen, Weinong W.; Templeton, Douglas W.

    2012-05-27

    In this paper, the impact-induced dynamic failure of a soda-lime glass block is studied using an integrated experimental/analytical approach. The Split Hopkinson Pressure Bar (SHPB) technique is used to conduct dynamic failure test of soda-lime glass first. The damage growth patterns and stress histories are reported for various glass specimen designs. Making use of a continuum damage mechanics (CDM)-based constitutive model, the initial failure and subsequent stiffness reduction of glass are simulated and investigated. Explicit finite element analyses are used to simulate the glass specimen impact event. A maximum shear stress-based damage evolution law is used in describing the glass damage process under combined compression/shear loading. The impact test results are used to quantify the critical shear stress for the soda-lime glass under examination.

  16. Dynamic testing of concrete under high confined pressure. Influence of saturation ratio and aggregate size

    NASA Astrophysics Data System (ADS)

    Forquin, P.; Piotrowska, E.; Gary, G.

    2015-09-01

    Concrete structures can be exposed to intense pressure loadings such as projectile-impact or detonation near a concrete structural element. To investigate the mechanical behaviour of concrete under high confining pressure, dynamic quasi-oedometric compression tests have been performed with a large diameter (80 mm) Split Hopkinson Pressure Bar apparatus. The concrete sample is placed within a steel confining ring and compressed along its axial direction. Hydrostatic pressures as high as 800 MPa and axial strain of about - 10% are reached during the tests. In the present work, experiments have been conducted on two types of concrete: MB50 microconcrete with a maximum grain size of 2 mm and R30A7 ordinary concrete of maximum grain size about 8 mm. Both concretes are tested in dry or saturated conditions. According to these dynamic experiments it is noted that grain size has a small influence whereas water content has a strong effect on the confined behaviour of concrete.

  17. Inner shelf morphologic controls on the dynamics of the beach and bar system, Fire Island, New York

    USGS Publications Warehouse

    Hapke, Cheryl J.; Schwab, William C.; Gayes, P.; McCoy, Clay; Viso, Richard; Lentz, Erika E.

    2011-01-01

    he mechanism of sediment exchange between offshore sand ridges and the beach at Fire Island, New York is largely unknown. However, recent evidence from repeat nearshore bathymetry surveys, coupled with the complex but consistent bar morphology and patterns of shoreline change demonstrate that there is a feedback occurring between the regional geologic framework and modern processes. Analysis of bathymetric survey data provides direct confirmation that the offshore ridges are connected to the shoreface and are spatially persistent. The fixed nature of the nearshore morphology is further supported by time series camera data that indicate persistent bars with breaks that re-form in the same locations. A long-term time series of shoreline change shows distinct zones of erosion and accretion that are pervasive over time scales greater than a half-century, and their length-scales are similar to the spacing of the offshore ridge-trough system. The first-order geologic framework is responsible for the existence and locations of the ridges and troughs, which then influence the morphodynamics of the beach and bar system.

  18. Galaxy Zoo: CANDELS barred discs and bar fractions

    NASA Astrophysics Data System (ADS)

    Simmons, B. D.; Melvin, Thomas; Lintott, Chris; Masters, Karen L.; Willett, Kyle W.; Keel, William C.; Smethurst, R. J.; Cheung, Edmond; Nichol, Robert C.; Schawinski, Kevin; Rutkowski, Michael; Kartaltepe, Jeyhan S.; Bell, Eric F.; Casteels, Kevin R. V.; Conselice, Christopher J.; Almaini, Omar; Ferguson, Henry C.; Fortson, Lucy; Hartley, William; Kocevski, Dale; Koekemoer, Anton M.; McIntosh, Daniel H.; Mortlock, Alice; Newman, Jeffrey A.; Ownsworth, Jamie; Bamford, Steven; Dahlen, Tomas; Faber, Sandra M.; Finkelstein, Steven L.; Fontana, Adriano; Galametz, Audrey; Grogin, N. A.; Grützbauch, Ruth; Guo, Yicheng; Häußler, Boris; Jek, Kian J.; Kaviraj, Sugata; Lucas, Ray A.; Peth, Michael; Salvato, Mara; Wiklind, Tommy; Wuyts, Stijn

    2014-12-01

    The formation of bars in disc galaxies is a tracer of the dynamical maturity of the population. Previous studies have found that the incidence of bars in discs decreases from the local Universe to z ˜ 1, and by z > 1 simulations predict that bar features in dynamically mature discs should be extremely rare. Here, we report the discovery of strong barred structures in massive disc galaxies at z ˜ 1.5 in deep rest-frame optical images from the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey. From within a sample of 876 disc galaxies identified by visual classification in Galaxy Zoo, we identify 123 barred galaxies. Selecting a subsample within the same region of the evolving galaxy luminosity function (brighter than L*), we find that the bar fraction across the redshift range 0.5 ≤ z ≤ 2 ( f_{bar} = 10.7^{+6.3}_{-3.5} per cent after correcting for incompleteness) does not significantly evolve. We discuss the implications of this discovery in the context of existing simulations and our current understanding of the way disc galaxies have evolved over the last 11 billion years.

  19. Dynamic Brazilian Test of Rock Under Intermediate Strain Rate: Pendulum Hammer-Driven SHPB Test and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Zhu, W. C.; Niu, L. L.; Li, S. H.; Xu, Z. H.

    2015-09-01

    The tensile strength of rock subjected to dynamic loading constitutes many engineering applications such as rock drilling and blasting. The dynamic Brazilian test of rock specimens was conducted with the split Hopkinson pressure bar (SHPB) driven by pendulum hammer, in order to determine the indirect tensile strength of rock under an intermediate strain rate ranging from 5.2 to 12.9 s-1, which is achieved when the incident bar is impacted by pendulum hammer with different velocities. The incident wave excited by pendulum hammer is triangular in shape, featuring a long rising time, and it is considered to be helpful for achieving a constant strain rate in the rock specimen. The dynamic indirect tensile strength of rock increases with strain rate. Then, the numerical simulator RFPA-Dynamics, a well-recognized software for simulating the rock failure under dynamic loading, is validated by reproducing the Brazilian test of rock when the incident stress wave retrieved at the incident bar is input as the boundary condition, and then it is employed to study the Brazilian test of rock under the higher strain rate. Based on the numerical simulation, the strain-rate dependency of tensile strength and failure pattern of the Brazilian disc specimen under the intermediate strain rate are numerically simulated, and the associated failure mechanism is clarified. It is deemed that the material heterogeneity should be a reason for the strain-rate dependency of rock.

  20. Effects of laser power density on static and dynamic mechanical properties of dissimilar stainless steel welded joints

    NASA Astrophysics Data System (ADS)

    Wei, Yan-Peng; Li, Mao-Hui; Yu, Gang; Wu, Xian-Qian; Huang, Chen-Guang; Duan, Zhu-Ping

    2012-10-01

    The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc. are critical for the engineering designs. The hardness, static and dynamic mechanical properties of AISI304 and AISI316 L dissimilar stainless steel welded joints by CO2 laser were experimentally studied. The dynamic strain-stress curves at the strain rate around 103 s-1 were obtained by the split Hopkinson tensile bar (SHTB). The static mechanical properties of the welded joints have little changes with the laser power density and all fracture occurs at 316 L side. However, the strain rate sensitivity has a strong dependence on laser power density. The value of strain rate factor decreases with the increase of laser power density. The welded joint which may be applied for the impact loading can be obtained by reducing the laser power density in the case of welding quality assurance.

  1. Dynamic Compression Properties of an Ultrafine-Grained Al-26 wt.% Si Alloy Fabricated by Equal-Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghua; Shi, Jun; Yao, YiHong; Ma, Aibin; Song, Dan; Yang, Donghui; Chen, Jianqing; Lu, Fumin

    2015-05-01

    The grains of a hypereutectic Al-26 wt.% Si alloy were drastically refined by multi-pass equal-channel angular pressing (ECAP). Compression deformation characteristics of the alloy with different microstructure were examined at two dynamic strain rates (700, 1000 s-1) by a split-Hopkinson pressure bar system and at a quasi-static strain rate (0.001 s-1) by a universal testing machine, respectively. The results reveal that the Al-26 wt.% Si alloy is strain-rate sensitive under those compression conditions, i.e., the initial yield stress and the flow stress considerably increase with the strain rate. Grain refinement through ECAP improves the strain-rate sensitivity of the alloy. With rising the ECAP temperature, the yield stress of the ultrafine-grained alloy decreases but the strain value increases during dynamic compression.

  2. Fabrication and dynamic mechanical behavior of nanocomposites

    NASA Astrophysics Data System (ADS)

    Evora, Victor Manuel Fortes

    Polyester/TiO2 nanocomposites have been fabricated using an in-situ polymerization technique coupled with ultrasonics, and an investigation has been conducted to characterize their mechanical and fracture behavior under quasi-static and dynamic loading conditions. The presence of the particles had the greatest effect on fracture toughness; negligible particle influence was observed in the remaining mechanical properties obtained using quasi-static loading. Scanning electron microscopy analysis of fracture surfaces was carried out to identify toughening mechanisms. Dynamic fracture toughness testing was carried out, and an increase in dynamic fracture toughness relative to quasi-static fracture toughness was observed. High strain rate testing conducted using a split-Hopkinson pressure bar apparatus revealed a moderate stiffening effect with increasing particle volume fraction. Dynamic photoelasticity coupled with high-speed photography was used to obtain the dynamic fracture constitutive behavior of polyester and nanocomposites. Birefringent coatings were used to conduct the photoelastic study due to the opaqueness of the nanocomposites. Two different specimen geometries were employed to obtain a broad range of crack velocities. Crack run-arrest, propagation, and branching events in polyester and nanocomposites were investigated and compared. Crack arrest toughness in nanocomposites was found to be 60% greater than that in polyester. Crack propagation velocities in nanocomposites were found to be 50% greater than those in polyester. Incipient branching values were 2.4 and 2.6 times the corresponding values of KIC in polyester and nanocomposites, respectively. A one-point strain measurement technique using a modified Hopkinson pressure bar apparatus was employed in a parametric study to evaluate the limiting conditions of validity of employment of quasi-static relations in the determination of dynamic fracture initiation toughness in brittle and moderately brittle

  3. Dynamic High-temperature Testing of an Iridium Alloy in Compression at High-strain Rates: Dynamic High-temperature Testing

    SciTech Connect

    Song, B.; Nelson, K.; Lipinski, R.; Bignell, J.; Ulrich, G.; George, E. P.

    2014-08-21

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using the current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s-1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.

  4. Dynamic High-temperature Testing of an Iridium Alloy in Compression at High-strain Rates: Dynamic High-temperature Testing

    DOE PAGESBeta

    Song, B.; Nelson, K.; Lipinski, R.; Bignell, J.; Ulrich, G.; George, E. P.

    2014-08-21

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s-1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less

  5. Controls on sediment dynamics and medium-term morphological change in a barred microtidal beach (Cala Millor, Mallorca, Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Gómez-Pujol, Lluís; Orfila, Alejandro; Álvarez-Ellacuría, Amaya; Tintoré, Joaquín

    2011-09-01

    This paper describes the sedimentological and morphological evolution of a microtidal beach over an eight-month period under varying hydrodynamic conditions. During the monitoring a set of transverse to crescentic bars migrated onshore welded to the upper beach and then they were flattened under energetic wave conditions. The grain size distribution of surficial sediments did vary consistently across the beach profile and temporal changes in the sedimentology were mostly related to the seasonal morphological response. From our results we can state that changes in the beach morphology resulting from erosion and deposition might induce, at least to some degree, concomitant changes in the beach when hydrodynamics exceed some intensity and duration levels (Hs > 1 m). Wave climate, rather than wave forcing is the major control on sediment and morphological change co-variation.

  6. Structural-temporal approach for dynamic strength characterization of gabbro-diabase

    NASA Astrophysics Data System (ADS)

    Petrov, Y.; Bragov, A.; Evstifeev, A.; Cadoni, E.

    2015-09-01

    This paper presents some of the results of dynamic compression, splitting and direct-tensile tests of gabbro-diabase using two split Hopkinson bar apparatus. The results of laboratory experiments on specimens without and with notch for a wide range of loading parameters are given. Strength and deformation characteristics of gabbro-diabase were determined experimentally at high strain rates up to 103 s-1. Mechanical characteristics were found to be strongly depended on the strain rate. A uniform interpretation of the rate effects of fracture of the tested gabbro-diabase is given on the basis of structural-temporal approach based on a set of fixed material constants. It is shown that temporal dependences of both the compressive and tensile strengths of the tested material can be effectively calculated using the incubation time fracture criterion.

  7. Measurement of intergranular stress and porosity during dynamic compaction of porous beds of cyclotetramethylene tetranitramine

    NASA Astrophysics Data System (ADS)

    Greenaway, M. W.

    2005-05-01

    The dynamic compaction of granular beds of the propellant cyclotetramethylene tetranitramine (HMX) has been investigated using a modified split Hopkinson pressure bar system. Intergranular stress and bed porosity were simultaneously measured during controlled loading. The importance of grain size was investigated by comparing conventional HMX (mean particle size ˜260μm) to microfine HMX (<5μm). Samples were radially confined and compression was predetermined using special end caps. Initial porosity was varied by hydraulically pressing the beds prior to testing. With large grains, resistance to compaction increased with the solid volume fraction. Microfine HMX behaved like low porosity conventional HMX beds in all cases. Porosity was typically reduced by 5%-10% during compaction and intergranular stresses below the yield stress were ensured. Energy dissipation to plastic flow and fracture were largely eliminated. Optical particle size analysis and electron microscopy support the experimental observations.

  8. Dynamic-tensile-extrusion response of fluoropolymers

    SciTech Connect

    Brown, Eric N; Trujillo, Carl P; Gray, George T

    2009-01-01

    The current work applies the recently developed Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) technique to polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene (PCTFE). Similar to the Taylor Impact Rod, Dynamic-Tensile-Extrusion is a strongly integrated test, probing a wide range of strain rates and stress states. However, the stress state is primarily tensile enabling investigation of dynamic tensile failure modes. Here we investigate the influence of this propensity to neck or not between PCTFE and PTFE on their response under dynamic tensile extrusion loading. The results of the Dyn-Ten-Ext technique are compared with two classic techniques. Both polymers have been investigated using Tensile Split Hopkinson Pressure Bar. The quasistatic and dynamic responses of both fluoro-polymers have been extensively characterized. The two polymers exhibit significantly different failure behavior under tensile loading at moderate strain rates. Polytetrafluoroethylene resists formation of a neck and exhibits significant strain hardening. Independent of temperature or strain rate, PTFE sustains true strains to failure of approximately 1.5. Polychlorotrifluoroethylene, on the other hand, consistently necks at true strains of approximately 0.05.

  9. Thermal imaging of metals in a Kolsky-bar apparatus

    NASA Astrophysics Data System (ADS)

    Yoon, Howard W.; Basak, Debasis; Rhorer, Richard L.; Whitenton, Eric; Burns, Timothy J.; Fields, Richard; Levine, Lyle

    2003-04-01

    Since the modeling of machining processes relies on high-strain-rate, high-temperature material properties, NIST has built a split-Hopkinson (or Kolsky) bar to determine the stress-strain behavior of rapidly heated materials at high temperatures. Our Kolsky bar has been constructed in the NIST high current pulse-heating facility, which enables electrically heating the samples within ~ 100 milliseconds time duration, immediately before the mechanical impact in the bar. Due to the rapid heating, we avoid possible structural changes in the sample, and a stress-strain relationship can be determined at different temperatures for various test materials. We describe the design and the development of the resistively-heated Kolsky-bar apparatus. The incident and the transmitted bars are constructed of 1.5 m long, 15 mm diameter maraging steel, and a typical sample is a 4 mm-diameter, 2 mm-long cylinder of 1045 steel. The sample is placed between the bars and held by friction. The current is transmitted through the graphite-sleeve bushings of the two bars. The non-contact temperatures are measured using an InGaAs near-infrared micro-pyrometer (NIMPY) and an InSb focal-plane (320 by 256) array (thermal camera). The NIMPY and the thermal camera are both calibrated using a variable-temperature blackbody, and the thermodynamic temperature of the metal is determined using the emissivity determined from the measured infrared spectral reflectance of the metal. Thermal videos of the electrically-heated and the room-temperature impacts will be shown with 1 kHz frame rates, and the changes in the stress-strain curves with the temperature of the samples will be discussed.

  10. Application of a PVDF-based stress gauge in determining dynamic stress-strain curves of concrete under impact testing

    NASA Astrophysics Data System (ADS)

    Meng, Yi; Yi, Weijian

    2011-06-01

    Polyvinylidene fluoride (PVDF) piezoelectric material has been successfully applied in many engineering fields and scientific research. However, it has rarely been used for direct measurement of concrete stresses under impact loading. In this paper, a new PVDF-based stress gauge was developed to measure concrete stresses under impact loading. Calibrated on a split Hopkinson pressure bar (SHPB) with a simple measurement circuit of resistance strain gauges, the PVDF gauge was then used to establish dynamic stress-strain curves of concrete cylinders from a series of axial impact testing on a drop-hammer test facility. Test results show that the stress curves measured by the PVDF-based stress gauges are more stable and cleaner than that of the stress curves calculated with the impact force measured from a load cell.

  11. A Method for Selecting Software for Dynamic Event Analysis II: the Taylor Anvil and Dynamic Brazilian Tests

    SciTech Connect

    W. D. Richins; J. M. Lacy; T. K. Larson; S. R. Novascone

    2008-05-01

    New nuclear power reactor designs will require resistance to a variety of possible malevolent attacks as well as traditional dynamic accident scenarios. The design/analysis team may be faced with a broad range of phenomena including air and ground blasts, high-velocity penetrators or shaped charges, and vehicle or aircraft impacts. With a host of software tools available to address these high-energy events, the analysis team must evaluate and select the software most appropriate for their particular set of problems. The accuracy of the selected software should then be validated with respect to the phenomena governing the interaction of the threat and structure. Several software codes are available for the study of blast, impact, and other shock phenomena. At the Idaho National Laboratory (INL), a study is underway to investigate the comparative characteristics of a group of shock and high-strain rate physics codes including ABAQUS, LS-DYNA, CTH, ALEGRA, and ALE-3D. In part I of this report, a series of five benchmark problems to exercise some important capabilities of the subject software was identified. The benchmark problems selected are a Taylor cylinder test, a split Hopkinson pressure bar test, a free air blast, the dynamic splitting tension (Brazilian) test, and projectile penetration of a concrete slab. Part II-- this paper-- reports the results of two of the benchmark problems: the Taylor cylinder and the dynamic Brazilian test. The Taylor cylinder test is a method to determine the dynamic yield properties of materials. The test specimen is a right circular cylinder which is impacted against a theoretically rigid target. The cylinder deforms upon impact, with the final shape depending upon the dynamic yield stress, in turn a function of strain and strain rate. The splitting tension test, or Brazilian test, is a method to measure the tensile strength of concrete using a cylindrical specimen. The specimen is loaded diametrically in compression, producing a

  12. Microsecond Time-Resolved Pyrometry during Rapid Resistive Heating of Samples in a Kolsky Bar Apparatus

    NASA Astrophysics Data System (ADS)

    Basak, D.; Yoon, H. W.; Rhorer, R.; Burns, T.

    2003-09-01

    Analysis of machining processes is important in the understanding and improving of manufacturing methods. The modeling of machining processes relies on high-strain rate, high-temperature material properties. A split-Hopkinson pressure bar (or Kolsky bar) is being installed in a NIST high-current pulse-heating facility. By heating the material sample rapidly with a controlled current pulse immediately before the mechanical impact in the bar, structural changes in the sample are inhibited, thus better simulating conditions during machining. A stress-strain relationship can be determined at various temperatures for test materials. We describe the design and the development of a millisecond-resolution split-Hopkinson apparatus, where the sample is resistively heated by the passage of a sub-second-duration electric current pulse. The impact bar is constructed out of maraging steel and the sample is a cylinder of AISI 1045 steel. The current is transmitted through the oiled-bronze sleeve bushing of the impact bar. The temperature measurements are performed using a near-infrared micro-pyrometer (NIMPY). The NIMPY consists of a refractive 5× microscope objective with a numerical aperture of 0.14 attached to a traditional microscope body. The thermal measurement is performed with an InGaAs detector with ˜ 1 μs response time. The procedure used to calibrate the pyrometer with a variable temperature blackbody is described. A brief description of a model of the pulse heating process is given and the predicted sample temperature history is compared with measured temperature data.

  13. Molecular dynamics simulations of \\langle \\mathbf{1}\\,\\mathbf{0}\\,\\mathbf{\\bar{1}}\\,\\mathbf{0}\\rangle /\\boldsymbol{\\psi } tilt grain boundaries in ice

    NASA Astrophysics Data System (ADS)

    Di Prinzio, C. L.; Pereyra, R. G.

    2016-05-01

    In this paper, molecular dynamics simulations (MDS) of < 1 0 \\bar{1} 0> /\\psi symmetric tilt ice grain boundaries are presented. The MDS were carried out using the GROMACS v4.5.5 program, and the water molecules were described using the TIP5P-Ew model. The grain boundary energies, {γ\\text{gb}} , relative to those of the surface free energies, {γ\\text{s}} , were obtained as a function of the misorientation angle Ψ, and compared with the {γ\\text{gb}}/{γ\\text{s}} values experimentally obtained. The results show a good correspondence between the experimental and simulated values. The planar density of coincidence sites at the grain boundary planes, Γ, was obtained as a function of ψ. The Γ values were compared with the simulated {γ\\text{gb}}/{γ\\text{s}} values and a relation between the minimum of the simulated {γ\\text{gb}}/{γ\\text{s}} values and the maximum of the Γ values was observed, suggesting that the CSL theory is a good starting point to detect low energy ice GBs.

  14. Hot Disks and Delayed Bar Formation

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Melbourne, Jason; Elmegreen, Debra Meloy; Elmegreen, Bruce G.; Athanassoula, E.; Abraham, Roberto G.; Weiner, Benjamin J.

    2012-10-01

    We present observational evidence for the inhibition of bar formation in dispersion-dominated (dynamically hot) galaxies by studying the relationship between galactic structure and host galaxy kinematics in a sample of 257 galaxies between 0.1 < z <= 0.84 from the All-Wavelength Extended Groth Strip International Survey and the Deep Extragalactic Evolutionary Probe 2 survey. We find that bars are preferentially found in galaxies that are massive and dynamically cold (rotation-dominated) and on the stellar Tully-Fisher relationship, as is the case for barred spirals in the local universe. The data provide at least one explanation for the steep (×3) decline in the overall bar fraction from z = 0 to z = 0.84 in L* and brighter disks seen in previous studies. The decline in the bar fraction at high redshift is almost exclusively in the lower mass (10 < log M *(M ⊙) < 11), later-type, and bluer galaxies. A proposed explanation for this "downsizing" of the bar formation/stellar structure formation is that the lower mass galaxies may not form bars because they could be dynamically hotter than more massive systems from the increased turbulence of accreting gas, elevated star formation, and/or increased interaction/merger rate at higher redshifts. The evidence presented here provides observational support for this hypothesis. However, the data also show that not every disk galaxy that is massive and cold has a stellar bar, suggesting that mass and dynamic coldness of a disk are necessary but not sufficient conditions for bar formation—a secondary process, perhaps the interaction history between the dark matter halo and the baryonic matter, may play an important role in bar formation.

  15. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading

    PubMed Central

    Lambert, P. K.; Hustedt, C. J.; Vecchio, K. S.; Huskins, E. L.; Casem, D. T.; Gruner, S. M.; Tate, M. W.; Philipp, H. T.; Woll, A. R.; Purohit, P.; Weiss, J. T.; Kannan, V.; Ramesh, K. T.; Kenesei, P.; Okasinski, J. S.; Almer, J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C.

    2014-01-01

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ∼103–104 s−1 in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10–20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (∼40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation. PMID:25273733

  16. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading.

    PubMed

    Lambert, P K; Hustedt, C J; Vecchio, K S; Huskins, E L; Casem, D T; Gruner, S M; Tate, M W; Philipp, H T; Woll, A R; Purohit, P; Weiss, J T; Kannan, V; Ramesh, K T; Kenesei, P; Okasinski, J S; Almer, J; Zhao, M; Ananiadis, A G; Hufnagel, T C

    2014-09-01

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ~10(3)-10(4) s(-1) in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10-20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (~40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation. PMID:25273733

  17. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading

    SciTech Connect

    Lambert, P. K.; Hustedt, C. J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C.; Vecchio, K. S.; Huskins, E. L.; Casem, D. T.; Gruner, S. M.; Tate, M. W.; Philipp, H. T.; Purohit, P.; Weiss, J. T.; Woll, A. R.; Kannan, V.; Ramesh, K. T.; Kenesei, P.; Okasinski, J. S.; Almer, J.

    2014-09-15

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ∼10{sup 3}–10{sup 4} s{sup −1} in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10–20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (∼40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.

  18. Ensemble Canonical Correlation Prediction of Seasonal Precipitation Over the United States: Raising the Bar for Dynamical Model Forecasts

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, Kyu-Myong; Shen, S. P.

    2001-01-01

    This paper presents preliminary results of an ensemble canonical correlation (ECC) prediction scheme developed at the Climate and Radiation Branch, NASA/Goddard Space Flight Center for determining the potential predictability of regional precipitation, and for climate downscaling studies. The scheme is tested on seasonal hindcasts of anomalous precipitation over the continental United States using global sea surface temperature (SST) for 1951-2000. To maximize the forecast skill derived from SST, the world ocean is divided into non-overlapping sectors. The canonical SST modes for each sector are used as the predictor for the ensemble hindcasts. Results show that the ECC yields a substantial (10-25%) increase in prediction skills for all the regions of the US in every season compared to traditional CCA prediction schemes. For the boreal winter, the tropical Pacific contributes the largest potential predictability to precipitation in the southwestern and southeastern regions, while the North Pacific and the North Atlantic are responsible to the enhanced forecast skills in the Pacific Northwest, the northern Great Plains and Ohio Valley. Most importantly, the ECC increases skill for summertime precipitation prediction and substantially reduces the spring predictability barrier over all the regions of the US continent. Besides SST, the ECC is designed with the flexibility to include any number of predictor fields, such as soil moisture, snow cover and additional local observations. The enhanced ECC forecast skill provides a new benchmark for evaluating dynamical model forecasts.

  19. A study on the dynamic behavior of the Meuse/Haute-Marne argillite

    NASA Astrophysics Data System (ADS)

    Cai, M.; Kaiser, P. K.; Suorineni, F.; Su, K.

    Excavation of underground tunnels can be conducted by tunnel boring machines (TBM) or drill-and-blast. TBMs cause minimum damage to excavation walls. Blasting effects on excavation walls depend on the care with which the blasting is executed. For blast-induced damage in excavation walls, two issues have to be addressed: rate of loss of confinement (rate of excavation) and dynamic loading from wave propagation that causes both intended and unintended damage. To address these two aspects, laboratory dynamic tests were conducted for the determination of the dynamic properties of the Meuse/Haute-Marne argillite. In the present study, 17 tensile (Brazilian) and 15 compression split Hopkinson pressure bar (SHPB) tests were conducted. The test revealed that the dynamic strengths of the argillite are strain rate dependent. The average dynamic increase factors (ratio of dynamic strength to static strength) for tensile and compressive strength are about 3.3 and 2.4, respectively. A high-speed video camera was used to visualize the initiation of failure and subsequent deformation of the specimens. The direct compression specimens were found to deform and fail uniformly around the circumference of the specimen, by a spalling process. The SHPB Brazilian tests indicated that failure occurred in tension along the line of load application. Radial fractures were also observed. The test results can be used for the development of a dynamic constitutive model for the argillite for the prediction of damage in underground excavation utilizing the drill-and blast method.

  20. Membrane-Sculpting BAR Domains Generate Stable Lipid Microdomains

    PubMed Central

    Zhao, Hongxia; Michelot, Alphée; Koskela, Essi V.; Tkach, Vadym; Stamou, Dimitrios; Drubin, David G.; Lappalainen, Pekka

    2014-01-01

    SUMMARY Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR domains can generate extremely stable lipid microdomains by “freezing” phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved role for BAR superfamily proteins in regulating lipid dynamics within membranes. Stable microdomains induced by BAR domain scaffolds and specific lipids can generate phase boundaries and diffusion barriers, which may have profound impacts on diverse cellular processes. PMID:24055060

  1. A technique for measuring dynamic friction coefficient under impact loading

    NASA Astrophysics Data System (ADS)

    Lin, Y. L.; Qin, J. G.; Chen, R.; Zhao, P. D.; Lu, F. Y.

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m2/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  2. A technique for measuring dynamic friction coefficient under impact loading.

    PubMed

    Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected. PMID:25273746

  3. Dynamics of wave-induced currents over an alongshore non-uniform multiple-barred sandy beach on the Aquitanian Coast, France

    NASA Astrophysics Data System (ADS)

    Castelle, Bruno; Bonneton, Philippe; Sénéchal, Nadia; Dupuis, Hélène; Butel, Rémi; Michel, Denis

    2006-01-01

    This paper presents field investigation and numerical modelling of waves and wave-induced currents on a wave-dominated and non-alongshore uniform multiple barred beach. This study aims at establishing the first analysis of the dynamics of horizontal flows on the French Aquitanian coast. The spectral wave program SWAN is coupled with the time- and depth-averaged (2DH) coastal area model MORPHODYN. This coupled-model is applied to Truc Vert Beach, and results are compared with field data. From the 14th to the 19th of October 2001, a field experiment was carried out in order to characterize hydrodynamics and sediment transport over a complex bathymetry in the presence of oceanic wave conditions. From this data we calibrated three parameters: the bottom friction for wave propagation from the Aquitanian continental shelf to the nearshore zone, the spatially constant bottom friction coefficient due to waves and currents, and lateral mixing. Despite model approximations and the fact that the offshore wave boundary condition was located 15 km off the coast, the model is in good agreement with measurements. During weak wind conditions, computed waves and longshore currents fit well with field data on the ridge and runnel system. The strong tidal modulation of surf zone processes over this system is revealed. Hydrodynamics are strongly controlled by the beach morphology. For near-normally incident swells, the ridge and runnel system is responsible for a strong rip current located at the runnel outlet, associated with a circulation cell. Prediction of the tidal modulation and the sensitivity of the rip current to offshore wave conditions are in agreement with observations. Maximum rip current flow velocities occur approximately at mid-tide, which differs from what most researchers have found in other environments.

  4. Observation of microscopic damage accumulation in brittle solids subjected to dynamic compressive loading

    NASA Astrophysics Data System (ADS)

    Huang, S.; Xia, K.; Zheng, H.

    2013-09-01

    Dynamic failure of brittle materials is a fundamental physical problem that has significantly impacts to many science and engineering disciplines. As the first and the most important step towards the full understanding of this problem, one has to observe dynamic damage accumulation in brittle solids. In this work, we proposed a methodology to do that and demonstrated it by studying the dynamic compressive damage evolution of a granitic rock loaded with a modified split Hopkinson pressure bar system. To ensure consistency of the experimental results, we used cylindrical rock samples fabricated from the same rock core and subjected them to identical incident loading pulse. Using a special soft recovery technique, we stopped the dynamic loading on the samples at different strain levels, ranging from 0.3% to 1.4%. Therefore, we were able to recover intact samples loaded all the way to the post-peak deformation stage. The recovered samples were subsequently examined with X-ray micro-CT scanning machine. Three dimensional microcrack network induced by the dynamic loading was observed and the evolution of microcracks as a function of the dynamic loading strain was obtained.

  5. Determination of dynamic fracture-initiation toughness using a novel impact bend test procedure

    SciTech Connect

    Yokoyama, T. . Faculty of Engineering Okayama Univ. of Science . Dept. of Mechanical Engineering)

    1993-11-01

    A novel impact bend test procedure is described for determining the dynamic fracture-initiation toughness, K[sub Id], at a loading rate (stress intensity factor rate), K[sub I], of the order of 10[sup 6] MPa [radical]m/s. A special arrangement of the split Hopkinson pressure bar is adopted to measure accurately dynamic loads applied to a fatigue-precracked bend specimen. The dynamic stress intensity factor history for the bend specimen is evaluated by means of a dynamic finite element technique. The onset of crack initiation is detected using a string gage attached on the side of the specimen near a crack tip. The value of K[sub Id] is determined from the critical dynamic stress intensity factor at crack initiation. A series of dynamic fracture tests is carried out on a 7075-T6 aluminum alloy, a Ti-6246 alloy and an AISI 4340 steel. The K[sub Id] values obtained for the three structural materials are compared with the corresponding values obtained under quasi-static loading conditions.

  6. A newly developed Kolsky tension bar.

    SciTech Connect

    Lu, Wei-Yang; Song, Bo; Antoun, Bonnie R.; Connelly, Kevin; Korellis, John S.

    2010-03-01

    Investigation of damage and failure of materials under impact loading relies on reliable dynamic tensile experiments. A precise Kolsky tension bar is highly desirable. Based on the template of the Kolsky compression bar that we recently developed and presented at 2009 SEM conference, a new Kolsky tension bar apparatus was completed at Sandia National Laboratories, California. It is secured to the same optical table. Linear bearings with interior Frelon coating were employed to support the whole tension bar system including the bars and gun barrel. The same laser based alignment system was used to efficiently facilitate highly precise alignment of the bar system. However, the gun part was completely re-designed. One end of the gun barrel, as a part of loading device, was directly jointed to the bar system. A solid cylindrical striker is launched inside the gun barrel and then impacts on a flange attached to the other end of the gun barrel to facilitate a sudden tensile loading on the whole system. This design improves the quality of impact to easily produce a perfect stress wave and is convenient to utilize pulse shaping technique. A calibration and dynamic characterization of an aluminum specimen are presented.

  7. Interferometry-based Kolsky bar apparatus

    NASA Astrophysics Data System (ADS)

    Avinadav, C.; Ashuach, Y.; Kreif, R.

    2011-07-01

    A new experimental approach of the Kolsky bar system using optical interferometry is presented for determination of dynamic behavior of materials. Conventional measurements in the Kolsky bar system are based on recording the strain histories on the incident and transmitter bars with two strain gauges, and require good adhesion between the gauge and the bar. We suggest an alternative approach, based on measuring the actual velocities of the bars by using fiber-based velocity interferometry. Two fiber focusers illuminate the bars at a small angle and collect reflected Doppler-shifted light, which is interfered with a reference beam. Velocities are calculated from short-time Fourier transform and phase-based analysis, and the dynamic stress-strain curve is derived directly from the measured velocity traces. We demonstrate that the results coincide with those obtained by conventional strain gauge measurements. The new method is non-intervening and thus not affected by bar impacts, making it more robust and reliable than strain gauges.

  8. The four bars problem

    NASA Astrophysics Data System (ADS)

    Mauroy, Alexandre; Taslakian, Perouz; Langerman, Stefan; Jungers, Raphaël

    2016-09-01

    A four-bar linkage is a mechanism consisting of four rigid bars which are joined by their endpoints in a polygonal chain and which can rotate freely at the joints (or vertices). We assume that the linkage lies in the 2-dimensional plane so that one of the bars is held horizontally fixed. In this paper we consider the problem of reconfiguring a four-bar linkage using an operation called a pop. Given a four-bar linkage, a pop reflects a vertex across the line defined by its two adjacent vertices along the polygonal chain. Our main result shows that for certain conditions on the lengths of the bars, the neighborhood of any configuration that can be reached by smooth motion can also be reached by pops. The proof relies on the fact that pops are described by a map on the circle with an irrational number of rotation.

  9. Bar Code Labels

    NASA Technical Reports Server (NTRS)

    1988-01-01

    American Bar Codes, Inc. developed special bar code labels for inventory control of space shuttle parts and other space system components. ABC labels are made in a company-developed anodizing aluminum process and consecutively marketed with bar code symbology and human readable numbers. They offer extreme abrasion resistance and indefinite resistance to ultraviolet radiation, capable of withstanding 700 degree temperatures without deterioration and up to 1400 degrees with special designs. They offer high resistance to salt spray, cleaning fluids and mild acids. ABC is now producing these bar code labels commercially or industrial customers who also need labels to resist harsh environments.

  10. Gap Formations Along Specimen-Bar Interfaces in Numerical Simulations of SHPB Tests on Elastic Materials Soft in Shear

    NASA Astrophysics Data System (ADS)

    Raftenberg, Martin N.; Scheidler, Mike

    2009-06-01

    Simulations of split Hopkinson pressure bar (SHPB) tests on elastic materials were performed using LS-DYNA. The specimens were much stiffer in dilatation than in shear. A compressible form of Mooney-Rivlin elasticity was applied with parameters evaluated from ballistic gelatin data. The bars were aluminum. The velocity prescribed on the incident bar increased over a rise time until attaining a steady-state value corresponding to a nominal strain rate of 2500/s. The rise time was varied to observe effects of pulse shaping. All calculations were 2D axisymmetric. A penalty-based contact algorithm was applied at the specimen-bar interfaces. This algorithm introduced a stiffness and a viscosity parameter. In sensitivity studies we varied the radius of the bars, the specimen's mesh, and the two contact parameters. In all calculations with the Mooney-Rivlin model, gaps formed at both specimen-bar interfaces over a wide range of strains. This gap phenomenon appears not to have been previously reported in the SHPB literature. We replaced the Mooney-Rivlin model with linear elasticity in order to explore whether the gaps were associated with material nonlinearity. We fixed Young's modulus at a value much smaller than that of aluminum. For sufficiently large Poisson ratios, we again observed gap formations at both specimen-bar interfaces.

  11. Dynamic behaviour of HPFRCC: The influence of fibres dispersion

    NASA Astrophysics Data System (ADS)

    Caverzan, Alessio; di Prisco, Marco; Cadoni, Ezio

    2015-09-01

    The promise of fibre-reinforced cementitious composites for dynamic loading application stems from their observed good response under static loading mainly due to fibre contribution. An experimental research aimed at contributing to the understanding of the behaviour of advanced fibre-reinforced cementitious composites subjected to low and high strain rates was carried out underlining the influence of fibres. The material behaviour was investigated at three strain rates (0.1, 1, and 150 s-1) and the tests results were compared with their static behaviour. Tests at intermediate strain rates (0.1-1 s-1) were carried out by means of a hydro-pneumatic machine (HPM), while high strain rates (150 s-1) were investigated by exploiting a modified Hopkinson bar (MHB). Particular attention has been placed on the influence of fibre and fibre dispersion on the dynamic behaviour of the materials: matrix, HPFRCC with random fibre distribution and aligned fibres were compared. The comparison between static and dynamic tests highlighted several relevant aspects regarding the influence of fibres on the peak strength and post-peak behaviour at high strain rates.

  12. Static and Dynamic Flexural Strength Anisotropy of Barre Granite

    NASA Astrophysics Data System (ADS)

    Dai, F.; Xia, K.; Zuo, J. P.; Zhang, R.; Xu, N. W.

    2013-11-01

    Granite exhibits anisotropy due to pre-existing microcracks under tectonic loadings; and the mechanical property anisotropy such as flexural/tensile strength is vital to many rock engineering applications. In this paper, Barre Granite is studied to understand the flexural strength anisotropy under a wide range of loading rates using newly proposed semi-circular bend tests. Static tests are conducted with a MTS hydraulic servo-control testing machine and dynamic tests with a split Hopkinson pressure bar (SHPB) system. Six samples groups are fabricated with respect to the three principle directions of Barre granite. Pulse shaping technique is used in all dynamic SHPB tests to facilitate dynamic stress equilibrium. Finite element method is utilized to build up equations calculating the flexural tensile strength. For samples in the same orientation group, a loading rate dependence of the flexural tensile strength is observed. The measured flexural tensile strength is higher than the tensile strength measured using Brazilian disc method at given loading rate and this scenario has been rationalized using a non-local failure theory. The flexural tensile strength anisotropy features obvious dependence on the loading rates, the higher the loading rate, the less the anisotropy and this phenomenon may be explained considering the interaction of the preferentially oriented microcracks.

  13. Microlensing by the galactic bar

    NASA Technical Reports Server (NTRS)

    Zhao, Hongsheng; Spergel, David N.; Rich, R. Michael

    1995-01-01

    We compute the optical depth and duration distribution of microlensing events towrd Baade's window in a model composed of a Galactic disk and a bar. The bar model is a self-consistent dynamical model built out of individual orbits that has been populated to be consistent with the COBE maps of the Galaxy and kinematic observations of the Galactic bulge. We find that most of the lenses are in the bulge with a line-of-sight distance 6.25 kpc (adopting R(sub 0) = 8 kpc). The microlensing optical depth of a 2 x 10(exp 10) solar mass bar plus a truncated disk is (2.2 +/- 0.45) x 10(exp -6), consistent with the large optical depth (3.2 +/- 1.2) x 10(exp -6) found by Udalski et al. (1994). This model optical depth is enhanced over the predictions of axisymmetric models by Kiraga & Paczynski (1994) by slightly more than a factor of 2, since the bar is elongated along the line of sight. The large Einstein radius and small transverse velocity dispersion also predict a longer event duration in the self-consistent bar model than in the Kiraga-Paczynski model. The event rate and duration distribution also depend on the lower mass cutoff of the lens mass function. With a 0.1 solar mass cutoff, five to seven events (depending on the contribution of disk lenses) with a logarithmic mean duration of 20 days are expected for the Optical Gravitational Lensing Experiment (OGLE) according to our model, while Udalski et al. (1994) observed nine events with durations from 8 to 62 days. On the other hand, if most of the lenses are brown dwarfs, our model predicts too many short-duration events. A Kolmogorov-Smirnov test finds only 7% probability for the model with 0.01 solar mass cutoff to be consistent with current data.

  14. Experiment investigation for dynamic behavior of hybrid fiber effects on reactive powder concrete

    NASA Astrophysics Data System (ADS)

    Wang, Liwen; Pang, Baojun; Yang, Zhenqi; Chi, Runqiang

    2010-03-01

    The influences of different hybrid fibers (steel fibers add polyvinyl-alcohol fibers) mixture rates for reactive power concrete's (RPC) dynamic mechanical behavior after high temperature burnt was investigated by the Split Hopkinson pressure bar (SHPB) device. A plumbic pulse shaper technique was applied in the experiment, PVDF stress gauge was used to monitor the stress uniformity state within the specimen. The strain rate was between 75~85s-1, base on the stressstrain curves and dynamic modes of concrete specimen, the hybrid fiber effect on the dynamic properties was determined. The results show, dynamic compression strength of specimens which mixed with steel fibers (1.0%,1.5%,2.0% vol. rate) and 0.1% PVA fibers is higher than normal reactive powder concrete (NRPC), but the toughness improves unconspicuous; while strength of the one which has both steel fiber (1.0%,1.5%,2.0% vol. rate) and 0.2%PVA fiber declines than NRPC but the toughness improves and the plastic behaviors strengthened, stress-strain curve has evident rising and plate portions. It can be deduced that the concrete with mixed two kinds of fibers has improved dynamic mechanical properties after high temperature burnt. By compounding previous literature results, the mechanism of the experimental results can be explained.

  15. Experiment investigation for dynamic behavior of hybrid fiber effects on reactive powder concrete

    NASA Astrophysics Data System (ADS)

    Wang, Liwen; Pang, Baojun; Yang, Zhenqi; Chi, Runqiang

    2009-12-01

    The influences of different hybrid fibers (steel fibers add polyvinyl-alcohol fibers) mixture rates for reactive power concrete's (RPC) dynamic mechanical behavior after high temperature burnt was investigated by the Split Hopkinson pressure bar (SHPB) device. A plumbic pulse shaper technique was applied in the experiment, PVDF stress gauge was used to monitor the stress uniformity state within the specimen. The strain rate was between 75~85s-1, base on the stressstrain curves and dynamic modes of concrete specimen, the hybrid fiber effect on the dynamic properties was determined. The results show, dynamic compression strength of specimens which mixed with steel fibers (1.0%,1.5%,2.0% vol. rate) and 0.1% PVA fibers is higher than normal reactive powder concrete (NRPC), but the toughness improves unconspicuous; while strength of the one which has both steel fiber (1.0%,1.5%,2.0% vol. rate) and 0.2%PVA fiber declines than NRPC but the toughness improves and the plastic behaviors strengthened, stress-strain curve has evident rising and plate portions. It can be deduced that the concrete with mixed two kinds of fibers has improved dynamic mechanical properties after high temperature burnt. By compounding previous literature results, the mechanism of the experimental results can be explained.

  16. Bar-biting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bar biting is regarded as a stereotypic behavior in which the animal carries out repetitive mouthing and biting of the metal bars in its environmental enclosure. It is commonly seen in sows housed in close confinement, in barren environments, and with restricted access to food. However, it has also ...

  17. The behavior of cancellous bone from quasi-static to dynamic strain rates with emphasis on the intermediate regime.

    PubMed

    Prot, M; Cloete, T J; Saletti, D; Laporte, S

    2016-05-01

    Previous studies, conducted using quasi-static and dynamic compression tests, have shown that the mechanical strength of cancellous bone is strain rate dependent. However, these studies have not included the intermediate strain rate (ISR) regime (1/s to 100/s), which is important since it is representative of the loading rates at which non-fatal injuries typically occur. In this study, 127 bovine bone specimens were compressed in 3 regimes spanning 8 distinct strain rates, from 0.001/s to 600/s, using three different devices: a conventional quasi-static testing machine, a wedge-bar (WB) apparatus and a conventional split Hopkinson pressure bar (SHPB) implemented with a cone-in-tube (CiT) striker and a tandem momentum trap. Due to the large sample size, a new robust automated algorithm was developed with which the material properties, such as the apparent Young׳s modulus and the yield and ultimate values of stress and strain, were identified for each individual specimen. A statistical summary of the data is presented. Finally, this study demonstrates that results obtained at intermediate strain rates are essential for a fuller understanding of cancellous bone behavior by providing new data describing the transition between the quasi-static and dynamic regimes. PMID:26970887

  18. Slow bars in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fridman, A. M.; Khoruzhii, O. V.

    2000-11-01

    Here we put forward some arguments in favour of the existence of slow bars. More then a half of spiral galaxies have in their central regions a bar - a structure in the form of triaxial ellipsoid. Historically two models of the bar were developed - those of the so called ``slow'' and ``fast'' bars. In both cases the bar is in some resonance with the galactic disc region near the bar ends - it is the corotation resonance for a fast bar and the inner Lindblad resonance for a slow bar. For the same angular velocity the fast bar would be larger then the slow bar. Alternatively, for the same size the fast bar would have much higher angular velocity, that being the reason for the terminology used. Up till now, the direct measurement of angular velocity of a bar has been an open problem. This is why all arguments on the nature of bar observed in some particular galaxy are inevitably indirect. Despite the fact that the model of slow bars was developed slightly earlier, the main part of attention was focused on the fast bars. Presently many researchers believe in the existence of the fast bars in real galaxies, while discussions on the existence of the slow bars continue so far. In this Letter we demonstrate that the bar detected in the grand design spiral galaxy NGC 157 is the slow bar.

  19. Bars within bars - A mechanism for fuelling active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Frank, Juhan; Begelman, Mitchell C.

    1989-01-01

    A mechanism, applicable to AGN and nuclear starburst galaxies in which there is accretion onto a supermassive black hole (SBH), is proposed which brings in gas from large to small scales by successive dynamical instabilities. On the large scale, a stellar bar sweeps the interstellar medium into a gaseous disk a few hundred pc in radius. Under certain conditions, this disk can become unstable again, allowing material to flow inwards until turbulent viscous processes control angular-momentum transport. This flow pattern may feed viscosity-driven accretion flows around an SBH or lead to the formation of an SBH if none was present initially.

  20. The role of the modified taylor impact test in dynamic material research

    NASA Astrophysics Data System (ADS)

    Bagusat, Frank; Rohr, Ingmar

    2015-09-01

    Dynamic material research with strain rates of more than 1000 1/s is experimentally very often done with a Split-Hopkinson Bar, Taylor impact tests or planar plate impact test investigations. At the Ernst-Mach-Institut (EMI), a variant of an inverted classical Taylor impact test is used by application of velocity interferometers of the VISAR type ("Modified Taylor Impact Test", MTT). The conduction of the experiments is similar to that of planar plate impact tests. The data reduction and derivation of dynamic material data can also be restricted to an analysis of the VISAR signal. Due to these properties, nearly each highly dynamic material characterization in our institute done by planar plate investigations is usually accompanied by MTT experiments. The extended possibilities and usefulness of a combined usage of these two highly dynamic characterization methods are explained. Recently, further developed MTT experiments with very small specimen sizes are presented. For the first time, Taylor impact and planar impact specimen can be used for which the load directions even in case of thin plate test material are identical and not perpendicular to each other. Consequences for testing construction elements are discussed.

  1. Dynamic compressive behavior of Pr-Nd alloy at high strain rates and temperatures

    SciTech Connect

    Wang Huanran; Cai Canyuan; Chen Danian; Ma Dongfang

    2012-07-01

    Based on compressive tests, static on 810 material test system and dynamic on the first compressive loading in split Hopkinson pressure bar (SHPB) tests for Pr-Nd alloy cylinder specimens at high strain rates and temperatures, this study determined a J-C type [G. R. Johnson and W. H. Cook, in Proceedings of Seventh International Symposium on Ballistics (The Hague, The Netherlands, 1983), pp. 541-547] compressive constitutive equation of Pr-Nd alloy. It was recorded by a high speed camera that the Pr-Nd alloy cylinder specimens fractured during the first compressive loading in SHPB tests at high strain rates and temperatures. From high speed camera images, the critical strains of the dynamic shearing instability for Pr-Nd alloy in SHPB tests were determined, which were consistent with that estimated by using Batra and Wei's dynamic shearing instability criterion [R. C. Batra and Z. G. Wei, Int. J. Impact Eng. 34, 448 (2007)] and the determined compressive constitutive equation of Pr-Nd alloy. The transmitted and reflected pulses of SHPB tests for Pr-Nd alloy cylinder specimens computed with the determined compressive constitutive equation of Pr-Nd alloy and Batra and Wei's dynamic shearing instability criterion could be consistent with the experimental data. The fractured Pr-Nd alloy cylinder specimens of compressive tests were investigated by using 3D supper depth digital microscope and scanning electron microscope.

  2. Effect of Ductile Agents on the Dynamic Behavior of SiC3D Network Composites

    NASA Astrophysics Data System (ADS)

    Zhu, Jingbo; Wang, Yangwei; Wang, Fuchi; Fan, Qunbo

    2016-07-01

    Co-continuous SiC ceramic composites using pure aluminum, epoxy, and polyurethane (PU) as ductile agents were developed. The dynamic mechanical behavior and failure mechanisms were investigated experimentally using the split Hopkinson pressure bar (SHPB) method and computationally by finite element (FE) simulations. The results show that the SiC3D/Al composite has the best overall performance in comparison with SiC3D/epoxy and SiC3D/PU composites. FE simulations are generally consistent with experimental data. These simulations provide valuable help in predicting mechanical strength and in interpreting the experimental results and failure mechanisms. They may be combined with micrographs for fracture characterizations of the composites. We found that interactions between the SiC phase and ductile agents under dynamic compression in the SHPB method are complex, and that interfacial condition is an important parameter that determines the mechanical response of SiC3D composites with a characteristic interlocking structure during dynamic compression. However, the effect of the mechanical properties of ductile agents on dynamic behavior of the composites is a second consideration in the production of the composites.

  3. Experimental study on the dynamic mechanical properties of titanium alloy after thermal oxidation

    NASA Astrophysics Data System (ADS)

    Niu, Xiaoyan; Yu, Yingjie; Ma, Lianhua; Chen, Liangbiao

    2016-06-01

    In this study, the dynamic compressive properties of thermally oxidized TC4 (Ti-6Al-4V) titanium alloys were studied with split Hopkinson pressure bar. The dynamic tests were conducted under multiple strain rates from 400 to 2000 s-1 and different testing temperatures from 25 to 200 °C. Data for the true stress-strain curves of thermally oxidized TC4 titanium alloy are presented. They show that the thermal oxidation increases both the dynamic compressive strength of TC4 titanium and the rate of strain hardening. Higher compressive strengths of the material were obtained by applying higher strain rates. Under a strain rate of 2000 s-1, the stress-strain curves of TC4 titanium alloys exhibit both strain-rate-hardening behavior and thermal softening behavior. The oxidation temperature has little effect on dynamic properties of TC4 titanium alloy, but choosing different holding time for oxidation could greatly affect the initiation of plastic deformation and thus might potentially improve the ductility of the treated material. Furthermore, the data show that the increase in the testing temperature results in much lower yield stresses of the treated material.

  4. Determination of dynamic fracture toughness using a new experimental technique

    NASA Astrophysics Data System (ADS)

    Cady, Carl M.; Liu, Cheng; Lovato, Manuel L.

    2015-09-01

    In other studies dynamic fracture toughness has been measured using Charpy impact and modified Hopkinson Bar techniques. In this paper results will be shown for the measurement of fracture toughness using a new test geometry. The crack propagation velocities range from ˜0.15 mm/s to 2.5 m/s. Digital image correlation (DIC) will be the technique used to measure both the strain and the crack growth rates. The boundary of the crack is determined using the correlation coefficient generated during image analysis and with interframe timing the crack growth rate and crack opening can be determined. A comparison of static and dynamic loading experiments will be made for brittle polymeric materials. The analysis technique presented by Sammis et al. [1] is a semi-empirical solution, however, additional Linear Elastic Fracture Mechanics analysis of the strain fields generated as part of the DIC analysis allow for the more commonly used method resembling the crack tip opening displacement (CTOD) experiment. It should be noted that this technique was developed because limited amounts of material were available and crack growth rates were to fast for a standard CTOD method.

  5. Mass modeling for bars

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1987-01-01

    Methods of modeling mass for bars are surveyed. A method for extending John Archer's concept of consistent mass beyond just translational inertia effects is included. Recommendations are given for various types of modeling situations.

  6. Dynamic versus quasi-static loading of X65 offshore steel pipes

    NASA Astrophysics Data System (ADS)

    Kristoffersen, M.; Børvik, T.; Langseth, M.; Hopperstad, O. S.

    2016-05-01

    Anchors or trawl gear occasionally impact offshore pipelines, resulting in large local and global deformations. Impact velocities are typically less than 5 m/s, but local strain rates may be very high. In this study strain rate effects in an X65 offshore material was characterised by split Hopkinson bar tests, while the cross-section homogeneity and possible anisotropic behaviour were determined by quasi-static material tests. Further, dynamic impact tests at prescribed velocities were carried out on simply supported full scale X65 steel pipes. Next, deformation-controlled quasi-static tests with the same boundary conditions were conducted. The level of deformation in the quasi-static tests was set to be equal to that attained in the dynamic tests. Finally, an assessment of the differences between the dynamically and quasi-statically loaded pipes was made in terms of force-displacement response, energy absorbed, and fracture. An optical light microscope and a scanning electron microscope were used to investigate fracture surfaces arising from the various tests.

  7. Dynamic fracturing by successive coseismic loadings leads to pulverization in active fault zones

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Doan, M.-L.; Mitchell, T. M.; Toussaint, R.; Reuschlé, T.; Fondriest, M.; Gratier, J.-P.; Renard, F.

    2016-04-01

    Previous studies show that pulverized rocks observed along large faults can be created by single high-strain rate loadings in the laboratory, provided that the strain rate is higher than a certain pulverization threshold. Such loadings are analogous to large seismic events. In reality, pulverized rocks have been subject to numerous seismic events rather than one single event. Therefore, the effect of successive "milder" high-strain rate loadings on the pulverization threshold is investigated by applying loading conditions below the initial pulverization threshold. Single and successive loading experiments were performed on quartz-monzonite using a Split Hopkinson Pressure Bar apparatus. Damage-dependent petrophysical properties and elastic moduli were monitored by applying incremental strains. Furthermore, it is shown that the pulverization threshold can be reduced by successive "milder" dynamic loadings from strain rates of ~180 s-1 to ~90 s-1. To do so, it is imperative that the rock experiences dynamic fracturing during the successive loadings prior to pulverization. Combined with loading conditions during an earthquake rupture event, the following generalized fault damage zone structure perpendicular to the fault will develop: furthest from the fault plane, there is a stationary outer boundary that bounds a zone of dynamically fractured rocks. Closer to the fault, a pulverization boundary delimits a band of pulverized rock. Consecutive seismic events will cause progressive broadening of the band of pulverized rocks, eventually creating a wider damage zone observed in mature faults.

  8. Dynamic mechanical response of magnesium single crystal under compression loading: Experiments, model, and simulations

    NASA Astrophysics Data System (ADS)

    Li, Qizhen

    2011-05-01

    Magnesium single crystal samples are compressed at room temperature under quasistatic (˜0.001 s-1) loading in a universal testing machine and dynamic (430, 1000, and 1200 s-1) loading in a split Hopkinson pressure bar system. Stress-strain curves show that (a) the fracture strain slightly increases with the strain rate; and (b) the maximum strength and strain hardening rate increase significantly when the testing changes from quasistatic to dynamic, although they do not vary much when the strain rate for dynamic testing varies in the range of 430-1200 s-1. The operation of the secondary pyramidal slip system is the dominating deformation mechanism, which leads to a fracture surface with an angle of ˜42° with respect to the loading axial direction. A theoretical material model based on Johnson-Cook law is also derived. The model includes the strain hardening and strain rate hardening terms, and provides the stress-strain relations matching with the experimental results. Finite element simulations for the strain rates used in the experiments predict the mechanical responses of the material that agree well with the experimental data.

  9. Comparative experimental study of dynamic compressive strength of mortar with glass and basalt fibres

    NASA Astrophysics Data System (ADS)

    Kruszka, Leopold; Moćko, Wojciech; Fenu, Luigi; Cadoni, Ezio

    2015-09-01

    Specimen reinforced with glass and basalt fibers were prepared using Standard Portland cement (CEM I, 52.5 R as prescribed by EN 197-1) and standard sand, in accordance with EN 196-1. From this cementitious mixture, a reference cement mortar without fibers was first prepared. Compressive strength, modulus of elasticity, and mod of fracture were determined for all specimens. Static and dynamic properties were investigated using Instron testing machine and split Hopkinson pressure bar, respectively. Content of the glass fibers in the mortar does not influence the fracture stress at static loading conditions in a clearly observed way. Moreover at dynamic range 5% content of the fiber results in a significant drop of fracture stress. Analysis of the basalt fibers influence on the fracture stress shows that optimal content of this reinforcement is equal to 3% for both static and dynamic loading conditions. Further increase of the fiber share gives the opposite effect, i.e. drop of the fracture stress.

  10. Crack-resistance and spall strength of cerium under dynamic loading.

    NASA Astrophysics Data System (ADS)

    Pushkov, Victor; Ogorodnikov, Vladimir; Erunov, Sergey

    2007-06-01

    There is poor knowledge on cerium characteristics under dynamic loading, such as dynamic crack-resistance and spall strength, which are important for some applications. For example, material crack-resistance is one of parameters of the model, which is used for numerical description of the dispersion process [1]. Tests were performed for determination of dynamic crack-resistance by the split Hopkinson pressure bar method. However, significant plasticity of cerium caused failure of crack-resistance determination. Therefore crack-resistance evaluation was performed by study of material spall strength σ0. Considering value σ0, it is possible to determine specific work for material break λ [2], and, basing on it, then it is possible to determine crack-resistance value by the Irvine-Griffiths criterion. [1] A.K.Zhiembetov, G.S.Smirnov, A.L.Mikhaylov et al. Cavitational method for determination of parameters of melting of shock-compressed substances at volume expansion. Chemical Physics, 2005, v.24, #10, p.57-65. [2] Fracture of different-scale objects. Edited by A.G.Ivanov, RFNC-VNIIEF, Sarov, 2001.

  11. Estimation of reliability and dynamic property for polymeric material at high strain rate using SHPB technique and probability theory

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hyeok; Lee, Ouk Sub; Kim, Hong Min; Choi, Hye Bin

    2008-11-01

    A modified Split Hopkinson Pressure Bar technique with aluminum pressure bars and a pulse shaper technique to achieve a closer impedance match between the pressure bars and the specimen materials such as hot temperature degraded POM (Poly Oxy Methylene) and PP (Poly Propylene). The more distinguishable experimental signals were obtained to evaluate the more accurate dynamic deformation behavior of materials under a high strain rate loading condition. A pulse shaping technique is introduced to reduce the non-equilibrium on the dynamic material response by modulation of the incident wave during a short period of test. This increases the rise time of the incident pulse in the SHPB experiment. For the dynamic stress strain curve obtained from SHPB experiment, the Johnson-Cook model is applied as a constitutive equation. The applicability of this constitutive equation is verified by using the probabilistic reliability estimation method. Two reliability methodologies such as the FORM and the SORM have been proposed. The limit state function(LSF) includes the Johnson-Cook model and applied stresses. The LSF in this study allows more statistical flexibility on the yield stress than a paper published before. It is found that the failure probability estimated by using the SORM is more reliable than those of the FORM/ It is also noted that the failure probability increases with increase of the applied stress. Moreover, it is also found that the parameters of Johnson-Cook model such as A and n, and the applied stress are found to affect the failure probability more severely than the other random variables according to the sensitivity analysis.

  12. Dynamic Fracture Initiation Toughness at Elevated Temperatures With Application to the New Generation of Titanium Aluminide Alloys. Chapter 8

    NASA Technical Reports Server (NTRS)

    Shazly, Mostafa; Prakash, Vikas; Draper, Susan; Shukla, Arun (Editor)

    2006-01-01

    Recently, a new generation of titanium aluminide alloy, named Gamma-Met PX, has been developed with better rolling and post-rolling characteristics. I'revious work on this alloy has shown the material to have higher strengths at room and elevated temperatures when compared with other gamma titanium aluminides. In particular, this new alloy has shown increased ductility at elevated temperatures under both quasi-static and high strain rate uniaxial compressive loading. However, its high strain rate tensile ductility at room and elevated temperatures is limited to approx. 1%. In the present chapter, results of a study to investigate the effects of loading rate and test temperature on the dynamic fracture initiation toughness in Gamma-Met PX are presented. Modified split Hopkinson pressure bar was used along with high-speed photography to determine the crack initiation time. Three-point bend dynamic fracture experiments were conducted at impact speeds of approx. 1 m/s and tests temperatures of up-to 1200 C. The results show that thc dynamic fracture initiation toughness decreases with increasing test temperatures beyond 600 C. Furthermore, thc effect of long time high temperature air exposure on the fracture toughness was investigated. The dynamic fracture initiation toughness was found to decrease with increasing exposure time. The reasons behind this drop are analyzed and discussed.

  13. Experimental study on the dynamic mechanical behaviors of polycarbonate

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Gao, Yubo; Cai, Xuanming; Ye, Nan; Huang, Wei; Hypervelocity Impact Research Center Team

    2015-06-01

    Polycarbonate (PC) is a widely used engineering material in aerospace field, since it has excellent mechanical and optical property. In present study, both compress and tensile tests of PC were conducted at high strain rates by using a split Hopkinson pressure bar. The high-speed camera and 2D digital speckle correlation method (DIC) were used to analyze the dynamic deformation behavior of PC. Meanwhile, the plate impact experiment was carried out to measure the equation of state of PC in a single-stage gas gun, which consists of asymmetric impact technology, manganin gauges, PVDF, electromagnetic particle velocity gauges. The results indicate that the yield stress of PC increased with the strain rates. The strain softening occurred when the stress over yield point except the tensile tests in the strain rates of 1076s-1 and 1279s-1. The ZWT model can describe the constitutive behaviors of PC accurately in different strain rates by contrast with the results of 2D-DIC. At last, The D-u Hugoniot curve of polycarbonate in high pressure was fitted by the least square method. And the final results showed more closely to Cater and Mash than other previous data.

  14. Experimental study on dynamic splitting of recycled concrete using SHPB

    NASA Astrophysics Data System (ADS)

    Lu, Yubin; Yu, Shuisheng; Cai, Yong

    2015-09-01

    To study the recycled concrete splitting tensile properties and fracture state with various recycled coarse aggregate replacement percentage (i.e. 0%, 25%, 50%, 75% and 100%), the dynamic splitting test of recycled concrete was carried out using large diameter (75 mm) split Hopkinson pressure bar (SHPB). The results show that the recycled concrete splitting tensile strength increases with the increase of loading rate, and the loading rate also affects the recycled concrete fracture state, which indicates that the recycled concrete has obvious rate sensitivity. The damage state of the recycled concrete is not only the destruction of the interface between coarse aggregate and cement mortar, but also associates with the fracture damage of aggregates. Under the same water cement ratio, when the replacement percentage of coarse aggregates is around 50%-75%, the gradation of natural and recycled coarse aggregate is optimal, and thus the splitting tensile strength is the largest. This study offers theoretical basis for the engineering applications of recycled concrete.

  15. A theoretical and experimental study of the dynamics of a four-bar chain with bearing clearance: Pin motion, contact loss and impact

    NASA Astrophysics Data System (ADS)

    Stammers, C. W.; Ghazavi, M.

    1991-10-01

    An experimental and theoretical study has been made of the behaviour of a four-bar chain having a clearance in the coupler-follower bearing. An electrical circuit method has been used to establish contact loss at the bearing, with care being taken that pin misalignment did not produce spurious results. The pin path was monitored by two eddy current transducers, recording motion in two perpendicular directions. The follower acceleration was also monitored by means of an accelerometer. Contact loss correlates with rapid changes of pin motion. Runs with the bearing chemically cleaned and with the bearing lightly greased indicated that considerably more pin oscillation occurred in the former case than in the latter. The theoretical predictions of pin motion agreed quite well when damping of pin motion was introduced. The implication is that fats and greases on the notionally unlubricated bearing suppress major pin oscillations.

  16. Toll Bar on Sea

    ERIC Educational Resources Information Center

    Hunter, Dave

    2008-01-01

    In the summer of 2007 the United Kingdom experienced some of the heaviest rainfall since records began. Toll Bar in South Yorkshire featured prominently in media coverage as the village and the homes surrounding it began to flood. Many people lost everything: their homes, their furniture, their possessions. In an effort to come to terms with what…

  17. BARS/SSC/SPHINX

    SciTech Connect

    Herrmann, W. )

    1993-06-06

    BARS is a program which allows retrieval of information from suitable bibliographic databases. Two databases are included, SSC and SPHINX, which together list bibliographic information for some 12,000 references related to the fields of shock compression of condensed media, high rate deformation of solids, and detonation.

  18. BARS/SSC/SPHINX

    SciTech Connect

    Herrmann, W. )

    1993-06-06

    BARS is a program which allows retrieval of information from suitable bibliographic databases. Two databases are included, SSC and SPHINX, which together list bibliographic information for some 12,000 references related to the fields of shoch compression of condensed media, high rate deformation of solids, and detonation.

  19. Warp evidence in precessing galactic bar models

    NASA Astrophysics Data System (ADS)

    Sánchez-Martín, P.; Romero-Gómez, M.; Masdemont, J. J.

    2016-04-01

    Most galaxies have a warped shape when they are seen edge-on. The reason for this curious form is not completely known so far, so in this work we apply dynamical system tools to contribute to its explanation. Starting from a simple, but realistic model formed by a bar and a disc, we study the effect of a small misalignment between the angular momentum of the system and its angular velocity. To this end, a precession model was developed and considered, assuming that the bar behaves like a rigid body. After checking that the periodic orbits inside the bar continue to be the skeleton of the inner system even after inflicting a precession to the potential, we computed the invariant manifolds of the unstable periodic orbits departing from the equilibrium points at the ends of the bar to find evidence of their warped shapes. As is well known, the invariant manifolds associated with these periodic orbits drive the arms and rings of barred galaxies and constitute the skeleton of these building blocks. Looking at them from a side-on viewpoint, we find that these manifolds present warped shapes like those recognised in observations. Lastly, test particle simulations have been performed to determine how the stars are affected by the applied precession, this way confirming the theoretical results.

  20. Bar code usage in nuclear materials accountability

    SciTech Connect

    Mee, W.T.

    1983-07-01

    The age old method of physically taking an inventory of materials by listing each item's identification number has lived beyond its usefulness. In this age of computerization, which offers the local grocery store a quick, sure, and easy means to inventory, it is time for nuclear materials facilities to automate accountability activities. The Oak Ridge Y-12 Plant began investigating the use of automated data collection devices in 1979. At that time, bar code and optical-character-recognition (OCR) systems were reviewed with the purpose of directly entering data into DYMCAS (Dynamic Special Nuclear Materials Control and Accountability System). Both of these systems appeared applicable; however, other automated devices already employed for production control made implementing the bar code and OCR seem improbable. However, the DYMCAS was placed on line for nuclear material accountability, a decision was made to consider the bar code for physical inventory listings. For the past several months a development program has been underway to use a bar code device to collect and input data to the DYMCAS on the uranium recovery operations. Programs have been completed and tested, and are being employed to ensure that data will be compatible and useful. Bar code implementation and expansion of its use for all nuclear material inventory activity in Y-12 is presented.

  1. Bar code usage in nuclear materials accountability

    SciTech Connect

    Mee, W.T.

    1983-01-01

    The Oak Ridge Y-12 Plant began investigating the use of automated data collection devices in 1979. At this time, bar code and optical-character-recognition (OCR) systems were reviewed with the purpose of directly entering data into DYMCAS (Dynamic Special Nuclear Materials Control and Accountability System). Both of these systems appeared applicable, however, other automated devices already employed for production control made implementing the bar code and OCR seem improbable. However, the DYMCAS was placed on line for nuclear material accountability, a decision was made to consider the bar code for physical inventory listings. For the past several months a development program has been underway to use a bar code device to collect and input data to the DYMCAS on the uranium recovery operations. Programs have been completed and tested, and are being employed to ensure that data will be compatible and useful. Bar code implementation and expansion of its use for all nuclear material inventory activity in Y-12 is presented.

  2. Effects of Dynamic Multi-directional Loading on the Microstructural Evolution and Thermal Stability of Pure Aluminum

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Zhang, Hua; Chen, Yadong

    2016-07-01

    Microstructural evolution and thermal stability of 1050 commercial pure aluminum processed by means of split Hopkinson pressure bar and Instron-3369 mechanical testing machine to an accumulated strain of 3.6 were investigated. The nominal strain rates reached up to 3.0 × 103 and 1 × 10-3/s, respectively. Samples in the deformed state and annealed in the temperature interval 423-523 K for 1 h were characterized by transmission electron microscopy (TEM). TEM observations reveal that the initial coarse grains are refined significantly, and the deformed structures mainly consist of equiaxed subgrains and dislocation cells with a high density of interior dislocation. In addition, the average subgrain/cell sizes of these two kinds of deformed samples are nearly the same. As to recovery behavior, recovered subgrains are observed at 473 (dynamic) versus 523 K (quasi-static), that is to say, recovery is fairly slow in the quasi-static deformed samples. It is therefore to be expected that thermal stability of this dynamic deformed aluminum is weaker than that of the quasi-static compressed one, which is due to the higher density of dislocation and nonequilibrium dislocation configurations produced during dynamic loading.

  3. Dynamic tensile stress-strain characteristics of carbon/epoxy laminated composites in through-thickness direction

    NASA Astrophysics Data System (ADS)

    Nakai, Kenji; Yokoyama, Takashi

    2015-09-01

    The effect of strain rate up to approximately ɛ˙ = 102/s on the tensile stress-strain properties of unidirectional and cross-ply carbon/epoxy laminated composites in the through-thickness direction is investigated. Waisted cylindrical specimens machined out of the laminated composites in the through-thickness direction are used in both static and dynamic tests. The dynamic tensile stress-strain curves up to fracture are determined using the split Hopkinson bar (SHB). The low and intermediate strain-rate tensile stress-strain relations up to fracture are measured on an Instron 5500R testing machine. It is demonstrated that the ultimate tensile strength and absorbed energy up to fracture increase significantly, while the fracture strain decreases slightly with increasing strain rate. Macro- and micro-scopic examinations reveal a marked difference in the fracture surfaces between the static and dynamic tension specimens.

  4. Dynamic tensile deformation and fracture of a highly particle-filled composite using SHPB and high-speed DIC method

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Chen, P.; Guo, B.; Huang, F.

    2012-08-01

    In this work, various tensile tests, including Brazilian disc test (BDT), flattened Brazilian disc (FBD) test and semi-circular bending (SCB) test, were carried out on a highly particle-filled composite by using a split Hopkinson pressure bar (SHPB). With the consideration of low strength and low wave impedance of the materials, a quartz crystal transducer was embedded in SHPB to measure the loading forces. A high-speed camera was used to capture the deformation and fracture process of materials. Digital image correlation (DIC) method was used to process these digital images to obtain the dynamic deformation information. Based on the measured strain fields, the crack growth path was determined and the failure mechanism of samples was analyzed. Combining SHPB and DIC method, the indirect tensile stress strain plots of disc samples were obtained, and the dynamic fracture toughness of materials was measured using both FBD and SCB tests. The results show that the tensile failure strength and fracture toughness increases with the increase of strain rates, exhibiting strain rate dependence. The high-speed DIC method combined with SHPB is effective to study the dynamic tensile behaviour of brittle materials with low strengths.

  5. Quantitative analysis of morphology of the fracture surface AlMg6 alloy with consecutive dynamic and gigacycle loading

    NASA Astrophysics Data System (ADS)

    Oborin, Vladimir; Sokovikov, Mikhail; Bilalov, Dmitry; Naimark, Oleg

    2015-10-01

    In this paper we investigated the influence of consecutive dynamic and gigacycle fatigue loads on the lifetime of aluminum-magnesium alloy AlMg6. Preloading of samples was achieved during dynamic tensile tests in the split-Hopkinson bar device. Fatigue tests were conducted on Shimadzu USF-2000 ultrasonic fatigue testing machine. The New-View 5010 interferometer-profiler of high structural resolution (resolution of 0.1 nm) was used for qualitative fracture surface analysis, which provided the data allowing us to find correlation between mechanical properties and scale-invariant characteristics of damage induced roughness formed under dynamic and gigacycle fatigue loading conditions. Original form of the kinetic equation was proposed, which links the rate of the fatigue crack growth and the stress intensity factor using the scale invariant parameters of fracture surface roughness. The scale invariance characterizes the correlated behavior of multiscale damage provides the link of crack growth kinetics and the power exponent of the modified Paris law.

  6. Predictions for the $$\\bar{B}^{0}\\rightarrow \\bar{K}^{\\ast 0}$$ X(YZ) and $$\\bar{B}^{0}_{s}\\rightarrow\\phi$$ X(YZ) with X(4160), Y(3940), Z(3930)

    DOE PAGESBeta

    Liang, Wei -Hong; Molina, R.; Xie, Ju -Jun; Doring, M.; Oset, E.

    2015-05-22

    We investigate the decay ofmore » $$\\bar B^0 \\to \\bar K^{*0} R$$ and $$\\bar B^0_s \\to \\phi R$$ with $R$ being the $X(4160)$, $Y(3940)$, $Z(3930)$ resonances. Under the assumption that these states are dynamically generated from the vector-vector interaction, as has been concluded from several theoretical studies, we use a reaction mechanism of quark production at the elementary level, followed by hadronization of one final $$q \\bar q$$ pair into two vectors and posterior final state interaction of this pair of vector mesons to produce the resonances. With this procedure we are able to predict five ratios for these decays, which are closely linked to the dynamical nature of these states, and also predict the order of magnitude of the branching ratios which we find of the order of $$10^{-4}$$, well within the present measurable range. In order to further test the dynamical nature of these resonances we study the $$\\bar B^0_s \\to \\phi D^* \\bar D^*$$ and $$\\bar B^0_s \\to \\phi D_s^* \\bar D_s^*$$ decays close to the $$D^* \\bar D^*$$ and $$D_s^* \\bar D_s^*$$ thresholds and make predictions for the ratio of the mass distributions in these decays and the $$\\bar B^0_s \\to \\phi R$$ decay widths. In conclusion, the measurement of these decays rates can help unravel the nature of these resonances.« less

  7. Predictions for the $\\bar{B}^{0}\\rightarrow \\bar{K}^{\\ast 0}$ X(YZ) and $\\bar{B}^{0}_{s}\\rightarrow\\phi$ X(YZ) with X(4160), Y(3940), Z(3930)

    SciTech Connect

    Liang, Wei -Hong; Molina, R.; Xie, Ju -Jun; Doring, M.; Oset, E.

    2015-05-22

    We investigate the decay of $\\bar B^0 \\to \\bar K^{*0} R$ and $\\bar B^0_s \\to \\phi R$ with $R$ being the $X(4160)$, $Y(3940)$, $Z(3930)$ resonances. Under the assumption that these states are dynamically generated from the vector-vector interaction, as has been concluded from several theoretical studies, we use a reaction mechanism of quark production at the elementary level, followed by hadronization of one final $q \\bar q$ pair into two vectors and posterior final state interaction of this pair of vector mesons to produce the resonances. With this procedure we are able to predict five ratios for these decays, which are closely linked to the dynamical nature of these states, and also predict the order of magnitude of the branching ratios which we find of the order of $10^{-4}$, well within the present measurable range. In order to further test the dynamical nature of these resonances we study the $\\bar B^0_s \\to \\phi D^* \\bar D^*$ and $\\bar B^0_s \\to \\phi D_s^* \\bar D_s^*$ decays close to the $D^* \\bar D^*$ and $D_s^* \\bar D_s^*$ thresholds and make predictions for the ratio of the mass distributions in these decays and the $\\bar B^0_s \\to \\phi R$ decay widths. In conclusion, the measurement of these decays rates can help unravel the nature of these resonances.

  8. Full Field Measurement of The Dynamic Response of AA6061-T6 Aluminum Alloy under High Strain Rate Compression and Torsion Loads

    NASA Astrophysics Data System (ADS)

    Odoh, Daniel Oghenekewhe Oluwatobi

    The dynamic response of AA6061-T6 aluminum alloy under high strain rate loading in compression and torsion loading conditions was studied using the split Hopkinson pressure bar, the Kolsky torsion bar, and the high speed digital image correlation system. AA6061-T6 alloy, the most widely used in the AA6000 series, is a multi-purpose Al-Mg-Si-Cu alloy containing about 0.4 % wt. of Cu and other alloying additives. The properties of AA6061-T6 aluminum alloy including medium to high strength, good fracture toughness, and high corrosion resistance make it to find application in high performance structures such as the automotive parts, panels, and armored carriers. In this work, the effect of strain rate during dynamic test on formation of adiabatic shear bands in AA6061-T6 alloy was investigated. A post deformation analysis of the tested specimen was performed in order to determine the damage evolution and strain localization along the narrow adiabatic shear bands within the specimen. The formation of an adiabatic shear band in the aluminum alloy tested was found to depend on the strain rate at which the test was conducted. Stress, strain, and strain rate data obtained from the elastic waves in the compression and torsion bar tests were also compared with those obtained using the high speed digital cameras. Results show good agreement between both measurement techniques with the 3D digital image correlation technique giving a slightly lower result. Scanning and electron microscopy results show that both deformed and transformed bands can be formed in AA6061-T6 alloy during dynamic loading. The type of adiabatic shear band formed depends on the strain rate at which test was performed.

  9. Dynamic Mechanical Response of Biomedical 316L Stainless Steel as Function of Strain Rate and Temperature

    PubMed Central

    Lee, Woei-Shyan; Chen, Tao-Hsing; Lin, Chi-Feng; Luo, Wen-Zhen

    2011-01-01

    A split Hopkinson pressure bar is used to investigate the dynamic mechanical properties of biomedical 316L stainless steel under strain rates ranging from 1 × 103 s−1 to 5 × 103 s−1 and temperatures between 25°C and 800°C. The results indicate that the flow stress, work-hardening rate, strain rate sensitivity, and thermal activation energy are all significantly dependent on the strain, strain rate, and temperature. For a constant temperature, the flow stress, work-hardening rate, and strain rate sensitivity increase with increasing strain rate, while the thermal activation energy decreases. Catastrophic failure occurs only for the specimens deformed at a strain rate of 5 × 103 s−1 and temperatures of 25°C or 200°C. Scanning electron microscopy observations show that the specimens fracture in a ductile shear mode. Optical microscopy analyses reveal that the number of slip bands within the grains increases with an increasing strain rate. Moreover, a dynamic recrystallisation of the deformed microstructure is observed in the specimens tested at the highest temperature of 800°C. PMID:22216015

  10. The dynamic Virtual Fields Method on rubbers at medium and high strain rates

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Ho; Siviour, Clive R.

    2015-09-01

    Elastomeric materials are widely used for energy absorption applications, often experiencing high strain rate deformations. The mechanical characterization of rubbers at high strain rates presents several experimental difficulties, especially associated with achieving adequate signal to noise ratio and static stress equilibrium, when using a conventional technique such as the split Hopkinson pressure bar. In the present study, these problems are avoided by using the dynamic Virtual Fields Method (VFM) in which acceleration fields, clearly generated by the non-equilibrium state, are utilized as a force measurement with in the frame work of the principle of virtual work equation. In this paper, two dynamic VFM based techniques are used to characterise an EPDM rubber. These are denoted as the linear and nonlinear VFM and are developed for (respectively) medium (drop-weight) and high (gas-gun) strain-rate experiments. The use of the two VFMs combined with high-speed imaging analysed by digital imaging correlation allows the identification of the parameters of a given rubber mechanical model; in this case the Ogden model is used.

  11. Dynamic fracture resilience of elk antler: Biomimetic inspiration for improved crashworthiness

    NASA Astrophysics Data System (ADS)

    Kulin, Robb M.; Chen, Po-Yu; Jiang, Fengchun; McKittrick, Joanna; Vecchio, Kenneth S.

    2010-01-01

    The antler of the North American elk has been shown to have impressive fracture resistance under quasi-static loads, but given its viscoelastic behavior and impact nature of loading, questions remain as to its mechanical, and in particular, fracture behavior under dynamic loading. Samples were tested using a unique split-pressure Hopkin-son bar (SPHB) for four-point bending experiments in order to measure the fracture toughness of this material Interestingly, the hierarchical structure of antler had a strong influence on crack propagation characteristics, and cracks tended to propagate along the osteonal growth direction, whether loaded parallel or perpendicular to the osteonal growth direction. This occurred to such a degree so as to stop all crack propagation through the sample on transverse specimens, thus inhibiting the ability to measure a valid crack initiation toughness and demonstrating the extreme resilience of antler to resist dynamic fracture. The high resilience of antler to impact loading may serve as biomimetic inspiration to future material development for crashworthiness and defense applications.

  12. A search for a promising tetraquark candidate X(ud\\bar{s}\\hspace*{.1pt}\\bar{s}) in pn → ΛΛX

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Hai; Zhao, Qiang

    2009-01-01

    We propose to search for a tetraquark candidate X(ud\\bar{s}\\hspace*{.1pt}\\bar{s}) in pn\\to \\Lambda\\Lambda X(ud\\bar{s}\\hspace*{.1pt}\\bar{s})\\to \\Lambda\\Lambda K^+K^0 or ΛΛKK*. The existence of a tetraquark state X(ud\\bar{s}\\hspace*{.1pt}\\bar{s}) with JP = 0+, 1- or 1+ was predicted in the literature based on specific diquark effective degrees of freedom inside hadrons. In order to understand the underlying dynamics for exotic hadrons, a search for the tetraquark X(ud\\bar{s}\\hspace*{.1pt}\\bar{s}) is strongly recommended. The proposed reaction involves two Λ production, of which the narrow widths make it a great advantage in the analysis of the final-state missing mass spectrum. We make an estimate of the production rate of X(ud\\bar{s}\\hspace*{.1pt}\\bar{s}) in an effective Lagrangian theory and find that for JP = 1- the sample events of ~2200nb-1 will be able to identify X(ud\\bar{s}\\hspace*{.1pt}\\bar{s}) with five standard deviations at a width of 10 MeV to K+K0 near threshold. For JP = 1+ with a width of 20 MeV to KK*, the sample events of ~130nb-1 will be needed. Large production cross sections are expected in a kinematic region beyond the threshold. We emphasize the advantage of low background in this transition channel, and in the meantime caution the large uncertainties in the present estimate due to a lack of knowledge about the X(ud\\bar{s}\\hspace*{.1pt}\\bar{s}) state. Implications for its heavy-flavored partners qq\\bar{c}\\bar{c} and qq\\bar{b}\\bar{b} are briefly discussed.

  13. THE MASS PROFILE AND SHAPE OF BARS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G): SEARCH FOR AN AGE INDICATOR FOR BARS

    SciTech Connect

    Kim, Taehyun; Lee, Myung Gyoon; Sheth, Kartik; Muñoz-Mateos, Juan-Carlos; Zaritsky, Dennis; Elmegreen, Bruce G.; Athanassoula, E.; Bosma, Albert; Holwerda, Benne; Ho, Luis C.; Comerón, Sébastien; Laurikainen, Eija; Salo, Heikki; Knapen, Johan H.; Erroz-Ferrer, Santiago; Hinz, Joannah L.; Buta, Ronald J.; Kim, Minjin; Madore, Barry F.; and others

    2015-01-20

    We have measured the radial light profiles and global shapes of bars using two-dimensional 3.6 μm image decompositions for 144 face-on barred galaxies from the Spitzer Survey of Stellar Structure in Galaxies. The bar surface brightness profile is correlated with the stellar mass and bulge-to-total (B/T) ratio of their host galaxies. Bars in massive and bulge-dominated galaxies (B/T > 0.2) show a flat profile, while bars in less massive, disk-dominated galaxies (B/T ∼ 0) show an exponential, disk-like profile with a wider spread in the radial profile than in the bulge-dominated galaxies. The global two-dimensional shapes of bars, however, are rectangular/boxy, independent of the bulge or disk properties. We speculate that because bars are formed out of disks, bars initially have an exponential (disk-like) profile that evolves over time, trapping more disk stars to boxy bar orbits. This leads bars to become stronger and have flatter profiles. The narrow spread of bar radial profiles in more massive disks suggests that these bars formed earlier (z > 1), while the disk-like profiles and a larger spread in the radial profile in less massive systems imply a later and more gradual evolution, consistent with the cosmological evolution of bars inferred from observational studies. Therefore, we expect that the flatness of the bar profile can be used as a dynamical age indicator of the bar to measure the time elapsed since the bar formation. We argue that cosmic gas accretion is required to explain our results on bar profile and the presence of gas within the bar region.

  14. Measurements of vertical bar Vcb vertical bar and vertical bar Vub vertical bar at BaBar

    SciTech Connect

    Rotondo, M.

    2005-10-12

    We report results from the BABAR Collaboration on the semileptonic B decays, highlighting the measurements of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix elements Vub and Vcb. We describe the techniques used to obtain the matrix element |Vcb| using the measurement of the inclusive B {yields} Xclv process and a large sample of exclusive B {yields} D*lv decays. The vertical bar Vub vertical bar matrix elements has been measured studying different kinematic variables of the B {yields} Xulv process, and also with the exclusive reconstruction of B {yields} {pi}({rho})lv decays.

  15. Musculoskeletal demands of progressions for the longswing on high bar.

    PubMed

    Irwin, Gareth; Kerwin, David G

    2007-09-01

    Kinetic analyses of the chalked bar longswing on high bar and its associated progressions were used to explain musculoskeletal contributions during the performance of these skills. Data on four international male gymnasts performing three series of chalked bar longswings and eight progressions were recorded. Customized body segment inertia parameters, two-dimensional kinematics (50 Hz), and bar forces (1000 Hz) were used as input to inverse dynamic modelling. The analysis focused on the relative contributions of the knees, hips, and shoulders with root mean squared differences between the chalked bar longswing and the progressions being used to rank the progressions. Seventy per cent of the total work occurred between 200 degrees and 240 degrees of angular rotation in the longswing, 67% of which was contributed by the shoulders. The shoulders were also dominant in all progressions, with the largest such contribution occurring in the looped bar longswing with "no action". The least similar progression was the looped bar pendulum swing, while the most similar was the chalked bar bent knee longswing. This study provides a useful means for ranking progressions based on their kinetic similarity to the chalked bar longswing and builds on earlier research in identifying that progressions can be classified into those similar in physical demand (kinetics) and those similar in geometry (kinematics). PMID:17933198

  16. On the bar formation mechanism in galaxies with cuspy bulges

    NASA Astrophysics Data System (ADS)

    Polyachenko, E. V.; Berczik, P.; Just, A.

    2016-08-01

    We show by numerical simulations that a purely stellar dynamical model composed of an exponential disc, a cuspy bulge, and an NFW halo with parameters relevant to the Milky Way Galaxy is subject to bar formation. Taking into account the finite disc thickness, the bar formation can be explained by the usual bar instability, in spite of the presence of an inner Lindblad resonance, that is believed to damp any global modes. The effect of replacing the live halo and bulge by a fixed external axisymmetric potential (rigid models) is studied. It is shown that while the e-folding time of bar instability increases significantly (from 250 to 500 Myr), the bar pattern speed remains almost the same. For the latter, our average value of 55 km/s/kpc agrees with the assumption that the Hercules stream in the solar neighbourhood is an imprint of the bar-disc interaction at the outer Lindblad resonance of the bar. Vertical averaging of the radial force in the central disc region comparable to the characteristic scale length allows us to reproduce the bar pattern speed and the growth rate of the rigid models, using normal mode analysis of linear perturbation theory in a razor thin disc. The strong increase of the e-folding time with decreasing disc mass predicted by the mode analysis suggests that bars in galaxies similar to the Milky Way have formed only recently.

  17. Morphologies introduced by bistability in barred-spiral galactic potentials

    NASA Astrophysics Data System (ADS)

    Tsigaridi, L.; Patsis, P. A.

    2015-04-01

    We investigate the orbital dynamics of a barred-spiral model when the system is rotating slowly and corotation is located beyond the end of the spiral arms. In the characteristic of the central family of periodic orbits, we find a `bistable region'. In the response model, we observe a ring surrounding the bar and spiral arms starting tangential to the ring. This is a morphology resembling barred-spiral systems with inner rings. However, the dynamics associated with this structure in the case we study is different from that of a typical bar ending close to corotation. The ring of our model is round, or rather elongated perpendicular to the bar. It is associated with a folding (an `S'-shaped feature) of the characteristic of the central family, which is typical in bistable bifurcations. Along the `S' part of the characteristic, we have a change in the orientation of the periodic orbits from an x1-type to an x2-type morphology. The orbits populated in the response model change rather abruptly their orientation when reaching the lowest energy of the `S'. The spirals of the model follow a standard `precessing ellipses flow' and the orbits building them have energies beyond the `S' region. The bar is structured mainly by sticky orbits from regions around the stability islands of the central family. This leads to the appearance of X features in the bars on the galactic plane. Such a bar morphology appears in the unsharp-masked images of some moderately inclined galaxies.

  18. Bar formation and evolution in disc galaxies with gas and a triaxial halo: morphology, bar strength and halo properties

    NASA Astrophysics Data System (ADS)

    Athanassoula, E.; Machado, Rubens E. G.; Rodionov, S. A.

    2013-03-01

    particles that stay located relatively near the disc for long periods of time. Another part generates halo bulk rotation, which, contrary to that of the bar, increases with time but stays small. Thus, in our models there are two non-axisymmetric components rotating with different pattern speeds, namely the halo and the bar, so that the resulting dynamics have strong similarities to the dynamics of double bar systems.

  19. Breaking through the Bar

    ERIC Educational Resources Information Center

    Gray, Katti

    2011-01-01

    Howard University School of Law had a problem, and school officials knew it. Over a 20-year period, 40 percent of its graduates who took the Maryland bar exam failed it on their first try. During the next 24 months--the time frame required to determine its "eventual pass rate"--almost 90 percent of the students did pass. What they did not know was…

  20. Bar coded retroreflective target

    DOEpatents

    Vann, Charles S.

    2000-01-01

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  1. Morphodynamic controls on redox conditions and on nitrogen dynamics within the hyporheic zone: Application to gravel bed rivers with alternate-bar morphology

    NASA Astrophysics Data System (ADS)

    Marzadri, A.; Tonina, D.; Bellin, A.

    2012-09-01

    Hyporheic flows, which stem from the interaction between stream flow and bedform, transport solute-laden surface waters into the streambed sediments, where reactive solutes undergo biogeochemical transformations. Despite the importance of hyporheic exchange on riverine ecosystem and biogeochemical cycles, research is limited on the effects of hyporheic fluxes on the fate of reactive solutes within the hyporheic zone. Consequently, we investigate the controls of hyporheic flowpaths, which we link to stream morphology and streamflow, on prevailing hyporheic redox conditions and on biogeochemical transformations occurring within streambeds. We focus on the dissolved inorganic reactive forms of nitrogen, ammonium and nitrate, because nitrogen is one of the most common reactive solutes and an essential nutrient found in stream waters. Our objectives are to explore the influence of stream morphology, hyporheic water temperature and relative abundance of ammonium and nitrate, on transformation of ammonium, removal of nitrates and production of nitrous oxide, a potent greenhouse gas. We address our objectives with analytical solutions of the Multispecies Reactive Advection-Dispersion Equation coupled with linearized Monod's kinetics and analytical solutions of the hyporheic flow for alternate-bar morphology. We introduce a new Damköhler number,Da, defined as the ratio between the median hyporheic residence time and the time scale of oxygen consumption, which we prove to be a good indicator of where aerobic or anaerobic conditions prevail. In addition, Dais a key index to quantify hyporheic nitrification and denitrification efficiencies and defines a new theoretical framework for scaling results at both the morphological-unit and stream-reach scales.

  2. Effect of microstructure on static and dynamic mechanical properties of high strength steels

    NASA Astrophysics Data System (ADS)

    Qu, Jinbo

    The high speed deformation behavior of a commercially available dual phase (DP) steel was studied by means of split Hopkinson bar apparatus in shear punch (25m/s) and tension (1000s-1) modes with an emphasis on the influence of microstructure. The cold rolled sheet material was subjected to a variety of heat treatment conditions to produce several different microstructures, namely ferrite plus pearlite, ferrite plus bainite and/or acicular ferrite, ferrite plus bainite and martensite, and ferrite plus different fractions of martensite. Static properties (0.01mm/s for shear punch and 0.001s -1 for tension) of all the microstructures were also measured by an MTS hydraulic machine and compared to the dynamic properties. The effects of low temperature tempering and bake hardening were investigated for some ferrite plus martensite microstructures. In addition, two other materials, composition designed as high strength low alloy (HSLA) steel and transformation induced plasticity (TRIP) steel, were heat treated and tested to study the effect of alloy chemistry on the microstructure and property relationship. A strong effect of microstructure on both static and dynamic properties and on the relationship between static and dynamic properties was observed. According to the variation of dynamic factor with static strength, three groups of microstructures with three distinct behaviors were identified, i.e. classic dual phase (ferrite plus less than 50% martensite), martensite-matrix dual phase (ferrite plus more than 50% martensite), and non-dual phase (ferrite plus non-martensite). Under the same static strength level, the dual phase microstructure was found to absorb more dynamic energy than other microstructures. It was also observed that the general dependence of microstructure on static and dynamic property relationship was not strongly influenced by chemical composition, except the ferrite plus martensite microstructures generated by the TRIP chemistry, which exhibited

  3. Structural Properties of Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Taehyun; Gadotti, D. A.; Sheth, K.; Lee, M.; S4G Team

    2014-01-01

    We have performed two-dimensional multicomponent decomposition of 144 local barred spiral galaxies using 3.6 micron images from the Spitzer Survey of Stellar Structure in Galaxies. Our model fit includes up to four components (bulge, disk, bar, and a point source) and, most importantly, takes into account disk breaks. We present that ignoring the disk break and using a single disk scale length in the model fit for Type II (down- bending) disk galaxies can lead to differences of 40% in the disk scale length, 10% in bulge-to-total luminosity ratio (B/T), and 25% in bar-to-total luminosity ratios. We show that for galaxies with B/T > 0.1, the break radius to bar radius, r_br/R_bar, varies between 1 and 3, but as a function of B/T the ratio remains roughly constant. This suggests that in bulge-dominated galaxies the disk break is likely related to the outer Lindblad Resonance (OLR) of the bar, and thus the OLR also moves outwards at the same rate as the bar grows. For galaxies with B/T < 0.1, r_br/R_bar, spans a wide range from 1 to 6. This suggests that the mechanism that produces the break in these galaxies may be different from that in galaxies with more massive bulges. Consistent with previous studies, we conclude that disk breaks in galaxies with small bulges may originate from bar resonances that may be also coupled with the spiral arms, or be related to star formation thresholds. We quantifiy shapes of bar radial surface brightness profiles by measuring their Sersic indices and show that bars in higher B/T galaxies have flatter radial surface brightness profile than bulgeless galaxies do. In particular, bulgeless galaxies mostly have bars with steep profiles. We show that the normalized bar length is correlated with B/T, which is consistent with bars growing longer with time.

  4. Mechanics of dynamic fracture in notched polycarbonate

    NASA Astrophysics Data System (ADS)

    Faye, Anshul; Parmeswaran, Venkitanarayanan; Basu, Sumit

    2015-04-01

    Fracture toughness of brittle amorphous polymers (e.g. polymethyl methacrylate (PMMA)) has been reported to decrease with loading rate at moderate rates and increase abruptly thereafter to close to 5 times the static value at very high loading rates. Dynamic fracture toughness that is much higher than the static values has attractive technological possibilities. However, the reasons for the sharp increase remain unclear. Motivated by these observations, the present work focuses on the dynamic fracture behavior of polycarbonate (PC), which is also an amorphous polymer but unlike PMMA, is ductile at room temperature. Towards this end, a combined experimental and numerical approach is adopted. Dynamic fracture experiments at various loading rates are conducted on single edge notched (SEN) specimens with a notch of radius 150 μm, using a Hopkinson bar setup equipped with ultra high-speed imaging (>105 fps) for real-time observation of dynamic processes during fracture. Concurrently, 3D dynamic finite element simulations are performed using a well calibrated material model for PC. Experimentally, we were able to clearly capture the intricate details of the process, for both slowly and dynamically loaded samples, of damage nucleation and growth ahead of the notch tip followed by unstable crack propagation. These observations coupled with fractography and computer simulations led us to conclude that in PC, the fracture toughness remains invariant with loading rate at Jfrac = 12 ± 3 kN / m for the entire range of loading rates (J ˙) from static to 1 ×106 kN / m - s. However, the damage initiation toughness is significantly higher in dynamic loading compared to static situations. In dynamic situations, damage nucleation is quickly followed by initiation of radial crazes from around the void periphery that initiate and quickly bridge the ligament between the initial damaged region and the notch. Thus for PC, two criteria for two major stages in the failure process emerge

  5. Dynamic behaviors of various volume rate steel-fiber reinforced reactive powder concrete after high temperature burnt

    NASA Astrophysics Data System (ADS)

    Pang, Baojun; Wang, Liwen; Yang, Zhenqi; Chi, Runqiang

    2009-06-01

    Dynamic strain-stress curves of reactive powder concrete under high strain rate (10/s-100/s) were determined by improved split Hopkinson pressure bar (SHPB) system. A plumbum pulse shaper was used to ensure the symmetrical stress in the specimens before fracture and avoid the fluctuation of test data due to input shaky stress pulse. A time modified method was induced for data processing in order to get accurate SHPB results. The results of experiment showed after high temperature burnt, different volume rate (0.0%, 0.5%, 1.0%, 1.5%) steel-fiber reinforced reactive power concrete had the same changing tendency of residual mechanics behaviors, e.g. after 400 centigrade burnt, the residual compression strength was about 70% of material strength without burnt under 100/s. After 800 centigrade burnt, the compression strength is about 30% under 100/s while the deformation ability increased. At meanwhile, steel fiber had improved the mechanism of reinforcing effect and toughening effect of concrete material after burnt. With increasing of steel fiber volume rate, dynamic residual behavior of samples was improved. Microcosmic characteristics and energy absorption were induced for explaining the experiment results.

  6. Grain size dependence of dynamic mechanical behavior of AZ31B magnesium alloy sheet under compressive shock loading

    SciTech Connect

    Asgari, H.; Odeshi, A.G.; Szpunar, J.A.; Zeng, L.J.; Olsson, E.

    2015-08-15

    The effects of grain size on the dynamic deformation behavior of rolled AZ31B alloy at high strain rates were investigated. Rolled AZ31B alloy samples with grain sizes of 6, 18 and 37 μm, were subjected to shock loading tests using Split Hopkinson Pressure Bar at room temperature and at a strain rate of 1100 s{sup −} {sup 1}. It was found that a double-peak basal texture formed in the shock loaded samples. The strength and ductility of the alloy under the high strain-rate compressive loading increased with decreasing grain size. However, twinning fraction and strain hardening rate were found to decrease with decreasing grain size. In addition, orientation imaging microscopy showed a higher contribution of double and contraction twins in the deformation process of the coarse-grained samples. Using transmission electron microscopy, pyramidal dislocations were detected in the shock loaded sample, proving the activation of pyramidal slip system under dynamic impact loading. - Highlights: • A double-peak basal texture developed in all shock loaded samples. • Both strength and ductility increased with decreasing grain size. • Twinning fraction and strain hardening rate decreased with decreasing grain size. • ‘g.b’ analysis confirmed the presence of dislocations in shock loaded alloy.

  7. Energy absorption behavior of polyurea coatings under laser-induced dynamic tensile and mixed-mode loading

    NASA Astrophysics Data System (ADS)

    Jajam, Kailash; Lee, Jaejun; Sottos, Nancy

    2015-06-01

    Energy absorbing, lightweight, thin transparent layers/coatings are desirable in many civilian and military applications such as hurricane resistant windows, personnel face-shields, helmet liners, aircraft canopies, laser shields, blast-tolerant sandwich structures, sound and vibration damping materials to name a few. Polyurea, a class of segmented block copolymer, has attracted recent attention for its energy absorbing properties. However, most of the dynamic property characterization of polyurea is limited to tensile and split-Hopkinson-pressure-bar compression loading experiments with strain rates on the order of 102 and 104 s-1, respectively. In the present work, we report the energy absorption behavior of polyurea thin films (1 to 2 μm) subjected to laser-induced dynamic tensile and mixed-mode loading. The laser-generated high amplitude stress wave propagates through the film in short time frames (15 to 20 ns) leading to very high strain rates (107 to 108 s-1) . The substrate stress, surface velocity and fluence histories are inferred from the displacement fringe data. On comparing input and output fluences, test results indicate significant energy absorption by the polyurea films under both tensile and mixed-mode loading conditions. Microscopic examination reveals distinct changes in failure mechanisms under mixed-mode loading from that observed under pure tensile loading. Office of Naval Research MURI.

  8. The dynamic mechanical properties study on the sandwich panel of different thickness steel plate-foam aluminum core

    NASA Astrophysics Data System (ADS)

    Chang, Zhongliang; Zou, Guangping; Zhao, Weiling; Xia, Peixiu

    2009-12-01

    The foam aluminum belongs to multi-cell materials, and it has good mechanical performance, such as large deformation capacity and good energy absorption, and usually used as core material of sandwich panel, now it is widely used in automotive, aviation, aerospace and other fields, particularly suitable for various anti-collision structure and buffer structure. In this article, based on an engineering background, the INSTRON4505 electronic universal testing machine and split Hopkinson pressure bar (SHPB) were used for testing the static and dynamic mechanical properties of sandwich panel with different thickness steel plate- foam aluminum core, from the results we can see that the steel plate thickness has big influence on the stress-strain curve of the sandwich panel, and also takes the sandwich panel with 1mm steel panel to study the material strain rate dependence which under different high shock wave stress loaded, the results show that the sandwich panel is strain rate dependence material. And also, in order to get good waveforms in the SHPB experiment, the waveform shaped technique is used in the dynamic experiments, and the study of this paper will good to sandwich panel used in the engineering.

  9. The dynamic mechanical properties study on the sandwich panel of different thickness steel plate-foam aluminum core

    NASA Astrophysics Data System (ADS)

    Chang, Zhongliang; Zou, Guangping; Zhao, Weiling; Xia, Peixiu

    2010-03-01

    The foam aluminum belongs to multi-cell materials, and it has good mechanical performance, such as large deformation capacity and good energy absorption, and usually used as core material of sandwich panel, now it is widely used in automotive, aviation, aerospace and other fields, particularly suitable for various anti-collision structure and buffer structure. In this article, based on an engineering background, the INSTRON4505 electronic universal testing machine and split Hopkinson pressure bar (SHPB) were used for testing the static and dynamic mechanical properties of sandwich panel with different thickness steel plate- foam aluminum core, from the results we can see that the steel plate thickness has big influence on the stress-strain curve of the sandwich panel, and also takes the sandwich panel with 1mm steel panel to study the material strain rate dependence which under different high shock wave stress loaded, the results show that the sandwich panel is strain rate dependence material. And also, in order to get good waveforms in the SHPB experiment, the waveform shaped technique is used in the dynamic experiments, and the study of this paper will good to sandwich panel used in the engineering.

  10. Large strain dynamic compression for soft materials using a direct impact experiment

    NASA Astrophysics Data System (ADS)

    Meenken, T.; Hiermaier, S.

    2006-08-01

    Measurement of strain rate dependent material data of low density low strength materials like polymeric foams and rubbers still poses challenges of a different kind to the experimental set up. For instance, in conventional Split Hopkinson Pressure Bar tests the impedance mismatch between the bars and the specimen makes strain measurement almost impossible. Application of viscoelastic bars poses new problems with wave dispersion. Also, maximum achievable strains and strain rates depend directly on the bar lengths, resulting in large experimental set ups in order to measure relevant data for automobile crash applications. In this paper a modified SHPB will be presented for testing low impedance materials. High strains can be achieved with nearly constant strain rate. A thin film stress measurement has been applied to the specimen/bar interfaces to investigate the initial sample ring up process. The process of stress homogeneity within the sample was investigated on EPDM and PU rubber.

  11. The Role of 2D Circulation in Sand Bar Migration

    NASA Astrophysics Data System (ADS)

    Splinter, K. D.; Holman, R. A.; Plant, N. G.; Holland, K. T.

    2006-12-01

    Models of bar dynamics typically involve moments of the cross-shore flow, with offshore movement associated with the strong offshore directed undertow and onshore migration related to wave asymmetry and skewness [Gallagher, et al., 1998]. Based on these hypotheses, models and laboratory studies have used the alongshore-mean bar position and alongshore-uniform wave conditions (a 1DH approach) to study bar response to varying wave conditions. Commonly, cases of offshore migration were reproduced with reasonable accuracy, but predictions of onshore migration were less successful. However, examination of time-exposure images of waves show that during periods of offshore migration, bars tend to be alongshore uniform and move rapidly offshore, but during onshore migration, sand bars are rarely straight, instead becoming very sinuous, violating the 1DH approach. We hypothesize that under milder wave conditions, the 2DH circulation associated with this alongshore-variable morphology is, in fact, largely responsible for increased onshore net sand transport and the resulting onshore bar movement. We extend the work of Plant et al. [in review] that relates bar position, sinuosity, and wave forcing within a dynamical feedback model. The model consists of coupled differential equations that govern the rates of change of cross-shore position and horizontal sinuosity as a function of the current cross-shore position and sinuosity and a proxy for wave forcing. Using a short data set from Duck, NC, they solve for the unknown coupling coefficients by doing a least-squares fit. They find that the coefficients for the self-interaction terms have a negative sign, indicating the overall system is stable. The coefficients of the cross-interaction terms (the effect of sinuosity on rate of change of bar position and visa versa), however, are non-zero and have opposite signs indicating the systems are coupled and stability is not affected by these terms. We expand this study, relating bar

  12. Shepherding tidal debris with the Galactic bar: the Ophiuchus stream

    NASA Astrophysics Data System (ADS)

    Hattori, Kohei; Erkal, Denis; Sanders, Jason L.

    2016-07-01

    The dynamics of stellar streams in rotating barred potentials is explained for the first time. Naturally, neighbouring stream stars reach pericentre at slightly different times. In the presence of a rotating bar, these neighbouring stream stars experience different bar orientations during pericentric passage and hence each star receives a different torque from the bar. These differing torques reshape the angular momentum and energy distribution of stars in the stream, which in turn changes the growth rate of the stream. For a progenitor orbiting in the same sense as the bar's rotation and satisfying a resonance condition, the resultant stream can be substantially shorter or longer than expected, depending on whether the pericentric passages of the progenitor occur along the bar's minor or major axis, respectively. We present a full discussion of this phenomenon focusing mainly on streams confined to the Galactic plane. In stark contrast with the evolution in static potentials, which give rise to streams that grow steadily in time, rotating barred potentials can produce dynamically old, short streams. This challenges the traditional viewpoint that the inner halo necessarily consists of well phase-mixed material whilst the tidally disrupted structures in the outer halo are more spatially coherent. We argue that this mechanism may play an important role in explaining the mysteriously short Ophiuchus stream that was recently discovered near the bulge region of the Milky Way.

  13. Shepherding Tidal Debris with the Galactic Bar: The Ophiuchus Stream

    NASA Astrophysics Data System (ADS)

    Hattori, Kohei; Erkal, Denis; Sanders, Jason L.

    2016-04-01

    The dynamics of stellar streams in rotating barred potentials is explained for the first time. Naturally, neighbouring stream stars reach pericentre at slightly different times. In the presence of a rotating bar, these neighbouring stream stars experience different bar orientations during pericentric passage and hence each star receives a different torque from the bar. These differing torques reshape the angular momentum and energy distribution of stars in the stream, which in turn changes the growth rate of the stream. For a progenitor orbiting in the same sense as the bar's rotation and satisfying a resonance condition, the resultant stream can be substantially shorter or longer than expected, depending on whether the pericentric passages of the progenitor occur along the bar's minor or major axis respectively. We present a full discussion of this phenomenon focusing mainly on streams confined to the Galactic plane. In stark contrast with the evolution in static potentials, which give rise to streams that grow steadily in time, rotating barred potentials can produce dynamically old, short streams. This challenges the traditional viewpoint that the inner halo necessarily consists of well phase-mixed material whilst the tidally-disrupted structures in the outer halo are more spatially coherent. We argue that this mechanism may play an important role in explaining the mysteriously short Ophiuchus stream that was recently discovered near the bulge region of the Milky Way.

  14. Microstructures Induced in Porous Limestone by Dynamic Loading, and Fracture Healing: An Experimental Approach

    NASA Astrophysics Data System (ADS)

    Richard, Julie; Doan, Mai-Linh; Gratier, Jean-Pierre; Renard, François

    2015-05-01

    Fracturing and healing are crucial processes inducing changes in the permeability and mechanical behavior of fault zones. Fracturing increases the permeability of fault rocks, creating flow-channels for fluid circulation and enhancing the kinetics of such fluid-rock processes as pressure solution or metamorphism. Conversely, healing processes reduce permeability by closing the fractures and lead to rock strengthening. Consequently, the timescales of these two processes are important in determining the strength of fault zones and their ability to rupture during earthquakes. This article reports observations of the microstructure of porous limestone samples subjected to rapid dynamic loading, and long-term healing as a result of fluid percolation. Dynamic loading was performed by impacting the samples with steel bars inside a split Hopkinson pressure bar apparatus. Healing was performed by leaving the samples for three months within a triaxial machine with percolation of supersaturated fluids for five weeks. Two kinds of fracture network were observed in samples damaged at high strain rate: a series of radial and circular macrofractures and an incipient pulverization zone at the center of the sample loaded at the highest strain rate. Fracture density determined microscopically from X-ray images correlates with dissipated energy computed from macro-mechanical data. X-ray images enable good quantification of the damaged state of the samples. Percolation experiments under stress with high-solubility fluid at room temperature show that the main healing processes promoting closure of the fractures in the sample are a combination of mechanical and chemical compaction. Microfracturing networks were found to heal faster than the largest fractures, leading to heterogeneous strengthening of the rock. This feature affects the processes of earthquake nucleation and rupture propagation.

  15. Experimental Studies on Dynamic Mechanical Behaviors and Anti-Projectile Capabilities of Extruded Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Fan, Yafu; Zhao, Baorong

    Dynamic mechanical behaviors of Mg-Gd-Y series extruded magnesium alloy and its σ-ɛcurves are measured by using of Hopkinson pressure bar technique. According to the concept of efficiency of absorption energy, this thesis compares Mg-Gd-Y series extruded alloy with ZK60 extruded magnesium alloy. Being obtained similitude numbers by means of normalizing processing for governing equations of the continuum mechanics and according to the viewpoint of equal density of area, the comparative experiment of anti-projectile capabilities is elaborately designed between Mg-Gd-Y alloy and the 7A52 aluminum alloy. The result has validated that anti-projectile capability of Mg-Gd-Y alloy is better than those of 7A52 alloy under the condition of equal density of area. The relative technique approaches for improving anti-projectile capability of Mg-Gd-Y alloy are put forward making use of similitude numbers. Finally, the basic characters of effect of adiabatic shear are revealed by micro analysis.

  16. Static and dynamic tensile behaviour of aluminium processed by high pressure torsion

    NASA Astrophysics Data System (ADS)

    Verleysen, Patricia; Oelbrandt, Wouter; Naghdy, Soroosh; Kestens, Leo

    2015-09-01

    High pressure torsion (HPT) is a severe plastic deformation technique in which a small, disk-like sample is subjected to a torsional deformation under a high hydrostatic pressure. In present study, the static and dynamic tensile behaviour of commercially pure aluminium (99.6 wt%) processed by HPT is studied. The high strain rate tensile behaviour is characterized using a purpose-developed miniature split Hopkinson tensile bar setup by which strain rates up to 5 × 103 s-1 can be reached. During the tests, the deformation of a speckle pattern applied to the samples is recorded, by which local information on the strain is obtained using a digital image correlation technique. Electron back scatter diffraction images are used to investigate the microstructural evolution, more specifically the grain refinement obtained by HPT. The fracture surfaces of the tensile samples are studied by scanning electron microscopy. Results show that the imposed severe plastic deformation significantly increases the tensile strength, however, at the expense of ductility. The strain rate only has a minor influence on the materials tensile behaviour.

  17. Quasi-static and dynamic responses of advanced high strength steels: Experiments and modeling

    SciTech Connect

    Khan, Akhtar; Baig, Muneer; Choi, Shi Hoon; Yang, Hoe Seok; Sun, Xin

    2012-03-01

    Measured responses of advanced high strength steels (AHSS) and their tailor welded blanks (TWBs), over a wide range of strain-rates (10*4 to 103 s*1) are presented. The steels investigated include transformation induced plasticity (TRIP), dual phase (DP), and drawing quality (DQ) steels. The TWBs include DQ-DQ and DP-DP laser welds. A tensile split Hopkinson pressure bar (SHPB) was used for the dynamic experiments. AHSS and their TWB's were found to exhibit positive strain-rate sensitivity. The Khan-Huang-Liang (KHL) constitutive model is shown to correlate and predict the observed responses reasonably well. Micro-texture characterization of DQ steels, DQ-DQ and DP-DP laser welds were performed to investigate the effect of strain-rate on texture evolution of these materials. Electron backscatter diffraction (EBSD) technique was used to analyze the micro-texture evolution and kernel average misorientation (KAM) map. Measurement of micro-hardness profile across the cross section of tensile samples was conducted to understand the effect of initial microstructure on ductility of laser weld samples.

  18. Study of the dynamic Bauschinger effect in Ti6Al4V by torsion experiments

    NASA Astrophysics Data System (ADS)

    Peirs, J.; Verleysen, P.; Degrieck, J.

    2012-08-01

    The materials kinematic hardening behaviour and Bauschinger effect is indispensible to describe complex deformation processes involving strain path changes. Moreover, the Bauschinger effect provides valuable information about underlying microstructural plasticity mechanisms. Until now, the Bauschinger effect at high strain rates remains a largely unexplored topic. However, different studies demonstrated the strain rate dependent character of the Bauschinger effect. The aim of this work is to study the dynamic Bauschinger effect by means of a novel experimental technique. A modified torsional split Hopkinson bar setup is used to conduct Bauschinger experiments on Ti6Al4V. Forward and reverse loading of the specimen take place successively in only one experiment. This has the advantage of having the same thermal conditions during the two loading cycles. Besides high strain rate tests, quasi-static torsional Bauschinger experiments are conducted. The Bauschinger effect at the different strain rates is quantified with a dimensionless Bauschinger stress parameter. It is found that the Bauschinger effect is present at all tested strain rates. However, it is more pronounced at high strain rates. This implies that the kinematic hardening of Ti6Al4V is strain rate sensitive.

  19. Simulations of the quart (101-bar1)/water interface: A comparison of classical force fields, ab initi molecular dynamics, and x-ray reflectivity experiments.

    SciTech Connect

    Skelton, Adam; Fenter, Paul; Kubicki, James D.; Wesolowski, David J; Cummings, Peter T

    2011-01-01

    Classical molecular dynamics (CMD) simulations of the (1011) surface of quartz interacting with bulk liquid water are performed using three different classical force fields, Lopes et al., ClayFF, and CHARMM water contact angle (CWCA), and compared to ab initio molecular dynamics (AIMD) and X-ray reflectivity (XR) results. The axial densities of the water and surface atoms normal to the surface are calculated and compared to previous XR experiments. Favorable agreement is shown for all the force fields with respect to the position of the water atoms. Analyses such as the radial distribution functions between water and hydroxyl atoms and the average cosine of the angle between the water dipole vector and the normal of the surface are also calculated for each force field. Significant differences are found between the different force fields from such analyses, indicating differing descriptions of the structured water in the near vicinity of the surface. AIMD simulations are also performed to obtain the water and hydroxyl structure for comparison among the predictions of the three classical force fields to better understand which force field is most accurate. It is shown that ClayFF exhibits the best agreement with the AIMD simulations for water hydroxyl radial distribution functions, suggesting that ClayFF treats the hydrogen bonding more accurately.

  20. Bar-Code-Scribing Tool

    NASA Technical Reports Server (NTRS)

    Badinger, Michael A.; Drouant, George J.

    1991-01-01

    Proposed hand-held tool applies indelible bar code to small parts. Possible to identify parts for management of inventory without tags or labels. Microprocessor supplies bar-code data to impact-printer-like device. Device drives replaceable scribe, which cuts bar code on surface of part. Used to mark serially controlled parts for military and aerospace equipment. Also adapts for discrete marking of bulk items used in food and pharmaceutical processing.

  1. Dynamic crushing behaviour of aluminium tubes filled with cork

    NASA Astrophysics Data System (ADS)

    Gameiro, C. P.; Cirne, J.; Gary, G.

    2006-08-01

    Cork is a natural cellular material with unique remarkable properties such as low density, great elasticity, chemical stability and resilience, no permeability to liquid and gases and resistance to wear and fire. Besides, it is ecological, hygienic, easy to maintain and a very durable material. Unfortunately, there are still application fields that have not been explored yet for the use of cork, possibly due to the fact that it is a complex cellular material, characterized by very variable mechanical properties which clearly depend on its microstructure. The fundamental aspects of the static and dynamic mechanical behaviour of natural and agglomerate cork, used alone and as filler inside a tube with small dimensions, under axial compressive loading, have already been studied by the authors. Aluminium cork-filled tubes and their empty counterparts were tested experimentally and numerically at quasi-static and dynamic strain rates from 10 - 3s - 1 to 600 s - 1. Data from the Split-Hopkinson Pressure Bar and “deconvolution” techniques were used to generate stress-strain curves for the structures composed of natural and agglomerate cork. The numerical simulations of the dynamic compression of the specimens were carried out using the finite element method software LS-DYNA^TM and showed quite good agreement with the experimental results. Hence, in this work, in order to extend the study started previously and investigate the possible advantages of cork-filling in longer tubes with a different section, the authors simulate, using the same software, the influence of the introduction of agglomerate cork in square and circular aluminium tubes with a diameter/width of 80 mm, a length of 300mm and a variable thickness. The mechanical properties of the structures composed of cork may constitute a potential for this material to be used in innovative applications related to diverse fields such as automotive, transport, ships and military applications.

  2. Ladder supported ring bar circuit

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G. (Inventor)

    1983-01-01

    An improved slow wave circuit especially useful in backward wave oscillators includes a slow wave circuit in a waveguide. The slow wave circuit is comprised of rings disposed between and attached to respective stubs. The stubs are attached to opposing sidewalls of the waveguide. To the end that opposed, interacting magnetic fields will be established to provide a very high coupling impedance for the slow wave structure, axially orientated bars are connected between rings in alternate spaces and adjacent to the attachment points of stubs. Similarly, axial bars are connected between rings in the spaces which do not include bars and at points adjacent to the attachment of bars.

  3. Effects of Magnetic Fields on Bar Substructures in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae

    2015-03-01

    To study the effects of magnetic fields on the properties of bar substructures, we run two-dimensional, ideal MHD simulations of barred galaxies under the influence of a non-axisymmetric bar potential. In the bar regions, magnetic fields reduce density compression in the dust-lane shocks, while removing angular momentum further from the gas at the shocks. This evidently results in a smaller and more distributed ring, and a larger mass inflows rate to the galaxy center in models with stronger magnetic fields. In the outer regions, an MHD dynamo due to the combined action of the bar potential and background shear operates, amplifying magnetic fields near the corotation resonance. In the absence of spiral arms, the amplified fields naturally shape into trailing magnetic arms with strong fields and low density. The reader is refereed to Kim & Stone (2012) for a detailed presentation of the simulation outcomes.

  4. GASEOUS STRUCTURES IN BARRED GALAXIES: EFFECTS OF THE BAR STRENGTH

    SciTech Connect

    Kim, Woong-Tae; Seo, Woo-Young; Kim, Yonghwi

    2012-10-10

    Using hydrodynamic simulations, we investigate the physical properties of gaseous substructures in barred galaxies and their relationships with the bar strength. The gaseous medium is assumed to be isothermal and unmagnetized. The bar potential is modeled as a Ferrers prolate with index n. To explore situations with differing bar strength, we vary the bar mass f{sub bar} relative to the spheroidal component as well as its aspect ratio R. We derive expressions as functions of f{sub bar} and R for the bar strength Q{sub b} and the radius r(Q{sub b} ) where the maximum bar torque occurs. When applied to observations, these expressions suggest that bars in real galaxies are most likely to have f{sub bar} {approx} 0.25-0.50 and n {approx}< 1. Dust lanes approximately follow one of the x{sub 1}-orbits and tend to be straighter under a stronger and more elongated bar, but are insensitive to the presence of self-gravity. A nuclear ring of a conventional x{sub 2} type forms only when the bar is not so massive or elongated. The radius of an x{sub 2}-type ring is generally smaller than the inner Lindblad resonance, decreases systematically with increasing Q{sub b} , and is slightly larger when self-gravity is included. This is evidence that the ring position is not determined by the resonance, but instead by the amount of angular momentum loss at dust-lane shocks. Nuclear spirals exist only when the ring is of the x{sub 2} type and is sufficiently large in size. Unlike the other features, nuclear spirals are transient in that they start out being tightly wound and weak, and then, due to the nonlinear effect, unwind and become stronger until they turn into shocks, with an unwinding rate that is higher for larger Q{sub b} . The mass inflow rate to the galaxy center is found to be less than 0.01 M{sub Sun} yr{sup -1} for models with Q{sub b} {approx}< 0.2, while becoming larger than 0.1 M{sub Sun} yr{sup -1} when Q{sub b} {approx}> 0.2 and self-gravity is included.

  5. Vision system for gauging and automatic straightening of steel bars

    NASA Astrophysics Data System (ADS)

    Sidla, Oliver; Wilding, Ernst; Niel, Albert; Barg, Herbert

    2001-02-01

    A machine vision application for the fully automatic straightening of steel bars is presented. The bars with lengths of up to 6000 mm are quite bent on exit of the rolling mill and need to be straightened prior to delivery to a customer. The shape of the steel bar is extracted and measured by two video resolution cameras which are calibrated in position and viewing angle relative to a coordinate system located in the center of the roller table. Its contour is tracked and located with a dynamic programming method utilizing several constraints to make the algorithm as robust as possible. 3D camera calibration allows the transformation of image coordinates to real-world coordinates. After smoothing and spline fitting the curvature of the bar is computed. A deformation model of the effect of force applied to the steel allows the system to generate press commands which state where and with what specific pressure the bar has to be processed. The model can be used to predict the straightening of the bar over some consecutive pressing events helping to optimize the operation. The process of measurement and pressing is repeated until the straightness of the bar reaches a predefined limit.

  6. Alluvial Bars of the Obed Wild and Scenic River, Tennessee

    USGS Publications Warehouse

    Wolfe, W.J.; Fitch, K.C.; Ladd, D.E.

    2007-01-01

    In 2004, the U.S. Geological Survey (USGS) and the National Park Service (NPS) initiated a reconnaissance study of alluvial bars along the Obed Wild and Scenic River (Obed WSR), in Cumberland and Morgan Counties, Tennessee. The study was partly driven by concern that trapping of sand by upstream impoundments might threaten rare, threatened, or endangered plant habitat by reducing the supply of sediment to the alluvial bars. The objectives of the study were to: (1) develop a preliminary understanding of the distribution, morphology, composition, stability, and vegetation structure of alluvial bars along the Obed WSR, and (2) determine whether evidence of human alteration of sediment dynamics in the Obed WSR warrants further, more detailed examination. This report presents the results of the reconnaissance study of alluvial bars along the Obed River, Clear Creek, and Daddys Creek in the Obed WSR. The report is based on: (1) field-reconnaissance visits by boat to 56 alluvial bars along selected reaches of the Obed River and Clear Creek; (2) analysis of aerial photographs, topographic and geologic maps, and other geographic data to assess the distribution of alluvial bars in the Obed WSR; (3) surveys of topography, surface particle size, vegetation structure, and ground cover on three selected alluvial bars; and (4) analysis of hydrologic records.

  7. BAR EFFECTS ON CENTRAL STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY

    SciTech Connect

    Oh, Seulhee; Oh, Kyuseok; Yi, Sukyoung K.

    2012-01-01

    Galactic bars are often suspected to be channels of gas inflow to the galactic center and to trigger central star formation and active galactic nucleus (AGN) activity. However, the current status on this issue based on empirical studies is unsettling, especially regarding AGNs. We investigate this question based on the Sloan Digital Sky Survey Data Release 7. From the nearby (0.01 < z < 0.05) bright (M{sub r} < -19) database, we have constructed a sample of 6658 relatively face-on late-type galaxies through visual inspection. We found 36% of them to have a bar. Bars are found to be more common in galaxies with earlier morphology. This makes sample selection critical. Parameter-based selections would miss a large fraction of barred galaxies of early morphology. Bar effects on star formation or AGNs are difficult to understand properly because multiple factors (bar frequency, stellar mass, black hole mass, gas contents, etc.) seem to contribute to them in intricate manners. In the hope of breaking these degeneracies, we inspect bar effects for fixed galaxy properties. Bar effects on central star formation seem higher in redder galaxies. Bar effects on AGNs on the other hand are higher in bluer and less massive galaxies. These effects seem more pronounced with increasing bar length. We discuss possible implications in terms of gas contents, bar strength, bar evolution, fueling timescale, and the dynamical role of supermassive black hole.

  8. Formation of crescentic bars in double sandbar systems.

    NASA Astrophysics Data System (ADS)

    Calvete Manrique, D.; Coco, G.; Ribas Prats, F.; de Swart, H. E.

    2012-04-01

    The development of crescentic bars in multiple sandbar systems have been studied both through observations (e.g. Price and Ruessink, Cont. Shelf Res. 2011) and numerical studies (e.g. Thiebot et al., Cont. Shelf Res. 2012). Recent studies (Castelle et al., Earth Surf. Process. Landforms 2010; Quartel , Earth Surf. Process. Landforms 2009) have focus special attention on the dynamics of crescentic bars in multiple sandbar systems and their coupling. However these studies under with conditions the dynamics of the crescentic patterns are the results of a coupled dynamics or it is just the independent evolution of each single sand bar. The objective of the present work is to investigate under witch conditions the initial formation crescentic bars in a double sand bar system are the results of a coupled dynamics. Here we use a numerical model based on linear stability analysis to study initial evolution of the double sandbar system. The model, in addition the to processes accounted by Calvete et al. (2005) also incorporate the surface rollers, both in the hydrodynamics and sediment transport, following Ribas et al. (2011). Preliminary results shows that patterns can be coupled from their initial formation for particular forcing conditions and cross-shore beach profiles.

  9. The Effects of Specimen Geometry and Size on the Dynamic Failure of Aluminum Alloy 2219-T8 Under Impact Loading

    NASA Astrophysics Data System (ADS)

    Bolling, Denzell Tamarcus

    A significant amount of research has been devoted to the characterization of new engineering materials. Searching for new alloys which may improve weight, ultimate strength, or fatigue life are just a few of the reasons why researchers study different materials. In support of that mission this study focuses on the effects of specimen geometry and size on the dynamic failure of AA2219 aluminum alloy subjected to impact loading. Using the Split Hopkinson Pressure Bar (SHPB) system different geometric samples including cubic, rectangular, cylindrical, and frustum samples are loaded at different strain rates ranging from 1000s-1 to 6000s-1. The deformation properties, including the potential for the formation of adiabatic shear bands, of the different geometries are compared. Overall the cubic geometry achieves the highest critical strain and the maximum stress values at low strain rates and the rectangular geometry has the highest critical strain and the maximum stress at high strain rates. The frustum geometry type consistently achieves the lowest the maximum stress value compared to the other geometries under equal strain rates. All sample types clearly indicated susceptibility to strain localization at different locations within the sample geometry. Micrograph analysis indicated that adiabatic shear band geometry was influenced by sample geometry, and that specimens with a circular cross section are more susceptible to shear band formation than specimens with a rectangular cross section.

  10. Synchrotron X-ray diffraction study of texture evolution in 904L stainless steel under dynamic shock compression

    SciTech Connect

    Li, Nanan; Wang, Y. D.; Peng, R. Lin; Sun, Xin; Ren, Yang; Wang, L.; Cai, H. N.

    2011-01-01

    The influence of strain rate on development of deformation texture under a dynamic shock compression of a 904L stainless steel was quantitatively investigated using synchrotron X-ray diffraction and crystallographic orientation distribution function (ODF) analysis. Split-Hopkinson Pressure Bar technique was used to generate a high strain rate of > 103 s-1 for preparing the deformed samples. Starting with an almost random texture in a solution treatment condition, the deformed material developed several typical texture components, such as ‘Goss’ texture and ‘Brass’ texture. Compared to the texture components displayed in the state of quasi-static compression deformation, it was found that the high-speed deformation generated much weaker texture components. In combination with the change in microstructures observed by EBSD and TEM technique, the high-energy X-ray diffraction provides a powerful tool for characterizing the strain-rate dependence of grain rotation at each stage of deformation. The deformation heterogeneity evident in our experiment can be explained by a transition of deformation mechanism from the dislocation/twin-dominated mode to shear-band-dominated one with increasing strain rate.

  11. CULTURAL FACTORS RELATED TO SMOKING IN SAN FRANCISCO’S IRISH BARS

    PubMed Central

    Satterlund, Travis D.; Antin, Tamar M.J.; Lee, Juliet P.; Moore, Roland S.

    2009-01-01

    California’s Smoke-Free Workplace Act was extended to include bars in 1998. While the majority of bars in the state have become smoke free, in many bars patrons and staff continue to smoke despite the law. The authors present findings from a study which assessed cultural factors related to continued smoking in bars in the city of San Francisco. In bars serving primarily Irish migrants, tight-knit relations within the local Irish bar community together with a reluctance to be the first Irish bar to ban smoking were found to contribute to continued indoor smoking. The findings illustrate challenges to implementing tobacco control policies within ethnic subpopulations and particularly highlight the importance of considering how cultural dynamics within subpopulations may help or hinder such policies. PMID:19999704

  12. Blurring in bar code signals

    NASA Astrophysics Data System (ADS)

    Tang, Hong

    1997-10-01

    When a bar code symbol is passed over a scanner, it is struck across by a fast moving laser beam. The laser light is scattered by the bar code. The total scattered power is modulated by the reflectivity of the bars and spaces in the symbol. A fraction of the scattered light is collected and focused onto a photodetector that converts the light variation into an electronic signal. The electronic signal is then digitized for analysis by a computer. The scanning and detection process can be modeled by a convolution of the laser beam profile and the bar code reflectivity function. The switching between states in the digitized bar code signal, which represents transitions from a space to a bar or vice versa, is determined by a zero-crossing point in the second derivative of the analog signal. The laser profile acts like a smoothing function. It blurs the analog electronic signal. If the width of the laser profile is less than the minimum width of bars and spaces in the bar code reflectivity function, the transition point is not affected by the location of its neighboring edges. If the laser profile is wider than the minimum width in the bar code, the transition point can be shifted due to the locations of its neighboring edges. The behavior of the shift of transition is analyzed here for all cases in a UPC symbol. It is found that the amount of shift in the transition point is almost the same for several different cases within the depth of field of the scanner. The knowledge of the behavior of transition point shift can be used to accurately compensate printing errors in an over-printed bar code. The modulation transfer function (MTF) of bar code scanning is the Fourier transform of the marginal function of the scanning laser beam. The MTF through focus for a scanning system is presented. By using an aperture with central obscuration in the laser focusing system, the high frequency resolution of bar code scanning can be enhanced and the depth of field of the scanner can

  13. Experimental serpentinization of dunite cores at 150-200ºC and 150 bar: Importance of open system dynamics for hydrogen generation and stabilization of ferric-rich serpentine

    NASA Astrophysics Data System (ADS)

    Luhmann, A. J.; Tutolo, B. M.; Bagley, B. C.; Mildner, D. F. R.; Seyfried, W. E., Jr.

    2015-12-01

    Tectonic processes often exhume mantle peridotite to environments near the Earth's surface, where serpentinization occurs and involves the hydration of peridotite at relatively low temperatures. This process oxidizes ferrous iron in olivine, which produces hydrogen (H2), creating environments that are conducive to abiotic synthesis of organic compounds and H2-based microbial communities. To understand better chemical and physical processes associated with serpentinization, two flow-through experiments (>30 days) were conducted at 150 and 200°C and 150 bar on intact dunite cores. Permeability decreased by a factor of 31 during the 200°C experiment, more than an order of magnitude larger than that at 150°C. Furthermore, H2 and methane concentrations exceeded 600 µmol/kg and 300 µmol/kg during the 200°C experiment, and were one and two orders of magnitude higher, respectively, than the 150°C experiment. H2 was primarily generated during the conversion of olivine to ferric serpentine at 200°C, since vibrating sample magnetometer analysis indicated little to no magnetite production. Secondary mineralization was identified on the core from this experiment, but X-ray computed tomography scans indicated little change. Furthermore, (ultra) small-angle neutron scattering datasets indicated that any change in nano-porosity and surface area was smaller than the natural variability of the dunite. Even though there was little evidence of alteration, the initial stage of serpentinization at 200°C was sufficient to produce a dramatic effect on flow fields in the core. Furthermore, this experiment generated significant dissolved H2 concentrations, while simulating open system dynamics. Thus, the experimental data provide insight on mass transfer processes in open geochemical systems, which effectively prevent highly elevated H2 concentrations due to continual loss. We speculate that this process is responsible for stabilizing unusually ferric-rich serpentine in nature.

  14. Metal complexation and ion hydration in low density hydrothermal fluids: Ab initio molecular dynamics simulation of Cu(I) and Au(I) in chloride solutions (25-1000 °C, 1-5000 bar)

    NASA Astrophysics Data System (ADS)

    Mei, Yuan; Liu, Weihua; Sherman, David M.; Brugger, Joël

    2014-04-01

    Low-density supercritical fluids are suspected of being able to transport metals, but it is unclear what the speciation/complexation would be in such conditions. In this work, we used ab initio molecular dynamics simulations to investigate the complexation, ion association and hydration of Cu+ and Au+ in NaCl brines as a function of solution density, from ambient to supercritical conditions (to 1000 °C, 5000 bar). Cu(I) and Au(I) form distorted linear complexes with two chloride ligands (i.e., CuCl2- and AuCl2-) in subcritical chloride brines. We have discovered that these charged complexes remain in high density supercritical fluids even at high temperature; however, with decreasing density, these complexes become progressively neutralized by ion association with Na+ to form low-charge (NanCuCl2)n-1 and (NanAuCl2)n-1 complexes. In these species, the Na+ ion is very weakly bonded in the outer coordination sphere, resulting in highly disordered structures and fast (few picoseconds) exchange among coordinated and solvent Na+ ions. Thermodynamic models to predict the solubility of metals in low-density magmatic or metamorphic fluids must account for these species. In addition, we found that the number of water molecules (i.e., the hydration number) surrounding the Cu+, Au+, Na+ and Cl- ions decreases linearly when fluid density decreases; this supports empirical thermodynamic models that correlate the stability constants of complexation reactions with solvent density. The traditional Born-model description explains the ion association as resulting from the decreased dielectric constant of the solvent. However at a molecular level, the increased ion association results from the increase in translational entropy associated with ion dehydration.

  15. System analysis of bar code laser scanner

    NASA Astrophysics Data System (ADS)

    Wang, Jianpu; Chen, Zhaofeng; Lu, Zukang

    1996-10-01

    This paper focuses on realizing the three important aspects of bar code scanner: generating a high quality scanning light beam, acquiring a fairly even distribution characteristic of light collection, achieving a low signal dynamic range over a large depth of field. To do this, we analyze the spatial distribution and propagation characteristics of scanning laser beam, the vignetting characteristic of optical collection system and their respective optimal design; propose a novel optical automatic gain control method to attain a constant collection over a large working depth.

  16. Bar Mode Instability in Gravitational Collapsing Cloud Core

    NASA Astrophysics Data System (ADS)

    Hanawa, T.

    1999-12-01

    We discuss dynamical collapse of a dense core with emphasis on the bar mode instability. Recent numerical simulations show that a dynamically collapsing core changes its form from sphere through disk to filament. The filament is much longer than the Jeans length and likely to be unstable against fragmentation. We discuss the mechanism of filament formation on the basis of linear stability analysis. According to our analysis, a dynamically collapsing gas sphere is unstable against the bar mode, i.e., a non-spherical density perturbation proportional to, Y 2 m(θ,ϕ) . The filament formation is due to the bar mode instability. The bar mode grows with the time, t , in proportion to ěrt t - t 0 ěrt -σ while the central density increases in proportion to (t - t 0 ) -2 . When the collapse is isothermal, the growth rate is σ = 0.354 . The growth rate is larger when the sound speed decreases with the increase in the density. This bar mode instability may lead to fragmentation in a core and may be related to binary formation.

  17. Processing, Dynamic Deformation and Fragmentation of Heterogeneous Materials (Aluminum-Tungsten Composites and Aluminum-Nickel Laminates)

    NASA Astrophysics Data System (ADS)

    Chiu, Po-Hsun

    Two types of heterogeneous reactive materials, Aluminum-Tungsten composites and Aluminum-Nickel laminates were investigated. The current interest in these materials is their ability to combine the high strength and energy output under critical condition of the mechanical deformation which may include their fragmentation. Mesoscale properties of reactive materials are very important for the generation of local hot spots to ignite reactions and generate critical size of debris suitable for fast oxidation kinetics. Samples with different mesostructures (e.g., coarse vs. fine W particles, bonded vs. non-bonded Al particles, W particles vs. W wires and concentric vs. corrugated Al-Ni laminates) were prepared by Cold Isostatic Pressing, Hot Isostatic Pressing and Swaging. Several dynamic tests were utilized including Split Hopkinson Pressure Bar, Drop Weight Test, Explosively Driven Fragmentation Test, and Thick-Walled Cylinder Method. A high speed camera was used to record images of the in situ behavior of materials under dynamic loading. Pre- and post-experiment analyses and characterization were done using Optical Microscopy, Scanning Electron Microscopy, X-ray Powder Diffraction, and Laser Diffraction. The numerical simulations were conducted to monitor the in situ dynamic behavior of materials and elucidate the mesoscale mechanisms of the plastic strain accommodation under high-strain, high-strain-rate conditions in investigated heterogeneous m aterials. Several interesting results should be specifically mentioned. They include observation that the fracture and dynamic properties of the Al-W composites are sensitive to porosity of samples, particles sizes of rigid inclusions (W particles or wires), and bonding strength between Al particles in the matrix. Soft Al particles were heavily deformed between the rigid W particles/wires during dynamic tests. Three plastic strain accommodation mechanisms are observed in Al-Ni laminates. They depend on the initial

  18. Swinging around the high bar

    NASA Astrophysics Data System (ADS)

    Hiley, M. J.; Yeadon, M. R.

    2001-01-01

    The motion of a gymnast around the high bar is modelled first as swinging around a rigid rod then more accurately when the rod is considered to be elastic. How the gymnast should best move his hips is also considered.

  19. Property Control through Bar Coding.

    ERIC Educational Resources Information Center

    Kingma, Gerben J.

    1984-01-01

    A public utility company uses laser wands to read bar-coded labels on furniture and equipment. The system allows an 80 percent savings of the time required to create reports for inventory control. (MLF)

  20. Triple bar, high efficiency mechanical sealer

    DOEpatents

    Pak, Donald J.; Hawkins, Samantha A.; Young, John E.

    2013-03-19

    A clamp with a bottom clamp bar that has a planar upper surface is provided. The clamp may also include a top clamp bar connected to the bottom clamp bar, and a pressure distribution bar between the top clamp bar and the bottom clamp bar. The pressure distribution bar may have a planar lower surface in facing relation to the upper surface of the bottom clamp bar. An object is capable of being disposed in a clamping region between the upper surface and the lower surface. The width of the planar lower surface may be less than the width of the upper surface within the clamping region. Also, the pressure distribution bar may be capable of being urged away from the top clamp bar and towards the bottom clamp bar.

  1. Bar Formation from Galaxy Flybys

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Lang, Meagan; Sinha, Manodeep

    2016-05-01

    Both simulations and observations reveal that flybys—fast, one-time interactions between two galaxy halos—are surprisingly common, comparable to galaxy mergers. Since these are rapid, transient events with the closest approach well outside the galaxy disk, it is unclear if flybys can transform the galaxy in a lasting way. We conduct collisionless N-body simulations of three coplanar flyby interactions between pure-disk galaxies to take a first look at the effects flybys have on disk structure, with particular focus on stellar bar formation. We find that some flybys are capable of inciting a bar; bars form in both galaxies during our 1:1 interaction and in the secondary during our 10:1 interaction. The bars formed have ellipticities >0.5, sizes on the order of the scale length of the disk, and persist to the end of our simulations, ~5 Gyr after pericenter. The ability of flybys to incite bar formation implies that many processes associated with secular bar evolution may be more closely tied with flyby interactions than previously thought.

  2. BAR FORMATION FROM GALAXY FLYBYS

    SciTech Connect

    Lang, Meagan; Holley-Bockelmann, Kelly; Sinha, Manodeep E-mail: k.holley@vanderbilt.edu

    2014-08-01

    Recently, both simulations and observations have revealed that flybys—fast, one-time interactions between two galaxy halos—are surprisingly common, nearing/comparable to galaxy mergers. Since these are rapid, transient events with the closest approach well outside the galaxy disk, it is unclear if flybys can transform the galaxy in a lasting way. We conduct collisionless N-body simulations of three coplanar flyby interactions between pure-disk galaxies to take a first look at the effects flybys have on disk structure, with particular focus on stellar bar formation. We find that some flybys are capable of inciting a bar with bars forming in both galaxies during our 1:1 interaction and in the secondary during our 10:1 interaction. The bars formed have ellipticities ≳ 0.5, sizes on the order of the host disk's scale length, and persist to the end of our simulations, ∼5 Gyr after pericenter. The ability of flybys to incite bar formation implies that many processes associated with secular bar evolution may be more closely tied with interactions than previously thought.

  3. Maximal dismounts from high bar.

    PubMed

    Hiley, Michael J; Yeadon, Maurice R

    2005-11-01

    In men's artistic gymnastics the triple straight somersault dismount from the high bar has yet to be performed in competition. The present study used a simulation model of a gymnast and the high bar apparatus (J. Appl. Biomech. 19(2003a) 119) to determine whether a gymnast could produce the required angular momentum and flight to complete a triple straight somersault dismount. Optimisations were carried out to maximise the margin for error in timing the bar release for a given number of straight somersaults in flight. The amount of rotation potential (number of straight somersaults) the model could produce whilst maintaining a realistic margin for error was determined. A simulation model of aerial movement (J. Biomech.23 (1990) 85) was used to find what would be possible with this amount of rotation potential. The model was able to produce sufficient angular momentum and time in the air to complete a triple straight somersault dismount. The margin for error when releasing the bar using the optimum technique was 28 ms, which is small when compared with the mean margin for error determined for high bar finalists at the 2000 Sydney Olympic Games (55 ms). Although the triple straight somersault dismount is theoretically possible, it would require close to maximum effort and precise timing of the release from the bar. However, when the model was required to have a realistic margin for error, it was able to produce sufficient angular momentum for a double twisting triple somersault dismount. PMID:16154409

  4. Hercules and Wolf 630 stellar streams and galactic bar kinematics

    NASA Astrophysics Data System (ADS)

    Bobylev, V. V.; Bajkova, A. T.

    2016-04-01

    We have identified the four most significant features in the UV velocity distribution of solarneighborhood stars: H1, H2 in the Hercules stream and W1, W2 in the Wolf 630 stream. We have formulated the problemof determining several characteristics of the centralGalactic bar independently from each of the identified features by assuming that the Hercules and Wolf 630 streams are of a bar-induced dynamical nature. The problem has been solved by constructing 2: 1 resonant orbits in the rotating bar frame for each star in these streams. Analysis of the resonant orbits found has shown that the bar pattern speed is 45-55 km s-1 kpc-1, while the bar angle lies within the range 40°-60°. The results obtained are consistent with the view that the Hercules andWolf 630 streams could be formed by a long-term influence of the Galactic bar leading to a characteristic bimodal splitting of the UV velocity plane.

  5. Low energy [bar p] physics at FNAL

    SciTech Connect

    Hsueh, S.Y.

    1992-12-01

    The charmonium formation experiment is the only low energy [bar p] experiment at FNAL. This paper describes the performance of the Fermilab [bar p] Accumulator during fixed target run for the experiment and the planned upgrades. We also discuss the proposal for the direct CP violation search in [bar p] + p [yields] [bar [Lambda

  6. Electrical response of carbon nanotube reinforced nanocomposites under static and dynamic loading

    NASA Astrophysics Data System (ADS)

    Heeder, Nicholas J.

    The electrical response of multi-wall carbon nanotube (MWCNT) reinforced epoxy nanocomposites under quasi-static and dynamic compressive loading is experimentally investigated. The objective of this project was to study the electrical response of CNT-reinforced nanocomposites under mechanical loading where the carbon nanotubes are used to create an internal sensory network within, capable of detecting important information such as strain and damage. Experimental techniques were developed to effectively obtain the bulk resistance change of the nanocomposite material while subjected to quasi-static and dynamic loading. A combination of shear mixing and ultrasonication was used to fabricate the low resistance nanocomposite material. The fabrication process parameters and the optimum weight fraction of MWCNTs for generating a well-dispersed percolation network were first determined. A screw-driven testing machine, a drop weight tower, and a split Hopkinson pressure bar (SHPB) apparatus were utilized to load the specimens. Absolute resistance values were measured with a high-resolution four-point probe method for both quasi-static and dynamic loading. In addition to measuring the percentage change in electrical resistance, real-time damage was captured using high-speed photography. The real-time damage was correlated to both load and percentage change in resistance profiles to better understand the electrical behavior of CNT reinforced nanocomposites under mechanical loading. The experimental findings indicate that the bulk electrical resistance of the nanocomposites, under both quasi-static and drop weight loading conditions, initially decreased between 40%--60% during compression and then increased as damage initiated and propagated. Similarly, a 65%--85% decrease in resistance was observed when the nanocomposites were subjected to SHPB loading. Damage initiation and propagation was also captured by the resistance measurements owing to the ability of the CNTs to be

  7. The statistics and kinematics of transverse sand bars on an open coast

    USGS Publications Warehouse

    Konicki, K.M.; Holman, R.A.

    2000-01-01

    Ten years (1987-1996) of time exposure video images of the nearshore region at Duck, NC were used to study transverse sand bars, bathymetric features of intermediate length scales (10-200 m) oriented oblique or perpendicular to the shoreline. These transverse sand bars extend seaward from both the shoreline (trough transverse bars) and the shore-parallel sand bar (offshore transverse bars). Transverse bars had not previously been observed in an energetic Coastal environment such as that at Duck, and their dynamics and role in nearshore processes is unknown. Frequency of occurrence statistics and length scales of the transverse bars were calculated using the video images. Trough and offshore transverse bars appeared a mean of 39 and 73 days per year, respectively. The offshore bars were found to be much larger features than the trough bars, with mean wavelengths (alongshore spacing between consecutive crests) of 79 and 172 m for trough and offshore bars, respectively. Both the trough and offshore bars were found to persist for periods of days to months. The alongshore movement of the bars was measured and compared to estimates of surf zone longshore currents which were calculated from wave height and wave angle data. Both sets of bars were observed to move at rates up to 40 m/day. At times, both trough and offshore bars were observed shifting in the same direction as the current was flowing, and at other times, both sets of bars remained stationary, even under relatively strong longshore currents. Trough bars were also observed moving against the current. An hypothesis, proposed by Barcilon and Lau (1973) [J. Geophys. Res. 78(15): 2656-2664], that the transverse bars were created as a sea bed instability under longshore currents, was tested by comparing the magnitude of estimated surf zone longshore currents with times of formation or presence of transverse bars. There was no evidence to suggest that the bars were formed by this simple longshore current instability

  8. Modulation transfer function of bar code scanning

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Milster, Tom D.

    1998-09-01

    Bar code scanners are ubiquitous in supermarkets. As a bar code is passed over a scanner, a laser beam scans across the bar code. The scattered light is modulated by the reflectivity of the bars and spaces of the bar code. The bar code scanning process can be described as a 1D convolution of the scanning laser profile and the bar code reflectivity function. The modulation transfer function (MTF) of bar code scanning is the Fourier transform of the marginal profile of the laser beam. The properties of the MTF of bar code scanning is similar to that of an incoherent imaging system. Measurements of the MTF of bar code scanning at one focus position are presented. The experimental results are then discussed.

  9. Magnetohydrodynamic Simulations of Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, W.-T.

    2013-04-01

    Magnetic fields are pervasive in barred galaxies, especially in gaseous substructures such as dust lanes and nuclear rings. To explore the effects of magnetic fields on the formation of the substructures as well as on the mass inflow rates to the galaxy center, we run two-dimensional, ideal magnetohydrodynamic simulations. We use a modified version of the Athena code whose numerical magnetic diffusivity is shown to be of third order in space. In the bar regions, magnetic fields are compressed and abruptly bent around the dust-lane shocks. The associated magnetic stress not only reduces the peak density of the dust-lane shocks but also removes angular momentum further from the gas that is moving radially in. Nuclear rings that form at the location of centrifugal barrier rather than resonance with the bar are smaller and more radially distributed, and the mass flow rate to the galaxy center is correspondingly larger in models with stronger magnetic fields. Outside the bar regions, the bar potential and strong shear conspire to amplify the field strength near the corotation resonance. The amplified fields transport angular momentum outward, producing trailing magnetic arms with strong fields and low density. The base of the magnetic arms are found to be unstable to a tearing-mode instability of magnetic reconnection. This produces numerous magnetic islands that eventually make the outer regions highly chaotic.

  10. Novel experimental methods for investigating high speed friction of titanium-aluminum-vanadium/tool steel interface and dynamic failure of extrinsically toughened DRA composites

    NASA Astrophysics Data System (ADS)

    Irfan, Mohammad Abdulaziz

    effects the sliding resistance of the interface. The experimental results deduced from the response of the sliding interface to step changes in normal pressure and the applied shear stress reinforce the importance of including frictional memory in the development of rate dependent state variable friction models. The second part of the thesis presents an investigation into the dynamic deformation and failure of extrinsically toughened DRA composites. Experiments were conducted using the split Hopkinson pressure bar to investigate the deformation and flow behavior under dynamic compression loading. A modified Hopkinson bar apparatus was used to explore the dynamic fracture behavior of three different extrinsically toughened DRA composites. The study was paralleled by systematic exploration of the failure modes in each composite. For all the composites evaluated the dynamic crack propagation characteristics of the composites are observed to be strongly dependent on the volume fraction of the ductile phase reinforcement in the composite, the yield stress of the ductile phase reinforcement, the micro-structural arrangement of the ductile phase reinforcements with respect to the notch, and the impact velocity employed in the particular experiment.