Science.gov

Sample records for dynamic models

  1. Modeling Climate Dynamically

    ERIC Educational Resources Information Center

    Walsh, Jim; McGehee, Richard

    2013-01-01

    A dynamical systems approach to energy balance models of climate is presented, focusing on low order, or conceptual, models. Included are global average and latitude-dependent, surface temperature models. The development and analysis of the differential equations and corresponding bifurcation diagrams provides a host of appropriate material for…

  2. Dynamical model for thyroid

    NASA Astrophysics Data System (ADS)

    Rokni Lamooki, Gholam Reza; Shirazi, Amir H.; Mani, Ali R.

    2015-05-01

    Thyroid's main chemical reactions are employed to develop a mathematical model. The presented model is based on differential equations where their dynamics reflects many aspects of thyroid's behavior. Our main focus here is the well known, but not well understood, phenomenon so called as Wolff-Chaikoff effect. It is shown that the inhibitory effect of intake iodide on the rate of one single enzyme causes a similar effect as Wolff-Chaikoff. Besides this issue, the presented model is capable of revealing other complex phenomena of thyroid hormones homeostasis.

  3. Dynamic Triggering Stress Modeling

    NASA Astrophysics Data System (ADS)

    Gonzalez-Huizar, H.; Velasco, A. A.

    2008-12-01

    It has been well established that static (permanent) stress changes can trigger nearby earthquakes, within a few fault lengths from the causative event, whereas triggering by dynamic (transient) stresses carried by seismic waves both nearby and at remote distances has not been as well documented nor understood. An analysis of the change in the local stress caused by the passing of surfaces waves is important for the understanding of this phenomenon. In this study, we modeled the change in the stress that the passing of Rayleigh and Loves waves causes on a fault plane of arbitrary orientation, and applied a Coulomb failure criteria to calculate the potential of these stress changes to trigger reverse, normal or strike-slip failure. We preliminarily test these model results with data from dynamically triggering earthquakes in the Australian Bowen Basin. In the Bowen region, the modeling predicts a maximum triggering potential for Rayleigh waves arriving perpendicularly to the strike of the reverse faults present in the region. The modeled potentials agree with our observations, and give us an understanding of the dynamic stress orientation needed to trigger different type of earthquakes.

  4. Modeling earthquake dynamics

    NASA Astrophysics Data System (ADS)

    Charpentier, Arthur; Durand, Marilou

    2015-07-01

    In this paper, we investigate questions arising in Parsons and Geist (Bull Seismol Soc Am 102:1-11, 2012). Pseudo causal models connecting magnitudes and waiting times are considered, through generalized regression. We do use conditional model (magnitude given previous waiting time, and conversely) as an extension to joint distribution model described in Nikoloulopoulos and Karlis (Environmetrics 19: 251-269, 2008). On the one hand, we fit a Pareto distribution for earthquake magnitudes, where the tail index is a function of waiting time following previous earthquake; on the other hand, waiting times are modeled using a Gamma or a Weibull distribution, where parameters are functions of the magnitude of the previous earthquake. We use those two models, alternatively, to generate the dynamics of earthquake occurrence, and to estimate the probability of occurrence of several earthquakes within a year or a decade.

  5. Mesoscale ocean dynamics modeling

    SciTech Connect

    mHolm, D.; Alber, M.; Bayly, B.; Camassa, R.; Choi, W.; Cockburn, B.; Jones, D.; Lifschitz, A.; Margolin, L.; Marsden, L.; Nadiga, B.; Poje, A.; Smolarkiewicz, P.; Levermore, D.

    1996-05-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The ocean is a very complex nonlinear system that exhibits turbulence on essentially all scales, multiple equilibria, and significant intrinsic variability. Modeling the ocean`s dynamics at mesoscales is of fundamental importance for long-time-scale climate predictions. A major goal of this project has been to coordinate, strengthen, and focus the efforts of applied mathematicians, computer scientists, computational physicists and engineers (at LANL and a consortium of Universities) in a joint effort addressing the issues in mesoscale ocean dynamics. The project combines expertise in the core competencies of high performance computing and theory of complex systems in a new way that has great potential for improving ocean models now running on the Connection Machines CM-200 and CM-5 and on the Cray T3D.

  6. Model for macroevolutionary dynamics

    PubMed Central

    Maruvka, Yosef E.; Shnerb, Nadav M.; Kessler, David A.; Ricklefs, Robert E.

    2013-01-01

    The highly skewed distribution of species among genera, although challenging to macroevolutionists, provides an opportunity to understand the dynamics of diversification, including species formation, extinction, and morphological evolution. Early models were based on either the work by Yule [Yule GU (1925) Philos Trans R Soc Lond B Biol Sci 213:21–87], which neglects extinction, or a simple birth–death (speciation–extinction) process. Here, we extend the more recent development of a generic, neutral speciation–extinction (of species)–origination (of genera; SEO) model for macroevolutionary dynamics of taxon diversification. Simulations show that deviations from the homogeneity assumptions in the model can be detected in species-per-genus distributions. The SEO model fits observed species-per-genus distributions well for class-to-kingdom–sized taxonomic groups. The model’s predictions for the appearance times (the time of the first existing species) of the taxonomic groups also approximately match estimates based on molecular inference and fossil records. Unlike estimates based on analyses of phylogenetic reconstruction, fitted extinction rates for large clades are close to speciation rates, consistent with high rates of species turnover and the relatively slow change in diversity observed in the fossil record. Finally, the SEO model generally supports the consistency of generic boundaries based on morphological differences between species and provides a comparator for rates of lineage splitting and morphological evolution. PMID:23781101

  7. Contact dynamics math model

    NASA Technical Reports Server (NTRS)

    Glaese, John R.; Tobbe, Patrick A.

    1986-01-01

    The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.

  8. Relativistic dynamical collapse model

    NASA Astrophysics Data System (ADS)

    Pearle, Philip

    2015-05-01

    A model is discussed where all operators are constructed from a quantum scalar field whose energy spectrum takes on all real values. The Schrödinger picture wave function depends upon space and time coordinates for each particle, as well as an inexorably increasing evolution parameter s which labels a foliation of spacelike hypersurfaces. The model is constructed to be manifestly Lorentz invariant in the interaction picture. Free particle states and interactions are discussed in this framework. Then, the formalism of the continuous spontaneous localization (CSL) theory of dynamical collapse is applied. The collapse-generating operator is chosen to be the particle number space-time density. Unlike previous relativistically invariant models, the vacuum state is not excited. The collapse dynamics depends upon two parameters, a parameter Λ which represents the collapse rate/volume and a scale factor ℓ. A common example of collapse dynamics, involving a clump of matter in a superposition of two locations, is analyzed. The collapse rate is shown to be identical to that of nonrelativistic CSL when the GRW-CSL choice of ℓ=a =1 0-5 cm , is made, along with Λ =λ /a3 (GRW-CSL choice λ =1 0-16s-1). The collapse rate is also satisfactory with the choice ℓ as the size of the Universe, with Λ =λ /ℓa2. Because the collapse narrows wave functions in space and time, it increases a particle's momentum and energy, altering its mass. It is shown that, with ℓ=a , the change of mass of a nucleon is unacceptably large but, when ℓ is the size of the Universe, the change of mass over the age of the Universe is acceptably small.

  9. Thermal-dynamic modeling study

    NASA Technical Reports Server (NTRS)

    Ojalvo, I. U.

    1973-01-01

    Study provides basic information for designing models and conducting thermal-dynamic structural tests. Factors considered are development and interpretation of thermal-dynamic structural scaling laws; identification of major problem areas; and presentation of model fabrication, instrumentation, and test procedures.

  10. Dynamic modeling of power systems

    SciTech Connect

    Reed, M.; White, J.

    1995-12-01

    Morgantown Energy Technology Center`s (METC) Process and Project Engineering (P&PE) personnel continue to refine and modify dynamic modeling or simulations for advanced power systems. P&PE, supported by Gilbert/Commonwealth, Inc. (G/C), has adapted PC/TRAX commercial dynamic software to include equipment found in advanced power systems. PC/TRAX`s software contains the equations that describe the operation of standard power plant equipment such as gas turbines, feedwater pumps, and steam turbines. The METC team has incorporated customized dynamic models using Advanced Continuous Simulation Language (ACSL) code for pressurized circulating fluidized-bed combustors, carbonizers, and other components that are found in Advanced Pressurized Fluidized-Bed Combustion (APFBC) systems. A dynamic model of a commercial-size APFBC power plant was constructed in order to determine representative operating characteristics of the plant and to gain some insight into the best type of control system design. The dynamic model contains both process and control model components. This presentation covers development of a model used to describe the commercial APFBC power plant. Results of exercising the model to simulate plant performance are described and illustrated. Information gained during the APFBC study was applied to a dynamic model of a 1-1/2 generation PFBC system. Some initial results from this study are also presented.

  11. SSME structural dynamic model development

    NASA Technical Reports Server (NTRS)

    Foley, M. J.; Tilley, D. M.; Welch, C. T.

    1983-01-01

    A mathematical model of the Space Shuttle Main Engine (SSME) as a complete assembly, with detailed emphasis on LOX and High Fuel Turbopumps is developed. The advantages of both complete engine dynamics, and high fidelity modeling are incorporated. Development of this model, some results, and projected applications are discussed.

  12. COLD-SAT dynamic model

    NASA Technical Reports Server (NTRS)

    Adams, Neil S.; Bollenbacher, Gary

    1992-01-01

    This report discusses the development and underlying mathematics of a rigid-body computer model of a proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer spacecraft (COLD-SAT). This model, referred to in this report as the COLD-SAT dynamic model, consists of both a trajectory model and an attitudinal model. All disturbance forces and torques expected to be significant for the actual COLD-SAT spacecraft are modeled to the required degree of accuracy. Control and experimental thrusters are modeled, as well as fluid slosh. The model also computes microgravity disturbance accelerations at any specified point in the spacecraft. The model was developed by using the Boeing EASY5 dynamic analysis package and will run on Apollo, Cray, and other computing platforms.

  13. COLD-SAT dynamic model

    NASA Astrophysics Data System (ADS)

    Adams, Neil S.; Bollenbacher, Gary

    1992-12-01

    This report discusses the development and underlying mathematics of a rigid-body computer model of a proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer spacecraft (COLD-SAT). This model, referred to in this report as the COLD-SAT dynamic model, consists of both a trajectory model and an attitudinal model. All disturbance forces and torques expected to be significant for the actual COLD-SAT spacecraft are modeled to the required degree of accuracy. Control and experimental thrusters are modeled, as well as fluid slosh. The model also computes microgravity disturbance accelerations at any specified point in the spacecraft. The model was developed by using the Boeing EASY5 dynamic analysis package and will run on Apollo, Cray, and other computing platforms.

  14. Dynamic Modeling of ALS Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    The purpose of dynamic modeling and simulation of Advanced Life Support (ALS) systems is to help design them. Static steady state systems analysis provides basic information and is necessary to guide dynamic modeling, but static analysis is not sufficient to design and compare systems. ALS systems must respond to external input variations and internal off-nominal behavior. Buffer sizing, resupply scheduling, failure response, and control system design are aspects of dynamic system design. We develop two dynamic mass flow models and use them in simulations to evaluate systems issues, optimize designs, and make system design trades. One model is of nitrogen leakage in the space station, the other is of a waste processor failure in a regenerative life support system. Most systems analyses are concerned with optimizing the cost/benefit of a system at its nominal steady-state operating point. ALS analysis must go beyond the static steady state to include dynamic system design. All life support systems exhibit behavior that varies over time. ALS systems must respond to equipment operating cycles, repair schedules, and occasional off-nominal behavior or malfunctions. Biological components, such as bioreactors, composters, and food plant growth chambers, usually have operating cycles or other complex time behavior. Buffer sizes, material stocks, and resupply rates determine dynamic system behavior and directly affect system mass and cost. Dynamic simulation is needed to avoid the extremes of costly over-design of buffers and material reserves or system failure due to insufficient buffers and lack of stored material.

  15. Model describes subsea control dynamics

    SciTech Connect

    Not Available

    1988-02-01

    A mathematical model of the hydraulic control systems for subsea completions and their umbilicals has been developed and applied successfully to Jabiru and Challis field production projects in the Timor Sea. The model overcomes the limitations of conventional linear steady state models and yields for the hydraulic system an accurate description of its dynamic response, including the valve shut-in times and the pressure transients. Results of numerical simulations based on the model are in good agreement with measurements of the dynamic response of the tree valves and umbilicals made during land testing.

  16. Aircraft Dynamic Modeling in Turbulence

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Cunninham, Kevin

    2012-01-01

    A method for accurately identifying aircraft dynamic models in turbulence was developed and demonstrated. The method uses orthogonal optimized multisine excitation inputs and an analytic method for enhancing signal-to-noise ratio for dynamic modeling in turbulence. A turbulence metric was developed to accurately characterize the turbulence level using flight measurements. The modeling technique was demonstrated in simulation, then applied to a subscale twin-engine jet transport aircraft in flight. Comparisons of modeling results obtained in turbulent air to results obtained in smooth air were used to demonstrate the effectiveness of the approach.

  17. Dynamical models of happiness.

    PubMed

    Sprott, J C

    2005-01-01

    A sequence of models for the time evolution of one's happiness in response to external events is described. These models with added nonlinearities can produce stable oscillations and chaos even without external events. Potential implications for psychotherapy and a personal approach to life are discussed. PMID:15629066

  18. Model of THz Magnetization Dynamics

    PubMed Central

    Bocklage, Lars

    2016-01-01

    Magnetization dynamics can be coherently controlled by THz laser excitation, which can be applied in ultrafast magnetization control and switching. Here, transient magnetization dynamics are calculated for excitation with THz magnetic field pulses. We use the ansatz of Smit and Beljers, to formulate dynamic properties of the magnetization via partial derivatives of the samples free energy density, and extend it to solve the Landau-Lifshitz-equation to obtain the THz transients of the magnetization. The model is used to determine the magnetization response to ultrafast multi- and single-cycle THz pulses. Control of the magnetization trajectory by utilizing the THz pulse shape and polarization is demonstrated. PMID:26956997

  19. Stochastic models of neuronal dynamics

    PubMed Central

    Harrison, L.M; David, O; Friston, K.J

    2005-01-01

    Cortical activity is the product of interactions among neuronal populations. Macroscopic electrophysiological phenomena are generated by these interactions. In principle, the mechanisms of these interactions afford constraints on biologically plausible models of electrophysiological responses. In other words, the macroscopic features of cortical activity can be modelled in terms of the microscopic behaviour of neurons. An evoked response potential (ERP) is the mean electrical potential measured from an electrode on the scalp, in response to some event. The purpose of this paper is to outline a population density approach to modelling ERPs. We propose a biologically plausible model of neuronal activity that enables the estimation of physiologically meaningful parameters from electrophysiological data. The model encompasses four basic characteristics of neuronal activity and organization: (i) neurons are dynamic units, (ii) driven by stochastic forces, (iii) organized into populations with similar biophysical properties and response characteristics and (iv) multiple populations interact to form functional networks. This leads to a formulation of population dynamics in terms of the Fokker–Planck equation. The solution of this equation is the temporal evolution of a probability density over state-space, representing the distribution of an ensemble of trajectories. Each trajectory corresponds to the changing state of a neuron. Measurements can be modelled by taking expectations over this density, e.g. mean membrane potential, firing rate or energy consumption per neuron. The key motivation behind our approach is that ERPs represent an average response over many neurons. This means it is sufficient to model the probability density over neurons, because this implicitly models their average state. Although the dynamics of each neuron can be highly stochastic, the dynamics of the density is not. This means we can use Bayesian inference and estimation tools that have

  20. Tree Modeling and Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Tian-shuang, Fu; Yi-bing, Li; Dong-xu, Shen

    This paper introduces the theory about tree modeling and dynamic movements simulation in computer graphics. By comparing many methods we choose Geometry-based rendering as our method. The tree is decomposed into branches and leaves, under the rotation and quaternion methods we realize the tree animation and avoid the Gimbals Lock in Euler rotation. We take Orge 3D as render engine, which has good graphics programming ability. By the end we realize the tree modeling and dynamic movements simulation, achieve realistic visual quality with little computation cost.

  1. Global/Local Dynamic Models

    SciTech Connect

    Pfeffer, A; Das, S; Lawless, D; Ng, B

    2006-10-10

    Many dynamic systems involve a number of entities that are largely independent of each other but interact with each other via a subset of state variables. We present global/local dynamic models (GLDMs) to capture these kinds of systems. In a GLDM, the state of an entity is decomposed into a globally influenced state that depends on other entities, and a locally influenced state that depends only on the entity itself. We present an inference algorithm for GLDMs called global/local particle filtering, that introduces the principle of reasoning globally about global dynamics and locally about local dynamics. We have applied GLDMs to an asymmetric urban warfare environment, in which enemy units form teams to attack important targets, and the task is to detect such teams as they form. Experimental results for this application show that global/local particle filtering outperforms ordinary particle filtering and factored particle filtering.

  2. Modeling tumor evolutionary dynamics

    PubMed Central

    Stransky, Beatriz; de Souza, Sandro J.

    2013-01-01

    Tumorigenesis can be seen as an evolutionary process, in which the transformation of a normal cell into a tumor cell involves a number of limiting genetic and epigenetic events, occurring in a series of discrete stages. However, not all mutations in a cell are directly involved in cancer development and it is likely that most of them (passenger mutations) do not contribute in any way to tumorigenesis. Moreover, the process of tumor evolution is punctuated by selection of advantageous (driver) mutations and clonal expansions. Regarding these driver mutations, it is uncertain how many limiting events are required and/or sufficient to promote a tumorigenic process or what are the values associated with the adaptive advantage of different driver mutations. In spite of the availability of high-quality cancer data, several assumptions about the mechanistic process of cancer initiation and development remain largely untested, both mathematically and statistically. Here we review the development of recent mathematical/computational models and discuss their impact in the field of tumor biology. PMID:23420281

  3. Observability in dynamic evolutionary models.

    PubMed

    López, I; Gámez, M; Carreño, R

    2004-02-01

    In the paper observability problems are considered in basic dynamic evolutionary models for sexual and asexual populations. Observability means that from the (partial) knowledge of certain phenotypic characteristics the whole evolutionary process can be uniquely recovered. Sufficient conditions are given to guarantee observability for both sexual and asexual populations near an evolutionarily stable state. PMID:15013222

  4. Conceptual dynamical models for turbulence

    PubMed Central

    Majda, Andrew J.; Lee, Yoonsang

    2014-01-01

    Understanding the complexity of anisotropic turbulent processes in engineering and environmental fluid flows is a formidable challenge with practical significance because energy often flows intermittently from the smaller scales to impact the largest scales in these flows. Conceptual dynamical models for anisotropic turbulence are introduced and developed here which, despite their simplicity, capture key features of vastly more complicated turbulent systems. These conceptual models involve a large-scale mean flow and turbulent fluctuations on a variety of spatial scales with energy-conserving wave–mean-flow interactions as well as stochastic forcing of the fluctuations. Numerical experiments with a six-dimensional conceptual dynamical model confirm that these models capture key statistical features of vastly more complex anisotropic turbulent systems in a qualitative fashion. These features include chaotic statistical behavior of the mean flow with a sub-Gaussian probability distribution function (pdf) for its fluctuations whereas the turbulent fluctuations have decreasing energy and correlation times at smaller scales, with nearly Gaussian pdfs for the large-scale fluctuations and fat-tailed non-Gaussian pdfs for the smaller-scale fluctuations. This last feature is a manifestation of intermittency of the small-scale fluctuations where turbulent modes with small variance have relatively frequent extreme events which directly impact the mean flow. The dynamical models introduced here potentially provide a useful test bed for algorithms for prediction, uncertainty quantification, and data assimilation for anisotropic turbulent systems. PMID:24753605

  5. Conceptual dynamical models for turbulence.

    PubMed

    Majda, Andrew J; Lee, Yoonsang

    2014-05-01

    Understanding the complexity of anisotropic turbulent processes in engineering and environmental fluid flows is a formidable challenge with practical significance because energy often flows intermittently from the smaller scales to impact the largest scales in these flows. Conceptual dynamical models for anisotropic turbulence are introduced and developed here which, despite their simplicity, capture key features of vastly more complicated turbulent systems. These conceptual models involve a large-scale mean flow and turbulent fluctuations on a variety of spatial scales with energy-conserving wave-mean-flow interactions as well as stochastic forcing of the fluctuations. Numerical experiments with a six-dimensional conceptual dynamical model confirm that these models capture key statistical features of vastly more complex anisotropic turbulent systems in a qualitative fashion. These features include chaotic statistical behavior of the mean flow with a sub-Gaussian probability distribution function (pdf) for its fluctuations whereas the turbulent fluctuations have decreasing energy and correlation times at smaller scales, with nearly Gaussian pdfs for the large-scale fluctuations and fat-tailed non-Gaussian pdfs for the smaller-scale fluctuations. This last feature is a manifestation of intermittency of the small-scale fluctuations where turbulent modes with small variance have relatively frequent extreme events which directly impact the mean flow. The dynamical models introduced here potentially provide a useful test bed for algorithms for prediction, uncertainty quantification, and data assimilation for anisotropic turbulent systems. PMID:24753605

  6. Modelling the mechanoreceptor's dynamic behaviour.

    PubMed

    Song, Zhuoyi; Banks, Robert W; Bewick, Guy S

    2015-08-01

    All sensory receptors adapt, i.e. they constantly adjust their sensitivity to external stimuli to match the current demands of the natural environment. Electrophysiological responses of sensory receptors from widely different modalities seem to exhibit common features related to adaptation, and these features can be used to examine the underlying sensory transduction mechanisms. Among the principal senses, mechanosensation remains the least understood at the cellular level. To gain greater insights into mechanosensory signalling, we investigated if mechanosensation displayed adaptive dynamics that could be explained by similar biophysical mechanisms in other sensory modalities. To do this, we adapted a fly photoreceptor model to describe the primary transduction process for a stretch-sensitive mechanoreceptor, taking into account the viscoelastic properties of the accessory muscle fibres and the biophysical properties of known mechanosensitive channels (MSCs). The model's output is in remarkable agreement with the electrical properties of a primary ending in an isolated decapsulated spindle; ramp-and-hold stretch evokes a characteristic pattern of potential change, consisting of a large dynamic depolarization during the ramp phase and a smaller static depolarization during the hold phase. The initial dynamic component is likely to be caused by a combination of the mechanical properties of the muscle fibres and a refractory state in the MSCs. Consistent with the literature, the current model predicts that the dynamic component is due to a rapid stress increase during the ramp. More novel predictions from the model are the mechanisms to explain the initial peak in the dynamic component. At the onset of the ramp, all MSCs are sensitive to external stimuli, but as they become refractory (inactivated), fewer MSCs are able to respond to the continuous stretch, causing a sharp decrease after the peak response. The same mechanism could contribute a faster component in the

  7. Modelling MIZ dynamics in a global model

    NASA Astrophysics Data System (ADS)

    Rynders, Stefanie; Aksenov, Yevgeny; Feltham, Daniel; Nurser, George; Naveira Garabato, Alberto

    2016-04-01

    Exposure of large, previously ice-covered areas of the Arctic Ocean to the wind and surface ocean waves results in the Arctic pack ice cover becoming more fragmented and mobile, with large regions of ice cover evolving into the Marginal Ice Zone (MIZ). The need for better climate predictions, along with growing economic activity in the Polar Oceans, necessitates climate and forecasting models that can simulate fragmented sea ice with a greater fidelity. Current models are not fully fit for the purpose, since they neither model surface ocean waves in the MIZ, nor account for the effect of floe fragmentation on drag, nor include sea ice rheology that represents both the now thinner pack ice and MIZ ice dynamics. All these processes affect the momentum transfer to the ocean. We present initial results from a global ocean model NEMO (Nucleus for European Modelling of the Ocean) coupled to the Los Alamos sea ice model CICE. The model setup implements a novel rheological formulation for sea ice dynamics, accounting for ice floe collisions, thus offering a seamless framework for pack ice and MIZ simulations. The effect of surface waves on ice motion is included through wave pressure and the turbulent kinetic energy of ice floes. In the multidecadal model integrations we examine MIZ and basin scale sea ice and oceanic responses to the changes in ice dynamics. We analyse model sensitivities and attribute them to key sea ice and ocean dynamical mechanisms. The results suggest that the effect of the new ice rheology is confined to the MIZ. However with the current increase in summer MIZ area, which is projected to continue and may become the dominant type of sea ice in the Arctic, we argue that the effects of the combined sea ice rheology will be noticeable in large areas of the Arctic Ocean, affecting sea ice and ocean. With this study we assert that to make more accurate sea ice predictions in the changing Arctic, models need to include MIZ dynamics and physics.

  8. On whole Abelian model dynamics

    SciTech Connect

    Chauca, J.; Doria, R.

    2012-09-24

    Physics challenge is to determine the objects dynamics. However, there are two ways for deciphering the part. The first one is to search for the ultimate constituents; the second one is to understand its behaviour in whole terms. Therefore, the parts can be defined either from elementary constituents or as whole functions. Historically, science has been moving through the first aspect, however, quarks confinement and complexity are interrupting this usual approach. These relevant facts are supporting for a systemic vision be introduced. Our effort here is to study on the whole meaning through gauge theory. Consider a systemic dynamics oriented through the U(1) - systemic gauge parameter which function is to collect a fields set {l_brace}A{sub {mu}I}{r_brace}. Derive the corresponding whole gauge invariant Lagrangian, equations of motion, Bianchi identities, Noether relationships, charges and Ward-Takahashi equations. Whole Lorentz force and BRST symmetry are also studied. These expressions bring new interpretations further than the usual abelian model. They are generating a systemic system governed by 2N+ 10 classical equations plus Ward-Takahashi identities. A whole dynamics based on the notions of directive and circumstance is producing a set determinism where the parts dynamics are inserted in the whole evolution. A dynamics based on state, collective and individual equations with a systemic interdependence.

  9. Evolution models with extremal dynamics.

    PubMed

    Kärenlampi, Petri P

    2016-08-01

    The random-neighbor version of the Bak-Sneppen biological evolution model is reproduced, along with an analogous model of random replicators, the latter eventually experiencing topology changes. In the absence of topology changes, both types of models self-organize to a critical state. Species extinctions in the replicator system degenerates the self-organization to a random walk, as does vanishing of species interaction for the BS-model. A replicator model with speciation is introduced, experiencing dramatic topology changes. It produces a variety of features, but self-organizes to a possibly critical state only in a few special cases. Speciation-extinction dynamics interfering with self-organization, biological macroevolution probably is not a self-organized critical system. PMID:27626090

  10. Dynamical model of brushite precipitation

    NASA Astrophysics Data System (ADS)

    Oliveira, Cristina; Georgieva, Petia; Rocha, Fernando; Ferreira, António; Feyo de Azevedo, Sebastião

    2007-07-01

    The objectives of this work are twofold. From academic point of view the aim is to build a dynamical macro model to fit the material balance and explain the main kinetic mechanisms that govern the transformation of the hydroxyapatite (HAP) into brushite and the growth of brushite, based on laboratory experiments and collected database. From practical point of view, the aim is to design a reliable process simulator that can be easily imbedded in industrial software for model driven monitoring, optimization and control purposes. Based upon a databank of laboratory measurements of the calcium concentration in solution (on-line) and the particle size distribution (off-line) a reliable dynamical model of the dual nature of brushite particle formation for a range of initial concentrations of the reagents was derived as a system of ordinary differential equations of time. The performance of the model is tested with respect to the predicted evolution of mass of calcium in solution and the average (in mass) particle size along time. Results obtained demonstrate a good agreement between the model time trajectories and the available experimental data for a number of different initial concentrations of reagents.

  11. Towards a Dynamic DES model

    NASA Astrophysics Data System (ADS)

    Subbareddy, Pramod; Candler, Graham

    2009-11-01

    Hybrid RANS/LES methods are being increasingly used for turbulent flow simulations in complex geometries. Spalart's detached eddy simulation (DES) model is one of the more popular ones. We are interested in examining the behavior of the Spalart-Allmaras (S-A) Detached Eddy Simulation (DES) model in its ``LES mode.'' The role of the near-wall functions present in the equations is analyzed and an explicit analogy between the S-A and a one-equation LES model based on the sub-grid kinetic energy is presented. A dynamic version of the S-A DES model is proposed based on this connection. Validation studies and results from DES and LES applications will be presented and the effect of the proposed modification will be discussed.

  12. Modeling Wildfire Incident Complexity Dynamics

    PubMed Central

    Thompson, Matthew P.

    2013-01-01

    Wildfire management in the United States and elsewhere is challenged by substantial uncertainty regarding the location and timing of fire events, the socioeconomic and ecological consequences of these events, and the costs of suppression. Escalating U.S. Forest Service suppression expenditures is of particular concern at a time of fiscal austerity as swelling fire management budgets lead to decreases for non-fire programs, and as the likelihood of disruptive within-season borrowing potentially increases. Thus there is a strong interest in better understanding factors influencing suppression decisions and in turn their influence on suppression costs. As a step in that direction, this paper presents a probabilistic analysis of geographic and temporal variation in incident management team response to wildfires. The specific focus is incident complexity dynamics through time for fires managed by the U.S. Forest Service. The modeling framework is based on the recognition that large wildfire management entails recurrent decisions across time in response to changing conditions, which can be represented as a stochastic dynamic system. Daily incident complexity dynamics are modeled according to a first-order Markov chain, with containment represented as an absorbing state. A statistically significant difference in complexity dynamics between Forest Service Regions is demonstrated. Incident complexity probability transition matrices and expected times until containment are presented at national and regional levels. Results of this analysis can help improve understanding of geographic variation in incident management and associated cost structures, and can be incorporated into future analyses examining the economic efficiency of wildfire management. PMID:23691014

  13. Data modeling of network dynamics

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger M.; Handley, James W.; Faucheux, Jeffery P.; Harris, Brad

    2004-01-01

    This paper highlights Data Modeling theory and its use for text data mining as a graphical network search engine. Data Modeling is then used to create a real-time filter capable of monitoring network traffic down to the port level for unusual dynamics and changes in business as usual. This is accomplished in an unsupervised fashion without a priori knowledge of abnormal characteristics. Two novel methods for converting streaming binary data into a form amenable to graphics based search and change detection are introduced. These techniques are then successfully applied to 1999 KDD Cup network attack data log-on sessions to demonstrate that Data Modeling can detect attacks without prior training on any form of attack behavior. Finally, two new methods for data encryption using these ideas are proposed.

  14. Opinion dynamics model with weighted influence: Exit probability and dynamics

    NASA Astrophysics Data System (ADS)

    Biswas, Soham; Sinha, Suman; Sen, Parongama

    2013-08-01

    We introduce a stochastic model of binary opinion dynamics in which the opinions are determined by the size of the neighboring domains. The exit probability here shows a step function behavior, indicating the existence of a separatrix distinguishing two different regions of basin of attraction. This behavior, in one dimension, is in contrast to other well known opinion dynamics models where no such behavior has been observed so far. The coarsening study of the model also yields novel exponent values. A lower value of persistence exponent is obtained in the present model, which involves stochastic dynamics, when compared to that in a similar type of model with deterministic dynamics. This apparently counterintuitive result is justified using further analysis. Based on these results, it is concluded that the proposed model belongs to a unique dynamical class.

  15. COLD-SAT Dynamic Model Computer Code

    NASA Technical Reports Server (NTRS)

    Bollenbacher, G.; Adams, N. S.

    1995-01-01

    COLD-SAT Dynamic Model (CSDM) computer code implements six-degree-of-freedom, rigid-body mathematical model for simulation of spacecraft in orbit around Earth. Investigates flow dynamics and thermodynamics of subcritical cryogenic fluids in microgravity. Consists of three parts: translation model, rotation model, and slosh model. Written in FORTRAN 77.

  16. Dynamics of the standard model

    SciTech Connect

    Donoghue, J.F.; Golowich, E.; Holstein, B.R.

    1992-01-01

    Given the remarkable successes of the standard model, it is appropriate that books in the field no longer dwell on the development of our current understanding of high-energy physics but rather present the world as we now know it. Dynamics of the Standard Model by Donoghue, Golowich, and Holstein takes just this approach. Instead of showing the confusion of the 60s and 70s, the authors present the enlightenment of the 80s. They start by describing the basic features and structure of the standard model and then concentrate on the techniques whereby the model can be applied to the physical world, connecting the theory to the experimental results that are the source of its success. Because they do not dwell on ancient (pre-1980) history, the authors of this book are able to go into much more depth in describing how the model can be tied to experiment, and much of the information presented has been accessible previously only in journal articles in a highly technical form. Though all of the authors are card-carrying theorists they go out of their way to stress applications and phenomenology and to show the reader how real-life calculations of use to experimentalists are done and can be applied to physical situations: what assumptions are made in doing them and how well they work. This is of great value both to the experimentalist seeking a deeper understanding of how the standard model can be connected to data and to the theorist wanting to see how detailed the phenomenological predictions of the standard model are and how well the model works. Furthermore, the authors constantly go beyond the lowest-order predictions of the standard model to discuss the corrections to it, as well as higher-order processes, some of which are now experimentally accessible and others of which will take well into the decade to uncover.

  17. Dynamical modeling of tidal streams

    SciTech Connect

    Bovy, Jo

    2014-11-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  18. Dynamically Evolving Models of Clusters

    NASA Astrophysics Data System (ADS)

    Bode, Paul W.; Berrington, Robert C.; Cohn, Haldan N.; Lugger, Phyllis M.

    1993-12-01

    An N-body method, with up to N=10(5) particles, is used to simulate the dynamical evolution of clusters of galaxies. Each galaxy is represented as an extended structure containing many particles, and the gravitational potential arises from the particles alone. The clusters initially contain 50 or 100 galaxies with masses distributed according to a Schechter function. Mass is apportioned between the galaxies and a smoothly distributed common group halo, or intra-cluster background. The fraction of the total cluster mass initially in this background is varied from 50% to 90%. The models begin in a virialized state. We will be presenting a videotape which contains animations of a number of these models. The animations show important physical processes, such as stripping, merging, and dynamical friction, as they take place, thus allowing one to observe the interplay of these processes in the global evolution of the system. When the galaxies have substantial dark halos (background mass fraction <=75%) a large, centrally located merger remnant is created. The galaxy number density profile around this dominant member becomes cusped, approaching an isothermal distribution. At the same time, the number of multiple nuclei increases. Comparing the 50-galaxy models to MKW/AWM clusters, the values of Delta M12 and the peculiar velocities of the first-ranked galaxies are best fit by a mix of model ages in the range 8--11 Gyr. The growth in luminosity of the first-ranked galaxy during this amount of time is consistent only with weak cannibalism.

  19. Dynamical Modeling of Tidal Streams

    NASA Astrophysics Data System (ADS)

    Bovy, Jo

    2014-11-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its "track") in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of "orphan" streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  20. Modeling sandhill crane population dynamics

    USGS Publications Warehouse

    Johnson, D.H.

    1979-01-01

    The impact of sport hunting on the Central Flyway population of sandhill cranes (Grus canadensis) has been a subject of controversy for several years. A recent study (Buller 1979) presented new and important information on sandhill crane population dynamics. The present report is intended to incorporate that and other information into a mathematical model for the purpose of assessing the long-range impact of hunting on the population of sandhill cranes.The model is a simple deterministic system that embodies density-dependent rates of survival and recruitment. The model employs four kinds of data: (1) spring population size of sandhill cranes, estimated from aerial surveys to be between 250,000 and 400,000 birds; (2) age composition in fall, estimated for 1974-76 to be 11.3% young; (3) annual harvest of cranes, estimated from a variety of sources to be about 5 to 7% of the spring population; and (4) age composition of harvested cranes, which was difficult to estimate but suggests that immatures were 2 to 4 times as vulnerable to hunting as adults.Because the true nature of sandhill crane population dynamics remains so poorly understood, it was necessary to try numerous (768 in all) combinations of survival and recruitment functions, and focus on the relatively few (37) that yielded population sizes and age structures comparable to those extant in the real population. Hunting was then applied to those simulated populations. In all combinations, hunting resulted in a lower asymptotic crane population, the decline ranging from 5 to 54%. The median decline was 22%, which suggests that a hunted sandhill crane population might be about three-fourths as large as it would be if left unhunted. Results apply to the aggregate of the three subspecies in the Central Flyway; individual subspecies or populations could be affected to a greater or lesser degree.

  1. Terminal Model Of Newtonian Dynamics

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1994-01-01

    Paper presents study of theory of Newtonian dynamics of terminal attractors and repellers, focusing on issues of reversibility vs. irreversibility and deterministic evolution vs. probabilistic or chaotic evolution of dynamic systems. Theory developed called "terminal dynamics" emphasizes difference between it and classical Newtonian dynamics. Also holds promise for explaining irreversibility, unpredictability, probabilistic behavior, and chaos in turbulent flows, in thermodynamic phenomena, and in other dynamic phenomena and systems.

  2. Dynamic Models of Robots with Elastic Hinges

    NASA Astrophysics Data System (ADS)

    Krakhmalev, O. N.

    2016-04-01

    Two dynamic models of robots with elastic hinges are considered. Dynamic models are the implementation of the method based on the Lagrange equation using the transformation matrices of elastic coordinates. Dynamic models make it possible to determine the elastic deviations from programmed motion trajectories caused by elastic deformations in hinges, which are taken into account in directions of change of the corresponding generalized coordinates. One model is the exact implementation of the Lagrange method and makes it possible to determine the total elastic deviation of the robot from the programmed motion trajectory. Another dynamic model is approximated and makes it possible to determine small elastic quasi-static deviations and elastic vibrations. The results of modeling the dynamics by two models are compared to the example of a two-link manipulator system. The considered models can be used when performing investigations of the mathematical accuracy of the robots.

  3. Modeling population dynamics: A quantile approach.

    PubMed

    Chavas, Jean-Paul

    2015-04-01

    The paper investigates the modeling of population dynamics, both conceptually and empirically. It presents a reduced form representation that provides a flexible characterization of population dynamics. It leads to the specification of a threshold quantile autoregression (TQAR) model, which captures nonlinear dynamics by allowing lag effects to vary across quantiles of the distribution as well as with previous population levels. The usefulness of the model is illustrated in an application to the dynamics of lynx population. We find statistical evidence that the quantile autoregression parameters vary across quantiles (thus rejecting the AR model as well as the TAR model) as well as with past populations (thus rejecting the quantile autoregression QAR model). The results document the nature of dynamics and cycle in the lynx population over time. They show how both the period of the cycle and the speed of population adjustment vary with population level and environmental conditions. PMID:25661501

  4. Multidimensional Langevin Modeling of Nonoverdamped Dynamics

    NASA Astrophysics Data System (ADS)

    Schaudinnus, Norbert; Bastian, Björn; Hegger, Rainer; Stock, Gerhard

    2015-07-01

    Based on a given time series, data-driven Langevin modeling aims to construct a low-dimensional dynamical model of the underlying system. When dealing with physical data as provided by, e.g., all-atom molecular dynamics simulations, effects due to small damping may be important to correctly describe the statistics (e.g., the energy landscape) and the dynamics (e.g., transition times). To include these effects in a dynamical model, an algorithm that propagates a second-order Langevin scheme is derived, which facilitates the treatment of multidimensional data. Adopting extensive molecular dynamics simulations of a peptide helix, a five-dimensional model is constructed that successfully forecasts the complex structural dynamics of the system. Neglect of small damping effects, on the other hand, is shown to lead to significant errors and inconsistencies.

  5. The Challenges to Coupling Dynamic Geospatial Models

    SciTech Connect

    Goldstein, N

    2006-06-23

    Many applications of modeling spatial dynamic systems focus on a single system and a single process, ignoring the geographic and systemic context of the processes being modeled. A solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling is challenging for both technical reasons, as well as conceptual reasons. This paper explores the benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, where information transfer between models is done by hand, to tight coupling, where two (or more) models are merged as one. To illustrate the challenges, a coupled model of Urbanization and Wildfire Risk is presented. This model, called Vesta, was applied to the Santa Barbara, California region (using real geospatial data), where Urbanization and Wildfires occur and recur, respectively. The preliminary results of the model coupling illustrate that coupled modeling can lead to insight into the consequences of processes acting on their own.

  6. Hydration dynamics near a model protein surface

    SciTech Connect

    Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

    2003-09-01

    The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering and molecular dynamics simulation for both the completely deuterated and completely hydrogenated leucine monomer. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational water dynamics are analyzed in a first approximation with a jump diffusion model. At the highest solute concentrations, the hydration water dynamics is significantly suppressed and characterized by a long residential time and a slow diffusion coefficient. The analysis of the more dilute concentration solutions takes into account the results of the 2.0M solution as a model of the first hydration shell. Subtracting the first hydration layer based on the 2.0M spectra, the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis shows spatially heterogeneous dynamics at high concentration that becomes homogeneous at more dilute concentrations. We discuss the hydration dynamics results of this model protein system in the context of glassy systems, protein function, and protein-protein interfaces.

  7. Benchmarking of Planning Models Using Recorded Dynamics

    SciTech Connect

    Huang, Zhenyu; Yang, Bo; Kosterev, Dmitry

    2009-03-15

    Power system planning extensively uses model simulation to understand the dynamic behaviors and determine the operating limits of a power system. Model quality is key to the safety and reliability of electricity delivery. Planning model benchmarking, or model validation, has been one of the central topics in power engineering studies for years. As model validation aims at obtaining reasonable models to represent dynamic behavior of power system components, it has been essential to validate models against actual measurements. The development of phasor technology provides such measurements and represents a new opportunity for model validation as phasor measurements can capture power system dynamics with high-speed, time-synchronized data. Previously, methods for rigorous comparison of model simulation and recorded dynamics have been developed and applied to quantify model quality of power plants in the Western Electricity Coordinating Council (WECC). These methods can locate model components which need improvement. Recent work continues this effort and focuses on how model parameters may be calibrated to match recorded dynamics after the problematic model components are identified. A calibration method using Extended Kalman Filter technique is being developed. This paper provides an overview of prior work on model validation and presents new development on the calibration method and initial results of model parameter calibration.

  8. Map-based models in neuronal dynamics

    NASA Astrophysics Data System (ADS)

    Ibarz, B.; Casado, J. M.; Sanjuán, M. A. F.

    2011-04-01

    Ever since the pioneering work of Hodgkin and Huxley, biological neuron models have consisted of ODEs representing the evolution of the transmembrane voltage and the dynamics of ionic conductances. It is only recently that discrete dynamical systems-also known as maps-have begun to receive attention as valid phenomenological neuron models. The present review tries to provide a coherent perspective of map-based biological neuron models, describing their dynamical properties; stressing the similarities and differences, both among them and in relation to continuous-time models; exploring their behavior in networks; and examining their wide-ranging possibilities of application in computational neuroscience.

  9. [Review of dynamic global vegetation models (DGVMs)].

    PubMed

    Che, Ming-Liang; Chen, Bao-Zhang; Wang, Ying; Guo, Xiang-Yun

    2014-01-01

    Dynamic global vegetation model (DGVM) is an important and efficient tool for study on the terrestrial carbon circle processes and vegetation dynamics. This paper reviewed the development history of DGVMs, introduced the basic structure of DGVMs, and the outlines of several world-widely used DGVMs, including CLM-DGVM, LPJ, IBIS and SEIB. The shortages of the description of dynamic vegetation mechanisms in the current DGVMs were proposed, including plant functional types (PFT) scheme, vegetation competition, disturbance, and phenology. Then the future research directions of DGVMs were pointed out, i. e. improving the PFT scheme, refining the vegetation dynamic mechanism, and implementing a model inter-comparison project. PMID:24765870

  10. Chaotic dynamics in a simple dynamical green ocean plankton model

    NASA Astrophysics Data System (ADS)

    Cropp, Roger; Moroz, Irene M.; Norbury, John

    2014-11-01

    The exchange of important greenhouse gases between the ocean and atmosphere is influenced by the dynamics of near-surface plankton ecosystems. Marine plankton ecosystems are modified by climate change creating a feedback mechanism that could have significant implications for predicting future climates. The collapse or extinction of a plankton population may push the climate system across a tipping point. Dynamic green ocean models (DGOMs) are currently being developed for inclusion into climate models to predict the future state of the climate. The appropriate complexity of the DGOMs used to represent plankton processes is an ongoing issue, with models tending to become more complex, with more complicated dynamics, and an increasing propensity for chaos. We consider a relatively simple (four-population) DGOM of phytoplankton, zooplankton, bacteria and zooflagellates where the interacting plankton populations are connected by a single limiting nutrient. Chaotic solutions are possible in this 4-dimensional model for plankton population dynamics, as well as in a reduced 3-dimensional model, as we vary two of the key mortality parameters. Our results show that chaos is robust to the variation of parameters as well as to the presence of environmental noise, where the attractor of the more complex system is more robust than the attractor of its simplified equivalent. We find robust chaotic dynamics in low trophic order ecological models, suggesting that chaotic dynamics might be ubiquitous in the more complex models, but this is rarely observed in DGOM simulations. The physical equations of DGOMs are well understood and are constrained by conservation principles, but the ecological equations are not well understood, and generally have no explicitly conserved quantities. This work, in the context of the paucity of the empirical and theoretical bases upon which DGOMs are constructed, raises the interesting question of whether DGOMs better represent reality if they include

  11. Very Large System Dynamics Models - Lessons Learned

    SciTech Connect

    Jacob J. Jacobson; Leonard Malczynski

    2008-10-01

    This paper provides lessons learned from developing several large system dynamics (SD) models. System dynamics modeling practice emphasize the need to keep models small so that they are manageable and understandable. This practice is generally reasonable and prudent; however, there are times that large SD models are necessary. This paper outlines two large SD projects that were done at two Department of Energy National Laboratories, the Idaho National Laboratory and Sandia National Laboratories. This paper summarizes the models and then discusses some of the valuable lessons learned during these two modeling efforts.

  12. Comparing models of Red Knot population dynamics

    USGS Publications Warehouse

    McGowan, Conor

    2015-01-01

    Predictive population modeling contributes to our basic scientific understanding of population dynamics, but can also inform management decisions by evaluating alternative actions in virtual environments. Quantitative models mathematically reflect scientific hypotheses about how a system functions. In Delaware Bay, mid-Atlantic Coast, USA, to more effectively manage horseshoe crab (Limulus polyphemus) harvests and protect Red Knot (Calidris canutus rufa) populations, models are used to compare harvest actions and predict the impacts on crab and knot populations. Management has been chiefly driven by the core hypothesis that horseshoe crab egg abundance governs the survival and reproduction of migrating Red Knots that stopover in the Bay during spring migration. However, recently, hypotheses proposing that knot dynamics are governed by cyclical lemming dynamics garnered some support in data analyses. In this paper, I present alternative models of Red Knot population dynamics to reflect alternative hypotheses. Using 2 models with different lemming population cycle lengths and 2 models with different horseshoe crab effects, I project the knot population into the future under environmental stochasticity and parametric uncertainty with each model. I then compare each model's predictions to 10 yr of population monitoring from Delaware Bay. Using Bayes' theorem and model weight updating, models can accrue weight or support for one or another hypothesis of population dynamics. With 4 models of Red Knot population dynamics and only 10 yr of data, no hypothesis clearly predicted population count data better than another. The collapsed lemming cycle model performed best, accruing ~35% of the model weight, followed closely by the horseshoe crab egg abundance model, which accrued ~30% of the weight. The models that predicted no decline or stable populations (i.e. the 4-yr lemming cycle model and the weak horseshoe crab effect model) were the most weakly supported.

  13. Human systems dynamics: Toward a computational model

    NASA Astrophysics Data System (ADS)

    Eoyang, Glenda H.

    2012-09-01

    A robust and reliable computational model of complex human systems dynamics could support advancements in theory and practice for social systems at all levels, from intrapersonal experience to global politics and economics. Models of human interactions have evolved from traditional, Newtonian systems assumptions, which served a variety of practical and theoretical needs of the past. Another class of models has been inspired and informed by models and methods from nonlinear dynamics, chaos, and complexity science. None of the existing models, however, is able to represent the open, high dimension, and nonlinear self-organizing dynamics of social systems. An effective model will represent interactions at multiple levels to generate emergent patterns of social and political life of individuals and groups. Existing models and modeling methods are considered and assessed against characteristic pattern-forming processes in observed and experienced phenomena of human systems. A conceptual model, CDE Model, based on the conditions for self-organizing in human systems, is explored as an alternative to existing models and methods. While the new model overcomes the limitations of previous models, it also provides an explanatory base and foundation for prospective analysis to inform real-time meaning making and action taking in response to complex conditions in the real world. An invitation is extended to readers to engage in developing a computational model that incorporates the assumptions, meta-variables, and relationships of this open, high dimension, and nonlinear conceptual model of the complex dynamics of human systems.

  14. FRF based joint dynamics modeling and identification

    NASA Astrophysics Data System (ADS)

    Mehrpouya, Majid; Graham, Eldon; Park, Simon S.

    2013-08-01

    Complex structures, such as machine tools, are comprised of several substructures connected to each other through joints to form the assembled structures. Joints can have significant contributions on the behavior of the overall assembly and ignoring joint effects in the design stage may result in considerable deviations from the actual dynamic behavior. The identification of joint dynamics enables us to accurately predict overall assembled dynamics by mathematically combining substructure dynamics through the equilibrium and compatibility conditions at the joint. The essence of joint identification is the determination of the difference between the measured overall dynamics and the rigidly coupled substructure dynamics. In this study, we investigate the inverse receptance coupling (IRC) method and the point-mass joint model, which considers the joint as lumped mass, damping and stiffness elements. The dynamic properties of the joint are investigated using both methods through a finite element (FE) simulation and experimental tests. `100

  15. Modeling microbial growth and dynamics.

    PubMed

    Esser, Daniel S; Leveau, Johan H J; Meyer, Katrin M

    2015-11-01

    Modeling has become an important tool for widening our understanding of microbial growth in the context of applied microbiology and related to such processes as safe food production, wastewater treatment, bioremediation, or microbe-mediated mining. Various modeling techniques, such as primary, secondary and tertiary mathematical models, phenomenological models, mechanistic or kinetic models, reactive transport models, Bayesian network models, artificial neural networks, as well as agent-, individual-, and particle-based models have been applied to model microbial growth and activity in many applied fields. In this mini-review, we summarize the basic concepts of these models using examples and applications from food safety and wastewater treatment systems. We further review recent developments in other applied fields focusing on models that explicitly include spatial relationships. Using these examples, we point out the conceptual similarities across fields of application and encourage the combined use of different modeling techniques in hybrid models as well as their cross-disciplinary exchange. For instance, pattern-oriented modeling has its origin in ecology but may be employed to parameterize microbial growth models when experimental data are scarce. Models could also be used as virtual laboratories to optimize experimental design analogous to the virtual ecologist approach. Future microbial growth models will likely become more complex to benefit from the rich toolbox that is now available to microbial growth modelers. PMID:26298697

  16. Differential equation models for sharp threshold dynamics.

    PubMed

    Schramm, Harrison C; Dimitrov, Nedialko B

    2014-01-01

    We develop an extension to differential equation models of dynamical systems to allow us to analyze probabilistic threshold dynamics that fundamentally and globally change system behavior. We apply our novel modeling approach to two cases of interest: a model of infectious disease modified for malware where a detection event drastically changes dynamics by introducing a new class in competition with the original infection; and the Lanchester model of armed conflict, where the loss of a key capability drastically changes the effectiveness of one of the sides. We derive and demonstrate a step-by-step, repeatable method for applying our novel modeling approach to an arbitrary system, and we compare the resulting differential equations to simulations of the system's random progression. Our work leads to a simple and easily implemented method for analyzing probabilistic threshold dynamics using differential equations. PMID:24184349

  17. Equivalent dynamic model of DEMES rotary joint

    NASA Astrophysics Data System (ADS)

    Zhao, Jianwen; Wang, Shu; Xing, Zhiguang; McCoul, David; Niu, Junyang; Huang, Bo; Liu, Liwu; Leng, Jinsong

    2016-07-01

    The dielectric elastomer minimum energy structure (DEMES) can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer (DE), so it is a suitable candidate to make a rotary joint for a soft robot. Dynamic analysis is necessary for some applications, but the dynamic response of DEMESs is difficult to model because of the complicated morphology and viscoelasticity of the DE film. In this paper, a method composed of theoretical analysis and experimental measurement is presented to model the dynamic response of a DEMES rotary joint under an alternating voltage. Based on measurements of equivalent driving force and damping of the DEMES, the model can be derived. Some experiments were carried out to validate the equivalent dynamic model. The maximum angle error between model and experiment is greater than ten degrees, but it is acceptable to predict angular velocity of the DEMES, therefore, it can be applied in feedforward–feedback compound control.

  18. Modeling dynamical geometry with lattice gas automata

    SciTech Connect

    Hasslacher, B.; Meyer, D.A.

    1998-06-27

    Conventional lattice gas automata consist of particles moving discretely on a fixed lattice. While such models have been quite successful for a variety of fluid flow problems, there are other systems, e.g., flow in a flexible membrane or chemical self-assembly, in which the geometry is dynamical and coupled to the particle flow. Systems of this type seem to call for lattice gas models with dynamical geometry. The authors construct such a model on one dimensional (periodic) lattices and describe some simulations illustrating its nonequilibrium dynamics.

  19. Dynamics Modelling of Biolistic Gene Guns

    SciTech Connect

    Zhang, M.; Tao, W.; Pianetta, P.A.

    2009-06-04

    The gene transfer process using biolistic gene guns is a highly dynamic process. To achieve good performance, the process needs to be well understood and controlled. Unfortunately, no dynamic model is available in the open literature for analysing and controlling the process. This paper proposes such a model. Relationships of the penetration depth with the helium pressure, the penetration depth with the acceleration distance, and the penetration depth with the micro-carrier radius are presented. Simulations have also been conducted. The results agree well with experimental results in the open literature. The contribution of this paper includes a dynamic model for improving and manipulating performance of the biolistic gene gun.

  20. Markov state models of biomolecular conformational dynamics

    PubMed Central

    Chodera, John D.; Noé, Frank

    2014-01-01

    It has recently become practical to construct Markov state models (MSMs) that reproduce the long-time statistical conformational dynamics of biomolecules using data from molecular dynamics simulations. MSMs can predict both stationary and kinetic quantities on long timescales (e.g. milliseconds) using a set of atomistic molecular dynamics simulations that are individually much shorter, thus addressing the well-known sampling problem in molecular dynamics simulation. In addition to providing predictive quantitative models, MSMs greatly facilitate both the extraction of insight into biomolecular mechanism (such as folding and functional dynamics) and quantitative comparison with single-molecule and ensemble kinetics experiments. A variety of methodological advances and software packages now bring the construction of these models closer to routine practice. Here, we review recent progress in this field, considering theoretical and methodological advances, new software tools, and recent applications of these approaches in several domains of biochemistry and biophysics, commenting on remaining challenges. PMID:24836551

  1. Dynamic coupling of three hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Hartnack, J. N.; Philip, G. T.; Rungoe, M.; Smith, G.; Johann, G.; Larsen, O.; Gregersen, J.; Butts, M. B.

    2008-12-01

    The need for integrated modelling is evidently present within the field of flood management and flood forecasting. Engineers, modellers and managers are faced with flood problems which transcend the classical hydrodynamic fields of urban, river and coastal flooding. Historically the modeller has been faced with having to select one hydrodynamic model to cover all the aspects of the potentially complex dynamics occurring in a flooding situation. Such a single hydrodynamic model does not cover all dynamics of flood modelling equally well. Thus the ideal choice may in fact be a combination of models. Models combining two numerical/hydrodynamic models are becoming more standard, typically these models combine a 1D river model with a 2D overland flow model or alternatively a 1D sewer/collection system model with a 2D overland solver. In complex coastal/urban areas the flood dynamics may include rivers/streams, collection/storm water systems along with the overland flow. The dynamics within all three areas is of the same time scale and there is feedback in the system across the couplings. These two aspects dictate a fully dynamic three way coupling as opposed to running the models sequentially. It will be shown that the main challenges of the three way coupling are time step issues related to the difference in numerical schemes used in the three model components and numerical instabilities caused by the linking of the model components. MIKE FLOOD combines the models MIKE 11, MIKE 21 and MOUSE into one modelling framework which makes it possible to couple any combination of river, urban and overland flow fully dynamically. The MIKE FLOOD framework will be presented with an overview of the coupling possibilities. The flood modelling concept will be illustrated through real life cases in Australia and in Germany. The real life cases reflect dynamics and interactions across all three model components which are not possible to reproduce using a two-way coupling alone. The

  2. A Microcomputer Dynamical Modelling System.

    ERIC Educational Resources Information Center

    Ogborn, Jon; Wong, Denis

    1984-01-01

    Presents a system that permits students to engage directly in the process of modelling and to learn some important lessons about models and classes of models. The system described currently runs on RML 380Z and 480Z, Apple II and IIe, and BBC model B microcomputers. (JN)

  3. Dynamic modeling of emulsion polymerization reactors

    SciTech Connect

    Penlidis, A.; Hamielec, A.E.; MacGregor, J.F.

    1985-06-01

    This paper is a survey of recent published works on the dynamic and steady state modeling of emulsion homo- and copolymerization in batch, semicontinuous , and continuous latex reactors. Contributions to our understanding of diffusion-controlled termination and propagation reactions, molecular weight, long chain branching and crosslinking development, polymer particle nucleation, and of the dynamics of continuous emulsion polymerization are critically reviewed.

  4. Flexible aircraft dynamic modeling for dynamic analysis and control synthesis

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1989-01-01

    The linearization and simplification of a nonlinear, literal model for flexible aircraft is highlighted. Areas of model fidelity that are critical if the model is to be used for control system synthesis are developed and several simplification techniques that can deliver the necessary model fidelity are discussed. These techniques include both numerical and analytical approaches. An analytical approach, based on first-order sensitivity theory is shown to lead not only to excellent numerical results, but also to closed-form analytical expressions for key system dynamic properties such as the pole/zero factors of the vehicle transfer-function matrix. The analytical results are expressed in terms of vehicle mass properties, vibrational characteristics, and rigid-body and aeroelastic stability derivatives, thus leading to the underlying causes for critical dynamic characteristics.

  5. Automated adaptive inference of phenomenological dynamical models

    PubMed Central

    Daniels, Bryan C.; Nemenman, Ilya

    2015-01-01

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved. PMID:26293508

  6. Constructing minimal models for complex system dynamics

    NASA Astrophysics Data System (ADS)

    Barzel, Baruch; Liu, Yang-Yu; Barabási, Albert-László

    2015-05-01

    One of the strengths of statistical physics is the ability to reduce macroscopic observations into microscopic models, offering a mechanistic description of a system's dynamics. This paradigm, rooted in Boltzmann's gas theory, has found applications from magnetic phenomena to subcellular processes and epidemic spreading. Yet, each of these advances were the result of decades of meticulous model building and validation, which are impossible to replicate in most complex biological, social or technological systems that lack accurate microscopic models. Here we develop a method to infer the microscopic dynamics of a complex system from observations of its response to external perturbations, allowing us to construct the most general class of nonlinear pairwise dynamics that are guaranteed to recover the observed behaviour. The result, which we test against both numerical and empirical data, is an effective dynamic model that can predict the system's behaviour and provide crucial insights into its inner workings.

  7. Automated adaptive inference of phenomenological dynamical models

    NASA Astrophysics Data System (ADS)

    Daniels, Bryan C.; Nemenman, Ilya

    2015-08-01

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved.

  8. Dynamic metabolic models in context: biomass backtracking.

    PubMed

    Tummler, Katja; Kühn, Clemens; Klipp, Edda

    2015-08-01

    Mathematical modeling has proven to be a powerful tool to understand and predict functional and regulatory properties of metabolic processes. High accuracy dynamic modeling of individual pathways is thereby opposed by simplified but genome scale constraint based approaches. A method that links these two powerful techniques would greatly enhance predictive power but is so far lacking. We present biomass backtracking, a workflow that integrates the cellular context in existing dynamic metabolic models via stoichiometrically exact drain reactions based on a genome scale metabolic model. With comprehensive examples, for different species and environmental contexts, we show the importance and scope of applications and highlight the improvement compared to common boundary formulations in existing metabolic models. Our method allows for the contextualization of dynamic metabolic models based on all available information. We anticipate this to greatly increase their accuracy and predictive power for basic research and also for drug development and industrial applications. PMID:26189715

  9. Single timepoint models of dynamic systems.

    PubMed

    Sachs, K; Itani, S; Fitzgerald, J; Schoeberl, B; Nolan, G P; Tomlin, C J

    2013-08-01

    Many interesting studies aimed at elucidating the connectivity structure of biomolecular pathways make use of abundance measurements, and employ statistical and information theoretic approaches to assess connectivities. These studies often do not address the effects of the dynamics of the underlying biological system, yet dynamics give rise to impactful issues such as timepoint selection and its effect on structure recovery. In this work, we study conditions for reliable retrieval of the connectivity structure of a dynamic system, and the impact of dynamics on structure-learning efforts. We encounter an unexpected problem not previously described in elucidating connectivity structure from dynamic systems, show how this confounds structure learning of the system and discuss possible approaches to overcome the confounding effect. Finally, we test our hypotheses on an accurate dynamic model of the IGF signalling pathway. We use two structure-learning methods at four time points to contrast the performance and robustness of those methods in terms of recovering correct connectivity. PMID:24511382

  10. Single timepoint models of dynamic systems

    PubMed Central

    Sachs, K.; Itani, S.; Fitzgerald, J.; Schoeberl, B.; Nolan, G. P.; Tomlin, C. J.

    2013-01-01

    Many interesting studies aimed at elucidating the connectivity structure of biomolecular pathways make use of abundance measurements, and employ statistical and information theoretic approaches to assess connectivities. These studies often do not address the effects of the dynamics of the underlying biological system, yet dynamics give rise to impactful issues such as timepoint selection and its effect on structure recovery. In this work, we study conditions for reliable retrieval of the connectivity structure of a dynamic system, and the impact of dynamics on structure-learning efforts. We encounter an unexpected problem not previously described in elucidating connectivity structure from dynamic systems, show how this confounds structure learning of the system and discuss possible approaches to overcome the confounding effect. Finally, we test our hypotheses on an accurate dynamic model of the IGF signalling pathway. We use two structure-learning methods at four time points to contrast the performance and robustness of those methods in terms of recovering correct connectivity. PMID:24511382

  11. Dynamics of two nonlinear oligopoly models

    NASA Astrophysics Data System (ADS)

    Ibrahim, Adyda

    2014-06-01

    This paper considers an n firms oligopoly model with isoelastic demand function and linear cost function. This model is introduced in two different dynamical systems. In the first system, firms are assumed have naive expectation, while in the second system, firms are assumed to have bounded rationality. We study the dynamics of both dynamical systems in the special case of firms behaving identically. The main result shows that as the number of firm increases, the equilibrium in the first system becomes unstable when the number of firms is greater than four, while in the second system, there is a change in the region of stability for the equilibrium.

  12. Swarm Intelligence for Urban Dynamics Modelling

    SciTech Connect

    Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gerard H. E.

    2009-04-16

    In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.

  13. Swarm Intelligence for Urban Dynamics Modelling

    NASA Astrophysics Data System (ADS)

    Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gérard H. E.

    2009-04-01

    In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.

  14. Battery electrochemical nonlinear/dynamic SPICE model

    SciTech Connect

    Glass, M.C.

    1996-12-31

    An Integrated Battery Model has been produced which accurately represents DC nonlinear battery behavior together with transient dynamics. The NiH{sub 2} battery model begins with a given continuous-function electrochemical math model. The math model for the battery consists of the sum of two electrochemical process DC currents, which are a function of the battery terminal voltage. This paper describes procedures for realizing a voltage-source SPICE model which implements the electrochemical equations using behavioral sources. The model merges the essentially DC non-linear behavior of the electrochemical model, together with the empirical AC dynamic terminal impedance from measured data. Thus the model integrates the short-term linear impedance behavior, with the long-term nonlinear DC resistance behavior. The long-duration non-Faradaic capacitive behavior of the battery is represented by a time constant. Outputs of the model include battery voltage/current, state-of-charge, and charge-current efficiency.

  15. Integration of Dynamic Models in Range Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    This work addresses the various model interactions in real-time to make an efficient internet based decision making tool for Shuttle launch. The decision making tool depends on the launch commit criteria coupled with physical models. Dynamic interaction between a wide variety of simulation applications and techniques, embedded algorithms, and data visualizations are needed to exploit the full potential of modeling and simulation. This paper also discusses in depth details of web based 3-D graphics and applications to range safety. The advantages of this dynamic model integration are secure accessibility and distribution of real time information to other NASA centers.

  16. Dynamics of the Standard Model

    NASA Astrophysics Data System (ADS)

    Donoghue, John F.; Golowich, Eugene; Holstein, Barry R.

    2014-04-01

    Preface; 1. Inputs to the Standard Model; 2. Interactions of the Standard Model; 3. Symmetries and anomalies; 4. Introduction to effective field theory; 5. Charged leptons; 6. Neutrinos; 7. Effective field theory for low energy QCD; 8. Weak interactions of Kaons; 9. Mass mixing and CP violation; 10. The Nc-1 expansion; 11. Phenomenological models; 12. Baryon properties; 13. Hadron spectroscopy; 14. Weak interactions of heavy quarks; 15. The Higgs boson; 16. The electroweak sector; Appendixes; References; Index.

  17. Dynamical model for DNA sequences

    NASA Astrophysics Data System (ADS)

    Allegrini, P.; Barbi, M.; Grigolini, P.; West, B. J.

    1995-11-01

    We address the problem of DNA sequences, developing a ``dynamical'' method based on the assumption that the statistical properties of DNA paths are determined by the joint action of two processes, one deterministic with long-range correlations, and the other random and δ-function correlated. The generator of the deterministic evolution is a nonlinear map, belonging to a class of maps recently tailored to mimic the processes of weak chaos that are responsible for the birth of anomalous diffusion. It is assumed that the deterministic process corresponds to unknown biological rules that determine the DNA path, whereas the noise mimics the influence of an infinite-dimensional environment on the biological process under study. We prove that the resulting diffusion process, if the effect of the random process is neglected, is an α-stable Lévy process with 1<α<2. We also show that, if the diffusion process is determined by the joint action of the deterministic and the random process, the correlation effects of the ``deterministic dynamics'' are cancelled on the short-range scale, but show up in the long-range one. We denote our prescription to generate statistical sequences as the copying mistake map (CMM). We carry out our analysis of several DNA sequences and their CMM realizations with a variety of techniques, and we especially focus on a method of regression to equilibrium, which we call the Onsager analysis. With these techniques we establish the statistical equivalence of the real DNA sequences with their CMM realizations. We show that long-range correlations are present in exons as well as in introns, but are difficult to detect, since the exon ``dynamics'' is shown to be determined by the entanglement of three distinct and independent CMM's.

  18. Multi-scale modelling and dynamics

    NASA Astrophysics Data System (ADS)

    Müller-Plathe, Florian

    Moving from a fine-grained particle model to one of lower resolution leads, with few exceptions, to an acceleration of molecular mobility, higher diffusion coefficient, lower viscosities and more. On top of that, the level of acceleration is often different for different dynamical processes as well as for different state points. While the reasons are often understood, the fact that coarse-graining almost necessarily introduces unpredictable acceleration of the molecular dynamics severely limits its usefulness as a predictive tool. There are several attempts under way to remedy these shortcoming of coarse-grained models. On the one hand, we follow bottom-up approaches. They attempt already when the coarse-graining scheme is conceived to estimate their impact on the dynamics. This is done by excess-entropy scaling. On the other hand, we also pursue a top-down development. Here we start with a very coarse-grained model (dissipative particle dynamics) which in its native form produces qualitatively wrong polymer dynamics, as its molecules cannot entangle. This model is modified by additional temporary bonds, so-called slip springs, to repair this defect. As a result, polymer melts and solutions described by the slip-spring DPD model show correct dynamical behaviour. Read more: ``Excess entropy scaling for the segmental and global dynamics of polyethylene melts'', E. Voyiatzis, F. Müller-Plathe, and M.C. Böhm, Phys. Chem. Chem. Phys. 16, 24301-24311 (2014). [DOI: 10.1039/C4CP03559C] ``Recovering the Reptation Dynamics of Polymer Melts in Dissipative Particle Dynamics Simulations via Slip-Springs'', M. Langeloth, Y. Masubuchi, M. C. Böhm, and F. Müller-Plathe, J. Chem. Phys. 138, 104907 (2013). [DOI: 10.1063/1.4794156].

  19. Uncertainty and Sensitivity in Surface Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Kettner, Albert J.; Syvitski, James P. M.

    2016-05-01

    Papers for this special issue on 'Uncertainty and Sensitivity in Surface Dynamics Modeling' heralds from papers submitted after the 2014 annual meeting of the Community Surface Dynamics Modeling System or CSDMS. CSDMS facilitates a diverse community of experts (now in 68 countries) that collectively investigate the Earth's surface-the dynamic interface between lithosphere, hydrosphere, cryosphere, and atmosphere, by promoting, developing, supporting and disseminating integrated open source software modules. By organizing more than 1500 researchers, CSDMS has the privilege of identifying community strengths and weaknesses in the practice of software development. We recognize, for example, that progress has been slow on identifying and quantifying uncertainty and sensitivity in numerical modeling of earth's surface dynamics. This special issue is meant to raise awareness for these important subjects and highlight state-of-the-art progress.

  20. Energy Balance Models and Planetary Dynamics

    NASA Technical Reports Server (NTRS)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  1. Dynamic and Structural Gas Turbine Engine Modeling

    NASA Technical Reports Server (NTRS)

    Turso, James A.

    2003-01-01

    Model the interactions between the structural dynamics and the performance dynamics of a gas turbine engine. Generally these two aspects are considered separate, unrelated phenomena and are studied independently. For diagnostic purposes, it is desirable to bring together as much information as possible, and that involves understanding how performance is affected by structural dynamics (if it is) and vice versa. This can involve the relationship between thrust response and the excitation of structural modes, for instance. The job will involve investigating and characterizing these dynamical relationships, generating a model that incorporates them, and suggesting and/or developing diagnostic and prognostic techniques that can be incorporated in a data fusion system. If no coupling is found, at the least a vibration model should be generated that can be used for diagnostics and prognostics related to blade loss, for instance.

  2. Stirling Engine Dynamic System Modeling

    NASA Technical Reports Server (NTRS)

    Nakis, Christopher G.

    2004-01-01

    The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.

  3. Haptics-based dynamic implicit solid modeling.

    PubMed

    Hua, Jing; Qin, Hong

    2004-01-01

    This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface. Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic interface for direct manipulation with force feedback. PMID:15794139

  4. Synaptic dynamics: linear model and adaptation algorithm.

    PubMed

    Yousefi, Ali; Dibazar, Alireza A; Berger, Theodore W

    2014-08-01

    In this research, temporal processing in brain neural circuitries is addressed by a dynamic model of synaptic connections in which the synapse model accounts for both pre- and post-synaptic processes determining its temporal dynamics and strength. Neurons, which are excited by the post-synaptic potentials of hundred of the synapses, build the computational engine capable of processing dynamic neural stimuli. Temporal dynamics in neural models with dynamic synapses will be analyzed, and learning algorithms for synaptic adaptation of neural networks with hundreds of synaptic connections are proposed. The paper starts by introducing a linear approximate model for the temporal dynamics of synaptic transmission. The proposed linear model substantially simplifies the analysis and training of spiking neural networks. Furthermore, it is capable of replicating the synaptic response of the non-linear facilitation-depression model with an accuracy better than 92.5%. In the second part of the paper, a supervised spike-in-spike-out learning rule for synaptic adaptation in dynamic synapse neural networks (DSNN) is proposed. The proposed learning rule is a biologically plausible process, and it is capable of simultaneously adjusting both pre- and post-synaptic components of individual synapses. The last section of the paper starts with presenting the rigorous analysis of the learning algorithm in a system identification task with hundreds of synaptic connections which confirms the learning algorithm's accuracy, repeatability and scalability. The DSNN is utilized to predict the spiking activity of cortical neurons and pattern recognition tasks. The DSNN model is demonstrated to be a generative model capable of producing different cortical neuron spiking patterns and CA1 Pyramidal neurons recordings. A single-layer DSNN classifier on a benchmark pattern recognition task outperforms a 2-Layer Neural Network and GMM classifiers while having fewer numbers of free parameters and

  5. Modeling of Intracranial Pressure Dynamics

    PubMed Central

    Griffith, Richard L.; Sullivan, Humbert G.; Miller, J. Douglas

    1978-01-01

    Digital computer simulation is utilized to test hypotheses regarding poorly understood mechanisms of intracranial pressure change. The simulation produces graphic output similar to records from polygraph recorders used in patient monitoring and in animal experimentation. The structure of the model is discussed. The mathematic model perfected by the comparison between simulation and experiment will constitute a formulation of medical information applicable to automated clinical monitoring and treatment of intracranial hypertension.

  6. Modeling Dynamic Regulatory Processes in Stroke.

    SciTech Connect

    McDermott, Jason E.; Jarman, Kenneth D.; Taylor, Ronald C.; Lancaster, Mary J.; Shankaran, Harish; Vartanian, Keri B.; Stevens, S.L.; Stenzel-Poore, Mary; Sanfilippo, Antonio P.

    2012-10-11

    The ability to examine in silico the behavior of biological systems can greatly accelerate the pace of discovery in disease pathologies, such as stroke, where in vivo experimentation is lengthy and costly. In this paper we describe an approach to in silico examination of blood genomic responses to neuroprotective agents and subsequent stroke through the development of dynamic models of the regulatory processes observed in the experimental gene expression data. First, we identified functional gene clusters from these data. Next, we derived ordinary differential equations (ODEs) relating regulators and functional clusters from the data. These ODEs were used to develop dynamic models that simulate the expression of regulated functional clusters using system dynamics as the modeling paradigm. The dynamic model has the considerable advantage of only requiring an initial starting state, and does not require measurement of regulatory influences at each time point in order to make accurate predictions. The manipulation of input model parameters, such as changing the magnitude of gene expression, made it possible to assess the behavior of the networks through time under varying conditions. We report that an optimized dynamic model can provide accurate predictions of overall system behavior under several different preconditioning paradigms.

  7. Dynamics of internal models in game players

    NASA Astrophysics Data System (ADS)

    Taiji, Makoto; Ikegami, Takashi

    1999-10-01

    A new approach for the study of social games and communications is proposed. Games are simulated between cognitive players who build the opponent’s internal model and decide their next strategy from predictions based on the model. In this paper, internal models are constructed by the recurrent neural network (RNN), and the iterated prisoner’s dilemma game is performed. The RNN allows us to express the internal model in a geometrical shape. The complicated transients of actions are observed before the stable mutually defecting equilibrium is reached. During the transients, the model shape also becomes complicated and often experiences chaotic changes. These new chaotic dynamics of internal models reflect the dynamical and high-dimensional rugged landscape of the internal model space.

  8. Dynamical modeling of laser ablation processes

    SciTech Connect

    Leboeuf, J.N.; Chen, K.R.; Donato, J.M.; Geohegan, D.B.; Liu, C.L.; Puretzky, A.A.; Wood, R.F.

    1995-09-01

    Several physics and computational approaches have been developed to globally characterize phenomena important for film growth by pulsed laser deposition of materials. These include thermal models of laser-solid target interactions that initiate the vapor plume; plume ionization and heating through laser absorption beyond local thermodynamic equilibrium mechanisms; gas dynamic, hydrodynamic, and collisional descriptions of plume transport; and molecular dynamics models of the interaction of plume particles with the deposition substrate. The complexity of the phenomena involved in the laser ablation process is matched by the diversity of the modeling task, which combines materials science, atomic physics, and plasma physics.

  9. Dynamics Simulation Model for Space Tethers

    NASA Technical Reports Server (NTRS)

    Levin, E. M.; Pearson, J.; Oldson, J. C.

    2006-01-01

    This document describes the development of an accurate model for the dynamics of the Momentum Exchange Electrodynamic Reboost (MXER) system. The MXER is a rotating tether about 100-km long in elliptical Earth orbit designed to catch payloads in low Earth orbit and throw them to geosynchronous orbit or to Earth escape. To ensure successful rendezvous between the MXER tip catcher and a payload, a high-fidelity model of the system dynamics is required. The model developed here quantifies the major environmental perturbations, and can predict the MXER tip position to within meters over one orbit.

  10. A stochastic evolutionary model for survival dynamics

    NASA Astrophysics Data System (ADS)

    Fenner, Trevor; Levene, Mark; Loizou, George

    2014-09-01

    The recent interest in human dynamics has led researchers to investigate the stochastic processes that explain human behaviour in different contexts. Here we propose a generative model to capture the essential dynamics of survival analysis, traditionally employed in clinical trials and reliability analysis in engineering. In our model, the only implicit assumption made is that the longer an actor has been in the system, the more likely it is to have failed. We derive a power-law distribution for the process and provide preliminary empirical evidence for the validity of the model from two well-known survival analysis data sets.

  11. A dynamical model for the Utricularia trap

    PubMed Central

    Llorens, Coraline; Argentina, Médéric; Bouret, Yann; Marmottant, Philippe; Vincent, Olivier

    2012-01-01

    We propose a model that captures the dynamics of a carnivorous plant, Utricularia inflata. This plant possesses tiny traps for capturing small aquatic animals. Glands pump water out of the trap, yielding a negative pressure difference between the plant and its surroundings. The trap door is set into a meta-stable state and opens quickly as an extra pressure is generated by the displacement of a potential prey. As the door opens, the pressure difference sucks the animal into the trap. We write an ODE model that captures all the physics at play. We show that the dynamics of the plant is quite similar to neuronal dynamics and we analyse the effect of a white noise on the dynamics of the trap. PMID:22859569

  12. Session 6: Dynamic Modeling and Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; Chapman, Jeffryes; May, Ryan

    2013-01-01

    These presentations cover some of the ongoing work in dynamic modeling and dynamic systems analysis. The first presentation discusses dynamic systems analysis and how to integrate dynamic performance information into the systems analysis. The ability to evaluate the dynamic performance of an engine design may allow tradeoffs between the dynamic performance and operability of a design resulting in a more efficient engine design. The second presentation discusses the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a Simulation system with a library containing the basic building blocks that can be used to create dynamic Thermodynamic Systems. Some of the key features include Turbo machinery components, such as turbines, compressors, etc., and basic control system blocks. T-MAT is written in the Matlab-Simulink environment and is open source software. The third presentation focuses on getting additional performance from the engine by allowing the limit regulators only to be active when a limit is danger of being violated. Typical aircraft engine control architecture is based on MINMAX scheme, which is designed to keep engine operating within prescribed mechanical/operational safety limits. Using a conditionally active min-max limit regulator scheme, additional performance can be gained by disabling non-relevant limit regulators

  13. Modeling of Dynamic FRC Formation

    NASA Astrophysics Data System (ADS)

    Mok, Yung; Barnes, Dan; Dettrick, Sean

    2010-11-01

    We have developed a 2-D resistive MHD code, Lamy Ridge, to simulate the entire FRC formation process in Tri Alpha's C2 device, including initial formation, translation, merging and settling into equilibrium. Two FRC's can be created simultaneously, and then translated toward each other so that they merge into a single FRC. The code couples the external circuits around the formation tubes to the partially ionized plasma inside. Plasma and neutral gas are treated as two fluids. Dynamic and energetic equations, which take into account ionization and charge exchange, are solved in a time advance manner. The geometric shape of the vessel is specified by a set of inputs that defines the boundaries, which are handled by a cut-cell algorithm in the code. Multiple external circuits and field coils can be easily added, removed or relocated through individual inputs. The design of the code is modular and flexible so that it can be applied to future devices. The results of the code are in reasonable agreement with experimental measurements on the C2 device.

  14. Dynamical Modeling of Surface Tension

    NASA Technical Reports Server (NTRS)

    Brackbill, Jeremiah U.; Kothe, Douglas B.

    1996-01-01

    In a recent review it is said that free-surface flows 'represent some of the difficult remaining challenges in computational fluid dynamics'. There has been progress with the development of new approaches to treating interfaces, such as the level-set method and the improvement of older methods such as the VOF method. A common theme of many of the new developments has been the regularization of discontinuities at the interface. One example of this approach is the continuum surface force (CSF) formulation for surface tension, which replaces the surface stress given by Laplace's equation by an equivalent volume force. Here, we describe how CSF formulation might be made more useful. Specifically, we consider a derivation of the CSF equations from a minimization of surface energy as outlined by Jacqmin (1996). This reformulation suggests that if one eliminates the computation of curvature in terms of a unit normal vector, parasitic currents may be eliminated. For this reformulation to work, it is necessary that transition region thickness be controlled. Various means for this, in addition to the one discussed by Jacqmin (1996), are discussed.

  15. Nonequilibrium dynamics in the antiferromagnetic Hubbard model

    NASA Astrophysics Data System (ADS)

    Sandri, Matteo; Fabrizio, Michele

    2013-10-01

    We investigate by means of the time-dependent Gutzwiller variational approach the out-of-equilibrium dynamics of an antiferromagnetic state evolved with the Hubbard model Hamiltonian after a sudden change of the repulsion strength U. We find that magnetic order survives more than what is expected on the basis of thermalization arguments, in agreement with recent dynamical mean field theory calculations. In addition, we find evidence of a dynamical transition for quenches to large values of U between a coherent antiferromagnet characterized by a finite quasiparticle residue to an incoherent one with vanishing residue, which finally turns into a paramagnet for even larger U.

  16. Modeling the Dynamics of Compromised Networks

    SciTech Connect

    Soper, B; Merl, D M

    2011-09-12

    Accurate predictive models of compromised networks would contribute greatly to improving the effectiveness and efficiency of the detection and control of network attacks. Compartmental epidemiological models have been applied to modeling attack vectors such as viruses and worms. We extend the application of these models to capture a wider class of dynamics applicable to cyber security. By making basic assumptions regarding network topology we use multi-group epidemiological models and reaction rate kinetics to model the stochastic evolution of a compromised network. The Gillespie Algorithm is used to run simulations under a worst case scenario in which the intruder follows the basic connection rates of network traffic as a method of obfuscation.

  17. Nonlinear Dynamic Models in Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.

  18. Dynamical model of bubble path instability.

    PubMed

    Shew, Woodrow L; Pinton, Jean-François

    2006-10-01

    Millimeter-sized air bubbles rising through still water are known to exhibit zigzag and spiral oscillatory trajectories. We present a system of four ordinary differential equations which effectively model these dynamics. The model is based on Kirchhoff's equations and several physical arguments derived from our experimental observations. In the framework of this model, the zigzag and the spiral motions result from the same underlying bifurcation to wake instability. PMID:17155262

  19. A dynamical model for multifragmentation of nuclei

    NASA Astrophysics Data System (ADS)

    Souza, S. R.; de Paula, L.; Leray, S.; Nemeth, J.; Ngô, C.; Ngô, H.

    1994-04-01

    A schematic model based on molecular dynamics and a restructured aggregation model is presented. We apply it to study the 16O+ 80Br system at several bombarding energies and compare some of the results to available emulsion data. We find that the model reproduces the experimental charge distributions rather well and the onset of multifragmentation for this system. Some general features of nuclear multifragmentation related to charged-particle production and intermediate-mass-fragments production are discussed.

  20. Dynamic Model for Life History of Scyphozoa

    PubMed Central

    Xie, Congbo; Fan, Meng; Wang, Xin; Chen, Ming

    2015-01-01

    A two-state life history model governed by ODEs is formulated to elucidate the population dynamics of jellyfish and to illuminate the triggering mechanism of its blooms. The polyp-medusa model admits trichotomous global dynamic scenarios: extinction, polyps survival only, and both survival. The population dynamics sensitively depend on several biotic and abiotic limiting factors such as substrate, temperature, and predation. The combination of temperature increase, substrate expansion, and predator diminishment acts synergistically to create a habitat that is more favorable for jellyfishes. Reducing artificial marine constructions, aiding predator populations, and directly controlling the jellyfish population would help to manage the jellyfish blooms. The theoretical analyses and numerical experiments yield several insights into the nature underlying the model and shed some new light on the general control strategy for jellyfish. PMID:26114642

  1. Dynamic Model for Life History of Scyphozoa.

    PubMed

    Xie, Congbo; Fan, Meng; Wang, Xin; Chen, Ming

    2015-01-01

    A two-state life history model governed by ODEs is formulated to elucidate the population dynamics of jellyfish and to illuminate the triggering mechanism of its blooms. The polyp-medusa model admits trichotomous global dynamic scenarios: extinction, polyps survival only, and both survival. The population dynamics sensitively depend on several biotic and abiotic limiting factors such as substrate, temperature, and predation. The combination of temperature increase, substrate expansion, and predator diminishment acts synergistically to create a habitat that is more favorable for jellyfishes. Reducing artificial marine constructions, aiding predator populations, and directly controlling the jellyfish population would help to manage the jellyfish blooms. The theoretical analyses and numerical experiments yield several insights into the nature underlying the model and shed some new light on the general control strategy for jellyfish. PMID:26114642

  2. Modeling the dynamics of ant colony optimization.

    PubMed

    Merkle, Daniel; Middendorf, Martin

    2002-01-01

    The dynamics of Ant Colony Optimization (ACO) algorithms is studied using a deterministic model that assumes an average expected behavior of the algorithms. The ACO optimization metaheuristic is an iterative approach, where in every iteration, artificial ants construct solutions randomly but guided by pheromone information stemming from former ants that found good solutions. The behavior of ACO algorithms and the ACO model are analyzed for certain types of permutation problems. It is shown analytically that the decisions of an ant are influenced in an intriguing way by the use of the pheromone information and the properties of the pheromone matrix. This explains why ACO algorithms can show a complex dynamic behavior even when there is only one ant per iteration and no competition occurs. The ACO model is used to describe the algorithm behavior as a combination of situations with different degrees of competition between the ants. This helps to better understand the dynamics of the algorithm when there are several ants per iteration as is always the case when using ACO algorithms for optimization. Simulations are done to compare the behavior of the ACO model with the ACO algorithm. Results show that the deterministic model describes essential features of the dynamics of ACO algorithms quite accurately, while other aspects of the algorithms behavior cannot be found in the model. PMID:12227995

  3. Dynamic modeling of speed skiing

    NASA Astrophysics Data System (ADS)

    Catalfamo, R. S.

    1997-12-01

    The equations of motion that describe a skier descending a speed-skiing hill are solved both analytically and numerically. The model is shown to agree well with actual official results but only when the hill profile is considered. A sensitivity analysis reveals which parameters most affect the skier's exit speed. Other factors, such as scaling effects and wind gusts, are included to determine whether these need to be considered in official results. One surprising result is that, under certain conditions and hill profiles, maximum skier speed is attained prior to entry into the timing zone—thus bringing into question the optimum placement of the timing gates.

  4. Dynamic modeling of solar dynamic components and systems. Final Report

    SciTech Connect

    Hochstein, J.I.; Korakianitis, T.

    1992-09-01

    The purpose of this grant was to support NASA in modeling efforts to predict the transient dynamic and thermodynamic response of the space station solar dynamic power generation system. In order to meet the initial schedule requirement of providing results in time to support installation of the system as part of the initial phase of space station, early efforts were executed with alacrity and often in parallel. Initially, methods to predict the transient response of a Rankine as well as a Brayton cycle were developed. Review of preliminary design concepts led NASA to select a regenerative gas-turbine cycle using a helium-xenon mixture as the working fluid and, from that point forward, the modeling effort focused exclusively on that system. Although initial project planning called for a three year period of performance, revised NASA schedules moved system installation to later and later phases of station deployment. Eventually, NASA selected to halt development of the solar dynamic power generation system for space station and to reduce support for this project to two-thirds of the original level.

  5. Dynamic Modeling of Solar Dynamic Components and Systems

    NASA Technical Reports Server (NTRS)

    Hochstein, John I.; Korakianitis, T.

    1992-01-01

    The purpose of this grant was to support NASA in modeling efforts to predict the transient dynamic and thermodynamic response of the space station solar dynamic power generation system. In order to meet the initial schedule requirement of providing results in time to support installation of the system as part of the initial phase of space station, early efforts were executed with alacrity and often in parallel. Initially, methods to predict the transient response of a Rankine as well as a Brayton cycle were developed. Review of preliminary design concepts led NASA to select a regenerative gas-turbine cycle using a helium-xenon mixture as the working fluid and, from that point forward, the modeling effort focused exclusively on that system. Although initial project planning called for a three year period of performance, revised NASA schedules moved system installation to later and later phases of station deployment. Eventually, NASA selected to halt development of the solar dynamic power generation system for space station and to reduce support for this project to two-thirds of the original level.

  6. Record Dynamics and the Parking Lot Model for granular dynamics

    NASA Astrophysics Data System (ADS)

    Sibani, Paolo; Boettcher, Stefan

    Also known for its application to granular compaction (E. Ben-Naim et al., Physica D, 1998), the Parking Lot Model (PLM) describes the random parking of identical cars in a strip with no marked bays. In the thermally activated version considered, cars can be removed at an energy cost and, in thermal equilibrium, their average density increases as temperature decreases. However, equilibration at high density becomes exceedingly slow and the system enters an aging regime induced by a kinematic constraint, the fact that parked cars may not overlap. As parking an extra car reduces the available free space,the next parking event is even harder to achieve. Records in the number of parked cars mark the salient features of the dynamics and are shown to be well described by the log-Poisson statistics known from other glassy systems with record dynamics. Clusters of cars whose positions must be rearranged to make the next insertion possible have a length scale which grows logarithmically with age, while their life-time grows exponentially with size. The implications for a recent cluster model of colloidal dynamics,(S. Boettcher and P. Sibani, J. Phys.: Cond. Matter, 2011 N. Becker et al., J. Phys.: Cond. Matter, 2014) are discussed. Support rom the Villum Foundation is gratefully acknowledged.

  7. Quantum model for the price dynamics

    NASA Astrophysics Data System (ADS)

    Choustova, Olga

    2008-10-01

    We apply methods of quantum mechanics to mathematical modelling of price dynamics in a financial market. We propose to describe behavioral financial factors (e.g., expectations of traders) by using the pilot wave (Bohmian) model of quantum mechanics. Our model is a quantum-like model of the financial market, cf. with works of W. Segal, I.E. Segal, E. Haven. In this paper we study the problem of smoothness of price-trajectories in the Bohmian financial model. We show that even the smooth evolution of the financial pilot wave [psi](t,x) (representing expectations of traders) can induce jumps of prices of shares.

  8. Efficient dynamic models of tensegrity systems

    NASA Astrophysics Data System (ADS)

    Skelton, Robert

    2009-03-01

    The multi-body dynamics appear in a new form, as a matrix differential equation, rather than the traditional vector differential equation. The model has a constant mass matrix, and the equations are non-minimal. A specific focus of this paper is tensegrity systems. A tensegrity system requires prestress for stabilization of the configuration of rigid bodies and tensile members. This paper provides an efficient model for both static and dynamic behavior of such systems, specialized for the case when the rigid bodies are axi-symmetric rods.

  9. Modeling emotional dynamics : currency versus field.

    SciTech Connect

    Sallach, D .L.; Decision and Information Sciences; Univ. of Chicago

    2008-08-01

    Randall Collins has introduced a simplified model of emotional dynamics in which emotional energy, heightened and focused by interaction rituals, serves as a common denominator for social exchange: a generic form of currency, except that it is active in a far broader range of social transactions. While the scope of this theory is attractive, the specifics of the model remain unconvincing. After a critical assessment of the currency theory of emotion, a field model of emotion is introduced that adds expressiveness by locating emotional valence within its cognitive context, thereby creating an integrated orientation field. The result is a model which claims less in the way of motivational specificity, but is more satisfactory in modeling the dynamic interaction between cognitive and emotional orientations at both individual and social levels.

  10. Dynamic Radiation Environment Assimilation Model: DREAM

    NASA Astrophysics Data System (ADS)

    Reeves, G. D.; Chen, Y.; Cunningham, G. S.; Friedel, R. W. H.; Henderson, M. G.; Jordanova, V. K.; Koller, J.; Morley, S. K.; Thomsen, M. F.; Zaharia, S.

    2012-03-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) was developed to provide accurate, global specification of the Earth's radiation belts and to better understand the physical processes that control radiation belt structure and dynamics. DREAM is designed using a modular software approach in order to provide a computational framework that makes it easy to change components such as the global magnetic field model, radiation belt dynamics model, boundary conditions, etc. This paper provides a broad overview of the DREAM model and a summary of some of the principal results to date. We describe the structure of the DREAM model, describe the five major components, and illustrate the various options that are available for each component. We discuss how the data assimilation is performed and the data preprocessing and postprocessing that are required for producing the final DREAM outputs. We describe how we apply global magnetic field models for conversion between flux and phase space density and, in particular, the benefits of using a self-consistent, coupled ring current-magnetic field model. We discuss some of the results from DREAM including testing of boundary condition assumptions and effects of adding a source term to radial diffusion models. We also describe some of the testing and validation of DREAM and prospects for future development.

  11. Optimal Empirical Prognostic Models of Climate Dynamics

    NASA Astrophysics Data System (ADS)

    Loskutov, E. M.; Mukhin, D.; Gavrilov, A.; Feigin, A. M.

    2014-12-01

    In this report the empirical methodology for prediction of climate dynamics is suggested. We construct the dynamical models of data patterns connected with climate indices, from observed spatially distributed time series. The models are based on artificial neural network (ANN) parameterization and have a form of discrete stochastic evolution operator mapping some sequence of systems state on the next one [1]. Different approaches to reconstruction of empirical basis (phase variables) for system's phase space representation, which is appropriate for forecasting the climate index of interest, are discussed in the report; for this purpose both linear and non-linear data expansions are considered. The most important point of the methodology is finding the optimal structural parameters of the model such as dimension of variable vector, i.e. number of principal components used for modeling, the time lag used for prediction, and number of neurons in ANN determining the quality of approximation. Actually, we need to solve the model selection problem, i.e. we want to obtain a model of optimal complexity in relation to analyzed time series. We use MDL approach [2] for this purpose: the model providing best data compression is chosen. The method is applied to space-distributed time-series of sea surface temperature and sea level pressure taken from IRI datasets [3]: the ability of proposed models to predict different climate indices (incl. Multivariate ENSO index, Pacific Decadal Oscillation index, North-Atlantic Oscillation index) is investigated. References:1. Molkov Ya. I., E. M. Loskutov, D. N. Mukhin, and A. M. Feigin, Random dynamical models from time series. Phys. Rev. E, 85, 036216, 2012.2. Molkov, Ya.I., D.N. Mukhin, E.M. Loskutov, A.M. Feigin, and G.A. Fidelin, Using the minimum description length principle for global reconstruction of dynamic systems from noisy time series. Phys. Rev. E, 80, 046207, 2009.3. IRI/LDEO Climate Data Library (http://iridl.ldeo.columbia.edu/)

  12. Modeling biological pathway dynamics with timed automata.

    PubMed

    Schivo, Stefano; Scholma, Jetse; Wanders, Brend; Urquidi Camacho, Ricardo A; van der Vet, Paul E; Karperien, Marcel; Langerak, Rom; van de Pol, Jaco; Post, Janine N

    2014-05-01

    Living cells are constantly subjected to a plethora of environmental stimuli that require integration into an appropriate cellular response. This integration takes place through signal transduction events that form tightly interconnected networks. The understanding of these networks requires capturing their dynamics through computational support and models. ANIMO (analysis of Networks with Interactive Modeling) is a tool that enables the construction and exploration of executable models of biological networks, helping to derive hypotheses and to plan wet-lab experiments. The tool is based on the formalism of Timed Automata, which can be analyzed via the UPPAAL model checker. Thanks to Timed Automata, we can provide a formal semantics for the domain-specific language used to represent signaling networks. This enforces precision and uniformity in the definition of signaling pathways, contributing to the integration of isolated signaling events into complex network models. We propose an approach to discretization of reaction kinetics that allows us to efficiently use UPPAAL as the computational engine to explore the dynamic behavior of the network of interest. A user-friendly interface hides the use of Timed Automata from the user, while keeping the expressive power intact. Abstraction to single-parameter kinetics speeds up construction of models that remain faithful enough to provide meaningful insight. The resulting dynamic behavior of the network components is displayed graphically, allowing for an intuitive and interactive modeling experience. PMID:24808226

  13. A Novel Virus-Patch Dynamic Model.

    PubMed

    Yang, Lu-Xing; Yang, Xiaofan

    2015-01-01

    The distributed patch dissemination strategies are a promising alternative to the conventional centralized patch dissemination strategies. This paper aims to establish a theoretical framework for evaluating the effectiveness of distributed patch dissemination mechanism. Assuming that the Internet offers P2P service for every pair of nodes on the network, a dynamic model capturing both the virus propagation mechanism and the distributed patch dissemination mechanism is proposed. This model takes into account the infected removable storage media and hence captures the interaction of patches with viruses better than the original SIPS model. Surprisingly, the proposed model exhibits much simpler dynamic properties than the original SIPS model. Specifically, our model admits only two potential (viral) equilibria and undergoes a fold bifurcation. The global stabilities of the two equilibria are determined. Consequently, the dynamical properties of the proposed model are fully understood. Furthermore, it is found that reducing the probability per unit time of disconnecting a node from the Internet benefits the containment of electronic viruses. PMID:26368556

  14. A Novel Virus-Patch Dynamic Model

    PubMed Central

    Yang, Lu-Xing; Yang, Xiaofan

    2015-01-01

    The distributed patch dissemination strategies are a promising alternative to the conventional centralized patch dissemination strategies. This paper aims to establish a theoretical framework for evaluating the effectiveness of distributed patch dissemination mechanism. Assuming that the Internet offers P2P service for every pair of nodes on the network, a dynamic model capturing both the virus propagation mechanism and the distributed patch dissemination mechanism is proposed. This model takes into account the infected removable storage media and hence captures the interaction of patches with viruses better than the original SIPS model. Surprisingly, the proposed model exhibits much simpler dynamic properties than the original SIPS model. Specifically, our model admits only two potential (viral) equilibria and undergoes a fold bifurcation. The global stabilities of the two equilibria are determined. Consequently, the dynamical properties of the proposed model are fully understood. Furthermore, it is found that reducing the probability per unit time of disconnecting a node from the Internet benefits the containment of electronic viruses. PMID:26368556

  15. Polarizable protein model for Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Peter, Emanuel; Lykov, Kirill; Pivkin, Igor

    2015-11-01

    In this talk, we present a novel polarizable protein model for the Dissipative Particle Dynamics (DPD) simulation technique, a coarse-grained particle-based method widely used in modeling of fluid systems at the mesoscale. We employ long-range electrostatics and Drude oscillators in combination with a newly developed polarizable water model. The protein in our model is resembled by a polarizable backbone and a simplified representation of the sidechains. We define the model parameters using the experimental structures of 2 proteins: TrpZip2 and TrpCage. We validate the model on folding of five other proteins and demonstrate that it successfully predicts folding of these proteins into their native conformations. As a perspective of this model, we will give a short outlook on simulations of protein aggregation in the bulk and near a model membrane, a relevant process in several Amyloid diseases, e.g. Alzheimer's and Diabetes II.

  16. System and mathematical modeling of quadrotor dynamics

    NASA Astrophysics Data System (ADS)

    Goodman, Jacob M.; Kim, Jinho; Gadsden, S. Andrew; Wilkerson, Stephen A.

    2015-05-01

    Unmanned aerial systems (UAS) are becoming increasingly visible in our daily lives; and range in operation from search and rescue, monitoring hazardous environments, and to the delivery of goods. One of the most popular UAS are based on a quad-rotor design. These are typically small devices that rely on four propellers for lift and movement. Quad-rotors are inherently unstable, and rely on advanced control methodologies to keep them operating safely and behaving in a predictable and desirable manner. The control of these devices can be enhanced and improved by making use of an accurate dynamic model. In this paper, we examine a simple quadrotor model, and note some of the additional dynamic considerations that were left out. We then compare simulation results of the simple model with that of another comprehensive model.

  17. Dynamic model of the Earth's upper atmosphere

    NASA Technical Reports Server (NTRS)

    Slowey, J. W.

    1984-01-01

    An initial modification to the MSF/J70 Thermospheric Model, in which the variations due to sudden geomagnetic disturbances upon the Earth's upper atmospheric density structure were modeled is presented. This dynamic model of the geomagnetic variation included is an improved version of one which SAO developed from the analysis of the ESRO 4 mass spectrometer data that was incorporated in the Jacchia 1977 model. The variation with geomagnetic local time as well as with geomagnetic latitude are included, and also the effects due to disturbance of the temperature profiles in the region of energy deposition.

  18. Modeling the Hydrogen Bond within Molecular Dynamics

    ERIC Educational Resources Information Center

    Lykos, Peter

    2004-01-01

    The structure of a hydrogen bond is elucidated within the framework of molecular dynamics based on the model of Rahman and Stillinger (R-S) liquid water treatment. Thus, undergraduates are exposed to the powerful but simple use of classical mechanics to solid objects from a molecular viewpoint.

  19. Model Of Neural Network With Creative Dynamics

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Barhen, Jacob

    1993-01-01

    Paper presents analysis of mathematical model of one-neuron/one-synapse neural network featuring coupled activation and learning dynamics and parametrical periodic excitation. Demonstrates self-programming, partly random behavior of suitable designed neural network; believed to be related to spontaneity and creativity of biological neural networks.

  20. DYNAMIC LANDSCAPES, STABILITY AND ECOLOGICAL MODELING

    EPA Science Inventory

    The image of a ball rolling along a series of hills and valleys is an effective heuristic by which to communicate stability concepts in ecology. However, the dynamics of this landscape model have little to do with ecological systems. Other landscape representations, however, are ...

  1. Modeling of dynamical processes in laser ablation

    SciTech Connect

    Leboeuf, J.N.; Chen, K.R.; Donato, J.M.; Geohegan, D.B.; Liu, C.L.; Puretzky, A.A.; Wood, R.F.

    1995-12-31

    Various physics and computational approaches have been developed to globally characterize phenomena important for film growth by pulsed-laser deposition of materials. These include thermal models of laser-solid target interactions that initiate the vapor plume, plume ionization and heating through laser absorption beyond local thermodynamic equilibrium mechanisms, hydrodynamic and collisional descriptions of plume transport, and molecular dynamics models of the interaction of plume particles with the deposition substrate.

  2. Population mixture model for nonlinear telomere dynamics

    NASA Astrophysics Data System (ADS)

    Itzkovitz, Shalev; Shlush, Liran I.; Gluck, Dan; Skorecki, Karl

    2008-12-01

    Telomeres are DNA repeats protecting chromosomal ends which shorten with each cell division, eventually leading to cessation of cell growth. We present a population mixture model that predicts an exponential decrease in telomere length with time. We analytically solve the dynamics of the telomere length distribution. The model provides an excellent fit to available telomere data and accounts for the previously unexplained observation of telomere elongation following stress and bone marrow transplantation, thereby providing insight into the nature of the telomere clock.

  3. Dynamic models for the study of frailty.

    PubMed

    Lipsitz, Lewis A

    2008-11-01

    Frailty can be viewed as resulting from the degradation of multiple interacting physiologic systems that are normally responsible for healthy adaptation to the daily demands of life. Mathematical models that can quantify alterations in the dynamics of physiologic systems and their interactions may help characterize the syndrome of frailty and enable investigators to test interventions to prevent its onset. One theoretical mathematical model reported by Varadhan et al. in this issue of the Journal represents one type of regulatory process that may become altered in frail individuals-the stimulus-response mechanism [Varadhan, R., Seplaki, C.S., Xue, Q.L., Bandeen-Roche, K., Fried, L.P. Stimulus-response paradigm for characterizing the loss of resilience in homeostatic regulation associated with frailty. Mech. Ageing Dev., this issue]. This model focuses on the timing of recovery from a single stimulus, rather than the full array of responses that might be altered in a complex dynamical system. Therefore, alternative models are needed to describe the wide variety of behaviors of physiologic systems over time and how they change with the onset of frailty. One such model, based on a simple signaling network composed of a lattice of nodes and the bi-directional connections between them, can reproduce the complex, fractal-like nature of healthy physiological processes. This model can be used to demonstrate how the degradation of signaling pathways within a physiologic system can result in the loss of complex dynamics that characterizes frailty. PMID:18930754

  4. Feature extraction for structural dynamics model validation

    SciTech Connect

    Hemez, Francois; Farrar, Charles; Park, Gyuhae; Nishio, Mayuko; Worden, Keith; Takeda, Nobuo

    2010-11-08

    This study focuses on defining and comparing response features that can be used for structural dynamics model validation studies. Features extracted from dynamic responses obtained analytically or experimentally, such as basic signal statistics, frequency spectra, and estimated time-series models, can be used to compare characteristics of structural system dynamics. By comparing those response features extracted from experimental data and numerical outputs, validation and uncertainty quantification of numerical model containing uncertain parameters can be realized. In this study, the applicability of some response features to model validation is first discussed using measured data from a simple test-bed structure and the associated numerical simulations of these experiments. issues that must be considered were sensitivity, dimensionality, type of response, and presence or absence of measurement noise in the response. Furthermore, we illustrate a comparison method of multivariate feature vectors for statistical model validation. Results show that the outlier detection technique using the Mahalanobis distance metric can be used as an effective and quantifiable technique for selecting appropriate model parameters. However, in this process, one must not only consider the sensitivity of the features being used, but also correlation of the parameters being compared.

  5. Rupture dynamics in model polymer systems.

    PubMed

    Borah, Rupam; Debnath, Pallavi

    2016-05-11

    In this paper we explore the rupture dynamics of a model polymer system to capture the microscopic mechanism during relative motion of surfaces at the single polymer level. Our model is similar to the model for friction introduced by Filippov, Klafter, and Urbakh [Filippov et al., Phys. Rev. Lett., 2004, 92, 135503]; but with an important generalization to a flexible transducer (modelled as a bead spring polymer) which is attached to a fixed rigid planar substrate by interconnecting bonds (modelled as harmonic springs), and pulled by a constant force FT. Bonds are allowed to rupture stochastically. The model is simulated, and the results for a certain set of parameters exhibit a sequential rupture mechanism resulting in rupture fronts. A mean field formalism is developed to study these rupture fronts and the possible propagating solutions for the coupled bead and bond dynamics, where the coupling excludes an exact analytical treatment. Numerical solutions to mean field equations are obtained by standard numerical techniques, and they agree well with the simulation results which show sequential rupture. Within a travelling wave formalism based on the Tanh method, we show that the velocity of the rupture front can be obtained in closed form. The derived expression for the rupture front velocity gives good agreement with the stochastic and mean field results, when the rupture is sequential, while propagating solutions for bead and bond dynamics are shown to agree under certain conditions. PMID:27087684

  6. Nonsmooth dynamics in spiking neuron models

    NASA Astrophysics Data System (ADS)

    Coombes, S.; Thul, R.; Wedgwood, K. C. A.

    2012-11-01

    Large scale studies of spiking neural networks are a key part of modern approaches to understanding the dynamics of biological neural tissue. One approach in computational neuroscience has been to consider the detailed electrophysiological properties of neurons and build vast computational compartmental models. An alternative has been to develop minimal models of spiking neurons with a reduction in the dimensionality of both parameter and variable space that facilitates more effective simulation studies. In this latter case the single neuron model of choice is often a variant of the classic integrate-and-fire model, which is described by a nonsmooth dynamical system. In this paper we review some of the more popular spiking models of this class and describe the types of spiking pattern that they can generate (ranging from tonic to burst firing). We show that a number of techniques originally developed for the study of impact oscillators are directly relevant to their analysis, particularly those for treating grazing bifurcations. Importantly we highlight one particular single neuron model, capable of generating realistic spike trains, that is both computationally cheap and analytically tractable. This is a planar nonlinear integrate-and-fire model with a piecewise linear vector field and a state dependent reset upon spiking. We call this the PWL-IF model and analyse it at both the single neuron and network level. The techniques and terminology of nonsmooth dynamical systems are used to flesh out the bifurcation structure of the single neuron model, as well as to develop the notion of Lyapunov exponents. We also show how to construct the phase response curve for this system, emphasising that techniques in mathematical neuroscience may also translate back to the field of nonsmooth dynamical systems. The stability of periodic spiking orbits is assessed using a linear stability analysis of spiking times. At the network level we consider linear coupling between voltage

  7. Condensed Antenna Structural Models for Dynamics Analysis

    NASA Technical Reports Server (NTRS)

    Levy, R.

    1985-01-01

    Condensed degree-of-freedom models are compared with large degree-of-freedom finite-element models of a representative antenna-tipping and alidade structure, for both locked and free-rotor configurations. It is shown that: (1) the effective-mass models accurately reproduce the lower-mode natural frequencies of the finite element model; (2) frequency responses for the two types of models are in agreement up to at least 16 rad/s for specific points; and (3) transient responses computed for the same points are in good agreement. It is concluded that the effective-mass model, which best represents the five lower modes of the finite-element model, is a sufficient representation of the structure for future incorporation with a total servo control structure dynamic simulation.

  8. Dynamic occupancy models for explicit colonization processes

    USGS Publications Warehouse

    Broms, Kristin M.; Hooten, Mevin B.; Johnson, Devin S.; Altwegg, Res; Conquest, Loveday

    2016-01-01

    The dynamic, multi-season occupancy model framework has become a popular tool for modeling open populations with occupancies that change over time through local colonizations and extinctions. However, few versions of the model relate these probabilities to the occupancies of neighboring sites or patches. We present a modeling framework that incorporates this information and is capable of describing a wide variety of spatiotemporal colonization and extinction processes. A key feature of the model is that it is based on a simple set of small-scale rules describing how the process evolves. The result is a dynamic process that can account for complicated large-scale features. In our model, a site is more likely to be colonized if more of its neighbors were previously occupied and if it provides more appealing environmental characteristics than its neighboring sites. Additionally, a site without occupied neighbors may also become colonized through the inclusion of a long-distance dispersal process. Although similar model specifications have been developed for epidemiological applications, ours formally accounts for detectability using the well-known occupancy modeling framework. After demonstrating the viability and potential of this new form of dynamic occupancy model in a simulation study, we use it to obtain inference for the ongoing Common Myna (Acridotheres tristis) invasion in South Africa. Our results suggest that the Common Myna continues to enlarge its distribution and its spread via short distance movement, rather than long-distance dispersal. Overall, this new modeling framework provides a powerful tool for managers examining the drivers of colonization including short- vs. long-distance dispersal, habitat quality, and distance from source populations.

  9. Dynamic occupancy models for explicit colonization processes.

    PubMed

    Broms, Kristin M; Hooten, Mevin B; Johnson, Devin S; Altwegg, Res; Conquest, Loveday L

    2016-01-01

    The dynamic, multi-season occupancy model framework has become a popular tool for modeling open populations with occupancies that change over time through local colonizations and extinctions. However, few versions of the model relate these probabilities to the occupancies of neighboring sites or patches. We present a modeling framework that incorporates this information and is capable of describing a wide variety of spatiotemporal colonization and extinction processes. A key feature of the model is that it is based on a simple set of small-scale rules describing how the process evolves. The result is a dynamic process that can account for complicated large-scale features. In our model, a site is more likely to be colonized if more of its neighbors were previously occupied and if it provides more appealing environmental characteristics than its neighboring sites. Additionally, a site without occupied neighbors may also become colonized through the inclusion of a long-distance dispersal process. Although similar model specifications have been developed for epidemiological applications, ours formally accounts for detectability using the well-known occupancy modeling framework. After demonstrating the viability and potential of this new form of dynamic occupancy model in a simulation study, we use it to obtain inference for the ongoing Common Myna (Acridotheres tristis) invasion in South Africa. Our results suggest that the Common Myna continues to enlarge its distribution and its spread via short distance movement, rather than long-distance dispersal. Overall, this new modeling framework provides a powerful tool for managers examining the drivers of colonization including short- vs. long-distance dispersal, habitat quality, and distance from source populations. PMID:27008788

  10. Direct modeling for computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Kun

    2015-06-01

    All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct

  11. Dynamics of macroautophagy: Modeling and oscillatory behavior

    NASA Astrophysics Data System (ADS)

    Han, Kyungreem; Kwon, Hyun Woong; Kang, Hyuk; Kim, Jinwoong; Lee, Myung-Shik; Choi, M. Y.

    2012-02-01

    We propose a model for macroautophagy and study the resulting dynamics of autophagy in a system isolated from its extra-cellular environment. It is found that the intracellular concentrations of autophagosomes and autolysosomes display oscillations with their own natural frequencies. Such oscillatory behaviors, which are interrelated to the dynamics of intracellular ATP, amino acids, and proteins, are consistent with the very recent biological observations. Implications of this theoretical study of autophagy are discussed, with regard to the possibility of guiding molecular studies of autophagy.

  12. SORD: A New Rupture Dynamics Modeling Code

    NASA Astrophysics Data System (ADS)

    Ely, G.; Minster, B.; Day, S.

    2005-12-01

    We report on our progress in validating our rupture dynamics modeling code, capable of dealing with nonplanar faults and surface topography. The method uses a "mimetic" approach to model spontaneous rupture on a fault within a 3D isotropic anelastic solid, wherein the equations of motion are approximated with a second order Support-Operator method on a logically rectangular mesh. Grid cells are not required to be parallelepipeds, however, so that non-rectangular meshes can be supported to model complex regions. However, for areas in the mesh which are in fact rectangular, the code uses a streamlined version of the algorithm that takes advantage of the simplifications of the operators in such areas. The fault itself is modeled using a double node technique, and the rheology on the fault surface is modeled through a slip-weakening, frictional, internal boundary condition. The Support Operator Rupture Dynamics (SORD) code, was prototyped in MATLAB, and all algorithms have been validated against known (including analytical solutions, eg Kostrov, 1964) solutions or previously validated solutions. This validation effort is conducted in the context of the SCEC Dynamic Rupture model validation effort led by R. Archuleta and R. Harris. Absorbing boundaries at the model edges are handled using the perfectly matched layers method (PML) (Olsen & Marcinkovich, 2003). PML is shown to work extremely well on rectangular meshes. We show that our implementation is also effective on non-rectangular meshes under the restriction that the boundary be planar. For validation of the model we use a variety of test cases using two types of meshes: a rectangular mesh and skewed mesh. The skewed mesh amplifies any biases caused by the Support-Operator method on non-rectangular elements. Wave propagation and absorbing boundaries are tested with a spherical wave source. Rupture dynamics on a planar fault are tested against (1) a Kostrov analytical solution, (2) data from foam rubber scale models

  13. The dynamic modelling of a slotted test section

    NASA Technical Reports Server (NTRS)

    Gumas, G.

    1979-01-01

    A mathematical model of the wind tunnel dynamics was developed. The modelling techniques were restricted to the use of one dimensional unsteady flow. The dynamic characteristics of slotted test section incorporated into the model are presented.

  14. Methodology for Uncertainty Analysis of Dynamic Computational Toxicology Models

    EPA Science Inventory

    The task of quantifying the uncertainty in both parameter estimates and model predictions has become more important with the increased use of dynamic computational toxicology models by the EPA. Dynamic toxicological models include physiologically-based pharmacokinetic (PBPK) mode...

  15. Collisional model for granular impact dynamics.

    PubMed

    Clark, Abram H; Petersen, Alec J; Behringer, Robert P

    2014-01-01

    When an intruder strikes a granular material from above, the grains exert a stopping force which decelerates and stops the intruder. Many previous studies have used a macroscopic force law, including a drag force which is quadratic in velocity, to characterize the decelerating force on the intruder. However, the microscopic origins of the force-law terms are still a subject of debate. Here, drawing from previous experiments with photoelastic particles, we present a model which describes the velocity-squared force in terms of repeated collisions with clusters of grains. From our high speed photoelastic data, we infer that "clusters" correspond to segments of the strong force network that are excited by the advancing intruder. The model predicts a scaling relation for the velocity-squared drag force that accounts for the intruder shape. Additionally, we show that the collisional model predicts an instability to rotations, which depends on the intruder shape. To test this model, we perform a comprehensive experimental study of the dynamics of two-dimensional granular impacts on beds of photoelastic disks, with different profiles for the leading edge of the intruder. We particularly focus on a simple and useful case for testing shape effects by using triangular-nosed intruders. We show that the collisional model effectively captures the dynamics of intruder deceleration and rotation; i.e., these two dynamical effects can be described as two different manifestations of the same grain-scale physical processes. PMID:24580216

  16. Electronic continuum model for molecular dynamics simulations.

    PubMed

    Leontyev, I V; Stuchebrukhov, A A

    2009-02-28

    A simple model for accounting for electronic polarization in molecular dynamics (MD) simulations is discussed. In this model, called molecular dynamics electronic continuum (MDEC), the electronic polarization is treated explicitly in terms of the electronic continuum (EC) approximation, while the nuclear dynamics is described with a fixed-charge force field. In such a force-field all atomic charges are scaled to reflect the screening effect by the electronic continuum. The MDEC model is rather similar but not equivalent to the standard nonpolarizable force-fields; the differences are discussed. Of our particular interest is the calculation of the electrostatic part of solvation energy using standard nonpolarizable MD simulations. In a low-dielectric environment, such as protein, the standard MD approach produces qualitatively wrong results. The difficulty is in mistreatment of the electronic polarizability. We show how the results can be much improved using the MDEC approach. We also show how the dielectric constant of the medium obtained in a MD simulation with nonpolarizable force-field is related to the static (total) dielectric constant, which includes both the nuclear and electronic relaxation effects. Using the MDEC model, we discuss recent calculations of dielectric constants of alcohols and alkanes, and show that the MDEC results are comparable with those obtained with the polarizable Drude oscillator model. The applicability of the method to calculations of dielectric properties of proteins is discussed. PMID:19256627

  17. Continuum modeling of cooperative traffic flow dynamics

    NASA Astrophysics Data System (ADS)

    Ngoduy, D.; Hoogendoorn, S. P.; Liu, R.

    2009-07-01

    This paper presents a continuum approach to model the dynamics of cooperative traffic flow. The cooperation is defined in our model in a way that the equipped vehicle can issue and receive a warning massage when there is downstream congestion. Upon receiving the warning massage, the (up-stream) equipped vehicle will adapt the current desired speed to the speed at the congested area in order to avoid sharp deceleration when approaching the congestion. To model the dynamics of such cooperative systems, a multi-class gas-kinetic theory is extended to capture the adaptation of the desired speed of the equipped vehicle to the speed at the downstream congested traffic. Numerical simulations are carried out to show the influence of the penetration rate of the equipped vehicles on traffic flow stability and capacity in a freeway.

  18. Global dynamic modeling of a transmission system

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Qian, W.

    1993-01-01

    The work performed on global dynamic simulation and noise correlation of gear transmission systems at the University of Akron is outlined. The objective is to develop a comprehensive procedure to simulate the dynamics of the gear transmission system coupled with the effects of gear box vibrations. The developed numerical model is benchmarked with results from experimental tests at NASA Lewis Research Center. The modal synthesis approach is used to develop the global transient vibration analysis procedure used in the model. Modal dynamic characteristics of the rotor-gear-bearing system are calculated by the matrix transfer method while those of the gear box are evaluated by the finite element method (NASTRAN). A three-dimensional, axial-lateral coupled bearing model is used to couple the rotor vibrations with the gear box motion. The vibrations between the individual rotor systems are coupled through the nonlinear gear mesh interactions. The global equations of motion are solved in modal coordinates and the transient vibration of the system is evaluated by a variable time-stepping integration scheme. The relationship between housing vibration and resulting noise of the gear transmission system is generated by linear transfer functions using experimental data. A nonlinear relationship of the noise components to the fundamental mesh frequency is developed using the hypercoherence function. The numerically simulated vibrations and predicted noise of the gear transmission system are compared with the experimental results from the gear noise test rig at NASA Lewis Research Center. Results of the comparison indicate that the global dynamic model developed can accurately simulate the dynamics of a gear transmission system.

  19. Global dynamic modeling of a transmission system

    NASA Astrophysics Data System (ADS)

    Choy, F. K.; Qian, W.

    1993-04-01

    The work performed on global dynamic simulation and noise correlation of gear transmission systems at the University of Akron is outlined. The objective is to develop a comprehensive procedure to simulate the dynamics of the gear transmission system coupled with the effects of gear box vibrations. The developed numerical model is benchmarked with results from experimental tests at NASA Lewis Research Center. The modal synthesis approach is used to develop the global transient vibration analysis procedure used in the model. Modal dynamic characteristics of the rotor-gear-bearing system are calculated by the matrix transfer method while those of the gear box are evaluated by the finite element method (NASTRAN). A three-dimensional, axial-lateral coupled bearing model is used to couple the rotor vibrations with the gear box motion. The vibrations between the individual rotor systems are coupled through the nonlinear gear mesh interactions. The global equations of motion are solved in modal coordinates and the transient vibration of the system is evaluated by a variable time-stepping integration scheme. The relationship between housing vibration and resulting noise of the gear transmission system is generated by linear transfer functions using experimental data. A nonlinear relationship of the noise components to the fundamental mesh frequency is developed using the hypercoherence function. The numerically simulated vibrations and predicted noise of the gear transmission system are compared with the experimental results from the gear noise test rig at NASA Lewis Research Center. Results of the comparison indicate that the global dynamic model developed can accurately simulate the dynamics of a gear transmission system.

  20. Development of a dynamic thermal model process

    SciTech Connect

    Smith, F. R.

    1996-04-01

    A dynamic electrical-thermal modeling simulation technique was developed to allow up-front design of thermal and electronic packaging with a high degree of accuracy and confidence. We are developing a hybrid multichip module output driver which controls with power MOSFET driver circuits. These MOSFET circuits will dissipate from 13 to 26 watts per driver in a physical package less than two square inches. The power dissipation plus an operating temperature range of -55{degrees} C to 100{degrees} C makes an accurate thermal package design critical. The project goal was to develop a simulation process to dynamically model the electrical/thermal characteristics of the power MOSFETS using the SABER analog simulator and the ABAQUS finite element simulator. SABER would simulate the electrical characteristics of the multi-chip module design while co-simulation is being done with ABAQUS simulating the solid model thermal characteristics of the MOSFET package. The dynamic parameters, MOSFET power and chip temperature, would be actively passed between simulators to effect a coupled simulator modelling technique. The project required a development of a SABER late for the analog ASIC controller circuit, a dynamic electrical/thermal template for the IRF150 and IRF9130 power MOSFETs, a solid model of the multi-chip module package, FORTRAN code to handle I/Q between and HP755 workstation and SABER, and I/O between CRAY J90 computer and ABAQUS. The simulation model was certified by measured electrical characteristics of the circuits and real time thermal imaging of the output multichip module.

  1. Overview of the GRC Stirling Convertor System Dynamic Model

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Regan, Timothy F.

    2004-01-01

    A Stirling Convertor System Dynamic Model has been developed at the Glenn Research Center for controls, dynamics, and systems development of free-piston convertor power systems. It models the Stirling cycle thermodynamics, heat flow, gas, mechanical, and mounting dynamics, the linear alternator, and the controller. The model's scope extends from the thermal energy input to thermal, mechanical dynamics, and electrical energy out, allowing one to study complex system interactions among subsystems. The model is a non-linear time-domain model containing sub-cycle dynamics, allowing it to simulate transient and dynamic phenomena that other models cannot. The model details and capability are discussed.

  2. Dynamical Field Model of Hand Preference

    NASA Astrophysics Data System (ADS)

    Franceschetti, Donald R.; Cantalupo, Claudio

    2000-11-01

    Dynamical field models of information processing in the nervous system are being developed by a number of groups of psychologists and physicists working together to explain The details of behaviors exhibited by a number of animal species. Here we adapt such a model to the expression of hand preference in a small primate, the bushbaby (Otolemur garnetti) . The model provides a theoretical foundation for the interpretation of an experiment currently underway in which a several of these animals are forced to extend either right or left hand to retrieve a food item from a rotating turntable.

  3. Fluid-dynamical model for antisurfactants

    NASA Astrophysics Data System (ADS)

    Conn, Justin J. A.; Duffy, Brian R.; Pritchard, David; Wilson, Stephen K.; Halling, Peter J.; Sefiane, Khellil

    2016-04-01

    We construct a fluid-dynamical model for the flow of a solution with a free surface at which surface tension acts. This model can describe both classical surfactants, which decrease the surface tension of the solution relative to that of the pure solvent, and antisurfactants (such as many salts when added to water, and small amounts of water when added to alcohol) which increase it. We demonstrate the utility of the model by considering the linear stability of an infinitely deep layer of initially quiescent fluid. In particular, we predict the occurrence of an instability driven by surface-tension gradients, which occurs for antisurfactant, but not for surfactant, solutions.

  4. Informations in Models of Evolutionary Dynamics

    NASA Astrophysics Data System (ADS)

    Rivoire, Olivier

    2016-03-01

    Biological organisms adapt to changes by processing informations from different sources, most notably from their ancestors and from their environment. We review an approach to quantify these informations by analyzing mathematical models of evolutionary dynamics and show how explicit results are obtained for a solvable subclass of these models. In several limits, the results coincide with those obtained in studies of information processing for communication, gambling or thermodynamics. In the most general case, however, information processing by biological populations shows unique features that motivate the analysis of specific models.

  5. Polarizable water model for Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Pivkin, Igor; Peter, Emanuel

    2015-11-01

    Dissipative Particle Dynamics (DPD) is an efficient particle-based method for modeling mesoscopic behavior of fluid systems. DPD forces conserve the momentum resulting in a correct description of hydrodynamic interactions. Polarizability has been introduced into some coarse-grained particle-based simulation methods; however it has not been done with DPD before. We developed a new polarizable coarse-grained water model for DPD, which employs long-range electrostatics and Drude oscillators. In this talk, we will present the model and its applications in simulations of membrane systems, where polarization effects play an essential role.

  6. A computational model for dynamic vision

    NASA Technical Reports Server (NTRS)

    Moezzi, Saied; Weymouth, Terry E.

    1990-01-01

    This paper describes a novel computational model for dynamic vision which promises to be both powerful and robust. Furthermore the paradigm is ideal for an active vision system where camera vergence changes dynamically. Its basis is the retinotopically indexed object-centered encoding of the early visual information. Specifically, the relative distances of objects to a set of referents is encoded in image registered maps. To illustrate the efficacy of the method, it is applied to the problem of dynamic stereo vision. Integration of depth information over multiple frames obtained by a moving robot generally requires precise information about the relative camera position from frame to frame. Usually, this information can only be approximated. The method facilitates the integration of depth information without direct use or knowledge of camera motion.

  7. Structural system identification: Structural dynamics model validation

    SciTech Connect

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  8. Dynamic Multicriteria Evaluation of Conceptual Hydrological Models

    NASA Astrophysics Data System (ADS)

    de Vos, N. J.; Rientjes, T. H.; Fenicia, F.; Gupta, H. V.

    2007-12-01

    Accurate and precise forecasts of river streamflows are crucial for successful management of water resources and under the threat of hydrological extremes such as floods and droughts. Conceptual rainfall-runoff models are the most popular approach in flood forecasting. However, the calibration and evaluation of such models is often oversimplified by the use of performance statistics that largely ignore the dynamic character of a watershed system. This research aims to find novel ways of model evaluation by identifying periods of hydrologic similarity and customizing evaluation within each period using multiple criteria. A dynamic approach to hydrologic model identification, calibration and testing can be realized by applying clustering algorithms (e.g., Self-Organizing Map, Fuzzy C-means algorithm) to hydrological data. These algorithms are able to identify clusters in the data that represent periods of hydrological similarity. In this way, dynamic catchment system behavior can be simplified within the clusters that are identified. Although clustering requires a number of subjective choices, new insights into the hydrological functioning of a catchment can be obtained. Finally, separate model multi-criteria calibration and evaluation is performed for each of the clusters. Such a model evaluation procedure shows to be reliable and gives much-needed feedback on exactly where certain model structures fail. Several clustering algorithms were tested on two data sets of meso-scale and large-scale catchments. The results show that the clustering algorithms define categories that reflect hydrological process understanding: dry/wet seasons, rising/falling hydrograph limbs, precipitation-driven/ non-driven periods, etc. The results of various clustering algorithms are compared and validated using expert knowledge. Calibration results on a conceptual hydrological model show that the common practice of single-criteria calibration over the complete time series fails to perform

  9. Dynamic alignment models for neural coding.

    PubMed

    Kollmorgen, Sepp; Hahnloser, Richard H R

    2014-03-01

    Recently, there have been remarkable advances in modeling the relationships between the sensory environment, neuronal responses, and behavior. However, most models cannot encompass variable stimulus-response relationships such as varying response latencies and state or context dependence of the neural code. Here, we consider response modeling as a dynamic alignment problem and model stimulus and response jointly by a mixed pair hidden Markov model (MPH). In MPHs, multiple stimulus-response relationships (e.g., receptive fields) are represented by different states or groups of states in a Markov chain. Each stimulus-response relationship features temporal flexibility, allowing modeling of variable response latencies, including noisy ones. We derive algorithms for learning of MPH parameters and for inference of spike response probabilities. We show that some linear-nonlinear Poisson cascade (LNP) models are a special case of MPHs. We demonstrate the efficiency and usefulness of MPHs in simulations of both jittered and switching spike responses to white noise and natural stimuli. Furthermore, we apply MPHs to extracellular single and multi-unit data recorded in cortical brain areas of singing birds to showcase a novel method for estimating response lag distributions. MPHs allow simultaneous estimation of receptive fields, latency statistics, and hidden state dynamics and so can help to uncover complex stimulus response relationships that are subject to variable timing and involve diverse neural codes. PMID:24625448

  10. Efficient gradient computation for dynamical models

    PubMed Central

    Sengupta, B.; Friston, K.J.; Penny, W.D.

    2014-01-01

    Data assimilation is a fundamental issue that arises across many scales in neuroscience — ranging from the study of single neurons using single electrode recordings to the interaction of thousands of neurons using fMRI. Data assimilation involves inverting a generative model that can not only explain observed data but also generate predictions. Typically, the model is inverted or fitted using conventional tools of (convex) optimization that invariably extremise some functional — norms, minimum descriptive length, variational free energy, etc. Generally, optimisation rests on evaluating the local gradients of the functional to be optimized. In this paper, we compare three different gradient estimation techniques that could be used for extremising any functional in time — (i) finite differences, (ii) forward sensitivities and a method based on (iii) the adjoint of the dynamical system. We demonstrate that the first-order gradients of a dynamical system, linear or non-linear, can be computed most efficiently using the adjoint method. This is particularly true for systems where the number of parameters is greater than the number of states. For such systems, integrating several sensitivity equations – as required with forward sensitivities – proves to be most expensive, while finite-difference approximations have an intermediate efficiency. In the context of neuroimaging, adjoint based inversion of dynamical causal models (DCMs) can, in principle, enable the study of models with large numbers of nodes and parameters. PMID:24769182

  11. Cellular automata modelling of biomolecular networks dynamics.

    PubMed

    Bonchev, D; Thomas, S; Apte, A; Kier, L B

    2010-01-01

    The modelling of biological systems dynamics is traditionally performed by ordinary differential equations (ODEs). When dealing with intracellular networks of genes, proteins and metabolites, however, this approach is hindered by network complexity and the lack of experimental kinetic parameters. This opened the field for other modelling techniques, such as cellular automata (CA) and agent-based modelling (ABM). This article reviews this emerging field of studies on network dynamics in molecular biology. The basics of the CA technique are discussed along with an extensive list of related software and websites. The application of CA to networks of biochemical reactions is exemplified in detail by the case studies of the mitogen-activated protein kinase (MAPK) signalling pathway, the FAS-ligand (FASL)-induced and Bcl-2-related apoptosis. The potential of the CA method to model basic pathways patterns, to identify ways to control pathway dynamics and to help in generating strategies to fight with cancer is demonstrated. The different line of CA applications presented includes the search for the best-performing network motifs, an analysis of importance for effective intracellular signalling and pathway cross-talk. PMID:20373215

  12. Modelling Holocene peatland and permafrost dynamics with the LPJ-GUESS dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Chaudhary, Nitin; Miller, Paul A.; Smith, Benjamin

    2016-04-01

    Dynamic global vegetation models (DGVMs) are an important platform to study past, present and future vegetation patterns together with associated biogeochemical cycles and climate feedbacks (e.g. Sitch et al. 2008, Smith et al. 2001). However, very few attempts have been made to simulate peatlands using DGVMs (Kleinen et al. 2012, Tang et al. 2015, Wania et al. 2009a). In the present study, we have improved the peatland dynamics in the state-of-the-art dynamic vegetation model (LPJ-GUESS) in order to understand the long-term evolution of northern peatland ecosystems and to assess the effect of changing climate on peatland carbon balance. We combined a dynamic multi-layer approach (Frolking et al. 2010, Hilbert et al. 2000) with soil freezing-thawing functionality (Ekici et al. 2015, Wania et al. 2009a) in LPJ-GUESS. The new model is named LPJ-GUESS Peatland (LPJ-GUESS-P) (Chaudhary et al. in prep). The model was calibrated and tested at the sub-arctic mire in Stordalen, Sweden, and the model was able to capture the reported long-term vegetation dynamics and peat accumulation patterns in the mire (Kokfelt et al. 2010). For evaluation, the model was run at 13 grid points across a north to south transect in Europe. The modelled peat accumulation values were found to be consistent with the published data for each grid point (Loisel et al. 2014). Finally, a series of additional experiments were carried out to investigate the vulnerability of high-latitude peatlands to climate change. We find that the Stordalen mire will sequester more carbon in the future due to milder and wetter climate conditions, longer growing seasons, and the carbon fertilization effect. References: - Chaudhary et al. (in prep.). Modelling Holocene peatland and permafrost dynamics with the LPJ-GUESS dynamic vegetation model - Ekici A, et al. 2015. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes. The Cryosphere 9: 1343

  13. Dynamic Modeling of an Evapotranspiration Cap

    SciTech Connect

    Jacob J. Jacobson; Steven Piet; Rafael Soto; Gerald Sehlke; Harold Heydt; John Visser

    2005-10-01

    The U.S. Department of Energy is scheduled to design and install hundreds of landfill caps/barriers over the next several decades and these caps will have a design life expectancy of up to 1,000 years. Other landfill caps with 30 year design lifetimes are reaching the end of their original design life; the changes to these caps need to be understood to provide a basis for lifetime extension. Defining the attributes that make a successful cap (one that isolates the waste from the environment) is crucial to these efforts. Because cap systems such as landfill caps are dynamic in nature, it is impossible to understand, monitor, and update lifetime predictions without understanding the dynamics of cap degradation, which is most often due to multiple interdependent factors rather than isolated independent events. In an attempt to understand the dynamics of cap degradation, a computer model using system dynamics is being developed to capture the complex behavior of an evapotranspiration cap. The specific objectives of this project are to capture the dynamic, nonlinear feedback loop structures underlying an evapotranspiration cap and, through computer simulation, gain a better understanding of long-term behavior, influencing factors, and, ultimately, long-term cap performance.

  14. Activated Dynamics in Dense Model Nanocomposites

    NASA Astrophysics Data System (ADS)

    Xie, Shijie; Schweizer, Kenneth

    The nonlinear Langevin equation approach is applied to investigate the ensemble-averaged activated dynamics of small molecule liquids (or disconnected segments in a polymer melt) in dense nanocomposites under model isobaric conditions where the spherical nanoparticles are dynamically fixed. Fully thermalized and quenched-replica integral equation theory methods are employed to investigate the influence on matrix dynamics of the equilibrium and nonequilibrium nanocomposite structure, respectively. In equilibrium, the miscibility window can be narrow due to depletion and bridging attraction induced phase separation which limits the study of activated dynamics to regimes where the barriers are relatively low. In contrast, by using replica integral equation theory, macroscopic demixing is suppressed, and the addition of nanoparticles can induce much slower activated matrix dynamics which can be studied over a wide range of pure liquid alpha relaxation times, interfacial attraction strengths and ranges, particle sizes and loadings, and mixture microstructures. Numerical results for the mean activated relaxation time, transient localization length, matrix elasticity and kinetic vitrification in the nanocomposite will be presented.

  15. Modelling the mechanoreceptor’s dynamic behaviour

    PubMed Central

    Song, Zhuoyi; Banks, Robert W; Bewick, Guy S

    2015-01-01

    All sensory receptors adapt, i.e. they constantly adjust their sensitivity to external stimuli to match the current demands of the natural environment. Electrophysiological responses of sensory receptors from widely different modalities seem to exhibit common features related to adaptation, and these features can be used to examine the underlying sensory transduction mechanisms. Among the principal senses, mechanosensation remains the least understood at the cellular level. To gain greater insights into mechanosensory signalling, we investigated if mechanosensation displayed adaptive dynamics that could be explained by similar biophysical mechanisms in other sensory modalities. To do this, we adapted a fly photoreceptor model to describe the primary transduction process for a stretch-sensitive mechanoreceptor, taking into account the viscoelastic properties of the accessory muscle fibres and the biophysical properties of known mechanosensitive channels (MSCs). The model’s output is in remarkable agreement with the electrical properties of a primary ending in an isolated decapsulated spindle; ramp-and-hold stretch evokes a characteristic pattern of potential change, consisting of a large dynamic depolarization during the ramp phase and a smaller static depolarization during the hold phase. The initial dynamic component is likely to be caused by a combination of the mechanical properties of the muscle fibres and a refractory state in the MSCs. Consistent with the literature, the current model predicts that the dynamic component is due to a rapid stress increase during the ramp. More novel predictions from the model are the mechanisms to explain the initial peak in the dynamic component. At the onset of the ramp, all MSCs are sensitive to external stimuli, but as they become refractory (inactivated), fewer MSCs are able to respond to the continuous stretch, causing a sharp decrease after the peak response. The same mechanism could contribute a faster component in

  16. Dynamical Causal Modeling from a Quantum Dynamical Perspective

    NASA Astrophysics Data System (ADS)

    Demiralp, Emre; Demiralp, Metin

    2010-09-01

    Recent research suggests that any set of first order linear vector ODEs can be converted to a set of specific vector ODEs adhering to what we have called "Quantum Harmonical Form (QHF)". QHF has been developed using a virtual quantum multi harmonic oscillator system where mass and force constants are considered to be time variant and the Hamiltonian is defined as a conic structure over positions and momenta to conserve the Hermiticity. As described in previous works, the conversion to QHF requires the matrix coefficient of the first set of ODEs to be a normal matrix. In this paper, this limitation is circumvented using a space extension approach expanding the potential applicability of this method. Overall, conversion to QHF allows the investigation of a set of ODEs using mathematical tools available to the investigation of the physical concepts underlying quantum harmonic oscillators. The utility of QHF in the context of dynamical systems and dynamical causal modeling in behavioral and cognitive neuroscience is briefly discussed.

  17. Dynamical Causal Modeling from a Quantum Dynamical Perspective

    SciTech Connect

    Demiralp, Emre; Demiralp, Metin

    2010-09-30

    Recent research suggests that any set of first order linear vector ODEs can be converted to a set of specific vector ODEs adhering to what we have called ''Quantum Harmonical Form (QHF)''. QHF has been developed using a virtual quantum multi harmonic oscillator system where mass and force constants are considered to be time variant and the Hamiltonian is defined as a conic structure over positions and momenta to conserve the Hermiticity. As described in previous works, the conversion to QHF requires the matrix coefficient of the first set of ODEs to be a normal matrix. In this paper, this limitation is circumvented using a space extension approach expanding the potential applicability of this method. Overall, conversion to QHF allows the investigation of a set of ODEs using mathematical tools available to the investigation of the physical concepts underlying quantum harmonic oscillators. The utility of QHF in the context of dynamical systems and dynamical causal modeling in behavioral and cognitive neuroscience is briefly discussed.

  18. Identification of helicopter rotor dynamic models

    NASA Technical Reports Server (NTRS)

    Molusis, J. A.; Bar-Shalom, Y.; Warmbrodt, W.

    1983-01-01

    A recursive, extended Kalman-filter approach is applied to the identifiction of rotor damping levels of representative helicopter dynamic systems. The general formulation of the approach is presented in the context of a typically posed stochastic estimation problem, and the method is analytically applied to determining the damping levels of a coupled rotor-body system. The identified damping covergence characteristics are studied for sensitivity to both constant-coefficient and periodic-coefficient measurement models, process-noise covariance levels, and specified initial estimates of the rotor-system damping. A second application of the method to identifying the plant model for a highly damped, isolated flapping blade with a constant-coefficient state model (hover) and a periodic-coefficient state model (forward flight) is also investigated. The parameter-identification capability is evaluated for the effect of periodicity on the plant model coefficients and the influence of different measurement noise levels.

  19. The dynamic radiation environment assimilation model (DREAM)

    SciTech Connect

    Reeves, Geoffrey D; Koller, Josef; Tokar, Robert L; Chen, Yue; Henderson, Michael G; Friedel, Reiner H

    2010-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate results than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.

  20. Mathematical Models for HIV Transmission Dynamics

    PubMed Central

    Cassels, Susan; Clark, Samuel J.; Morris, Martina

    2012-01-01

    Summary HIV researchers have long appreciated the need to understand the social and behavioral determinants of HIV-related risk behavior, but the cumulative impact of individual behaviors on population-level HIV outcomes can be subtle and counterintuitive, and the methods for studying this are rarely part of a traditional social science or epidemiology training program. Mathematical models provide a way to examine the potential effects of the proximate biologic and behavioral determinants of HIV transmission dynamics, alone and in combination. The purpose of this article is to show how mathematical modeling studies have contributed to our understanding of the dynamics and disparities in the global spread of HIV. Our aims are to demonstrate the value that these analytic tools have for social and behavioral sciences in HIV prevention research, to identify gaps in the current literature, and to suggest directions for future research. PMID:18301132

  1. Dynamical models of hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Mousseau, Normand; Lewis, Laurent J.

    1991-04-01

    The results of our molecular-dynamics simulation of bulk hydrogenated amorphous silicon using empirical potentials are presented. More specifically, we discuss a dynamical procedure for incorporating hydrogen into a pure amorphous silicon matrix, which is derived from the concept of floating bonds put forward by Pantelides [Phys. Rev. Lett. 57, 2979 (1986)]. The structures resulting from this model are compared with those obtained with use of a static approach recently developed by us. This method exhibits considerable improvement over the previous one and, in particular, unambiguously reveals the strain-relieving role of hydrogen. While the former model leads to substantial overcoordination, the present one results in almost perfect tetrahedral bonding, with an average coordination number Z=4.03, the lowest value ever achieved using a Stillinger-Weber potential. The simulations are also used to calculate the vibrational densities of states, which are found to be in good accord with corresponding neutron-scattering measurements.

  2. Dynamic plasmapause model based on THEMIS measurements

    NASA Astrophysics Data System (ADS)

    Liu, X.; Liu, W.; Cao, J. B.; Fu, H. S.; Yu, J.; Li, X.

    2015-12-01

    This paper presents a dynamic plasmapause location model established based on 5 years of Time History of Events and Macroscale Interactions during Substorms (THEMIS) measurements from 2009 to 2013. In total, 5878 plasmapause crossing events are identified, sufficiently covering all 24 magnetic local time (MLT) sectors. Based on this plasmapause crossing database, we investigate the correlations between plasmapause locations with solar wind parameters and geomagnetic indices. Input parameters for the best fits are obtained for different MLT sectors, and finally, we choose five input parameters to build a plasmapause location model, including 5 min-averaged SYM-H, AL, and AU indices as well as hourly-averaged AE and Kp indices. two out-of-sample comparisons on the evolution of the plasmapause is shown during two magnetic storms, demonstrating good agreement between model results and observations. Two major advantages are achieved by this model. First, this model provides plasmapause locations at 24 MLT sectors, still providing good consistency with observations. Second, this model is able to reproduce dynamic variations of the plasmapause on timescales as short as 5 min.

  3. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    NASA Astrophysics Data System (ADS)

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multicomponent metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamical aspects of a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulations with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (self diffusion coefficient, self relaxation time, and shear viscosity) bordered at Tx˜1300 K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs well above the melting point of the system (Tm˜900 K) in the equilibrium liquid state; and the crossover temperature Tx is roughly twice of the glass-transition temperature of the system (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a nonparametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter α2 and the four-point correlation function χ4.

  4. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    DOE PAGESBeta

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at Tx ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (Tm ~ 900K), and the crossover temperature ismore » roughly twice of the glass-transition temperature (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.« less

  5. Molecular dynamics modelling of solidification in metals

    SciTech Connect

    Boercker, D.B.; Belak, J.; Glosli, J.

    1997-12-31

    Molecular dynamics modeling is used to study the solidification of metals at high pressure and temperature. Constant pressure MD is applied to a simulation cell initially filled with both solid and molten metal. The solid/liquid interface is tracked as a function of time, and the data are used to estimate growth rates of crystallites at high pressure and temperature in Ta and Mg.

  6. Modeling the dynamics of nonlinear inductor circuits

    NASA Astrophysics Data System (ADS)

    Deane, Jonathan H. B.

    1994-09-01

    The Jiles-Atherton (J-A) model is applied to the problem of describing the dynamics of a nonlinear circuit driven by a square wave voltage source and comprising a linear resistor and capacitor in series with a nonlinear inductor, whose core displays saturation and hysteresis. The presence of hysteresis is shown to increase the order of the circuit by one. Period-multiplication and chaos are observed and excellent agreement is obtained between experiment and simulation.

  7. Dynamic analysis of a parasite population model

    NASA Astrophysics Data System (ADS)

    Sibona, G. J.; Condat, C. A.

    2002-03-01

    We study the dynamics of a model that describes the competitive interaction between an invading species (a parasite) and its antibodies in an living being. This model was recently used to examine the dynamical competition between Tripanosoma cruzi and its antibodies during the acute phase of Chagas' disease. Depending on the antibody properties, the model yields three types of outcomes, corresponding, respectively, to healing, chronic disease, and host death. Here, we study the dynamics of the parasite-antibody interaction with the help of simulations, obtaining phase trajectories and phase diagrams for the system. We show that, under certain conditions, the size of the parasite inoculation can be crucial for the infection outcome and that a retardation in the stimulated production of an antibody species may result in the parasite gaining a definitive advantage. We also find a criterion for the relative sizes of the parameters that are required if parasite-generated decoys are indeed to help the invasion. Decoys may also induce a qualitatively different outcome: a limit cycle for the antibody-parasite population phase trajectories.

  8. A dynamic model of thundercloud electric fields

    NASA Technical Reports Server (NTRS)

    Nisbet, J. S.

    1983-01-01

    A description is given of the first results obtained with a new type of dynamic electrical model of a thundercloud that allows the charge rearrangement produced in arc breakdown, as well as the conduction and displacement currents, to be calculated with realistic generator configurations. The model demonstrates the great complexity of behavior of thunderclouds owing to the interaction of the nonlinear breakdown mechanisms, the energy stored in the electric field, and a conductivity that varies with altitude. It is also seen that dynamic charge distributions and electric fields are quite different from static distributions. It is noted that these differences affect the initial conditions before and after lightning strokes. The conduction current density to the ionosphere is very much larger in the dynamic cases than in static simulations. Such basic properties of thunderclouds as the production of cloud-to-ground strokes are seen as compatible only with a very limited range of thundercloud models. Another finding is that coronal and convection currents cause the electric fields at the surface to be much smaller than they would be in their absence.

  9. Adaptive dynamics for physiologically structured population models.

    PubMed

    Durinx, Michel; Metz, J A J Hans; Meszéna, Géza

    2008-05-01

    We develop a systematic toolbox for analyzing the adaptive dynamics of multidimensional traits in physiologically structured population models with point equilibria (sensu Dieckmann et al. in Theor. Popul. Biol. 63:309-338, 2003). Firstly, we show how the canonical equation of adaptive dynamics (Dieckmann and Law in J. Math. Biol. 34:579-612, 1996), an approximation for the rate of evolutionary change in characters under directional selection, can be extended so as to apply to general physiologically structured population models with multiple birth states. Secondly, we show that the invasion fitness function (up to and including second order terms, in the distances of the trait vectors to the singularity) for a community of N coexisting types near an evolutionarily singular point has a rational form, which is model-independent in the following sense: the form depends on the strategies of the residents and the invader, and on the second order partial derivatives of the one-resident fitness function at the singular point. This normal form holds for Lotka-Volterra models as well as for physiologically structured population models with multiple birth states, in discrete as well as continuous time and can thus be considered universal for the evolutionary dynamics in the neighbourhood of singular points. Only in the case of one-dimensional trait spaces or when N = 1 can the normal form be reduced to a Taylor polynomial. Lastly we show, in the form of a stylized recipe, how these results can be combined into a systematic approach for the analysis of the (large) class of evolutionary models that satisfy the above restrictions. PMID:17943289

  10. DYNAMICAL MODELING OF GALAXY MERGERS USING IDENTIKIT

    SciTech Connect

    Privon, G. C.; Evans, A. S.; Barnes, J. E.; Hibbard, J. E.; Yun, M. S.; Mazzarella, J. M.; Armus, L.; Surace, J.

    2013-07-10

    We present dynamical models of four interacting systems: NGC 5257/8, The Mice, the Antennae, and NGC 2623. The parameter space of the encounters are constrained using the Identikit model-matching and visualization tool. Identikit utilizes hybrid N-body and test particle simulations to enable rapid exploration of the parameter space of galaxy mergers. The Identikit-derived matches of these systems are reproduced with self-consistent collisionless simulations which show very similar results. The models generally reproduce the observed morphology and H I kinematics of the tidal tails in these systems with reasonable properties inferred for the progenitor galaxies. The models presented here are the first to appear in the literature for NGC 5257/8 and NGC 2623, and The Mice and the Antennae are compared with previously published models. Based on the assumed mass model and our derived initial conditions, the models indicate that the four systems are currently being viewed 175-260 Myr after first passage and cover a wide range of merger stages. In some instances there are mismatches between the models and the data (e.g., in the length of a tail); these are likely due to our adoption of a single mass model for all galaxies. Despite the use of a single mass model, these results demonstrate the utility of Identikit in constraining the parameter space for galaxy mergers when applied to real data.

  11. Approaches for modeling magnetic nanoparticle dynamics

    PubMed Central

    Reeves, Daniel B; Weaver, John B

    2014-01-01

    Magnetic nanoparticles are useful biological probes as well as therapeutic agents. There have been several approaches used to model nanoparticle magnetization dynamics for both Brownian as well as Néel rotation. The magnetizations are often of interest and can be compared with experimental results. Here we summarize these approaches including the Stoner-Wohlfarth approach, and stochastic approaches including thermal fluctuations. Non-equilibrium related temperature effects can be described by a distribution function approach (Fokker-Planck equation) or a stochastic differential equation (Langevin equation). Approximate models in several regimes can be derived from these general approaches to simplify implementation. PMID:25271360

  12. A dynamical model for bark beetle outbreaks.

    PubMed

    Křivan, Vlastimil; Lewis, Mark; Bentz, Barbara J; Bewick, Sharon; Lenhart, Suzanne M; Liebhold, Andrew

    2016-10-21

    Tree-killing bark beetles are major disturbance agents affecting coniferous forest ecosystems. The role of environmental conditions on driving beetle outbreaks is becoming increasingly important as global climatic change alters environmental factors, such as drought stress, that, in turn, govern tree resistance. Furthermore, dynamics between beetles and trees are highly nonlinear, due to complex aggregation behaviors exhibited by beetles attacking trees. Models have a role to play in helping unravel the effects of variable tree resistance and beetle aggregation on bark beetle outbreaks. In this article we develop a new mathematical model for bark beetle outbreaks using an analogy with epidemiological models. Because the model operates on several distinct time scales, singular perturbation methods are used to simplify the model. The result is a dynamical system that tracks populations of uninfested and infested trees. A limiting case of the model is a discontinuous function of state variables, leading to solutions in the Filippov sense. The model assumes an extensive seed-bank so that tree recruitment is possible even if trees go extinct. Two scenarios are considered for immigration of new beetles. The first is a single tree stand with beetles immigrating from outside while the second considers two forest stands with beetle dispersal between them. For the seed-bank driven recruitment rate, when beetle immigration is low, the forest stand recovers to a beetle-free state. At high beetle immigration rates beetle populations approach an endemic equilibrium state. At intermediate immigration rates, the model predicts bistability as the forest can be in either of the two equilibrium states: a healthy forest, or a forest with an endemic beetle population. The model bistability leads to hysteresis. Interactions between two stands show how a less resistant stand of trees may provide an initial toe-hold for the invasion, which later leads to a regional beetle outbreak in the

  13. Dynamic stall simulation including turbulence modeling

    SciTech Connect

    Allet, A.; Halle, S.; Paraschivoiu, I.

    1995-09-01

    The objective of this study is to investigate the two-dimensional unsteady flow around an airfoil undergoing a Darrieus motion in dynamic stall conditions. For this purpose, a numerical solver based on the solution of the Reynolds-averaged Navier-Stokes equations expressed in a streamfunction-vorticity formulation in a non-inertial frame of reference was developed. The governing equations are solved by the streamline upwind Petrov-Galerkin finite element method (FEM). Temporal discretization is achieved by second-order-accurate finite differences. The resulting global matrix system is linearized by the Newton method and solved by the generalized minimum residual method (GMRES) with an incomplete triangular factorization preconditioning (ILU). Turbulence effects are introduced in the solver by an eddy viscosity model. The investigation centers on an evaluation of the possibilities of several turbulence models, including the algebraic Cebeci-Smith model (CSM) and the nonequilibrium Johnson-King model (JKM). In an effort to predict dynamic stall features on rotating airfoils, first the authors present some testing results concerning the performance of both turbulence models for the flat plate case. Then, computed flow structure together with aerodynamic coefficients for a NACA 0015 airfoil in Darrieus motion under stall conditions are presented.

  14. New concepts for dynamic plant uptake models.

    PubMed

    Rein, A; Legind, C N; Trapp, S

    2011-03-01

    Models for the prediction of chemical uptake into plants are widely applied tools for human and wildlife exposure assessment, pesticide design and for environmental biotechnology such as phytoremediation. Steady-state considerations are often applied, because they are simple and have a small data need. However, often the emission pattern is non-steady. Examples are pesticide spraying, or the application of manure and sewage sludge on agricultural fields. In these scenarios, steady-state solutions are not valid, and dynamic simulation is required. We compared different approaches for dynamic modelling of plant uptake in order to identify relevant processes and timescales of processes in the soil-plant-air system. Based on the outcome, a new model concept for plant uptake models was developed, approximating logistic growth and coupling transpiration to growing plant mass. The underlying system of differential equations was solved analytically for the inhomogenous case, i.e. for constant input. By superposition of the results of n periods, changes in emission and input data between periods are considered. This combination allows to mimic most input functions that are relevant in practice. The model was set up, parameterized and tested for uptake into growing crops. The outcome was compared with a numerical solution, to verify the mathematical structure. PMID:21391147

  15. Restoration of the Potosi Dynamic Model 2010

    SciTech Connect

    Adushita, Yasmin; Leetaru, Hannes

    2014-09-30

    In topical Report DOE/FE0002068-1 [2] technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the VW1 and the CCS1 wells, structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for Potosi Formation. Intention was for two million tons per annum (MTPA) of CO2 to be injected for 20 years. In this Task the 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010" in this report) was re-run using a new injection scenario; 3.2 MTPA for 30 years. The extent of the Potosi Dynamic Model 2010, however, appeared too small for the new injection target. It was not sufficiently large enough to accommodate the evolution of the plume. Also, it might have overestimated the injection capacity by enhancing too much the pressure relief due to the relatively close proximity between the injector and the infinite acting boundaries. The new model, Potosi Dynamic Model 2013a, was built by extending the Potosi Dynamic Model 2010 grid to 30 miles x 30 miles (48 km by 48 km), while preserving all property modeling workflows and layering. This model was retained as the base case. Potosi Dynamic Model 2013.a gives an average CO2 injection rate of 1.4 MTPA and cumulative injection of 43 Mt in 30 years, which corresponds to 45% of the injection target. This implies that according to this preliminary model, a minimum of three (3) wells could be required to achieve the injection target. The injectivity evaluation of the Potosi formation will be revisited in topical Report 15 during which more data will be integrated in the modeling exercise. A vertical flow performance evaluation could be considered for the succeeding task to determine the appropriate tubing size, the required injection tubing head pressure (THP) and to investigate whether the corresponding well injection rate

  16. Transition matrix model for evolutionary game dynamics

    NASA Astrophysics Data System (ADS)

    Ermentrout, G. Bard; Griffin, Christopher; Belmonte, Andrew

    2016-03-01

    We study an evolutionary game model based on a transition matrix approach, in which the total change in the proportion of a population playing a given strategy is summed directly over contributions from all other strategies. This general approach combines aspects of the traditional replicator model, such as preserving unpopulated strategies, with mutation-type dynamics, which allow for nonzero switching to unpopulated strategies, in terms of a single transition function. Under certain conditions, this model yields an endemic population playing non-Nash-equilibrium strategies. In addition, a Hopf bifurcation with a limit cycle may occur in the generalized rock-scissors-paper game, unlike the replicator equation. Nonetheless, many of the Folk Theorem results are shown to hold for this model.

  17. Dynamical models of happiness with fractional order

    NASA Astrophysics Data System (ADS)

    Song, Lei; Xu, Shiyun; Yang, Jianying

    2010-03-01

    This present study focuses on a dynamical model of happiness described through fractional-order differential equations. By categorizing people of different personality and different impact factor of memory (IFM) with different set of model parameters, it is demonstrated via numerical simulations that such fractional-order models could exhibit various behaviors with and without external circumstance. Moreover, control and synchronization problems of this model are discussed, which correspond to the control of emotion as well as emotion synchronization in real life. This study is an endeavor to combine the psychological knowledge with control problems and system theories, and some implications for psychotherapy as well as hints of a personal approach to life are both proposed.

  18. Transition matrix model for evolutionary game dynamics.

    PubMed

    Ermentrout, G Bard; Griffin, Christopher; Belmonte, Andrew

    2016-03-01

    We study an evolutionary game model based on a transition matrix approach, in which the total change in the proportion of a population playing a given strategy is summed directly over contributions from all other strategies. This general approach combines aspects of the traditional replicator model, such as preserving unpopulated strategies, with mutation-type dynamics, which allow for nonzero switching to unpopulated strategies, in terms of a single transition function. Under certain conditions, this model yields an endemic population playing non-Nash-equilibrium strategies. In addition, a Hopf bifurcation with a limit cycle may occur in the generalized rock-scissors-paper game, unlike the replicator equation. Nonetheless, many of the Folk Theorem results are shown to hold for this model. PMID:27078323

  19. AFDM: An Advanced Fluid-Dynamics Model

    SciTech Connect

    Bohl, W.R.; Parker, F.R. ); Wilhelm, D. . Inst. fuer Neutronenphysik und Reaktortechnik); Berthier, J. ); Goutagny, L. . Inst. de Protection et de Surete Nucleaire); Ninokata,

    1990-09-01

    AFDM, or the Advanced Fluid-Dynamics Model, is a computer code that investigates new approaches simulating the multiphase-flow fluid-dynamics aspects of severe accidents in fast reactors. The AFDM formalism starts with differential equations similar to those in the SIMMER-II code. These equations are modified to treat three velocity fields and supplemented with a variety of new models. The AFDM code has 12 topologies describing what material contacts are possible depending on the presence or absence of a given material in a computational cell, on the dominant liquid, and on the continuous phase. Single-phase, bubbly, churn-turbulent, cellular, and dispersed flow regimes are permitted for the pool situations modeled. Virtual mass terms are included for vapor in liquid-continuous flow. Interfacial areas between the continuous and discontinuous phases are convected to allow some tracking of phenomenological histories. Interfacial areas are also modified by models of nucleation, dynamic forces, turbulence, flashing, coalescence, and mass transfer. Heat transfer is generally treated using engineering correlations. Liquid-vapor phase transitions are handled with the nonequilibrium, heat-transfer-limited model, whereas melting and freezing processes are based on equilibrium considerations. Convection is treated using a fractional-step method of time integration, including a semi-implicit pressure iteration. A higher-order differencing option is provided to control numerical diffusion. The Los Alamos SESAME equation-of-state has been implemented using densities and temperatures as the independent variables. AFDM programming has vectorized all computational loops consistent with the objective of producing an exportable code. 24 refs., 4 figs.

  20. An efficient model of drillstring dynamics

    NASA Astrophysics Data System (ADS)

    Butlin, T.; Langley, R. S.

    2015-11-01

    High amplitude vibration regimes can cause significant damage to oilwell drillstrings: torsional stick-slip oscillation, forward whirl and backward whirl are each associated with different kinds of damage. There is a need for models of drillstring dynamics that can predict this variety of phenomena that are: efficient enough to carry out parametric studies; simple enough to provide insight into the underlying physics, and which retain sufficient detail to correlate to real drillstrings. The modelling strategy presented in this paper attempts to balance these requirements. It includes the dynamics of the full length of the drillstring over a wide bandwidth but assumes that the main nonlinear effects are due to spatially localised regions of strong nonlinearity, for example at the drillbit cutting interface and at stabilisers where the borehole wall clearance is smallest. The equations of motion can be formed in terms of this reduced set of degrees of freedom, coupled to the nonlinear contact laws and solved by time-domain integration. Two implementations of this approach are presented, using (1) digital filters and (2) a finite element model to describe the linear dynamics. Choosing a sampling period that is less than the group delay between nonlinear degrees of freedom results in a decoupled set of equations that can be solved very efficiently. Several cases are presented which demonstrate a variety of phenomena, including stick-slip oscillation; forward whirl and backward whirl. Parametric studies are shown which reveal the conditions which lead to high amplitude vibration regimes, and an analytic regime boundary is derived for torsional stick-slip oscillation. The digital filter and finite element models are shown to be in good agreement and are similarly computationally efficient. The digital filter approach has the advantage of more intuitive interpretation, while the finite element model is more readily implemented using existing software packages.

  1. Dynamic geometry, brain function modeling, and consciousness.

    PubMed

    Roy, Sisir; Llinás, Rodolfo

    2008-01-01

    Pellionisz and Llinás proposed, years ago, a geometric interpretation towards understanding brain function. This interpretation assumes that the relation between the brain and the external world is determined by the ability of the central nervous system (CNS) to construct an internal model of the external world using an interactive geometrical relationship between sensory and motor expression. This approach opened new vistas not only in brain research but also in understanding the foundations of geometry itself. The approach named tensor network theory is sufficiently rich to allow specific computational modeling and addressed the issue of prediction, based on Taylor series expansion properties of the system, at the neuronal level, as a basic property of brain function. It was actually proposed that the evolutionary realm is the backbone for the development of an internal functional space that, while being purely representational, can interact successfully with the totally different world of the so-called "external reality". Now if the internal space or functional space is endowed with stochastic metric tensor properties, then there will be a dynamic correspondence between events in the external world and their specification in the internal space. We shall call this dynamic geometry since the minimal time resolution of the brain (10-15 ms), associated with 40 Hz oscillations of neurons and their network dynamics, is considered to be responsible for recognizing external events and generating the concept of simultaneity. The stochastic metric tensor in dynamic geometry can be written as five-dimensional space-time where the fifth dimension is a probability space as well as a metric space. This extra dimension is considered an imbedded degree of freedom. It is worth noticing that the above-mentioned 40 Hz oscillation is present both in awake and dream states where the central difference is the inability of phase resetting in the latter. This framework of dynamic

  2. OFFl Models: Novel Schema for Dynamical Modeling of Biological Systems.

    PubMed

    Ogbunugafor, C Brandon; Robinson, Sean P

    2016-01-01

    Flow diagrams are a common tool used to help build and interpret models of dynamical systems, often in biological contexts such as consumer-resource models and similar compartmental models. Typically, their usage is intuitive and informal. Here, we present a formalized version of flow diagrams as a kind of weighted directed graph which follow a strict grammar, which translate into a system of ordinary differential equations (ODEs) by a single unambiguous rule, and which have an equivalent representation as a relational database. (We abbreviate this schema of "ODEs and formalized flow diagrams" as OFFL.) Drawing a diagram within this strict grammar encourages a mental discipline on the part of the modeler in which all dynamical processes of a system are thought of as interactions between dynamical species that draw parcels from one or more source species and deposit them into target species according to a set of transformation rules. From these rules, the net rate of change for each species can be derived. The modeling schema can therefore be understood as both an epistemic and practical heuristic for modeling, serving both as an organizational framework for the model building process and as a mechanism for deriving ODEs. All steps of the schema beyond the initial scientific (intuitive, creative) abstraction of natural observations into model variables are algorithmic and easily carried out by a computer, thus enabling the future development of a dedicated software implementation. Such tools would empower the modeler to consider significantly more complex models than practical limitations might have otherwise proscribed, since the modeling framework itself manages that complexity on the modeler's behalf. In this report, we describe the chief motivations for OFFL, carefully outline its implementation, and utilize a range of classic examples from ecology and epidemiology to showcase its features. PMID:27270918

  3. Dynamic modeling of hydrostatic guideway considering compressibility and inertia effect

    NASA Astrophysics Data System (ADS)

    Du, Yikang; Mao, Kuanmin; Zhu, Yaming; Wang, Fengyun; Mao, Xiaobo; Li, Bin

    2015-03-01

    Hydrostatic guideways are used as an alternative to contact bearings due to high stiffness and high damping in heavy machine tools. To improve the dynamic characteristic of bearing structure, the dynamic modeling of the hydrostatic guidway should be accurately known. This paper presents a "mass-spring-Maxwell" model considering the effects of inertia, squeeze, compressibility and static bearing. To determine the dynamic model coefficients, numerical simulation of different cases between displacement and dynamic force of oil film are performed with fluent code. Simulation results show that hydrostatic guidway can be taken as a linear system when it is subjected to a small oscillation amplitude. Based on a dynamic model and numerical simulation, every dynamic model's parameters are calculated by the Levenberg-Marquardt algorithm. Identification results show that "mass-spring-damper" model is the most appropriate dynamic model of the hydrostatic guidway. This paper provides a reference and preparation for the analysis of the dynamic model of the similar hydrostatic bearings.

  4. Dynamic Modeling of the SMAP Rotating Flexible Antenna

    NASA Technical Reports Server (NTRS)

    Nayeri, Reza D.

    2012-01-01

    Dynamic model development in ADAMS for the SMAP project is explained: The main objective of the dynamic models are for pointing error assessment, and the control/stability margin requirement verifications

  5. A Model of Canine Leukocyte Telomere Dynamics

    PubMed Central

    Benetos, Athanase; Kimura, Masayuki; Labat, Carlos; Buchoff, Gerald M.; Huber, Shell; Labat, Laura; Lu, Xiaobin; Aviv, Abraham

    2011-01-01

    Summary Recent studies have found associations of leukocyte telomere length (TL) with diseases of aging and with longevity. However, it is unknown whether birth leukocyte TL or its age-dependent attrition— the two factors that determine leukocyte TL dynamics— explains these associations, since acquiring this information entails monitoring individuals over their entire life course. We tested in dogs a model of leukocyte TL dynamics, based on the following premises: (i) TL is synchronized among somatic tissues; (ii) TL in skeletal muscle, which is largely post-mitotic, is a measure of TL in early development; (iii) the difference between TL in leukocytes and muscle (ΔLMTL) is the extent of leukocyte TL shortening since early development. Using this model, we observed in 83 dogs (ages 4–42 months) no significant change with age in TLs of skeletal muscle and a shorter TL in leukocytes than in skeletal muscle (P<0.0001). Age explained 43% of the variation in ΔLMTL (P<0.00001) but only 6% of the variation in leukocyte TL (P=0.035) among dogs. Accordingly, muscle TL and ΔLMTL provide the two essential factors of leukocyte TL dynamics in the individual dog. When applied to humans, the partition of the contribution of leukocyte TL during early development versus telomere shortening afterward might provide information about whether the individual’s longevity is calibrated to either one or both factors that define leukocyte TL dynamics. PMID:21917112

  6. Comet Gas and Dust Dynamics Modeling

    NASA Technical Reports Server (NTRS)

    Von Allmen, Paul A.; Lee, Seungwon

    2010-01-01

    This software models the gas and dust dynamics of comet coma (the head region of a comet) in order to support the Microwave Instrument for Rosetta Orbiter (MIRO) project. MIRO will study the evolution of the comet 67P/Churyumov-Gerasimenko's coma system. The instrument will measure surface temperature, gas-production rates and relative abundances, and velocity and excitation temperatures of each species along with their spatial temporal variability. This software will use these measurements to improve the understanding of coma dynamics. The modeling tool solves the equation of motion of a dust particle, the energy balance equation of the dust particle, the continuity equation for the dust and gas flow, and the dust and gas mixture energy equation. By solving these equations numerically, the software calculates the temperature and velocity of gas and dust as a function of time for a given initial gas and dust production rate, and a dust characteristic parameter that measures the ability of a dust particle to adjust its velocity to the local gas velocity. The software is written in a modular manner, thereby allowing the addition of more dynamics equations as needed. All of the numerical algorithms are added in-house and no third-party libraries are used.

  7. Consequence modeling using the fire dynamics simulator.

    PubMed

    Ryder, Noah L; Sutula, Jason A; Schemel, Christopher F; Hamer, Andrew J; Van Brunt, Vincent

    2004-11-11

    The use of Computational Fluid Dynamics (CFD) and in particular Large Eddy Simulation (LES) codes to model fires provides an efficient tool for the prediction of large-scale effects that include plume characteristics, combustion product dispersion, and heat effects to adjacent objects. This paper illustrates the strengths of the Fire Dynamics Simulator (FDS), an LES code developed by the National Institute of Standards and Technology (NIST), through several small and large-scale validation runs and process safety applications. The paper presents two fire experiments--a small room fire and a large (15 m diameter) pool fire. The model results are compared to experimental data and demonstrate good agreement between the models and data. The validation work is then extended to demonstrate applicability to process safety concerns by detailing a model of a tank farm fire and a model of the ignition of a gaseous fuel in a confined space. In this simulation, a room was filled with propane, given time to disperse, and was then ignited. The model yields accurate results of the dispersion of the gas throughout the space. This information can be used to determine flammability and explosive limits in a space and can be used in subsequent models to determine the pressure and temperature waves that would result from an explosion. The model dispersion results were compared to an experiment performed by Factory Mutual. Using the above examples, this paper will demonstrate that FDS is ideally suited to build realistic models of process geometries in which large scale explosion and fire failure risks can be evaluated with several distinct advantages over more traditional CFD codes. Namely transient solutions to fire and explosion growth can be produced with less sophisticated hardware (lower cost) than needed for traditional CFD codes (PC type computer verses UNIX workstation) and can be solved for longer time histories (on the order of hundreds of seconds of computed time) with

  8. OFFl Models: Novel Schema for Dynamical Modeling of Biological Systems

    PubMed Central

    2016-01-01

    Flow diagrams are a common tool used to help build and interpret models of dynamical systems, often in biological contexts such as consumer-resource models and similar compartmental models. Typically, their usage is intuitive and informal. Here, we present a formalized version of flow diagrams as a kind of weighted directed graph which follow a strict grammar, which translate into a system of ordinary differential equations (ODEs) by a single unambiguous rule, and which have an equivalent representation as a relational database. (We abbreviate this schema of “ODEs and formalized flow diagrams” as OFFL.) Drawing a diagram within this strict grammar encourages a mental discipline on the part of the modeler in which all dynamical processes of a system are thought of as interactions between dynamical species that draw parcels from one or more source species and deposit them into target species according to a set of transformation rules. From these rules, the net rate of change for each species can be derived. The modeling schema can therefore be understood as both an epistemic and practical heuristic for modeling, serving both as an organizational framework for the model building process and as a mechanism for deriving ODEs. All steps of the schema beyond the initial scientific (intuitive, creative) abstraction of natural observations into model variables are algorithmic and easily carried out by a computer, thus enabling the future development of a dedicated software implementation. Such tools would empower the modeler to consider significantly more complex models than practical limitations might have otherwise proscribed, since the modeling framework itself manages that complexity on the modeler’s behalf. In this report, we describe the chief motivations for OFFL, carefully outline its implementation, and utilize a range of classic examples from ecology and epidemiology to showcase its features. PMID:27270918

  9. The Dynamical Sine-Gordon Model

    NASA Astrophysics Data System (ADS)

    Hairer, Martin; Shen, Hao

    2016-02-01

    We introduce the dynamical sine-Gordon equation in two space dimensions with parameter {β}, which is the natural dynamic associated to the usual quantum sine-Gordon model. It is shown that when {β2 in (0, 16π/3)} the Wick renormalised equation is well-posed. In the regime {β2 in (0, 4π)}, the Da Prato-Debussche method [J Funct Anal 196(1):180-210, 2002; Ann Probab 31(4):1900-1916, 2003] applies, while for {β2 in [4π, 16π/3)}, the solution theory is provided via the theory of regularity structures [Hairer, Invent Math 198(2):269-504, 2014]. We also show that this model arises naturally from a class of {2 + 1} -dimensional equilibrium interface fluctuation models with periodic nonlinearities. The main mathematical difficulty arises in the construction of the model for the associated regularity structure where the role of the noise is played by a non-Gaussian random distribution similar to the complex multiplicative Gaussian chaos recently analysed in Lacoin et al. [Commun Math Phys 337(2):569-632, 2015].

  10. Models of the Dynamic Deformations of Polymers

    NASA Astrophysics Data System (ADS)

    Merzhievsky, Lev; Voronin, Mihail; Korchagina, Anna

    2013-06-01

    In the process of deformation under the influence of external loading polymeric mediums show the complicated behavior connected with features of their structure. For amorphous polymers distinguish three physical conditions - glasslike, highlyelastic and viscoplastic. To each of the listed conditions there corresponds to mikro - meso- and macrostructural mechanisms of irreversible deformation. In the report the review of results of construction of models for the description of dynamic and shock-wave deformation of the polymers which are based on developed authors representations about mechanisms of irreversible deformation is made. Models include the formulation of the equations of conservation laws, considering effect of a relaxation of shear stresses in the process of deformation. For closing of models the equations of states with nonspherical tensor of deformations and relation for time of a relaxation of shear stresses are constructed. With using of the formulated models a number of problems of dynamic and shock wave deformations has been solved. The results are compared with corresponding experimental date. Development of the used approach are in summary discussed. To taking into account memory and fractal properties of real polymers is supposed of derivatives and integrals of a fractional order to use. Examples of constitutive equations with derivatives of a fractional order are presented. This work is supported by the Integration project of the Siberian Branch of the Russian Academy of Science 64 and grant RFBR 12-01-00726.

  11. Stochastic dynamic models and Chebyshev splines

    PubMed Central

    Fan, Ruzong; Zhu, Bin; Wang, Yuedong

    2015-01-01

    In this article, we establish a connection between a stochastic dynamic model (SDM) driven by a linear stochastic differential equation (SDE) and a Chebyshev spline, which enables researchers to borrow strength across fields both theoretically and numerically. We construct a differential operator for the penalty function and develop a reproducing kernel Hilbert space (RKHS) induced by the SDM and the Chebyshev spline. The general form of the linear SDE allows us to extend the well-known connection between an integrated Brownian motion and a polynomial spline to a connection between more complex diffusion processes and Chebyshev splines. One interesting special case is connection between an integrated Ornstein–Uhlenbeck process and an exponential spline. We use two real data sets to illustrate the integrated Ornstein–Uhlenbeck process model and exponential spline model and show their estimates are almost identical. PMID:26045632

  12. Model-Free Dual Heuristic Dynamic Programming.

    PubMed

    Ni, Zhen; He, Haibo; Zhong, Xiangnan; Prokhorov, Danil V

    2015-08-01

    Model-based dual heuristic dynamic programming (MB-DHP) is a popular approach in approximating optimal solutions in control problems. Yet, it usually requires offline training for the model network, and thus resulting in extra computational cost. In this brief, we propose a model-free DHP (MF-DHP) design based on finite-difference technique. In particular, we adopt multilayer perceptron with one hidden layer for both the action and the critic networks design, and use delayed objective functions to train both the action and the critic networks online over time. We test both the MF-DHP and MB-DHP approaches with a discrete time example and a continuous time example under the same parameter settings. Our simulation results demonstrate that the MF-DHP approach can obtain a control performance competitive with that of the traditional MB-DHP approach while requiring less computational resources. PMID:25955997

  13. Dynamic survival models with spatial frailty.

    PubMed

    Bastos, Leonardo Soares; Gamerman, Dani

    2006-12-01

    In many survival studies, covariates effects are time-varying and there is presence of spatial effects. Dynamic models can be used to cope with the variations of the effects and spatial components are introduced to handle spatial variation. This paper proposes a methodology to simultaneously introduce these components into the model. A number of specifications for the spatial components are considered. Estimation is performed via a Bayesian approach through Markov chain Monte Carlo methods. Models are compared to assess relevance of their components. Analysis of a real data set is performed, showing the relevance of both time-varying covariate effects and spatial components. Extensions to the methodology are proposed along with concluding remarks. PMID:17031498

  14. Simulating aggregate dynamics in ocean biogeochemical models

    NASA Astrophysics Data System (ADS)

    Jackson, George A.; Burd, Adrian B.

    2015-04-01

    The dynamics of elements in the water column is complex, depending on multiple biological and physical processes operating at very different physical scales. Coagulation of particulate material is important for transforming particles and moving them in the water column. Mechanistic models of coagulation processes provide a means to predict these processes, help interpret observations, and provide insight into the processes occurring. However, most model applications have focused on describing simple marine systems and mechanisms. We argue that further model development, in close collaboration with field and experimental scientists, is required in order to extend the models to describe the large-scale elemental distributions and interactions being studied as part of GEOTRACES. Models that provide a fundamental description of trace element-particle interactions are required as are experimental tests of the mechanisms involved and the predictions arising from models. However, a comparison between simple and complicated models of aggregation and trace metal provides a means for understanding the implications of simplifying assumptions and providing guidance as to which simplifications are needed.

  15. Flight Dynamic Model Exchange using XML

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Hildreth, Bruce L.

    2002-01-01

    The AIAA Modeling and Simulation Technical Committee has worked for several years to develop a standard by which the information needed to develop physics-based models of aircraft can be specified. The purpose of this standard is to provide a well-defined set of information, definitions, data tables and axis systems so that cooperating organizations can transfer a model from one simulation facility to another with maximum efficiency. This paper proposes using an application of the eXtensible Markup Language (XML) to implement the AIAA simulation standard. The motivation and justification for using a standard such as XML is discussed. Necessary data elements to be supported are outlined. An example of an aerodynamic model as an XML file is given. This example includes definition of independent and dependent variables for function tables, definition of key variables used to define the model, and axis systems used. The final steps necessary for implementation of the standard are presented. Software to take an XML-defined model and import/export it to/from a given simulation facility is discussed, but not demonstrated. That would be the next step in final implementation of standards for physics-based aircraft dynamic models.

  16. Dynamic displays of chemical process flowsheet models

    SciTech Connect

    Aull, J.E.

    1996-11-01

    This paper describes the algorithms used in constructing dynamic graphical displays of a process flowsheet. Movies are created which portray changes in the process over time using animation in the flowsheet such as individual streams that take on a color keyed to the current flow rate, tank levels that visibly rise and fall and {open_quotes}gauges{close_quotes} that move to display parameter values. Movies of this type can be a valuable tool for visualizing, analyzing, and communicating the behavior of a process model. This paper describes the algorithms used in constructing displays of this kind for dynamic models using the SPEEDUP{trademark} modeling package and the GMS{trademark} graphics package. It also tells how data is exported from the SPEEDUP{trademark} package to GMS{trademark} and describes how a user environment for running movies and editing flowsheets is set up. The algorithms are general enough to be applied to other processes and graphics packages. In fact the techniques described here can be used to create movies of any time-dependent data.

  17. Numerical modeling of bubble dynamics in magmas

    NASA Astrophysics Data System (ADS)

    Huber, Christian; Su, Yanqing; Parmigiani, Andrea

    2014-05-01

    Understanding the complex non-linear physics that governs volcanic eruptions is contingent on our ability to characterize the dynamics of bubbles and its effect on the ascending magma. The exsolution and migration of bubbles has also a great impact on the heat and mass transport in and out of magma bodies stored at shallow depths in the crust. Multiphase systems like magmas are by definition heterogeneous at small scales. Although mixture theory or homogenization methods are convenient to represent multiphase systems as a homogeneous equivalent media, these approaches do not inform us on possible feedbacks at the pore-scale and can be significantly misleading. In this presentation, we discuss the development and application of bubble-scale multiphase flow modeling to address the following questions : How do bubbles impact heat and mass transport in magma chambers ? How efficient are chemical exchanges between the melt and bubbles during magma decompression? What is the role of hydrodynamic interactions on the deformation of bubbles while the magma is sheared? Addressing these questions requires powerful numerical methods that accurately model the balance between viscous, capillary and pressure stresses. We discuss how these bubble-scale models can provide important constraints on the dynamics of magmas stored at shallow depth or ascending to the surface during an eruption.

  18. Dynamical Vertex Approximation for the Hubbard Model

    NASA Astrophysics Data System (ADS)

    Toschi, Alessandro

    A full understanding of correlated electron systems in the physically relevant situations of three and two dimensions represents a challenge for the contemporary condensed matter theory. However, in the last years considerable progress has been achieved by means of increasingly more powerful quantum many-body algorithms, applied to the basic model for correlated electrons, the Hubbard Hamiltonian. Here, I will review the physics emerging from studies performed with the dynamical vertex approximation, which includes diagrammatic corrections to the local description of the dynamical mean field theory (DMFT). In particular, I will first discuss the phase diagram in three dimensions with a special focus on the commensurate and incommensurate magnetic phases, their (quantum) critical properties, and the impact of fluctuations on electronic lifetimes and spectral functions. In two dimensions, the effects of non-local fluctuations beyond DMFT grow enormously, determining the appearance of a low-temperature insulating behavior for all values of the interaction in the unfrustrated model: Here the prototypical features of the Mott-Hubbard metal-insulator transition, as well as the existence of magnetically ordered phases, are completely overwhelmed by antiferromagnetic fluctuations of exponentially large extension, in accordance with the Mermin-Wagner theorem. Eventually, by a fluctuation diagnostics analysis of cluster DMFT self-energies, the same magnetic fluctuations are identified as responsible for the pseudogap regime in the holed-doped frustrated case, with important implications for the theoretical modeling of the cuprate physics.

  19. Modeling of dynamic bipolar plasma sheaths

    NASA Astrophysics Data System (ADS)

    Grossmann, J. M.; Swanekamp, S. B.; Ottinger, P. F.

    1992-01-01

    The behavior of a one-dimensional plasma sheath is described in regimes where the sheath is not in equilibrium because it carries current densities that are either time dependent, or larger than the bipolar Child-Langmuir level determined from the injected ion flux. Earlier models of dynamic bipolar sheaths assumed that ions and electrons evolve in a series of quasiequilibria. In addition, sheath growth was described by the equation Zen0ẋs=‖ ji‖-Zen0u0, where ẋs is the velocity of the sheath edge, ji is the ion current density, n0u0 is the injected ion flux density, and Ze is the ion charge. In this paper, a generalization of the bipolar electron-to-ion current density ratio formula is derived to study regimes where ions are not in equilibrium. A generalization of the above sheath growth equation is also developed, which is consistent with the ion continuity equation and which reveals new physics of sheath behavior associated with the emitted electrons and their evolution. Based on these findings, two new models of dynamic bipolar sheaths are developed. Larger sheath sizes and potentials than those of earlier models are found. In certain regimes, explosive sheath growth is predicted.

  20. Mathematical modeling of infectious disease dynamics

    PubMed Central

    Siettos, Constantinos I.; Russo, Lucia

    2013-01-01

    Over the last years, an intensive worldwide effort is speeding up the developments in the establishment of a global surveillance network for combating pandemics of emergent and re-emergent infectious diseases. Scientists from different fields extending from medicine and molecular biology to computer science and applied mathematics have teamed up for rapid assessment of potentially urgent situations. Toward this aim mathematical modeling plays an important role in efforts that focus on predicting, assessing, and controlling potential outbreaks. To better understand and model the contagious dynamics the impact of numerous variables ranging from the micro host–pathogen level to host-to-host interactions, as well as prevailing ecological, social, economic, and demographic factors across the globe have to be analyzed and thoroughly studied. Here, we present and discuss the main approaches that are used for the surveillance and modeling of infectious disease dynamics. We present the basic concepts underpinning their implementation and practice and for each category we give an annotated list of representative works. PMID:23552814

  1. Aerodynamics modeling of towed-cable dynamics

    SciTech Connect

    Kang, S.W.; Latorre, V.R.

    1991-01-17

    The dynamics of a cable/drogue system being towed by an orbiting aircraft has been investigated as a part of an LTWA project for the Naval Air Systems Command. We present here a status report on the tasks performed under Phase 1. We have accomplished the following tasks under Phase 1: A literature survey on the towed-cable motion problem has been conducted. While both static (steady-state) and dynamic (transient) analyses exist in the literature, no single, comprehensive analysis exists that directly addresses the present problem. However, the survey also reveals that, when judiciously applied, these past analyses can serve as useful building blocks for approaching the present problem. A numerical model that addresses several aspects of the towed-cable dynamic problem has been adapted from a Canadian underwater code for the present aerodynamic situation. This modified code, called TOWDYN, analyzes the effects of gravity, tension, aerodynamic drag, and wind. Preliminary results from this code demonstrate that the wind effects alone CAN generate the drogue oscillation behavior, i.e., the yo-yo'' phenomenon. This code also will serve as a benchmark code for checking the accuracy of a more general and complete R D'' model code. We have initiated efforts to develop a general R D model supercomputer code that also takes into account other physical factors, such as induced oscillations and bending stiffness. This general code will be able to evaluate the relative impacts of the various physical parameters, which may become important under certain conditions. This R D code will also enable development of a simpler operational code that can be used by the Naval Air personnel in the field.

  2. Computational fluid dynamics modelling in cardiovascular medicine.

    PubMed

    Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2016-01-01

    This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. PMID:26512019

  3. Computational fluid dynamics modelling in cardiovascular medicine

    PubMed Central

    Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2016-01-01

    This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards ‘digital patient’ or ‘virtual physiological human’ representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. PMID:26512019

  4. Modeling coupled avulsion and earthquake timescale dynamics

    NASA Astrophysics Data System (ADS)

    Reitz, M. D.; Steckler, M. S.; Paola, C.; Seeber, L.

    2014-12-01

    River avulsions and earthquakes can be hazardous events, and many researchers work to better understand and predict their timescales. Improvements in the understanding of the intrinsic processes of deposition and strain accumulation that lead to these events have resulted in better constraints on the timescales of each process individually. There are however several mechanisms by which these two systems may plausibly become linked. River deposition and avulsion can affect the stress on underlying faults through differential loading by sediment or water. Conversely, earthquakes can affect river avulsion patterns through altering the topography. These interactions may alter the event recurrence timescales, but this dynamic has not yet been explored. We present results of a simple numerical model, in which two systems have intrinsic rates of approach to failure thresholds, but the state of one system contributes to the other's approach to failure through coupling functions. The model is first explored for the simplest case of two linear approaches to failure, and linearly proportional coupling terms. Intriguing coupling dynamics emerge: the system settles into cycles of repeating earthquake and avulsion timescales, which are approached at an exponential decay rate that depends on the coupling terms. The ratio of the number of events of each type and the timescale values also depend on the coupling coefficients and the threshold values. We then adapt the model to a more complex and realistic scenario, in which a river avulses between either side of a fault, with parameters corresponding to the Brahmaputra River / Dauki fault system in Bangladesh. Here the tectonic activity alters the topography by gradually subsiding during the interseismic time, and abruptly increasing during an earthquake. The river strengthens the fault by sediment loading when in one path, and weakens it when in the other. We show this coupling can significantly affect earthquake and avulsion

  5. Modeling the dynamical systems on experimental data

    SciTech Connect

    Janson, N.B.; Anishchenko, V.S.

    1996-06-01

    An attempt is made in the work to create qualitative models of some real biological systems, i.e., isolated frog{close_quote}s heart, a human{close_quote}s heart and a blood circulation system of a white rat. Sampled one-dimensional realizations of these systems were taken as the initial data. Correlation dimensions were calculated to evaluate the embedding dimensions of the systems{close_quote} attractors. The result of the work are the systems of ordinary differential equations which approximately describe the dynamics of the systems under investigation. {copyright} {ital 1996 American Institute of Physics.}

  6. Dynamic Compaction Modeling of Porous Silica Powder

    NASA Astrophysics Data System (ADS)

    Borg, John P.; Schwalbe, Larry; Cogar, John; Chapman, D. J.; Tsembelis, K.; Ward, Aaron; Lloyd, Andrew

    2006-07-01

    A computational analysis of the dynamic compaction of porous silica is presented and compared with experimental measurements. The experiments were conducted at Cambridge University's one-dimensional flyer plate facility. The experiments shock loaded samples of silica dust of various initial porous densities up to a pressure of 2.25 GPa. The computational simulations utilized a linear Us-Up Hugoniot. The compaction events were modeled with CTH, a 3D Eulerian hydrocode developed at Sandia National Laboratory. Simulated pressures at two test locations are presented and compared with measurements.

  7. Scalar model for frictional precursors dynamics.

    PubMed

    Taloni, Alessandro; Benassi, Andrea; Sandfeld, Stefan; Zapperi, Stefano

    2015-01-01

    Recent experiments indicate that frictional sliding occurs by nucleation of detachment fronts at the contact interface that may appear well before the onset of global sliding. This intriguing precursory activity is not accounted for by traditional friction theories but is extremely important for friction dominated geophysical phenomena as earthquakes, landslides or avalanches. Here we simulate the onset of slip of a three dimensional elastic body resting on a surface and show that experimentally observed frictional precursors depend in a complex non-universal way on the sample geometry and loading conditions. Our model satisfies Archard's law and Amontons' first and second laws, reproducing with remarkable precision the real contact area dynamics, the precursors' envelope dynamics prior to sliding, and the normal and shear internal stress distributions close to the interfacial surface. Moreover, it allows to assess which features can be attributed to the elastic equilibrium, and which are attributed to the out-of-equilibrium dynamics, suggesting that precursory activity is an intrinsically quasi-static physical process. A direct calculation of the evolution of the Coulomb stress before and during precursors nucleation shows large variations across the sample, explaining why earthquake forecasting methods based only on accumulated slip and Coulomb stress monitoring are often ineffective. PMID:25640079

  8. Unsteady aerodynamics modeling for flight dynamics application

    NASA Astrophysics Data System (ADS)

    Wang, Qing; He, Kai-Feng; Qian, Wei-Qi; Zhang, Tian-Jiao; Cheng, Yan-Qing; Wu, Kai-Yuan

    2012-02-01

    In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.

  9. Scalar model for frictional precursors dynamics

    PubMed Central

    Taloni, Alessandro; Benassi, Andrea; Sandfeld, Stefan; Zapperi, Stefano

    2015-01-01

    Recent experiments indicate that frictional sliding occurs by nucleation of detachment fronts at the contact interface that may appear well before the onset of global sliding. This intriguing precursory activity is not accounted for by traditional friction theories but is extremely important for friction dominated geophysical phenomena as earthquakes, landslides or avalanches. Here we simulate the onset of slip of a three dimensional elastic body resting on a surface and show that experimentally observed frictional precursors depend in a complex non-universal way on the sample geometry and loading conditions. Our model satisfies Archard's law and Amontons' first and second laws, reproducing with remarkable precision the real contact area dynamics, the precursors' envelope dynamics prior to sliding, and the normal and shear internal stress distributions close to the interfacial surface. Moreover, it allows to assess which features can be attributed to the elastic equilibrium, and which are attributed to the out-of-equilibrium dynamics, suggesting that precursory activity is an intrinsically quasi-static physical process. A direct calculation of the evolution of the Coulomb stress before and during precursors nucleation shows large variations across the sample, explaining why earthquake forecasting methods based only on accumulated slip and Coulomb stress monitoring are often ineffective. PMID:25640079

  10. Computational social dynamic modeling of group recruitment.

    SciTech Connect

    Berry, Nina M.; Lee, Marinna; Pickett, Marc; Turnley, Jessica Glicken; Smrcka, Julianne D.; Ko, Teresa H.; Moy, Timothy David; Wu, Benjamin C.

    2004-01-01

    The Seldon software toolkit combines concepts from agent-based modeling and social science to create a computationally social dynamic model for group recruitment. The underlying recruitment model is based on a unique three-level hybrid agent-based architecture that contains simple agents (level one), abstract agents (level two), and cognitive agents (level three). This uniqueness of this architecture begins with abstract agents that permit the model to include social concepts (gang) or institutional concepts (school) into a typical software simulation environment. The future addition of cognitive agents to the recruitment model will provide a unique entity that does not exist in any agent-based modeling toolkits to date. We use social networks to provide an integrated mesh within and between the different levels. This Java based toolkit is used to analyze different social concepts based on initialization input from the user. The input alters a set of parameters used to influence the values associated with the simple agents, abstract agents, and the interactions (simple agent-simple agent or simple agent-abstract agent) between these entities. The results of phase-1 Seldon toolkit provide insight into how certain social concepts apply to different scenario development for inner city gang recruitment.

  11. A dynamic localization model with stochastic backscatter

    NASA Astrophysics Data System (ADS)

    Carati, Daniele; Ghosal, Sandip

    1994-12-01

    The modeling of subgrid scales in large-eddy simulation (LES) has been rationalized by the introduction of the dynamic localization procedure. This method allows one to compute rather than prescribe the unknown coefficients in the subgrid-scale model. Formally, the LES equations are supposed to be obtained by applying to the Navier-Stokes equations a 'grid filter' operation. Though the subgrid stress itself is unknown, an identity between subgrid stresses generated by different filters has been derived. Although preliminary tests of the Dynamic Localization Model (DLM) with k-equation have been satisfactory, the use of a negative eddy viscosity to describe backscatter is probably a crude representation of the physics of reverse transfer of energy. Indeed, the model is fully deterministic. Knowing the filtered velocity field and the subgrid-scale energy, the subgrid stress is automatically determined. We know that the LES equations cannot be fully deterministic since the small scales are not resolved. This stems from an important distinction between equilibrium hydrodynamics and turbulence. In equilibrium hydrodynamics, the molecular motions are also not resolved. However, there is a clear separation of scale between these unresolved motions and the relevant hydrodynamic scales. The result of molecular motions can then be separated into an average effect (the molecular viscosity) and some fluctuations. Due to the large number of molecules present in a box with size of the order of the hydrodynamic scale, the ratio between fluctuations and the average effect should be very small (as a result of the 'law of large numbers'). For that reason, the hydrodynamic balance equations are usually purely deterministic. In turbulence, however, there is no clear separation of scale between small and large eddies. In that case, the fluctuations around a deterministic eddy viscosity term could be significant. An eddy noise would then appear through a stochastic term in the subgrid

  12. Modelling of snow avalanche dynamics: influence of model parameters

    NASA Astrophysics Data System (ADS)

    Bozhinskiy, A. N.

    The three-parameter hydraulic model of snow avalanche dynamics including the coefficients of dry and turbulent friction and the coefficient of new-snow-mass entrainment was investigated. The 'Domestic' avalanche site in Elbrus region, Caucasus, Russia, was chosen as the model avalanche range. According to the model, the fixed avalanche run-out can be achieved with various combinations of model parameters. At the fixed value of the coefficient of entrainment me, we have a curve on a plane of the coefficients of dry and turbulent friction. It was found that the family of curves (me is a parameter) are crossed at the single point. The value of the coefficient of turbulent friction at the cross-point remained practically constant for the maximum and average avalanche run-outs. The conclusions obtained are confirmed by the results of modelling for six arbitrarily chosen avalanche sites: three in the Khibiny mountains, Kola Peninsula, Russia, two in the Elbrus region and one idealized site with an exponential longitudinal profile. The dependences of run-out on the coefficient of dry friction are constructed for all the investigated avalanche sites. The results are important for the statistical simulation of avalanche dynamics since they suggest the possibility of using only one random model parameter, namely, the coefficient of dry friction, in the model. The histograms and distribution functions of the coefficient of dry friction are constructed and presented for avalanche sites Nos 22 and 43 (Khibiny mountains) and 'Domestic', with the available series of field data.

  13. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    SciTech Connect

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at Tx ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (Tm ~ 900K), and the crossover temperature is roughly twice of the glass-transition temperature (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.

  14. Driven dynamics of simplified tribological models

    NASA Astrophysics Data System (ADS)

    Vanossi, A.; Braun, O. M.

    2007-08-01

    Over the last decade, remarkable developments in nanotechnology, notably the use of atomic and friction force microscopes (AFM/FFM), the surface-force apparatus (SFA) and the quartz-crystal microbalance (QCM), have provided the possibility to build experimental devices able to perform analysis on well-characterized materials at the nano- and microscale. Simultaneously, tremendous advances in computing hardware and methodology (molecular dynamics techniques and ab initio calculations) have dramatically increased the ability of theoreticians to simulate tribological processes, supplying very detailed information on the atomic scale for realistic sliding systems. This acceleration in experiments and computations, leading often to very detailed yet complex data, has deeply stimulated the search, rediscovery and implementation of simpler mathematical models such as the generalized Frenkel-Kontorova and Tomlinson models, capable of describing and interpreting, in a more immediate way, the essential physics involved in nonlinear sliding phenomena.

  15. Microscopic model for ultrafast remagnetization dynamics.

    PubMed

    Chimata, Raghuveer; Bergman, Anders; Bergqvist, Lars; Sanyal, Biplab; Eriksson, Olle

    2012-10-12

    In this Letter, we provide a microscopic model for the ultrafast remagnetization of atomic moments already quenched above the Stoner-Curie temperature by a strong laser fluence. Combining first-principles density functional theory, atomistic spin dynamics utilizing the Landau-Lifshitz-Gilbert equation, and a three-temperature model, we analyze the temporal evolution of atomic moments as well as the macroscopic magnetization of bcc Fe and hcp Co covering a broad time scale, ranging from femtoseconds to picoseconds. Our simulations show a variety of complex temporal behavior of the magnetic properties resulting from an interplay between electron, spin, and lattice subsystems, which causes an intricate time evolution of the atomic moment, where longitudinal and transversal fluctuations result in a macrospin moment that evolves highly nonmonotonically. PMID:23102359

  16. A Simple General Model of Evolutionary Dynamics

    NASA Astrophysics Data System (ADS)

    Thurner, Stefan

    Evolution is a process in which some variations that emerge within a population (of, e.g., biological species or industrial goods) get selected, survive, and proliferate, whereas others vanish. Survival probability, proliferation, or production rates are associated with the "fitness" of a particular variation. We argue that the notion of fitness is an a posteriori concept in the sense that one can assign higher fitness to species or goods that survive but one can generally not derive or predict fitness per se. Whereas proliferation rates can be measured, fitness landscapes, that is, the inter-dependence of proliferation rates, cannot. For this reason we think that in a physical theory of evolution such notions should be avoided. Here we review a recent quantitative formulation of evolutionary dynamics that provides a framework for the co-evolution of species and their fitness landscapes (Thurner et al., 2010, Physica A 389, 747; Thurner et al., 2010, New J. Phys. 12, 075029; Klimek et al., 2009, Phys. Rev. E 82, 011901 (2010). The corresponding model leads to a generic evolutionary dynamics characterized by phases of relative stability in terms of diversity, followed by phases of massive restructuring. These dynamical modes can be interpreted as punctuated equilibria in biology, or Schumpeterian business cycles (Schumpeter, 1939, Business Cycles, McGraw-Hill, London) in economics. We show that phase transitions that separate phases of high and low diversity can be approximated surprisingly well by mean-field methods. We demonstrate that the mathematical framework is suited to understand systemic properties of evolutionary systems, such as their proneness to collapse, or their potential for diversification. The framework suggests that evolutionary processes are naturally linked to self-organized criticality and to properties of production matrices, such as their eigenvalue spectra. Even though the model is phrased in general terms it is also practical in the sense

  17. Dynamic causal models and autopoietic systems.

    PubMed

    David, Olivier

    2007-01-01

    Dynamic Causal Modelling (DCM) and the theory of autopoietic systems are two important conceptual frameworks. In this review, we suggest that they can be combined to answer important questions about self-organising systems like the brain. DCM has been developed recently by the neuroimaging community to explain, using biophysical models, the non-invasive brain imaging data are caused by neural processes. It allows one to ask mechanistic questions about the implementation of cerebral processes. In DCM the parameters of biophysical models are estimated from measured data and the evidence for each model is evaluated. This enables one to test different functional hypotheses (i.e., models) for a given data set. Autopoiesis and related formal theories of biological systems as autonomous machines represent a body of concepts with many successful applications. However, autopoiesis has remained largely theoretical and has not penetrated the empiricism of cognitive neuroscience. In this review, we try to show the connections that exist between DCM and autopoiesis. In particular, we propose a simple modification to standard formulations of DCM that includes autonomous processes. The idea is to exploit the machinery of the system identification of DCMs in neuroimaging to test the face validity of the autopoietic theory applied to neural subsystems. We illustrate the theoretical concepts and their implications for interpreting electroencephalographic signals acquired during amygdala stimulation in an epileptic patient. The results suggest that DCM represents a relevant biophysical approach to brain functional organisation, with a potential that is yet to be fully evaluated. PMID:18575681

  18. Dynamic Models for Templated Viral Capsid Assembly

    NASA Astrophysics Data System (ADS)

    Hagan, Michael

    2008-03-01

    The replication of many viruses with single-stranded genomes requires the simultaneous assembly of an ordered protein shell, or capsid, and encapsidation of the genome. In this talk, I will present coarse-grained computational and theoretical models that describe the assembly of viral capsid proteins around interior cores, such as polymers and rigid spheres. These models are motivated by two recently developed experimental model systems in which viral proteins dynamically encapsidate inorganic nanoparticles and polyelectrolytes. Model predictions suggest that some forms of cooperative interactions between subunits and cores can dramatically enhance rates and robustness of assembly, as compared to the spontaneous assembly of subunits into empty capsids. For large core-subunit interactions, subunits adsorb onto a core en masse in a disordered manner, and then undergo a cooperative rearrangement into an ordered capsid structure. These assembly pathways are unlike any seen for empty capsids formation. While model predictions suggest that cooperative interactions between disparate assembling components can overcome some limitations of spontaneous assembly, the complexity of multicomponent assembly introduces new forms of kinetic traps that can frustrate assembly, and hence introduces new limitations. These findings have implications for a mechanism in which viruses use interactions between proteins and genomic molecules to promote and control assembly, and thereby control the replication process.

  19. Dynamic models of lateritic bauxite formation

    NASA Astrophysics Data System (ADS)

    Zhukov, V. V.; Bogatyrev, B. A.

    2012-09-01

    2D dynamic models of bauxite formation in the weathering mantle covering denudation areas drained by river systems are discussed. The role of relief-forming factors (tectonic uplift, river erosion and denudation of drainage divides), the interrelation of hydrogeological and lithologic structure of the bauxitebearing weathering mantle, and the dynamics of zoning formation above and below groundwater level are described in the models. Creative and destructive epochs of lateritic bauxite formation differing in tectonic regime are distinguished. During the creative epochs, lateritic weathering develops against a background of decreasing denudation and an increase in areas of bauxite formation. The destructive epochs are characterized by intense denudation, cutting down the areas of lateritic bauxite formation and eventually leading to the complete removal of the weathering mantle. Different morphogenetic types and varieties of bauxite-bearing weathering mantles develop during creative and destructive epochs. The morphology of the weathering mantle sections at the deposits of Cenozoic lateritic bauxite in the present-day tropical zone of the Earth corresponds to the destructive epoch, which is characterized by declining areas of lateritic bauxite formation and will end with complete denudation of lateritic bauxite.

  20. Microscopic to Macroscopic Dynamical Models of Sociality

    NASA Astrophysics Data System (ADS)

    Solis Salas, Citlali; Woolley, Thomas; Pearce, Eiluned; Dunbar, Robin; Maini, Philip; Social; Evolutionary Neuroscience Research Group (Senrg) Collaboration

    To help them survive, social animals, such as humans, need to share knowledge and responsibilities with other members of the species. The larger their social network, the bigger the pool of knowledge available to them. Since time is a limited resource, a way of optimising its use is meeting amongst individuals whilst fulfilling other necessities. In this sense it is useful to know how many, and how often, early humans could meet during a given period of time whilst performing other necessary tasks, such as food gathering. Using a simplified model of these dynamics, which comprehend encounter and memory, we aim at producing a lower-bound to the number of meetings hunter-gatherers could have during a year. We compare the stochastic agent-based model to its mean-field approximation and explore some of the features necessary for the difference between low population dynamics and its continuum limit. We observe an emergent property that could have an inference in the layered structure seen in each person's social organisation. This could give some insight into hunter-gatherer's lives and the development of the social layered structure we have today. With support from the Mexican Council for Science and Technology (CONACyT), the Public Education Secretariat (SEP), and the Mexican National Autonomous University's Foundation (Fundacion UNAM).

  1. Dynamic Elasticity Model of Resilin Biopolymers

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Duki, Solomon

    2013-03-01

    Resilin proteins are `super elastic rubbers' in the flight and jumping systems of most insects, and can extend and retract millions of times. Natural resilin exhibits high resilience (> 95%) under high-frequency conditions, and could be stretched to over 300% of its original length with a low elastic modulus of 0.1-3 MPa. However, insight into the underlying molecular mechanisms responsible for resilin elasticity remains undefined. We report on the dynamic structure transitions and functions of full length resilin from fruit fly (D. melanogaster CG15920) and its different functional domains. A dynamic computational model is proposed to explain the super elasticity and energy conversion mechanisms of resilin, providing important insight into structure-function relationships for resilins, as well as other elastomeric proteins. A strong beta-turn transition was experimentally identified in the full length resilin and its non-elastic domains (Exon III). Changes in periodic long-range order were demonstrated during this transition, induced either by thermal or mechanical inputs, to confirm the universality of proposed mechanism. Further, this model offers new options for designing protein-based biopolymers with tunable material applications.

  2. Modeling quantum fluid dynamics at nonzero temperatures

    PubMed Central

    Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.

    2014-01-01

    The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures. PMID:24704874

  3. Modeling habitat dynamics accounting for possible misclassification

    USGS Publications Warehouse

    Veran, Sophie; Kleiner, Kevin J.; Choquet, Remi; Collazo, Jaime; Nichols, James D.

    2012-01-01

    Land cover data are widely used in ecology as land cover change is a major component of changes affecting ecological systems. Landscape change estimates are characterized by classification errors. Researchers have used error matrices to adjust estimates of areal extent, but estimation of land cover change is more difficult and more challenging, with error in classification being confused with change. We modeled land cover dynamics for a discrete set of habitat states. The approach accounts for state uncertainty to produce unbiased estimates of habitat transition probabilities using ground information to inform error rates. We consider the case when true and observed habitat states are available for the same geographic unit (pixel) and when true and observed states are obtained at one level of resolution, but transition probabilities estimated at a different level of resolution (aggregations of pixels). Simulation results showed a strong bias when estimating transition probabilities if misclassification was not accounted for. Scaling-up does not necessarily decrease the bias and can even increase it. Analyses of land cover data in the Southeast region of the USA showed that land change patterns appeared distorted if misclassification was not accounted for: rate of habitat turnover was artificially increased and habitat composition appeared more homogeneous. Not properly accounting for land cover misclassification can produce misleading inferences about habitat state and dynamics and also misleading predictions about species distributions based on habitat. Our models that explicitly account for state uncertainty should be useful in obtaining more accurate inferences about change from data that include errors.

  4. Modeling Insurgent Network Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Gabbay, Michael; Thirkill-Mackelprang, Ashley

    2010-03-01

    We present a methodology for mapping insurgent network structure based on their public rhetoric. Indicators of cooperative links between insurgent groups at both the leadership and rank-and-file levels are used, such as joint policy statements or joint operations claims. In addition, a targeting policy measure is constructed on the basis of insurgent targeting claims. Network diagrams which integrate these measures of insurgent cooperation and ideology are generated for different periods of the Iraqi and Afghan insurgencies. The network diagrams exhibit meaningful changes which track the evolution of the strategic environment faced by insurgent groups. Correlations between targeting policy and network structure indicate that insurgent targeting claims are aimed at establishing a group identity among the spectrum of rank-and-file insurgency supporters. A dynamical systems model of insurgent alliance formation and factionalism is presented which evolves the relationship between insurgent group dyads as a function of their ideological differences and their current relationships. The ability of the model to qualitatively and quantitatively capture insurgent network dynamics observed in the data is discussed.

  5. Multi-Scale Modeling of Magnetospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Toth, G.

    2012-01-01

    Magnetic reconnection is a key element in many phenomena in space plasma, e.g. Coronal mass Ejections, Magnetosphere substorms. One of the major challenges in modeling the dynamics of large-scale systems involving magnetic reconnection is to quantifY the interaction between global evolution of the magnetosphere and microphysical kinetic processes in diffusion regions near reconnection sites. Recent advances in small-scale kinetic modeling of magnetic reconnection significantly improved our understanding of physical mechanisms controlling the dissipation in the vicinity of the reconnection site in collisionless plasma. However the progress in studies of small-scale geometries was not very helpful for large scale simulations. Global magnetosphere simulations usually include non-ideal processes in terms of numerical dissipation and/or ad hoc anomalous resistivity. Comparative studies of magnetic reconnection in small scale geometries demonstrated that MHD simulations that included non-ideal processes in terms of a resistive term 11 J did not produce fast reconnection rates observed in kinetic simulations. In collisionless magnetospheric plasma, the primary mechanism controlling the dissipation in the vicinity of the reconnection site is nongyrotropic pressure effects with spatial scales comparable with the particle Larmor radius. We utilize the global MHD code BATSRUS and replace ad hoc parameters such as "critical current density" and "anomalous resistivity" with a physically motivated model of dissipation. The primary mechanism controlling the dissipation in the vicinity of the reconnection site in incorporated into MHD description in terms of non-gyrotropic corrections to the induction equation. We will demonstrate that kinetic nongyrotropic effects can significantly alter the global magnetosphere evolution. Our approach allowed for the first time to model loading/unloading cycle in response to steady southward IMF driving. The role of solar wind parameters and

  6. Dynamic thermodiffusion model for binary liquid mixtures.

    PubMed

    Eslamian, Morteza; Saghir, M Ziad

    2009-07-01

    Following the nonequilibrium thermodynamics approach, we develop a dynamic model to emulate thermo-diffusion process and propose expressions for estimating the thermal diffusion factor in binary nonassociating liquid mixtures. Here, we correlate the net heat of transport in thermodiffusion with parameters, such as the mixture temperature and pressure, the size and shape of the molecules, and mobility of the components, because the molecules have to become activated before they can move. Based on this interpretation, the net heat of transport of each component can be somehow related to the viscosity and the activation energy of viscous flow of the same component defined in Eyring's reaction-rate theory [S. Glasstone, K. J. Laidler, and H. Eyring, (McGraw-Hill, New York, 1941)]. This modeling approach is different from that of Haase and Kempers, in which thermodiffusion is considered as a function of the thermostatic properties of the mixture such as enthalpy. In simulating thermodiffusion, by correlating the net heat of transport with the activation energy of viscous flow, effects of the above mentioned parameters are accounted for, to some extent of course. The model developed here along with Haase-Kempers and Drickamer-Firoozabadi models linked with the Peng-Robinson equation of sate are evaluated against the experimental data for several recent nonassociating binary mixtures at various temperatures, pressures, and concentrations. Although the model prediction is still not perfect, the model is simple and easy to use, physically justified, and predicts the experimental data very good and much better than the existing models. PMID:19658691

  7. Dynamic thermodiffusion model for binary liquid mixtures

    NASA Astrophysics Data System (ADS)

    Eslamian, Morteza; Saghir, M. Ziad

    2009-07-01

    Following the nonequilibrium thermodynamics approach, we develop a dynamic model to emulate thermo-diffusion process and propose expressions for estimating the thermal diffusion factor in binary nonassociating liquid mixtures. Here, we correlate the net heat of transport in thermodiffusion with parameters, such as the mixture temperature and pressure, the size and shape of the molecules, and mobility of the components, because the molecules have to become activated before they can move. Based on this interpretation, the net heat of transport of each component can be somehow related to the viscosity and the activation energy of viscous flow of the same component defined in Eyring’s reaction-rate theory [S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena (McGraw-Hill, New York, 1941)]. This modeling approach is different from that of Haase and Kempers, in which thermodiffusion is considered as a function of the thermostatic properties of the mixture such as enthalpy. In simulating thermodiffusion, by correlating the net heat of transport with the activation energy of viscous flow, effects of the above mentioned parameters are accounted for, to some extent of course. The model developed here along with Haase-Kempers and Drickamer-Firoozabadi models linked with the Peng-Robinson equation of sate are evaluated against the experimental data for several recent nonassociating binary mixtures at various temperatures, pressures, and concentrations. Although the model prediction is still not perfect, the model is simple and easy to use, physically justified, and predicts the experimental data very good and much better than the existing models.

  8. Dynamic hysteresis modeling including skin effect using diffusion equation model

    NASA Astrophysics Data System (ADS)

    Hamada, Souad; Louai, Fatima Zohra; Nait-Said, Nasreddine; Benabou, Abdelkader

    2016-07-01

    An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.

  9. A dynamical model for mirror movements

    NASA Astrophysics Data System (ADS)

    Daffertshofer, A.; van den Berg, C.; Beek, P. J.

    1999-07-01

    In an experiment involving the unimanual performance of rhythmic movements about the elbow joint, mirror movements (MM) (i.e., unintended, associated movements) were observed in the arm not instructed to move. The amplitude of these movements was small relative to that of the intended movements (in the order of 0.5 to 5%). Complex patterns of relative phasing were observed between the intended movements and the MM that were characterized by the presence of higher harmonics in the oscillating units. The patterns in question depended on the frequency of the intended movements, which was varied from 0.5 to 3 Hz. At low frequencies, cases of both in- and anti-phase coordination were observed amidst various other instances of phase locking. MM were smaller in the anti-phase than in the in-phase coordination. At higher frequencies, the occurrence of in-phase coordination was most common while instances of anti-phase coordination were absent. To account for these properties, a dynamical model for the coordination between large-amplitude intended movements and small-amplitude MM was derived in the form of a model of nonlinearly coupled nonlinear oscillators with unequal amplitudes. The derived model was shown to correspond well with many quantitative and qualitative features of the observed dynamics of MM, including frequency locking, stable in-phase and anti-phase coordination, coordination-dependency of mirror movement amplitudes, and the presence of higher harmonics. The implications of the obtained experimental and analytical results and numerical parameter optimizations for the study of MM were discussed.

  10. Computational modeling of intraocular gas dynamics.

    PubMed

    Noohi, P; Abdekhodaie, M J; Cheng, Y L

    2015-01-01

    The purpose of this study was to develop a computational model to simulate the dynamics of intraocular gas behavior in pneumatic retinopexy (PR) procedure. The presented model predicted intraocular gas volume at any time and determined the tolerance angle within which a patient can maneuver and still gas completely covers the tear(s). Computational fluid dynamics calculations were conducted to describe PR procedure. The geometrical model was constructed based on the rabbit and human eye dimensions. SF6 in the form of pure and diluted with air was considered as the injected gas. The presented results indicated that the composition of the injected gas affected the gas absorption rate and gas volume. After injection of pure SF6, the bubble expanded to 2.3 times of its initial volume during the first 23 h, but when diluted SF6 was used, no significant expansion was observed. Also, head positioning for the treatment of retinal tear influenced the rate of gas absorption. Moreover, the determined tolerance angle depended on the bubble and tear size. More bubble expansion and smaller retinal tear caused greater tolerance angle. For example, after 23 h, for the tear size of 2 mm the tolerance angle of using pure SF6 is 1.4 times more than that of using diluted SF6 with 80% air. Composition of the injected gas and conditions of the tear in PR may dramatically affect the gas absorption rate and gas volume. Quantifying these effects helps to predict the tolerance angle and improve treatment efficiency. PMID:26682529

  11. Computational modeling of intraocular gas dynamics

    NASA Astrophysics Data System (ADS)

    Noohi, P.; Abdekhodaie, M. J.; Cheng, Y. L.

    2015-12-01

    The purpose of this study was to develop a computational model to simulate the dynamics of intraocular gas behavior in pneumatic retinopexy (PR) procedure. The presented model predicted intraocular gas volume at any time and determined the tolerance angle within which a patient can maneuver and still gas completely covers the tear(s). Computational fluid dynamics calculations were conducted to describe PR procedure. The geometrical model was constructed based on the rabbit and human eye dimensions. SF6 in the form of pure and diluted with air was considered as the injected gas. The presented results indicated that the composition of the injected gas affected the gas absorption rate and gas volume. After injection of pure SF6, the bubble expanded to 2.3 times of its initial volume during the first 23 h, but when diluted SF6 was used, no significant expansion was observed. Also, head positioning for the treatment of retinal tear influenced the rate of gas absorption. Moreover, the determined tolerance angle depended on the bubble and tear size. More bubble expansion and smaller retinal tear caused greater tolerance angle. For example, after 23 h, for the tear size of 2 mm the tolerance angle of using pure SF6 is 1.4 times more than that of using diluted SF6 with 80% air. Composition of the injected gas and conditions of the tear in PR may dramatically affect the gas absorption rate and gas volume. Quantifying these effects helps to predict the tolerance angle and improve treatment efficiency.

  12. Two numerical models for landslide dynamic analysis

    NASA Astrophysics Data System (ADS)

    Hungr, Oldrich; McDougall, Scott

    2009-05-01

    Two microcomputer-based numerical models (Dynamic ANalysis (DAN) and three-dimensional model DAN (DAN3D)) have been developed and extensively used for analysis of landslide runout, specifically for the purposes of practical landslide hazard and risk assessment. The theoretical basis of both models is a system of depth-averaged governing equations derived from the principles of continuum mechanics. Original features developed specifically during this work include: an open rheological kernel; explicit use of tangential strain to determine the tangential stress state within the flowing sheet, which is both more realistic and beneficial to the stability of the model; orientation of principal tangential stresses parallel with the direction of motion; inclusion of the centripetal forces corresponding to the true curvature of the path in the motion direction and; the use of very simple and highly efficient free surface interpolation methods. Both models yield similar results when applied to the same sets of input data. Both algorithms are designed to work within the semi-empirical framework of the "equivalent fluid" approach. This approach requires selection of material rheology and calibration of input parameters through back-analysis of real events. Although approximate, it facilitates simple and efficient operation while accounting for the most important characteristics of extremely rapid landslides. The two models have been verified against several controlled laboratory experiments with known physical basis. A large number of back-analyses of real landslides of various types have also been carried out. One example is presented. Calibration patterns are emerging, which give a promise of predictive capability.

  13. Bio-Inspired Neural Model for Learning Dynamic Models

    NASA Technical Reports Server (NTRS)

    Duong, Tuan; Duong, Vu; Suri, Ronald

    2009-01-01

    A neural-network mathematical model that, relative to prior such models, places greater emphasis on some of the temporal aspects of real neural physical processes, has been proposed as a basis for massively parallel, distributed algorithms that learn dynamic models of possibly complex external processes by means of learning rules that are local in space and time. The algorithms could be made to perform such functions as recognition and prediction of words in speech and of objects depicted in video images. The approach embodied in this model is said to be "hardware-friendly" in the following sense: The algorithms would be amenable to execution by special-purpose computers implemented as very-large-scale integrated (VLSI) circuits that would operate at relatively high speeds and low power demands.

  14. Multiscale modeling with smoothed dissipative particle dynamics.

    PubMed

    Kulkarni, Pandurang M; Fu, Chia-Chun; Shell, M Scott; Leal, L Gary

    2013-06-21

    In this work, we consider two issues related to the use of Smoothed Dissipative Particle Dynamics (SDPD) as an intermediate mesoscale model in a multiscale scheme for solution of flow problems when there are local parts of a macroscopic domain that require molecular resolution. The first is to demonstrate that SDPD with different levels of resolution can accurately represent the fluid properties from the continuum scale all the way to the molecular scale. Specifically, while the thermodynamic quantities such as temperature, pressure, and average density remain scale-invariant, we demonstrate that the dynamic properties are quantitatively consistent with an all-atom Lennard-Jones reference system when the SDPD resolution approaches the atomistic scale. This supports the idea that SDPD can serve as a natural bridge between molecular and continuum descriptions. In the second part, a simple multiscale methodology is proposed within the SDPD framework that allows several levels of resolution within a single domain. Each particle is characterized by a unique physical length scale called the smoothing length, which is inversely related to the local number density and can change on-the-fly. This multiscale methodology is shown to accurately reproduce fluid properties for the simple problem of steady and transient shear flow. PMID:23802949

  15. Models of dynamical R-parity violation

    NASA Astrophysics Data System (ADS)

    Csáki, Csaba; Kuflik, Eric; Slone, Oren; Volansky, Tomer

    2015-06-01

    The presence of R-parity violating interactions may relieve the tension between existing LHC constraints and natural supersymmetry. In this paper we lay down the theoretical framework and explore models of dynamical R-parity violation in which the breaking of R-parity is communicated to the visible sector by heavy messenger fields. We find that R-parity violation is often dominated by non-holomorphic operators that have so far been largely ignored, and might require a modification of the existing searches at the LHC. The dynamical origin implies that the effects of such operators are suppressed by the ratio of either the light fermion masses or the supersymmetry breaking scale to the mediation scale, thereby providing a natural explanation for the smallness of R-parity violation. We consider various scenarios, classified by whether R-parity violation, flavor breaking and/or supersymmetry breaking are mediated by the same messenger fields. The most compact case, corresponding to a deformation of the so called flavor mediation scenario, allows for the mediation of supersymmetry breaking, R-parity breaking, and flavor symmetry breaking in a unified manner.

  16. Analytic wave model of Stark deceleration dynamics

    SciTech Connect

    Gubbels, Koos; Meijer, Gerard; Friedrich, Bretislav

    2006-06-15

    Stark deceleration relies on time-dependent inhomogeneous electric fields which repetitively exert a decelerating force on polar molecules. Fourier analysis reveals that such fields, generated by an array of field stages, consist of a superposition of partial waves with well-defined phase velocities. Molecules whose velocities come close to the phase velocity of a given wave get a ride from that wave. For a square-wave temporal dependence of the Stark field, the phase velocities of the waves are found to be odd-fraction multiples of a fundamental phase velocity {lambda}/{tau}, with {lambda} and {tau} the spatial and temporal periods of the field. Here we study explicitly the dynamics due to any of the waves as well as due to their mutual perturbations. We first solve the equations of motion for the case of single-wave interactions and exploit their isomorphism with those for the biased pendulum. Next we analyze the perturbations of the single-wave dynamics by other waves and find that these have no net effect on the phase stability of the acceleration or deceleration process. Finally, we find that a packet of molecules can also ride a wave which results from an interference of adjacent waves. In this case, small phase stability areas form around phase velocities that are even-fraction multiples of the fundamental velocity. A detailed comparison with classical trajectory simulations and with experiment demonstrates that the analytic 'wave model' encompasses all the longitudinal physics encountered in a Stark decelerator.

  17. Monitoring and modeling growing season dynamics

    NASA Astrophysics Data System (ADS)

    White, Michael Aaron

    Phenology, the study of recurring biological cycles and their connection to climate, is a growing field of global change research. Vegetation phenology exerts a strong control over carbon cycles, weather, and global radiation partitioning between sensible and latent heat fluxes. Phenological monitors of the timing and length of the growing season can also be used as barometers of vegetation responses to climatic variability. In the following chapters, I present research investigating the monitoring and interpretation of growing season dynamics. Ecological modeling is limited more by data availability than by model theory. In particular, the description of vegetation functional types (biomes) for distributed modeling has been lacking. In chapter 1, I present a documented description and sensitivity analysis of the 34 parameters used in the ecosystem model, BIOME-BGC, for major temperate biomes. I applied BIOME-BGC in the eastern U.S. deciduous broad leaf forest and found that minor phenological variation created large impacts on simulated net ecosystem exchange of carbon (chapter 2). In addition to simulating the effects of growing season variability, it is also important to develop accurate field monitoring techniques, both as a means of testing modeling activities and as a validation of satellite remote sensing estimates. I conducted an intercomparison of field techniques that could be used to monitor phenological dynamics in and ecosystems (chapter 3). I found that methodological barriers to rapid, low cost monitoring were severe, but that a digital camera with both visible and near-infrared channels was a viable option. Satellite remote sensing provides the only means of obtaining consistent estimates of phenological variation at a global scale, yet our understanding of these data has been limited by a lack of ground observations. To address this problem, I proposed, developed, and wrote a phenology measurement protocol for the Global Learning and Observations

  18. Assessing Molecular Dynamics Simulations with Solvatochromism Modeling.

    PubMed

    Schwabe, Tobias

    2015-08-20

    For the modeling of solvatochromism with an explicit representation of the solvent molecules, the quality of preceding molecular dynamics simulations is crucial. Therefore, the possibility to apply force fields which are derived with as little empiricism as possible seems desirable. Such an approach is tested here by exploiting the sensitive solvatochromism of p-nitroaniline, and the use of reliable excitation energies based on approximate second-order coupled cluster results within a polarizable embedding scheme. The quality of the various MD settings for four different solvents, water, methanol, ethanol, and dichloromethane, is assessed. In general, good agreement with the experiment is observed when polarizable force fields and special treatment of hydrogen bonding are applied. PMID:26220273

  19. Persistent agents in Axelrod's social dynamics model

    NASA Astrophysics Data System (ADS)

    Reia, Sandro M.; Neves, Ubiraci P. C.

    2016-01-01

    Axelrod's model of social dynamics has been studied under the effect of external media. Here we study the formation of cultural domains in the model by introducing persistent agents. These are agents whose cultural traits are not allowed to change but may be spread through local neighborhood. In the absence of persistent agents, the system is known to present a transition from a monocultural to a multicultural regime at some critical Q (number of traits). Our results reveal a dependence of critical Q on the occupation probability p of persistent agents and we obtain the phase diagram of the model in the (p,Q) -plane. The critical locus is explained by the competition of two opposite forces named here barrier and bonding effects. Such forces are verified to be caused by non-persistent agents which adhere (adherent agents) to the set of traits of persistent ones. The adherence (concentration of adherent agents) as a function of p is found to decay for constant Q. Furthermore, adherence as a function of Q is found to decay as a power law with constant p.

  20. Modeling the dynamics of piano keys

    NASA Astrophysics Data System (ADS)

    Brenon, Celine; Boutillon, Xavier

    2003-10-01

    The models of piano keys available in the literature are crude: two degrees of freedom and a very few dynamical or geometrical parameters. Experiments on different piano mechanisms (upright, grand, one type of numerical keyboard) exhibit strong differences in the two successive phases of the key motion which are controlled by the finger. Understanding the controllability of the escapement velocity (typically a few percents for professional pianists), the differences between upright and grand pianos, the rationale for the numerous independent adjustments by technicians, and the feel by the pianist require sophisticated modeling. In addition to the inertia of the six independently moving parts of a grand piano mechanism, a careful modeling of friction at pivots and between the jack and the roll, of damping and nonlinearities in felts, and of internal springs will be presented. Simulations will be confronted to the measurements of the motions of the different parts. Currently, the first phase of the motion and the transition to the second phase are well understood while some progress must still be made in order to describe correctly this short but important phase before the escapement of the hammer. [Work done in part at the Laboratory for Musical Acoustics, Paris.

  1. CIDGA - Coupling of Interior Dynamic models with Global Atmosphere models

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Plesa, Ana-Catalina; Breuer, Doris

    2010-05-01

    Atmosphere temperatures and in particular the surface temperatures mostly depend on the solar heat flux and the atmospheric composition. The latter can be influenced by interior processes of the planet, i.e. volcanism that releases greenhouse gases such as H2O, CO2 and methane into the atmosphere and plate tectonics through which atmospheric CO2 is recycled via carbonates into the mantle. An increasing concentration of greenhouse gases in the atmosphere results in an increase of the surface temperature. Changes in the surface temperature on the other hand may influence the cooling behaviour of the planet and hence influence its volcanic activity [Phillips et al., 2001]. This feedback relation between mantle convection and atmosphere is not very well understood, since until now mostly either the interior dynamic of a planet or its atmosphere was investigated separately. 2D or 3D mantle convection models to the authors' knowledge haven't been coupled to the atmosphere so far. We have used the 3D spherical simulation code GAIA [Hüttig et al., 2008] including partial melt production and coupled it with the atmosphere module CIDGA using a gray greenhouse model for varying H2O concentrations. This way, not only the influence of mantle dynamics on the atmosphere can be investigated, but also the recoupling effect, that the surface temperature has on the mantle dynamics. So far, we consider one-plate planets without crustal and thus volatile recycling. Phillips et al. [2001] already investigated the coupling effect of the surface temperature on mantle dynamics by using simple parameterized convection models for Venus. In their model a positive feedback mechanism has been observed, i.e., an increase of the surface temperature leads to an increase of partial melt and hence an increase of atmosphere density and surface temperature. Applying our model to Venus, we show that an increase of surface temperature leads not only to an increase of partial melt in the mantle; it also

  2. Dynamical and Physical Models of Ecliptic Comets

    NASA Astrophysics Data System (ADS)

    Dones, L.; Boyce, D. C.; Levison, H. F.; Duncan, M. J.

    2005-08-01

    In most simulations of the dynamical evolution of the cometary reservoirs, a comet is removed from the computer only if it is thrown from the Solar System or strikes the Sun or a planet. However, ejection or collision is probably not the fate of most active comets. Some, like 3D/Biela, disintegrate for no apparent reason, and others, such as the Sun-grazers, 16P/Brooks 2, and D/1993 F2 Shoemaker-Levy 9, are pulled apart by the Sun or a planet. Still others, like 107P/Wilson Harrington and D/1819 W1 Blanpain, are lost and then rediscovered as asteroids. Historically, amateurs discovered most comets. However, robotic surveys now dominate the discovery of comets (http://www.comethunter.de/). These surveys include large numbers of comets observed in a standard way, so the process of discovery is amenable to modeling. Understanding the selection effects for discovery of comets is a key problem in constructing models of cometary origin. To address this issue, we are starting new orbital integrations that will provide the best model to date of the population of ecliptic comets as a function of location in the Solar System and the size of the cometary nucleus, which we expect will vary with location. The integrations include the gravitational effects of the terrestrial and giant planets and, in some cases, nongravitational jetting forces. We will incorporate simple parameterizations for mantling and mass loss based upon detailed physical models. This approach will enable us to estimate the fraction of comets in different states (active, extinct, dormant, or disintegrated) and to track how the cometary size distribution changes as a function of distance from the Sun. We will compare the results of these simulations with bias-corrected models of the orbital and absolute magnitude distributions of Jupiter-family comets and Centaurs.

  3. Finite Mixture Dynamic Regression Modeling of Panel Data with Implications for Dynamic Response Analysis

    ERIC Educational Resources Information Center

    Kaplan, David

    2005-01-01

    This article considers the problem of estimating dynamic linear regression models when the data are generated from finite mixture probability density function where the mixture components are characterized by different dynamic regression model parameters. Specifically, conventional linear models assume that the data are generated by a single…

  4. Modelling vegetation dynamics for Alpine meadows

    NASA Astrophysics Data System (ADS)

    Della Chiesa, Stefano; Bertoldi, Giacomo; Wohlfahrt, Georg; Rist, Armin; Niedrist, Georg; Albertson, John D.; Tappeiner, Ulrike

    2010-05-01

    Regional climate scenarios predict a temperature increase and a summer precipitation decrease for the European Alps. This is expected to lead to longer vegetation periods, but also to drought stress in Alpine meadows ecosystems. It is therefore uncertain if the predicted climatic changes will lead to an increase or decrease of biomass production in these grassland ecosystems. Understanding plant growth requires to consider the complex interactions between soil, atmosphere and climate via its physiological properties, in particular LAI, stomatal resistance, rooting depth, albedo, surface roughness and effects on soil moisture. Vegetation Dynamic Models (VDM) coupled with hydrological models take into account these interactions in order to study and estimate biomass production quantitatively. In this contribution, the VDM previously developed by Montaldo et al. (2005) for semi-arid environments is extended to Alpine meadows in the Stubai Valley (Eastern Austria) which are typically not subjected to water and nutrient stresses, but undergoing low temperature limitations. The aim is to assess the model robustness. Moreover, the effects of mowing practice during the season were taken into consideration. The VDM has then been implemented in the distributed hydrological model GEOtop (Rigon et al., 2006). The VDM performed well in the considered case study. The validation and calibration of the model is presented and then the effects of increased temperature and decreased precipitation are investigated numerically. In order to evaluate in the field the effects of climatic change on Alpine grassland biomass production, the inner Alpine continental Mazia Valley (South Tyrol, Italy) has been chosen in 2009 for Long-Term Ecological Research. These climatic changes will be simulated by manipulations along an altitudinal gradient comprising measuring stations at about 1000 m, 1500 m and 2000 m a.s.l.. Meadow monoliths will be transplanted downslope to simulate temperature

  5. An Extension Dynamic Model Based on BDI Agent

    NASA Astrophysics Data System (ADS)

    Yu, Wang; Feng, Zhu; Hua, Geng; WangJing, Zhu

    this paper's researching is based on the model of BDI Agent. Firstly, This paper analyze the deficiencies of the traditional BDI Agent model, Then propose an extension dynamic model of BDI Agent based on the traditional ones. It can quickly achieve the internal interaction of the tradition model of BDI Agent, deal with complex issues under dynamic and open environment and achieve quick reaction of the model. The new model is a natural and reasonable model by verifying the origin of civilization using the model of monkeys to eat sweet potato based on the design of the extension dynamic model. It is verified to be feasible by comparing the extended dynamic BDI Agent model with the traditional BDI Agent Model uses the SWARM, it has important theoretical significance.

  6. Exploring the nonlinear dynamics of a physiologically viable model neuron

    SciTech Connect

    Lindner, J.F.; Ditto, W.L.

    1996-06-01

    We describe efforts underway to explore the nonlinear dynamics of the Pinsky-Rinzel model neuron. Via computer simulations, we seek to discover nonlinear phenomena in this physiologically accurate model, thereby complementing ongoing and future experiments. Here we describe the model in detail and analyze it using tools of nonlinear dynamics to demonstrate nontrivial behaviors. {copyright} {ital 1996 American Institute of Physics.}

  7. Dynamics in Higher Education Politics: A Theoretical Model

    ERIC Educational Resources Information Center

    Kauko, Jaakko

    2013-01-01

    This article presents a model for analysing dynamics in higher education politics (DHEP). Theoretically the model draws on the conceptual history of political contingency, agenda-setting theories and previous research on higher education dynamics. According to the model, socio-historical complexity can best be analysed along two dimensions: the…

  8. Stochastic-dynamic Modelling of Morphodynamics

    NASA Astrophysics Data System (ADS)

    Eppel, D. P.; Kapitza, H.

    The numerical prediction of coastal sediment motion over time spans of years and decades is hampered by the sediment's ability, when stirred by waves and currents, to often react not uniquely to the external forcing but rather to show some kind of internal dynamics whose characteristics are not directly linked to the external forcing. Analytical stability analyses of the sediment-water system indicate that instabilities of tidally forced sediment layers in shallow seas can occur on spatial scales smaller than and not related to the scales of the tidal components. The finite growth of these un- stable amplitides can be described in terms of Ginzburg-Landau equations. Examples are the formation of ripples, sand waves and sand dunes or the formation of shore- face connected ridges. Among others, analyses of time series of coastal profiles from Duck, South Carolina extending over several decades gave evidence for self-organized behaviour suggesting that some important sediment-water systems can be perceived as dissipative dynamical structures. The consequences of such behaviour for predicting morphodynamics has been pointed out: one would expect that there exist time horizons beyond which predictions in the traditional deterministic sense are not possible. One would have to look for statistical quantities containing information of some relevance such as phase-space densities of solutions, attractor sets and the like. This contribution is part of an effort to address the prediction problem of morphody- namics through process-oriented models containing stochastic parameterizations for bottom shear stresses, critical shear stresses, etc.; process-based models because they are directly related to the physical processes but in a stochastic form because it is known that the physical processes contain strong stochastic components. The final outcome of such a program would be the generation of an ensemble of solutions by Monte Carlo integrations of the stochastic model

  9. Supercomputer modeling of volcanic eruption dynamics

    SciTech Connect

    Kieffer, S.W.; Valentine, G.A.; Woo, Mahn-Ling

    1995-06-01

    Our specific goals are to: (1) provide a set of models based on well-defined assumptions about initial and boundary conditions to constrain interpretations of observations of active volcanic eruptions--including movies of flow front velocities, satellite observations of temperature in plumes vs. time, and still photographs of the dimensions of erupting plumes and flows on Earth and other planets; (2) to examine the influence of subsurface conditions on exit plane conditions and plume characteristics, and to compare the models of subsurface fluid flow with seismic constraints where possible; (3) to relate equations-of-state for magma-gas mixtures to flow dynamics; (4) to examine, in some detail, the interaction of the flowing fluid with the conduit walls and ground topography through boundary layer theory so that field observations of erosion and deposition can be related to fluid processes; and (5) to test the applicability of existing two-phase flow codes for problems related to the generation of volcanic long-period seismic signals; (6) to extend our understanding and simulation capability to problems associated with emplacement of fragmental ejecta from large meteorite impacts.

  10. A dynamic model of Venus's gravity field

    NASA Technical Reports Server (NTRS)

    Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.

    1984-01-01

    Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.