Science.gov

Sample records for dynamic processes modulo

  1. Iterative modulo scheduling

    SciTech Connect

    Rau, B.R.

    1996-02-01

    Modulo scheduling is a framework within which algorithms for software pipelining innermost loops may be defined. The framework specifies a set of constraints that must be met in order to achieve a legal modulo schedule. A wide variety of algorithms and heuristics can be defined within this framework. Little work has been done to evaluate and compare alternative algorithms and heuristics for modulo scheduling from the viewpoints of schedule quality as well as computational complexity. This, along with a vague and unfounded perception that modulo scheduling is computationally expensive as well as difficult to implement, have inhibited its corporation into product compilers. This paper presents iterative modulo scheduling, a practical algorithm that is capable of dealing with realistic machine models. The paper also characterizes the algorithm in terms of the quality of the generated schedules as well as the computational incurred.

  2. Rewriting Modulo SMT

    NASA Technical Reports Server (NTRS)

    Rocha, Camilo; Meseguer, Jose; Munoz, Cesar A.

    2013-01-01

    Combining symbolic techniques such as: (i) SMT solving, (ii) rewriting modulo theories, and (iii) model checking can enable the analysis of infinite-state systems outside the scope of each such technique. This paper proposes rewriting modulo SMT as a new technique combining the powers of (i)-(iii) and ideally suited to model and analyze infinite-state open systems; that is, systems that interact with a non-deterministic environment. Such systems exhibit both internal non-determinism due to the system, and external non-determinism due to the environment. They are not amenable to finite-state model checking analysis because they typically are infinite-state. By being reducible to standard rewriting using reflective techniques, rewriting modulo SMT can both naturally model and analyze open systems without requiring any changes to rewriting-based reachability analysis techniques for closed systems. This is illustrated by the analysis of a real-time system beyond the scope of timed automata methods.

  3. Foundations of Satisfiability Modulo Theories

    NASA Astrophysics Data System (ADS)

    Tinelli, Cesare

    Satisfiability Modulo Theories (SMT) studies methods for checking the (un)- satisfiability of first-order formulas with respect to a given logical theory T . Distinguishing features of SMT, as opposed to traditional theorem proving, are that the background theory T need not be finitely or even first-order axiomatizable, and that specialized inference methods are used for each theory of interest. By being theory-specific and restricting their language to certain classes of formulas (such as, typically but not exclusively, quantifier-free formulas), these methods can be implemented into solvers that are more efficient in practice than general-purpose theorem provers.

  4. Rewriting Modulo SMT and Open System Analysis

    NASA Technical Reports Server (NTRS)

    Rocha, Camilo; Meseguer, Jose; Munoz, Cesar

    2014-01-01

    This paper proposes rewriting modulo SMT, a new technique that combines the power of SMT solving, rewriting modulo theories, and model checking. Rewriting modulo SMT is ideally suited to model and analyze infinite-state open systems, i.e., systems that interact with a non-deterministic environment. Such systems exhibit both internal non-determinism, which is proper to the system, and external non-determinism, which is due to the environment. In a reflective formalism, such as rewriting logic, rewriting modulo SMT can be reduced to standard rewriting. Hence, rewriting modulo SMT naturally extends rewriting-based reachability analysis techniques, which are available for closed systems, to open systems. The proposed technique is illustrated with the formal analysis of: (i) a real-time system that is beyond the scope of timed-automata methods and (ii) automatic detection of reachability violations in a synchronous language developed to support autonomous spacecraft operations.

  5. How to Differentiate an Integer Modulo n

    ERIC Educational Resources Information Center

    Emmons, Caleb; Krebs, Mike; Shaheen, Anthony

    2009-01-01

    A number derivative is a numerical mapping that satisfies the product rule. In this paper, we determine all number derivatives on the set of integers modulo n. We also give a list of undergraduate research projects to pursue using these maps as a starting point.

  6. Decision Engines for Software Analysis Using Satisfiability Modulo Theories Solvers

    NASA Technical Reports Server (NTRS)

    Bjorner, Nikolaj

    2010-01-01

    The area of software analysis, testing and verification is now undergoing a revolution thanks to the use of automated and scalable support for logical methods. A well-recognized premise is that at the core of software analysis engines is invariably a component using logical formulas for describing states and transformations between system states. The process of using this information for discovering and checking program properties (including such important properties as safety and security) amounts to automatic theorem proving. In particular, theorem provers that directly support common software constructs offer a compelling basis. Such provers are commonly called satisfiability modulo theories (SMT) solvers. Z3 is a state-of-the-art SMT solver. It is developed at Microsoft Research. It can be used to check the satisfiability of logical formulas over one or more theories such as arithmetic, bit-vectors, lists, records and arrays. The talk describes some of the technology behind modern SMT solvers, including the solver Z3. Z3 is currently mainly targeted at solving problems that arise in software analysis and verification. It has been applied to various contexts, such as systems for dynamic symbolic simulation (Pex, SAGE, Vigilante), for program verification and extended static checking (Spec#/Boggie, VCC, HAVOC), for software model checking (Yogi, SLAM), model-based design (FORMULA), security protocol code (F7), program run-time analysis and invariant generation (VS3). We will describe how it integrates support for a variety of theories that arise naturally in the context of the applications. There are several new promising avenues and the talk will touch on some of these and the challenges related to SMT solvers. Proceedings

  7. Dynamics of biomolecular processes

    NASA Astrophysics Data System (ADS)

    Behringer, Hans; Eichhorn, Ralf; Wallin, Stefan

    2013-05-01

    The last few years have seen enormous progress in the availability of computational resources, so that the size and complexity of physical systems that can be investigated numerically has increased substantially. The physical mechanisms behind the processes creating life, such as those in a living cell, are of foremost interest in biophysical research. A main challenge here is that complexity not only emerges from interactions of many macro-molecular compounds, but is already evident at the level of a single molecule. An exciting recent development in this context is, therefore, that detailed atomistic level characterization of large-scale dynamics of individual bio-macromolecules, such as proteins and DNA, is starting to become feasible in some cases. This has contributed to a better understanding of the molecular mechanisms of, e.g. protein folding and aggregation, as well as DNA dynamics. Nevertheless, simulations of the dynamical behaviour of complex multicomponent cellular processes at an all-atom level will remain beyond reach for the foreseeable future, and may not even be desirable. Ultimate understanding of many biological processes will require the development of methods targeting different time and length scales and, importantly, ways to bridge these in multiscale approaches. At the scientific programme Dynamics of biomolecular processes: from atomistic representations to coarse-grained models held between 27 February and 23 March 2012, and hosted by the Nordic Institute for Theoretical Physics, new modelling approaches and results for particular biological systems were presented and discussed. The programme was attended by around 30 scientists from the Nordic countries and elsewhere. It also included a PhD and postdoc 'winter school', where basic theoretical concepts and techniques of biomolecular modelling and simulations were presented. One to two decades ago, the biomolecular modelling field was dominated by two widely different and largely

  8. Dynamic similarity in erosional processes

    USGS Publications Warehouse

    Scheidegger, A.E.

    1963-01-01

    A study is made of the dynamic similarity conditions obtaining in a variety of erosional processes. The pertinent equations for each type of process are written in dimensionless form; the similarity conditions can then easily be deduced. The processes treated are: raindrop action, slope evolution and river erosion. ?? 1963 Istituto Geofisico Italiano.

  9. Dynamic analysis of process reactors

    SciTech Connect

    Shadle, L.J.; Lawson, L.O.; Noel, S.D.

    1995-06-01

    The approach and methodology of conducting a dynamic analysis is presented in this poster session in order to describe how this type of analysis can be used to evaluate the operation and control of process reactors. Dynamic analysis of the PyGas{trademark} gasification process is used to illustrate the utility of this approach. PyGas{trademark} is the gasifier being developed for the Gasification Product Improvement Facility (GPIF) by Jacobs-Siffine Engineering and Riley Stoker. In the first step of the analysis, process models are used to calculate the steady-state conditions and associated sensitivities for the process. For the PyGas{trademark} gasifier, the process models are non-linear mechanistic models of the jetting fluidized-bed pyrolyzer and the fixed-bed gasifier. These process sensitivities are key input, in the form of gain parameters or transfer functions, to the dynamic engineering models.

  10. Automata and the susceptibility of the square lattice Ising model modulo powers of primes

    NASA Astrophysics Data System (ADS)

    Guttmann, A. J.; Maillard, J.-M.

    2015-11-01

    We study the full susceptibility of the Ising model modulo powers of primes. We find exact functional equations for the full susceptibility modulo these primes. Revisiting some lesser-known results on discrete finite automata, we show that these results can be seen as a consequence of the fact that, modulo 2 r , one cannot distinguish the full susceptibility from some simple diagonals of rational functions which reduce to algebraic functions modulo 2 r , and, consequently, satisfy exact functional equations modulo 2 r . We sketch a possible physical interpretation of these functional equations modulo 2 r as reductions of a master functional equation corresponding to infinite order symmetries such as the isogenies of elliptic curves. One relevant example is the Landen transformation which can be seen as an exact generator of the Ising model renormalization group. We underline the importance of studying a new class of functions corresponding to ratios of diagonals of rational functions: they reduce to algebraic functions modulo powers of primes and they may have solutions with natural boundaries. Dedicated to R J Baxter, for his 75th birthday.

  11. An Approach to Problem-Solving Using Equivalence Classes Modulo n.

    ERIC Educational Resources Information Center

    Schultz, James E.; Burger, William F.

    1984-01-01

    Demonstrated is how the concept of equivalence classes modulo n can provide a basis for solving a wide range of problems. Five problems are presented and described to illustrate the power and usefulness of modular arithmetic in problem solving. (MNS)

  12. Structure of High-Speed Modulo Multiplier Suitable for Repeated Operations

    NASA Astrophysics Data System (ADS)

    Kudou, Tadamichi; Tsunekawa, Yoshitaka; Suzuki, Masayuki

    In this paper, we propose a new modulo multiplier suitable for repeated operations using redundant representations. First, we consider a computation rule for radix-2 modulo multiplications. In radix-2 operation, we show two methods to calculate (2i-1 mod n) from (2i mod n) and decide product digits sequentially from upper side. These methods make it possible to perform (2i-1 mod n) and multiplications simultaneously. Second, we attempt to apply these methods to radix-4 operations which enables us to reduce clock cycles by only shift and sign change. We propose some structures to perform each part efficiently for radix-4 modulo multiplications. The high-speed redundant binary adder/subtractor which we have already proposed is applied to these structures. By using this adder/subtractor, the longest delay path of this modulo multiplier becomes very short. Finally, by using PARTHENON which is a design system for VLSI, this modulo multiplier is designed and evaluated. As a result, we show the speed of this proposed modulo multiplier becomes over 2.5 times as compared with the conventional structures.

  13. Dynamic Message Routing Using Processes

    NASA Astrophysics Data System (ADS)

    Scheibler, Thorsten; Karastoyanova, Dimka; Leymann, Frank

    The Enterprise Service Bus (ESB) is composable middleware that provides applications with services such as message routing and transformation, service composition, dynamic discovery, transactional support, coordination, security features, and others. In an ESB supporting SOAP message exchange, routing algorithms typically follow the sequential SOAP message processing model, where SOAP headers are the main artefacts used to specify the message route and the processing of the payload by intermediaries along that route. This model supports neither alternative nor parallel message routes. In the case of a failing intermediary node this leads to a failure in the message delivery. Moreover, the execution order of services on SOAP message payloads at the intermediaries cannot be prescribed. In this paper, we demonstrate how these deficiencies of the SOAP message processing model can be addressed. We introduce an approach that allows for specifying SOAP message routing logic in terms of BPEL processes. We show that parallel and alternative routes for SOAP messages can be modelled and executed, and the order of services that process a message at intermediaries can be predefined to accommodate the correct processing sequence as required by the concrete application domain. Features like dynamic discovery of services and flexible service composition are leveraged to enable flexible SOAP message routing.

  14. A Fast Algorithm for Computing Binomial Coefficients Modulo Powers of Two

    PubMed Central

    2013-01-01

    I present a new algorithm for computing binomial coefficients modulo 2N. The proposed method has an O(N3 · Multiplication(N) + N4) preprocessing time, after which a binomial coefficient C(P, Q) with 0 ≤ Q ≤ P ≤ 2N − 1 can be computed modulo 2N in O(N2 · log(N) · Multiplication(N)) time. Multiplication(N) denotes the time complexity of multiplying two N-bit numbers, which can range from O(N2) to O(N · log(N) · log(log(N))) or better. Thus, the overall time complexity for evaluating M binomial coefficients C(P, Q) modulo 2N with 0 ≤ Q ≤ P ≤ 2N − 1 is O((N3 + M · N2 · log(N)) · Multiplication(N) + N4). After preprocessing, we can actually compute binomial coefficients modulo any 2R with R ≤ N. For larger values of P and Q, variations of Lucas' theorem must be used first in order to reduce the computation to the evaluation of multiple (O(log⁡(P))) binomial coefficients C(P′, Q′) (or restricted types of factorials P′!) modulo 2N with 0 ≤ Q′ ≤ P′ ≤ 2N − 1. PMID:24348186

  15. Dynamic security assessment processing system

    NASA Astrophysics Data System (ADS)

    Tang, Lei

    The architecture of dynamic security assessment processing system (DSAPS) is proposed to address online dynamic security assessment (DSA) with focus of the dissertation on low-probability, high-consequence events. DSAPS upgrades current online DSA functions and adds new functions to fit into the modern power grid. Trajectory sensitivity analysis is introduced and its applications in power system are reviewed. An index is presented to assess transient voltage dips quantitatively using trajectory sensitivities. Then the framework of anticipatory computing system (ACS) for cascading defense is presented as an important function of DSAPS. ACS addresses various security problems and the uncertainties in cascading outages. Corrective control design is automated to mitigate the system stress in cascading progressions. The corrective controls introduced in the dissertation include corrective security constrained optimal power flow, a two-stage load control for severe under-frequency conditions, and transient stability constrained optimal power flow for cascading outages. With state-of-the-art computing facilities to perform high-speed extended-term time-domain simulation and optimization for large-scale systems, DSAPS/ACS efficiently addresses online DSA for low-probability, high-consequence events, which are not addressed by today's industrial practice. Human interference is reduced in the computationally burdensome analysis.

  16. Dynamical processes in semiconductor nanoclusters

    NASA Astrophysics Data System (ADS)

    Han, Peng; Bester, Gabriel

    2013-03-01

    We study the electronic relaxation processes via electron-phonon interaction in colloidal semiconductor nanoclusters (NCs) using the Liouville-von Neumann equation including a phenomenological Lindblad decay term. The electron-phonon coupling matrix elements used in our study are obtained from frozen-phonon calculations based on ab initio density functional theory (DFT). To estimate the phonon lifetime of NCs, which is used in the Lindblad decay term, we perform ab initio molecular dynamics simulations of a Si10H16 cluster and extract the time evolution of the energy of selected vibrational modes from the energy auto-correlation functions. We find vibrational cooling times of around 0.1 ps for high frequency Si-H vibrations, and cooling time of around 1 ps for pure Si modes, which are close to the phonon lifetimes in bulk Si. Analyzing the electronic relaxation processes with the parameters from DFT calculations, we observe a decaying Rabi oscillation with a period of tens of femtoseconds corresponding to the emission/absorption of a phonon. We notice that the Rabi oscillation frequency is proportional to the electron-phonon coupling strength while the decay process is dominated by the phonon lifetime and the energy detuning.

  17. Binomial Coefficients Modulo a Prime--A Visualization Approach to Undergraduate Research

    ERIC Educational Resources Information Center

    Bardzell, Michael; Poimenidou, Eirini

    2011-01-01

    In this article we present, as a case study, results of undergraduate research involving binomial coefficients modulo a prime "p." We will discuss how undergraduates were involved in the project, even with a minimal mathematical background beforehand. There are two main avenues of exploration described to discover these binomial identities. The…

  18. Dynamic control of remelting processes

    DOEpatents

    Bertram, Lee A.; Williamson, Rodney L.; Melgaard, David K.; Beaman, Joseph J.; Evans, David G.

    2000-01-01

    An apparatus and method of controlling a remelting process by providing measured process variable values to a process controller; estimating process variable values using a process model of a remelting process; and outputting estimated process variable values from the process controller. Feedback and feedforward control devices receive the estimated process variable values and adjust inputs to the remelting process. Electrode weight, electrode mass, electrode gap, process current, process voltage, electrode position, electrode temperature, electrode thermal boundary layer thickness, electrode velocity, electrode acceleration, slag temperature, melting efficiency, cooling water temperature, cooling water flow rate, crucible temperature profile, slag skin temperature, and/or drip short events are employed, as are parameters representing physical constraints of electroslag remelting or vacuum arc remelting, as applicable.

  19. Some infinite families of congruences modulo 3 for 7-core partitions

    NASA Astrophysics Data System (ADS)

    Das, Kuwali

    2016-06-01

    A partition λ is said to be a t-core if and only if it has no hook numbers that are multiples of t. In this paper, we find several new and interesting congruences for 7-core partitions modulo 3 by making use of Ramanujan's theta function identities. We obtain several infinite families of congruences modulo 3 for 7-core partitions. For example, if p ≥ 5 is a prime with (-7/p) =-1 and r ∈ {3, 4, 6}, then for all non-negative integers n and k, a7 (147 . p2k n + 7 . p2k (3r + 1) - 2) ≡ a7 (21 . p2k n + p2k (3r + 1) - 2) (mod 3).

  20. Morphological Dynamics in Compound Processing

    ERIC Educational Resources Information Center

    Kuperman, Victor; Bertram, Raymond; Baayen, R. Harald

    2008-01-01

    This paper explores the time-course of morphological processing of trimorphemic Finnish compounds. We find evidence for the parallel access to full-forms and morphological constituents diagnosed by the early effects of compound frequency, as well as early effects of left constituent frequency and family size. We also observe an interaction between…

  1. Photochemical tools to study dynamic biological processes

    PubMed Central

    Specht, Alexandre; Bolze, Frédéric; Omran, Ziad; Nicoud, Jean-François; Goeldner, Maurice

    2009-01-01

    Light-responsive biologically active compounds offer the possibility to study the dynamics of biological processes. Phototriggers and photoswitches have been designed, providing the capability to rapidly cause the initiation of wide range of dynamic biological phenomena. We will discuss, in this article, recent developments in the field of light-triggered chemical tools, specially how two-photon excitation, “caged” fluorophores, and the photoregulation of protein activities in combination with time-resolved x-ray techniques should break new grounds in the understanding of dynamic biological processes. PMID:20119482

  2. Researches on Mathematical Relationship of Five Elements of Containing Notes and Fibonacci Sequence Modulo 5.

    PubMed

    Chen, Zhaoxue

    2015-01-01

    Considering the five periods and six qi's theory in TCM almost shares a common basis of stem-branch system with the five elements of containing notes, studying the principle or mathematical structure behind the five elements of containing notes can surely bring a novel view for the five periods and six qi's researches. By analyzing typical mathematical rules included in He tu, Luo shu, and stem-branch theory in TCM as well as the Fibonacci sequence especially widely existent in the biological world, novel researches are performed on mathematical relationship between the five elements of containing notes and the Fibonacci sequence modulo 5. Enlightened by elementary Yin or Yang number grouping principle of He tu, Luo shu, the 12534 and 31542 key number series of Fibonacci sequence modulo 5 are obtained. And three new arrangements about the five elements of containing notes are then introduced, which have shown close relationship with the two obtained key subsequences of the Fibonacci sequence modulo 5. The novel discovery is quite helpful to recover the scientific secret of the five periods and six qi's theory in TCM as well as that of whole traditional Chinese culture system, but more data is needed to elucidate the TCM theory further. PMID:26495418

  3. Researches on Mathematical Relationship of Five Elements of Containing Notes and Fibonacci Sequence Modulo 5

    PubMed Central

    Chen, Zhaoxue

    2015-01-01

    Considering the five periods and six qi's theory in TCM almost shares a common basis of stem-branch system with the five elements of containing notes, studying the principle or mathematical structure behind the five elements of containing notes can surely bring a novel view for the five periods and six qi's researches. By analyzing typical mathematical rules included in He tu, Luo shu, and stem-branch theory in TCM as well as the Fibonacci sequence especially widely existent in the biological world, novel researches are performed on mathematical relationship between the five elements of containing notes and the Fibonacci sequence modulo 5. Enlightened by elementary Yin or Yang number grouping principle of He tu, Luo shu, the 12534 and 31542 key number series of Fibonacci sequence modulo 5 are obtained. And three new arrangements about the five elements of containing notes are then introduced, which have shown close relationship with the two obtained key subsequences of the Fibonacci sequence modulo 5. The novel discovery is quite helpful to recover the scientific secret of the five periods and six qi's theory in TCM as well as that of whole traditional Chinese culture system, but more data is needed to elucidate the TCM theory further. PMID:26495418

  4. Information Processing Capacity of Dynamical Systems

    PubMed Central

    Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge

    2012-01-01

    Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory. PMID:22816038

  5. A dynamically reconfigurable data stream processing system

    SciTech Connect

    Nogiec, J.M.; Trombly-Freytag, K.; /Fermilab

    2004-11-01

    This paper describes a component-based framework for data stream processing that allows for configuration, tailoring, and runtime system reconfiguration. The system's architecture is based on a pipes and filters pattern, where data is passed through routes between components. A network of pipes and filters can be dynamically reconfigured in response to a preplanned sequence of processing steps, operator intervention, or a change in one or more data streams. This framework provides several mechanisms supporting dynamic reconfiguration and can be used to build static data stream processing applications such as monitoring or data acquisition systems, as well as self-adjusting systems that can adapt their processing algorithm, presentation layer, or data persistency layer in response to changes in input data streams.

  6. Collective Dynamics of Processive Cytoskeletal Motors

    PubMed Central

    McLaughlin, R. Tyler; Diehl, Michael R.; Kolomeisky, Anatoly B.

    2015-01-01

    Major cellular processes are supported by various biomolecular motors that usually operate together as teams. We present an overview of the collective dynamics of processive cytokeletal motor proteins based on recent experimental and theoretical investigations. Experimental studies show that multiple motors function with different degrees of cooperativity, ranging from negative to positive. This effect depends on the mechanical properties of individual motors, the geometry of their connections, and the surrounding cellular environment. Theoretical models based on stochastic approaches underline the importance of intermolecular interactions, the properties of single motors, and couplings with cellular medium in predicting the collective dynamics. We discuss several features that specify the cooperativity in motor proteins. Based on this approach a general picture of collective dynamics of motor proteins is formulated, and the future directions and challenges are discussed. PMID:26444155

  7. Group Dynamic Processes in Email Groups

    ERIC Educational Resources Information Center

    Alpay, Esat

    2005-01-01

    Discussion is given on the relevance of group dynamic processes in promoting decision-making in email discussion groups. General theories on social facilitation and social loafing are considered in the context of email groups, as well as the applicability of psychodynamic and interaction-based models. It is argued that such theories may indeed…

  8. Deciphering Dynamical Patterns of Growth Processes

    ERIC Educational Resources Information Center

    Kolakowska, A.

    2009-01-01

    Large systems of statistical physics often display properties that are independent of particulars that characterize their microscopic components. Universal dynamical patterns are manifested by the presence of scaling laws, which provides a common insight into governing physics of processes as vastly diverse as, e.g., growth of geological…

  9. Generalized epidemic process and tricritical dynamic percolation

    NASA Astrophysics Data System (ADS)

    Janssen, Hans-Karl; Müller, Martin; Stenull, Olaf

    2004-08-01

    The renowned general epidemic process describes the stochastic evolution of a population of individuals which are either susceptible, infected, or dead. A second order phase transition belonging to the universality class of dynamic isotropic percolation lies between the endemic and pandemic behavior of the process. We generalize the general epidemic process by introducing a fourth kind of individuals, viz., individuals which are weakened by the process but not yet infected. This weakening gives rise to a mechanism that introduces a global instability in the spreading of the process and therefore opens the possibility of a discontinuous transition in addition to the usual continuous percolation transition. The tricritical point separating the lines of first and second order transitions constitutes an independent universality class, namely, the universality class of tricritical dynamic isotropic percolation. Using renormalized field theory we work out a detailed scaling description of this universality class. We calculate the scaling exponents in an ɛ expansion below the upper critical dimension dc=5 for various observables describing tricritical percolation clusters and their spreading properties. In a remarkable contrast to the usual percolation transition, the exponents β and β' governing the two order parameters, viz., the mean density and the percolation probability, turn out to be different at the tricritical point. In addition to the scaling exponents we calculate for all our static and dynamic observables logarithmic corrections to the mean-field scaling behavior at dc=5 .

  10. Dynamical modeling of laser ablation processes

    SciTech Connect

    Leboeuf, J.N.; Chen, K.R.; Donato, J.M.; Geohegan, D.B.; Liu, C.L.; Puretzky, A.A.; Wood, R.F.

    1995-09-01

    Several physics and computational approaches have been developed to globally characterize phenomena important for film growth by pulsed laser deposition of materials. These include thermal models of laser-solid target interactions that initiate the vapor plume; plume ionization and heating through laser absorption beyond local thermodynamic equilibrium mechanisms; gas dynamic, hydrodynamic, and collisional descriptions of plume transport; and molecular dynamics models of the interaction of plume particles with the deposition substrate. The complexity of the phenomena involved in the laser ablation process is matched by the diversity of the modeling task, which combines materials science, atomic physics, and plasma physics.

  11. Recognizing dynamic scenes: influence of processing orientation.

    PubMed

    Huff, Markus; Schwan, Stephan; Garsoffky, Bärbel

    2011-04-01

    From face recognition studies, it is known that instructions are able to change processing orientation of stimuli, leading to an impairment of recognition performance. The present study examined instructional influences on the visual recognition of dynamic scenes. A global processing orientation without any instruction was assumed to lead to highest recognition performance, whereas instructions focusing participants' attention on certain characteristics of the event should lead to a local processing orientation with an impairment of visual recognition performance as a direct consequence. Since the pattern of results provided evidence for this hypothesis, theoretical contributions were discussed. PMID:21667754

  12. Oculometric Assessment of Dynamic Visual Processing

    NASA Technical Reports Server (NTRS)

    Liston, Dorion Bryce; Stone, Lee

    2014-01-01

    Eye movements are the most frequent (3 per second), shortest-latency (150-250 ms), and biomechanically simplest (1 joint, no inertial complexities) voluntary motor behavior in primates, providing a model system to assess sensorimotor disturbances arising from trauma, fatigue, aging, or disease states (e.g., Diefendorf and Dodge, 1908). We developed a 15-minute behavioral tracking protocol consisting of randomized stepramp radial target motion to assess several aspects of the behavioral response to dynamic visual motion, including pursuit initiation, steadystate tracking, direction-tuning, and speed-tuning thresholds. This set of oculomotor metrics provide valid and reliable measures of dynamic visual performance (Stone and Krauzlis, 2003; Krukowski and Stone, 2005; Stone et al, 2009; Liston and Stone, 2014), and may prove to be a useful assessment tool for functional impairments of dynamic visual processing.

  13. Modeling Dynamic Regulatory Processes in Stroke.

    SciTech Connect

    McDermott, Jason E.; Jarman, Kenneth D.; Taylor, Ronald C.; Lancaster, Mary J.; Shankaran, Harish; Vartanian, Keri B.; Stevens, S.L.; Stenzel-Poore, Mary; Sanfilippo, Antonio P.

    2012-10-11

    The ability to examine in silico the behavior of biological systems can greatly accelerate the pace of discovery in disease pathologies, such as stroke, where in vivo experimentation is lengthy and costly. In this paper we describe an approach to in silico examination of blood genomic responses to neuroprotective agents and subsequent stroke through the development of dynamic models of the regulatory processes observed in the experimental gene expression data. First, we identified functional gene clusters from these data. Next, we derived ordinary differential equations (ODEs) relating regulators and functional clusters from the data. These ODEs were used to develop dynamic models that simulate the expression of regulated functional clusters using system dynamics as the modeling paradigm. The dynamic model has the considerable advantage of only requiring an initial starting state, and does not require measurement of regulatory influences at each time point in order to make accurate predictions. The manipulation of input model parameters, such as changing the magnitude of gene expression, made it possible to assess the behavior of the networks through time under varying conditions. We report that an optimized dynamic model can provide accurate predictions of overall system behavior under several different preconditioning paradigms.

  14. Fast dynamic processes of solar radiation

    SciTech Connect

    Tomson, Teolan

    2010-02-15

    This paper studies dynamic processes of fast-alternating solar radiation which are assessed by alternation of clouds. Most attention is devoted to clouds of type Cumulus Humilis, identified through visual recognition and/or a specially constructed automatic sensor. One second sampling period was used. Recorded data series were analyzed with regard to duration of illuminated 'windows' between shadows, their stochastic intervals, fronts and the magnitude of increments of solar irradiance. (author)

  15. Dynamic displays of chemical process flowsheet models

    SciTech Connect

    Aull, J.E.

    1996-11-01

    This paper describes the algorithms used in constructing dynamic graphical displays of a process flowsheet. Movies are created which portray changes in the process over time using animation in the flowsheet such as individual streams that take on a color keyed to the current flow rate, tank levels that visibly rise and fall and {open_quotes}gauges{close_quotes} that move to display parameter values. Movies of this type can be a valuable tool for visualizing, analyzing, and communicating the behavior of a process model. This paper describes the algorithms used in constructing displays of this kind for dynamic models using the SPEEDUP{trademark} modeling package and the GMS{trademark} graphics package. It also tells how data is exported from the SPEEDUP{trademark} package to GMS{trademark} and describes how a user environment for running movies and editing flowsheets is set up. The algorithms are general enough to be applied to other processes and graphics packages. In fact the techniques described here can be used to create movies of any time-dependent data.

  16. Topic: Catchment system dynamics: Processes and feedbacks

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia

    2015-04-01

    In this meeting we can talk about my main expertise: the focus of my research ocus revolves around understanding catchment system dynamics in a holistic way by incorporating both processes on hillslopes as well as in the river channel. Process knowledge enables explanation of the impact of natural and human drivers on the catchment systems and which consequences these drivers have for water and sediment connectivity. Improved understanding of the catchment sediment and water dynamics will empower sustainable land and river management and mitigate soil threats like erosion and off-side water and sediment accumulation with the help of nature's forces. To be able to understand the system dynamics of a catchment, you need to study the catchment system in a holistic way. In many studies only the hillslopes or even plots are studied; or only the channel. However, these systems are connected and should be evaluated together. When studying a catchment system any intervention to the system will create both on- as well as off sites effects, which should especially be taken into account when transferring science into policy regulations or management decisions.

  17. Dynamic rupture processes inferred from laboratory microearthquakes

    NASA Astrophysics Data System (ADS)

    Passelègue, François. X.; Schubnel, Alexandre; Nielsen, Stefan; Bhat, Harsha S.; Deldicque, Damien; Madariaga, Raúl

    2016-06-01

    We report macroscopic stick-slip events in saw-cut Westerly granite samples deformed under controlled upper crustal stress conditions in the laboratory. Experiments were conducted under triaxial loading (σ1>σ2=σ3) at confining pressures (σ3) ranging from 10 to 100 MPa. A high-frequency acoustic monitoring array recorded particle acceleration during macroscopic stick-slip events allowing us to estimate rupture speed. In addition, we record the stress drop dynamically and we show that the dynamic stress drop measured locally close to the fault plane is almost total in the breakdown zone (for normal stress >75 MPa), while the friction f recovers to values of f > 0.4 within only a few hundred microseconds. Enhanced dynamic weakening is observed to be linked to the melting of asperities which can be well explained by flash heating theory in agreement with our postmortem microstructural analysis. Relationships between initial state of stress, rupture velocities, stress drop, and energy budget suggest that at high normal stress (leading to supershear rupture velocities), the rupture processes are more dissipative. Our observations question the current dichotomy between the fracture energy and the frictional energy in terms of rupture processes. A power law scaling of the fracture energy with final slip is observed over 8 orders of magnitude in slip, from a few microns to tens of meters.

  18. Dynamic occupancy models for explicit colonization processes.

    PubMed

    Broms, Kristin M; Hooten, Mevin B; Johnson, Devin S; Altwegg, Res; Conquest, Loveday L

    2016-01-01

    The dynamic, multi-season occupancy model framework has become a popular tool for modeling open populations with occupancies that change over time through local colonizations and extinctions. However, few versions of the model relate these probabilities to the occupancies of neighboring sites or patches. We present a modeling framework that incorporates this information and is capable of describing a wide variety of spatiotemporal colonization and extinction processes. A key feature of the model is that it is based on a simple set of small-scale rules describing how the process evolves. The result is a dynamic process that can account for complicated large-scale features. In our model, a site is more likely to be colonized if more of its neighbors were previously occupied and if it provides more appealing environmental characteristics than its neighboring sites. Additionally, a site without occupied neighbors may also become colonized through the inclusion of a long-distance dispersal process. Although similar model specifications have been developed for epidemiological applications, ours formally accounts for detectability using the well-known occupancy modeling framework. After demonstrating the viability and potential of this new form of dynamic occupancy model in a simulation study, we use it to obtain inference for the ongoing Common Myna (Acridotheres tristis) invasion in South Africa. Our results suggest that the Common Myna continues to enlarge its distribution and its spread via short distance movement, rather than long-distance dispersal. Overall, this new modeling framework provides a powerful tool for managers examining the drivers of colonization including short- vs. long-distance dispersal, habitat quality, and distance from source populations. PMID:27008788

  19. Dynamic occupancy models for explicit colonization processes

    USGS Publications Warehouse

    Broms, Kristin M.; Hooten, Mevin B.; Johnson, Devin S.; Altwegg, Res; Conquest, Loveday

    2016-01-01

    The dynamic, multi-season occupancy model framework has become a popular tool for modeling open populations with occupancies that change over time through local colonizations and extinctions. However, few versions of the model relate these probabilities to the occupancies of neighboring sites or patches. We present a modeling framework that incorporates this information and is capable of describing a wide variety of spatiotemporal colonization and extinction processes. A key feature of the model is that it is based on a simple set of small-scale rules describing how the process evolves. The result is a dynamic process that can account for complicated large-scale features. In our model, a site is more likely to be colonized if more of its neighbors were previously occupied and if it provides more appealing environmental characteristics than its neighboring sites. Additionally, a site without occupied neighbors may also become colonized through the inclusion of a long-distance dispersal process. Although similar model specifications have been developed for epidemiological applications, ours formally accounts for detectability using the well-known occupancy modeling framework. After demonstrating the viability and potential of this new form of dynamic occupancy model in a simulation study, we use it to obtain inference for the ongoing Common Myna (Acridotheres tristis) invasion in South Africa. Our results suggest that the Common Myna continues to enlarge its distribution and its spread via short distance movement, rather than long-distance dispersal. Overall, this new modeling framework provides a powerful tool for managers examining the drivers of colonization including short- vs. long-distance dispersal, habitat quality, and distance from source populations.

  20. Dynamic Rupture Processes during Laboratory Earthquakes

    NASA Astrophysics Data System (ADS)

    Passelègue, F. X.; Schubnel, A.; Nielsen, S. B.; Bhat Suresh, H.; Madariaga, R. I.

    2014-12-01

    Since the proposal by Brace and Byerlee [1966] that the mechanism of stick-slip is similar to earthquakes, many experimental studies have been conducted in order to improve the understanding of rupture mechanics. Here, we report the results of macroscopic stick-slip events in saw-cut samples deformed under controlled upper crustal stress conditions in the laboratory. Experiments were conducted under triaxial laoding (σ1>σ2=σ3) at confining pressures ranging from 10 to 100 MPa. Usual a dual gain system, a high frequency monitoring array recorded the microseismicity during stick-slip sequences and the particle accelerations during macroscopic instabilities. While strain, stress and axial shortening were measured until 10 Hz sampling rate, we also recorded for the first time the dynamic stress changes during macroscopic rupture using dynamic strain gages located close to the fault plane (10 MHz sampling rate). We show that increasing the normal stress acting on the fault plane (i) increases the intensity of foreshock activity prior to the main rupture, (ii) increases the friction along the fault plane, (iii) increases the seismic slip, and (iv) induces the transition from sub-Rayleigh to supershear ruptures [Passelègue et al., 2013]. In addition, after demonstrating that our stick-slip instabilities exhibit a purely slip weakening behavior, we estimated the rupture processes parameters including the size of the breakdown zone (R), the slip-weakening distance (Dc), the energy rate (F) and the fracture energy (G). We compare our results with linear elastic fracture mechanics and previous experimental studies. Finally, the dynamic stress drop is almost complete at high normal stresses with dynamic friction drop ranging from 0.4 to 0.6. These results are consistent with the onset of melting, which was confirmed by our post mortem microstructural analysis (XRD, SEM, TEM). These results show that weakening mechanisms are activated after only 80 μm of slip, suggesting

  1. An exclusion process with dynamic roadblocks

    NASA Astrophysics Data System (ADS)

    Ning, Guo; Jin-Yong, Chen; Mao-Bin, Hu; Rui, Jiang

    2016-06-01

    We study an exclusion process with multiple dynamic roadblocks. Each roadblock can move diffusively forward or backward with different rates, as well as unbind from/rebind to a free site. By Monte Carlo simulations, the two moving types are investigated in combination of roadblock number. The case of only diffusive roadblocks shows an asymmetric current-density relation. The case of only long-range jumping roadblocks presents that flux decreases with increasing roadblock number. Project supported by the National Basic Research Program of China (Grant No. 2012CB725404) and the National Natural Science Foundation of China (Grant Nos. 11422221, 71171185, and 71371175).

  2. Spatiotemporal dynamics of early cortical gesture processing.

    PubMed

    Möhring, Nicole; Shen, Christina; Neuhaus, Andres H

    2014-10-01

    Gesture processing has been consistently shown to be associated with activation of the inferior parietal lobe (IPL); however, little is known about the integration of IPL activation into the temporal dynamics of early sensory areas. Using a temporally graded repetition suppression paradigm, we examined the activation and time course of brain areas involved in hand gesture processing. We recorded event-related potentials in response to stimulus pairs of static hand images forming gestures of the popular rock-paper-scissors game and estimated their neuronal generators. We identified two main components associated with adaptive patterns related to stimulus repetition. The N190 component elicited at temporo-parietal sites adapted to repetitions of the same gesture and was associated with right-hemispheric extrastriate body area activation. A later component at parieto-occipital sites demonstrated temporally graded adaptation effects for all gestures with a left-hemispheric dominance. Source localization revealed concurrent activations of the right extrastriate body area, fusiform gyri bilaterally, and the left IPL at about 250 ms. The adaptation pattern derived from the graded repetition suppression paradigm demonstrates the functional sensitivity of these sources to gesture processing. Given the literature on IPL contribution to imitation, action recognition, and action execution, IPL activation at about 250 ms may represent the access into specific cognitive routes for gesture processing and may thus be involved in integrating sensory information from cortical body areas into subsequent visuo-motor transformation processes. PMID:24875144

  3. Dynamics of a Simple Evolutionary Process

    NASA Astrophysics Data System (ADS)

    Stauffer, Dietrich; Newman, M. E. J.

    We study the simple evolutionary process in which we repeatedly find the least fit agent in a population of agents and give it a new fitness, which is chosen independently at random from a specified distribution. We show that many of the average properties of this process can be calculated exactly using analytic methods. In particular, we find the distribution of fitnesses at arbitrary time, and the distribution of the lengths of runs of hits on the same agent, the latter being found to follow a power law with exponent -1, similar to the distribution of times between evolutionary events in the Bak-Sneppen model and models based on the so-called record dynamics. We confirm our analytic results with extensive numerical simulations.

  4. Development of a dynamic thermal model process

    SciTech Connect

    Smith, F. R.

    1996-04-01

    A dynamic electrical-thermal modeling simulation technique was developed to allow up-front design of thermal and electronic packaging with a high degree of accuracy and confidence. We are developing a hybrid multichip module output driver which controls with power MOSFET driver circuits. These MOSFET circuits will dissipate from 13 to 26 watts per driver in a physical package less than two square inches. The power dissipation plus an operating temperature range of -55{degrees} C to 100{degrees} C makes an accurate thermal package design critical. The project goal was to develop a simulation process to dynamically model the electrical/thermal characteristics of the power MOSFETS using the SABER analog simulator and the ABAQUS finite element simulator. SABER would simulate the electrical characteristics of the multi-chip module design while co-simulation is being done with ABAQUS simulating the solid model thermal characteristics of the MOSFET package. The dynamic parameters, MOSFET power and chip temperature, would be actively passed between simulators to effect a coupled simulator modelling technique. The project required a development of a SABER late for the analog ASIC controller circuit, a dynamic electrical/thermal template for the IRF150 and IRF9130 power MOSFETs, a solid model of the multi-chip module package, FORTRAN code to handle I/Q between and HP755 workstation and SABER, and I/O between CRAY J90 computer and ABAQUS. The simulation model was certified by measured electrical characteristics of the circuits and real time thermal imaging of the output multichip module.

  5. Dynamic Processes in Diblock Copolymer Micelles

    NASA Astrophysics Data System (ADS)

    Robertson, Megan; Singh, Avantika

    2013-03-01

    Diblock copolymers, which form micelle structures in selective solvents, offer advantages of robustness and tunability of micelle characteristics as compared to small molecule surfactants. Diblock copolymer micelles in water have been a subject of great interest in drug delivery applications based on their high loading capacity and targeted drug delivery. The aim of this work is to understand the dynamic processes which underlie the self-assembly of diblock copolymer micelle systems which have a semi-crystalline core. Due to the large size of the molecules, the self-assembly of block copolymer micelles occurs on significantly longer time scales than small molecule analogues. The present work focuses on amphiphilic diblock copolymers containing blocks of poly(ethylene oxide) (a hydrophilic polymer) and polycaprolactone (a hydrophobic, semi-crystalline polymer), which spontaneously self-assemble into spherical micelles in water. A variety of experimental techniques are used to probe the kinetic processes relevant to micelle self-assembly, including time-resolved neutron scattering, dynamic light scattering, pulsed field gradient nuclear magnetic resonance, and fluorescence resonance energy transfer experiments.

  6. Computational Fluid Dynamics - Applications in Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Beninati, Maria Laura; Kathol, Austin; Ziemian, Constance

    2012-11-01

    A new Computational Fluid Dynamics (CFD) exercise has been developed for the undergraduate introductory fluid mechanics course at Bucknell University. The goal is to develop a computational exercise that students complete which links the manufacturing processes course and the concurrent fluid mechanics course in a way that reinforces the concepts in both. In general, CFD is used as a tool to increase student understanding of the fundamentals in a virtual world. A ``learning factory,'' which is currently in development at Bucknell seeks to use the laboratory as a means to link courses that previously seemed to have little correlation at first glance. A large part of the manufacturing processes course is a project using an injection molding machine. The flow of pressurized molten polyurethane into the mold cavity can also be an example of fluid motion (a jet of liquid hitting a plate) that is applied in manufacturing. The students will run a CFD process that captures this flow using their virtual mold created with a graphics package, such as SolidWorks. The laboratory structure is currently being implemented and analyzed as a part of the ``learning factory''. Lastly, a survey taken before and after the CFD exercise demonstrate a better understanding of both the CFD and manufacturing process.

  7. Dynamic Motivational Processing of Antimarijuana Messages: Coactivation Begets Attention

    ERIC Educational Resources Information Center

    Wang, Zheng; Solloway, Tyler; Tchernev, John M.; Barker, Bethany

    2012-01-01

    In the theoretical framework of dynamic motivational activation, this study reveals the dynamics of antimarijuana public service announcement (PSA) processing, especially the processing of co-occurring positive and negative content. It specifies the important role of endogenous feedback dynamics of the information processing system and teases them…

  8. Algorithm for dynamic Speckle pattern processing

    NASA Astrophysics Data System (ADS)

    Cariñe, J.; Guzmán, R.; Torres-Ruiz, F. A.

    2016-07-01

    In this paper we present a new algorithm for determining surface activity by processing speckle pattern images recorded with a CCD camera. Surface activity can be produced by motility or small displacements among other causes, and is manifested as a change in the pattern recorded in the camera with reference to a static background pattern. This intensity variation is considered to be a small perturbation compared with the mean intensity. Based on a perturbative method we obtain an equation with which we can infer information about the dynamic behavior of the surface that generates the speckle pattern. We define an activity index based on our algorithm that can be easily compared with the outcomes from other algorithms. It is shown experimentally that this index evolves in time in the same way as the Inertia Moment method, however our algorithm is based on direct processing of speckle patterns without the need for other kinds of post-processes (like THSP and co-occurrence matrix), making it a viable real-time method. We also show how this algorithm compares with several other algorithms when applied to calibration experiments. From these results we conclude that our algorithm offer qualitative and quantitative advantages over current methods.

  9. Phonological processing dynamics in bilingual word naming.

    PubMed

    Friesen, Deanna C; Jared, Debra; Haigh, Corinne A

    2014-09-01

    The current study investigated phonological processing dynamics in bilingual word naming. English-French and French-English bilinguals named interlingual heterophonic homographs (i.e., words that share orthography but not meaning or pronunciation across languages), heterophonic cognates (i.e., words that share both orthography and meaning across languages, but not pronunciations), interlingual homophones (i.e., words that share pronunciation, but not orthography or meaning across languages), and single-language matched control words in both English and French naming tasks. Cross-language phonological activation was strongest in bilinguals' second language. The results provided evidence for feedforward activation of phonological representations in the nontarget language, as well as feedback activation of these phonological representations from semantic representations. Results are interpreted within the more recent Bilingual Interactive Activation (BIA+) framework. PMID:25383476

  10. Switching Dynamics and the Stress Process

    PubMed Central

    Cornwell, Benjamin

    2014-01-01

    This paper shows how maintaining social relationships can be a daily hassle that has implications for the stress process, depending on how often individuals transition, or “switch,” between their various social roles and social settings throughout the day. I use nationally representative time diary data on 7,662 respondents from the 2010 American Time Use Survey to measure individual rates of this switching behavior and to examine how this relates to perceived stress. Regression analysis shows that, net of how many social roles they play and settings they visit on a given day, individuals who switch more frequently between these elements report higher levels of stress. This finding holds for women but not men, suggesting that switching dynamics are disproportionately stressful for women. I close by discussing the implications of the findings for research on gender and health. PMID:25110381

  11. Dynamic processes in the mountain catchment

    NASA Astrophysics Data System (ADS)

    Trifonova, Tatiana; Arakelian, Sergei

    2015-04-01

    The process of the river cftchment foundation and the mechanisms being in the basis of its development are not clear at present. Principal phenomena determining the dynamics of formation of the river catchment are under our study in this paper for the case of the mountain basin as an example. The methodology of this monitoring includes the space image recognition and computer data processing of the images for the Maliy Caucasus Mountains. Mountain river catchment formation on the slope of the ridge can be considered as a self-organizing staged process of its evolution passing through several non-equilibrium but steady-state conditions. We consider a system of tributaries in the mountain river catchment as a system of cracks, which are formed on the slope of the mountain massif. In other words, the formation of river networks should be the result of development of several processes, among of which the mechanisms of crack development should play a dominant role. The principal results, discussed in the present report, can be formulated as follow. (1) The mountain catchment (litho-watershed) formation takes place under conditions of the confined states of a mountain massif: on the one hand it is bounded by the surface of the slope; but on the other hand, - by a primary cracks density occurrence (as a spatial distribution 3D-crack net). (2) The development in time of the river catchment takes place by several stages. Each stage specifies a definite energetic state of the system in the mountain massif. (3) The overhead river streams arise not only due to surface water, but and namely due to rising of water from underground water horizons over the watercourse cracks penetrating deeply into the underground. (4) The 3D-river catchment structure results in concept in behavior of the unit as an open nonlinear dynamic system with a spatially distributed feedback. The energetic (endogen) processes of formation, rising and bifurcation for cracks are the consequence of relaxation

  12. Working Memory Capacity as a Dynamic Process

    PubMed Central

    Simmering, Vanessa R.; Perone, Sammy

    2013-01-01

    A well-known characteristic of working memory (WM) is its limited capacity. The source of such limitations, however, is a continued point of debate. Developmental research is positioned to address this debate by jointly identifying the source(s) of limitations and the mechanism(s) underlying capacity increases. Here we provide a cross-domain survey of studies and theories of WM capacity development, which reveals a complex picture: dozens of studies from 50 papers show nearly universal increases in capacity estimates with age, but marked variation across studies, tasks, and domains. We argue that the full pattern of performance cannot be captured through traditional approaches emphasizing single causes, or even multiple separable causes, underlying capacity development. Rather, we consider WM capacity as a dynamic process that emerges from a unified cognitive system flexibly adapting to the context and demands of each task. We conclude by enumerating specific challenges for researchers and theorists that will need to be met in order to move our understanding forward. PMID:23335902

  13. Studies of dynamical processes affecting global climate

    SciTech Connect

    Keller, C.; Cooper, D.; Eichinger, W.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at the Los Alamos National Laboratory (LANL). The main objective was, by a combined theoretical and observational approach, to develop improved models of dynamic processes in the oceans and atmosphere and to incorporate them into large climate codes, chiefly in four main areas: numerical physics, chemistry, water vapor, and ocean-atmosphere interactions. Main areas of investigation included studies of: cloud parameterizations for global climate codes, Lidar and the planetary boundary layer, chemistry, climate variability using coupled ocean-atmospheric models, and numerical physical methods. This project employed a unique approach that included participation of a number of University of California faculty, postdoctoral fellows and graduate students who collaborated with Los Alamos research staff on specific tasks, thus greatly enhancing the research output. Overall accomplishments during the sensing of the atmospheric planetary were: (1) first two- and three-dimensional remote sensing of the atmospheric planetary boundary layer using Lidars, (2) modeling of 20-year cycle in both pressure and sea surface temperatures in North Pacific, (3) modeling of low frequency internal variability, (4) addition of aerosols to stratosphere to simulate Pinatubo effect on ozone, (5) development of fast, comprehensive chemistry in the troposphere for urban pollution studies, (6) new prognostic cloud parameterization in global atmospheric code remedied problems with North Pacific atmospheric circulation and excessive equatorial precipitation, (7) development of a unique aerosol analysis technique, the aerosol time-of-flight mass spectrometer (ATOFMS), which allows real-time analysis of the size and chemical composition of individual aerosol particles, and (8) numerical physics applying Approximate Inertial Manifolds to ocean circulation. 14 refs., 6 figs.

  14. Characterizing Nonlinear Heartbeat Dynamics within a Point Process Framework

    PubMed Central

    Chen, Z; Brown, EN; Barbieri, R

    2009-01-01

    Heartbeat intervals are known to have nonlinear and non-stationary dynamics. In this paper, we propose a nonlinear Volterra-Wiener expansion modeling of human heartbeat dynamics within a point process framework. Inclusion of second-order nonlinearity allows us to estimate dynamic bispectrum. The proposed probabilistic model was examined with two recorded heartbeat interval data sets. Preliminary results show that our model is beneficial to characterize the inherent nonlinearity of the heartbeat dynamics. PMID:19163282

  15. Biomolecular Modeling in a Process Dynamics and Control Course

    ERIC Educational Resources Information Center

    Gray, Jeffrey J.

    2006-01-01

    I present modifications to the traditional course entitled, "Process dynamics and control," which I renamed "Modeling, dynamics, and control of chemical and biological processes." Additions include the central dogma of biology, pharmacokinetic systems, population balances, control of gene transcription, and large­-scale…

  16. Animation and Learning: Selective Processing of Information in Dynamic Graphics.

    ERIC Educational Resources Information Center

    Lowe, R. K.

    2003-01-01

    Studied the selective processing of information in dynamic graphics by 12 undergraduates who received training aided by animation and 12 who did not. Results indicate selective processing of the animation that involved perceptually driven dynamic effects and raise questions about the assumed superiority of animations over static graphics. (SLD)

  17. Modeling Academic Education Processes by Dynamic Storyboarding

    ERIC Educational Resources Information Center

    Sakurai, Yoshitaka; Dohi, Shinichi; Tsuruta, Setsuo; Knauf, Rainer

    2009-01-01

    In high-level education such as university studies, there is a flexible but complicated system of subject offerings and registration rules such as prerequisite subjects. Those offerings, connected with registration rules, should be matched to the students' learning needs and desires, which change dynamically. Students need assistance in such a…

  18. Bubble nonlinear dynamics and stimulated scattering process

    NASA Astrophysics Data System (ADS)

    Jie, Shi; De-Sen, Yang; Sheng-Guo, Shi; Bo, Hu; Hao-Yang, Zhang; Shi-Yong, Hu

    2016-02-01

    A complete understanding of the bubble dynamics is deemed necessary in order to achieve their full potential applications in industry and medicine. For this purpose it is first needed to expand our knowledge of a single bubble behavior under different possible conditions including the frequency and pressure variations of the sound field. In addition, stimulated scattering of sound on a bubble is a special effect in sound field, and its characteristics are associated with bubble oscillation mode. A bubble in liquid can be considered as a representative example of nonlinear dynamical system theory with its resonance, and its dynamics characteristics can be described by the Keller-Miksis equation. The nonlinear dynamics of an acoustically excited gas bubble in water is investigated by using theoretical and numerical analysis methods. Our results show its strongly nonlinear behavior with respect to the pressure amplitude and excitation frequency as the control parameters, and give an intuitive insight into stimulated sound scattering on a bubble. It is seen that the stimulated sound scattering is different from common dynamical behaviors, such as bifurcation and chaos, which is the result of the nonlinear resonance of a bubble under the excitation of a high amplitude acoustic sound wave essentially. The numerical analysis results show that the threshold of stimulated sound scattering is smaller than those of bifurcation and chaos in the common condition. Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1228) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11204050 and 11204049).

  19. Modeling of dynamical processes in laser ablation

    SciTech Connect

    Leboeuf, J.N.; Chen, K.R.; Donato, J.M.; Geohegan, D.B.; Liu, C.L.; Puretzky, A.A.; Wood, R.F.

    1995-12-31

    Various physics and computational approaches have been developed to globally characterize phenomena important for film growth by pulsed-laser deposition of materials. These include thermal models of laser-solid target interactions that initiate the vapor plume, plume ionization and heating through laser absorption beyond local thermodynamic equilibrium mechanisms, hydrodynamic and collisional descriptions of plume transport, and molecular dynamics models of the interaction of plume particles with the deposition substrate.

  20. Helicity in dynamical processes in the atmosphere

    NASA Astrophysics Data System (ADS)

    Kurgansky, Michael; Maksimenkov, Leonid; Khapaev, Alexey; Chkhetiani, Otto

    2016-04-01

    In modern geophysical fluid dynamics and dynamic meteorology, a notable interest is observed to the notion of helicity ("kinetic helicity" to be distinguished from "magnetic helicity" widely used in magnetohydrodynamics, astrophysics and Solar physics), which is defined by the scalar product of 3D vectors of velocity and vorticity. In this contribution, we bring together different, both known in the literature and novel formulations of the helicity balance equation, by also taking into account the effects of air compressibility and Earth rotation. Equations and relationships are presented that are valid under different approximations customarily made in the dynamic meteorology, e.g. Boussinesq approximation, quasi-static approximation, quasi-geostrophic approximation. An emphasis is placed on the helicity budget analysis in large-scale atmospheric motions. An explicit expression is presented for the rate of helicity injection from the free atmosphere into a non-linear Ekman boundary layer. This injection is shown to be exactly balanced by the helicity viscous destruction within the boundary layer. It is conjectured that this helicity injection may characterize the intensity of atmospheric circulation in extratropical latitudes of both terrestrial hemispheres. Examples are provided based on re-analyses data. Vertical distribution of helicity and superhelicity in different Ekman boundary layers is also discussed.

  1. Dynamic biogas upgrading based on the Sabatier process: thermodynamic and dynamic process simulation.

    PubMed

    Jürgensen, Lars; Ehimen, Ehiaze Augustine; Born, Jens; Holm-Nielsen, Jens Bo

    2015-02-01

    This study aimed to investigate the feasibility of substitute natural gas (SNG) generation using biogas from anaerobic digestion and hydrogen from renewable energy systems. Using thermodynamic equilibrium analysis, kinetic reactor modeling and transient simulation, an integrated approach for the operation of a biogas-based Sabatier process was put forward, which was then verified using a lab scale heterogenous methanation reactor. The process simulation using a kinetic reactor model demonstrated the feasibility of the production of SNG at gas grid standards using a single reactor setup. The Wobbe index, CO2 content and calorific value were found to be controllable by the H2/CO2 ratio fed the methanation reactor. An optimal H2/CO2 ratio of 3.45-3.7 was seen to result in a product gas with high calorific value and Wobbe index. The dynamic reactor simulation verified that the process start-up was feasible within several minutes to facilitate surplus electricity use from renewable energy systems. PMID:25453430

  2. Dynamic degassing of serpentine by impact process

    NASA Astrophysics Data System (ADS)

    Sekine, T.; Kimura, T.; Kobayashi, T.; Mashimo, T.

    2014-12-01

    Impact-induced dehydration of serpentine in primitive meteorites is believed to be a mechanism to provide water in terrestrial planets. Primitive meteorites show a wide range of porosity and it is necessary to know the effect of porosity on the dehydration. In this work we report the dynamic dehydration reaction of antigorite under various conditions using techniques of x-ray diffractions, electron microscopy, and thermal analyses of shock recovered samples. The present experimental results indicate that the dehydration reactions are weakly pressure-dependent below a peak shock pressure of ~21 GPa and becomes violent at pressures of 21-60 GPa dependent on the initial porosity and sample amount. We discuss the heterogeneous dehydration reactions based on the identified phases, more than previously thought.

  3. Developmental Dynamics of Emotion and Cognition Processes in Preschoolers

    ERIC Educational Resources Information Center

    Blankson, A. Nayena; O'Brien, Marion; Leerkes, Esther M.; Marcovitch, Stuart; Calkins, Susan D.; Weaver, Jennifer Miner

    2013-01-01

    Dynamic relations during the preschool years across processes of control and understanding in the domains of emotion and cognition were examined. Participants were 263 children (42% non-White) and their mothers who were seen first when the children were 3 years old and again when they were 4. Results indicated dynamic dependence among the…

  4. Dynamic Noise and its Role in Understanding Epidemiological Processes

    NASA Astrophysics Data System (ADS)

    Stollenwerk, Nico; Aguiar, Maíra

    2010-09-01

    We investigate the role of dynamic noise in understanding epidemiological systems, such as influenza or dengue fever by deriving stochastic ordinary differential equations from markov processes for discrete populations. This approach allows for an easy analysis of dynamical noise transitions between co-existing attractors.

  5. Switching Dynamics and the Stress Process

    ERIC Educational Resources Information Center

    Cornwell, Benjamin

    2013-01-01

    This article shows how maintaining social relationships can be a daily hassle that has implications for the stress process, depending on how often individuals transition, or "switch," between various social roles and social settings throughout the day. I use nationally representative time-diary data on 7,662 respondents from the 2010 American Time…

  6. Dynamic Process Simulation for Analysis and Design.

    ERIC Educational Resources Information Center

    Nuttall, Herbert E., Jr.; Himmelblau, David M.

    A computer program for the simulation of complex continuous process in real-time in an interactive mode is described. The program is user oriented, flexible, and provides both numerical and graphic output. The program has been used in classroom teaching and computer aided design. Typical input and output are illustrated for a sample problem to…

  7. The Dynamic Lift of Developmental Process

    ERIC Educational Resources Information Center

    Smith, Linda B.; Breazeal, Cynthia

    2007-01-01

    What are the essential properties of human intelligence, currently unparalleled in its power relative to other biological forms and relative to artificial forms of intelligence? We suggest that answering this question depends critically on understanding developmental process. This paper considers three principles potentially essential to building…

  8. Microwave signal processing with photorefractive dynamic holography

    NASA Astrophysics Data System (ADS)

    Fotheringham, Edeline B.

    Have you ever found yourself listening to the music playing from the closest stereo rather than to the bromidic (uninspiring) person speaking to you? Your ears receive information from two sources but your brain listens to only one. What if your cell phone could distinguish among signals sharing the same bandwidth too? There would be no "full" channels to stop you from placing or receiving a call. This thesis presents a nonlinear optical circuit capable of distinguishing uncorrelated signals that have overlapping temporal bandwidths. This so called autotuning filter is the size of a U.S. quarter dollar and requires less than 3 mW of optical power to operate. It is basically an oscillator in which the losses are compensated with dynamic holographic gain. The combination of two photorefractive crystals in the resonator governs the filter's winner-take-all dynamics through signal-competition for gain. This physical circuit extracts what is mathematically referred to as the largest principal component of its spatio-temporal input space. The circuit's practicality is demonstrated by its incorporation in an RF-photonic system. An unknown mixture of unknown microwave signals, received by an antenna array, constitutes the input to the system. The output electronically returns one of the original microwave signals. The front-end of the system down converts the 10 GHz microwave signals and amplifies them before the signals phase modulate optical beams. The optical carrier is suppressed from these beams so that it may not be considered as a signal itself to the autotuning filter. The suppression is achieved with two-beam coupling in a single photorefractive crystal. The filter extracts the more intense of the signals present on the carrier-suppressed input beams. The detection of the extracted signal restores the microwave signal to an electronic form. The system, without the receiving antenna array, is packaged in a 13 x 18 x 6″ briefcase. Its power consumption equals that

  9. Dynamic Magnetic Field Applications for Materials Processing

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Grugel, Richard N.; Motakef, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Magnetic fields, variable in time and space, can be used to control convection in electrically conducting melts. Flow induced by these fields has been found to be beneficial for crystal growth applications. It allows increased crystal growth rates, and improves homogeneity and quality. Particularly beneficial is the natural convection damping capability of alternating magnetic fields. One well-known example is the rotating magnetic field (RMF) configuration. RMF induces liquid motion consisting of a swirling basic flow and a meridional secondary flow. In addition to crystal growth applications, RMF can also be used for mixing non-homogeneous melts in continuous metal castings. These applied aspects have stimulated increasing research on RMF-induced fluid dynamics. A novel type of magnetic field configuration consisting of an axisymmetric magnetostatic wave, designated the traveling magnetic field (TMF), has been recently proposed. It induces a basic flow in the form of a single vortex. TMF may find use in crystal growth techniques such as the vertical Bridgman (VB), float zone (FZ), and the traveling heater method. In this review, both methods, RMF and TMF are presented. Our recent theoretical and experimental results include such topics as localized TMF, natural convection dumping using TMF in a vertical Bridgman configuration, the traveling heater method, and the Lorentz force induced by TMF as a function of frequency. Experimentally, alloy mixing results, with and without applied TMF, will be presented. Finally, advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, will be discussed.

  10. Extending Newtonian Dynamics to Include Stochastic Processes

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2009-01-01

    A paper presents further results of continuing research reported in several previous NASA Tech Briefs articles, the two most recent being Stochastic Representations of Chaos Using Terminal Attractors (NPO-41519), [Vol. 30, No. 5 (May 2006), page 57] and Physical Principle for Generation of Randomness (NPO-43822) [Vol. 33, No. 5 (May 2009), page 56]. This research focuses upon a mathematical formalism for describing post-instability motions of a dynamical system characterized by exponential divergences of trajectories leading to chaos (including turbulence as a form of chaos). The formalism involves fictitious control forces that couple the equations of motion of the system with a Liouville equation that describes the evolution of the probability density of errors in initial conditions. These stabilizing forces create a powerful terminal attractor in probability space that corresponds to occurrence of a target trajectory with probability one. The effect in configuration space (ordinary three-dimensional space as commonly perceived) is to suppress exponential divergences of neighboring trajectories without affecting the target trajectory. As a result, the post-instability motion is represented by a set of functions describing the evolution of such statistical quantities as expectations and higher moments, and this representation is stable.

  11. Spatiotemporal Dynamics of Bilingual Word Processing

    PubMed Central

    Leonard, Matthew K.; Brown, Timothy T.; Travis, Katherine E.; Gharapetian, Lusineh; Hagler, Donald J.; Dale, Anders M.; Elman, Jeffrey L.; Halgren, Eric

    2009-01-01

    Studies with monolingual adults have identified successive stages occurring in different brain regions for processing single written words. We combined magnetoencephalography and magnetic resonance imaging to compare these stages between the first (L1) and second (L2) languages in bilingual adults. L1 words in a size judgment task evoked a typical left-lateralized sequence of activity first in ventral occipitotemporal cortex (VOT: previously associated with visual word-form encoding), and then ventral frontotemporal regions (associated with lexico-semantic processing). Compared to L1, words in L2 activated right VOT more strongly from ~135 ms; this activation was attenuated when words became highly familiar with repetition. At ~400ms, L2 responses were generally later than L1, more bilateral, and included the same lateral occipitotemporal areas as were activated by pictures. We propose that acquiring a language involves the recruitment of right hemisphere and posterior visual areas that are not necessary once fluency is achieved. PMID:20004256

  12. Dynamical processes in heavy ion reactions

    SciTech Connect

    Blann, M.; Remington, B.A.

    1988-07-25

    In this report I review the physical assumptions of the Boltzmann Master Equation (BME). Comparisons of the model with experimental neutron spectra gated on evaporation residues for a range of incident projectile energies and masses are presented; next, I compare n spectra gated on projectile-like fragments, followed by comparisons with ungated, inclusive proton spectra. I will then consider secondary effects from the nucleon-nucleon processes involved in the heavy ion relaxation processes, specifically the high energy ..gamma..-rays which have been observed at energies up to 140 MeV in collisions of heavy ions of 20/endash/84 MeV/..mu... Another secondary effect, subthreshold pion production, was covered in the XVII School and will not be repeated. 39 refs., 16 figs.

  13. Adult Personality Development: Dynamics and Processes

    PubMed Central

    Diehl, Manfred; Hooker, Karen

    2013-01-01

    The focus of this special issue of Research in Human Development is on adult personality and how personality may contribute to and be involved in adult development. Specifically, the contributions in this issue focus on the links between personality structures (e.g., traits) and personality processes (e.g., goal pursuit, self--regulation) and emphasize the contributions that intensive repeated measurement approaches can make to the understanding of personality and development across the adult life span. PMID:24068889

  14. Dynamics of postdecisional processing of confidence.

    PubMed

    Yu, Shuli; Pleskac, Timothy J; Zeigenfuse, Matthew D

    2015-04-01

    Most cognitive theories assume that confidence and choice happen simultaneously and are based on the same information. The 3 studies presented in this article instead show that confidence judgments can arise, at least in part, from a postdecisional evidence accumulation process. As a result of this process, increasing the time between making a choice and confidence judgment improves confidence resolution. This finding contradicts the notion that confidence judgments are biased by decision makers seeking confirmatory evidence. Further analysis reveals that the improved resolution is due to a reduction in confidence in incorrect responses, while confidence in correct responses remains relatively constant. These results are modeled with a sequential sampling process that allows evidence accumulation to continue after a choice is made and maps the amount of accumulated evidence onto a confidence rating. The cognitive modeling analysis reveals that the rate of evidence accumulation following a choice does slow relative to the rate preceding choice. The analysis also shows that the asymmetry between confidence in correct and incorrect choices is compatible with state-dependent decay in the accumulated evidence: Evidence consistent with the current state results in a deceleration of accumulated evidence and consequently evidence appears to have a decreasing impact on observed confidence. In contrast, evidence inconsistent with the current state results in an acceleration of accumulated evidence toward the opposite direction and consequently evidence appears to have an increasing impact on confidence. Taken together, this process-level understanding of confidence suggests a simple strategy for improving confidence accuracy: take a bit more time to make confidence judgments. PMID:25844627

  15. Multiexperiment data processing in identifying model helicopter's yaw dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Haosheng; Chen, Darong

    2003-09-01

    The multi-experiment data is usually needed in identifying a model helicopter's yaw dynamics. In order to strengthen the information of the dynamics and reduce the effect of the noise, a new kind of least square method by using a weighted criterion is investigated to estimate the model parameters. To calculate the factors of the weighted criterion, a neural perceptron is trained to determine the factors automatically. The simulated outputs of the model derived by this kind of method fit the measured outputs well. It is suggested that this kind of data processing method is useful in identifying the yaw dynamics and processing the multi-experiment data for the system identification.

  16. Dynamical processes in undisturbed katabatic flows

    SciTech Connect

    Poulos, G.S.; Bossert, J.E.; McKee, T.B.; Pielke, R.A.

    1996-08-01

    Idealized analytical investigations of katabatic slope flows have usually sought to simplify the analysis by either assuming a particular force balance amenable to analytical solution or using integral (or bulk) models. In each case, steady state conditions are evaluated, with occasional exception. Historically, the modeling of idealized katabatic flows has focused analysis of model time where steady state conditions have been achieved. To investigate the true dynamics of evolving undisturbed katabatic flow, the Regional Atmospheric Modeling System (RAMS) is used. As described in Pielke et al (1992) RAMS is a prognostic numerical model that contains the three-dimensional primitive equations in terrain-following, non- hydrostatic, compressible form. In addition to standard variables, RAMS was configured to output the various components of the governing equations with high temporal resolution. Each of the simulations used idealized 2000m high mountain topography of a given slope (1{degree}, 2.5{degrees},5{degrees}, or 10{degrees}) on either side of the peak. In the 3-d simulations this mountain becomes an infinite north-south ridge (cyclic boundary conditions in the N-S direction). Vertical grid spacing was set to 20m for the first 500m {delta}z increases to a maximum of 400 m over 72 grid points to 10.5 km. Horizontal grid spacing was 500 m and the number of east-west grid points was 701, 301, 201 and 201 for the 1 {degree}, 2.5{degrees}, 5{degrees} and 10{degrees} mountains, respectively. Only results from the homogeneous with a vertical structure as follows: 0.0 m s{sup -1} to 3000 m AGL, standard atmospheric {theta} lapse rate of 2.5 K km {sup - 1} to 3000 m AGLl, standard atmospheric {theta} lapse rate of 3.4 K Km {sup -1} above that. The simulations ran for 12 hours after model sunset ({similar_to}1800 MST) so that only longwave radiative effects were active.

  17. Towards Measurable Types for Dynamical Process Modeling Languages

    PubMed Central

    Mjolsness, Eric

    2011-01-01

    Process modeling languages such as “Dynamical Grammars” are highly expressive in the processes they model using stochastic and deterministic dynamical systems, and can be given formal semantics in terms of an operator algebra. However such process languages may be more limited in the types of objects whose dynamics is easily expressible. For many applications in biology, the dynamics of spatial objects in particular (including combinations of discrete and continuous spatial structures) should be formalizable at a high level of abstraction. We suggest that this may be achieved by formalizing such objects within a type system endowed with type constructors suitable for complex dynamical objects. To this end we review and illustrate the operator algebraic formulation of heterogeneous process modeling and semantics, extending it to encompass partial differential equations and intrinsic graph grammar dynamics. We show that in the operator approach to heterogeneous dynamics, types require integration measures. From this starting point, “measurable” object types can be enriched with generalized metrics under which approximation can be defined. The resulting measurable and “metricated” types can be built up systematically by type constructors such as vectors, products, and labelled graphs. We find conditions under which functions and quotients can be added as constructors of measurable and metricated types. PMID:21572536

  18. Exploring scalar field dynamics with Gaussian processes

    SciTech Connect

    Nair, Remya; Jhingan, Sanjay; Jain, Deepak E-mail: sanjay.jhingan@gmail.com

    2014-01-01

    The origin of the accelerated expansion of the Universe remains an unsolved mystery in Cosmology. In this work we consider a spatially flat Friedmann-Robertson-Walker (FRW) Universe with non-relativistic matter and a single scalar field contributing to the energy density of the Universe. Properties of this scalar field, like potential, kinetic energy, equation of state etc. are reconstructed from Supernovae and BAO data using Gaussian processes. We also reconstruct energy conditions and kinematic variables of expansion, such as the jerk and the slow roll parameter. We find that the reconstructed scalar field variables and the kinematic quantities are consistent with a flat ΛCDM Universe. Further, we find that the null energy condition is satisfied for the redshift range of the Supernovae data considered in the paper, but the strong energy condition is violated.

  19. Digital data processing system dynamic loading analysis

    NASA Technical Reports Server (NTRS)

    Lagas, J. J.; Peterka, J. J.; Tucker, A. E.

    1976-01-01

    Simulation and analysis of the Space Shuttle Orbiter Digital Data Processing System (DDPS) are reported. The mated flight and postseparation flight phases of the space shuttle's approach and landing test configuration were modeled utilizing the Information Management System Interpretative Model (IMSIM) in a computerized simulation modeling of the ALT hardware, software, and workload. System requirements simulated for the ALT configuration were defined. Sensitivity analyses determined areas of potential data flow problems in DDPS operation. Based on the defined system requirements and the sensitivity analyses, a test design is described for adapting, parameterizing, and executing the IMSIM. Varying load and stress conditions for the model execution are given. The analyses of the computer simulation runs were documented as results, conclusions, and recommendations for DDPS improvements.

  20. Agents: An approach for dynamic process modelling

    NASA Astrophysics Data System (ADS)

    Grohmann, Axel; Kopetzky, Roland; Lurk, Alexander

    1999-03-01

    With the growing amount of distributed and heterogeneous information and services, conventional information systems have come to their limits. This gave rise to the development of a Multi-Agent System (the "Logical Client") which can be used in complex information systems as well as in other advanced software systems. Computer agents are proactive, reactive and social. They form a community of independent software components that can communicate and co-operate in order to accomplish complex tasks. Thus the agent-oriented paradigm provides a new and powerful approach to programming distributed systems. The communication framework developed is based on standards like CORBA, KQML and KIF. It provides an embedded rule based system to find adequate reactions to incoming messages. The macro-architecture of the Logical Client consists of independent agents and uses artificial intelligence to cope with complex patterns of communication and actions. A set of system agents is also provided, including the Strategy Service as a core component for modelling processes at runtime, the Computer Supported Cooperative Work (CSCW) Component for supporting remote co-operation between human users and the Repository for managing and hiding the file based data flow in heterogeneous networks. This architecture seems to be capable of managing complexity in information systems. It is also being implemented in a complex simulation system that monitors and simulates the environmental radioactivity in the country Baden-Württemberg.

  1. Flight Dynamics Mission Support and Quality Assurance Process

    NASA Technical Reports Server (NTRS)

    Oh, InHwan

    1996-01-01

    This paper summarizes the method of the Computer Sciences Corporation Flight Dynamics Operation (FDO) quality assurance approach to support the National Aeronautics and Space Administration Goddard Space Flight Center Flight Dynamics Support Branch. Historically, a strong need has existed for developing systematic quality assurance using methods that account for the unique nature and environment of satellite Flight Dynamics mission support. Over the past few years FDO has developed and implemented proactive quality assurance processes applied to each of the six phases of the Flight Dynamics mission support life cycle: systems and operations concept, system requirements and specifications, software development support, operations planing and training, launch support, and on-orbit mission operations. Rather than performing quality assurance as a final step after work is completed, quality assurance has been built in as work progresses in the form of process assurance. Process assurance activities occur throughout the Flight Dynamics mission support life cycle. The FDO Product Assurance Office developed process checklists for prephase process reviews, mission team orientations, in-progress reviews, and end-of-phase audits. This paper will outline the evolving history of FDO quality assurance approaches, discuss the tailoring of Computer Science Corporations's process assurance cycle procedures, describe some of the quality assurance approaches that have been or are being developed, and present some of the successful results.

  2. Process-based Principles for Restoring Dynamic River Ecosystems

    NASA Astrophysics Data System (ADS)

    Pess, G. R.; Beechie, T. J.; Pollock, M. M.

    2006-12-01

    Process-based restoration focuses on re-establishing natural rates and magnitudes of geomorphological, hydrological, and biological processes that sustain biodiversity and biological productivity in dynamic river ecosystems. It contrasts with traditional restoration practices, which focus on creating specific habitat characteristics that meet perceived "good" or "minimum" habitat conditions or standards. Process-based restoration relies on the understanding that habitat-forming processes are dynamic and comprise a shifting mosaic of diverse habitats. Local animal populations or communities are adapted to this dynamic habitat mosaic. Fundamental principles underlying process-based restoration are: (1) restoration must address biophysical processes that drive ecosystem change, and (2) the scale of restoration must be relevant to the appropriate landscape and biological process scales. Restoration efforts that re-establish natural rates and magnitudes of system processes promote ecosystem recovery, and help avoid common pitfalls of traditional restoration practices such as creating habitats that are outside the range of a site's natural potential, fixing habitats in space and time, and building habitats that are ultimately overwhelmed by untreated or uncontrollable system drivers. Restoring such processes also allows dynamic riverine ecosystems to express their natural potential, which generates the natural range of habitat conditions to which biological communities are adapted. Non-point processes such as erosion often require restoration at the scale of watersheds to effectively restore river ecosystems, whereas reach-level processes such as the maintenance of connected floodplain habitats can be effective at smaller spatial scales. Flow restoration in regulated rivers should consider the full range of environmentally important flows (e.g., low flow to floods). Biological processes such as the life-history scales of migratory animals (e.g., anadromous salmon) may be

  3. Information Processing and Dynamics in Minimally Cognitive Agents

    ERIC Educational Resources Information Center

    Beer, Randall D.; Williams, Paul L.

    2015-01-01

    There has been considerable debate in the literature about the relative merits of information processing versus dynamical approaches to understanding cognitive processes. In this article, we explore the relationship between these two styles of explanation using a model agent evolved to solve a relational categorization task. Specifically, we…

  4. PRODIAG -- Dynamic qualitative analysis for process fault diagnosis

    SciTech Connect

    Reifman, J.; Wei, T.Y.C.

    1995-06-01

    The authors present a method for handling the dynamic effects of process component malfunctions through time-independent rule-based diagnostic systems. The method`s theory is discussed and a simplified version is implemented in the process diagnostic expert system PRODIAG. Simulation results from a full-scope operator training simulator of a nuclear power plant are used to illustrate the method.

  5. Toward understanding dynamic annealing processes in irradiated ceramics

    SciTech Connect

    Myers, Michael Thomas

    2013-05-01

    High energy particle irradiation inevitably generates defects in solids. The ballistic formation and thermalization of the defect creation process occur rapidly, and are believed to be reasonably well understood. However, knowledge of the evolution of defects after damage cascade thermalization, referred to as dynamic annealing, is quite limited. Unraveling the mechanisms associated with dynamic annealing is crucial since such processes play an important role in the formation of stable postirradiation disorder in ion-beam-processing of semiconductors, and determines the “radiation tolerance” of many nuclear materials. The purpose of this dissertation is to further our understanding of the processes involved in dynamic annealing. In order to achieve this, two main tasks are undertaken.

  6. Cycles, randomness, and transport from chaotic dynamics to stochastic processes

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre

    2015-09-01

    An overview of advances at the frontier between dynamical systems theory and nonequilibrium statistical mechanics is given. Sensitivity to initial conditions is a mechanism at the origin of dynamical randomness—alias temporal disorder—in deterministic dynamical systems. In spatially extended systems, sustaining transport processes, such as diffusion, relationships can be established between the characteristic quantities of dynamical chaos and the transport coefficients, bringing new insight into the second law of thermodynamics. With methods from dynamical systems theory, the microscopic time-reversal symmetry can be shown to be broken at the statistical level of description in nonequilibrium systems. In this way, the thermodynamic entropy production turns out to be related to temporal disorder and its time asymmetry away from equilibrium.

  7. Cycles, randomness, and transport from chaotic dynamics to stochastic processes.

    PubMed

    Gaspard, Pierre

    2015-09-01

    An overview of advances at the frontier between dynamical systems theory and nonequilibrium statistical mechanics is given. Sensitivity to initial conditions is a mechanism at the origin of dynamical randomness-alias temporal disorder-in deterministic dynamical systems. In spatially extended systems, sustaining transport processes, such as diffusion, relationships can be established between the characteristic quantities of dynamical chaos and the transport coefficients, bringing new insight into the second law of thermodynamics. With methods from dynamical systems theory, the microscopic time-reversal symmetry can be shown to be broken at the statistical level of description in nonequilibrium systems. In this way, the thermodynamic entropy production turns out to be related to temporal disorder and its time asymmetry away from equilibrium. PMID:26428559

  8. Information processing in neural networks with the complex dynamic thresholds

    NASA Astrophysics Data System (ADS)

    Kirillov, S. Yu.; Nekorkin, V. I.

    2016-06-01

    A control mechanism of the information processing in neural networks is investigated, based on the complex dynamic threshold of the neural excitation. The threshold properties are controlled by the slowly varying synaptic current. The dynamic threshold shows high sensitivity to the rate of the synaptic current variation. It allows both to realize flexible selective tuning of the network elements and to provide nontrivial regimes of neural coding.

  9. Spatiotemporal neural network dynamics for the processing of dynamic facial expressions

    PubMed Central

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota

    2015-01-01

    The dynamic facial expressions of emotion automatically elicit multifaceted psychological activities; however, the temporal profiles and dynamic interaction patterns of brain activities remain unknown. We investigated these issues using magnetoencephalography. Participants passively observed dynamic facial expressions of fear and happiness, or dynamic mosaics. Source-reconstruction analyses utilizing functional magnetic-resonance imaging data revealed higher activation in broad regions of the bilateral occipital and temporal cortices in response to dynamic facial expressions than in response to dynamic mosaics at 150–200 ms and some later time points. The right inferior frontal gyrus exhibited higher activity for dynamic faces versus mosaics at 300–350 ms. Dynamic causal-modeling analyses revealed that dynamic faces activated the dual visual routes and visual–motor route. Superior influences of feedforward and feedback connections were identified before and after 200 ms, respectively. These results indicate that hierarchical, bidirectional neural network dynamics within a few hundred milliseconds implement the processing of dynamic facial expressions. PMID:26206708

  10. Hierarchical Heteroclinics in Dynamical Model of Cognitive Processes: Chunking

    NASA Astrophysics Data System (ADS)

    Afraimovich, Valentin S.; Young, Todd R.; Rabinovich, Mikhail I.

    Combining the results of brain imaging and nonlinear dynamics provides a new hierarchical vision of brain network functionality that is helpful in understanding the relationship of the network to different mental tasks. Using these ideas it is possible to build adequate models for the description and prediction of different cognitive activities in which the number of variables is usually small enough for analysis. The dynamical images of different mental processes depend on their temporal organization and, as a rule, cannot be just simple attractors since cognition is characterized by transient dynamics. The mathematical image for a robust transient is a stable heteroclinic channel consisting of a chain of saddles connected by unstable separatrices. We focus here on hierarchical chunking dynamics that can represent several cognitive activities. Chunking is the dynamical phenomenon that means dividing a long information chain into shorter items. Chunking is known to be important in many processes of perception, learning, memory and cognition. We prove that in the phase space of the model that describes chunking there exists a new mathematical object — heteroclinic sequence of heteroclinic cycles — using the technique of slow-fast approximations. This new object serves as a skeleton of motions reflecting sequential features of hierarchical chunking dynamics and is an adequate image of the chunking processing.

  11. Implementacion de modulos constructivistas que atiendan "misconceptions" y lagunas conceptuales en temas de la fisica en estudiantes universitarios

    NASA Astrophysics Data System (ADS)

    Santacruz Sarmiento, Neida M.

    Este estudio se enfoco en los "misconception" y lagunas conceptuales en temas fundamentales de Fisica como son Equilibrio Termodinamico y Estatica de fluidos. En primer lugar se trabajo con la identificacion de "misconceptions" y lagunas conceptuales y se analizo en detalle la forma en que los estudiantes construyen sus propias teorias de fenomenos relacionados con los temas. Debido a la complejidad en la que los estudiantes asimilan los conceptos fisicos, se utilizo el metodo de investigacion mixto de tipo secuencial explicativo en dos etapas, una cuantitativa y otra cualitativa. La primera etapa comprendio cuatro fases: (1) Aplicacion de una prueba diagnostica para identificar el conocimiento previo y lagunas conceptuales. (2) Identificacion de "misconceptions" y lagunas del concepto a partir del conocimiento previo. (3) Implementacion de la intervencion por medio de modulos en el topico de Equilibrio Termodinamico y Estatica de Fluidos. (4) Y la realizacion de la pos prueba para analizar el impacto y la efectividad de la intervencion constructivista. En la segunda etapa se utilizo el metodo de investigacion cualitativo, por medio de una entrevista semiestructurada que partio de la elaboracion de un mapa conceptual y se finalizo con un analisis de datos conjuntamente. El desarrollo de este estudio permitio encontrar "misconceptions" y lagunas conceptuales a partir del conocimiento previo de los estudiantes participantes en los temas trabajados, que fueron atendidos en el desarrollo de las distintas actividades inquisitivas que se presentaron en el modulo constructivista. Se encontro marcadas diferencias entre la pre y pos prueba en los temas, esto se debio al requerimiento de habilidades abstractas para el tema de Estatica de Fluidos y al desarrollo intuitivo para el tema de Equilibrio Termodinamico, teniendo mejores respuestas en el segundo. Los participantes demostraron una marcada evolucion y/o cambio en sus estructuras de pensamiento, las pruebas estadisticas

  12. Motion adaptive signal integration-high dynamic range (MASI-HDR) video processing for dynamic platforms

    NASA Astrophysics Data System (ADS)

    Piacentino, Michael R.; Berends, David C.; Zhang, David C.; Gudis, Eduardo

    2013-05-01

    Two of the biggest challenges in designing U×V vision systems are properly representing high dynamic range scene content using low dynamic range components and reducing camera motion blur. SRI's MASI-HDR (Motion Adaptive Signal Integration-High Dynamic Range) is a novel technique for generating blur-reduced video using multiple captures for each displayed frame while increasing the effective camera dynamic range by four bits or more. MASI-HDR processing thus provides high performance video from rapidly moving platforms in real-world conditions in low latency real time, enabling even the most demanding applications on air, ground and water.

  13. Synaptic Size Dynamics as an Effectively Stochastic Process

    PubMed Central

    Statman, Adiel; Kaufman, Maya; Minerbi, Amir; Ziv, Noam E.; Brenner, Naama

    2014-01-01

    Long-term, repeated measurements of individual synaptic properties have revealed that synapses can undergo significant directed and spontaneous changes over time scales of minutes to weeks. These changes are presumably driven by a large number of activity-dependent and independent molecular processes, yet how these processes integrate to determine the totality of synaptic size remains unknown. Here we propose, as an alternative to detailed, mechanistic descriptions, a statistical approach to synaptic size dynamics. The basic premise of this approach is that the integrated outcome of the myriad of processes that drive synaptic size dynamics are effectively described as a combination of multiplicative and additive processes, both of which are stochastic and taken from distributions parametrically affected by physiological signals. We show that this seemingly simple model, known in probability theory as the Kesten process, can generate rich dynamics which are qualitatively similar to the dynamics of individual glutamatergic synapses recorded in long-term time-lapse experiments in ex-vivo cortical networks. Moreover, we show that this stochastic model, which is insensitive to many of its underlying details, quantitatively captures the distributions of synaptic sizes measured in these experiments, the long-term stability of such distributions and their scaling in response to pharmacological manipulations. Finally, we show that the average kinetics of new postsynaptic density formation measured in such experiments is also faithfully captured by the same model. The model thus provides a useful framework for characterizing synapse size dynamics at steady state, during initial formation of such steady states, and during their convergence to new steady states following perturbations. These findings show the strength of a simple low dimensional statistical model to quantitatively describe synapse size dynamics as the integrated result of many underlying complex processes

  14. Dynamic Characteristics Analysis of Analogue Networks Design Process

    NASA Astrophysics Data System (ADS)

    Zemliak, Alexander M.

    The process of designing analogue circuits is formulated as a controlled dynamic system. For analysis of such system's properties it is suggested to use the concept of Lyapunov's function for a dynamic system. Various forms of Lyapunov's function are suggested. Analyzing the behavior of Lyapunov's function and its first derivative allowed us to determine significant correlation between this function's properties and processor time used to design the circuit. Numerical results prove the possibility of forecasting the behavior of various designing strategies and processor time based on the properties of Lyapunov's function for the process of designing the circuit.

  15. Characterizing Nonlinear Heartbeat Dynamics within a Point Process Framework

    PubMed Central

    Brown, Emery N.; Barbieri, Riccardo

    2010-01-01

    Human heartbeat intervals are known to have nonlinear and nonstationary dynamics. In this paper, we propose a model of R–R interval dynamics based on a nonlinear Volterra–Wiener expansion within a point process framework. Inclusion of second-order nonlinearities into the heartbeat model allows us to estimate instantaneous heart rate (HR) and heart rate variability (HRV) indexes, as well as the dynamic bispectrum characterizing higher order statistics of the nonstationary non-Gaussian time series. The proposed point process probability heartbeat interval model was tested with synthetic simulations and two experimental heartbeat interval datasets. Results show that our model is useful in characterizing and tracking the inherent nonlinearity of heartbeat dynamics. As a feature, the fine temporal resolution allows us to compute instantaneous nonlinearity indexes, thus sidestepping the uneven spacing problem. In comparison to other nonlinear modeling approaches, the point process probability model is useful in revealing nonlinear heartbeat dynamics at a fine timescale and with only short duration recordings. PMID:20172783

  16. Blurred Star Image Processing for Star Sensors under Dynamic Conditions

    PubMed Central

    Zhang, Weina; Quan, Wei; Guo, Lei

    2012-01-01

    The precision of star point location is significant to identify the star map and to acquire the aircraft attitude for star sensors. Under dynamic conditions, star images are not only corrupted by various noises, but also blurred due to the angular rate of the star sensor. According to different angular rates under dynamic conditions, a novel method is proposed in this article, which includes a denoising method based on adaptive wavelet threshold and a restoration method based on the large angular rate. The adaptive threshold is adopted for denoising the star image when the angular rate is in the dynamic range. Then, the mathematical model of motion blur is deduced so as to restore the blurred star map due to large angular rate. Simulation results validate the effectiveness of the proposed method, which is suitable for blurred star image processing and practical for attitude determination of satellites under dynamic conditions. PMID:22778666

  17. The Temporal Dynamics of Visual Processing in Multiple Sclerosis.

    PubMed

    Lopes Costa, Silvana; Gonçalves, Oscar F; DeLuca, John; Chiaravalloti, Nancy; Chakravarthi, Ramakrishna; Almeida, Jorge

    2016-01-01

    Although the integrity of the visual system is often affected in multiple sclerosis (MS), the potential relationship between the temporal dynamics of visual processing and performance on neuropsychological tests assessing processing speed (PS) remains relatively unexplored. Here, we test if a PS deficit is related to abnormalities within the visual system, rather than impaired higher-level cognitive function. Two groups of participants with MS (1 group with PS deficits and another without) and a healthy control group, matched for age and education, were included. To explore the temporal dynamics of visual processing, we used 2 psychophysical paradigms: attention enhancement/prioritization and rapid serial visual presentation. Visual PS deficits were associated with a decreased capability to detect visual stimuli and a higher limitation in visual temporal-processing capacity. These results suggest that a latent sensorial temporal limitation of the visual system is significantly associated to PS deficits in MS. PMID:26508328

  18. Information processing and dynamics in minimally cognitive agents.

    PubMed

    Beer, Randall D; Williams, Paul L

    2015-01-01

    There has been considerable debate in the literature about the relative merits of information processing versus dynamical approaches to understanding cognitive processes. In this article, we explore the relationship between these two styles of explanation using a model agent evolved to solve a relational categorization task. Specifically, we separately analyze the operation of this agent using the mathematical tools of information theory and dynamical systems theory. Information-theoretic analysis reveals how task-relevant information flows through the system to be combined into a categorization decision. Dynamical analysis reveals the key geometrical and temporal interrelationships underlying the categorization decision. Finally, we propose a framework for directly relating these two different styles of explanation and discuss the possible implications of our analysis for some of the ongoing debates in cognitive science. PMID:25039535

  19. Applying Parallel Processing Techniques to Tether Dynamics Simulation

    NASA Technical Reports Server (NTRS)

    Wells, B. Earl

    1996-01-01

    The focus of this research has been to determine the effectiveness of applying parallel processing techniques to a sizable real-world problem, the simulation of the dynamics associated with a tether which connects two objects in low earth orbit, and to explore the degree to which the parallelization process can be automated through the creation of new software tools. The goal has been to utilize this specific application problem as a base to develop more generally applicable techniques.

  20. All-optical signal processing using dynamic Brillouin gratings

    NASA Astrophysics Data System (ADS)

    Santagiustina, Marco; Chin, Sanghoon; Primerov, Nicolay; Ursini, Leonora; Thévenaz, Luc

    2013-04-01

    The manipulation of dynamic Brillouin gratings in optical fibers is demonstrated to be an extremely flexible technique to achieve, with a single experimental setup, several all-optical signal processing functions. In particular, all-optical time differentiation, time integration and true time reversal are theoretically predicted, and then numerically and experimentally demonstrated. The technique can be exploited to process both photonic and ultra-wide band microwave signals, so enabling many applications in photonics and in radio science.

  1. All-optical signal processing using dynamic Brillouin gratings

    PubMed Central

    Santagiustina, Marco; Chin, Sanghoon; Primerov, Nicolay; Ursini, Leonora; Thévenaz, Luc

    2013-01-01

    The manipulation of dynamic Brillouin gratings in optical fibers is demonstrated to be an extremely flexible technique to achieve, with a single experimental setup, several all-optical signal processing functions. In particular, all-optical time differentiation, time integration and true time reversal are theoretically predicted, and then numerically and experimentally demonstrated. The technique can be exploited to process both photonic and ultra-wide band microwave signals, so enabling many applications in photonics and in radio science. PMID:23549159

  2. Dynamics of the Induction Process for Beginning Vocational Teachers.

    ERIC Educational Resources Information Center

    Heath-Camp, Betty; Camp, William G.

    A study investigated the nature, dynamics, and scope of the induction process for beginning vocational teachers. Ten purposefully selected groups of beginning vocational teachers from eight different states participated in nominal group technique sessions. Two groups were selected for intensive follow-up for case study. A mail survey of a…

  3. Dynamic scheduling of medium-grained processes on multicomputers

    SciTech Connect

    Wei, S.; Kale, L.V. )

    1989-01-01

    This book presents a scheme for dynamic scheduling of medium-grained processes. The basic scheme and its adaptive extensions are described, and contrasted with two other schemes that have been proposed. The performance of all the three schemes on a 64 processor IPSC/2 hypercube is presented and analyzed. The experimental results are shown.

  4. Integrating Biological Systems in the Process Dynamics and Control Curriculum

    ERIC Educational Resources Information Center

    Parker, Robert S.; Doyle, Francis J.; Henson, Michael A.

    2006-01-01

    The evolution of the chemical engineering discipline motivates a re-evaluation of the process dynamics and control curriculum. A key requirement of future courses will be the introduction of theoretical concepts and application examples relevant to emerging areas, notably complex biological systems. We outline the critical concepts required to…

  5. Process Modeling and Dynamic Simulation for EAST Helium Refrigerator

    NASA Astrophysics Data System (ADS)

    Lu, Xiaofei; Fu, Peng; Zhuang, Ming; Qiu, Lilong; Hu, Liangbing

    2016-06-01

    In this paper, the process modeling and dynamic simulation for the EAST helium refrigerator has been completed. The cryogenic process model is described and the main components are customized in detail. The process model is controlled by the PLC simulator, and the realtime communication between the process model and the controllers is achieved by a customized interface. Validation of the process model has been confirmed based on EAST experimental data during the cool down process of 300–80 K. Simulation results indicate that this process simulator is able to reproduce dynamic behaviors of the EAST helium refrigerator very well for the operation of long pulsed plasma discharge. The cryogenic process simulator based on control architecture is available for operation optimization and control design of EAST cryogenic systems to cope with the long pulsed heat loads in the future. supported by National Natural Science Foundation of China (No. 51306195) and Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, CAS (No. CRYO201408)

  6. On Cognition, Structured Sequence Processing, and Adaptive Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Petersson, Karl Magnus

    2008-11-01

    Cognitive neuroscience approaches the brain as a cognitive system: a system that functionally is conceptualized in terms of information processing. We outline some aspects of this concept and consider a physical system to be an information processing device when a subclass of its physical states can be viewed as representational/cognitive and transitions between these can be conceptualized as a process operating on these states by implementing operations on the corresponding representational structures. We identify a generic and fundamental problem in cognition: sequentially organized structured processing. Structured sequence processing provides the brain, in an essential sense, with its processing logic. In an approach addressing this problem, we illustrate how to integrate levels of analysis within a framework of adaptive dynamical systems. We note that the dynamical system framework lends itself to a description of asynchronous event-driven devices, which is likely to be important in cognition because the brain appears to be an asynchronous processing system. We use the human language faculty and natural language processing as a concrete example through out.

  7. Identifying and tracking dynamic processes in social networks

    NASA Astrophysics Data System (ADS)

    Chung, Wayne; Savell, Robert; Schütt, Jan-Peter; Cybenko, George

    2006-05-01

    The detection and tracking of embedded malicious subnets in an active social network can be computationally daunting due to the quantity of transactional data generated in the natural interaction of large numbers of actors comprising a network. In addition, detection of illicit behavior may be further complicated by evasive strategies designed to camouflage the activities of the covert subnet. In this work, we move beyond traditional static methods of social network analysis to develop a set of dynamic process models which encode various modes of behavior in active social networks. These models will serve as the basis for a new application of the Process Query System (PQS) to the identification and tracking of covert dynamic processes in social networks. We present a preliminary result from application of our technique in a real-world data stream-- the Enron email corpus.

  8. Optical studies of dynamical processes in disordered systems

    NASA Astrophysics Data System (ADS)

    Yen, W. M.

    We present a brief summary of the progress we have attained in the course of the second year of the present three year rant. The focus of our research continues to be on studies of those dynamical processes such as relaxation and energy diffusion which affect the structure and the optical properties of disordered and amorphous materials. We have been particularly concerned with some new glass compositions which are luminescent in the near infrared (NIR) and on the factors which determine the efficiencies of these materials. In addition, we have begun to investigate the nature and the dynamics of the elementary excitations characteristic of amorphous materials.

  9. Simulation of dynamic processes with adaptive neural networks.

    SciTech Connect

    Tzanos, C. P.

    1998-02-03

    Many industrial processes are highly non-linear and complex. Their simulation with first-principle or conventional input-output correlation models is not satisfactory, either because the process physics is not well understood, or it is so complex that direct simulation is either not adequately accurate, or it requires excessive computation time, especially for on-line applications. Artificial intelligence techniques (neural networks, expert systems, fuzzy logic) or their combination with simple process-physics models can be effectively used for the simulation of such processes. Feedforward (static) neural networks (FNNs) can be used effectively to model steady-state processes. They have also been used to model dynamic (time-varying) processes by adding to the network input layer input nodes that represent values of input variables at previous time steps. The number of previous time steps is problem dependent and, in general, can be determined after extensive testing. This work demonstrates that for dynamic processes that do not vary fast with respect to the retraining time of the neural network, an adaptive feedforward neural network can be an effective simulator that is free of the complexities introduced by the use of input values at previous time steps.

  10. Theoretical analysis of dynamic processes for interacting molecular motors

    NASA Astrophysics Data System (ADS)

    Teimouri, Hamid; Kolomeisky, Anatoly B.; Mehrabiani, Kareem

    2015-02-01

    Biological transport is supported by the collective dynamics of enzymatic molecules that are called motor proteins or molecular motors. Experiments suggest that motor proteins interact locally via short-range potentials. We investigate the fundamental role of these interactions by carrying out an analysis of a new class of totally asymmetric exclusion processes, in which interactions are accounted for in a thermodynamically consistent fashion. This allows us to explicitly connect microscopic features of motor proteins with their collective dynamic properties. A theoretical analysis that combines various mean-field calculations and computer simulations suggests that the dynamic properties of molecular motors strongly depend on the interactions, and that the correlations are stronger for interacting motor proteins. Surprisingly, it is found that there is an optimal strength of interactions (weak repulsion) that leads to a maximal particle flux. It is also argued that molecular motor transport is more sensitive to attractive interactions. Applications of these results for kinesin motor proteins are discussed.

  11. Ageing dynamics of ion bombardment induced self-organization processes

    PubMed Central

    Bikondoa, Oier; Carbone, Dina; Chamard, Virginie; Metzger, Till Hartmut

    2013-01-01

    Instabilities caused during the erosion of a surface by an ion beam can lead to the formation of self-organized patterns of nanostructures. Understanding the self-organization process requires not only the in-situ characterization of ensemble averaged properties but also probing the dynamics. This can be done with the use of coherent X-rays and analyzing the temporal correlations of the scattered intensity. Here, we show that the dynamics of a semiconductor surface nanopatterned by normal incidence ion beam sputtering are age-dependent and slow down with sputtering time. This work provides a novel insight into the erosion dynamics and opens new perspectives for the understanding of self-organization mechanisms. PMID:23685386

  12. [Dynamic Pulse Signal Processing and Analyzing in Mobile System].

    PubMed

    Chou, Yongxin; Zhang, Aihua; Ou, Jiqing; Qi, Yusheng

    2015-09-01

    In order to derive dynamic pulse rate variability (DPRV) signal from dynamic pulse signal in real time, a method for extracting DPRV signal was proposed and a portable mobile monitoring system was designed. The system consists of a front end for collecting and wireless sending pulse signal and a mobile terminal. The proposed method is employed to extract DPRV from dynamic pulse signal in mobile terminal, and the DPRV signal is analyzed both in the time domain and the frequency domain and also with non-linear method in real time. The results show that the proposed method can accurately derive DPRV signal in real time, the system can be used for processing and analyzing DPRV signal in real time. PMID:26904868

  13. Quantifying chaotic dynamics from integrate-and-fire processes

    SciTech Connect

    Pavlov, A. N.; Pavlova, O. N.; Mohammad, Y. K.; Kurths, J.

    2015-01-15

    Characterizing chaotic dynamics from integrate-and-fire (IF) interspike intervals (ISIs) is relatively easy performed at high firing rates. When the firing rate is low, a correct estimation of Lyapunov exponents (LEs) describing dynamical features of complex oscillations reflected in the IF ISI sequences becomes more complicated. In this work we discuss peculiarities and limitations of quantifying chaotic dynamics from IF point processes. We consider main factors leading to underestimated LEs and demonstrate a way of improving numerical determining of LEs from IF ISI sequences. We show that estimations of the two largest LEs can be performed using around 400 mean periods of chaotic oscillations in the regime of phase-coherent chaos. Application to real data is discussed.

  14. Quantifying chaotic dynamics from integrate-and-fire processes

    NASA Astrophysics Data System (ADS)

    Pavlov, A. N.; Pavlova, O. N.; Mohammad, Y. K.; Kurths, J.

    2015-01-01

    Characterizing chaotic dynamics from integrate-and-fire (IF) interspike intervals (ISIs) is relatively easy performed at high firing rates. When the firing rate is low, a correct estimation of Lyapunov exponents (LEs) describing dynamical features of complex oscillations reflected in the IF ISI sequences becomes more complicated. In this work we discuss peculiarities and limitations of quantifying chaotic dynamics from IF point processes. We consider main factors leading to underestimated LEs and demonstrate a way of improving numerical determining of LEs from IF ISI sequences. We show that estimations of the two largest LEs can be performed using around 400 mean periods of chaotic oscillations in the regime of phase-coherent chaos. Application to real data is discussed.

  15. State machine analysis of sensor data from dynamic processes

    DOEpatents

    Cook, William R.; Brabson, John M.; Deland, Sharon M.

    2003-12-23

    A state machine model analyzes sensor data from dynamic processes at a facility to identify the actual processes that were performed at the facility during a period of interest for the purpose of remote facility inspection. An inspector can further input the expected operations into the state machine model and compare the expected, or declared, processes to the actual processes to identify undeclared processes at the facility. The state machine analysis enables the generation of knowledge about the state of the facility at all levels, from location of physical objects to complex operational concepts. Therefore, the state machine method and apparatus may benefit any agency or business with sensored facilities that stores or manipulates expensive, dangerous, or controlled materials or information.

  16. How cells process information: Quantification of spatiotemporal signaling dynamics

    PubMed Central

    Ganesan, Ambhighainath; Zhang, Jin

    2012-01-01

    Arguably, one of the foremost distinctions between life and non-living matter is the ability to sense environmental changes and respond appropriately—an ability that is invested in every living cell. Within a single cell, this function is largely carried out by networks of signaling molecules. However, the details of how signaling networks help cells make complicated decisions are still not clear. For instance, how do cells read graded, analog stress signals but convert them into digital live-or-die responses? The answer to such questions may originate from the fact that signaling molecules are not static but dynamic entities, changing in numbers and activity over time and space. In the past two decades, researchers have been able to experimentally monitor signaling dynamics and use mathematical techniques to quantify and abstract general principles of how cells process information. In this review, the authors first introduce and discuss various experimental and computational methodologies that have been used to study signaling dynamics. The authors then discuss the different types of temporal dynamics such as oscillations and bistability that can be exhibited by signaling systems and highlight studies that have investigated such dynamics in physiological settings. Finally, the authors illustrate the role of spatial compartmentalization in regulating cellular responses with examples of second-messenger signaling in cardiac myocytes. PMID:22573643

  17. Asymmetric exclusion process with a dynamic roadblock and open boundaries

    NASA Astrophysics Data System (ADS)

    Sahoo, Mamata; Klumpp, Stefan

    2016-08-01

    Motivated by complex transport processes occurring in nature, we study a totally asymmetric simple exclusion process (TASEP) with a dynamic ‘roadblock’ particle. The roadblock particle blocks the traffic of moving particles while bound to the lattice, but can stochastically unbind or switch off, thus enabling the traffic to pass. We use simulations to study the dependence of the particle flux on the on/off switching dynamics of the roadblock, which exhibits a surprisingly rich dynamic behaviour. In particular, unlike in other studied TASEP variants with defects, here we observe that the particle flux is affected by the roadblock even in the initiation-limited or low density phase if the roadblock dynamics is slow. Rapid switching off the roadblock results in the typical behaviour of a TASEP with a defect/pause with reduced maximal current, but no effect of the roadblock on the flux in the initiation-limited phase. Moreover, in an intermediate range of roadblock rates, the particle current is found to be system-size dependent.

  18. Dynamic evolution of interface roughness during friction and wear processes.

    PubMed

    Kubiak, K J; Bigerelle, M; Mathia, T G; Dubois, A; Dubar, L

    2014-01-01

    Dynamic evolution of surface roughness and influence of initial roughness (S(a) = 0.282-6.73 µm) during friction and wear processes has been analyzed experimentally. The mirror polished and rough surfaces (28 samples in total) have been prepared by surface polishing on Ti-6Al-4V and AISI 1045 samples. Friction and wear have been tested in classical sphere/plane configuration using linear reciprocating tribometer with very small displacement from 130 to 200 µm. After an initial period of rapid degradation, dynamic evolution of surface roughness converges to certain level specific to a given tribosystem. However, roughness at such dynamic interface is still increasing and analysis of initial roughness influence revealed that to certain extent, a rheology effect of interface can be observed and dynamic evolution of roughness will depend on initial condition and history of interface roughness evolution. Multiscale analysis shows that morphology created in wear process is composed from nano, micro, and macro scale roughness. Therefore, mechanical parts working under very severe contact conditions, like rotor/blade contact, screws, clutch, etc. with poor initial surface finishing are susceptible to have much shorter lifetime than a quality finished parts. PMID:23440686

  19. Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments

    SciTech Connect

    Noe, F; Diadone, Isabella; Lollmann, Marc; Sauer, Marcus; Chondera, John D; Smith, Jeremy C

    2011-01-01

    There is a gap between kinetic experiment and simulation in their views of the dynamics of complex biomolecular systems. Whereas experiments typically reveal only a few readily discernible exponential relaxations, simulations often indicate complex multistate behavior. Here, a theoretical framework is presented that reconciles these two approaches. The central concept is dynamical fingerprints which contain peaks at the time scales of the dynamical processes involved with amplitudes determined by the experimental observable. Fingerprints can be generated from both experimental and simulation data, and their comparison by matching peaks permits assignment of structural changes present in the simulation to experimentally observed relaxation processes. The approach is applied here to a test case interpreting single molecule fluorescence correlation spectroscopy experiments on a set of fluorescent peptides with molecular dynamics simulations. The peptides exhibit complex kinetics shown to be consistent with the apparent simplicity of the experimental data. Moreover, the fingerprint approach can be used to design new experiments with site-specific labels that optimally probe specific dynamical processes in the molecule under investigation.

  20. Free energy reconstruction from steered dynamics without post-processing

    SciTech Connect

    Athenes, Manuel; Marinica, Mihai-Cosmin

    2010-09-20

    Various methods achieving importance sampling in ensembles of nonequilibrium trajectories enable one to estimate free energy differences and, by maximum-likelihood post-processing, to reconstruct free energy landscapes. Here, based on Bayes theorem, we propose a more direct method in which a posterior likelihood function is used both to construct the steered dynamics and to infer the contribution to equilibrium of all the sampled states. The method is implemented with two steering schedules. First, using non-autonomous steering, we calculate the migration barrier of the vacancy in Fe-{alpha}. Second, using an autonomous scheduling related to metadynamics and equivalent to temperature-accelerated molecular dynamics, we accurately reconstruct the two-dimensional free energy landscape of the 38-atom Lennard-Jones cluster as a function of an orientational bond-order parameter and energy, down to the solid-solid structural transition temperature of the cluster and without maximum-likelihood post-processing.

  1. Emotions are emergent processes: they require a dynamic computational architecture

    PubMed Central

    Scherer, Klaus R.

    2009-01-01

    Emotion is a cultural and psychobiological adaptation mechanism which allows each individual to react flexibly and dynamically to environmental contingencies. From this claim flows a description of the elements theoretically needed to construct a virtual agent with the ability to display human-like emotions and to respond appropriately to human emotional expression. This article offers a brief survey of the desirable features of emotion theories that make them ideal blueprints for agent models. In particular, the component process model of emotion is described, a theory which postulates emotion-antecedent appraisal on different levels of processing that drive response system patterning predictions. In conclusion, investing seriously in emergent computational modelling of emotion using a nonlinear dynamic systems approach is suggested. PMID:19884141

  2. Optical studies of dynamical processes in disordered materials

    SciTech Connect

    Yen, W.M.

    1990-12-01

    Our research continues to focus on the study of the structure and the dynamic behavior of insulating solids which can be activated optically. We have been particularly interested in the physical processes which produce relaxation and energy transfer in the optical excited states. Our studies have been based principally on optical laser spectroscopic techniques which reveal a more detailed view of the materials of interest and which will ultimately lead to the development of more efficient optoelectronic materials. 13 refs.

  3. Collisional and dynamical processes in moon and planet formation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The collisional and dynamical processes in moon and planet formation are discussed. A hydrodynamic code of collision calculations, the orbital element changes due to gravitational scattering, a validation of the mass shifting algorithm, a theory of rotations, and the origin of asteroids are studied. A numerical model of planet growth is discussed and a methodology to evaluate the rate at which megaregolith increases its depth as a function of total accumulate number of impacts on an initially smooth, coherent surface is described.

  4. Dynamical symmetries of Markov processes with multiplicative white noise

    NASA Astrophysics Data System (ADS)

    Aron, Camille; Barci, Daniel G.; Cugliandolo, Leticia F.; González Arenas, Zochil; Lozano, Gustavo S.

    2016-05-01

    We analyse various properties of stochastic Markov processes with multiplicative white noise. We take a single-variable problem as a simple example, and we later extend the analysis to the Landau–Lifshitz–Gilbert equation for the stochastic dynamics of a magnetic moment. In particular, we focus on the non-equilibrium transfer of angular momentum to the magnetization from a spin-polarised current of electrons, a technique which is widely used in the context of spintronics to manipulate magnetic moments. We unveil two hidden dynamical symmetries of the generating functionals of these Markovian multiplicative white-noise processes. One symmetry only holds in equilibrium and we use it to prove generic relations such as the fluctuation-dissipation theorems. Out of equilibrium, we take profit of the symmetry-breaking terms to prove fluctuation theorems. The other symmetry yields strong dynamical relations between correlation and response functions which can notably simplify the numerical analysis of these problems. Our construction allows us to clarify some misconceptions on multiplicative white-noise stochastic processes that can be found in the literature. In particular, we show that a first-order differential equation with multiplicative white noise can be transformed into an additive-noise equation, but that the latter keeps a non-trivial memory of the discretisation prescription used to define the former.

  5. Understanding disease processes by partitioned dynamic Bayesian networks.

    PubMed

    Bueno, Marcos L P; Hommersom, Arjen; Lucas, Peter J F; Lappenschaar, Martijn; Janzing, Joost G E

    2016-06-01

    For many clinical problems in patients the underlying pathophysiological process changes in the course of time as a result of medical interventions. In model building for such problems, the typical scarcity of data in a clinical setting has been often compensated by utilizing time homogeneous models, such as dynamic Bayesian networks. As a consequence, the specificities of the underlying process are lost in the obtained models. In the current work, we propose the new concept of partitioned dynamic Bayesian networks to capture distribution regime changes, i.e. time non-homogeneity, benefiting from an intuitive and compact representation with the solid theoretical foundation of Bayesian network models. In order to balance specificity and simplicity in real-world scenarios, we propose a heuristic algorithm to search and learn these non-homogeneous models taking into account a preference for less complex models. An extensive set of experiments were ran, in which simulating experiments show that the heuristic algorithm was capable of constructing well-suited solutions, in terms of goodness of fit and statistical distance to the original distributions, in consonance with the underlying processes that generated data, whether it was homogeneous or non-homogeneous. Finally, a study case on psychotic depression was conducted using non-homogeneous models learned by the heuristic, leading to insightful answers for clinically relevant questions concerning the dynamics of this mental disorder. PMID:27182055

  6. Large scale molecular dynamics modeling of materials fabrication processes

    SciTech Connect

    Belak, J.; Glosli, J.N.; Boercker, D.B.; Stowers, I.F.

    1994-02-01

    An atomistic molecular dynamics model of materials fabrication processes is presented. Several material removal processes are shown to be within the domain of this simulation method. Results are presented for orthogonal cutting of copper and silicon and for crack propagation in silica glass. Both copper and silicon show ductile behavior, but the atomistic mechanisms that allow this behavior are significantly different in the two cases. The copper chip remains crystalline while the silicon chip transforms into an amorphous state. The critical stress for crack propagation in silica glass was found to be in reasonable agreement with experiment and a novel stick-slip phenomenon was observed.

  7. Modelling forest dynamics: a perspective from point process methods.

    PubMed

    Comas, Carlos; Mateu, Jorge

    2007-04-01

    This paper reviews the main applications of (marked) point process theory in forestry including functions to analyse spatial variability and the main (marked) point process models. Although correlation functions do describe spatial variability at distinct range of scale, they are clearly restricted to the analysis of few dominant species since they are based on pairwise analysis. This has over-simplified the spatial analysis of complex forest dynamics involving "large" number of species. Moreover, although process models can reproduce, to some extent, real forest spatial patterns of trees, the biological forest-ecological interpretation of the resulting spatial structures is difficult since these models usually lack of biological realism. This problem gains in strength as usually most of these point process models are defined in terms of purely spatial relationships, though in real life, forest develop through time. We thus aim to discuss the applicability of such formulations to analyse and simulate "real" forest dynamics and unwrap their shortcomes. We present a unified approach of modern spatially explicit forest growth models. Finally, we focus on a continuous space-time stochastic process as an alternative approach to generate marked point patterns evolving through space and time. PMID:17476943

  8. Complex processes from dynamical architectures with time-scale hierarchy.

    PubMed

    Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor

    2011-01-01

    The idea that complex motor, perceptual, and cognitive behaviors are composed of smaller units, which are somehow brought into a meaningful relation, permeates the biological and life sciences. However, no principled framework defining the constituent elementary processes has been developed to this date. Consequently, functional configurations (or architectures) relating elementary processes and external influences are mostly piecemeal formulations suitable to particular instances only. Here, we develop a general dynamical framework for distinct functional architectures characterized by the time-scale separation of their constituents and evaluate their efficiency. Thereto, we build on the (phase) flow of a system, which prescribes the temporal evolution of its state variables. The phase flow topology allows for the unambiguous classification of qualitatively distinct processes, which we consider to represent the functional units or modes within the dynamical architecture. Using the example of a composite movement we illustrate how different architectures can be characterized by their degree of time scale separation between the internal elements of the architecture (i.e. the functional modes) and external interventions. We reveal a tradeoff of the interactions between internal and external influences, which offers a theoretical justification for the efficient composition of complex processes out of non-trivial elementary processes or functional modes. PMID:21347363

  9. Dynamic sector processing using 2D assignment for rotating radars

    NASA Astrophysics Data System (ADS)

    Habtemariam, Biruk K.; Tharmarasa, R.; Pelletier, M.; Kirubarajan, T.

    2011-09-01

    Electronically scanned array radars as well as mechanically steered rotating antennas return measurements with different time stamps during the same scan while sweeping form one region to another. Data association algorithms process the measurements at the end of the scan in order to satisfy the common one measurement per track assumption. Data processing at the end of a full scan resulted in delayed target state update. This issue becomes more apparent while tracking fast moving targets with low scan rate sensors. In this paper, we present new dynamic sector processing algorithm using 2D assignment for continuously scanning radars. A complete scan can be divided into sectors, which could be as small as a single detection, depending on the scanning rate and sparsity of targets. Data association followed by filtering and target state update is done dynamically while sweeping from one end to another. Along with the benefit of immediate track updates, continuous tracking results in challenges such as multiple targets spanning multiple sectors and targets crossing consecutive sectors. Also, associations performed in the current sector may require changes in association done in previous sectors. Such difficulties are resolved by the proposed 2D assignment algorithm that implements an incremental Hungarian assignment technique. The algorithm offers flexibility with respect to assignment variables for fusing of measurements received in consecutive sectors. Furthermore the proposed technique can be extended to multiframe assignment for jointly processing data from multiple scanning radars. Experimental results based on rotating radars are presented.

  10. Dynamic analysis of neural encoding by point process adaptive filtering.

    PubMed

    Eden, Uri T; Frank, Loren M; Barbieri, Riccardo; Solo, Victor; Brown, Emery N

    2004-05-01

    Neural receptive fields are dynamic in that with experience, neurons change their spiking responses to relevant stimuli. To understand how neural systems adapt their representations of biological information, analyses of receptive field plasticity from experimental measurements are crucial. Adaptive signal processing, the well-established engineering discipline for characterizing the temporal evolution of system parameters, suggests a framework for studying the plasticity of receptive fields. We use the Bayes' rule Chapman-Kolmogorov paradigm with a linear state equation and point process observation models to derive adaptive filters appropriate for estimation from neural spike trains. We derive point process filter analogues of the Kalman filter, recursive least squares, and steepest-descent algorithms and describe the properties of these new filters. We illustrate our algorithms in two simulated data examples. The first is a study of slow and rapid evolution of spatial receptive fields in hippocampal neurons. The second is an adaptive decoding study in which a signal is decoded from ensemble neural spiking activity as the receptive fields of the neurons in the ensemble evolve. Our results provide a paradigm for adaptive estimation for point process observations and suggest a practical approach for constructing filtering algorithms to track neural receptive field dynamics on a millisecond timescale. PMID:15070506

  11. Functional data analysis for dynamical system identification of behavioral processes.

    PubMed

    Trail, Jessica B; Collins, Linda M; Rivera, Daniel E; Li, Runze; Piper, Megan E; Baker, Timothy B

    2014-06-01

    Efficient new technology has made it straightforward for behavioral scientists to collect anywhere from several dozen to several thousand dense, repeated measurements on one or more time-varying variables. These intensive longitudinal data (ILD) are ideal for examining complex change over time but present new challenges that illustrate the need for more advanced analytic methods. For example, in ILD the temporal spacing of observations may be irregular, and individuals may be sampled at different times. Also, it is important to assess both how the outcome changes over time and the variation between participants' time-varying processes to make inferences about a particular intervention's effectiveness within the population of interest. The methods presented in this article integrate 2 innovative ILD analytic techniques: functional data analysis and dynamical systems modeling. An empirical application is presented using data from a smoking cessation clinical trial. Study participants provided 42 daily assessments of pre-quit and post-quit withdrawal symptoms. Regression splines were used to approximate smooth functions of craving and negative affect and to estimate the variables' derivatives for each participant. We then modeled the dynamics of nicotine craving using standard input-output dynamical systems models. These models provide a more detailed characterization of the post-quit craving process than do traditional longitudinal models, including information regarding the type, magnitude, and speed of the response to an input. The results, in conjunction with standard engineering control theory techniques, could potentially be used by tobacco researchers to develop a more effective smoking intervention. PMID:24079929

  12. Diagnosis of dynamic process over rainband of landfall typhoon

    NASA Astrophysics Data System (ADS)

    Ran, Ling-Kun; Yang, Wen-Xia; Chu, Yan-Li

    2010-07-01

    This paper introduces a new physical parameter — thermodynamic shear advection parameter combining the perturbation vertical component of convective vorticity vector with the coupling of horizontal divergence perturbation and vertical gradient of general potential temperature perturbation. For a heavy-rainfall event resulting from the landfall typhoon 'Wipha', the parameter is calculated by using National Centres for Enviromental Prediction/National Centre for Atmospheric Research global final analysis data. The results showed that the parameter corresponds to the observed 6 h accumulative rainband since it is capable of catching hold of the dynamic and thermodynamic disturbance in the lower troposphere over the observed rainband. Before the typhoon landed, the advection of the parameter by basic-state flow and the coupling of general potential temperature perturbation with curl of Coriolis force perturbation are the primary dynamic processes which are responsible for the local change of the parameter. After the typhoon landed, the disturbance is mainly driven by the combination of five primary dynamic processes. The advection of the parameter by basic-state flow was weakened after the typhoon landed.

  13. Molecular dynamic simulation of non-melt laser annealing process

    NASA Astrophysics Data System (ADS)

    Liren, Yan; Dai, Li; Wei, Zhang; Zhihong, Liu; Wei, Zhou; Quan, Wang

    2016-03-01

    Molecular dynamic simulation is performed to study the process of material annealing caused by a 266 nm pulsed laser. A micro-mechanism describing behaviors of silicon and impurity atoms during the laser annealing at a non-melt regime is proposed. After ion implantation, the surface of the Si wafer is acted by a high energy laser pulse, which loosens the material and partially frees both Si and impurity atoms. While the residual laser energy is absorbed by valence electrons, these atoms are recoiled and relocated to finally form a crystal. Energy-related movement behavior is observed by using the molecular dynamic method. The non-melt laser anneal appears to be quite sensitive to the energy density of the laser, as a small excess energy may causes a significant impurity diffusion. Such a result is also supported by our laser anneal experiment.

  14. An investigation of the dynamic processes promoting citizen participation.

    PubMed

    Foster-Fishman, Pennie G; Collins, Charles; Pierce, Steven J

    2013-06-01

    This study expanded the citizen participation literature by examining the dynamic nature of citizen participation and the extent to which the factors associated with citizen participation may be moderated by resident leadership status. Longitudinal survey data collected from 542 residents in one small Midwestern city implementing a community change initiative provide some insight into the challenges surrounding the promotion of an active citizenry. Within this one community, citizenship behaviors of emergent resident leaders and residents uninterested in a leadership role were influenced, to some extent, by different factors and the importance of these factors shifted in only a 2 years time span. Future research is needed to determine if the dynamics uncovered in this study were due to the initiative or to the nature of citizen participation processes. PMID:23423324

  15. The wiper model: avalanche dynamics in an exclusion process

    NASA Astrophysics Data System (ADS)

    Politi, Antonio; Romano, M. Carmen

    2013-10-01

    The exclusion-process model (Ciandrini et al 2010 Phys. Rev. E 81 051904) describing traffic of particles with internal stepping dynamics reveals the presence of strong correlations in realistic regimes. Here we study such a model in the limit of an infinitely fast translocation time, where the evolution can be interpreted as a ‘wiper’ that moves to dry neighbouring sites. We trace back the existence of long-range correlations to the existence of avalanches, where many sites are dried at once. At variance with self-organized criticality, in the wiper model avalanches have a typical size equal to the logarithm of the lattice size. In the thermodynamic limit, we find that the hydrodynamic behaviour is a mixture of stochastic (diffusive) fluctuations and increasingly coherent periodic oscillations that are reminiscent of a collective dynamics.

  16. Adaptive neural information processing with dynamical electrical synapses

    PubMed Central

    Xiao, Lei; Zhang, Dan-ke; Li, Yuan-qing; Liang, Pei-ji; Wu, Si

    2013-01-01

    The present study investigates a potential computational role of dynamical electrical synapses in neural information process. Compared with chemical synapses, electrical synapses are more efficient in modulating the concerted activity of neurons. Based on the experimental data, we propose a phenomenological model for short-term facilitation of electrical synapses. The model satisfactorily reproduces the phenomenon that the neuronal correlation increases although the neuronal firing rates attenuate during the luminance adaptation. We explore how the stimulus information is encoded in parallel by firing rates and correlated activity of neurons, and find that dynamical electrical synapses mediate a transition from the firing rate code to the correlation one during the luminance adaptation. The latter encodes the stimulus information by using the concerted, but lower neuronal firing rate, and hence is economically more efficient. PMID:23596413

  17. Information processing using a single dynamical node as complex system

    PubMed Central

    Appeltant, L.; Soriano, M.C.; Van der Sande, G.; Danckaert, J.; Massar, S.; Dambre, J.; Schrauwen, B.; Mirasso, C.R.; Fischer, I.

    2011-01-01

    Novel methods for information processing are highly desired in our information-driven society. Inspired by the brain's ability to process information, the recently introduced paradigm known as 'reservoir computing' shows that complex networks can efficiently perform computation. Here we introduce a novel architecture that reduces the usually required large number of elements to a single nonlinear node with delayed feedback. Through an electronic implementation, we experimentally and numerically demonstrate excellent performance in a speech recognition benchmark. Complementary numerical studies also show excellent performance for a time series prediction benchmark. These results prove that delay-dynamical systems, even in their simplest manifestation, can perform efficient information processing. This finding paves the way to feasible and resource-efficient technological implementations of reservoir computing. PMID:21915110

  18. Dynamic dielectric analysis - A means for process control

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D.; Delos, S.; Hoff, M.; Weller, L.

    1986-01-01

    The development of dynamic dielectric analysis techniques (as a 'smart' sensor for quantitative NDE) and of intelligent closed-loop cure systems is reported. The cure process of both BF3:R-catalyzed and uncatalyzed tetraglycidyl-4,4'-diaminodiphenyl methane (TGDDM)/diamine epoxy resins was studied. Measurements were made over a frequency range of six decades. The resin was monitored continuously throughout the cure process as it changed from a viscous liquid to a highly crosslinked solid. From the frequency dependence of the dielectric loss, the specific conductivity has been determined and shown to directly monitor the viscosity before the gel point is reached. Dielectric master plots of the cure process, analogous to time-temperature superposition plots for rheological data, have been developed.

  19. Analysis of dynamic deformation processes with adaptive KALMAN-filtering

    NASA Astrophysics Data System (ADS)

    Eichhorn, Andreas

    2007-05-01

    In this paper the approach of a full system analysis is shown quantifying a dynamic structural ("white-box"-) model for the calculation of thermal deformations of bar-shaped machine elements. The task was motivated from mechanical engineering searching new methods for the precise prediction and computational compensation of thermal influences in the heating and cooling phases of machine tools (i.e. robot arms, etc.). The quantification of thermal deformations under variable dynamic loads requires the modelling of the non-stationary spatial temperature distribution inside the object. Based upon FOURIERS law of heat flow the high-grade non-linear temperature gradient is represented by a system of partial differential equations within the framework of a dynamic Finite Element topology. It is shown that adaptive KALMAN-filtering is suitable to quantify relevant disturbance influences and to identify thermal parameters (i.e. thermal diffusivity) with a deviation of only 0,2%. As result an identified (and verified) parametric model for the realistic prediction respectively simulation of dynamic temperature processes is presented. Classifying the thermal bend as the main deformation quantity of bar-shaped machine tools, the temperature model is extended to a temperature deformation model. In lab tests thermal load steps are applied to an aluminum column. Independent control measurements show that the identified model can be used to predict the columns bend with a mean deviation (r.m.s.) smaller than 10 mgon. These results show that the deformation model is a precise predictor and suitable for realistic simulations of thermal deformations. Experiments with modified heat sources will be necessary to verify the model in further frequency spectra of dynamic thermal loads.

  20. Understanding Social Contagion in Adoption Processes Using Dynamic Social Networks.

    PubMed

    Herrera, Mauricio; Armelini, Guillermo; Salvaj, Erica

    2015-01-01

    There are many studies in the marketing and diffusion literature of the conditions in which social contagion affects adoption processes. Yet most of these studies assume that social interactions do not change over time, even though actors in social networks exhibit different likelihoods of being influenced across the diffusion period. Rooted in physics and epidemiology theories, this study proposes a Susceptible Infectious Susceptible (SIS) model to assess the role of social contagion in adoption processes, which takes changes in social dynamics over time into account. To study the adoption over a span of ten years, the authors used detailed data sets from a community of consumers and determined the importance of social contagion, as well as how the interplay of social and non-social influences from outside the community drives adoption processes. Although social contagion matters for diffusion, it is less relevant in shaping adoption when the study also includes social dynamics among members of the community. This finding is relevant for managers and entrepreneurs who trust in word-of-mouth marketing campaigns whose effect may be overestimated if marketers fail to acknowledge variations in social interactions. PMID:26505473

  1. Estimating demographic parameters using hidden process dynamic models.

    PubMed

    Gimenez, Olivier; Lebreton, Jean-Dominique; Gaillard, Jean-Michel; Choquet, Rémi; Pradel, Roger

    2012-12-01

    Structured population models are widely used in plant and animal demographic studies to assess population dynamics. In matrix population models, populations are described with discrete classes of individuals (age, life history stage or size). To calibrate these models, longitudinal data are collected at the individual level to estimate demographic parameters. However, several sources of uncertainty can complicate parameter estimation, such as imperfect detection of individuals inherent to monitoring in the wild and uncertainty in assigning a state to an individual. Here, we show how recent statistical models can help overcome these issues. We focus on hidden process models that run two time series in parallel, one capturing the dynamics of the true states and the other consisting of observations arising from these underlying possibly unknown states. In a first case study, we illustrate hidden Markov models with an example of how to accommodate state uncertainty using Frequentist theory and maximum likelihood estimation. In a second case study, we illustrate state-space models with an example of how to estimate lifetime reproductive success despite imperfect detection, using a Bayesian framework and Markov Chain Monte Carlo simulation. Hidden process models are a promising tool as they allow population biologists to cope with process variation while simultaneously accounting for observation error. PMID:22373775

  2. Microscopic information processing and communication in crowd dynamics

    NASA Astrophysics Data System (ADS)

    Henein, Colin Marc; White, Tony

    2010-11-01

    Due, perhaps, to the historical division of crowd dynamics research into psychological and engineering approaches, microscopic crowd models have tended toward modelling simple interchangeable particles with an emphasis on the simulation of physical factors. Despite the fact that people have complex (non-panic) behaviours in crowd disasters, important human factors in crowd dynamics such as information discovery and processing, changing goals and communication have not yet been well integrated at the microscopic level. We use our Microscopic Human Factors methodology to fuse a microscopic simulation of these human factors with a popular microscopic crowd model. By tightly integrating human factors with the existing model we can study the effects on the physical domain (movement, force and crowd safety) when human behaviour (information processing and communication) is introduced. In a large-room egress scenario with ample exits, information discovery and processing yields a crowd of non-interchangeable individuals who, despite close proximity, have different goals due to their different beliefs. This crowd heterogeneity leads to complex inter-particle interactions such as jamming transitions in open space; at high crowd energies, we found a freezing by heating effect (reminiscent of the disaster at Central Lenin Stadium in 1982) in which a barrier formation of naïve individuals trying to reach blocked exits prevented knowledgeable ones from exiting. Communication, when introduced, reduced this barrier formation, increasing both exit rates and crowd safety.

  3. Modelling of dynamic contact length in rail grinding process

    NASA Astrophysics Data System (ADS)

    Zhi, Shaodan; Li, Jianyong; Zarembski, A. M.

    2014-09-01

    Rails endure frequent dynamic loads from the passing trains for supporting trains and guiding wheels. The accumulated stress concentrations will cause the plastic deformation of rail towards generating corrugations, contact fatigue cracks and also other defects, resulting in more dangerous status even the derailment risks. So the rail grinding technology has been invented with rotating grinding stones pressed on the rail with defects removal. Such rail grinding works are directed by experiences rather than scientifically guidance, lacking of flexible and scientific operating methods. With grinding control unit holding the grinding stones, the rail grinding process has the characteristics not only the surface grinding but also the running railway vehicles. First of all, it's important to analyze the contact length between the grinding stone and the rail, because the contact length is a critical parameter to measure the grinding capabilities of stones. Moreover, it's needed to build up models of railway vehicle unit bonded with the grinding stone to represent the rail grinding car. Therefore the theoretical model for contact length is developed based on the geometrical analysis. And the calculating models are improved considering the grinding car's dynamic behaviors during the grinding process. Eventually, results are obtained based on the models by taking both the operation parameters and the structure parameters into the calculation, which are suitable for revealing the process of rail grinding by combining the grinding mechanism and the railway vehicle systems.

  4. Family dynamics during the grieving process: a systematic literature review.

    PubMed

    Delalibera, Mayra; Presa, Joana; Coelho, Alexandra; Barbosa, António; Franco, Maria Helena Pereira

    2015-04-01

    The loss of a loved one can affect family dynamics by changing the family system and creating the need for family members to reorganize. Good family functioning, which is characterized by open communication, expression of feelings and thoughts and cohesion among family members, facilitates adaptive adjustment to the loss. This study conducted a systematic review of the literature on family dynamics during the grieving process. A search was conducted in the EBSCO, Web of Knowledge and Bireme databases for scientific articles published from January 1980 to June 2013. Of the 389 articles found, only 15 met all the inclusion criteria. The selected studies provided evidence that dysfunctional families exhibit more psychopathological symptoms, more psychosocial morbidity, poorer social functioning, greater difficulty accessing community resources, lower functional capacity at work, and a more complicated grieving process. Family conflicts were also emphasized as contributing to the development of a complicated grieving process, while cohesion, expression of affection and good communication in families are believed to mitigate grief symptoms. PMID:25923623

  5. Understanding Social Contagion in Adoption Processes Using Dynamic Social Networks

    PubMed Central

    2015-01-01

    There are many studies in the marketing and diffusion literature of the conditions in which social contagion affects adoption processes. Yet most of these studies assume that social interactions do not change over time, even though actors in social networks exhibit different likelihoods of being influenced across the diffusion period. Rooted in physics and epidemiology theories, this study proposes a Susceptible Infectious Susceptible (SIS) model to assess the role of social contagion in adoption processes, which takes changes in social dynamics over time into account. To study the adoption over a span of ten years, the authors used detailed data sets from a community of consumers and determined the importance of social contagion, as well as how the interplay of social and non-social influences from outside the community drives adoption processes. Although social contagion matters for diffusion, it is less relevant in shaping adoption when the study also includes social dynamics among members of the community. This finding is relevant for managers and entrepreneurs who trust in word-of-mouth marketing campaigns whose effect may be overestimated if marketers fail to acknowledge variations in social interactions. PMID:26505473

  6. A Process for Comparing Dynamics of Distributed Space Systems Simulations

    NASA Technical Reports Server (NTRS)

    Cures, Edwin Z.; Jackson, Albert A.; Morris, Jeffery C.

    2009-01-01

    The paper describes a process that was developed for comparing the primary orbital dynamics behavior between space systems distributed simulations. This process is used to characterize and understand the fundamental fidelities and compatibilities of the modeling of orbital dynamics between spacecraft simulations. This is required for high-latency distributed simulations such as NASA s Integrated Mission Simulation and must be understood when reporting results from simulation executions. This paper presents 10 principal comparison tests along with their rationale and examples of the results. The Integrated Mission Simulation (IMSim) (formerly know as the Distributed Space Exploration Simulation (DSES)) is a NASA research and development project focusing on the technologies and processes that are related to the collaborative simulation of complex space systems involved in the exploration of our solar system. Currently, the NASA centers that are actively participating in the IMSim project are the Ames Research Center, the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), the Kennedy Space Center, the Langley Research Center and the Marshall Space Flight Center. In concept, each center participating in IMSim has its own set of simulation models and environment(s). These simulation tools are used to build the various simulation products that are used for scientific investigation, engineering analysis, system design, training, planning, operations and more. Working individually, these production simulations provide important data to various NASA projects.

  7. Optical studies of dynamical processes in disordered systems. Progress report

    SciTech Connect

    Yen, W.M.

    1994-05-01

    The authors present an abbreviated summary of the progress they have attained in the course of the abbreviated first year of the present three-year grant. The focus of their research continues to be on studies which help them understand various dynamical processes which affect the structure and the optical properties of disordered and amorphous materials. They continue to make significant progress in their attempts to understand the factors which affect, for example, the efficiencies of activated glasses. This report contains a brief description of the work they have carried out during the present grant period and an outline of the initiatives they are presently undertaking or continuing during the second period.

  8. Dynamics of viral hepatitis B epidemiological process in Plovdiv region.

    PubMed

    Kevorkyan-Sariyan, Ani K

    2013-01-01

    Registration of viral hepatitis cases by type started in 1982 in Bulgaria, and in August 1991 Bulgaria launched a mass immunisation programme to vaccinate infants against hepatitis B. The objective of this dissertation thesis is to study the epidemiological status of hepatitis B virus (HBV) infection in Plovdiv region (the second largest administrative region in Bulgaria with a population of 683,027 people in 2011), and assess the epidemiological process dynamics as a result of the administration of a recombinant vaccine that has been used over the past two decades. PMID:24191410

  9. Nonlinearity in the dynamics of photoinduced nucleation process.

    PubMed

    Ishida, Kunio; Nasu, Keiichiro

    2008-03-21

    Coherent nonlinear dynamics of photoinduced cooperative phenomena at 0 K is studied by numerical calculations on a model of molecular crystals. We found that the photoinduced nucleation process is triggered only when a certain amount of excitation energy is supplied in a narrow part of the system; i.e., there exists the smallest size of the cluster of excited molecules which makes the nucleation possible. As a result, the portion of the cooperatively converted molecules is nonlinearly dependent on the photoexcitation strength, which has been observed in various materials. PMID:18517805

  10. Nutrients, food web and tropho-dynamic processes

    NASA Astrophysics Data System (ADS)

    Wilson, James G.; Devlin, Michelle

    2013-12-01

    This volume presents the papers on the theme of nutrients and tropho-dynamic processes from the ECSA50 Venice 2012: Today's Science for Tomorrow's Management meeting. They illustrate how the application of cutting-edge techniques such as stable isotope analysis (SIA) together with improved analytical and synthetic procedures allow a much finer degree of definition in understanding system function. To this may be added increasingly sophisticated models, underpinned by ever more precise and detailed data, through which we can predict with greater and greater certainty the consequences of the changes Drivers, Pressures, States and Impacts on the system to shape the management Responses.

  11. Recovery processes and dynamics in single and interdependent networks

    NASA Astrophysics Data System (ADS)

    Majdandzic, Antonio

    Systems composed of dynamical networks --- such as the human body with its biological networks or the global economic network consisting of regional clusters --- often exhibit complicated collective dynamics. Three fundamental processes that are typically present are failure, damage spread, and recovery. Here we develop a model for such systems and find phase diagrams for single and interacting networks. By investigating networks with a small number of nodes, where finite-size effects are pronounced, we describe the spontaneous recovery phenomenon present in these systems. In the case of interacting networks the phase diagram is very rich and becomes increasingly more complex as the number of interacting networks increases. In the simplest example of two interacting networks we find two critical points, four triple points, ten allowed transitions, and two forbidden transitions, as well as complex hysteresis loops. Remarkably, we find that triple points play the dominant role in constructing the optimal repairing strategy in damaged interacting systems. To test our model, we analyze an example of real interacting financial networks and find evidence of rapid dynamical transitions between well-defined states, in agreement with the predictions of our model.

  12. Nonlinear dynamics of global atmospheric and Earth system processes

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry

    1993-01-01

    During the past eight years, we have been engaged in a NASA-supported program of research aimed at establishing the connection between satellite signatures of the earth's environmental state and the nonlinear dynamics of the global weather and climate system. Thirty-five publications and four theses have resulted from this work, which included contributions in five main areas of study: (1) cloud and latent heat processes in finite-amplitude baroclinic waves; (2) application of satellite radiation data in global weather analysis; (3) studies of planetary waves and low-frequency weather variability; (4) GCM studies of the atmospheric response to variable boundary conditions measurable from satellites; and (5) dynamics of long-term earth system changes. Significant accomplishments from the three main lines of investigation pursued during the past year are presented and include the following: (1) planetary atmospheric waves and low frequency variability; (2) GCM studies of the atmospheric response to changed boundary conditions; and (3) dynamics of long-term changes in the global earth system.

  13. Studying dynamic processes in liquids by TEM/STEM/DTEM

    NASA Astrophysics Data System (ADS)

    Abellan, Patricia; Evans, James; Woehl, Taylor; Jungjohann, Katherine; Parent, Lucas; Arslan, Ilke; Ristenpart, William; Browning, Nigel; Mater. Sci. Group Team; Microsc. Group Team; Catal. Sci. Group Collaboration; Ristenpart Res. Group Collaboration

    2013-03-01

    In order to study dynamic phenomena such as corrosion or catalysis, extreme environmental conditions must be reproduced around the specimen - these include high-temperatures, high-pressures, specific oxidizing/reducing atmospheres or a liquid environment. The use of environmental stages specifically designed to fit in any transmission electron microscope (TEM) allows us to apply the distinct capabilities of each instrument to study dynamic processes. Localized gas/fluid conditions are created around the sample and separated from the high vacuum inside the microscope using hermetically sealed windowed-cells. Advanced capabilities of these techniques include spatial resolutions of ~1 Angstrom or better in aberration corrected instruments or temporal resolutions in the microsecond-nanosecond range in a dynamic TEM (DTEM). Here, unique qualities of the DTEM that benefit the in-situ experiments with gas/fluid environmental cells will be discussed. We also present our results with a liquid stage allowing atomic resolution imaging of nanomaterials in a colloidal suspension, core EEL spectra acquisition, continuous flow, controlled growth of nanocrystals and systematic calibration of the effect of the electron dose on silver nuclei formation.

  14. Nonequilibrium dynamics of stochastic point processes with refractoriness

    SciTech Connect

    Deger, Moritz; Cardanobile, Stefano; Rotter, Stefan; Helias, Moritz; Atay, Fatihcan M.

    2010-08-15

    Stochastic point processes with refractoriness appear frequently in the quantitative analysis of physical and biological systems, such as the generation of action potentials by nerve cells, the release and reuptake of vesicles at a synapse, and the counting of particles by detector devices. Here we present an extension of renewal theory to describe ensembles of point processes with time varying input. This is made possible by a representation in terms of occupation numbers of two states: active and refractory. The dynamics of these occupation numbers follows a distributed delay differential equation. In particular, our theory enables us to uncover the effect of refractoriness on the time-dependent rate of an ensemble of encoding point processes in response to modulation of the input. We present exact solutions that demonstrate generic features, such as stochastic transients and oscillations in the step response as well as resonances, phase jumps and frequency doubling in the transfer of periodic signals. We show that a large class of renewal processes can indeed be regarded as special cases of the model we analyze. Hence our approach represents a widely applicable framework to define and analyze nonstationary renewal processes.

  15. r-process nucleosynthesis in dynamic helium-burning environments

    NASA Technical Reports Server (NTRS)

    Cowan, J. J.; Cameron, A. G. W.; Truran, J. W.

    1985-01-01

    The results of an extended examination of r-process nucleosynthesis in helium-burning enviroments are presented. Using newly calculated nuclear rates, dynamical r-process calculations have been made of thermal runaways in helium cores typical of low-mass stars and in the helium zones of stars undergoing supernova explosions. These calculations show that, for a sufficient flux of neutrons produced by the C-13 neutron source, r-process nuclei in solar proportions can be produced. The conditions required for r-process production are found to be 10 to the 20th-10 to the 21st neutrons per cubic centimeter for times of 0.01-0.1 s and neutron number densities in excess of 10 to the 19th per cubic centimeter for times of about 1 s. The amount of C-13 required is found to be exceedingly high - larger than is found to occur in any current stellar evolutionary model. It is thus unlikely that these helium-burning environments are responsible for producing the bulk of the r-process elements seen in the solar system.

  16. Nonequilibrium dynamics of stochastic point processes with refractoriness

    NASA Astrophysics Data System (ADS)

    Deger, Moritz; Helias, Moritz; Cardanobile, Stefano; Atay, Fatihcan M.; Rotter, Stefan

    2010-08-01

    Stochastic point processes with refractoriness appear frequently in the quantitative analysis of physical and biological systems, such as the generation of action potentials by nerve cells, the release and reuptake of vesicles at a synapse, and the counting of particles by detector devices. Here we present an extension of renewal theory to describe ensembles of point processes with time varying input. This is made possible by a representation in terms of occupation numbers of two states: active and refractory. The dynamics of these occupation numbers follows a distributed delay differential equation. In particular, our theory enables us to uncover the effect of refractoriness on the time-dependent rate of an ensemble of encoding point processes in response to modulation of the input. We present exact solutions that demonstrate generic features, such as stochastic transients and oscillations in the step response as well as resonances, phase jumps and frequency doubling in the transfer of periodic signals. We show that a large class of renewal processes can indeed be regarded as special cases of the model we analyze. Hence our approach represents a widely applicable framework to define and analyze nonstationary renewal processes.

  17. Laser-enhanced dynamics in molecular rate processes

    NASA Technical Reports Server (NTRS)

    George, T. F.; Zimmerman, I. H.; Devries, P. L.; Yuan, J.-M.; Lam, K.-S.; Bellum, J. C.; Lee, H.-W.; Slutsky, M. S.

    1978-01-01

    The present discussion deals with some theoretical aspects associated with the description of molecular rate processes in the presence of intense laser radiation, where the radiation actually interacts with the molecular dynamics. Whereas for weak and even moderately intense radiation, the absorption and stimulated emission of photons by a molecular system can be described by perturbative methods, for intense radiation, perturbation theory is usually not adequate. Limiting the analysis to the gas phase, an attempt is made to describe nonperturbative approaches applicable to the description of such processes (in the presence of intense laser radiation) as electronic energy transfer in molecular (in particular atom-atom) collisions; collision-induced ionization and emission; and unimolecular dissociation.

  18. Complexity and Dynamic Heterogeneity of the Process of Cancer Metastasis

    NASA Astrophysics Data System (ADS)

    Chambers, Ann

    2010-03-01

    Cancer metastasis -- the spread of cancer from a primary tumor to distant parts of the body -- is responsible for most cancer deaths. If cancer is detected early, before it has spread, it can often be treated with local therapies like surgery and radiation. If cancer is detected after it has already spread, it is much harder to treat successfully. Cancer cells may be distributed to many organs, may be present as tiny micrometastases that are hard to detect, and cancer cells can be in a dormant state that may be resistant to treatment that is directed against actively dividing cells. A better understanding of the process of metastasis thus is needed in order to improve survival from cancer. Cancer is not a static disease, but one that can undergo stepwise evolution and progression from early, treatable cancer to aggressive cancer that is harder to treat. Furthermore, cancers are made up of many cells, and there is considerable heterogeneity among the cells in a tumor. Thus, cancer is ``plastic,'' with heterogeneity among cancer cells and changes over time. Understanding this ``dynamic heterogeneity'' has proven to be difficult. Input from physical sciences disciplines may help to shed light on this complex aspect of cancer biology. Here the process of cancer metastasis will be discussed, and experimental models for imaging the process described. The concept of ``dynamic heterogeneity'' of the metastatic process will be discussed, and some of the questions that need to be addressed for better understanding of metastasis will be outlined. An evolving dialogue between cancer biologists and physical scientists may lead to new ways of studying and understanding this lethal aspect of cancer.

  19. Neural dynamics of phonological processing in the dorsal auditory stream.

    PubMed

    Liebenthal, Einat; Sabri, Merav; Beardsley, Scott A; Mangalathu-Arumana, Jain; Desai, Anjali

    2013-09-25

    Neuroanatomical models hypothesize a role for the dorsal auditory pathway in phonological processing as a feedforward efferent system (Davis and Johnsrude, 2007; Rauschecker and Scott, 2009; Hickok et al., 2011). But the functional organization of the pathway, in terms of time course of interactions between auditory, somatosensory, and motor regions, and the hemispheric lateralization pattern is largely unknown. Here, ambiguous duplex syllables, with elements presented dichotically at varying interaural asynchronies, were used to parametrically modulate phonological processing and associated neural activity in the human dorsal auditory stream. Subjects performed syllable and chirp identification tasks, while event-related potentials and functional magnetic resonance images were concurrently collected. Joint independent component analysis was applied to fuse the neuroimaging data and study the neural dynamics of brain regions involved in phonological processing with high spatiotemporal resolution. Results revealed a highly interactive neural network associated with phonological processing, composed of functional fields in posterior temporal gyrus (pSTG), inferior parietal lobule (IPL), and ventral central sulcus (vCS) that were engaged early and almost simultaneously (at 80-100 ms), consistent with a direct influence of articulatory somatomotor areas on phonemic perception. Left hemispheric lateralization was observed 250 ms earlier in IPL and vCS than pSTG, suggesting that functional specialization of somatomotor (and not auditory) areas determined lateralization in the dorsal auditory pathway. The temporal dynamics of the dorsal auditory pathway described here offer a new understanding of its functional organization and demonstrate that temporal information is essential to resolve neural circuits underlying complex behaviors. PMID:24068810

  20. Quantum correlation dynamics in photosynthetic processes assisted by molecular vibrations

    SciTech Connect

    Giorgi, G.L.; Roncaglia, M.; Raffa, F.A.; Genovese, M.

    2015-10-15

    During the long course of evolution, nature has learnt how to exploit quantum effects. In fact, recent experiments reveal the existence of quantum processes whose coherence extends over unexpectedly long time and space ranges. In particular, photosynthetic processes in light-harvesting complexes display a typical oscillatory dynamics ascribed to quantum coherence. Here, we consider the simple model where a dimer made of two chromophores is strongly coupled with a quasi-resonant vibrational mode. We observe the occurrence of wide oscillations of genuine quantum correlations, between electronic excitations and the environment, represented by vibrational bosonic modes. Such a quantum dynamics has been unveiled through the calculation of the negativity of entanglement and the discord, indicators widely used in quantum information for quantifying the resources needed to realize quantum technologies. We also discuss the possibility of approximating additional weakly-coupled off-resonant vibrational modes, simulating the disturbances induced by the rest of the environment, by a single vibrational mode. Within this approximation, one can show that the off-resonant bath behaves like a classical source of noise.

  1. Dynamic Iodine Uptake Process in Vegetation Labeled by I-125

    NASA Astrophysics Data System (ADS)

    Weng, H.; Yan, A.; Hong, C.; Qin, Y.; Xie, L.

    2005-12-01

    Low iodine in vegetation is responsible for the occurrence of iodine deficiency in human body. It is of important scientific and practical implications to thoroughly understand the absorption and accumulation process of iodine in vegetation and to seek efficient pathways supplementing iodine for human health. Through aquaculture trial of green vegetable, the dynamic absorption process of I-125, as an isotopic tracer, and its accumulation and distribution in vegetable are studied. The results show that, after green vegetable is aqua-cultured for 5 min, micro I-125 can be monitored in root and after 10 min, it is also monitored in leaves, which indicates a rapid absorption and transportation. As culture time continues, I-125 in root, stem and leaves apparently increases, but the content distribution is differing. Most of the I-125 absorbed by green vegetable is enriched in root, and only one fourth of the total amount is transported upwards and mainly distributes in stem. The content of I-125 in leaves accounts for 5% which is mainly accumulated around the leaf margin. I-125 uptake in stem is larger at night than at daylight, whereas in leaves, its uptake is lower at night than at daylight, suggesting that iodine uptake is an active process and its transportation and accumulation process is related to photosynthesis.

  2. A normal tissue dose response model of dynamic repair processes

    NASA Astrophysics Data System (ADS)

    Alber, Markus; Belka, Claus

    2006-01-01

    A model is presented for serial, critical element complication mechanisms for irradiated volumes from length scales of a few millimetres up to the entire organ. The central element of the model is the description of radiation complication as the failure of a dynamic repair process. The nature of the repair process is seen as reestablishing the structural organization of the tissue, rather than mere replenishment of lost cells. The interactions between the cells, such as migration, involved in the repair process are assumed to have finite ranges, which limits the repair capacity and is the defining property of a finite-sized reconstruction unit. Since the details of the repair processes are largely unknown, the development aims to make the most general assumptions about them. The model employs analogies and methods from thermodynamics and statistical physics. An explicit analytical form of the dose response of the reconstruction unit for total, partial and inhomogeneous irradiation is derived. The use of the model is demonstrated with data from animal spinal cord experiments and clinical data about heart, lung and rectum. The three-parameter model lends a new perspective to the equivalent uniform dose formalism and the established serial and parallel complication models. Its implications for dose optimization are discussed.

  3. Spatiotemporal Dynamics of Morphological Processing in Visual Word Recognition.

    PubMed

    Cavalli, Eddy; Colé, Pascale; Badier, Jean-Michel; Zielinski, Christelle; Chanoine, Valérie; Ziegler, Johannes C

    2016-08-01

    The spatiotemporal dynamics of morphological, orthographic, and semantic processing were investigated in a primed lexical decision task in French using magnetoencephalography (MEG). The goal was to investigate orthographic and semantic contributions to morphological priming and compare these effects with pure orthographic and semantic priming. The time course of these effects was analyzed in anatomically defined ROIs that were selected according to previous MEG and fMRI findings. The results showed that morphological processing was not localized in one specific area but distributed over a vast network that involved left inferior temporal gyrus, left superior temporal gyrus, left inferior frontal gyrus, and left orbitofrontal gyrus. Second, all morphological effects were specific, that is, in none of the ROIs could morphology effects be explained by pure orthographic or pure semantic overlap. Third, the ventral route was sensitive to both the orthographic and semantic "part" of the morphological priming effect in the M350 time window. Fourth, the earliest effects of morphology occurred in left superior temporal gyrus around 250 msec and reflected the semantic contribution to morphological facilitation. Together then, the present results show that morphological processing is not just an emergent property of processing form or meaning and that semantic contributions to morphological facilitation can occur as early as 250 msec in the left superior temporal gyrus. PMID:27027543

  4. Dynamic Disturbance Processes Create Dynamic Lek Site Selection in a Prairie Grouse.

    PubMed

    Hovick, Torre J; Allred, Brady W; Elmore, R Dwayne; Fuhlendorf, Samuel D; Hamilton, Robert G; Breland, Amber

    2015-01-01

    It is well understood that landscape processes can affect habitat selection patterns, movements, and species persistence. These selection patterns may be altered or even eliminated as a result of changes in disturbance regimes and a concomitant management focus on uniform, moderate disturbance across landscapes. To assess how restored landscape heterogeneity influences habitat selection patterns, we examined 21 years (1991, 1993-2012) of Greater Prairie-Chicken (Tympanuchus cupido) lek location data in tallgrass prairie with restored fire and grazing processes. Our study took place at The Nature Conservancy's Tallgrass Prairie Preserve located at the southern extent of Flint Hills in northeastern Oklahoma. We specifically addressed stability of lek locations in the context of the fire-grazing interaction, and the environmental factors influencing lek locations. We found that lek locations were dynamic in a landscape with interacting fire and grazing. While previous conservation efforts have treated leks as stable with high site fidelity in static landscapes, a majority of lek locations in our study (i.e., 65%) moved by nearly one kilometer on an annual basis in this dynamic setting. Lek sites were in elevated areas with low tree cover and low road density. Additionally, lek site selection was influenced by an interaction of fire and patch edge, indicating that in recently burned patches, leks were located near patch edges. These results suggest that dynamic and interactive processes such as fire and grazing that restore heterogeneity to grasslands do influence habitat selection patterns in prairie grouse, a phenomenon that is likely to apply throughout the Greater Prairie-Chicken's distribution when dynamic processes are restored. As conservation moves toward restoring dynamic historic disturbance patterns, it will be important that siting and planning of anthropogenic structures (e.g., wind energy, oil and gas) and management plans not view lek locations as static

  5. Dynamic Disturbance Processes Create Dynamic Lek Site Selection in a Prairie Grouse

    PubMed Central

    Hovick, Torre J.; Allred, Brady W.; Elmore, R. Dwayne; Fuhlendorf, Samuel D.; Hamilton, Robert G.; Breland, Amber

    2015-01-01

    It is well understood that landscape processes can affect habitat selection patterns, movements, and species persistence. These selection patterns may be altered or even eliminated as a result of changes in disturbance regimes and a concomitant management focus on uniform, moderate disturbance across landscapes. To assess how restored landscape heterogeneity influences habitat selection patterns, we examined 21 years (1991, 1993–2012) of Greater Prairie-Chicken (Tympanuchus cupido) lek location data in tallgrass prairie with restored fire and grazing processes. Our study took place at The Nature Conservancy’s Tallgrass Prairie Preserve located at the southern extent of Flint Hills in northeastern Oklahoma. We specifically addressed stability of lek locations in the context of the fire-grazing interaction, and the environmental factors influencing lek locations. We found that lek locations were dynamic in a landscape with interacting fire and grazing. While previous conservation efforts have treated leks as stable with high site fidelity in static landscapes, a majority of lek locations in our study (i.e., 65%) moved by nearly one kilometer on an annual basis in this dynamic setting. Lek sites were in elevated areas with low tree cover and low road density. Additionally, lek site selection was influenced by an interaction of fire and patch edge, indicating that in recently burned patches, leks were located near patch edges. These results suggest that dynamic and interactive processes such as fire and grazing that restore heterogeneity to grasslands do influence habitat selection patterns in prairie grouse, a phenomenon that is likely to apply throughout the Greater Prairie-Chicken’s distribution when dynamic processes are restored. As conservation moves toward restoring dynamic historic disturbance patterns, it will be important that siting and planning of anthropogenic structures (e.g., wind energy, oil and gas) and management plans not view lek locations as

  6. Mammal population regulation, keystone processes and ecosystem dynamics.

    PubMed Central

    Sinclair, A R E

    2003-01-01

    The theory of regulation in animal populations is fundamental to understanding the dynamics of populations, the causes of mortality and how natural selection shapes the life history of species. In mammals, the great range in body size allows us to see how allometric relationships affect the mode of regulation. Resource limitation is the fundamental cause of regulation. Top-down limitation through predators is determined by four factors: (i). body size; (ii). the diversity of predators and prey in the system; (iii). whether prey are resident or migratory; and (iv). the presence of alternative prey for predators. Body size in mammals has two important consequences. First, mammals, particularly large species, can act as keystones that determine the diversity of an ecosystem. I show how keystone processes can, in principle, be measured using the example of the wildebeest in the Serengeti ecosystem. Second, mammals act as ecological landscapers by altering vegetation succession. Mammals alter physical structure, ecological function and species diversity in most terrestrial biomes. In general, there is a close interaction between allometry, population regulation, life history and ecosystem dynamics. These relationships are relevant to applied aspects of conservation and pest management. PMID:14561329

  7. Process and meaning: nonlinear dynamics and psychology in visual art.

    PubMed

    Zausner, Tobi

    2007-01-01

    Creating and viewing visual art are both nonlinear experiences. Creating a work of art is an irreversible process involving increasing levels of complexity and unpredictable events. Viewing art is also creative with collective responses forming autopoietic structures that shape cultural history. Artists work largely from the chaos of the unconscious and visual art contains elements of chaos. Works of art by the author are discussed in reference to nonlinear dynamics. "Travelogues" demonstrates continued emerging interpretations and a deterministic chaos. "Advice to the Imperfect" signifies the resolution of paradox in the nonlinear tension of opposites. "Quanah" shows the nonlinear tension of opposites as an ongoing personal evolution. "The Mother of All Things" depicts seemingly separate phenomena arising from undifferentiated chaos. "Memories" refers to emotional fixations as limit cycles. "Compassionate Heart," "Wind on the Lake," and "Le Mal du Pays" are a series of works in fractal format focusing on the archetype of the mother and child. "Sameness, Depth of Mystery" addresses the illusion of hierarchy and the dynamics of symbols. In "Chasadim" the origin of worlds and the regeneration of individuals emerge through chaos. References to chaos in visual art mirror the nonlinear complexity of life. PMID:17173732

  8. Dynamic phases in control and information processing biological circuits

    NASA Astrophysics Data System (ADS)

    Vaikuntanathan, Suriyanarayanan

    2015-03-01

    Recent work using the mathematical framework of large deviation theory has shown that fluctuations about the steady state can have a particularly rich structure even in extremely simple non-equilibrium systems [Phys. Rev. E. 89, 062108, 2014]. In certain instances the fluctuations can encode the presence of a dynamical phase with properties distinct from those of the steady state of the system. The transition between these two regimes is akin to a first order thermodynamic phase transition. Specifically, it implies an extreme sensitivity of the system to changes in certain sets of parameters. I will show that such dynamical phase transitions can serve as a general organizing principle to understand biological circuits that are involved in information processing and control. I will focus on two specific examples: adaptation control in E. coli chemotaxis and ultra sensitive response of the E. coli flagella motor, to illustrate these calculations. This work also elucidates the role played by energy dissipation in ensuring control and suggests general guidelines for the construction of robust non equilibrium circuits that perform various specified functions.

  9. Bioattractors: dynamical systems theory and the evolution of regulatory processes

    PubMed Central

    Jaeger, Johannes; Monk, Nick

    2014-01-01

    In this paper, we illustrate how dynamical systems theory can provide a unifying conceptual framework for evolution of biological regulatory systems. Our argument is that the genotype–phenotype map can be characterized by the phase portrait of the underlying regulatory process. The features of this portrait – such as attractors with associated basins and their bifurcations – define the regulatory and evolutionary potential of a system. We show how the geometric analysis of phase space connects Waddington's epigenetic landscape to recent computational approaches for the study of robustness and evolvability in network evolution. We discuss how the geometry of phase space determines the probability of possible phenotypic transitions. Finally, we demonstrate how the active, self-organizing role of the environment in phenotypic evolution can be understood in terms of dynamical systems concepts. This approach yields mechanistic explanations that go beyond insights based on the simulation of evolving regulatory networks alone. Its predictions can now be tested by studying specific, experimentally tractable regulatory systems using the tools of modern systems biology. A systematic exploration of such systems will enable us to understand better the nature and origin of the phenotypic variability, which provides the substrate for evolution by natural selection. PMID:24882812

  10. Network cloning unfolds the effect of clustering on dynamical processes

    NASA Astrophysics Data System (ADS)

    Faqeeh, Ali; Melnik, Sergey; Gleeson, James P.

    2015-05-01

    We introduce network L -cloning, a technique for creating ensembles of random networks from any given real-world or artificial network. Each member of the ensemble is an L -cloned network constructed from L copies of the original network. The degree distribution of an L -cloned network and, more importantly, the degree-degree correlation between and beyond nearest neighbors are identical to those of the original network. The density of triangles in an L -cloned network, and hence its clustering coefficient, is reduced by a factor of L compared to those of the original network. Furthermore, the density of loops of any fixed length approaches zero for sufficiently large values of L . Other variants of L -cloning allow us to keep intact the short loops of certain lengths. As an application, we employ these network cloning methods to investigate the effect of short loops on dynamical processes running on networks and to inspect the accuracy of corresponding tree-based theories. We demonstrate that dynamics on L -cloned networks (with sufficiently large L ) are accurately described by the so-called adjacency tree-based theories, examples of which include the message passing technique, some pair approximation methods, and the belief propagation algorithm used respectively to study bond percolation, SI epidemics, and the Ising model.

  11. Bioattractors: dynamical systems theory and the evolution of regulatory processes.

    PubMed

    Jaeger, Johannes; Monk, Nick

    2014-06-01

    In this paper, we illustrate how dynamical systems theory can provide a unifying conceptual framework for evolution of biological regulatory systems. Our argument is that the genotype-phenotype map can be characterized by the phase portrait of the underlying regulatory process. The features of this portrait--such as attractors with associated basins and their bifurcations--define the regulatory and evolutionary potential of a system. We show how the geometric analysis of phase space connects Waddington's epigenetic landscape to recent computational approaches for the study of robustness and evolvability in network evolution. We discuss how the geometry of phase space determines the probability of possible phenotypic transitions. Finally, we demonstrate how the active, self-organizing role of the environment in phenotypic evolution can be understood in terms of dynamical systems concepts. This approach yields mechanistic explanations that go beyond insights based on the simulation of evolving regulatory networks alone. Its predictions can now be tested by studying specific, experimentally tractable regulatory systems using the tools of modern systems biology. A systematic exploration of such systems will enable us to understand better the nature and origin of the phenotypic variability, which provides the substrate for evolution by natural selection. PMID:24882812

  12. Cotranslational processing mechanisms: towards a dynamic 3D model.

    PubMed

    Giglione, Carmela; Fieulaine, Sonia; Meinnel, Thierry

    2009-08-01

    Recent major advances have been made in understanding how cotranslational events are achieved in the course of protein biosynthesis. Specifically, several studies have shed light into the dynamic process of how nascent chains emerging from the ribosome are supported by protein biogenesis factors to ensure both processing and folding mechanisms. To take into account the awareness that coordination is needed, a new 'concerted model' recently proposed simultaneous action of both processes on the ribosome. In the model, any emerging nascent chain is first encountered by the chaperone trigger factor (TF), which forms an open cradle underneath the ribosomal exit tunnel. This cradle serves as a passive router that channels the nascent chains to the first cotranslational event, the proteolysis event performed by the N-terminal methionine excision machinery. Although fascinating, this model clearly raises more questions than it answers. Does the data used to develop this model stand up to scrutiny and, if not, what are the alternative mechanisms that the data suggest? PMID:19647435

  13. RECENT PROGRESS IN DYNAMIC PROCESS SIMULATION OF CRYOGENIC REFRIGERATORS

    SciTech Connect

    Kuendig, A.

    2008-03-16

    At the CEC 2005 a paper with the title 'Helium refrigerator design for pulsed heat load in Tokamaks' was presented. That paper highlighted the control requirements for cryogenic refrigerators to cope with the expected load variations of future nuclear fusion reactors. First dynamic computer simulations have been presented.In the mean time, the computer program is enhanced and a new series of process simulations are available. The new program considers not only the heat flows and the temperature variations within the heat exchangers, but also the variation of mass flows and pressure drops. The heat transfer numbers now are calculated in dependence of the flow speed and the gas properties. PI-controllers calculate the necessary position of specific valves for maintaining pressures, temperatures and the rotation speed of turbines.Still unsatisfactory is the fact, that changes in the process arrangement usually are attended by adjustments in the program code. It is the main objective of the next step of development a more flexible code which enables that any user defined process arrangements can be assembled by input data.

  14. Dynamical Theory of Activated Processes in Globular Proteins

    NASA Astrophysics Data System (ADS)

    Northrup, Scott H.; Pear, Michael R.; Lee, Chyuan-Yih; McCammon, J. Andrew; Karplus, Martin

    1982-07-01

    A methos is described for calculating the reaction rate in globular proteins of activated processes such as ligand binding or enzymatic catalysis. The method is based on the determination of the probability that the system is in the transition state and of the magnitude of the reactive flux for transition-state systems. An ``umbrella sampling'' simulation procedure is outlined for evaluating the transition-state probability. The reactive flux is obtained from an approach described previously for calculating the dynamics of transition-state trajectories. An application to the rotational isomerization of an aromatic ring in the bovine pancreatic trypsin inhibitor is presented. The results demonstrate the feasibility of calculating rate constants for reactions in proteins and point to the importance of solvent effects for reactions that occur near the protein surface.

  15. System of acquisition and processing of images of dynamic speckle

    NASA Astrophysics Data System (ADS)

    Vega, F.; >C Torres,

    2015-01-01

    In this paper we show the design and implementation of a system to capture and analysis of dynamic speckle. The device consists of a USB camera, an isolated system lights for imaging, a laser pointer 633 nm 10 mw as coherent light source, a diffuser and a laptop for processing video. The equipment enables the acquisition and storage of video, also calculated of different descriptors of statistical analysis (vector global accumulation of activity, activity matrix accumulation, cross-correlation vector, autocorrelation coefficient, matrix Fujji etc.). The equipment is designed so that it can be taken directly to the site where the sample for biological study and is currently being used in research projects within the group.

  16. Dynamical theory of activated processes in globular proteins.

    PubMed Central

    Northrup, S H; Pear, M R; Lee, C Y; McCammon, J A; Karplus, M

    1982-01-01

    A method is described for calculating the reaction rate in globular proteins of activated processes such as ligand binding or enzymatic catalysis. The method is based on the determination of the probability that the system is in the transition state and of the magnitude of the reactive flux for transition-state systems. An "umbrella sampling" simulation procedure is outlined for evaluating the transition-state probability. The reactive flux is obtained from an approach described previously for calculating the dynamics of transition-state trajectories. An application to the rotational isomerization of an aromatic ring in the bovine pancreatic trypsin inhibitor is presented. The results demonstrate the feasibility of calculating rate constants for reactions in proteins and point to the importance of solvent effects for reactions that occur near the protein surface. PMID:6955788

  17. Photonic single nonlinear-delay dynamical node for information processing

    NASA Astrophysics Data System (ADS)

    Ortín, Silvia; San-Martín, Daniel; Pesquera, Luis; Gutiérrez, José Manuel

    2012-06-01

    An electro-optical system with a delay loop based on semiconductor lasers is investigated for information processing by performing numerical simulations. This system can replace a complex network of many nonlinear elements for the implementation of Reservoir Computing. We show that a single nonlinear-delay dynamical system has the basic properties to perform as reservoir: short-term memory and separation property. The computing performance of this system is evaluated for two prediction tasks: Lorenz chaotic time series and nonlinear auto-regressive moving average (NARMA) model. We sweep the parameters of the system to find the best performance. The results achieved for the Lorenz and the NARMA-10 tasks are comparable to those obtained by other machine learning methods.

  18. Automating the parallel processing of fluid and structural dynamics calculations

    NASA Technical Reports Server (NTRS)

    Arpasi, Dale J.; Cole, Gary L.

    1987-01-01

    The NASA Lewis Research Center is actively involved in the development of expert system technology to assist users in applying parallel processing to computational fluid and structural dynamic analysis. The goal of this effort is to eliminate the necessity for the physical scientist to become a computer scientist in order to effectively use the computer as a research tool. Programming and operating software utilities have previously been developed to solve systems of ordinary nonlinear differential equations on parallel scalar processors. Current efforts are aimed at extending these capabilties to systems of partial differential equations, that describe the complex behavior of fluids and structures within aerospace propulsion systems. This paper presents some important considerations in the redesign, in particular, the need for algorithms and software utilities that can automatically identify data flow patterns in the application program and partition and allocate calculations to the parallel processors. A library-oriented multiprocessing concept for integrating the hardware and software functions is described.

  19. Automating the parallel processing of fluid and structural dynamics calculations

    NASA Technical Reports Server (NTRS)

    Arpasi, Dale J.; Cole, Gary L.

    1987-01-01

    The NASA Lewis Research Center is actively involved in the development of expert system technology to assist users in applying parallel processing to computational fluid and structural dynamic analysis. The goal of this effort is to eliminate the necessity for the physical scientist to become a computer scientist in order to effectively use the computer as a research tool. Programming and operating software utilities have previously been developed to solve systems of ordinary nonlinear differential equations on parallel scalar processors. Current efforts are aimed at extending these capabilities to systems of partial differential equations, that describe the complex behavior of fluids and structures within aerospace propulsion systems. This paper presents some important considerations in the redesign, in particular, the need for algorithms and software utilities that can automatically identify data flow patterns in the application program and partition and allocate calculations to the parallel processors. A library-oriented multiprocessing concept for integrating the hardware and software functions is described.

  20. Calcium dynamics in astrocyte processes during neurovascular coupling

    PubMed Central

    Otsu, Yo; Couchman, Kiri; Lyons, Declan G; Collot, Mayeul; Agarwal, Amit; Mallet, Jean-Maurice; Pfrieger, Frank W; Bergles, Dwight E; Charpak, Serge

    2015-01-01

    Enhanced neuronal activity in the brain triggers a local increase in blood flow, termed functional hyperemia, via several mechanisms, including calcium (Ca2+) signaling in astrocytes. However, recent in vivo studies have questioned the role of astrocytes in functional hyperemia because of the slow and sparse dynamics of their somatic Ca2+ signals and the absence of glutamate metabotropic receptor 5 in adults. Here, we reexamined their role in neurovascular coupling by selectively expressing a genetically encoded Ca2+ sensor in astrocytes of the olfactory bulb. We show that in anesthetized mice, the physiological activation of olfactory sensory neuron (OSN) terminals reliably triggers Ca2+ increases in astrocyte processes but not in somata. These Ca2+ increases systematically precede the onset of functional hyperemia by 1–2 s, reestablishing astrocytes as potential regulators of neurovascular coupling. PMID:25531572

  1. Dynamic systems-engineering process - The application of concurrent engineering

    NASA Technical Reports Server (NTRS)

    Wiskerchen, Michael J.; Pittman, R. Bruce

    1989-01-01

    A system engineering methodology is described which enables users, particulary NASA and DOD, to accommodate changing needs; incorporate emerging technologies; identify, quantify, and manage system risks; manage evolving functional requirements; track the changing environment; and reduce system life-cycle costs. The approach is a concurrent, dynamic one which starts by constructing a performance model defining the required system functions and the interrelationships. A detailed probabilistic risk assessment of the system elements and their interrelationships is performed, and quantitative analysis of the reliability and maintainability of an engineering system allows its different technical and process failure modes to be identified and their probabilities to be computed. Decision makers can choose technical solutions that maximize an objective function and minimize the probability of failure under resource constraints.

  2. Dynamical processes of transfer at the sea surface

    NASA Astrophysics Data System (ADS)

    Thorpe, S. A.

    This review describes the dynamical processes of transport from, and immediately below, the sea surface, particularly those which involve convergence and the separation of flow, and which result in the renewal of surface water at horizontal scales ranging from millimeters to hundreds of meters. Turbulence at or near the sea surface derives from several processes - breaking waves and the bubbles they may produce, precipitation and spray, Langmuir circulation and thermal convection, and turbulence which is internally generated by shear. Interest in the subject derives from the requirements to predict air-sea fluxes of heat, momentum and gases, to develop climate models, to interpret satellite images of the sea surface, including those of ship wakes, and to predict upper ocean structure, including mixing layer depth, in models of phytoplankton blooms and acoustic propagation. The general effect of subsurface turbulence on the sea surface, and the effects of surfactants, is described, and each process is discussed in turn. Laboratory experiments and theoretical studies have contributed particularly to the understanding of the interaction of vortices and turbulence with the surface and to the consequences of breaking waves. They point to the development of instability in the flow ahead of steep waves carrying parasitic capillary waves, which may contribute to the onset of flow separation on the leading face of the waves and the development of a rotor, or ‘roller’, below the wave crest, shown most clearly in the pattern of streamlines in a frame of reference moving forward with the wave. The conditions near the flow separation line on the wave surface ahead of the rotor may be similar to those produced by vortices approaching a free surface. Detailed observation of breaking waves at sea is lacking, but some progress has been made using acoustics to detect the clouds of subsurface bubbles formed by the larger breakers and the depth to which they penetrate. The

  3. Dynamics of the anaerobic process: effects of volatile fatty acids.

    PubMed

    Pind, Peter F; Angelidaki, Irini; Ahring, Birgitte K

    2003-06-30

    A complex and fast dynamic response of the anaerobic biogas system was observed when the system was subjected to pulses of volatile fatty acids (VFAs). It was shown that a pulse of specific VFAs into a well-functioning continuous stirred tank reactor (CSTR) system operating on cow manure affected both CH(4) yield, pH, and gas production and that a unique reaction pattern was seen for the higher VFAs as a result of these pulses. In this study, two thermophilic laboratory reactors were equipped with a novel VFA-sensor for monitoring specific VFAs online. Pulses of VFAs were shown to have a positive effect on process yield and the levels of all VFA were shown to stabilize at a lower level after the biomass had been subjected to several pulses. The response to pulses of propionate or acetate was different from the response to butyrate, iso-butyrate, valerate, or iso-valerate. High concentrations of propionate affected the degradation of all VFAs, while a pulse of acetate affected primarily the degradation of iso-valerate or 2-methylbutyrate. Pulses of n-butyrate, iso-butyrate, and iso-valerate yielded only acetate, while degradation of n-valerate gave both propionate and acetate. Product sensitivity or inhibition was shown for the degradation of all VFAs tested. Based on the results, it was concluded that measurements of all specific VFAs are important for control purposes and increase and decrease in a specific VFA should always be evaluated in close relationship to the conversion of other VFAs and the history of the reactor process. It should be pointed out that the observed dynamics of VFA responses were based on hourly measurements, meaning that the response duration was much lower than the hydraulic retention time, which exceeds several days in anaerobic CSTR systems. PMID:12701145

  4. Aerosol processing of materials: Aerosol dynamics and microstructure evolution

    NASA Astrophysics Data System (ADS)

    Gurav, Abhijit Shankar

    Spray pyrolysis is an aerosol process commonly used to synthesize a wide variety of materials in powder or film forms including metals, metal oxides and non-oxide ceramics. It is capable of producing high purity, unagglomerated, and micrometer to submicron-size powders, and scale-up has been demonstrated. This dissertation deals with the study of aerosol dynamics during spray pyrolysis of multicomponent systems involving volatile phases/components, and aspects involved with using fuel additives during spray processes to break apart droplets and particles in order to produce powders with smaller sizes. The gas-phase aerosol dynamics and composition size distributions were measured during spray pyrolysis of (Bi, Pb)-Sr-Ca-Cu-O, and Sr-Ru-O and Bi-Ru-O at different temperatures. A differential mobility analyzer (DMA) was used in conjunction with a condensation particle counter (CPC) to monitor the gas-phase particle size distributions, and a Berner-type low-pressure impactor was used to obtain mass size distributions and size-classified samples for chemical analysis. (Bi, Pb)-Sr-Ca-Cu-O powders made at temperatures up to 700sp°C maintained their initial stoichiometry over the whole range of particle sizes monitored, however, those made at 800sp°C and above were heavily depleted in lead in the size range 0.5-5.0 mum. When the reactor temperature was raised from 700 and 800sp°C to 900sp°C, a large number ({˜}10sp7\\ #/cmsp3) of new ultrafine particles were formed from PbO vapor released from the particles and the reactor walls at the beginning of high temperature runs (at 900sp°C). The metal ruthenate systems showed generation of ultrafine particles (<40-50 nm) at the beginning of runs at 800-900sp°C and also as a steady state process at a reactor temperature of 1000sp°C. The methods of aerosol dynamics measurements were also used to monitor the gas-phase particle size distributions during the generation of fullerene (Csb{60}) nano-particles (30 to 50 nm size

  5. Optical studies of dynamical processes in disordered materials

    SciTech Connect

    Yen, W.M.

    1991-07-01

    In general terms, our research activities under the present Agency sponsorship continue to focus on processes and interactions which affect the dynamical behavior of excitations/excited states of optically activated amorphous or disordered solids. The framework of our understanding of these processes has been established with work performed over the past two decades. The advent of more refined spectroscopies, most of them laser based, has allowed a re-examination of these properties in a much more detailed and basic way. A deeper understanding of the interactions which lead to relaxation, energy diffusion and nonlinearities in the disordered phases is important to the development of more efficient and better materials to service all of the technologies which employ optically activated materials. In this document, we will present an abbreviated synopsis of the research we have conducted under the auspices of the present grant. We will then outline directions we wish to maintain and will render descriptions of new opportunities which have ensued from our current efforts and which we wish to exploit under renewed sponsorship. 52 refs., 12 figs.

  6. Neural processing of dynamic emotional facial expressions in psychopaths.

    PubMed

    Decety, Jean; Skelly, Laurie; Yoder, Keith J; Kiehl, Kent A

    2014-02-01

    Facial expressions play a critical role in social interactions by eliciting rapid responses in the observer. Failure to perceive and experience a normal range and depth of emotion seriously impact interpersonal communication and relationships. As has been demonstrated across a number of domains, abnormal emotion processing in individuals with psychopathy plays a key role in their lack of empathy. However, the neuroimaging literature is unclear as to whether deficits are specific to particular emotions such as fear and perhaps sadness. Moreover, findings are inconsistent across studies. In the current experiment, 80 incarcerated adult males scoring high, medium, and low on the Hare Psychopathy Checklist-Revised (PCL-R) underwent functional magnetic resonance imaging (fMRI) scanning while viewing dynamic facial expressions of fear, sadness, happiness, and pain. Participants who scored high on the PCL-R showed a reduction in neuro-hemodynamic response to all four categories of facial expressions in the face processing network (inferior occipital gyrus, fusiform gyrus, and superior temporal sulcus (STS)) as well as the extended network (inferior frontal gyrus and orbitofrontal cortex (OFC)), which supports a pervasive deficit across emotion domains. Unexpectedly, the response in dorsal insula to fear, sadness, and pain was greater in psychopaths than non-psychopaths. Importantly, the orbitofrontal cortex and ventromedial prefrontal cortex (vmPFC), regions critically implicated in affective and motivated behaviors, were significantly less active in individuals with psychopathy during the perception of all four emotional expressions. PMID:24359488

  7. Dynamic Volume Holography and Optical Information Processing by Raman Scattering

    SciTech Connect

    Dodin,I.Y.; Fisch, N.J.

    2002-09-05

    A method of producing holograms of three-dimensional optical pulses is proposed. It is shown that both the amplitude and the phase profile of three-dimensional optical pulse can be stored in dynamic perturbations of a Raman medium, such as plasma. By employing Raman scattering in a nonlinear medium, information carried by a laser pulse can be captured in the form of a slowly propagating low-frequency wave that persists for a time large compared with the pulse duration. If such a hologram is then probed with a short laser pulse, the information stored in the medium can be retrieved in a second scattered electromagnetic wave. The recording and retrieving processes can conserve robustly the pulse shape, thus enabling the recording and retrieving with fidelity of information stored in optical signals. While storing or reading the pulse structure, the optical information can be processed as an analogue or digital signal, which allows simultaneous transformation of three-dimensional continuous images or computing discrete arrays of binary data. By adjusting the phase fronts of the reference pulses, one can also perform focusing, redirecting, and other types of transformation of the output pulses.

  8. Parallel-Processing Algorithms For Dynamics Of Manipulators

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1991-01-01

    Class of parallel and parallel/pipeline algorithms presented for more efficient computation of manipulator inertia matrix. Essential for implementing advanced dynamic control schemes as well as dynamic simulation of manipulator motion.

  9. Deconvolving Flood Plain Dynamical Processes from Pedogenic Processes on Ancient Floodplains

    NASA Astrophysics Data System (ADS)

    Sheldon, N. D.

    2014-12-01

    Paleosols (fossil soils) preserved in ancient floodplain systems represent one of the most widely used and potentially powerful continental paleoclimatic archives. At the same time, to apply most of the quantitative paleoclimate proxies requires the deconvolution of floodplain dynamics from pedogenic processes. For example, a paleosol could be weakly developed because of low atmospheric CO2 levels, low amounts of precipitation, or because of short formation duration due to frequent channel avulsion. The interpretation of local floodplain dynamics in paleo-floodplain systems is often simplistic, assuming both straightforward uniformitarianism and also that a single vertical section represents that lateral diversity of environments, however, these assumptions have rarely, if ever, been put to the test. Herein, a variety of paleoclimatic and paleobiological proxies will be examined in well-preserved paleo-floodplain settings in Spain, Wyoming, and Montana to test those assumptions. Multi-proxy (phytolith, stable isotope) paleovegetation studies along paleo-floodplain transects in Montana (Miocene, Eocene) indicate substantial heterogeneity at the scale of tens to hundreds of meters, floodplain dynamics-driven succession, and cryptic paludal or everwet areas that are not recognizable purely on the basis of sedimentology. Similarly, rapidly aggrading floodplains in fluvial distributary systems (Spain, Miocene) or in dryland basins (Montana) often record significant mismatches between paleosol-based and paleobotanically based estimates of paleoprecipitation, likely due to variable sediment accumulation rates. Both of those sets of results indicate that single vertical sections are unlikely to represent the breadth floodplain environments and properties operating across paleo-floodplain systems. In contrast, newly described mineralogical proxies based on rock magnetics that can be used to reconstruct paleoclimatic/paleoenvironmental properties appear to be robust at the

  10. Temporal dynamics of biogeochemical processes at the Norman Landfill site

    NASA Astrophysics Data System (ADS)

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.

    2013-10-01

    The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, δ2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented.

  11. Temporal dynamics of biogeochemical processes at the Norman Landfill site

    USGS Publications Warehouse

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.

    2013-01-01

    The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, δ2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented.

  12. Microbial carbon recycling: an underestimated process controlling soil carbon dynamics

    NASA Astrophysics Data System (ADS)

    Basler, A.; Dippold, M.; Helfrich, M.; Dyckmans, J.

    2015-07-01

    The mean residence times (MRT) of different compound classes of soil organic matter (SOM) do not match their inherent recalcitrance to decomposition. One reason for this is the stabilisation within the soil matrix, but recycling, i.e. the reuse of "old" organic material to form new biomass may also play a role as it uncouples the residence times of organic matter from the lifetime of discrete molecules in soil. We analysed soil sugar dynamics in a natural 30 years old labelling experiment after a~wheat-maize vegetation change to determine the extent of recycling and stabilisation in plant and microbial derived sugars: while plant derived sugars are only affected by stabilisation processes, microbial sugars may be subject to both, stabilisation and recycling. To disentangle the dynamics of soil sugars, we separated different density fractions (free particulate organic matter (fPOM), light occluded particulate organic matter (≤1.6 g cm-3; oPOM1.6), dense occluded particulate organic matter (≤2 g cm-3; oPOM2) and mineral-associated organic matter (>2 g cm-3; Mineral)) of a~silty loam under long term wheat and maize cultivation. The isotopic signature of sugars was measured by high pressure liquid chromatography coupled to isotope ratio mass spectrometry (HPLC/IRMS), after hydrolysis with 4 M Trifluoroacetic acid (TFA). While apparent mean residence times (MRT) of sugars were comparable to total organic carbon in the bulk soil and mineral fraction, the apparent MRT of sugars in the oPOM fractions were considerably lower than those of the total carbon of these fractions. This indicates that oPOM formation was fuelled by microbial activity feeding on new plant input. In the bulk soil, mean residence times of the mainly plant derived xylose (xyl) were significantly lower than those of mainly microbial derived sugars like galactose (gal), rhamnose (rha), fucose (fuc), indicating that recycling of organic matter is an important factor regulating organic matter dynamics

  13. Dynamic range control of audio signals by digital signal processing

    NASA Astrophysics Data System (ADS)

    Gilchrist, N. H. C.

    It is often necessary to reduce the dynamic range of musical programs, particularly those comprising orchestral and choral music, for them to be received satisfactorily by listeners to conventional FM and AM broadcasts. With the arrival of DAB (Digital Audio Broadcasting) a much wider dynamic range will become available for radio broadcasting, although some listeners may prefer to have a signal with a reduced dynamic range. This report describes a digital processor developed by the BBC to control the dynamic range of musical programs in a manner similar to that of a trained Studio Manager. It may be used prior to transmission in conventional broadcasting, replacing limiters or other compression equipment. In DAB, it offers the possibility of providing a dynamic range control signal to be sent to the receiver via an ancillary data channel, simultaneously with the uncompressed audio, giving the listener the option of the full dynamic range or a reduced dynamic range.

  14. Gaussian Process Model for Collision Dynamics of Complex Molecules

    NASA Astrophysics Data System (ADS)

    Cui, Jie; Krems, Roman V.

    2015-08-01

    We show that a Gaussian process model can be combined with a small number (of order 100) of scattering calculations to provide a multidimensional dependence of scattering observables on the experimentally controllable parameters (such as the collision energy or temperature) as well as the potential energy surface (PES) parameters. For the case of Ar -C6H6 collisions, we show that 200 classical trajectory calculations are sufficient to provide a ten-dimensional hypersurface, giving the dependence of the collision lifetimes on the collision energy, internal temperature, and eight PES parameters. This can be used for solving the inverse scattering problem, for the efficient calculation of thermally averaged observables, for reducing the error of the molecular dynamics calculations by averaging over the PES variations, and for the analysis of the sensitivity of the observables to individual parameters determining the PES. Trained by a combination of classical and quantum calculations, the model provides an accurate description of the quantum scattering cross sections, even near scattering resonances.

  15. Dynamic simulation solves process control problem in Oman

    SciTech Connect

    1998-11-16

    A dynamic simulation study solved the process control problems for a Saih Rawl, Oman, gas compressor station operated by Petroleum Development of Oman (PDO). PDO encountered persistent compressor failure that caused frequent facility shutdowns, oil production deferment, and gas flaring. It commissioned MSE (Consultants) Ltd., U.K., to find a solution for the problem. Saih Rawl, about 40 km from Qarn Alam, produces oil and associated gas from a large number of low and high-pressure wells. Oil and gas are separated in three separators. The oil is pumped to Qarn Alam for treatment and export. Associated gas is compressed in two parallel trains. Train K-1115 is a 350,000 standard cu m/day, four-stage reciprocating compressor driven by a fixed-speed electric motor. Train K-1120 is a 1 million standard cu m/day, four-stage reciprocating compressor driven by a fixed-speed electric motor. Train K-1120 is a 1 million standard cu m/day, four-stage centrifugal compressor driven by a variable-speed motor. The paper describes tripping and surging problems with the gas compressor and the control simplifications that solved the problem.

  16. Antimicrobial peptides and cell processes tracking endosymbiont dynamics.

    PubMed

    Masson, Florent; Zaidman-Rémy, Anna; Heddi, Abdelaziz

    2016-05-26

    Many insects sustain long-term relationships with intracellular symbiotic bacteria that provide them with essential nutrients. Such endosymbiotic relationships likely emerged from ancestral infections of the host by free-living bacteria, the genomes of which experience drastic gene losses and rearrangements during the host-symbiont coevolution. While it is well documented that endosymbiont genome shrinkage results in the loss of bacterial virulence genes, whether and how the host immune system evolves towards the tolerance and control of bacterial partners remains elusive. Remarkably, many insects rely on a 'compartmentalization strategy' that consists in secluding endosymbionts within specialized host cells, the bacteriocytes, thus preventing direct symbiont contact with the host systemic immune system. In this review, we compile recent advances in the understanding of the bacteriocyte immune and cellular regulators involved in endosymbiont maintenance and control. We focus on the cereal weevils Sitophilus spp., in which bacteriocytes form bacteriome organs that strikingly evolve in structure and number according to insect development and physiological needs. We discuss how weevils track endosymbiont dynamics through at least two mechanisms: (i) a bacteriome local antimicrobial peptide synthesis that regulates endosymbiont cell cytokinesis and helps to maintain a homeostatic state within bacteriocytes and (ii) some cellular processes such as apoptosis and autophagy which adjust endosymbiont load to the host developmental requirements, hence ensuring a fine-tuned integration of symbiosis costs and benefits.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. PMID:27160600

  17. A Dynamic Search Process Underlies MicroRNA Targeting

    PubMed Central

    Chandradoss, Stanley D.; MacRae, Ian J.; Joo, Chirlmin

    2016-01-01

    Summary Argonaute proteins play a central role in mediating post-transcriptional gene regulation by microRNAs (miRNAs). Argonautes use the nucleotide sequences in miRNAs as guides for identifying target messenger RNAs for repression. Here we used single-molecule FRET to directly visualize how human Argonaute-2 (Ago2) searches for and identifies target sites in RNAs complementary to its miRNA guide. Our results suggest that Ago2 initially scans for target sites with complementarity to nucleotides 2–4 of the miRNA. This initial transient interaction propagates into a stable association when target complementarity extends to nucleotides 2–8. This stepwise recognition process is coupled to lateral diffusion of Ago2 along the target RNA, which promotes target search by enhancing the retention of Ago2 on the RNA. The combined results reveal the mechanisms that Argonaute likely uses to efficiently identify miRNA target sites within the vast and dynamic agglomeration of RNA molecules in the living cell. PMID:26140593

  18. A Dynamic Search Process Underlies MicroRNA Targeting.

    PubMed

    Chandradoss, Stanley D; Schirle, Nicole T; Szczepaniak, Malwina; MacRae, Ian J; Joo, Chirlmin

    2015-07-01

    Argonaute proteins play a central role in mediating post-transcriptional gene regulation by microRNAs (miRNAs). Argonautes use the nucleotide sequences in miRNAs as guides for identifying target messenger RNAs for repression. Here, we used single-molecule FRET to directly visualize how human Argonaute-2 (Ago2) searches for and identifies target sites in RNAs complementary to its miRNA guide. Our results suggest that Ago2 initially scans for target sites with complementarity to nucleotides 2-4 of the miRNA. This initial transient interaction propagates into a stable association when target complementarity extends to nucleotides 2-8. This stepwise recognition process is coupled to lateral diffusion of Ago2 along the target RNA, which promotes the target search by enhancing the retention of Ago2 on the RNA. The combined results reveal the mechanisms that Argonaute likely uses to efficiently identify miRNA target sites within the vast and dynamic agglomeration of RNA molecules in the living cell. PMID:26140593

  19. Application of Dynamic Speckle Techniques in Monitoring Biofilms Drying Process

    NASA Astrophysics Data System (ADS)

    Enes, Adilson M.; Júnior, Roberto A. Braga; Dal Fabbro, Inácio M.; da Silva, Washington A.; Pereira, Joelma

    2008-04-01

    Horticultural crops exhibit losses far greater than grains in Brazil which are associated to inappropriate maturation, mechanical bruising, infestation by microorganisms, wilting, etc. Appropriate packing prevents excessive mass loss associated to transpiration as well as to respiration, by controlling gas exchanging with outside environment. Common packing materials are identified as plastic films, waxes and biofilms. Although research developed with edible films and biopolymers has increased during last years to attend the food industry demands, avoiding environmental problems, little efforts have been reported on biofilm physical properties investigations. These properties, as drying time and biofilm interactions with environment are considered of basic importance. This research work aimed to contribute to development of a methodology to evaluate yucca (Maniot vulgaris) based biofilms drying time supported by a biospeckle technique. Biospeckle is a phenomenon generated by a laser beam scattered on a dynamic active surface, producing a time varying pattern which is proportional to the surface activity level. By capturing and processing the biospeckle image it is possible to attribute a numerical quantity to the surface bioactivity. Materials exhibiting high moisture content will also show high activity, which will support the drying time determination. Tests were set by placing biofilm samples on polyetilen plates and further submitted to laser exposition at four hours interval to capture the pattern images, generating the Intensities Dispersion Modulus. Results indicates that proposed methodology is applicable in determining biofilm drying time as well as vapor losses to environment.

  20. Dynamic Phenomena in Laser Cutting and Process Performance

    NASA Astrophysics Data System (ADS)

    Schuöcker, Dieter; Aichinger, Joachim; Majer, Richard

    Laser cutting of sheet metals is widely used all over the world since it combines high speed with excellent cutting quality. Nevertheless if the thickness of the work piece becomes relatively high, the roughness of the cut edges becomes quite coarse and also the formation of dross and slag is likely. The latter phenomena must obviously be related to dynamic processes that can be identified as fluctuations in the liquid body that forms at the current end of the cut due to absorption of laser radiation and where material removal takes place due to friction with a sharply focused gas jet. A detailed analysis of the liquid layer shows that viscosity and surface tension that have so far not been considered very often in the literature have a strong impact on the material removal mechanism which consists of the formation and separation of droplets formed at the bottom of the work piece, thus being essentially intermittent. The mathematical treatment of this model shows good coincidence with experimental data. It gives rise to the idea that a substantial reduction of surface tension could improve the material removal mechanism insofar as the intermittent ejection is transformed into a continuous ejection of melt flow thus considerably improving cutting speed and quality. These ideas have also led to a new patent for an improved laser cutting head.

  1. Calving processes and the dynamics of calving glaciers

    NASA Astrophysics Data System (ADS)

    Benn, Douglas I.; Warren, Charles R.; Mottram, Ruth H.

    2007-06-01

    Calving of icebergs is an important component of mass loss from the polar ice sheets and glaciers in many parts of the world. Calving rates can increase dramatically in response to increases in velocity and/or retreat of the glacier margin, with important implications for sea level change. Despite their importance, calving and related dynamic processes are poorly represented in the current generation of ice sheet models. This is largely because understanding the 'calving problem' involves several other long-standing problems in glaciology, combined with the difficulties and dangers of field data collection. In this paper, we systematically review different aspects of the calving problem, and outline a new framework for representing calving processes in ice sheet models. We define a hierarchy of calving processes, to distinguish those that exert a fundamental control on the position of the ice margin from more localised processes responsible for individual calving events. The first-order control on calving is the strain rate arising from spatial variations in velocity (particularly sliding speed), which determines the location and depth of surface crevasses. Superimposed on this first-order process are second-order processes that can further erode the ice margin. These include: fracture propagation in response to local stress imbalances in the immediate vicinity of the glacier front; undercutting of the glacier terminus by melting at or below the waterline; and bending at the junction between grounded and buoyant parts of an ice tongue. Calving of projecting, submerged 'ice feet' can be regarded as a third-order process, because it is paced by first- or second-order calving above the waterline. First-order calving can be represented in glacier models using a calving criterion based on crevasse depth, which is a function of longitudinal strain rate. Modelling changes in terminus position and calving rates thus reduces to the problem of determining the ice geometry

  2. Southern African continental margin: Dynamic processes of a transform margin

    NASA Astrophysics Data System (ADS)

    Parsiegla, N.; Stankiewicz, J.; Gohl, K.; Ryberg, T.; Uenzelmann-Neben, G.

    2009-03-01

    Dynamic processes at sheared margins associated with the formation of sedimentary basins and marginal ridges are poorly understood. The southern African margin provides an excellent opportunity to investigate the deep crustal structure of a transform margin and to characterize processes acting at these margins by studying the Agulhas-Falkland Fracture Zone, the Outeniqua Basin, and the Diaz Marginal Ridge. To do this, we present the results of the combined seismic land-sea experiments of the Agulhas-Karoo Geoscience Transect. Detailed velocity-depth models show crustal thicknesses varying from ˜42 km beneath the Cape Fold Belt to ˜28 km beneath the shelf. The Agulhas-Falkland Fracture Zone is embedded in a 50 km wide transitional zone between continental and oceanic crust. The oceanic crust farther south exhibits relatively low average crustal velocities (˜6.0 km/s), which can possibly be attributed to transform-ridge intersection processes and the thermal effects of the adjacent continental crust during its formation. Crustal stretching factors derived from the velocity-depth models imply that extension in the Outeniqua Basin acted on regional as well as more local scales. We highlight evidence for two episodes of crustal stretching. The first, with a stretching factor β of 1.6, is interpreted to have influenced the entire Outeniqua Basin. The stresses possibly originated from the beginning breakup between Africa and Antarctica (˜169-155 Ma). The second episode can be associated with a transtensional component of the shear motion along the Agulhas-Falkland Transform from ˜136 Ma. This episode caused additional crustal stretching with β = 1.3 and is established to only have affected the southern parts of the basin. Crustal velocities directly beneath the Outeniqua Basin are consistent with the interpretation of Cape Supergroup rocks underlying most parts of the basin and the Diaz Marginal Ridge. We propose that the formation of this ridge can be either

  3. A molecular dynamics simulation study of dynamic process and mesoscopic structure in liquid mixture systems

    NASA Astrophysics Data System (ADS)

    Yang, Peng

    The focus of this dissertation is the Molecular Dynamics (MD) simulation study of two different systems. In thefirst system, we study the dynamic process of graphene exfoliation, particularly graphene dispersion using ionic surfactants (Chapter 2). In the second system, we investigate the mesoscopic structure of binary solute/ionic liquid (IL) mixtures through the comparison between simulations and corresponding experiments (Chapter 3 and 4). In the graphene exfoliation study, we consider two separation mechanisms: changing the interlayer distance and sliding away the relative distance of two single-layer graphene sheets. By calculating the energy barrier as a function of separation (interlayer or sliding-away) distance and performing sodium dodecyl sulfate (SDS) structure analysis around graphene surface in SDS surfactant/water + bilayer graphene mixture systems, we find that the sliding-away mechanism is the dominant, feasible separation process. In this process, the SDS-graphene interaction gradually replaces the graphene-graphene Van der Waals (VdW) interaction, and decreases the energy barrier until almost zero at critical SDS concentration. In solute/IL study, we investigate nonpolar (CS2) and dipolar (CH 3CN) solute/IL mixture systems. MD simulation shows that at low concentrations, IL is nanosegregated into an ionic network and nonpolar domain. It is also found that CS2 molecules tend to be localized into the nonpolar domain, while CH3CN interacts with nonpolar domain as well as with the charged head groups in the ionic network because of its amphiphilicity. At high concentrations, CH3CN molecules eventually disrupt the nanostructural organization. This dissertation is organized in four chapters: (1) introduction to graphene, ionic liquids and the methodology of MD; (2) MD simulation of graphene exfoliation; (3) Nanostructural organization in acetonitrile/IL mixtures; (4) Nanostructural organization in carbon disulfide/IL mixtures; (5) Conclusions. Results

  4. PSEUDOBULGE FORMATION AS A DYNAMICAL RATHER THAN A SECULAR PROCESS

    SciTech Connect

    Guedes, Javiera; Mayer, Lucio; Carollo, Marcella; Madau, Piero

    2013-07-20

    We investigate the formation and evolution of the pseudobulge in 'Eris', a high-resolution N-body + smoothed particle hydrodynamic cosmological simulation that successfully reproduces a Milky-Way-like massive late-type spiral in an cold dark matter universe. At the present epoch, Eris has a virial mass M{sub vir} {approx_equal} 8 Multiplication-Sign 10{sup 11} M{sub Sun }, a photometric stellar mass M{sub *} = 3.2 Multiplication-Sign 10{sup 10} M{sub Sun }, a bulge-to-total ratio B/T = 0.26, and a weak nuclear bar. We find that the bulk of the pseudobulge forms quickly at high redshift via a combination of non-axisymmetric disk instabilities and tidal interactions or mergers, both occurring on dynamical timescales, not through slow secular processes at lower redshift. Its subsequent evolution is not strictly secular either, and is closely intertwined with the evolution of the stellar bar. In fact, the structure that we recognize as a pseudobulge today evolved from a stellar bar that formed at high redshift due to tidal interactions with satellites, was destroyed by minor mergers at z {approx} 3, re-formed shortly after, and weakened again following a steady gas inflow at z {approx}< 1. The gradual dissolution of the bar ensued at z {approx} 1 and continues until the present without increasing the stellar velocity dispersion in the inner regions. In this scenario, the pseudobulge is not a separate component from the inner disk in terms of formation path; rather, it is the first step in the inside-out formation of the baryonic disk, in agreement with the fact that pseudobulges of massive spiral galaxies typically have a dominant old stellar population. If our simulations do indeed reproduce the formation mechanisms of massive spirals, then the progenitors of late-type galaxies should have strong bars and small photometric pseudobulges at high redshift.

  5. Dynamic processes and polarizability of sodium atom in Debye plasmas

    SciTech Connect

    Qi, Yue-Ying Ning, Li-Na

    2014-03-15

    Dynamic processes including excitation and ionization, and spectrum parameters including the oscillator strengths, dipole polarizabilities from the orbital 3s,3p of sodium atom embedded in weakly coupled plasma are investigated in the entire energy range of a non-relativistic regime. The interaction between the valence electron and the atomic core is simulated by a model potential, and the plasma screening of the Coulomb interaction between charged particles is described by the Debye-Hückel model. The screening of Coulomb interactions reduces the number of bound states, decreases their binding energies, broadens their radial distribution of electron wave functions, and significantly changes the continuum wave functions including the amplitudes and phase-shift. These changes strongly affect the dipole matrix elements between the bound-bound and bound-continuum states, and even the oscillator strengths, the photo-ionization cross sections and the dipole polarizabilities. The plasma screening effect changes the interaction between the valence electron and the atomic core into a short-range potential. The energy behaviors of photo-ionization cross sections are unfolded, for instance, its low-energy behavior (obeying Wigner threshold law), and the appearance of multiple shape and virtual-state resonances when the upper bound states emerge into the continuum. The Combet-Farnoux and Cooper minima in the photo-ionization cross sections are also investigated, and here, the Cooper minima appear not only for the l→l+1 channel but also for l→l−1 one, different from that of hydrogen-like ions in a Debye plasma, which appear only in the l→l+1 channel. The total static electric dipole polarizabilities monotonously and dramatically increase with the plasma screening effect increasing, which are similar to those of hydrogen-like ions and lithium atom. Comparison of calculated results for the oscillator strength, the photo-ionization cross section and polarizability with

  6. Dynamic modelling of an adsorption storage tank using a hybrid approach combining computational fluid dynamics and process simulation

    USGS Publications Warehouse

    Mota, J.P.B.; Esteves, I.A.A.C.; Rostam-Abadi, M.

    2004-01-01

    A computational fluid dynamics (CFD) software package has been coupled with the dynamic process simulator of an adsorption storage tank for methane fuelled vehicles. The two solvers run as independent processes and handle non-overlapping portions of the computational domain. The codes exchange data on the boundary interface of the two domains to ensure continuity of the solution and of its gradient. A software interface was developed to dynamically suspend and activate each process as necessary, and be responsible for data exchange and process synchronization. This hybrid computational tool has been successfully employed to accurately simulate the discharge of a new tank design and evaluate its performance. The case study presented here shows that CFD and process simulation are highly complementary computational tools, and that there are clear benefits to be gained from a close integration of the two. ?? 2004 Elsevier Ltd. All rights reserved.

  7. Change in early sessions of dynamic therapy: universal processes and the generic model of psychotherapy.

    PubMed

    Kolden, G G

    1996-06-01

    The generic model of psychotherapy is offered as a transtheoretical model of universal change processes. Session 3 change processes are examined in a naturalistic study of dynamic therapy guided by the generic model. Findings replicate and extend earlier work addressing propositions of the generic model in dynamic therapy. Openness and bond contributed to in-session realizations, whereas bond and realizations fostered session progress. Session progress, bond, use of experiential operations, and less frequent use of dynamic interventions contributed to change between Sessions 2 and 4. Discussion outlines a model of change in early dynamic therapy and highlights the usefulness of the generic model for the evaluation of change processes. PMID:8698941

  8. Nonlinear dynamics of global atmospheric and Earth-system processes

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry; Ebisuzaki, Wesley; Maasch, Kirk A.; Oglesby, Robert; Pandolfo, Lionel

    1990-01-01

    Researchers are continuing their studies of the nonlinear dynamics of global weather systems. Sensitivity analyses of large-scale dynamical models of the atmosphere (i.e., general circulation models i.e., GCM's) were performed to establish the role of satellite-signatures of soil moisture, sea surface temperature, snow cover, and sea ice as crucial boundary conditions determining global weather variability. To complete their study of the bimodality of the planetary wave states, they are using the dynamical systems approach to construct a low-order theoretical explanation of this phenomenon. This work should have important implications for extended range forecasting of low-frequency oscillations, elucidating the mechanisms for the transitions between the two wave modes. Researchers are using the methods of jump analysis and attractor dimension analysis to examine the long-term satellite records of significant variables (e.g., long wave radiation, and cloud amount), to explore the nature of mode transitions in the atmosphere, and to determine the minimum number of equations needed to describe the main weather variations with a low-order dynamical system. Where feasible they will continue to explore the applicability of the methods of complex dynamical systems analysis to the study of the global earth-system from an integrative viewpoint involving the roles of geochemical cycling and the interactive behavior of the atmosphere, hydrosphere, and biosphere.

  9. Studying Reactive Processes with Classical Dynamics: Rebinding Dynamics in MbNO

    PubMed Central

    Nutt, David R.; Meuwly, Markus

    2006-01-01

    A new surface-crossing algorithm suitable for describing bond-breaking and bond-forming processes in molecular dynamics simulations is presented. The method is formulated for two intersecting potential energy manifolds which dissociate to different adiabatic states. During simulations, crossings are detected by monitoring an energy criterion. If fulfilled, the two manifolds are mixed over a finite number of time steps, after which the system is propagated on the second adiabat and the crossing is carried out with probability one. The algorithm is extensively tested (almost 0.5 μs of total simulation time) for the rebinding of NO to myoglobin. The unbound surface (Fe···NO) is represented using a standard force field, whereas the bound surface (Fe–NO) is described by an ab initio potential energy surface. The rebinding is found to be nonexponential in time, in agreement with experimental studies, and can be described using two time constants. Depending on the asymptotic energy separation between the manifolds, the short rebinding timescale is between 1 and 9 ps, whereas the longer timescale is about an order of magnitude larger. NO molecules which do not rebind within 1 ns are typically found in the Xenon-4 pocket, indicating the high affinity of NO to this region in the protein. PMID:16326913

  10. Parallel processing environment for multi-flexible body dynamics

    NASA Technical Reports Server (NTRS)

    Venugopal, Ravi; Kumar, Manoj N.; Singh, Ramen P.; Taylor, Lawrence W., Jr.

    1989-01-01

    The implementation of a dynamics solution algorithm with inherent parallelism which is applicable to the dynamics of large flexible space structures is described. The algorithm is unique in that parts of the solution can be computed simultaneously by working with different branches of its tree topology. The algorithm exhibits close to 0(n) type behavior. The data flow within the solution algorithm is discussed along with results from its implementation in a multiprocessing environment. A model of the United States Space Station is used as an example. The results show that, with fast multiple scalar processors, an efficient algorithm, and symbolically generated equations of motion, real-time performance can be achieved with present-day hardware technology, even with complex dynamical models.

  11. An applicational process for dynamic balancing of turbomachinery shafting

    NASA Technical Reports Server (NTRS)

    Verhoff, Vincent G.

    1990-01-01

    The NASA Lewis Research Center has developed and implemented a time-efficient methodology for dynamically balancing turbomachinery shafting. This methodology minimizes costly facility downtime by using a balancing arbor (mandrel) that simulates the turbomachinery (rig) shafting. The need for precision dynamic balancing of turbomachinery shafting and for a dynamic balancing methodology is discussed in detail. Additionally, the inherent problems (and their causes and effects) associated with unbalanced turbomachinery shafting as a function of increasing shaft rotational speeds are discussed. Included are the design criteria concerning rotor weight differentials for rotors made of different materials that have similar parameters and shafting. The balancing methodology for applications where rotor replaceability is a requirement is also covered. This report is intended for use as a reference when designing, fabricating, and troubleshooting turbomachinery shafting.

  12. Dynamic Training Elements in a Circuit Theory Course to Implement a Self-Directed Learning Process

    ERIC Educational Resources Information Center

    Krouk, B. I.; Zhuravleva, O. B.

    2009-01-01

    This paper reports on the implementation of a self-directed learning process in a circuit theory course, incorporating dynamic training elements which were designed on the basis of a cybernetic model of cognitive process management. These elements are centrally linked in a dynamic learning frame, created on the monitor screen, which displays the…

  13. Ecological and Dynamical Study of the Creative Process and Affects of Scientific Students Working in Groups

    ERIC Educational Resources Information Center

    Peilloux, Aurélien; Botella, Marion

    2016-01-01

    Although creativity has drawn the attention of researchers during the past century, collaborative processes have barely been investigated. In this article, the collective dimension of a creative process is investigated, based on a dynamic and ecological approach that includes an affective component. "Dynamic" means that the creative…

  14. Light-harvesting processes in the dynamic photosynthetic antenna.

    PubMed

    Duffy, C D P; Valkunas, L; Ruban, A V

    2013-11-21

    We present our perspective on the theoretical basis of light-harvesting within the photosynthetic membrane. Far from being a static structure, the photosynthetic membrane is a highly dynamic system, with protein mobility playing an important role in the damage/repair cycle of photosystem II (PSII), in balancing the input of energy between PSI and PSII, and in the photoprotection of PSII in response to a sudden excess of illumination. The concept of a photosynthetic antenna is illustrated and the state transition phenomenon is discussed as an example of purposeful antenna mobility. We discuss fluorescence recovery after photo-bleaching as a technique for visualising membrane mobility, before introducing light-induced grana membrane reorganisation as an integral part of the rapid photoprotective switch in plants. We then discuss current theoretical approaches to modelling the energy transfer dynamics of the PSII antenna: the atomistic models of intra-complex transfer and the coarse-grained approach to the inter-complex dynamics. Finally we discuss the future prospect of extending these methods, beyond the static picture of the membrane, to the dynamic PSII photosynthetic antenna. PMID:23868502

  15. Dynamics of Driver Distraction: The process of engaging and disengaging

    PubMed Central

    Lee, John D.

    2014-01-01

    Driver distraction research has a long history, spanning nearly 50 years, but intensifying over the last decade. The dominant paradigm guiding this research defines distraction in terms of excessive workload and limited attentional resources. This approach largely ignores how drivers come to engage in these tasks and under what conditions they engage and disengage from driving—the dynamics of distraction. The dynamics of distraction identifies breakdowns of interruption management as an important contributor to distraction, leading to describe distraction in terms of failures of task timing, switching, and prioritization. The dynamics of distraction also identifies disengagement in driving (e.g., mind wandering) as a substantial challenge that secondary tasks might exacerbate or mitigate. Increasing vehicle automation accentuates the need to consider these dynamics of distraction. Automation offers drivers more opportunity to engage in distractions and disengage from driving, and can surprise drivers by unexpectedly requiring drivers to quickly re-engage in driving—placing greater importance of interruption management expertise. This review describes distraction in terms of breakdowns in interruption management and problems of engagement, and summarizes how contingency, conditioning, and consequence traps lead to problems of engaging and disengaging in driving and distractions. PMID:24776224

  16. Introduction: Second Language Development as a Dynamic Process

    ERIC Educational Resources Information Center

    De Bot, Kees

    2008-01-01

    In this contribution, some of the basic characteristics of complex adaptive systems, collectively labeled Dynamic Systems Theory (DST), are discussed. Such systems are self-organizing, dependent on initial conditions, sometimes chaotic, and they show emergent properties. The focus in DST is on development over time. Language is seen as a dynamic…

  17. Dynamic Processes in Network Goods: Modeling, Analysis and Applications

    ERIC Educational Resources Information Center

    Paothong, Arnut

    2013-01-01

    The network externality function plays a very important role in the study of economic network industries. Moreover, the consumer group dynamic interactions coupled with network externality concept is going to play a dominant role in the network goods in the 21st century. The existing literature is stemmed on a choice of externality function with…

  18. MAINTAINING SOIL PROCESSES FOR PLANT PRODUCTIVITY AND COMMUNITY DYNAMICS

    EPA Science Inventory

    Rangeland soil biota affect soil properties and processes that control the availability of water and nutrients that are essential for the maintenance of productivity and vegetation composition. oil processes mediated by soil biota include decomposition, nutrient immobilization an...

  19. Nonconventional fluctuation dissipation process in non-Hamiltonian dynamical systems

    NASA Astrophysics Data System (ADS)

    Bianucci, Marco

    2016-08-01

    Here, we introduce a statistical approach derived from dynamics, for the study of the geophysical fluid dynamics phenomena characterized by a weak interaction among the variables of interest and the rest of the system. The approach is reminiscent of the one developed some years ago [M. Bianucci, R. Mannella, P. Grigolini and B. J. West, Phys. Rev. E 51, 3002 (1995)] to derive statistical mechanics of macroscopic variables on interest starting from Hamiltonian microscopic dynamics. However, in the present work, we are interested to generalize this approach beyond the context of the foundation of thermodynamics, in fact, we take into account the cases where the system of interest could be non-Hamiltonian (dissipative) and also the interaction with the irrelevant part can be of a more general type than Hamiltonian. As such example, we will refer to a typical case from geophysical fluid dynamics: the complex ocean-atmosphere interaction that gives rise to the El Niño Southern Oscillation (ENSO). Here, changing all the scales, the role of the “microscopic” system is played by the atmosphere, while the ocean (or some ocean variables) plays the role of the intrinsically dissipative macroscopic system of interest. Thus, the chaotic and divergent features of the fast atmosphere dynamics remains in the decaying properties of the correlation functions and of the response function of the atmosphere variables, while the exponential separation of the perturbed (or close) single trajectories does not play a direct role. In the present paper, we face this problem in the frame of a not formal Langevin approach, limiting our discussion to physically based rather than mathematics arguments. Elsewhere, we obtain these results via a much more formal procedure, using the Zwanzing projection method and some elements from the Lie Algebra field.

  20. Mixed Quantum-Classical Dynamics Methods for Strong-Field Processes: Multiple-trajectory Ehrenfest dynamics + decoherence terms

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasumitsu; Watanabe, Kazuyuki; Abedi, Ali; Agostini, Federica; Min, Seung Kyu; Maitra, Neepa; Gross, E. K. U.

    The exact factorization of the electron-nuclear wave function allows to define the time-dependent potential energy surfaces (TDPESs) responsible for the nuclear dynamics and electron dynamics. Recently a novel coupled-trajectory mixed quantum-classical (CT-MQC) approach based on this TDPES has been developed, which accurately reproduces both nuclear and electron dynamics. Here we study the TDPES for laser-induced electron localization with a view to developing a MQC method for strong-field processes. We show our recent progress in applying the CT-MQC approach to the systems with many degrees of freedom.

  1. Dynamics and switching processes for magnetic bubbles in nanoelements

    SciTech Connect

    Moutafis, C.; Bland, J. A. C.; Komineas, S.

    2009-06-01

    We study numerically the dynamics of a magnetic bubble in a disk-shaped magnetic element which is probed by a pulse of a magnetic field gradient. Magnetic bubbles are nontrivial magnetic configurations which are characterized by a topological (skyrmion) number N and they have been observed in mesoscopic magnetic elements with strong perpendicular anisotropy. For weak fields we find a skew deflection of the axially symmetric N=1 bubble and a subsequent periodic motion around the center of the dot. This gyrotropic motion of the magnetic bubble is shown here for the first time. Stronger fields induce switching of the N=1 bubble to a bubble which contains a pair of Bloch lines and has N=0. The N=0 bubble can be switched back to a N=1 bubble by applying again an external field gradient. Detailed features of the unusual bubble dynamics are described by employing the skyrmion number and the moments of the associated topological density.

  2. Parallel processing numerical method for confined vortex dynamics and applications

    NASA Astrophysics Data System (ADS)

    Bistrian, Diana Alina

    2013-10-01

    This paper explores a combined analytical and numerical technique to investigate the hydrodynamic instability of confined swirling flows, with application to vortex rope dynamics in a Francis turbine diffuser, in condition of sophisticated boundary constraints. We present a new approach based on the method of orthogonal decomposition in the Hilbert space, implemented with a spectral descriptor scheme in discrete space. A parallel implementation of the numerical scheme is conducted reducing the computational time compared to other techniques.

  3. Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis

    PubMed Central

    Kapelko, Magdalena; Lansink, Alfons Oude; Stefanou, Spiro E.

    2015-01-01

    This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change. PMID:26057878

  4. Dynamic Puddle Delineation and Threshold-Driven Hydrotopographic Processes

    NASA Astrophysics Data System (ADS)

    Chu, X.; Yang, J.; Habtezion, N.

    2012-12-01

    DEM-based watershed delineation is a common practice and an essential step for watershed hydrologic and environmental modeling. Generally, this is a one-time work. That is, such a delineated watershed with invariant overland flow properties (e.g., flow directions, flow accumulations, and contributing areas) and a "fixed" drainage system is then used for modeling under any hydrologic conditions, including rainfall, surface ponding, soil moisture, and other conditions. This method herein is referred to as "static delineation." Additionally, it is assumed in many existing watershed models that the entire watershed contributes surface runoff to the outlet. In reality, however, a watershed surface is not a uniformly inclined plane surface and overland flow may not be sheet flow. Threshold behaviors associated with surface topography can be critical. Flow directions and accumulations for any grids may change over time, depending upon the surface depression filling-merging-spilling dynamics. Particularly, contributing areas vary, not only in relation to the watershed properties, but also the inputs of the system, such as rainfall characteristics. In the current study, we developed a new "dynamic" delineation method to precisely characterize depressions/puddles, their hydrotopographic properties and hierarchical relationships, and the threshold-controlled dynamics. Efforts also were made to deal with complex topographic conditions (e.g., flats). Testing of the new method and program was performed by using a set of topographic surfaces. In addition, an object-oriented approach was developed for image-based topographic analysis and extraction of topographic features, which were compared with the delineation results.

  5. Framework to study dynamic dependencies in networks of interacting processes

    NASA Astrophysics Data System (ADS)

    Chicharro, Daniel; Ledberg, Anders

    2012-10-01

    The analysis of dynamic dependencies in complex systems such as the brain helps to understand how emerging properties arise from interactions. Here we propose an information-theoretic framework to analyze the dynamic dependencies in multivariate time-evolving systems. This framework constitutes a fully multivariate extension and unification of previous approaches based on bivariate or conditional mutual information and Granger causality or transfer entropy. We define multi-information measures that allow us to study the global statistical structure of the system as a whole, the total dependence between subsystems, and the temporal statistical structure of each subsystem. We develop a stationary and a nonstationary formulation of the framework. We then examine different decompositions of these multi-information measures. The transfer entropy naturally appears as a term in some of these decompositions. This allows us to examine its properties not as an isolated measure of interdependence but in the context of the complete framework. More generally we use causal graphs to study the specificity and sensitivity of all the measures appearing in these decompositions to different sources of statistical dependence arising from the causal connections between the subsystems. We illustrate that there is no straightforward relation between the strength of specific connections and specific terms in the decompositions. Furthermore, causal and noncausal statistical dependencies are not separable. In particular, the transfer entropy can be nonmonotonic in dependence on the connectivity strength between subsystems and is also sensitive to internal changes of the subsystems, so it should not be interpreted as a measure of connectivity strength. Altogether, in comparison to an analysis based on single isolated measures of interdependence, this framework is more powerful to analyze emergent properties in multivariate systems and to characterize functionally relevant changes in the

  6. Framework to study dynamic dependencies in networks of interacting processes.

    PubMed

    Chicharro, Daniel; Ledberg, Anders

    2012-10-01

    The analysis of dynamic dependencies in complex systems such as the brain helps to understand how emerging properties arise from interactions. Here we propose an information-theoretic framework to analyze the dynamic dependencies in multivariate time-evolving systems. This framework constitutes a fully multivariate extension and unification of previous approaches based on bivariate or conditional mutual information and Granger causality or transfer entropy. We define multi-information measures that allow us to study the global statistical structure of the system as a whole, the total dependence between subsystems, and the temporal statistical structure of each subsystem. We develop a stationary and a nonstationary formulation of the framework. We then examine different decompositions of these multi-information measures. The transfer entropy naturally appears as a term in some of these decompositions. This allows us to examine its properties not as an isolated measure of interdependence but in the context of the complete framework. More generally we use causal graphs to study the specificity and sensitivity of all the measures appearing in these decompositions to different sources of statistical dependence arising from the causal connections between the subsystems. We illustrate that there is no straightforward relation between the strength of specific connections and specific terms in the decompositions. Furthermore, causal and noncausal statistical dependencies are not separable. In particular, the transfer entropy can be nonmonotonic in dependence on the connectivity strength between subsystems and is also sensitive to internal changes of the subsystems, so it should not be interpreted as a measure of connectivity strength. Altogether, in comparison to an analysis based on single isolated measures of interdependence, this framework is more powerful to analyze emergent properties in multivariate systems and to characterize functionally relevant changes in the

  7. Nonlinear dynamics of global atmospheric and earth system processes

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Verbitsky, Mikhail; Saltzman, Barry; Mann, Michael E.; Park, Jeffrey; Lall, Upmanu

    1995-01-01

    During the grant period, the authors continued ongoing studies aimed at enhancing their understanding of the operation of the atmosphere as a complex nonlinear system interacting with the hydrosphere, biosphere, and cryosphere in response to external radiative forcing. Five papers were completed with support from the grant, representing contributions in three main areas of study: (1) theoretical studies of the interactive atmospheric response to changed biospheric boundary conditions measurable from satellites; (2) statistical-observational studies of global-scale temperature variability on interannual to century time scales; and (3) dynamics of long-term earth system changes associated with ice sheet surges.

  8. Dynamic dielectric analysis for nondestructive cure monitoring and process control

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D. E.; Delos, S. E.; Hoff, M. S.; Whitham, M. E.; Weller, L. W.

    1986-01-01

    Dynamic dielectric analysis (DDA) is an effective in situ NDE method that can monitor the reaction status in thermosets and the phase changes in thermoplastics, including slow reactions occuring late in the cure cycle and recrystallization during annealing. The effects of moisture and resin history on reaction rate can also be determined, as can ionic and dipolar contributions. The ionic mobility parameter is noted to be an excellent monitor of viscosity above the glass transition temperature. The ability of DDA to monitor cure rate variations in a thick section during autoclaving has been demonstrated.

  9. DDS-Suite - A Dynamic Data Acquisition, Processing, and Analysis System for Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Burnside, Jathan J.

    2012-01-01

    Wind Tunnels have optimized their steady-state data systems for acquisition and analysis and even implemented large dynamic-data acquisition systems, however development of near real-time processing and analysis tools for dynamic-data have lagged. DDS-Suite is a set of tools used to acquire, process, and analyze large amounts of dynamic data. Each phase of the testing process: acquisition, processing, and analysis are handled by separate components so that bottlenecks in one phase of the process do not affect the other, leading to a robust system. DDS-Suite is capable of acquiring 672 channels of dynamic data at rate of 275 MB / s. More than 300 channels of the system use 24-bit analog-to-digital cards and are capable of producing data with less than 0.01 of phase difference at 1 kHz. System architecture, design philosophy, and examples of use during NASA Constellation and Fundamental Aerodynamic tests are discussed.

  10. Irrelevant stimulus processing in ADHD: catecholamine dynamics and attentional networks

    PubMed Central

    Aboitiz, Francisco; Ossandón, Tomás; Zamorano, Francisco; Palma, Bárbara; Carrasco, Ximena

    2014-01-01

    A cardinal symptom of attention deficit and hyperactivity disorder (ADHD) is a general distractibility where children and adults shift their attentional focus to stimuli that are irrelevant to the ongoing behavior. This has been attributed to a deficit in dopaminergic signaling in cortico-striatal networks that regulate goal-directed behavior. Furthermore, recent imaging evidence points to an impairment of large scale, antagonistic brain networks that normally contribute to attentional engagement and disengagement, such as the task-positive networks and the default mode network (DMN). Related networks are the ventral attentional network (VAN) involved in attentional shifting, and the salience network (SN) related to task expectancy. Here we discuss the tonic–phasic dynamics of catecholaminergic signaling in the brain, and attempt to provide a link between this and the activities of the large-scale cortical networks that regulate behavior. More specifically, we propose that a disbalance of tonic catecholamine levels during task performance produces an emphasis of phasic signaling and increased excitability of the VAN, yielding distractibility symptoms. Likewise, immaturity of the SN may relate to abnormal tonic signaling and an incapacity to build up a proper executive system during task performance. We discuss different lines of evidence including pharmacology, brain imaging and electrophysiology, that are consistent with our proposal. Finally, restoring the pharmacodynamics of catecholaminergic signaling seems crucial to alleviate ADHD symptoms; however, the possibility is open to explore cognitive rehabilitation strategies to top-down modulate network dynamics compensating the pharmacological deficits. PMID:24723897

  11. Perisynaptic astroglial processes: dynamic processors of neuronal information.

    PubMed

    Ghézali, Grégory; Dallérac, Glenn; Rouach, Nathalie

    2016-06-01

    Neuroglial interactions are now recognized as essential to brain functions. Extensive research has sought to understand the modalities of such dialog by focusing on astrocytes, the most abundant glial cell type of the central nervous system. Neuron-astrocyte exchanges occur at multiple levels, at different cellular locations. With regard to information processing, regulations occurring around synapses are of particular interest as synaptic networks are thought to underlie higher brain functions. Astrocytes morphology is tremendously complex in that their processes exceedingly branch out to eventually form multitudinous fine leaflets. The latter extremities have been shown to surround many synapses, forming perisynaptic astrocytic processes, which although recognized as essential to synaptic functioning, are poorly defined elements due to their tiny size. The current review sums up the current knowledge on their molecular and structural properties as well as the functional characteristics making them good candidates for information processing units. PMID:26026482

  12. Modeling of plume dynamics in laser ablation processes for thin film deposition of materials

    SciTech Connect

    Leboeuf, J.N.; Chen, K.R.; Donato, J.M.; Geohegan, D.B.; Liu, C.L.; Puretzky, A.A.; Wood, R.F.

    1995-12-31

    The transport dynamics of laser-ablated neutral/plasma plumes are of significant interest for film growth by pulsed-laser deposition of materials since the magnitude and kinetic energy of the species arriving at the deposition substrate are key processing parameters. Dynamical calculations of plume propagation in vacuum and in background gas have been performed using particle-in-cell hydrodynamics, continuum gas dynamics, and scattering models. Results from these calculations are presented and compared with experimental observations.

  13. Communication: Non-monotonic evolution of dynamical heterogeneity in unfreezing process of metallic glasses

    NASA Astrophysics Data System (ADS)

    Li, Y. Z.; Zhao, L. Z.; Wang, C.; Lu, Z.; Bai, H. Y.; Wang, W. H.

    2015-07-01

    The relaxation dynamics in unfreezing process of metallic glasses is investigated by the activation-relaxation technique. A non-monotonic dynamical microstructural heterogeneities evolution with temperature is discovered, which confirms and supplies more features to flow units concept of glasses. A flow unit perspective is proposed to microscopically describe this non-monotonic evolution of the dynamical heterogeneities as well as its relationship with the deformation mode development of metallic glasses.

  14. Digital simulation of dynamic processes in radiometer systems. [microwave radiometers

    NASA Technical Reports Server (NTRS)

    Stanley, W. D.

    1980-01-01

    The development and application of several computer programs for simulating different classes of microwave radiometers are described. The programs are dynamic in nature, and they may be used to determine the instantaneous behavior of system variables as a function of time. Some of the programs employ random variable models in the simulations so that the statistical nature of the results may be investigated. The programs have been developed to utilize either the Continuous System Modeling Program or the Advanced Continuous System Language. The validity of most of the programs was investigated using statistical tests, and the results show excellent correlation with theoretical predictions. The programs are currently being used in the investigation of new design techniques for microwave radiometers.

  15. Dynamic water loss of antigorite by impact process

    NASA Astrophysics Data System (ADS)

    Sekine, Toshimori; Kimura, Tomoaki; Kobayashi, Takamichi; Mashimo, Tsutomu

    2015-04-01

    Impact-induced dehydration of serpentine in primitive meteorites is believed to be a mechanism to provide water in terrestrial planets. Primitive meteorites show a wide range of porosity and it is necessary to know the effect of porosity on the dehydration. In this work we report the dynamic dehydration reaction in powdered samples of antigorite by shock recovery experiments, in which recovered samples were investigated using techniques of X-ray diffractions, electron microscopy, and thermal analyses of shock recovered samples. The present experimental results indicate that the dehydration reaction is weakly pressure-dependent below a peak shock pressure of ∼21 GPa and becomes violent at pressures of 21-60 GPa. The kinetics was found to be dependent on not only peak shock pressure but also the initial porosity and sample amount. We discuss the heterogeneous dehydration reactions based on the phases identified in the recovered samples, more than previously thought.

  16. Dynamics and processing in finite self-similar networks

    PubMed Central

    DeDeo, Simon; Krakauer, David C.

    2012-01-01

    A common feature of biological networks is the geometrical property of self-similarity. Molecular regulatory networks through to circulatory systems, nervous systems, social systems and ecological trophic networks show self-similar connectivity at multiple scales. We analyse the relationship between topology and signalling in contrasting classes of such topologies. We find that networks differ in their ability to contain or propagate signals between arbitrary nodes in a network depending on whether they possess branching or loop-like features. Networks also differ in how they respond to noise, such that one allows for greater integration at high noise, and this performance is reversed at low noise. Surprisingly, small-world topologies, with diameters logarithmic in system size, have slower dynamical time scales, and may be less integrated (more modular) than networks with longer path lengths. All of these phenomena are essentially mesoscopic, vanishing in the infinite limit but producing strong effects at sizes and time scales relevant to biology. PMID:22378750

  17. Effects of superficial gas velocity on process dynamics in bioreactors

    NASA Astrophysics Data System (ADS)

    Devi, T. T.; Kumar, B.

    2014-06-01

    Present work analyzes the flow hydrodynamics and mass transfer mechanisms in double Rushton and CD-6 impeller on wide range (0.0075-0.25 m/s) of superficial gas velocity ( v g) in a gas-liquid phase bioreactor by employing computational fluid dynamics (CFD) technique. The volume averaged velocity magnitude and dissipation rate are found higher with increasing superficial gas velocity. Higher relative power draw ( P g/ P 0) is predicted in CD-6 than the Rushton impeller but no significant difference in volume averaged mass transfer coefficient ( k L a) observed between these two types of impeller. The ratio of power draw with mass transfer coefficient has been found higher in CD-6 impeller (25-50 %) than the Rushton impeller.

  18. Experiential Learning as a Constraint-Led Process: An Ecological Dynamics Perspective

    ERIC Educational Resources Information Center

    Brymer, Eric; Davids, Keith

    2014-01-01

    In this paper we present key ideas for an ecological dynamics approach to learning that reveal the importance of learner-environment interactions to frame outdoor experiential learning. We propose that ecological dynamics provides a useful framework for understanding the interacting constraints of the learning process and for designing learning…

  19. Parallel processing for nonlinear dynamics simulations of structures including rotating bladed-disk assemblies

    NASA Technical Reports Server (NTRS)

    Hsieh, Shang-Hsien

    1993-01-01

    The principal objective of this research is to develop, test, and implement coarse-grained, parallel-processing strategies for nonlinear dynamic simulations of practical structural problems. There are contributions to four main areas: finite element modeling and analysis of rotational dynamics, numerical algorithms for parallel nonlinear solutions, automatic partitioning techniques to effect load-balancing among processors, and an integrated parallel analysis system.

  20. Dynamic Emotional Processing in Experiential Therapy: Two Steps Forward, One Step Back

    ERIC Educational Resources Information Center

    Pascual-Leone, Antonio

    2009-01-01

    The study of dynamic and nonlinear change has been a valuable development in psychotherapy process research. However, little advancement has been made in describing how moment-by-moment affective processes contribute to larger units of change. The purpose of this study was to examine observable moment-by-moment sequences in emotional processing as…

  1. Neurocomputing approaches to modelling of drying process dynamics

    SciTech Connect

    Kaminski, W.; Strumillo, P.; Tomczak, E.

    1998-07-01

    The application of artificial neural networks to mathematical modeling of drying kinetics, degradation kinetics and smoothing of experimental data is discussed in the paper. A theoretical foundation of drying process description by means of artificial neural networks is presented. Two network types are proposed for drying process modelling, namely the multilayer perceptron network and the radial basis functions network. These were validated experimentally for fresh green peals and diced potatoes which represent diverse food products. Network training procedures based on experimental data are explained. Additionally, the proposed neural network modelling approach is tested on drying experiments of silica gel saturated with ascorbic acid solution.

  2. Dynamic study on the transformation process of gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoqian; Wen, Xiaoming; Toh, Yon-Rui; Huang, Kuo-Yen; Tang, Jau; Yu, Pyng

    2014-11-01

    In this paper, the transformation process from Au8 to Au25 nanoclusters (NCs) is investigated with steady state fluorescence spectroscopy and time-resolved fluorescence spectroscopy at various reaction temperatures and solvent diffusivities. Results demonstrate that Au8 NCs, protected by bovine serum albumin, transform into Au25 NCs under controlled pH values through an endothermic reaction with the activation energy of 74 kJ mol-1. Meanwhile, the characteristic s-shaped curves describing the formation of Au25 NCs suggest this process involves a diffusion controlled growth mechanism.

  3. Dynamics of the inverse MAPLE nanoparticle deposition process

    NASA Astrophysics Data System (ADS)

    Steiner, Matthew A.; Fitz-Gerald, James M.

    2015-05-01

    Matrix-assisted pulsed laser evaporation (MAPLE) is a processing technique by which laser-sensitive materials are dissolved or placed into colloidal solution with a strongly absorbing sacrificial solvent, which when frozen into a solid target and irradiated under vacuum disperses the undamaged solute material onto a desired substrate. We present an inversion of the original MAPLE process, where the irradiation of metal-based acetate precursors in solution with UV transparent water results in the deposition of inorganic nanoparticles. A theory is forwarded to explain the underlying multiscale sequence of events that control the inverse MAPLE process from acetate decomposition to nanoparticle formation and subsequent ejection. Support for this theory is provided through the analysis of deposited nanoparticles and by novel characterization of MAPLE targets post-irradiation via cryostage scanning electron microscopy. Ejection is shown to proceed through the same phase-explosion mechanism that drives conventional MAPLE, relating the two techniques and advancing the broader understanding of MAPLE deposition processes.

  4. Complex Dynamics in Academics' Developmental Processes in Teaching

    ERIC Educational Resources Information Center

    Trautwein, Caroline; Nückles, Matthias; Merkt, Marianne

    2015-01-01

    Improving teaching in higher education is a concern for universities worldwide. This study explored academics' developmental processes in teaching using episodic interviews and teaching portfolios. Eight academics in the context of teaching development reported changes in their teaching and change triggers. Thematic analyses revealed seven areas…

  5. A Process Dynamics and Control Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Spencer, Jordan L.

    2009-01-01

    This paper describes a process control experiment. The apparatus includes a three-vessel glass flow system with a variable flow configuration, means for feeding dye solution controlled by a stepper-motor driven valve, and a flow spectrophotometer. Students use impulse response data and nonlinear regression to estimate three parameters of a model…

  6. Modelling of organic matter dynamics during the composting process.

    PubMed

    Zhang, Y; Lashermes, G; Houot, S; Doublet, J; Steyer, J P; Zhu, Y G; Barriuso, E; Garnier, P

    2012-01-01

    Composting urban organic wastes enables the recycling of their organic fraction in agriculture. The objective of this new composting model was to gain a clearer understanding of the dynamics of organic fractions during composting and to predict the final quality of composts. Organic matter was split into different compartments according to its degradability. The nature and size of these compartments were studied using a biochemical fractionation method. The evolution of each compartment and the microbial biomass were simulated, as was the total organic carbon loss corresponding to organic carbon mineralisation into CO(2). Twelve composting experiments from different feedstocks were used to calibrate and validate our model. We obtained a unique set of estimated parameters. Good agreement was achieved between the simulated and experimental results that described the evolution of different organic fractions, with the exception of some compost because of a poor simulation of the cellulosic and soluble pools. The degradation rate of the cellulosic fraction appeared to be highly variable and dependent on the origin of the feedstocks. The initial soluble fraction could contain some degradable and recalcitrant elements that are not easily accessible experimentally. PMID:21978424

  7. Post-processing interstitialcy diffusion from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Bhardwaj, U.; Bukkuru, S.; Warrier, M.

    2016-01-01

    An algorithm to rigorously trace the interstitialcy diffusion trajectory in crystals is developed. The algorithm incorporates unsupervised learning and graph optimization which obviate the need to input extra domain specific information depending on crystal or temperature of the simulation. The algorithm is implemented in a flexible framework as a post-processor to molecular dynamics (MD) simulations. We describe in detail the reduction of interstitialcy diffusion into known computational problems of unsupervised clustering and graph optimization. We also discuss the steps, computational efficiency and key components of the algorithm. Using the algorithm, thermal interstitialcy diffusion from low to near-melting point temperatures is studied. We encapsulate the algorithms in a modular framework with functionality to calculate diffusion coefficients, migration energies and other trajectory properties. The study validates the algorithm by establishing the conformity of output parameters with experimental values and provides detailed insights for the interstitialcy diffusion mechanism. The algorithm along with the help of supporting visualizations and analysis gives convincing details and a new approach to quantifying diffusion jumps, jump-lengths, time between jumps and to identify interstitials from lattice atoms.

  8. A fast closed-loop process dynamics characterization.

    PubMed

    Mataušek, Miroslav R; Šekara, Tomislav B

    2014-03-01

    Stable, integrating and unstable processes, including dead-time, are analyzed in the loop with a known PI/PID controller. The ultimate gain and frequency of an unknown process G(p)(s), and the angle of tangent to the Nyquist curve G(p)(iω) at the ultimate frequency, are determined from the estimated Laplace transform of the set-point step response of amplitude r0. Gain G(p)(0) is determined from the measurements of the control variable and known r0. These estimates define a control relevant model G(m)(s), making possible the use of the previously determined and memorized look-up tables to obtain PID controller guaranteeing desired maximum sensitivity and desired sensitivity to measurement noise. Simulation and experimental results, from a laboratory thermal plant, are used to demonstrate the effectiveness and merits of the proposed method. PMID:24388771

  9. Electron dynamics in the process of mode switching in gyrotrons

    SciTech Connect

    Dumbrajs, O.; Kominis, Y.; Nusinovich, G. S.

    2009-01-15

    The present paper is devoted to the analysis of electron interaction process in the course of gyrotron switching from one mode to another. This analysis is based on the use of the Hamiltonian formalism that allows one to construct Poincare plots for different instants of switching time. The study is carried out for a 170 GHz, MW-class gyrotron for the International Thermonuclear Experimental Reactor (ITER) [ITER web site: http://www.iter.org].

  10. Emerging Processes in Flood Regime Dynamics: Evidence from Spatiotemporal Statistics and a Nonlinear Dynamical Model of Coevolution.

    NASA Astrophysics Data System (ADS)

    Perdigão, Rui A. P.; Blöschl, Günter

    2015-04-01

    Emerging Processes in Flood Regime Dynamics are evaluated on the basis of symmetry breaks in the spatiotemporal sensitivity of flood regimes to changes in annual precipitation and a new dynamical model of flood regime change under nonlinearly interacting landscape-climate dynamics. The spatiotemporal sensitivity analysis is performed at regional scale using data from 804 catchments in Austria from 1976 to 2008. Results show that flood peaks change in a more responsive manner with spatial (regional) than with temporal (decadal) variability. Space-wise a 10% increase in precipitation leads to a 23% increase in flood peaks in Austria, whereas timewise a 10% increase in precipitation leads to an increase of just 6% in flood peaks. Looking at hydroclimatic regions in particular, catchments from stable dry lowlands and high wetlands exhibit similarity between the spatial and temporal flood responses to changes in precipitation (spatiotemporal symmetry) and low landscape-climate codependence. This suggests that these regions are not coevolving significantly. However, intermediate regions show differences between those responses (symmetry breaks) and higher landscape-climate codependence, suggesting undergoing coevolution. The break of symmetry is an emergent behaviour of the coupled system, stemming from the nonlinear interactions in the coevolving hydroclimate system. A dynamic coevolution index is then proposed relating spatiotemporal symmetry with relative characteristic celerities, which need to be taken into account in hydrological space-time trading. Coevolution is expressed here by the scale interaction between slow and fast dynamics, represented respectively by spatial and temporal characteristics. The diagnostic assessment of coevolution is complemented by a stylised nonlinear dynamical model of landscape-climate coevolution, in which landform evolution processes take place at the millennial scale (slow dynamics), and climate adjusts in years to decades (fast

  11. Fast engineering optimization: A novel highly effective control parameterization approach for industrial dynamic processes.

    PubMed

    Liu, Ping; Li, Guodong; Liu, Xinggao

    2015-09-01

    Control vector parameterization (CVP) is an important approach of the engineering optimization for the industrial dynamic processes. However, its major defect, the low optimization efficiency caused by calculating the relevant differential equations in the generated nonlinear programming (NLP) problem repeatedly, limits its wide application in the engineering optimization for the industrial dynamic processes. A novel highly effective control parameterization approach, fast-CVP, is first proposed to improve the optimization efficiency for industrial dynamic processes, where the costate gradient formulae is employed and a fast approximate scheme is presented to solve the differential equations in dynamic process simulation. Three well-known engineering optimization benchmark problems of the industrial dynamic processes are demonstrated as illustration. The research results show that the proposed fast approach achieves a fine performance that at least 90% of the computation time can be saved in contrast to the traditional CVP method, which reveals the effectiveness of the proposed fast engineering optimization approach for the industrial dynamic processes. PMID:26117286

  12. Dynamic load-sharing using predicted process resource requirements

    NASA Technical Reports Server (NTRS)

    Goswami, Kumar K.; Iyer, Ravishankar K.

    1990-01-01

    Heuristics which use predicted process resource requirements to make scheduling decisions are proposed. Four heuristics are presented. The first two, MINQ and SMPL, employ centralized scheduling and the remaining two, DMINQ and FDMINQ, use distributed scheduling. These heuristics are first compared against random scheduling and then against two conventional heuristics, CENTEX and DISTED, which schedule processes solely based on system state information. Results based on trace-driven simulations show that the proposed centralized heuristics offer significantly improved mean response time and they require fewer status update messages. In experiments using the same status update rates, SMPL response times were, on the average, 22 percent lower than those for CENTEX; MINQ response times were, on the average, 18 percent lower. The simulations also showed that MINQ and SMPL can perform as well as, or better than, CENTEX while using up to 70 percent fewer status update messages. The use of fewer status update messages imposes less overhead on the system. The use of prediction for distributed scheduling produced similar results. When prediction was used to filter small processes and execute them locally a 50 percent improvement in response times was obtained.

  13. Reconstruction of dark energy and expansion dynamics using Gaussian processes

    SciTech Connect

    Seikel, Marina; Clarkson, Chris; Smith, Mathew E-mail: chris.clarkson@uct.ac.za

    2012-06-01

    An important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space, as the errors found depend strongly on the parametrisation considered. We present a new non-parametric approach to reconstructing the history of the expansion rate and dark energy using Gaussian Processes, which is a fully Bayesian approach for smoothing data. We present a pedagogical introduction to Gaussian Processes, and discuss how it can be used to robustly differentiate data in a suitable way. Using this method we show that the Dark Energy Survey - Supernova Survey (DES) can accurately recover a slowly evolving equation of state to σ{sub w} = ±0.05 (95% CL) at z = 0 and ±0.25 at z = 0.7, with a minimum error of ±0.025 at the sweet-spot at z ∼ 0.16, provided the other parameters of the model are known. Errors on the expansion history are an order of magnitude smaller, yet make no assumptions about dark energy whatsoever. A code for calculating functions and their first three derivatives using Gaussian processes has been developed and is available for download.

  14. Electrical Resistivity Imaging for Studying Dynamics of Vadose Zone Processes

    NASA Astrophysics Data System (ADS)

    Mitchell, V.; Pidlisecky, A.; Knight, R. J.

    2010-12-01

    Determining the spatial distribution of subsurface hydrologic properties is critical to developing efficient groundwater management strategies. Electrical resistivity imaging (ERI) provides continuous maps of the subsurface electrical conductivity, which can be related to water content, making it particularly useful to groundwater studies. We present an application of ERI to monitoring infiltration in the top 20 m of the subsurface at the Harkins Slough Recharge Pond, located in an agricultural region on the northern California coast. The purpose of the recharge pond is two-fold: to store diverted storm-flow run-off to meet groundwater delivery demands and to replenish underlying aquifers, which have been overdrawn for several decades, allowing saltwater intrusion. Operators of the pond have rights to divert 2.5e6 m3 of surface water to the pond each year, but decreasing infiltration rates during diversion reduces the operational efficiency, only allowing infiltration of ~1e6 m3 each year. It is hypothesized that deposition of fine-sediments from diverted water, run-off from adjacent fields, and/or microbial activity reduce the hydraulic conductivity over time by clogging pore spaces. As part of an effort to better understand the hydrologic processes controlling infiltration to improve operational efficiency of the recharge pond we conducted time-lapse ERI experiments to monitor infiltration processes beneath the pond during the winters of 2008-2009 and 2009-2010. Each year measurements were made using four 3-m long permanent probes installed in the base of the pond in a T-shape configuration, with 20 m between each probe. The probes allow for monitoring of the conductivity profile to a depth of 2 m; the top meter of each probe monitors bulk conductivity of the pond water. In addition, a number of surface electrodes were laid out in lines between the four probes. In 2008-2009, 20-m lines were used. In 2009-2010, three lines of lengths 10 m, 65 m, and 75 m were

  15. Exact dynamical state of the exclusive queueing process with deterministic hopping

    NASA Astrophysics Data System (ADS)

    Arita, Chikashi; Schadschneider, Andreas

    2011-11-01

    The exclusive queueing process (EQP) has recently been introduced as a model for the dynamics of queues that takes into account the spatial structure of the queue. It can be interpreted as a totally asymmetric exclusion process of varying length. Here we investigate the case of deterministic bulk hopping p=1 that turns out to be one of the rare cases where exact nontrivial results for the dynamical properties can be obtained. Using a time-dependent matrix product form we calculate several dynamical properties, e.g., the density profile of the system.

  16. Characterization of degeneration process in combustion instability based on dynamical systems theory.

    PubMed

    Gotoda, Hiroshi; Okuno, Yuta; Hayashi, Kenta; Tachibana, Shigeru

    2015-11-01

    We present a detailed study on the characterization of the degeneration process in combustion instability based on dynamical systems theory. We deal with combustion instability in a lean premixed-type gas-turbine model combustor, one of the fundamentally and practically important combustion systems. The dynamic behavior of combustion instability in close proximity to lean blowout is dominated by a stochastic process and transits to periodic oscillations created by thermoacoustic combustion oscillations via chaos with increasing equivalence ratio [Chaos 21, 013124 (2011); Chaos 22, 043128 (2012)]. Thermoacoustic combustion oscillations degenerate with a further increase in the equivalence ratio, and the dynamic behavior leads to chaotic fluctuations via quasiperiodic oscillations. The concept of dynamical systems theory presented here allows us to clarify the nonlinear characteristics hidden in complex combustion dynamics. PMID:26651761

  17. Characterization of degeneration process in combustion instability based on dynamical systems theory

    NASA Astrophysics Data System (ADS)

    Gotoda, Hiroshi; Okuno, Yuta; Hayashi, Kenta; Tachibana, Shigeru

    2015-11-01

    We present a detailed study on the characterization of the degeneration process in combustion instability based on dynamical systems theory. We deal with combustion instability in a lean premixed-type gas-turbine model combustor, one of the fundamentally and practically important combustion systems. The dynamic behavior of combustion instability in close proximity to lean blowout is dominated by a stochastic process and transits to periodic oscillations created by thermoacoustic combustion oscillations via chaos with increasing equivalence ratio [Chaos 21, 013124 (2011), 10.1063/1.3563577; Chaos 22, 043128 (2012), 10.1063/1.4766589]. Thermoacoustic combustion oscillations degenerate with a further increase in the equivalence ratio, and the dynamic behavior leads to chaotic fluctuations via quasiperiodic oscillations. The concept of dynamical systems theory presented here allows us to clarify the nonlinear characteristics hidden in complex combustion dynamics.

  18. Dynamic rupture process of the great 1668 Anatolian earthquake

    NASA Astrophysics Data System (ADS)

    Kase, Yuko; Kondo, Hisao; Emre, Ömer

    2010-05-01

    The North Anatolian fault system (NAFS) gives us the well-preserved evidences of multi-segment earthquakes. During the 1939 Erzincan earthquake, surface ruptures extended along the Resadiye segment. The surface ruptures during the 1942 earthquake appeared on two segments, the eastern Niksar and the western Erbaa segments which are to the west of the Resadiye segment. On the other hand, paleoseismological evidences show that the 1668 earthquake was a single multi-segment earthquake including the Resadiye, Niksar, and Erbaa segments (Kondo et al., 2009). The fault geometry, however, does not make us imagine a single multi-segment occurring. The distance along strike and step-over width between the Resadiye and Niksar segments is 17 and 11 km, respectively. This fault discontinuity is much larger than the previously-known threshold of a multi-segment rupture, 5 km, shown in observations of historical earthquakes (Matsuda, 1990; Wesnousky, 2006) and numerical studies (Harris and Day, 1999; Kase and Kuge, 2001). In this study, we construct dynamic rupture models for the North Anatolian earthquakes based on seismological data of the 1939 and 1942 earthquakes and the present stress condition, and then we investigate possibility of a single multi-segment earthquake in agreement with the paleoseismological data of the 1668 earthquake. A fault model is assumed, based on the surface traces, hypocenter distribution and source mechanisms of the 20th century earthquakes on the NAFS. Using the source mechanism of the 1939 earthquake (McKenzie, 1972) and the stress inversion results along the NAFS (Bellier et al., 1997; Fuenzalida et al., 1997), we adopt a regional stress field that is resolved onto all fault segments. We perform preliminary simulations to determine a hydrostatic stress condition and coefficient of friction producing surface slip distribution consistent with the observed surface slips during the 1939 and 1942 earthquakes (Barka, 1996; Emre et al., 2009; Kondo et

  19. Dynamic Neural Processing of Linguistic Cues Related to Death

    PubMed Central

    Ma, Yina; Qin, Jungang; Han, Shihui

    2013-01-01

    Behavioral studies suggest that humans evolve the capacity to cope with anxiety induced by the awareness of death’s inevitability. However, the neurocognitive processes that underlie online death-related thoughts remain unclear. Our recent functional MRI study found that the processing of linguistic cues related to death was characterized by decreased neural activity in human insular cortex. The current study further investigated the time course of neural processing of death-related linguistic cues. We recorded event-related potentials (ERP) to death-related, life-related, negative-valence, and neutral-valence words in a modified Stroop task that required color naming of words. We found that the amplitude of an early frontal/central negativity at 84–120 ms (N1) decreased to death-related words but increased to life-related words relative to neutral-valence words. The N1 effect associated with death-related and life-related words was correlated respectively with individuals’ pessimistic and optimistic attitudes toward life. Death-related words also increased the amplitude of a frontal/central positivity at 124–300 ms (P2) and of a frontal/central positivity at 300–500 ms (P3). However, the P2 and P3 modulations were observed for both death-related and negative-valence words but not for life-related words. The ERP results suggest an early inverse coding of linguistic cues related to life and death, which is followed by negative emotional responses to death-related information. PMID:23840787

  20. Nitrogen oxide removal dynamic process through 15 Ns DBD technique

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojun; Zhang, Lianshui; Lai, Weidong; Liu, Fengliang

    2015-05-01

    Nitrogen oxides exhaust gas assumes the important responsibility on air pollution by forming acid rain. This paper discusses the NO removal mechanism in 15 ns pulse dielectric barrier discharge (DBD) plasma through experimental and simulating method. Emission spectra collected from plasma are evaluated as sourced from N+ and O(3P). The corresponding zero-dimensional model is established and verified through comparing the simulated concentration evolution and the experimental time-resolved spectra of N+. The electron impact ionization plays major role on NO removal and the produced NO+ are further decomposed into N+ and O(3P) through electron impact dissociative excitation rather than the usual reported dissociative recombination process. Simulation also indicates that the removal process can be accelerated by NO inputted at lower initial concentration or electrons streamed at higher concentration, due to the heightened electron impact probability on NO molecules. The repetitive pulse discharge is a benefit for improving the NO removal efficiency by effectively utilizing the radicals generated from the previous pulse under the condition that the pulse period should be shorter enough to ignore the spatial diffusion of radicals. Finally, slight attenuation on NO removal has been experimentally and simulatively observed after N2 mixed, due to the competitive consumption of electrons.

  1. Impact of submesoscale processes on dynamics of phytoplankton filaments

    NASA Astrophysics Data System (ADS)

    Shulman, Igor; Penta, Bradley; Richman, James; Jacobs, Gregg; Anderson, Stephanie; Sakalaukus, Peter

    2015-03-01

    In Monterey Bay, CA, during northwesterly, upwelling favorable winds, the development of a southward flowing cold jet along the entrance to the Bay is often observed. This dense cold jet separates warm waters of the anticyclonic circulation offshore from the water masses inside the Bay. Interactions between the cold jet and the offshore anticyclonic circulation generate ageostrophic secondary circulation (ASC) cells due to submesoscale processes as, for example, flow interaction with the development of surface frontogenesis and nonlinear Ekman pumping. Based on observations and modeling studies, we evaluate the impact of these submesoscale processes on the formation of chlorophyll a filaments during late spring-earlier summer, and late summer time frames. We show that during the late summer time frame, ASC leads to the development of filaments with high values of chlorophyll a concentration along the edge of the cold jet-in contrast to the earlier summer time, when the ASC mixes phytoplankton much deeper to the area below of the euphotic depth, and chlorophyll a filaments are 3-4 times weaker.

  2. Dynamic facial expressions are processed holistically, but not more holistically than static facial expressions.

    PubMed

    Tobin, Alanna; Favelle, Simone; Palermo, Romina

    2016-09-01

    There is evidence that facial expressions are perceived holistically and featurally. The composite task is a direct measure of holistic processing (although the absence of a composite effect implies the use of other types of processing). Most composite task studies have used static images, despite the fact that movement is an important aspect of facial expressions and there is some evidence that movement may facilitate recognition. We created static and dynamic composites, in which emotions were reliably identified from each half of the face. The magnitude of the composite effect was similar for static and dynamic expressions identified from the top half (anger, sadness and surprise) but was reduced in dynamic as compared to static expressions identified from the bottom half (fear, disgust and joy). Thus, any advantage in recognising dynamic over static expressions is not likely to stem from enhanced holistic processing, rather motion may emphasise or disambiguate diagnostic featural information. PMID:26208146

  3. Dynamics and materials physics of fault rupture and glacial processes

    NASA Astrophysics Data System (ADS)

    Platt, John Daniel

    This thesis focuses on two main topics, the physics governing how faults rapidly weaken during an earthquake and the thermal and mechanical structure of ice stream shear margins. The common theme linking these two projects is the desire to understand how the complicated interactions between stress and temperature control deformation and failure. All of the problems in this thesis are attacked using a combination of analytic and numerical methods, and the interplay between these two approaches provides a powerful way to understand the different physical balances that dominate in different regimes. We also use aspects of materials science to understand how the often complicated rheologies are controlled by underlying physical phenomena such as melting, phase transitions, diffusion, and dislocation motion. With regards to fault mechanics, we begin by showing how co-seismic weakening mechanisms driven by elevated pore fluid pressures lead to micron-scale strain localization during an earthquake. We solve for the localized zone thickness for a range of fault temperatures, test these predictions using numerical simulations, and show how the onset of localization accelerates fault weakening. Next we present the first solutions to account for thermal decomposition reactions during a dynamic rupture, showing that the activation of thermal decomposition may lead to a larger slip duration and total slip. Finally we present a new set of experiments studying flash heating of serpentinite, highlighting the dependence of friction on normal stress and the presence of gouge, and producing the first model to explain the hysteresis commonly observed in flash heating experiments. With regards to ice stream shear margins, we begin by extending the work of Perol and Rice [2011] to study the formation of temperate ice in shear margins, and quantify the total melt that may be generated within the shear margins. We conclude by investigating how the presence of such a channel alters the

  4. Regional Groundwater Processes and Flow Dynamics from Age Tracer Data

    NASA Astrophysics Data System (ADS)

    Morgenstern, Uwe; Stewart, Mike K.; Matthews, Abby

    2016-04-01

    Age tracers are now used in New Zealand on regional scales for quantifying the impact and lag time of land use and climate change on the quantity and quality of available groundwater resources within the framework of the National Policy Statement for Freshwater Management 2014. Age tracers provide measurable information on the dynamics of groundwater systems and reaction rates (e.g. denitrification), essential for conceptualising the regional groundwater - surface water system and informing the development of land use and groundwater flow and transport models. In the Horizons Region of New Zealand, around 200 wells have tracer data available, including tritium, SF6, CFCs, 2H, 18O, Ar, N2, CH4 and radon. Well depths range from shallower wells in gravel aquifers in the Horowhenua and Tararua districts, and deeper wells in the aquifers between Palmerston North and Wanganui. Most of the groundwater samples around and north of the Manawatu River west of the Tararua ranges are extremely old (>100 years), even from relatively shallow wells, indicating that these groundwaters are relatively disconnected from fresh surface recharge. The groundwater wells in the Horowhenua tap into a considerably younger groundwater reservoir with groundwater mean residence time (MRT) of 10 - 40 years. Groundwater along the eastern side of the Tararua and Ruahine ranges is significantly younger, typically <5 years MRT. Vertical groundwater recharge rates, as deduced from groundwater depth and MRT, are extremely low in the central coastal area, consistent with confined groundwater systems, or with upwelling of old groundwater close to the coast. Very low vertical recharge rates along the Manawatu River west of the Manawatu Gorge indicate upwelling groundwater conditions in this area, implying groundwater discharge into the river is more likely here than loss of river water into the groundwater system. High recharge rates observed at several wells in the Horowhenua area and in the area east of

  5. Dynamics of Relaxation Processes of Spontaneous Otoacoustic Emissions

    NASA Astrophysics Data System (ADS)

    Murphy, William James

    The dynamical response of spontaneous otoacoustic emissions (SOAEs) to suppression by ipsilateral pulsed external tones of different frequencies and levels is investigated in nine female subjects under normal conditions and in four female subjects during periods when aspirin is being administered. A simple Van der Pol limit-cycle oscillator driven by an external tone is used as an interpretive model. Typical results for both the onset of, and recovery from suppression yield 1/r_1 (where -r_1 is the negative linear component of the damping function) in the range of 2-25 msec. In accordance with the predictions of the model: (a) the relaxation time for the onset of suppression increases with the amount of suppression induced by the external tone, (b) the values of r _1 and the amplitudes of the unsuppressed emissions exhibit an inverse correlation, (c) the values inferred for r_1 are not significantly dependent on the frequency of the pulsed suppressor tone and (d) the inferred r_1 values are not significantly dependent upon the amount of suppression. In investigations involving subjects under aspirin administration, the changes in the relaxation time constants indicate that the main effect of aspirin administration is to reduce the negative damping parameter r_1. The salicylate is apparently not metabolized in some subjects whose emissions are negligibly affected by aspirin administration. A modification of the single-oscillator model is used to describe pulsed suppression data obtained from a primary SOAE (2545 Hz) which is suppressed by a neighboring secondary emission (2895 Hz). The response of the SOAE amplitude during pulsed suppression is modeled by a pair of Van der Pol limit-cycle oscillators with the primary oscillator linearly coupled to the displacement of the secondary higher-frequency one. The relaxation time constants for the onset of, and recovery from, suppression are 4.5 and 4.8 msec, respectively, for the primary SOAE and 7.5 and 10.5 msec for the

  6. Graphics processing units accelerated semiclassical initial value representation molecular dynamics

    NASA Astrophysics Data System (ADS)

    Tamascelli, Dario; Dambrosio, Francesco Saverio; Conte, Riccardo; Ceotto, Michele

    2014-05-01

    This paper presents a Graphics Processing Units (GPUs) implementation of the Semiclassical Initial Value Representation (SC-IVR) propagator for vibrational molecular spectroscopy calculations. The time-averaging formulation of the SC-IVR for power spectrum calculations is employed. Details about the GPU implementation of the semiclassical code are provided. Four molecules with an increasing number of atoms are considered and the GPU-calculated vibrational frequencies perfectly match the benchmark values. The computational time scaling of two GPUs (NVIDIA Tesla C2075 and Kepler K20), respectively, versus two CPUs (Intel Core i5 and Intel Xeon E5-2687W) and the critical issues related to the GPU implementation are discussed. The resulting reduction in computational time and power consumption is significant and semiclassical GPU calculations are shown to be environment friendly.

  7. Dynamical modelling of fluvial deposition processes on Titan

    NASA Astrophysics Data System (ADS)

    Witek, Piotr; Czechowski, Leszek

    2014-05-01

    Observations of the Cassini-Huygens mission have revealed the complex environment on the surface of Titan, with rivers and lakes of liquid hydrocarbons and mobile sediments in form of dunes and rounded blocks of ice observed at the Huygens landing site. The presence of river valleys and identification of depositional landforms is a strong indication that Earth-like processes of sediment transport and deposition are operating on the surface of this moon. Our aim is to simulate these processes using numerical model to identify the similarities and differences between these processes on both bodies. Special attention is given to the processes at the river/lake interface which results are identifiable in satellite images, such as depositional landforms. The model is based on the Navier-Stokes equations for depth-integrated two dimensional, turbulent flow. Additional equations are used to describe transport of sediments. We have considered the problem of von Karman parameter known as von Karman constant. In fact its value could vary in the range of 0.25 to 0.6 (see eg. Gaudio, Miglio, Dey, J. Hydraulic Res., 48: 658-663, 2010). However, it does not depend of the fluid parameters but on the properties of the bed sediments. This fact allows the use of model developed for terrestrial rivers. The flow equations consist of the depth-integrated 2D momentum equations for turbulent flows and the depth-integrated continuity equation: ( ) δu- δu- δu- δZ- 1- δ-(hτxx) δ(hτxy) τbx- δt + uδx + vδy = - gδx + h δx + δy - hρ (1) ( ) δv- δv- δv- δZ- 1- δ-(hτyx) δ(hτyy) τby- δt + uδx + vδy = - gδy + h δx + δy - hρ (2) δZ-+ δ(uh)-+ δ(vh)-= 0 δt δx δy (3) where u and v are depth-integrated velocity components in directions x and y,t is the time, h is the local depth, g is the gravitational acceleration, Z is the water surface, τij are depth integrated Reynolds stresses, and τbi are the shear stresses on the bed and flow interface. We explore the flow

  8. Distributed parameter approach to the dynamics of complex biological processes

    SciTech Connect

    Lee, T.T.; Wang, F.Y.; Newell, R.B.

    1999-10-01

    Modeling and simulation of a complex biological process for the removal of nutrients (nitrogen and phosphorus) from municipal wastewater are addressed. The model developed in this work employs a distributed-parameter approach to describe the behavior of components within three different bioreaction zones and the behavior of sludge in the anaerobic zone and soluble phosphate in the aerobic zone in two experiments. Good results are achieved despite the apparent plant-model mismatch, such as uncertainties with the behavior of phosphorus-accumulating organisms. Validation of the proposed secondary-settler model shows that it is superior to two state-of-the-art models in terms of the sum of the square relative errors.

  9. Graphics processing units accelerated semiclassical initial value representation molecular dynamics.

    PubMed

    Tamascelli, Dario; Dambrosio, Francesco Saverio; Conte, Riccardo; Ceotto, Michele

    2014-05-01

    This paper presents a Graphics Processing Units (GPUs) implementation of the Semiclassical Initial Value Representation (SC-IVR) propagator for vibrational molecular spectroscopy calculations. The time-averaging formulation of the SC-IVR for power spectrum calculations is employed. Details about the GPU implementation of the semiclassical code are provided. Four molecules with an increasing number of atoms are considered and the GPU-calculated vibrational frequencies perfectly match the benchmark values. The computational time scaling of two GPUs (NVIDIA Tesla C2075 and Kepler K20), respectively, versus two CPUs (Intel Core i5 and Intel Xeon E5-2687W) and the critical issues related to the GPU implementation are discussed. The resulting reduction in computational time and power consumption is significant and semiclassical GPU calculations are shown to be environment friendly. PMID:24811627

  10. Graphics processing units accelerated semiclassical initial value representation molecular dynamics

    SciTech Connect

    Tamascelli, Dario; Dambrosio, Francesco Saverio; Conte, Riccardo; Ceotto, Michele

    2014-05-07

    This paper presents a Graphics Processing Units (GPUs) implementation of the Semiclassical Initial Value Representation (SC-IVR) propagator for vibrational molecular spectroscopy calculations. The time-averaging formulation of the SC-IVR for power spectrum calculations is employed. Details about the GPU implementation of the semiclassical code are provided. Four molecules with an increasing number of atoms are considered and the GPU-calculated vibrational frequencies perfectly match the benchmark values. The computational time scaling of two GPUs (NVIDIA Tesla C2075 and Kepler K20), respectively, versus two CPUs (Intel Core i5 and Intel Xeon E5-2687W) and the critical issues related to the GPU implementation are discussed. The resulting reduction in computational time and power consumption is significant and semiclassical GPU calculations are shown to be environment friendly.

  11. Dynamical Study of Prebiotic Processing by Comet Impact

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.; McKay, Christopher P.; Borucki, William J.

    2003-01-01

    Comets and meteoroids that bombarded the Earth, other planets and moons are considered possible deliverers of prebiotic materials manufactured in space. Simultaneously, chemical processing can be initiated by the large kinetic energy imparted to the planetary atmosphere during comet/meteoroid entry. The efficiency of organic synthesis and the diversity of products by impact shock are known to decrease as the reducing power of the atmosphere decreases. It is generally accepted that rich organic products are produced in a methane atmosphere whereas a carbon dioxide atmosphere is reported to yield a dearth of products In order to understand the details of impact chemistry and how it depends on the atmospheric composition, we carried out simulations of the chemistry initiated by comet/meteoroid impact upon a planetary atmosphere using different atmospheric compositions. The simulations were done by solving the set of coupled equations for mass, momentum, and energy conservations, chemical kinetics, and transport, that describe a high-energy impact shock, subsequent expansion and cooling of the hot shocked gas by mixing with the ambient gas, and the eventual steady state composition.

  12. Dynamic photophysical processes in laser irradiated human cortical skull bone

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas; Kwan, Chi-Hang; Matvienko, Anna

    2009-02-01

    Modulated luminescence (LUM) technique was applied to analyze photophysical processes in the cortical layer of human skull bones. The theoretical interpretation of the results was based on the optical excitation and decay rate equations of the fluorophore and on the molecular interaction parameter with the photon field density in the matrix of the bone. Using comparisons of the theory with the frequency response of dental LUM it was concluded that the optically active molecular species (fluorophore) in the bones is hydroxyapatite. An effective relaxation lifetime of skull cortical bone was derived theoretically and was found to depend on the intrinsic fluorophore decay lifetime, on the photon field density, and on the thickness of the bone. The experimentally measured dependencies were in excellent agreement with the theoretical model. The theory was able to yield measurements of the optical scattering coefficient, optical absorption coefficient, and mean coupling coefficient. These results show that the quantitative LUM can be used as a sensitive method to measure optical properties of the active fluorophore in cortical skull bones and the optical-field-induced molecular interaction parameter. When calibrated vs. laser intensity, the modulated luminescence can also be used to measure human skull thickness. These traits can be applied to monitor the bone mineral density (BMD) and, ultimately can be used as potential markers of bone health or disease, such as osteoporosis or bone cancer.

  13. High resolution imaging of dynamic surface processes from the ISS

    NASA Astrophysics Data System (ADS)

    Donnellan, A.; Green, J. J.; De Jong, E. M.; Knight, R.; Bills, B.; Arrowsmith, R.

    Spaceborne persistent multi-angle imaging allows staring at selected targets during an orbit pass. From its vantage point on the International Space Station (ISS) a persistent Earth imaging telescope would provide hundreds of high-resolution images simultaneously. Observations could be in visible and SWIR bands as it stares at a scene of interest. These images provide rich multi-angle stereo views enabling understanding of rapidly changing Earth features with many applications to Earth science and disaster response. Current academic state-of-the-art is driven by single images taken with a near nadir view. Persistent imaging could address NASA's goal of understanding how and why the Earth's environment is changing, and could be used for forecasting and mitigating the effects of natural disasters. Specifically such a mission could be used to answer the questions: 1) How are Earth's vulnerable systems reflecting changes in climate? and 2) What processes and features characterize the magnitude and extent of disasters? A mission would meet geomorphologists' requirements observing changing features such as landslides, earthquakes, floods, volcanoes, and glaciers.

  14. Novel Method for Processing the Dynamic Calibration Signal of Pressure Sensor

    PubMed Central

    Wang, Zhongyu; Li, Qiang; Wang, Zhuoran; Yan, Hu

    2015-01-01

    Dynamic calibration is one of the important ways to acquire the dynamic performance parameters of a pressure sensor. This research focuses on the processing method for the output of calibrated pressure sensor, and mainly attempts to solve the problem of extracting the true information of step response under strong interference noise. A dynamic calibration system based on a shock tube is established to excite the time-domain response signal of a calibrated pressure sensor. A key processing on difference modeling is applied for the obtained signal, and several generating sequences are established. A fusion process for the generating sequences is then undertaken, and the true information of the step response of the calibrated pressure sensor can be obtained. Finally, by implementing the common QR decomposition method to deal with the true information, a dynamic model characterizing the dynamic performance of the calibrated pressure sensor is established. A typical pressure sensor was used to perform calibration tests and a frequency-domain experiment for the sensor was also conducted. Results show that the proposed method could effectively filter strong interference noise in the output of the sensor and the corresponding dynamic model could effectively characterize the dynamic performance of the pressure sensor. PMID:26197324

  15. Novel Method for Processing the Dynamic Calibration Signal of Pressure Sensor.

    PubMed

    Wang, Zhongyu; Li, Qiang; Wang, Zhuoran; Yan, Hu

    2015-01-01

    Dynamic calibration is one of the important ways to acquire the dynamic performance parameters of a pressure sensor. This research focuses on the processing method for the output of calibrated pressure sensor, and mainly attempts to solve the problem of extracting the true information of step response under strong interference noise. A dynamic calibration system based on a shock tube is established to excite the time-domain response signal of a calibrated pressure sensor. A key processing on difference modeling is applied for the obtained signal, and several generating sequences are established. A fusion process for the generating sequences is then undertaken, and the true information of the step response of the calibrated pressure sensor can be obtained. Finally, by implementing the common QR decomposition method to deal with the true information, a dynamic model characterizing the dynamic performance of the calibrated pressure sensor is established. A typical pressure sensor was used to perform calibration tests and a frequency-domain experiment for the sensor was also conducted. Results show that the proposed method could effectively filter strong interference noise in the output of the sensor and the corresponding dynamic model could effectively characterize the dynamic performance of the pressure sensor. PMID:26197324

  16. Teachers' Performances during a Practical Dynamic Open Inquiry Process

    ERIC Educational Resources Information Center

    Zion, Michal; Schanin, Ilana; Shmueli, Ester Rimerman

    2013-01-01

    The research goal of this study was to determine whether teachers who participated in an inquiry-based course were able to internalize a dynamic open inquiry process. This study focused on 25 science teachers who participated in an annual inquiry-based academic course. Several teaching tools helped teachers employ an open inquiry process. We…

  17. A Low Cost Microcomputer System for Process Dynamics and Control Simulations.

    ERIC Educational Resources Information Center

    Crowl, D. A.; Durisin, M. J.

    1983-01-01

    Discusses a video simulator microcomputer system used to provide real-time demonstrations to strengthen students' understanding of process dynamics and control. Also discusses hardware/software and simulations developed using the system. The four simulations model various configurations of a process liquid level tank system. (JN)

  18. Cross-scale Interactions and Changing Pattern-Process Relationships: Consequences for System Dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cross-scale interactions occur either when fine-scale processes influence a broad spatial extent or a long time period, or when broad-scale drivers interact with fine-scale processes to determine system dynamics. Cross-scale interactions are increasing recognized as having important influences on e...

  19. Optical controling dynamic and fluctuation processes in ensemble of neurons at pulsed electrical excitation ex vivo

    NASA Astrophysics Data System (ADS)

    Akchurin, Garif G.; Seliverstov, George A.; Akchurin, Alexander G.; Akchurin, George G.

    2004-05-01

    Dynamic response of the somatic frog nerve on electrical pulsed excitation was investigated ex vivo. Strong fluctuation of consequence compound action potential in ensemble of neurons near-threshold was discovered. The nonlinear response of the Hodgkin-Huxley model neurons with external electrical pulsed was investigated and numeral results correlation with experiments. Complex dynamic of compound action potential was discovered when on-line time of stimulatory electrical pulses comparable with nerve refractory period. New techniques research nonlinear behavior using photodynamic reactions or UV-A radiation at somatic frog nerve was approved. This nonlinear dynamic regime was controlling laser induced inactivation of processes in membrane of nerve.

  20. Approximate-model based estimation method for dynamic response of forging processes

    NASA Astrophysics Data System (ADS)

    Lei, Jie; Lu, Xinjiang; Li, Yibo; Huang, Minghui; Zou, Wei

    2015-03-01

    Many high-quality forging productions require the large-sized hydraulic press machine (HPM) to have a desirable dynamic response. Since the forging process is complex under the low velocity, its response is difficult to estimate. And this often causes the desirable low-velocity forging condition difficult to obtain. So far little work has been found to estimate the dynamic response of the forging process under low velocity. In this paper, an approximate-model based estimation method is proposed to estimate the dynamic response of the forging process under low velocity. First, an approximate model is developed to represent the forging process of this complex HPM around the low-velocity working point. Under guaranteeing the modeling performance, the model may greatly ease the complexity of the subsequent estimation of the dynamic response because it has a good linear structure. On this basis, the dynamic response is estimated and the conditions for stability, vibration, and creep are derived according to the solution of the velocity. All these analytical results are further verified by both simulations and experiment. In the simulation verification for modeling, the original movement model and the derived approximate model always have the same dynamic responses with very small approximate error. The simulations and experiment finally demonstrate and test the effectiveness of the derived conditions for stability, vibration, and creep, and these conditions will benefit both the prediction of the dynamic response of the forging process and the design of the controller for the high-quality forging. The proposed method is an effective solution to achieve the desirable low-velocity forging condition.

  1. Decision support system for control and automation of dynamical processes. Master's thesis

    SciTech Connect

    Nann, S.

    1990-03-01

    The thesis presents the concept and development of a diagnostic decision support system for real-time control and automation of dynamic processes. This system, known as DECA (Diagnostic Evaluation and Corrective Action), will take advantage of the computer's ability to manipulate vast amounts of data, and employ qualitative reasoning for the monitoring and diagnosis of dynamical processes during time-constrained, routine, and emergency situations where an immediate response is necessary to avoid catastrophic failure of the system. The software system's architecture has been structured in such a manner that is can be applied to any dynamic process without reprogramming. DECA is written in Lisp and was verified using the data from the Three Mile Island Nuclear Reactor Accident.

  2. Impaired neural processing of dynamic faces in left-onset Parkinson's disease.

    PubMed

    Garrido-Vásquez, Patricia; Pell, Marc D; Paulmann, Silke; Sehm, Bernhard; Kotz, Sonja A

    2016-02-01

    Parkinson's disease (PD) affects patients beyond the motor domain. According to previous evidence, one mechanism that may be impaired in the disease is face processing. However, few studies have investigated this process at the neural level in PD. Moreover, research using dynamic facial displays rather than static pictures is scarce, but highly warranted due to the higher ecological validity of dynamic stimuli. In the present study we aimed to investigate how PD patients process emotional and non-emotional dynamic face stimuli at the neural level using event-related potentials. Since the literature has revealed a predominantly right-lateralized network for dynamic face processing, we divided the group into patients with left (LPD) and right (RPD) motor symptom onset (right versus left cerebral hemisphere predominantly affected, respectively). Participants watched short video clips of happy, angry, and neutral expressions and engaged in a shallow gender decision task in order to avoid confounds of task difficulty in the data. In line with our expectations, the LPD group showed significant face processing deficits compared to controls. While there were no group differences in early, sensory-driven processing (fronto-central N1 and posterior P1), the vertex positive potential, which is considered the fronto-central counterpart of the face-specific posterior N170 component, had a reduced amplitude and delayed latency in the LPD group. This may indicate disturbances of structural face processing in LPD. Furthermore, the effect was independent of the emotional content of the videos. In contrast, static facial identity recognition performance in LPD was not significantly different from controls, and comprehensive testing of cognitive functions did not reveal any deficits in this group. We therefore conclude that PD, and more specifically the predominant right-hemispheric affection in left-onset PD, is associated with impaired processing of dynamic facial expressions

  3. Identification of different processes in magnetization dynamics of API steels using magnetic Barkhausen noise

    NASA Astrophysics Data System (ADS)

    Pérez-Benítez, J. A.; Espina-Hernández, J. H.; Le Man, Tu; Caleyo, F.; Hallen, J. M.

    2015-07-01

    This work presents a method to identify processes in magnetization dynamics using the angular dependence of the magnetic Barkhausen noise. The analysis reveals that three different processes of the magnetization dynamics could be identified using the angular dependence of the magnetic Barkhausen noise energy. The first process is the reversed domain nucleation which is related to the magneto-crystalline energy of the material, and the second and third ones are associated with 180° and 90° domain walls motions, respectively. Additionally, two transition regions were identified and they are located between the regions associated with the aforementioned processes. The causes involving these processes are analyzed and a method for establishing their location in the Barkhausen noise signal with respect to the applied magnetic field intensity is proposed.

  4. Study of dynamic process of acetic acid induced-whitening in epithelial tissues at cellular level

    NASA Astrophysics Data System (ADS)

    Wu, Tao T.; Qu, Jianan Y.; Cheung, Tak Hong; Yim, So Fan; Wong, Yick Fu

    2005-06-01

    Acetic acid, inducing transient whitening (acetowhitening) when applied to epithelial tissues, is a commonly used contrast agent for detecting early cervical cancer. The goals of this research are to investigate the temporal characteristics of acetowhitening process in cervical epithelial tissue at cellular level and develop a clear understanding of the diagnostic information carried in the acetowhitening signal. A system measuring time-resolved reflectance was built to study the rising and decay processes of acetowhitening signal from the monolayered cell cultures of normal and cancerous cervical squamous cells. It is found that the dynamic processes of acetowhitening in normal and cancerous cells are significantly different. The results of this study provide insight valuable to further understand the acetowhitening process in epithelial cells and to encourage the development of an objective procedure to detect the early cervical cancers based on quantitative monitoring of the dynamic process of acetowhitening

  5. Vague-to-crisp dynamics of percept formation modeled as operant (selectionist) process.

    PubMed

    Ilin, Roman; Zhang, Jun; Perlovsky, Leonid; Kozma, Robert

    2014-02-01

    We model the vague-to-crisp dynamics of forming percepts in the brain by combining two methodologies: dynamic logic (DL) and operant learning process. Forming percepts upon the presentation of visual inputs is likened to model selection based on sampled evidence. Our framework utilizes the DL in selecting the correct "percept" among competing ones, but uses an intrinsic reward mechanism to allow stochastic online update in lieu of performing the optimization step of the DL framework. We discuss the connection of our framework with cognitive processing and the intentional neurodynamic cycle. PMID:24465287

  6. The impact of glaciations and glacial processes on groundwater flow dynamics: a numerical investigation

    NASA Astrophysics Data System (ADS)

    Sterckx, A.; Lemieux, J. M.; Vaikmae, R.

    2015-12-01

    Numerical models are widely used to investigate the impact of glaciations on groundwater flow systems because they can simulate complex glacial processes. However, it isn't clear which of these processes are relevant to adequately capture groundwater flow dynamics. Given the complexity of representing these processes in a numerical model and the paucity of field data available for their validation, it is of prime interest to assess how they impact groundwater flow and if any of these processes could be neglected. In order to assess the specific impact of glacial processes on groundwater flow dynamics, those processes were included in the numerical model FEFLOW and simulations were conducted in a simple conceptual model representing a 21 ky glacial cycle in a sedimentary basin. The following processes have been simulated: subglacial recharge, linear and non-linear compaction of the porous medium under the weight of the ice, isostasy, proglacial lakes, as well as permafrost. Solute transport was simulated along with groundwater flow to track groundwater originating from the ice-sheet. To interpret the results, a base case scenario considering only subglacial recharge was selected and compared with the other scenarios, where individual glacial processes were simulated. When comparing the results at the end of the simulations, it appears that most of the aforementioned glacial processes don't lead to a significant difference in meltwater distribution with respect to the base case. Only hydromechanical coupling brings some noticeable change. Conversely, the type and the value of the boundary condition applied at the base of the ice-sheet play a major role in groundwater flow dynamics. The presence of confining hydrogeological units also seems to be a key to understand the long-term effect of glaciations. These results suggest that some of the glacial processes may be neglected for the simulation of groundwater flow dynamics during a glacial period.

  7. A single-rate context-dependent learning process underlies rapid adaptation to familiar object dynamics.

    PubMed

    Ingram, James N; Howard, Ian S; Flanagan, J Randall; Wolpert, Daniel M

    2011-09-01

    Motor learning has been extensively studied using dynamic (force-field) perturbations. These induce movement errors that result in adaptive changes to the motor commands. Several state-space models have been developed to explain how trial-by-trial errors drive the progressive adaptation observed in such studies. These models have been applied to adaptation involving novel dynamics, which typically occurs over tens to hundreds of trials, and which appears to be mediated by a dual-rate adaptation process. In contrast, when manipulating objects with familiar dynamics, subjects adapt rapidly within a few trials. Here, we apply state-space models to familiar dynamics, asking whether adaptation is mediated by a single-rate or dual-rate process. Previously, we reported a task in which subjects rotate an object with known dynamics. By presenting the object at different visual orientations, adaptation was shown to be context-specific, with limited generalization to novel orientations. Here we show that a multiple-context state-space model, with a generalization function tuned to visual object orientation, can reproduce the time-course of adaptation and de-adaptation as well as the observed context-dependent behavior. In contrast to the dual-rate process associated with novel dynamics, we show that a single-rate process mediates adaptation to familiar object dynamics. The model predicts that during exposure to the object across multiple orientations, there will be a degree of independence for adaptation and de-adaptation within each context, and that the states associated with all contexts will slowly de-adapt during exposure in one particular context. We confirm these predictions in two new experiments. Results of the current study thus highlight similarities and differences in the processes engaged during exposure to novel versus familiar dynamics. In both cases, adaptation is mediated by multiple context-specific representations. In the case of familiar object dynamics

  8. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2012-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA). These dynamic models were developed using the Aspen Custom Modeler (Registered TradeMark) and Aspen Plus(Registered TradeMark) process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  9. Heterogeneous recurrence representation and quantification of dynamic transitions in continuous nonlinear processes

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Yang, Hui

    2016-06-01

    Many real-world systems are evolving over time and exhibit dynamical behaviors. In order to cope with system complexity, sensing devices are commonly deployed to monitor system dynamics. Online sensing brings the proliferation of big data that are nonlinear and nonstationary. Although there is rich information on nonlinear dynamics, significant challenges remain in realizing the full potential of sensing data for system control. This paper presents a new approach of heterogeneous recurrence analysis for online monitoring and anomaly detection in nonlinear dynamic processes. A partition scheme, named as Q-tree indexing, is firstly introduced to delineate local recurrence regions in the multi-dimensional continuous state space. Further, we design a new fractal representation of state transitions among recurrence regions, and then develop new measures to quantify heterogeneous recurrence patterns. Finally, we develop a multivariate detection method for on-line monitoring and predictive control of process recurrences. Case studies show that the proposed approach not only captures heterogeneous recurrence patterns in the transformed space, but also provides effective online control charts to monitor and detect dynamical transitions in the underlying nonlinear processes.

  10. Fluid Dynamics Applied to Streams. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Cowan, Christina E.

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module deals specifically with concepts that are basic to fluid flow and…

  11. Individual-based approach to epidemic processes on arbitrary dynamic contact networks

    PubMed Central

    Rocha, Luis E. C.; Masuda, Naoki

    2016-01-01

    The dynamics of contact networks and epidemics of infectious diseases often occur on comparable time scales. Ignoring one of these time scales may provide an incomplete understanding of the population dynamics of the infection process. We develop an individual-based approximation for the susceptible-infected-recovered epidemic model applicable to arbitrary dynamic networks. Our framework provides, at the individual-level, the probability flow over time associated with the infection dynamics. This computationally efficient framework discards the correlation between the states of different nodes, yet provides accurate results in approximating direct numerical simulations. It naturally captures the temporal heterogeneities and correlations of contact sequences, fundamental ingredients regulating the timing and size of an epidemic outbreak, and the number of secondary infections. The high accuracy of our approximation further allows us to detect the index individual of an epidemic outbreak in real-life network data. PMID:27562273

  12. Time Dependency of Psychotherapeutic Exchanges: The Contribution of the Theory of Dynamic Systems in Analyzing Process

    PubMed Central

    Salvatore, Sergio; Tschacher, Wolfgang

    2012-01-01

    This paper provides a general framework for the use of Theory of Dynamic Systems (TDS) in the field of psychotherapy research. Psychotherapy is inherently dynamic, namely a function of time. Consequently, the improvement of construct validity and clinical relevance of psychotherapy process research require the development of models of investigation allowing dynamic mappings of clinical exchange. Thus, TDS becomes a significant theoretical and methodological reference. The paper focuses two topics. First, the main concepts of TDS are briefly introduced together with a basic typology of approaches developed within this domain. Second, we propose a repertoire of investigation strategies that can be used to capture the dynamic nature of clinical exchange. In this way we intend to highlight the feasibility and utility of strategies of analysis informed by TDS. PMID:22848205

  13. Individual-based approach to epidemic processes on arbitrary dynamic contact networks.

    PubMed

    Rocha, Luis E C; Masuda, Naoki

    2016-01-01

    The dynamics of contact networks and epidemics of infectious diseases often occur on comparable time scales. Ignoring one of these time scales may provide an incomplete understanding of the population dynamics of the infection process. We develop an individual-based approximation for the susceptible-infected-recovered epidemic model applicable to arbitrary dynamic networks. Our framework provides, at the individual-level, the probability flow over time associated with the infection dynamics. This computationally efficient framework discards the correlation between the states of different nodes, yet provides accurate results in approximating direct numerical simulations. It naturally captures the temporal heterogeneities and correlations of contact sequences, fundamental ingredients regulating the timing and size of an epidemic outbreak, and the number of secondary infections. The high accuracy of our approximation further allows us to detect the index individual of an epidemic outbreak in real-life network data. PMID:27562273

  14. From neuron to behavior: dynamic equation-based prediction of biological processes in motor control.

    PubMed

    Daun-Gruhn, Silvia; Büschges, Ansgar

    2011-07-01

    This article presents the use of continuous dynamic models in the form of differential equations to describe and predict temporal changes in biological processes and discusses several of its important advantages over discontinuous bistable ones, exemplified on the stick insect walking system. In this system, coordinated locomotion is produced by concerted joint dynamics and interactions on different dynamical scales, which is therefore difficult to understand. Modeling using differential equations possesses, in general, the potential for the inclusion of biological detail, the suitability for simulation, and most importantly, parameter manipulation to make predictions about the system behavior. We will show in this review article how, in case of the stick insect walking system, continuous dynamical system models can help to understand coordinated locomotion. PMID:21769740

  15. Markov and non-Markov processes in complex systems by the dynamical information entropy

    NASA Astrophysics Data System (ADS)

    Yulmetyev, R. M.; Gafarov, F. M.

    1999-12-01

    We consider the Markov and non-Markov processes in complex systems by the dynamical information Shannon entropy (DISE) method. The influence and important role of the two mutually dependent channels of entropy alternation (creation or generation of correlation) and anti-correlation (destroying or annihilation of correlation) have been discussed. The developed method has been used for the analysis of the complex systems of various natures: slow neutron scattering in liquid cesium, psychology (short-time numeral and pattern human memory and effect of stress on the dynamical taping-test), random dynamics of RR-intervals in human ECG (problem of diagnosis of various disease of the human cardio-vascular systems), chaotic dynamics of the parameters of financial markets and ecological systems.

  16. [Modeling and dynamic simulation of the multimode anaerobic/anoxic/aerobic wastewater treatment process].

    PubMed

    Zhou, Zhen; Wu, Zhi-Chao; Wang, Zhi-Wei; Du, Xing-Zhi; Jiang, Ling-Yan; Xing, Can

    2013-04-01

    Mathematical modeling is a useful tool for professional education, process development, design evaluation, operational optimization and automatic control of the wastewater treatment system, and has been extensively applied in numerous full-scale wastewater treatment plants. The ASM2d model was calibrated by the process data, and used to simulate 15 operational test runs of the multimode anaerobic/anoxic/aerobic (AAO) process. After calibration, the model was capable of simulating the sludge concentrations and effluent data in 15 test runs of the multimode AAO system. The dynamic simulation results showed an overall good agreement between the measured and simulated data, for both effluent data and sludge concentrations, with a good reproduction of dynamic processes in AO test runs. PMID:23798127

  17. A simple assessment model to quantifying the dynamic hippocampal neurogenic process in the adult mammalian brain.

    PubMed

    Choi, Minee L; Begeti, Faye; Barker, Roger A; Kim, Namho

    2016-04-01

    Adult hippocampal neurogenesis is a highly dynamic process in which new cells are born, but only some of which survive. Of late it has become clear that these surviving newborn neurons have functional roles, most notably in certain forms of memory. Conventional methods to look at adult neurogenesis are based on the quantification of the number of newly born neurons using a simple cell counting methodology. However, this type of approach fails to capture the dynamic aspects of the neurogenic process, where neural proliferation, death and differentiation take place continuously and simultaneously. In this paper, we propose a simple mathematical approach to better understand the adult neurogenic process in the hippocampus which in turn will allow for a better analysis of this process in disease states and following drug therapies. © 2015 Wiley Periodicals, Inc. PMID:26443687

  18. Faces in Motion: Selectivity of Macaque and Human Face Processing Areas for Dynamic Stimuli

    PubMed Central

    Polosecki, Pablo; Moeller, Sebastian; Schweers, Nicole; Romanski, Lizabeth M.; Tsao, Doris Y.

    2013-01-01

    Face recognition mechanisms need to extract information from static and dynamic faces. It has been hypothesized that the analysis of dynamic face attributes is performed by different face areas than the analysis of static facial attributes. To date, there is no evidence for such a division of labor in macaque monkeys. We used fMRI to determine specializations of macaque face areas for motion. Face areas in the fundus of the superior temporal sulcus responded to general object motion; face areas outside of the superior temporal sulcus fundus responded more to facial motion than general object motion. Thus, the macaque face-processing system exhibits regional specialization for facial motion. Human face areas, processing the same stimuli, exhibited specializations for facial motion as well. Yet the spatial patterns of facial motion selectivity differed across species, suggesting that facial dynamics are analyzed differently in humans and macaques. PMID:23864665

  19. Relaxation process of Fe(CuNb)SiB amorphous alloys investigated by dynamical calorimetry

    SciTech Connect

    Zhu, J.; Clavaguera-Mora, M.T.; Clavaguera, N.

    1997-03-01

    Differential scanning calorimetry and dynamic differential scanning calorimetry were used to analyze the relaxation process of Fe(CuNb)SiB amorphous alloys. The Curie temperature (T{sub C}) evolution of the amorphous phase during relaxation as a function of heating rate, time and pre-annealing temperature were measured. Two distinct relaxation processes are observed, consequent with topological and chemical short range order changes. {copyright} {ital 1997 American Institute of Physics.}

  20. Dynamic processes in the lower ionosphere as indicators of the interaction between the different atmospheric layers

    NASA Astrophysics Data System (ADS)

    Bencze, Pal

    The origins of lower-ionospheric wave phenomena in the lower and middle atmospheric layers are examined in a theoretical review and illustrated with graphs of typical observational data. Particular attention is given to planetary (Rossby), tidal, and gravity waves; turbulence and heat generation; and ionization associated with dynamic processes in the geomagnetic conjugate region.

  1. Optical studies of dynamical processes in disordered systems. [Annual] progress report

    SciTech Connect

    Yen, W.M.

    1993-12-31

    Focus continues to be on dynamical processes such as relaxation and energy diffusion which affect the structure and optical properties of disordered and amorphous materials, particularly glasses which are luminescent in the near infrared and their efficiency. Elementary excitations in amorphous materials are also under study. 12 refs.

  2. Metaphors in Mathematics Classrooms: Analyzing the Dynamic Process of Teaching and Learning of Graph Functions

    ERIC Educational Resources Information Center

    Font, Vicenc; Bolite, Janete; Acevedo, Jorge

    2010-01-01

    This article presents an analysis of a phenomenon that was observed within the dynamic processes of teaching and learning to read and elaborate Cartesian graphs for functions at high-school level. Two questions were considered during this investigation: What types of metaphors does the teacher use to explain the graphic representation of functions…

  3. Studies of dynamic processes in biomedicine by high-speed spectral optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wojtkowski, M.; Kowalczyk, A.

    2007-02-01

    This contribution demonstrates potential of Spectral Optical Coherence Tomography (SOCT) for studies of dynamic processes in biomedicine occurring at various time scales. Several examples from ophthalmology, optometry, surgery, neurology are given to illustrate the extension of SOCT beyond pure morphological investigations.

  4. Dynamic Processes of Speech Development by Seven Adult Learners of Japanese in a Domestic Immersion Context

    ERIC Educational Resources Information Center

    Fukuda, Makiko

    2014-01-01

    The present study revealed the dynamic process of speech development in a domestic immersion program by seven adult beginning learners of Japanese. The speech data were analyzed with fluency, accuracy, and complexity measurements at group, interindividual, and intraindividual levels. The results revealed the complex nature of language development…

  5. DYNAMICS OF TASK AND PROCESS--THE CLASSROOM AS SOCIAL ORGANISM.

    ERIC Educational Resources Information Center

    KOFF, ROBERT H.

    A THEORETICAL PARADIGM FOR ANALYZING THE DYNAMICS OF TASK AND PROCESS COMPONENTS OF GROUP LIFE AS THEY ARE RELATED TO THE MANIFOLD FORCES OPERATIVE IN THE CLASSROOM IS PRESENTED. PUPILS ARE VIEWED AS MEMBERS OF A PREDOMINANTLY WORK-ORIENTED CULTURE--THE CLASSROOM. WITHIN THIS CULTURE, TWO KINDS OF CONFLICT-PRODUCING DEMANDS TO WHICH PUPILS MUST…

  6. Dynamic Processes of Conceptual Change: Analysis of Constructing Mental Models of Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Chiu, Mei-Hung; Chou, Chin-Cheng; Liu, Chia-Ju

    2002-01-01

    Investigates students' mental models of chemical equilibrium using dynamic science assessments. Reports that students at various levels have misconceptions about chemical equilibrium. Involves 10th grade students (n=30) in the study doing a series of hands-on chemical experiments. Focuses on the process of constructing mental models, dynamic…

  7. A Dynamic Causal Modeling Analysis of the Effective Connectivities Underlying Top-Down Letter Processing

    ERIC Educational Resources Information Center

    Liu, Jiangang; Li, Jun; Rieth, Cory A.; Huber, David E.; Tian, Jie; Lee, Kang

    2011-01-01

    The present study employed dynamic causal modeling to investigate the effective functional connectivity between regions of the neural network involved in top-down letter processing. We used an illusory letter detection paradigm in which participants detected letters while viewing pure noise images. When participants detected letters, the response…

  8. Self-Organized Information Processing in Neuronal Networks: Replacing Layers in Deep Networks by Dynamics

    NASA Astrophysics Data System (ADS)

    Kirst, Christoph

    It is astonishing how the sub-parts of a brain co-act to produce coherent behavior. What are mechanism that coordinate information processing and communication and how can those be changed flexibly in order to cope with variable contexts? Here we show that when information is encoded in the deviations around a collective dynamical reference state of a recurrent network the propagation of these fluctuations is strongly dependent on precisely this underlying reference. Information here 'surfs' on top of the collective dynamics and switching between states enables fast and flexible rerouting of information. This in turn affects local processing and consequently changes in the global reference dynamics that re-regulate the distribution of information. This provides a generic mechanism for self-organized information processing as we demonstrate with an oscillatory Hopfield network that performs contextual pattern recognition. Deep neural networks have proven to be very successful recently. Here we show that generating information channels via collective reference dynamics can effectively compress a deep multi-layer architecture into a single layer making this mechanism a promising candidate for the organization of information processing in biological neuronal networks.

  9. Dynamic information processing states revealed through neurocognitive models of object semantics

    PubMed Central

    Clarke, Alex

    2015-01-01

    Recognising objects relies on highly dynamic, interactive brain networks to process multiple aspects of object information. To fully understand how different forms of information about objects are represented and processed in the brain requires a neurocognitive account of visual object recognition that combines a detailed cognitive model of semantic knowledge with a neurobiological model of visual object processing. Here we ask how specific cognitive factors are instantiated in our mental processes and how they dynamically evolve over time. We suggest that coarse semantic information, based on generic shared semantic knowledge, is rapidly extracted from visual inputs and is sufficient to drive rapid category decisions. Subsequent recurrent neural activity between the anterior temporal lobe and posterior fusiform supports the formation of object-specific semantic representations – a conjunctive process primarily driven by the perirhinal cortex. These object-specific representations require the integration of shared and distinguishing object properties and support the unique recognition of objects. We conclude that a valuable way of understanding the cognitive activity of the brain is though testing the relationship between specific cognitive measures and dynamic neural activity. This kind of approach allows us to move towards uncovering the information processing states of the brain and how they evolve over time. PMID:25745632

  10. Structural, dynamic, and electrostatic properties of fully hydrated DMPC bilayers from molecular dynamics simulations accelerated with graphical processing units (GPUs).

    PubMed

    Ganesan, Narayan; Bauer, Brad A; Lucas, Timothy R; Patel, Sandeep; Taufer, Michela

    2011-11-15

    We present results of molecular dynamics simulations of fully hydrated DMPC bilayers performed on graphics processing units (GPUs) using current state-of-the-art non-polarizable force fields and a local GPU-enabled molecular dynamics code named FEN ZI. We treat the conditionally convergent electrostatic interaction energy exactly using the particle mesh Ewald method (PME) for solution of Poisson's Equation for the electrostatic potential under periodic boundary conditions. We discuss elements of our implementation of the PME algorithm on GPUs as well as pertinent performance issues. We proceed to show results of simulations of extended lipid bilayer systems using our program, FEN ZI. We performed simulations of DMPC bilayer systems consisting of 17,004, 68,484, and 273,936 atoms in explicit solvent. We present bilayer structural properties (atomic number densities, electron density profiles), deuterium order parameters (S(CD)), electrostatic properties (dipole potential, water dipole moments), and orientational properties of water. Predicted properties demonstrate excellent agreement with experiment and previous all-atom molecular dynamics simulations. We observe no statistically significant differences in calculated structural or electrostatic properties for different system sizes, suggesting the small bilayer simulations (less than 100 lipid molecules) provide equivalent representation of structural and electrostatic properties associated with significantly larger systems (over 1000 lipid molecules). We stress that the three system size representations will have differences in other properties such as surface capillary wave dynamics or surface tension related effects that are not probed in the current study. The latter properties are inherently dependent on system size. This contribution suggests the suitability of applying emerging GPU technologies to studies of an important class of biological environments, that of lipid bilayers and their associated integral

  11. The dynamic nature of the reconsolidation process and its boundary conditions: Evidence based on human tests.

    PubMed

    Fernández, Rodrigo S; Bavassi, Luz; Forcato, Cecilia; Pedreira, María E

    2016-04-01

    The reconsolidation process is the mechanism by which the strength and/or content of consolidated memories are updated. This process is triggered by the presentation of a reminder (training cues). It is not always possible to trigger the reconsolidation process. For example, memory age and strength are boundary conditions for the reconsolidation process. Here, we investigated the dynamic changes in these conditions. We propose that the boundary conditions of the reconsolidation process are not fixed and vary as a consequence of the interaction between memory features and reminder characteristics. To modify memory properties, participants received a threatening social protocol that improves memory acquisition or a control condition (fake, without social interaction) prior to learning pairs of meaningless syllables. To determine whether a strong young or old declarative memory undergoes the reconsolidation process, we used an interference task (a second list of pairs of meaningless syllables) to disrupt memory re-stabilization. To assess whether the older memory could be strengthened, we repeated the triggering of reconsolidation. Strong young or old memories modulated by a threatening experience could be interfered during reconsolidation and updated (strengthened) by reconsolidation. Rather than being fixed, boundary conditions vary according to the memory features (strong memory), which indicates the dynamic nature of the reconsolidation process. Our findings demonstrate that it is possible to modify these limits by recruiting the reconsolidation process and making it functionally operative again. This novel scenario opens the possibility to new therapeutically approaches that take into account the reconsolidation process. PMID:26952269

  12. Note: Quasi-real-time analysis of dynamic near field scattering data using a graphics processing unit

    NASA Astrophysics Data System (ADS)

    Cerchiari, G.; Croccolo, F.; Cardinaux, F.; Scheffold, F.

    2012-10-01

    We present an implementation of the analysis of dynamic near field scattering (NFS) data using a graphics processing unit. We introduce an optimized data management scheme thereby limiting the number of operations required. Overall, we reduce the processing time from hours to minutes, for typical experimental conditions. Previously the limiting step in such experiments, the processing time is now comparable to the data acquisition time. Our approach is applicable to various dynamic NFS methods, including shadowgraph, Schlieren and differential dynamic microscopy.

  13. Acquisition and Analysis of Dynamic Responses of a Historic Pedestrian Bridge using Video Image Processing

    NASA Astrophysics Data System (ADS)

    O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; O'Donnell, Deirdre; Wright, Robert; Pakrashi, Vikram

    2015-07-01

    Video based tracking is capable of analysing bridge vibrations that are characterised by large amplitudes and low frequencies. This paper presents the use of video images and associated image processing techniques to obtain the dynamic response of a pedestrian suspension bridge in Cork, Ireland. This historic structure is one of the four suspension bridges in Ireland and is notable for its dynamic nature. A video camera is mounted on the river-bank and the dynamic responses of the bridge have been measured from the video images. The dynamic response is assessed without the need of a reflector on the bridge and in the presence of various forms of luminous complexities in the video image scenes. Vertical deformations of the bridge were measured in this regard. The video image tracking for the measurement of dynamic responses of the bridge were based on correlating patches in time-lagged scenes in video images and utilisinga zero mean normalised cross correlation (ZNCC) metric. The bridge was excited by designed pedestrian movement and by individual cyclists traversing the bridge. The time series data of dynamic displacement responses of the bridge were analysedto obtain the frequency domain response. Frequencies obtained from video analysis were checked against accelerometer data from the bridge obtained while carrying out the same set of experiments used for video image based recognition.

  14. Acquisition and Analysis of Dynamic Responses of a Historic Pedestrian Bridge using Video Image Processing

    NASA Astrophysics Data System (ADS)

    O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; O'Donnell, Deirdre; Wright, Robert; Pakrashi, Vikram

    2015-07-01

    Video based tracking is capable of analysing bridge vibrations that are characterised by large amplitudes and low frequencies. This paper presents the use of video images and associated image processing techniques to obtain the dynamic response of a pedestrian suspension bridge in Cork, Ireland. This historic structure is one of the four suspension bridges in Ireland and is notable for its dynamic nature. A video camera is mounted on the river-bank and the dynamic responses of the bridge have been measured from the video images. The dynamic response is assessed without the need of a reflector on the bridge and in the presence of various forms of luminous complexities in the video image scenes. Vertical deformations of the bridge were measured in this regard. The video image tracking for the measurement of dynamic responses of the bridge were based on correlating patches in time-lagged scenes in video images and utilisinga zero mean normalisedcross correlation (ZNCC) metric. The bridge was excited by designed pedestrian movement and by individual cyclists traversing the bridge. The time series data of dynamic displacement responses of the bridge were analysedto obtain the frequency domain response. Frequencies obtained from video analysis were checked against accelerometer data from the bridge obtained while carrying out the same set of experiments used for video image based recognition.

  15. PREFACE: Dynamically slow processes and near-arrest phenomena in soft matter Dynamically slow processes and near-arrest phenomena in soft matter

    NASA Astrophysics Data System (ADS)

    Chen, Sow-Hsin

    2009-12-01

    The aim of this special issue is to summarize what has been learnt by both the network (the Marie Curie Research and Training Network on Arrested Matter) and the broader international community on dynamically slow processes and near-arrest phenomena. Another aspect of this special issue is to highlight new directions in which dynamical slowing down is, or may be, important. In particular, this issue is dedicated to a member of this network, Professor Francesco Mallamace, who reached the venerable age of 60 in 2008. Professor Francesco Mallamace is one of the group leaders of the complex materials and systems worldwide network. In particular he is a pioneer who has successfully investigated aggregation phenomena and the dynamics of colloids, and the properties of water in the deeply supercooled phase region. The scientific activities of Professor Mallamace are mainly experimental, making use of different scattering and spectroscopic techniques. He is a very active and well-known scientist not only for his research but also for training young scientists by organizing many international networks, congresses and schools. Under his influence, mainly by taking advantage of large international collaborative activities, the University of Messina has become one of the major European centers for complex systems. Among the invited speakers to the final conference of the network, we have collected the following 11 interesting articles. In this special issue, we roughly classify the papers according to three major groups: the first four papers deal with the theory and experiments on the dynamic crossover phenomena in general glass-forming liquids, the next four papers deal explicitly with slow dynamics in supercooled confined water and the last three papers deal with the interpretation of the near-arrest phenomena in colloids. Chong et al used an extended mode coupling theory, which includes the hopping effect, to predict a dynamic crossover at Tc in the α-relaxation time and

  16. Stochastic lattice gas model describing the dynamics of the SIRS epidemic process

    NASA Astrophysics Data System (ADS)

    de Souza, David R.; Tomé, Tânia

    2010-03-01

    We study a stochastic process describing the onset of spreading dynamics of an epidemic in a population composed of individuals of three classes: susceptible (S), infected (I), and recovered (R). The stochastic process is defined by local rules and involves the following cyclic process: S → I → R → S (SIRS). The open process S → I → R (SIR) is studied as a particular case of the SIRS process. The epidemic process is analyzed at different levels of description: by a stochastic lattice gas model and by a birth and death process. By means of Monte Carlo simulations and dynamical mean-field approximations we show that the SIRS stochastic lattice gas model exhibit a line of critical points separating the two phases: an absorbing phase where the lattice is completely full of S individuals and an active phase where S, I and R individuals coexist, which may or may not present population cycles. The critical line, that corresponds to the onset of epidemic spreading, is shown to belong in the directed percolation universality class. By considering the birth and death process we analyze the role of noise in stabilizing the oscillations.

  17. A functional-dynamic reflection on participatory processes in modeling projects.

    PubMed

    Seidl, Roman

    2015-12-01

    The participation of nonscientists in modeling projects/studies is increasingly employed to fulfill different functions. However, it is not well investigated if and how explicitly these functions and the dynamics of a participatory process are reflected by modeling projects in particular. In this review study, I explore participatory modeling projects from a functional-dynamic process perspective. The main differences among projects relate to the functions of participation-most often, more than one per project can be identified, along with the degree of explicit reflection (i.e., awareness and anticipation) on the dynamic process perspective. Moreover, two main approaches are revealed: participatory modeling covering diverse approaches and companion modeling. It becomes apparent that the degree of reflection on the participatory process itself is not always explicit and perfectly visible in the descriptions of the modeling projects. Thus, the use of common protocols or templates is discussed to facilitate project planning, as well as the publication of project results. A generic template may help, not in providing details of a project or model development, but in explicitly reflecting on the participatory process. It can serve to systematize the particular project's approach to stakeholder collaboration, and thus quality management. PMID:25999270

  18. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin; Anderson, Molly

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA) that were developed using the Aspen Custom Modeler and Aspen Plus process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  19. Broader Understanding of Multiple Component Dynamic Processes in Miscible Polymer/Polymer Blends

    NASA Astrophysics Data System (ADS)

    Sharma, Ravi; Yang, Hengxi; Green, Peter

    Utilizing two different experimental techniques, isothermal frequency sweeps and isochronal temperature sweeps, in broadband dielectric spectroscopy can allow for the identification of multiple processes derived from the same relaxation mechanism in certain polymer/polymer blends. A study of poly(vinyl methyl ether) (PVME) in bulk, miscible blends with polystyrene (PS) gives evidence of two separate relaxation processes associated exclusively with the segmental dynamics of PVME; the α0 process from the temperature sweep, related to average segmental dynamics, and the α' process from the frequency sweep, related to relaxations confined within ``frozen'' domains. The appearance of multiple processes is driven by compositional heterogeneity, mainly chain connectivity and concentration fluctuation effects. Analysis of the breadth and intensity of the dielectric loss curves gives insight into the structure and thermodynamics of the blend, which in turn can explain temperature and composition dependent dynamic trends. These results are contrasted with other miscible blend systems, polyisoprene (PI)/poly(4-tert-butylstyrene) (P4tBS) and polyisoprene (PI)/polyvinyl ether (PVE).

  20. Dynamic control and information processing in chemical reaction systems by tuning self-organization behavior

    NASA Astrophysics Data System (ADS)

    Lebiedz, Dirk; Brandt-Pollmann, Ulrich

    2004-09-01

    Specific external control of chemical reaction systems and both dynamic control and signal processing as central functions in biochemical reaction systems are important issues of modern nonlinear science. For example nonlinear input-output behavior and its regulation are crucial for the maintainance of the life process that requires extensive communication between cells and their environment. An important question is how the dynamical behavior of biochemical systems is controlled and how they process information transmitted by incoming signals. But also from a general point of view external forcing of complex chemical reaction processes is important in many application areas ranging from chemical engineering to biomedicine. In order to study such control issues numerically, here, we choose a well characterized chemical system, the CO oxidation on Pt(110), which is interesting per se as an externally forced chemical oscillator model. We show numerically that tuning of temporal self-organization by input signals in this simple nonlinear chemical reaction exhibiting oscillatory behavior can in principle be exploited for both specific external control of dynamical system behavior and processing of complex information.

  1. Join-Lock-Sensitive Forward Reachability Analysis for Concurrent Programs with Dynamic Process Creation

    NASA Astrophysics Data System (ADS)

    Gawlitza, Thomas Martin; Lammich, Peter; Müller-Olm, Markus; Seidl, Helmut; Wenner, Alexander

    Dynamic Pushdown Networks (DPNs) are a model for parallel programs with (recursive) procedures and dynamic process creation. Constraints on the sequences of spawned processes allow to extend the basic model with joining of created processes [2]. Orthogonally DPNs can be extended with nested locking [9]. Reachability of a regular set R of configurations in presence of stable constraints as well as reachability without constraints but with nested locking are based on computing the set of predecessors pre *(R). In the present paper, we present a forward-propagating algorithm for deciding reachability for DPNs. We represent sets of executions by sets of execution trees and show that the set of all execution trees resulting in configurations from R which either allow a lock-sensitive execution or a join-sensitive execution, is regular. Here, we rely on basic results about macro tree transducers. As a second contribution, we show that reachability is decidable also for DPNs with both nested locking and joins.

  2. Numerical analysis of gas-dynamic instabilities during the laser drilling process

    NASA Astrophysics Data System (ADS)

    Khan, A. H.; O'Neill, W.; Tunna, L.; Sutcliffe, C. J.

    2006-08-01

    The use of high-pressure gas jets in the laser-drilling process has significant influence on the melt ejection mechanism. These jets are highly unstable and this directly relates to the gas pressure and the geometry of the hole being drilled. The evolution of gas-dynamic instabilities during the laser-drilling process was investigated numerically. A minimum length nozzle (MLN) with a 300 μm throat diameter was modelled at various gas pressures, with the gas jet impinging on a range of simulated holes with different aspect ratios. The simulations predict the formation of surface pressure fluctuations that have a broad spectrum due to both the turbulent nature of the jet and the blunt shock oscillation on the surface. The surface pressure variations and the blunt shock oscillation govern the gas dynamic conditions inside the hole, which strongly influence the melt ejection phenomena during the laser-drilling process.

  3. Microbial Community Structures and Dynamics in the O3/BAC Drinking Water Treatment Process

    PubMed Central

    Tian, Jian; Lu, Jun; Zhang, Yu; Li, Jian-Cheng; Sun, Li-Chen; Hu, Zhang-Li

    2014-01-01

    Effectiveness of drinking water treatment, in particular pathogen control during the water treatment process, is always a major public health concern. In this investigation, the application of PCR-DGGE technology to the analysis of microbial community structures and dynamics in the drinking water treatment process revealed several dominant microbial populations including: α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Bacteroidetes, Actinobacteria Firmicutes and Cyanobacteria. α-Proteobacteria and β-Proteobacteria were the dominant bacteria during the whole process. Bacteroidetes and Firmicutes were the dominant bacteria before and after treatment, respectively. Firmicutes showed season-dependent changes in population dynamics. Importantly, γ-Proteobacteria, which is a class of medically important bacteria, was well controlled by the O3/biological activated carbon (BAC) treatment, resulting in improved effluent water bio-safety. PMID:24937529

  4. Multiscale crystal defect dynamics: a dual-lattice process zone model

    NASA Astrophysics Data System (ADS)

    Li, Shaofan; Ren, Bo; Minaki, Hiroyuki

    2014-05-01

    In this work, we present the theoretical and computational formulations of a multiscale crystal defect dynamics (MCDD) for the simulation of crystal defects at small scales. The main novelties of the proposed MCDD are: (1) We use the dual-lattice tessellation to construct a dual-lattice process zone model that can represent different types of crystal defects in a single crystal; (2) We adopt a fourth-order (four scales) hierarchical strain gradient theory to model constitutive behaviours of various defect process zones, in which the atomistic-informed higher order Cauchy-Born rule is employed, and (3) We employ the Barycentric finite element technique to construct finite element shape functions for polygonal and polyhedral process zone elements. The proposed MCDD method provides an efficient and viable alternative for both molecular dynamics and dislocation dynamics in simulations of defect evolutions such as void growth, dislocation nucleation, and fracture. In particular, MCDD offers a mesoscale description for dynamic lattice microstructure, defect microstructure, and their interactions. The method offers a possible solution for studying nanoscale and mesoscale crystalline plasticity.

  5. Dynamic stepping information process method in mobile bio-sensing computing environments.

    PubMed

    Lee, Tae-Gyu; Lee, Seong-Hoon

    2014-01-01

    Recently, the interest toward human longevity free from diseases is being converged as one system frame along with the development of mobile computing environment, diversification of remote medical system and aging society. Such converged system enables implementation of a bioinformatics system created as various supplementary information services by sensing and gathering health conditions and various bio-information of mobile users to set up medical information. The existing bio-information system performs static and identical process without changes after the bio-information process defined at the initial system configuration executes the system. However, such static process indicates ineffective execution in the application of mobile bio-information system performing mobile computing. Especially, an inconvenient duty of having to perform initialization of new definition and execution is accompanied during the process configuration of bio-information system and change of method. This study proposes a dynamic process design and execution method to overcome such ineffective process. PMID:24704651

  6. Investigation of Dynamic and Physical Processes in the Upper Troposphere and Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Pfister, Leonhard (Technical Monitor)

    2002-01-01

    Research under this Cooperative Agreement has been funded by several NASA Earth Science programs: the Atmospheric Effects of Radiation Program (AEAP), the Upper Atmospheric Research Program (UARP), and most recently the Atmospheric Chemistry and Modeling Assessment Program (ACMAP). The purpose of the AEAP was to understand the impact of the present and future fleets of conventional jet traffic on the upper troposphere and lower stratosphere, while complementary airborne observations under UARP seek to understand the complex interactions of dynamical and chemical processes that affect the ozone layer. The ACMAP is a more general program of modeling and data analysis in the general area of atmospheric chemistry and dynamics, and the Radiation Sciences program.

  7. Optical studies of dynamical processes in disordered systems. Progress report, 1993--1994

    SciTech Connect

    Yen, W.M.

    1994-05-01

    We present a brief summary of the progress we have attained in the course of the second year of the present three year rant. The focus of our research continues to be on studies of those dynamical processes such as relaxation and energy diffusion which affect the structure and the optical properties of disordered and amorphous materials. We have been particularly concerned with some new glass compositions which are luminescent in the near infrared (NIR) and on the factors which determine the efficiencies of these materials. In addition, we have begun to investigate the nature and the dynamics of the elementary excitations characteristic of amorphous materials.

  8. Characterization of degeneration process in thermo-acoustic combustion instability using dynamical systems theory

    NASA Astrophysics Data System (ADS)

    Hayashi, Kenta; Gotoda, Hiroshi; Okuno, Yuta; Tachibana, Shigeru; Tokyo University of Science Collaboration; Japan Aerospace Exploration Agency Collaboration

    2015-11-01

    We have experimentally investigated the degeneration process of combustion instability in a lean premixed gas-turbine model combustor on the basis of dynamical systems theory. Our previous study reported that with increasing the equivalence ratio, the dynamical behavior of combustion state close to lean blowout transits from stochastic fluctuations to periodic thermoacoustic combustion oscillations via low-dimensional chaotic oscillations. The further increase in the equivalence ratio gives rise to the quasi-periodic oscillations and the subsequent chaotic oscillations with small amplitudes. The route to chaotic oscillations is quantitatively shown by the use of nonlinear time series analysis involving the color recurrence plots, permutation entropy and local predictor.

  9. Dynamic Bubble-Check Algorithm for Check Node Processing in Q-Ary LDPC Decoders

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Bai, Baoming; Ma, Xiao; Sun, Rong

    A simplified algorithm for check node processing of extended min-sum (EMS) q-ary LDPC decoders is presented in this letter. Compared with the bubble check algorithm, the so-called dynamic bubble-check (DBC) algorithm aims to further reduce the computational complexity for the elementary check node (ECN) processing. By introducing two flag vectors in ECN processing, The DBC algorithm can use the minimum number of comparisons at each step. Simulation results show that, DBC algorithm uses significantly fewer comparison operations than the bubble check algorithm, and presents no performance loss compared with standard EMS algorithm on AWGN channels.

  10. Real-time image processing for non-contact monitoring of dynamic displacements using smartphone technologies

    NASA Astrophysics Data System (ADS)

    Min, Jae-Hong; Gelo, Nikolas J.; Jo, Hongki

    2016-04-01

    The newly developed smartphone application, named RINO, in this study allows measuring absolute dynamic displacements and processing them in real time using state-of-the-art smartphone technologies, such as high-performance graphics processing unit (GPU), in addition to already powerful CPU and memories, embedded high-speed/ resolution camera, and open-source computer vision libraries. A carefully designed color-patterned target and user-adjustable crop filter enable accurate and fast image processing, allowing up to 240fps for complete displacement calculation and real-time display. The performances of the developed smartphone application are experimentally validated, showing comparable accuracy with those of conventional laser displacement sensor.

  11. Modeling Dynamic Systems with Efficient Ensembles of Process-Based Models

    PubMed Central

    Simidjievski, Nikola; Todorovski, Ljupčo; Džeroski, Sašo

    2016-01-01

    Ensembles are a well established machine learning paradigm, leading to accurate and robust models, predominantly applied to predictive modeling tasks. Ensemble models comprise a finite set of diverse predictive models whose combined output is expected to yield an improved predictive performance as compared to an individual model. In this paper, we propose a new method for learning ensembles of process-based models of dynamic systems. The process-based modeling paradigm employs domain-specific knowledge to automatically learn models of dynamic systems from time-series observational data. Previous work has shown that ensembles based on sampling observational data (i.e., bagging and boosting), significantly improve predictive performance of process-based models. However, this improvement comes at the cost of a substantial increase of the computational time needed for learning. To address this problem, the paper proposes a method that aims at efficiently learning ensembles of process-based models, while maintaining their accurate long-term predictive performance. This is achieved by constructing ensembles with sampling domain-specific knowledge instead of sampling data. We apply the proposed method to and evaluate its performance on a set of problems of automated predictive modeling in three lake ecosystems using a library of process-based knowledge for modeling population dynamics. The experimental results identify the optimal design decisions regarding the learning algorithm. The results also show that the proposed ensembles yield significantly more accurate predictions of population dynamics as compared to individual process-based models. Finally, while their predictive performance is comparable to the one of ensembles obtained with the state-of-the-art methods of bagging and boosting, they are substantially more efficient. PMID:27078633

  12. Modeling Dynamic Systems with Efficient Ensembles of Process-Based Models.

    PubMed

    Simidjievski, Nikola; Todorovski, Ljupčo; Džeroski, Sašo

    2016-01-01

    Ensembles are a well established machine learning paradigm, leading to accurate and robust models, predominantly applied to predictive modeling tasks. Ensemble models comprise a finite set of diverse predictive models whose combined output is expected to yield an improved predictive performance as compared to an individual model. In this paper, we propose a new method for learning ensembles of process-based models of dynamic systems. The process-based modeling paradigm employs domain-specific knowledge to automatically learn models of dynamic systems from time-series observational data. Previous work has shown that ensembles based on sampling observational data (i.e., bagging and boosting), significantly improve predictive performance of process-based models. However, this improvement comes at the cost of a substantial increase of the computational time needed for learning. To address this problem, the paper proposes a method that aims at efficiently learning ensembles of process-based models, while maintaining their accurate long-term predictive performance. This is achieved by constructing ensembles with sampling domain-specific knowledge instead of sampling data. We apply the proposed method to and evaluate its performance on a set of problems of automated predictive modeling in three lake ecosystems using a library of process-based knowledge for modeling population dynamics. The experimental results identify the optimal design decisions regarding the learning algorithm. The results also show that the proposed ensembles yield significantly more accurate predictions of population dynamics as compared to individual process-based models. Finally, while their predictive performance is comparable to the one of ensembles obtained with the state-of-the-art methods of bagging and boosting, they are substantially more efficient. PMID:27078633

  13. Regional dynamics of forest canopy change and underlying causal processes in the contiguous U.S.

    NASA Astrophysics Data System (ADS)

    Schleeweis, Karen; Goward, Samuel N.; Huang, Chengquan; Masek, Jeffrey G.; Moisen, Gretchen; Kennedy, Robert E.; Thomas, Nancy E.

    2013-07-01

    history of forest change processes is written into forest age and distribution and affects earth systems at many scales. No one data set has been able to capture the full forest disturbance and land use record through time, so in this study, we combined multiple lines of evidence to examine trends, for six US regions, in forest area affected by harvest, fire, wind, insects, and forest conversion to urban/surburban use. We built an integrated geodatabase for the contiguous U.S. (CONUS) with data spanning the nation and decades, from remote sensing observations of forest canopy dynamics, geospatial data sets on disturbance and conversion, and statistical inventories, to evaluate relationships between canopy change observations and casual processes at multiple scales. Results show the variability of major change processes through regions across decades. Harvest affected more forest area than any other major change processes in the North East, North Central, Southeast, and South central regions. In the Pacific Coast and Intermountain West, more forest area was affected by harvest than forest fires. Canopy change rates at regional scales confounded the trends of individual forest change processes, showing the importance of landscape scale data. Local spikes in observed canopy change rates were attributed to wind and fire events, as well as volatile harvest regimes. This study improves the geographic model of forest change processes by updating regional trends for major disturbance and conversion processes and combining data on the dynamics of fire, wind, insects, harvest, and conversion into one integrated geodatabase for the CONUS.

  14. Charge Dynamics in Solution-Processed Nanocrystalline CuInS2 Solar Cells.

    PubMed

    Halpert, Jonathan E; Morgenstern, Frederik S F; Ehrler, Bruno; Vaynzof, Yana; Credgington, Dan; Greenham, Neil C

    2015-06-23

    We investigate charge dynamics in solar cells constructed using solution-processed layers of CuInS2 (CIS) nanocrystals (NCs) as the electron donor and CdS as the electron acceptor. By using time-resolved spectroscopic techniques, we are able to observe photoinduced absorptions that we attribute to the mobile hole carriers in the NC film. In combination with transient photocurrent and photovoltage measurements, we monitor charge dynamics on time scales from 300 fs to 1 ms. Carrier dynamics are investigated for devices with CIS layers composed of either colloidally synthesized 1,3-benzenedithiol-capped nanocrystals or in situ sol-gel synthesized thin films as the active layer. We find that deep trapping of holes in the colloidal NC cells is responsible for decreases in the open-circuit voltage and fill factor as compared to those of the sol-gel synthesized CIS/CdS cell. PMID:25951125

  15. Nonlinear dynamics of three-magnon process driven by ferromagnetic resonance in yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Cunha, R. O.; Holanda, J.; Vilela-Leão, L. H.; Azevedo, A.; Rodríguez-Suárez, R. L.; Rezende, S. M.

    2015-05-01

    We report an investigation of the dynamics of the three-magnon splitting process associated with the ferromagnetic resonance (FMR) in films of the insulating ferrimagnet yttrium iron garnet (YIG). The experiments are performed with a 6 μm thick YIG film close to a microstrip line fed by a microwave generator operating in the 2-6 GHz range. The magnetization precession is driven by the microwave rf magnetic field perpendicular to the static magnetic field, and its dynamics is observed by monitoring the amplitude of the FMR absorption peak. The time evolution of the amplitude reveals that if the frequency is lowered below a critical value of 3.3 GHz, the FMR mode pumps two magnons with opposite wave vectors that react back on the FMR, resulting in a nonlinear dynamics of the magnetization. The results are explained by a model with coupled nonlinear equations describing the time evolution of the magnon modes.

  16. Structural and dynamical heterogeneities in PVA films induced by evaporation during the formation process

    NASA Astrophysics Data System (ADS)

    Ghoshal, Sushanta; Denner, Paul; Stapf, Siegfried; Mattea, Carlos

    2011-10-01

    Microscopic dynamical studies were performed on poly(vinyl alcohol) in aqueous solution by means of NMR microimaging and relaxation techniques. The study indicates a spatial heterogeneity in the molecular dynamics, observed at different heights during evaporation of the solvent. In the advanced stage of the drying process, the microscopic arrangement of the polymer chains during their solidification is influenced by this dynamic heterogeneity and determines the final structure of the film. X-ray diffractometry of the film in its final state confirmed the structural heterogeneity identified by the NMR. This suggests that crystallization of the polymer from the evaporated solution is enhanced on the side of the film where evaporation takes place.

  17. Photonic simulation of system-environment interaction: Non-Markovian processes and dynamical decoupling

    NASA Astrophysics Data System (ADS)

    Zou, Chang-Ling; Chen, Xiang-Dong; Xiong, Xiao; Sun, Fang-Wen; Zou, Xu-Bo; Han, Zheng-Fu; Guo, Guang-Can

    2013-12-01

    The system-environment interaction is simulated by light propagating in coupled photonic waveguides. The profile of the electromagnetic field provides intuitive physical insight to study the Markovian and non-Markovian dynamics. The transition from non-Markovian to Markovian process is demonstrated by increasing the size of the environment, as the energy evolution changes from oscillation to exponential decay and the revival period increases. Moreover, the dynamical decoupling with a sequence of phase modulations is introduced to such a photonic system to form a band structure in the time dimension, where the energy dissipation can be significantly accelerated or inhibited. It opens the possibility to tune the dissipation in a photonic system, similar to the dynamic decoupling of spins.

  18. Nonlinear dynamics of three-magnon process driven by ferromagnetic resonance in yttrium iron garnet

    SciTech Connect

    Cunha, R. O.; Holanda, J.; Azevedo, A.; Rezende, S. M.; Vilela-Leão, L. H.; Rodríguez-Suárez, R. L.

    2015-05-11

    We report an investigation of the dynamics of the three-magnon splitting process associated with the ferromagnetic resonance (FMR) in films of the insulating ferrimagnet yttrium iron garnet (YIG). The experiments are performed with a 6 μm thick YIG film close to a microstrip line fed by a microwave generator operating in the 2–6 GHz range. The magnetization precession is driven by the microwave rf magnetic field perpendicular to the static magnetic field, and its dynamics is observed by monitoring the amplitude of the FMR absorption peak. The time evolution of the amplitude reveals that if the frequency is lowered below a critical value of 3.3 GHz, the FMR mode pumps two magnons with opposite wave vectors that react back on the FMR, resulting in a nonlinear dynamics of the magnetization. The results are explained by a model with coupled nonlinear equations describing the time evolution of the magnon modes.

  19. Dynamics of regenerative chatter and internal resonance in milling process with structural and cutting force nonlinearities

    NASA Astrophysics Data System (ADS)

    Moradi, Hamed; Movahhedy, Mohammad R.; Vossoughi, Gholamreza

    2012-07-01

    In this paper, internal resonance and nonlinear dynamics of regenerative chatter in milling process is investigated. An extended dynamic model of the peripheral milling process including both structural and cutting force nonlinearities is presented. Closed form expressions for the nonlinear cutting forces are derived through their Fourier series components. In the presence of the large vibration amplitudes, the loss of contact effect is included in this model. Using the multiple-scales approach, analytical approximate response of the delayed nonlinear system is obtained. Considering the internal resonance dynamics (i.e. mode coupling), the energy transfer between the coupled x-y modes is studied. The results show that during regenerative chatter under specific cutting conditions, one mode can decay. Furthermore, it is possible to adjust the rate at which the x-mode (or y-mode) decays by implementation of the internal resonance. Therefore, under both internal resonance and regenerative chatter conditions, it is possible to suppress the undesirable vibration of one mode (direction) in which accurate surface finish is required. Under the steady-state motion, jump phenomenon is investigated for the process with regenerative chatter under various cutting conditions. Moreover, the effects of structural and cutting force nonlinearities on the stability lobes diagram of the process are investigated.

  20. Intracellular Information Processing through Encoding and Decoding of Dynamic Signaling Features

    PubMed Central

    Makadia, Hirenkumar K.; Schwaber, James S.; Vadigepalli, Rajanikanth

    2015-01-01

    Cell signaling dynamics and transcriptional regulatory activities are variable within specific cell types responding to an identical stimulus. In addition to studying the network interactions, there is much interest in utilizing single cell scale data to elucidate the non-random aspects of the variability involved in cellular decision making. Previous studies have considered the information transfer between the signaling and transcriptional domains based on an instantaneous relationship between the molecular activities. These studies predict a limited binary on/off encoding mechanism which underestimates the complexity of biological information processing, and hence the utility of single cell resolution data. Here we pursue a novel strategy that reformulates the information transfer problem as involving dynamic features of signaling rather than molecular abundances. We pursue a computational approach to test if and how the transcriptional regulatory activity patterns can be informative of the temporal history of signaling. Our analysis reveals (1) the dynamic features of signaling that significantly alter transcriptional regulatory patterns (encoding), and (2) the temporal history of signaling that can be inferred from single cell scale snapshots of transcriptional activity (decoding). Immediate early gene expression patterns were informative of signaling peak retention kinetics, whereas transcription factor activity patterns were informative of activation and deactivation kinetics of signaling. Moreover, the information processing aspects varied across the network, with each component encoding a selective subset of the dynamic signaling features. We developed novel sensitivity and information transfer maps to unravel the dynamic multiplexing of signaling features at each of these network components. Unsupervised clustering of the maps revealed two groups that aligned with network motifs distinguished by transcriptional feedforward vs feedback interactions. Our new

  1. Time dependence of the velocity autocorrelation function of a fluid: An eigenmode analysis of dynamical processes.

    PubMed

    Bellissima, S; Neumann, M; Guarini, E; Bafile, U; Barocchi, F

    2015-10-01

    The velocity autocorrelation function (VAF), a key quantity in the atomic-scale dynamics of fluids, has been the first paradigmatic example of a long-time tail phenomenon, and much work has been devoted to detecting such long-lasting correlations and understanding their nature. There is, however, much more to the VAF than simply the evidence of this long-time dynamics. A unified description of the VAF from very short to long times, and of the way it changes with varying density, is still missing. Here we show that an approach based on very general principles makes such a study possible and opens the way to a detailed quantitative characterization of the dynamical processes involved at all time scales. From the analysis of molecular dynamics simulations for a slightly supercritical Lennard-Jones fluid at various densities, we are able to evidence the presence of distinct fast and slow decay channels for the velocity correlation on the time scale set by the collision rate. The density evolution of these decay processes is also highlighted. The method presented here is very general, and its application to the VAF can be considered as an important example. PMID:26565227

  2. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis

    PubMed Central

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L.; Mohandas, Narla; Pachter, Lior; Conboy, John G.

    2016-01-01

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentally-dynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ∼50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclear-localized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. We conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease. PMID:26531823

  3. Avoiding tipping points in fisheries management through Gaussian process dynamic programming

    PubMed Central

    Boettiger, Carl; Mangel, Marc; Munch, Stephan

    2015-01-01

    Model uncertainty and limited data are fundamental challenges to robust management of human intervention in a natural system. These challenges are acutely highlighted by concerns that many ecological systems may contain tipping points, such as Allee population sizes. Before a collapse, we do not know where the tipping points lie, if they exist at all. Hence, we know neither a complete model of the system dynamics nor do we have access to data in some large region of state space where such a tipping point might exist. We illustrate how a Bayesian non-parametric approach using a Gaussian process (GP) prior provides a flexible representation of this inherent uncertainty. We embed GPs in a stochastic dynamic programming framework in order to make robust management predictions with both model uncertainty and limited data. We use simulations to evaluate this approach as compared with the standard approach of using model selection to choose from a set of candidate models. We find that model selection erroneously favours models without tipping points, leading to harvest policies that guarantee extinction. The Gaussian process dynamic programming (GPDP) performs nearly as well as the true model and significantly outperforms standard approaches. We illustrate this using examples of simulated single-species dynamics, where the standard model selection approach should be most effective and find that it still fails to account for uncertainty appropriately and leads to population crashes, while management based on the GPDP does not, as it does not underestimate the uncertainty outside of the observed data. PMID:25567644

  4. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis.

    PubMed

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L; Mohandas, Narla; Pachter, Lior; Conboy, John G

    2016-01-29

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentally-dynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ∼50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclear-localized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. We conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease. PMID:26531823

  5. Bayesian hierarchical models for multivariate nonlinear spatio-temporal dynamical processes in the atmosphere and ocean

    NASA Astrophysics Data System (ADS)

    Leeds, W. B.; Wikle, C. K.

    2012-12-01

    Spatio-temporal statistical models, and in particular Bayesian hierarchical models (BHMs), have become increasingly popular as means of representing natural processes such as climate and weather that evolve over space and time. Hierarchical models make it possible to specify separate, conditional probability distributions that account for uncertainty in the observations, the underlying process, and parameters in situations when specifying these sources of uncertainty in a joint probability distribution may be difficult. As a result, BHMs are a natural setting for climatologists, meteorologists, and other environmental scientists to incorporate scientific information (e.g., PDEs, IDEs, etc.) a priori into a rigorous statistical framework that accounts for error in measurements, uncertainty in the understanding of the true underlying process, and uncertainty in the parameters that describe the process. While much work has been done in the development of statistical models for linear dynamic spatio-temporal processes, statistical modeling for nonlinear (and particularly, multivariate nonlinear) spatio-temporal dynamical processes is still a relatively open area of inquiry. As a result, general statistical models for environmental scientists to model complicated nonlinear processes is limited. We address this limitation in the methodology by introducing a multivariate "general quadratic nonlinear" framework for modeling multivariate, nonlinear spatio-temporal random processes inside of a BHM in a way that is especially applicable for problems in the ocean and atmospheric sciences. We show that in addition to the fact that this model addresses the previously mentioned sources of uncertainty for a wide spectrum of multivariate, nonlinear spatio-temporal processes, it is also a natural framework for data assimilation, allowing for the fusing of observations with computer models, computer model emulators, computer model output, or "mechanistically motivated" statistical

  6. Relaxation Processes in Aqueous Systems upon X-ray Ionization: Entanglement of Electronic and Nuclear Dynamics.

    PubMed

    Slavíček, Petr; Kryzhevoi, Nikolai V; Aziz, Emad F; Winter, Bernd

    2016-01-21

    The knowledge of primary processes following the interaction of high-energy radiation with molecules in liquid phase is rather limited. In the present Perspective, we report on a newly discovered type of relaxation process involving simultaneous autoionization and proton transfer between adjacent molecules, so-called proton transfer mediated charge separation (PTM-CS) process. Within PTM-CS, transients with a half-transferred proton are formed within a few femtoseconds after the core-level ionization event. Subsequent nonradiative decay of the highly nonequilibrium transients leads to a series of reactive species, which have not been considered in any high-energy radiation process in water. Nonlocal electronic decay processes are surprisingly accelerated upon proton dynamics. Such strong coupling of electronic and nuclear dynamics is a general phenomenon for hydrogen-bonded systems, however, its probability correlates strongly with hydration geometry. We suggest that the newly observed processes will impact future high-energy radiation-chemistry-relevant modeling, and we envision application of autoionization spectroscopy for identification of solution structure details. PMID:26712083

  7. Dynamic emotional processing in experiential therapy: two steps forward, one step back.

    PubMed

    Pascual-Leone, Antonio

    2009-02-01

    The study of dynamic and nonlinear change has been a valuable development in psychotherapy process research. However, little advancement has been made in describing how moment-by-moment affective processes contribute to larger units of change. The purpose of this study was to examine observable moment-by-moment sequences in emotional processing as they occurred within productive sessions of experiential therapy. This article further tested A. Pascual-Leone and L. S. Greenberg's (2007) model of emotional processing through a reanalysis of their data sample of 34 sessions in which clients presented with global distress: 17 that ended in poor in-session events and 17 that ended in good in-session events. Current analyses used univariate and bootstrapping statistical methods to examine how dynamic temporal patterns in clients' emotion accumulated moment-by-moment to produce in-session gains in emotional processing. Results show that effective emotional processing was simultaneously associated with steady improvement according to the model as well as increased emotional range. Consequentially, good events were shown to occur in a 2-steps-forward, 1-step-back fashion. Finally, good events were also shown to have progressively shortened emotional collapses, whereas the opposite was true for poor in-session events. PMID:19170458

  8. Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration

    SciTech Connect

    J'Tia Patrice Taylor; David E. Shropshire

    2009-09-01

    Abstract This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated

  9. Spacecraft attitude control systems with dynamic methods and structures for processing star tracker signals

    NASA Technical Reports Server (NTRS)

    Liu, Yong (Inventor); Wu, Yeong-Wei Andy (Inventor); Li, Rongsheng (Inventor)

    2001-01-01

    Methods are provided for dynamically processing successively-generated star tracker data frames and associated valid flags to generate processed star tracker signals that have reduced noise and a probability greater than a selected probability P.sub.slctd of being valid. These methods maintain accurate spacecraft attitude control in the presence of spurious inputs (e.g., impinging protons) that corrupt collected charges in spacecraft star trackers. The methods of the invention enhance the probability of generating valid star tracker signals because they respond to a current frame probability P.sub.frm by dynamically selecting the largest valid frame combination whose combination probability P.sub.cmb satisfies a selected probability P.sub.slctd. Noise is thus reduced while the probability of finding a valid frame combination is enhanced. Spacecraft structures are also provided for practicing the methods of the invention.

  10. Explosive synchronization as a process of explosive percolation in dynamical phase space

    PubMed Central

    Zhang, Xiyun; Zou, Yong; Boccaletti, S.; Liu, Zonghua

    2014-01-01

    Explosive synchronization and explosive percolation are currently two independent phenomena occurring in complex networks, where the former takes place in dynamical phase space while the latter in configuration space. It has been revealed that the mechanism of EP can be explained by the Achlioptas process, where the formation of a giant component is controlled by a suppressive rule. We here introduce an equivalent suppressive rule for ES. Before the critical point of ES, the suppressive rule induces the presence of multiple, small sized, synchronized clusters, while inducing the abrupt formation of a giant cluster of synchronized oscillators at the critical coupling strength. We also show how the explosive character of ES degrades into a second-order phase transition when the suppressive rule is broken. These results suggest that our suppressive rule can be considered as a dynamical counterpart of the Achlioptas process, indicating that ES and EP can be unified into a same framework. PMID:24903808

  11. Dynamic Simulation on the Installation Process of HGIS in Transformer Substation

    NASA Astrophysics Data System (ADS)

    Lin, Tao; Li, Shaohua; Wang, Hu; Che, Deyong; Qi, Guangcai; Yao, Jianfeng; Zhang, Qingzhe

    The technological requirements of Hypid Gas Insulated Switchgear (HGIS) installation in transformer substation is high and the control points of quality is excessive. Most of the engineers and technicians in the construction enterprises are not familiar with equipments of HGIS. In order to solve these problem, equipments of HGIS is modeled on the computer by SolidWorks software. Installation process of civil foundation and closed-type equipments is optimized dynamically with virtual assemble technology. Announcements and application work are composited into animation file. Skills of modeling and simulation is tidied classify as well. The result of the visual dynamic simulation can instruct the actual construction process of HGIS to a certain degree and can promote reasonable construction planning and management. It can also improve the method and quality of staff training for electric power construction enterprises.

  12. Dynamic interracial/intercultural processes: the role of lay theories of race.

    PubMed

    Hong, Ying-yi; Chao, Melody Manchi; No, Sun

    2009-10-01

    This paper explores how the lay theory approach provides a framework beyond previous stereotype/prejudice research to understand dynamic personality processes in interracial/ethnic contexts. The authors conceptualize theory of race within the Cognitive-Affective Personality System (CAPS), in which lay people's beliefs regarding the essential nature of race sets up a mind-set through which individuals construe and interpret their social experiences. The research findings illustrate that endorsement of the essentialist theory (i.e., that race reflects deep-seated, inalterable essence and is indicative of traits and ability) versus the social constructionist theory (i.e., that race is socially constructed, malleable, and arbitrary) are associated with different encoding and representation of social information, which in turn affect feelings, motivation, and competence in navigating between racial and cultural boundaries. These findings shed light on dynamic interracial/intercultural processes. Relations of this approach to CAPS are discussed. PMID:19686456

  13. Numerical simulation on the dynamical stall process of airfoils in transonic flow

    SciTech Connect

    Guo, G.L.; Yang, Y.N.; Ye, Z.Y.

    1994-12-31

    In this paper, a method is presented to simulate the dynamic stall process of airfoils in transonic flow. The flowfield around the oscillating airfoil is analyzed by solving the two-dimensional time averaged compressible Navier-Stokes equations with the Baldwin-Lomax turbulence model. An implicit Lower-Upper-factorized algorithm is constructed in a body-fitted coordinate system. In the algorithm, an improved NND (Non-oscillatory, Non-free--parameter, Dissipative) scheme which is a kind of the TVD (Total Variation Diminishing) schemes is adopted. The computation grid is generated by an algebraic method. To save computation time, the grid is rigidly attached to the airfoil. The dynamic stall process is well simulated on NACA 0012 airfoil oscillating in pitch at a high incidence angle in a transonic flow. The pressure distributions and pressure contours at different moment are given to show the movement of shock wave and the change of pressure distributions.

  14. Impulse processing: A dynamical systems model of incremental eye movements in the visual world paradigm

    PubMed Central

    Kukona, Anuenue; Tabor, Whitney

    2011-01-01

    The visual world paradigm presents listeners with a challenging problem: they must integrate two disparate signals, the spoken language and the visual context, in support of action (e.g., complex movements of the eyes across a scene). We present Impulse Processing, a dynamical systems approach to incremental eye movements in the visual world that suggests a framework for integrating language, vision, and action generally. Our approach assumes that impulses driven by the language and the visual context impinge minutely on a dynamical landscape of attractors corresponding to the potential eye-movement behaviors of the system. We test three unique predictions of our approach in an empirical study in the visual world paradigm, and describe an implementation in an artificial neural network. We discuss the Impulse Processing framework in relation to other models of the visual world paradigm. PMID:21609355

  15. Wavelet analysis of molecular dynamics: Efficient extraction of time-frequency information in ultrafast optical processes

    SciTech Connect

    Prior, Javier; Castro, Enrique; Chin, Alex W.; Almeida, Javier; Huelga, Susana F.; Plenio, Martin B.

    2013-12-14

    New experimental techniques based on nonlinear ultrafast spectroscopies have been developed over the last few years, and have been demonstrated to provide powerful probes of quantum dynamics in different types of molecular aggregates, including both natural and artificial light harvesting complexes. Fourier transform-based spectroscopies have been particularly successful, yet “complete” spectral information normally necessitates the loss of all information on the temporal sequence of events in a signal. This information though is particularly important in transient or multi-stage processes, in which the spectral decomposition of the data evolves in time. By going through several examples of ultrafast quantum dynamics, we demonstrate that the use of wavelets provide an efficient and accurate way to simultaneously acquire both temporal and frequency information about a signal, and argue that this greatly aids the elucidation and interpretation of physical process responsible for non-stationary spectroscopic features, such as those encountered in coherent excitonic energy transport.

  16. Signal processing for determining water height in steam pipes with dynamic surface conditions

    NASA Astrophysics Data System (ADS)

    Lih, Shyh-Shiuh; Lee, Hyeong Jae; Bar-Cohen, Yoseph

    2015-03-01

    An enhanced signal processing method based on the filtered Hilbert envelope of the auto-correlation function of the wave signal has been developed to monitor the height of condensed water through the steel wall of steam pipes with dynamic surface conditions. The developed signal processing algorithm can also be used to estimate the thickness of the pipe to determine the cut-off frequency for the low pass filter frequency of the Hilbert Envelope. Testing and analysis results by using the developed technique for dynamic surface conditions are presented. A multiple array of transducers setup and methodology are proposed for both the pulse-echo and pitch-catch signals to monitor the fluctuation of the water height due to disturbance, water flow, and other anomaly conditions.

  17. Fast dynamics and relaxation of colloidal drops during the drying process using multispeckle diffusing wave spectroscopy.

    PubMed

    Lee, Jeong Yong; Hwang, Ji Won; Jung, Hyun Wook; Kim, Sung Hyun; Lee, Seong Jae; Yoon, Kisun; Weitz, David A

    2013-01-22

    The fast dynamics generated by the Brownian motion of particles in colloidal drops, and the related relaxation during drying, which play key roles in suspension systems, were investigated incorporating multispeckle diffusing wave spectroscopy (MSDWS). MSDWS equipment was implemented to analyze the relaxation properties of suspensions under a nonergodic and nonstationary drying process, which cannot be elucidated by conventional light scattering methods, such as dynamic light scattering and diffusing wave spectroscopy. Rapid particle movement can be identified by the characteristic relaxation time, which is closely related to the Brownian motion due to thermal fluctuations of the particles. In the compacting stage of the drying process, the characteristic relaxation time increased gradually with the drying time because the particles in the colloidal drop were constrained by themselves. Moreover, variations of the initial concentration and particle size considerably affected the complete drying time and characteristic relaxation time, producing a shorter relaxation time for a low concentrated suspension with small particles. PMID:23281633

  18. Analysis of the Implementation of a Dynamic Assessment Device of Processes Involved in Reading with Learning-Disabled Children

    ERIC Educational Resources Information Center

    Navarro, Juan-Jose; Mora, Joaquin

    2011-01-01

    The renewed interest in the dynamic assessment of specific domains has led to reconsideration of this theory and the technique's contribution to the learning-teaching process. In this article, we analyze some elements concerning the internal structure of a dynamic assessment device of processes involved in reading tasks, establishing some of the…

  19. Local competition and metapopulation processes drive long-term seagrass-epiphyte population dynamics.

    PubMed

    Lobelle, Delphine; Kenyon, Emma J; Cook, Kevan J; Bull, James C

    2013-01-01

    It is well known that ecological processes such as population regulation and natural enemy interactions potentially occur over a range of spatial scales, and there is a substantial body of literature developing theoretical understanding of the interplay between these processes. However, there are comparatively few studies quantifying the long-term effects of spatial scaling in natural ecosystems. A key challenge is that trophic complexity in real-world biological communities quickly obscures the signal from a focal process. Seagrass meadows provide an excellent opportunity in this respect: in many instances, seagrasses effectively form extensive natural monocultures, in which hypotheses about endogenous dynamics can be formulated and tested. We present amongst the longest unbroken, spatially explict time series of seagrass abundance published to date. Data include annual measures of shoot density, total above-ground abundance, and associated epiphyte cover from five Zostera marina meadows distributed around the Isles of Scilly, UK, from 1996 to 2011. We explore empirical patterns at the local and metapopulation scale using standard time series analysis and develop a simple population dynamic model, testing the hypothesis that both local and metapopulation scale feedback processes are important. We find little evidence of an interaction between scales in seagrass dynamics but that both scales contribute approximately equally to observed local epiphyte abundance. By quantifying the long-term dynamics of seagrass-epiphyte interactions we show how measures of density and extent are both important in establishing baseline information relevant to predicting responses to environmental change and developing management plans. We hope that this study complements existing mechanistic studies of physiology, genetics and productivity in seagrass, whilst highlighting the potential of seagrass as a model ecosystem. More generally, this study provides a rare opportunity to test

  20. Local Competition and Metapopulation Processes Drive Long-Term Seagrass-Epiphyte Population Dynamics

    PubMed Central

    Lobelle, Delphine; Kenyon, Emma J.; Cook, Kevan J.; Bull, James C.

    2013-01-01

    It is well known that ecological processes such as population regulation and natural enemy interactions potentially occur over a range of spatial scales, and there is a substantial body of literature developing theoretical understanding of the interplay between these processes. However, there are comparatively few studies quantifying the long-term effects of spatial scaling in natural ecosystems. A key challenge is that trophic complexity in real-world biological communities quickly obscures the signal from a focal process. Seagrass meadows provide an excellent opportunity in this respect: in many instances, seagrasses effectively form extensive natural monocultures, in which hypotheses about endogenous dynamics can be formulated and tested. We present amongst the longest unbroken, spatially explict time series of seagrass abundance published to date. Data include annual measures of shoot density, total above-ground abundance, and associated epiphyte cover from five Zostera marina meadows distributed around the Isles of Scilly, UK, from 1996 to 2011. We explore empirical patterns at the local and metapopulation scale using standard time series analysis and develop a simple population dynamic model, testing the hypothesis that both local and metapopulation scale feedback processes are important. We find little evidence of an interaction between scales in seagrass dynamics but that both scales contribute approximately equally to observed local epiphyte abundance. By quantifying the long-term dynamics of seagrass-epiphyte interactions we show how measures of density and extent are both important in establishing baseline information relevant to predicting responses to environmental change and developing management plans. We hope that this study complements existing mechanistic studies of physiology, genetics and productivity in seagrass, whilst highlighting the potential of seagrass as a model ecosystem. More generally, this study provides a rare opportunity to test

  1. Dynamic Statistical Characterization of Variation in Source Processes of Microseismic Events

    NASA Astrophysics Data System (ADS)

    Smith-Boughner, L.; Viegas, G. F.; Urbancic, T.; Baig, A. M.

    2015-12-01

    During a hydraulic fracture, water is pumped at high pressure into a formation. A proppant, typically sand is later injected in the hope that it will make its way into a fracture, keep it open and provide a path for the hydrocarbon to enter the well. This injection can create micro-earthquakes, generated by deformation within the reservoir during treatment. When these injections are monitored, thousands of microseismic events are recorded within several hundred cubic meters. For each well-located event, many source parameters are estimated e.g. stress drop, Savage-Wood efficiency and apparent stress. However, because we are evaluating outputs from a power-law process, the extent to which the failure is impacted by fluid injection or stress triggering is not immediately clear. To better detect differences in source processes, we use a set of dynamic statistical parameters which characterize various force balance assumptions using the average distance to the nearest event, event rate, volume enclosed by the events, cumulative moment and energy from a group of events. One parameter, the Fracability index, approximates the ratio of viscous to elastic forcing and highlights differences in the response time of a rock to changes in stress. These dynamic parameters are applied to a database of more than 90 000 events in a shale-gas play in the Horn River Basin to characterize spatial-temporal variations in the source processes. In order to resolve these differences, a moving window, nearest neighbour approach was used. First, the center of mass of the local distribution was estimated for several source parameters. Then, a set of dynamic parameters, which characterize the response of the rock were estimated. These techniques reveal changes in seismic efficiency and apparent stress and often coincide with marked changes in the Fracability index and other dynamic statistical parameters. Utilizing these approaches allowed for the characterization of fluid injection related

  2. Numerical simulation of dynamic processes in biomechanics using the grid-characteristic method

    NASA Astrophysics Data System (ADS)

    Beklemysheva, K. A.; Vasyukov, A. V.; Petrov, I. B.

    2015-08-01

    Results of the numerical simulation of mechanical processes occurring in biological tissues under dynamic actions are presented. The grid-characteristic method on unstructured grids is used to solve the system of equations of mechanics of deformable solids; this method takes into account the characteristic properties of the constitutive system of partial differential equations and produces adequate algorithms on interfaces between media and on the boundaries of integration domains.

  3. Dynamics model of the IBR-2M pulsed reactor for analysis of fast transition processes

    NASA Astrophysics Data System (ADS)

    Pepelyshev, Yu. N.; Popov, A. K.; Sumkhuu, D.; Sangaa, D.

    2015-05-01

    A nonlinear model of the IBR-2M pulsed reactor dynamics relating values of variables at discreet instants of time (when power pulses appear) is developed on the basis of the MATLAB program system. The tests of the model by simulating calculated processes in the IBR-2M reactor proved the correctness of the model. A tentative estimate of the transfer coefficient for the linear part of the automatic regulator is obtained.

  4. Inhomogeneous Point-Processes to Instantaneously Assess Affective Haptic Perception through Heartbeat Dynamics Information

    NASA Astrophysics Data System (ADS)

    Valenza, G.; Greco, A.; Citi, L.; Bianchi, M.; Barbieri, R.; Scilingo, E. P.

    2016-06-01

    This study proposes the application of a comprehensive signal processing framework, based on inhomogeneous point-process models of heartbeat dynamics, to instantaneously assess affective haptic perception using electrocardiogram-derived information exclusively. The framework relies on inverse-Gaussian point-processes with Laguerre expansion of the nonlinear Wiener-Volterra kernels, accounting for the long-term information given by the past heartbeat events. Up to cubic-order nonlinearities allow for an instantaneous estimation of the dynamic spectrum and bispectrum of the considered cardiovascular dynamics, as well as for instantaneous measures of complexity, through Lyapunov exponents and entropy. Short-term caress-like stimuli were administered for 4.3–25 seconds on the forearms of 32 healthy volunteers (16 females) through a wearable haptic device, by selectively superimposing two levels of force, 2 N and 6 N, and two levels of velocity, 9.4 mm/s and 65 mm/s. Results demonstrated that our instantaneous linear and nonlinear features were able to finely characterize the affective haptic perception, with a recognition accuracy of 69.79% along the force dimension, and 81.25% along the velocity dimension.

  5. Inhomogeneous Point-Processes to Instantaneously Assess Affective Haptic Perception through Heartbeat Dynamics Information

    PubMed Central

    Valenza, G.; Greco, A.; Citi, L.; Bianchi, M.; Barbieri, R.; Scilingo, E. P.

    2016-01-01

    This study proposes the application of a comprehensive signal processing framework, based on inhomogeneous point-process models of heartbeat dynamics, to instantaneously assess affective haptic perception using electrocardiogram-derived information exclusively. The framework relies on inverse-Gaussian point-processes with Laguerre expansion of the nonlinear Wiener-Volterra kernels, accounting for the long-term information given by the past heartbeat events. Up to cubic-order nonlinearities allow for an instantaneous estimation of the dynamic spectrum and bispectrum of the considered cardiovascular dynamics, as well as for instantaneous measures of complexity, through Lyapunov exponents and entropy. Short-term caress-like stimuli were administered for 4.3–25 seconds on the forearms of 32 healthy volunteers (16 females) through a wearable haptic device, by selectively superimposing two levels of force, 2 N and 6 N, and two levels of velocity, 9.4 mm/s and 65 mm/s. Results demonstrated that our instantaneous linear and nonlinear features were able to finely characterize the affective haptic perception, with a recognition accuracy of 69.79% along the force dimension, and 81.25% along the velocity dimension. PMID:27357966

  6. Inhomogeneous Point-Processes to Instantaneously Assess Affective Haptic Perception through Heartbeat Dynamics Information.

    PubMed

    Valenza, G; Greco, A; Citi, L; Bianchi, M; Barbieri, R; Scilingo, E P

    2016-01-01

    This study proposes the application of a comprehensive signal processing framework, based on inhomogeneous point-process models of heartbeat dynamics, to instantaneously assess affective haptic perception using electrocardiogram-derived information exclusively. The framework relies on inverse-Gaussian point-processes with Laguerre expansion of the nonlinear Wiener-Volterra kernels, accounting for the long-term information given by the past heartbeat events. Up to cubic-order nonlinearities allow for an instantaneous estimation of the dynamic spectrum and bispectrum of the considered cardiovascular dynamics, as well as for instantaneous measures of complexity, through Lyapunov exponents and entropy. Short-term caress-like stimuli were administered for 4.3-25 seconds on the forearms of 32 healthy volunteers (16 females) through a wearable haptic device, by selectively superimposing two levels of force, 2 N and 6 N, and two levels of velocity, 9.4 mm/s and 65 mm/s. Results demonstrated that our instantaneous linear and nonlinear features were able to finely characterize the affective haptic perception, with a recognition accuracy of 69.79% along the force dimension, and 81.25% along the velocity dimension. PMID:27357966

  7. Fully automated digital holographic processing for monitoring the dynamics of a vesicle suspension under shear flow

    PubMed Central

    Minetti, Christophe; Podgorski, Thomas; Coupier, Gwennou; Dubois, Frank

    2014-01-01

    We investigate the dynamics of a vesicle suspension under shear flow between plates using DHM with a spatially reduced coherent source. Holograms are grabbed at a frequency of 24 frames/sec. The distribution of the vesicle suspension is obtained after numerical processing of the digital holograms sequence resulting in a 4D distribution. Obtaining this distribution is not straightforward and requires special processing to automate the analysis. We present an original method that fully automates the analysis and provides distributions that are further analyzed to extract physical properties of the fluid. Details of the numerical implementation, as well as sample experimental results are presented. PMID:24877015

  8. Identity in agent-based models : modeling dynamic multiscale social processes.

    SciTech Connect

    Ozik, J.; Sallach, D. L.; Macal, C. M.; Decision and Information Sciences; Univ. of Chicago

    2008-07-01

    Identity-related issues play central roles in many current events, including those involving factional politics, sectarianism, and tribal conflicts. Two popular models from the computational-social-science (CSS) literature - the Threat Anticipation Program and SharedID models - incorporate notions of identity (individual and collective) and processes of identity formation. A multiscale conceptual framework that extends some ideas presented in these models and draws other capabilities from the broader CSS literature is useful in modeling the formation of political identities. The dynamic, multiscale processes that constitute and transform social identities can be mapped to expressive structures of the framework

  9. Dynamic Process Analysis In Cutting Zone During Machining Of Nickel Alloys

    NASA Astrophysics Data System (ADS)

    Czán, Andrej; Šajgalík, Michal; Martikáň, Anton; Mrázik, Jozef

    2015-12-01

    To generally improve effectivity of parts production and metal cutting process, there are used process models of super alloys together with finite element modeling simulations. Advanced measurement methods of the process could improve and verify the accuracy of these models. These methods cause many error sources when using empiric or exact methods such as infrared radiation thermography to measure the temperature distribution of the tool, workpiece, and chip during metal cutting. Measuring of metal machining is challenging due to factors such as the high magnification required, high surface speeds and deformations, micro-blackbody effects, changing emissivity and deformations present at metal cutting. As part of an ongoing effort to improve our understanding of uncertainties associated with these measurement methods, multimeasurement sets of experiments were performed. First set of measurements observed connection between surface temperature and the internal temperature of the cutting tool. This was accomplished by measuring the temperature using a thermal camera in cutting zone. Second set performed high-speed scan of dynamic processes such as formation of elastic and plastic deformation. During this operation was applied high-speed scannning system using macro conversion lens for monitoring of micro-structural changes in deformation areas. Next necessary applied set is recording of dynamic processes by implementation of piezoelectric measurement device for monitoring of cutting forces. The outputs from multimeasuring system are the basis for verification of theoretical knowledge from this field and elimination of uncertainties, which arise by using computer simulation systems.

  10. Observation of drying process of multilayered paint using fOCT based on dynamic speckles

    NASA Astrophysics Data System (ADS)

    Fukai, T.; Kadono, H.

    2015-08-01

    Recently, a demand for the precise observation of a multilayered paint system have been increasing such as in car industry. However, conventional methods can observe only the surface condition of the paint. In this study, we propose a new method to observe a three dimensional drying process of the multilayered paint using functional Optical Coherence Tomography (fOCT). In this method, the dynamic speckles that appear in OCT signal were utilized. The temporal properties of the dynamic speckle is related to the Brownian motion of the scattering particles in the paint, and thus depends on the drying condition. Autocorrelation function of the speckle signal was calculated and its width, i.e., correlation length (CL), was used as a measure. In the experiment, two layer system consisting of different paints on the thin glass plate, and the drying process was observed for two hours. In the second layer exposed to the air, CL showed a monotonic increment indicating a steady progress of the drying process while in the first layer (deeper layer), CL decreased slightly for the first 50min. and then started to increase. This implies that drying process has been reversed due to the transport of the solvent from the second layer in the early stage. Such a complicated drying process of the multilayer system could also be confirmed from OCT signal image of the interface between the layers. This analysis was performed using the phase term obtained in the OCT interference signal with an accuracy of 0.1μm.

  11. Process monitor in thermal denaturation of albumin using dynamic speckle method based on wavelet entropy

    NASA Astrophysics Data System (ADS)

    Li, Xinzhong; Chen, Qingdong; Zhen, Zhiqiang; Yan, Haitao; Liu, Huihui; Li, Liben

    2009-11-01

    The process of thermal denaturation of the albumin was investigated using dynamic speckle method based on wavelet entropy and analyzed by light scattering theory. In experiments, the dynamic speckle patterns sequences generated by albumin colloid during denaturing were acquired using a CCD camera. By analyzing the variations of wavelet entropy values of the THSPs (the time history of speckle patterns), the thermal denaturation process of albumin could be divided into two stages. At former heating process, the values of wavelet entropy were bigger; correspondingly, the protein particles were aggregated and flocculated quickly. Conversely, at latter heating process, the wavelet entropy values decreased drastically, which meant there was slow aggregation. According to those, the movement properties of the protein molecule ensemble were analyzed during thermal denaturation of the albumin. The results show that this method is effective to analyze the process of movement and aggregation of protein molecules quantitatively. The experiment proved that this method is an useful tool to investigate the particles motion in solution.

  12. Dynamic modeling and validation of a lignocellulosic enzymatic hydrolysis process--a demonstration scale study.

    PubMed

    Prunescu, Remus Mihail; Sin, Gürkan

    2013-12-01

    The enzymatic hydrolysis process is one of the key steps in second generation biofuel production. After being thermally pretreated, the lignocellulosic material is liquefied by enzymes prior to fermentation. The scope of this paper is to evaluate a dynamic model of the hydrolysis process on a demonstration scale reactor. The following novel features are included: the application of the Convection-Diffusion-Reaction equation to a hydrolysis reactor to assess transport and mixing effects; the extension of a competitive kinetic model with enzymatic pH dependency and hemicellulose hydrolysis; a comprehensive pH model; and viscosity estimations during the course of reaction. The model is evaluated against real data extracted from a demonstration scale biorefinery throughout several days of operation. All measurements are within predictions uncertainty and, therefore, the model constitutes a valuable tool to support process optimization, performance monitoring, diagnosis and process control at full-scale studies. PMID:24212094

  13. 3D Dynamic Finite Element Analysis of the Nonuniform Residual Stress in Ultrasonic Impact Treatment Process

    NASA Astrophysics Data System (ADS)

    Hu, Shengsun; Guo, Chaobo; Wang, Dongpo; Wang, Zhijiang

    2016-07-01

    The nonuniform distributions of the residual stress were simulated by a 3D finite element model to analyze the elastic-plastic dynamic ultrasonic impact treatment (UIT) process of multiple impacts on the 2024 aluminum alloy. The evolution of the stress during the impact process was discussed. The successive impacts during the UIT process improve the uniformity of the plastic deformation and decrease the maximum compressive residual stress beneath the former impact indentations. The influences of different controlled parameters, including the initial impact velocity, pin diameter, pin tip, device moving, and offset distances, on the residual stress distributions were analyzed. The influences of the controlled parameters on the residual stress distributions are apparent in the offset direction due to the different surface coverage in different directions. The influences can be used to understand the UIT process and to obtain the desired residual stress by optimizing the controlled parameters.

  14. Revealing the flux: Using processed Husimi maps to visualize dynamics of bound systems and mesoscopic transport

    NASA Astrophysics Data System (ADS)

    Mason, Douglas J.; Borunda, Mario F.; Heller, Eric J.

    2015-04-01

    We elaborate upon the "processed Husimi map" representation for visualizing quantum wave functions using coherent states as a measurement of the local phase space to produce a vector field related to the probability flux. Adapted from the Husimi projection, the processed Husimi map is mathematically related to the flux operator under certain limits but offers a robust and flexible alternative since it can operate away from these limits and in systems that exhibit zero flux. The processed Husimi map is further capable of revealing the full classical dynamics underlying a quantum wave function since it reverse engineers the wave function to yield the underlying classical ray structure. We demonstrate the capabilities of processed Husimi maps on bound systems with and without electromagnetic fields, as well as on open systems on and off resonance, to examine the relationship between closed system eigenstates and mesoscopic transport.

  15. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    SciTech Connect

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo; Li, Yu-You

    2015-09-15

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV S{sub in} in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages.

  16. PRODUCTION OF ALL THE r-PROCESS NUCLIDES IN THE DYNAMICAL EJECTA OF NEUTRON STAR MERGERS

    SciTech Connect

    Wanajo, Shinya; Sekiguchi, Yuichiro; Kiuchi, Kenta; Shibata, Masaru; Nishimura, Nobuya; Kyutoku, Koutarou

    2014-07-10

    Recent studies suggest that binary neutron star (NS-NS) mergers robustly produce heavy r-process nuclei above the atomic mass number A ∼ 130 because their ejecta consist of almost pure neutrons (electron fraction of Y {sub e} < 0.1). However, the production of a small amount of the lighter r-process nuclei (A ≈ 90-120) conflicts with the spectroscopic results of r-process-enhanced Galactic halo stars. We present, for the first time, the result of nucleosynthesis calculations based on the fully general relativistic simulation of a NS-NS merger with approximate neutrino transport. It is found that the bulk of the dynamical ejecta are appreciably shock-heated and neutrino processed, resulting in a wide range of Y {sub e} (≈0.09-0.45). The mass-averaged abundance distribution of calculated nucleosynthesis yields is in reasonable agreement with the full-mass range (A ≈ 90-240) of the solar r-process curve. This implies, if our model is representative of such events, that the dynamical ejecta of NS-NS mergers could be the origin of the Galactic r-process nuclei. Our result also shows that radioactive heating after ∼1 day from the merging, which gives rise to r-process-powered transient emission, is dominated by the β-decays of several species close to stability with precisely measured half-lives. This implies that the total radioactive heating rate for such an event can be well constrained within about a factor of two if the ejected material has a solar-like r-process pattern.

  17. Urban street canyons: Coupling dynamics, chemistry and within-canyon chemical processing of emissions

    NASA Astrophysics Data System (ADS)

    Bright, Vivien Bianca; Bloss, William James; Cai, Xiaoming

    2013-04-01

    Street canyons, formed by rows of buildings in urban environments, are associated with high levels of atmospheric pollutants emitted primarily from vehicles, and substantial human exposure. The street canyon forms a semi-enclosed environment, within which emissions may be entrained in a re-circulatory system; chemical processing of emitted compounds alters the composition of the air vented to the overlying boundary layer, compared with the primary emissions. As the prevailing atmospheric chemistry is highly non-linear, and the canyon mixing and predominant chemical reaction timescales are comparable, the combined impacts of dynamics and chemistry must be considered to quantify these effects. Here we report a model study of the coupled impacts of dynamical and chemical processing upon the atmospheric composition in a street canyon environment, to assess the impacts upon air pollutant levels within the canyon, and to quantify the extent to which within-canyon chemical processing alters the composition of canyon outflow, in comparison to the primary emissions within the canyon. A new model for the simulation of street canyon atmospheric chemical processing has been developed, by integrating an existing Large-Eddy Simulation (LES) dynamical model of canyon atmospheric motion with a detailed chemical reaction mechanism, a Reduced Chemical Scheme (RCS) comprising 51 chemical species and 136 reactions, based upon a subset of the Master Chemical Mechanism (MCM). The combined LES-RCS model is used to investigate the combined effects of mixing and chemical processing upon air quality within an idealised street canyon. The effect of the combination of dynamical (segregation) and chemical effects is determined by comparing the outputs of the full LES-RCS canyon model with those obtained when representing the canyon as a zero-dimensional box model (i.e. assuming mixing is complete and instantaneous). The LES-RCS approach predicts lower (canyon-averaged) levels of NOx, OH and HO

  18. Deterministic processes guide long-term synchronised population dynamics in replicate anaerobic digesters

    PubMed Central

    Vanwonterghem, Inka; Jensen, Paul D; Dennis, Paul G; Hugenholtz, Philip; Rabaey, Korneel; Tyson, Gene W

    2014-01-01

    A replicate long-term experiment was conducted using anaerobic digestion (AD) as a model process to determine the relative role of niche and neutral theory on microbial community assembly, and to link community dynamics to system performance. AD is performed by a complex network of microorganisms and process stability relies entirely on the synergistic interactions between populations belonging to different functional guilds. In this study, three independent replicate anaerobic digesters were seeded with the same diverse inoculum, supplied with a model substrate, α-cellulose, and operated for 362 days at a 10-day hydraulic residence time under mesophilic conditions. Selective pressure imposed by the operational conditions and model substrate caused large reproducible changes in community composition including an overall decrease in richness in the first month of operation, followed by synchronised population dynamics that correlated with changes in reactor performance. This included the synchronised emergence and decline of distinct Ruminococcus phylotypes at day 148, and emergence of a Clostridium and Methanosaeta phylotype at day 178, when performance became stable in all reactors. These data suggest that many dynamic functional niches are predictably filled by phylogenetically coherent populations over long time scales. Neutral theory would predict that a complex community with a high degree of recognised functional redundancy would lead to stochastic changes in populations and community divergence over time. We conclude that deterministic processes may play a larger role in microbial community dynamics than currently appreciated, and under controlled conditions it may be possible to reliably predict community structural and functional changes over time. PMID:24739627

  19. A Dynamic Transient Model to Simulate the Time Dependent Pultrusion Process of Glass/Polyester Composites

    NASA Astrophysics Data System (ADS)

    Shokrieh, Mahmood M.; Mahmoud Aghdami, Ashkan

    2011-12-01

    The objective of this paper is to introduce a novel dynamic transient model to simulate the time dependent pultrusion process of glass/polyester composites. The model is able to simulate the resin curing process systematically. The resin curing process is divided in two liquid and gel-solid phases. Physical properties of the resin including resin specific heat, viscosity and thermal conductivity change by altering the resin temperature and the degree of cure. It is shown that in liquid and gel-solid phases, some of the resin physical properties have significant role in heat transfer phenomenon and affect simulation results. The physical and mechanical properties of fibers do not change during the curing process of composites; therefore, an equivalent material is introduced instead of the resin-fiber compound. The model simulates the heat generation during the resin curing process. The degree of cure of the resin, used for the resin viscosity calculation, is an important parameter indicating the final stage of simulation of resin curing process. The components of the model are integrated in a finite element method. As case studies, the process of pultrusion of circular, rectangular and I cross-sections are simulated by the model. The results show that the model is able to simulate the pultrusion process very well.

  20. Sourdough microbial community dynamics: An analysis during French organic bread-making processes.

    PubMed

    Lhomme, Emilie; Urien, Charlotte; Legrand, Judith; Dousset, Xavier; Onno, Bernard; Sicard, Delphine

    2016-02-01

    Natural sourdoughs are commonly used in bread-making processes, especially for organic bread. Despite its role in bread flavor and dough rise, the stability of the sourdough microbial community during and between bread-making processes is debated. We investigated the dynamics of lactic acid bacteria (LAB) and yeast communities in traditional organic sourdoughs of five French bakeries during the bread-making process and several months apart using classical and molecular microbiology techniques. Sourdoughs were sampled at four steps of the bread-making process with repetition. The analysis of microbial density over 68 sourdough/dough samples revealed that both LAB and yeast counts changed along the bread-making process and between bread-making runs. The species composition was less variable. A total of six LAB and nine yeast species was identified from 520 and 1675 isolates, respectively. The dominant LAB species was Lactobacillus sanfranciscensis, found for all bakeries and each bread-making run. The dominant yeast species changed only once between bread-making processes but differed between bakeries. They mostly belonged to the Kazachstania clade. Overall, this study highlights the change of population density within the bread-making process and between bread-making runs and the relative stability of the sourdough species community during bread-making process. PMID:26611168

  1. How to improve the representation of nitrate processes and their dynamics in eco-hydrological models?

    NASA Astrophysics Data System (ADS)

    Haas, Marcelo; Guse, Björn; Pfannerstill, Matthias; Fohrer, Nicola

    2016-04-01

    Nitrate is one of the most important nutrients in agriculturally dominated catchments. The transport of nitrate and its transformations are influenced by many interacting processes, which are driven by different eco-hydrological processes. To understand the dynamics of nitrate processes, complex eco-hydrological models can be used. Acknowledging the current research in hydrological consistency, the different hydrological and nutrient processes need to be considered at the same time in the model calibration. To achieve this, a two-step procedure is provided consisting of a temporally resolved sensitivity analysis of discharge and nitrate parameters and a joint multi-calibration of discharge and nitrate. For these analyzes, the eco-hydrological model SWAT (Soil Water Assessment Tool) is used in an agricultural dominated catchment (Treene river, Northern Germany). A better understanding of the modelled nitrate processes can be achieved by analyzing the temporal variations of dominant nitrate parameters with a temporal parameters sensitivity analysis (TEDPAS). TEDPAS provides daily sensitivities for the nitrate parameters. The temporal sensitivity analysis shows that the dominant parameters vary in the annual cycle due to seasonal varying dynamics in nitrate transport and plant uptake. Following an improved understanding of dominant nitrate parameters and related processes, a new calibration method is proposed which takes all relevant processes controlling nitrate loads into account. For this, a nitrate duration curve (NDC) is constructed and used in addition to the flow duration curve (FDC) in the calibration method. Separate performance metrics are calculated for five segments of FDC and NDC to examine the different magnitudes of discharge and nitrate loads separately. Through this separate assessment of discharge and nitrate segments, a model run is detected that represents all phases simultaneously well. The combination of a better understanding of the modelled

  2. A new measurement method for the dynamic resistance signal during the resistance spot welding process

    NASA Astrophysics Data System (ADS)

    Wang, Lijing; Hou, Yanyan; Zhang, Hongjie; Zhao, Jian; Xi, Tao; Qi, Xiangyang; Li, Yafeng

    2016-09-01

    To measure the dynamic resistance signal during the resistance spot welding process, some original work was carried out and a new measurement method was developed. Compared with the traditional method, using the instantaneous electrode voltage and welding current at peak current point in each half cycle, the resistance curve from the newly proposed method can provide more details of the dynamic resistance changes over time. To test the specific performance of the proposed method, a series of welding experiments were carried out and the tensile shear strengths of the weld samples were measured. Then, the measurement error of the proposed method was evaluated. Several features were extracted from the dynamic resistance curves. The correlations between the extracted features and weld strength were analyzed and the results show that these features are closely related to the weld strength and they can be used for welding quality monitoring. Moreover, the dynamic resistance curve from the newly proposed method can also be used to monitor some abnormal welding conditions.

  3. dFasArt: dynamic neural processing in FasArt model.

    PubMed

    Cano-Izquierdo, Jose-Manuel; Almonacid, Miguel; Pinzolas, Miguel; Ibarrola, Julio

    2009-05-01

    The temporal character of the input is, generally, not taken into account in the neural models. This paper presents an extension of the FasArt model focused on the treatment of temporal signals. FasArt model is proposed as an integration of the characteristic elements of the Fuzzy System Theory in an ART architecture. A duality between the activation concept and membership function is established. FasArt maintains the structure of the Fuzzy ARTMAP architecture, implying a static character since the dynamic response of the input is not considered. The proposed novel model, dynamic FasArt (dFasArt), uses dynamic equations for the processing stages of FasArt: activation, matching and learning. The new formulation of dFasArt includes time as another characteristic of the input. This allows the activation of the units to have a history-dependent character instead of being only a function of the last input value. Therefore, dFasArt model is robust to spurious values and noisy inputs. As experimental work, some cases have been used to check the robustness of dFasArt. A possible application has been proposed for the detection of variations in the system dynamics. PMID:19128936

  4. Heterochromatin dynamics during the differentiation process revealed by the DNA methylation reporter mouse, MethylRO.

    PubMed

    Ueda, Jun; Maehara, Kazumitsu; Mashiko, Daisuke; Ichinose, Takako; Yao, Tatsuma; Hori, Mayuko; Sato, Yuko; Kimura, Hiroshi; Ohkawa, Yasuyuki; Yamagata, Kazuo

    2014-06-01

    In mammals, DNA is methylated at CpG sites, which play pivotal roles in gene silencing and chromatin organization. Furthermore, DNA methylation undergoes dynamic changes during development, differentiation, and in pathological processes. The conventional methods represent snapshots; therefore, the dynamics of this marker within living organisms remains unclear. To track this dynamics, we made a knockin mouse that expresses a red fluorescent protein (RFP)-fused methyl-CpG-binding domain (MBD) protein from the ROSA26 locus ubiquitously; we named it MethylRO (methylation probe in ROSA26 locus). Using this mouse, we performed RFP-mediated methylated DNA immunoprecipitation sequencing (MeDIP-seq), whole-body section analysis, and live-cell imaging. We discovered that mobility and pattern of heterochromatin as well as DNA methylation signal intensity inside the nuclei can be markers for cellular differentiation status. Thus, the MethylRO mouse represents a powerful bioresource and technique for DNA methylation dynamics studies in developmental biology, stem cell biology, as well as in disease states. PMID:24936475

  5. Heterochromatin Dynamics during the Differentiation Process Revealed by the DNA Methylation Reporter Mouse, MethylRO

    PubMed Central

    Ueda, Jun; Maehara, Kazumitsu; Mashiko, Daisuke; Ichinose, Takako; Yao, Tatsuma; Hori, Mayuko; Sato, Yuko; Kimura, Hiroshi; Ohkawa, Yasuyuki; Yamagata, Kazuo

    2014-01-01

    Summary In mammals, DNA is methylated at CpG sites, which play pivotal roles in gene silencing and chromatin organization. Furthermore, DNA methylation undergoes dynamic changes during development, differentiation, and in pathological processes. The conventional methods represent snapshots; therefore, the dynamics of this marker within living organisms remains unclear. To track this dynamics, we made a knockin mouse that expresses a red fluorescent protein (RFP)-fused methyl-CpG-binding domain (MBD) protein from the ROSA26 locus ubiquitously; we named it MethylRO (methylation probe in ROSA26 locus). Using this mouse, we performed RFP-mediated methylated DNA immunoprecipitation sequencing (MeDIP-seq), whole-body section analysis, and live-cell imaging. We discovered that mobility and pattern of heterochromatin as well as DNA methylation signal intensity inside the nuclei can be markers for cellular differentiation status. Thus, the MethylRO mouse represents a powerful bioresource and technique for DNA methylation dynamics studies in developmental biology, stem cell biology, as well as in disease states. PMID:24936475

  6. Revealing Dynamic Processes of Materials in Liquids Using Liquid Cell Transmission Electron Microscopy

    PubMed Central

    Niu, Kai-Yang; Liao, Hong-Gang; Zheng, Haimei

    2012-01-01

    The recent development for in situ transmission electron microscopy, which allows imaging through liquids with high spatial resolution, has attracted significant interests across the research fields of materials science, physics, chemistry and biology. The key enabling technology is a liquid cell. We fabricate liquid cells with thin viewing windows through a sequential microfabrication process, including silicon nitride membrane deposition, photolithographic patterning, wafer etching, cell bonding, etc. A liquid cell with the dimensions of a regular TEM grid can fit in any standard TEM sample holder. About 100 nanoliters reaction solution is loaded into the reservoirs and about 30 picoliters liquid is drawn into the viewing windows by capillary force. Subsequently, the cell is sealed and loaded into a microscope for in situ imaging. Inside the TEM, the electron beam goes through the thin liquid layer sandwiched between two silicon nitride membranes. Dynamic processes of nanoparticles in liquids, such as nucleation and growth of nanocrystals, diffusion and assembly of nanoparticles, etc., have been imaged in real time with sub-nanometer resolution. We have also applied this method to other research areas, e.g., imaging proteins in water. Liquid cell TEM is poised to play a major role in revealing dynamic processes of materials in their working environments. It may also bring high impact in the study of biological processes in their native environment. PMID:23287885

  7. Interactions between voluntary and involuntary attention modulate the quality and temporal dynamics of visual processing.

    PubMed

    Grubb, Michael A; White, Alex L; Heeger, David J; Carrasco, Marisa

    2015-04-01

    Successfully navigating a dynamic environment requires the efficient distribution of finite neural resources. Voluntary (endogenous) covert spatial attention selectively allocates those processing resources to goal-relevant locations in the visual scene in the absence of eye movements. However, the allocation of spatial attention is not always voluntary; abrupt onsets in the visual periphery automatically enhance processing of nearby stimuli (exogenous attention). In dynamic environments, exogenous events and internal goals likely compete to determine the distribution of attention, but how such competition is resolved is not well understood. To investigate how exogenous events interact with the concurrent allocation of voluntary attention, we used a speed-accuracy trade-off (SAT) procedure. SAT conjointly measures the rate of information accrual and asymptotic discriminability, allowing us to measure how attentional interactions unfold over time during stimulus processing. We found that both types of attention sped information accrual and improved discriminability. However, focusing endogenous attention at the target location reduced the effects of exogenous cues on the rate of information accrual and rendered negligible their effects on asymptotic discriminability. We verified the robustness of these findings in four additional experiments that targeted specific, critical response delays. In conclusion, the speed and quality of visual processing depend conjointly on internally and externally driven attentional states, but it is possible to voluntarily diminish distraction by irrelevant events in the periphery. PMID:25117089

  8. Grounding Cognitive-Level Processes in Behavior: The View from Dynamic Systems Theory

    PubMed Central

    Samuelson, Larissa K.; Jenkins, Gavin W.; Spencer, John P.

    2015-01-01

    Marr’s seminal work laid out a program of research by specifying key questions for cognitive science at different levels of analysis. Because Dynamic Systems Theory focuses on time and interdependence of components DST research programs come to very different conclusions regarding the nature of cognitive change. We review a specific DST approach to cognitive-level processes: Dynamic Field Theory. We review research applying dynamic field theory to several cognitive-level processes: object permanence, naming hierarchical categories, and inferring intent, that demonstrate the difference in understanding of behavior and cognition that results from a DST perspective. These point to a central challenge for cognitive science research as defined by Marr—emergence. We argue that appreciating emergence raises questions about the utility of computational level analyses and opens the door to insights concerning the origin of novel forms of behavior and thought (e.g., a new chess strategy). We contend this is one of the most fundamental questions about cognition and behavior. PMID:25755203

  9. Dynamic recrystallization and texture evolution of Mg–Y–Zn alloy during hot extrusion process

    SciTech Connect

    Tong, L.B.; Li, X.; Zhang, D.P.; Cheng, L.R.; Meng, J.; Zhang, H.J.

    2014-06-01

    The microstructure and texture evolution of Mg{sub 98.5}Y{sub 1}Zn{sub 0.5} and Mg{sub 92.5}Y{sub 5}Zn{sub 2.5} (atomic percent) alloys during hot extrusion were systematically investigated. The coarse LPSO phases with higher volume fraction (∼ 57%) suppressed the twinning generation in the initial stage of extrusion, and accelerated the dynamic recrystallization through the particle deformation zones. Therefore, the volume fraction of DRXed grains in as-extruded Mg{sub 92.5}Y{sub 5}Zn{sub 2.5} alloy was much higher than that of Mg{sub 98.5}Y{sub 1}Zn{sub 0.5} alloy. The intensive recrystallization process resulted in the conventional basal texture weakening, although the texture evolution was mainly dominated by flow behavior. The dynamic recrystallization behavior in Mg{sub 92.5}Y{sub 5}Zn{sub 2.5} alloy restricted the formation of deformation texture, and thus the more random texture was observed during the whole extrusion process. - Highlights: • The densely coarse LPSO phases suppressed the twinning deformation. • Coarse LPSO phases induced the particle stimulated nucleation effect. • Dynamic recrystallization resulted in the basal texture weakening effect.

  10. Coarsening dynamics in condensing zero-range processes and size-biased birth death chains

    NASA Astrophysics Data System (ADS)

    Jatuviriyapornchai, Watthanan; Grosskinsky, Stefan

    2016-05-01

    Zero-range processes with decreasing jump rates are well known to exhibit a condensation transition under certain conditions on the jump rates, and the dynamics of this transition continues to be a subject of current research interest. Starting from homogeneous initial conditions, the time evolution of the condensed phase exhibits an interesting coarsening phenomenon of mass transport between cluster sites characterized by a power law. We revisit the approach in Godrèche (2003 J. Phys. A: Math. Gen. 36 6313) to derive effective single site dynamics which form a nonlinear birth death chain describing the coarsening behavior. We extend these results to a larger class of parameter values, and introduce a size-biased version of the single site process, which provides an effective tool to analyze the dynamics of the condensed phase without finite size effects and is the main novelty of this paper. Our results are based on a few heuristic assumptions and exact computations, and are corroborated by detailed simulation data.

  11. Adaptive optimal control of highly dissipative nonlinear spatially distributed processes with neuro-dynamic programming.

    PubMed

    Luo, Biao; Wu, Huai-Ning; Li, Han-Xiong

    2015-04-01

    Highly dissipative nonlinear partial differential equations (PDEs) are widely employed to describe the system dynamics of industrial spatially distributed processes (SDPs). In this paper, we consider the optimal control problem of the general highly dissipative SDPs, and propose an adaptive optimal control approach based on neuro-dynamic programming (NDP). Initially, Karhunen-Loève decomposition is employed to compute empirical eigenfunctions (EEFs) of the SDP based on the method of snapshots. These EEFs together with singular perturbation technique are then used to obtain a finite-dimensional slow subsystem of ordinary differential equations that accurately describes the dominant dynamics of the PDE system. Subsequently, the optimal control problem is reformulated on the basis of the slow subsystem, which is further converted to solve a Hamilton-Jacobi-Bellman (HJB) equation. HJB equation is a nonlinear PDE that has proven to be impossible to solve analytically. Thus, an adaptive optimal control method is developed via NDP that solves the HJB equation online using neural network (NN) for approximating the value function; and an online NN weight tuning law is proposed without requiring an initial stabilizing control policy. Moreover, by involving the NN estimation error, we prove that the original closed-loop PDE system with the adaptive optimal control policy is semiglobally uniformly ultimately bounded. Finally, the developed method is tested on a nonlinear diffusion-convection-reaction process and applied to a temperature cooling fin of high-speed aerospace vehicle, and the achieved results show its effectiveness. PMID:25794375

  12. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis

    DOE PAGESBeta

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L.; Mohandas, Narla; Pachter, Lior; Conboy, John G.

    2015-11-03

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentallydynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ~50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclearlocalized. Splicemore » site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. Finally, we conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.« less

  13. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis

    SciTech Connect

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L.; Mohandas, Narla; Pachter, Lior; Conboy, John G.

    2015-11-03

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentallydynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ~50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclearlocalized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. Finally, we conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.

  14. Nonlinear dynamic failure process of tunnel-fault system in response to strong seismic event

    NASA Astrophysics Data System (ADS)

    Yang, Zhihua; Lan, Hengxing; Zhang, Yongshuang; Gao, Xing; Li, Langping

    2013-03-01

    Strong earthquakes and faults have significant effect on the stability capability of underground tunnel structures. This study used a 3-Dimensional Discrete Element model and the real records of ground motion in the Wenchuan earthquake to investigate the dynamic response of tunnel-fault system. The typical tunnel-fault system was composed of one planned railway tunnel and one seismically active fault. The discrete numerical model was prudentially calibrated by means of the comparison between the field survey and numerical results of ground motion. It was then used to examine the detailed quantitative information on the dynamic response characteristics of tunnel-fault system, including stress distribution, strain, vibration velocity and tunnel failure process. The intensive tunnel-fault interaction during seismic loading induces the dramatic stress redistribution and stress concentration in the intersection of tunnel and fault. The tunnel-fault system behavior is characterized by the complicated nonlinear dynamic failure process in response to a real strong seismic event. It can be qualitatively divided into 5 main stages in terms of its stress, strain and rupturing behaviors: (1) strain localization, (2) rupture initiation, (3) rupture acceleration, (4) spontaneous rupture growth and (5) stabilization. This study provides the insight into the further stability estimation of underground tunnel structures under the combined effect of strong earthquakes and faults.

  15. Dynamical approach to anomalous diffusion: Response of Lévy processes to a perturbation

    NASA Astrophysics Data System (ADS)

    Trefán, György; Floriani, Elena; West, Bruce J.; Grigolini, Paolo

    1994-10-01

    Lévy statistics are derived from a dynamical system, which can be either Hamiltonian or not, using a master equation approach. We compare these predictions to the random walk approach recently developed by Zumofen and Klafter for both the nonstationary [Phys. Rev. E 47, 851 (1993)] and stationary [Physica A 196, 102 (1993)] case. We study the unperturbed dynamics of the system analytically and numerically and evaluate the time evolution of the second moment of the probability distribution. We also study the response of the dynamical system undergoing anomalous diffusion to an external perturbation and show that if the slow regression to equilibrium of the variable ``velocity'' is triggered by the perturbation, the process of diffusion of the ``space'' variable takes place under nonstationary conditions and a conductivity steadily increasing with time is generated in the early part of the response process. In the regime of extremely long times the conductivity becomes constant with a value, though, that does not correspond to the prescriptions of the ordinary Green-Kubo treatments.

  16. A dynamic systems approach to psychotherapy: A meta-theoretical framework for explaining psychotherapy change processes.

    PubMed

    Gelo, Omar Carlo Gioacchino; Salvatore, Sergio

    2016-07-01

    Notwithstanding the many methodological advances made in the field of psychotherapy research, at present a metatheoretical, school-independent framework to explain psychotherapy change processes taking into account their dynamic and complex nature is still lacking. Over the last years, several authors have suggested that a dynamic systems (DS) approach might provide such a framework. In the present paper, we review the main characteristics of a DS approach to psychotherapy. After an overview of the general principles of the DS approach, we describe the extent to which psychotherapy can be considered as a self-organizing open complex system, whose developmental change processes are described in terms of a dialectic dynamics between stability and change over time. Empirical evidence in support of this conceptualization is provided and discussed. Finally, we propose a research design strategy for the empirical investigation of psychotherapy from a DS approach, together with a research case example. We conclude that a DS approach may provide a metatheoretical, school-independent framework allowing us to constructively rethink and enhance the way we conceptualize and empirically investigate psychotherapy. (PsycINFO Database Record PMID:27177027

  17. The Package-Based Development Process in the Flight Dynamics Division

    NASA Technical Reports Server (NTRS)

    Parra, Amalia; Seaman, Carolyn; Basili, Victor; Kraft, Stephen; Condon, Steven; Burke, Steven; Yakimovich, Daniil

    1997-01-01

    The Software Engineering Laboratory (SEL) has been operating for more than two decades in the Flight Dynamics Division (FDD) and has adapted to the constant movement of the software development environment. The SEL's Improvement Paradigm shows that process improvement is an iterative process. Understanding, Assessing and Packaging are the three steps that are followed in this cyclical paradigm. As the improvement process cycles back to the first step, after having packaged some experience, the level of understanding will be greater. In the past, products resulting from the packaging step have been large process documents, guidebooks, and training programs. As the technical world moves toward more modularized software, we have made a move toward more modularized software development process documentation, as such the products of the packaging step are becoming smaller and more frequent. In this manner, the QIP takes on a more spiral approach rather than a waterfall. This paper describes the state of the FDD in the area of software development processes, as revealed through the understanding and assessing activities conducted by the COTS study team. The insights presented include: (1) a characterization of a typical FDD Commercial Off the Shelf (COTS) intensive software development life-cycle process, (2) lessons learned through the COTS study interviews, and (3) a description of changes in the SEL due to the changing and accelerating nature of software development in the FDD.

  18. Dynamics of CRISPR Loci in Microevolutionary Process of Yersinia pestis Strains

    PubMed Central

    Barros, Maria Paloma S.; França, Camila T.; Lins, Rosanny Holanda F. B.; Santos, Milena Danda V.; Silva, Ednaldo J.; Oliveira, Maria Betânia M.; Silveira-Filho, Vladimir M.; Rezende, Antônio M.; Balbino, Valdir Q.; Leal-Balbino, Tereza Cristina

    2014-01-01

    The potential use of CRISPR loci genotyping to elucidate population dynamics and microevolution of 146 Yersinia pestis strains from different biovars and locations was investigated in this work. The majority of strains from the Orientalis biovar presented specific spacer arrays, allowing for the establishment of a CRISPR signature for their respective isolates. Twenty-one new spacers were found in the Y. pestis strains from plague foci in Brazil. Ninety-three (64%) strains were grouped in the G1 genotype, whereas the others were distributed in 35 genotypes. This study allowed observing a microevolutionary process in a group of Y. pestis isolated from Brazil. We also identified specific genotypes of Y. pestis that were important for the establishment of the bacteria in plague foci in Brazil. The data have provided supporting evidence for the diversity and dynamics of CRISPR loci present in the genome of Y. pestis strains from plague foci in Brazil. PMID:25265542

  19. Study of thermite mixture consolidated by the cold gas dynamic spray process

    NASA Astrophysics Data System (ADS)

    Bacciochini, A.; Maines, G.; Poupart, C.; Akbarnejad, H.; Radulescu, M.; Jodoin, B.; Zhang, F.; Lee, J. J.

    2014-05-01

    The present study focused on the cold gas dynamic spray process for manufacturing porosity free, finely structured energetic materials with high reactivity and structural integrity. The experiments have focused the reaction between the aluminium and metal oxide, such as Al-CuO system. The consolidation of the materials used the cold gas dynamic spray technique, where the particles are accelerated to high speeds and consolidated via plastic deformation upon impact. Reactive composites are formed in arbitrary shapes with close to zero porosity and without any reactions during the consolidation phase. Reactivity of mixtures has been investigated through flame propagation analysis on cold sprayed samples and compacted powder mixture. Deflagration tests showed the influence of porosity on the reactivity.

  20. Self-organizing Symbol Acquisition and Motion Generation based on Dynamics-based Information Processing System

    NASA Astrophysics Data System (ADS)

    Okada, Masafumi; Nakamura, Daisuke; Nakamura, Yoshihiko

    The symbol acquisition and manipulation abilities are one of the inherent characteristics of human beings comparing with other creatures. In this paper, based on recurrent self-organizing map and dynamics-based information processing system, we propose a dynamics based self-organizing map (DBSOM). This method enables designing a topological map using time sequence data, which causes recognition and generation of the robot motion. Using this method, we design the self-organizing symbol acquisition system and robot motion generation system for a humanoid robot. By implementing DBSOM to the robot in the real world, we realize the symbol acquisition from the experimental data and investigate the spatial property of the obtained DBSOM.

  1. A Point Process Model of Respiratory Dynamics in Early Physiological Development

    PubMed Central

    Indic, Premananda; Paydarfar, David; Barbieri, Riccardo

    2012-01-01

    Interbreath interval (IBI), the time interval between breaths, and its variations in time around the mean, the IBI variability, are important measures associated with irregularity of breathing. The IBI histogram generally follows a power law distribution with its characterizing parameters changing with maturation. To assess the dynamics of breathing we propose a point process model of IBI with a lognormal parametric structure to appropriately represent the stochastic nature of the IBI distribution. We estimate the time varying evolution of the characterizing parameters to represent the dynamic nature of breathing, and thereby provide a time-varying measure of irregularity in breathing. The reliability of the model to capture the data is assessed using Kolmogorov-Smirnov (KS) and independence tests. Our results validate the novel approach in the assessment of the irregularity of breathing by analyzing respiratory recordings from newborn rats and preterm infants. PMID:22255168

  2. Instantaneous monitoring of sleep fragmentation by point process heart rate variability and respiratory dynamics.

    PubMed

    Citi, Luca; Bianchi, Matt T; Klerman, Elizabeth B; Barbieri, Riccardo

    2011-01-01

    We present a novel, automatic point-process approach that is able to provide continuous, instantaneous estimates of heart rate variability (HRV) and respiratory sinus arrhythmia (RSA) in long duration data recordings such as those during an entire night of sleep. We analyze subjects with and without sleep apnea who underwent diagnostic polysomnography. The proposed algorithm is able to quantify multi-scale high time resolution autonomic signatures of sleep fragmentation, such as arousals and stage transitions, throughout an entire night. Results demonstrate the ability of our methods to track fast dynamic transitions from sleep to wake and between REM sleep and other sleep stages, providing resolution details not available in sleep scoring summaries. An automatic threshold-based procedure is further able to detect brief arousals, with the instantaneous indices characterizing specific arousal dynamic signatures. PMID:22256131

  3. Some applications of nonlinear diffusion to processing of dynamic evolution images

    SciTech Connect

    Goltsov, Alexey N.; Nikishov, Sergey A.

    1997-05-15

    Model nonlinear diffusion equation with the most simple Landau-Ginzburg free energy functional was applied to locate boundaries between meaningful regions of low-level images. The method is oriented to processing images of objects that are a result of dynamic evolution: images of different organs and tissues obtained by radiography and NMR methods, electron microscope images of morphogenesis fields, etc. In the methods developed by us, parameters of the nonlinear diffusion model are chosen on the basis of the preliminary treatment of the images. The parameters of the Landau-Ginzburg free energy functional are extracted from the structure factor of the images. Owing to such a choice of the model parameters, the image to be processed is located in the vicinity of the steady-state of the diffusion equation. The suggested method allows one to separate distinct structures having specific space characteristics from the whole image. The method was applied to processing X-ray images of the lung.

  4. Situating social influence processes: dynamic, multidirectional flows of influence within social networks.

    PubMed

    Mason, Winter A; Conrey, Frederica R; Smith, Eliot R

    2007-08-01

    Social psychologists have studied the psychological processes involved in persuasion, conformity, and other forms of social influence, but they have rarely modeled the ways influence processes play out when multiple sources and multiple targets of influence interact over time. However, workers in other fields from sociology and economics to cognitive science and physics have recognized the importance of social influence and have developed models of influence flow in populations and groups-generally without relying on detailed social psychological findings. This article reviews models of social influence from a number of fields, categorizing them using four conceptual dimensions to delineate the universe of possible models. The goal is to encourage interdisciplinary collaborations to build models that incorporate the detailed, microlevel understanding of influence processes derived from focused laboratory studies but contextualized in ways that recognize how multidirectional, dynamic influences are situated in people's social networks and relationships. PMID:18453465

  5. Ferroelectric molecular field-switch based on double proton transfer process: Static and dynamical simulations

    NASA Astrophysics Data System (ADS)

    Rode, Michał F.; Jankowska, Joanna; Sobolewski, Andrzej L.

    2016-04-01

    In this work, we present a reversible ferroelectric molecular switch controlled by an external electric field. The studied (2Z)-1-(6-((Z)-2-hydroxy-2-phenylvinyl)pyridin-3-yl)-2-(pyridin-2(1H)-ylidene)ethanone (DSA) molecule is polarized by two uniaxial intramolecular hydrogen bonds. Two protons can be transferred along hydrogen bonds upon an electric field applied along the main molecular axis. The process results in reversion of the dipole moment of the system. Static ab initio and on-the-fly dynamical simulations of the DSA molecule placed in an external electric field give insight into the mechanism of the double proton transfer (DPT) in the system and allow for estimation of the time scale of this process. The results indicate that with increasing strength of the electric field, the step-wise mechanism of DPT changes into the downhill barrierless process in which the synchronous and asynchronous DPTs compete with each other.

  6. Spatio-temporal dynamics of automatic processing of phonological information in visual words.

    PubMed

    Wang, Xiao-Dong; Wu, Yin-Yuan; A-Ping Liu; Wang, Peng

    2013-01-01

    Sensory-specific cortices appear to be sensitive to information from another modality. Here we investigate whether the human brain automatically extracts the phonological information in visual words in early visual processing. We continuously presented native Chinese speakers peripherally with Chinese homophone characters in an oddball paradigm, while they performed a visual detection task presented in the centre of the visual field. We found the lexical tone phonology embedded in the characters is processed automatically by the brain of native speakers, as revealed by whole-head electrical recordings of the mismatch negativity (MMN). Source solution further revealed the MMN involved the neural activations from the visual cortex to the auditory cortex (130-460 ms). The spatial-temporal dynamics indicate a visual-auditory interaction in the early, automatic processing of phonological information in visual words. PMID:24336606

  7. Role of bubble growth dynamics on microscale heat transfer events in microchannel flow boiling process

    NASA Astrophysics Data System (ADS)

    Bigham, Sajjad; Moghaddam, Saeed

    2015-12-01

    For nearly two decades, the microchannel flow boiling heat transfer process has been the subject of numerous studies. A plethora of experimental studies have been conducted to decipher the underlying physics of the process, and different hypotheses have been presented to describe its microscopic details. Despite these efforts, the underlying assumptions of the existing hypothesis have remained largely unexamined. Here, using data at the microscopic level provided by a unique measurement approach, we deconstruct the boiling heat transfer process into a set of basic mechanisms and explain their role in the overall surface heat transfer. We then show how this knowledge allows to relate the bubble growth and flow dynamics to the surface heat flux.

  8. Neural Dynamics of Emotional Salience Processing in Response to Voices during the Stages of Sleep

    PubMed Central

    Chen, Chenyi; Sung, Jia-Ying; Cheng, Yawei

    2016-01-01

    Sleep has been related to emotional functioning. However, the extent to which emotional salience is processed during sleep is unknown. To address this concern, we investigated night sleep in healthy adults regarding brain reactivity to the emotionally (happily, fearfully) spoken meaningless syllables dada, along with correspondingly synthesized nonvocal sounds. Electroencephalogram (EEG) signals were continuously acquired during an entire night of sleep while we applied a passive auditory oddball paradigm. During all stages of sleep, mismatch negativity (MMN) in response to emotional syllables, which is an index for emotional salience processing of voices, was detected. In contrast, MMN to acoustically matching nonvocal sounds was undetected during Sleep Stage 2 and 3 as well as rapid eye movement (REM) sleep. Post-MMN positivity (PMP) was identified with larger amplitudes during Stage 3, and at earlier latencies during REM sleep, relative to wakefulness. These findings clearly demonstrated the neural dynamics of emotional salience processing during the stages of sleep. PMID:27378870

  9. Haber Process Made Efficient by Hydroxylated Graphene: Ab Initio Thermochemistry and Reactive Molecular Dynamics.

    PubMed

    Chaban, Vitaly V; Prezhdo, Oleg V

    2016-07-01

    The Haber-Bosch process is the main industrial method for producing ammonia from diatomic nitrogen and hydrogen. We use a combination of ab initio thermochemical analysis and reactive molecular dynamics to demonstrate that a significant increase in the ammonia production yield can be achieved using hydroxylated graphene and related species. Exploiting the polarity difference between N2/H2 and NH3, as well as the universal proton acceptor behavior of NH3, we demonstrate a strong shift of the equilibrium of the Haber-Bosch process toward ammonia (ca. 50 kJ mol(-1) enthalpy gain and ca. 60-70 kJ mol(-1) free energy gain). The modified process is of significant importance to the chemical industry. PMID:27340901

  10. Implications of Style-of-Faulting and Loading Characteristics on the Dynamic Rupture Process

    NASA Astrophysics Data System (ADS)

    Dalguer, L. A.; Mai, M.

    2008-12-01

    Assuming that shear failure on pre-existing faults of shallow earthquakes is governed by Coulomb friction, the mode of faulting and the loading history in compressional and extensional tectonic regimes play an important role in determining the absolute value of frictional strength (e.g. Sibson, 1991) and the initial stress on the fault prior to rupture. Considering for example a fault system under confining pressure equivalent to the gravitational load, then the tectonic loading in a compressional regime accumulates shear stress on the fault while simultaneously frictional strength is expected to increase due to increasing normal stress. In contrast, the loading in an extensional regime results in a reduction of the shear strength due to decreasing normal stress. In this case, the resulting strength of the fault would not be able to maintain large shear stresses because the normal stress at shallow depth is limited to the gravitational loading. We examine the implications of these loading regimes for the dynamic rupture process by developing a variety of dynamic models on thrust, normal and vertical strike-slip faults. For each class of model we combine stochastic irregularities in initial stress, compatible with seismological observations and findings from previous dynamic rupture simulations, with the external tectonic loading. Due to the nature of the fault systems described above, the normal stress is depth dependent, consequently the frictional strength (static and dynamic sliding strength) is also depth dependent. Our tectonic loading scheme generates uniformly increasing shear stress on the fault plane until a nucleation criterion is met (Ripperger et al 2007). Assuming that the fault rupture is governed by linear slip-weakening friction, we perform spontaneous dynamic rupture simulations to examine the rupture complexity and specific characteristics of these classes of models.

  11. Dynamic and Static Overloading Induce Early Degenerative Processes in Caprine Lumbar Intervertebral Discs

    PubMed Central

    Paul, Cornelis P. L.; Schoorl, Tom; Zuiderbaan, Hendrik A.; Zandieh Doulabi, Behrouz; van der Veen, Albert J.; van de Ven, Peter M.; Smit, Theo H.; van Royen, Barend J.; Helder, Marco N.; Mullender, Margriet G.

    2013-01-01

    Mechanical overloading of the spine is associated with low back pain and intervertebral disc (IVD) degeneration. How excessive loading elicits degenerative changes in the IVD is poorly understood. Comprehensive knowledge of the interaction between mechanical loading, cell responses and changes in the extracellular matrix of the disc is needed in order to successfully intervene in this process. The purpose of the current study was to investigate whether dynamic and static overloading affect caprine lumbar discs differently and what mechanisms lead to mechanically induced IVD degeneration. Lumbar caprine IVDs (n = 175) were cultured 7, 14 and 21 days under simulated-physiological loading (control), high dynamic or high static loading. Axial deformation and stiffness were continuously measured. Cell viability, cell density, and gene expression were assessed in the nucleus, inner- and outer annulus. The extracellular matrix (ECM) was analyzed for water, glycosaminoglycan and collagen content. IVD height loss and changes in axial deformation were gradual with dynamic and acute with static overloading. Dynamic overloading caused cell death in all IVD regions, whereas static overloading mostly affected the outer annulus. IVDs expression of catabolic and inflammation-related genes was up-regulated directly, whereas loss of water and glycosaminoglycan were significant only after 21 days. Static and dynamic overloading both induced pathological changes to caprine lumbar IVDs within 21 days. The mechanism by which they inflict biomechanical, cellular, and extracellular changes to the nucleus and annulus differed. The described cascades provide leads for the development of new pharmacological and rehabilitative therapies to halt the progression of DDD. PMID:23638074

  12. A Gaussian process-based approach for handling uncertainty in vehicle dynamics simulation.

    SciTech Connect

    Schmitt, K.; Madsen, J.; Anitescu, M.; Negrut, D.; Mathematics and Computer Science; Univ. of Wisconsin at Madison

    2009-01-01

    Advances in vehicle modeling and simulation in recent years have led to designs that are safer, easier to handle, and less sensitive to external factors. Yet, the potential of simulation is adversely impacted by its limited ability to predict vehicle dynamics in the presence of uncertainty. A commonly occurring source of uncertainty in vehicle dynamics is the road-tire friction interaction, typically represented through a spatially distributed stochastic friction coefficient. The importance of its variation becomes apparent on roads with ice patches, where if the stochastic attributes of the friction coefficient are correctly factored into real time dynamics simulation, robust control strategies could be designed to improve transportation safety. This work concentrates on correctly accounting in the nonlinear dynamics of a car model for the inherent uncertainty in friction coefficient distribution at the road/tire interface. The outcome of this effort is the ability to quantify the effect of input uncertainty on a vehicle's trajectory and the associated escalation of risk in driving. By using a space-dependent Gaussian process, the statistical representation of the friction coefficient allows for consistent space dependence of randomness. The approach proposed allows for the incorporation of noise in the observed data and a nonzero mean for inhomogeneous distribution of the friction coefficient. Based on the statistical model considered, consistent friction coefficient sample distributions are generated over large spatial domains of interest. These samples are subsequently used to compute and characterize the statistics associated with the dynamics of a nonlinear vehicle model. The information concerning the state of the road and thus the friction coefficient is assumed available (measured) at a limited number of points by some sensing device that has a relatively homogeneous noise field (satellite picture or ground sensors, for instance). The methodology proposed

  13. Inertial stochastic dynamics. II. Influence of inertia on slow kinetic processes of supercoiled DNA

    NASA Astrophysics Data System (ADS)

    Beard, Daniel A.; Schlick, Tamar

    2000-05-01

    We apply our new algorithms presented in the companion paper (LTID: long-time-step inertial dynamics, IBD: inertial Brownian dynamics) for mass-dependent Langevin dynamics (LD) with hydrodynamics, as well as the standard Brownian dynamical (BD) propagator, to study the thermal fluctuations of supercoiled DNA minicircles. Our DNA model accounts for twisting, bending, and salt-screened electrostatic interactions. Though inertial relaxation times are on the order of picoseconds, much slower kinetic processes are affected by the Brownian (noninertial) approximation typically employed. By comparing results of LTID and IBD to those generated using the standard (BD) algorithm, we find that the equilibrium fluctuations in writhing number, Wr, and radius of gyration, Rg, are influenced by mass-dependent terms. The autocorrelation functions for these quantities differ between the BD simulations and the inertial LD simulations by as much as 10%. In contrast, when the nonequilibrium process of relaxation from a perturbed state is examined, all methods (inertial and diffusive) yield similar results with no detectable statistical differences between the mean folding pathways. Thus, while the evolution of an ensemble toward equilibrium is equally well described by the inertial and the noninertial methods, thermal fluctuations are influenced by inertia. Examination of such equilibrium fluctuations in a biologically relevant macroscopic property—namely the two-site intermolecular distance—reveals mass-dependent behavior: The rate of juxtaposition of linearly distant sites along a 1500-base pair DNA plasmid, occurring over time scales of milliseconds and longer, is increased by about 8% when results from IBD are compared to those from BD. Since inertial modes that decay on the picosecond time scale in the absence of thermal forces exert an influence on slower fluctuations in macroscopic properties, we advocate that IBD be used for generating long-time trajectories of supercoiled

  14. Stochastic dynamics of small ensembles of non-processive molecular motors: The parallel cluster model

    NASA Astrophysics Data System (ADS)

    Erdmann, Thorsten; Albert, Philipp J.; Schwarz, Ulrich S.

    2013-11-01

    Non-processive molecular motors have to work together in ensembles in order to generate appreciable levels of force or movement. In skeletal muscle, for example, hundreds of myosin II molecules cooperate in thick filaments. In non-muscle cells, by contrast, small groups with few tens of non-muscle myosin II motors contribute to essential cellular processes such as transport, shape changes, or mechanosensing. Here we introduce a detailed and analytically tractable model for this important situation. Using a three-state crossbridge model for the myosin II motor cycle and exploiting the assumptions of fast power stroke kinetics and equal load sharing between motors in equivalent states, we reduce the stochastic reaction network to a one-step master equation for the binding and unbinding dynamics (parallel cluster model) and derive the rules for ensemble movement. We find that for constant external load, ensemble dynamics is strongly shaped by the catch bond character of myosin II, which leads to an increase of the fraction of bound motors under load and thus to firm attachment even for small ensembles. This adaptation to load results in a concave force-velocity relation described by a Hill relation. For external load provided by a linear spring, myosin II ensembles dynamically adjust themselves towards an isometric state with constant average position and load. The dynamics of the ensembles is now determined mainly by the distribution of motors over the different kinds of bound states. For increasing stiffness of the external spring, there is a sharp transition beyond which myosin II can no longer perform the power stroke. Slow unbinding from the pre-power-stroke state protects the ensembles against detachment.

  15. Stochastic dynamics of small ensembles of non-processive molecular motors: The parallel cluster model

    SciTech Connect

    Erdmann, Thorsten; Albert, Philipp J.; Schwarz, Ulrich S.

    2013-11-07

    Non-processive molecular motors have to work together in ensembles in order to generate appreciable levels of force or movement. In skeletal muscle, for example, hundreds of myosin II molecules cooperate in thick filaments. In non-muscle cells, by contrast, small groups with few tens of non-muscle myosin II motors contribute to essential cellular processes such as transport, shape changes, or mechanosensing. Here we introduce a detailed and analytically tractable model for this important situation. Using a three-state crossbridge model for the myosin II motor cycle and exploiting the assumptions of fast power stroke kinetics and equal load sharing between motors in equivalent states, we reduce the stochastic reaction network to a one-step master equation for the binding and unbinding dynamics (parallel cluster model) and derive the rules for ensemble movement. We find that for constant external load, ensemble dynamics is strongly shaped by the catch bond character of myosin II, which leads to an increase of the fraction of bound motors under load and thus to firm attachment even for small ensembles. This adaptation to load results in a concave force-velocity relation described by a Hill relation. For external load provided by a linear spring, myosin II ensembles dynamically adjust themselves towards an isometric state with constant average position and load. The dynamics of the ensembles is now determined mainly by the distribution of motors over the different kinds of bound states. For increasing stiffness of the external spring, there is a sharp transition beyond which myosin II can no longer perform the power stroke. Slow unbinding from the pre-power-stroke state protects the ensembles against detachment.

  16. Reconfiguration Process Optimization of Dynamically Coarse Grain Reconfigurable Architecture for Multimedia Applications

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Cao, Peng; Zhu, Min; Yang, Jun; Liu, Leibo; Wei, Shaojun; Shi, Longxing

    This paper presents a novel architecture design to optimize the reconfiguration process of a coarse-grained reconfigurable architecture (CGRA) called Reconfigurable Multimedia System II (REMUS-II). In REMUS-II, the tasks in multi-media applications are divided into two parts: computing-intensive tasks and control-intensive tasks. Two Reconfigurable Processor Units (RPUs) for accelerating computing-intensive tasks and a Micro-Processor Unit (µPU) for accelerating control-intensive tasks are contained in REMUS-II. As a large-scale CGRA, REMUS-II can provide satisfying solutions in terms of both efficiency and flexibility. This feature makes REMUS-II well-suited for video processing, where higher flexibility requirements are posed and a lot of computation tasks are involved. To meet the high requirement of the dynamic reconfiguration performance for multimedia applications, the reconfiguration architecture of REMUS-II should be well designed. To optimize the reconfiguration architecture of REMUS-II, a hierarchical configuration storage structure and a 3-stage reconfiguration processing structure are proposed. Furthermore, several optimization methods for configuration reusing are also introduced, to further improve the performance of reconfiguration process. The optimization methods include two aspects: the multi-target reconfiguration method and the configuration caching strategies. Experimental results showed that, with the reconfiguration architecture proposed, the performance of reconfiguration process will be improved by 4 times. Based on RTL simulation, REMUS-II can support the 1080p@32fps of H.264 HiP@Level4 and 1080p@40fps High-level MPEG-2 stream decoding at the clock frequency of 200MHz. The proposed REMUS-II system has been implemented on a TSMC 65nm process. The die size is 23.7mm2 and the estimated on-chip dynamic power is 620mW.

  17. Multiscale regression modeling in mouse supraspinatus tendons reveals that dynamic processes act as mediators in structure-function relationships.

    PubMed

    Connizzo, Brianne K; Adams, Sheila M; Adams, Thomas H; Jawad, Abbas F; Birk, David E; Soslowsky, Louis J

    2016-06-14

    Recent advances in technology have allowed for the measurement of dynamic processes (re-alignment, crimp, deformation, sliding), but only a limited number of studies have investigated their relationship with mechanical properties. The overall objective of this study was to investigate the role of composition, structure, and the dynamic response to load in predicting tendon mechanical properties in a multi-level fashion mimicking native hierarchical collagen structure. Multiple linear regression models were investigated to determine the relationships between composition/structure, dynamic processes, and mechanical properties. Mediation was then used to determine if dynamic processes mediated structure-function relationships. Dynamic processes were strong predictors of mechanical properties. These predictions were location-dependent, with the insertion site utilizing all four dynamic responses and the midsubstance responding primarily with fibril deformation and sliding. In addition, dynamic processes were moderately predicted by composition and structure in a regionally-dependent manner. Finally, dynamic processes were partial mediators of the relationship between composition/structure and mechanical function, and results suggested that mediation is likely shared between multiple dynamic processes. In conclusion, the mechanical properties at the midsubstance of the tendon are controlled primarily by fibril structure and this region responds to load via fibril deformation and sliding. Conversely, the mechanical function at the insertion site is controlled by many other important parameters and the region responds to load via all four dynamic mechanisms. Overall, this study presents a strong foundation on which to design future experimental and modeling efforts in order to fully understand the complex structure-function relationships present in tendon. PMID:27067362

  18. Attractor Dynamics and Semantic Neighborhood Density: Processing Is Slowed by Near Neighbors and Speeded by Distant Neighbors

    PubMed Central

    Mirman, Daniel; Magnuson, James S.

    2008-01-01

    The authors investigated semantic neighborhood density effects on visual word processing to examine the dynamics of activation and competition among semantic representations. Experiment 1 validated feature-based semantic representations as a basis for computing semantic neighborhood density and suggested that near and distant neighbors have opposite effects on word processing. Experiment 2 confirmed these results: Word processing was slower for dense near neighborhoods and faster for dense distant neighborhoods. Analysis of a computational model showed that attractor dynamics can produce this pattern of neighborhood effects. The authors argue for reconsideration of traditional models of neighborhood effects in terms of attractor dynamics, which allow both inhibitory and facilitative effects to emerge. PMID:18194055

  19. Quantitative confocal fluorescence microscopy of dynamic processes by multifocal fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Krmpot, Aleksandar J.; Nikolić, Stanko N.; Vitali, Marco; Papadopoulos, Dimitrios K.; Oasa, Sho; Thyberg, Per; Tisa, Simone; Kinjo, Masataka; Nilsson, Lennart; Gehring, Walter J.; Terenius, Lars; Rigler, Rudolf; Vukojevic, Vladana

    2015-07-01

    Quantitative confocal fluorescence microscopy imaging without scanning is developed for the study of fast dynamical processes. The method relies on the use of massively parallel Fluorescence Correlation Spectroscopy (mpFCS). Simultaneous excitation of fluorescent molecules across the specimen is achieved by passing a single laser beam through a Diffractive Optical Element (DOE) to generate a quadratic illumination matrix of 32×32 light sources. Fluorescence from 1024 illuminated spots is detected in a confocal arrangement by a matching matrix detector consisting of the same number of single-photon avalanche photodiodes (SPADs). Software was developed for data acquisition and fast autoand cross-correlation analysis by parallel signal processing using a Graphic Processing Unit (GPU). Instrumental performance was assessed using a conventional single-beam FCS instrument as a reference. Versatility of the approach for application in biomedical research was evaluated using ex vivo salivary glands from Drosophila third instar larvae expressing a fluorescently-tagged transcription factor Sex Combs Reduced (Scr) and live PC12 cells stably expressing the fluorescently tagged mu-opioid receptor (MOPeGFP). We show that quantitative mapping of local concentration and mobility of transcription factor molecules across the specimen can be achieved using this approach, which paves the way for future quantitative characterization of dynamical reaction-diffusion landscapes across live cells/tissue with a submillisecond temporal resolution (presently 21 μs/frame) and single-molecule sensitivity.

  20. A dynamic fed batch strategy for a Pichia pastoris mixed feed system to increase process understanding.

    PubMed

    Zalai, Dénes; Dietzsch, Christian; Herwig, Christoph; Spadiut, Oliver

    2012-01-01

    Mixed substrate feeding strategies are frequently investigated to enhance the productivity of recombinant Pichia pastoris processes. For this purpose, numerous fed batch experiments or time-consuming continuous cultivations are required to optimize control parameters such as the substrate mixing ratio and the applied methanol concentration. In this study, we decoupled the feeding of methanol and glycerol in a mixed substrate fed batch environment to gain process understanding for a recombinant P. pastoris Muts strain producing the model enzyme horseradish peroxidase. Specific substrate uptake rates (qs) were controlled separately, and a stepwise increased qGly-control scheme was applied to investigate the effect of various substrate fluxes on the culture. The qs-controlled strategy allowed a parallel characterization of the metabolism and the recombinant protein expression in a fed batch environment. A critical-specific glycerol uptake rate was determined, where a decline of the specific productivity occurred, and a time-dependent acceleration of protein expression was characterized with the dynamic fed batch approach. Based on the observations on recombinant protein expression, propositions for an optimal feeding design to target maximal productivities were stated. Thus, the dynamic fed batch strategy was found to be a valuable tool for both process understanding and optimization of product formation for P. pastoris in a mixed substrate environment. PMID:22505140

  1. Living in the branches: population dynamics and ecological processes in dendritic networks

    USGS Publications Warehouse

    Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.

    2007-01-01

    Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.

  2. Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening

    NASA Astrophysics Data System (ADS)

    Tomadin, Andrea; Brida, Daniele; Cerullo, Giulio; Ferrari, Andrea C.; Polini, Marco

    2013-07-01

    We present a combined analytical and numerical study of the early stages (sub-100-fs) of the nonequilibrium dynamics of photoexcited electrons in graphene. We employ the semiclassical Boltzmann equation with a collision integral that includes contributions from electron-electron (e-e) and electron-optical phonon interactions. Taking advantage of circular symmetry and employing the massless Dirac fermion (MDF) Hamiltonian, we are able to perform an essentially analytical study of the e-e contribution to the collision integral. This allows us to take particular care of subtle collinear scattering processes—processes in which incoming and outgoing momenta of the scattering particles lie on the same line—including carrier multiplication (CM) and Auger recombination (AR). These processes have a vanishing phase space for two-dimensional MDF bare bands. However, we argue that electron-lifetime effects, seen in experiments based on angle-resolved photoemission spectroscopy, provide a natural pathway to regularize this pathology, yielding a finite contribution due to CM and AR to the Coulomb collision integral. Finally, we discuss in detail the role of physics beyond the Fermi golden rule by including screening in the matrix element of the Coulomb interaction at the level of the random phase approximation (RPA), focusing in particular on the consequences of various approximations including static RPA screening, which maximizes the impact of CM and AR processes, and dynamical RPA screening, which completely suppresses them.

  3. A dynamical framework to relate perceptual variability with multisensory information processing

    PubMed Central

    Thakur, Bhumika; Mukherjee, Abhishek; Sen, Abhijit; Banerjee, Arpan

    2016-01-01

    Multisensory processing involves participation of individual sensory streams, e.g., vision, audition to facilitate perception of environmental stimuli. An experimental realization of the underlying complexity is captured by the “McGurk-effect”- incongruent auditory and visual vocalization stimuli eliciting perception of illusory speech sounds. Further studies have established that time-delay between onset of auditory and visual signals (AV lag) and perturbations in the unisensory streams are key variables that modulate perception. However, as of now only few quantitative theoretical frameworks have been proposed to understand the interplay among these psychophysical variables or the neural systems level interactions that govern perceptual variability. Here, we propose a dynamic systems model consisting of the basic ingredients of any multisensory processing, two unisensory and one multisensory sub-system (nodes) as reported by several researchers. The nodes are connected such that biophysically inspired coupling parameters and time delays become key parameters of this network. We observed that zero AV lag results in maximum synchronization of constituent nodes and the degree of synchronization decreases when we have non-zero lags. The attractor states of this network can thus be interpreted as the facilitator for stabilizing specific perceptual experience. Thereby, the dynamic model presents a quantitative framework for understanding multisensory information processing. PMID:27502974

  4. A dynamical framework to relate perceptual variability with multisensory information processing.

    PubMed

    Thakur, Bhumika; Mukherjee, Abhishek; Sen, Abhijit; Banerjee, Arpan

    2016-01-01

    Multisensory processing involves participation of individual sensory streams, e.g., vision, audition to facilitate perception of environmental stimuli. An experimental realization of the underlying complexity is captured by the "McGurk-effect"- incongruent auditory and visual vocalization stimuli eliciting perception of illusory speech sounds. Further studies have established that time-delay between onset of auditory and visual signals (AV lag) and perturbations in the unisensory streams are key variables that modulate perception. However, as of now only few quantitative theoretical frameworks have been proposed to understand the interplay among these psychophysical variables or the neural systems level interactions that govern perceptual variability. Here, we propose a dynamic systems model consisting of the basic ingredients of any multisensory processing, two unisensory and one multisensory sub-system (nodes) as reported by several researchers. The nodes are connected such that biophysically inspired coupling parameters and time delays become key parameters of this network. We observed that zero AV lag results in maximum synchronization of constituent nodes and the degree of synchronization decreases when we have non-zero lags. The attractor states of this network can thus be interpreted as the facilitator for stabilizing specific perceptual experience. Thereby, the dynamic model presents a quantitative framework for understanding multisensory information processing. PMID:27502974

  5. Dynamic infrared imaging in identification of breast cancer tissue with combined image processing and frequency analysis.

    PubMed

    Joro, R; Lääperi, A-L; Soimakallio, S; Järvenpää, R; Kuukasjärvi, T; Toivonen, T; Saaristo, R; Dastidar, P

    2008-01-01

    Five combinations of image-processing algorithms were applied to dynamic infrared (IR) images of six breast cancer patients preoperatively to establish optimal enhancement of cancer tissue before frequency analysis. mid-wave photovoltaic (PV) IR cameras with 320x254 and 640x512 pixels were used. The signal-to-noise ratio and the specificity for breast cancer were evaluated with the image-processing combinations from the image series of each patient. Before image processing and frequency analysis the effect of patient movement was minimized with a stabilization program developed and tested in the study by stabilizing image slices using surface markers set as measurement points on the skin of the imaged breast. A mathematical equation for superiority value was developed for comparison of the key ratios of the image-processing combinations. The ability of each combination to locate the mammography finding of breast cancer in each patient was compared. Our results show that data collected with a 640x512-pixel mid-wave PV camera applying image-processing methods optimizing signal-to-noise ratio, morphological image processing and linear image restoration before frequency analysis possess the greatest superiority value, showing the cancer area most clearly also in the match centre of the mammography estimation. PMID:18666012

  6. Treatment of dynamical processes in two-dimensional models of the troposphere and stratosphere

    SciTech Connect

    Wuebbles, D.J.

    1980-07-01

    The physical structure of the troposphere and stratosphere is the result of an intricate interplay among a large number of radiative, chemical, and dynamical processes. Because it is not possible to model the global environment in the laboratory, theoretical models must be relied on, subject to observational verification, to simulate atmospheric processes. Of particular concern in recent years has been the modeling of those processes affecting the structure of ozone and other trace species in the stratosphere and troposphere. Zonally averaged two-dimensional models with spatial resolution in the vertical and meridional directions can provide a much more realistic representation of tracer transport than one-dimensional models, yet are capable of the detailed representation of chemical and radiative processes contained in the one-dimensional models. The purpose of this study is to describe and analyze existing approaches to representing global atmospheric transport processes in two-dimensional models and to discuss possible alternatives to these approaches. A general description of the processes controlling the transport of trace constituents in the troposphere and stratosphere is given.

  7. Pitch processing of dynamic lexical tones in the auditory cortex is influenced by sensory and extrasensory processes.

    PubMed

    Krishnan, Ananthanarayan; Gandour, Jackson T; Suresh, Chandan H

    2015-05-01

    The aim is to evaluate how language experience (Chinese, English) shapes processing of pitch contours as reflected in the amplitude of cortical pitch response components. Responses were elicited from three dynamic curvilinear nonspeech stimuli varying in pitch direction and location of peak acceleration: Mandarin lexical Tone 2 (rising) and Tone 4 (falling), and a flipped variant of Tone 2, Tone 2' (nonnative). At temporal sites (T7/T8), Chinese listeners' Na-Pb response amplitudes to Tones 2 and 4 were greater than those of English listeners in the right hemisphere only; a rightward asymmetry for Tones 2 and 4 was restricted to the Chinese group. In common to both Fz-to-linked T7/T8 and T7/T8 electrode sites, the stimulus pattern (Tones 2 and 4 > Tone 2') was found in the Chinese group only. As reflected by Pb-Nb at Fz, Chinese subjects' amplitudes were larger than those of English subjects in response to Tones 2 and 4, and Tones 2 and 4 were larger than Tone 2', whereas for English subjects, Tone 2 was larger than Tone 2' and Tone 4. At frontal electrode sites (F3/F4), regardless of component or hemisphere, Chinese subjects' responses were larger in amplitude than those of English subjects across stimuli. For either group, responses to Tones 2 and 4 were larger than Tone 2'. No hemispheric asymmetry was observed at the frontal electrode sites. These findings demonstrate that cortical pitch response components are differentially modulated by experience-dependent, temporally distinct but functionally overlapping, weighting of sensory and extrasensory effects on pitch processing of lexical tones in the right temporal lobe and, more broadly, are consistent with a distributed hierarchical predictive coding process. PMID:25943576

  8. Pitch processing of dynamic lexical tones in the auditory cortex is influenced by sensory and extrasensory processes

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Suresh, Chandan H.

    2015-01-01

    The aim is to evaluate how language experience (Chinese, English) shapes processing of pitch contours as reflected in the amplitude of cortical pitch response components. Responses were elicited from three dynamic, curvilinear, nonspeech stimuli varying in pitch direction and location of peak acceleration: Mandarin lexical Tone2 (rising) and Tone4 (falling); and a flipped variant of Tone2, Tone2′ (nonnative). At temporal sites (T7/T8), Chinese Na-Pb response amplitude to Tones 2 & 4 was greater than English in the right hemisphere only; a rightward asymmetry for Tones 2 & 4 was restricted to the Chinese group. In common to both Fz-to-linked T7/T8 and T7/T8 electrode sites, the stimulus pattern (Tones 2 & 4 > Tone2′) was found in the Chinese group only. As reflected by Pb-Nb at Fz, Chinese amplitude was larger than English in response to Tones 2 & 4; and Tones 2 & 4 were larger than Tone2′; whereas for English, Tone2 was larger than Tone2′ and Tone4. At frontal electrode sites (F3/F4), regardless of component or hemisphere, Chinese responses were larger in amplitude than English across stimuli. For either group, responses to Tones 2 & 4 were larger than Tone2′. No hemispheric asymmetry was observed at the frontal electrode sites. These findings highlight that cortical pitch response components are differentially modulated by experience-dependent, temporally distinct but functionally overlapping weighting of sensory and extrasensory effects on pitch processing of lexical tones in the right temporal lobe and, more broadly, are consistent with a distributed hierarchical predictive coding process. PMID:25943576

  9. A Processive Arabidopsis Formin Modulates Actin Filament Dynamics in Association with Profilin.

    PubMed

    Zhang, Sha; Liu, Chang; Wang, Jiaojiao; Ren, Zhanhong; Staiger, Christopher J; Ren, Haiyun

    2016-06-01

    Formins are conserved regulators of actin cytoskeletal organization and dynamics that have been implicated to be important for cell division and cell polarity. The mechanism by which diverse formins regulate actin dynamics in plants is still not well understood. Using in vitro single-molecule imaging technology, we directly observed that the FH1-FH2 domain of an Arabidopsis thaliana formin, AtFH14, processively attaches to the barbed end of actin filaments as a dimer and slows their elongation rate by 90%. The attachment persistence of FH1-FH2 is concentration dependent. Furthermore, by use of the triple-color total internal reflection fluorescence microscopy, we found that ABP29, a barbed-end capping protein, competes with FH1-FH2 at the filament barbed end, where its binding is mutually exclusive with AtFH14. In the presence of different plant profilin isoforms, FH1-FH2 enhances filament elongation rates from about 10 to 42 times. Filaments buckle when FH1-FH2 is anchored specifically to cover slides, further indicating that AtFH14 moves processively on the elongating barbed end. At high concentration, AtFH14 bundles actin filaments randomly into antiparallel or parallel spindle-like structures; however, the FH1-FH2-mediated bundles become thinner and longer in the presence of plant profilins. This is the direct demonstration of a processive formin from plants. Our results also illuminate the molecular mechanism of AtFH14 in regulating actin dynamics via association with profilin. PMID:26996265

  10. Process simulation and dynamic control for marine oily wastewater treatment using UV irradiation.

    PubMed

    Jing, Liang; Chen, Bing; Zhang, Baiyu; Li, Pu

    2015-09-15

    UV irradiation and advanced oxidation processes have been recently regarded as promising solutions in removing polycyclic aromatic hydrocarbons (PAHs) from marine oily wastewater. However, such treatment methods are generally not sufficiently understood in terms of reaction mechanisms, process simulation and process control. These deficiencies can drastically hinder their application in shipping and offshore petroleum industries which produce bilge/ballast water and produced water as the main streams of marine oily wastewater. In this study, the factorial design of experiment was carried out to investigate the degradation mechanism of a typical PAH, namely naphthalene, under UV irradiation in seawater. Based on the experimental results, a three-layer feed-forward artificial neural network simulation model was developed to simulate the treatment process and to forecast the removal performance. A simulation-based dynamic mixed integer nonlinear programming (SDMINP) approach was then proposed to intelligently control the treatment process by integrating the developed simulation model, genetic algorithm and multi-stage programming. The applicability and effectiveness of the developed approach were further tested though a case study. The experimental results showed that the influences of fluence rate and temperature on the removal of naphthalene were greater than those of salinity and initial concentration. The developed simulation model could well predict the UV-induced removal process under varying conditions. The case study suggested that the SDMINP approach, with the aid of the multi-stage control strategy, was able to significantly reduce treatment cost when comparing to the traditional single-stage process optimization. The developed approach and its concept/framework have high potential of applicability in other environmental fields where a treatment process is involved and experimentation and modeling are used for process simulation and control. PMID:26043376

  11. Reactive Molecular Dynamics Investigations of Alkoxysilane Sol-Gel and Surface Coating Processes

    NASA Astrophysics Data System (ADS)

    Deetz, Joshua David

    The ability to generate nanostructured materials with tailored morphology or chemistry is of great technological interest. One proven method of generating metal-oxide materials, and chemically modifying metal-oxide surfaces is through the reactions of molecular building blocks known as alkoxysilanes. Alkoxysilanes are a class of chemicals which contain one or more organic alkoxy groups bonded to silicon atoms. Alkoxysilane (Si-O-R) chemical groups can undergo reactions to form bridges (Si-O-M) with metal oxides. Due to their ability to "attach" to metal-oxides through condensation reactions, alkoxysilanes have a number of interesting applications, such as: the generation of synthetic siloxane materials through the sol-gel process, and the formation of functionalized surface coatings on metal-oxide surfaces. Despite widespread study of sol-gel and surface coatings processes, it is difficult to predict the morphology of the final products due to the large number of process variables involved, such as precursor molecule structure, solvent effects, solution composition, temperature, and pH. To determine the influence of these variables on the products of sol-gel and coatings processes reactive molecular dynamics simulations are used. A reactive force field was used (ReaxFF) to allow the chemical bonds in simulation to dynamically form and break. The force field parameters were optimized using a parallel optimization scheme with a combination of experimental information, and density functional theory calculations. Polycondensation of alkoxysilanes in mixtures of alcohol and water were studied. Steric effects were observed to influence the rates of hydrolysis and condensation in solutions containing different precursor monomers. By restricting the access of nucleophiles to the central silicon atom, the nucleation rate of siloxanes can be controlled. The influence of solution precursor, water, and methanol composition on reaction rates was explored. It was determined that

  12. Asymmetric Exclusion Process with Constrained Hopping and Parallel Dynamics at a Junction

    NASA Astrophysics Data System (ADS)

    Liu, Mingzhe; Tuo, Xianguo; Li, Zhe; Yang, Jianbo

    In this article totally asymmetric simple exclusion process (TASEP) with constrained hopping and parallel dynamics at a junction is investigated using a mean-field approximation and Monte Carlo simulations. The constrained particle hopping probability r (r ≤ 1) at a junction may correspond to a delay caused by a driver choosing the right direction or a delay waiting for green traffic light in the real world. There are six stationary phases in the system, which can reflect free flow and congested traffic situations. Correlations at the junction point are investigated via simulations. It is observed that small r leads to stronger correlations. The theoretical results are agreement with computer simulations well.

  13. The ‘hit’ phenomenon: a mathematical model of human dynamics interactions as a stochastic process

    NASA Astrophysics Data System (ADS)

    Ishii, Akira; Arakaki, Hisashi; Matsuda, Naoya; Umemura, Sanae; Urushidani, Tamiko; Yamagata, Naoya; Yoshida, Narihiko

    2012-06-01

    A mathematical model for the ‘hit’ phenomenon in entertainment within a society is presented as a stochastic process of human dynamics interactions. The model uses only the advertisement budget time distribution as an input, and word-of-mouth (WOM), represented by posts on social network systems, is used as data to make a comparison with the calculated results. The unit of time is days. The WOM distribution in time is found to be very close to the revenue distribution in time. Calculations for the Japanese motion picture market based on the mathematical model agree well with the actual revenue distribution in time.

  14. Computer simulation of the processes of inactivation of bacterial cells by dynamic low-coherent speckles

    NASA Astrophysics Data System (ADS)

    Ulianova, Onega V.; Ulyanov, Sergey S.; Sazanova, Elena V.; Zhihong, Zhang; Sibo, Zhou; Luo, Qingming; Zudina, Irina; Bednov, Andrey

    2006-05-01

    Biochemical, biophysical and optical aspects of interaction of low-coherent light with bacterial cells have been discussed. Influence of low-coherent speckles on the colonies grows is investigated. It has been demonstrated that effects of light on the inhibition of cells (Francisella Tularensis) are connected with speckle dynamics. The regimes of illumination of cell suspension with purpose of devitalization of hazard bacteria, caused very dangerous infections, such as tularemia, are found. Mathematical model of interaction of low-coherent laser radiation with bacteria suspension has been proposed. Computer simulations of the processes of laser-cells interaction have been carried out.

  15. Investigating convective transport processes and large scale stratospheric dynamics with ICON-ART

    NASA Astrophysics Data System (ADS)

    Stassen, Christian; Ruhnke, Roland; Schröter, Jennifer; Daniel, Rieger; Bischoff-Gauss, Ingeborg; Vogel, Heike; Vogel, Bernhard

    2015-04-01

    We have extended the global ICON (ICOsahedral Nonhydrostatic) modelling framework. ICON is a joint development by the German Weather Service (DWD) and the Max-Planck-Institute for Meteorology (MPI-M). We added modules for gas-phase chemistry and aerosol dynamics (ART, Aerosols and Reactive Trace gases) [1]. ICON allows a regional grid refinement with two-way interactions between the different horizontal grids. It is used by DWD for numerical weather predictions and will be used by MPI-M for climate projections [2]. The extended modelling framework ICON-ART is developed in an analogous way to its predecessors COSMO-ART [3], so that aerosol and chemical composition feedbacks can be considered in a comprehensive way. Up to now, ICON-ART accounts for volcanic ash tracers, radioactive tracers, sea salt and mineral dust aerosols. Additionally, several gaseous tracers have been introduced. For the dynamics (transport and diffusion) of aerosol and gaseous tracers, the original ICON tracer framework is used. For the model physics, numerical time integration follows a process splitting approach separating physical processes. Each process is called independently via an interface module. Currently, the processes of emission, dry and wet deposition, sedimentation, and first order chemical reactions are included. We will present a simulation of the transport of ozone depleting short-lived trace gases from the surface into the stratosphere as well as of long-lived tracers. The simulated tracer distributions are used to investigate the ability of ICON-ART to simulate convective vertical transport in the troposphere as well as of large-scale stratospheric dynamics. [1] Rieger, D., et al. (2014), ICON-ART - A new online-coupled model system from the global to regional scale, submitted to Geosci. Model Dev. [2] Zängl, G., et al. (2014), The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD MPI-M: Description of the non-hydrostatic dynamical core. Q.J.R. Meteorol. Soc

  16. The 1996 Mount Everest tragedy: contemplation on group process and group dynamics.

    PubMed

    Mangione, Lorraine; Nelson, Debra

    2003-07-01

    In May 1996, one of the most tragic Mt. Everest climbing seasons was about to unfold, and five climbers would perish in the "Death Zone" miles above the earth's surface. This article considers the events from a group dynamic and group process perspective in an attempt to understand what might have been happening to the group members. We summarize the events through the writings of two chroniclers. We then discuss creating the group, leadership, diversity and subgrouping, scapegoating, and multiple interpretations through an interpersonalist/psychodynamic framework. PMID:12841099

  17. Simulating Picosecond X-ray Diffraction from shocked crystals by Post-processing Molecular Dynamics Calculations

    SciTech Connect

    Kimminau, G; Nagler, B; Higginbotham, A; Murphy, W; Park, N; Hawreliak, J; Kadau, K; Germann, T C; Bringa, E M; Kalantar, D; Lorenzana, H; Remington, B; Wark, J

    2008-06-19

    Calculations of the x-ray diffraction patterns from shocked crystals derived from the results of Non-Equilibrium-Molecular-Dynamics (NEMD) simulations are presented. The atomic coordinates predicted by the NEMD simulations combined with atomic form factors are used to generate a discrete distribution of electron density. A Fast-Fourier-Transform (FFT) of this distribution provides an image of the crystal in reciprocal space, which can be further processed to produce quantitative simulated data for direct comparison with experiments that employ picosecond x-ray diffraction from laser-irradiated crystalline targets.

  18. Conformational analysis of processivity clamps in solution demonstrates that tertiary structure does not correlate with protein dynamics.

    PubMed

    Fang, Jing; Nevin, Philip; Kairys, Visvaldas; Venclovas, Ceslovas; Engen, John R; Beuning, Penny J

    2014-04-01

    The relationship between protein sequence, structure, and dynamics has been elusive. Here, we report a comprehensive analysis using an in-solution experimental approach to study how the conservation of tertiary structure correlates with protein dynamics. Hydrogen exchange measurements of eight processivity clamp proteins from different species revealed that, despite highly similar three-dimensional structures, clamp proteins display a wide range of dynamic behavior. Differences were apparent both for structurally similar domains within proteins and for corresponding domains of different proteins. Several of the clamps contained regions that underwent local unfolding with different half-lives. We also observed a conserved pattern of alternating dynamics of the α helices lining the inner pore of the clamps as well as a correlation between dynamics and the number of salt bridges in these α helices. Our observations reveal that tertiary structure and dynamics are not directly correlated and that primary structure plays an important role in dynamics. PMID:24613485

  19. Conformational analysis of processivity clamps in solution demonstrates that tertiary structure does not correlate with protein dynamics

    PubMed Central

    Kairys, Visvaldas; Venclovas, Česlovas; Engen, John R.; Beuning, Penny J.

    2014-01-01

    Summary The relationship between protein sequence, structure, and dynamics has been elusive. We report one of the first comprehensive analyses using an in-solution experimental approach to study how the conservation of tertiary structure correlates with protein dynamics. Hydrogen exchange measurements of eight processivity clamp proteins from different species revealed that, despite highly similar three-dimensional structures, clamp proteins display a wide range of dynamic behavior. Differences were apparent both for structurally similar domains within proteins and for corresponding domains of different proteins. Several of the clamps contained regions that underwent local unfolding with different half-lives. We also observed a conserved pattern of alternating dynamics of the α-helices lining the inner pore of the clamps as well as a correlation between dynamics and the number of salt bridges in these α-helices. Our observations reveal that tertiary structure and dynamics are not directly correlated and that primary structure plays an important role in dynamics. PMID:24613485

  20. Uncertainties in the νp-process: Supernova Dynamics Versus Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Wanajo, Shinya; Janka, Hans-Thomas; Kubono, Shigeru

    2011-03-01

    We examine how the uncertainties involved in supernova dynamics, as well as in nuclear data inputs, affect the νp-process in the neutrino-driven winds. For the supernova dynamics, we find that the wind termination by the preceding dense ejecta shell, as well as the electron fraction (Y e,3; at 3 × 109 K), plays a crucial role. A wind termination within the temperature range of (1.5-3) × 109 K greatly enhances the efficiency of the νp-process. This implies that the early wind phase, when the innermost layer of the preceding supernova ejecta is still ~200-1000 km from the center, is most relevant to the νp-process. The outflows with Y e,3 = 0.52-0.60 result in the production of the p-nuclei up to A = 108 with interesting amounts. Furthermore, the p-nuclei up to A = 152 can be produced if Y e,3 = 0.65 is achieved. For the nuclear data inputs, we test the sensitivity to the rates relevant to the breakout from the p-p chain region (A < 12), to the (n, p) rates on heavy nuclei, and to the nuclear masses along the νp-process pathway. We find that a small variation of the rates of triple-α and of the (n, p) reaction on 56Ni leads to a substantial change in the p-nuclei production. We also find that 96Pd (N = 50) on the νp-process path plays a role as a second seed nucleus for the production of heavier p-nuclei. The uncertainty in the nuclear mass of 82Zr can lead to a factor of two reduction in the abundance of the p-isotope 84Sr.

  1. Elaboration of a video processing platform to analyze the temporal dynamics of hydrothermal ecosystems

    NASA Astrophysics Data System (ADS)

    Aron, M.; Sarrazin, J.; Sarradin, P.; Mercier, G.

    2010-12-01

    Located on oceanic ridges, hydrothermal ecosystems are characterized by strong physicochemical gradients and the presence of a unique fauna, sustained by microbial chemosynthesis. Several studies have shown that the spatial distribution and composition of vent faunal assemblages were strongly correlated to geological, physical and chemical processes at different spatial and temporal scales, but almost no data are available on the temporal dynamics of these peculiar ecosystems. The objective of our research is to develop a video processing platform to automatically extract the biological, physical and geological data from video imagery in order to study the dynamics of the fauna and its habitat in hydrothermal ecosystems. The video data was acquired from the Tempo-mini module deployed at 100m depth in the Saanich inlet (BC, Canada) and connected to the VENUS cable observatory (http://www.venus.uvic.ca/). This submarine color video-camera acquired four months of video footage, representing 487944 images of typical benthic habitat. A first manual extraction of the data allowed us to identify the key data available on a small subset of the video sequences. The objective of the new processing tool is to automatically extract these key data on the whole dataset, using unsupervized or lightly supervized image processing technique adapted to the specificity of submarines images. Firstly, all the moving objects in the video frames were segmented and labelled, allowing us to use statistical methods to process very large datasets. Secondly, computer vision techniques were used in order to get metric and 3D information from the images. For example, the speed of the moving objects and the image surface area were computed. The method implies the calibration of the camera with a calibration target, i.e. computing the projective geometric properties of the camera and the scene. Lastly, the developed tools will be integrated in a user-friendly processing platform that will be used

  2. Accommodating Dynamic Oceanographic Processes and Pelagic Biodiversity in Marine Conservation Planning

    PubMed Central

    Grantham, Hedley S.; Game, Edward T.; Lombard, Amanda T.; Hobday, Alistair J.; Richardson, Anthony J.; Beckley, Lynnath E.; Pressey, Robert L.; Huggett, Jenny A.; Coetzee, Janet C.; van der Lingen, Carl D.; Petersen, Samantha L.; Merkle, Dagmar; Possingham, Hugh P.

    2011-01-01

    Pelagic ecosystems support a significant and vital component of the ocean's productivity and biodiversity. They are also heavily exploited and, as a result, are the focus of numerous spatial planning initiatives. Over the past decade, there has been increasing enthusiasm for protected areas as a tool for pelagic conservation, however, few have been implemented. Here we demonstrate an approach to plan protected areas that address the physical and biological dynamics typical of the pelagic realm. Specifically, we provide an example of an approach to planning protected areas that integrates pelagic and benthic conservation in the southern Benguela and Agulhas Bank ecosystems off South Africa. Our aim was to represent species of importance to fisheries and species of conservation concern within protected areas. In addition to representation, we ensured that protected areas were designed to consider pelagic dynamics, characterized from time-series data on key oceanographic processes, together with data on the abundance of small pelagic fishes. We found that, to have the highest likelihood of reaching conservation targets, protected area selection should be based on time-specific data rather than data averaged across time. More generally, we argue that innovative methods are needed to conserve ephemeral and dynamic pelagic biodiversity. PMID:21311757

  3. Dynamic Inversion for Hydrological Process Monitoring with Electrical Resistance Tomography Under Model Uncertainty

    SciTech Connect

    Lehikoinen, A.; Huttunen, J.M.J.; Finsterle, S.; Kowalsky, M.B.; Kaipio, J.P.

    2009-08-01

    We propose an approach for imaging the dynamics of complex hydrological processes. The evolution of electrically conductive fluids in porous media is imaged using time-lapse electrical resistance tomography. The related dynamic inversion problem is solved using Bayesian filtering techniques, that is, it is formulated as a sequential state estimation problem in which the target is an evolving posterior probability density of the system state. The dynamical inversion framework is based on the state space representation of the system, which involves the construction of a stochastic evolution model and an observation model. The observation model used in this paper consists of the complete electrode model for ERT, with Archie's law relating saturations to electrical conductivity. The evolution model is an approximate model for simulating flow through partially saturated porous media. Unavoidable modeling and approximation errors in both the observation and evolution models are considered by computing approximate statistics for these errors. These models are then included in the construction of the posterior probability density of the estimated system state. This approximation error method allows the use of approximate - and therefore computationally efficient - observation and evolution models in the Bayesian filtering. We consider a synthetic example and show that the incorporation of an explicit model for the model uncertainties in the state space representation can yield better estimates than a frame-by-frame imaging approach.

  4. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    SciTech Connect

    Miao, Yinglong; Baudry, Jerome Y

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  5. The interaction of radiative and dynamical processes during a simulated sudden stratospheric warming

    NASA Technical Reports Server (NTRS)

    Pierce, R. B.; Blackshear, W. T.; Fairlie, T. D.; Grose, W. L.; Turner, R. E.

    1993-01-01

    An analysis of a spontaneous sudden stratospheric warming that occurred during a 2-year integration of the Langley Research Center (LaRC) Atmospheric Simulation Model is presented. The simulated warming resembles observed 'wave 1' warmings in the Northern Hemisphere stratosphere and provides an opportunity to investigate the radiative and dynamical processes occurring during the warming event. Isentropic analysis of potential vorticity sources and sinks indicates that dynamically induced departures from radiative equilibrium play an important role in the warming event. Enhanced radiative cooling associated with a series of upper stratospheric warm pools leads to radiative dampening within the polar vortex. Within the 'surf zone' large-scale radiative cooling leads to diabatic advection of high potential vorticity air from aloft. Lagrangian area diagnostics of the simulated warming agree well with Limb Infrared Monitor of the Stratosphere (LIMS) analyses. Dynamical mixing is shown to account for the majority of the decrease in the size of the polar vortex during the simulated warming. An investigation of the nonlinear deformation of material lines that are initially coincident with diagnosed potential vorticity isopleths is conducted to clarify the relationship between the Lagrangian area diagnostics and potential vorticity advection during wave breaking events.

  6. Spatial point processes and moment dynamics in the life sciences: a parsimonious derivation and some extensions.

    PubMed

    Plank, Michael J; Law, Richard

    2015-04-01

    Mathematical models of dynamical systems in the life sciences typically assume that biological systems are spatially well mixed (the mean-field assumption). Even spatially explicit differential equation models typically make a local mean-field assumption. In effect, the assumption is that diffusive movement is strong enough to destroy spatial structure or that interactions between individuals are sufficiently long-range that the effects of spatial structure are weak. However, many important biophysical processes, such as chemical reactions of biomolecules within cells, disease transmission among humans, and dispersal of plants, have characteristic spatial scales that can generate strong spatial structure at the scale of individuals, with important effects on the behaviour of biological systems. This calls for mathematical methods that incorporate spatial structure. Here, we focus on one method, spatial-moment dynamics, which is based on the idea that important information about a spatial point process is held in its low-order spatial moments. The method goes beyond the dynamics of the first moment, i.e. the mean density or concentration of agents in space, in which no information about spatial structure is retained. By including the dynamics of at least the second moment, the method retains some information about spatial structure. Whereas mean-field models effectively use a closure assumption for the second moment, spatial-moment models use a closure assumption for the third (or a higher-order) moment. The aim of the paper was to provide a parsimonious and intuitive derivation of spatial-moment dynamic equations that is accessible to non-specialists. The derivation builds naturally from the first moment to the second, and we show how it can be extended to higher-order moments. Rather than tying the model to a specific biological example, we formulate a general model of movement, birth, and death of multiple types of interacting agents. This model can be applied to

  7. Understanding the influence of personality on dynamic social gesture processing: An fMRI study.

    PubMed

    Saggar, Manish; Vrticka, Pascal; Reiss, Allan L

    2016-01-01

    This fMRI study aimed at investigating how differences in personality traits affect the processing of dynamic and natural gestures containing social versus nonsocial intent. We predicted that while processing gestures with social intent extraversion would be associated with increased activity within the reticulothalamic-cortical arousal system (RTCS), while neuroticism would be associated with increased activity in emotion processing circuits. The obtained findings partly support our hypotheses. We found a positive correlation between bilateral thalamic activity and extraversion scores while participants viewed social (versus nonsocial) gestures. For neuroticism, the data revealed a more complex activation pattern. Activity in the bilateral frontal operculum and anterior insula, extending into bilateral putamen and right amygdala, was moderated as a function of actor-orientation (i.e., first versus third-person engagement) and face-visibility (actor faces visible versus blurred). Our findings point to the existence of factors other than emotional valence that can influence social gesture processing in particular, and social cognitive affective processing in general, as a function of personality. PMID:26541443

  8. Dynamic representations of race: processing goals shape race decoding in the fusiform gyri

    PubMed Central

    Kaul, Christian; Ratner, Kyle G.

    2014-01-01

    People perceive and evaluate others on the basis of social categories, such as race, gender and age. Initial processing of targets in terms of visually salient social categories is often characterized as inevitable. In the current study, we investigated the influence of processing goals on the representation of race in the visual processing stream. Participants were assigned to one of two mixed-race teams and categorized faces according to their group membership or skin color. To assess neural representations of race, we employed multivariate pattern analysis to examined neural activity related to the presentation of Black and White faces. As predicted, patterns of neural activity within the early visual cortex and fusiform gyri (FG) could decode the race of face stimuli above chance and were moderated by processing goals. Race decoding in early visual cortex was above chance in both categorization tasks and below chance in a prefrontal control region. More importantly, race decoding was greater in the FG during the group membership vs skin color categorization task. The results suggest that, ironically, explicit racial categorization can diminish the representation of race in the FG. These findings suggest that representations of race are dynamic, reflecting current processing goals. PMID:23196632

  9. Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression

    PubMed Central

    Shen, Shensi; Rodrigo, Guillermo; Prakash, Satya; Majer, Eszter; Landrain, Thomas E.; Kirov, Boris; Daròs, José-Antonio; Jaramillo, Alfonso

    2015-01-01

    Organisms have different circuitries that allow converting signal molecule levels to changes in gene expression. An important challenge in synthetic biology involves the de novo design of RNA modules enabling dynamic signal processing in live cells. This requires a scalable methodology for sensing, transmission, and actuation, which could be assembled into larger signaling networks. Here, we present a biochemical strategy to design RNA-mediated signal transduction cascades able to sense small molecules and small RNAs. We design switchable functional RNA domains by using strand-displacement techniques. We experimentally characterize the molecular mechanism underlying our synthetic RNA signaling cascades, show the ability to regulate gene expression with transduced RNA signals, and describe the signal processing response of our systems to periodic forcing in single live cells. The engineered systems integrate RNA–RNA interaction with available ribozyme and aptamer elements, providing new ways to engineer arbitrary complex gene circuits. PMID:25916845

  10. Process Optimization of Seed Precipitation Tank with Multiple Impellers Using Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-Liang; Lv, Chao; Liu, Yan; Zhang, Ting-An

    2015-07-01

    The complex fluid flow in a large-scale tank stirred with multiple Ekato Intermig impellers used in the seed precipitation process was numerically analyzed by the computational fluid dynamics method. The flow field, liquid-solid mixing, and power consumption were simulated by adopting the Eulerian granular multiphase model and standard k- ɛ turbulence model. A steady multiple reference frame approach was used to represent impeller rotation. The simulated results showed that the five-stage multiple Intermig impeller coupled with sloped baffles could generate circulation loops in axial, which is good for solid uniform mixing. The fluid is overmixed under the current industrial condition. Compared with the current process conditions, a three-stage impeller with L/ D of 1.25 not only could meet the industrial requirements, but also more than 20% power could be saved. The results have important implications for reliable design and optimal performance for industry.

  11. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation.

    PubMed

    Yamakov, Vesselin; Wolf, Dieter; Phillpot, Simon R; Mukherjee, Amiya K; Gleiter, Herbert

    2002-09-01

    The mechanical behaviour of nanocrystalline materials (that is, polycrystals with a grain size of less than 100 nm) remains controversial. Although it is commonly accepted that the intrinsic deformation behaviour of these materials arises from the interplay between dislocation and grain-boundary processes, little is known about the specific deformation mechanisms. Here we use large-scale molecular-dynamics simulations to elucidate this intricate interplay during room-temperature plastic deformation of model nanocrystalline Al microstructures. We demonstrate that, in contrast to coarse-grained Al, mechanical twinning may play an important role in the deformation behaviour of nanocrystalline Al. Our results illustrate that this type of simulation has now advanced to a level where it provides a powerful new tool for elucidating and quantifying--in a degree of detail not possible experimentally--the atomic-level mechanisms controlling the complex dislocation and grain-boundary processes in heavily deformed materials with a submicrometre grain size. PMID:12618848

  12. Dislocation processes in the deformation of nanocrystalline aluminum by molecular-dynamics simulation.

    SciTech Connect

    Yamakov, V.; Wolf, D.; Phillpot, S. R.; Mukherjee, A. K.; Gleiter, H.; Materials Science Division; Univ. of California; Forschungszentrum Karlsruhe

    2002-09-01

    The mechanical behaviour of nanocrystalline materials (that is, polycrystals with a grain size of less than 100 nm) remains controversial. Although it is commonly accepted that the intrinsic deformation behaviour of these materials arises from the interplay between dislocation and grain-boundary processes, little is known about the specific deformation mechanisms. Here we use large-scale molecular-dynamics simulations to elucidate this intricate interplay during room-temperature plastic deformation of model nanocrystalline Al microstructures. We demonstrate that, in contrast to coarse-grained Al, mechanical twinning may play an important role in the deformation behaviour of nanocrystalline Al. Our results illustrate that this type of simulation has now advanced to a level where it provides a powerful new tool for elucidating and quantifying-in a degree of detail not possible experimentally-the atomic-level mechanisms controlling the complex dislocation and grain-boundary processes in heavily deformed materials with a submicrometre grain size.

  13. Wet cells and dry cells: In situ transmission electron microscopy of electrically-driven, dynamical processes

    NASA Astrophysics Data System (ADS)

    White, Edward Robert, IV

    Recent developments in nanofabrication techniques allow thin, wet systems to be imaged with high spatial and temporal resolution in the electron microscope. Coupling this ability with simultaneous, measured, electrical control, we cycle processes in liquid systems representing different electrochemical battery components. Dynamic processes imaged with these techniques, which represent a new state-of-the-art, include nanobubble collapse, dendrite growth, ion diffusion, and graphite intercalation. We also develop a sensitive system for measuring electron beam induced currents (EBIC) in the transmission electron microscope and apply it to graphene-MoS2 heterostructures. This new hybrid material has strong light-matter interactions, and the EBIC measurements map the minority carrier diffusion length, which we observe to decrease with increasing radiation damage. These results have direct implications for the function and service lifetime of solar cells based on molybdenum disulfide.

  14. Monitoring of Dynamic Microbiological Processes Using Real-Time Flow Cytometry

    PubMed Central

    Arnoldini, Markus; Heck, Tobias; Blanco-Fernández, Alfonso; Hammes, Frederik

    2013-01-01

    We describe a straightforward approach to continuously monitor a variety of highly dynamic microbiological processes in millisecond resolution with flow cytometry, using standard bench-top instrumentation. Four main experimental examples are provided, namely: (1) green fluorescent protein expression by antibiotic-stressed Escherichia coli, (2) fluorescent labeling of heat-induced membrane damage in an autochthonous freshwater bacterial community, (3) the initial growth response of late stationary E. coli cells inoculated into fresh growth media, and (4) oxidative disinfection of a mixed culture of auto-fluorescent microorganisms. These examples demonstrate the broad applicability of the method to diverse biological experiments, showing that it allows the collection of detailed, time-resolved information on complex processes. PMID:24244624

  15. Dynamics of ultrafast internal conversion processes studied by femtosecond time-delayed photoelectron spectroscopy

    SciTech Connect

    Cyr, D.R.; Hayden, C.C.

    1995-08-01

    The authors have studied the dynamics of ultrafast internal conversion processes using femtosecond time-resolved photoionization and photoelectron spectroscopy. In hexatriene, following femtosecond pulse excitation at 250 nm, they use time-delayed photoionization to observe the formation and decay of an intermediate species on the subpicosecond time scale. With time-resolved photoelectron spectroscopy, the rapid evolution of vibrational excitation in this intermediate is observed, as electronic energy is converted to vibrational energy in the molecule. The photodynamics of cis and trans isomers of hexatriene are compared and found to be surprisingly different on the 2-3 psec time scale. These results are important for understanding the fundamental photochemical processes in linear polyenes, which have served as models for the active chromophores of many biological photosystems.

  16. Observation of the amorphous zinc oxide recrystalline process by molecular dynamics simulation

    PubMed Central

    Lin, Ken-Huang; Sun, Shih-Jye; Ju, Shin-Pon; Tsai, Jen-Yu; Chen, Hsin-Tsung; Hsieh, Jin-Yuan

    2013-01-01

    The detailed structural variations of amorphous zinc oxide (ZnO) as well as wurtzite (B4) and zinc blende (B3) crystal structures during the temperature elevation process were observed by molecular dynamics simulation. The amorphous ZnO structure was first predicted through the simulated-annealing basin-hopping algorithm with the criterion to search for the least stable structure. The density and X-ray diffraction profiles of amorphous ZnO of the structure were in agreement with previous reports. The local structural transformation among different local structures and the recrystalline process of amorphous ZnO at higher temperatures are observed and can explain the structural transformation and recrystalline mechanism in a corresponding experiment [Bruncko et al., Thin Solid Films 520, 866-870 (2011)]. PMID:23509413

  17. Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression.

    PubMed

    Shen, Shensi; Rodrigo, Guillermo; Prakash, Satya; Majer, Eszter; Landrain, Thomas E; Kirov, Boris; Daròs, José-Antonio; Jaramillo, Alfonso

    2015-05-26

    Organisms have different circuitries that allow converting signal molecule levels to changes in gene expression. An important challenge in synthetic biology involves the de novo design of RNA modules enabling dynamic signal processing in live cells. This requires a scalable methodology for sensing, transmission, and actuation, which could be assembled into larger signaling networks. Here, we present a biochemical strategy to design RNA-mediated signal transduction cascades able to sense small molecules and small RNAs. We design switchable functional RNA domains by using strand-displacement techniques. We experimentally characterize the molecular mechanism underlying our synthetic RNA signaling cascades, show the ability to regulate gene expression with transduced RNA signals, and describe the signal processing response of our systems to periodic forcing in single live cells. The engineered systems integrate RNA-RNA interaction with available ribozyme and aptamer elements, providing new ways to engineer arbitrary complex gene circuits. PMID:25916845

  18. Relaxation processes and glass transition in confined 1,4-polybutadiene films: A Molecular Dynamics study

    NASA Astrophysics Data System (ADS)

    Paul, Wolfgang; Solar, Mathieu

    We will present results from Molecular Dynamics simulations of a chemically realistic model of 1,4-polybutadiene (PB) chains confined by graphite walls. Relaxation processes in this system are heterogeneous and anisotropic. We will present evidence for a slow additional relaxation process related to chain desorption from the walls. We also study the structural relaxation resolved with respect to the distance from the graphite walls and show the influence of structural changes on the relaxation behavior. The temperature dependence of the dielectric relaxation in layers of different thickness near the walls shows no indication of a shift of Tg as a function of thickness when analyzed with a Vogel-Fulcher fit. We explain this by the importance of intramolecular dihedral barriers for the glass transition in PB which dominate over the density changes next to a wall except for a 1 nm thick layer directly at the wall.

  19. Interannual Variations in Tropical Upper-Tropospheric Humidity: Understanding Tropical Convective and Dynamical Processes

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Fitzjarrald, Dan E.; Miller, Timothy L.

    2005-01-01

    Uncertainty remains as to what extent variability in mid to upper tropospheric moisture, especially over the tropics, behaves as constant relative humidity during interannual climate variations associated with ENSO. Systematic variations in HIRS 6.7 micron and MLS 205 GHz suggest that dry subtropical regions evolving during warm SST events depress relative humidity, but the interpretation of these events is still uncertain. Additional specific concerns have to do with regional signatures of convective processes: How does the origin of dry air in the eastern subtropical N. Pacific differ in ENSO warm versus cold years? The dynamics of Rossby wave forcing by convective heating, subtropical jet stream dynamics, and dynamics driven subsidence all come into play here. How variations in precipitating ice hydrometeors from tropical anvils relate to variations in UTH is also a subject of debate? Do variations in precipitating ice, cloud cover and water vapor behavior show any support for the Iris-hypothesis mechanism? Here we examine historical records of SSM/T-2 data to gain a better physical understanding of the effects of deep convective moisture sources and dynamically-induced vertical circulations on UTH. These high frequency microwave measurements (183.3 GHz) take advantage of far less sensitivity to cloud hydrometeors than the 6.7 micron data to yield a record of upper tropospheric relative humidity. Furthermore, signatures of precipitating ice from these channels facilitate comparisons to TRMM hydrometeors detected by radar. In analyzing these observations, we isolate water vapor and temperature change components that affect brightness temperatures and the inferred relative humidity. Trajectory modeling is also used to understand interannual humidity anomalies in terms of outflow fbm convective regions and history of diabatically-driven sinking which modifies relative humidity.

  20. Bilingual lexical selection as a dynamic process: Evidence from Arabic-French bilinguals.

    PubMed

    Boukadi, Mariem; Davies, Robert A I; Wilson, Maximiliano A

    2015-12-01

    The nature of the lexical selection process in bilingual spoken word production is one of the pending questions of research on bilingualism. According to one view this competitive process is language-specific, while another holds that it is language-nonspecific (i.e., lexical competition is cross-linguistic). In recent years, research on bilingual language production has seen the rise of a third view that postulates that lexical selection is in fact dynamic and may function as language-specific or nonspecific depending on a number of factors. The aim of the present study was to investigate the lexical selection process among moderately proficient bilinguals whose two languages are typologically distant: Tunisian Arabic and French. The picture-word interference task was used in two experiments where moderately proficient Tunisian Arabic (L1)-French (L2) bilinguals were asked to name pictures in their L2 while ignoring auditory distractors (semantic, phono-translation, phonological, or unrelated) in their L2 (Experiment 1) or their L1 (Experiment 2). Thus, the language context was entirely monolingual in Experiment 1 and bilingual in Experiment 2. In Experiment 1, only a phonological facilitation effect was observed. In Experiment 2, interference was found in the phono-translation, semantic, and phonological conditions. Taken together, these results indicate that cross-language competition occurs among moderately proficient Tunisian Arabic-French bilinguals only in a bilingual context (Experiment 2) as indexed by the phono-translation interference effect observed. Our findings are in line with the recent hypothesis that lexical selection is a dynamic process modulated by factors like language similarity, language proficiency, and the experimental language context. PMID:26372057

  1. Dynamical Processes in Open Quantum Systems from a TDDFT Perspective: Resonances and Electron Photoemission.

    PubMed

    Larsen, Ask Hjorth; De Giovannini, Umberto; Rubio, Angel

    2016-01-01

    We present a review of different computational methods to describe time-dependent phenomena in open quantum systems and their extension to a density-functional framework. We focus the discussion on electron emission processes in atoms and molecules addressing excited-state lifetimes and dissipative processes. Initially we analyze the concept of an electronic resonance, a central concept in spectroscopy associated with a metastable state from which an electron eventually escapes (electronic lifetime). Resonances play a fundamental role in many time-dependent molecular phenomena but can be rationalized from a time-independent context in terms of scattering states. We introduce the method of complex scaling, which is used to capture resonant states as localized states in the spirit of usual bound-state methods, and work on its extension to static and time-dependent density-functional theory. In a time-dependent setting, complex scaling can be used to describe excitations in the continuum as well as wave packet dynamics leading to electron emission. This process can also be treated by using open boundary conditions which allow time-dependent simulations of emission processes without artificial reflections at the boundaries (i.e., borders of the simulation box). We compare in detail different schemes to implement open boundaries, namely transparent boundaries using Green functions, and absorbing boundaries in the form of complex absorbing potentials and mask functions. The last two are regularly used together with time-dependent density-functional theory to describe the electron emission dynamics of atoms and molecules. Finally, we discuss approaches to the calculation of energy and angle-resolved time-dependent pump-probe photoelectron spectroscopy of molecular systems. PMID:25860253

  2. Collective migration models: Dynamic monitoring of leader cells in migratory/invasive disease processes

    NASA Astrophysics Data System (ADS)

    Dean, Zachary Steven

    Leader cells are a fundamental biological process that have only been investigated since the early 2000s. These cells have often been observed emerging at the edge of an artificial wound in 2D epithelial cell collective invasion, created with either a mechanical scrape from a pipette tip or from the removal of a plastic, physical blocker. During migration, the moving cells maintain cell-cell contacts, an important quality of collective migration; the leader cells originate from either the first or the second row, they increase in size compared to other cells, and they establish ruffled lamellipodia. Recent studies in 3D have also shown that cells emerging from an invading collective group that also exhibit leader-like properties. Exactly how leader cells influence and interact with follower cells as well as other cells types during collective migration, however, is another matter, and is a subject of intense investigation between many different labs and researchers. The majority of leader cell research to date has involved epithelial cells, but as collective migration is implicated in many different pathogenic diseases, such as cancer and wound healing, a better understanding of leader cells in many cell types and environments will allow significant improvement to therapies and treatments for a wide variety of disease processes. In fact, more recent studies on collective migration and invasion have broadened the field to include other cell types, including mesenchymal cancer cells and fibroblasts. However, the proper technology for picking out dynamic, single cells within a moving and changing cell population over time has severely limited previous investigation into leader cell formation and influence over other cells. In line with these previous studies, we not only bring new technology capable of dynamically monitoring leader cell formation, but we propose that leader cell behavior is more than just an epithelial process, and that it is a critical physiological

  3. A new experimental material for modeling relief dynamics and interactions between tectonics and surface processes

    NASA Astrophysics Data System (ADS)

    Graveleau, F.; Hurtrez, J.-E.; Dominguez, S.; Malavieille, J.

    2011-12-01

    We developed a new granular material (MatIV) to study experimentally landscape evolution in active mountain belt piedmonts. Its composition and related physical properties have been determined using empirical criteria derived from the scaling of deformation, erosion-transport and sedimentation natural processes. MatIV is a water-saturated composite material made up with 4 granular components (silica powder, glass microbeads, plastic powder and graphite) whose physical, mechanical and erosion-related properties were measured with different laboratory tests. Mechanical measurements were made on a modified Hubbert-type direct shear apparatus. Erosion-related properties were determined using an experimental set-up that allows quantifying the erosion/sedimentation budget from tilted relaxation topographies. For MatIV, we also investigated the evolution of mean erosion rates and stream power erosion law exponents in 1D as a function of slope. Our results indicate that MatIV satisfies most of the defined criteria. It deforms brittlely according to the linear Mohr-Coulomb failure criterion and localizes deformation along discrete faults. Its erosion pattern is characterized by realistic hillslope and channelized processes (slope diffusion, mass wasting, channel incision). During transport, eroded particles are sorted depending on their density and shape, which results in stratified alluvial deposits displaying lateral facies variations. To evaluate the degree of similitude between model and nature, we used a new experimental device that combines accretionary wedge deformation mechanisms and surface runoff erosion processes. Results indicate that MatIV succeeded in producing detailed morphological and sedimentological features (drainage basin, channel network, terrace, syntectonic alluvial fan). Geometric, kinematic and dynamic similarity criteria have been investigated to compare precisely model to nature. Although scaling is incomplete, it yields particularly informative

  4. Modelling nitrite dynamics and associated feedback processes in the Benguela oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Mashifane, T. B.; Vichi, M.; Waldron, H. N.; Machu, E.; Garçonc, V.

    2016-08-01

    Understanding nitrite dynamics in oxygen minimum zones (OMZs) is a challenge as it represents an intermediary nitrogen species with a short turnover time. Nitrite is also reduced to nitrogen in OMZs, preventing its accumulation. This creates difficulties in detecting nitrite with colorimetric methods as concentrations may occur below detection limits in some regions. Nitrite concentrations are key to understanding intermediate nitrogen processes and their implication for nitrogen loss in OMZs. A coupled physical-biogeochemical model is applied in the Benguela OMZ to study nitrite dynamics and its associated feedback processes. Simulated results show occurrence of primary and secondary nitrite maxima in the Benguela shelf waters. The primary nitrite maxima in the Benguela are attributed to nitrification and nitrate assimilation as they occur in association with the nitracline. Secondary nitrite maxima accumulate in the Angola-Benguela Front (ABF) OMZ and are attributed to denitrification. The secondary nitrite maxima are consumed by anaerobic ammonium oxidation (anammox) off Walvis Bay. Nitrite maxima are restricted to the shelf off Walvis Bay and advected offshore in the ABF region. Interchanges between the poleward South Atlantic Central Water (SACW) and the equatorward, well-aerated Eastern South Atlantic Central Water (ESACW) drive the seasonality of nitrogen processes in the Benguela. Subsequent nitrite reduction in the Benguela OMZ leads to nitrous oxide production, with high concentrations occurring in the ABF region as a result of nitrification and denitrification. Off Walvis Bay, nitrous oxide production is low since nitrite is consumed by anammox. Nitrous oxide production occurs in thermocline, intermediate and deeper water masses in the ABF region. High N fluxes in the Benguela are attributed to nitrification as compared to anammox and denitrification. Results from this study demonstrate the role of intermediate nitrogen species in nitrogen feedback

  5. Modeling the Dynamic Rupture Process of the 1987 Superstition Hills Earthquake

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Archuleta, R. J.

    2012-12-01

    The Mw 6.6 Superstition Hill (SH) earthquake (Nov. 24, 1987) in southern California intrigues us in terms of its rupture dynamics. Kinematic source inversion results imply a complex event, which consisted of 3 subevents (Frankel & Wennerberg, 1989; Wald et al., 1990). All of the subevents seemed to initiate at the northwestern end of the SH fault where SH fault intersects with a conjugate Elmore Ranch (ER) fault. Moreover a Mw 6.2 earthquake and its aftershock sequence occurred on the Elmore Ranch fault within the 12 hours before the SH earthquake. Existing studies show that the distribution of seismicity correlates with the subsurface geology (Fuis et al. 1984). Based on comparison of the extent of each subevent with the fault trace, the fault geometry might make significant contribution to the dynamic process. The San-Jacinto (SJ) fault system certainly complicates the local stress field near SH fault by introducing several pairs of conjugate faults at various length scales in the region. A possible scenario of the Mw 6.6 event would be a sequence of seismic events on the conjugate ER fault perturbed the already complicated initial stress field on the non-planar SH fault and triggered the SH event. Using a finite element approach (Ma & Liu, 2006), we try to create a reasonable initial stress condition for the Mw 6.6 event and model its rupture process, incorporating complex fault geometry, 3D velocity structure and varying frictional properties (velocity weakening/strengthening) both along strike and dip. Recent results on SH fault's creeping behavior (e.g., Wei et al. 2009) also impose constraints on its frictional and rheological material properties, which is essential in the dynamic rupture modeling as well as the nucleation phase.

  6. In-process, non-destructive, dynamic testing of high-speed polymer composite rotors

    NASA Astrophysics Data System (ADS)

    Kuschmierz, Robert; Filippatos, Angelos; Günther, Philipp; Langkamp, Albert; Hufenbach, Werner; Czarske, Jürgen; Fischer, Andreas

    2015-03-01

    Polymer composite rotors are lightweight and offer great perspectives in high-speed applications such as turbo machinery. Currently, novel rotor structures and materials are investigated for the purpose of increasing machine efficiency and lifetime, as well as allowing for higher dynamic loads. However, due to the complexity of the composite materials an in-process measurement system is required. This allows for monitoring the evolution of damages under dynamic loads, for testing and predicting the structural integrity of composite rotors in process. In rotor design, it can be used for calibrating and improving models, simulating the dynamic behaviour of polymer composite rotors. The measurement system is to work non-invasive, offer micron uncertainty, as well as a high measurement rate of several tens of kHz. Furthermore, it must be applicable at high surface speeds and under technical vacuum. In order to fulfil these demands a novel laser distance measurement system was developed. It provides the angle resolved measurement of the biaxial deformation of a fibre-reinforced polymer composite rotor with micron uncertainty at surface speeds of more than 300 m/s. Furthermore, a simulation procedure combining a finite element model and a damage mechanics model is applied. A comparison of the measured data and the numerically calculated data is performed to validate the simulation towards rotor expansion. This validating procedure can be used for a model calibration in the future. The simulation procedure could be used to investigate different damage-test cases of the rotor, in order to define its structural behaviour without further experiments.

  7. Male veterans with PTSD exhibit aberrant neural dynamics during working memory processing: an MEG study

    PubMed Central

    McDermott, Timothy J.; Badura-Brack, Amy S.; Becker, Katherine M.; Ryan, Tara J.; Khanna, Maya M.; Heinrichs-Graham, Elizabeth; Wilson, Tony W.

    2016-01-01

    Background Posttraumatic stress disorder (PTSD) is associated with executive functioning deficits, including disruptions in working memory. In this study, we examined the neural dynamics of working memory processing in veterans with PTSD and a matched healthy control sample using magnetoencephalography (MEG). Methods Our sample of recent combat veterans with PTSD and demographically matched participants without PTSD completed a working memory task during a 306-sensor MEG recording. The MEG data were preprocessed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach to identify spatiotemporal dynamics. Results Fifty-one men were included in our analyses: 27 combat veterans with PTSD and 24 controls. Across all participants, a dynamic wave of neural activity spread from posterior visual cortices to left frontotemporal regions during encoding, consistent with a verbal working memory task, and was sustained throughout maintenance. Differences related to PTSD emerged during early encoding, with patients exhibiting stronger α oscillatory responses than controls in the right inferior frontal gyrus (IFG). Differences spread to the right supramarginal and temporal cortices during later encoding where, along with the right IFG, they persisted throughout the maintenance period. Limitations This study focused on men with combat-related PTSD using a verbal working memory task. Future studies should evaluate women and the impact of various traumatic experiences using diverse tasks. Conclusion Posttraumatic stress disorder is associated with neurophysiological abnormalities during working memory encoding and maintenance. Veterans with PTSD engaged a bilateral network, including the inferior prefrontal cortices and supramarginal gyri. Right hemispheric neural activity likely reflects compensatory processing, as veterans with PTSD work to maintain accurate performance despite known cognitive deficits

  8. Continuous Compressed Sensing for Surface Dynamical Processes with Helium Atom Scattering

    PubMed Central

    Jones, Alex; Tamtögl, Anton; Calvo-Almazán, Irene; Hansen, Anders

    2016-01-01

    Compressed Sensing (CS) techniques are used to measure and reconstruct surface dynamical processes with a helium spin-echo spectrometer for the first time. Helium atom scattering is a well established method for examining the surface structure and dynamics of materials at atomic sized resolution and the spin-echo technique opens up the possibility of compressing the data acquisition process. CS methods demonstrating the compressibility of spin-echo spectra are presented for several measurements. Recent developments on structured multilevel sampling that are empirically and theoretically shown to substantially improve upon the state of the art CS techniques are implemented. In addition, wavelet based CS approximations, founded on a new continuous CS approach, are used to construct continuous spectra. In order to measure both surface diffusion and surface phonons, which appear usually on different energy scales, standard CS techniques are not sufficient. However, the new continuous CS wavelet approach allows simultaneous analysis of surface phonons and molecular diffusion while reducing acquisition times substantially. The developed methodology is not exclusive to Helium atom scattering and can also be applied to other scattering frameworks such as neutron spin-echo and Raman spectroscopy. PMID:27301423

  9. Continuous Compressed Sensing for Surface Dynamical Processes with Helium Atom Scattering.

    PubMed

    Jones, Alex; Tamtögl, Anton; Calvo-Almazán, Irene; Hansen, Anders

    2016-01-01

    Compressed Sensing (CS) techniques are used to measure and reconstruct surface dynamical processes with a helium spin-echo spectrometer for the first time. Helium atom scattering is a well established method for examining the surface structure and dynamics of materials at atomic sized resolution and the spin-echo technique opens up the possibility of compressing the data acquisition process. CS methods demonstrating the compressibility of spin-echo spectra are presented for several measurements. Recent developments on structured multilevel sampling that are empirically and theoretically shown to substantially improve upon the state of the art CS techniques are implemented. In addition, wavelet based CS approximations, founded on a new continuous CS approach, are used to construct continuous spectra. In order to measure both surface diffusion and surface phonons, which appear usually on different energy scales, standard CS techniques are not sufficient. However, the new continuous CS wavelet approach allows simultaneous analysis of surface phonons and molecular diffusion while reducing acquisition times substantially. The developed methodology is not exclusive to Helium atom scattering and can also be applied to other scattering frameworks such as neutron spin-echo and Raman spectroscopy. PMID:27301423

  10. Spillage of Lunar Polar Crater Volatiles onto Adjacent Terrains: The Case for Dynamic Processes

    NASA Technical Reports Server (NTRS)

    Farrell, William M.; Hurley, D M.

    2015-01-01

    We present an investigation of the release and transport of lunar polar crater volatiles onto topside regions surrounding the cold traps. The volatiles are liberated via surface energization processes associated with the harsh space environment, including solar wind plasma sputtering and impact vaporization. We find that some fraction of these volatiles can migrate from crater floors onto topside regions (those regions directly adjacent to and above the polar crater floors), and that these surrounding terrains should contain a sampling of the material originating within the crater itself. It is concluded that the nature of the volatile content on crater floors can be obtained by sampling the surface volatiles that have migrated or "spilled out" onto the adjacent terrain. This "spillage" effect could make human or robotic prospecting for crater resources significantly easier, since an assessment may not require direct entry into the very harsh polar crater environment. We also suggest that there are dynamic processes actively operating on the crater floors, and we estimate their source rates assuming dynamic equilibrium of the observed water frost and our modeled loss rates.

  11. Grounding cognitive-level processes in behavior: the view from dynamic systems theory.

    PubMed

    Samuelson, Larissa K; Jenkins, Gavin W; Spencer, John P

    2015-04-01

    Marr's seminal work laid out a program of research by specifying key questions for cognitive science at different levels of analysis. Because dynamic systems theory (DST) focuses on time and interdependence of components, DST research programs come to very different conclusions regarding the nature of cognitive change. We review a specific DST approach to cognitive-level processes: dynamic field theory (DFT). We review research applying DFT to several cognitive-level processes: object permanence, naming hierarchical categories, and inferring intent, that demonstrate the difference in understanding of behavior and cognition that results from a DST perspective. These point to a central challenge for cognitive science research as defined by Marr-emergence. We argue that appreciating emergence raises questions about the utility of computational-level analyses and opens the door to insights concerning the origin of novel forms of behavior and thought (e.g., a new chess strategy). We contend this is one of the most fundamental questions about cognition and behavior. PMID:25755203

  12. Impacts of Bioturbation by Spawning Salmon on the Community Dynamics and Ecosystem Processes of Alaskan Streams

    NASA Astrophysics Data System (ADS)

    Moore, J. W.; Schindler, D. E.

    2005-05-01

    Ecosystem processes and community dynamics are often controlled by a few dominant species. Species can have large impacts via trophic impacts, such as keystone predators, or via non-trophic impacts, such as ecosystem engineers. For example, it is widely recognized that migrations of Pacific salmon transport marine-derived nutrients and energy to coastal ecosystems. However, while Pacific salmon often spawn at high densities and dig large nests, the impacts of this ecosystem engineering are poorly understood. We collected data every two weeks for four summers on a suite of abiotic and biotic variables in six streams in southwestern Alaska that span a gradient of salmon densities. In streams and years with high densities of salmon, disturbance from spawning salmon impacted virtually all aspects of stream ecology. For example, disturbance by salmon leads to the export of silt and nutrients from streams. This bioturbation often exported more nutrients and matter than were imported by migrating salmon. In addition, there was a severe seasonal decline in periphyton and benthic invertebrate abundance associated with disturbance from salmon nest-digging. Thus, salmon nest-digging is an important component of stream disturbance regimes that controls benthic community dynamics and ecosystem processes of streams.

  13. A Unified Point Process Probabilistic Framework to Assess Heartbeat Dynamics and Autonomic Cardiovascular Control

    PubMed Central

    Chen, Zhe; Purdon, Patrick L.; Brown, Emery N.; Barbieri, Riccardo

    2012-01-01

    In recent years, time-varying inhomogeneous point process models have been introduced for assessment of instantaneous heartbeat dynamics as well as specific cardiovascular control mechanisms and hemodynamics. Assessment of the model’s statistics is established through the Wiener-Volterra theory and a multivariate autoregressive (AR) structure. A variety of instantaneous cardiovascular metrics, such as heart rate (HR), heart rate variability (HRV), respiratory sinus arrhythmia (RSA), and baroreceptor-cardiac reflex (baroreflex) sensitivity (BRS), are derived within a parametric framework and instantaneously updated with adaptive and local maximum likelihood estimation algorithms. Inclusion of second-order non-linearities, with subsequent bispectral quantification in the frequency domain, further allows for definition of instantaneous metrics of non-linearity. We here present a comprehensive review of the devised methods as applied to experimental recordings from healthy subjects during propofol anesthesia. Collective results reveal interesting dynamic trends across the different pharmacological interventions operated within each anesthesia session, confirming the ability of the algorithm to track important changes in cardiorespiratory elicited interactions, and pointing at our mathematical approach as a promising monitoring tool for an accurate, non-invasive assessment in clinical practice. We also discuss the limitations and other alternative modeling strategies of our point process approach. PMID:22375120

  14. Monitoring cognitive and emotional processes through pupil and cardiac response during dynamic versus logical task.

    PubMed

    Causse, Mickaël; Sénard, Jean-Michel; Démonet, Jean François; Pastor, Josette

    2010-06-01

    The paper deals with the links between physiological measurements and cognitive and emotional functioning. As long as the operator is a key agent in charge of complex systems, the definition of metrics able to predict his performance is a great challenge. The measurement of the physiological state is a very promising way but a very acute comprehension is required; in particular few studies compare autonomous nervous system reactivity according to specific cognitive processes during task performance and task related psychological stress is often ignored. We compared physiological parameters recorded on 24 healthy subjects facing two neuropsychological tasks: a dynamic task that require problem solving in a world that continually evolves over time and a logical task representative of cognitive processes performed by operators facing everyday problem solving. Results showed that the mean pupil diameter change was higher during the dynamic task; conversely, the heart rate was more elevated during the logical task. Finally, the systolic blood pressure seemed to be strongly sensitive to psychological stress. A better taking into account of the precise influence of a given cognitive activity and both workload and related task-induced psychological stress during task performance is a promising way to better monitor operators in complex working situations to detect mental overload or pejorative stress factor of error. PMID:19816770

  15. Multiscale dynamic analysis of blast furnace system based on intensive signal processing

    NASA Astrophysics Data System (ADS)

    Chu, Yanxu; Gao, Chuanhou; Liu, Xiangguan

    2010-09-01

    In this paper, the Hilbert-Huang transform method and time delay embedding method are applied to multiscale dynamic analysis on the time series of silicon content in hot metal collected from a medium-sized blast furnace with the inner volume of 2500 m3. The results provide clear evidence of multiscale features in blast furnace ironmaking process. Ten intrinsic mode functions (IMFs) are decomposed from the silicon content time series; the presence of noninteger fractal dimension, positive finite Kolmogorov entropy, and positive finite maximum Lyapunov exponent are found in some IMF components. In addition, the coupling of subscale structures of blast furnace system is studied using the dimension of interaction dynamics and a robust algorithm for detecting interdependence. It is found that IMF(3) is the main driver in the coupling system IMF(2) and IMF(3) while for the coupling system IMF(3) and IMF(4) neither subsystem can act as the driver. All these provide a guideline for studying blast furnace ironmaking process with multiscale theory and methods, and may open way for more candidate tools to model and control blast furnace system in the future.

  16. Multiscale dynamic analysis of blast furnace system based on intensive signal processing.

    PubMed

    Chu, Yanxu; Gao, Chuanhou; Liu, Xiangguan

    2010-09-01

    In this paper, the Hilbert-Huang transform method and time delay embedding method are applied to multiscale dynamic analysis on the time series of silicon content in hot metal collected from a medium-sized blast furnace with the inner volume of 2500 m3. The results provide clear evidence of multiscale features in blast furnace ironmaking process. Ten intrinsic mode functions (IMFs) are decomposed from the silicon content time series; the presence of noninteger fractal dimension, positive finite Kolmogorov entropy, and positive finite maximum Lyapunov exponent are found in some IMF components. In addition, the coupling of subscale structures of blast furnace system is studied using the dimension of interaction dynamics and a robust algorithm for detecting interdependence. It is found that IMF(3) is the main driver in the coupling system IMF(2) and IMF(3) while for the coupling system IMF(3) and IMF(4) neither subsystem can act as the driver. All these provide a guideline for studying blast furnace ironmaking process with multiscale theory and methods, and may open way for more candidate tools to model and control blast furnace system in the future. PMID:20887042

  17. Measurement of dynamic variations of polarized light in processed meat due to aging

    NASA Astrophysics Data System (ADS)

    Abubaker, Hamed M.; Tománek, Pavel; Grmela, Lubomír

    2011-05-01

    The propagation of laser light in biological tissues is of growing importance in many medical and food applications. This problem is seriously studied in live science. The biological tissues consist of cells which dimensions are bigger than wavelength of visible light and display large compositional variations, inhomogeneities, and anisotropic structures. Therefore a Mie scattering of transmitted or backscattered light occurs and different polarization states arise. The changes of polarization state due to the multiple scattering of light in the biological cellular tissues also allow measure the freshness of processed victuals. The transmitted and backscattered laser light exhibits multiple scattering on the thin slice of sample. The phenomenon is different if the cellular tissues are living or dead. In the case of meat, there are temporal and dynamic changes not only as a result of chemical process, but also geometric deformations due to the water evaporation from intracellular and extracellular sites. The polarization measurement shows the changes in polarization orientation due to the muscle orientation and meat aging. Two types of measurements were provided: a) Measurement of polarized light reflected and twice transmitted forward and backward through the biological tissue samples - meat slice attached on sample holder mirror. b) Measurement of polarized light transmitted through the biological tissue sample. The relationship between polarization changes and meat freshness, and a dynamic temporal behavior of polarization states in the aged meat is reported.

  18. Modelling social interaction as perceptual crossing: an investigation into the dynamics of the interaction process

    NASA Astrophysics Data System (ADS)

    Froese, Tom; Di Paolo, Ezequiel A.

    2010-03-01

    This paper continues efforts to establish a mutually informative dialogue between psychology and evolutionary robotics in order to investigate the dynamics of social interaction. We replicate a recent simulation model of a minimalist experiment in perceptual crossing and confirm the results with significantly simpler artificial agents. A series of psycho-physical tests of their behaviour informs a hypothetical circuit model of their internal operation. However, a detailed study of the actual internal dynamics reveals this circuit model to be unfounded, thereby offering a tale of caution for those hypothesising about sub-personal processes in terms of behavioural observations. In particular, it is shown that the behaviour of the agents largely emerges out of the interaction process itself rather than being an individual achievement alone. We also extend the original simulation model in two novel directions in order to test further the extent to which perceptual crossing between agents can self-organise in a robust manner. These modelling results suggest new hypotheses that can become the basis for further psychological experiments.

  19. Continuous Compressed Sensing for Surface Dynamical Processes with Helium Atom Scattering

    NASA Astrophysics Data System (ADS)

    Jones, Alex; Tamtögl, Anton; Calvo-Almazán, Irene; Hansen, Anders

    2016-06-01

    Compressed Sensing (CS) techniques are used to measure and reconstruct surface dynamical processes with a helium spin-echo spectrometer for the first time. Helium atom scattering is a well established method for examining the surface structure and dynamics of materials at atomic sized resolution and the spin-echo technique opens up the possibility of compressing the data acquisition process. CS methods demonstrating the compressibility of spin-echo spectra are presented for several measurements. Recent developments on structured multilevel sampling that are empirically and theoretically shown to substantially improve upon the state of the art CS techniques are implemented. In addition, wavelet based CS approximations, founded on a new continuous CS approach, are used to construct continuous spectra. In order to measure both surface diffusion and surface phonons, which appear usually on different energy scales, standard CS techniques are not sufficient. However, the new continuous CS wavelet approach allows simultaneous analysis of surface phonons and molecular diffusion while reducing acquisition times substantially. The developed methodology is not exclusive to Helium atom scattering and can also be applied to other scattering frameworks such as neutron spin-echo and Raman spectroscopy.

  20. Spillage of lunar polar crater volatiles onto adjacent terrains: The case for dynamic processes

    NASA Astrophysics Data System (ADS)

    Farrell, W. M.; Hurley, D. M.; Zimmerman, M. I.

    2015-05-01

    We present an investigation of the release and transport of lunar polar crater volatiles onto topside regions surrounding the cold traps. The volatiles are liberated via surface energization processes associated with the harsh space environment, including solar wind plasma sputtering and impact vaporization. We find that some fraction of these volatiles can migrate from crater floors onto topside regions (those regions directly adjacent to and above the polar crater floors), and that these surrounding terrains should contain a sampling of the material originating within the crater itself. It is concluded that the nature of the volatile content on crater floors can be obtained by sampling the surface volatiles that have migrated or "spilled out" onto the adjacent terrain. This "spillage" effect could make human or robotic prospecting for crater resources significantly easier, since an assessment may not require direct entry into the very harsh polar crater environment. We also suggest that there are dynamic processes actively operating on the crater floors, and we estimate their source rates assuming dynamic equilibrium of the observed water frost and our modeled loss rates.

  1. Dynamic secondary electron emission characteristics of polymers in negative charging process

    NASA Astrophysics Data System (ADS)

    Weng, Ming; Hu, Tian-Cun; Zhang, Na; Cao, Meng

    2016-04-01

    We studied the dynamic secondary electron emission (SEE) characteristics of a polyimide sample in negative charging process under electron bombardment. The time evolution of secondary electron yield (SEY) has been measured with a pulsed electron gun. The dynamic SEY, as well as the surface potential have been analyzed using a capacitance model. The shift in surface potential caused by the negative charge accumulation on the sample reduces the landing energy of the primary electrons (PEs), which in turn alters the SEY. The charging process tends to be stable when the landing energy of PEs reaches the secondary crossover energy where the corresponding SEY is 1. The surface potential has an approximately negative exponential relationship with the irradiation time. The total accumulated charge at the stable state is found to be proportional to the product of the sample capacitance and the difference between initial incident energy and the secondary crossover energy. The time constant of the exponential function is proportional to the ratio of final accumulated charge to the incident current.

  2. Structure of a simple molecular dynamics FORTRAN program optimized for CRAY vector processing computers

    NASA Astrophysics Data System (ADS)

    Schoen, Martin

    1989-01-01

    A program structure for efficient vectorization of molecular dynamics FORTRAN programs on CRAY vector processing computers is described. Though coded for a very simple pure atomic fluid in a cubic cell with periodic boundary conditions the program can easily be modified to handle more complicated systems. A detailed analysis shows that the present program is faster by 36% for N = 256 particles and faster by more than a factor of 3 for N = 2048 compared with a fully vectorized molecular dynamics program written for the CYBER 205 vector processing machine. In comparison with a link cell MD program also written for a CRAY the program described here runs three times faster for a large particle number N = 6912. This factor increases with decreasing N to 6.3 for N = 1372. The speedup is achieved by i) long vectors in inner loops wherever possible; ii) limiting the number of arithmetic operations in inevitably short loops as much as possible; iii) appropriate library routines; iv) integer index vector neighbour lists.

  3. Estimation of the dynamic fracture process of rock material utilizing high-speed photography

    NASA Astrophysics Data System (ADS)

    Kubota, Shiro; Jung, Woo-Jin; Ogata, Yuji; Aoki, Kazuo; Shimada, Hideki; Matsui, Kikuo

    2003-07-01

    The experimental study is conducted to estimate fracture process of the cylindrical rock specimen. In this experiment, an explosive is used as the explosion source, and a pipe filled with water is arranged between the explosive and the cylindrical rock specimen. The main purpose of this fracture test is to collect the experimental data on the behaviors of the dynamic fracture of the rock. In addition, one of the aims of this test is to estimate the dynamic tensile strength of the rock in wide range of strain rate utilizing Hopkinson's effect. Therefore, during the fracture process of the rock, the free surface velocity and the fracture part near the free surface were observed by a laser vibration meter and high speed camera. The precise detonator was used to control the initiation time of the explosive by using an accuratley controlled blasting machine. The results of the fracture test for Kimachi sandstone and the validity of this test are discussed. In order to understand the relationship above fracture condition and the incident underwater shock wave into the rock specimen, the numerical simulation is carried out. The 2D hydrodynamic code based on ALE finite difference scheme is employed. In the case of the fracture test with 50 mm water pipe, the incident underwater shock wave into the cylindrical rock specimen has irregular pressure distribution near the shock front.

  4. A unified point process probabilistic framework to assess heartbeat dynamics and autonomic cardiovascular control.

    PubMed

    Chen, Zhe; Purdon, Patrick L; Brown, Emery N; Barbieri, Riccardo

    2012-01-01

    In recent years, time-varying inhomogeneous point process models have been introduced for assessment of instantaneous heartbeat dynamics as well as specific cardiovascular control mechanisms and hemodynamics. Assessment of the model's statistics is established through the Wiener-Volterra theory and a multivariate autoregressive (AR) structure. A variety of instantaneous cardiovascular metrics, such as heart rate (HR), heart rate variability (HRV), respiratory sinus arrhythmia (RSA), and baroreceptor-cardiac reflex (baroreflex) sensitivity (BRS), are derived within a parametric framework and instantaneously updated with adaptive and local maximum likelihood estimation algorithms. Inclusion of second-order non-linearities, with subsequent bispectral quantification in the frequency domain, further allows for definition of instantaneous metrics of non-linearity. We here present a comprehensive review of the devised methods as applied to experimental recordings from healthy subjects during propofol anesthesia. Collective results reveal interesting dynamic trends across the different pharmacological interventions operated within each anesthesia session, confirming the ability of the algorithm to track important changes in cardiorespiratory elicited interactions, and pointing at our mathematical approach as a promising monitoring tool for an accurate, non-invasive assessment in clinical practice. We also discuss the limitations and other alternative modeling strategies of our point process approach. PMID:22375120

  5. Point process time-frequency analysis of respiratory sinus arrhythmia under altered respiration dynamics.

    PubMed

    Kodituwakku, Sandun; Lazar, Sara W; Indic, Premananda; Brown, Emery N; Barbieri, Riccardo

    2010-01-01

    Respiratory sinus arrhythmia (RSA) is largely mediated by the autonomic nervous system through its modulating influence on the heartbeat. We propose an algorithm for quantifying instantaneous RSA as applied to heart beat interval and respiratory recordings under dynamic respiration conditions. The blood volume pressure derived heart beat series (pulse intervals, PI) are modeled as an inverse gaussian point process, with the instantaneous mean PI modeled as a bivariate regression incorporating both past PI and respiration values observed at the beats. A point process maximum likelihood algorithm is used to estimate the model parameters, and instantaneous RSA is estimated by a frequency domain transfer function approach. The model is statistically validated using Kolmogorov-Smirnov (KS) goodness-of-fit analysis, as well as independence tests. The algorithm is applied to subjects engaged in meditative practice, with distinctive dynamics in the respiration patterns elicited as a result. Experimental results confirm the ability of the algorithm to track important changes in cardiorespiratory interactions elicited during meditation, otherwise not evidenced in control resting states. PMID:21096135

  6. Point process time-frequency analysis of dynamic respiratory patterns during meditation practice.

    PubMed

    Kodituwakku, Sandun; Lazar, Sara W; Indic, Premananda; Chen, Zhe; Brown, Emery N; Barbieri, Riccardo

    2012-03-01

    Respiratory sinus arrhythmia (RSA) is largely mediated by the autonomic nervous system through its modulating influence on the heart beats. We propose a robust algorithm for quantifying instantaneous RSA as applied to heart beat intervals and respiratory recordings under dynamic breathing patterns. The blood volume pressure-derived heart beat series (pulse intervals, PIs) are modeled as an inverse Gaussian point process, with the instantaneous mean PI modeled as a bivariate regression incorporating both past PIs and respiration values observed at the beats. A point process maximum likelihood algorithm is used to estimate the model parameters, and instantaneous RSA is estimated via a frequency domain transfer function evaluated at instantaneous respiratory frequency where high coherence between respiration and PIs is observed. The model is statistically validated using Kolmogorov-Smirnov goodness-of-fit analysis, as well as independence tests. The algorithm is applied to subjects engaged in meditative practice, with distinctive dynamics in the respiration patterns elicited as a result. The presented analysis confirms the ability of the algorithm to track important changes in cardiorespiratory interactions elicited during meditation, otherwise not evidenced in control resting states, reporting statistically significant increase in RSA gain as measured by our paradigm. PMID:22350435

  7. Dynamic Data Management Based on Archival Process Integration at the Centre for Environmental Data Archival

    NASA Astrophysics Data System (ADS)

    Conway, Esther; Waterfall, Alison; Pepler, Sam; Newey, Charles

    2015-04-01

    In this paper we decribe a business process modelling approach to the integration of exisiting archival activities. We provide a high level overview of existing practice and discuss how procedures can be extended and supported through the description of preservation state. The aim of which is to faciliate the dynamic controlled management of scientific data through its lifecycle. The main types of archival processes considered are: • Management processes that govern the operation of an archive. These management processes include archival governance (preservation state management, selection of archival candidates and strategic management) . • Operational processes that constitute the core activities of the archive which maintain the value of research assets. These operational processes are the acquisition, ingestion, deletion, generation of metadata and preservation actvities, • Supporting processes, which include planning, risk analysis and monitoring of the community/preservation environment. We then proceed by describing the feasability testing of extended risk management and planning procedures which integrate current practices. This was done through the CEDA Archival Format Audit which inspected British Atmospherics Data Centre and National Earth Observation Data Centre Archival holdings. These holdings are extensive, comprising of around 2PB of data and 137 million individual files which were analysed and characterised in terms of format based risk. We are then able to present an overview of the risk burden faced by a large scale archive attempting to maintain the usability of heterogeneous environmental data sets. We conclude by presenting a dynamic data management information model that is capable of describing the preservation state of archival holdings throughout the data lifecycle. We provide discussion of the following core model entities and their relationships: • Aspirational entities, which include Data Entity definitions and their associated

  8. Profiling of dynamic changes in the microbial community during the soy sauce fermentation process.

    PubMed

    Wei, Quanzeng; Wang, Hongbin; Chen, Zhixin; Lv, Zhijia; Xie, Yufeng; Lu, Fuping

    2013-10-01

    Soy sauce is a traditional condiment manufactured by natural inoculation and mixed culture fermentation. As is well known, it is the microbial community that plays an important role in the formation of its flavors. However, to date, its dynamic changes during the long period of fermentation process are still unclear, intensively constraining the improvement and control of the soy sauce quality. In this work, we revealed the dynamic changes of the microbial community by combining a cultured dependent method and a cultured independent method of polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis. Results indicated that the two methods verified and complemented each other in profiling microbial community, and that significant dynamics of the microbial community existed during the fermentation process, especially the strong inhibition of the growth of most of the microbes when entering into the mash stage from the koji stage. In the analysis of bacterial community, Staphylococcus and Bacillus were found to be the dominant bacteria and detected in the whole fermentation process. Kurthia and Klebsiella began to appear in the koji stage and then fade away in the early stage of the mash fermentation. In the analysis of fungal community, Aspergillus sojae and Zygosaccharomyces rouxii were found to be the dominant fungi in the koji and mash fermentation, respectively. It was clearly shown that when A. sojae decreased and disappeared in the middle stage of the mash fermentation, Z. rouxii appeared and increased at the meantime. Aspergillus parasiticus, Trichosporon ovoides and Trichosporon asahii also appeared in the koji and the early period of the mash fermentation and disappeared thereafter. Similar to Z. rouxii, Millerozyma farinosa and Peronospora farinosa were also found spontaneously which appeared in the mid-late period of the mash fermentation. The principal component analysis suggested that the microbial community underwent significant changes in

  9. Greenhouse gas emission and microbial community dynamics during simultaneous nitrification and denitrification process.

    PubMed

    Kong, Qiang; Wang, Zhi-Bin; Niu, Peng-Fei; Miao, Ming-Sheng

    2016-06-01

    This study evaluates greenhouse gas emission and the microbial community dynamics during simultaneous nitrification and denitrification (SND) process. Based on CO2 equivalents, the SND reactor released 4.28g of greenhouse gases each cycle. 2.91% of the incoming nitrogen load was emitted as N2O. The CO2 and N2O emissions mainly occurred in the aerobic stage and CH4 emissions were consistently near zero. Extracellular polymeric substance (EPS) contents in activated sludge increased during start-up the SND process. High-throughput sequencing showed increases in bacterial species richness, leading to changes in EPS content and composition observed using 3D-EEM fluorescence spectra. For denitrifying bacteria, the relative abundance of Pseudomonas significantly increased during the SND process, while Paracoccus decreased significantly. For phosphorus-accumulating bacteria, the relative abundance of Rhodocyclaceae also significantly increased. The relative abundance of other functional microbes, such as Nitrosomonadaceae (ammonia oxidizer), Nitrospirales (nitrite oxidizer) and Planctomyces (anammox) decreased significantly during the SND process. PMID:26935325

  10. Autonomous dynamics in neural networks: the dHAN concept and associative thought processes

    NASA Astrophysics Data System (ADS)

    Gros, Claudius

    2007-02-01

    The neural activity of the human brain is dominated by self-sustained activities. External sensory stimuli influence this autonomous activity but they do not drive the brain directly. Most standard artificial neural network models are however input driven and do not show spontaneous activities. It constitutes a challenge to develop organizational principles for controlled, self-sustained activity in artificial neural networks. Here we propose and examine the dHAN concept for autonomous associative thought processes in dense and homogeneous associative networks. An associative thought-process is characterized, within this approach, by a time-series of transient attractors. Each transient state corresponds to a stored information, a memory. The subsequent transient states are characterized by large associative overlaps, which are identical to acquired patterns. Memory states, the acquired patterns, have such a dual functionality. In this approach the self-sustained neural activity has a central functional role. The network acquires a discrimination capability, as external stimuli need to compete with the autonomous activity. Noise in the input is readily filtered-out. Hebbian learning of external patterns occurs coinstantaneous with the ongoing associative thought process. The autonomous dynamics needs a long-term working-point optimization which acquires within the dHAN concept a dual functionality: It stabilizes the time development of the associative thought process and limits runaway synaptic growth, which generically occurs otherwise in neural networks with self-induced activities and Hebbian-type learning rules.

  11. The role of reconsolidation and the dynamic process of long-term memory formation and storage.

    PubMed

    Alberini, Cristina M

    2011-01-01

    It is becoming increasingly clear that the processes of memory formation and storage are exquisitely dynamic. Elucidating the nature and temporal evolution of the biological changes that accompany encoding, storage, and retrieval is key to understand memory formation. For explicit or medial temporal lobe-dependent memories that form after a discrete event and are stored for a long time, the physical changes underlying the encoding and processing of the information (memory trace or engram) remain in a fragile state for some time. However, over time, the new memory becomes increasingly resistant to disruption until it is consolidated. Retrieval or reactivation of an apparently consolidated memory can render the memory labile again, and reconsolidation is the process that occurs to mediate its restabilization. Reconsolidation also evolves with the age of the memory: Young memories are sensitive to post-reactivation disruption, but older memories are more resistant. Why does a memory become labile again if it is retrieved or reactivated? Here I suggest that the main function of reconsolidation is to contribute to the lingering consolidation process and mediate memory strengthening. I also discuss the literature and results regarding the influence of the passage of time on the reconsolidation of memory. These points have important implications for the use of reconsolidation in therapeutic settings. PMID:21436877

  12. Spatiotemporal dynamics during processing of abstract and concrete verbs: an ERP study.

    PubMed

    Dalla Volta, Riccardo; Fabbri-Destro, Maddalena; Gentilucci, Maurizio; Avanzini, Pietro

    2014-08-01

    Different accounts have been proposed to explain the nature of concept representations. Embodied accounts claim a key involvement of sensory-motor systems during semantic processing while more traditional accounts posit that concepts are abstract mental entities independent of perceptual and motor brain systems. While the involvement of sensory-motor areas in concrete language processing is supported by a large number of studies, this involvement is far from being established when considering abstract language. The present study addressed abstract and concrete verb processing, by investigating the spatiotemporal dynamics of evoked responses by means of high density EEG while participants performed a semantic decision task. In addition, RTs to the same set of stimuli were collected. In both early and late time intervals, ERP scalp topography significantly differed according to word categories. Concrete verbs showed involvement of parieto-frontal networks for action, according to the implied body effector. In contrast, abstract verbs recruited mostly frontal regions outside the motor system, suggesting a non-motor semantic processing for this category. In addition, differently from what has been reported during action observation, the parietal recruitment related to concrete verbs presentation followed the frontal one. The present findings suggest that action word semantic is grounded in sensory-motor systems, provided a bodily effector is specified, while abstract concepts׳ representation cannot be easily explained by a motor embodiment. PMID:24956569

  13. Experimental dynamic modelling of peripheral milling with process damping, structural and cutting force nonlinearities

    NASA Astrophysics Data System (ADS)

    Moradi, Hamed; Vossoughi, Gholamreza; Movahhedy, Mohammad R.

    2013-09-01

    In this paper, an extended dynamic model of peripheral milling process including process damping, structural and cutting force nonlinearities is presented. Cutting forces are described through a third-order polynomial function of chip thickness while a cubic nonlinear function is considered for the structural stiffness. Under stable and regenerative chatter conditions and using Fourier series components, closed form expressions for the nonlinear cutting forces are derived. Parameters of the proposed model are identified through a set of experiments. For this purpose, modal experiments and measurement of cutting forces (at various feed rates) are performed to determine the modal parameters and the coefficients of nonlinear cutting force model. In addition, coefficients of the structural stiffness and process damping are identified through the analysis of experimental and simulated stability lobes diagrams. Simulated stability lobes diagram is constructed based on two approaches: a trial and error (TE) based algorithm and semi-discretization method (SDM). The presented experimental method for model identification can be implemented on any industrial milling process.

  14. Dynamics of earthquake nucleation process represented by the Burridge-Knopoff model

    NASA Astrophysics Data System (ADS)

    Ueda, Yushi; Morimoto, Shouji; Kakui, Shingo; Yamamoto, Takumi; Kawamura, Hikaru

    2015-09-01

    Dynamics of earthquake nucleation process is studied on the basis of the one-dimensional Burridge-Knopoff (BK) model obeying the rate- and state-dependent friction (RSF) law. We investigate the properties of the model at each stage of the nucleation process, including the quasi-static initial phase, the unstable acceleration phase and the high-speed rupture phase or a mainshock. Two kinds of nucleation lengths L sc and L c are identified and investigated. The nucleation length L sc and the initial phase exist only for a weak frictional instability regime, while the nucleation length L c and the acceleration phase exist for both weak and strong instability regimes. Both L sc and L c are found to be determined by the model parameters, the frictional weakening parameter and the elastic stiffness parameter, hardly dependent on the size of an ensuing mainshock. The sliding velocity is extremely slow in the initial phase up to L sc , of order the pulling speed of the plate, while it reaches a detectable level at a certain stage of the acceleration phase. The continuum limits of the results are discussed. The continuum limit of the BK model lies in the weak frictional instability regime so that a mature homogeneous fault under the RSF law always accompanies the quasi-static nucleation process. Duration times of each stage of the nucleation process are examined. The relation to the elastic continuum model and implications to real seismicity are discussed.

  15. Inferring Instantaneous, Multivariate and Nonlinear Sensitivities for the Analysis of Feedback Processes in a Dynamical System: Lorenz Model Case Study

    NASA Technical Reports Server (NTRS)

    Aires, Filipe; Rossow, William B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A new approach is presented for the analysis of feedback processes in a nonlinear dynamical system by observing its variations. The new methodology consists of statistical estimates of the sensitivities between all pairs of variables in the system based on a neural network modeling of the dynamical system. The model can then be used to estimate the instantaneous, multivariate and nonlinear sensitivities, which are shown to be essential for the analysis of the feedbacks processes involved in the dynamical system. The method is described and tested on synthetic data from the low-order Lorenz circulation model where the correct sensitivities can be evaluated analytically.

  16. Ergodicity testing using an analytical formula for a dynamical functional of alpha-stable autoregressive fractionally integrated moving average processes

    NASA Astrophysics Data System (ADS)

    Loch, Hanna; Janczura, Joanna; Weron, Aleksander

    2016-04-01

    In this paper we study asymptotic behavior of a dynamical functional for an α -stable autoregressive fractionally integrated moving average (ARFIMA) process. We find an analytical formula for this important statistics and show its usefulness as a diagnostic tool for ergodic properties. The obtained results point to the very fast convergence of the dynamical functional and show that even for short trajectories one may obtain reliable conclusions on the ergodic properties of the ARFIMA process. Moreover we use the obtained theoretical results to illustrate how the dynamical functional statistics can be used in the verification of the proper model for an analysis of some biophysical experimental data.

  17. A dynamic process model of a natural gas combined cycle -- Model development with startup and shutdown simulations

    SciTech Connect

    Liese, Eric; Zitney, Stephen E.

    2013-01-01

    Research in dynamic process simulation for integrated gasification combined cycles (IGCC) with carbon capture has been ongoing at the National Energy Technology Laboratory (NETL), culminating in a full operator training simulator (OTS) and immersive training simulator (ITS) for use in both operator training and research. A derivative work of the IGCC dynamic simulator has been a modification of the combined cycle section to more closely represent a typical natural gas fired combined cycle (NGCC). This paper describes the NGCC dynamic process model and highlights some of the simulator’s current capabilities through a particular startup and shutdown scenario.

  18. High-resolution full-field optical coherence tomography using high dynamic range image processing

    NASA Astrophysics Data System (ADS)

    Leong-Hoï, A.; Claveau, R.; Montgomery, P. C.; Serio, B.; Uhring, W.; Anstotz, F.; Flury, M.

    2016-04-01

    Full-field optical coherence tomography (FF-OCT) based on white-light interference microscopy, is an emerging noninvasive imaging technique for characterizing biological tissue or optical scattering media with micrometer resolution. Tomographic images can be obtained by analyzing a sequence of interferograms acquired with a camera. This is achieved by scanning an interferometric microscope objectives along the optical axis and performing appropriate signal processing for fringe envelope extraction, leading to three-dimensional imaging over depth. However, noise contained in the images can hide some important details or induce errors in the size of these details. To firstly reduce temporal and spatial noise from the camera, it is possible to apply basic image post processing methods such as image averaging, dark frame subtraction or flat field division. It has been demonstrate that this can improve the quality of microscopy images by enhancing the signal to noise ratio. In addition, the dynamic range of images can be enhanced to improve the contrast by combining images acquired with different exposure times or light intensity. This can be made possible by applying a hybrid high dynamic range (HDR) technique, which is proposed in this paper. High resolution tomographic analysis is thus performed using a combination of the above-mentioned image processing techniques. As a result, the lateral resolution of the system can be improved so as to approach the diffraction limit of the microscope as well as to increase the power of detection, thus enabling new sub-diffraction sized structures contained in a transparent layer, initially hidden by the noise, to be detected.

  19. Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations

    PubMed Central

    Buch, Ignasi; Giorgino, Toni; De Fabritiis, Gianni

    2011-01-01

    The understanding of protein–ligand binding is of critical importance for biomedical research, yet the process itself has been very difficult to study because of its intrinsically dynamic character. Here, we have been able to quantitatively reconstruct the complete binding process of the enzyme-inhibitor complex trypsin-benzamidine by performing 495 molecular dynamics simulations of free ligand binding of 100 ns each, 187 of which produced binding events with an rmsd less than 2 Å compared to the crystal structure. The binding paths obtained are able to capture the kinetic pathway of the inhibitor diffusing from solvent (S0) to the bound (S4) state passing through two metastable intermediate states S2 and S3. Rather than directly entering the binding pocket the inhibitor appears to roll on the surface of the protein in its transition between S3 and the final binding pocket, whereas the transition between S2 and the bound pose requires rediffusion to S3. An estimation of the standard free energy of binding gives ΔG° = -5.2 ± 0.4 kcal/mol (cf. the experimental value -6.2 kcal/mol), and a two-states kinetic model kon = (1.5 ± 0.2) × 108 M-1 s-1 and koff = (9.5 ± 3.3) × 104 s-1 for unbound to bound transitions. The ability to reconstruct by simple diffusion the binding pathway of an enzyme-inhibitor binding process demonstrates the predictive power of unconventional high-throughput molecular simulations. Moreover, the methodology is directly applicable to other molecular systems and thus of general interest in biomedical and pharmaceutical research. PMID:21646537

  20. r-PROCESS NUCLEOSYNTHESIS IN DYNAMICALLY EJECTED MATTER OF NEUTRON STAR MERGERS

    SciTech Connect

    Goriely, Stephane; Bauswein, Andreas; Janka, Hans-Thomas

    2011-09-10

    Although the rapid neutron-capture process, or r-process, is fundamentally important for explaining the origin of approximately half of the stable nuclei with A > 60, the astrophysical site of this process has not been identified yet. Here we study r-process nucleosynthesis in material that is dynamically ejected by tidal and pressure forces during the merging of binary neutron stars (NSs) and within milliseconds afterward. For the first time we make use of relativistic hydrodynamical simulations of such events, defining consistently the conditions that determine the nucleosynthesis, i.e., neutron enrichment, entropy, early density evolution and thus expansion timescale, and ejecta mass. We find that 10{sup -3}-10{sup -2} M{sub sun} are ejected, which is enough for mergers to be the main source of heavy (A {approx}> 140) galactic r-nuclei for merger rates of some 10{sup -5} yr{sup -1}. While asymmetric mergers eject 2-3 times more mass than symmetric ones, the exact amount depends weakly on whether the NSs have radii of {approx}15 km for a 'stiff' nuclear equation of state (EOS) or {approx}12 km for a 'soft' EOS. r-process nucleosynthesis during the decompression becomes largely insensitive to the detailed conditions because of efficient fission recycling, producing a composition that closely follows the solar r-abundance distribution for nuclei with mass numbers A > 140. Estimating the light curve powered by the radioactive decay heating of r-process nuclei with an approximative model, we expect high emission in the B-V-R bands for 1-2 days with potentially observable longer duration in the case of asymmetric mergers because of the larger ejecta mass.