Science.gov

Sample records for dynamic species exchange

  1. The Dynamics of Multilateral Exchange

    NASA Astrophysics Data System (ADS)

    Hausken, Kjell; Moxnes, John F.

    The article formulates a dynamic mathematical model where arbitrarily many players produce, consume, exchange, loan, and deposit arbitrarily many goods over time to maximize utility. Consuming goods constitutes a benefit, and producing, exporting, and loaning away goods constitute a cost. Utilities are benefits minus costs, which depend on the exchange ratios and bargaining functions. Three-way exchange occurs when one player acquires, through exchange, one good from another player with the sole purpose of using this good to exchange against the desired good from a third player. Such a triple handshake is not merely a set of double handshakes since the player assigns no interest to the first good in his benefit function. Cognitive and organization costs increase dramatically for higher order exchanges. An exchange theory accounting for media of exchange follows from simple generalization of two-way exchange. The examples of r-way exchange are the triangle trade between Africa, the USA, and England in the 17th and 18th centuries, the hypothetical hypercycle involving RNAs as players and enzymes as goods, and reaction-diffusion processes. The emergence of exchange, and the role of trading agents are discussed. We simulate an example where two-way exchange gives zero production and zero utility, while three-way exchange causes considerable production and positive utility. Maximum utility for each player is reached when exchanges of the same order as the number of players in society are allowed. The article merges micro theory and macro theory within the social, natural, and physical sciences.

  2. The dynamic multimodeling exchange language

    NASA Astrophysics Data System (ADS)

    Lee, Jinho; Fishwick, Paul A.

    2003-09-01

    The web has made it easy to create multimedia content, which is then viewable by the general community at large. By extending multimedia to include the area of modeling, we make it possible to share and process model structures in the same way as the typical web page. For models of the geometric variety, the new X3D (eXtensible 3D) standard will allow sharing and presentation of 3D scene graphs within the web browser. We have created a dynamic model counterpart to X3D, which we call DXL (Dynamics eXchange Language). DXL is low-level XML-based language, comprising blocks, ports, and connectors. We will define how DXL is used for constructing individual level models, as well as multimodels over multiple abstraction layers.

  3. Nonadiabatic exchange dynamics during adiabatic frequency sweeps

    NASA Astrophysics Data System (ADS)

    Barbara, Thomas M.

    2016-04-01

    A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.

  4. Marriage exchanges, seed exchanges, and the dynamics of manioc diversity

    PubMed Central

    Delêtre, Marc; McKey, Doyle B.; Hodkinson, Trevor R.

    2011-01-01

    The conservation of crop genetic resources requires understanding the different variables—cultural, social, and economic—that impinge on crop diversity. In small-scale farming systems, seed exchanges represent a key mechanism in the dynamics of crop genetic diversity, and analyzing the rules that structure social networks of seed exchange between farmer communities can help decipher patterns of crop genetic diversity. Using a combination of ethnobotanical and molecular genetic approaches, we investigated the relationships between regional patterns of manioc genetic diversity in Gabon and local networks of seed exchange. Spatially explicit Bayesian clustering methods showed that geographical discontinuities of manioc genetic diversity mirror major ethnolinguistic boundaries, with a southern matrilineal domain characterized by high levels of varietal diversity and a northern patrilineal domain characterized by low varietal diversity. Borrowing concepts from anthropology—kinship, bridewealth, and filiation—we analyzed the relationships between marriage exchanges and seed exchange networks in patrilineal and matrilineal societies. We demonstrate that, by defining marriage prohibitions, kinship systems structure social networks of exchange between farmer communities and influence the movement of seeds in metapopulations, shaping crop diversity at local and regional levels. PMID:22042843

  5. Protein dynamics viewed by hydrogen exchange

    PubMed Central

    Skinner, John J; Lim, Woon K; Bédard, Sabrina; Black, Ben E; Englander, S Walter

    2012-01-01

    To examine the relationship between protein structural dynamics and measurable hydrogen exchange (HX) data, the detailed exchange behavior of most of the backbone amide hydrogens of Staphylococcal nuclease was compared with that of their neighbors, with their structural environment, and with other information. Results show that H-bonded hydrogens are protected from exchange, with HX rate effectively zero, even when they are directly adjacent to solvent. The transition to exchange competence requires a dynamic structural excursion that removes H-bond protection and allows exposure to solvent HX catalyst. The detailed data often make clear the nature of the dynamic excursion required. These range from whole molecule unfolding, through smaller cooperative unfolding reactions of secondary structural elements, and down to local fluctuations that involve as little as a single peptide group or side chain or water molecule. The particular motion that dominates the exchange of any hydrogen is the one that allows the fastest HX rate. The motion and the rate it produces are determined by surrounding structure and not by nearness to solvent or the strength of the protecting H-bond itself or its acceptor type (main chain, side chain, structurally bound water). Many of these motions occur over time scales that are appropriate for biochemical function. PMID:22544544

  6. Protein dynamics viewed by hydrogen exchange.

    PubMed

    Skinner, John J; Lim, Woon K; Bédard, Sabrina; Black, Ben E; Englander, S Walter

    2012-07-01

    To examine the relationship between protein structural dynamics and measurable hydrogen exchange (HX) data, the detailed exchange behavior of most of the backbone amide hydrogens of Staphylococcal nuclease was compared with that of their neighbors, with their structural environment, and with other information. Results show that H-bonded hydrogens are protected from exchange, with HX rate effectively zero, even when they are directly adjacent to solvent. The transition to exchange competence requires a dynamic structural excursion that removes H-bond protection and allows exposure to solvent HX catalyst. The detailed data often make clear the nature of the dynamic excursion required. These range from whole molecule unfolding, through smaller cooperative unfolding reactions of secondary structural elements, and down to local fluctuations that involve as little as a single peptide group or side chain or water molecule. The particular motion that dominates the exchange of any hydrogen is the one that allows the fastest HX rate. The motion and the rate it produces are determined by surrounding structure and not by nearness to solvent or the strength of the protecting H-bond itself or its acceptor type (main chain, side chain, structurally bound water). Many of these motions occur over time scales that are appropriate for biochemical function. PMID:22544544

  7. Optimizing replica exchange moves for molecular dynamics.

    PubMed

    Nadler, Walter; Hansmann, Ulrich H E

    2007-11-01

    We sketch the statistical physics framework of the replica exchange technique when applied to molecular dynamics simulations. In particular, we draw attention to generalized move sets that allow a variety of optimizations as well as new applications of the method. PMID:18233794

  8. Pion double charge exchange and hadron dynamics

    SciTech Connect

    Johnson, M.B.

    1991-01-01

    This paper will review theoretical results to show how pion double charge exchange is contributing to our understanding of hadron dynamics in nuclei. The exploitation of the nucleus as a filter is shown to be essential in facilitating the comparison between theory and experiment. 23 refs., 3 figs., 2 tabs.

  9. Do Heliconius butterfly species exchange mimicry alleles?

    PubMed Central

    Smith, Joel; Kronforst, Marcus R.

    2013-01-01

    Hybridization has the potential to transfer beneficial alleles across species boundaries, and there are a growing number of examples in which this has apparently occurred. Recent studies suggest that Heliconius butterflies have transferred wing pattern mimicry alleles between species via hybridization, but ancestral polymorphism could also produce a signature of shared ancestry around mimicry genes. To distinguish between these alternative hypotheses, we measured DNA sequence divergence around putatively introgressed mimicry loci and compared this with the rest of the genome. Our results reveal that putatively introgressed regions show strongly reduced sequence divergence between co-mimetic species, suggesting that their divergence times are younger than the rest of the genome. This is consistent with introgression and not ancestral variation. We further show that this signature of introgression occurs at sites throughout the genome, not just around mimicry genes. PMID:23864282

  10. Exchange of Standarized Flight Dynamics Data

    NASA Astrophysics Data System (ADS)

    Martin-Mur, T.; Berry, D.; Flores-Amaya, F.; Foliard, J.; Kiehling, R.; Ogawa, M.; Pallascke

    Spacecraft operations require the knowledge of the vehicle trajectory and attitude and also that of other spacecraft or natural bodies. This knowledge is normally provided by the Flight Dynamics teams of the different space organizations and, as very often spacecraft operations involve more than one organization, this information needs to be exchanged between Agencies. This is why the Navigation Working Group within the CCSDS (Consultative Committee for Space Data Systems) has been instituted with the task of establishing standards for the exchange of Flight Dynamics data. This exchange encompasses trajectory data, attitude data, and tracking data. The Navigation Working Group includes regular members and observers representing the participating Space Agencies. Currently the group includes representatives from CNES, DLR, ESA, NASA and JAXA. This Working Group meets twice per year in order to devise standardized language, methods, and formats for the description and exchange of Navigation data. Early versions of some of these standards have been used to support mutual tracking of ESA and NASA interplanetary spacecraft, especially during the arrival of the 2003 missions to Mars. This paper provides a summary of the activities carried out by the group, briefly outlines the current and envisioned standards, describes the tests and operational activities that have been performed using the standards, and lists and discusses the lessons learned from these activities.

  11. Exchange of Standardized Flight Dynamics Data

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Berry, David; Flores-Amaya, Felipe; Folliard, J.; Kiehling, R.; Ogawa, M.; Pallaschke, S.

    2004-01-01

    Spacecraft operations require the knowledge of the vehicle trajectory and attitude and also that of other spacecraft or natural bodies. This knowledge is normally provided by the Flight Dynamics teams of the different space organizations and, as very often spacecraft operations involve more than one organization, this information needs to be exchanged between Agencies. This is why the Navigation Working Group within the CCSDS (Consultative Committee for Space Data Systems), has been instituted with the task of establishing standards for the exchange of Flight Dynamics data. This exchange encompasses trajectory data, attitude data, and tracking data. The Navigation Working Group includes regular members and observers representing the participating Space Agencies. Currently the group includes representatives from CNES, DLR, ESA, NASA and JAXA. This Working Group meets twice per year in order to devise standardized language, methods, and formats for the description and exchange of Navigation data. Early versions of some of these standards have been used to support mutual tracking of ESA and NASA interplanetary spacecraft, especially during the arrival of the 2003 missions to Mars. This paper provides a summary of the activities carried out by the group, briefly outlines the current and envisioned standards, describes the tests and operational activities that have been performed using the standards, and lists and discusses the lessons learned from these activities.

  12. Dynamics of Exchange-Biased Magnetic Vortices

    NASA Astrophysics Data System (ADS)

    Chen, T. Y.; Chan, M. K.; Crowell, P. A.

    2009-03-01

    We have studied magnetization dynamics in micron-sized circular disks composed of ferromagnetic (FM)-antiferromagnetic (AFM) bilayers. The patterned samples of FeMn/NiFe are field-cooled (FC) or zero-field cooled (ZFC) from above the blocking temperature to room temperature. Time-resolved Kerr microscopy measurements show that the vortex gyrotropic mode fluctuates in frequency as the vortex core is displaced by a static in-plane magnetic field. The average gyrotropic frequency and the magnitude of its fluctuations, which are due to pinning of the vortex core, are larger than in single layer FM films. The enhancement of the gyrotropic frequency is largest in the ZFC samples, in which the effective field due to exchange coupling is expected to enhance pinning of the vortex core at the center of the disk. We find, however, that micromagnetic simulations incorporating uniform or vortex-like exchange-bias fields do not explain our results quantitatively. We interpret this discrepancy as a consequence of randomly orientated AFM domains, which are comparable in size to the vortex core. This work was supported by NSF and the Univ. of Minnesota Graduate School.

  13. Dynamic Analysis of Capture Devices for Momentum Exchange with Tethers

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen

    2002-01-01

    One of the significant challenges in developing a momentum exchange / electrodynamic reboost tether system is in the analysis and design of the capture device and its effects on the overall dynamics of the system. The goal of this work is to develop appropriate tether momentum exchange models that can simulate and evaluate the requirements of such a system, and be used to create specifications on the design of a capture device. This report briefly describes dynamic model development, simulation of the momentum exchange process, evaluation of dynamic effects of errors in the momentum exchange process, and the development of guidelines in selecting dynamic properties in the design of a capture device.

  14. Wealth distribution of simple exchange models coupled with extremal dynamics

    NASA Astrophysics Data System (ADS)

    Bagatella-Flores, N.; Rodríguez-Achach, M.; Coronel-Brizio, H. F.; Hernández-Montoya, A. R.

    2015-01-01

    Punctuated Equilibrium (PE) states that after long periods of evolutionary quiescence, species evolution can take place in short time intervals, where sudden differentiation makes new species emerge and some species extinct. In this paper, we introduce and study the effect of punctuated equilibrium on two different asset exchange models: the yard sale model (YS, winner gets a random fraction of a poorer player's wealth) and the theft and fraud model (TF, winner gets a random fraction of the loser's wealth). The resulting wealth distribution is characterized using the Gini index. In order to do this, we consider PE as a perturbation with probability ρ of being applied. We compare the resulting values of the Gini index at different increasing values of ρ in both models. We found that in the case of the TF model, the Gini index reduces as the perturbation ρ increases, not showing dependence with the agents number. While for YS we observe a phase transition which happens around ρc = 0.79. For perturbations ρ <ρc the Gini index reaches the value of one as time increases (an extreme wealth condensation state), whereas for perturbations greater than or equal to ρc the Gini index becomes different to one, avoiding the system reaches this extreme state. We show that both simple exchange models coupled with PE dynamics give more realistic results. In particular for YS, we observe a power low decay of wealth distribution.

  15. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species

    PubMed Central

    Dasmahapatra, Kanchon K; Walters, James R.; Briscoe, Adriana D.; Davey, John W.; Whibley, Annabel; Nadeau, Nicola J.; Zimin, Aleksey V.; Hughes, Daniel S. T.; Ferguson, Laura C.; Martin, Simon H.; Salazar, Camilo; Lewis, James J.; Adler, Sebastian; Ahn, Seung-Joon; Baker, Dean A.; Baxter, Simon W.; Chamberlain, Nicola L.; Chauhan, Ritika; Counterman, Brian A.; Dalmay, Tamas; Gilbert, Lawrence E.; Gordon, Karl; Heckel, David G.; Hines, Heather M.; Hoff, Katharina J.; Holland, Peter W.H.; Jacquin-Joly, Emmanuelle; Jiggins, Francis M.; Jones, Robert T.; Kapan, Durrell D.; Kersey, Paul; Lamas, Gerardo; Lawson, Daniel; Mapleson, Daniel; Maroja, Luana S.; Martin, Arnaud; Moxon, Simon; Palmer, William J.; Papa, Riccardo; Papanicolaou, Alexie; Pauchet, Yannick; Ray, David A.; Rosser, Neil; Salzberg, Steven L.; Supple, Megan A.; Surridge, Alison; Tenger-Trolander, Ayse; Vogel, Heiko; Wilkinson, Paul A.; Wilson, Derek; Yorke, James A.; Yuan, Furong; Balmuth, Alexi L.; Eland, Cathlene; Gharbi, Karim; Thomson, Marian; Gibbs, Richard A.; Han, Yi; Jayaseelan, Joy C.; Kovar, Christie; Mathew, Tittu; Muzny, Donna M.; Ongeri, Fiona; Pu, Ling-Ling; Qu, Jiaxin; Thornton, Rebecca L.; Worley, Kim C.; Wu, Yuan-Qing; Linares, Mauricio; Blaxter, Mark L.; Constant, Richard H. ffrench; Joron, Mathieu; Kronforst, Marcus R.; Mullen, Sean P.; Reed, Robert D.; Scherer, Steven E.; Richards, Stephen; Mallet, James; McMillan, W. Owen; Jiggins, Chris D.

    2012-01-01

    The evolutionary importance of hybridization and introgression has long been debated1. We used genomic tools to investigate introgression in Heliconius, a rapidly radiating genus of neotropical butterflies widely used in studies of ecology, behaviour, mimicry and speciation2-5 . We sequenced the genome of Heliconius melpomene and compared it with other taxa to investigate chromosomal evolution in Lepidoptera and gene flow among multiple Heliconius species and races. Among 12,657 predicted genes for Heliconius, biologically important expansions of families of chemosensory and Hox genes are particularly noteworthy. Chromosomal organisation has remained broadly conserved since the Cretaceous, when butterflies split from the silkmoth lineage. Using genomic resequencing, we show hybrid exchange of genes between three co-mimics, H. melpomene, H. timareta, and H. elevatus, especially at two genomic regions that control mimicry pattern. Closely related Heliconius species clearly exchange protective colour pattern genes promiscuously, implying a major role for hybridization in adaptive radiation. PMID:22722851

  16. Cooperation and antagonism in information exchange in a growth scenario with two species.

    PubMed

    Burgos, Andrés C; Polani, Daniel

    2016-06-21

    We consider a simple information-theoretic model of communication, in which two species of bacteria have the option of exchanging information about their environment, thereby improving their chances of survival. For this purpose, we model a system consisting of two species whose dynamics in the world are modelled by a bet-hedging strategy. It is well known that such models lend themselves to elegant information-theoretical interpretations by relating their respective long-term growth rate to the information the individual species has about its environment. We are specifically interested in modelling how this dynamics are affected when the species interact cooperatively or in an antagonistic way in a scenario with limited resources. For this purpose, we consider the exchange of environmental information between the two species in the framework of a game. Our results show that a transition from a cooperative to an antagonistic behaviour in a species results as a response to a change in the availability of resources. Species cooperate in abundance of resources, while they behave antagonistically in scarcity. PMID:27071539

  17. Spatial variability in plant species composition and peatland carbon exchange

    NASA Astrophysics Data System (ADS)

    Goud, E.; Moore, T. R.; Roulet, N. T.

    2015-12-01

    Plant species shifts in response to global change will have significant impacts on ecosystem carbon (C) exchange and storage arising from changes in hydrology. Spatial variation in peatland C fluxes have largely been attributed to the spatial distribution of microhabitats that arise from variation in surface topography and water table depth, but little is known about how plant species composition impacts peatland C cycling or how these impacts will be influenced by changing environmental conditions. We quantified the effect of species composition and environmental variables on carbon dioxide (CO2) and methane (CH4) fluxes over 2 years in a temperate peatland for four plant communities situated along a water table gradient from ombrotrophic bog to beaver pond. We hypothesized that (i) spatial heterogeneity in species composition would drive predictable spatial heterogeneity in C fluxes due to variation in plant traits and ecological tolerances, and (ii) increases in peat temperature would increase C fluxes. Species had different effects on C fluxes primarily due to differences in leaf traits. Differences in ecological tolerances among communities resulted in different rates of CO2 exchange in response to changes in water table depth. There was an overall reduction in ecosystem respiration (ER), gross primary productivity (GPP) and CH4 flux in response to colder peat temperatures in the second year, and the additive effects of a deeper water table in the bog margin and pond sites further reduced flux rates in these areas. These results demonstrate that different plant species can increase or decrease the flux of C into and out of peatlands based on differences in leaf traits and ecological tolerances, and that CO2 and CH4 fluxes are sensitive to changes in soil temperature, especially when coupled with changes in moisture availability.

  18. Reactive oxygen species production and discontinuous gas exchange in insects

    PubMed Central

    Boardman, Leigh; Terblanche, John S.; Hetz, Stefan K.; Marais, Elrike; Chown, Steven L.

    2012-01-01

    While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS production, although minima are elevated above normoxic levels. Furthermore, a negative relationship between mean and mean ROS production indicates that higher ROS production is generally associated with lower . Our results, therefore, suggest a possible signalling role for ROS in DGC, rather than supporting the idea that DGC acts to reduce oxidative damage by regulating ROS production. PMID:21865257

  19. Reactive oxygen species production and discontinuous gas exchange in insects.

    PubMed

    Boardman, Leigh; Terblanche, John S; Hetz, Stefan K; Marais, Elrike; Chown, Steven L

    2012-03-01

    While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS production, although minima are elevated above normoxic levels. Furthermore, a negative relationship between mean and mean ROS production indicates that higher ROS production is generally associated with lower . Our results, therefore, suggest a possible signalling role for ROS in DGC, rather than supporting the idea that DGC acts to reduce oxidative damage by regulating ROS production. PMID:21865257

  20. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species.

    PubMed

    2012-07-01

    The evolutionary importance of hybridization and introgression has long been debated. Hybrids are usually rare and unfit, but even infrequent hybridization can aid adaptation by transferring beneficial traits between species. Here we use genomic tools to investigate introgression in Heliconius, a rapidly radiating genus of neotropical butterflies widely used in studies of ecology, behaviour, mimicry and speciation. We sequenced the genome of Heliconius melpomene and compared it with other taxa to investigate chromosomal evolution in Lepidoptera and gene flow among multiple Heliconius species and races. Among 12,669 predicted genes, biologically important expansions of families of chemosensory and Hox genes are particularly noteworthy. Chromosomal organization has remained broadly conserved since the Cretaceous period, when butterflies split from the Bombyx (silkmoth) lineage. Using genomic resequencing, we show hybrid exchange of genes between three co-mimics, Heliconius melpomene, Heliconius timareta and Heliconius elevatus, especially at two genomic regions that control mimicry pattern. We infer that closely related Heliconius species exchange protective colour-pattern genes promiscuously, implying that hybridization has an important role in adaptive radiation. PMID:22722851

  1. Extensions to the Dynamic Aerospace Vehicle Exchange Markup Language

    NASA Technical Reports Server (NTRS)

    Brian, Geoffrey J.; Jackson, E. Bruce

    2011-01-01

    The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) is a syntactical language for exchanging flight vehicle dynamic model data. It provides a framework for encoding entire flight vehicle dynamic model data packages for exchange and/or long-term archiving. Version 2.0.1 of DAVE-ML provides much of the functionality envisioned for exchanging aerospace vehicle data; however, it is limited in only supporting scalar time-independent data. Additional functionality is required to support vector and matrix data, abstracting sub-system models, detailing dynamics system models (both discrete and continuous), and defining a dynamic data format (such as time sequenced data) for validation of dynamics system models and vehicle simulation packages. Extensions to DAVE-ML have been proposed to manage data as vectors and n-dimensional matrices, and record dynamic data in a compatible form. These capabilities will improve the clarity of data being exchanged, simplify the naming of parameters, and permit static and dynamic data to be stored using a common syntax within a single file; thereby enhancing the framework provided by DAVE-ML for exchanging entire flight vehicle dynamic simulation models.

  2. Water exchange dynamics around H3O+ and OH- ions

    NASA Astrophysics Data System (ADS)

    Roy, Santanu; Dang, Liem X.

    2015-05-01

    In this letter, we report the first computer simulation of the dynamics of water exchanging between the first and second solvation shells of H3O+. Employing different rate theories for chemical reactions such as the transition state theory, the Grote-Hynes theory, the reactive flux method, and the Impey-Madden-McDonald method, we calculate the solvent exchange rates from molecular dynamics simulations that account for explicit polarization effects. In addition, we also study water exchanges around OH- and find that the corresponding time scale is much smaller than that for H3O+.

  3. BOREAS TE-4 Gas Exchange Data from Boreal Tree Species

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Collatz, G. James; Berry, Joseph A.; Gamon, John; Fredeen, Art; Fu, Wei

    2000-01-01

    The BOREAS TE-4 team collected steady-state gas exchange and reflectance data from several species in the BOREAS SSA during 1994 and in the NSA during 1996. Measurements of light, CO2, temperature, and humidity response curves were made by the BOREAS TE-4 team during the summers of 1994 and 1996 using intact attached leaves of boreal forest species located in the BOREAS SSA and NSA. These measurements were conducted to calibrate models used to predict photosynthesis, stomatal conductance, and leaf respiration. The 1994 and 1996 data can be used to construct plots of response functions or for parameterizing models. Parameter values are suitable for application in SiB2 (Sellers et al., 1996) or the leaf model of Collatz et al. (1991), and programs can be obtained from the investigators. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  4. Dynamic tube/support interaction in heat exchanger tubes

    SciTech Connect

    Chen, S.S.

    1991-01-01

    The supports for heat exchanger tubes are usually plates with drilled holes; other types of supports also have been used. To facilitate manufacture and to allow for thermal expansion of the tubes, small clearances are used between tubes and tube supports. The dynamics of tube/support interaction in heat exchangers is fairly complicated. Understanding tube dynamics and its effects is important for heat exchangers. This paper summarizes the current state of the art on this subject and to identify future research needs. Specifically, the following topics are discussed: dynamics of loosely supported tubes, tube/support gap dynamics, tube response in flow, tube damage and wear, design considerations, and future research needs. 55 refs., 1 fig.

  5. Reversible Control of Nanoparticle Functionalization and Physicochemical Properties by Dynamic Covalent Exchange**

    PubMed Central

    della Sala, Flavio; Kay, Euan R

    2015-01-01

    Existing methods for the covalent functionalization of nanoparticles rely on kinetically controlled reactions, and largely lack the sophistication of the preeminent oligonucleotide-based noncovalent strategies. Here we report the application of dynamic covalent chemistry for the reversible modification of nanoparticle (NP) surface functionality, combining the benefits of non-biomolecular covalent chemistry with the favorable features of equilibrium processes. A homogeneous monolayer of nanoparticle-bound hydrazones can undergo quantitative dynamic covalent exchange. The pseudomolecular nature of the NP system allows for the in situ characterization of surface-bound species, and real-time tracking of the exchange reactions. Furthermore, dynamic covalent exchange offers a simple approach for reversibly switching—and subtly tuning—NP properties such as solvophilicity. PMID:25973468

  6. Laser spectroscopy and dynamics of transient species

    SciTech Connect

    Clouthier, D.J.

    1993-12-01

    The goal of this program is to study the vibrational and electronic spectra and excited state dynamics of a number of transient sulfur and oxygen species. A variety of supersonic jet techniques, as well as high resolution FT-IR and intracavity dye laser spectroscopy, have been applied to these studies.

  7. Magnetization dynamics in exchange coupled antiferromagnet spin superfluids

    NASA Astrophysics Data System (ADS)

    Liu, Yizhou; Barlas, Yafis; Yin, Gen; Zang, Jiadong; Lake, Roger

    Antiferromagnets (AFMs) are commonly used as the exchange bias layer in magnetic recording and spintronic devices. Recently, several studies on the spin transfer torque and spin pumping in AFMs reveal much more interesting physics in AFMs. Properties of AFMs such as the ultrafast switching within picoseconds and spin superfluidity demonstrate the potential to build AFM based spintronic devices. Here, we study the magnetization dynamics in an exchange coupled AFM systems. Beginning from the Landau-Lifshitz-Gilbert equation, we derive a Josephson-like equation for the exchange coupled system. We investigate the detailed magnetization dynamics by employing spin injection and spin pumping theory. We also propose a geometry that could be used to measure this magnetization dynamics. This work was supported as part of the Spins and Heat in Nanoscale Electronic Systems (SHINES) an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award #SC0012670.

  8. Species Abundance Patterns in Complex Evolutionary Dynamics

    NASA Astrophysics Data System (ADS)

    Tokita, Kei

    2004-10-01

    An analytic theory of species abundance patterns (SAPs) in biological networks is presented. The theory is based on multispecies replicator dynamics equivalent to the Lotka-Volterra equation, with diverse interspecies interactions. Various SAPs observed in nature are derived from a single parameter. The abundance distribution is formed like a widely observed left-skewed lognormal distribution. As the model has a general form, the result can be applied to similar patterns in other complex biological networks, e.g., gene expression.

  9. Glucans monomer-exchange dynamics as an open chemical network

    NASA Astrophysics Data System (ADS)

    Rao, Riccardo; Lacoste, David; Esposito, Massimiliano

    2015-12-01

    We describe the oligosaccharides-exchange dynamics performed by the so-called D-enzymes on polysaccharides. To mimic physiological conditions, we treat this process as an open chemical network by assuming some of the polymer concentrations fixed (chemostatting). We show that three different long-time behaviors may ensue: equilibrium states, nonequilibrium steady states, and continuous growth states. We dynamically and thermodynamically characterize these states and emphasize the crucial role of conservation laws in identifying the chemostatting conditions inducing them.

  10. Glucans monomer-exchange dynamics as an open chemical network

    SciTech Connect

    Rao, Riccardo Esposito, Massimiliano; Lacoste, David

    2015-12-28

    We describe the oligosaccharides-exchange dynamics performed by the so-called D-enzymes on polysaccharides. To mimic physiological conditions, we treat this process as an open chemical network by assuming some of the polymer concentrations fixed (chemostatting). We show that three different long-time behaviors may ensue: equilibrium states, nonequilibrium steady states, and continuous growth states. We dynamically and thermodynamically characterize these states and emphasize the crucial role of conservation laws in identifying the chemostatting conditions inducing them.

  11. Dynamic simulation of shell-and-tube heat exchangers

    SciTech Connect

    Correa, D.J.; Marchetti, J.L.

    1987-01-01

    The transient operation of a multipass shell-and-tube heat exchanger with baffles is described by a multicell dynamic model where every cell represents a specific part of the exchanger. The proposed modeling technique can be used in a digital computer for the dynamic simulation of almost any type of shell-and-tube heat exchanger. The model includes time-dependent inlet conditions for both the cold and the hot streams. Hence, a number of start-up cases can be simulated and, once the system reaches a stationary operating point, a disturbance can be introduced in the inlet temperatures or the flow rates. This particular feature makes the model very useful not only for design purposes but also for transient analysis and control system design.

  12. Combined Steady-State and Dynamic Heat Exchanger Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  13. Flight Dynamic Model Exchange using XML

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Hildreth, Bruce L.

    2002-01-01

    The AIAA Modeling and Simulation Technical Committee has worked for several years to develop a standard by which the information needed to develop physics-based models of aircraft can be specified. The purpose of this standard is to provide a well-defined set of information, definitions, data tables and axis systems so that cooperating organizations can transfer a model from one simulation facility to another with maximum efficiency. This paper proposes using an application of the eXtensible Markup Language (XML) to implement the AIAA simulation standard. The motivation and justification for using a standard such as XML is discussed. Necessary data elements to be supported are outlined. An example of an aerodynamic model as an XML file is given. This example includes definition of independent and dependent variables for function tables, definition of key variables used to define the model, and axis systems used. The final steps necessary for implementation of the standard are presented. Software to take an XML-defined model and import/export it to/from a given simulation facility is discussed, but not demonstrated. That would be the next step in final implementation of standards for physics-based aircraft dynamic models.

  14. Spin and orbital exchange interactions from Dynamical Mean Field Theory

    NASA Astrophysics Data System (ADS)

    Secchi, A.; Lichtenstein, A. I.; Katsnelson, M. I.

    2016-02-01

    We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii-Moriya interaction and other symmetric terms such as dipole-dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms.

  15. Surface nanobubble nucleation dynamics during water-ethanol exchange

    NASA Astrophysics Data System (ADS)

    Chan, Chon U.; Ohl, Claus-Dieter

    2015-11-01

    Water-ethanol exchange has been a promising nucleation method for surface attached nanobubbles since their discovery. In this process, water and ethanol displace each other sequentially on a substrate. As the gas solubility is 36 times higher in ethanol than water, it was suggested that the exchange process leads to transient supersaturation and is responsible for the nanobubble nucleation. In this work, we visualize the nucleation dynamics by controllably mixing water and ethanol. It depicts the temporal evolution of the conventional exchange in a single field of view, detailing the conditions for surface nanobubble nucleation and the flow field that influences their spatial organization. This technique can also pattern surface nanobubbles with variable size distribution.

  16. Hyporheic exchange controlled by dynamic hydrologic boundary conditions

    NASA Astrophysics Data System (ADS)

    Schmadel, Noah M.; Ward, Adam S.; Lowry, Christopher S.; Malzone, Jonathan M.

    2016-05-01

    The relative roles of dynamic hydrologic forcing and geomorphology as controls on the timescales and magnitudes of stream-aquifer exchange and hyporheic flow paths are unknown but required for management of stream corridors. We developed a comprehensive framework relating diel hydrologic fluctuations to hyporheic exchange in the absence of geomorphic complexity. We simulated groundwater flow through an aquifer bounded by a straight stream and hillslope and under time-varying boundary conditions. We found that diel fluctuations can produce hyporheic flow path lengths and residence times that span orders of magnitude. With these results, hyporheic flow path residence times and lengths can be predicted from the timing and magnitude of diel fluctuations and valley slope. Finally, we demonstrated that dynamic hydrologic boundary conditions can produce spatial and temporal scales of hyporheic flow paths equivalent to those driven by many well-studied geomorphic features, indicating that these controls must be considered together in future efforts of upscaling to stream networks.

  17. Glucans monomer-exchange dynamics as an open chemical network.

    PubMed

    Rao, Riccardo; Lacoste, David; Esposito, Massimiliano

    2015-12-28

    We describe the oligosaccharides-exchange dynamics performed by the so-called D-enzymes on polysaccharides. To mimic physiological conditions, we treat this process as an open chemical network by assuming some of the polymer concentrations fixed (chemostatting). We show that three different long-time behaviors may ensue: equilibrium states, nonequilibrium steady states, and continuous growth states. We dynamically and thermodynamically characterize these states and emphasize the crucial role of conservation laws in identifying the chemostatting conditions inducing them. PMID:26723707

  18. Replica exchange molecular dynamics simulations of amyloid peptide aggregation

    NASA Astrophysics Data System (ADS)

    Cecchini, M.; Rao, F.; Seeber, M.; Caflisch, A.

    2004-12-01

    The replica exchange molecular dynamics (REMD) approach is applied to four oligomeric peptide systems. At physiologically relevant temperature values REMD samples conformation space and aggregation transitions more efficiently than constant temperature molecular dynamics (CTMD). During the aggregation process the energetic and structural properties are essentially the same in REMD and CTMD. A condensation stage toward disordered aggregates precedes the β-sheet formation. Two order parameters, borrowed from anisotropic fluid analysis, are used to monitor the aggregation process. The order parameters do not depend on the peptide sequence and length and therefore allow to compare the amyloidogenic propensity of different peptides.

  19. A dynamical structure of high frequency currency exchange market

    NASA Astrophysics Data System (ADS)

    Sazuka, Naoya; Ohira, Toru; Marumo, Kouhei; Shimizu, Tokiko; Takayasu, Misako; Takayasu, Hideki

    2003-06-01

    We analyze tick-by-tick data, the most high frequency data available, of yen-dollar currency exchange rates. We show that a dynamical structure can be observed in binarized data indicating the direction of up and down movement of prices, which is not apparently seen from the price change itself. This result is consistent with our previous study that there exists a conditional probabilistic structure in binarized data. The dynamical and probabilistic structure which we found could indicate that dealers’ decision making is based on a binary strategy, even if they are unconscious of this fact.

  20. NASA data exchange standards for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Blake, Matthew

    1993-01-01

    This paper covers the following topics in viewgraph format: purpose of data exchange standards; data exchange in engineering analysis/CFD; geometry data exchange through existing product data exchange standards, NASA Data Exchange Committee, and NASA-IGES (Initial Graphics Exchange Specification); CFD grid and solution data exchange; and data exchange for multi-disciplinary engineering.

  1. Error and efficiency of replica exchange molecular dynamics simulations

    PubMed Central

    Rosta, Edina; Hummer, Gerhard

    2009-01-01

    We derive simple analytical expressions for the error and computational efficiency of replica exchange molecular dynamics (REMD) simulations (and by analogy replica exchange Monte Carlo simulations). The theory applies to the important case of systems whose dynamics at long times is dominated by the slow interconversion between two metastable states. As a specific example, we consider the folding and unfolding of a protein. The efficiency is defined as the rate with which the error in an estimated equilibrium property, as measured by the variance of the estimator over repeated simulations, decreases with simulation time. For two-state systems, this rate is in general independent of the particular property. Our main result is that, with comparable computational resources used, the relative efficiency of REMD and molecular dynamics (MD) simulations is given by the ratio of the number of transitions between the two states averaged over all replicas at the different temperatures, and the number of transitions at the single temperature of the MD run. This formula applies if replica exchange is frequent, as compared to the transition times. High efficiency of REMD is thus achieved by including replica temperatures in which the frequency of transitions is higher than that at the temperature of interest. In tests of the expressions for the error in the estimator, computational efficiency, and the rate of equilibration we find quantitative agreement with the results both from kinetic models of REMD and from actual all-atom simulations of the folding of a peptide in water. PMID:19894977

  2. Error and efficiency of replica exchange molecular dynamics simulations.

    PubMed

    Rosta, Edina; Hummer, Gerhard

    2009-10-28

    We derive simple analytical expressions for the error and computational efficiency of replica exchange molecular dynamics (REMD) simulations (and by analogy replica exchange Monte Carlo simulations). The theory applies to the important case of systems whose dynamics at long times is dominated by the slow interconversion between two metastable states. As a specific example, we consider the folding and unfolding of a protein. The efficiency is defined as the rate with which the error in an estimated equilibrium property, as measured by the variance of the estimator over repeated simulations, decreases with simulation time. For two-state systems, this rate is in general independent of the particular property. Our main result is that, with comparable computational resources used, the relative efficiency of REMD and molecular dynamics (MD) simulations is given by the ratio of the number of transitions between the two states averaged over all replicas at the different temperatures, and the number of transitions at the single temperature of the MD run. This formula applies if replica exchange is frequent, as compared to the transition times. High efficiency of REMD is thus achieved by including replica temperatures in which the frequency of transitions is higher than that at the temperature of interest. In tests of the expressions for the error in the estimator, computational efficiency, and the rate of equilibration we find quantitative agreement with the results both from kinetic models of REMD and from actual all-atom simulations of the folding of a peptide in water. PMID:19894977

  3. G-register exchange dynamics in guanine quadruplexes.

    PubMed

    Harkness, Robert W; Mittermaier, Anthony K

    2016-05-01

    G-quadruplexes (GQs) are 4-stranded DNA structures formed by tracts of stacked, Hoogsteen-hydrogen bonded guanosines. GQs are found in gene promoters and telomeres where they regulate gene transcription and telomere elongation. Though GQ structures are well-characterized, many aspects of their conformational dynamics are poorly understood. For example, when there are surplus guanosines in some of the tracts, they can slide with respect to one another, a process we term G-register (GR) exchange. These motions could in principle entropically stabilize the folded state, crucially benefitting GQs as their stabilities are closely tied to biological function. We have developed a method for characterizing GR exchange where each isomer in the wild-type conformational ensemble is trapped by mutation and thermal denaturation data for the set of trapped mutants and wild-type are analyzed simultaneously. This yields GR isomer populations as a function of temperature, quantifies conformational entropy and sheds light on correlated sliding motions of the G-tracts. We measured entropic stabilizations from GR exchange up to 14.3 ± 1.6 J mol(-1) K(-1), with melting temperature increases up to 7.3 ± 1.6°C. Furthermore, bioinformatic analysis suggests a majority of putative human GQ sequences are capable of GR exchange, pointing to the generality of this phenomenon. PMID:27060139

  4. G-register exchange dynamics in guanine quadruplexes

    PubMed Central

    Harkness, Robert W.; Mittermaier, Anthony K.

    2016-01-01

    G-quadruplexes (GQs) are 4-stranded DNA structures formed by tracts of stacked, Hoogsteen-hydrogen bonded guanosines. GQs are found in gene promoters and telomeres where they regulate gene transcription and telomere elongation. Though GQ structures are well-characterized, many aspects of their conformational dynamics are poorly understood. For example, when there are surplus guanosines in some of the tracts, they can slide with respect to one another, a process we term G-register (GR) exchange. These motions could in principle entropically stabilize the folded state, crucially benefitting GQs as their stabilities are closely tied to biological function. We have developed a method for characterizing GR exchange where each isomer in the wild-type conformational ensemble is trapped by mutation and thermal denaturation data for the set of trapped mutants and wild-type are analyzed simultaneously. This yields GR isomer populations as a function of temperature, quantifies conformational entropy and sheds light on correlated sliding motions of the G-tracts. We measured entropic stabilizations from GR exchange up to 14.3 ± 1.6 J mol−1 K−1, with melting temperature increases up to 7.3 ± 1.6°C. Furthermore, bioinformatic analysis suggests a majority of putative human GQ sequences are capable of GR exchange, pointing to the generality of this phenomenon. PMID:27060139

  5. DYNACLIPS (DYNAmic CLIPS): A dynamic knowledge exchange tool for intelligent agents

    NASA Technical Reports Server (NTRS)

    Cengeloglu, Yilmaz; Khajenoori, Soheil; Linton, Darrell

    1994-01-01

    In a dynamic environment, intelligent agents must be responsive to unanticipated conditions. When such conditions occur, an intelligent agent may have to stop a previously planned and scheduled course of actions and replan, reschedule, start new activities and initiate a new problem solving process to successfully respond to the new conditions. Problems occur when an intelligent agent does not have enough knowledge to properly respond to the new situation. DYNACLIPS is an implementation of a framework for dynamic knowledge exchange among intelligent agents. Each intelligent agent is a CLIPS shell and runs a separate process under SunOS operating system. Intelligent agents can exchange facts, rules, and CLIPS commands at run time. Knowledge exchange among intelligent agents at run times does not effect execution of either sender and receiver intelligent agent. Intelligent agents can keep the knowledge temporarily or permanently. In other words, knowledge exchange among intelligent agents would allow for a form of learning to be accomplished.

  6. A multi-species exchange model for fully fluctuating polymer field theory simulations

    SciTech Connect

    Düchs, Dominik; Delaney, Kris T.; Fredrickson, Glenn H.

    2014-11-07

    Field-theoretic models have been used extensively to study the phase behavior of inhomogeneous polymer melts and solutions, both in self-consistent mean-field calculations and in numerical simulations of the full theory capturing composition fluctuations. The models commonly used can be grouped into two categories, namely, species models and exchange models. Species models involve integrations of functionals that explicitly depend on fields originating both from species density operators and their conjugate chemical potential fields. In contrast, exchange models retain only linear combinations of the chemical potential fields. In the two-component case, development of exchange models has been instrumental in enabling stable complex Langevin (CL) simulations of the full complex-valued theory. No comparable stable CL approach has yet been established for field theories of the species type. Here, we introduce an extension of the exchange model to an arbitrary number of components, namely, the multi-species exchange (MSE) model, which greatly expands the classes of soft material systems that can be accessed by the complex Langevin simulation technique. We demonstrate the stability and accuracy of the MSE-CL sampling approach using numerical simulations of triblock and tetrablock terpolymer melts, and tetrablock quaterpolymer melts. This method should enable studies of a wide range of fluctuation phenomena in multiblock/multi-species polymer blends and composites.

  7. Correlation between CAM-Cycling and Photosynthetic Gas Exchange in Five Species of Talinum (Portulacaceae) 1

    PubMed Central

    Harris, Fred S.; Martin, Craig E.

    1991-01-01

    Photosynthetic gas exchange and malic acid fluctuations were monitored in 69 well-watered plants from five morphologically similar species of Talinum in an investigation of the ecophysiological significance of the Crassulacean acid metabolism (CAM)-cycling mode of photosynthesis. Unlike CAM, atmospheric CO2 uptake in CAM-cycling occurs exclusively during the day; at night, the stomata are closed and respiratory CO2 is recaptured to form malic acid. All species showed similar patterns of day-night gas exchange and overnight malic acid accumulation, confirming the presence of CAM-cycling. Species averages for gas exchange parameters and malic acid fluctuation were significantly different such that the species with the highest daytime gas exchange had the lowest malic acid accumulation and vice versa. Also, daytime CO2 exchange and transpiration were negatively correlated with overnight malic acid fluctuation for all individuals examined together, as well as within one species. This suggests that malic acid may effect reductions in both atmospheric CO2 uptake and transpiration during the day. No significant correlation between malic acid fluctuation and water-use efficiency was found, although a nonsignificant trend of increasing water-use efficiency with increasing malic acid fluctuation was observed among species averages. This study provides evidence that CO2 recycling via malic acid is negatively correlated with daytime transpirational water losses in well-watered plants. Thus, CAM-cycling could be important for survival in the thin, frequently desiccated soils of rock outcrops on which these plants occur. PMID:16668307

  8. Optimized explicit-solvent replica exchange molecular dynamics from scratch.

    PubMed

    Nadler, Walter; Hansmann, Ulrich H E

    2008-08-28

    Replica exchange molecular dynamics (REMD) simulations have become an important tool to study proteins and other biological molecules in silico. However, such investigations require considerable, and often prohibitive, numerical effort when the molecules are simulated in explicit solvents. In this communication we show that in this case the cost can be minimized by choosing the number of replicas as N(opt) approximately 1+0.594 radical C ln(Tmax/Tmin), where C is the specific heat, and the temperatures distributed according to Ti(opt) approximately T min(Tmax/Tmin)(i-1)/(N-1). PMID:18671362

  9. Dynamically corrected gates for an exchange-only qubit

    NASA Astrophysics Data System (ADS)

    Hickman, G. T.; Wang, Xin; Kestner, J. P.; Das Sarma, S.

    2013-10-01

    We provide analytical composite pulse sequences that perform dynamical decoupling concurrently with arbitrary rotations for a qubit coded in the spin state of a triple quantum dot. The sequences are designed to respect realistic experimental constraints such as strictly nonnegative couplings. Logical errors and leakage errors are simultaneously corrected. A short pulse sequence is presented to compensate nuclear noise and a longer sequence is presented to simultaneously compensate nuclear and charge noise. The capability developed in this work provides a clear prescription for combatting the relevant sources of noise that currently hinder exchange-only qubit experiments.

  10. Leaf gas exchange traits of domestic and exotic tree species in Cambodia

    NASA Astrophysics Data System (ADS)

    Miyazawa, Y.; Tateishi, M.; Kumagai, T.; Otsuki, K.

    2009-12-01

    In forests under the management by community villagers, exotic tree species with rapid growth rate are introduced in wide range of Cambodia. To evaluate the influence of the introduction on the forest gas exchange and water budget, we investigated the leaf gas exchange traits of two domestic (Dipterocarpus obtusifolius and Shorea roxburghii) and exotic tree species (Acasia auriculiformis and Eucalyptus camadilansis). We sampled shoots of each species and measured the leaf gas exchange traits (photosynthetic rates under different CO2 concentrations, transpiration rate and stomatal conductance) (6 leaves x 3 trees x 4 species). We carried out this measurement at 2 months intervals for a year from the beginning of rainy season and compared the obtained traits among species. Light saturated rate of net photosynthesis was higher in E. camadilansis but did not differ among other species both in rainy and dry seasons. Seasonal patter in photosynthetic traits was not obvious. Each species changed stomatal conductance in response to changes in environmental conditions. The response was more sensitive than reported values. In this presentation, we show details about the basic information about the leaf-level gas exchange traits, which are required to run soil- vegetation - atmosphere transfer model.

  11. Thermostat artifacts in replica exchange molecular dynamics simulations.

    PubMed

    Rosta, Edina; Buchete, Nicolae-Viorel; Hummer, Gerhard

    2009-01-01

    We explore the effects of thermostats in replica exchange molecular dynamics (REMD) simulations. For thermostats that do not produce a canonical ensemble, REMD simulations are found to distort the configuration-space distributions. For bulk water, we find small deviations of the average potential energies, the buildup of tails in the potential energy distributions, and artificial correlations between the energies at different temperatures. If a solute is present, as in protein folding simulations, its conformational equilibrium can be altered. In REMD simulations of a helix-forming peptide with a weak-coupling (Berendsen) thermostat, we find that the folded state is overpopulated by about 10% at low temperatures, and underpopulated at high temperatures. As a consequence, the enthalpy of folding deviates by almost 3 kcal/mol from the correct value. The reason for this population shift is that non-canonical ensembles with narrowed potential energy fluctuations artificially bias toward replica exchanges between low-energy folded structures at the high temperature and high-energy unfolded structures at the low temperature. We conclude that REMD simulations should only be performed in conjunction with thermostats that produce a canonical ensemble. PMID:20046980

  12. Thermostat artifacts in replica exchange molecular dynamics simulations

    PubMed Central

    Rosta, Edina; Buchete, Nicolae-Viorel; Hummer, Gerhard

    2009-01-01

    We explore the effects of thermostats in replica exchange molecular dynamics (REMD) simulations. For thermostats that do not produce a canonical ensemble, REMD simulations are found to distort the configuration-space distributions. For bulk water, we find small deviations of the average potential energies, the buildup of tails in the potential energy distributions, and artificial correlations between the energies at different temperatures. If a solute is present, as in protein folding simulations, its conformational equilibrium can be altered. In REMD simulations of a helix-forming peptide with a weak-coupling (Berendsen) thermostat, we find that the folded state is overpopulated by about 10% at low temperatures, and underpopulated at high temperatures. As a consequence, the enthalpy of folding deviates by almost 3 kcal/mol from the correct value. The reason for this population shift is that non-canonical ensembles with narrowed potential energy fluctuations artificially bias toward replica exchanges between low-energy folded structures at the high temperature and high-energy unfolded structures at the low temperature. We conclude that REMD simulations should only be performed in conjunction with thermostats that produce a canonical ensemble. PMID:20046980

  13. Dynamic Group Diffie-Hellman Key Exchange under standard assumptions

    SciTech Connect

    Bresson, Emmanuel; Chevassut, Olivier; Pointcheval, David

    2002-02-14

    Authenticated Diffie-Hellman key exchange allows two principals communicating over a public network, and each holding public-private keys, to agree on a shared secret value. In this paper we study the natural extension of this cryptographic problem to a group of principals. We begin from existing formal security models and refine them to incorporate major missing details (e.g., strong-corruption and concurrent sessions). Within this model we define the execution of a protocol for authenticated dynamic group Diffie-Hellman and show that it is provably secure under the decisional Diffie-Hellman assumption. Our security result holds in the standard model and thus provides better security guarantees than previously published results in the random oracle model.

  14. Dynamics of Exchange at Gas-Zeolite Interfaces 1: Pure Component n-Butane and Isobutane

    SciTech Connect

    CHANDROSS,MICHAEL E.; WEBB III,EDMUND B.; GREST,GARY S.; MARTIN,MARCUS G.; THOMPSON,AIDAN P.; ROTH,M.W.

    2000-07-13

    The authors present the results of molecular dynamics simulations of n-butane and isobutane in silicalite. They begin with a comparison of the bulk adsorption and diffusion properties for two different parameterizations of the interaction potential between the hydrocarbon species, both of which have been shown to reproduce experimental gas-liquid coexistence curves. They examine diffusion as a function of the loading of the zeolite, as well as the temperature dependence of the diffusion constant at loading and for infinite dilution. They continue with simulations in which interfaces are formed between single component gases and the zeolite. After reaching equilibrium, they examine the dynamics of exchange between the bulk gas and the zeolite. Finally, they calculate the permeability of the zeolite for n-butane and isobutane as a function of pressure. Their simulations are performed for a number of different gas temperatures and pressures, covering a wide range of state points.

  15. Modeling metapopulation dynamics for single species of seabirds

    USGS Publications Warehouse

    Buckley, P.A.; Downer, R.

    1992-01-01

    Seabirds share many characteristics setting them apart from other birds. Importantly, they breed more or less obligatorily in local clusters of colonies that can move regularly from site to site, and they routinely exchange breeders. The properties of such metapopulations have only recently begun to be examined, often with models that are occupancy-based (using only colony presence or absence data) and deterministic (using single, empirically determined values for each of several population biology parameters). Some recent models are now frequency-based (using actual population sizes at each site), as well as stochastic (randomly varying critical parameters between biologically realistic limits), yielding better estimates of the behavior of future populations. Using two such models designed to quantify relative risks of population changes under different future scenarios (RAMAS/stage and RAMAS/space), we have examined probable future populations dynamics for three hypothetical seabirds -- an albatross, a cormorant, and a tern. With real parameters and ranges of values we alternatively modelled each species with and without density dependence, as well as with their numbers in a single, large colony, or in many smaller ones, distributed evenly or lognormally. We produced a series of species-typical lines for different population risks over the 50 years we simulated. We call these curves Instantaneous Threat Assessments (ITAs), and their shapes mirror the varying life history characteristics of our three species. We also demonstrated (by a process known as sensitivity analysis) that the most important parameters determining future population fates of all three species were correlation of mean growth rate among colonies; dispersal rate of present and future breeders; subadult survivorship; and the number of subpopulations (=colonies) - in roughly that descending order of importance. In addition, density dependence was found to markedly alter ITA line shape and position

  16. Dynamics of ligand exchange mechanism at Cu(II) in water: An ab initio quantum mechanical charge field molecular dynamics study with extended quantum mechanical region

    SciTech Connect

    Moin, Syed Tarique; Hofer, Thomas S.; Weiss, Alexander K. H.; Rode, Bernd M.

    2013-07-07

    Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) were successfully applied to Cu(II) embedded in water to elucidate structure and to understand dynamics of ligand exchange mechanism. From the simulation studies, it was found that using an extended large quantum mechanical region including two shells of hydration is required for a better description of the dynamics of exchanging water molecules. The structural features characterized by radial distribution function, angular distribution function and other analytical parameters were consistent with experimental data. The major outcome of this study was the dynamics of exchange mechanism and reactions in the first hydration shell that could not be studied so far. The dynamical data such as mean residence time of the first shell water molecules and other relevant data from the simulations are close to the results determined experimentally. Another major characteristic of hydrated Cu(II) is the Jahn-Teller distortion which was also successfully reproduced, leading to the final conclusion that the dominating aqua complex is a 6-coordinated species. The ab initio QMCF-MD formalism proved again its capabilities of unraveling even ambiguous properties of hydrated species that are far difficult to explore by any conventional quantum mechanics/molecular mechanics (QM/MM) approach or experiment.

  17. Modeling dynamic exchange of gaseous elemental mercury at polar sunrise.

    PubMed

    Dastoor, Ashu P; Davignon, Didier; Theys, Nicolas; Van Roozendael, Michel; Steffen, Alexandra; Ariya, Parisa A

    2008-07-15

    At polar sunrise, gaseous elemental mercury (GEM) undergoes an exceptional dynamic exchange in the air and at the snow surface during which GEM can be rapidly removed from the atmosphere (the so-called atmospheric mercury depletion events (AMDEs)) as well as re-emitted from the snow within a few hours to days in the Polar Regions. Although high concentrations of total mercury in snow following AMDEs is well documented, there is very little data available on the redox transformation processes of mercury in the snow and the fluxes of mercury at the air/snow interface. Therefore, the net gain of mercury in the Polar Regions as a result of AMDEs is still an open question. We developed a new version of the global mercury model, GRAHM, which includes for the first time bidirectional surface exchange of GEM in Polar Regions in spring and summer by developing schemes for mercury halogen oxidation, deposition, and re-emission. Also for the first time, GOME satellite data-derived boundary layer concentrations of BrO have been used in a global mercury model for representation of halogen mercury chemistry. Comparison of model simulated and measured atmospheric concentrations of GEM at Alert, Canada, for 3 years (2002-2004) shows the model's capability in simulating the rapid cycling of mercury during and after AMDEs. Brooks et al. (1) measured mercury deposition, reemission, and net surface gain fluxes of mercury at Barrow, AK, during an intensive measurement campaign for a 2 week period in spring (March 25 to April 7, 2003). They reported 1.7, 1.0 +/- 0.2, and 0.7 +/- 0.2 microg m(-2) deposition, re-emission, and net surface gain, respectively. Using the optimal configuration of the model, we estimated 1.8 microg m(-2) deposition, 1.0 microg m(-2) re-emission, and 0.8 microg m(-2) net surface gain of mercury for the same time period at Barrow. The estimated net annual accumulation of mercury within the Arctic Circle north of 66.5 degrees is approximately 174 t with +/-7 t of

  18. Two competing species in super-diffusive dynamical regimes

    NASA Astrophysics Data System (ADS)

    La Cognata, A.; Valenti, D.; Spagnolo, B.; Dubkov, A. A.

    2010-09-01

    The dynamics of two competing species within the framework of the generalized Lotka-Volterra equations, in the presence of multiplicative α-stable Lévy noise sources and a random time dependent interaction parameter, is studied. The species dynamics is characterized by two different dynamical regimes, exclusion of one species and coexistence of both, depending on the values of the interaction parameter, which obeys a Langevin equation with a periodically fluctuating bistable potential and an additive α-stable Lévy noise. The stochastic resonance phenomenon is analyzed for noise sources asymmetrically distributed. Finally, the effects of statistical dependence between multiplicative noise and additive noise on the dynamics of the two species are studied.

  19. Effect of chelate dynamics on water exchange reactions of paramagnetic aminopolycarboxylate complexes.

    PubMed

    Maigut, Joachim; Meier, Roland; Zahl, Achim; van Eldik, Rudi

    2008-07-01

    Because of our interest in evaluating a possible relationship between complex dynamics and water exchange reactivity, we performed (1)H NMR studies on the paramagnetic aminopolycarboxylate complexes Fe (II)-TMDTA and Fe (II)-CyDTA and their diamagnetic analogues Zn (II)-TMDTA and Zn (II)-CyDTA. Whereas a fast Delta-Lambda isomerization was observed for the TMDTA species, no acetate scrambling between in-plane and out-of-plane positions is accessible for any of the CyDTA complexes because the rigid ligand backbone prevents any configurational changes in the chelate system. In variable-temperature (1)H NMR studies, no evidence of spectral coalescence due to nitrogen inversion was found for any of the complexes in the available temperature range. The TMDTA complexes exhibit the known solution behavior of EDTA, whereas the CyDTA complexes adopt static solution structures. Comparing the exchange kinetics of flexible EDTA-type complexes and static CyDTA complexes appears to be a suitable method for evaluating the effect of ligand dynamics on the overall reactivity. In order to assess information concerning the rates and mechanism of water exchange, we performed variable-temperature and -pressure (17)O NMR studies of Ni (II)-CyDTA, Fe (II)-CyDTA, and Mn (II)-CyDTA. For Ni (II)-CyDTA, no significant effects on line widths or chemical shifts were apparent, indicating either the absence of any chemical exchange or the existence of a very small amount of the water-coordinated complex in solution. For [Fe (II)(CyDTA)(H 2O)] (2-) and [Mn (II)(CyDTA)(H 2O)] (2-), exchange rate constant values of (1.1 +/- 0.3) x 10 (6) and (1.4 +/- 0.2) x 10 (8) s (-1), respectively, at 298 K were determined from fits to resonance-shift and line-broadening data. A relationship between chelate dynamics and reactivity seems to be operative, since the CyDTA complexes exhibited significantly slower reactions than their EDTA counterparts. The variable-pressure (17)O NMR measurements for [Mn (II

  20. Dynamic Distortion Correction for Endoscopy Systems with Exchangeable Optics

    NASA Astrophysics Data System (ADS)

    Stehle, Thomas; Hennes, Michael; Gross, Sebastian; Behrens, Alexander; Wulff, Jonas; Aach, Til

    Endoscopic images are strongly affected by lens distortion caused by the use of wide angle lenses. In case of endoscopy systems with exchangeable optics, e.g. in bladder endoscopy or sinus endoscopy, the camera sensor and the optics do not form a rigid system but they can be shifted and rotated with respect to each other during an examination. This flexibility has a major impact on the location of the distortion centre as it is moved along with the optics. In this paper, we describe an algorithm for the dynamic correction of lens distortion in cystoscopy which is based on a one time calibration. For the compensation, we combine a conventional static method for distortion correction with an algorithm to detect the position and the orientation of the elliptic field of view. This enables us to estimate the position of the distortion centre according to the relative movement of camera and optics. Therewith, a distortion correction for arbitrary rotation angles and shifts becomes possible without performing static calibrations for every possible combination of shifts and angles beforehand.

  1. Three dimensional dynamics of a flexible Motorised Momentum Exchange Tether

    NASA Astrophysics Data System (ADS)

    Ismail, N. A.; Cartmell, M. P.

    2016-03-01

    This paper presents a new flexural model for the three dimensional dynamics of the Motorised Momentum Exchange Tether (MMET) concept. This study has uncovered the relationships between planar and nonplanar motions, and the effect of the coupling between these two parameters on pragmatic circular and elliptical orbits. The tether sub-spans are modelled as stiffened strings governed by partial differential equations of motion, with specific boundary conditions. The tether sub-spans are flexible and elastic, thereby allowing three dimensional displacements. The boundary conditions lead to a specific frequency equation and the eigenvalues from this provide the natural frequencies of the orbiting flexible motorised tether when static, accelerating in monotonic spin, and at terminal angular velocity. A rotation transformation matrix has been utilised to get the position vectors of the system's components in an assumed inertial frame. Spatio-temporal coordinates are transformed to modal coordinates before applying Lagrange's equations, and pre-selected linear modes are included to generate the equations of motion. The equations of motion contain inertial nonlinearities which are essentially of cubic order, and these show the potential for intricate intermodal coupling effects. A simulation of planar and non-planar motions has been undertaken and the differences in the modal responses, for both motions, and between the rigid body and flexible models are highlighted and discussed.

  2. Transformations of metal species in ageing humic hydrocolloids studied by competitive ligand and metal exchange.

    PubMed

    Burba, Peter; Van den Bergh, Johan

    2004-03-01

    Transformations of metal species (particularly Al, Ca, Fe, Mg, Mn, Zn) in ageing humic hydrocolloids were studied, applying a competitive ligand and metal exchange approach. For this purpose, metal-containing hydrocolloids, freshly collected from humic-rich German bog lake waters (Hohlohsee (HO), Black Forest; Venner Moor (VM), Muensterland; Arnsberger Wald (AW), Northrhine-Westfalia) and conventionally pre-filtered through 0.45 microm membranes, were subjected on-site to an exchange with EDTA and Cu(II) ions, respectively, as a function of time. EDTA complexes gradually formed, metal fractions exchanged by Cu(II) (as well as free Cu(II) concentrations) were operationally discriminated by means of a small time-controlled tangential-flow ultrafiltration unit (nominal cutoff: 1 kDa). Metal and DOM (dissolved organic matter) fractions obtained this way were determined off-site using instrumental methods (AAS, ICP-OES, carbon analyzer). After weeks of storage, the collected hydrocolloids were studied again by this approach. The EDTA availability of colloid-bound metals (particularly Al and Fe) exhibited different ageing trends, dependent on the sample (VM: decrease of Fe availability (98-76%), HO: increase of Fe availability (76-82%)). In contrast, the Cu(II) exchange equilibria of colloid-bound metals revealed merely low availability of Al (16-38%) and Fe (5-11%) towards Cu(II) ions, also dependent on ageing effects. In particular, the conditional copper exchange constants Kex obtained from the exchange between Cu(II) ions and available metal species (such as Ca, Mg, Mn, Zn) exhibited a strong decrease (by a factor of 2-100) during sample storage, indicating considerable non-equilibria complexation of these metal ions in the original bogwaters studied on-site. PMID:15214428

  3. Dynamics and species richness of tropical rain forests.

    PubMed Central

    Phillips, O L; Hall, P; Gentry, A H; Sawyer, S A; Vásquez, R

    1994-01-01

    We present a worldwide analysis of humid tropical forest dynamics and tree species richness. New tree mortality, recruitment, and species richness data include the most dynamic and diverse mature tropical forests known. Twenty-five sites show a strong tendency for the most species-rich forests to be dynamic and aseasonal. Mean annual tree mortality and recruitment-turnover-is the most predictive factor of species richness, implying that small-scale disturbance helps regulate tropical forest diversity. Turnover rates are also closely related to the amount of basal area turnover in mature tropical forests. Therefore the contribution of small-scale disturbance to maintaining tropical forest diversity may ultimately be driven by ecosystem productivity. PMID:11607468

  4. Nesting behaviour influences species-specific gas exchange across avian eggshells

    PubMed Central

    Portugal, Steven J.; Maurer, Golo; Thomas, Gavin H.; Hauber, Mark E.; Grim, Tomáš; Cassey, Phillip

    2014-01-01

    Carefully controlled gas exchange across the eggshell is essential for the development of the avian embryo. Water vapour conductance (GH2O) across the shell, typically measured as mass loss during incubation, has been demonstrated to optimally ensure the healthy development of the embryo while avoiding desiccation. Accordingly, eggs exposed to sub-optimal gas exchange have reduced hatching success. We tested the association between eggshell GH2O and putative life-history correlates of adult birds, ecological nest parameters and physical characteristics of the egg itself to investigate how variation in GH2O has evolved to maintain optimal water loss across a diverse set of nest environments. We measured gas exchange through eggshell fragments in 151 British breeding bird species and fitted phylogenetically controlled, general linear models to test the relationship between GH2O and potential predictor parameters of each species. Of our 17 life-history traits, only two were retained in the final model: wet-incubating parent and nest type. Eggs of species where the parent habitually returned to the nest with wet plumage had significantly higher GH2O than those of parents that returned to the nest with dry plumage. Eggs of species nesting in ground burrows, cliffs and arboreal cups had significantly higher GH2O than those of species nesting on the ground in open nests or cups, in tree cavities and in shallow arboreal nests. Phylogenetic signal (measured as Pagel's λ) was intermediate in magnitude, suggesting that differences observed in the GH2O are dependent upon a combination of shared ancestry and species-specific life history and ecological traits. Although these data are correlational by nature, they are consistent with the hypothesis that parents constrained to return to the nest with wet plumage will increase the humidity of the nest environment, and the eggs of these species have evolved a higher GH2O to overcome this constraint and still achieve optimal water

  5. Dynamics in a three species food-web system

    NASA Astrophysics Data System (ADS)

    Gupta, K.; Gakkhar, S.

    2016-04-01

    In this paper, the dynamics of a three species food-web system is discussed. The food-web comprises of one predator and two logistically growing competing species. The predator species is taking food from one of the competitors with Holling type II functional response. Another competitor is the amensal species for the predator of first species. The system is shown to be positive and bounded. The stability of various axial points, boundary points and interior point has been investigated. The persistence of the system has been studied. Numerical simulation has been performed to show the occurrence of Hopf bifurcation and stable limit cycle about the interior point. The presence of second competitor and its interaction with predator gives more complex dynamics than the simple prey-predator system. The existence of transcritical bifurcation has been established about two axial points. The existence of periodic attractor having period-2 solution has been shown, when amensal coefficient is chosen as bifurcation parameter.

  6. Respiratory and cuticular water loss in insects with continuous gas exchange: comparison across five ant species.

    PubMed

    Schilman, Pablo E; Lighton, John R B; Holway, David A

    2005-12-01

    Respiratory water loss (RWL) in insects showing continuous emission of CO(2) is poorly studied because few methodologies can measure it. Comparisons of RWL between insects showing continuous and discontinuous gas exchange cycles (DGC) are therefore difficult. We used two recently developed methodologies (the hyperoxic switch and correlation between water-loss and CO(2) emission rates) to compare cuticular permeabilities and rates of RWL in five species of ants, the Argentine ant (Linepithema humile) and four common native ant competitors. Our results showed that RWL in groups of ants with moderate levels of activity and continuous gas exchange were similar across the two measurement methods, and were similar to published values on insects showing the DGC. Furthermore, ants exposed to anoxia increased their total water loss rates by 50-150%. These results suggest that spiracular control under continuous gas exchange can be as effective as the DGC in reducing RWL. Finally, the mesic-adapted Argentine ant showed significantly higher rates of water loss and cuticular permeability compared to four ant species native to dry environments. Physiological limitations may therefore be responsible for restricting the distribution of this invasive species in seasonally dry environments. PMID:16154585

  7. Stability of single sheet GNNQQNY aggregates analyzed by replica exchange molecular dynamics: Antiparallel versus parallel association

    SciTech Connect

    Vitagliano, Luigi; Esposito, Luciana; Pedone, Carlo; De Simone, Alfonso

    2008-12-26

    Protein and peptide aggregation into amyloid plaques is associated with a large variety of neurodegenerative diseases. The definition of the molecular bases of these pathologies is hampered by the transient nature of pre-fibrillar small-oligomers that are considered the toxic species. The ability of the peptide GNNQQNY to form amyloid-like structures makes it a good model to investigate the complex processes involved into amyloid fiber formation. By employing full atomistic replica exchange molecular dynamics simulations, we constructed the free energy surface of small assemblies of GNNQQNY to gain novel insights into the fiber formation process. The calculations suggest that the peptide exhibits a remarkable tendency to form both parallel and antiparallel {beta}-sheets. The data show that GNNQQNY preference for parallel or antiparallel {beta}-sheets is governed by a subtle balance of factors including assemblies' size, sidechain-sidechain interactions and pH. The samplings analysis provides a rationale to the observed trends.

  8. Temporal Dynamics of Social Exchange and the Development of Solidarity: "Testing the Waters" versus "Taking a Leap of Faith"

    ERIC Educational Resources Information Center

    Kuwabara, Ko; Sheldon, Oliver

    2012-01-01

    In their concerted efforts to unpack the microprocesses that transform repeated exchanges into an exchange relation, exchange theorists have paid little attention to how actors perceive changes and dynamics in exchanges over time. We help fill this gap by studying how temporal patterns of exchange affect the development of cohesion. Some exchange…

  9. Subzero temperature chromatography for reduced back-exchange and improved dynamic range in amide hydrogen/deuterium exchange mass spectrometry.

    PubMed

    Venable, John D; Okach, Linda; Agarwalla, Sanjay; Brock, Ansgar

    2012-11-01

    Amide hydrogen/deuterium exchange is a commonly used technique for studying the dynamics of proteins and their interactions with other proteins or ligands. When coupled with liquid chromatography and mass spectrometry, hydrogen/deuterium exchange provides several unique advantages over other structural characterization techniques including very high sensitivity, the ability to analyze proteins in complex environments, and a large mass range. A fundamental limitation of the technique arises from the loss of the deuterium label (back-exchange) during the course of the analysis. A method to limit loss of the label during the separation stage of the analysis using subzero temperature reversed-phase chromatography is presented. The approach is facilitated by the use of buffer modifiers that prevent freezing. We evaluated ethylene glycol, dimethyl formamide, formamide, and methanol for their freezing point suppression capabilities, effects on peptide retention, and their compatibilities with electrospray ionization. Ethylene glycol was used extensively because of its good electrospray ionization compatibility; however, formamide has potential to be a superior modifier if detrimental effects on ionization can be overcome. It is demonstrated using suitable buffer modifiers that separations can be performed at temperatures as low as -30 °C with negligible loss of the deuterium label, even during long chromatographic separations. The reduction in back-exchange is shown to increase the dynamic range of hydrogen/deuterium exchange mass spectrometry in terms of mixture complexity and the magnitude with which changes in deuteration level can be quantified. PMID:23025328

  10. Widespread horizontal genomic exchange does not erode species barriers among sympatric ducks

    PubMed Central

    2012-01-01

    Background The study of speciation and maintenance of species barriers is at the core of evolutionary biology. During speciation the genome of one population becomes separated from other populations of the same species, which may lead to genomic incompatibility with time. This separation is complete when no fertile offspring is produced from inter-population matings, which is the basis of the biological species concept. Birds, in particular ducks, are recognised as a challenging and illustrative group of higher vertebrates for speciation studies. There are many sympatric and ecologically similar duck species, among which fertile hybrids occur relatively frequently in nature, yet these species remain distinct. Results We show that the degree of shared single nucleotide polymorphisms (SNPs) between five species of dabbling ducks (genus Anas) is an order of magnitude higher than that previously reported between any pair of eukaryotic species with comparable evolutionary distances. We demonstrate that hybridisation has led to sustained exchange of genetic material between duck species on an evolutionary time scale without disintegrating species boundaries. Even though behavioural, genetic and ecological factors uphold species boundaries in ducks, we detect opposing forces allowing for viable interspecific hybrids, with long-term evolutionary implications. Based on the superspecies concept we here introduce the novel term "supra-population" to explain the persistence of SNPs identical by descent within the studied ducks despite their history as distinct species dating back millions of years. Conclusions By reviewing evidence from speciation theory, palaeogeography and palaeontology we propose a fundamentally new model of speciation to accommodate our genetic findings in dabbling ducks. This model, we argue, may also shed light on longstanding unresolved general speciation and hybridisation patterns in higher organisms, e.g. in other bird groups with unusually high

  11. Leaf gas exchange characteristics of three neotropical mangrove species in response to varying hydroperiod

    USGS Publications Warehouse

    Krauss, Ken W.; Twilley, Robert R.; Doyle, Thomas W.; Gardiner, Emile S.

    2006-01-01

    We determined how different hydroperiods affected leaf gas exchange characteristics of greenhouse-grown seedlings (2002) and saplings (2003) of the mangrove species Avicennia germinans (L.) Stearn., Laguncularia racemosa (L.) Gaertn. f., and Rhizophora mangle L. Hydroperiod treatments included no flooding (unflooded), intermittent flooding (intermittent), and permanent flooding (flooded). Plants in the intermittent treatment were measured under both flooded and drained states and compared separately. In the greenhouse study, plants of all species maintained different leaf areas in the contrasting hydroperiods during both years. Assimilation–light response curves indicated that the different hydroperiods had little effect on leaf gas exchange characteristics in either seedlings or saplings. However, short-term intermittent flooding for between 6 and 22 days caused a 20% reduction in maximum leaf-level carbon assimilation rate, a 51% lower light requirement to attain 50% of maximum assimilation, and a 38% higher demand from dark respiration. Although interspecific differences were evident for nearly all measured parameters in both years, there was little consistency in ranking of the interspecific responses. Species by hydroperiod interactions were significant only for sapling leaf area. In a field study, R. mangle saplings along the Shark River in the Everglades National Park either demonstrated no significant effect or slight enhancement of carbon assimilation and water-use efficiency while flooded. We obtained little evidence that contrasting hydroperiods affect leaf gas exchange characteristics of mangrove seedlings or saplings over long time intervals; however, intermittent flooding may cause short-term depressions in leaf gas exchange. The resilience of mangrove systems to flooding, as demonstrated in the permanently flooded treatments, will likely promote photosynthetic and morphological adjustment to slight hydroperiod shifts in many settings..

  12. Species Turnover through Time: Colonization and Extinction Dynamics across Metacommunities.

    PubMed

    Nuvoloni, Felipe Micali; Feres, Reinaldo José Fazzio; Gilbert, Benjamin

    2016-06-01

    Island biogeography and metacommunity theory often use equilibrium assumptions to predict local diversity, yet nonequilibrium dynamics are common in nature. In nonequilibrium communities, local diversity fluctuates through time as the relative importance of colonization and extinction change. Here, we test the prevalence and causes of nonequilibrium dynamics in metacommunities of mites associated with rubber trees distributed over large spatial (>1,000 km) and temporal (>30-60 generations) scales in Brazil. We measured colonization and extinction rates to test species turnover and nonequilibrium dynamics over a growing season. Mite metacommunities exhibited nonequilibrium dynamics for most months of the year, and these dynamics tracked climatic conditions. Monthly shifts in temperature of more than 1°C resulted in nonequilibrium dynamics, as did mean temperatures outside of two critical ranges. Nonequilibrium dynamics were caused by a change in colonization with temperature change and changes in both colonization and extinction with absolute temperature. Species turnover showed different trends; high relative humidity increased both colonization and extinction rates, increasing turnover but not nonequilibrium dynamics. Our study illustrates that testing nonequilibrium dynamics can provide new insights into the drivers of colonization, extinction, and diversity fluctuations in metacommunities. PMID:27172597

  13. Richards-like two species population dynamics model.

    PubMed

    Ribeiro, Fabiano; Cabella, Brenno Caetano Troca; Martinez, Alexandre Souto

    2014-12-01

    The two-species population dynamics model is the simplest paradigm of inter- and intra-species interaction. Here, we present a generalized Lotka-Volterra model with intraspecific competition, which retrieves as particular cases, some well-known models. The generalization parameter is related to the species habitat dimensionality and their interaction range. Contrary to standard models, the species coupling parameters are general, not restricted to non-negative values. Therefore, they may represent different ecological regimes, which are derived from the asymptotic solution stability analysis and are represented in a phase diagram. In this diagram, we have identified a forbidden region in the mutualism regime, and a survival/extinction transition with dependence on initial conditions for the competition regime. Also, we shed light on two types of predation and competition: weak, if there are species coexistence, or strong, if at least one species is extinguished. PMID:25112794

  14. Anchoring and support system of pulmonary gas-exchange tissue in four bird species.

    PubMed

    Klika, E; Scheuermann, D W; De Groodt-Lasseel, M H; Bazantova, I; Switka, A

    1997-01-01

    Avian air capillaries are delicate structures compared to the mammalian pulmonary alveolus. A transmission and scanning electron microscopic study was carried out on several species of birds with the aim of determining the support structures of the avian gas-exchange mantle. Lung tissue of two bird species belonging to strong flying birds (pigeon and barn owl) and two relatively flightless species (domestic fowl and quail) was subjected to standard processing for transmission and scanning electron microscopy after intratracheal inflation. Twisted profiles of lipoproteinaceous trilaminar substance as specific secretory product of avian squamous respiratory cells can be seen in the cell body and cytoplasmic extensions that are wedged between the blood capillaries, partly surrounding them. The intracytoplasmatically located trilaminar complexes form a three-dimensional intricate spiderweb-like system between the blood capillaries and air capillaries, which presumably function as an anchoring and support structure of the gas-exchange tissue. This system is strengthened by retinacula--pairs of attenuated parallel processes of squamous respiratory cells that project to the airway lumen--expanding and bridging the opposite side of air capillaries. The trilaminar substance is discharged in the form of a 15-nm-thick acellular lining layer which is uniquely adapted to the extremely thin respiratory epithelium. The trilaminar substance arises in the cytoplasm of squamous respiratory cells from profiles of granular and smooth endoplasmic reticulum. The integrity and stability of the gas-exchange tissue is likely to be guaranteed by a specific arrangement of the squamous respiratory cells, in which the trilaminar substance plays a paramount role. This general pattern can be observed in strong flying bird species as in the relatively flightless birds. PMID:9522895

  15. Transitional steady states of exchange dynamics between finite quantum systems.

    PubMed

    Jeon, Euijin; Yi, Juyeon; Kim, Yong Woon

    2016-08-01

    We examine energy and particle exchange between finite-sized quantum systems and find a new form of nonequilibrium state. The exchange rate undergoes stepwise evolution in time, and its magnitude and sign dramatically change according to system size differences. The origin lies in interference effects contributed by multiply scattered waves at system boundaries. Although such characteristics are utterly different from those of true steady state for infinite systems, Onsager's reciprocal relation remains universally valid. PMID:27627275

  16. Benchmarking novel approaches for modelling species range dynamics.

    PubMed

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E

    2016-08-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches

  17. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  18. [Parametric control of the yield characteristics and species composition dynamics of algal poly-culture].

    PubMed

    Nefedova, E L; Levinskikh, M A; Sychev, V N

    2006-01-01

    There are several experimental models of biological life support systems (BLSS) designed to incorporate a chlorella pool. These BLSS can be optimized if populated by algal associations that could take up more functions within the closed cycling system than a single alga species. Introduction of a Spirulina and Chlamydomonas poly-culture with differing in gas exchange and biochemical composition resulted in a tighter closure of linkages within the system. The factors determining the size of a species population in intensive continuous poly-cultures are, first and foremost, pH and suspension flow rate. Experimental testing of this supposition brought us to the conclusion that parametric control of alga productivity and species composition dynamics makes it possible to create a steady intensive poly-culture as part of the LSS for humans. Flow rate and pH can be the parameters for control of the Spirulina and Chlamydomonas populations during continuous cultivation of this poly-culture. PMID:17357628

  19. Delay driven spatiotemporal chaos in single species population dynamics models.

    PubMed

    Jankovic, Masha; Petrovskii, Sergei; Banerjee, Malay

    2016-08-01

    Questions surrounding the prevalence of complex population dynamics form one of the central themes in ecology. Limit cycles and spatiotemporal chaos are examples that have been widely recognised theoretically, although their importance and applicability to natural populations remains debatable. The ecological processes underlying such dynamics are thought to be numerous, though there seems to be consent as to delayed density dependence being one of the main driving forces. Indeed, time delay is a common feature of many ecological systems and can significantly influence population dynamics. In general, time delays may arise from inter- and intra-specific trophic interactions or population structure, however in the context of single species populations they are linked to more intrinsic biological phenomena such as gestation or resource regeneration. In this paper, we consider theoretically the spatiotemporal dynamics of a single species population using two different mathematical formulations. Firstly, we revisit the diffusive logistic equation in which the per capita growth is a function of some specified delayed argument. We then modify the model by incorporating a spatial convolution which results in a biologically more viable integro-differential model. Using the combination of analytical and numerical techniques, we investigate the effect of time delay on pattern formation. In particular, we show that for sufficiently large values of time delay the system's dynamics are indicative to spatiotemporal chaos. The chaotic dynamics arising in the wake of a travelling population front can be preceded by either a plateau corresponding to dynamical stabilisation of the unstable equilibrium or by periodic oscillations. PMID:27154920

  20. Dynamic species distribution models from categorical survey data.

    PubMed

    Mieszkowska, Nova; Milligan, Gregg; Burrows, Michael T; Freckleton, Rob; Spencer, Matthew

    2013-11-01

    1. Species distribution models are static models for the distribution of a species, based on Hutchinson's niche concept. They make probabilistic predictions about the distribution of a species, but do not have a temporal interpretation. In contrast, density-structured models based on categorical abundance data make it possible to incorporate population dynamics into species distribution modelling. 2. Using dynamic species distribution models, temporal aspects of a species' distribution can be investigated, including the predictability of future abundance categories and the expected persistence times of local populations, and how these may respond to environmental or anthropogenic drivers. 3. We built density-structured models for two intertidal marine invertebrates, the Lusitanian trochid gastropods Phorcus lineatus and Gibbula umbilicalis, based on 9 years of field data from around the United Kingdom. Abundances were recorded on a categorical scale, and stochastic models for year-to-year changes in abundance category were constructed with winter mean sea surface temperature (SST) and wave fetch (a measure of the exposure of a shore) as explanatory variables. 4. Both species were more likely to be present at sites with high SST, but differed in their responses to wave fetch. Phorcus lineatus had more predictable future abundance and longer expected persistence times than G. umbilicalis. This is consistent with the longer lifespan of P. lineatus. 5. Where data from multiple time points are available, dynamic species distribution models of the kind described here have many applications in population and conservation biology. These include allowing for changes over time when combining historical and contemporary data, and predicting how climate change might alter future abundance conditional on current distributions. PMID:23889003

  1. Impact of precipitation dynamics on net ecosystem exchange

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Net ecosystem carbon dioxide (CO2) exchange (NEE) was measured on shortgrass steppe (SGS) vegetation at the USDA Central Plains Experimental Range in northeastern Colorado from 2001-2003. Large year-to-year differences were observed in annual NEE, with > 95% of the net carbon uptake occurring during...

  2. Using a spectral approach to compare dynamic and static head driven hyporheic exchange

    NASA Astrophysics Data System (ADS)

    Wörman, Anders; Morén, Ida; Riml, Joakim

    2016-04-01

    Hyporheic exchange is an important process controlling the transportation and fate of solutes in natural streams. The exchange is driven by the hydraulic head gradients over the stream bottom and occurs on a wide range of spatial scales. The hydraulic head gradient is either dominated by the static head, originating from water surface elevation differences or it is dominated by the dynamic head that is created when the velocity head of the stream is transformed to pressure variations along an uneven bed surface. This article uses a power spectral approach to compare the exchange due to the static and dynamic head occurring over a range of spatial scales in the Tullstorps Brook. Prediction of hyporheic exchange is restrained by the complications of performing measurements of high quality and quantity in the field. In this study bottom elevation and water depth was measured with a levelling instrument every 2.56 - 16.83 m along a 500 m long reach of the Tullstorps Brook. The velocity head was calculated at the same sections based on the measured cross section area of the stream and the average discharge during the day when the measurements were done. Parallel to the head investigations a Rhodamine WT tracer test was performed in the reach and the parameters controlling hyporheic exchange was estimated through inverse modelling. These tracer test parameters were compared with theoretical parameters obtained from a spectral model. Hyporheic exchange is often modelled by assuming the head variations to be harmonic with a certain wavelength and amplitude. In the reality the head variation cannot be represented by a single harmonic function, but the representation of head geometry can be improved by superimposing a large number of harmonic functions. Here, to be able to include the whole range of harmonics, we used a power spectral approach to analyse the hydraulic head measurements from the field. The Fourier power spectrum of the data was calculated for the water

  3. Determining habitat quality for species that demonstrate dynamic habitat selection

    USGS Publications Warehouse

    Beerens, James; Frederick, Peter C; Noonburg, Erik G; Gawlik, Dale E.

    2015-01-01

    Determining habitat quality for wildlife populations requires relating a species' habitat to its survival and reproduction. Within a season, species occurrence and density can be disconnected from measures of habitat quality when resources are highly seasonal, unpredictable over time, and patchy. Here we establish an explicit link among dynamic selection of changing resources, spatio-temporal species distributions, and fitness for predictive abundance and occurrence models that are used for short-term water management and long-term restoration planning. We used the wading bird distribution and evaluation models (WADEM) that estimate (1) daily changes in selection across resource gradients, (2) landscape abundance of flocks and individuals, (3) conspecific foraging aggregation, and (4) resource unit occurrence (at fixed 400 m cells) to quantify habitat quality and its consequences on reproduction for wetland indicator species. We linked maximum annual numbers of nests detected across the study area and nesting success of Great Egrets (Ardea alba), White Ibises (Eudocimus albus), and Wood Storks (Mycteria americana) over a 20-year period to estimated daily dynamics of food resources produced by WADEM over a 7490 km2 area. For all species, increases in predicted species abundance in March and high abundance in April were strongly linked to breeding responses. Great Egret nesting effort and success were higher when birds also showed greater conspecific foraging aggregation. Synthesis and applications: This study provides the first empirical evidence that dynamic habitat selection processes and distributions of wading birds over environmental gradients are linked with reproductive measures over periods of decades. Further, predictor variables at a variety of temporal (daily-multiannual) resolutions and spatial (400 m to regional) scales effectively explained variation in ecological processes that change habitat quality. The process used here allows managers to develop

  4. Determining habitat quality for species that demonstrate dynamic habitat selection.

    PubMed

    Beerens, James M; Frederick, Peter C; Noonburg, Erik G; Gawlik, Dale E

    2015-12-01

    Determining habitat quality for wildlife populations requires relating a species' habitat to its survival and reproduction. Within a season, species occurrence and density can be disconnected from measures of habitat quality when resources are highly seasonal, unpredictable over time, and patchy. Here we establish an explicit link among dynamic selection of changing resources, spatio-temporal species distributions, and fitness for predictive abundance and occurrence models that are used for short-term water management and long-term restoration planning. We used the wading bird distribution and evaluation models (WADEM) that estimate (1) daily changes in selection across resource gradients, (2) landscape abundance of flocks and individuals, (3) conspecific foraging aggregation, and (4) resource unit occurrence (at fixed 400 m cells) to quantify habitat quality and its consequences on reproduction for wetland indicator species. We linked maximum annual numbers of nests detected across the study area and nesting success of Great Egrets (Ardea alba), White Ibises (Eudocimus albus), and Wood Storks (Mycteria americana) over a 20-year period to estimated daily dynamics of food resources produced by WADEM over a 7490 km(2) area. For all species, increases in predicted species abundance in March and high abundance in April were strongly linked to breeding responses. Great Egret nesting effort and success were higher when birds also showed greater conspecific foraging aggregation. Synthesis and applications: This study provides the first empirical evidence that dynamic habitat selection processes and distributions of wading birds over environmental gradients are linked with reproductive measures over periods of decades. Further, predictor variables at a variety of temporal (daily-multiannual) resolutions and spatial (400 m to regional) scales effectively explained variation in ecological processes that change habitat quality. The process used here allows managers to

  5. Benchmarking novel approaches for modelling species range dynamics

    PubMed Central

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H.; Moore, Kara A.; Zimmermann, Niklaus E.

    2016-01-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species’ range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species’ response to climate change but also emphasise several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches

  6. Free energy surface of an intrinsically disordered protein: comparison between temperature replica exchange molecular dynamics and bias-exchange metadynamics.

    PubMed

    Zerze, Gül H; Miller, Cayla M; Granata, Daniele; Mittal, Jeetain

    2015-06-01

    Intrinsically disordered proteins (IDPs), which are expected to be largely unstructured under physiological conditions, make up a large fraction of eukaryotic proteins. Molecular dynamics simulations have been utilized to probe structural characteristics of these proteins, which are not always easily accessible to experiments. However, exploration of the conformational space by brute force molecular dynamics simulations is often limited by short time scales. Present literature provides a number of enhanced sampling methods to explore protein conformational space in molecular simulations more efficiently. In this work, we present a comparison of two enhanced sampling methods: temperature replica exchange molecular dynamics and bias exchange metadynamics. By investigating both the free energy landscape as a function of pertinent order parameters and the per-residue secondary structures of an IDP, namely, human islet amyloid polypeptide, we found that the two methods yield similar results as expected. We also highlight the practical difference between the two methods by describing the path that we followed to obtain both sets of data. PMID:26575570

  7. Protein structural dynamics at the gas/water interface examined by hydrogen exchange mass spectrometry.

    PubMed

    Xiao, Yiming; Konermann, Lars

    2015-08-01

    Gas/water interfaces (such as air bubbles or foam) are detrimental to the stability of proteins, often causing aggregation. This represents a potential problem for industrial processes, for example, the production and handling of protein drugs. Proteins possess surfactant-like properties, resulting in a high affinity for gas/water interfaces. The tendency of previously buried nonpolar residues to maximize contact with the gas phase can cause significant structural distortion. Most earlier studies in this area employed spectroscopic tools that could only provide limited information. Here we use hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for probing the conformational dynamics of the model protein myoglobin (Mb) in the presence of N(2) bubbles. HDX/MS relies on the principle that unfolded and/or highly dynamic regions undergo faster deuteration than tightly folded segments. In bubble-free solution Mb displays EX2 behavior, reflecting the occurrence of short-lived excursions to partially unfolded conformers. A dramatically different behavior is seen in the presence of N(2) bubbles; EX2 dynamics still take place, but in addition the protein shows EX1 behavior. The latter results from interconversion of the native state with conformers that are globally unfolded and long-lived. These unfolded species likely correspond to Mb that is adsorbed to the surface of gas bubbles. N(2) sparging also induces aggregation. To explain the observed behavior we propose a simple model, that is, "semi-unfolded" ↔ "native" ↔ "globally unfolded" → "aggregated". This model quantitatively reproduces the experimentally observed kinetics. To the best of our knowledge, the current study marks the first exploration of surface denaturation phenomena by HDX/MS. PMID:25761782

  8. Protein structural dynamics at the gas/water interface examined by hydrogen exchange mass spectrometry

    PubMed Central

    Xiao, Yiming; Konermann, Lars

    2015-01-01

    Gas/water interfaces (such as air bubbles or foam) are detrimental to the stability of proteins, often causing aggregation. This represents a potential problem for industrial processes, for example, the production and handling of protein drugs. Proteins possess surfactant-like properties, resulting in a high affinity for gas/water interfaces. The tendency of previously buried nonpolar residues to maximize contact with the gas phase can cause significant structural distortion. Most earlier studies in this area employed spectroscopic tools that could only provide limited information. Here we use hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for probing the conformational dynamics of the model protein myoglobin (Mb) in the presence of N2 bubbles. HDX/MS relies on the principle that unfolded and/or highly dynamic regions undergo faster deuteration than tightly folded segments. In bubble-free solution Mb displays EX2 behavior, reflecting the occurrence of short-lived excursions to partially unfolded conformers. A dramatically different behavior is seen in the presence of N2 bubbles; EX2 dynamics still take place, but in addition the protein shows EX1 behavior. The latter results from interconversion of the native state with conformers that are globally unfolded and long-lived. These unfolded species likely correspond to Mb that is adsorbed to the surface of gas bubbles. N2 sparging also induces aggregation. To explain the observed behavior we propose a simple model, that is, “semi-unfolded” ↔ “native” ↔ “globally unfolded” → “aggregated”. This model quantitatively reproduces the experimentally observed kinetics. To the best of our knowledge, the current study marks the first exploration of surface denaturation phenomena by HDX/MS. PMID:25761782

  9. Leaf gas exchange performance and the lethal water potential of five European species during drought.

    PubMed

    Li, Shan; Feifel, Marion; Karimi, Zohreh; Schuldt, Bernhard; Choat, Brendan; Jansen, Steven

    2016-02-01

    Establishing physiological thresholds to drought-induced mortality in a range of plant species is crucial in understanding how plants respond to severe drought. Here, five common European tree species were selected (Acer campestre L., Acer pseudoplatanus L., Carpinus betulus L., Corylus avellana L. and Fraxinus excelsior L.) to study their hydraulic thresholds to mortality. Photosynthetic parameters during desiccation and the recovery of leaf gas exchange after rewatering were measured. Stem vulnerability curves and leaf pressure-volume curves were investigated to understand the hydraulic coordination of stem and leaf tissue traits. Stem and root samples from well-watered and severely drought-stressed plants of two species were observed using transmission electron microscopy to visualize mortality of cambial cells. The lethal water potential (ψlethal) correlated with stem P99 (i.e., the xylem water potential at 99% loss of hydraulic conductivity, PLC). However, several plants that were stressed beyond the water potential at 100% PLC showed complete recovery during the next spring, which suggests that the ψlethal values were underestimated. Moreover, we observed a 1 : 1 relationship between the xylem water potential at the onset of embolism and stomatal closure, confirming hydraulic coordination between leaf and stem tissues. Finally, ultrastructural changes in the cytoplasm of cambium tissue and mortality of cambial cells are proposed to provide an alternative approach to investigate the point of no return associated with plant death. PMID:26614785

  10. Cluster fusion-fission dynamics in the Singapore stock exchange

    NASA Astrophysics Data System (ADS)

    Teh, Boon Kin; Cheong, Siew Ann

    2015-10-01

    In this paper, we investigate how the cross-correlations between stocks in the Singapore stock exchange (SGX) evolve over 2008 and 2009 within overlapping one-month time windows. In particular, we examine how these cross-correlations change before, during, and after the Sep-Oct 2008 Lehman Brothers Crisis. To do this, we extend the complete-linkage hierarchical clustering algorithm, to obtain robust clusters of stocks with stronger intracluster correlations, and weaker intercluster correlations. After we identify the robust clusters in all time windows, we visualize how these change in the form of a fusion-fission diagram. Such a diagram depicts graphically how the cluster sizes evolve, the exchange of stocks between clusters, as well as how strongly the clusters mix. From the fusion-fission diagram, we see a giant cluster growing and disintegrating in the SGX, up till the Lehman Brothers Crisis in September 2008 and the market crashes of October 2008. After the Lehman Brothers Crisis, clusters in the SGX remain small for few months before giant clusters emerge once again. In the aftermath of the crisis, we also find strong mixing of component stocks between clusters. As a result, the correlation between initially strongly-correlated pairs of stocks decay exponentially with average life time of about a month. These observations impact strongly how portfolios and trading strategies should be formulated.

  11. Theoretical investigation on the mechanism and dynamics of oxo exchange of neptunyl(VI) hydroxide in aqueous solution.

    PubMed

    Yang, Xia; Chai, Zhifang; Wang, Dongqi

    2015-03-21

    Four types of reaction mechanisms for the oxo ligand exchange of monomeric and dimeric neptunyl(VI) hydroxide in aqueous solution were explored computationally using density functional theory (DFT) and ab initio classical molecular dynamics. The obtained results were compared with previous studies on the oxo exchange of uranyl hydroxide, as well as with experiments. It is found that the stable T-shaped [NpO3(OH)3](3-) intermediate is a key species for oxo exchange in the proton transfer in mononuclear Path I and binuclear Path IV, similar to the case of uranyl(VI) hydroxide. Path I is thought to be the preferred oxo exchange mechanism for neptunyl(VI) hydroxide in our calculations, due to the lower activation energy (22.7 and 13.1 kcal mol(-1) for ΔG(‡) and ΔH(‡), respectively) of the overall reaction. Path II via a cis-neptunyl structure assisted by a water molecule might be a competitive channel against Path I with a mononuclear mechanism, owing to a rapid dynamical process occurring in Path II. In Path IV with the binuclear mechanism, oxo exchange is accomplished via the interaction between [NpO2(OH)4](2-) and T-shaped [NpO3(OH)3](3-) with a low activation energy for the rate-determining step, however, the overall energy required to fulfill the reaction is slightly higher than that in mononuclear Path I, suggesting a possible binuclear process in the higher energy region. The chemical bonding evolution along the reaction pathways was discussed by using topological methodologies of the electron localization function (ELF). PMID:25706188

  12. Respiratory dynamics of discontinuous gas exchange in the tracheal system of the desert locust, Schistocerca gregaria.

    PubMed

    Groenewald, Berlizé; Hetz, Stefan K; Chown, Steven L; Terblanche, John S

    2012-07-01

    Gas exchange dynamics in insects is of fundamental importance to understanding evolved variation in breathing patterns, such as discontinuous gas exchange cycles (DGCs). Most insects do not rely solely on diffusion for the exchange of respiratory gases but may also make use of respiratory movements (active ventilation) to supplement gas exchange at rest. However, their temporal dynamics have not been widely investigated. Here, intratracheal pressure, V(CO2) and body movements of the desert locust Schistocerca gregaria were measured simultaneously during the DGC and revealed several important aspects of gas exchange dynamics. First, S. gregaria employs two different ventilatory strategies, one involving dorso-ventral contractions and the other longitudinal telescoping movements. Second, although a true spiracular closed (C)-phase of the DGC could be identified by means of subatmospheric intratracheal pressure recordings, some CO(2) continued to be released. Third, strong pumping actions do not necessarily lead to CO(2) release and could be used to ensure mixing of gases in the closed tracheal system, or enhance water vapour reabsorption into the haemolymph from fluid-filled tracheole tips by increasing the hydrostatic pressure or forcing fluid into the haemocoel. Finally, this work showed that the C-phase of the DGC can occur at any pressure. These results provide further insights into the mechanistic basis of insect gas exchange. PMID:22675191

  13. Coupled acoustic-gravity field for dynamic evaluation of ion exchange with a single resin bead.

    PubMed

    Kanazaki, Takahiro; Hirawa, Shungo; Harada, Makoto; Okada, Tetsuo

    2010-06-01

    A coupled acoustic-gravity field is efficient for entrapping a particle at the position determined by its acoustic properties rather than its size. This field has been applied to the dynamic observation of ion-exchange reactions occurring in a single resin bead. The replacement of counterions in an ion-exchange resin induces changes in its acoustic properties, such as density and compressibility. Therefore, we can visually trace the advancement of an ion-exchange reaction as a time change in the levitation position of a resin bead entrapped in the field. Cation-exchange reactions occurring in resin beads with diameters of 40-120 microm are typically completed within 100-200 s. Ion-exchange equilibrium or kinetics is often evaluated with off-line chemical analyses, which require a batch amount of ion exchangers. Measurements with a single resin particle allow us to evaluate ion-exchange dynamics and kinetics of ions including those that are difficult to measure by usual off-line analyses. The diffusion properties of ions in resins have been successfully evaluated from the time change in the levitation positions of resin beads. PMID:20462180

  14. Simultaneous Disulfide and Boronic Acid Ester Exchange in Dynamic Combinatorial Libraries

    PubMed Central

    Diemer, Sanna L.; Kristensen, Morten; Rasmussen, Brian; Beeren, Sophie R.; Pittelkow, Michael

    2015-01-01

    Dynamic combinatorial chemistry has emerged as a promising tool for the discovery of complex receptors in supramolecular chemistry. At the heart of dynamic combinatorial chemistry are the reversible reactions that enable the exchange of building blocks between library members in dynamic combinatorial libraries (DCLs) ensuring thermodynamic control over the system. If more than one reversible reaction operates in a single dynamic combinatorial library, the complexity of the system increases dramatically, and so does its possible applications. One can imagine two reversible reactions that operate simultaneously or two reversible reactions that operate independently. Both these scenarios have advantages and disadvantages. In this contribution, we show how disulfide exchange and boronic ester transesterification can function simultaneous in dynamic combinatorial libraries under appropriate conditions. We describe the detailed studies necessary to establish suitable reaction conditions and highlight the analytical techniques appropriate to study this type of system. PMID:26378519

  15. Jealousy and Trust: Unexplored Dimensions of Social Exchange Dynamics.

    ERIC Educational Resources Information Center

    McDonald, Gerald W.; Osmond, Marie Withers

    Little effort has been made to systematically assess the determinants and consequences of marital jealousy which affect marital, familial and extra-familial expectations, interactions and behavior. A preliminary attempt to rectify this omission provides a conceptual/theoretical perspective on jealousy dynamics in marriage. Marital jealousy, a…

  16. Use of chemical species as dynamic membranes with crossflow microfiltration

    SciTech Connect

    Al-Malack, M.H.; Anderson, G.K.

    1998-12-01

    The feasibility of utilizing the phenomenon of dynamic membrane formation with crossflow microfiltration in treating domestic wastewater was investigated. The primary membrane, used throughout the investigation, was made of woven polyester. Different chemical species, such as CaCO{sub 3}, FeCl{sub 3}, and NaAlO{sub 2}, were used in forming dynamic membranes on top of the primary membrane. Secondary effluent from a domestic activated sludge wastewater treatment plant was treated. A calcium carbonate dynamic membrane produced a stabilized permeate flux of 90 L/m{sup 2} {center_dot} h, with a permeate turbidity of 0.21 Nephelometric Turbidity Unit (NTU), at optimum conditions. Ferric chloride produced optimum results when it was mixed with tap water. A permeate flux and turbidity of 70 L/m{sup 2} {center_dot} h and 0.16 NTU, respectively, were obtained. Sodium aluminate produced a stabilized permeate flux of 77 L/m{sup 2} {center_dot} h when it was mixed with tap water during the formation of the dynamic membrane. The permeate turbidity was 0.16 NTU. The fouling mechanism of the three dynamic membranes was investigated, and empirical models were produced.

  17. Dynamic models for problems of species occurrence with multiple states

    USGS Publications Warehouse

    MacKenzie, D.I.; Nichols, J.D.; Seamans, M.E.; Gutierrez, R.J.

    2009-01-01

    Recent extensions of occupancy modeling have focused not only on the distribution of species over space, but also on additional state variables (e.g., reproducing or not, with or without disease organisms, relative abundance categories) that provide extra information about occupied sites. These biologist-driven extensions are characterized by ambiguity in both species presence and correct state classification, caused by imperfect detection. We first show the relationships between independently published approaches to the modeling of multistate occupancy. We then extend the pattern-based modeling to the case of sampling over multiple seasons or years in order to estimate state transition probabilities associated with system dynamics. The methodology and its potential for addressing relevant ecological questions are demonstrated using both maximum likelihood (occupancy and successful reproduction dynamics of California Spotted Owl) and Markov chain Monte Carlo estimation approaches (changes in relative abundance of green frogs in Maryland). Just as multistate capture?recapture modeling has revolutionized the study of individual marked animals, we believe that multistate occupancy modeling will dramatically increase our ability to address interesting questions about ecological processes underlying population-level dynamics.

  18. Modeling species occurrence dynamics with multiple states and imperfect detection

    USGS Publications Warehouse

    MacKenzie, D.I.; Nichols, J.D.; Seamans, M.E.; Gutierrez, R.J.

    2009-01-01

    Recent extensions of occupancy modeling have focused not only on the distribution of species over space, but also on additional state variables (e.g., reproducing or not, with or without disease organisms, relative abundance categories) that provide extra information about occupied sites. These biologist-driven extensions are characterized by ambiguity in both species presence and correct state classification, caused by imperfect detection. We first show the relationships between independently published approaches to the modeling of multistate occupancy. We then extend the pattern-based modeling to the case of sampling over multiple seasons or years in order to estimate state transition probabilities associated with system dynamics. The methodology and its potential for addressing relevant ecological questions are demonstrated using both maximum likelihood (occupancy and successful reproduction dynamics of California Spotted Owl) and Markov chain Monte Carlo estimation approaches (changes in relative abundance of green frogs in Maryland). Just as multistate capture-recapture modeling has revolutionized the study of individual marked animals, we believe that multistate occupancy modeling will dramatically increase our ability to address interesting questions about ecological processes underlying population-level dynamics. ?? 2009 by the Ecological Society of America.

  19. Time Dependency of Psychotherapeutic Exchanges: The Contribution of the Theory of Dynamic Systems in Analyzing Process

    PubMed Central

    Salvatore, Sergio; Tschacher, Wolfgang

    2012-01-01

    This paper provides a general framework for the use of Theory of Dynamic Systems (TDS) in the field of psychotherapy research. Psychotherapy is inherently dynamic, namely a function of time. Consequently, the improvement of construct validity and clinical relevance of psychotherapy process research require the development of models of investigation allowing dynamic mappings of clinical exchange. Thus, TDS becomes a significant theoretical and methodological reference. The paper focuses two topics. First, the main concepts of TDS are briefly introduced together with a basic typology of approaches developed within this domain. Second, we propose a repertoire of investigation strategies that can be used to capture the dynamic nature of clinical exchange. In this way we intend to highlight the feasibility and utility of strategies of analysis informed by TDS. PMID:22848205

  20. Exchange explosions: Magnetization dynamics during vortex-antivortex annihilation.

    PubMed

    Hertel, Riccardo; Schneider, Claus M

    2006-10-27

    A magnetic vortex and an antivortex can annihilate, resulting in a homogeneous magnetization. A detailed description of the magnetization dynamics of such annihilation processes is obtained by micromagnetic simulations based on the Landau-Lifshitz-Gilbert equation. We show that, depending on the relative polarization of the vortex-antivortex pair, the annihilation process is either a continuous transformation of the magnetic structure or it involves the propagation of a micromagnetic singularity (Bloch point) causing a burstlike emission of spin waves. These results provide new insight into a fundamental micromagnetic process that has recently been proposed for a controlled generation of spin waves. PMID:17155502

  1. The dynamics of sorption of sulfuric acid by weakly basic polyacrylic anion exchangers

    NASA Astrophysics Data System (ADS)

    Mamchenko, A. V.; Kushnir, T. V.

    2009-05-01

    The nonequilibrium dynamics of sorption of sulfuric acid by free base forms of Amberlite IRA-67 and Lewatite VP.OC.1072 weakly basic anion exchangers is studied. It is established that, in hydrodynamic regimes of filtration, which are typical of OH filters of the first stage of water-desalting plants, the limiting stage of sorption kinetics is inside diffusion. It is concluded that the process is correctly described by an asymptotic solution to the inside-diffusion model of sorption dynamics.

  2. Dynamics of polymeric brushes: End exchange and bridging kinetics

    NASA Astrophysics Data System (ADS)

    Johner, A.; Joanny, J. F.

    1993-01-01

    We study some dynamical aspects of grafted polymer layers in a solvent. The structure of the brush is described in a θ solvent by the self-consistent mean field theory and in a good solvent using scaling laws. The Rouse-Zimm model including hydrodynamic interactions is used for the dynamic properties. A given chain end explores the entire thickness of a free grafted layer in a time Te proportional to the cube of the thickness. The exploration time is much larger than the Rouse time that characterizes the relaxation of the fluctuations of the chains conformations. In a θ-solvent we give a detailed study of the relaxation of the density of a few labeled chain ends towards its equilibrium value. The bridging kinetics between a grafting plate and a plate adsorbing the free ends is also discussed. When adsorption proceeds, an exclusion zone grows in the vicinity of the adsorbing plate. To cross the exclusion zone and adsorb, a chain end must overcome an energy barrier. The typical adsorption time is the first passage time through this barrier. Except in the very late stages where the fraction of chains η forming bridges saturates at its equilibrium value, the energy barrier against adsorption increases as a power law of η and the bridging fraction increases very slowly (logarithmically) with time. Both weak bridging where only a small fraction of chains form bridges and total bridging where all the chains form bridges are studied.

  3. NASA geometry data exchange specification for computational fluid dynamics (NASA IGES)

    NASA Technical Reports Server (NTRS)

    Blake, Matthew W.; Kerr, Patricia A.; Thorp, Scott A.; Jou, Jin J.

    1994-01-01

    This document specifies a subset of an existing product data exchange specification that is widely used in industry and government. The existing document is called the Initial Graphics Exchange Specification. This document, a subset of IGES, is intended for engineers analyzing product performance using tools such as computational fluid dynamics (CFD) software. This document specifies how to define mathematically and exchange the geometric model of an object. The geometry is represented utilizing nonuniform rational B-splines (NURBS) curves and surfaces. Only surface models are represented; no solid model representation is included. This specification does not include most of the other types of product information available in IGES (e.g., no material properties or surface finish properties) and does not provide all the specific file format details of IGES. The data exchange protocol specified in this document is fully conforming to the American National Standard (ANSI) IGES 5.2.

  4. Structure of Met-enkephalin in explicit aqueous solution using replica exchange molecular dynamics.

    PubMed

    Sanbonmatsu, K Y; García, A E

    2002-02-01

    Replica exchange molecular dynamics (MD) simulations of Met-enkephalin in explicit solvent reveal helical and nonhelical structures. Four predominant structures of Met-enkephalin are sampled with comparable probabilities (two helical and two nonhelical). The energy barriers between these configurations are low, suggesting that Met-enkephalin switches easily between configurations. This is consistent with the requirement that Met-enkephalin be sufficiently flexible to bind to several different receptors. Replica exchange simulations of 32 ns are shown to sample approximately five times more configurational space than constant temperature MD simulations of the same duration. The energy landscape for the replica exchange simulation is presented. A detailed study of replica trajectories demonstrates that the significant increases in temperature provided by the replica exchange technique enable transitions from nonhelical to helical structures that would otherwise be prevented by kinetic trapping. Met-enkephalin (Type Entrez Proteins; Value A61445; Service Entrez Proteins). PMID:11807951

  5. Probing ultrafast photo-induced dynamics of the exchange energy in a Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Batignani, G.; Bossini, D.; di Palo, N.; Ferrante, C.; Pontecorvo, E.; Cerullo, G.; Kimel, A.; Scopigno, T.

    2015-08-01

    Manipulating the macroscopic phases of solids using ultrashort light pulses has resulted in spectacular phenomena, including metal-insulator transitions, superconductivity and subpicosecond modification of magnetic order. The development of this research area strongly depends on the understanding and optical control of fundamental interactions in condensed matter, in particular the exchange interaction. However, disentangling the timescales relevant for the contributions of the exchange interaction and spin dynamics to the exchange energy, Eex, is a challenge. Here, we introduce femtosecond stimulated Raman scattering to unravel the ultrafast photo-induced dynamics of magnetic excitations at the edge of the Brillouin zone. We find that femtosecond laser excitation of the antiferromagnet KNiF3 triggers a spectral shift of the two-magnon line, the energy of which is proportional to Eex. By unravelling the photo-induced modification of the two-magnon line frequency from a dominating nonlinear optical effect, we find that Eex is increased by the electromagnetic stimulus.

  6. Dynamic exchanges between DOM and POM pools in coastal and inland aquatic ecosystems: A review.

    PubMed

    He, Wei; Chen, Meilian; Schlautman, Mark A; Hur, Jin

    2016-05-01

    Dynamic exchanges between dissolved organic matter (DOM) and particulate organic matter (POM) plays a critical role in organic carbon cycling in coastal and inland aquatic ecosystems, interactions with aquatic organisms, mobility and bioavailability of pollutants, among many other ecological and geochemical phenomena. Although DOM-POM exchange processes have been widely studied from different aspects, little to no effort has been made to date to provide a comprehensive, mechanistic, and micro-spatial schema for understanding various exchange processes occurring in different aquatic ecosystems in a unified way. The phenomena occurring between DOM and POM were explained here with the homogeneous and heterogeneous mechanisms. In the homogeneous mechanism, the participating components are only organic matter (OM) constituents themselves with aggregation and dissolution involved, whereas OM is associated with other components such as minerals and particulate colloids in the heterogeneous counterpart. Besides the generally concerned processes of aggregation/dissolution and adsorption/desorption, other ecological factors such as sunlight and organisms can also participate in DOM-POM exchanges through altering the chemical nature of OM. Despite the limitation of current analytical technologies, many unknown and/or unquantified processes need to be identified to unravel the complicated exchanges of OM between its dissolved and particulate states. Based on the review of several previous mathematical models, we proposed a unified conceptual model to describe all major dynamic exchange mechanisms on the basis of exergy theory. More knowledge of dynamic DOM-POM exchanges is warranted to overcome the potential problems arising from a simple division of OM into dissolved versus particulate states and to further develop more sophisticated mathematic models. PMID:26881732

  7. Cross-species gene-family fluctuations reveal the dynamics of horizontal transfers

    PubMed Central

    Grilli, Jacopo; Romano, Mariacristina; Bassetti, Federico; Cosentino Lagomarsino, Marco

    2014-01-01

    Prokaryotes vary their protein repertoire mainly through horizontal transfer and gene loss. To elucidate the links between these processes and the cross-species gene-family statistics, we perform a large-scale data analysis of the cross-species variability of gene-family abundance (the number of members of the family found on a given genome). We find that abundance fluctuations are related to the rate of horizontal transfers. This is rationalized by a minimal theoretical model, which predicts this link. The families that are not captured by the model show abundance profiles that are markedly peaked around a mean value, possibly because of specific abundance selection. Based on these results, we define an abundance variability index that captures a family's evolutionary behavior (and thus some of its relevant functional properties) purely based on its cross-species abundance fluctuations. Analysis and model, combined, show a quantitative link between cross-species family abundance statistics and horizontal transfer dynamics, which can be used to analyze genome ‘flux’. Groups of families with different values of the abundance variability index correspond to genome sub-parts having different plasticity in terms of the level of horizontal exchange allowed by natural selection. PMID:24829449

  8. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    NASA Astrophysics Data System (ADS)

    Leon Swisher, Christine; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-08-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate-lactate, pyruvate-alanine, and pyruvate-hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines.

  9. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    PubMed Central

    Swisher, Christine Leon; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-01-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate–lactate, pyruvate–alanine, and pyruvate–hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines. PMID:26117655

  10. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes

    USGS Publications Warehouse

    McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F. S., III; De Groot, B.; Efremov, D.; Eugster, W.; Fukuda, M.; Gower, T.; Hinzman, L.; Huntley, B.; Jia, G.J.; Kasischke, E.; Melillo, J.; Romanovsky, V.; Shvidenko, A.; Vaganov, E.; Walker, D.

    2002-01-01

    The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.

  11. Temperatures of individual ion species and heating due to charge exchange in the ionosphere of Venus

    NASA Technical Reports Server (NTRS)

    Kim, Jhoon; Nagy, Andrew F.; Cravens, Thomas E.; Shinagawa, Hiroyuki

    1990-01-01

    The coupled electron and multispecies ion energy equations were solved for daytime conditions in the Venus ionosphere. The heating rates due to charge exchange between hot oxygen atoms and thermal oxygen ions were calculated and incorporated into the energy equations. The combination of the traditional EUV heating and this hot oxygen energy source leads to calculated electron and individual ion temperatures significantly lower than the measured values during solar cycle maximum conditions. Calculations were also carried out for solar cycle minimum conditions, which led to considerably lower temperatures; no data are available which would allow direct comparisons of these results with measurements. In order to obtain calculated temperature values consistent with the observed ones, for solar cycle maximum conditions, topside heat inflows into the ion and electron gases have to be introduced or the thermal conductivity must be reduced by considering the effect of steady and fluctuating magnetic fields, as was done in previous studies. The addition of hot oxygen heating leads to minor increases in the calculated ion temperatures except for the case of reduced thermal conductivities. Separate temperatures were calculated for each ion species for a number of different conditions and in general the differences were found to be relatively small.

  12. On the use of a weak-coupling thermostat in replica-exchange molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lin, Zhixiong; van Gunsteren, Wilfred F.

    2015-07-01

    In a molecular dynamics (MD) simulation, various thermostat algorithms, including Langevin dynamics (LD), Nosé-Hoover (NH), and weak-coupling (WC) thermostats, can be used to keep the simulation temperature constant. A canonical ensemble is generated by the use of LD and NH, while the nature of the ensemble produced by WC has not yet been identified. A few years ago, it was shown that when using a WC thermostat with particular values of the temperature coupling time for liquid water at ambient temperature and pressure, the distribution of the potential energy is less wide than the canonical one. This led to an artifact in temperature replica-exchange molecular dynamics (T-REMD) simulations in which the potential energy distributions appear not to be equal to the ones of standard MD simulations. In this paper, we re-investigate this problem. We show that this artifact is probably due to the ensemble generated by WC being incompatible with the T-REMD replica-exchange criterion, which assumes a canonical configurational ensemble. We also show, however, that this artifact can be reduced or even eliminated by particular choices of the temperature coupling time of WC and the replica-exchange time period of T-REMD, i.e., when the temperature coupling time is chosen very close to the MD time step or when the exchange time period is chosen large enough. An attempt to develop a T-REMD replica-exchange criterion which is likely to be more compatible with the WC configurational ensemble is reported. Furthermore, an exchange criterion which is compatible with a microcanonical ensemble is used in total energy REMD simulations.

  13. Competition between abstraction and exchange channels in H + HCN reaction: Full-dimensional quantum dynamics

    SciTech Connect

    Jiang, Bin; Guo, Hua

    2013-12-14

    Dynamics of the title reaction is investigated on an ab initio based potential energy surface using a full-dimensional quantum wave packet method within the centrifugal sudden approximation. It is shown that the reaction between H and HCN leads to both the hydrogen exchange and hydrogen abstraction channels. The exchange channel has a lower threshold and larger cross section than the abstraction channel. It also has more oscillations due apparently to quantum resonances. Both channels are affected by long-lived resonances supported by potential wells. Comparison with experimental cross sections indicates underestimation of the abstraction barrier height.

  14. Asymmetry in the static and dynamic magnetic properties of a weak exchange spring trilayer

    NASA Astrophysics Data System (ADS)

    Gubbiotti, G.; Carlotti, G.; Weston, J.; Zangari, G.; Crew, D. C.; Stamps, R. L.

    2005-02-01

    Experimental results and theoretical calculations are presented for the static and dynamic magnetic properties of a weak exchange-spring symmetric FeTaN/FeSm/FeTaN trilayer. Static properties were investigated by means of alternating gradient field and magneto-optic Kerr effect magnetometries. The frequencies of three spin wave modes were measured by inelastic light scattering from long wavelength thermal spin waves. The combined analysis of spin wave frequencies and magnetometry data provides a consistent set of exchange, anisotropy and film thickness parameters.

  15. Fast-growing species and sustainability (productivity and site dynamics of three fast-growing species)

    SciTech Connect

    Reddy, A.N.; Sugur, G.V.

    1992-12-31

    Growth of three fast-growing species, raised in a high rainfall zone (2000-2500 mm per annum) has been compared, and the associated site dynamics studies in the Western Ghat area of Karnataka State. Two fast-growing exotics, Acacia auriculiformis and Castuarina equisitifolia, were planted on degraded, open sites at high planting densities (5000 plants ha{sup {minus}1}), and one native fast-growing species. Dendrocalamus strictus, was planted on a good site under seasonal irrigation and wider spacing (500 plants ha{sup {minus}1}). These were studies at the age of 5 years for their comparative productivity, quantity of litter fall and changes in nutrient and microbial status. Among these species, A. auriculiformis recorded the highest total productivity closely followed by D. strictus. However, the MAI after 5 years indicated a higher productivity for D. strictus, when culm production attained harvestable size. C. equisitifolia was a close third. It was also found that D. strictus produced higher biomass at lower planting densities, under better sites and management. The litter fall and changes in nutrient status indicated the highest efficiency in A. auriculiformis, followed by C. equisitifolia. It was concluded that the higher planting density was the major contributing factor; the values were comparatively low for D. strictus mainly owing to a lower stocking density of plants.

  16. Comparative Population Dynamics of Two Closely Related Species Differing in Ploidy Level

    PubMed Central

    Černá, Lucie; Münzbergová, Zuzana

    2013-01-01

    Background Many studies compare the population dynamics of single species within multiple habitat types, while much less is known about the differences in population dynamics in closely related species in the same habitat. Additionally, comparisons of the effect of habitat types and species are largely missing. Methodology and Principal Findings We estimated the importance of the habitat type and species for population dynamics of plants. Specifically, we compared the dynamics of two closely related species, the allotetraploid species Anthericum liliago and the diploid species Anthericum ramosum, occurring in the same habitat type. We also compared the dynamics of A. ramosum in two contrasting habitats. We examined three populations per species and habitat type. The results showed that single life history traits as well as the mean population dynamics of A. liliago and A. ramosum from the same habitat type were more similar than the population dynamics of A. ramosum from the two contrasting habitats. Conclusions Our findings suggest that when transferring knowledge regarding population dynamics between populations, we need to take habitat conditions into account, as these conditions appear to be more important than the species involved (ploidy level). However, the two species differ significantly in their overall population growth rates, indicating that the ploidy level has an effect on species performance. In contrast to what has been suggested by previous studies, we observed a higher population growth rate in the diploid species. This is in agreement with the wider range of habitats occupied by the diploid species. PMID:24116057

  17. [A comparative study of external respiration, gas exchange and circulation during static and dynamic muscular loads].

    PubMed

    Bubeev, Iu A; Khomenko, M N; Poliukhovich, V V; Remizov, Iu I

    1995-01-01

    Indices of external breathing, gas exchange, and circulation were studied during bicycle ergometry and static ergometry of 19 healthy male volunteers which were stopped at critical levels of heart rate, arterial pressure, ECG or subjective fatigue. The bicycle workload maximum averaged 210 Watts, the static ergometric, 224 kg/s. Both types of exercises were characterized by unidirectional shifting of the external breathing and gas exchange indices; however, they were less pronounced at static loads. Arterial pressure and resistance of the peripheral vessels were the only indices of the array the dynamics of which complied with and even exceeded that during bicycling. In contrast to the dynamic muscular load, the maximal dynamics of gas exchange and external breathing during static ergometric workload was observed in the rehabilitation period following restoration of muscle blood flow; this must be taken into account in interpretation of test results. It is concluded that high information virtues of the static ergometric test in the context of predicting aerobatic load tolerance, and similarity of dynamics in the period of rehabilitation hold much promise for using the tests with static muscular loading in aviation and space medicine. PMID:8664858

  18. Environmental variability uncovers disruptive effects of species' interactions on population dynamics.

    PubMed

    Gudmundson, Sara; Eklöf, Anna; Wennergren, Uno

    2015-08-01

    How species respond to changes in environmental variability has been shown for single species, but the question remains whether these results are transferable to species when incorporated in ecological communities. Here, we address this issue by analysing the same species exposed to a range of environmental variabilities when (i) isolated or (ii) embedded in a food web. We find that all species in food webs exposed to temporally uncorrelated environments (white noise) show the same type of dynamics as isolated species, whereas species in food webs exposed to positively autocorrelated environments (red noise) can respond completely differently compared with isolated species. This is owing to species following their equilibrium densities in a positively autocorrelated environment that in turn enables species-species interactions to come into play. Our results give new insights into species' response to environmental variation. They especially highlight the importance of considering both species' interactions and environmental autocorrelation when studying population dynamics in a fluctuating environment. PMID:26224705

  19. Removal Dynamics of Immunoglobulin and Fibrinogen by Conventional Plasma Exchange, Selective Plasma Exchange, and a Combination of the Two.

    PubMed

    Miyamoto, Satoko; Ohkubo, Atsushi; Seshima, Hiroshi; Maeda, Takuma; Itagaki, Ayako; Kurashima, Naoki; Iimori, Soichiro; Naito, Shotaro; Sohara, Eisei; Rai, Tatemitsu; Uchida, Shinichi; Okado, Tomokazu

    2016-08-01

    While plasma exchange (PE) can eliminate plasma proteins, including all immunoglobulin (Ig) and coagulation factors, selective plasma exchange (SePE) can retain fibrinogen (Fbg). Here, we investigated the removal dynamics of Ig and Fbg in 53 patients with immunological disorders by PE, SePE, and a combination of the two. When the mean processed plasma volume (PPV) was 0.9 plasma volume (PV), the mean percent reductions of Ig and Fbg by PE were both approximately 62%-65%. When the mean PPV was 1.1 PV, the mean percent reductions by SePE were 53.1% for IgG, 30.1% for IgA, 3.6% for IgM, and 19.0% for Fbg, respectively. In the three plasmapheresis sessions performed on alternate days, we classified treatments into three categories: PE group (PE-PE-PE, N = 2), SePE group (SePE-SePE-SePE, N = 14), and PE/SePE group (PE-SePE-SePE, N = 4). The mean percent reductions of IgG, IgA, IgM, and Fbg were 82.0%, 80.4%, 87.3%, and 80.9%, respectively, for the PE group; 76.4%, 57.7%, 43.3%, and 35.9%, respectively, for the PE/SePE group; and 75.4%, 50.6%, 3.2%, and 29.3%, respectively, for the SePE group. Plasmapheresis modalities can be combined according to clinical conditions, for instance, to achieve both the unspecific removal of pathogens by PE and retention of coagulation factors, such as Fbg, by SePE. PMID:27523073

  20. Probing the dynamic regulation of peripheral membrane proteins using hydrogen deuterium exchange-MS (HDX-MS).

    PubMed

    Vadas, Oscar; Burke, John E

    2015-10-01

    Many cellular signalling events are controlled by the selective recruitment of protein complexes to membranes. Determining the molecular basis for how lipid signalling complexes are recruited, assembled and regulated on specific membrane compartments has remained challenging due to the difficulty of working in conditions mimicking native biological membrane environments. Enzyme recruitment to membranes is controlled by a variety of regulatory mechanisms, including binding to specific lipid species, protein-protein interactions, membrane curvature, as well as post-translational modifications. A powerful tool to study the regulation of membrane signalling enzymes and complexes is hydrogen deuterium exchange-MS (HDX-MS), a technique that allows for the interrogation of protein dynamics upon membrane binding and recruitment. This review will highlight the theory and development of HDX-MS and its application to examine the molecular basis of lipid signalling enzymes, specifically the regulation and activation of phosphoinositide 3-kinases (PI3Ks). PMID:26517882

  1. Dynamics of heat, water, and soluble gas exchange in the human airways: 1. A model study.

    PubMed

    Tsu, M E; Babb, A L; Ralph, D D; Hlastala, M P

    1988-01-01

    In order to provide a means for analysis of heat, water, and soluble gas exchange with the airways during tidal ventilation, a one dimensional theoretical model describing heat and water exchange in the respiratory airways has been extended to include soluble gas exchange with the airway mucosa and water exchange with the mucous layer lining the airways. Not only do heat, water, and gas exchange occur simultaneously, but they also interact. Heating and cooling of the airway surface and mucous lining affects both evaporative water and soluble gas exchange. Water evaporation provides a major source of heat exchange. The model-predicted mean airway temperature profiles agree well with literature data for both oral and nasal breathing validating that part of the model. With model parameters giving the best fit to experimental data, the model shows: (a) substantial heat recovery in the upper airways, (b) minimal respiratory heat and water loss, and (c) low average mucous temperatures and maximal increases in mucous thickness. For resting breathing of room air, heat and water conservation appear to be more important than conditioning efficiency. End-tidal expired partial pressures of very soluble gases eliminated by the lungs are predicted to be lower than the alveolar partial pressures due to the absorption of the expired gases by the airway mucosa. The model may be usable for design of experiments to examine mechanisms associated with the local hydration and dehydration dynamics of the mucosal surface, control of bronchial perfusion, triggering of asthma, mucociliary clearance and deposition of inhaled pollutant gases. PMID:3228218

  2. Exact-exchange time-dependent density-functional theory for static and dynamic polarizabilities

    SciTech Connect

    Hirata, So; Ivanov, Stanislav; Bartlett, Rodney J.; Grabowski, Ireneusz

    2005-03-01

    Time-dependent density-functional theory (TDDFT) employing the exact-exchange functional has been formulated on the basis of the optimized-effective-potential (OEP) method of Talman and Shadwick for second-order molecular properties and implemented into a Gaussian-basis-set, trial-vector algorithm. The only approximation involved, apart from the lack of correlation effects and the use of Gaussian-type basis functions, was the consistent use of the adiabatic approximation in the exchange kernel and in the linear response function. The static and dynamic polarizabilities and their anisotropy predicted by the TDDFT with exact exchange (TDOEP) agree accurately with the corresponding values from time-dependent Hartree-Fock theory, the exact-exchange counterpart in the wave function theory. The TDOEP is free from the nonphysical asymptotic decay of the exchange potential of most conventional density functionals or from any other manifestations of the incomplete cancellation of the self-interaction energy. The systematic overestimation of the absolute values and dispersion of polarizabilities that plagues most conventional TDDFT cannot be seen in the TDOEP.

  3. Water exchange dynamics around H₃O⁺ and OH⁻ ions

    SciTech Connect

    Roy, Santanu; Dang, Liem X.

    2015-05-01

    Proton transfer in water and other solvents is a complicated process and an active research area. Conformational changes of water hydrating a proton can have a significant influence on proton dynamics. A hydrated proton leads to H₃O⁺ that forms three hydrogen bonds with neighboring water molecules. In this letter, we report the first computer simulation of the dynamics of water exchanging between the first and second solvation shells of H₃O⁺. Employing different rate theories for chemical reactions such as the transition state theory, the Grote-Hynes theory, the reactive flux method, and the Impey-Madden-McDonald method, we calculate the solvent exchange rates from molecular dynamics simulations that account for explicit polarization effects. In addition, we also study water exchanges around OH⁻ and find that the corresponding time scale (~50 picoseconds [ps]) is much smaller than that for H₃O⁺ (~100 ps). Results from all the rate theories are computed and compared. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  4. Environmental variability uncovers disruptive effects of species' interactions on population dynamics

    PubMed Central

    Gudmundson, Sara; Eklöf, Anna; Wennergren, Uno

    2015-01-01

    How species respond to changes in environmental variability has been shown for single species, but the question remains whether these results are transferable to species when incorporated in ecological communities. Here, we address this issue by analysing the same species exposed to a range of environmental variabilities when (i) isolated or (ii) embedded in a food web. We find that all species in food webs exposed to temporally uncorrelated environments (white noise) show the same type of dynamics as isolated species, whereas species in food webs exposed to positively autocorrelated environments (red noise) can respond completely differently compared with isolated species. This is owing to species following their equilibrium densities in a positively autocorrelated environment that in turn enables species–species interactions to come into play. Our results give new insights into species' response to environmental variation. They especially highlight the importance of considering both species' interactions and environmental autocorrelation when studying population dynamics in a fluctuating environment. PMID:26224705

  5. Changes in ecosystem structure related to the type and extent of woody cover alter carbon dynamics and surface energy exchange in central Texas ecosystems.

    NASA Astrophysics Data System (ADS)

    Litvak, M. E.; Heilman, J.; McInnes, K.; Owens, K.; Kjelgaard, J.; Thijs, A.

    2006-12-01

    Rangeland ecosystems account for almost two thirds the total land area in Texas. Over the past century, heavy livestock grazing and fire suppression coupled with changes in climate have facilitated the expansion of woody species into rangelands throughout the state. Based in part on the assumption that woody species use more water than their herbaceous counterparts, land managers have used a variety of techniques to reduce tree and shrub abundance to combat the loss of forage for cattle. As a result, the structure of rangelands in Texas is complex, characterized by woody vegetation that is patchy in distribution, and continually changing between grassland, savanna and woodland. Despite the large areal extent of Texas rangelands, very little is known about how the observed changes in ecosystem structure impact carbon cycle dynamics and surface energy exchange. To reduce these uncertainties, we explored explicit relationships between structure and function in these ecosystems by comparing tower-based measurements of carbon and water vapor exchange made simultaneously from July 2004-Dec 2005 across three representative land covers in central Texas: open grassland, savanna with 30% Ashe juniper and honey mesquite cover, and closed canopy woodland. Here we report our findings on what impact the type and pattern of woody plant cover has on biological controls and patterns of carbon sequestration, evapotranspiration, and sensitivity to precipitation pulses. Monthly measurements of leaf level gas exchange, soil respiration rates, herbaceous net ecosystem exchange, and sap flow measurements on dominant woody species were used to augment eddy covariance estimates of ecosystem-atmosphere exchange. The addition of woody species significantly increased carbon sequestration in these ecosystems. Net ecosystem production from July 05-Jun 05 in the grassland, savanna and forest ecosystems was -14 g C m-2, -413 g C m-2, -450 g C m-2, respectively. Evapotranspiration was less

  6. Quantitative chemical exchange saturation transfer with hyperpolarized nuclei (qHyper-CEST): Sensing xenon-host exchange dynamics and binding affinities by NMR

    SciTech Connect

    Kunth, M. Witte, C.; Schröder, L.

    2014-11-21

    The reversible binding of xenon to host molecules has found numerous applications in nuclear magnetic resonance studies. Quantitative characterization of the Xe exchange dynamics is important to understand and optimize the physico-chemical behavior of such Xe hosts, but is often challenging to achieve at low host concentrations. We have investigated a sensitive quantification technique based on chemical exchange saturation transfer with hyperpolarized nuclei, qHyper-CEST. Using simulated signals we demonstrated that qHyper-CEST yielded accurate and precise results and was robust in the presence of large amounts of noise (10%). This is of particular importance for samples with completely unknown exchange rates. Using these findings we experimentally determined the following exchange parameters for the Xe host cryptophane-A monoacid in dimethyl sulfoxide in one type of experiment: the ratio of bound and free Xe, the Xe exchange rate, the resonance frequencies of free and bound Xe, the Xe host occupancy, and the Xe binding constant. Taken together, qHyper-CEST facilitates sensitive quantification of the Xe exchange dynamics and binding to hydrophobic cavities and has the potential to analyze many different host systems or binding sites. This makes qHyper-CEST an indispensable tool for the efficient design of highly specific biosensors.

  7. Hydrogen-deuterium exchange mass spectrometry for investigation of backbone dynamics of oxidized and reduced cytochrome P450cam.

    PubMed

    Hamuro, Yoshitomo; Molnar, Kathleen S; Coales, Stephen J; OuYang, Bo; Simorellis, Alana K; Pochapsky, Thomas C

    2008-02-01

    Backbone dynamics of the camphor monoxygenase cytochrome P450(cam) (CYP101) as a function of oxidation/ligation state of the heme iron were investigated via hydrogen/deuterium exchange (H/D exchange) as monitored by mass spectrometry. Main chain amide NH hydrogens can exchange readily with solvent and the rate of this exchange depends upon, among other things, dynamic fluctuations in local structural elements. A fluxional region of the polypeptide will exchange more quickly with solvent than one that is more constrained. In most regions of the enzyme, exchange rates were similar between oxidized high-spin camphor-bound and reduced camphor- and CO-bound CYP101 (CYP-S and CYP-S-CO, respectively). However, in regions of the protein that have previously been implicated in substrate access by structural and molecular dynamics investigations, the reduced enzyme shows significantly slower exchange rates than the oxidized CYP-S. This observation corresponds to increased flexibility of the oxidized enzyme relative to the reduced form. Structural features previously found to be perturbed in CYP-S-CO upon binding of the biologically relevant effector and reductant putidaredoxin (Pdx) as determined by nuclear magnetic resonance are also more protected from exchange in the reduced state. To our knowledge, this study represents the first experimental investigation of backbone dynamics within the P450 family using this methodology. PMID:18023482

  8. Molecular dynamics simulations of transducin: interdomain and front to back communication in activation and nucleotide exchange.

    PubMed

    Ceruso, Marc A; Periole, Xavier; Weinstein, Harel

    2004-04-30

    The dynamic events that underlie the nucleotide exchange process for the Galpha subunit of transducin (Galpha(t)) were studied with nanosecond time-scale molecular dynamics simulations. The modeled systems include the active and inactive forms of the wild-type Galpha(t) and three of its mutants (GDP-bound form only): F332A, A322S, and Q326A that are known to exhibit various degrees of enhancement of their basal and receptor-catalyzed rates of nucleotide exchange (150-fold, 70-fold and WT-like, respectively). The results of these computational experiments reveal a number of nucleotide-dependent structural and dynamic changes (involving the alpha(B)-alpha(C) loop, the inter-domain orientation of the helical and GTPase domains and the alpha(5) helix) that were not observed in the various crystal structures of Galpha(t). Notably, the results show the existence of a front to back communication device (involving the beta(2)-beta(3) hairpin, the alpha(1) helix and the alpha(5) helix), strategically located near all elements susceptible to be involved in receptor-mediated activation/nucleotide exchange. The wild-type simulations suggest that the dynamic interplay between the elements of this device would be critical for the activation of the Galpha(t) subunit. This inference is confirmed by the results of the computational experiments on the mutants that show that even in their GDP-bound forms, the A322S and F332A mutants acquire an "active-like" structure and dynamics phenotype. The same is not true for the Q326A mutant whose structural and dynamic properties remain similar to those of the GDP-bound WT. Taken together the results suggest a nucleotide exchange mechanism, analogous to that found in the Arf family GTPases, in which a partially activated state, achievable from a receptor-mediated action of the front to back communication device either by displacement of the C-terminal alpha(5) helix, of the N-terminal alpha(N) helix, or of the Gbetagamma subunit, could

  9. Riparian hydraulic gradient and stream-groundwater exchange dynamics in steep headwater valleys

    NASA Astrophysics Data System (ADS)

    Voltz, Thomas; Gooseff, Michael; Ward, Adam S.; Singha, Kamini; Fitzgerald, Michael; Wagener, Thorsten

    2013-06-01

    of riparian hydraulic gradients and stream-groundwater exchange in headwater catchments provide the hydrologic context for important ecological processes. Although the controls are relatively well understood, their dynamics during periods of hydrologic change is not. We investigate riparian hydraulic gradients over three different time scales in two steep, forested, headwater catchments in Oregon (WS01 and WS03) to determine the potential controls of reach-scale valley slope and cross-sectional valley geometry. Groundwater and stream stage data collected at high spatial and temporal resolutions over a period encompassing a 1.25 year storm and subsequent seasonal baseflow recession indicate that hydraulic gradients in both riparian aquifers exhibit strong persistence of down-valley dominance. Responses to rainfall do not support the simple conceptual models of increased riparian hydraulic gradient toward streams. Hydraulic gradient response in WS01 to both the seasonal baseflow recession and the storm suggested the potential for increased stream-groundwater exchange, but there was less evidence for this in WS03. Results from four constant-rate tracer injections in each stream showed a high baseline level of exchange overall, and both a slight seasonal increase (WS01) and slight decrease (WS03) in the riparian intrusion of tracer-labeled stream water as stream discharge receded. These results indicate that steep headwater valley floors host extensive stream water exchange and very little change in the water table gradients over 3 orders of magnitude of stream discharge.

  10. High-resolution determination of 147Pm in urine using dynamic ion-exchange chromatography.

    PubMed

    Elchuk, S; Lucy, C A; Burns, K I

    1992-10-15

    A procedure has been developed for measuring 147Pm in bioassay samples, based on the separation and preconcentration of 147Pm from the urine matrix by adsorption onto a conventional cation-exchange column with final separation and purification by HPLC using dynamic ion-exchange chromatography. The concentration of 147Pm is determined by collecting the appropriate HPLC fraction and measuring the 147Pm by liquid scintillation counting. The limit of detection is 0.1 Bq (3 fg) 147Pm based on a 500-mL sample of urine and a counting time of 30 min with a background of 100 cpm. Ten samples can be processed in 1.5-2 days. PMID:1466450

  11. Simulating the frontal instability of lock-exchange density currents with dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Li, Yanggui; Geng, Xingguo; Wang, Heping; Zhuang, Xin; Ouyang, Jie

    2016-06-01

    The frontal instability of lock-exchange density currents is numerically investigated using dissipative particle dynamics (DPD) at the mesoscopic particle level. For modeling two-phase flow, the “color” repulsion model is adopted to describe binary fluids according to Rothman-Keller method. The present DPD simulation can reproduce the flow phenomena of lock-exchange density currents, including the lobe-and-cleft instability that appears at the head, as well as the formation of coherent billow structures at the interface behind the head due to the growth of Kelvin-Helmholtz instability. Furthermore, through the DPD simulation, some small-scale characteristics can be observed, which are difficult to be captured in macroscopic simulation and experiment.

  12. The Dynamic Hyporheic Zone: Variability of Groundwater-Surface Water Exchange at Multiple Temporal Scales

    NASA Astrophysics Data System (ADS)

    Binley, A. M.; Dudley-Southern, M. J.

    2014-12-01

    The pathways of exchange of surface water and groundwater can have a significant influence on the delivery of nutrient-rich groundwater to streams. Many studies have revealed how the spatial variability of physical properties (sediment permeability, bedform structures, etc.) at the interface of groundwater and surface water can impact on flow pathways and residence times of hyporheic exchange flow. Here we explore the temporal variability of flow pathways at this interface. We focus on observations made on a study reach of the River Leith, UK but also provide evidence of dynamic exchanges at a number of other study sites. Under baseflow conditions, the study reach of the River Leith shows a predominance of upwelling of groundwater to the river, and in some sections of the reach a significant groundwater discharge zone in evident. However, from observations of piezometric heads made over a two year study period, repeated reversal of flow direction was observed during storm events. By deploying novel miniature electrode sensors in the river bed we were able to monitor the migration of surface water during these events. Penetration of river water to depths of 30cm was observed during monitored events, which support the reported reversal of hydraulic gradients. We, therefore, observed event-driven hyporheic exchange flow. The duration and frequency of such events may have significant impact on the biogeochemistry of shallow river bed sediments within this reach. Furthermore, temporal variability of exchange is not limited to such events: changes in regional groundwater flow pathways over longer time scales may have a significant impact on the location of localised upwelling; at much shorter timescales we see evidence of diurnal fluctuations in hydraulic heads due to evapotranspiration processes. We report on similar observations at companion study sites and discuss implications on the management of water quality in these groundwater fed systems.

  13. pH-replica exchange molecular dynamics in proteins using a discrete protonation method.

    PubMed

    Sabri Dashti, Danial; Meng, Yilin; Roitberg, Adrian E

    2012-08-01

    Protonation equilibria in biological molecules modulates structure, dynamics, and function. A pH-replica exchange molecular dynamics (pH-REMD) method is described here to improve the coupling between conformational and protonation sampling. Under a Hamiltonian replica exchange setup, conformations are swapped between two neighboring replicas, which themselves are at different pHs. The method has been validated on a series of biological systems. We applied pH-REMD to a series of model compounds, to an terminally charged ADFDA pentapeptide, and to a heptapeptide derived from the ovomucoid third domain (OMTKY3). In all of those systems, the predicted pK(a) by pH-REMD is very close to the experimental value and almost identical to the ones obtained by constant pH molecular dynamics (CpH MD). The method presented here, pH-REMD, has the advantage of faster convergence properties due to enhanced sampling of both conformation and protonation spaces. PMID:22694266

  14. Probing protein dynamics and function under native and mildly denaturing conditions with hydrogen exchange and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kaltashov, Igor A.

    2005-02-01

    A combination of hydrogen exchange and mass spectrometry emerged in recent years as a powerful experimental tool capable of probing both structural and dynamic features of proteins. Although its concept is very simple, the interpretation of experimental data is not always straightforward, as a combination of chemical reactions (isotope exchange) and dynamic processes within protein molecules give rise to convoluted exchange patterns. This paper provides a historical background of this technique, candid assessment of its current state and limitations and a discussion of promising recent developments that can result in tremendous improvements and a dramatic expansion of the scope of its applications.

  15. Tree Species Specific Soil Moisture Patterns and Dynamics

    NASA Astrophysics Data System (ADS)

    Heidbuechel, I.; Dreibrodt, J.; Guntner, A.; Blume, T.

    2014-12-01

    Land use has a major influence on the hydrologic processes that take place in soils. Soil compaction on pastures for example leads to infiltration patterns that differ considerably from the ones observable in forests. It is not clear, however, how different forest stands influence soil infiltration and soil moisture distributions. Factors that that vary amongst different stands and potentially affect soil moisture processes in forests are, amongst others, canopy density, throughfall patterns, the intensity and frequency of stem flow, litter type, root distributions and rooting depth. To investigate how different tree species influence the way soils partition, store and conduct incoming precipitation we selected 15 locations under different tree stands within the TERENO observatory in north-east Germany. The forest stands under investigation were mature oak, young pine, mature pine, young beech and mature beech. At each location we installed 30 FDR soil moisture sensors grouped into five depth profiles (monitoring soil moisture from 10 cm to 200 cm) and 5 additional near surface sensors. The profile locations within each forest stand covered most of the anticipated variability by ranging from minimum to maximum distance to the trees including locations under more and less dense canopy. Supplementary to the FDR sensors, throughfall measurements, tensiometers and groundwater data were available to observe dynamics of tree water availability, water fluxes within the soils and percolation towards the groundwater. To identify patterns in space and time we referred to the statistical methods of wavelet analysis and temporal stability analysis. Finally, we tried to link the results from these analyses to specific hydrologic processes at the different locations.

  16. Replica exchange molecular dynamics simulation of cross-fibrillation of IAPP and PrP106-126.

    PubMed

    Chua, Khi Pin; Chew, Lock Yue; Mu, Yuguang

    2016-08-01

    Aggregation of proteins into amyloid is the central hallmark of a number of protein diseases. Most studies were carried out on the aggregation between proteins of similar species. However, it was observed that some patients with certain protein disease can easily acquire another unrelated protein disease. As such, it is also important to examine aggregation between proteins of different species. Usually aggregation between proteins of the same species can be attributed to the similarity between their respective amino acid sequences. In this article, we were motivated by an experimental study of aggregation between amylin (Islet Amyloid Polypeptide, IAPP) and prion106-126 (PrP106-126) fragment (JACS, 2013, 135, 13582-9). It was found that the two non-homologous peptides can aggregate quickly to form fibrils in the presence of negatively charged lipid bilayer. We attempted to elucidate the molecular mechanism of the early stage of dimerization of these two peptides through extensive replica exchange molecular dynamics simulations. Conformations consisting of various degrees of β-sheets structures, both intra-chain and inter-chain, were found in the simulations. The conformations of the aggregated complex are very diverse, which suggests that the cross-species fibrils formed between the two proteins are highly polymorphic. The driving forces are mainly hydrophobic interactions, including aromatic-aliphatic interactions. The palindromic region of PrP106-126 and SNNFGAIL region of IAPP were found to play important roles in the interaction. Our study sheds insight into the exciting research of protein cross-fibrillation. Proteins 2016; 84:1134-1146. © 2016 Wiley Periodicals, Inc. PMID:27153477

  17. Flow dynamics of ash deposition in heat-exchanger tube banks

    SciTech Connect

    Shaffer, F.; Ekmann, J.; Mathur, M.

    1991-01-01

    The objective of this project is to generate experimental data to describe flow fields in heat-exchanger tube banks. One of the main applications of this data is in the evaluation of computational fluid dynamics (CFD) models which are an important part of an ash deposition model. The CFD models under evaluation include a large eddy simulation (LES) being developed by Textron Inc. under DOE-PETC funding and the CLEW code developed at the University of California at Berkeley. Various CFD modeling approaches, e.g., implementation of a transition-to-turbulence and modified wall functions, are also being tested using the PHOENICS code.

  18. Flow dynamics of ash deposition in heat-exchanger tube banks

    SciTech Connect

    Shaffer, F.; Ekmann, J.; Mathur, M.

    1991-12-31

    The objective of this project is to generate experimental data to describe flow fields in heat-exchanger tube banks. One of the main applications of this data is in the evaluation of computational fluid dynamics (CFD) models which are an important part of an ash deposition model. The CFD models under evaluation include a large eddy simulation (LES) being developed by Textron Inc. under DOE-PETC funding and the CLEW code developed at the University of California at Berkeley. Various CFD modeling approaches, e.g., implementation of a transition-to-turbulence and modified wall functions, are also being tested using the PHOENICS code.

  19. Numerical simulation of gas dynamics and heat exchange tasks in fuel assemblies of the nuclear reactors

    SciTech Connect

    Zhuchenko, S. V.

    2014-11-12

    This report presents a PC-based program for solution gas dynamics and heat exchange mathematical tasks in fuel assemblies of the fast-neutron nuclear reactors. A fuel assembly consisting of bulk heat-generating elements, which are integrated together by the system of supply and pressure manifolds, is examined. Spherical heat-generating microelements, which contain nuclear fuel, are pulled into the heat-generating elements. Gaseous coolant proceed from supply manifolds to heat-generating elements, where it withdraws the nuclear reaction heat and assembles in pressure manifolds.

  20. Network impact on persistence in a finite population dynamic diffusion model: application to an emergent seed exchange network.

    PubMed

    Barbillon, Pierre; Thomas, Mathieu; Goldringer, Isabelle; Hospital, Frédéric; Robin, Stéphane

    2015-01-21

    Dynamic extinction colonisation models (also called contact processes) are widely studied in epidemiology and in metapopulation theory. Contacts are usually assumed to be possible only through a network of connected patches. This network accounts for a spatial landscape or a social organization of interactions. Thanks to social network literature, heterogeneous networks of contacts can be considered. A major issue is to assess the influence of the network in the dynamic model. Most work with this common purpose uses deterministic models or an approximation of a stochastic Extinction-Colonisation model (sEC) which are relevant only for large networks. When working with a limited size network, the induced stochasticity is essential and has to be taken into account in the conclusions. Here, a rigorous framework is proposed for limited size networks and the limitations of the deterministic approximation are exhibited. This framework allows exact computations when the number of patches is small. Otherwise, simulations are used and enhanced by adapted simulation techniques when necessary. A sensitivity analysis was conducted to compare four main topologies of networks in contrasting settings to determine the role of the network. A challenging case was studied in this context: seed exchange of crop species in the Réseau Semences Paysannes (RSP), an emergent French farmers׳ organisation. A stochastic Extinction-Colonisation model was used to characterize the consequences of substantial changes in terms of RSP׳s social organization on the ability of the system to maintain crop varieties. PMID:25451529

  1. Dynamics of two competing species in the presence of Lévy noise sources

    NASA Astrophysics Data System (ADS)

    La Cognata, A.; Valenti, D.; Dubkov, A. A.; Spagnolo, B.

    2010-07-01

    We consider a Lotka-Volterra system of two competing species subject to multiplicative α -stable Lévy noise. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence both of a periodic driving term and an additive α -stable Lévy noise. We study the species dynamics, which is characterized by two different regimes, exclusion of one species and coexistence of both. We find quasiperiodic oscillations and stochastic resonance phenomenon in the dynamics of the competing species, analyzing the role of the Lévy noise sources.

  2. Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics.

    PubMed

    Morin, Xavier; Fahse, Lorenz; de Mazancourt, Claire; Scherer-Lorenzen, Michael; Bugmann, Harald

    2014-12-01

    Theory predicts a positive relationship between biodiversity and stability in ecosystem properties, while diversity is expected to have a negative impact on stability at the species level. We used virtual experiments based on a dynamic simulation model to test for the diversity-stability relationship and its underlying mechanisms in Central European forests. First our results show that variability in productivity between stands differing in species composition decreases as species richness and functional diversity increase. Second we show temporal stability increases with increasing diversity due to compensatory dynamics across species, supporting the biodiversity insurance hypothesis. We demonstrate that this pattern is mainly driven by the asynchrony of species responses to small disturbances rather than to environmental fluctuations, and is only weakly affected by the net biodiversity effect on productivity. Furthermore, our results suggest that compensatory dynamics between species may enhance ecosystem stability through an optimisation of canopy occupancy by coexisting species. PMID:25212251

  3. Adaptive Partitioning QM/MM Dynamics Simulations for Substrate Uptake, Product Release, and Solvent Exchange.

    PubMed

    Duster, A; Garza, C; Lin, H

    2016-01-01

    Combined quantum mechanics/molecular mechanics (QM/MM) plays an important role in multiscale simulations of biological systems including enzymes. The adaptive-partitioning (AP) schemes surpass the conventional QM/MM methods in that they allow the on-the-fly, smooth exchange of particles between QM and MM subsystems in molecular dynamics simulations, leading to a seamless and dynamic integration of the QM and MM realms. Originally developed for simulating ion solvation in bulk solutions, the AP schemes have recently been extended to the treatment of proteins, fostering applications in the simulations of enzymes. The present contribution provides a detailed account of the AP schemes. We delineate the background of the algorithms and their parallel implementation, as well as offer practical advice and examples for their applications in the simulations of biological systems. PMID:27498644

  4. Dynamic characteristics of heat exchanger tubes vibrating in a tube support plate inactive mode

    SciTech Connect

    Jendrzejczyk, J.A.

    1984-06-01

    Tubes in shell-and-tube heat exchangers, including nuclear plant steam generators, derive their support from longitudinally positioned tube support plates (TSPs). Typically there is a clearance between the tube and TSP hole. Depending on design and fabrication tolerances, the tube may or may not contract all of the TSPs. Noncontact results in an inactive TSP which can lead to detrimental flow induced tube vibrations under certain conditions dependent on the resulting tube-TSP interaction dynamics and the fluid excitation forces. The purpose of this study is to investigate the tube-TSP interaction dynamics. Results of an experimental study of damping and natural frequency as functions of tube-TSP diametral clearance and TSP thickness are reported. Calculated values of damping ratio and frequency of a tube vibrating within an inactive TSP are also presented together with a comparison of calculated and experimental quantities.

  5. Dynamic characteristics of heat exchanger tubes vibrating in a tube support plate inactive mode

    SciTech Connect

    Jendrzejczyk, J.A.

    1985-01-01

    Tubes in shell-and-tube heat exchangers, including nuclear plant steam generators, derive their support from longitudinally positioned tube support plates (TSPs). Typically there is a clearance between the tube and TSP hole. Depending on design and fabrication tolerances, the tube may or may not contact all of the TSPs. Noncontact results in an inactive TSP which can lead to detrimental flow induced tube vibrations under certain conditions dependent on the resulting tube-TSP interaction dynamics and the fluid excitation forces. The purpose of this study is to investigate the tube-TSP interaction dynamics. Results of an experimental study of damping and natural frequency as functions of tube-TSP diametral clearance and TSP thickness are reported. Calculated values of damping ratio and frequency of a tube vibrating within an inactive TSP are also presented together with a comparison of calculated and experimetnal quantities.

  6. A Model for Dynamic Simulation and Analysis of Tether Momentum Exchange

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen; Johnson, David; Sorensen, Kirk; Welzyn, Ken; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Momentum-exchange/electrodynamic reboost (MXER) tether systems may enable high-energy missions to the Moon, Mars, and beyond by serving as an 'upper stage in space'. Existing rockets that use an MXER tether station could double their capability to launch communications satellites and help improve US competitiveness. A MXER tether station would boost spacecraft from low Earth orbit to a high-energy orbit quickly, like a high-thrust rocket. Then, using the same principles that make an electric motor work, it would slowly rebuild its orbital momentum by pushing against the Earth's magnetic field-without using any propellant. One of the significant challenges in developing a momentum-exchange/electrodynamic reboost tether systems is in the analysis and design of the capture mechanism and its effects on the overall dynamics of the system. This paper will present a model for a momentum-exchange tether system that can simulate and evaluate the performance and requirements of such a system.

  7. Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization

    PubMed Central

    Barnes, Alexander B.; Mak-Jurkauskas, Melody L.; Matsuki, Yoh; Bajaj, Vikram S.; van der Wel, Patrick C. A.; DeRocher, Ronald; Bryant, Jeffrey; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Lugtenburg, Johan; Herzfeld, Judith; Griffin, Robert G.

    2009-01-01

    We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here — which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole — circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100 K which shows 30 Hz linewidths. PMID:19356957

  8. Genetic exchange leading to self-assembling RNA species upon encapsulation in artificial protocells.

    PubMed

    Zenisek, Sergio-Francis M; Hayden, Eric J; Lehman, Niles

    2007-01-01

    The encapsulation of information-bearing macromolecules inside protocells is a critical step in scenarios for the origins of life on the Earth as well as for the construction of artificial living systems. For these protocells to emulate life, they must be able to transmit genetic information to other cells. We have used a water-in-oil emulsion system to simulate the compartmentalization of catalytic RNA molecules. By exploiting RNA-directed recombination reactions previously developed in our laboratory, including a ribozyme self-assembly pathway, we demonstrate that it is possible for information to be exchanged among protocells. This can happen either indirectly by the passage of divalent cations through the inter-protocellular medium (oil), or by the direct interaction of two or more protocells that allows RNA molecules to be exchanged. The degree of agitation affects the ability of such exchange. The consequences of these results include the implications that prototypical living systems can transmit information among compartments, and that the environment can regulate the extent of this crosstalk. PMID:17567246

  9. Predicting the dynamics of local adaptation in invasive species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An invasive plant species may restrict its spread to only one habitat, or, after some time, may continue to spread into a different, secondary, habitat. The question of whether evolution is required for an invasive species to spread from one habitat to another is currently hotly debated. In order fo...

  10. Modeling the dynamic operation of a small fin plate heat exchanger - parametric analysis

    NASA Astrophysics Data System (ADS)

    Motyliński, Konrad; Kupecki, Jakub

    2015-09-01

    Given its high efficiency, low emissions and multiple fuelling options, the solid oxide fuel cells (SOFC) offer a promising alternative for stationary power generators, especially while engaged in micro-combined heat and power (μ-CHP) units. Despite the fact that the fuel cells are a key component in such power systems, other auxiliaries of the system can play a critical role and therefore require a significant attention. Since SOFC uses a ceramic material as an electrolyte, the high operating temperature (typically of the order of 700-900 °C) is required to achieve sufficient performance. For that reason both the fuel and the oxidant have to be preheated before entering the SOFC stack. Hot gases exiting the fuel cell stack transport substantial amount of energy which has to be partly recovered for preheating streams entering the stack and for heating purposes. Effective thermal integration of the μ-CHP can be achieved only when proper technical measures are used. The ability of efficiently preheating the streams of oxidant and fuel relies on heat exchangers which are present in all possible configurations of power system with solid oxide fuel cells. In this work a compact, fin plate heat exchanger operating in the high temperature regime was under consideration. Dynamic model was proposed for investigation of its performance under the transitional states of the fuel cell system. Heat exchanger was simulated using commercial modeling software. The model includes key geometrical and functional parameters. The working conditions of the power unit with SOFC vary due to the several factors, such as load changes, heating and cooling procedures of the stack and others. These issues affect parameters of the incoming streams to the heat exchanger. The mathematical model of the heat exchanger is based on a set of equations which are simultaneously solved in the iterative process. It enables to define conditions in the outlets of both the hot and the cold sides

  11. Reconstructing the Most Probable Folding Transition Path from Replica Exchange Molecular Dynamics Simulations.

    PubMed

    Jimenez-Cruz, Camilo Andres; Garcia, Angel E

    2013-08-13

    The characterization of transition pathways between long-lived states, and the identification of the corresponding transition state ensembles are useful tools in the study of rare events such as protein folding. In this work we demonstrate how the most probable transition path between metastable states can be recovered from replica exchange molecular dynamic simulation data by using the dynamic string method. The local drift vector in collective variables is determined via short continuous trajectories between replica exchanges at a given temperature, and points along the string are updated based on this drift vector to produce reaction pathways between the folded and unfolded state. The method is applied to a designed beta hairpin-forming peptide to obtain information on the folding mechanism and transition state using different sets of collective variables at various temperatures. Two main folding pathways differing in the order of events are found and discussed, and the relative free energy differences for each path estimated. Finally, the structures near the transition state are found and described. PMID:26584126

  12. Considerably Unfolded Transthyretin Monomers Preceed and Exchange with Dynamically Structured Amyloid Protofibrils

    PubMed Central

    Groenning, Minna; Campos, Raul I.; Hirschberg, Daniel; Hammarström, Per; Vestergaard, Bente

    2015-01-01

    Despite numerous studies, a detailed description of the transthyretin (TTR) self-assembly mechanism and fibril structure in TTR amyloidoses remains unresolved. Here, using a combination of primarily small -angle X-ray scattering (SAXS) and hydrogen exchange mass spectrometry (HXMS) analysis, we describe an unexpectedly dynamic TTR protofibril structure which exchanges protomers with highly unfolded monomers in solution. The protofibrils only grow to an approximate final size of 2,900 kDa and a length of 70 nm and a comparative HXMS analysis of native and aggregated samples revealed a much higher average solvent exposure of TTR upon fibrillation. With SAXS, we reveal the continuous presence of a considerably unfolded TTR monomer throughout the fibrillation process, and show that a considerable fraction of the fibrillating protein remains in solution even at a late maturation state. Together, these data reveal that the fibrillar state interchanges with the solution state. Accordingly, we suggest that TTR fibrillation proceeds via addition of considerably unfolded monomers, and the continuous presence of amyloidogenic structures near the protofibril surface offers a plausible explanation for secondary nucleation. We argue that the presence of such dynamic structural equilibria must impact future therapeutic development strategies. PMID:26108284

  13. A canonical replica exchange molecular dynamics implementation with normal pressure in each replica

    NASA Astrophysics Data System (ADS)

    Peter, Emanuel K.; Pivkin, Igor V.; Shea, Joan-Emma

    2016-07-01

    In this paper, we present a new canonical replica exchange molecular dynamics (REMD) simulation method with normal pressure for all replicas (REMD-NV(p) T). This method is suitable for systems for which conventional constant NPT-setups are difficult to implement. In this implementation, each replica has an individual volume, with normal pressure maintained for each replica in the simulation. We derive a novel exchange term and validate this method on the structural properties of SPC/E water and dialanine (Ala2) in the bulk and in the presence of a graphene layer. Compared to conventional constant NPT-REMD and NVT-REMD simulations, we find that the structural properties of our new method are in good agreement with simulations in the NPT-ensemble at all temperatures. The structural properties of the systems considered are affected by high pressures at elevated temperatures in the constant NVT-ensemble, an effect that our method corrects for. Unprojected distributions reveal that essential motions of the peptide are affected by the presence of the barostat in the NPT implementation but that the dynamical eigenmodes of the NV(p)T method are in close quantitative agreement with the NVT-ensemble.

  14. A canonical replica exchange molecular dynamics implementation with normal pressure in each replica.

    PubMed

    Peter, Emanuel K; Pivkin, Igor V; Shea, Joan-Emma

    2016-07-28

    In this paper, we present a new canonical replica exchange molecular dynamics (REMD) simulation method with normal pressure for all replicas (REMD-NV(p) T). This method is suitable for systems for which conventional constant NPT-setups are difficult to implement. In this implementation, each replica has an individual volume, with normal pressure maintained for each replica in the simulation. We derive a novel exchange term and validate this method on the structural properties of SPC/E water and dialanine (Ala2) in the bulk and in the presence of a graphene layer. Compared to conventional constant NPT-REMD and NVT-REMD simulations, we find that the structural properties of our new method are in good agreement with simulations in the NPT-ensemble at all temperatures. The structural properties of the systems considered are affected by high pressures at elevated temperatures in the constant NVT-ensemble, an effect that our method corrects for. Unprojected distributions reveal that essential motions of the peptide are affected by the presence of the barostat in the NPT implementation but that the dynamical eigenmodes of the NV(p)T method are in close quantitative agreement with the NVT-ensemble. PMID:27475393

  15. Dynamics of intramolecular spin exchange interaction of a nitronyl nitroxide diradical in solution and on surfaces.

    PubMed

    Lloveras, V; Badetti, E; Veciana, J; Vidal-Gancedo, J

    2016-03-01

    In this paper we report the study of the dynamics of a thermally modulated intramolecular spin exchange interaction of a novel diradical nitronyl nitroxide-substituted disulfide in solution and when it is grafted on a gold surface. The structure of this diradical was designed to have flexible chains leading to intramolecular collisions and hence spin exchange interaction, and with an appropriate binding group to be grafted on the gold surface to study its behavior on the surface. In solution, this diradical shows a strong spin exchange interaction between both radicals which is modulated by temperature, but also gold nanoparticles (AuNPs) functionalized with this diradical permit investigation of such a phenomenon in surface-grafted radicals. The spin-labelled AuNP synthesis was optimized to obtain high coverage of spin labels to lead to high spin exchange interaction. The obtained AuNPs were studied by Electron Paramagnetic Resonance (EPR), UV-Vis, and IR spectroscopies, HR-TEM microscopy, Cyclic Voltammetry (CV), Energy Dispersive X-ray analysis (EDX) and Thermogravimetric Analysis (TGA). This inorganic-organic hybrid material also showed dipolar interactions between its radicals which were confirmed by the appearance in the EPR spectra of an |Δms| = 2 transition at half-field. This signal gives direct evidence of the presence of a high-spin state and permitted us to study the nature of the magnetic coupling between the spins which was found to be antiferromagnetic. Self-Assembled Monolayers (SAMs) of these radicals on the Au (111) substrate were also prepared and studied by contact angle, X-Ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Cyclic Voltammetry and EPR. The magnetic as well as the electrochemical properties of the hybrid surfaces were studied and compared with the properties of this diradical in solution. Analogies between the properties of AuNPs with high coverage of radicals and those of SAM were

  16. Physical Non-Contact Communication between Microscopic Aquatic Species: Novel Experimental Evidences for an Interspecies Information Exchange.

    PubMed

    Fels, Daniel

    2016-01-01

    Previous experiments on physical non-contact communication within same species gave rise to test for this type of communication also across the species border, which was the aim of the present study. It was found that autotrophic unicellular organisms (Euglena viridis), separated by cuvettes, affected the proliferation rate of heterotrophic unicellular organisms (Paramecium caudatum). Further, the heterotrophic unicellular organism affected also the proliferation rate of a multicellular heterotrophic organism (Rotatoria sp.) and vice versa. In the case when populations (of Euglena viridis and Paramecium caudatum) were shielded against electromagnetic fields in the optical spectrum from each other, no effects were measured. The results may support the notion that the organisation of ecosystems relies also on the exchange of electromagnetic fields from their constituting biosystems. PMID:27042178

  17. Physical Non-Contact Communication between Microscopic Aquatic Species: Novel Experimental Evidences for an Interspecies Information Exchange

    PubMed Central

    2016-01-01

    Previous experiments on physical non-contact communication within same species gave rise to test for this type of communication also across the species border, which was the aim of the present study. It was found that autotrophic unicellular organisms (Euglena viridis), separated by cuvettes, affected the proliferation rate of heterotrophic unicellular organisms (Paramecium caudatum). Further, the heterotrophic unicellular organism affected also the proliferation rate of a multicellular heterotrophic organism (Rotatoria sp.) and vice versa. In the case when populations (of Euglena viridis and Paramecium caudatum) were shielded against electromagnetic fields in the optical spectrum from each other, no effects were measured. The results may support the notion that the organisation of ecosystems relies also on the exchange of electromagnetic fields from their constituting biosystems. PMID:27042178

  18. Active colonization dynamics and diversity patterns are influenced by dendritic network connectivity and species interactions

    PubMed Central

    Seymour, Mathew; Altermatt, Florian

    2014-01-01

    Habitat network connectivity influences colonization dynamics, species invasions, and biodiversity patterns. Recent theoretical work suggests dendritic networks, such as those found in rivers, alter expectations regarding colonization and dispersal dynamics compared with other network types. As many native and non-native species are spreading along river networks, this may have important ecological implications. However, experimental studies testing the effects of network structure on colonization and diversity patterns are scarce. Up to now, experimental studies have only considered networks where sites are connected with small corridors, or dispersal was experimentally controlled, which eliminates possible effects of species interactions on colonization dynamics. Here, we tested the effect of network connectivity and species interactions on colonization dynamics using continuous linear and dendritic (i.e., river-like) networks, which allow for active dispersal. We used a set of six protist species and one rotifer species in linear and dendritic microcosm networks. At the start of the experiment, we introduced species, either singularly or as a community within the networks. Species subsequently actively colonized the networks. We periodically measured densities of species throughout the networks over 2 weeks to track community dynamics, colonization, and diversity patterns. We found that colonization of dendritic networks was faster compared with colonization of linear networks, which resulted in higher local mean species richness in dendritic networks. Initially, community similarity was also greater in dendritic networks compared with linear networks, but this effect vanished over time. The presence of species interactions increased community evenness over time, compared with extrapolations from single-species setups. Our experimental findings confirm previous theoretical work and show that network connectivity, species-specific dispersal ability, and species

  19. Reactive oxygen species accelerate degradation of anion exchange membranes based on polyphenylene oxide in alkaline environments.

    PubMed

    Parrondo, Javier; Wang, Zhongyang; Jung, Min-Suk J; Ramani, Vijay

    2016-07-20

    Anion exchange membranes (AEM) based on polyphenylene oxide (PPO) suffered quaternary-ammonium-cation-site degradation in alkaline environments. Surprisingly, the degradation rate was considerably faster in the presence of molecular oxygen. We postulated that the AEM cation-site catalyzes the reduction of dioxygen by hydroxide ions to yield the superoxide anion radical and the highly reactive hydroxyl free radical. We substantiated our hypothesis by using a phosphorous-containing spin trap (5-diisopropoxy-phosphoryl-5-methyl-1-pyrroline-N-oxide) to detect the adducts for both free radicals in situ using (31)P-NMR spectroscopy. PMID:27381009

  20. Generation of Benzyne Species from Diphenylphosphoryl Derivatives: Simultaneous Exchange of Three Functional Groups.

    PubMed

    Gorobets, Evgueni; Parvez, Masood; Derksen, Darren J; Keay, Brian A

    2016-06-13

    Interaction of (2-diphenylphosphoryl-3-iodo-4-methoxy-phenyl) methanol with NaH in DMF at ambient temperature results in the generation of benzyne intermediates that can be trapped by furan or DMF. Trapping with DMF forms 3-(dimethylaminomethyl)-2-hydroxy-6-methoxybenzaldehyde demonstrating the simultaneous exchange of three functionalities in a single step. The presence of the alkoxy substituent adjacent to iodine is critical for high regioselectivity addition of DMF. The corresponding bromide or triflate can be used in place of the iodide with equal efficiency. This methodology was used to synthesize the reported structure of gigasol and leading to a structural reassignment of this biscoumarin natural product. PMID:27144945

  1. Protein Folding Simulations Combining Self-Guided Langevin Dynamics and Temperature-Based Replica Exchange.

    PubMed

    Lee, Michael S; Olson, Mark A

    2010-08-10

    Computer simulations are increasingly being used to predict thermodynamic observables for folding small proteins. Key to continued progress in this area is the development of algorithms that accelerate conformational sampling. Temperature-based replica exchange (ReX) is a commonly used protocol whereby simulations at several temperatures are simultaneously performed and temperatures are exchanged between simulations via a Metropolis criterion. Another method, self-guided Langevin dynamics (SGLD), expedites conformational sampling by accelerating low-frequency, large-scale motions through the addition of an ad hoc momentum memory term. In this work, we combined these two complementary techniques and compared the results against conventional ReX formulations of molecular dynamics (MD) and Langevin dynamics (LD) simulations for the prediction of thermodynamic folding observables of the Trp-cage mini-protein. All simulations were performed with CHARMM using the PARAM22+CMAP force field and the generalized Born molecular volume implicit solvent model. While SGLD-ReX does not fold up the protein significantly faster than the two conventional ReX approaches, there is some evidence that the method improves sampling convergence by reducing topological folding barriers between energetically similar near-native states. Unlike MD-ReX and LD-ReX, SGLD-ReX predicts melting temperatures, heat capacity curves, and folding free energies that are closer in agreement to the experimental observations. However, this favorable result may be due to distortions of the relative free energies of the folded and unfolded conformational basins caused by the ad hoc force term in the SGLD model. PMID:26613500

  2. The long-run dynamic relationship between exchange rate and its attention index: Based on DCCA and TOP method

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Guo, Kun; Lu, Xiaolin

    2016-07-01

    The behavior information of financial market plays a more and more important role in modern economic system. The behavior information reflected in INTERNET search data has already been used in short-term prediction for exchange rate, stock market return, house price and so on. However, the long-run relationship between behavior information and financial market fluctuation has not been studied systematically. Further, most traditional statistic methods and econometric models could not catch the dynamic and non-linear relationship. An attention index of CNY/USD exchange rate is constructed based on search data from 360 search engine of China in this paper. Then the DCCA and Thermal Optimal Path methods are used to explore the long-run dynamic relationship between CNY/USD exchange rate and the corresponding attention index. The results show that the significant interdependency exists and the change of exchange rate is 1-2 days lag behind the attention index.

  3. Weak coordination among petiole, leaf, vein, and gas-exchange traits across Australian angiosperm species and its possible implications.

    PubMed

    Gleason, Sean M; Blackman, Chris J; Chang, Yvonne; Cook, Alicia M; Laws, Claire A; Westoby, Mark

    2016-01-01

    Close coordination between leaf gas exchange and maximal hydraulic supply has been reported across diverse plant life forms. However, it has also been suggested that this relationship may become weak or break down completely within the angiosperms. We examined coordination between hydraulic, leaf vein, and gas-exchange traits across a diverse group of 35 evergreen Australian angiosperms, spanning a large range in leaf structure and habitat. Leaf-specific conductance was calculated from petiole vessel anatomy and was also measured directly using the rehydration technique. Leaf vein density (thought to be a determinant of gas exchange rate), maximal stomatal conductance, and net CO 2 assimilation rate were also measured for most species (n = 19-35). Vein density was not correlated with leaf-specific conductance (either calculated or measured), stomatal conductance, nor maximal net CO 2 assimilation, with r (2) values ranging from 0.00 to 0.11, P values from 0.909 to 0.102, and n values from 19 to 35 in all cases. Leaf-specific conductance calculated from petiole anatomy was weakly correlated with maximal stomatal conductance (r (2) = 0.16; P = 0.022; n = 32), whereas the direct measurement of leaf-specific conductance was weakly correlated with net maximal CO 2 assimilation (r (2) = 0.21; P = 0.005; n = 35). Calculated leaf-specific conductance, xylem ultrastructure, and leaf vein density do not appear to be reliable proxy traits for assessing differences in rates of gas exchange or growth across diverse sets of evergreen angiosperms. PMID:26811791

  4. Dynamic Patterns, Parameters, and Climatic Response of CO2 Exchange of Agricultural Crops: Monocotyledons VS. Dicotyledons

    NASA Astrophysics Data System (ADS)

    Gilmanov, T. G.; Wylie, B. K.; Howard, D. M.

    2012-12-01

    Net CO2 exchange data from long-term flux tower measurements in monocotyledonous (wheat, maize) and dicotyledonous (soybeans, alfalfa, peas, peanuts) crops were partitioned into photosynthesis (P) and respiration (R) using the light-soil temperature-VPD response method. Analysis of the resulting time series of P and R revealed patterns of temporal and phenological dynamics in these plant groups. We established differences in ranges and dynamic patterns of P and R as well as CO2 exchange parameters (quantum yield, photosynthetic capacity, respiration rate, light-use efficiency, curvature of the VPD response). Weekly P and R data combined with remotely sensed 7-day eMODIS NDVI allow identification of the quasi-linear relationships between P, R, and NDVI, as well as estimation of parameters of NDVI response (start of the growing season, duration of the linearity period, slope of NDVI response). While the linear-like patterns occur early in the season, later the flux response to NDVI becomes less pronounced, and for the whole season the flux-NDVI relationship assumes a hysteresis-like pattern. Introduction of VPD and soil moisture limitation as well as phenological controls (growing degree days) leads to more flexible models for P and R in relation to NDVI and on-site drivers. These models allow mapping of the cropland CO2 exchange at regional and larger scales (e.g., the Great Plains). Significant relationships of the crop GPP to the seasonally integrated NDVI were also established, providing an opportunity for mapping of crop productivity using geographically distributed historic NDVI data. On the other hand, long time series (6 to 12 years and longer) of weekly P and R data lead to models of annual photosynthesis and respiration in response to climatic factors that may be used for prognostic purposes. We developed a model of maize GPP on the Great Plains in relation to the sum of temperatures above 5 °C and the hydrologic year precipitation. The model describes 75

  5. Catalysis in a Cage: Condition-Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites.

    PubMed

    Paolucci, Christopher; Parekh, Atish A; Khurana, Ishant; Di Iorio, John R; Li, Hui; Albarracin Caballero, Jonatan D; Shih, Arthur J; Anggara, Trunojoyo; Delgass, W Nicholas; Miller, Jeffrey T; Ribeiro, Fabio H; Gounder, Rajamani; Schneider, William F

    2016-05-11

    The relationships among the macroscopic compositional parameters of a Cu-exchanged SSZ-13 zeolite catalyst, the types and numbers of Cu active sites, and activity for the selective catalytic reduction (SCR) of NOx with NH3 are established through experimental interrogation and computational analysis of materials across the catalyst composition space. Density functional theory, stochastic models, and experimental characterizations demonstrate that within the synthesis protocols applied here and across Si:Al ratios, the volumetric density of six-membered-rings (6MR) containing two Al (2Al sites) is consistent with a random Al siting in the SSZ-13 lattice subject to Löwenstein's rule. Further, exchanged Cu(II) ions first populate these 2Al sites before populating remaining unpaired, or 1Al, sites as Cu(II)OH. These sites are distinguished and enumerated ex situ through vibrational and X-ray absorption spectroscopies (XAS) and chemical titrations. In situ and operando XAS follow Cu oxidation state and coordination environment as a function of environmental conditions including low-temperature (473 K) SCR catalysis and are rationalized through first-principles thermodynamics and ab initio molecular dynamics. Experiment and theory together reveal that the Cu sites respond sensitively to exposure conditions, and in particular that Cu species are solvated and mobilized by NH3 under SCR conditions. While Cu sites are spectroscopically and chemically distinct away from these conditions, they exhibit similar turnover rates, apparent activation energies and apparent reaction orders at the SCR conditions, even on zeolite frameworks other than SSZ13. PMID:27070199

  6. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    NASA Astrophysics Data System (ADS)

    Arévalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernández-Maldonado, Arturo J.

    2012-07-01

    The location of extraframework cations in Sr2+ and Ba2+ ion-exchanged SAPO-34 was estimated by means of 1H and 23Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium.

  7. Recent advancements on modelling the exchange flow dynamics through the Turkish Strait System

    NASA Astrophysics Data System (ADS)

    Sannino, Gianmaria; Sözer, Adil; Özsoy, Emin

    2014-05-01

    The system composed by the two narrow Straits, Dardanelles and Bosphorus, and the Marmara Sea is known as the Turkish Straits System (TSS). The scientific questions on the role of the TSS in coupling the adjacent basins of the Mediterranean and Black Seas with highly contrasting properties, in a region of high climatic variability and materials transport depending critically on the cycle of water can only be answered by model predictions of the processes that determine the integral properties of the coupled sub-systems. This can only be achieved if the entire TSS is modeled as a finely resolved integral system that appropriately accounts for the high contrasts in seawater properties, steep topography, hydraulic controls, fine and meso-scale turbulence, nonlinear and non-hydrostatic effects, thermodynamic states and an active free-surface in the fullest extent, based on well represented fluid dynamical principles. In this study the MITgcm is used at very high resolution to study this extreme environment that needs to be represented as a whole and with the full details of its highly contrasting properties. The model domain chosen extends over the entire TSS, including also part of the north-east Aegean Sea at south, and the Black Sea at north of the domain. A non-uniform curvilinear orthogonal grid covers the domain at variable resolution: from less than 50 m in the two Straits up to about 1 Km in the Marmara Sea. To adequately resolve the complex hydraulic dynamics of the TSS, the model grid is made by 100 vertical z-levels. The model is initialized with three different water masses filling the western part of the domain, the Marmara Sea and the eastern side of the domain respectively, with vertical profiles selected from CTD casts obtained during the cruise of the R/V BİLİM of the Institute of Marine Sciences in June-July 2013. With the initial condition specified as lock-exchanges at the two straits, the model is left free to adjust to the expected two

  8. A system dynamics evaluation model: implementation of health information exchange for public health reporting

    PubMed Central

    Merrill, Jacqueline A; Deegan, Michael; Wilson, Rosalind V; Kaushal, Rainu; Fredericks, Kimberly

    2013-01-01

    Objective To evaluate the complex dynamics involved in implementing electronic health information exchange (HIE) for public health reporting at a state health department, and to identify policy implications to inform similar implementations. Materials and methods Qualitative data were collected over 8 months from seven experts at New York State Department of Health who implemented web services and protocols for querying, receipt, and validation of electronic data supplied by regional health information organizations. Extensive project documentation was also collected. During group meetings experts described the implementation process and created reference modes and causal diagrams that the evaluation team used to build a preliminary model. System dynamics modeling techniques were applied iteratively to build causal loop diagrams representing the implementation. The diagrams were validated iteratively by individual experts followed by group review online, and through confirmatory review of documents and artifacts. Results Three casual loop diagrams captured well-recognized system dynamics: Sliding Goals, Project Rework, and Maturity of Resources. The findings were associated with specific policies that address funding, leadership, ensuring expertise, planning for rework, communication, and timeline management. Discussion This evaluation illustrates the value of a qualitative approach to system dynamics modeling. As a tool for strategic thinking on complicated and intense processes, qualitative models can be produced with fewer resources than a full simulation, yet still provide insights that are timely and relevant. Conclusions System dynamics techniques clarified endogenous and exogenous factors at play in a highly complex technology implementation, which may inform other states engaged in implementing HIE supported by federal Health Information Technology for Economic and Clinical Health (HITECH) legislation. PMID:23292910

  9. Correlating structure, dynamics, and function in transmembrane segment VII of the Na+/H+ exchanger isoform 1.

    PubMed

    Reddy, Tyler; Li, Xiuju; Fliegel, Larry; Sykes, Brian D; Rainey, Jan K

    2010-02-01

    We place (15)N nuclear magnetic resonance relaxation analysis and functional mutagenesis studies in the context of our previous structural and mutagenesis work to correlate structure, dynamics and function for the seventh transmembrane segment of the human Na(+)/H(+) exchanger isoform 1. Although G261-S263 was previously identified as an interruption point in the helical structure of this isolated transmembrane peptide in dodecylphosphocholine micelles, and rapid conformational exchange was implicated in the NOE measurements, the six (15)N labelled residues examined in this study all have similar dynamics on the ps-ns time scale. A mathematical model incorporating chemical exchange is the best fit for residues G261, L264, and A268. This implies that a segment of residues from G261 to A268 samples different conformations on the mus-ms time scale. Chemical exchange on an intermediate time scale is consistent with an alternating-access cycle where E262 is bent away from the cytosol during proton translocation by the exchanger. The functional importance of chemical exchange at G261-A268 is corroborated by the abrogated activity of the full-length exchanger with the bulky and restricting Ile substitutions F260I, G261I, E262I, S263I, and A268I. PMID:19595986

  10. Assessing the Dynamics of Bittorrent Swarms Topologies Using the Peer Exchange Protocol

    NASA Astrophysics Data System (ADS)

    Fauzie, Mohamad Dikshie; Thamrin, Achmad Husni; van Meter, Rodney; Murai, Jun

    Bittorrent is one of the most popular and successful applications in the current Internet. However, we still have little knowledge about the topology of real Bittorrent swarms, how dynamic the topology is, and how it affects overall behavior. This paper describes an experimental study of the overlay topologies of real-world Bittorrent networks, focusing on the activity of the nodes of its P2P topology and especially their dynamic relationships. Peer Exchange Protocol (PEX) messages are analyzed to infer topologies and their properties, capturing the variations of their behavior. Our measurements, verified using the Kolmogorov-Smirnov goodness of fit test and the likelihood ratio test and confirmed via simulation, show that a power-law with exponential cutoff is a more plausible model than a pure power-law distribution. We also found that the average clustering coefficient is very low, supporting this observation. Bittorrent swarms are far more dynamic than has been recognized previously, potentially impacting attempts to optimize the performance of the system as well as the accuracy of simulations and analyses.

  11. Erionite-Na upon heating: dehydration dynamics and exchangeable cations mobility

    NASA Astrophysics Data System (ADS)

    Ballirano, Paolo; Pacella, Alessandro

    2016-03-01

    Erionite is a fibrous zeolite significantly more tumorigenic than crocidolite asbestos upon inhalation. In recent years, several papers have been published aimed at characterizing from the crystal-chemical point of view erionite fibres. As their toxicity has been ascribed to Fe acquired within the human body, studies aimed at characterizing the iron topochemistry have also been published, suggesting a possible important role played by the ionic exchange properties and cations mobility of this zeolite on developing carcinogenicity. Here we report the analysis results of the thermal behaviour of erionite-Na, which has been found to deviate significantly from that of erionite-K. This result is in contrast with the current scientific view that differences in weighted ionic potential, Si/Al ratio and size of exchangeable cations result in significantly different thermal behaviours, all those parameters being nearly identical or very similar in both species. The different mobility of the extraframework cations observed in erionite samples with dissimilar chemistry is of particular interest within the frame of the hypothesis that their biological activity could depend, apart from surface interactions, also on bulk effects.

  12. Erionite-Na upon heating: dehydration dynamics and exchangeable cations mobility

    PubMed Central

    Ballirano, Paolo; Pacella, Alessandro

    2016-01-01

    Erionite is a fibrous zeolite significantly more tumorigenic than crocidolite asbestos upon inhalation. In recent years, several papers have been published aimed at characterizing from the crystal-chemical point of view erionite fibres. As their toxicity has been ascribed to Fe acquired within the human body, studies aimed at characterizing the iron topochemistry have also been published, suggesting a possible important role played by the ionic exchange properties and cations mobility of this zeolite on developing carcinogenicity. Here we report the analysis results of the thermal behaviour of erionite-Na, which has been found to deviate significantly from that of erionite-K. This result is in contrast with the current scientific view that differences in weighted ionic potential, Si/Al ratio and size of exchangeable cations result in significantly different thermal behaviours, all those parameters being nearly identical or very similar in both species. The different mobility of the extraframework cations observed in erionite samples with dissimilar chemistry is of particular interest within the frame of the hypothesis that their biological activity could depend, apart from surface interactions, also on bulk effects. PMID:26948139

  13. Conformational sampling enhancement of replica exchange molecular dynamics simulations using swarm particle intelligence

    NASA Astrophysics Data System (ADS)

    Kamberaj, Hiqmet

    2015-09-01

    In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4, 5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias.

  14. Walking freely in the energy and temperature space by the modified replica exchange molecular dynamics method.

    PubMed

    Chen, Changjun; Huang, Yanzhao

    2016-06-30

    Replica Exchange Molecular Dynamics (REMD) method is a powerful sampling tool in molecular simulations. Recently, we made a modification to the standard REMD method. It places some inactive replicas at different temperatures as well as the active replicas. The method completely decouples the number of the active replicas and the number of the temperature levels. In this article, we make a further modification to our previous method. It uses the inactive replicas in a different way. The inactive replicas first sample in their own knowledge-based energy databases and then participate in the replica exchange operations in the REMD simulation. In fact, this method is a hybrid between the standard REMD method and the simulated tempering method. Using different active replicas, one can freely control the calculation quantity and the convergence speed of the simulation. To illustrate the performance of the method, we apply it to some small models. The distribution functions of the replicas in the energy space and temperature space show that the modified REMD method in this work can let the replicas walk freely in both of the two spaces. With the same number of the active replicas, the free energy surface in the simulation converges faster than the standard REMD. © 2016 Wiley Periodicals, Inc. PMID:27059441

  15. Conformational sampling enhancement of replica exchange molecular dynamics simulations using swarm particle intelligence

    SciTech Connect

    Kamberaj, Hiqmet

    2015-09-28

    In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4,  5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias.

  16. Hydrated fractions of cellulosics probed by infrared spectroscopy coupled with dynamics of deuterium exchange.

    PubMed

    Driemeier, Carlos; Mendes, Fernanda M; Ling, Liu Yi

    2015-08-20

    This article presents a novel method to selectively probe the non-crystalline, hydrated fractions of cellulosic biomass. The method is based on time-resolved infrared spectra analyzed to provide information on spectral and dynamical features of deuterium exchange (OH → OD) in D2O atmosphere. We assign deuterium exchange spectral regions (700-3800 cm(-1)) and explore changes due to relative humidity, different cellulosic samples, and infrared polarization. Here, two results are highlighted. First, a wide range of celluloses isolated from plants show remarkable spectral similarities whatever the relative amounts of cellulose and xylan. This result supports an inherent type of hydrated disorder which is mostly insensitive to the molecular identities of the associated polysaccharides. Second, polarized infrared analysis of cotton reveals hydrated cellulose having chains preferentially aligned with those of crystals, while the hydroxyls of hydrated cellulose present much more randomized orientation. Our results provide new insights on molecular and group orientation and on hydrogen bonding in hydrated fractions of cellulosic biomass. PMID:25965468

  17. A High-Resolution Modeling Study of the Bosphorus Strait Dynamics and Exchange Flows

    NASA Astrophysics Data System (ADS)

    Sözer, Adil; Sannino, Gianmaria; Özsoy, Emin

    2013-04-01

    An all-time modelling challenge aims to establish a sound understanding of the high energy environment of the Turkish Straits System, relating to inter-basin water and material transports and their influence on the sensitive ecosystems of the adjacent seas. As a first step in this direction, well resolved, high level, physically representative predictive models of the Bosphorus Strait exchange flow hydrodynamics are developed, adequately representing its complex topography, hydraulic controls, dissipative hydraulic jumps, mixing and turbulence mechanisms, with the application of appropriate basin boundary and initial conditions and judiciously selected numerical and physical model options. Both the ROMS and MITgcm models are used and compared for performance. Idealized and real case model results successfully reproduce observed flow features. The unique maximal exchange regime of the Bosphorus Strait, with hydraulic controls are demonstrated, although frictional effects, especially of the highly irregular lateral boundaries, are found to be extremely important, associated with mixing and entrainment and nonlinear dynamics determining the two-way fluxes as a function of sea-level changes across the strait. The intercomparison of ROMS and MITgcm results are extremely satisfactory in the basic elements of the flow, except for some small differences.

  18. Fluid Analysis and Improved Structure of an ATEG Heat Exchanger Based on Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Tang, Z. B.; Deng, Y. D.; Su, C. Q.; Yuan, X. H.

    2015-06-01

    In this study, a numerical model has been employed to analyze the internal flow field distribution in a heat exchanger applied for an automotive thermoelectric generator based on computational fluid dynamics. The model simulates the influence of factors relevant to the heat exchanger, including the automotive waste heat mass flow velocity, temperature, internal fins, and back pressure. The result is in good agreement with experimental test data. Sensitivity analysis of the inlet parameters shows that increase of the exhaust velocity, compared with the inlet temperature, makes little contribution (0.1 versus 0.19) to the heat transfer but results in a detrimental back pressure increase (0.69 versus 0.21). A configuration equipped with internal fins is proved to offer better thermal performance compared with that without fins. Finally, based on an attempt to improve the internal flow field, a more rational structure is obtained, offering a more homogeneous temperature distribution, higher average heat transfer coefficient, and lower back pressure.

  19. Molecular Dynamics Simulation Study on Energy Exchange Between Vibration Modes of a Square Graphene Nanoflake Oscillator.

    PubMed

    Lee, Eunae; Kang, Jeong Won; Kim, Ki-Sub; Kwon, Oh-Kuen

    2016-02-01

    Superlubricity in nanoscale graphene structures has been of interest for developing graphene-based nanoelectromechanical systems, as well as for the study of basic mechanical properties. Here, we investigated the translational and rotational motions of a square graphene nanoflake with retracting motions by performing classical molecular dynamics simulations. Our results show that the kinetic energy of the translational motion was exchanged into the kinetic energy of the rotational motion. Thus, square graphene nanoflake oscillators have very low quality factors in translational motions. We discuss that square graphene nanoflakes have great potential to be a core component in nanoelectromechanical systems by detecting their motions with ultrahigh sensitivity to facilitate the development of sensor, memory, and quantum computing. PMID:27433628

  20. Linking nonstructural carbohydrate dynamics to gas exchange and leaf hydraulic behavior in Pinus edulis and Juniperus monosperma.

    PubMed

    Woodruff, David R; Meinzer, Frederick C; Marias, Danielle E; Sevanto, Sanna; Jenkins, Michael W; McDowell, Nate G

    2015-04-01

    Leaf hydraulics, gas exchange and carbon storage in Pinus edulis and Juniperus monosperma, two tree species on opposite ends of the isohydry-anisohydry spectrum, were analyzed to examine relationships between hydraulic function and carbohydrate dynamics. Leaf hydraulic vulnerability, leaf water potential (Ψl ), leaf hydraulic conductance (Kleaf ), photosynthesis (A), stomatal conductance (gs) and nonstructural carbohydrate (NSC) content were analyzed throughout the growing season. Leaf hydraulic vulnerability was significantly lower in the relatively anisohydric J. monosperma than in the more isohydric P. edulis. In P. edulis, Ψl dropped and stayed below 50% loss of leaf hydraulic conductance (P₅₀) early in the day during May, August and around midday in September, leading to sustained reductions in Kleaf . In J. monosperma, Ψl dropped below P₅₀ only during August, resulting in the maintenance of Kleaf during much of the growing season. Mean A and gs during September were significantly lower in P. edulis than in J. monosperma. Foliar total NSC was two to three times greater in J. monosperma than in P. edulis in June, August and September. Consistently lower levels of total NSC in P. edulis suggest that its isohydric strategy pushes it towards the exhaustion of carbon reserves during much of the growing season. PMID:25412472

  1. Elucidation of molecular dynamics of invasive species of rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated rice fields are aggressively invaded by weedy rice in the U.S. and worldwide. Weedy rice results in loss of yield and seed contamination. The molecular dynamics of the evolutionary adaptive traits of weedy rice are not fully understood. To understand the molecular basis and identify the i...

  2. Is parasitoid acceptance of different host species dynamic?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Choice of host individuals by parasitoids is dynamic, varying with physiological state and experience. In particular, female parasitoids with high egg loads and low life expectancy are more willing to accept low quality hosts than females with low egg loads and high life expectancy. However, studi...

  3. Cooperation can emerge in prisoner's dilemma from a multi-species predator prey replicator dynamic.

    PubMed

    Paulson, Elisabeth; Griffin, Christopher

    2016-08-01

    In this paper we study a generalized variation of the replicator dynamic that involves several species and sub-species that may interact. We show how this dynamic comes about from a specific finite-population model, but also show that one must take into consideration the dynamic nature of the population sizes (and hence proportions) in order to make the model complete. We provide expressions for these population dynamics to produce a kind of multi-replicator dynamic. We then use this replicator dynamic to show that cooperation can emerge as a stable behavior when two species each play prisoner's dilemma as their intra-species game and a form of zero-sum predator prey game as their inter-species game. General necessary and sufficient conditions for cooperation to emerge as stable are provided for a number of game classes. We also showed an example using Hawk-Dove where both species can converge to stable (asymmetric) mixed strategies. PMID:27318117

  4. Coccolithophore Dynamics In Alfonso Basin: Seasonal Variation And Species Composition

    NASA Astrophysics Data System (ADS)

    Cortés, M. Y.; Urcádiz-Cázares, F. J.; Silverberg, N.; Aguirre-Bahena, F.; Bollmann, J.

    2007-05-01

    The production of organic and inorganic carbon by coccolithophores is considered to play a significant role in the global carbon cycle. Therefore, detailed knowledge of their vertical flux is needed. Here we present a time-series record of coccolithophore standing stock and vertical coccolith flux from Alfonso Basin, southwest coast of the Gulf of California. This location is of particular interest as it is very sensitive to changes in environmental conditions and these may be preserved in laminated underlying sediments. Coccolithophore standing stock and assemblage composition were obtained from plankton samples taken at 3- month intervals during 2002-2003. Furthermore, coccolith flux and species composition were determined in samples from a time-series sediment trap (sampling intervals 7-14 days) deployed at 350 m depth from January 2002 to October 2003. The coccolithophore standing stock and coccolith flux varied considerably between sampling periods but, in general, a seasonal pattern was apparent, with low fluxes in spring-summer and maximal values in autumn- winter. During 2002, fluxes ranged from 0.02x108 coccoliths m-2 d-1 in summer to 64.7x108 coccoliths m-2 d-1 in autumn. Values increased considerably during 2003: registering 52.4 x108 coccoliths m-2 d-1 in spring to the highest (128.8x108 coccoliths m-2 d-1) in late summer/autumn. The latter are related to hurricanes that occurred during the sampling period. In total 47 taxa were identified but only three species, Gephyrocapsa oceanica (43.6%), Emiliania huxleyi (28%) and Florisphera profunda (15.7%), constituted 88 percent of the total coccolith flux. This corresponds to the species composition observed in the water column. G. oceanica was always present and its flux pattern followed that of the total flux. The flux of E. huxleyi remained almost constant during the observed time period whereas F. profunda showed peak fluxes in autumn. Although the cosmopolitan species E. huxleyi has been considered the

  5. Evaluation of Enhanced Sampling Provided by Accelerated Molecular Dynamics with Hamiltonian Replica Exchange Methods

    PubMed Central

    2015-01-01

    Many problems studied via molecular dynamics require accurate estimates of various thermodynamic properties, such as the free energies of different states of a system, which in turn requires well-converged sampling of the ensemble of possible structures. Enhanced sampling techniques are often applied to provide faster convergence than is possible with traditional molecular dynamics simulations. Hamiltonian replica exchange molecular dynamics (H-REMD) is a particularly attractive method, as it allows the incorporation of a variety of enhanced sampling techniques through modifications to the various Hamiltonians. In this work, we study the enhanced sampling of the RNA tetranucleotide r(GACC) provided by H-REMD combined with accelerated molecular dynamics (aMD), where a boosting potential is applied to torsions, and compare this to the enhanced sampling provided by H-REMD in which torsion potential barrier heights are scaled down to lower force constants. We show that H-REMD and multidimensional REMD (M-REMD) combined with aMD does indeed enhance sampling for r(GACC), and that the addition of the temperature dimension in the M-REMD simulations is necessary to efficiently sample rare conformations. Interestingly, we find that the rate of convergence can be improved in a single H-REMD dimension by simply increasing the number of replicas from 8 to 24 without increasing the maximum level of bias. The results also indicate that factors beyond replica spacing, such as round trip times and time spent at each replica, must be considered in order to achieve optimal sampling efficiency. PMID:24625009

  6. Gas exchange and low temperature resistance in two tropical high mountain tree species from the Venezuelan Andes

    NASA Astrophysics Data System (ADS)

    Cavieres, Lohengrin A.; Rada, Fermín; Azócar, Aura; García-Núñez, Carlos; Cabrera, Hernán M.

    2000-05-01

    Temperature may determine altitudinal tree distribution in different ways: affecting survival through freezing temperatures or by a negative carbon balance produced by lower photosynthetic rates. We studied gas exchange and supercooling capacity in a timberline and a treeline species ( Podocarpus oleifolius and Espeletia neriifolia, respectively) in order to determine if their altitudinal limits are related to carbon balance, freezing temperature damage, or both. Leaf gas exchange, leaf temperature-net photosynthesis curves and leaf temperature at which ice formation occurred were measured at two sites along an altitudinal gradient. Mean CO 2 assimilation rates for E. neriifolia were 3.4 and 1.3 μmol·m -2·s -1, at 2 400 and 3 200 m, respectively. Mean night respiration was 2.2 and 0.9 μmol·m -2·s -1 for this species at 2 400 and 3 200 m, respectively. Mean assimilation rates for P. oleifolius were 3.8 and 2.2 μmol·m -2·s -1 at 2 550 and 3 200 m, respectively. Night respiration was 0.8 μmol·m -2·s -1 for both altitudes. E. neriifolia showed similar optimum temperatures for photosynthesis at both altitudes, while a decrease was observed in P. oleifolius.E. neriifolia and P. oleifolius presented supercooling capacities of -6.5 and -3.0 °C, respectively. For E. neriifolia, freezing resistance mechanisms are sufficient to reach higher altitudes; however, other environmental factors such as cloudiness may be affecting its carbon balance. P. oleifolius does not reach higher elevations because it does not have the freezing resistance mechanisms.

  7. Species diversity, structure and dynamics of two populations of an endangered species, Magnolia dealbata (Magnoliaceae).

    PubMed

    Sánchez-Velásquez, Lázaro R; Pineda-López, María del Rosario

    2006-09-01

    Little is known about the ecology and demography of the genus Magnolia. Magnolia dealbata Zucc. is an endangered species endemic to Mexico. Two contrasting populations of M. dealbata (one from the grasslands and other from a secondary cloud forest) were studied. We asked the following questions: (a) Are size structure (diameter at breast height, DBH) and infrutescence production significantly different between the two populations? (b) What are the populations' growth rates (lambda) based on an initial 1987 study? (c) Are the associated species diversity indices of these M. dealbata populations significantly different? The results show no significant differences between the population size structure (p=.094); the growth rates of the populations were 0.992 in grassland and 1.053 in secondary cloud forest. The number of infrutescences produced in year 2001 and DBH relationship were significantly linear (p<.001) in both populations, and there was no significant difference (p>.01) between their slopes. The diversity indices were not significantly different (p>.05), and only 54% of the species were common to both sites. Our study suggests that both populations are relatively stable and that the management history could impact more on the species composition than on the diversity indices. PMID:18494171

  8. Proton dynamics in sulfonated ionic salt composites: Alternative membrane materials for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    De Almeida, N. E.; Goward, G. R.

    2014-12-01

    Hydrated Nafion, the most prevalent proton exchange membrane utilizes a vehicular mechanism for proton conduction. However, there is an increasing need for such membranes to perform under anhydrous conditions, at high temperatures, which would employ a structural transport mechanism for proton conductivity. Here, several solid-acids are characterized, both as pristine salts, and as polymer composites. Materials of interest include benzimidazolium methanesulfonate (BMSA), imidazolium methanesulfonate (IMSA), and imidazolium trifluoromethanesulfate (IFMS). The proton dynamics of these solid acids are characterized as pure salts, and as composites, embedded into porous Teflon, by solid state NMR. It was determined that spin lattice (T1) relaxation of the composites are systematically lower than that of the pure salt, indicating that local dynamics are enhanced in the composites. Spin-spin relaxation (T2∗) was measured as a function of temperature to determine the activation energy for local mobility for each salt and composite. The activation energy for local proton mobility in each salt decreased after being inserted into porous Teflon. Finally, the long-range ion transport was characterized using impedance spectroscopy. The IFMS-Teflon composite possessed the lowest activation energy for local proton mobility, the highest thermal stability, and the most favorable proton conductivity, among the investigated materials.

  9. Influence of Hydration Level on Polymer and Water Dynamics in Alkaline Anion Exchange Fuel Cell Membranes

    NASA Astrophysics Data System (ADS)

    Tarver, Jacob; Kim, Jenny; Tyagi, Madhu; Soles, Christopher; Tsai, Tsung-Han; Coughlin, Bryan

    2015-03-01

    Triblock copolymers based on poly(chloromethylstyrene)-b-poly(ethylene)-b-poly(chloromethylstyrene) can be quaternized to different extents to yield anion exchange membranes for alkaline fuel cells. In the absence of moisture, these membranes demonstrate bilayer lamellar morphology. Upon high levels of hydration, however, in-situ small angle neutron scattering reveals the emergence of higher-order diffraction peaks. This phenomena has previously been observed in analogous diblock copolymer-based membranes and has been attributed to the induction of a multilayer lamellar morphology in which selective striping of water occurs in the center of the ion-rich domain. By conducting humidity-resolved quasielastic neutron scattering (QENS) measurements using deuterated water, we are able to isolate differences in the pico- to nanosecond timescale dynamics of the hydrogenated membrane upon hydration. QENS measurements in the presence of a hydrogenated water source subsequently permit deconvolution and isolation of the translational and rotational dynamics of water as a function of relative humidity, revealing spatial and temporal changes in polymer and water motion at high levels of hydration.

  10. The dynamics of stock exchange based on the formalism of weak continuous quantum measurement

    NASA Astrophysics Data System (ADS)

    Melnyk, S.; Tuluzov, I.

    2010-07-01

    The problem of measurement in economic models and the possibility of their quantum-mechanical description are considered. It is revealed that the apparent paradox of such a description is associated with a priori requirement of conformity of the model to all the alternatives of free choice of the observer. The measurement of the state of a trader on a stock exchange is formally defined as his responses to the proposals of sale at a fixed price. It is shown that an analogue of Bell's inequalities for this measurement model is violated at the most general assumptions related to the strategy of the trader and requires a quantum-mechanical description of the dynamics of his condition. In the framework of the theory of weak continuous quantum measurements, the equation of stock price dynamics and the quantum-mechanical generalization of the F. Black and M. Scholes model for pricing options are obtained. The fundamental distinctions between the obtained model and the classical one are discussed.

  11. Simulating carbon dioxide exchange rates of deciduous tree species: evidence for a general pattern in biochemical changes and water stress response

    PubMed Central

    Reynolds, Robert F.; Bauerle, William L.; Wang, Ying

    2009-01-01

    Background and Aims Deciduous trees have a seasonal carbon dioxide exchange pattern that is attributed to changes in leaf biochemical properties. However, it is not known if the pattern in leaf biochemical properties – maximum Rubisco carboxylation (Vcmax) and electron transport (Jmax) – differ between species. This study explored whether a general pattern of changes in Vcmax, Jmax, and a standardized soil moisture response accounted for carbon dioxide exchange of deciduous trees throughout the growing season. Methods The model MAESTRA was used to examine Vcmax and Jmax of leaves of five deciduous trees, Acer rubrum ‘Summer Red’, Betula nigra, Quercus nuttallii, Quercus phellos and Paulownia elongata, and their response to soil moisture. MAESTRA was parameterized using data from in situ measurements on organs. Linking the changes in biochemical properties of leaves to the whole tree, MAESTRA integrated the general pattern in Vcmax and Jmax from gas exchange parameters of leaves with a standardized soil moisture response to describe carbon dioxide exchange throughout the growing season. The model estimates were tested against measurements made on the five species under both irrigated and water-stressed conditions. Key Results Measurements and modelling demonstrate that the seasonal pattern of biochemical activity in leaves and soil moisture response can be parameterized with straightforward general relationships. Over the course of the season, differences in carbon exchange between measured and modelled values were within 6–12 % under well-watered conditions and 2–25 % under water stress conditions. Hence, a generalized seasonal pattern in the leaf-level physiological change of Vcmax and Jmax, and a standardized response to soil moisture was sufficient to parameterize carbon dioxide exchange for large-scale evaluations. Conclusions Simplification in parameterization of the seasonal pattern of leaf biochemical activity and soil moisture response of

  12. Dynamics of intramolecular spin exchange interaction of a nitronyl nitroxide diradical in solution and on surfaces

    NASA Astrophysics Data System (ADS)

    Lloveras, V.; Badetti, E.; Veciana, J.; Vidal-Gancedo, J.

    2016-02-01

    In this paper we report the study of the dynamics of a thermally modulated intramolecular spin exchange interaction of a novel diradical nitronyl nitroxide-substituted disulfide in solution and when it is grafted on a gold surface. The structure of this diradical was designed to have flexible chains leading to intramolecular collisions and hence spin exchange interaction, and with an appropriate binding group to be grafted on the gold surface to study its behavior on the surface. In solution, this diradical shows a strong spin exchange interaction between both radicals which is modulated by temperature, but also gold nanoparticles (AuNPs) functionalized with this diradical permit investigation of such a phenomenon in surface-grafted radicals. The spin-labelled AuNP synthesis was optimized to obtain high coverage of spin labels to lead to high spin exchange interaction. The obtained AuNPs were studied by Electron Paramagnetic Resonance (EPR), UV-Vis, and IR spectroscopies, HR-TEM microscopy, Cyclic Voltammetry (CV), Energy Dispersive X-ray analysis (EDX) and Thermogravimetric Analysis (TGA). This inorganic-organic hybrid material also showed dipolar interactions between its radicals which were confirmed by the appearance in the EPR spectra of an |Δms| = 2 transition at half-field. This signal gives direct evidence of the presence of a high-spin state and permitted us to study the nature of the magnetic coupling between the spins which was found to be antiferromagnetic. Self-Assembled Monolayers (SAMs) of these radicals on the Au (111) substrate were also prepared and studied by contact angle, X-Ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Cyclic Voltammetry and EPR. The magnetic as well as the electrochemical properties of the hybrid surfaces were studied and compared with the properties of this diradical in solution. Analogies between the properties of AuNPs with high coverage of radicals and those of SAM were

  13. Dynamic communities in multichannel data: An application to the foreign exchange market during the 2007-2008 credit crisis

    NASA Astrophysics Data System (ADS)

    Fenn, Daniel J.; Porter, Mason A.; McDonald, Mark; Williams, Stacy; Johnson, Neil F.; Jones, Nick S.

    2009-09-01

    We study the cluster dynamics of multichannel (multivariate) time series by representing their correlations as time-dependent networks and investigating the evolution of network communities. We employ a node-centric approach that allows us to track the effects of the community evolution on the functional roles of individual nodes without having to track entire communities. As an example, we consider a foreign exchange market network in which each node represents an exchange rate and each edge represents a time-dependent correlation between the rates. We study the period 2005-2008, which includes the recent credit and liquidity crisis. Using community detection, we find that exchange rates that are strongly attached to their community are persistently grouped with the same set of rates, whereas exchange rates that are important for the transfer of information tend to be positioned on the edges of communities. Our analysis successfully uncovers major trading changes that occurred in the market during the credit crisis.

  14. Replica Exchange Molecular Dynamics Study of Dimerization in Prion Protein: Multiple Modes of Interaction and Stabilization.

    PubMed

    Chamachi, Neharika G; Chakrabarty, Suman

    2016-08-01

    The pathological forms of prions are known to be a result of misfolding, oligomerization, and aggregation of the cellular prion. While the mechanism of misfolding and aggregation in prions has been widely studied using both experimental and computational tools, the structural and energetic characterization of the dimer form have not garnered as much attention. On one hand dimerization can be the first step toward a nucleation-like pathway to aggregation, whereas on the other hand it may also increase the conformational stability preventing self-aggregation. In this work, we have used extensive all-atom replica exchange molecular dynamics simulations of both monomer and dimer forms of a mouse prion protein to understand the structural, dynamic, and thermodynamic stability of dimeric prion as compared to the monomeric form. We show that prion proteins can dimerize spontaneously being stabilized by hydrophobic interactions as well as intermolecular hydrogen bonding and salt bridge formation. We have computed the conformational free energy landscapes for both monomer and dimer forms to compare the thermodynamic stability and misfolding pathways. We observe large conformational heterogeneity among the various modes of interactions between the monomers and the strong intermolecular interactions may lead to as high as 20% β-content. The hydrophobic regions in helix-2, surrounding coil regions, terminal regions along with the natively present β-sheet region appear to actively participate in prion-prion intermolecular interactions. Dimerization seems to considerably suppress the inherent dynamic instability observed in monomeric prions, particularly because the regions of structural frustration constitute the dimer interface. Further, we demonstrate an interesting reversible coupling between the Q160-G131 interaction (which leads to inhibition of β-sheet extension) and the G131-V161 H-bond formation. PMID:27390876

  15. Long-term successional forest dynamics: species and community responses to climatic variability

    SciTech Connect

    Kardol, Paul; Todd Jr, Donald E; Hanson, Paul J; Mulholland, Patrick J

    2010-01-01

    Question: Are tree dynamics sensitive to climatic variability, and do tree species differ in their responses to climatic variability? Hence, is vulnerability of forest communities to climatic variability depending on stand composition? Location: Mixed young forest at Walker Branch Watershed near Oak Ridge, East-Tennessee, USA. Methods: Using a long-term data set (1967-2006), we analyzed temporal forest dynamics at the tree and species level, and we analyzed community dynamics for forest stands that different in their initial species composition (i.e., Chestnut Oak, Oak-Hickory, Pine, and Yellow poplar stands). Using summer drought and growing season temperature as defined climate drivers, we evaluated relationships between forest dynamics and climate across levels of organization. Results: Over the 4-decade studied period, forest communities underwent successional change and substantially increased their biomass. Variation in summer drought and growing season temperature contributed to temporal biomass dynamics for some tree species, but not for others. Stand-level responses to climatic variability were shown to be related to responses of specific component species; however, not for Pine stands. Pinus echinata, the dominant species in stands initially identified as Pine stands, decreased over time due to periodical outbreaks of the pine bark beetle (Dendroctonus frontalis). The outbreaks on Walker Branch could not be directly related to climatic conditions. Conclusions: Our results imply that vulnerability of developing forests to predicted climate conditions is stand-type dependent, and hence, is a function of species composition. Autogenic successional processes (or insect outbreaks) were found to prevail over climatic variability in determining long-term forest dynamics for stands dominated by sensitive species, emphasizing the importance of studying interactions between forest succession and climate change.

  16. Reactive oxygen species and energy machinery: an integrated dynamic model.

    PubMed

    Korla, Kalyani

    2016-08-01

    The role of several important reactive oxygen species (ROS) on the Krebs cycle, the electron transport chain (ETC) and the two important shuttles has been modelled. Major part of the ROS is produced during oxygen reduction in the ETC, which has been kinetically simulated, and the changes in the final concentrations of several important metabolites were found. The simulation is based on chemical kinetics equation, and the associated set of differential equations was solved by the ordinary differential equation package in Octave. The validity of the model is checked by comparing the experimental results available in the literature with the simulations when a part of the ETC is blocked (80%) in the script. The present approach is versatile and flexible and has potential applications in various simulations. It is easy to study the change in concentrations of various metabolites when a particular enzyme or pathway is blocked (say by a drug). The Octave script is presented in the text. PMID:26309069

  17. Canopy CO2 exchange of two neotropical tree species exhibiting constitutive and facultative CAM photosynthesis, Clusia rosea and Clusia cylindrica

    PubMed Central

    Winter, Klaus; Garcia, Milton; Holtum, Joseph A. M.

    2009-01-01

    Photon flux density (PFD) and water availability, the daily and seasonal factors that vary most in tropical environments, were examined to see how they influenced expression of crassulacean acid metabolism (CAM) in 3-year-old Clusia shrubs native to Panama. Instead of the commonly used single-leaf approach, diel CO2 exchange was measured for whole individual canopies of plants in large soil containers inside a naturally illuminated 8.8 m3 chamber. In well-watered C. rosea, a mainly constitutive CAM species, nocturnally fixed CO2 contributed about 50% to 24 h carbon gain on sunny days but the contribution decreased to zero following overcast days. Nonetheless, CO2 fixation in the light responded in such a way that 24 h carbon gain was largely conserved across the range of daily PFDs. The response of C. rosea to drought was similarly buffered. A facultative component of CAM expression led to reversible increases in nocturnal carbon gain that offset drought-induced reductions of CO2 fixation in the light. Clusia cylindrica was a C3 plant when well-watered but exhibited CAM when subjected to water stress. The induction of CAM was fully reversible upon rewatering. C. cylindrica joins C. pratensis as the most unambiguous facultative CAM species reported in the genus Clusia. PMID:19487388

  18. Characterization of At- species in simple and biological media by high performance anion exchange chromatography coupled to gamma detector.

    PubMed

    Sabatié-Gogova, A; Champion, J; Huclier, S; Michel, N; Pottier, F; Galland, N; Asfari, Z; Chérel, M; Montavon, G

    2012-04-01

    Astatine is a rare radioelement belonging to the halogen group. Considering the trace amounts of astatine produced in cyclotrons, its chemistry cannot be evaluated by spectroscopic tools. Analytical tools, provided that they are coupled with a radioactive detection system, may be an alternative way to study its chemistry. In this research work, high performance anion exchange chromatography (HPAEC) coupled to a gamma detector (γ) was used to evaluate astatine species under reducing conditions. Also, to strengthen the reliability of the experiments, a quantitative analysis using a reactive transport model has been done. The results confirm the existence of one species bearing one negative charge in the pH range 2-7.5. With respect to the other halogens, its behavior indicates the existence of negative ion, astatide At(-). The methodology was successfully applied to the speciation of the astatine in human serum. Under fixed experimental conditions (pH 7.4-7.5 and redox potential of 250 mV) astatine exists mainly as astatide At(-) and does not interact with the major serum components. Also, the method might be useful for the in vitro stability assessment of (211)At-labeled molecules potentially applicable in nuclear medicine. PMID:22405318

  19. Temporal and Spatial Dynamics of Tree Species Composition in Temperate Mountains of South Korea

    NASA Astrophysics Data System (ADS)

    Lee, Boknam; Park, Juhan; Cho, Sungsik; Ryu, Daun; Zaw Wynn, Khine; Park, Minji; Cho, Sunhee; Yoon, Jongguk; Park, Jongyoung; Kim, Hyun Seok

    2015-04-01

    Long term studies on vegetation dynamics are important to identify changes of ecosystem-level responses to climate change. To learn how tree species composition and stand structure change across temperate mountains, the temporal and spatial variations in tree species diversity and structure were investigated using the species composition and DBH size collected over the fourteen-year period across 134 sites in Jiri and Baekoon Mountains, South Korea. The overall temporal changes over fourteen years showed significant increase in stand density, species diversity and evenness according to the indices of Shannon-Weiner diversity, Bray-Curtis dissimilarity, and Pielou's evenness, contributing to the increase of basal area and biomass growth. The change of tree species composition could be categorized into five species communities, representing gradual increase or decrease, establishment, extinction, fluctuation of species population. However, in general, the change in species composition appeared to have consistent and directional patterns of increase in the annual rate of change in the mean species traits including species richness, pole growth rate, adult growth rate, and adult stature with five common dominant species (Quercus mongolica, Quercus variabilis, Quercus serrata, Carpinus laxiflora, and Styrax japonicus). The spatial patterns of species composition appeared to have a higher stand density and species diversity along with the low latitude and high slope ecosystem. The climate change was another main driver to vary the distribution of species abundance. Overall, both temporal and spatial changes of composition in tree species community was clear and further analysis to clarify the reasons for such fast and species-specific changes is underway especially to separate the effect of successional change and climate change. Keywords species composition; climate change; temporal and spatial variation ; forest structure; temperate forest

  20. Species with more volatile population dynamics are differentially impacted by weather

    PubMed Central

    Harrison, Joshua G.; Shapiro, Arthur M.; Espeset, Anne E.; Nice, Christopher C.; Jahner, Joshua P.; Forister, Matthew L.

    2015-01-01

    Climatic variation has been invoked as an explanation of population dynamics for a variety of taxa. Much work investigating the link between climatic forcings and population fluctuation uses single-taxon case studies. Here, we conduct comparative analyses of a multi-decadal dataset describing population dynamics of 50 co-occurring butterfly species at 10 sites in Northern California. Specifically, we explore the potential commonality of response to weather among species that encompass a gradient of population dynamics via a hierarchical Bayesian modelling framework. Results of this analysis demonstrate that certain weather conditions impact volatile, or irruptive, species differently as compared with relatively stable species. Notably, precipitation-related variables, including indices of the El Niño Southern Oscillation, have a more pronounced impact on the most volatile species. We hypothesize that these variables influence vegetation resource availability, and thus indirectly influence population dynamics of volatile taxa. As one of the first studies to show a common influence of weather among taxa with similar population dynamics, the results presented here suggest new lines of research in the field of biotic–abiotic interactions. PMID:25672998

  1. Species with more volatile population dynamics are differentially impacted by weather.

    PubMed

    Harrison, Joshua G; Shapiro, Arthur M; Espeset, Anne E; Nice, Christopher C; Jahner, Joshua P; Forister, Matthew L

    2015-02-01

    Climatic variation has been invoked as an explanation of population dynamics for a variety of taxa. Much work investigating the link between climatic forcings and population fluctuation uses single-taxon case studies. Here, we conduct comparative analyses of a multi-decadal dataset describing population dynamics of 50 co-occurring butterfly species at 10 sites in Northern California. Specifically, we explore the potential commonality of response to weather among species that encompass a gradient of population dynamics via a hierarchical Bayesian modelling framework. Results of this analysis demonstrate that certain weather conditions impact volatile, or irruptive, species differently as compared with relatively stable species. Notably, precipitation-related variables, including indices of the El Niño Southern Oscillation, have a more pronounced impact on the most volatile species. We hypothesize that these variables influence vegetation resource availability, and thus indirectly influence population dynamics of volatile taxa. As one of the first studies to show a common influence of weather among taxa with similar population dynamics, the results presented here suggest new lines of research in the field of biotic-abiotic interactions. PMID:25672998

  2. Quantum dynamics of two-optical modes and a single mechanical mode optomechanical system: Selective energy exchange

    NASA Astrophysics Data System (ADS)

    Aggarwal, Neha; Bhattacherjee, Aranya B.

    2014-01-01

    We study the quantum dynamics of an optomechanical setup comprising two optical modes and one mechanical mode. We show that the same system can undergo a dynamical phase transition analogous to Dicke-Hepp-Lieb superradiant type phase transition. We found that the coupling between the momentum quadratures of the two optical fields gives rise to a new dynamical critical point. We show that selective energy exchange between any two modes is possible by coherent control of the coupling parameters. In addition we also demonstrate the occurrence of normal mode splitting (NMS) in the mechanical displacement spectrum.

  3. Niche dynamics of alien species do not differ among sexual and apomictic flowering plants.

    PubMed

    Dellinger, Agnes S; Essl, Franz; Hojsgaard, Diego; Kirchheimer, Bernhard; Klatt, Simone; Dawson, Wayne; Pergl, Jan; Pyšek, Petr; van Kleunen, Mark; Weber, Ewald; Winter, Marten; Hörandl, Elvira; Dullinger, Stefan

    2016-02-01

    Biological invasions can be associated with shifts of the species' climatic niches but the incidence of such shifts is under debate. The reproductive system might be a key factor controlling such shifts because it influences a species' evolutionary flexibility. However, the link between reproductive systems and niche dynamics in plant invasions has been little studied so far. We compiled global occurrence data sets of 13 congeneric sexual and apomictic species pairs, and used principal components analysis (PCA) and kernel smoothers to compare changes in climatic niche optima, breadths and unfilling/expansion between native and alien ranges. Niche change metrics were compared between sexual and apomictic species. All 26 species showed changes in niche optima and/or breadth and 14 species significantly expanded their climatic niches. However, we found no effect of the reproductive system on niche dynamics. Instead, species with narrower native niches showed higher rates of niche expansion in the alien ranges. Our results suggest that niche shifts are frequent in plant invasions but evolutionary potential may not be of major importance for such shifts. Niche dynamics rather appear to be driven by changes of the realized niche without adaptive change of the fundamental climatic niche. PMID:26508329

  4. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils.

    PubMed

    Gruba, Piotr; Mulder, Jan

    2015-04-01

    Soil organic matter (SOM) in forest soil is of major importance for cation binding and acid buffering, but its characteristics may differ among soils under different tree species. We investigated acidity, cation exchange properties and Al bonding to SOM in stands of Scots pine, pedunculate oak, Norway spruce, European beech and common hornbeam in southern Poland. The content of total carbon (Ct) was by far the major contributor to total cation exchange capacity (CECt) even in loamy soils and a strong relationship between Ct and CECt was found. The slope of the regression of CECt to Ct increased in the order hornbeam≈oak

  5. Leaf gas exchange in Espeletia schultzii Wedd, a giant caulescent rosette species, along an altitudinal gradient in the Venezuelan Andes

    NASA Astrophysics Data System (ADS)

    Rada, Fermin; Azocar, Aura; Gonzalez, Juan; Briceño, Benito

    1998-02-01

    Gas exchange studies along low altitudinal gradients (0-2 500 metres above sea level) suggest an increase in plant CO 2 assimilation with increasing altitude. The question arises however, will this hold true for higher altitudinal ranges? The purpose of this work was to characterize carbon and water relationships in Espeletia schultzii along an extreme altitudinal gradient. Gas exchange characteristics under field conditions during wet and dry seasons were documented for Espeletia schultzii, a giant caulescent rosette species, along an altitudinal gradient (2 950, 3 550 and 4 200 m) in the Venezuelan Andes. Significant differences in CO 2 assimilation rates between seasons were found for all studied sites. Low assimilation rates obtained during the dry season were a consequence of: low leaf conductances to counteract low leaf water potentials and/or high vapour pressure differences between leaf and air, and to high leaf temperatures measured during the dry season. Important differences in A/P i curve parameters were obtained between wet and dry seasons. A decrease in A max was observed for the two lower populations, while a similar value was obtained for both wet and dry seasons at the higher altitude. A decrease in the relation P i/P a and an increase in stomatal limitation and leaf temperature were measured from wet to dry season. There was a differentiation in CO 2 assimilation with increasing altitude. At 2 950 m, maximum rates were above 5 μmol · m -2 · s -1, at 3 550 m 3 μmol · m -2 · s -1, while at 4 200 m maximum CO 2 assimilation rate was below 3 μmol ·m -2 · s -1. This decrease may be explained by: an increase in leaf pubescence, lower leaf conductances and/or lower leaf nitrogen content at higher altitude.

  6. Dynamic nuclear-polarization studies of paramagnetic species in solution

    SciTech Connect

    Glad, W.E.

    1982-07-01

    Dynamic Nuclear Polarization (DNP) was used to measure the electron spin lattice relaxation times, T/sub 1/, of transition metal ions in aqueous solution. Saturation which is induced in the electron spin system is transferred to the solvent proton spins by dipole-dipole interactions. The change in the polarization of the proton spins is much larger than it is in the electron spins. The change in proton polarization is easily measured by proton Nuclear Magnetic Resonance (NMR). In one experimental arrangement the sample solution was continuously flowed through a microwave cavity to the NMR coil. The NMR was observed with a continuous wave NMR spectrometer. In a second arrangement the whole sample tube was moved from within the microwave cavity to the NMR coil in less than 40 ms by a blast of compressed air. The NMR was then observed with a pulse-Fourier-transform spectrometer. With the second arrangement a mean-square microwave magnetic field at the sample of more than 10 G/sup 2/ is obtainable with 14 W of microwave power. Measurements of DNP at 9 GHz were made on aqueous solutions of VO/sup 2 +/, Mn/sup 2 +/, Cr(CN)/sub 6//sup 3 -/, Cu/sup 2 +/ and Cu(ethylenediamine)/sub 2/(H/sub 2/0)/sub 2//sup 2 +/ ions from 3 to 60/sup 0/C. It was also possible to observe DNP on resolved proton resonances from mixed water-acetonitrile solutions of VO/sup 2 +/ and Cr(CN)/sub 6//sup 3 -/ ions.

  7. River temperature processes under contrasting riparian land cover: linking microclimate, heat exchange and water thermal dynamics

    NASA Astrophysics Data System (ADS)

    Hannah, D. M.; Kantola, K.; Malcolm, I.

    2012-12-01

    River temperature influences strongly growth and survival in salmonid fish, which are often the target of river management strategies. Temperature is controlled by transfers of heat and water to/ from the river system, with land and water management modifying exchanges and consequently thermal regime. In the UK, fisheries managers are promoting riparian forest planting as a climate change adaption measure to reduce water temperature extremes. However, scientific understanding lags behind management and policy needs. Specifically, there is an urgent requirement to determine planting strategies that maximise expected benefits of riparian forest in terms of reduction in maximum water temperature. Scientific knowledge is necessary to underpin conceptual and deterministic models to inform management. To address this research gap, this paper analyses high resolution (15 minute) hydrometeorological data collected over a calendar year in the western Scottish Highlands (Loch Ard) to understand the controls and processes determining river temperature dynamics under open moorland (control), semi-natural woodland and commercial forest. The research programme aims: (1) to characterise spatial and temporal variability in riparian microclimate and stream water temperature regime across forest treatments; (2) to identify the hydrological, climatological and site-specific factors affecting stream temperature; (3) to estimate the energy balance at sites representative of each forest treatment and, thus, yield physical process understanding about dominant heat exchanges driving thermal variability; and (4) to use 1-3 to predict stream temperature sensitivity under different forestry and hydroclimatological scenarios. Results indicated that inter-treatment differences in mean and maximum daily water column temperature were ordered open > semi-natural > commercial during summer, but semi-natural > commercial > open during winter. Minimum water temperature was ordered commercial > semi

  8. Assessment of the Draft AIAA S-119 Flight Dynamic Model Exchange Standard

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Murri, Daniel G.; Hill, Melissa A.; Jessick, Matthew V.; Penn, John M.; Hasan, David A.; Crues, Edwin Z.; Falck, Robert D.; McCarthy, Thomas G.; Vuong, Nghia; Zimmerman, Curtis

    2011-01-01

    An assessment of a draft AIAA standard for flight dynamics model exchange, ANSI/AIAA S-119-2011, was conducted on behalf of NASA by a team from the NASA Engineering and Safety Center. The assessment included adding the capability of importing standard models into real-time simulation facilities at several NASA Centers as well as into analysis simulation tools. All participants were successful at importing two example models into their respective simulation frameworks by using existing software libraries or by writing new import tools. Deficiencies in the libraries and format documentation were identified and fixed; suggestions for improvements to the standard were provided to the AIAA. An innovative tool to generate C code directly from such a model was developed. Performance of the software libraries compared favorably with compiled code. As a result of this assessment, several NASA Centers can now import standard models directly into their simulations. NASA is considering adopting the now-published S-119 standard as an internal recommended practice.

  9. Conformation study of ɛ-cyclodextrin: Replica exchange molecular dynamics simulations.

    PubMed

    Khuntawee, Wasinee; Rungrotmongkol, Thanyada; Wolschann, Peter; Pongsawasdi, Piamsook; Kungwan, Nawee; Okumura, Hisashi; Hannongbua, Supot

    2016-05-01

    There is growing interest in large-ring cyclodextrins (LR-CDs) which are known to be good host molecules for larger ligands. The isolation of a defined size LR-CD is an essential prerequisite for studying their structural properties. Unfortunately the purification procedure of these substances turned out to be very laborious. Finally the problem could be circumvented by a theoretical consideration: the highly advantageous replica exchange molecular dynamics (REMD) simulation (particularly suitable for studies of conformational changes) offers an ideal approach for studying the conformational change of ɛ-cyclodextrin (CD10), a smaller representative of LR-CDs. Three carbohydrate force fields and three solvent models were tested. The conformational behavior of CD10 was analyzed in terms of the flip (turn) of the glucose subunits within the macrocyclic ring. In addition a ranking of conformations with various numbers of turns was preformed. Our findings might be also helpful in the temperature controlled synthesis of LR-CDs as well as other experimental conditions, in particular for the host-guest reaction. PMID:26877001

  10. Efficient Determination of Relative Entropy Using Combined Temperature and Hamiltonian Replica-Exchange Molecular Dynamics.

    PubMed

    Jo, Sunhwan; Chipot, Christophe; Roux, Benoît

    2015-05-12

    The performance and accuracy of different simulation schemes for estimating the entropy inferred from free energy calculations are tested. The results obtained from replica-exchange molecular dynamics (REMD) simulations based on a simplified toy model are compared to exact numerically derived ones to assess accuracy and convergence. It is observed that the error in entropy estimation decreases by at least an order of magnitude and the quantities of interest converge much faster when the simulations are coupled via a temperature REMD algorithm and the trajectories from different temperatures are combined. Simulations with the infinite-swapping method and its variants show some improvement over the traditional nearest-neighbor REMD algorithms, but they are more computationally expensive. To test the methodologies further, the free energy profile for the reversible association of two methane molecules in explicit water was calculated and decomposed into its entropic and enthalpic contributions. Finally, a strategy based on umbrella sampling computations carried out via simultaneous temperature and Hamiltonian REMD simulations is shown to yield the most accurate entropy estimation. The entropy profile between the two methane molecules displays the characteristic signature of a hydrophobic interaction. PMID:26574422

  11. Gas-Substrate Heat Exchange During Cold-Gas Dynamic Spraying

    NASA Astrophysics Data System (ADS)

    McDonald, A. G.; Ryabinin, A. N.; Irissou, E.; Legoux, J.-G.

    2013-03-01

    In this study, the temperature distribution of the surfaces of several substrates under an impinging gas jet from a cold spray nozzle was determined. A low-pressure cold-gas dynamic spraying unit was used to generate a jet of hot compressed nitrogen that impinged upon flat substrates. Computer codes based on a finite differences method were used to solve a simplified 2D temperature distribution equation for the substrate to produce nondimensional relationships between the surface temperature and the radius of the impinging fluid jet, the axial velocity of the cold spray nozzle, the substrate thickness, and the heating time. It was found that a single profile of the transient nondimensional maximum surface temperature could be used to estimate the dimensional maximum surface temperature, regardless of the value of the compressed gas temperature. It was found further that, as the thermal conductance of the substrate increased, the maximum surface temperature of the substrate beneath the gas jet decreased. Heat exchange between the substrate and the compressed gas jet during motion of the nozzle to produce heat conduction within the substrate was characterized by the nondimensional Peclét number. It was found that lower Peclét numbers produced higher temperatures within the substrate. The close agreement of the numerical results with the experimental results suggests that the nondimensionalized results may be applied to a wide range of conditions and materials.

  12. Custom-tailored adsorbers: A molecular dynamics study on optimal design of ion exchange chromatography material.

    PubMed

    Lang, Katharina M H; Kittelmann, Jörg; Pilgram, Florian; Osberghaus, Anna; Hubbuch, Jürgen

    2015-09-25

    The performance of functionalized materials, e.g., ion exchange resins, depends on multiple resin characteristics, such as type of ligand, ligand density, the pore accessibility for a molecule, and backbone characteristics. Therefore, the screening and identification process for optimal resin characteristics for separation is very time and material consuming. Previous studies on the influence of resin characteristics have focused on an experimental approach and to a lesser extent on the mechanistic understanding of the adsorption mechanism. In this in silico study, a previously developed molecular dynamics (MD) tool is used, which simulates any given biomolecule on resins with varying ligand densities. We describe a set of simulations and experiments with four proteins and six resins varying in ligand density, and show that simulations and experiments correlate well in a wide range of ligand density. With this new approach simulations can be used as pre-experimental screening for optimal adsorber characteristics, reducing the actual number of screening experiments, which results in a faster and more knowledge-based development of custom-tailored adsorbers. PMID:26319376

  13. Dynamics of a magnetic dimer with exchange, dipolar, and Dzyalozhinski-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Franco, A. F.; Martinez, J. M.; Déjardin, J. L.; Kachkachi, H.

    2011-10-01

    We investigate the dynamics of a magnetic system consisting of two magnetic moments coupled by either the exchange, dipole-dipole, or Dzyalozhinski-Moriya interaction. We compare the switching mechanisms and switching rates as induced by the three couplings. For each coupling and each configuration of the two anisotropy axes, we describe the switching modes and, using the kinetic theory of Langer, we provide (semi-)analytical expressions for the switching rate. We then compare the three interactions with regard to their efficiency in the reversal of the net magnetic moment of the dimer. We also investigate how the energy barriers vary with the coupling. For the dipole-dipole interaction we find that the energy barrier may either increase or decrease with the coupling depending on whether the latter is weak or strong. Finally, upon comparing the various switching rates, we find that the dipole-dipole coupling leads to the slowest magnetic dimer, as far as the switching of its net magnetic moment is concerned.

  14. Tungsten polyoxometalate molecules as active nodes for dynamic carrier exchange in hybrid molecular/semiconductor capacitors

    SciTech Connect

    Balliou, A.; Douvas, A. M.; Normand, P.; Argitis, P.; Glezos, N.; Tsikritzis, D.; Kennou, S.

    2014-10-14

    In this work we study the utilization of molecular transition metal oxides known as polyoxometalates (POMs), in particular the Keggin structure anions of the formula PW₁₂O₄₀³⁻, as active nodes for potential switching and/or fast writing memory applications. The active molecules are being integrated in hybrid Metal-Insulator/POM molecules-Semiconductor capacitors, which serve as prototypes allowing investigation of critical performance characteristics towards the design of more sophisticated devices. The charging ability as well as the electronic structure of the molecular layer is probed by means of electrical characterization, namely, capacitance-voltage and current-voltage measurements, as well as transient capacitance measurements, C (t), under step voltage polarization. It is argued that the transient current peaks observed are manifestations of dynamic carrier exchange between the gate electrode and specific molecular levels, while the transient C (t) curves under conditions of molecular charging can supply information for the rate of change of the charge that is being trapped and de-trapped within the molecular layer. Structural characterization via surface and cross sectional scanning electron microscopy as well as atomic force microscopy, spectroscopic ellipsometry, UV and Fourier-transform IR spectroscopies, UPS, and XPS contribute to the extraction of accurate electronic structure characteristics and open the path for the design of new devices with on-demand tuning of their interfacial properties via the controlled preparation of the POM layer.

  15. Modelling community dynamics based on species-level abundance models from detection/nondetection data

    USGS Publications Warehouse

    Yamaura, Yuichi; Royle, J. Andrew; Kuboi, Kouji; Tada, Tsuneo; Ikeno, Susumu; Makino, Shun'ichi

    2011-01-01

    1. In large-scale field surveys, a binary recording of each species' detection or nondetection has been increasingly adopted for its simplicity and low cost. Because of the importance of abundance in many studies, it is desirable to obtain inferences about abundance at species-, functional group-, and community-levels from such binary data. 2. We developed a novel hierarchical multi-species abundance model based on species-level detection/nondetection data. The model accounts for the existence of undetected species, and variability in abundance and detectability among species. Species-level detection/nondetection is linked to species- level abundance via a detection model that accommodates the expectation that probability of detection (at least one individuals is detected) increases with local abundance of the species. We applied this model to a 9-year dataset composed of the detection/nondetection of forest birds, at a single post-fire site (from 7 to 15 years after fire) in a montane area of central Japan. The model allocated undetected species into one of the predefined functional groups by assuming a prior distribution on individual group membership. 3. The results suggest that 15–20 species were missed in each year, and that species richness of communities and functional groups did not change with post-fire forest succession. Overall abundance of birds and abundance of functional groups tended to increase over time, although only in the winter, while decreases in detectabilities were observed in several species. 4. Synthesis and applications. Understanding and prediction of large-scale biodiversity dynamics partly hinge on how we can use data effectively. Our hierarchical model for detection/nondetection data estimates abundance in space/time at species-, functional group-, and community-levels while accounting for undetected individuals and species. It also permits comparison of multiple communities by many types of abundance-based diversity and similarity

  16. Temperature- and body mass-related variation in cyclic gas exchange characteristics and metabolic rate of seven weevil species: Broader implications.

    PubMed

    Klok, C J; Chown, S L

    2005-07-01

    The influence of temperature on metabolic rate and characteristics of the gas exchange patterns of flightless, sub-Antarctic Ectemnorhinus-group species from Heard and Marion islands was investigated. All of the species showed cyclic gas exchange with no Flutter period, indicating that these species are not characterized by discontinuous gas exchange cycles. Metabolic rate estimates were substantially lower in this study than in a previous one of a subset of the species, demonstrating that open-system respirometry methods provide more representative estimates of standard metabolic rate than do many closed-system methods. We recommend that the latter, and especially constant-pressure methods, either be abandoned for estimates of standard metabolic rate in insects, or have their outputs subject to careful scrutiny, given the wide availability of the former. V(.)CO(2) increase with an increase in temperature (range: 0-15 degrees C) was modulated by an increase in cycle frequency, but typically not by an increase in burst volume. Previous investigations of temperature-related changes in cyclic gas exchange (both cyclic and discontinuous) in several other insect species were therefore substantiated. Interspecific mass-scaling of metabolic rate (ca. 0.466-0.573, excluding and including phylogenetic non-independence, respectively) produced an exponent lower than 0.75 (but not distinguishable from it or from 0.67). The increase of metabolic rate with mass was modulated by an increase in burst volume and not by a change in cycle frequency, in keeping with investigations of species showing discontinuous gas exchange. These findings are discussed in the context of the emerging macrophysiological metabolic theory of ecology. PMID:15907926

  17. Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)5 in solution

    NASA Astrophysics Data System (ADS)

    Wernet, Ph.; Kunnus, K.; Josefsson, I.; Rajkovic, I.; Quevedo, W.; Beye, M.; Schreck, S.; Grübel, S.; Scholz, M.; Nordlund, D.; Zhang, W.; Hartsock, R. W.; Schlotter, W. F.; Turner, J. J.; Kennedy, B.; Hennies, F.; de Groot, F. M. F.; Gaffney, K. J.; Techert, S.; Odelius, M.; Föhlisch, A.

    2015-04-01

    Transition-metal complexes have long attracted interest for fundamental chemical reactivity studies and possible use in solar energy conversion. Electronic excitation, ligand loss from the metal centre, or a combination of both, creates changes in charge and spin density at the metal site that need to be controlled to optimize complexes for photocatalytic hydrogen production and selective carbon-hydrogen bond activation. An understanding at the molecular level of how transition-metal complexes catalyse reactions, and in particular of the role of the short-lived and reactive intermediate states involved, will be critical for such optimization. However, suitable methods for detailed characterization of electronic excited states have been lacking. Here we show, with the use of X-ray laser-based femtosecond-resolution spectroscopy and advanced quantum chemical theory to probe the reaction dynamics of the benchmark transition-metal complex Fe(CO)5 in solution, that the photo-induced removal of CO generates the 16-electron Fe(CO)4 species, a homogeneous catalyst with an electron deficiency at the Fe centre, in a hitherto unreported excited singlet state that either converts to the triplet ground state or combines with a CO or solvent molecule to regenerate a penta-coordinated Fe species on a sub-picosecond timescale. This finding, which resolves the debate about the relative importance of different spin channels in the photochemistry of Fe(CO)5 (refs 4, 16,17,18,19 and 20), was made possible by the ability of femtosecond X-ray spectroscopy to probe frontier-orbital interactions with atom specificity. We expect the method to be broadly applicable in the chemical sciences, and to complement approaches that probe structural dynamics in ultrafast processes.

  18. Development of gas exchange and ion regulation in two species of air-breathing fish, Betta splendens and Macropodus opercularis.

    PubMed

    Huang, Chun-Yen; Lin, Cheng-Huang; Lin, Hui-Chen

    2015-07-01

    Aquatic air-breathing anabantoids, a group of fish species characterized by the presence of a labyrinth organ and some gills, exhibit morphological variations. This study aimed to examine whether unequal gill growth begins during the early stages and described the sequence of the early gill developmental events in Betta splendens and Macropodus opercularis. To determine when the ion regulatory and gas exchange abilities first appear in the gills, mitochondria-rich cells (MRCs) and neuroepithelial cells (NECs) were examined in young B. splendens. To evaluate the relative importance of the gills and the labyrinth organ under different levels of oxygen uptake stress, the levels of carbonic anhydrase II (CAII) and Na(+)/K(+)-ATPase (NKA) protein expressions in 2 gills and the labyrinth organ were examined in M. opercularis. We found that the first 3 gills developed earlier than the 4th gill in both species, an indication that the morphological variation begins early in life. In B. splendens, the MRCs and NECs clearly appeared in the first 3 gills at 4 dph and were first found in the 4th gill until 11 dph. The oxygen-sensing ability of the gills was concordant with the ionoregulatory function. In M. opercularis, the hypoxic group had a significantly higher air-breathing frequency. CAII protein expression was higher in the labyrinth organ in the hypoxic group. The gills exhibited increased NKA protein expression in the hypoxic and restricted groups, respectively. Functional plasticity in CAII and NKA protein expressions was found between the gills and the labyrinth organ in adult M. opercularis. PMID:25783787

  19. Species-Specific Dynamic Responses of Gut Bacteria to a Mammalian Glycan

    PubMed Central

    Raghavan, Varsha

    2015-01-01

    ABSTRACT The mammalian intestine provides nutrients to hundreds of bacterial species. Closely related species often harbor homologous nutrient utilization genes and cocolonize the gut, raising questions regarding the strategies mediating their stable coexistence. Here we reveal that related Bacteroides species that can utilize the mammalian glycan chondroitin sulfate (CS) have diverged in the manner in which they temporally regulate orthologous CS utilization genes. Whereas certain Bacteroides species display a transient surge in CS utilization transcripts upon exposure to CS, other species exhibit sustained activation of these genes. Remarkably, species-specific expression dynamics are retained even when the key players governing a particular response are replaced by those from a species with a dissimilar response. Bacteroides species exhibiting distinct expression behaviors in the presence of CS can be cocultured on CS. However, they vary in their responses to CS availability and to the composition of the bacterial community when CS is the sole carbon source. Our results indicate that diversity resulting from regulation of polysaccharide utilization genes may enable the coexistence of gut bacterial species using a given nutrient. IMPORTANCE Genes mediating a specific task are typically conserved in related microbes. For instance, gut Bacteroides species harbor orthologous nutrient breakdown genes and may face competition from one another for these nutrients. How, then, does the gut microbial composition maintain such remarkable stability over long durations? We establish that in the case of genes conferring the ability to utilize the nutrient chondroitin sulfate (CS), microbial species vary in how they temporally regulate these genes and exhibit subtle growth differences on the basis of CS availability and community composition. Similarly to how differential regulation of orthologous genes enables related species to access new environments, gut bacteria may

  20. Language evolution and population dynamics in a system of two interacting species

    NASA Astrophysics Data System (ADS)

    Kosmidis, Kosmas; Halley, John M.; Argyrakis, Panos

    2005-08-01

    We use Monte Carlo simulations and assumptions from evolutionary game theory in order to study the evolution of words and the population dynamics of a system made of two interacting species which initially speak two different languages. The species are characterized by their identity, vocabulary, and have different initial fitness, i.e. reproduction capability. We investigate how different initial fitness affects the vocabulary of the species or the population dynamics by leading to a permanent populational advantage. We further find that the spatial distributions of the species may cause the system to exhibit pattern formation or segregation. We show that an initial fitness advantage, even though very quickly balanced, leads to better spatial arrangement and enhances survival probabilities of the species. In most cases the system will arrive at a final state where both languages coexist. However, in cases where one species greatly outnumbers the other in population and fitness, then only one species survives with its “final” language having a slightly richer vocabulary than its initial language. Thus, our results offer an explanation for the existence and origin of synonyms in spoken languages.

  1. Fluence-dependent dynamics of the 5d6s exchange splitting in Gd metal after femtosecond laser excitation

    NASA Astrophysics Data System (ADS)

    Frietsch, Björn; Carley, Robert; Gleich, Markus; Teichmann, Martin; Bowlan, John; Weinelt, Martin

    2016-07-01

    We investigate the fluence-dependent dynamics of the exchange-split 5d6s valence bands of Gd metal after femtosecond, near-infrared (IR) laser excitation. Time- and angle-resolved photoelectron spectroscopy (tr-ARPES) with extreme ultraviolet (XUV) probe pulses is used to simultaneously map the transient binding energies of the minority and majority spin valence bands. The decay constant of the exchange splitting increases with fluence. This reflects the slower response of the occupied majority-spin component, which we attribute to Elliot–Yafet spin-flip scattering in accordance with the microscopic three-temperature model (M3TM). In contrast, the time constant of the partly unoccupied minority-spin band stays unaffected by a change in pump fluence. Here, we introduce as an alternative to superdiffusive spin transport exchange scattering, which is an ultrafast electronic mechanism explaining the observed dynamics. Exchange scattering can reduce the spin polarization in the partially unoccupied minority-spin band and thus its energetic position without effective demagnetization.

  2. Model of Prey-Predator Dynamics with Reflexive Spatial Behaviour of Species Based on Optimal Migration.

    PubMed

    Sadovsky, Michael; Senashova, Mariya

    2016-04-01

    We consider the model of spatially distributed community consisting of two species with "predator-prey" interaction; each of the species occupies two stations. Transfer of individuals between the stations (migration) is not random, and migration stipulates the maximization of net reproduction of each species. The spatial distribution pattern is provided by discrete stations, and the dynamics runs in discrete time. For each time moment, firstly a redistribution of individuals between the stations is carried out to maximize the net reproduction, and then the reproduction takes place, with the upgraded abundances. Besides, three versions of the basic model are implemented where each species implements reflexive behaviour strategy to determine the optimal migration flow. It was found that reflexivity gives an advantage to the species realizing such strategy, for some specific sets of parameters. Nevertheless, the regular scanning of the parameters area shows that non-reflexive behaviour yields an advantage in the great majority of parameters combinations. PMID:27125654

  3. Long-term competitive dynamics of two cryptic rotifer species: diapause and fluctuating conditions.

    PubMed

    Gabaldón, Carmen; Carmona, María José; Montero-Pau, Javier; Serra, Manuel

    2015-01-01

    Life-history traits may have an important role in promoting species coexistence. However, the complexity of certain life cycles makes it difficult to draw conclusions about the conditions for coexistence or exclusion based on the study of short-term competitive dynamics. Brachionus plicatilis and B. manjavacasare two cryptic rotifer species co-occurring in many lakes on the Iberian Peninsula. They have a complex life cycle in which cyclical parthenogenesis occurs with diapausing stages being the result of sexual reproduction. B. plicatilis and B. manjavacasare identical in morphology and size, their biotic niches are broadly overlapping, and they have similar competitive abilities. However, the species differ in life-history traits involving sexual reproduction and diapause, and respond differently to salinity and temperature. As in the case of certain other species that are extremely similar in morphology, a fluctuating environment are considered to be important for their coexistence. We studied the long-term competitive dynamics of B. plicatilis and B. manjavacas under different salinity regimes (constant and fluctuating). Moreover, we focused on the dynamics of the diapausing egg bank to explore how the outcome of the entire life cycle of these rotifers can work to mediate stable coexistence. We demonstrated that these species do not coexist under constant-salinity environment, as the outcome of competition is affected by the level of salinity-at low salinity, B. plicatilis excluded B. manjavacas, and the opposite outcome occurred at high salinity. Competitive dynamics under fluctuating salinity showed that the dominance of one species over the other also tended to fluctuate. The duration of co-occurrence of these species was favoured by salinity fluctuation and perhaps by the existence of a diapausing egg bank. Stable coexistence was not found in our system, which suggests that other factors or other salinity fluctuation patterns might act as stabilizing

  4. The dynamics of hyporheic exchange flows during storm events in a strongly gaining urban river.

    NASA Astrophysics Data System (ADS)

    Cuthbert, Mark O.; Durand, V.; Aller, M.-F.; Greswell, R. G.; Rivett, M. O.; Mackay, R.

    2010-05-01

    There is little published research to date investigating the transient nature of hyporheic exchange flows in strongly gaining rivers. Furthermore, there is a paucity of research describing high temporal frequency river bed water quality variations. This paper addresses both of these research gaps by presenting pressure, electrical conductivity (EC) and temperature data at high temporal frequency (5 minute resolution) collected from within riverbed sediments, the river channel and from the deeper groundwater system, of a well characterised reach of the urban River Tame, Birmingham, UK. The following conclusions have been reached based on data analysis, analytical modelling, and variably saturated numerical flow and transport modelling: • During storm events, flow reversals observed in the recorded pressure data can lead to substantial changes in EC (>20% in some cases) in the river bed down to depths of greater than 30 cm over periods of tens of hours. • A variable, but significant, proportion of the ‘bank storage' volume during a given storm event comes from the ‘backing up' of groundwater that would have been discharged to the river in the absence of the fluctuating river stage. Thus an important control on the extent and dynamics of the reversal is the storage capacity of the riverbank and bed which can be variable and heavily modified in the urban environment. • Return flows may occur along distinct flowlines in comparison with the path taken by the infiltrating water due to the changing geometry of flows through the storm event. Thus, discharging groundwater may be caused to spiral with each storm event, increasing the dispersion of solutes/contaminants. The magnitude of the exchange flows, and the degree of spiralling is likely to increase with distance away from the centre of the river channel. • Gas is present within the river bed in quantities up to around 14% by volume, and to at least 0.8 m depth below river bed. Given the indications from

  5. Mesoscopic Interactions and Species Coexistence in Evolutionary Game Dynamics of Cyclic Competitions

    NASA Astrophysics Data System (ADS)

    Cheng, Hongyan; Yao, Nan; Huang, Zi-Gang; Park, Junpyo; Do, Younghae; Lai, Ying-Cheng

    2014-12-01

    Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model to five (rock-paper-scissors-lizard-Spock, or RPSLS) mobile species, we uncover a fundamental type of mesoscopic interactions among subgroups of species. In particular, competitions at the microscopic level lead to the emergence of various local groups in different regions of the space, each involving three species. It is the interactions among the groups that fundamentally determine how many species can coexist. In fact, as the mobility is increased from zero, two transitions can occur: one from a five- to a three-species coexistence state and another from the latter to a uniform, single-species state. We develop a mean-field theory to show that, in order to understand the first transition, group interactions at the mesoscopic scale must be taken into account. Our findings suggest, more broadly, the importance of mesoscopic interactions in coexistence of great many species.

  6. Fish and Phytoplankton Exhibit Contrasting Temporal Species Abundance Patterns in a Dynamic North Temperate Lake

    PubMed Central

    Hansen, Gretchen J. A.; Carey, Cayelan C.

    2015-01-01

    Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of “core” (common occurrence and high abundance) and “occasional” (rare occurrence and low abundance) species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions. PMID:25651399

  7. Fish and phytoplankton exhibit contrasting temporal species abundance patterns in a dynamic north temperate lake.

    PubMed

    Hansen, Gretchen J A; Carey, Cayelan C

    2015-01-01

    Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of "core" (common occurrence and high abundance) and "occasional" (rare occurrence and low abundance) species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions. PMID:25651399

  8. Mesoscopic Interactions and Species Coexistence in Evolutionary Game Dynamics of Cyclic Competitions

    PubMed Central

    Cheng, Hongyan; Yao, Nan; Huang, Zi-Gang; Park, Junpyo; Do, Younghae; Lai, Ying-Cheng

    2014-01-01

    Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model to five (rock-paper-scissors-lizard-Spock, or RPSLS) mobile species, we uncover a fundamental type of mesoscopic interactions among subgroups of species. In particular, competitions at the microscopic level lead to the emergence of various local groups in different regions of the space, each involving three species. It is the interactions among the groups that fundamentally determine how many species can coexist. In fact, as the mobility is increased from zero, two transitions can occur: one from a five- to a three-species coexistence state and another from the latter to a uniform, single-species state. We develop a mean-field theory to show that, in order to understand the first transition, group interactions at the mesoscopic scale must be taken into account. Our findings suggest, more broadly, the importance of mesoscopic interactions in coexistence of great many species. PMID:25501627

  9. Dynamic response of surface water-groundwater exchange to currents, tides, and waves in a shallow estuary

    NASA Astrophysics Data System (ADS)

    Sawyer, Audrey H.; Shi, Fengyan; Kirby, James T.; Michael, Holly A.

    2013-04-01

    In shallow, fetch-limited estuaries, variations in current and wave energy promote heterogeneous surface water-groundwater mixing (benthic exchange), which influences biogeochemical activity. Here, we characterize heterogeneity in benthic exchange within the subtidal zone of the Delaware Inland Bays by linking hydrodynamic circulation models with mathematical solutions for benthic exchange forced by current-bedform interactions, tides, and waves. Benthic fluxes oscillate over tidal cycles as fluctuating water depths alter fluid interactions with the bed. Maximum current-driven fluxes (~1-10 cm/d) occur in channels with strong tidal currents. Maximum wave-driven fluxes (~1-10 cm/d) occur in downwind shoals. During high-energy storms, simulated wave pumping rates increase by orders of magnitude, demonstrating the importance of storms in solute transfer through the benthic layer. Under moderate wind conditions (~5 m/s), integrated benthic exchange rates due to wave, current, and tidal pumping are each ~1-10 m3/s, on the order of fluid contributions from runoff and fresh groundwater discharge to the estuary. Benthic exchange is thus a significant and dynamic component of an estuary's fluid budget that may influence estuarine geochemistry and ecology.

  10. Reaction Engineering International and Pacific Northwest Laboratory staff exchange: Addressing computational fluid dynamics needs of the chemical process industry

    SciTech Connect

    Fort, J.A.

    1995-07-01

    Staff exchanges, such as the one described in this report, are intended to facilitate communications and collaboration among scientists and engineers at Department of Energy (DOE) laboratories, in US industry, and academia. Funding support for these exchanges is provided by the DOE, Office of Energy Research, Laboratory Technology Transfer Program. Funding levels for each exchange typically range from $20,000 to $40,000. The exchanges offer the opportunity for the laboratories to transfer technology and expertise to industry, gain a perspective to industry`s problems, and develop the basis for further cooperative efforts through Cooperative Research and Development Agreements (CRADAS) or other mechanisms. Information in this report on the staff exchange of the Pacific Northwest Laboratory (PNL) staff with Reaction Engineering International (REI) includes the significant accomplishments, significant problems, industry benefits realized, recommended follow-on work and potential benefit of that work. The objectives of this project were as follows: Work with REI to develop an understanding of the computational fluid dynamics (CFD) needs of the chemical process industry; assess the combined capabilities of the PNL and REI software analysis tools to address these needs; and establish a strategy for a future programmatically funded, joint effort to develop a new CFD tool for the chemical process industry.

  11. Study of the aggregation mechanism of polyglutamine peptides using replica exchange molecular dynamics simulations.

    PubMed

    Nakano, Miki; Ebina, Kuniyoshi; Tanaka, Shigenori

    2013-04-01

    Polyglutamine (polyQ, a peptide) with an abnormal repeat length is the causative agent of polyQ diseases, such as Huntington's disease. Although glutamine is a polar residue, polyQ peptides form insoluble aggregates in water, and the mechanism for this aggregation is still unclear. To elucidate the detailed mechanism for the nucleation and aggregation of polyQ peptides, replica exchange molecular dynamics simulations were performed for monomers and dimers of polyQ peptides with several chain lengths. Furthermore, to determine how the aggregation mechanism of polyQ differs from those of other peptides, we compared the results for polyQ with those of polyasparagine and polyleucine. The energy barrier between the monomeric and dimeric states of polyQ was found to be relatively low, and it was observed that polyQ dimers strongly favor the formation of antiparallel β-sheet structures. We also found a characteristic behavior of the monomeric polyQ peptide: a turn at the eighth residue is always present, even when the chain length is varied. We previously showed that a structure including more than two sets of β-turns is stable, so a long monomeric polyQ chain can act as an aggregation nucleus by forming several pairs of antiparallel β-sheet structures within a single chain. Since the aggregation of polyQ peptides has some features in common with an amyloid fibril, our results shed light on the mechanism for the aggregation of polyQ peptides as well as the mechanism for the formation of general amyloid fibrils, which cause the onset of amyloid diseases. PMID:23288093

  12. Dynamics of Inorganic Nutrients in Intertidal Sediments: Porewater, Exchangeable, and Intracellular Pools

    PubMed Central

    Garcia-Robledo, Emilio; Bohorquez, Julio; Corzo, Alfonso; Jimenez-Arias, Juan L.; Papaspyrou, Sokratis

    2016-01-01

    The study of inorganic nutrients dynamics in shallow sediments usually focuses on two main pools: porewater (PW) nutrients and exchangeable (EX) ammonium and phosphate. Recently, it has been found that microphytobenthos (MPB) and other microorganisms can accumulate large amounts of nutrients intracellularly (IC), highlighting the biogeochemical importance of this nutrient pool. Storing nutrients could support the growth of autotrophs when nutrients are not available, and could also provide alternative electron acceptors for dissimilatory processes such as nitrate reduction. Here, we studied the magnitude and relative importance of these three nutrient pools (PW, IC, and EX) and their relation to chlorophylls (used as a proxy for MPB abundance) and organic matter (OM) contents in an intertidal mudflat of Cadiz Bay (Spain). MPB was localized in the first 4 mm of the sediment and showed a clear seasonal pattern; highest chlorophylls content was found during autumn and lowest during spring-summer. The temporal and spatial distribution of nutrients pools and MPB were largely correlated. Ammonium was higher in the IC and EX fractions, representing on average 59 and 37% of the total ammonium pool, respectively. Similarly, phosphate in the IC and EX fractions accounted on average for 40 and 31% of the total phosphate pool, respectively. Nitrate in the PW was low, suggesting low nitrification activity and rapid consumption. Nitrate accumulated in the IC pool during periods of moderate MPB abundance, being up to 66% of the total nitrate pool, whereas it decreased when chlorophyll concentration peaked likely due to a high nitrogen demand. EX-Nitrate accounted for the largest fraction of total sediment nitrate, 66% on average. The distribution of EX-Nitrate was significantly correlated with chlorophyll and OM, which probably indicates a relation of this pool to an increased availability of sites for ionic adsorption. This EX-Nitrate pool could represent an alternative nitrate

  13. Tree species effects on decomposition and forest floor dynamics in a common garden.

    PubMed

    Hobbie, Sarah E; Reich, Peter B; Oleksyn, Jacek; Ogdahl, Megan; Zytkowiak, Roma; Hale, Cynthia; Karolewski, Piotr

    2006-09-01

    We studied the effects of tree species on leaf litter decomposition and forest floor dynamics in a common garden experiment of 14 tree species (Abies alba, Acer platanoides, Acer pseudoplatanus, Betula pendula, Carpinus betulus, Fagus sylvatica, Larix decidua, Picea abies, Pinus nigra, Pinus sylvestris, Pseudotsuga menziesii, Quercus robur, Quercus rubra, and Tilia cordata) in southwestern Poland. We used three simultaneous litter bag experiments to tease apart species effects on decomposition via leaf litter chemistry vs. effects on the decomposition environment. Decomposition rates of litter in its plot of origin were negatively correlated with litter lignin and positively correlated with mean annual soil temperature (MAT(soil)) across species. Likewise, decomposition of a common litter type across all plots was positively associated with MAT(soil), and decomposition of litter from all plots in a common plot was negatively related to litter lignin but positively related to litter Ca. Taken together, these results indicate that tree species influenced microbial decomposition primarily via differences in litter lignin (and secondarily, via differences in litter Ca), with high-lignin (and low-Ca) species decomposing most slowly, and by affecting MAT(soil), with warmer plots exhibiting more rapid decomposition. In addition to litter bag experiments, we examined forest floor dynamics in each plot by mass balance, since earthworms were a known component of these forest stands and their access to litter in litter bags was limited. Forest floor removal rates estimated from mass balance were positively related to leaf litter Ca (and unrelated to decay rates obtained using litter bags). Litter Ca, in turn, was positively related to the abundance of earthworms, particularly Lumbricus terrestris. Thus, while species influence microbially mediated decomposition primarily through differences in litter lignin, differences among species in litter Ca are most important in

  14. Influence of intergranular exchange coupling on the magnetization dynamics of CoCrPt:SiO{sub 2} granular media

    SciTech Connect

    Brandt, R.; Schmidt, H.; Tibus, S.; Springer, F.; Fassbender, J.; Rohrmann, H.; Albrecht, M.

    2012-08-01

    We investigate the effect of Co{sup +} irradiation on the magnetization dynamics of CoCrPt:SiO{sub 2} granular media. Increasing irradiation levels reduce the saturation magnetization and effective anisotropy, which decrease the intrinsic magnetization precession frequency. Furthermore, increasing intergranular exchange coupling results in a qualitative change in the behavior of the magnetic material from a collection of individual grains to a homogeneous thin film, as evidenced in both the switching behavior and dynamics. The frequency change cannot be explained by single crystal macrospin modeling, and can only be reproduced by the inclusion of the dipolar effects and anisotropy distribution inherent in a granular medium.

  15. Influence of intergranular exchange coupling on the magnetization dynamics of CoCrPt:SiO2 granular media

    NASA Astrophysics Data System (ADS)

    Brandt, R.; Tibus, S.; Springer, F.; Fassbender, J.; Rohrmann, H.; Albrecht, M.; Schmidt, H.

    2012-08-01

    We investigate the effect of Co+ irradiation on the magnetization dynamics of CoCrPt:SiO2 granular media. Increasing irradiation levels reduce the saturation magnetization and effective anisotropy, which decrease the intrinsic magnetization precession frequency. Furthermore, increasing intergranular exchange coupling results in a qualitative change in the behavior of the magnetic material from a collection of individual grains to a homogeneous thin film, as evidenced in both the switching behavior and dynamics. The frequency change cannot be explained by single crystal macrospin modeling, and can only be reproduced by the inclusion of the dipolar effects and anisotropy distribution inherent in a granular medium.

  16. Temporal latitudinal-gradient dynamics and tropical instability of deep-sea species diversity

    USGS Publications Warehouse

    Yasuhara, Moriaki; Hunt, G.; Cronin, T. M.; Okahashi, H.

    2009-01-01

    A benthic microfaunal record from the equatorial Atlantic Ocean over the past four glacial-interglacial cycles was investigated to understand temporal dynamics of deep-sea latitudinal species diversity gradients (LSDGs). The results demonstrate unexpected instability and high amplitude fluctuations of species diversity in the tropical deep ocean that are correlated with orbital-scale oscillations in global climate: Species diversity is low during glacial and high during interglacial periods. This implies that climate severely influences deep-sea diversity, even at tropical latitudes, and that deep-sea LSDGs, while generally present for the last 36 million years, were weakened or absent during glacial periods. Temporally dynamic LSDGs and unstable tropical diversity require reconsideration of current ecological hypotheses about the generation and maintenance of biodiversity as they apply to the deep sea, and underscore the potential vulnerability and conservation importance of tropical deep-sea ecosystems.

  17. Herbivory affects salt marsh succession dynamics by suppressing the recovery of dominant species.

    PubMed

    Daleo, Pedro; Alberti, Juan; Pascual, Jesús; Canepuccia, Alejandro; Iribarne, Oscar

    2014-05-01

    Disturbance can generate heterogeneous environments and profoundly influence plant diversity by creating patches at different successional stages. Herbivores, in turn, can govern plant succession dynamics by determining the rate of species replacement, ultimately affecting plant community structure. In a south-western Atlantic salt marsh, we experimentally evaluated the role of herbivory in the recovery following disturbance of the plant community and assessed whether herbivory affects the relative importance of sexual and clonal reproduction on these dynamics. Our results show that herbivory strongly affects salt marsh secondary succession by suppressing seedlings and limiting clonal colonization of the dominant marsh grass, allowing subordinate species to dominate disturbed patches. These results demonstrate that herbivores can have an important role in salt marsh community structure and function, and can be a key force during succession dynamics. PMID:24549938

  18. Species traits predict assemblage dynamics at ephemeral resource patches created by carrion.

    PubMed

    Barton, Philip S; Cunningham, Saul A; Macdonald, Ben C T; McIntyre, Sue; Lindenmayer, David B; Manning, Adrian D

    2013-01-01

    Carrion is an ephemeral and spatially patchy resource that supports a diverse subset of species linked to nutrient cycling and the decomposition process. A number of studies have separately documented changes in the diversity of plants, arthropods and vertebrates at individual carcasses, but there are few studies that have examined how functional traits of different groups of organisms underpin their responses to carrion patches. We used a carrion addition experiment to compare changes in composition and functional traits of insect and plant assemblages at carcasses compared with control sites. We found that significant changes in insect assemblage evenness and heterogeneity was associated with species' dispersal traits, and that plant assemblage responses to subsequent soil nitrogen changes was most apparent among graminoids and exotic species. Beetles at carcasses were twice as large as their counterparts at control sites during the first week of carrion decomposition, and also had higher wing loadings. Plants with high specific leaf area responded faster to the carcass addition, and twice as many species recolonised the centre of carcasses in exotic-dominated grassland compared with carcasses in native-dominated grassland. These results provide an example of how traits of opportunist species enable them to exploit patchy and dynamic resources. This increases our understanding of how carcasses can drive biodiversity dynamics, and has implications for the way carrion might be managed in ecosystems, such as appropriate consideration of spatial and temporal continuity in carrion resources to promote heterogeneity in nutrient cycling and species diversity within landscapes. PMID:23326549

  19. Genotypic variation in foundation species generates network structure that may drive community dynamics and evolution.

    PubMed

    Lau, Matthew K; Keith, Arthur R; Borrett, Stuart R; Shuster, Stephen M; Whitham, Thomas G

    2016-03-01

    Although genetics in a single species is known to impact whole communities, little is known about how genetic variation influences species interaction networks in complex ecosystems. Here, we examine the interactions in a community of arthropod species on replicated genotypes (clones) of a foundation tree species, Populus angustifolia James (narrowleaf cottonwood), in a long-term, common garden experiment using a bipartite "genotype-species" network perspective. We combine this empirical work with a simulation experiment designed to further investigate how variation among individual tree genotypes can impact network structure. Three findings emerged: (1) the empirical "genotype-species network" exhibited significant network structure with modularity being greater than the highly conservative null model; (2) as would be expected given a modular network structure, the empirical network displayed significant positive arthropod co-occurrence patterns; and (3) furthermore, the simulations of "genotype-species" networks displayed variation in network structure, with modularity in particular clearly increasing, as genotypic variation increased. These results support the conclusion that genetic variation in a single species contributes to the structure of ecological interaction networks, which could influence eco-ogical dynamics (e.g., assembly and stability) and evolution in a community context. PMID:27197399

  20. Dynamics of ion exchange between self-assembled redox polyelectrolyte multilayer modified electrode and liquid electrolyte.

    PubMed

    Grumelli, Doris E; Garay, Fernando; Barbero, Cesar A; Calvo, Ernesto J

    2006-08-10

    A probe beam deflection (PBD) study of ion exchange between an electroactive polymer poly(allylamine)-bipyridyl-pyridine osmium complex film and liquid electrolyte is reported. The PBD measurements were made simultaneously to chronoamperometric oxidation-reduction cycles, to be able to detect kinetic effects in the ion exchange. Layer-by-layer (LbL) self-assembled redox polyelectrolyte films with osmium bipyridyl complex covalently attached to poly(allylamine) (PAH-Os) and poly(styrene sulfonate) (PSS) have been built by alternate electrostatic adsorption from soluble polyelectrolytes. The ionic exchange during initial conditioning of the film ("break-in") undergoing oxidation-reduction cycles and recovery after equilibration in the reduced state have shown an exchange of anions and cations with time lag between them. The effect of the nature of cation on the ionic exchange has been investigated with dilute HCl, LiCl, NaCl, and CsCl electrolytes. The ratio of anion to cation exchanged at the film-electrolyte interface has a strong dependence on the nature of charge in the topmost layer, that is, when negatively charged PSS is the capping layer, a larger proportion of cation exchange is observed. This demonstrates that the electrical potential distribution at the redox polyelectrolyte multilayer (PEM)/electrolyte interface determines the ionic flux in response to charge injection in the film. PMID:16884254

  1. The roles of competition and habitat in the dynamics of populations and species distributions.

    PubMed

    Yackulic, Charles B; Reid, Janice; Nichols, James D; Hines, James E; Davis, Raymond; Forsman, Eric

    2014-02-01

    The role of competition in structuring biotic communities at fine spatial scales is well known from detailed process-based studies. Our understanding of competition's importance at broader scales is less resolved and mainly based on static species distribution maps. Here, we bridge this gap by examining the joint occupancy dynamics of an invading species (Barred Owl, Strix varia) and a resident species (Northern Spotted Owl, Strix occidentalis caurina) in a 1000-km study area over a 22-year period. Past studies of these competitors have focused on the dynamics of one species at a time, hindering efforts to parse out the roles of habitat and competition and to forecast the future of the resident species. In addition, while these studies accounted for the imperfect detection of the focal species, no multi-season analysis of these species has accounted for the imperfect detection of the secondary species, potentially biasing inference. We analyzed survey data using models that combine the general multistate-multi-season occupancy modeling framework with autologistic modeling, allowing us to account for important aspects of our study system. We found that local extinction probability increases for each species when the other is present; however, the effect of the invader on the resident is greater. Although the species prefer different habitats, these habitats are highly correlated at the patch scale, and the impacts of invader on the resident are greatest in patches that would otherwise be optimal. As a consequence, competition leads to a weaker relationship between habitat and Northern Spotted Owl occupancy. Colonization and extinction rates of the invader are closely related to neighborhood occupancy, and over the first half of the study the availability of colonists limited the rate of population growth. Competition is likely to exclude the resident species, both through its immediate effects on local extinction and by indirectly lowering colonization rates as

  2. Monitoring the Dynamics of Monomer Exchange Using Electrospray Mass Spectrometry: The Case of the Dimeric Glucosamine-6-Phosphate Synthase

    NASA Astrophysics Data System (ADS)

    Chevreux, Guillaume; Atmanene, Cédric; Lopez, Philippe; Ouazzani, Jamal; Van Dorsselaer, Alain; Badet, Bernard; Badet-Denisot, Marie-Ange; Sanglier-Cianférani, Sarah

    2011-03-01

    Escherichia coli glucosamine-6-phosphate synthase (GlmS) is a dimeric enzyme from the glutamine-dependent amidotransferases family, which catalyses the conversion of D-fructose-6-phosphate (Fru6P) and glutamine (Gln) into D-glucosamine-6-phosphate (GlcN6P) and glutamate, respectively. Extensive X-ray crystallography investigations have been reported, highlighting the importance of the dimeric association to form the sugar active site as well as significant conformational changes of the protein upon substrate and product binding. In the present work, an approach based on time-resolved noncovalent mass spectrometry has been developed to study the dynamics of GlmS subunit exchange. Using 14N versus 15N labeled proteins, the kinetics of GlmS subunit exchange was monitored with the wild-type enzyme in the presence of different substrates and products as well as with the protein bearing a key amino acid mutation specially designed to weaken the dimer interface. Determination of rate constants of subunit exchange revealed important modifications of the protein dynamics: while glutamine, glutamate, and K603A mutation accelerates subunit exchange, Fru6P and GlcN6P totally prevent it. These results are described in light of the available structural information, providing additional useful data for both the characterization of GlmS catalytic process and the design of new GlmS inhibitors. Finally, time-resolved noncovalent MS can be proposed as an additional biophysical technique for real-time monitoring of protein dynamics.

  3. Reconstruction of food conditions for Northeast Atlantic bivalve species based on Dynamic Energy Budgets

    NASA Astrophysics Data System (ADS)

    Freitas, Vânia; Cardoso, Joana F. M. F.; Santos, Sílvia; Campos, Joana; Drent, Jan; Saraiva, Sofia; Witte, Johannes IJ.; Kooijman, Sebastiaan A. L. M.; Van der Veer, Henk W.

    2009-08-01

    Required assimilated energy to support observed growth was reconstructed for four common bivalve species ( Mya arenaria, Cerastoderma edule, Mytilus edulis and Macoma balthica) from various Northeast Atlantic coastal areas, along the species distributional range. The approach applied was based on the Dynamic Energy Budget (DEB) theory whereby observed growth patterns in the field, in combination with prevailing temperatures, were used to reconstruct the average food intake experienced in the field scaled to the maximum possible. For all species, results suggest food limitation over the range of locations. In general, reconstructed food intake indicated better conditions for C. edule compared to the other species, while M. edulis presented the lowest food conditions in all the areas. Despite the indications for a latitudinal trend in primary production, no clear pattern or relationship between reconstructed food conditions and latitude was observed suggesting that any trend may be overruled by local conditions.

  4. Species abundance distribution and population dynamics in a two-community model of neutral ecology

    NASA Astrophysics Data System (ADS)

    Vallade, M.; Houchmandzadeh, B.

    2006-11-01

    Explicit formulas for the steady-state distribution of species in two interconnected communities of arbitrary sizes are derived in the framework of Hubbell’s neutral model of biodiversity. Migrations of seeds from both communities as well as mutations in both of them are taken into account. These results generalize those previously obtained for the “island-continent” model and they allow an analysis of the influence of the ratio of the sizes of the two communities on the dominance/diversity equilibrium. Exact expressions for species abundance distributions are deduced from a master equation for the joint probability distribution of species in the two communities. Moreover, an approximate self-consistent solution is derived. It corresponds to a generalization of previous results and it proves to be accurate over a broad range of parameters. The dynamical correlations between the abundances of a species in both communities are also discussed.

  5. Dynamic NMR of Intramolecular Exchange Processes in EDTA Complexes of Sc[superscript 3+], Y[superscript 3+], and La[superscript 3+

    ERIC Educational Resources Information Center

    Ba, Yong; Han, Steven; Ni, Lily; Su, Tony; Garcia, Andres

    2006-01-01

    Dynamic NMR makes use of the effect of chemical exchanges on NMR spectra to study kinetics and thermodynamics. An advanced physical chemistry lab experiment was developed to study the intramolecular exchange processes of EDTA (the disodium salt of ethylenediaminetetraacetic acid) metal complexes. EDTA is an important chelating agent, used in…

  6. The effect of water exchange on bacterioplankton depletion and inorganic nutrient dynamics in coral reef cavities

    NASA Astrophysics Data System (ADS)

    van Duyl, F. C.; Scheffers, S. R.; Thomas, F. I. M.; Driscoll, M.

    2006-03-01

    We studied the effect of water exchange on the depletion (or accumulation) of bacterioplankton, dissolved organic matter and inorganic nutrients in small open framework cavities (50-70 l) at 15 m depth on the coral reef along Curaçao, Netherlands Antilles. The bacterioplankton removal rate in cavities increased with increasing water exchange rates up to a threshold of 0.0045 s-1, reaching values of 50-100 mg C m-2 total interior cavity surface area (CSA) per day. Beyond the threshold, bacterioplankton removal dropped. The cryptic community is apparently adapted to the average water exchange in these cavities (0.0041 s-1). Dissolved inorganic nitrogen (DIN), nitrate + nitrite (NO x ) in particular, accumulated in cavity water and the accumulation decreased with increasing water exchange. Net NO x effluxes exceeded net DIN effluxes from cavities (average efflux rate of 1.9 mmol NO x vs. 0.8 mmol DIN m-2 interior CSA per day). The difference is ascribed to net ammonium losses (NH4) in cavities at reef concentrations >0.025 μM NH4, possibly due to enhanced nitrification. Dissolved inorganic phosphate accumulated in cavities, but was not related to water exchange. The cryptic biota in cavities depend on water exchange for optimization of consumption of bacterioplankton and removal of inorganic nitrogen. Coral cavities are an evident sink of bacterioplankton and a source of NO x and PO{4/3-}.

  7. Impacts of land cover data selection and trait parameterisation on dynamic modelling of species' range expansion.

    PubMed

    Heikkinen, Risto K; Bocedi, Greta; Kuussaari, Mikko; Heliölä, Janne; Leikola, Niko; Pöyry, Juha; Travis, Justin M J

    2014-01-01

    Dynamic models for range expansion provide a promising tool for assessing species' capacity to respond to climate change by shifting their ranges to new areas. However, these models include a number of uncertainties which may affect how successfully they can be applied to climate change oriented conservation planning. We used RangeShifter, a novel dynamic and individual-based modelling platform, to study two potential sources of such uncertainties: the selection of land cover data and the parameterization of key life-history traits. As an example, we modelled the range expansion dynamics of two butterfly species, one habitat specialist (Maniola jurtina) and one generalist (Issoria lathonia). Our results show that projections of total population size, number of occupied grid cells and the mean maximal latitudinal range shift were all clearly dependent on the choice made between using CORINE land cover data vs. using more detailed grassland data from three alternative national databases. Range expansion was also sensitive to the parameterization of the four considered life-history traits (magnitude and probability of long-distance dispersal events, population growth rate and carrying capacity), with carrying capacity and magnitude of long-distance dispersal showing the strongest effect. Our results highlight the sensitivity of dynamic species population models to the selection of existing land cover data and to uncertainty in the model parameters and indicate that these need to be carefully evaluated before the models are applied to conservation planning. PMID:25265281

  8. Spatio-temporal dynamics of a three interacting species mathematical model inspired in physics

    NASA Astrophysics Data System (ADS)

    Sánchez-Garduño, Faustino; Breña-Medina, Víctor F.

    2008-02-01

    In this paper we study both, analytically and numerically, the spatio-temporal dynamics of a three interacting species mathematical model. The populations take the form of pollinators, a plant and herbivores; the model consists of three nonlinear reaction-diffusion-advection equations. In view of considering the full model, as a previous step we firstly analyze a mutualistic interaction (pollinator-plant), later on a predator-prey (plant-herbivore) interaction model is studied and finally, we consider the full model. In all cases, the purely temporal dynamics is given; meanwhile for the spatio-temporal dynamics, we use numerical simulations, corresponding to those parameter values for which we obtain interesting temporal dynamics.

  9. The roles of competition and habitat in the dynamics of populations and species distributions

    USGS Publications Warehouse

    Yackulic, Charles Brandon; Reid, Janice; Nichols, James D.; Hines, James E.; Davis, Raymond; Forsman, Eric

    2014-01-01

    The role of competition in structuring biotic communities at fine spatial scales is well known from detailed process-based studies. Our understanding of competition's importance at broader scales is less resolved and mainly based on static species distribution maps. Here, we bridge this gap by examining the joint occupancy dynamics of an invading (barred owl: Strix varia) and a resident species (Northern spotted owl: Strix occidentalis caurina) in a 1000 km2 study area over a 22 - year period. Past studies of these competitors have focused on the dynamics of one species at a time, hindering efforts to parse out the roles of habitat and competition and to forecast the future of the resident species. In addition, while these studies accounted for the imperfect detection of the focal species, no multiseason analysis of these species has accounted for the imperfect detection of the secondary species, potentially biasing inference. We analyze survey data using models that combine the general multistate-multiseason occupancy modeling framework with autologistic modeling - allowing us to account for important aspects of our study system. We find that local extinction probability increases for each species when the other is present; however, the effect of the invader on the resident is greater. Although the species prefer different habitats, these habitats are highly correlated at the patch scale and the impacts of invader on the resident are greatest in patches that would otherwise be optimal. As a consequence, competition leads to a weaker relationship between habitat and Northern spotted owl occupancy. Colonization and extinction rates of the invader are closely related to neighborhood occupancy, and over the first half of the study the availability of colonists limited the rate of population growth. Competition is likely to exclude the resident species both through its immediate effects on local extinction, and by indirectly lowering colonization rates as Northern

  10. Dynamic communities in multichannel data: an application to the foreign exchange market during the 2007-2008 credit crisis.

    PubMed

    Fenn, Daniel J; Porter, Mason A; McDonald, Mark; Williams, Stacy; Johnson, Neil F; Jones, Nick S

    2009-09-01

    We study the cluster dynamics of multichannel (multivariate) time series by representing their correlations as time-dependent networks and investigating the evolution of network communities. We employ a node-centric approach that allows us to track the effects of the community evolution on the functional roles of individual nodes without having to track entire communities. As an example, we consider a foreign exchange market network in which each node represents an exchange rate and each edge represents a time-dependent correlation between the rates. We study the period 2005-2008, which includes the recent credit and liquidity crisis. Using community detection, we find that exchange rates that are strongly attached to their community are persistently grouped with the same set of rates, whereas exchange rates that are important for the transfer of information tend to be positioned on the edges of communities. Our analysis successfully uncovers major trading changes that occurred in the market during the credit crisis. PMID:19791999

  11. On The Temporal Dynamics Of Coupled Water And Carbon Exchange: Implications For Predictions Over Meteorological And Climate Time Scales.

    NASA Astrophysics Data System (ADS)

    Albertson, J. D.; Williams, C. A.; Scanlon, T. M.

    2002-12-01

    Short term water and carbon exchanges between vegetation and the atmosphere are strongly coupled through the stomatal function of plants. These high-frequency exchange rates are modulated by the lower-frequency variability in vegetation cover, as it responds to changes in forcing, such as water availability, across a range of time scales. Furthermore, the relative fractions of the dominant plant functional groups on the landscape possess different sensitivities and strategies (i.e. niches) with respect to environmental variables. An example of this is the classical difference in rooting depth (reservoir size) and wilting points of herbaceous and woody vegetation. Therefore, low frequency changes in the vegetation structure have clear mechanistic impacts on the functional behavior of the landscape in the context of water and carbon cycling. In this talk we highlight the interplay between functional dynamics and structural dynamics, with a focus on water and carbon exchange in a semi-arid context. We explore field data and remotely sensed data collected along the Kalahari Transect in southern Africa to gain insights into the processes and there effects on diurnal, inter-storm, seasonal, and inter-annual time scales. In particular, we highlight the hydrological implications of the contrasting frequency response of grasses and woody vegetation in water-limited systems.

  12. On the temporal dynamics of coupled water and carbon exchange: implications for predictions over meteorological and climate time scales

    NASA Astrophysics Data System (ADS)

    Albertson, J.; Scanlon, T.; Williams, C.

    2003-04-01

    Short term water and carbon exchanges between vegetation and the atmosphere are strongly coupled through the stomatal function of plants. These high-frequency exchange rates are modulated by the lower-frequency variability in vegetation cover, as it responds to changes in forcing, such as water availability, across a range of time scales. Furthermore, the relative fractions of the dominant plant functional groups on the landscape possess different sensitivities and strategies (i.e. niches) with respect to environmental variables. An example of this is the classical difference in rooting depth (reservoir size) and wilting points of herbaceous and woody vegetation. Therefore, low frequency changes in the vegetation structure have clear mechanistic impacts on the functional behavior of the landscape in the context of water and carbon cycling. In this talk we highlight the interplay between functional dynamics and structural dynamics, with a focus on water and carbon exchange in a semi-arid context. We explore field data and remotely sensed data collected along the Kalahari Transect in southern Africa to gain insights into the processes and there effects on diurnal, inter-storm, seasonal, and inter-annual time scales. In particular, we highlight the hydrological implications of the contrasting frequency response of grasses and woody vegetation in water-limited systems.

  13. Io's Atmospheric Freeze-out Dynamics in the Presence of a Non-condensable Species

    SciTech Connect

    Moore, Chris H.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.; Stewart, Benedicte D.; Walker, Andrew C.

    2008-12-31

    One dimensional direct simulation Monte Carlo (DSMC) simulations are used to examine the effect of a trace non-condensable species on the freeze-out dynamics of Io's sulfur dioxide sublimation atmosphere during eclipse and egress. Due to finite ballistic times, essentially no collapse occurs during the first 10 minutes of eclipse at altitudes above {approx}100 km, and hence immediately after ingress auroral emission morphology above 100 km should resemble that of the immediate pre-eclipse state. In the absence of a non-condensable species the sublimation SO2 atmosphere will freeze-out (collapse) during eclipse as the surface temperature drops. However, rapid collapse is prevented by the presence of even a small amount of a perfect non-condensable species due to the formation of a static diffusion layer several mean free paths thick near the surface. The higher the non-condensable mole fraction, the longer the collapse time. The effect of a weakly condensable gas species (non-zero sticking/reaction coefficient) was examined since real gas species may not be perfectly non-condensable at realistic surface temperatures. It is found that even a small sticking coefficient dramatically reduces the effect of the diffusion layer on the dynamics. If the sticking coefficient of the non-condensable exceeds {approx}0.25 the collapse dynamics are effectively the same as if there was no non-condensable present. This sensitivity results because the loss of non-condensable to the surface reduces the effective diffusion layer size and the formation of an effective diffusion layer requires that the layer be stationary which does not occur if the surface is a sink. As the surface temperature increases during egress from eclipse the sublimating SO2 gas pushes the non-condensable diffusion layer up to higher altitudes once it becomes dense enough to be collisional. This vertical species stratification should alter the auroral emissions after egress.

  14. Species Traits Predict Assemblage Dynamics at Ephemeral Resource Patches Created by Carrion

    PubMed Central

    Barton, Philip S.; Cunningham, Saul A.; Macdonald, Ben C. T.; McIntyre, Sue; Lindenmayer, David B.; Manning, Adrian D.

    2013-01-01

    Carrion is an ephemeral and spatially patchy resource that supports a diverse subset of species linked to nutrient cycling and the decomposition process. A number of studies have separately documented changes in the diversity of plants, arthropods and vertebrates at individual carcasses, but there are few studies that have examined how functional traits of different groups of organisms underpin their responses to carrion patches. We used a carrion addition experiment to compare changes in composition and functional traits of insect and plant assemblages at carcasses compared with control sites. We found that significant changes in insect assemblage evenness and heterogeneity was associated with species’ dispersal traits, and that plant assemblage responses to subsequent soil nitrogen changes was most apparent among graminoids and exotic species. Beetles at carcasses were twice as large as their counterparts at control sites during the first week of carrion decomposition, and also had higher wing loadings. Plants with high specific leaf area responded faster to the carcass addition, and twice as many species recolonised the centre of carcasses in exotic-dominated grassland compared with carcasses in native-dominated grassland. These results provide an example of how traits of opportunist species enable them to exploit patchy and dynamic resources. This increases our understanding of how carcasses can drive biodiversity dynamics, and has implications for the way carrion might be managed in ecosystems, such as appropriate consideration of spatial and temporal continuity in carrion resources to promote heterogeneity in nutrient cycling and species diversity within landscapes. PMID:23326549

  15. Dynamics of mtDNA introgression during species range expansion: insights from an experimental longitudinal study.

    PubMed

    Mastrantonio, V; Porretta, D; Urbanelli, S; Crasta, G; Nascetti, G

    2016-01-01

    Introgressive hybridization represents one of the long-lasting debated genetic consequences of species range expansion. Mitochondrial DNA has been shown to heavily introgress between interbreeding animal species that meet in new sympatric areas and, often, asymmetric introgression from local to the colonizing populations has been observed. Disentangling among the evolutionary and ecological processes that might shape this pattern remains difficult, because they continuously act across time and space. In this context, long-term studies can be of paramount importance. Here, we investigated the dynamics of mitochondrial introgression between two mosquito species (Aedes mariae and Ae. zammitii ) during a colonization event that started in 1986 after a translocation experiment. By analyzing 1,659 individuals across 25 years, we showed that introgression occurred earlier and at a higher frequency in the introduced than in the local species, showing a pattern of asymmetric introgression. Throughout time, introgression increased slowly in the local species, becoming reciprocal at most sites. The rare opportunity to investigate the pattern of introgression across time during a range expansion along with the characteristics of our study-system allowed us to support a role of demographic dynamics in determining the observed introgression pattern. PMID:27460445

  16. Nectar production dynamics and sugar composition in two Mucuna species (Leguminosae, Faboideae) with different specialized pollinators

    NASA Astrophysics Data System (ADS)

    Agostini, Kayna; Sazima, Marlies; Galetto, Leonardo

    2011-11-01

    Nectar is secreted in particular rhythms throughout the lifespan of a flower, which allows determining the nectar production dynamics. This paper compares nectar features in Mucuna japira and Mucuna urens describing: dynamics of nectar production, floral response to nectar removal, resorption, nectar sugar composition, and variation in nectar sugar composition. M. japira inflorescence bears 12-21 yellow flowers, which are in anthesis for 7 days, whereas M. urens inflorescence bears 36-54 greenish flowers, but only 1-3 flowers are in anthesis simultaneously that last one night. Nectar volume and sugar concentration were measured, and the amount of sugar was estimated. Qualitative and quantitative nectar sugar composition was determined. Both species had a constant nectar sugar concentration (ca. 10% for M. japira and ca. 16% for M. urens) and secreted high volumes of nectar (ca. 340 μl per flower for M. japira and 310 μl per flower for M. urens), during 5 days for M. japira and 6 h for M. urens, but after the first removal, i.e., when flower opening mechanism is triggered, nectar production stops immediately. Nectar resorption occurred in both species. Nectar sugar composition showed some similarities between the species. Variation in nectar sugar composition occurred in both species. The Mucuna species are dependent on their pollinators to produce fruits and seeds, and they have different strategies to promote the necessary interaction with birds or bats, especially related to nectar and flower characteristics.

  17. Spatio-temporal dynamics of species richness in coastal fish communities

    USGS Publications Warehouse

    Lekve, K.; Boulinier, T.; Stenseth, N.C.; Gjøsaeter, J.; Fromentin, J-M.; Hines, J.E.; Nichols, J.D.

    2002-01-01

    Determining patterns of change in species richness and the processes underlying the dynamics of biodiversity are of key interest within the field of ecology, but few studies have investigated the dynamics of vertebrate communities at a decadal temporal scale. Here, we report findings on the spado-temporal variability in the richness and composition of fish communities along the Norwegian Skagerrak coast having been surveyed for more than half a century. Using statistical models incorporating non-detection and associated sampling variance, we estimate local species richness and changes in species composition allowing us to compute temporal variability in species richness. We tested whether temporal variation could be related to distance to the open sea and to local levels of pollution. Clear differences in mean species richness and temporal variability are observed between fjords that were and were not exposed to the effects of pollution. Altogether this indicates that the fjord is an appropriate scale for studying changes in coastal fish communities in space and time. The year-to-year rates of local extinction and turnover were found to be smaller than spatial differences in community composition. At the regional level, exposure to the open sea plays a homogenizing role, possibly due to coastal currents and advection.

  18. Dynamics of mtDNA introgression during species range expansion: insights from an experimental longitudinal study

    PubMed Central

    Mastrantonio, V.; Porretta, D.; Urbanelli, S.; Crasta, G.; Nascetti, G.

    2016-01-01

    Introgressive hybridization represents one of the long-lasting debated genetic consequences of species range expansion. Mitochondrial DNA has been shown to heavily introgress between interbreeding animal species that meet in new sympatric areas and, often, asymmetric introgression from local to the colonizing populations has been observed. Disentangling among the evolutionary and ecological processes that might shape this pattern remains difficult, because they continuously act across time and space. In this context, long-term studies can be of paramount importance. Here, we investigated the dynamics of mitochondrial introgression between two mosquito species (Aedes mariae and Ae. zammitii ) during a colonization event that started in 1986 after a translocation experiment. By analyzing 1,659 individuals across 25 years, we showed that introgression occurred earlier and at a higher frequency in the introduced than in the local species, showing a pattern of asymmetric introgression. Throughout time, introgression increased slowly in the local species, becoming reciprocal at most sites. The rare opportunity to investigate the pattern of introgression across time during a range expansion along with the characteristics of our study-system allowed us to support a role of demographic dynamics in determining the observed introgression pattern. PMID:27460445

  19. Spin dynamics induced by ultrafast heating with ferromagnetic/antiferromagnetic interfacial exchange in perpendicularly magnetized hard/soft bilayers

    NASA Astrophysics Data System (ADS)

    Ma, Q. L.; Iihama, S.; Zhang, X. M.; Miyazaki, T.; Mizukami, S.

    2015-11-01

    The laser-induced spin dynamics of FeCo in perpendicularly magnetized L10-MnGa/FeCo bilayers with ferromagnetic and antiferromagnetic interfacial exchange coupling (IEC) are examined using the time-resolved magneto-optical Kerr effect. We found a precessional phase reversal of the FeCo layer as the IEC changes from ferromagnetic to antiferromagnetic. Moreover, a precession-suspension window was observed when the magnetic field was applied in a certain direction for the bilayer with ferromagnetic IEC. Our observations reveal that the spin dynamics modulation is strongly dependent on the IEC type within the Landau-Lifshitz-Gilbert depiction. The IEC dependence of the precessional phase and amplitude suggests the interesting method for magnetization dynamics modulation.

  20. Spin dynamics induced by ultrafast heating with ferromagnetic/antiferromagnetic interfacial exchange in perpendicularly magnetized hard/soft bilayers

    SciTech Connect

    Ma, Q. L. E-mail: mizukami@wpi-aimr.tohoku.ac.jp; Miyazaki, T.; Mizukami, S. E-mail: mizukami@wpi-aimr.tohoku.ac.jp; Iihama, S.; Zhang, X. M.

    2015-11-30

    The laser-induced spin dynamics of FeCo in perpendicularly magnetized L1{sub 0}-MnGa/FeCo bilayers with ferromagnetic and antiferromagnetic interfacial exchange coupling (IEC) are examined using the time-resolved magneto-optical Kerr effect. We found a precessional phase reversal of the FeCo layer as the IEC changes from ferromagnetic to antiferromagnetic. Moreover, a precession-suspension window was observed when the magnetic field was applied in a certain direction for the bilayer with ferromagnetic IEC. Our observations reveal that the spin dynamics modulation is strongly dependent on the IEC type within the Landau-Lifshitz-Gilbert depiction. The IEC dependence of the precessional phase and amplitude suggests the interesting method for magnetization dynamics modulation.

  1. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall G. E.; Goncharov, V.

    2012-05-29

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  2. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall, G.E.

    2011-05-31

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  3. Dynamics of hadronic molecule in one-boson exchange approach and possible heavy flavor molecules

    SciTech Connect

    Ding Guijun; Liu Jiafeng; Yan Mulin

    2009-03-01

    We extend the one pion exchange model at quark level to include the short distance contributions coming from {eta}, {sigma}, {rho} and {omega} exchange. This formalism is applied to discuss the possible molecular states of DD*/DD*, BB*/BB*, DD*, BB*, the pseudoscalar-vector systems with C=B=1 and C=-B=1 respectively. The ''{delta} function'' term contribution and the S-D mixing effects have been taken into account. We find the conclusions reached after including the heavier mesons exchange are qualitatively the same as those in the one pion exchange model. The previous suggestion that 1{sup ++} BB*/BB* molecule should exist, is confirmed in the one-boson exchange model, whereas DD* bound state should not exist. The DD*/DD* system can accommodate a 1{sup ++} molecule close to the threshold, the mixing between the molecule and the conventional charmonium has to be considered to identify this state with X(3872). For the BB* system, the pseudoscalar-vector systems with C=B=1 and C=-B=1, near threshold molecular states may exist. These bound states should be rather narrow, isospin is violated and the I=0 component is dominant. Experimental search channels for these states are suggested.

  4. Population dynamics of Scirtothrips dorsalis (Thysanoptera: Thripidae) and other thrips species on two ornamental host plant species in Southern Florida.

    PubMed

    Mannion, Catharine M; Derksen, Andrew I; Seal, Dakshina R; Osborne, Lance S; Martin, Cliff G

    2014-08-01

    Since its 2005 introduction into the United States, chilli thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae), has become a problematic pest of agronomic, vegetable, fruit, and ornamental plants. Knowledge of its population dynamics may help managers better monitor and control S. dorsalis. Population estimates were recorded for S. dorsalis and other thrips species on Knock-Out rose (Rosa 'Radrazz') and green buttonwood (Conocarpus erectus L.) from July 2007 to September 2008 in two field plots (one per plant species) in Homestead, FL. Yellow sticky card traps and samples of terminals, flowers, buds, and leaves were collected. S. dorsalis accounted for 95% of all thrips individuals collected from plants and 84% from traps with the remainder including at least 18 other thrips species. More thrips were caught on or flying near rose plants (47,438) than on or near buttonwoods (5,898), and on-plant densities of S. dorsalis appeared higher for rose than for buttonwood. Compared with rose leaves, rose buds, terminals, and flowers each had higher numbers of S. dorsalis, and buds and terminals had higher densities. On each host plant species, S. dorsalis density fluctuated over time with peaks in the late spring, summer, and fall, but populations were consistently low in the late winter and early spring. On roses, increased plant damage ratings correlated with reduced numbers of flowers and buds, reduced mean flower areas, and increased on-plant number and density of S. dorsalis. There were positive correlations over time between S. dorsalis density and plant damage rating for rose flowers (R = 0.78; P = 0.0003) and for buttonwood terminals (R = 0.90; P = 0.0001). Yellow sticky card traps were effective for monitoring S. dorsalis and may be especially useful and economically justified for the most susceptible hosts, but they also work well for less susceptible hosts. A good S. dorsalis scouting program should hence consider trap catches and symptoms such as leaf

  5. Spatial, temporal, and environmental dynamics of a multi-species epinephelid spawning aggregation in Pohnpei, Micronesia

    NASA Astrophysics Data System (ADS)

    Rhodes, K. L.; Nemeth, R. S.; Kadison, E.; Joseph, E.

    2014-09-01

    Long-term and short-term underwater visual censuses using SCUBA, technical Nitrox, and closed circuit rebreathers (CCR) were carried out in Pohnpei, Micronesia, to define spatial and temporal dynamics within a semi-protected multi-species epinephelid (fish) spawning aggregation (FSA) of brown-marbled grouper, Epinephelus fuscoguttatus, camouflage grouper, Epinephelus polyphekadion, and squaretail coralgrouper, Plectropomus areolatus. Results identified species-specific patterns of habitat use, abundance, residency, and dispersal of FSAs. Fish spawning aggregations formed and dispersed monthly within a 21-160-d period after winter solstice within adjacent yet distinct outer reef habitats. The reproductive season coincided with periods of seasonally low sub-surface seawater temperature. Peaks in density varied among species both within the calendar year and relative to the winter solstice. Significant long-term declines in FSA density were observed for all three species, suggesting population-level fishery-induced impacts, similar to those previously reported for E. polyphekadion. Differences in density estimates were also observed between dive gear, with a threefold difference in densities measured by CCR for E. polyphekadion versus SCUBA that suggest a disturbance effect from exhaled SCUBA bubbles for this species. CCR also allowed surveys to be conducted over a larger area in a single dive, thereby improving the potential to gauge actual abundance and density within FSAs. Based on these findings, a combination of long-term and intensive short-term monitoring strategies is recommended to fully characterize trends in seasonal abundance and habitat use for aggregating species at single or multi-species FSA sites. Inherent variations in the timing and distribution of species within FSA make fine-scale temporal management protocols less effective than blanket protective coverage of these species at (e.g., marine protected areas covering FSAs and adjacent migratory

  6. Analysis of one-dimensional pure-exchange NMR experiments for studying dynamics with broad distributions of correlation times.

    PubMed

    deAzevedo, E R; Tozoni, J R; Schmidt-Rohr, K; Bonagamba, T J

    2005-04-15

    One-dimensional (1D) exchange NMR experiments can elucidate the geometry, time scale, memory, and heterogeneity of slow molecular motions (1 ms-1 s) in solids. The one-dimensional version of pure-exchange (PUREX) solid-state exchange NMR, which is applied to static samples and uses the chemical shift anisotropy as a probe for molecular motion, is particularly promising and convenient in applications where site resolution is not a problem, i.e., in systems with few chemical sites. In this work, some important aspects of the 1D PUREX experiment applied to systems with complex molecular motions are analyzed. The influence of intermediate-regime (10 micros-1 ms) motions and of the distribution of reorientation angles on the pure-exchange intensity are discussed, together with a simple method for estimating the activation energy of motions occurring with a single correlation time. In addition, it is demonstrated that detailed information on the motional geometry can be obtained from 1D PUREX spectral line shapes. Experiments on a molecular crystal, dimethyl sulfone, confirm the analysis quantitatively. In two amorphous polymers, atactic polypropylene (aPP) and polyisobutylene (PIB), which differ only by one methyl group in the repeat unit, the height of the normalized exchange intensity clearly reveals a striking difference in the width of the distribution of correlation times slightly above the glass transition. The aPP shows the broad distribution and Williams-Landel-Ferry temperature dependence of correlation times typical of polymers and other "fragile" glass formers. In contrast, the dynamics in PIB occur essentially with a single correlation time and exhibits Arrhenius behavior, which is more typical of "strong" glass formers; this is somewhat surprising given the weak intermolecular forces in PIB. PMID:15945644

  7. Density dynamics of diverse Spiroplasma strains naturally infecting different species of Drosophila

    PubMed Central

    Haselkorn, Tamara S; Watts, Thomas D; Markow, Therese A

    2013-01-01

    Facultative heritable bacterial endosymbionts can have dramatic effects on their hosts, ranging from mutualistic to parasitic. Within-host bacterial endosymbiont density plays a critical role in maintenance of a symbiotic relationship, as it can affect levels of vertical transmission and expression of phenotypic effects, both of which influence the infection prevalence in host populations. Species of genus Drosophila are infected with Spiroplasma, whose characterized phenotypic effects range from that of a male-killing reproductive parasite to beneficial defensive endosymbiont. For many strains of Spiroplasma infecting at least 17 species of Drosophila, however, the phenotypic effects are obscure. The infection prevalence of these Spiroplasma vary within and among Drosophila species, and little is known about the within-host density dynamics of these diverse strains. To characterize the patterns of Spiroplasma density variation among Drosophila we used quantitative PCR to assess bacterial titer at various life stages of three species of Drosophila naturally-infected with two different types of Spiroplasma. For naturally infected Drosophila species we found that non-male-killing infections had consistently lower densities than the male-killing infection. The patterns of Spiroplasma titer change during aging varied among Drosophila species infected with different Spiroplasma strains. Bacterial density varied within and among populations of Drosophila, with individuals from the population with the highest prevalence of infection having the highest density. This density variation underscores the complex interaction of Spiroplasma strain and host genetic background in determining endosymbiont density. PMID:23846301

  8. Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species

    PubMed Central

    2010-01-01

    Background Streptococcus pneumoniae is one of the most important causes of microbial diseases in humans. The genomes of 44 diverse strains of S. pneumoniae were analyzed and compared with strains of non-pathogenic streptococci of the Mitis group. Results Despite evidence of extensive recombination, the S. pneumoniae phylogenetic tree revealed six major lineages. With the exception of serotype 1, the tree correlated poorly with capsular serotype, geographical site of isolation and disease outcome. The distribution of dispensable genes - genes present in more than one strain but not in all strains - was consistent with phylogeny, although horizontal gene transfer events attenuated this correlation in the case of ancient lineages. Homologous recombination, involving short stretches of DNA, was the dominant evolutionary process of the core genome of S. pneumoniae. Genetic exchange occurred both within and across the borders of the species, and S. mitis was the main reservoir of genetic diversity of S. pneumoniae. The pan-genome size of S. pneumoniae increased logarithmically with the number of strains and linearly with the number of polymorphic sites of the sampled genomes, suggesting that acquired genes accumulate proportionately to the age of clones. Most genes associated with pathogenicity were shared by all S. pneumoniae strains, but were also present in S. mitis, S. oralis and S. infantis, indicating that these genes are not sufficient to determine virulence. Conclusions Genetic exchange with related species sharing the same ecological niche is the main mechanism of evolution of S. pneumoniae. The open pan-genome guarantees the species a quick and economical response to diverse environments. PMID:21034474

  9. Influence of climate drivers on colonization and extinction dynamics of wetland-dependent species

    USGS Publications Warehouse

    Ray, Andrew M.; Gould, William R.; Hossack, Blake R.; Sepulveda, Adam; Thoma, David P.; Patla, Debra A.; Daley, Rob; Al-Chokhachy, Robert K.

    2016-01-01

    Freshwater wetlands are particularly vulnerable to climate change. Specifically, changes in temperature, precipitation, and evapotranspiration (i.e., climate drivers) are likely to alter flooding regimes of wetlands and affect the vital rates, abundance, and distributions of wetland-dependent species. Amphibians may be among the most climate-sensitive wetland-dependent groups, as many species rely on shallow or intermittently flooded wetland habitats for breeding. Here, we integrated multiple years of high-resolution gridded climate and amphibian monitoring data from Grand Teton and Yellowstone National Parks to explicitly model how variations in climate drivers and habitat conditions affect the occurrence and breeding dynamics (i.e., annual extinction and colonization rates) of amphibians. Our results showed that models incorporating climate drivers outperformed models of amphibian breeding dynamics that were exclusively habitat based. Moreover, climate-driven variation in extinction rates, but not colonization rates, disproportionately influenced amphibian occupancy in monitored wetlands. Long-term monitoring from national parks coupled with high-resolution climate data sets will be crucial to describing population dynamics and characterizing the sensitivity of amphibians and other wetland-dependent species to climate change. Further, long-term monitoring of wetlands in national parks will help reduce uncertainty surrounding wetland resources and strengthen opportunities to make informed, science-based decisions that have far-reaching benefits.

  10. Structure-dynamic basis of splicing-dependent regulation in tissue-specific variants of the sodium-calcium exchanger.

    PubMed

    Lee, Su Youn; Giladi, Moshe; Bohbot, Hilla; Hiller, Reuben; Chung, Ka Young; Khananshvili, Daniel

    2016-03-01

    Tissue-specific splice variants of Na(+)/Ca(2+) exchangers contain 2 Ca(2+)-binding regulatory domains (CBDs), CBD1 and CBD2. Ca(2+) interaction with CBD1 activates sodium-calcium exchangers (NCXs), and Ca(2+) binding to CBD2 alleviates Na(+)-dependent inactivation. A combination of mutually exclusive (A, B) and cassette (C-F) exons in CBD2 raises functionally diverse splice variants through unknown mechanisms. Here, the effect of exons on CBDs backbone dynamics were investigated in the 2-domain tandem (CBD12) of the brain, kidney, and cardiac splice variants by using hydrogen-deuterium exchange mass spectrometry and stopped-flow techniques. Mutually exclusive exons stabilize interdomain interactions in the apoprotein, which primarily predefines the extent of responses to Ca(2+) binding. Deuterium uptake levels were up to 20% lower in the cardiac vs. the brain CBD12, reveling that elongation of the CBD2 FG loop by cassette exons rigidifies the interdomain Ca(2+) salt bridge at the 2-domain interface, which secondarily modulates the Ca(2+)-bound states. In matching splice variants, the extent of Ca(2+)-induced rigidification correlates with decreased (up to 10-fold) Ca(2+) off rates, where the cardiac CBD12 exhibits the slowest Ca(2+) off rates. Collectively, structurally disordered/dynamic segments at mutually exclusive and cassette exons have local and distant effects on the folded structures nearby the Ca(2+) binding sites, which may serve as a structure-dynamic basis for splicing-dependent regulation of NCX. PMID:26644350

  11. Impact of curve construction and community dynamics on the species-time relationship.

    PubMed

    Carey, Susan; Ostling, Annette; Harte, John; del Moral, Roger

    2007-09-01

    The species-time relationship (STR) describes how the species richness of a community increases with the time span over which the community is observed. This temporal scaling provides insight into theoretical questions on species diversity patterns as well as applied questions on the appropriate time scale for biodiversity assessments. To better understand STRs, we discuss the methods used to construct STRs in the literature and derive the impact of curve construction on STR properties. Using vegetation data from Mount St. Helens, Washington, USA, we illustrate the sensitivity of the STR to construction under colonization-dominated dynamics. This study highlights the importance of considering the type of STR when interpreting, comparing, and applying STRs, particularly in disturbed or successional systems. PMID:17918393

  12. W Chromosome Dynamics in Triportheus Species (Characiformes, Triportheidae): An Ongoing Process Narrated by Repetitive Sequences.

    PubMed

    Yano, Cassia Fernanda; Bertollo, Luiz Antônio Carlos; Liehr, Thomas; Troy, Waldo Pinheiro; Cioffi, Marcelo de Bello

    2016-07-01

    Characterizing the abundance and genomic distribution of repetitive DNAs provides information on genome evolution, especially regarding the origin and differentiation of sex chromosomes. Triportheus fishes offer a useful model to explore the evolution of sex chromosomes, since they represent a monophyletic group in which all species share a ZZ/ZW sex chromosome system. In this study, we analyzed the distribution of 13 classes of repetitive DNA sequences by FISH, including microsatellites, rDNAs, and transposable elements in 6 Triportheus species, in order to investigate the fate of the sex-specific chromosome among them. These findings show the dynamic differentiation process of the W chromosome concerning changes in the repetitive DNA fraction of the heterochromatin. The differential accumulation of the same class of repeats on this chromosome, in both nearby and distant species, reflects the inherent dynamism of the microsatellites, as well as the plasticity that shapes the evolutionary history of the sex chromosomes, even among closely related species sharing a same sex chromosome system. PMID:27036509

  13. Species Richness Patterns and Water-Energy Dynamics in the Drylands of Northwest China

    PubMed Central

    Zerbe, Stefan; Abdusalih, Nurbay; Tang, Zhiyao; Ma, Ming; Yin, Linke; Mohammat, Anwar; Han, Wenxuan; Fang, Jingyun

    2013-01-01

    Dryland ecosystems are highly vulnerable to climatic and land-use changes, while the mechanisms underlying patterns of dryland species richness are still elusive. With distributions of 3637 native vascular plants, 154 mammals, and 425 birds in Xinjiang, China, we tested the water-energy dynamics hypothesis for species richness patterns in Central Asian drylands. Our results supported the water-energy dynamics hypothesis. We found that species richness of all three groups was a hump-shaped function of energy availability, but a linear function of water availability. We further found that water availability had stronger effects on plant richness, but weaker effects on vertebrate richness than energy availability. We conducted piecewise linear regressions to detect the breakpoints in the relationship between species richness and potential evapotranspiration which divided Xinjiang into low and high energy regions. The concordance between mammal and plant richness was stronger in high than in low energy regions, which was opposite to that between birds and plants. Plant richness had stronger effects than climate on mammal richness regardless of energy levels, but on bird richness only in high energy regions. The changes in the concordance between vertebrate and plant richness along the climatic gradient suggest that cautions are needed when using concordance between taxa in conservation planning. PMID:23840472

  14. Modeling the Impact of Spatial Structure on Growth Dynamics of Invasive Plant Species

    NASA Astrophysics Data System (ADS)

    Murphy, James T.; Johnson, Mark P.; Walshe, Ray

    2013-07-01

    Invasive nonindigenous plant species can have potentially serious detrimental effects on local ecosystems and, as a result, costly control efforts often have to be put in place to protect habitats. An example of an invasive problem on a global scale involves the salt marsh grass species from the genus Spartina. The spread of Spartina anglica in Europe and Asia has drawn much concern due to its ability to convert coastal habitats into cord-grass monocultures and to alter the native food webs. However, the patterns of invasion of Spartina species are amenable to spatially-explicit modeling strategies that take into account both temporal and spatio-temporal processes. In this study, an agent-based model of Spartina growth on a simulated mud flat environment was developed in order to study the effects of spatial pattern and initial seedling placement on the invasion dynamics of the population. The spatial pattern of an invasion plays a key role in the rate of spread of the species and understanding this can lead to significant cost savings when designing efficient control strategies. We present here a model framework that can be used to explicitly represent complex spatial and temporal patterns of invasion in order to be able to predict quantitatively the impact of these factors on invasion dynamics. This would be a useful tool for assessing eradication strategies and choosing optimal control solutions in order to be able to minimize future control costs.

  15. Isobaric molecular dynamics version of the generalized replica exchange method (gREM): Liquid–vapor equilibrium

    SciTech Connect

    Malolepsza, Edyta; Secor, Maxim; Keyes, Tom

    2015-09-23

    A prescription for sampling isobaric generalized ensembles with molecular dynamics is presented and applied to the generalized replica exchange method (gREM), which was designed for simulating first-order phase transitions. The properties of the isobaric gREM ensemble are discussed and a study is presented of the liquid-vapor equilibrium of the guest molecules given for gas hydrate formation with the mW water model. As a result, phase diagrams, critical parameters, and a law of corresponding states are obtained.

  16. Isobaric Molecular Dynamics Version of the Generalized Replica Exchange Method (gREM): Liquid-Vapor Equilibrium.

    PubMed

    Małolepsza, Edyta; Secor, Maxim; Keyes, Tom

    2015-10-22

    A prescription for sampling isobaric generalized ensembles with molecular dynamics is presented and applied to the generalized replica exchange method (gREM), which was designed to simulate first-order phase transitions. The properties of the isobaric gREM ensemble are discussed, and a study is presented for the liquid-vapor equilibrium of the guest molecules given for gas hydrate formation with the mW water model. Phase diagrams, critical parameters, and a law of corresponding states are obtained. PMID:26398582

  17. Neutral dynamics with environmental noise: Age-size statistics and species lifetimes

    NASA Astrophysics Data System (ADS)

    Kessler, David; Suweis, Samir; Formentin, Marco; Shnerb, Nadav M.

    2015-08-01

    Neutral dynamics, where taxa are assumed to be demographically equivalent and their abundance is governed solely by the stochasticity of the underlying birth-death process, has proved itself as an important minimal model that accounts for many empirical datasets in genetics and ecology. However, the restriction of the model to demographic [O (√{N }) ] noise yields relatively slow dynamics that appears to be in conflict with both short-term and long-term characteristics of the observed systems. Here we analyze two of these problems—age-size relationships and species extinction time—in the framework of a neutral theory with both demographic and environmental stochasticity. It turns out that environmentally induced variations of the demographic rates control the long-term dynamics and modify dramatically the predictions of the neutral theory with demographic noise only, yielding much better agreement with empirical data. We consider two prototypes of "zero mean" environmental noise, one which is balanced with regard to the arithmetic abundance, another balanced in the logarithmic (fitness) space, study their species lifetime statistics, and discuss their relevance to realistic models of community dynamics.

  18. Neutral dynamics with environmental noise: Age-size statistics and species lifetimes.

    PubMed

    Kessler, David; Suweis, Samir; Formentin, Marco; Shnerb, Nadav M

    2015-08-01

    Neutral dynamics, where taxa are assumed to be demographically equivalent and their abundance is governed solely by the stochasticity of the underlying birth-death process, has proved itself as an important minimal model that accounts for many empirical datasets in genetics and ecology. However, the restriction of the model to demographic [O√N)] noise yields relatively slow dynamics that appears to be in conflict with both short-term and long-term characteristics of the observed systems. Here we analyze two of these problems--age-size relationships and species extinction time--in the framework of a neutral theory with both demographic and environmental stochasticity. It turns out that environmentally induced variations of the demographic rates control the long-term dynamics and modify dramatically the predictions of the neutral theory with demographic noise only, yielding much better agreement with empirical data. We consider two prototypes of "zero mean" environmental noise, one which is balanced with regard to the arithmetic abundance, another balanced in the logarithmic (fitness) space, study their species lifetime statistics, and discuss their relevance to realistic models of community dynamics. PMID:26382447

  19. Rhythmic behaviour of marine benthopelagic species and the synchronous dynamics of benthic communities

    NASA Astrophysics Data System (ADS)

    Aguzzi, Jacopo; Sbragaglia, Valerio; Tecchio, Samuele; Navarro, Joan; Company, Joan B.

    2015-01-01

    Light-intensity cycles drive the relentless motion of species in the oceans, and water column migrants may cyclically make contact with the seabed, hence influencing the temporal dynamism of benthic ecosystems. The influence of light on this process remains largely unknown to date. In this study, we focus on the occurrence of day-night changes in benthic communities on the western Mediterranean continental shelf (100 m depth) and slope (400 m depth) as a potential result of a behaviourally sustained benthopelagic coupling. We analysed fluctuations in species abundance based on trawling at hourly intervals over a 4-day period as a proxy of activity rhythms at the seabed. We also measured light in situ to assess how the depth-related decrease of its intensity influences species rhythms and the occurrence of the putative benthopelagic synchronisation. Temporal similarities in the catch patterns for different species were screened by dendrogram analysis. On the continental shelf, species performing diel migrations (i.e., over a 24 h period) that were either vertical (i.e., benthopelagic) or horizontal across depths (i.e., nektobenthic) clustered together separately from the more sedentary endobenthic and epibenthic species. At the same depth, waveform analysis showed a significant diurnal increase in the catch of water column species and benthic species at night. Such coupling was absent on the continental slope, where light intensity was several orders of magnitude lower than that on the shelf. Our data indicate that diel activity rhythms, which are well known for vertical pelagic migrators, are also evident in the benthos. We discuss the role of light as a major evolutionary driver shaping the composition and biodiversity of benthic communities via visual predation.

  20. Mathematical Models of Quasi-Species Theory and Exact Results for the Dynamics.

    PubMed

    Saakian, David B; Hu, Chin-Kun

    2016-01-01

    We formulate the Crow-Kimura, discrete-time Eigen model, and continuous-time Eigen model. These models are interrelated and we established an exact mapping between them. We consider the evolutionary dynamics for the single-peak fitness and symmetric smooth fitness. We applied the quantum mechanical methods to find the exact dynamics of the evolution model with a single-peak fitness. For the smooth symmetric fitness landscape, we map exactly the evolution equations into Hamilton-Jacobi equation (HJE). We apply the method to the Crow-Kimura (parallel) and Eigen models. We get simple formulas to calculate the dynamics of the maximum of distribution and the variance. We review the existing mathematical tools of quasi-species theory. PMID:26342705

  1. Interactions among K+-Ca2+ Exchange, Sorption of m-Dinitrobenzene, and Smectite Quasicrystal Dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fate of organic compounds in soils and sediments is influenced by sorption of the compounds on surfaces of soil materials. We investigated the interaction among sorption of an organic compound, cation exchange reactions, and both the size and swelling of smectite quasicrystals. Two reference sme...

  2. Dynamic Models of Learning That Characterize Parent-Child Exchanges Predict Vocabulary Growth

    ERIC Educational Resources Information Center

    Ober, David R.; Beekman, John A.

    2016-01-01

    Cumulative vocabulary models for infants and toddlers were developed from models of learning that predict trajectories associated with low, average, and high vocabulary growth rates (14 to 46 months). It was hypothesized that models derived from rates of learning mirror the type of exchanges provided to infants and toddlers by parents and…

  3. The Role of IRF Exchanges in the Discursive Dynamics of E-Mail Tutored Interactions

    ERIC Educational Resources Information Center

    Giordan, Marcelo

    2003-01-01

    Initiation, response and follow-up (IRF) exchanges produced by a student and his tutor in an internet-based tutorial interaction have been analysed in terms of the multifunctional characteristics of each utterance. Different functions, related to different purposes, were observed in the IRF moves performed by the student. The control over the…

  4. High-resolution determination of {sup 147}Pm in urine using dynamic ion-exchange chromatography

    SciTech Connect

    Elchuk, S.; Lucy, C.A.; Burns, K.I.

    1992-10-15

    Ion exchange preconcentration followed by HPLC purification prior to scintillation counting was used to measure the concentration of {sup 147}Pm in urine. the detection limit for this method was found to be 0.1 Bq (3 fg) of {sup 147}Pm in 500 ml of urine.

  5. Low molecular weight oligomers of amyloid peptides display β-barrel conformations: A replica exchange molecular dynamics study in explicit solvent

    NASA Astrophysics Data System (ADS)

    De Simone, Alfonso; Derreumaux, Philippe

    2010-04-01

    The self-assembly of proteins and peptides into amyloid fibrils is connected to over 40 pathological conditions including neurodegenerative diseases and systemic amyloidosis. Diffusible, low molecular weight protein and peptide oligomers that form in the early steps of aggregation appear to be the harmful cytotoxic species in the molecular etiology of these diseases. So far, the structural characterization of these oligomers has remained elusive owing to their transient and dynamic features. We here address, by means of full atomistic replica exchange molecular dynamics simulations, the energy landscape of heptamers of the amyloidogenic peptide NHVTLSQ from the beta-2 microglobulin protein. The simulations totaling 5 μs show that low molecular weight oligomers in explicit solvent consist of β-barrels in equilibrium with amorphous states and fibril-like assemblies. The results, also accounting for the influence of the pH on the conformational properties, provide a strong evidence of the formation of transient β-barrel assemblies in the early aggregation steps of amyloid-forming systems. Our findings are discussed in terms of oligomers cytotoxicity.

  6. Dynamic C and N stocks - key factors controlling the C gas exchange of maize in a heterogenous peatland

    NASA Astrophysics Data System (ADS)

    Pohl, M.; Hoffmann, M.; Hagemann, U.; Giebels, M.; Albiac Borraz, E.; Sommer, M.; Augustin, J.

    2014-11-01

    Drainage and cultivation of fen peatlands creates complex small-scale mosaics of soils with extremely variable soil organic carbon (SOC) stocks and groundwater-level (GWL). To date, it remains unclear if such sites are sources or sinks for greenhouse gases like CO2 and CH4, especially if used for cropland. As individual control factors like GWL fail to account for this complexity, holistic approaches combining gas fluxes with the underlying processes are required to understand the carbon (C) gas exchange of drained fens. It can be assumed that the stocks of SOC and N located above the variable GWL - defined as dynamic C and N stocks - play a key role in the regulation of plant- and microbially mediated C gas fluxes of these soils. To test this assumption, the present study analysed the C gas exchange (gross primary production - GPP, ecosystem respiration - Reco, net ecosystem exchange - NEE, CH4) of maize using manual chambers for four years. The study sites were located near Paulinenaue, Germany. Here we selected three soils, which represent the full gradient in pedogenesis, GWL and SOC stocks (0-1 m) of the fen peatland: (a) Haplic Arenosol (AR; 8 kg C m-2); (b) Mollic Gleysol (GL; 38 kg C m-2); and (c) Hemic Histosol (HS; 87 kg C m-2). Daily GWL data was used to calculate dynamic SOC (SOCdyn) and N (Ndyn) stocks. Average annual NEE differed considerably among sites, ranging from 47 ± 30 g C m-2 a-1 at AR to -305 ± 123 g C m-2 a-1 at GL and -127 ± 212 g C m-2 a-1 at HS. While static SOC and N stocks showed no significant effect on C fluxes, SOCdyn and Ndyn and their interaction with GWL strongly influenced the C gas exchange, particularly NEE and the GPP:Reco ratio. Moreover, based on nonlinear regression analysis, 86% of NEE variability was explained by GWL and SOCdyn. The observed high relevance of dynamic SOC and N stocks in the aerobic zone for plant and soil gas exchange likely originates from the effects of GWL-dependent N availability on C formation and

  7. Dynamic C and N stocks - key factors controlling the C gas exchange of maize in heterogenous peatland

    NASA Astrophysics Data System (ADS)

    Pohl, M.; Hoffmann, M.; Hagemann, U.; Giebels, M.; Albiac Borraz, E.; Sommer, M.; Augustin, J.

    2015-05-01

    The drainage and cultivation of fen peatlands create complex small-scale mosaics of soils with extremely variable soil organic carbon (SOC) stocks and groundwater levels (GWLs). To date, the significance of such sites as sources or sinks for greenhouse gases such as CO2 and CH4 is still unclear, especially if the sites are used for cropland. As individual control factors such as GWL fail to account for this complexity, holistic approaches combining gas fluxes with the underlying processes are required to understand the carbon (C) gas exchange of drained fens. It can be assumed that the stocks of SOC and N located above the variable GWL - defined as dynamic C and N stocks - play a key role in the regulation of the plant- and microbially mediated CO2 fluxes in these soils and, inversely, for CH4. To test this assumption, the present study analysed the C gas exchange (gross primary production - GPP; ecosystem respiration - Reco; net ecosystem exchange - NEE; CH4) of maize using manual chambers for 4 years. The study sites were located near Paulinenaue, Germany, where we selected three soil types representing the full gradient of GWL and SOC stocks (0-1 m) of the landscape: (a) Haplic Arenosol (AR; 8 kg C m-2); (b) Mollic Gleysol (GL; 38 kg C m-2); and (c) Hemic Histosol (HS; 87 kg C m-2). Daily GWL data were used to calculate dynamic SOC (SOCdyn) and N (Ndyn) stocks. Average annual NEE differed considerably among sites, ranging from 47 ± 30 g C m-2 yr-1 in AR to -305 ± 123 g C m-2 yr-1 in GL and -127 ± 212 g C m-2 yr-1 in HS. While static SOC and N stocks showed no significant effect on C fluxes, SOCdyn and Ndyn and their interaction with GWL strongly influenced the C gas exchange, particularly NEE and the GPP : Reco ratio. Moreover, based on nonlinear regression analysis, 86% of NEE variability was explained by GWL and SOCdyn. The observed high relevance of dynamic SOC and N stocks in the aerobic zone for plant and soil gas exchange likely originates from the

  8. Placing the Dynamics of Syringe Exchange Programs in the United States

    PubMed Central

    2007-01-01

    Drawing upon the broader health, social, and political geography literature this paper outlines a framework for considering place-based processes through which syringe exchange availability may be understood. It is argued that the geographic distribution of syringe exchange programs (SEPs) in the United States is linked to the social and political conditions of particular localities through three place characteristics: (1) structural constraints; (2) social and spatial distancing of injection drug users; and (3) localized action. Although SEPs remain a controversial issue and face ongoing obstacles from the government, law enforcement and local communities, they continue to operate through the efforts of grassroots organizations and local activists. Action on this issue occurs locally, and the characteristics of place-based factors will affect whether particular areas adopt SEPs. PMID:16797217

  9. Dynamics of radionuclide exchange in the calcareous algae Halimeda at Enewetak Atoll

    SciTech Connect

    Spies, R.B.; Marsh, K.V.; Kercher, J.R.

    1981-01-01

    Measurements of /sup 239+240/Pu in the detrital inclusions and in acid-soluble and acid-insoluble fractions of Halimeda macrophysa showed a 10-fold higher concentration in the acid-insoluble coenocytic filaments than in the acid-soluble fraction. In a depuration experiment with Halimeda incrassata at Enewetak Atoll the loss rate of six radionuclides was measured. Data for /sup 60/Co, /sup 137/Cs, and /sup 102m/Rh were fit to loss curves by using one term for exponential loss; data for /sup 155/Eu, /sup 239+240/Pu, and /sup 241/Am required two terms. For each radionuclide, compartment size and transfer functions were determined for the appropriate one- and two-compartment models. Of 26 possible two-compartment models, only seven gave solutions with our data. Nearly identical loss rates were obtained for /sup 155/Eu, /sup 239+240/Pu, and /sup 241/Am in the fast-exchanging compartments for all seven models. The uptake rates for these nuclides were also similar when uptake rates were normalized to local sediment concentrations. The fast-exchanging compartment probably corresponds to the mucilage surface layer of the coenocytic filaments. The identity of the slow-exchanging compartment is less certain but it may correspond to the skeletal surface.

  10. Dynamics of radionuclide exchange in the calcareous algae Halimeda at Enewetak Atoll

    SciTech Connect

    Spies, R.B.; Marsh, K.V.; Kercher, J.R.

    1981-01-01

    Measurements of /sup 239 +240/Pu in the detrital inclusions and in acid-soluble and acid-insoluble fractions of Halimeda macrophysa showed a 10-fold higher concentration in the acid-insoluble coenocytic filaments than in the acid-soluble fraction. In a depuration experiment with Halimeda incrassata at Enewetak Atoll the loss rate of six radionuclides was measured. Data for /sup 60/Co, /sup 137/Cs, and /sup 102//sup m/Rh were fit to loss curves by using one term for exponential loss; data for /sup 155/Eu, /sup 239 +240/Pu, and /sup 241/Am required two terms. For each radionuclide, compartment size and transfer functions were determined for the apropriate one- and two-compartment models. Of 26 possible two-compartment models, only seven gave solutions with our data. Nearly identical loss rates were obtained for /sup 155/Eu, /sup 239 +240/Pu, and /sup 241/Am in the fast-exchanging compartments for all seven models. The uptake rates for these nuclides were also similar when uptake rates were normalized to local sediment concentrations. The fast-exchanging compartment probably corresponds to the mucilage surface layer of the coenocytic filaments. The identity of the slow-exchanging compartment is less certain but it may correspond to the skeletal surface.

  11. Cation Exchange in Dynamic 3D Porous Magnets: Improvement of the Physical Properties.

    PubMed

    Grancha, Thais; Acosta, Alvaro; Cano, Joan; Ferrando-Soria, Jesús; Seoane, Beatriz; Gascon, Jorge; Pasán, Jorge; Armentano, Donatella; Pardo, Emilio

    2015-11-16

    We report two novel three-dimensional porous coordination polymers (PCPs) of formulas Li4{Mn4[Cu2(Me3mpba)2]3}·68H2O (2) and K4{Mn4[Cu2(Me3mpba)2]3}·69H2O (3) obtained-via alkali cation exchange in a single-crystal to single-crystal process-from the earlier reported anionic manganese(II)-copper(II) PCP of formula Na4{Mn4[Cu2(Me3mpba)2]3}·60H2O (1) [Me3mpba(4-) = N,N'-2,4,6-trimethyl-1,3-phenylenebis(oxamate)]. This postsynthetic process succeeds where the direct synthesis in solution from the corresponding building blocks fails and affords significantly more robust PCPs with enhanced magnetic properties [long-range 3D magnetic ordering temperatures for the dehydrated phases (1'-3') of 2.0 (1'), 12.0 (2'), and 20.0 K (3')]. Changes in the adsorptive properties upon postsynthetic exchange suggest that the nature, electrostatic properties, mobility, and location of the cations within the framework are crucial for the enhanced structural stability. Overall, these results further confirm the potential of postsynthetic methods (including cation exchange) to obtain PCPs with novel or enhanced physical properties while maintaining unaltered their open-framework structures. PMID:26492551

  12. Weak coordination among petiole, leaf, vein, and gas-exchange traits across 41 Australian angiosperm species and its possible implications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and Aims Close coordination between leaf gas exchange and maximal hydraulic supply has been reported across diverse plant life-forms. However, recent reports suggest that this relationship may become weak or break down completely within the angiosperms. Methods To examine this possi...

  13. Constant pH Replica Exchange Molecular Dynamics in Explicit Solvent Using Discrete Protonation States: Implementation, Testing, and Validation

    PubMed Central

    2015-01-01

    By utilizing Graphics Processing Units, we show that constant pH molecular dynamics simulations (CpHMD) run in Generalized Born (GB) implicit solvent for long time scales can yield poor pKa predictions as a result of sampling unrealistic conformations. To address this shortcoming, we present a method for performing constant pH molecular dynamics simulations (CpHMD) in explicit solvent using a discrete protonation state model. The method involves standard molecular dynamics (MD) being propagated in explicit solvent followed by protonation state changes being attempted in GB implicit solvent at fixed intervals. Replica exchange along the pH-dimension (pH-REMD) helps to obtain acceptable titration behavior with the proposed method. We analyzed the effects of various parameters and settings on the titration behavior of CpHMD and pH-REMD in explicit solvent, including the size of the simulation unit cell and the length of the relaxation dynamics following protonation state changes. We tested the method with the amino acid model compounds, a small pentapeptide with two titratable sites, and hen egg white lysozyme (HEWL). The proposed method yields superior predicted pKa values for HEWL over hundreds of nanoseconds of simulation relative to corresponding predicted values from simulations run in implicit solvent. PMID:24803862

  14. Dynamic regulation of fluorescent proteins from a single species of coral.

    PubMed

    Kao, Hung-Teh; Sturgis, Shelby; DeSalle, Rob; Tsai, Julia; Davis, Douglas; Gruber, David F; Pieribone, Vincent A

    2007-01-01

    To gain a better understanding of the natural function of fluorescent proteins, we have undertaken quantitative analyses of these proteins in a single species of coral, Montastraea cavernosa, residing around Turneffe atoll, on the Belizean Barrier Reef. We identified at least 10 members of a fluorescent protein family in this species, which consist of 4 distinct spectral classes. As much as a 10-fold change in the overall expression of fluorescent proteins was observed from specimen to specimen, suggesting that fluorescent proteins are dynamically regulated in response to environmental or physiological conditions. We found that the expression of some proteins was inversely correlated with depth, and that groups of proteins were coordinately expressed. There was no relationship between the expression of fluorescent proteins and the natural coloration of the Montastraea cavernosa specimens in this study. These findings have implications for current hypotheses regarding the properties and natural function of fluorescent proteins. PMID:17955294

  15. The Dynamics of Lateral Gene Transfer in Genus Leishmania - A Route for Adaptation and Species Diversification

    PubMed Central

    Vikeved, Elisabet; Backlund, Anders; Alsmark, Cecilia

    2016-01-01

    Background The genome of Leishmania major harbours a comparably high proportion of genes of prokaryote origin, acquired by lateral gene transfer (LGT). Some of these are present in closely related trypanosomatids, while some are detected in Leishmania only. We have evaluated the impact and destiny of LGT in genus Leishmania. Methodology/Principal Findings To study the dynamics and fate of LGTs we have performed phylogenetic, as well as nucleotide and amino acid composition analyses within orthologous groups of LGTs detected in Leishmania. A set of universal trypanosomatid LGTs was added as a reference group. Both groups of LGTs have, to some extent, ameliorated to resemble the recipient genomes. However, while virtually all of the universal trypanosomatid LGTs are distributed and conserved in the entire genus Leishmania, the LGTs uniquely present in genus Leishmania are more prone to gene loss and display faster rates of evolution. Furthermore, a PCR based approach has been employed to ascertain the presence of a set of twenty LGTs uniquely present in genus Leishmania, and three universal trypanosomatid LGTs, in ten additional strains of Leishmania. Evolutionary rates and predicted expression levels of these LGTs have also been estimated. Ten of the twenty LGTs are distributed and conserved in all species investigated, while the remainder have been subjected to modifications, or undergone pseudogenization, degradation or loss in one or more species. Conclusions/Significance LGTs unique to the genus Leishmania have been acquired after the divergence of Leishmania from the other trypanosomatids, and are evolving faster than their recipient genomes. This implies that LGT in genus Leishmania is a continuous and dynamic process contributing to species differentiation and speciation. This study also highlights the importance of carefully evaluating these dynamic genes, e.g. as LGTs have been suggested as potential drug targets. PMID:26730948

  16. Dynamics of species interaction strength in space, time and with developmental stage

    PubMed Central

    Kordas, Rebecca L.; Dudgeon, Steve

    2011-01-01

    Quantifying species interaction strengths enhances prediction of community dynamics, but variability in the strength of species interactions in space and time complicates accurate prediction. Interaction strengths can vary in response to density, indirect effects, priority effects or a changing environment, but the mechanism(s) causing direction and magnitudes of change are often unclear. We designed an experiment to characterize how environmental factors influence the direction and the strength of priority effects between sessile species. We estimated per capita non-trophic effects of barnacles (Semibalanus balanoides) on newly settled germlings of the fucoid, Ascophyllum nodosum, in the presence and absence of consumers in experiments on rocky shores throughout the Gulf of Maine, USA. Per capita effects on germlings varied among environments and barnacle life stages, and these interaction strengths were largely unaltered by changing consumer abundance. Whereas previous evidence shows adult barnacles facilitate fucoids, here, we show that recent settlers and established juveniles initially compete with germlings. As barnacles mature, they switch to become facilitators of fucoids. Consumers caused variable mortality of germlings through time comparable to that from competition. Temporally variable effects of interactors (e.g. S. balanoides), or spatial variation in their population structure, in different regions differentially affect target populations (e.g. A. nodosum). This may affect abundance of critical stages and the resilience of target species to environmental change in different geographical regions. PMID:21106597

  17. Population dynamics and interrelationships of some Dactylogyrus and Gyrodactylus species on Cyprinus carpio.

    PubMed

    Lux, E

    1990-08-01

    During 1986/87, 922 carps have been examined for ectoparasitic helminths. Altogether 6 species of Gyrodactylus and 4 species of Dactylogyrus were found. The most frequent parasite on the gills was D. extensus; it shows a great tolerance to the water temperature with two peaks of infestation between 2 and 9 degrees C. Additionally, relationships between the seasonal dynamics of the invasion cycle of D. extensus and D. anchoratus were recognized. In addition to Dactylogyrus 2 species of Gyrodactylus, G. shumani and G. sprostonae occurred on the gills. G. shulmani tends to show rapid population growth in the warmest months in summer. The highest number of helminths were found in the beginning of September. It is conceivable that G. shulmani will be an agent of a new helminthosis in the GDR. The infestation by G. shulmani is often accompanied by the occurrence of D. vastator. Both species reach the maximum values approximately at the same time. G. sprostonae reached high intensities already in June and August. The common infestation increased by G. katharineri, G. stankovici and G. kherulensis on skin nd fins. G. katharineri seems to have the most favourable conditions in April. The indices dropped to a minimum in summer and autumn. G. stankovici has likely similar ecological claims as G. katharineri and shows a peak of incidence in April, too. PMID:2291498

  18. Dynamic economic analysis on invasive species management: some policy implications of catchability.

    PubMed

    Kotani, Koji; Kakinaka, Makoto; Matsuda, Hiroyuki

    2009-07-01

    The problem of controlling invasive species has emerged as a global issue. In response to invasive species threats, governments often propose eradication. This article challenges the eradication view by studying optimal strategies for controlling invasive species in a simple dynamic model. The analysis mainly focuses on deriving policy implications of catchability in a situation where a series of controlling actions incurs operational costs that derive from the fact that catchability depends on the current stock size of invasive species. We analytically demonstrate that the optimal policy changes drastically, depending on the sensitivity of catchability in response to a change in the stock size, as well as on the initial stock. If the sensitivity of catchability is sufficiently high, the constant escapement policy with some interior target level is optimal. In contrast, if the sensitivity of catchability is sufficiently low, there could exist a threshold of the initial stock which differentiates the optimal action between immediate eradication and giving-up without any control. In the intermediate range, immediate eradication, giving-up without any control, or more complex policies may be optimal. Numerical analysis is employed to present economic intuitions and insights in both analytically tractable and intractable cases. PMID:19376137

  19. Cross-Cordillera exchange mediated by the Panama Canal increased the species richness of local freshwater fish assemblages.

    PubMed

    Smith, Scott A; Bell, Graham; Bermingham, Eldredge

    2004-09-22

    Completion of the Panama Canal in 1914 breached the continental divide and set into motion a natural experiment of unprecedented magnitude by bringing previously isolated freshwater fish communities into contact. The construction of a freshwater corridor connecting evolutionarily isolated communities in Pacific and Caribbean watersheds dramatically increased the rate of dispersal, without directly affecting species interactions. Here, we report that a large fraction of species have been able to establish themselves on the other side of the continental divide, whereas no species have become extinct, leading to a local increase in species richness. Our results suggest that communities are not saturated and that competitive exclusion does not occur over the time-scale previously envisioned. Moreover, the results of this unintentional experiment demonstrate that community composition and species richness were regulated by the regional process of dispersal, rather than by local processes such as competition and predation. PMID:15347510

  20. Dynamics of leaf gas exchange, chlorophyll fluorescence and stem diameter changes during freezing and thawing of Scots pine seedlings.

    PubMed

    Lindfors, Lauri; Hölttä, Teemu; Lintunen, Anna; Porcar-Castell, Albert; Nikinmaa, Eero; Juurola, Eija

    2015-12-01

    Boreal trees experience repeated freeze-thaw cycles annually. While freezing has been extensively studied in trees, the dynamic responses occurring during the freezing and thawing remain poorly understood. At freezing and thawing, rapid changes take place in the water relations of living cells in needles and in stem. While freezing is mostly limited to extracellular spaces, living cells dehydrate, shrink and their osmotic concentration increases. We studied how the freezing-thawing dynamics reflected on leaf gas exchange, chlorophyll fluorescence and xylem and living bark diameter changes of Scots pine (Pinus sylvestris L.) saplings in controlled experiments. Photosynthetic rate quickly declined following ice nucleation and extracellular freezing in xylem and needles, almost parallel to a rapid shrinking of xylem diameter, while that of living bark followed with a slightly longer delay. While xylem and living bark diameters responded well to decreasing temperature and water potential of ice, the relationship was less consistent in the case of increasing temperature. Xylem showed strong temporal swelling at thawing suggesting water movement from bark. After thawing xylem diameter recovered to a pre-freezing level but living bark remained shrunk. We found that freezing affected photosynthesis at multiple levels. The distinct dynamics of photosynthetic rate and stomatal conductance reveals that the decreased photosynthetic rate reflects impaired dark reactions rather than stomatal closure. Freezing also inhibited the capacity of the light reactions to dissipate excess energy as heat, via non-photochemical quenching, whereas photochemical quenching of excitation energy decreased gradually with temperature in agreement with the gas exchange data. PMID:26423334

  1. Reactive oxygen species (ROS)-induced actin glutathionylation controls actin dynamics in neutrophils

    PubMed Central

    Sakai, Jiro; Li, Jingyu; Subramanian, Kulandayan K.; Mondal, Subhanjan; Bajrami, Besnik; Hattori, Hidenori; Jia, Yonghui; Dickinson, Bryan C.; Zhong, Jia; Ye, Keqiang; Chang, Christopher J; Ho, Ye-Shih; Zhou, Jun; Luo, Hongbo R.

    2012-01-01

    Summary The regulation of actin dynamics is pivotal for cellular processes such as cell adhesion, migration, and phagocytosis, and thus is crucial for neutrophils to fulfill their roles in innate immunity. Many factors have been implicated in signal-induced actin polymerization, however the essential nature of the potential negative modulators are still poorly understood. Here we report that NADPH oxidase-dependent physiologically generated reactive oxygen species (ROS) negatively regulate actin polymerization in stimulated neutrophils via driving reversible actin glutathionylation. Disruption of glutaredoxin 1 (Grx1), an enzyme that catalyzes actin deglutathionylation, increased actin glutathionylation, attenuated actin polymerization, and consequently impaired neutrophil polarization, chemotaxis, adhesion, and phagocytosis. Consistently, Grx1-deficient murine neutrophils showed impaired in vivo recruitment to sites of inflammation and reduced bactericidal capability. Together, these results present a physiological role for glutaredoxin and ROS- induced reversible actin glutathionylation in regulation of actin dynamics in neutrophils. PMID:23159440

  2. Modeling spatiotemporal dynamics of outbreaking species: influence of environment and migration in a locust.

    PubMed

    Veran, Sophie; Simpson, Stephen J; Sword, Gregory A; Deveson, Edward; Piry, Sylvain; Hines, James E; Berthier, Karine

    2015-03-01

    Many pest species exhibit huge fluctuations in population abundance. Understanding their large-scale and long-term dynamics is necessary to develop effective control and management strategies. Occupancy models represent a promising approach to unravel interactions between environmental factors and spatiotemporal dynamics of outbreaking populations. Here, we investigated population dynamics of the Australian plague locust, Chortoicetes terminifera, using density data collected between 1988 and 2010 by the Australian Plague Locust Commission over more than 3 million km2 in eastern Australia. We applied multistate and autologistic multi-season occupancy models to test competing hypotheses about environmental and demographic processes affecting the large-scale dynamics of the Australian plague locust. We found that rainfall and land cover predictors best explained the spatial variability in outbreak probability across eastern Australia. Outbreaks are more likely to occur in temperate than tropical regions, with a faster and more continuous response to rainfall in desert than in agricultural areas. Our results also support the hypothesis that migration tends to propagate outbreaks only locally (over distances lower than 400 km) rather than across climatic regions. Our study suggests that locust outbreak forecasting and management systems could be improved by implementing key environmental factors and migration in hierarchical spatial models. Finally, our modeling framework can be seen as a step towards bridging the gap between mechanistic and more phenomenological models in the spatial analysis of fluctuating populations. PMID:26236870

  3. High population variability and source-sink dynamics in a solitary bee species.

    PubMed

    Franzén, Markus; Nilsson, Sven G

    2013-06-01

    Although solitary bees are considered to play key roles in ecosystem functions, surprisingly few studies have explored their population dynamics. We investigated the population dynamics of a rare, declining, solitary bee (Andrena humilis) in a landscape of 80 km2 in southern Sweden from 2003 to 2011. Only one population was persistent throughout all years studied; most likely this population supplied the surrounding landscape with 11 smaller, temporary local populations. Despite stable pollen availability, the size of the persistent population fluctuated dramatically in a two-year cycle over the nine years, with 490-1230 nests in odd-numbered years and 21-48 nests in even-numbered years. These fluctuations were not significantly related to climatic variables or pollen availability. Nineteen colonization and 14 extinction events were recorded. Occupancy decreased with distance from the persistent population and increased with increasing resource (pollen) availability. There were significant positive correlations between the size of the persistent population and patch occupancy and colonization. Colonizations were generally more common in patches closer to the persistent population, whereas extinctions were independent of distance from the persistent population. Our results highlight the complex population dynamics that exist for this solitary bee species, which could be due to source-sink dynamics, a prolonged diapause, or can represent a bet-hedging strategy to avoid natural enemies and survive in small habitat patches. If large fluctuations in solitary bee populations prove to be widespread, it will have important implications for interpreting ecological relationships, bee conservation, and pollination. PMID:23923503

  4. Could beaked whales get the bends? Effect of diving behaviour and physiology on modelled gas exchange for three species: Ziphius cavirostris, Mesoplodon densirostris and Hyperoodon ampullatus.

    PubMed

    Hooker, Sascha K; Baird, Robin W; Fahlman, Andreas

    2009-07-31

    A mathematical model, based on current knowledge of gas exchange and physiology of marine mammals, was used to predict blood and tissue tension N2 (P(N2)) using field data from three beaked whale species: northern bottlenose whales, Cuvier's beaked whales, and Blainville's beaked whales. The objective was to determine if physiology (body mass, diving lung volume, dive response) or dive behaviour (dive depth and duration, changes in ascent rate, diel behaviour) would lead to differences in P(N2) levels and thereby decompression sickness (DCS) risk between species. Diving lung volume and extent of the dive response had a large effect on end-dive P(N2). The dive profile had a larger influence on end-dive P(N2) than body mass differences between species. Despite diel changes in dive behaviour, P(N2) levels showed no consistent trend. Model output suggested that all three species live with tissue P(N2) levels that would cause a significant proportion of DCS cases in terrestrial mammals. Cuvier's beaked whale diving behaviour appears to put them at higher risk than the other species, which may explain their prevalence in strandings after the use of mid-frequency sonar. PMID:19427415

  5. Free energies and mechanisms of water exchange around Uranyl from first principles molecular dynamics

    SciTech Connect

    Atta-Fynn, Raymond; Bylaska, Eric J.; De Jong, Wibe A.

    2012-02-01

    From density functional theory (DFT) based ab initio (Car-Parrinello) metadynamics, we compute the activation energies and mechanisms of water exchange between the first and second hydration shells of aqueous Uranyl (UO{sub 2}{sup 2+}) using the primary hydration number of U as the reaction coordinate. The free energy and activation barrier of the water dissociation reaction [UO{sub 2}(OH{sub 2}){sub 5}]{sup 2+}(aq) {yields} [UO{sub 2}(OH{sub 2})4]{sup 2+}(aq) + H{sub 2}O are 0.7 kcal and 4.7 kcal/mol respectively. The free energy is in good agreement with previous theoretical (-2.7 to +1.2 kcal/mol) and experimental (0.5 to 2.2 kcal/mol) data. The associative reaction [UO{sub 2}(OH{sub 2}){sub 5}]{sup 2+}(aq) + H{sub 2}O {yields} [UO{sub 2}(OH{sub 2})6]{sup 2+}(aq) is short-lived with a free energy and activation barrier of +7.9 kcal/mol and +8.9 kca/mol respectively; it is therefore classified as associative-interchange. On the basis of the free energy differences and activation barriers, we predict that the dominant exchange mechanism between [UO{sub 2}(OH{sub 2}){sub 5}]{sup 2+}(aq) and bulk water is dissociative.

  6. Price dynamics and market power in an agent-based power exchange

    NASA Astrophysics Data System (ADS)

    Cincotti, Silvano; Guerci, Eric; Raberto, Marco

    2005-05-01

    This paper presents an agent-based model of a power exchange. Supply of electric power is provided by competing generating companies, whereas demand is assumed to be inelastic with respect to price and is constant over time. The transmission network topology is assumed to be a fully connected graph and no transmission constraints are taken into account. The price formation process follows a common scheme for real power exchanges: a clearing house mechanism with uniform price, i.e., with price set equal across all matched buyer-seller pairs. A single class of generating companies is considered, characterized by linear cost function for each technology. Generating companies compete for the sale of electricity through repeated rounds of the uniform auction and determine their supply functions according to production costs. However, an individual reinforcement learning algorithm characterizes generating companies behaviors in order to attain the expected maximum possible profit in each auction round. The paper investigates how the market competitive equilibrium is affected by market microstructure and production costs.

  7. Dynamics of the fully stripped ion-hydrogen atom charge exchange process in dense quantum plasmas

    SciTech Connect

    Zhang, Ling-yu; Wan, Jiang-feng; Zhao, Xiao-ying; Xiao, Guo-qing; Duan, Wen-shan; Qi, Xin; Yang, Lei

    2014-09-15

    The plasma screening effects of dense quantum plasmas on charge exchange processes of a fully stripped ion colliding with a hydrogen atom are studied by the classical trajectory Monte Carlo method. The inter-particle interactions are described by the exponential cosine-screened Coulomb potentials. It is found that in weak screening conditions, cross sections increase with the increase of the ionic charge Z. However, in strong screening conditions, the dependence of cross sections on the ionic charge is related to the incident particle energy. At high energies, cross sections show a linear increase with the increase of Z, whereas at low energies, cross sections for Z≥4 become approximately the same. The He{sup 2+} and C{sup 6+} impacting charge exchange cross sections in dense quantum plasmas are also compared with those in weakly coupled plasmas. The interactions are described by the static screened Coulomb potential. It is found that for both He{sup 2+} and C{sup 6+}, the oscillatory screening effects of dense quantum plasmas are almost negligible in weak screening conditions. However, in strong screening conditions, the oscillatory screening effects enhance the screening effects of dense quantum plasmas, and the enhancement becomes more and more significant with the increase of the screening parameter and the ionic charge.

  8. Beam dynamics simulations of the transverse-to-longitudinal emittance exchange proof-of-principle experiment at the Argonne Wakefield Accelerator

    SciTech Connect

    Rihaoui, M.; Gai, W.; Kim, K.J.; Piot, Philippe; Power, John Gorham; Sun, Y.E.; /Fermilab

    2009-01-01

    Transverse-to-longitudinal emittance exchange has promising applications in various advanced acceleration and light source concepts. A proof-of-principle experiment to demonstrate this phase space manipulation method is currently being planned at the Argonne Wakefield Accelerator. The experiment focuses on exchanging a low longitudinal emittance with a high transverse horizontal emittance and also incorporates room for possible parametric studies e.g. using an incoming flat beam with tunable horizontal emittance. In this paper, we present realistic start-to-end beam dynamics simulation of the scheme, explore the limitations of this phase space exchange.

  9. Beam dynamics simulations of the transverse-to-longitudinal emittance exchange proof-of-principle experiment at the Argonne Wakefield Accelerator.

    SciTech Connect

    Gao, F.; Gai, W.; Power, J. G.; Kim, K. J.; Sun, Y. E.; Piot, P.; Rihaoui, M.; High Energy Physics; Northern Illinois Univ.; FNAL

    2009-01-01

    Transverse-to-longitudinal emittance exchange has promising applications in various advanced acceleration and light source concepts. A proof-of-principle experiment to demonstrate this phase space manipulation method is currently being planned at the Argonne Wakefield Accelerator. The experiment focuses on exchanging a low longitudinal emittance with a high transverse horizontal emittance and also incorporates room for possible parametric studies e.g. using an incoming flat beam with tunable horizontal emittance. In this paper, we present realistic start-to-end beam dynamics simulation of the scheme, explore the limitations of this phase space exchange.

  10. Beam dynamics simulations of the transverse-to-longitudinal emittance exchange proof-of-principle experiment at the Argonne Wakefield Accelerator

    SciTech Connect

    Rihaoui, M.; Gai, W.; Kim, K.-J.; Power, J. G.; Piot, P.; Sun, Y.-E.

    2009-01-22

    Transverse-to-longitudinal emittance exchange has promising applications in various advanced acceleration and light source concepts. A proof-of-principle experiment to demonstrate this phase space manipulation method is currently being planned at the Argonne Wakefield Accelerator. The experiment focuses on exchanging a low longitudinal emittance with a high transverse horizontal emittance and also incorporates room for possible parametric studies e.g. using an incoming flat beam with tunable horizontal emittance. In this paper, we present realistic start-to-end beam dynamics simulation of the scheme, explore the limitations of this phase space exchange.

  11. Influence of the exchange-correlation functional on the quasi-harmonic lattice dynamics of II-VI semiconductors

    NASA Astrophysics Data System (ADS)

    Skelton, Jonathan M.; Tiana, Davide; Parker, Stephen C.; Togo, Atsushi; Tanaka, Isao; Walsh, Aron

    2015-08-01

    We perform a systematic comparison of the finite-temperature structure and properties of four bulk semiconductors (PbS, PbTe, ZnS, and ZnTe) predicted by eight popular exchange-correlation functionals from quasi-harmonic lattice-dynamics calculations. The performance of the functionals in reproducing the temperature dependence of a number of material properties, including lattice parameters, thermal-expansion coefficients, bulk moduli, heat capacities, and phonon frequencies, is evaluated quantitatively against available experimental data. We find that the phenomenological over- and under-binding characteristics of the local-density approximation and the PW91 and Perdew-Burke-Enzerhof (PBE) generalised-gradient approximation (GGA) functionals, respectively, are exaggerated at finite temperature, whereas the PBEsol GGA shows good general performance across all four systems. The Tao-Perdew-Staroverov-Scuseria (TPSS) and revTPSS meta-GGAs provide relatively small improvements over PBE, with the latter being better suited to calculating structural and dynamical properties, but both are considerably more computationally demanding than the simpler GGAs. The dispersion-corrected PBE-D2 and PBE-D3 functionals perform well in describing the lattice dynamics of the zinc chalcogenides, whereas the lead chalcogenides appear to be challenging for these functionals. These findings show that quasi-harmonic calculations with a suitable functional can predict finite-temperature structure and properties with useful accuracy, and that this technique can serve as a means of evaluating the performance of new functionals in the future.

  12. Organic matter dynamics control plant species coexistence in a tropical peat swamp forest

    PubMed Central

    Shimamura, Tetsuya; Momose, Kuniyasu

    2005-01-01

    We studied the relationship between the coexistence of tree species and the dynamics of organic matter in forests. A tropical peat swamp forest was selected as a model ecosystem, where abiotic factors, such as geological topography or parent rock types, are homogeneous and only biological processes create habitat heterogeneity. The temporal or spatial variation of the ground elevation of peat soils is mainly caused by changes in the balance between organic matter inputs to soils and decomposition, which is affected by the growth and death of influential trees. To clarify the processes of elevation dynamics, we measured the microtopography around some tree groups, estimated organic matter (in the form of litter and roots) in soils under three kinds of microtopographic conditions, measured decomposition rates and detected dominant species' shifting distribution patterns in different stages of growth in relation to the locations of tree groups creating specific microtopographic conditions. We found that growth or death of buttressed trees has the greatest effects on the rising or sinking of ground surfaces through changes in litter supply and root production. We discuss here the possibility of extending our model to other forest types. PMID:16011926

  13. Long-term dynamics of production, respiration, and net CO2 exchange in two sagebrush-steppe ecosystems

    USGS Publications Warehouse

    Gilmanov, T.G.; Svejcar, T.J.; Johnson, D.A.; Angell, R.F.; Saliendra, Nicanor Z.; Wylie, B.K.

    2006-01-01

    We present a synthesis of long-term measurements of CO2 exchange in 2 US Intermountain West sagebrush-steppe ecosystems. The locations near Burns, Oregon (1995-2001), and Dubois, Idaho (1996-2001), are part of the AgriFlux Network of the Agricultural Research Service, United States Department of Agriculture. Measurements of net ecosystem CO2 exchange (F c) during the growing season were continuously recorded at flux towers using the Bowen ratio-energy balance technique. Data were partitioned into gross primary productivity (Pg) and ecosystem respiration (Re) using the light-response function method. Wintertime fluxes were measured during 1999/2000 and 2000/2001 and used to model fluxes in other winters. Comparison of daytime respiration derived from light-response analysis with nighttime tower measurements showed close correlation, with daytime respiration being on the average higher than nighttime respiration. Maxima of Pg and Re at Burns were both 20 g CO2?? m-2??d-1 in 1998. Maxima of Pg and R e at Dubois were 37 and 35 g CO2??m -2??d-1, respectively, in 1997. Mean annual gross primary production at Burns was 1 111 (range 475-1 715) g CO2?? m-2??y-1 about 30% lower than that at Dubois (1 602, range 963-2 162 g CO2??m-2??y-1). Across the years, both ecosystems were net sinks for atmospheric CO2 with a mean net ecosystem CO2 exchange of 82 g CO2?? m-2??y-1 at Burns and 253 g CO2?? m-2??y-1 at Dubois, but on a yearly basis either site could be a C sink or source, mostly depending on precipitation timing and amount. Total annual precipitation is not a good predictor of carbon sequestration across sites. Our results suggest that Fc should be partitioned into Pg and Re components to allow prediction of seasonal and yearly dynamics of CO2 fluxes.

  14. Free Energy Perturbation Hamiltonian Replica-Exchange Molecular Dynamics (FEP\\H-REMD) for absolute ligand binding free energy calculations.

    SciTech Connect

    Jiang, W.; Roux, B.

    2010-09-01

    Free Energy Perturbation with Replica Exchange Molecular Dynamics (FEP/REMD) offers a powerful strategy to improve the convergence of free energy computations. In particular, it has been shown previously that a FEP/REMD scheme allowing random moves within an extended replica ensemble of thermodynamic coupling parameters '{lambda}' can improve the statistical convergence in calculations of absolute binding free energy of ligands to proteins [J. Chem. Theory Comput. 2009, 5, 2583]. In the present study, FEP/REMD is extended and combined with an accelerated MD simulations method based on Hamiltonian replica-exchange MD (H-REMD) to overcome the additional problems arising from the existence of kinetically trapped conformations within the protein receptor. In the combined strategy, each system with a given thermodynamic coupling factor {lambda} in the extended ensemble is further coupled with a set of replicas evolving on a biased energy surface with boosting potentials used to accelerate the interconversion among different rotameric states of the side chains in the neighborhood of the binding site. Exchanges are allowed to occur alternatively along the axes corresponding to the thermodynamic coupling parameter {lambda} and the boosting potential, in an extended dual array of coupled {lambda}- and H-REMD simulations. The method is implemented on the basis of new extensions to the REPDSTR module of the biomolecular simulation program CHARMM. As an illustrative example, the absolute binding free energy of p-xylene to the nonpolar cavity of the L99A mutant of the T4 lysozyme was calculated. The tests demonstrate that the dual {lambda}-REMD and H-REMD simulation scheme greatly accelerates the configurational sampling of the rotameric states of the side chains around the binding pocket, thereby improving the convergence of the FEP computations.

  15. An Autoethnographic Exchange: Exploring the Dynamics of Selves as Adult Learners and Adult Educators

    ERIC Educational Resources Information Center

    Plakhotnik, Maria S.; Delgado, Antonio; Seepersad, Rehana

    2015-01-01

    This article explores four former doctoral students' perceptions about their selves as adult learners and adult educators through the use of autoethnography and reflective dialogue. The dynamics between the two selves were explored to identify emerging themes and implications for practice in adult education. The duality of their roles as learners…

  16. DYNAMICS OF N-EXCHANGE BETWEEN CORN (ZEA MAYS L.) ROOTS AND SOIL MICROBES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic N released in soil by roots is mineralized by microbes to be recycled in roots. The dynamics of this N mineralization-immobilization turnover between corn roots and microbes was quantified by the model NCSWAP/NCSOIL with data from corn field plots. The kinetics of inorganic N-15 in the 0- t...

  17. Phase transition of dynamical herd behaviors for Yen Dollar exchange rates

    NASA Astrophysics Data System (ADS)

    Yoon, Seong-Min; Choi, J. S.; Kim, Y.; Kim, Kyungsik

    2006-01-01

    We study the herd behavior and the phase transition for the yen-dollar exchange rate in the Japanese financial market. It is obtained that the probability distribution of returns satisfies the power-law behavior P(R)≃R with scaling exponents β=3.11, 2.81, and 2.29 at time intervals τ=1min, 30min, and 1 h. The crash region in which the probability density increases with the increasing return appears, when the herding parameter h satisfies h⩾2.33 for the case of τ<30min. We especially obtain that no crash occurs τ>30min and that the probability distribution of price returns occurs in the phase transition at τ=30min.

  18. Constant pH Molecular Dynamics in Explicit Solvent with Enveloping Distribution Sampling and Hamiltonian Exchange

    PubMed Central

    2015-01-01

    We present a new computational approach for constant pH simulations in explicit solvent based on the combination of the enveloping distribution sampling (EDS) and Hamiltonian replica exchange (HREX) methods. Unlike constant pH methods based on variable and continuous charge models, our method is based on discrete protonation states. EDS generates a hybrid Hamiltonian of different protonation states. A smoothness parameter s is used to control the heights of energy barriers of the hybrid-state energy landscape. A small s value facilitates state transitions by lowering energy barriers. Replica exchange between EDS potentials with different s values allows us to readily obtain a thermodynamically accurate ensemble of multiple protonation states with frequent state transitions. The analysis is performed with an ensemble obtained from an EDS Hamiltonian without smoothing, s = ∞, which strictly follows the minimum energy surface of the end states. The accuracy and efficiency of this method is tested on aspartic acid, lysine, and glutamic acid, which have two protonation states, a histidine with three states, a four-residue peptide with four states, and snake cardiotoxin with eight states. The pKa values estimated with the EDS-HREX method agree well with the experimental pKa values. The mean absolute errors of small benchmark systems range from 0.03 to 0.17 pKa units, and those of three titratable groups of snake cardiotoxin range from 0.2 to 1.6 pKa units. This study demonstrates that EDS-HREX is a potent theoretical framework, which gives the correct description of multiple protonation states and good calculated pKa values. PMID:25061443

  19. Dynamics and energy exchanges between a linear oscillator and a nonlinear absorber with local and global potentials

    NASA Astrophysics Data System (ADS)

    Charlemagne, S.; Lamarque, C.-H.; Ture Savadkoohi, A.

    2016-08-01

    The dynamical behavior of a two degree-of-freedom system made up of a linear oscillator and a coupled nonlinear energy sink with nonlinear global and local potentials is studied. The nonlinear global potential of the energy sink performs direct interactions with the linear oscillator, while its local potential depends only on its own behavior during vibratory energy exchanges between two oscillators. A time multiple scale method around 1:1:1 resonance is used to detect slow invariant manifold of the system, its equilibrium and singular points. Detected equilibrium points permit us to predict periodic regime(s) while singular points can lead the system to strongly modulated responses characterized by persistent bifurcations. Several possible scenarios occurring during these strongly modulated regimes are highlighted. All analytical predictions are compared with those which are obtained by direct numerical integration of system equations.

  20. Analyzing slowly exchanging protein conformations by ion mobility mass spectrometry: study of the dynamic equilibrium of prolyl oligopeptidase.

    PubMed

    López, Abraham; Vilaseca, Marta; Madurga, Sergio; Varese, Monica; Tarragó, Teresa; Giralt, Ernest

    2016-07-01

    Ion mobility mass spectrometry (IMMS) is a biophysical technique that allows the separation of isobaric species on the basis of their size and shape. The high separation capacity, sensitivity and relatively fast time scale measurements confer IMMS great potential for the study of proteins in slow (µs-ms) conformational equilibrium in solution. However, the use of this technique for examining dynamic proteins is still not generalized. One of the major limitations is the instability of protein ions in the gas phase, which raises the question as to what extent the structures detected reflect those in solution. Here, we addressed this issue by analyzing the conformational landscape of prolyl oligopeptidase (POP) - a model of a large dynamic enzyme in the µs-ms range - by native IMMS and compared the results obtained in the gas phase with those obtained in solution. In order to interpret the experimental results, we used theoretical simulations. In addition, the stability of POP gaseous ions was explored by charge reduction and collision-induced unfolding experiments. Our experiments disclosed two species of POP in the gas phase, which correlated well with the open and closed conformations in equilibrium in solution; moreover, a gas-phase collapsed form of POP was also detected. Therefore, our findings not only support the potential of IMMS for the study of multiple co-existing conformations of large proteins in slow dynamic equilibrium in solution but also stress the need for careful data analysis to avoid artifacts. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27434808

  1. Tree species specific soil moisture patterns and dynamics through the seasons

    NASA Astrophysics Data System (ADS)

    Heidbüchel, Ingo; Dreibrodt, Janek; Simard, Sonia; Güntner, Andreas; Blume, Theresa

    2015-04-01

    Soil moisture patterns in the landscape are largely controlled by soil types (pore size distributions) and landscape position. But how strong is the influence of vegetation on patterns within a single soil type? While we would envision a clear difference in soil moisture patterns and responses between for example bare soil, a pasture and a forest, our conceptual images start to become less clear when we move on to different forest stands. Do different tree species cause different moisture patterns to emerge? Could it be possible to identify the dominant tree species of a site by classifying its soil moisture pattern? To investigate this question we analyzed data from 15 sensor clusters in the lowlands of north-eastern Germany (within the TERENO observatory) which were instrumented with soil moisture sensors (5 profiles per site), tensiometers, sap flow sensors, throughfall and stemflow gages. Data has been collected at these sites since May 2014. While the summer data has already been analyzed, the analysis of the winter data and thus the possible seasonal shifts in patterns will be carried out in the coming months. Throughout the last summer we found different dynamics of soil moisture patterns under pine trees compared to beech trees. While the soils under beech trees were more often relatively wet and more often relatively dry, the soils under pine trees showed less variability and more often average soil moisture. These differences are most likely due to differences in both throughfall patterns as well as root water uptake. Further analysis includes the use of throughfall and stemflow data as well as stable water isotope samples that were taken at different depths in the soil, in the groundwater and from the sapwood. The manifestation of tree species differences in soil moisture patterns and dynamics is likely to have implications for groundwater recharge, transit times and hydrologic partitioning.

  2. Macroevolutionary Dynamics and Historical Biogeography of Primate Diversification Inferred from a Species Supermatrix

    PubMed Central

    Springer, Mark S.; Meredith, Robert W.; Gatesy, John; Emerling, Christopher A.; Park, Jong; Rabosky, Daniel L.; Stadler, Tanja; Steiner, Cynthia; Ryder, Oliver A.; Janečka, Jan E.; Fisher, Colleen A.; Murphy, William J.

    2012-01-01

    Phylogenetic relationships, divergence times, and patterns of biogeographic descent among primate species are both complex and contentious. Here, we generate a robust molecular phylogeny for 70 primate genera and 367 primate species based on a concatenation of 69 nuclear gene segments and ten mitochondrial gene sequences, most of which were extracted from GenBank. Relaxed clock analyses of divergence times with 14 fossil-calibrated nodes suggest that living Primates last shared a common ancestor 71–63 Ma, and that divergences within both Strepsirrhini and Haplorhini are entirely post-Cretaceous. These results are consistent with the hypothesis that the Cretaceous-Paleogene mass extinction of non-avian dinosaurs played an important role in the diversification of placental mammals. Previous queries into primate historical biogeography have suggested Africa, Asia, Europe, or North America as the ancestral area of crown primates, but were based on methods that were coopted from phylogeny reconstruction. By contrast, we analyzed our molecular phylogeny with two methods that were developed explicitly for ancestral area reconstruction, and find support for the hypothesis that the most recent common ancestor of living Primates resided in Asia. Analyses of primate macroevolutionary dynamics provide support for a diversification rate increase in the late Miocene, possibly in response to elevated global mean temperatures, and are consistent with the fossil record. By contrast, diversification analyses failed to detect evidence for rate-shift changes near the Eocene-Oligocene boundary even though the fossil record provides clear evidence for a major turnover event (“Grande Coupure”) at this time. Our results highlight the power and limitations of inferring diversification dynamics from molecular phylogenies, as well as the sensitivity of diversification analyses to different species concepts. PMID:23166696

  3. Microbial species diversity, community dynamics, and metabolite kinetics of water kefir fermentation.

    PubMed

    Laureys, David; De Vuyst, Luc

    2014-04-01

    Water kefir is a sour, alcoholic, and fruity fermented beverage of which the fermentation is started with water kefir grains. These water kefir grains consist of polysaccharide and contain the microorganisms responsible for the water kefir fermentation. In this work, a water kefir fermentation process was followed as a function of time during 192 h to unravel the community dynamics, the species diversity, and the kinetics of substrate consumption and metabolite production. The majority of the water kefir ecosystem was found to be present on the water kefir grains. The most important microbial species present were Lactobacillus casei/paracasei, Lactobacillus harbinensis, Lactobacillus hilgardii, Bifidobacterium psychraerophilum/crudilactis, Saccharomyces cerevisiae, and Dekkera bruxellensis. The microbial species diversities in the water kefir liquor and on the water kefir grains were similar and remained stable during the whole fermentation process. The major substrate, sucrose, was completely converted after 24 h of fermentation, which coincided with the production of the major part of the water kefir grain polysaccharide. The main metabolites of the fermentation were ethanol and lactic acid. Glycerol, acetic acid, and mannitol were produced in low concentrations. The major part of these metabolites was produced during the first 72 h of fermentation, during which the pH decreased from 4.26 to 3.45. The most prevalent volatile aroma compounds were ethyl acetate, isoamyl acetate, ethyl hexanoate, ethyl octanoate, and ethyl decanoate, which might be of significance with respect to the aroma of the end product. PMID:24532061

  4. Microbial Species Diversity, Community Dynamics, and Metabolite Kinetics of Water Kefir Fermentation

    PubMed Central

    Laureys, David

    2014-01-01

    Water kefir is a sour, alcoholic, and fruity fermented beverage of which the fermentation is started with water kefir grains. These water kefir grains consist of polysaccharide and contain the microorganisms responsible for the water kefir fermentation. In this work, a water kefir fermentation process was followed as a function of time during 192 h to unravel the community dynamics, the species diversity, and the kinetics of substrate consumption and metabolite production. The majority of the water kefir ecosystem was found to be present on the water kefir grains. The most important microbial species present were Lactobacillus casei/paracasei, Lactobacillus harbinensis, Lactobacillus hilgardii, Bifidobacterium psychraerophilum/crudilactis, Saccharomyces cerevisiae, and Dekkera bruxellensis. The microbial species diversities in the water kefir liquor and on the water kefir grains were similar and remained stable during the whole fermentation process. The major substrate, sucrose, was completely converted after 24 h of fermentation, which coincided with the production of the major part of the water kefir grain polysaccharide. The main metabolites of the fermentation were ethanol and lactic acid. Glycerol, acetic acid, and mannitol were produced in low concentrations. The major part of these metabolites was produced during the first 72 h of fermentation, during which the pH decreased from 4.26 to 3.45. The most prevalent volatile aroma compounds were ethyl acetate, isoamyl acetate, ethyl hexanoate, ethyl octanoate, and ethyl decanoate, which might be of significance with respect to the aroma of the end product. PMID:24532061

  5. Difference between the vocalizations of two sister species of pigeons explained in dynamical terms.

    PubMed

    Alonso, R Gogui; Kopuchian, Cecilia; Amador, Ana; Suarez, Maria de Los Angeles; Tubaro, Pablo L; Mindlin, Gabriel B

    2016-05-01

    Vocal communication is an unique example, where the nonlinear nature of the periphery can give rise to complex sounds even when driven by simple neural instructions. In this work we studied the case of two close-related bird species, Patagioenas maculosa and Patagioenas picazuro, whose vocalizations differ only in the timbre. The temporal modulation of the fundamental frequency is similar in both cases, differing only in the existence of sidebands around the fundamental frequency in the P. maculosa. We tested the hypothesis that the qualitative difference between these vocalizations lies in the nonlinear nature of the syrinx. In particular, we propose that the roughness of maculosa's vocalizations is due to an asymmetry between the right and left vibratory membranes, whose nonlinear dynamics generate the sound. To test the hypothesis, we generated a biomechanical model for vocal production with an asymmetric parameter Q with which we can control the level of asymmetry between these membranes. Using this model we generated synthetic vocalizations with the principal acoustic features of both species. In addition, we confirmed the anatomical predictions by making post mortem inspection of the syrinxes, showing that the species with tonal song (picazuro) has a more symmetrical pair of membranes compared to maculosa. PMID:27033354

  6. Formation of M2+(O2)(C3H8) species in alkaline-earth-exchanged Y zeolite during propane selective oxidation.

    PubMed

    Xu, Jiang; Mojet, Barbara L; van Ommen, Jan G; Lefferts, Leon

    2005-10-01

    The adsorption of oxygen and d2-propane (CH3CD2CH3) on a series of alkaline-earth-exchanged Y zeolite at room temperature was studied with in situ infrared spectroscopy. Surprisingly at room temperature, oxygen adsorption led to the formation of supercage M2+(O2) species. Further, at low propane coverage, propane was found to adsorb linearly on Mg2+ cations, but a ring-adsorption structure was observed for propane adsorbing on Ca2+, Sr2+, and Ba2+ cations. It is demonstrated that O2 and propane can simultaneously attach to one active center (M2+) to form a M2+(O2)(C3H8) species, which is proposed to be the precursor in thermal propane selective oxidation. Selectivity to acetone in the propane oxidation reaction decreases with increasing temperature and cation size due to the formation of 2-propanol and carboxylate ions. An extended reaction scheme for the selective oxidation of propane over alkaline earth exchanged Y zeolites is proposed. PMID:16853364

  7. Impact of unexpected events, shocking news, and rumors on foreign exchange market dynamics

    NASA Astrophysics Data System (ADS)

    McDonald, Mark; Suleman, Omer; Williams, Stacy; Howison, Sam; Johnson, Neil F.

    2008-04-01

    The dynamical response of a population of interconnected objects, when exposed to external perturbations, is of great interest to physicists working on complex systems. Here we focus on human systems, by analyzing the dynamical response of the world’s financial community to various types of unexpected events—including the 9/11 terrorist attacks as they unfolded on a minute-by-minute basis. For the unfolding events of 9/11, our results show that there was a gradual collective understanding of what was happening, rather than an immediate realization. More generally, we find that for news items which are not simple economic statements—and hence whose implications for the market are not immediately obvious—there are periods of collective discovery during which opinions seem to vary in a remarkably synchronized way.

  8. The Legacy of Invasive Species on Ecosystem Carbon Dynamics in a Restored Tallgrass Prairie

    NASA Astrophysics Data System (ADS)

    Matamala, R.; Graham, S.; Cook, D.; Gonzalez-Meler, M.

    2008-12-01

    Restoration of degraded grassland and prairie ecosystems represents a target sink for offsetting rising atmospheric CO2 levels by increasing carbon sequestration in C-depleted soils, as two-thirds of the biomass is allocated belowground. When considering controls on ecosystem C cycling, biodiversity-led productivity has the potential to be a strong biotic influence. However, invasive species can disrupt ecosystem processes by exhibiting functional characteristics which are distinct from their native counterparts. Invasibility has been linked to disturbance history, which might lead to additional vulnerability of managed lands. The restoration of tallgrass prairie at Fermilab, Batavia, IL, is a known C sink, accruing soil organic matter at rates 43 g C m-2 y-1 during the past 20 years. This rate integrates environmental, climatic and vegetation variations that occurred over this period. Typically, the tallgrass prairie is dominated by warm season grasses and forbs with sporadic but recurrent years when invasive species increase productivity. We measured net ecosystem exchange, net ecosystem production (NEP) and soil C at a 19- year-old restored tallgrass prairie in a four year study where plant species dominance varied. In the first year, the prairie restoration was a strong C sink with a NEP 438 g C m-2 despite a pronounced spring drought. During the second year, dominance of the invasive biannual Melilotus alba L., led to a shorter growing season that resulted on a 47% reduction in NEP from the previous year. NEP did not recover in the third year, even when M. alba was present but not dominant and a number of prairie species re-emerged, showing the legacy of the previous year disturbance. At this time soil C for all years and a fourth NEP year is being analyzed. These data suggest that biotic factors can exert large memory effects on NEP and possibly influence the sink capacity of restored ecosystems. Management strategies should aim to control biotic limitations

  9. Explorative and innovative dynamic flux bag method development and testing for mercury air-vegetation gas exchange fluxes

    NASA Astrophysics Data System (ADS)

    Zhang, Hong H.; Poissant, Laurier; Xu, Xiaohong; Pilote, Martin

    An intensive field study quantifying total gaseous mercury (TGM) and mercury speciation fluxes in a wetland ecosystem (Bay St. François wetlands, Québec, Canada) was conducted in summer 2003. This study is one of the first attempts to design and develop an innovative approach—dynamic flux bag (DFB) technique to measure in situ mercury air-vegetation exchange with a monoculture of river bulrush (S cirpus fluviatilis). Air-vegetation flux measurements were conducted under dry condition at site 1 and flood condition at site 2. TGM fluxes fluctuated from -0.91 to 0.64 ng/m 2 (leaf area)/h with an average value of -0.26±0.28 ng/m 2 (leaf area)/h at site 1 and ranged from -0.98 to 0.08 ng/m 2 (leaf area)/h with a mean flux of -0.33±0.24 ng/m 2 (leaf area)/h at site 2 (positive sign means volatilization, and negative sign indicates deposition). The data indicated that TGM air-vegetation exchange is bidirectional. However, the net flux is primarily featured by dry deposition of TGM from atmosphere to the vegetation. In mercury speciation study using the DFB approach, particulate mercury (PM) and reactive gaseous mercury (RGM) represented less than 1% of total mercury. Ambient ozone concentrations had significant influences on RGM concentrations ( r=0.54, p<0.05), implicating oxidation of gaseous elemental mercury (GEM) by ozone to form RGM. A discussion about the similarities and discrepancies between the DFB and other approaches (dynamic flux chamber and modified Bowen ratio) is presented. During the course of this study, some operational effects associated with the bag design, mainly the emergence of condensation within the bag, were encountered. Several improvements relating to the DFB design were recommended. Upon improvement, the DFB method could be one of the most promising techniques to study the role of a single plant in air-vegetation exchange of mercury.

  10. Ozone dynamics and snow-atmosphere exchanges during ozone depletion events at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Helmig, Detlev; Boylan, Patrick; Johnson, Bryan; Oltmans, Sam; Fairall, Chris; Staebler, Ralf; Weinheimer, Andrew; Orlando, John; Knapp, David J.; Montzka, Denise D.; Flocke, Frank; Frieß, Udo; Sihler, Holger; Shepson, Paul B.

    2012-10-01

    The behavior of lower atmospheric ozone and ozone exchanges at the snow surface were studied using a suite of platforms during the Ocean-Atmosphere-Sea Ice-Snow (OASIS) Spring 2009 experiment at an inland, coastal site east of Barrow, Alaska. A major objective was to investigate if and how much chemistry at the snow surface at the site contributes to springtime ozone depletion events (ODEs). Between March 8 and April 16, seven ODEs, with atmospheric ozone dropping below 1.0 ppbv, were observed. The depth of the ozone-depleted layer was variable, extending from the surface to ˜200-800 m. ODEs most commonly occurred during low wind speed conditions with flow coming from the Arctic Ocean. Two high-sensitivity ozone chemiluminescence instruments were used to accurately define the remaining sub-ppbv ozone levels during ODEs. These measurements showed variable residual ODE ozone levels ranging between 0.010 and 0.100 ppbv. During the most extended ODE, when ozone remained below 1.0 ppbv for over 78 h, these measurements showed a modest ozone recovery or production in the early afternoon hours, resulting in increases in the ozone mixing ratio of 0.100 to 0.800 ppbv. The comparison between high-sensitivity ozone measurements and BrO measured by longpath differential absorption spectroscopy (DOAS) during ODEs indicated that at low ozone levels formation of BrO is controlled by the amount of available ozone. Measurements of ozone in air drawn from below the snow surface showed depleted ozone in the snowpack, with levels consistently remaining <6 ppbv independent of above-surface ambient air concentrations. The snowpack was always a sink of ozone. Ozone deposition velocities determined from ozone surface flux measurements by eddy covariance were on the order of 0.01 cm s-1, which is of similar magnitude as ozone uptake rates found over snow at other polar sites that are not subjected to ODEs. The results from these multiple platform measurements unequivocally show that snow

  11. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    SciTech Connect

    Arevalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernandez-Maldonado, Arturo J.

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  12. Dynamic detection of species concentration and distribution in pre-combustion gases by laser spectroscopy of infrared absorption

    NASA Astrophysics Data System (ADS)

    Mei, Anhua; Aung, Kendrick

    2005-08-01

    This paper describes the development of spectrum computation and analysis for a single model and untunable laser spectroscopy to detect the species concentration and space distribution in pre-combustion gases. Absorption spectroscopy using infrared laser diode provides a dynamic, non-instructive, and in situ way to determine the concentration and distribution of the mixture of fuel gas and O2 in the pre-combustion gas stream. For species, wavelength suitable for absorption spectroscopy is determined using the spectra distributions of the species provided in HITRAN database. Inverse method and Abel algorithm are employed separately to retrieve the concentration of species and calculate the distribution of the measured gas. The results of the paper provide the foundation to develop a dynamic diagnostic instrument to monitor the state of gaseous species in hostile environments such as various industrial combustion systems.

  13. Dynamics of novel forests of Castilla elastica in Puerto Rico: from species to ecosystems

    PubMed Central

    Fonseca da Silva, Jéssica

    2015-01-01

    Novel forests (NFs)—forests that contain a combination of introduced and native species—are a consequence of intense anthropogenic disturbances and the natural resilience of disturbed ecosystems. The extent to which NFs have similar forest function as comparable native secondary forests is a matter of debate in the scientific community. Little is known about the performance of individual species in those forests. This study focuses on the functional attributes of Castilla elastica NFs in Puerto Rico and on the differences between introduced and native species growing side by side in these forests. Rates of processes measured here were later compared with data from literature about NSFs. I hypothesize that juvenile plants of C. elastica in NFs have higher survival rate than those of native species and that C. elastica trees have faster biomass fluxes than native trees. To test the hypotheses, I measured survival rates of juvenile plants and tree growth and characterized the aboveground litter fluxes and storage. Although juvenile plants of native species displayed higher survival rates than those of C. elastica (53% vs. 28%), the latter was dominant in the understory (96%). Stand biomass growth rate was 2.0 ± 0.4 (average ± one standard deviation) Mg·ha−1·year−1 for the whole forest, and Guarea guidonia, a native species, exhibited the highest tree growth. Total litter fall was 9.6 ± 0.5 Mg·ha−1·year−1, and mean litter standing stock was 4.4 ± 0.1 Mg·ha−1. Castilla elastica litter fall decomposed twice as fast as that of native species (5.8 ± 1.1 vs. 3.03 ± 1 k·year−1). Literature comparisons show that the present NFs differ in some rates of processes from NSFs. This study brings unique and detailed supporting data about the ecological dynamics under mature novel forest stands. Further comprehensive studies about NFs are important to strengthen the body of knowledge about the wide range of variation of emerging tropical ecosystems. Due to

  14. Novel wireless sensor system for dynamic characterization of borehole heat exchangers.

    PubMed

    Martos, Julio; Montero, Álvaro; Torres, José; Soret, Jesús; Martínez, Guillermo; García-Olcina, Raimundo

    2011-01-01

    The design and field test of a novel sensor system based in autonomous wireless sensors to measure the temperature of the heat transfer fluid along a borehole heat exchanger (BHE) is presented. The system, by means of two special valves, inserts and extracts miniaturized wireless sensors inside the pipes of the borehole, which are carried by the thermal fluid. Each sensor is embedded in a small sphere of just 25 mm diameter and 8 gr weight, containing a transceiver, a microcontroller, a temperature sensor and a power supply. A wireless data processing unit transmits to the sensors the acquisition configuration before the measurements, and also downloads the temperature data measured by the sensor along its way through the BHE U-tube. This sensor system is intended to improve the conventional thermal response test (TRT) and it allows the collection of information about the thermal characteristics of the geological structure of subsurface and its influence in borehole thermal behaviour, which in turn, facilitates the implementation of TRTs in a more cost-effective and reliable way. PMID:22164005

  15. Dynamic exchange coupling and spin pumping in ferromagnetic/normal metal bilayer

    NASA Astrophysics Data System (ADS)

    Rodriguez, Roberto; Rezende, Sergio; Azevedo, Antonio

    2014-03-01

    It is known that in ultra-thin ferromagnetic (FM) layers in contact with normal metals (NM), the spin pumping is the most important magnetic relaxation channel. In this work we present a detailed calculation of the NM thickness dependence of the magnetic relaxation in FM/NM bilayers. To calculate the relaxation rate we consider that at the FM/NM interface the spins of the FM layer interact with the NM conduction electron spins through the s-d exchange interaction. The coupled motion of the FM magnetization with the NM spin accumulation transfers to the FM magnetization an additional relaxation from the overdamped motion of the conduction electron spins in the NM layer. We compare our results with the well know treatment that consider only spin currents and show that both yield the same result. Research supported in Brazil by the agencies CNPq, CAPES, FINEP and FACEPE and in Chile by the Millennium Science Nucleus ``Basic and Applied Magnetism'' No. P10-061-F and FONDECYT No. 1130705 and 1120836.

  16. Dynamics of carbon dioxide exchange of a wheat community grown in a semi-closed environment

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    1989-01-01

    A wheat (Triticum aestivum Yecora Rojo) community was grown in the semi-closed conditions of the NASA/KSC Biomass Production Chamber (BPC). Experiments were conducted to determine whole community carbon dioxide exchange rates as influenced by growth and development, carbon dioxide concentration, time within the photoperiod, irradiance, and temperature. Plants were grown at a population of about 1500 per sq meter using a 20 hour light/4 hour dark daily regime. Light was supplied by HPS vapor lamps and irradiance was maintained in the range of 590 to 675 mu mol per sq meter. The temperature regime was 20 C light/16 C dark and nutrients were supplied hydroponically as a thin film. Fractional interception of PPF by the community increased rapidly during growth reaching a maximum of 0.96, 24 days after planting. This time corresponded to canopy closure and maximum rates of net photosynthesis (NP). Net daily CO2 utilization rates were calculated to day 48 and a 4th order regression equation integrated to obtain total moles of CO2 fixed by the community. This procedure may be useful for monitoring and prediction of biomass yields in a closed ecology life support system (CELSS).

  17. Novel Wireless Sensor System for Dynamic Characterization of Borehole Heat Exchangers

    PubMed Central

    Martos, Julio; Montero, Álvaro; Torres, José; Soret, Jesús; Martínez, Guillermo; García-Olcina, Raimundo

    2011-01-01

    The design and field test of a novel sensor system based in autonomous wireless sensors to measure the temperature of the heat transfer fluid along a borehole heat exchanger (BHE) is presented. The system, by means of two specials valves, inserts and extracts miniaturized wireless sensors inside the pipes of the borehole, which are carried by the thermal fluid. Each sensor is embedded in a small sphere of just 25 mm diameter and 8 gr weight, containing a transceiver, a microcontroller, a temperature sensor and a power supply. A wireless data processing unit transmits to the sensors the acquisition configuration before the measurements, and also downloads the temperature data measured by the sensor along its way through the BHE U-tube. This sensor system is intended to improve the conventional thermal response test (TRT) and it allows the collection of information about the thermal characteristics of the geological structure of subsurface and its influence in borehole thermal behaviour, which in turn, facilitates the implementation of TRTs in a more cost-effective and reliable way. PMID:22164005

  18. The work/exchange model: A generalized approach to dynamic load balancing

    SciTech Connect

    Wikstrom, M.C.

    1991-12-20

    A crucial concern in software development is reducing program execution time. Parallel processing is often used to meet this goal. However, parallel processing efforts can lead to many pitfalls and problems. One such problem is to distribute the workload among processors in such a way that minimum execution time is obtained. The common approach is to use a load balancer to distribute equal or nearly equal quantities of workload on each processor. Unfortunately, this approach relies on a naive definition of load imbalance and often fails to achieve the desired goal. A more sophisticated definition should account for the affects of additional factors including communication delay costs, network contention, and architectural issues. Consideration of additional factors led us to the realization that optical load distribution does not always result from equal load distribution. In this dissertation, we tackle the difficult problem of defining load imbalance. This is accomplished through the development of a parallel program model called the Generalized Work/Exchange Model. Associated with the model are equations for a restricted set of deterministically balanced programs that characterize idle time, elapsed time, and potential speedup. With the aid of the model, several common myths about load imbalance are exposed. A useful application called a load balancer enhancer is also presented which is applicable to the more general, quasi-static load unbalanced program.

  19. Ligand binding and proton exchange dynamics in site-specific mutants of human myoglobin

    SciTech Connect

    Lambright, D.G.

    1992-01-01

    Site specific mutagenesis was used to make substitutions of four residues in the distal heme pocket of human myoglobin: Val68, His64, Lys45, and Asp60. Strongly diffracting crystals of the conservative mutation K45R in the met aquo form were grown in the trigonal space group P3[sub 2]21 and the X-ray crystal structure determined at 1.6 [angstrom] resolution. The overall structure is similar to that of sperm whale met aquo myoglobin. Several of the mutant proteins were characterized by 2-D NMR spectroscopy. The NMR data suggest the structural changes are localized to the region of the mutation. The dynamics of ligand binding to myoglobin mutants were studied by transient absorption spectroscopy following photolysis of the CO complexes. Transient absorption kinetics and spectra on the ns to ms timescale were measured in aqueous solution from 280 K to 310 K and in 75% glycerol: water from 250 K to 310 K. Two significant basis spectra were obtained from singular value decomposition of the matrix of time dependent spectra. The information was used to obtain approximations for the extent of ligand rebinding and the kinetics of conformational relaxation. Except for K45R, substitutions at Lys45 or Asp60 produce changes in the kinetics for ligand rebinding. Replacement of Lys45 with Arg increases the rate of ligand rebinding from the protein matrix by a factor of 2, but does not alter the rates for ligand escape or entry into the protein or the dynamics of the conformational relaxation. Substitutions at His64 and Val68 influence the kinetics of ligand rebinding and the dynamics of conformational relaxation. The results do not support the hypothesis that ligand migration between the heme pocket and solvent is determined solely by fluctuations of Arg45 and His64 between open and closed conformations of the heme pocket but can be rationalized if ligand diffusion through the protein matrix involves multiple competing pathways.

  20. Dynamic behavior of chemical exchange column in a water detritiation system for a fusion reactor

    SciTech Connect

    Yamanishi, T.; Iwai, Y.

    2008-07-15

    The dynamic behavior of a CECE column used for a demonstration reactor (DEMO) plant has been studied. In the case where the column was filled with natural water, the time required to achieve steady state was almost the same as that for the column operated under the total reflux mode. The manipulated variables were flow rate of the bottom stream for the control of the bottom tritium concentration, and flow rate of the hydrogen stream for the control of the top tritium concentration. For both the variables, the response curve was expressed by the first-order lag system, and a PID controller could be applied. (authors)

  1. Applications of hydrogen deuterium exchange (HDX) for the characterization of conformational dynamics in light-activated photoreceptors

    PubMed Central

    Lindner, Robert; Heintz, Udo; Winkler, Andreas

    2015-01-01

    Rational design of optogenetic tools is inherently linked to the understanding of photoreceptor function. Structural analysis of elements involved in signal integration in individual sensor domains provides an initial idea of their mode of operation, but understanding how local structural rearrangements eventually affect signal transmission to output domains requires inclusion of the effector regions in the characterization. However, the dynamic nature of these assemblies renders their structural analysis challenging and therefore a combination of high- and low-resolution techniques is required to appreciate functional aspects of photoreceptors. This review focuses on the potential of hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) for complementing the structural characterization of photoreceptors. In this respect, the ability of HDX-MS to provide information on conformational dynamics and the possibility to address multiple functionally relevant states in solution render this methodology ideally suitable. We highlight recent examples demonstrating the potential of HDX-MS and discuss how these results can help to improve existing optogenetic systems or guide the design of novel optogenetic tools. PMID:26157802

  2. Folding of Trp-cage Mini Protein Using Temperature and Biasing Potential Replica—Exchange Molecular Dynamics Simulations

    PubMed Central

    Kannan, Srinivasaraghavan; Zacharias, Martin

    2009-01-01

    The folding process of the 20 residue Trp-cage mini-protein was investigated using standard temperature replica exchange molecular dynamics (T-RexMD) simulation and a biasing potential RexMD (BP-RexMD) method. In contrast to several conventional molecular dynamics simulations, both RexMD methods sampled conformations close to the native structure after 10–20 ns simulation time as the dominant conformational states. In contrast, to T-RexMD involving 16 replicas the BP-RexMD method achieved very similar sampling results with only five replicas. The result indicates that the BP-RexMD method is well suited to study folding processes of proteins at a significantly smaller computational cost, compared to T-RexMD. Both RexMD methods sampled not only similar final states but also agreed on the sampling of intermediate conformations during Trp-cage folding. The analysis of the sampled potential energy contributions indicated that Trp-cage folding is favored by both van der Waals and to a lesser degree electrostatic contributions. Folding does not introduce any significant sterical strain as reflected by similar energy distributions of bonded energy terms (bond length, bond angle and dihedral angle) of folded and unfolded Trp-cage structures. PMID:19399241

  3. Calculation of adsorption free energy for solute-surface interactions using biased replica-exchange molecular dynamics

    PubMed Central

    Wang, Feng; Stuart, Steven J.; Latour, Robert A.

    2009-01-01

    The adsorption behavior of a biomolecule, such as a peptide or protein, to a functionalized surface is of fundamental importance for a broad range of applications in biotechnology. The adsorption free energy for these types of interactions can be determined from a molecular dynamics simulation using the partitioning between adsorbed and nonadsorbed states, provided that sufficient sampling of both states is obtained. However, if interactions between the solute and the surface are strong, the solute will tend to be trapped near the surface during the simulation, thus preventing the adsorption free energy from being calculated by this method. This situation occurs even when using an advanced sampling algorithm such as replica-exchange molecular dynamics (REMD). In this paper, the authors demonstrate the fundamental basis of this problem using a model system consisting of one sodium ion (Na+) as the solute positioned over a surface functionalized with one negatively charged group (COO−) in explicit water. With this simple system, the authors show that sufficient sampling in the coordinate normal to the surface cannot be obtained by conventional REMD alone. The authors then present a method to overcome this problem through the use of an adaptive windowed-umbrella sampling technique to develop a biased-energy function that is combined with REMD. This approach provides an effective method for the calculation of adsorption free energy for solute-surface interactions. PMID:19768127

  4. Molecular dynamics simulation of energy exchanges during hydrogen collision with graphite sheets

    SciTech Connect

    Sun Jizhong; Li Shouyang; Wang Dezhen; Stirner, Thomas; Chen Junlin

    2010-06-15

    Experiments show that the energy of particles incident on divertor plates in fusion devices seldom exceeds 100 eV. Trim code and its variants are not suitable to predict the sputtering yield of carbon-based divertor plates for this energy range and, therefore, a dynamic model, taking into account the C-H bond formation and breaking, and the structure of carbon, is needed. In this paper, the molecular dynamics method is employed to investigate collision processes between incident hydrogen atoms and a graphene sheet. The simulation results demonstrate that the collision processes cannot be adequately described by a simple binary approximation. The energy transfer from the projectile to the graphite sheet exhibits a very complicated behavior when the kinetic energy of the incident hydrogen atom is below 30 eV, strongly depending on the impact position. When its kinetic energy is lower than 0.35 eV, the incident hydrogen is always reflected back from the single, perfect graphite sheet; when its kinetic energy is higher than 0.35 eV, then whether the incident particle penetrates the graphite sheet, is reflected back or is adsorbed depends on the impact position. In certain areas of the graphite sheet, either adsorption or reflection of an incident hydrogen atom can occur in two different energy ranges.

  5. Expression Pattern and Localization Dynamics of Guanine Nucleotide Exchange Factor RIC8 during Mouse Oogenesis

    PubMed Central

    Tõnissoo, Tambet; Meier, Riho; Kask, Keiu; Ruisu, Katrin; Karis, Alar; Salumets, Andres; Pooga, Margus

    2015-01-01

    Targeting of G proteins to the cell cortex and their activation is one of the triggers of both asymmetric and symmetric cell division. Resistance to inhibitors of cholinesterase 8 (RIC8), a guanine nucleotide exchange factor, activates a certain subgroup of G protein α-subunits in a receptor independent manner. RIC8 controls the asymmetric cell division in Caenorhabditis elegans and Drosophila melanogaster, and symmetric cell division in cultured mammalian cells, where it regulates the mitotic spindle orientation. Although intensely studied in mitosis, the function of RIC8 in mammalian meiosis has remained unknown. Here we demonstrate that the expression and subcellular localization of RIC8 changes profoundly during mouse oogenesis. Immunofluorescence studies revealed that RIC8 expression is dependent on oocyte growth and cell cycle phase. During oocyte growth, RIC8 is abundantly present in cytoplasm of oocytes at primordial, primary and secondary preantral follicle stages. Later, upon oocyte maturation RIC8 also populates the germinal vesicle, its localization becomes cell cycle dependent, and it associates with chromatin and the meiotic spindle. After fertilization, RIC8 protein converges to the pronuclei and is also detectable at high levels in the nucleolus precursor bodies of both maternal and paternal pronucleus. During first cleavage of zygote RIC8 localizes in the mitotic spindle and cell cortex of forming blastomeres. In addition, we demonstrate that RIC8 co-localizes with its interaction partners Gαi1/2:GDP and LGN in meiotic/mitotic spindle, cell cortex and polar bodies of maturing oocytes and zygotes. Downregulation of Ric8 by siRNA leads to interferred translocation of Gαi1/2 to cortical region of maturing oocytes and reduction of its levels. RIC8 is also expressed at high level in female reproductive organs e.g. oviduct. Therefore we suggest a regulatory function for RIC8 in mammalian gametogenesis and fertility. PMID:26062014

  6. Charge-exchange collision dynamics and ion engine grid geometry optimization

    NASA Astrophysics Data System (ADS)

    Morris, Bradford

    The development of a new three-dimensional model for determining the absolute energy distribution of ions at points corresponding to spacecraft surfaces to the side of an ion engine is presented. The ions resulting from elastic collisions, both charge-exchange (CEX) and direct, between energetic primary ions and thermal neutral xenon atoms are accounted for. Highly resolved energy distributions of CEX ions are found by integration over contributions from all points in space within the main beam formed by the primary ions.The sputtering rate due to impingement of these ions on a surface is calculated. The CEX ions that obtain significant energy (10 eV or more) in the collision are responsible for the majority of the sputtering, though this can depend on the specific material being sputtered. In the case of a molybdenum surface located 60 cm to the side of a 30 cm diameter grid, nearly 90% of the sputtering is due to the 5% of ions with the highest collision exit energies. Previous models that do not model collision energetics cannot predict this. The present results agree with other models and predict that the majority of the ion density is due to collisions where little to no energy is transferred.The sputtering model is combined with a grid-structure model in an optimization procedure where the sputtering rate at specified locations is minimized by adjustment of parameters defining the physical shape of the engine grids. Constraints are imposed that require that the deflection of the grid under a specified load does not exceed a maximum value, in order to ensure survivability of the grids during launch. To faciliate faster execution of the calculations, simplifications based on the predicted behavior of the CEX ions are implemented. For diametrically opposed sputtering locations, a rounded barrel-vault shape reduces the expected sputtering rate by up to 30% in comparison to an NSTAR-shaped grid.

  7. Plasma species dynamics in a laser produced carbon plasma expanding in low pressure neutral gas background

    NASA Astrophysics Data System (ADS)

    Ruiz, H. M.; Guzmán, F.; Favre, M.; Bhuyan, H.; Chuaqui, H.; Wyndham, E.

    2012-06-01

    We present time and space resolved spectroscopic observations of a laser produced carbon plasma, in an argon background. An Nd:YAG laser pulse, 370 mJ, 3.5 ns, at 1.06 μm, with a fluence of 6.8 J/cm2, is used to produce a plasma from a solid graphite target, at a base pressure of 0.5 mTorr, and with 80 mTorr Argon background. The spectral emission in the visible is recorded with 15 ns time resolution. 20 ns time resolution plasma imagining, filtered at characteristic carbon species emission wavelengths, is used to study the dynamics of the expanding plasma. Two different fronts with ionic or molecular compositions are seen to detach from de laser target plasma.

  8. Studies of ground-state dynamics in isolated species by ionization-detected stimulated Raman techniques

    SciTech Connect

    Felker, P.M.

    1993-12-01

    First, the author aims to develop methods of nonlinear Raman spectroscopy for application in studies of sparse samples. Second, the author wishes to apply such methods to structural and dynamical studies of species (molecules, complexes, and clusters) in supersonic molecular beams. In the past year, the author has made progress in several areas. The first pertains to the application of mass-selective ionization-detected stimulated Raman spectroscopies (IDSRS) to the size-specific vibrational spectroscopy of solute-solvent{sub n} clusters. The second involves the application of IDSRS methods to studies of jet-cooled benzene clusters. The third pertains to the use of IDSRS methods in the study of intermolecular vibrational transitions in van der Waals complexes.

  9. Influence of the exchange-correlation functional on the quasi-harmonic lattice dynamics of II-VI semiconductors.

    PubMed

    Skelton, Jonathan M; Tiana, Davide; Parker, Stephen C; Togo, Atsushi; Tanaka, Isao; Walsh, Aron

    2015-08-14

    We perform a systematic comparison of the finite-temperature structure and properties of four bulk semiconductors (PbS, PbTe, ZnS, and ZnTe) predicted by eight popular exchange-correlation functionals from quasi-harmonic lattice-dynamics calculations. The performance of the functionals in reproducing the temperature dependence of a number of material properties, including lattice parameters, thermal-expansion coefficients, bulk moduli, heat capacities, and phonon frequencies, is evaluated quantitatively against available experimental data. We find that the phenomenological over- and under-binding characteristics of the local-density approximation and the PW91 and Perdew-Burke-Enzerhof (PBE) generalised-gradient approximation (GGA) functionals, respectively, are exaggerated at finite temperature, whereas the PBEsol GGA shows good general performance across all four systems. The Tao-Perdew-Staroverov-Scuseria (TPSS) and revTPSS meta-GGAs provide relatively small improvements over PBE, with the latter being better suited to calculating structural and dynamical properties, but both are considerably more computationally demanding than the simpler GGAs. The dispersion-corrected PBE-D2 and PBE-D3 functionals perform well in describing the lattice dynamics of the zinc chalcogenides, whereas the lead chalcogenides appear to be challenging for these functionals. These findings show that quasi-harmonic calculations with a suitable functional can predict finite-temperature structure and properties with useful accuracy, and that this technique can serve as a means of evaluating the performance of new functionals in the future. PMID:26277159

  10. Species diversity, community dynamics, and metabolite kinetics of spontaneous leek fermentations.

    PubMed

    Wouters, D; Bernaert, N; Conjaerts, W; Van Droogenbroeck, B; De Loose, M; De Vuyst, L

    2013-04-01

    Leek (Allium ampeloprasum var. porrum) is one of Belgium's most important vegetables. All or part of the green leek parts are often left on the fields because of their limited cooking applications compared to the white leek parts. Therefore, the possibility to perform leek fermentations in view of product valorization and diversification was investigated. This study deals with the community dynamics, species diversity, and metabolite kinetics of spontaneous leek fermentations, thereby studying the influence of added NaCl concentration, harvesting season, and duration of the fermentation. The combination of a culture-dependent and culture-independent approach revealed the prevalence of lactic acid bacteria (LAB) from the third day of fermentation onwards, which was not influenced by the fermentation conditions applied. Enterobacteriaceae, Pseudomonadaceae, and yeasts disappeared after one week of fermentation. Leuconostoc mesenteroides, Lactobacillus sakei, and Lactobacillus plantarum, Lactobacillus brevis, and Lactobacillus parabrevis were the most frequently isolated LAB species. Both added NaCl concentrations were suitable to perform successful fermentations within three weeks. By that time, glucose and fructose, the main leek carbohydrates, were metabolized into mainly lactic acid, acetic acid, ethanol, and mannitol. A sensory analysis revealed that the fermented white leek parts were generally more appreciated than the fermented green leek parts. PMID:23200651

  11. Population dynamics, distribution, and species diversity of fruit flies on cucurbits in Kashmir Valley, India.

    PubMed

    Ganie, S A; Khan, Z H; Ahangar, R A; Bhat, H A; Hussain, Barkat

    2013-01-01

    Given the economic importance of cucurbits and the losses incurred by fruit fly infestation, the population dynamics of fruit flies in cucurbit crops and the influence of abiotic parameters, such as temperature, relative humidity, rainfall, and total sunshine hours per day on the fruit fly population were studied. The study was carried out at six locations; in district Srinagar the locations were Batmaloo, Shalimar, and Dal, while in district Budgam the locations were Chadoora, Narkara, and Bugam (Jammu and Kashmir, India). Various cucurbit crops, such as cucumber, bottle gourd, ridge gourd and bitter gourd, were selected for the study. With regard to locations, mean fruit fly population was highest (6.09, 4.55, 3.87, and 3.60 flies/trap/week) at Batamaloo and Chadoora (4.73, 3.93, 2.73, and 2.73 flies/trap/week) on cucumber, bottle gourd, ridge gourd, and bitter gourd, respectively. The population of fruit flies was significantly correlated with the minimum and maximum temperature. The maximum species diversity of fruit flies was 0.511, recorded in Chadoora. Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) was the most predominant species in both Srinagar and Budgam, followed by B. dorsalis (Hendel) and B. tau (Walker), while B. scutellaris (Bezzi) was found only in Chadoora. Results of the present investigation may be utilized in developing a sustainable pest management strategy in the agroecological system. PMID:23906383

  12. Constructing Time-Resolved Species Sensitivity Distributions Using a Hierarchical Toxico-Dynamic Model.

    PubMed

    Kon Kam King, Guillaume; Delignette-Muller, Marie Laure; Kefford, Ben J; Piscart, Christophe; Charles, Sandrine

    2015-10-20

    Classical species sensitivity distribution (SSD) is used to assess the threat to ecological communities posed by a contaminant and derive a safe concentration. It suffers from several well-documented weaknesses regarding its ecological realism and statistical soundness. Criticism includes that SSD does not take time-dependence of the data into account, that safe concentrations obtained from SSD might not be entirely protective of the target communities, and that there are issues of statistical representativity and of uncertainty propagation from the experimental data. We present a hierarchical toxico-dynamic (TD) model to simultaneously address these weaknesses: TD models incorporate time-dependence and allow improvement of the ecological relevance of safe concentrations, while the hierarchical approach affords appropriate propagation of uncertainty from the original data. We develop this model on a published data set containing the salinity tolerance over 72 h of 217 macroinvertebrate taxa, obtained through rapid toxicity testing (RTT). The shrinkage properties of the hierarchical model prove particularly adequate for modeling inhomogeneous RTT data. Taking into account the large variability in the species response, the model fits the whole data set well. Moreover, the model predicts a time-independent safe concentration below that obtained with classical SSD at 72 h, demonstrating under-protectiveness of the classical approach. PMID:26406398

  13. Bacterial-biota dynamics of eight bryophyte species from different ecosystems

    PubMed Central

    Koua, Faisal Hammad Mekky; Kimbara, Kazuhide; Tani, Akio

    2014-01-01

    Despite the importance of bryophyte-associated microorganisms in various ecological aspects including their crucial roles in the soil-enrichment of organic mass and N2 fixation, nonetheless, little is known about the microbial diversity of the bryophyte phyllospheres (epi-/endophytes). To get insights into bacterial community structures and their dynamics on the bryophyte habitats in different ecosystems and their potential biological roles, we utilized the 16S rRNA gene PCR-DGGE and subsequent phylogenetic analyses to investigate the bacterial community of eight bryophyte species collected from three distinct ecosystems from western Japan. Forty-two bacterial species belonging to γ-proteobacteria and Firmicutes with 71.4% and 28.6%, respectively, were identified among 90 DGGE gel band population. These DGGE-bands were assigned to 13 different genera with obvious predomination the genus Clostridium with 21.4% from the total bacterial community. These analyses provide new insights into bryophyte-associated bacteria and their relations to the ecosystems. PMID:25737654

  14. Bacterial-biota dynamics of eight bryophyte species from different ecosystems.

    PubMed

    Koua, Faisal Hammad Mekky; Kimbara, Kazuhide; Tani, Akio

    2015-03-01

    Despite the importance of bryophyte-associated microorganisms in various ecological aspects including their crucial roles in the soil-enrichment of organic mass and N2 fixation, nonetheless, little is known about the microbial diversity of the bryophyte phyllospheres (epi-/endophytes). To get insights into bacterial community structures and their dynamics on the bryophyte habitats in different ecosystems and their potential biological roles, we utilized the 16S rRNA gene PCR-DGGE and subsequent phylogenetic analyses to investigate the bacterial community of eight bryophyte species collected from three distinct ecosystems from western Japan. Forty-two bacterial species belonging to γ-proteobacteria and Firmicutes with 71.4% and 28.6%, respectively, were identified among 90 DGGE gel band population. These DGGE-bands were assigned to 13 different genera with obvious predomination the genus Clostridium with 21.4% from the total bacterial community. These analyses provide new insights into bryophyte-associated bacteria and their relations to the ecosystems. PMID:25737654

  15. Phylogenetic fields through time: temporal dynamics of geographical co-occurrence and phylogenetic structure within species ranges.

    PubMed

    Villalobos, Fabricio; Carotenuto, Francesco; Raia, Pasquale; Diniz-Filho, José Alexandre F

    2016-04-01

    Species co-occur with different sets of other species across their geographical distribution, which can be either closely or distantly related. Such co-occurrence patterns and their phylogenetic structure within individual species ranges represent what we call the species phylogenetic fields (PFs). These PFs allow investigation of the role of historical processes--speciation, extinction and dispersal--in shaping species co-occurrence patterns, in both extinct and extant species. Here, we investigate PFs of large mammalian species during the last 3 Myr, and how these correlate with trends in diversification rates. Using the fossil record, we evaluate species' distributional and co-occurrence patterns along with their phylogenetic structure. We apply a novel Bayesian framework on fossil occurrences to estimate diversification rates through time. Our findings highlight the effect of evolutionary processes and past climatic changes on species' distributions and co-occurrences. From the Late Pliocene to the Recent, mammal species seem to have responded in an individualistic manner to climate changes and diversification dynamics, co-occurring with different sets of species from different lineages across their geographical ranges. These findings stress the difficulty of forecasting potential effects of future climate changes on biodiversity. PMID:26977061

  16. Effects of invasive species on ecosystem carbon dynamics in a restored tallgrass prairie

    NASA Astrophysics Data System (ADS)

    Matamala, R.; Graham, S. L.; Cook, D. R.; Gonzalez-Meler, M. A.

    2007-12-01

    Land cover is an important determinant of soil C storage and dynamics. Restoration of degraded ecosystems and soils represents a target sink for offsetting rising atmospheric CO2 levels by increasing carbon sequestration in soils. The Conservation Reserve Program (CRP) and other initiatives to halt land degradation after cessation of cultivation present opportunities to assess the C sequestration potential of restoration practices. Our aim is to study what key ecosystem and climatic components exert the largest leverage for these lands to be sustainable C sinks. When considering controls on ecosystem C cycling, biodiversity has the potential to be a strong biotic influence. Invasive species can disrupt ecosystem processes by exhibiting functional characteristics which are distinct from their native counterparts. Invasive species, while affecting nearly all ecosystems, may pose a particular threat to restorations and impact rates of C accrual. We measured net ecosystem production (NEP) at a 18 years-old restored tallgrass prairie using the eddy covariance technique coupled to biometric estimates of biomass and soil C in a two year study where climatic conditions and plant species dominance varied. In 2005, the prairie restoration was a strong C sink with a NEP 438 gCm-2, despite a pronounced spring drought. In 2006, with above normal precipitation, a Melilotus alba dominance dramatically reduced NEP when compared to 2005. The loss of ecosystem functional diversity that resulted from the dominance of the invasive M. alba led to a 42% reduction in the length of the photosynthetically active season, as compared to the previous year. These results suggest that understudied biotic limitations to NEP may outweigh the effects of more commonly studied abiotic limitations. Ecosystem models and management strategies should consider biotic limitations to NEP in grasslands in order to maximize long term C sequestration of restorations and CRP management practices.

  17. Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics.

    PubMed

    Stadler, A M; Garvey, C J; Bocahut, A; Sacquin-Mora, S; Digel, I; Schneider, G J; Natali, F; Artmann, G M; Zaccai, G

    2012-11-01

    Thermodynamic stability, configurational motions and internal forces of haemoglobin (Hb) of three endotherms (platypus, Ornithorhynchus anatinus; domestic chicken, Gallus gallus domesticus and human, Homo sapiens) and an ectotherm (salt water crocodile, Crocodylus porosus) were investigated using circular dichroism, incoherent elastic neutron scattering and coarse-grained Brownian dynamics simulations. The experimental results from Hb solutions revealed a direct correlation between protein resilience, melting temperature and average body temperature of the different species on the 0.1 ns time scale. Molecular forces appeared to be adapted to permit conformational fluctuations with a root mean square displacement close to 1.2 Å at the corresponding average body temperature of the endotherms. Strong forces within crocodile Hb maintain the amplitudes of motion within a narrow limit over the entire temperature range in which the animal lives. In fully hydrated powder samples of human and chicken, Hb mean square displacements and effective force constants on the 1 ns time scale showed no differences over the whole temperature range from 10 to 300 K, in contrast to the solution case. A complementary result of the study, therefore, is that one hydration layer is not sufficient to activate all conformational fluctuations of Hb in the pico- to nanosecond time scale which might be relevant for biological function. Coarse-grained Brownian dynamics simulations permitted to explore residue-specific effects. They indicated that temperature sensing of human and chicken Hb occurs mainly at residues lining internal cavities in the β-subunits. PMID:22696485

  18. Incongruent range dynamics between co-occurring Asian temperate tree species facilitated by life history traits.

    PubMed

    Zhao, Yun-Peng; Yan, Xiao-Ling; Muir, Graham; Dai, Qiong-Yan; Koch, Marcus A; Fu, Cheng-Xin

    2016-04-01

    Postglacial expansion to former range limits varies substantially among species of temperate deciduous forests in eastern Asia. Isolation hypotheses (with or without gene flow) have been proposed to explain this variance, but they ignore detailed population dynamics spanning geological time and neglect the role of life history traits. Using population genetics to uncover these dynamics across their Asian range, we infer processes that formed the disjunct distributions of Ginkgo biloba and the co-occurring Cercidiphyllum japonicum (published data). Phylogenetic, coalescent, and comparative data suggest that Ginkgo population structure is regional, dichotomous (to west-east refugia), and formed ˜51 kya, resulting from random genetic drift during the last glaciation. This split is far younger than the north-south population structure of Cercidiphyllum (~1.89 Mya). Significant (recent) unidirectional gene flow has not homogenized the two Ginkgo refugia, despite 2Nm > 1. Prior to this split, gene flow was potentially higher, resulting in conflicting support for a priori hypotheses that view isolation as an explanation for the variation in postglacial range limits. Isolation hypotheses (with or without gene flow) are thus not necessarily mutually exclusive due to temporal variation of gene flow and genetic drift. In comparison with Cercidiphyllum, the restricted range of Ginkgo has been facilitated by uncompetitive life history traits associated with seed ecology, highlighting the importance of both demography and lifetime reproductive success when interpreting range shifts. PMID:27069572

  19. Synthesis of Formamide and Related Organic Species in the Interstellar Medium via Chemical Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Spezia, Riccardo; Jeanvoine, Yannick; Hase, William L.; Song, Kihyung; Largo, Antonio

    2016-08-01

    We show, by means of direct dynamics simulations, how it is possible to define possible reactants and mechanisms leading to the formation of formamide in the interstellar medium. In particular, different ion–molecule reactions in the gas phase were considered: NH3OH+, NH2OH{}2+, H2COH+, and NH4 + for the ions and NH2OH, H2CO, and NH3 for the partner neutrals. These calculations were combined with high level ab initio calculations to investigate possible further evolution of the products observed. In particular, for formamide, we propose that the NH2OH{}2+ + H2CO reaction can produce an isomer, NH2OCH{}2+, that, after dissociative recombination, can produce neutral formamide, which was observed in space. The direct dynamics do not pre-impose any reaction pathways and in other reactions, we did not observe the formation of formamide or any possible precursor. On the other hand, we obtained other interesting reactions, like the formation of NH2CH{}2+. Finally, some radiative association processes are proposed. All of the results obtained are discussed in light of the species observed in radioastronomy.

  20. Post-clearcut dynamics of carbon, water and energy exchanges in a midlatitude temperate, deciduous broadleaf forest environment.

    PubMed

    Williams, Christopher A; Vanderhoof, Melanie K; Khomik, Myroslava; Ghimire, Bardan

    2014-03-01

    Clearcutting and other forest disturbances perturb carbon, water, and energy balances in significant ways, with corresponding influences on Earth's climate system through biogeochemical and biogeophysical effects. Observations are needed to quantify the precise changes in these balances as they vary across diverse disturbances of different types, severities, and in various climate and ecosystem type settings. This study combines eddy covariance and micrometeorological measurements of surface-atmosphere exchanges with vegetation inventories and chamber-based estimates of soil respiration to quantify how carbon, water, and energy fluxes changed during the first 3 years following forest clearing in a temperate forest environment of the northeastern US. We observed rapid recovery with sustained increases in gross ecosystem productivity (GEP) over the first three growing seasons post-clearing, coincident with large and relatively stable net emission of CO2 because of overwhelmingly large ecosystem respiration. The rise in GEP was attributed to vegetation changes not environmental conditions (e.g., weather), but attribution to the expansion of leaf area vs. changes in vegetation composition remains unclear. Soil respiration was estimated to contribute 44% of total ecosystem respiration during summer months and coarse woody debris accounted for another 18%. Evapotranspiration also recovered rapidly and continued to rise across years with a corresponding decrease in sensible heat flux. Gross short-wave and long-wave radiative fluxes were stable across years except for strong wintertime dependence on snow covered conditions and corresponding variation in albedo. Overall, these findings underscore the highly dynamic nature of carbon and water exchanges and vegetation composition during the regrowth following a severe forest disturbance, and sheds light on both the magnitude of such changes and the underlying mechanisms with a unique example from a temperate, deciduous

  1. Roche-lobe overflow systems powered by black holes in young star clusters: the importance of dynamical exchanges

    SciTech Connect

    Mapelli, Michela; Zampieri, Luca

    2014-10-10

    We have run 600 N-body simulations of intermediate-mass (∼3500 M {sub ☉}) young star clusters (SCs; with three different metallicities (Z = 0.01, 0.1, and 1 Z {sub ☉}). The simulations include the dependence of stellar properties and stellar winds on metallicity. Massive stellar black holes (MSBHs) with mass >25 M {sub ☉} are allowed to form through direct collapse of very massive metal-poor stars (Z < 0.3 Z {sub ☉}). We focus on the demographics of black hole (BH) binaries that undergo mass transfer via Roche lobe overflow (RLO). We find that 44% of all binaries that undergo an RLO phase (RLO binaries) formed through dynamical exchange. RLO binaries that formed via exchange (RLO-EBs) are powered by more massive BHs than RLO primordial binaries (RLO-PBs). Furthermore, the RLO-EBs tend to start the RLO phase later than the RLO-PBs. In metal-poor SCs (0.01-0.1 Z {sub ☉}), >20% of all RLO binaries are powered by MSBHs. The vast majority of RLO binaries powered by MSBHs are RLO-EBs. We have produced optical color-magnitude diagrams of the simulated RLO binaries, accounting for the emission of both the donor star and the irradiated accretion disk. We find that RLO-PBs are generally associated with bluer counterparts than RLO-EBs. We compare the simulated counterparts with the observed counterparts of nine ultraluminous X-ray sources. We discuss the possibility that IC 342 X-1, Ho IX X-1, NGC 1313 X-2, and NGC 5204 X-1 are powered by an MSBH.

  2. Human-facilitated metapopulation dynamics in an emerging pest species, Cimex lectularius

    PubMed Central

    FOUNTAIN, TOBY; DUVAUX, LUDOVIC; HORSBURGH, GAVIN; REINHARDT, KLAUS; BUTLIN, ROGER K

    2014-01-01

    The number and demographic history of colonists can have dramatic consequences for the way in which genetic diversity is distributed and maintained in a metapopulation. The bed bug (Cimex lectularius) is a re-emerging pest species whose close association with humans has led to frequent local extinction and colonization, that is, to metapopulation dynamics. Pest control limits the lifespan of subpopulations, causing frequent local extinctions, and human-facilitated dispersal allows the colonization of empty patches. Founder events often result in drastic reductions in diversity and an increased influence of genetic drift. Coupled with restricted migration, this can lead to rapid population differentiation. We therefore predicted strong population structuring. Here, using 21 newly characterized microsatellite markers and approximate Bayesian computation (ABC), we investigate simplified versions of two classical models of metapopulation dynamics, in a coalescent framework, to estimate the number and genetic composition of founders in the common bed bug. We found very limited diversity within infestations but high degrees of structuring across the city of London, with extreme levels of genetic differentiation between infestations (FST = 0.59). ABC results suggest a common origin of all founders of a given subpopulation and that the numbers of colonists were low, implying that even a single mated female is enough to found a new infestation successfully. These patterns of colonization are close to the predictions of the propagule pool model, where all founders originate from the same parental infestation. These results show that aspects of metapopulation dynamics can be captured in simple models and provide insights that are valuable for the future targeted control of bed bug infestations. PMID:24446663

  3. Human-facilitated metapopulation dynamics in an emerging pest species, Cimex lectularius.

    PubMed

    Fountain, Toby; Duvaux, Ludovic; Horsburgh, Gavin; Reinhardt, Klaus; Butlin, Roger K

    2014-03-01

    The number and demographic history of colonists can have dramatic consequences for the way in which genetic diversity is distributed and maintained in a metapopulation. The bed bug (Cimex lectularius) is a re-emerging pest species whose close association with humans has led to frequent local extinction and colonization, that is, to metapopulation dynamics. Pest control limits the lifespan of subpopulations, causing frequent local extinctions, and human-facilitated dispersal allows the colonization of empty patches. Founder events often result in drastic reductions in diversity and an increased influence of genetic drift. Coupled with restricted migration, this can lead to rapid population differentiation. We therefore predicted strong population structuring. Here, using 21 newly characterized microsatellite markers and approximate Bayesian computation (ABC), we investigate simplified versions of two classical models of metapopulation dynamics, in a coalescent framework, to estimate the number and genetic composition of founders in the common bed bug. We found very limited diversity within infestations but high degrees of structuring across the city of London, with extreme levels of genetic differentiation between infestations (FST  = 0.59). ABC results suggest a common origin of all founders of a given subpopulation and that the numbers of colonists were low, implying that even a single mated female is enough to found a new infestation successfully. These patterns of colonization are close to the predictions of the propagule pool model, where all founders originate from the same parental infestation. These results show that aspects of metapopulation dynamics can be captured in simple models and provide insights that are valuable for the future targeted control of bed bug infestations. PMID:24446663

  4. Transpiration efficiency over an annual cycle, leaf gas exchange and wood carbon isotope ratio of three tropical tree species.

    PubMed

    Cernusak, Lucas A; Winter, Klaus; Aranda, Jorge; Virgo, Aurelio; Garcia, Milton

    2009-09-01

    Variation in transpiration efficiency (TE) and its relationship with the stable carbon isotope ratio of wood was investigated in the saplings of three tropical tree species. Five individuals each of Platymiscium pinnatum (Jacq.) Dugand, Swietenia macrophylla King and Tectona grandis Linn. f. were grown individually in large (760 l) pots over 16 months in the Republic of Panama. Cumulative transpiration was determined by repeatedly weighing the pots with a pallet truck scale. Dry matter production was determined by destructive harvest. The TE, expressed as experiment-long dry matter production divided by cumulative water use, averaged 4.1, 4.3 and 2.9 g dry matter kg(-1) water for P. pinnatum, S. macrophylla and T. grandis, respectively. The TE of T. grandis was significantly lower than that of the other two species. Instantaneous measurements of the ratio of intercellular to ambient CO(2) partial pressures (c(i)/c(a)), taken near the end of the experiment, explained 66% of variation in TE. Stomatal conductance was lower in S. macrophylla than in T. grandis, whereas P. pinnatum had similar stomatal conductance to T. grandis, but with a higher photosynthetic rate. Thus, c(i)/c(a) and TE appeared to vary in response to both stomatal conductance and photosynthetic capacity. Stem-wood delta(13)C varied over a relatively narrow range of just 2.2 per thousand, but still explained 28% of variation in TE. The results suggest that leaf-level processes largely determined variation among the three tropical tree species in whole-plant water-use efficiency integrated over a full annual cycle. PMID:19661136

  5. Confirmatory analysis of the AP1000 passive residual heat removal heat exchanger with 3-D computational fluid dynamic analysis

    SciTech Connect

    Schwall, James R.; Karim, Naeem U.; Thakkar, Jivan G.; Taylor, Creed; Schulz, Terry; Wright, Richard F.

    2006-07-01

    The AP1000 is an 1100 MWe advanced nuclear power plant that uses passive safety features to enhance plant safety and to provide significant and measurable improvements in plant simplification, reliability, investment protection and plant costs. The AP1000 received final design approval from the US-NRC in 2004. The AP1000 design is based on the AP600 design that received final design approval in 1999. Wherever possible, the AP1000 plant configuration and layout was kept the same as AP600 to take advantage of the maturity of the design and to minimize new design efforts. As a result, the two-loop configuration was maintained for AP1000, and the containment vessel diameter was kept the same. It was determined that this significant power up-rate was well within the capability of the passive safety features, and that the safety margins for AP1000 were greater than those of operating PWRs. A key feature of the passive core cooling system is the passive residual heat removal heat exchanger (PRHR HX) that provides decay heat removal for postulated LOCA and non-LOCA events. The PRHR HX is a C-tube heat exchanger located in the in-containment refueling water storage tank (IRWST) above the core promoting natural circulation heat removal between the reactor cooling system and the tank. Component testing was performed for the AP600 PRHR HX to determine the heat transfer characteristics and to develop correlations to be used for the AP1000 safety analysis codes. The data from these tests were confirmed by subsequent integral tests at three separate facilities including the ROSA facility in Japan. Owing to the importance of this component, an independent analysis has been performed using the ATHOS-based computational fluid dynamics computer code PRHRCFD. Two separate models of the PRHR HX and IRWST have been developed representing the ROSA test geometry and the AP1000 plant geometry. Confirmation of the ROSA test results were used to validate PRHRCFD, and the AP1000 plant model

  6. Proton exchange membrane fuel cell degradation: A parametric analysis using Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Ozden, Ender; Tari, Ilker

    2016-02-01

    A Polymer Electrolyte Membrane (PEM) fuel cell is numerically investigated both as fresh and as degraded with the help of observed degradation patterns reported in the literature. The fresh fuel cell model is validated and verified with the data from the literature. Modifying the model by varying the parameters affected by degradation, a degraded PEM fuel cell model is created. The degraded fuel cell is parametrically analyzed by using a commercial Computational Fluid Dynamics (CFD) software. The investigated parameters are the membrane equivalent weight, the Catalyst Layer (CL) porosity and viscous resistance, the Gas Diffusion Layer (GDL) porosity and viscous resistance, and the bipolar plate contact resistance. It is shown for the first time that PEM fuel cell overall degradation can be numerically estimated by combining experimental data from degraded individual components. By comparing the simulation results for the fresh and the degraded PEM fuel cells for two years of operation, it is concluded that the effects of overall degradation on cell potential is significant - estimated to be 17% around the operating point of the fuel cell at 0.95 V open circuit voltage and 70 °C operating temperature.

  7. Phylogeny of Na+/Ca2+ exchanger (NCX) genes from genomic data identifies new gene duplications and a new family member in fish species.

    PubMed

    Marshall, Christian R; Fox, Joanne A; Butland, Stefanie L; Ouellette, B F Francis; Brinkman, Fiona S L; Tibbits, Glen F

    2005-04-14

    The Na+/Ca2+ exchanger (NCX) is a member of the cation/Ca2+ antiporter (CaCA) family and plays a key role in maintaining cellular Ca2+ homeostasis in a variety of cell types. NCX is present in a diverse group of organisms and exhibits high overall identity across species. To date, three separate genes, i.e., NCX1, NCX2, and NCX3, have been identified in mammals. However, phylogenetic analysis of the exchanger has been hindered by the lack of nonmammalian NCX sequences. In this study, we expand and diversify the list of NCX sequences by identifying NCX homologs from whole-genome sequences accessible through the Ensembl Genome Browser. We identified and annotated 13 new NCX sequences, including 4 from zebrafish, 4 from Japanese pufferfish, 2 from chicken, and 1 each from honeybee, mosquito, and chimpanzee. Examination of NCX gene structure, together with construction of phylogenetic trees, provided novel insights into the molecular evolution of NCX and allowed us to more accurately annotate NCX gene names. For the first time, we report the existence of NCX2 and NCX3 in organisms other than mammals, yielding the hypothesis that two serial NCX gene duplications occurred around the time vertebrates and invertebrates diverged. In addition, we have found a putative new NCX protein, named NCX4, that is related to NCX1 but has been observed only in fish species genomes. These findings present a stronger foundation for our understanding of the molecular evolution of the NCX gene family and provide a framework for further NCX phylogenetic and molecular studies. PMID:15741504

  8. The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere

    NASA Astrophysics Data System (ADS)

    Rottenberger, S.; Kleiss, B.; Kuhn, U.; Wolf, A.; Piedade, M. T. F.; Junk, W.; Kesselmeier, J.

    2008-08-01

    The effect of root inundation on the leaf emissions of ethanol, acetaldehyde and acetic acid in relation to assimilation and transpiration was investigated with 2 3 years old tree seedlings of four Amazonian floodplain species by applying dynamic cuvette systems under greenhouse conditions. Emissions were monitored over a period of several days of inundation using a combination of Proton Transfer Reaction Mass Spectrometry (PTR-MS) and conventional techniques (HPLC, ion chromatography). Under non-flooded conditions, none of the species exhibited measurable emissions of any of the compounds, but rather low deposition of acetaldehyde and acetic acid was observed instead. Tree species specific variations in deposition velocities were largely due to variations in stomatal conductance. Flooding of the roots resulted in leaf emissions of ethanol and acetaldehyde by all species, while emissions of acetic acid were only observed from the species exhibiting the highest ethanol and acetaldehyde emission rates. All three compounds showed a similar diurnal emission profile, each displaying an emission burst in the morning, followed by a decline in the evening. This concurrent behavior supports the conclusion, that all three compounds emitted by the leaves are derived from ethanol produced in the roots by alcoholic fermentation, transported to the leaves with the transpiration stream and finally partly converted to acetaldehyde and acetic acid by enzymatic processes. Co-emissions and peaking in the early morning suggest that root ethanol, after transportation with the transpiration stream to the leaves and enzymatic oxidation to acetaldehyde and acetate, is the metabolic precursor for all compounds emitted, though we can not totally exclude other production pathways. Emission rates substantially varied among tree species, with maxima differing by up to two orders of magnitude (25 1700 nmol m-2 min-1 for ethanol and 5 500 nmol m-2 min-1 for acetaldehyde). Acetic acid emissions

  9. The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere

    NASA Astrophysics Data System (ADS)

    Rottenberger, S.; Kleiss, B.; Kuhn, U.; Wolf, A.; Piedade, M. T. F.; Junk, W.; Kesselmeier, J.

    2008-02-01

    The effect of root inundation on the leaf emissions of ethanol, acetaldehyde and acetic acid was investigated with 2-3 years old tree seedlings of four Amazonian floodplain species by applying dynamic cuvette systems under greenhouse conditions. Emissions were monitored over a period of several days of inundation using a combination of Proton Transfer Reaction Mass Spectrometry (PTR-MS) and conventional techniques (HPLC, ion chromatography). Under non-flooded conditions, none of the species exhibited significant emissions of any of the compounds. A slight deposition of acetaldehyde and acetic acid was mainly observed, instead. Tree species specific variations in deposition velocities were largely due to variations in stomatal conductance. Flooding of the roots resulted in leaf emissions of ethanol and acetaldehyde by all species, while emissions of acetic acid occurred only by the species exhibiting the highest ethanol and acetaldehyde emission rates. All three compounds showed a similar diurnal emission profile, each displaying an emission burst in the morning, followed by a decline in the evening. This concurrent behavior supports the conclusion, that all three compounds emitted by the leaves are derived from ethanol produced in the roots by alcoholic fermentation, transported to the leaves with the transpiration stream and finally partly converted to acetaldehyde and acetic acid by enzymatic processes. Co-emissions and peaking in the early morning confirmed that root ethanol, after transportation with the transpiration stream to the leaves and enzymatic oxidation to acetaldehyde and acetate, is the metabolic precursor for all compounds emitted. Emission rates substantially varied among tree species, with maxima differing by up to two orders of magnitude (3-200 nmol m-2 min-1 for ethanol and 5-500 nmol m-2 min-1 for acetaldehyde). Acetic acid emissions reached 12 nmol m-2 min-1. The observed differences in emission rates between the tree species are discussed

  10. Inclusion of Additional Plant Species and Trait Information in Dynamic Vegetation Modeling of Arctic Tundra and Boreal Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Euskirchen, E. S.; Patil, V.; Roach, J.; Griffith, B.; McGuire, A. D.

    2015-12-01

    Dynamic vegetation models (DVMs) have been developed to model the ecophysiological characteristics of plant functional types in terrestrial ecosystems. They have frequently been used to answer questions pertaining to processes such as disturbance, plant succession, and community composition under historical and future climate scenarios. While DVMs have proved useful in these types of applications, it has often been questioned if additional detail, such as including plant dynamics at the species-level and/or including species-specific traits would make these models more accurate and/or broadly applicable. A sub-question associated with this issue is, 'How many species, or what degree of functional diversity, should we incorporate to sustain ecosystem function in modeled ecosystems?' Here, we focus on how the inclusion of additional plant species and trait information may strengthen dynamic vegetation modeling in applications pertaining to: (1) forage for caribou in northern Alaska, (2) above- and belowground carbon storage in the boreal forest and lake margin wetlands of interior Alaska, and (3) arctic tundra and boreal forest leaf phenology. While the inclusion of additional information generally proved valuable in these three applications, this additional detail depends on field data that may not always be available and may also result in increased computational complexity. Therefore, it is important to assess these possible limitations against the perceived need for additional plant species and trait information in the development and application of dynamic vegetation models.

  11. Estuarine ocean exchange in a North Pacific estuary: Comparison of steady state and dynamic models

    NASA Astrophysics Data System (ADS)

    Frick, Walter E.; Khangaonkar, Tarang; Sigleo, Anne C.; Yang, Zhaoqing

    2007-08-01

    Nutrient levels in coastal waters must be accurately assessed to determine the nutrient effects of increasing populations on coastal ecosystems. To accomplish this goal, in-field data with sufficient temporal resolution are required to define nutrient sources and sinks, and to ultimately calculate nutrient budgets. Models then are required for the interpretation and analysis of data sets. To quantify the coastal ocean nitrogen input to Yaquina Bay, Oregon, nitrate concentrations were measured by a moored sensor hourly for one month during summer upwelling some distance outside the estuary entrance jetties. The time series results then were interpreted using a steady state model (Visual Plumes' PDSW) and a hydrodynamic model, the Finite Volume Coastal Ocean Model (FVCOM). The physical scales of many stream and river plumes often lie between the scales for outfall mixing zone plume models, such as those found in EPA's Visual Plumes, and larger-sized grid scales for regional circulation models like FVCOM. A potential advantage of relatively simple, steady state plume models is that they use entrainment terms to close the plume equations, theory that has proven useful in simulating turbulent plume discharges from various sources, some approaching the dimensions of rivers. Important advantages of models like FVCOM are that they are dynamic and include the effects of the Earth's rotation. The results showed that the steady-state plume model simulates observed velocity and concentration data fairly well during periods of strong discharge velocity and weak ambient coastal currents. FVCOM was judged to give better estimates under all other ambient current conditions, although the data from the mooring cannot be used to prove this assertion as stronger currents would deflect the plume away from the mooring. Nevertheless, plume models may be useful in establishing boundary and initial conditions for hydrodynamic models.

  12. Investigation of mercury exchange between forest canopy vegetation and the atmosphere using a new dynamic chamber

    USGS Publications Warehouse

    Graydon, J.A.; St. Louis, V.L.; Lindberg, S.E.; Hintelmann, H.; Krabbenhoft, D.P.

    2006-01-01

    This paper presents the design of a dynamic chamber system that allows full transmission of PAR and UV radiation and permits enclosed intact foliage to maintain normal physiological function while Hg(0) flux rates are quantified in the field. Black spruce and jack pine foliage both emitted and absorbed Hg(0), exhibiting compensation points near atmospheric Hg(0) concentrations of ???2-3 ng m-3. Using enriched stable Hg isotope spikes, patterns of spike Hg(II) retention on foliage were investigated. Hg(0) evasion rates from foliage were simultaneously measured using the chamber to determine if the decline of foliar spike Hg(II) concentrations overtime could be explained by the photoreduction and re-emission of spike Hg to the atmosphere. This mass balance approach suggested that spike Hg(0) fluxes alone could not account for the measured decrease in spike Hg(II) on foliage following application, implying that either the chamber underestimates the true photoreduction of Hg(II) to Hg(0) on foliage, or other mechanisms of Hg(II) loss from foliage, such as cuticle weathering, are in effect. The radiation spectrum responsible for the photoreduction of newly deposited Hg(II) on foliage was also investigated. Our spike experiments suggest that some of the Hg(II) in wet deposition retained by the forest canopy may be rapidly photoreduced to Hg(0) and re-emitted back to the atmosphere, while another portion may be retained by foliage at the end of the growing season, with some being deposited in litterfall. This finding has implications for the estimation of Hg dry deposition based on throughfall and litterfall fluxes. ?? 2006 American Chemical Society.

  13. Conformational dynamics of phenylene rings in poly(p-phenylene vinylene) as revealed by 13C magic-angle-spinning exchange nuclear magnetic resonance experiments

    NASA Astrophysics Data System (ADS)

    deAzevedo, E. R.; Franco, R. W. A.; Marletta, A.; Faria, R. M.; Bonagamba, T. J.

    2003-08-01

    Poly(p-phenylene vinylene) (PPV) has shown a great potential for electro-optical applications due to its electroluminescent and semiconducting properties. Such properties are directly related with the polymer chain conformation and dynamics. Then, it is important to understand in detail the local chain motions. In this work, three 13C solid-state magic-angle-spinning (MAS) exchange NMR techniques were used to study conformational dynamics of phenylene rings in PPV. The standard 2D MAS exchange experiment was used to identify exchange processes between equivalent and nonequivalent sites. Centerband-only detection of exchange (CODEX) experiments were applied to determine the amplitude of the phenylene ring flips and small-angle oscillations. Additionally, a new version of the CODEX technique, which allows for the selective observation of segments executing exchange between non-equivalent sites, is demonstrated and applied to determine the flipping fractions and the activation energies of the phenylene ring rotations. It was found that, at -15 °C, (26±3)% of the rings undergo 180° flips in the millisecond time scale, with average imprecision of (30±5)° and activation energies of (23±3) kJ/mol. Other (31±10)% of the rings perform only small-angle oscillations with an average amplitude of (9±2)°. These results corroborate previous experimental data and agree with recent ab initio calculations of potential energies barriers in phenylenevinylene oligomers.

  14. Dynamic studies of H-Ras•GTPγS interactions with nucleotide exchange factor Sos reveal a transient ternary complex formation in solution

    PubMed Central

    Vo, Uybach; Vajpai, Navratna; Embrey, Kevin J.; Golovanov, Alexander P.

    2016-01-01

    The cycling between GDP- and GTP- bound forms of the Ras protein is partly regulated by the binding of Sos. The structural/dynamic behavior of the complex formed between activated Sos and Ras at the point of the functional cycle where the nucleotide exchange is completed has not been described to date. Here we show that solution NMR spectra of H-Ras∙GTPγS mixed with a functional fragment of Sos (SosCat) at a 2:1 ratio are consistent with the formation of a rather dynamic assembly. H-Ras∙GTPγS binding was in fast exchange on the NMR timescale and retained a significant degree of molecular tumbling independent of SosCat, while SosCat also tumbled largely independently of H-Ras. Estimates of apparent molecular weight from both NMR data and SEC-MALS revealed that, at most, only one H-Ras∙GTPγS molecule appears stably bound to Sos. The weak transient interaction between Sos and the second H-Ras∙GTPγS may provide a necessary mechanism for complex dissociation upon the completion of the native GDP → GTP exchange reaction, but also explains measurable GTP → GTP exchange activity of Sos routinely observed in in vitro assays that use fluorescently-labelled analogs of GTP. Overall, the data presents the first dynamic snapshot of Ras functional cycle as controlled by Sos. PMID:27412770

  15. Dynamic studies of H-Ras•GTPγS interactions with nucleotide exchange factor Sos reveal a transient ternary complex formation in solution.

    PubMed

    Vo, Uybach; Vajpai, Navratna; Embrey, Kevin J; Golovanov, Alexander P

    2016-01-01

    The cycling between GDP- and GTP- bound forms of the Ras protein is partly regulated by the binding of Sos. The structural/dynamic behavior of the complex formed between activated Sos and Ras at the point of the functional cycle where the nucleotide exchange is completed has not been described to date. Here we show that solution NMR spectra of H-Ras∙GTPγS mixed with a functional fragment of Sos (Sos(Cat)) at a 2:1 ratio are consistent with the formation of a rather dynamic assembly. H-Ras∙GTPγS binding was in fast exchange on the NMR timescale and retained a significant degree of molecular tumbling independent of Sos(Cat), while Sos(Cat) also tumbled largely independently of H-Ras. Estimates of apparent molecular weight from both NMR data and SEC-MALS revealed that, at most, only one H-Ras∙GTPγS molecule appears stably bound to Sos. The weak transient interaction between Sos and the second H-Ras∙GTPγS may provide a necessary mechanism for complex dissociation upon the completion of the native GDP → GTP exchange reaction, but also explains measurable GTP → GTP exchange activity of Sos routinely observed in in vitro assays that use fluorescently-labelled analogs of GTP. Overall, the data presents the first dynamic snapshot of Ras functional cycle as controlled by Sos. PMID:27412770

  16. Carbon dynamics in aboveground biomass of co-dominant plant species: related rather to leaf life span than to species

    NASA Astrophysics Data System (ADS)

    Ostler, Ulrike; Schleip, Inga; Lattanzi, Fernando A.; Schnyder, Hans

    2016-04-01

    This study investigates the role of individual organisms in whole ecosystem carbon (C) fluxes. It is currently unknown if different plant community members share the same or different kinetics of C pools in aboveground biomass, thereby adding (or not) variability to the first steps in ecosystem C cycling. We assessed the residence times in metabolic and non-metabolic (or structural) C pools and the allocation pattern of assimilated C in aboveground plant parts of four co-existing, co-dominant species from different functional groups in a temperate grassland community. For this purpose continuous, 14-16 day long 13CO2/12CO2-labeling experiments were performed in Sept. 2006, May 2007 and Sept. 2007, and the tracer kinetics were analysed with compartmental modeling. In all experimental periods, the species shared vastly similar residence times in metabolic C (5-8 d). In contrast, the residence times in non-metabolic C ranged from 20 to 58 d (except one outlier) and the fraction of fixed C allocated to the non-metabolic pool from 7 to 45%. These variations in non-metabolic C kinetics were not systematically associated with species or experimental periods, but exhibited close relationships with (independent estimates of) leaf life span, particularly in the grasses. This adds new meaning to leaf life span as a functional trait in the leaf and plant economics spectrum and its implication for C cycle studies in grassland and also forest systems. As the four co-dominant species accounted for ~80% of total community shoot biomass, we should also expect that the observed similarities in pool kinetics and allocation will scale up to similar relationships at the community level.

  17. A model for control of breathing in mammals: coupling neural dynamics to peripheral gas exchange and transport.

    PubMed

    Ben-Tal, Alona; Smith, Jeffrey C

    2008-04-01

    A new model for aspects of the control of respiration in mammals has been developed. The model integrates a reduced representation of the brainstem respiratory neural controller together with peripheral gas exchange and transport mechanisms. The neural controller consists of two components. One component represents the inspiratory oscillator in the pre-Bötzinger complex (pre-BötC) incorporating biophysical mechanisms for rhythm generation. The other component represents the ventral respiratory group (VRG), which is driven by the pre-BötC for generation of inspiratory (pre)motor output. The neural model was coupled to simplified models of the lungs incorporating oxygen and carbon dioxide transport. The simplified representation of the brainstem neural circuitry has regulation of both frequency and amplitude of respiration and is done in response to partial pressures of oxygen and carbon dioxide in the blood using proportional (P) and proportional plus integral (PI) controllers. We have studied the coupled system under open and closed loop control. We show that two breathing regimes can exist in the model. In one regime an increase in the inspiratory frequency is accompanied by an increase in amplitude. In the second regime an increase in frequency is accompanied by a decrease in amplitude. The dynamic response of the model to changes in the concentration of inspired O2 or inspired CO2 was compared qualitatively with experimental data reported in the physiological literature. We show that the dynamic response with a PI-controller fits the experimental data better but suggests that when high levels of CO2 are inspired the respiratory system cannot reach steady state. Our model also predicts that there could be two possible mechanisms for apnea appearance when 100% O2 is inspired following a period of 5% inspired O2. This paper represents a novel attempt to link neural control and gas transport mechanisms, highlights important issues in amplitude and frequency

  18. Analysis of Local Dynamics of Human Insulin and a Rapid-acting Insulin Analog by Hydrogen Deuterium Exchange Mass Spectrometry

    PubMed Central

    Nakazawa, Shiori; Hashii, Noritaka; Hirose, Kenji; Kawasaki, Nana; Ahn, Joomi

    2013-01-01

    Human insulin, used by diabetics to regulate blood sugar, was first introduced as a recombinant therapeutic drug nearly 30 years ago. Human insulin and insulin lispro have identical primary structure, except for the transposition of two amino acids. Lispro is one of the rapid-acting insulin analogs, which has higher tendency to dissociate than human insulin. In this study, we present an analytical workflow to allow us to detect the difference in the oligomeric dynamics using Hydrogen Deuterium Exchange Mass Spectrometry (HDX MS). The HDX analysis on Insulin and Lispro peptides was conducted to identify the location where different deuterium uptakes were observed between human insulin and lispro. The detected areas were illustrated in various formats to help understand their flexibility associated with rapid dissociation of insulin oligomers. Drug products, human insulin (Humulin R) and lispro (Humalog), were reduced and digested online by pepsin. Deuterium labeling, quenching, and injection to on-line pepsin digestion were prepared using a robotic sample manager. Labeling experiments in 0, 0.5, 5, 10, 60, and 180 min interval were duplicated for both samples. The peptic digests were separated on a UPLC system at 0 °C. Q-TOF MS was used to measure the deuterium incorporation of identified peptides. The amount of deuterium was determined by automated HDX data processing software, DynamX 2.0. We obtained 98% of sequence coverage for both human insulin and lispro. From peptide HDX determination, two regions were revealed distinctive different values in deuterium uptakes between human insulin and lispro; the N terminus of chain A, and a region adjacent to the C terminus of chain B. We attributed this localized behavior to the relation of hexamerization and dimerization, respectively. Furthermore, characteristic profiles that showed different deuteration margins between two insulins were determined, which was also consistent with their involvement in hexamer and dimer

  19. Quantum dynamics of {sup 16}O + {sup 36}O{sub 2} and {sup 18}O + {sup 32}O{sub 2} exchange reactions

    SciTech Connect

    Rajagopala Rao, T.; Mahapatra, S.; Guillon, G.; Honvault, P.

    2015-05-07

    We present quantum dynamical investigations of {sup 16}O + {sup 36}O{sub 2} and {sup 18}O + {sup 32}O{sub 2} exchange reactions using a time-independent quantum mechanical method and an accurate global potential energy surface of ozone [Dawes et al., J. Chem. Phys. 135, 081102 (2011)]. Initial state-selected integral cross sections, rate constants, and Boltzmann averaged thermal rate constants are obtained and compared with earlier experimental and theoretical results. The computed thermal rate constants for the oxygen exchange reactions exhibit a negative temperature dependence, as found experimentally. They are in better agreement with the experiments than the previous studies on the same reactions.

  20. Miniature sodium-selective ion-exchange optode with fluorescent pH chromoionophores and tunable dynamic range.

    PubMed

    Shortreed, M; Bakker, E; Kopelman, R

    1996-08-01

    An extension into the fluorescence mode of ion-exchange optodes is described, allowing miniaturization and its concomitant benefits. A micrometer-size, fluorescent fiber-optic sodium sensor is described, based on a highly sodium-selective, crown ether-capped calix[4]arene ionophore, capable of ratiometric operation. Three sensor configurations are given, employing different lipophilic, fluorescent pH chromoionophores (Nile Blue derivatives), demonstrating the ability to improve the detection limit and tune the dynamic range to the desired region of interest. Two of the sensors are of special interest in that their working ranges lie within those desired for measuring intracellular cytosolic or blood levels of sodium at the respective physiological pH. These optodes have excellent sodium selectivity, with other physiologically relevant cations (e.g., potassium, calcium, and magnesium) being highly discriminated. Three simple mathematical relationships are given for the three experimentally used fluorescent signal mechanisms (intensity, intensity ratios, and inner-filter or energy transfer effects), permitting visualization on a single graph and enabling direct comparison of the different sensors' optical responses on a common platform. Finally, these optodes measure the sample's sodium activity, rather than the concentration, provided that the sample's pH is measured simultaneously by another sensor, such as a glass electrode. PMID:8694263

  1. Real-time dynamics in electron-lattice coupled system: Numerical study on an extended double-exchange model

    NASA Astrophysics Data System (ADS)

    Koshibae, Wataru; Furukawa, Nobuo; Nagaosa, Naoto

    2013-03-01

    We have developed a new theoretical method to study the photo-induced insulator-to-metal (IM) transition in strongly correlated electron systems [PRL 103, 266402 ('09) EPL 94, 27003 ('11).]. In the manganese oxides, it has been observed that the photo-induced dynamics with several tens of THz in frequency can drive IM transition [Nature Materials 6, 643 ('07).]. The excitation energy with several tens of THz in frequency is fairly lower than the insulating energy gap of the electronic state. In this study, we introduce an extended double exchange model where the conduction electron couples with the orbital-ordering field and lattice distortion, and numerically examine the lattice vibration induced IM transition in the electron-lattice coupled system. To simplify the numerical calculation, the electronic states are restricted in the Hilbert space for perfect ferromagnetic states involving the ground state. In the numerical simulation, we find that the low frequency vibration of Jahn-Teller distortion can change the orbital-ordering pattern and trigger the IM transition. A threshold behavior of the lattice-vibration induced IM transition and the electron-hole excitation by continuous forced lattice-vibration are also examined.

  2. A Coupled Formulation for Vadose Zone Transport of Multiple Gas Species With Plant Exchange Under Variable Gravity

    NASA Astrophysics Data System (ADS)

    Stothoff, S. A.

    2008-12-01

    Most plants require a balance between water availability and oxygen availability in the rooting zone. Procedures for raising plants under microgravity conditions, such as might be encountered in long-term space missions, face a special challenge: water redistribution is not affected by gravity, leading to difficulty in maintaining both water and oxygen levels in the rooting zone because flow is dominated by capillary properties. The plant substrate used for microgravity conditions is typically a coarse material that drains extremely rapidly under the fluctuating gravity conditions (0 to 1.8 G) experienced on KC-135 aircraft during flight parabolas. To evaluate control strategies for meeting plant water uptake and respiration needs under microgravity and to characterize flow redistribution under fluctuating gravity, a single formulation considering partial to full saturation was developed to cover this range of conditions. The fully coupled system of equations considers N>1 gaseous species, including water, that are all constituents in the liquid phase and in equilibrium between the gas and liquid phases where both phases are present. Plants are considered as separate quasi steady continua. Plant uptake and respiration, when considered, are defined using (possibly age dependent) transfer functions characterized by root length density. The formulation avoids complexities arising from switching variables when going from very dry to saturated conditions by using variables that are continuous throughout the domain: liquid pressure and N-1 mass fraction variables, expressed as partial capillary pressure. The mass fractions of all species in both phases are recovered from the standard equilibrium conditions used to define the partial capillary pressures. The use of partial capillary pressure state variables is inspired by mass balance considerations near saturation (where capillary pressure is almost zero), because mass balance convergence rates are dominated by the phase

  3. Congruent phylogeographical patterns of eight tree species in Atlantic Central Africa provide insights into the past dynamics of forest cover.

    PubMed

    Dauby, G; Duminil, J; Heuertz, M; Koffi, G K; Stévart, T; Hardy, O J

    2014-05-01

    Cycles of Quaternary climatic change are assumed to be major drivers of African rainforest dynamics and evolution. However, most hypotheses on past vegetation dynamics relied on palaeobotanical records, an approach lacking spatial resolution, and on current patterns of species diversity and endemism, an approach confounding history and environmental determinism. In this context, a comparative phylogeographical study of rainforest species represents a complementary approach because Pleistocene climatic fluctuations may have left interpretable signatures in the patterns of genetic diversity within species. Using 1274 plastid DNA sequences from eight tree species (Afrostyrax kamerunensis, A. lepidophyllus, Erythrophleum suaveolens, Greenwayodendron suaveolens, Milicia excelsa, Santiria trimera, Scorodophloeus zenkeri and Symphonia globulifera) sampled in 50 populations of Atlantic Central Africa (ACA), we averaged divergence across species to produce the first map of the region synthesizing genetic distinctiveness and standardized divergence within and among localities. Significant congruence in divergence was detected mostly among five of the eight species and was stronger in the northern ACA. This pattern is compatible with a scenario of past forest fragmentation and recolonization whereby forests from eastern Cameroon and northeastern Gabon would have been more affected by past climatic change than those of western Cameroon (where one or more refugia would have occurred). By contrast, southern ACA (Gabon) displayed low congruence among species that may reflect less drastic past forest fragmentation or a more complex history of vegetation changes. Finally, we also highlight the potential impact of current environmental barriers on spatial genetic structures. PMID:24655106

  4. The Ecuadorian Artisanal Fishery for Large Pelagics: Species Composition and Spatio-Temporal Dynamics.

    PubMed

    Martínez-Ortiz, Jimmy; Aires-da-Silva, Alexandre M; Lennert-Cody, Cleridy E; Maunder, Mark N

    2015-01-01

    The artisanal fisheries of Ecuador operate within one of the most dynamic and productive marine ecosystems of the world. This study investigates the catch composition of the Ecuadorian artisanal fishery for large pelagic fishes, including aspects of its spatio-temporal dynamics. The analyses of this study are based on the most extensive dataset available to date for this fishery: a total of 106,963 trip-landing inspection records collected at its five principal ports during 2008 ‒ 2012. Ecuadorian artisanal fisheries remove a substantial amount of biomass from the upper trophic-level predatory fish community of the eastern tropical Pacific Ocean. It is estimated that at least 135 thousand metric tons (mt) (about 15.5 million fish) were landed in the five principal ports during the study period. The great novelty of Ecuadorian artisanal fisheries is the "oceanic-artisanal" fleet component, which consists of mother-ship (nodriza) boats with their towed fiber-glass skiffs (fibras) operating with pelagic longlines. This fleet has fully expanded into oceanic waters as far offshore as 100°W, west of the Galapagos Archipelago. It is estimated that nodriza operations produce as much as 80% of the total catches of the artisanal fishery. The remainder is produced by independent fibras operating in inshore waters with pelagic longlines and/or surface gillnets. A multivariate regression tree analysis was used to investigate spatio-environmental effects on the nodriza fleet (n = 6,821 trips). The catch species composition of the nodriza fleet is strongly influenced by the northwesterly circulation of the Humboldt Current along the coast of Peru and its associated cold waters masses. The target species and longline gear-type used by nodrizas change seasonally with the incursion of cool waters (< 25°C) from the south and offshore. During this season, dolphinfish (Coryphaena hippurus) dominates the catches. However, in warmer waters, the fishery changes to tuna

  5. The Ecuadorian Artisanal Fishery for Large Pelagics: Species Composition and Spatio-Temporal Dynamics

    PubMed Central

    Martínez-Ortiz, Jimmy; Aires-da-Silva, Alexandre M.; Lennert-Cody, Cleridy E.; Maunder, Mark N.

    2015-01-01

    The artisanal fisheries of Ecuador operate within one of the most dynamic and productive marine ecosystems of the world. This study investigates the catch composition of the Ecuadorian artisanal fishery for large pelagic fishes, including aspects of its spatio-temporal dynamics. The analyses of this study are based on the most extensive dataset available to date for this fishery: a total of 106,963 trip-landing inspection records collected at its five principal ports during 2008 ‒ 2012. Ecuadorian artisanal fisheries remove a substantial amount of biomass from the upper trophic-level predatory fish community of the eastern tropical Pacific Ocean. It is estimated that at least 135 thousand metric tons (mt) (about 15.5 million fish) were landed in the five principal ports during the study period. The great novelty of Ecuadorian artisanal fisheries is the “oceanic-artisanal” fleet component, which consists of mother-ship (nodriza) boats with their towed fiber-glass skiffs (fibras) operating with pelagic longlines. This fleet has fully expanded into oceanic waters as far offshore as 100°W, west of the Galapagos Archipelago. It is estimated that nodriza operations produce as much as 80% of the total catches of the artisanal fishery. The remainder is produced by independent fibras operating in inshore waters with pelagic longlines and/or surface gillnets. A multivariate regression tree analysis was used to investigate spatio-environmental effects on the nodriza fleet (n = 6,821 trips). The catch species composition of the nodriza fleet is strongly influenced by the northwesterly circulation of the Humboldt Current along the coast of Peru and its associated cold waters masses. The target species and longline gear-type used by nodrizas change seasonally with the incursion of cool waters (< 25°C) from the south and offshore. During this season, dolphinfish (Coryphaena hippurus) dominates the catches. However, in warmer waters, the fishery changes to tuna

  6. Dynamic control of osmolality and ionic composition of the xylem sap in two mangrove species.

    PubMed

    López-Portillo, Jorge; Ewers, Frank W; Méndez-Alonzo, Rodrigo; Paredes López, Claudia L; Angeles, Guillermo; Alarcón Jiménez, Ana Luisa; Lara-Domínguez, Ana Laura; Torres Barrera, María Del Carmen

    2014-06-01

    • Premise of the study: Xylem sap osmolality and salinity is a critical unresolved issue in plant function with impacts on transport efficiency, pressure gradients, and living cell turgor pressure, especially for halophytes such as mangrove trees.• Methods: We collected successive xylem vessel sap samples from stems and shoots of Avicennia germinans and Laguncularia racemosa using vacuum and pressure extraction and measured their osmolality. Following a series of extractions with the pressure chamber, we depressurized the shoot and pressurized again after various equilibration periods (minutes to hours) to test for dynamic control of osmolality. Transpiration and final sap osmolality were measured in shoots perfused with deionized water or different seawater dilutions.• Key results: For both species, the sap osmolality values of consecutive samples collected by vacuum extraction were stable and matched those of the initial samples extracted with the pressure chamber. Further extraction of samples with the pressure chamber decreased sap osmolality, suggesting reverse osmosis occurred. However, sap osmolalities increased when longer equilibration periods after sap extraction were allowed. Analysis of expressed sap with HPLC indicated a 1:1 relation between measured osmolality and the osmolality of the inorganic ions in the sap (mainly Na(+), K(+), and Cl(-)), suggesting no contamination by organic compounds. In stems perfused with deionized water, the sap osmolality increased to mimic the native sap osmolality.• Conclusions: Xylem sap osmolality and ionic contents are dynamically adjusted by mangroves and may help modulate turgor pressure, hydraulic conductivity, and water potential, thus being important for mangrove physiology, survival, and distribution. PMID:24907254

  7. Gas exchange, growth, and chemical parameters in a native Atlantic forest tree species in polluted areas of Cubatão, Brazil.

    PubMed

    Moraes, R M; Delitti, W B C; Moraes, J A P V

    2003-03-01

    The Atlantic forest species near the industrial complex of Cubatão, Brazil have been subjected to heavy air pollution for decades. In this study, we used some physiological parameters (gas exchange, growth and chemical contents) to biomonitor the effects of air pollution on Tibouchina pulchra, one of the most common tree species in this forest. Under standardized conditions, saplings were exposed to the environment from April to July and from July to September of 1998, at three different sites in the vicinity of the industrial complex: the Valley of Pilões River (VP), the control area; the Valley of Mogi River (VM), near fertilizer, metallurgical, and cement industries sustaining high concentrations of fluorides, N and S oxides, and particulate materials; and Caminho do Mar (CM), near petrochemical industries under N and S oxides, photooxidants, and organic compounds. Plants exposed to CM and VM conditions presented visible injuries, reductions in net photosynthesis, growth parameters, and ascorbate concentrations, and increased F, N, and S foliar concentrations. These results indicate that the environmental conditions around these industries are still harmful to plants. PMID:12651190

  8. Contrasting submergence tolerance in two species of stem-succulent halophytes is not determined by differences in stem internal oxygen dynamics

    PubMed Central

    Konnerup, Dennis; Moir-Barnetson, Louis; Pedersen, Ole; Veneklaas, Erik J.; Colmer, Timothy D.

    2015-01-01

    Background and Aims Many stem-succulent halophytes experience regular or episodic flooding events, which may compromise gas exchange and reduce survival rates. This study assesses submergence tolerance, gas exchange and tissue oxygen (O2) status of two stem-succulent halophytes with different stem diameters and from different elevations of an inland marsh. Methods Responses to complete submergence in terms of stem internal O2 dynamics, photosynthesis and respiration were studied for the two halophytic stem-succulents Tecticornia auriculata and T. medusa. Plants were submerged in a glasshouse experiment for 3, 6 and 12 d and O2 levels within stems were measured with microelectrodes. Photosynthesis by stems in air after de-submergence was also measured. Key Results Tecticornia medusa showed 100 % survival in all submergence durations whereas T. auriculata did not survive longer than 6 d of submergence. O2 profiles and time traces showed that when submerged in water at air-equilibrium, the thicker stems of T. medusa were severely hypoxic (close to anoxic) when in darkness, whereas the smaller diameter stems of T. auriculata were moderately hypoxic. During light periods, underwater photosynthesis increased the internal O2 concentrations in the succulent stems of both species. Stems of T. auriculata temporally retained a gas film when first submerged, whereas T. medusa did not. The lower O2 in T. medusa than in T. auriculata when submerged in darkness was largely attributed to a less permeable epidermis. The submergence sensitivity of T. auriculata was associated with swelling and rupturing of the succulent stem tissues, which did not occur in T. medusa. Conclusions The higher submergence tolerance of T. medusa was not associated with better internal aeration of stems. Rather, this species has poor internal aeration of the succulent stems due to its less permeable epidermis; the low epidermal permeability might be related to resistance to swelling of succulent stem

  9. Statistical analysis of polychaete population density: dynamics of dominant species and scaling properties in relative abundance fluctuations

    NASA Astrophysics Data System (ADS)

    Quiroz-Martinez, B.; Schmitt, F. G.; Dauvin, J.-C.

    2012-01-01

    We consider here the dynamics of two polychaete populations based on a 20 yr temporal benthic survey of two muddy fine sand communities in the Bay of Morlaix, Western English Channel. These populations display high temporal variability, which is analyzed here using scaling approaches. We find that population densities have heavy tailed probability density functions. We analyze the dynamics of relative species abundance in two different communities of polychaetes by estimating in a novel way a "mean square drift" coefficient which characterizes their fluctuations in relative abundance over time. We show the usefulness of using new tools to approach and model such highly variable population dynamics in marine ecosystems.

  10. New Insights into Active Site Conformation Dynamics of E. coli PNP Revealed by Combined H/D Exchange Approach and Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Kazazić, Saša; Bertoša, Branimir; Luić, Marija; Mikleušević, Goran; Tarnowski, Krzysztof; Dadlez, Michal; Narczyk, Marta; Bzowska, Agnieszka

    2016-01-01

    The biologically active form of purine nucleoside phosphorylase (PNP) from Escherichia coli (EC 2.4.2.1) is a homohexamer unit, assembled as a trimer of dimers. Upon binding of phosphate, neighboring monomers adopt different active site conformations, described as open and closed. To get insight into the functions of the two distinctive active site conformations, virtually inactive Arg24Ala mutant is complexed with phosphate; all active sites are found to be in the open conformation. To understand how the sites of neighboring monomers communicate with each other, we have combined H/D exchange (H/DX) experiments with molecular dynamics (MD) simulations. Both methods point to the mobility of the enzyme, associated with a few flexible regions situated at the surface and within the dimer interface. Although H/DX provides an average extent of deuterium uptake for all six hexamer active sites, it was able to indicate the dynamic mechanism of cross-talk between monomers, allostery. Using this technique, it was found that phosphate binding to the wild type (WT) causes arrest of the molecular motion in backbone fragments that are flexible in a ligand-free state. This was not the case for the Arg24Ala mutant. Upon nucleoside substrate/inhibitor binding, some release of the phosphate-induced arrest is observed for the WT, whereas the opposite effects occur for the Arg24Ala mutant. MD simulations confirmed that phosphate is bound tightly in the closed active sites of the WT; conversely, in the open conformation of the active site of the WT phosphate is bound loosely moving towards the exit of the active site. In Arg24Ala mutant binary complex Pi is bound loosely, too.

  11. The non-statistical dynamics of the 18O + 32O2 isotope exchange reaction at two energies

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, Annalise L.; Mar, Kathleen A.; Quach, Jim; Nguyen, Anh P. Q.; Wiegel, Aaron A.; Lin, Shi-Ying; Lendvay, Gyorgy; Guo, Hua; Lin, Jim J.; Lee, Yuan T.; Boering, Kristie A.

    2014-08-01

    The dynamics of the 18O(3P) + 32O2 isotope exchange reaction were studied using crossed atomic and molecular beams at collision energies (Ecoll) of 5.7 and 7.3 kcal/mol, and experimental results were compared with quantum statistical (QS) and quasi-classical trajectory (QCT) calculations on the O3(X1A') potential energy surface (PES) of Babikov et al. [D. Babikov, B. K. Kendrick, R. B. Walker, R. T. Pack, P. Fleurat-Lesard, and R. Schinke, J. Chem. Phys. 118, 6298 (2003)]. In both QS and QCT calculations, agreement with experiment was markedly improved by performing calculations with the experimental distribution of collision energies instead of fixed at the average collision energy. At both collision energies, the scattering displayed a forward bias, with a smaller bias at the lower Ecoll. Comparisons with the QS calculations suggest that 34O2 is produced with a non-statistical rovibrational distribution that is hotter than predicted, and the discrepancy is larger at the lower Ecoll. If this underprediction of rovibrational excitation by the QS method is not due to PES errors and/or to non-adiabatic effects not included in the calculations, then this collision energy dependence is opposite to what might be expected based on collision complex lifetime arguments and opposite to that measured for the forward bias. While the QCT calculations captured the experimental product vibrational energy distribution better than the QS method, the QCT results underpredicted rotationally excited products, overpredicted forward-bias and predicted a trend in the strength of forward-bias with collision energy opposite to that measured, indicating that it does not completely capture the dynamic behavior measured in the experiment. Thus, these results further underscore the need for improvement in theoretical treatments of dynamics on the O3(X1A') PES and perhaps of the PES itself in order to better understand and predict non-statistical effects in this reaction and in the formation

  12. The influence of microhabitat on the population dynamics of four herbaceous species in a semiarid area of northeastern Brazil.

    PubMed

    Silva, K A; Santos, J M F F; Andrade, J R; Lima, E N; Albuquerque, U P; Ferraz, E M N; Araújo, E L

    2016-02-01

    Variation in annual rainfall is considered the most important factor influencing population dynamics in dry environments. However, different factors may control population dynamics in different microhabitats. This study recognizes that microhabitat variation may attenuate the influence of climatic seasonality on the population dynamics of herbaceous species in dry forest (Caatinga) areas of Brazil. We evaluated the influence of three microhabitats (flat, rocky and riparian) on the population dynamics of four herbaceous species (Delilia biflora, Commelina obliqua, Phaseolus peduncularis and Euphorbia heterophylla) in a Caatinga (dry forest) fragment at the Experimental Station of the Agronomic Research Institute of Pernambuco in Brazil, over a period of three years. D. biflora, C. obliqua and P. peduncularis were found in all microhabitats, but they were present at low densities in the riparian microhabitat. There was no record of E. heterophylla in the riparian microhabitat. Population size, mortality rates and natality rates varied over time in each microhabitat. This study indicates that different establishment conditions influenced the population size and occurrence of the four species, and it confirms that microhabitat can attenuate the effect of drought stress on mortality during the dry season, but the strength of this attenuator role may vary with time and species. PMID:26909622

  13. Differences in plant cover and species composition of semiarid grassland communities of Central Mexico and its effects on net ecosystem exchange

    NASA Astrophysics Data System (ADS)

    Delgado-Balbuena, J.; Arredondo, J. T.; Loescher, H. W.; Huber-Sannwald, E.; Chavez-Aguilar, G.; Luna-Luna, M.; Barretero-Hernandez, R.

    2012-12-01

    Changes in land use across the semiarid grasslands of Northern Mexico have driven a decline of plant cover and alteration of plant species composition. A number of different plant communities have resulted from these changes, however, their implications on the carbon cycle and regional carbon balance are still poorly understood. Here, we examined the effects of plant cover loss and changes in species composition on net ecosystem CO2 exchange (NEE) and their biotic and abiotic controls. Five typical plant community types were examined in the semiarid grassland by encasing the entire above-ground ecosystem using the geodesic dome method. Sites included an oat crop (crop), a moderately grazed grassland (moderate grazing), a 28 yr-old grazing exclosure (exclosure), an overgrazed site with low perennial grass cover (overgrazed), and an overgrazed site presenting shrub encroachment (shrub encroachment). For natural vegetation, rates of daytime NEE for sites with a high plant cover (exclosure and moderate grazing) were similar (P>0.05) as compared to sites with low plant cover (overgrazed and shrub encroachment). However, night time NEE (carbon loss) was more than double (P<0.05) for sites with high plant cover compared to sites with low cover, resulting into slight C sinks for the low plant cover sites and neutral or sources for the high plant cover sites on an annual basis. Differences in plant cover and its associated biomass defined the sensitivity to environmental controls. Thus, daytime NEE in low plant cover sites reached light compensation points at lower PPFD values than those from high plant cover sites. Differences in species composition did not influence NEE rates even though there were transient or permanent changes in C3 vs. C4 functional groups.

  14. Simultaneous separation and determination of six arsenic species in rice by anion-exchange chromatography with inductively coupled plasma mass spectrometry.

    PubMed

    Ma, Li; Yang, Zhaoguang; Tang, Jie; Wang, Lin

    2016-06-01

    The simultaneous separation and determination of arsenite As(III), arsenate As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB), and arsenocholine (AsC) in rice samples have been carried out in one single anion-exchange column run by high-performance liquid chromatography with inductively coupled plasma mass spectrometry. To estimate the effect of variables on arsenic (As) speciation, the chromatographic conditions including type of competing anion, ionic strength, pH of elution buffer, and flow rate of mobile phase have been investigated by a univariate approach. Under the optimum chromatographic conditions, baseline separation of six As species has been achieved within 10 min by gradient elution program using 4 mM NH4 HCO3 at pH 8.6 as mobile phase A and 4 mM NH4 HCO3 , 40 mM NH4 NO3 at pH 8.6 as mobile phase B. The method detection limits for As(III), As(V), MMA, DMA, AsB, and AsC were 0.4, 0.9, 0.2, 0.4, 0.5, and 0.3 μg/kg, respectively. The proposed method has been applied to separation and quantification of As species in real rice samples collected from Hunan Province, China. The main As species detected in all samples were As(III), As(V) and DMA, with inorganic As accounting for over 80% of total As in these samples. PMID:27062347

  15. Evolution and Emergence of Enteroviruses through Intra- and Inter-species Recombination: Plasticity and Phenotypic Impact of Modular Genetic Exchanges in the 5’ Untranslated Region

    PubMed Central

    Muslin, Claire; Joffret, Marie-Line; Pelletier, Isabelle; Blondel, Bruno; Delpeyroux, Francis

    2015-01-01

    Genetic recombination shapes the diversity of RNA viruses, including enteroviruses (EVs), which frequently have mosaic genomes. Pathogenic circulating vaccine-derived poliovirus (cVDPV) genomes consist of mutated vaccine poliovirus (PV) sequences encoding capsid proteins, and sequences encoding nonstructural proteins derived from other species’ C EVs, including certain coxsackieviruses A (CV-A) in particular. Many cVDPV genomes also have an exogenous 5’ untranslated region (5’ UTR). This region is involved in virulence and includes the cloverleaf (CL) and the internal ribosomal entry site, which play major roles in replication and the initiation of translation, respectively. We investigated the plasticity of the PV genome in terms of recombination in the 5’ UTR, by developing an experimental model involving the rescue of a bipartite PV/CV-A cVDPV genome rendered defective by mutations in the CL, following the co-transfection of cells with 5’ UTR RNAs from each of the four human EV species (EV-A to -D). The defective cVDPV was rescued by recombination with 5’ UTR sequences from the four EV species. Homologous and nonhomologous recombinants with large deletions or insertions in three hotspots were isolated, revealing a striking plasticity of the 5’ UTR. By contrast to the recombination of the cVDPV with the 5’ UTR of group II (EV-A and -B), which can decrease viral replication and virulence, recombination with the 5’ UTRs of group I (EV-C and -D) appeared to be evolutionarily neutral or associated with a gain in fitness. This study illustrates how the genomes of positive-strand RNA viruses can evolve into mosaic recombinant genomes through intra- or inter-species modular genetic exchanges, favoring the emergence of new recombinant lineages. PMID:26562151

  16. [Community structure and its dynamics of predatory arthropod in jujube orchards intercropped with different herbage species].

    PubMed

    Shi, Guanglu; Wang, Younian; Miao, Zhenwang; Li, Dengke; Zhang, Tieqiang; Yu, Tongquan; Ji, Qianlong; Dong, Hui

    2006-11-01

    By using community structural characteristic indices and principal component analysis, this paper studied the community structure and its dynamics of predatory arthropod in the jujube orchards intercropped with Astrugalus complanatus, Trifolium repen, Lotus comiculotus, and Medicago sativa. The results showed that in all test jujube orchards, spider and predatory insects were the predominant components of the predatory arthropod community, and their relative abundances were 48.3% - 52.7% and 38.8% - 44.4% , respectively. There were significant differences (P < 0.05) in the mean density, diversity, and evenness of the most common predatory arthropod groups in the jujube orchards intercropped with different herbage species, with the sequence of intercropped with Lotus comiculotus > Medicago sativa > Astrugalus complanatu > Trifolium repens, but for dominant concentration index, the sequence was intercropped with Trifolium repens > Astrugalus complanatu > Medicago sativa > Lotus comiculotus. The average density of predatory spiders was significant higher (P < 0.05) than that of predatory insects in all test jujube orchards. The individuals of Coccinellidae, Pentatomidae, inoccllidae, Chrysopidae, Thomisidae, Araneidae and Phytoseiidae played the dominant role in the community. PMID:17269332

  17. Strategy Dependent Swimming Dynamics Change among a Predatory Algae Species with Different Strains

    NASA Astrophysics Data System (ADS)

    Katz, Joseph; Sheng, Jian; Malkiel, Edwin; Adolf, Jason; Place, Allen

    2008-11-01

    Digital holographic microscopic cinematography is used for measuring the 3D, time resolved, swimming behavior of toxic and non-toxic strains the marine dinoflagellate Karlodinium veneficum. We focus on the response of predators of the same species, but with different predation strategy, to the presence of prey, Storeatula major. Experiments are performed in a 3x3 mm cuvette, at densities extending to 100,000 cells/ml. Holograms are recorded at 60fps and at 20X magnification. In each case, we simultaneously track 200-500 cells in the 3mm deep sample, at a spatial resolution of 0.4x0.4x2 μm. We show that responses are largely dependent on the predation strategy. K. veneficum 2064, a toxic mixotroph, slows down and decreases the helix radius and clusters around the prey. Conversely, MD5, a non-toxic, autotrophic-like strain is completely oblivious to prey. Strain 1974, which is toxic and twice as motile, shows heterotrophic-like responses with characteristics of an active hunter. Also, on going spectral analysis of the 3-D motion provides quantitative insight on the swimming dynamics of microorganisms.

  18. Species sorting and patch dynamics in harlequin metacommunities affect the relative importance of environment and space.

    PubMed

    Leibold, Mathew A; Loeuille, Nicolas

    2015-12-01

    Metacommunity theory indicates that variation in local community structure can be partitioned into components including those related to local environmental conditions vs. spatial effects and that these can be quantified using statistical methods based on variation partitioning. It has been hypothesized that joint associations of community composition with environment and space could be due to patch dynamics involving colonization-extinction processes in environmentally heterogeneous landscapes but this has yet to be theoretically shown. We develop a two-patch, type-two, species competition model in such a "harlequin" landscape (where different patches have different environments) to evaluate how composition is related to environmental and spatial effects as a function of background extinction rate. Using spatially implicit analytical models, we find that the environmental association of community composition declines with extinction rate as expected. Using spatially explicit simulation models, we further find that there is an increase in the spatial structure with extinction due to spatial patterning into clusters that are not related to environmental conditions but that this increase is limited. Natural metacommunities often show both environment and spatial determination even under conditions of relatively high isolation and these could be more easily explained by our model than alternative metacommunity models. PMID:26909428

  19. Genomes of Ellobius species provide insight into the evolutionary dynamics of mammalian sex chromosomes.

    PubMed

    Mulugeta, Eskeatnaf; Wassenaar, Evelyne; Sleddens-Linkels, Esther; van IJcken, Wilfred F J; Heard, Edith; Grootegoed, J Anton; Just, Walter; Gribnau, Joost; Baarends, Willy M

    2016-09-01

    The X and Y sex chromosomes of placental mammals show hallmarks of a tumultuous evolutionary past. The X Chromosome has a rich and conserved gene content, while the Y Chromosome has lost most of its genes. In the Transcaucasian mole vole Ellobius lutescens, the Y Chromosome including Sry has been lost, and both females and males have a 17,X diploid karyotype. Similarly, the closely related Ellobius talpinus, has a 54,XX karyotype in both females and males. Here, we report the sequencing and assembly of the E. lutescens and E. talpinus genomes. The results indicate that the loss of the Y Chromosome in E. lutescens and E. talpinus occurred in two independent events. Four functional homologs of mouse Y-Chromosomal genes were detected in both female and male E. lutescens, of which three were also detected in the E. talpinus genome. One of these is Eif2s3y, known as the only Y-derived gene that is crucial for successful male meiosis. Female and male E. lutescens can carry one and the same X Chromosome with a largely conserved gene content, including all genes known to function in X Chromosome inactivation. The availability of the genomes of these mole vole species provides unique models to study the dynamics of sex chromosome evolution. PMID:27510564

  20. Dynamics of CO2-exchange and C-budgets due to soil erosion: Insights from a 4 years observation period

    NASA Astrophysics Data System (ADS)

    Hoffmann, Mathias; Albiac Borraz, Elisa; Garcia Alba, Juana; Augustin, Jürgen; Sommer, Michael

    2015-04-01

    Agriculture in the hummocky ground moraine landscape of NE-Germany is characterized by an increase in energy crop cultivation, like maize or sorghum. Both enhance lateral C fluxes by erosion and induce feedbacks on C dynamics of agroecosystems as a result of reduced wintertime plant cover and vigorous crop growth during summer. However, the actual impact of these phenomena on the CO2-sink/-source function of agricultural landscapes, is still not clear. Therefore, the interdisciplinary project "CarboZALF" was established in Dedelow/Prenzlau (NE-Germany) in 2009. Within the field experiment CarboZALF-D, CO2 fluxes for the soil-plant systems were monitored, covering typical landscape relevant soil states in respect to erosion and deposition, like Calcic Cutanic Luvisol and Endogleyic Colluvic Regosol. Automated chamber systems, each consisting of four transparent chambers (2.5 m height, basal area 2.25 m2), were placed along gradients at both measurement sites. Monitored CO2 fluxes were gap-filled on a high-temporal resolution by modelling ecosystem respiration (Reco), gross primary productivity (GPP) and net ecosystem exchange (NEE) based on parallel and continuous measurements of the CO2 exchange, soil and air temperatures as well as photosynthetic active radiation (PAR). Gap-filling was e.g. needed in case of chamber malfunctions and abrupt disturbances by farming practice. The monitored crop rotation was corn-winter wheat (2 a), sorghum-winter triticale and alfalfa (1.5 a). In our presentation we would like to show insights from a 4 years observation period, with prounounced differences between the eroded and the colluvial soil: The Endogleyic Colluvic Regosol showed higher flux rates for Reco, GPP and NEE compared to the Calcic Cutanic Luvisol. Site-specific NEE and C-balances were positively related to soil C-stocks as well as biomass production, and generated a minor C-sink in case of the Calcic Cutanic Luvisol and a highly variable C-source in case of the

  1. Carbon and Nitrogen dynamics in forest soils depending on light conditions and tree species

    NASA Astrophysics Data System (ADS)

    Veselinovic, Bojana; Hager, Herbert

    2013-04-01

    Climate change mitigation actions under the Kyoto Protocol apply among other decreases of CO2-emissions and/or increases of carbon (C) stocks. As soils represent the second biggest C-reservoir on Earth, an exact estimation of the stocks and reliable knowledge on C-dynamics in forest soils is of high importance. Anyhow, here, the accurate GHG-accounting, emission reductions and increase in C stocks is hampered due to lack of reliable data and solid statistical methods for the factors which influence C-sequestration in and its release from these systems. In spite of good progress in the scientific research, these factors are numerous and diverse in their interactions. This work focuses on influence of the economically relevant tree species - Picea abies, Fagus sylvatica and Quercus spp. - and light conditions on forest floor and mineral soil C and N dynamics in forest soils. Spruce monocultures have been widely used management practices in central European forests during the past century. Such stands are in lower altitudes and on heavy and water logged soils unstable and prone to disturbances, especially to windthrows. We hypothesize that windthrow areas loose C & N and that the establishment of the previous nutrient stocks is, if at all, only possible to be reached over the longer periods of time. We research also how the increased OM depletion affects the change of C & N stocks in forest floor vs. mineral soil. Conversion of such secondary spruce monocultures to site adequate beech and oak forests may enable higher stocks allocated predominantly as stable organic carbon and as plant available nitrogen. For this purpose sites at 300-700 m altitude with planosols were chosen in the region of the Northern Alpine Foothills. A false chronosequence approach was used in order to evaluate the impacts of the tree species and change in light conditions on dynamic of C & N in the forest floor and mineral soil, over the period 0-100 (for oak 120 y.) years. The C- and N

  2. Occupancy dynamics in a tropical bird community: unexpectedly high forest use by birds classified as non-forest species

    USGS Publications Warehouse

    Ruiz-Gutierrez, Viviana; Zipkin, Elise F.; Dhondt, Andre A.

    2010-01-01

    1. Worldwide loss of biodiversity necessitates a clear understanding of the factors driving population declines as well as informed predictions about which species and populations are at greatest risk. The biggest threat to the long-term persistence of populations is the reduction and changes in configuration of their natural habitat. 2. Inconsistencies have been noted in the responses of populations to the combined effects of habitat loss and fragmentation. These have been widely attributed to the effects of the matrix habitats in which remnant focal habitats are typically embedded. 3. We quantified the potential effects of the inter-patch matrix by estimating occupancy and colonization of forest and surrounding non-forest matrix (NF). We estimated species-specific parameters using a dynamic, multi-species hierarchical model on a bird community in southwestern Costa Rica. 4. Overall, we found higher probabilities of occupancy and colonization of forest relative to the NF across bird species, including those previously categorized as open habitat generalists not needing forest to persist. Forest dependency was a poor predictor of occupancy dynamics in our study region, largely predicting occupancy and colonization of only non-forest habitats. 5. Our results indicate that the protection of remnant forest habitats is key for the long-term persistence of all members of the bird community in this fragmented landscape, including species typically associated with open, non-forest habitats. 6.Synthesis and applications. We identified 39 bird species of conservation concern defined by having high estimates of forest occupancy, and low estimates of occupancy and colonization of non-forest. These species survive in forest but are unlikely to venture out into open, non-forested habitats, therefore, they are vulnerable to the effects of habitat loss and fragmentation. Our hierarchical community-level model can be used to estimate species-specific occupancy dynamics for focal

  3. The Role of Explicitly Modeling Bryophytes in Simulating Carbon Exchange and Permafrost Dynamics of an Arctic Coastal Tundra at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Yuan, F.; Thornton, P. E.; McGuire, A. D.; Oechel, W. C.; Yang, B.; Tweedie, C. E.; Rogers, A.; Norby, R. J.

    2013-12-01

    Bryophyte cover is greater than 50% in many Arctic tundra ecosystems. In regions of the Arctic where shrubs are expanding it is expected that bryophyte cover will be substantially reduced. Such a loss in cover could influence the hydrological, biogeochemical, and permafrost dynamics of Arctic tundra ecosystems. The explicit representation of bryophyte physiological and biophysical processes in large-scale ecological and land surface models is rare, and we hypothesize that the representation of bryophytes has consequences for estimates of the exchange of water, energy, and carbon by these models. This study explicitly represents the effects of bryophyte function and structure on the exchange of carbon (e.g., summer photosynthesis effects) and energy (e.g., summer insulation effects) with the atmosphere in the Community Land Model (CLM-CN). The modified model was evaluated for its ability to simulate C exchange, soil temperature, and soil moisture since the 1970s at Barrow, Alaska through comparison with data from AmeriFlux sites, USDA Soil Climate Networks observation sites at Barrow, and other sources. We also compare the outputs of the CLM-CN simulations with those of the recently developed Dynamical Organic Soil coupled Terrestrial Ecosystem Model (DOS-TEM). Overall, our evaluation indicates that bryophytes are important contributors to land-atmospheric C exchanges in Arctic tundra and that they play an important role to permafrost thermal and hydrological processes which are critical to permafrost stability. Our next step in this study is to examine the climate system effects of explicitly representing bryophyte dynamics in the land surface model. Key Words: Bryophytes, Arctic coastal tundra, Vegetation composition, Net Ecosystem Exchange, Permafrost, Land Surface Model, Terrestrial Ecosystem Model

  4. Src Kinase Determines the Dynamic Exchange of the Docking Protein NEDD9 (Neural Precursor Cell Expressed Developmentally Down-regulated Gene 9) at Focal Adhesions*

    PubMed Central

    Bradbury, Peta; Bach, Cuc T.; Paul, Andre; O'Neill, Geraldine M.

    2014-01-01

    Dynamic exchange of molecules between the cytoplasm and integrin-based focal adhesions provides a rapid response system for modulating cell adhesion. Increased residency time of molecules that regulate adhesion turnover contributes to adhesion stability, ultimately determining migration speed across two-dimensional surfaces. In the present study we test the role of Src kinase in regulating dynamic exchange of the focal adhesion protein NEDD9/HEF1/Cas-L. Using either chemical inhibition or fibroblasts genetically null for Src together with fluorescence recovery after photobleaching (FRAP), we find that Src significantly reduces NEDD9 exchange at focal adhesions. Analysis of NEDD9 mutant constructs with the two major Src-interacting domains disabled revealed the greatest effects were due to the NEDD9 SH2 binding domain. This correlated with a significant change in two-dimensional migratory speed. Given the emerging role of NEDD9 as a regulator of focal adhesion stability, the time of NEDD9 association at the focal adhesions is key in modulating rates of migration and invasion. Our study suggests that Src kinase activity determines NEDD9 exchange at focal adhesions and may similarly modulate other focal adhesion-targeted Src substrates to regulate cell migration. PMID:25059660

  5. Dynamic habitat selection by two wading bird species with divergent foraging strategies in a seasonally fluctuating wetland

    USGS Publications Warehouse

    Beerens, J.M.; Gawlik, D.E.; Herring, G.; Cook, Mark I.

    2011-01-01

    Seasonal and annual variation in food availability during the breeding season plays an influential role in the population dynamics of many avian species. In highly dynamic ecosystems like wetlands, finding and exploiting food resources requires a flexible behavioral response that may produce different population trends that vary with a species' foraging strategy. We quantified dynamic foraging-habitat selection by breeding and radiotagged White Ibises (Eudocimus albus) and Great Egrets (Ardea alba) in the Florida Everglades, where fluctuation in food resources is pronounced because of seasonal drying and flooding. The White Ibis is a tactile "searcher" species in population decline that specializes on highly concentrated prey, whereas the Great Egret, in a growing population, is a visual "exploiter" species that requires lower prey concentrations. In a year with high food availability, resource-selection functions for both species included variables that changed over multiannual time scales and were associated with increased prey production. In a year with low food availability, resource-selection functions included short-term variables that concentrated prey (e.g., water recession rates and reversals in drying pattern), which suggests an adaptive response to poor foraging conditions. In both years, the White Ibis was more restricted in its use of habitats than the Great Egret. Real-time species-habitat suitability models were developed to monitor and assess the daily availability and quality of spatially explicit habitat resources for both species. The models, evaluated through hindcasting using independent observations, demonstrated that habitat use of the more specialized White Ibis was more accurately predicted than that of the more generalist Great Egret. ?? The American Ornithologists' Union, 2011.

  6. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics – Revisiting Perturbative Hybrid Kinetic-MHD Theory

    PubMed Central

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-01-01

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle’s Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas. PMID:27160346

  7. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics – Revisiting Perturbative Hybrid Kinetic-MHD Theory

    NASA Astrophysics Data System (ADS)

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-05-01

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle’s Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.

  8. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics - Revisiting Perturbative Hybrid Kinetic-MHD Theory.

    PubMed

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-01-01

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas. PMID:27160346

  9. Calculation of protein heat capacity from replica-exchange molecular dynamics simulations with different implicit solvent models.

    PubMed

    Yeh, In-Chul; Lee, Michael S; Olson, Mark A

    2008-11-27

    The heat capacity has played a major role in relating microscopic and macroscopic properties of proteins and their disorder-order phase transition of folding. Its calculation by atomistic simulation methods remains a significant challenge due to the complex and dynamic nature of protein structures, their solvent environment, and configurational averaging. To better understand these factors on calculating a protein heat capacity, we provide a comparative analysis of simulation models that differ in their implicit solvent description and force-field resolution. Our model protein system is the src Homology 3 (SH3) domain of alpha-spectrin, and we report a series of 10 ns replica-exchange molecular dynamics simulations performed at temperatures ranging from 298 to 550 K, starting from the SH3 native structure. We apply the all-atom CHARMM22 force field with different modified analytical generalized Born solvent models (GBSW and GBMV2) and compare these simulation models with the distance-dependent dielectric screening of charge-charge interactions. A further comparison is provided with the united-atom CHARMM19 plus a pairwise GB model. Unfolding-folding transition temperatures of SH3 were estimated from the temperature-dependent profiles of the heat capacity, root-mean-square distance from the native structure, and the fraction of native contacts, each calculated from the density of states by using the weighted histogram analysis method. We observed that, for CHARMM22, the unfolding transition and energy probability density were quite sensitive to the implicit solvent description, in particular, the treatment of the protein-solvent dielectric boundary in GB models and their surface-area-based hydrophobic term. Among the solvent models tested, the calculated melting temperature varied in the range 353-438 K and was higher than the experimental value near 340 K. A reformulated GBMV2 model of employing a smoother molecular-volume dielectric interface was the most accurate

  10. Structure and Dynamics of NBD1 from CFTR Characterized Using Crystallography and Hydrogen/Deuterium Exchange Mass Spectrometry

    SciTech Connect

    Lewis, H.A.; Wang, C.; Zhao, X.; Hamuro, Y.; Conners, K.; Kearins, M.C.; Lu, F.; Sauder, J.M.; Molnar, K.S.; Coales, S.J.; Maloney, P.C.; Guggino, W.B.; Wetmore, D.R.; Weber, P.C.; Hunt, J.F.

    2012-04-30

    The {Delta}F508 mutation in nucleotide-binding domain 1 (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) is the predominant cause of cystic fibrosis. Previous biophysical studies on human F508 and {Delta}F508 domains showed only local structural changes restricted to residues 509-511 and only minor differences in folding rate and stability. These results were remarkable because {Delta}F508 was widely assumed to perturb domain folding based on the fact that it prevents trafficking of CFTR out of the endoplasmic reticulum. However, the previously reported crystal structures did not come from matched F508 and {Delta}F508 constructs, and the {Delta}F508 structure contained additional mutations that were required to obtain sufficient protein solubility. In this article, we present additional biophysical studies of NBD1 designed to address these ambiguities. Mass spectral measurements of backbone amide {sup 1}H/{sup 2}H exchange rates in matched F508 and {Delta}F508 constructs reveal that {Delta}F508 increases backbone dynamics at residues 509-511 and the adjacent protein segments but not elsewhere in NBD1. These measurements also confirm a high level of flexibility in the protein segments exhibiting variable conformations in the crystal structures. We additionally present crystal structures of a broader set of human NBD1 constructs, including one harboring the native F508 residue and others harboring the {Delta}F508 mutation in the presence of fewer and different solubilizing mutations. The only consistent conformational difference is observed at residues 509-511. The side chain of residue V510 in this loop is mostly buried in all non-{Delta}F508 structures but completely solvent exposed in all {Delta}F508 structures. These results reinforce the importance of the perturbation {Delta}F508 causes in the surface topography of NBD1 in a region likely to mediate contact with the transmembrane domains of CFTR. However, they also suggest that increased

  11. Population dynamics of Aspergillus section Nigri species on vineyard samples of grapes and raisins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several species of Aspergillus section Nigri, including potential mycotoxin producers, are common residents of grape vineyards, but the relative population size of individual species throughout the growing season is difficult to determine using traditional isolation and identification methods. Using...

  12. Seasonal Dynamics of Phlebotomine Sand Fly Species Proven Vectors of Mediterranean Leishmaniasis Caused by Leishmania infantum

    PubMed Central

    Alten, Bulent; Maia, Carla; Afonso, Maria Odete; Campino, Lenea; Jiménez, Maribel; González, Estela; Molina, Ricardo; Bañuls, Anne Laure; Prudhomme, Jorian; Vergnes, Baptiste; Toty, Celine; Cassan, Cécile; Rahola, Nil; Thierry, Magali; Sereno, Denis; Bongiorno, Gioia; Bianchi, Riccardo; Khoury, Cristina; Tsirigotakis, Nikolaos; Dokianakis, Emmanouil; Antoniou, Maria; Christodoulou, Vasiliki; Mazeris, Apostolos; Karakus, Mehmet; Ozbel, Yusuf; Arserim, Suha K.; Erisoz Kasap, Ozge; Gunay, Filiz; Oguz, Gizem; Kaynas, Sinan; Tsertsvadze, Nikoloz; Tskhvaradze, Lamzira; Gramiccia, Marina; Volf, Petr; Gradoni, Luigi

    2016-01-01

    Background The recent geographical expansion of phlebotomine vectors of Leishmania infantum in the Mediterranean subregion has been attributed to ongoing climate changes. At these latitudes, the activity of sand flies is typically seasonal; because seasonal phenomena are also sensitive to general variations in climate, current phenological data sets can provide a baseline for continuing investigations on sand fly population dynamics that may impact on future scenarios of leishmaniasis transmission. With this aim, in 2011–2013 a consortium of partners from eight Mediterranean countries carried out entomological investigations in sites where L. infantum transmission was recently reported. Methods/Principal Findings A common protocol for sand fly collection included monthly captures by CDC light traps, complemented by sticky traps in most of the sites. Collections were replicated for more than one season in order to reduce the effects of local weather events. In each site, the trapping effort was left unchanged throughout the survey to legitimate inter-seasonal comparisons. Data from 99,000 collected specimens were analyzed, resulting in the description of seasonal dynamics of 56,000 sand flies belonging to L. infantum vector species throughout a wide geographical area, namely P. perniciosus (Portugal, Spain and Italy), P. ariasi (France), P. neglectus (Greece), P. tobbi (Cyprus and Turkey), P. balcanicus and P. kandelakii (Georgia). Time of sand fly appearance/disappearance in collections differed between sites, and seasonal densities showed variations in each site. Significant correlations were found between latitude/mean annual temperature of sites and i) the first month of sand fly appearance, that ranged from early April to the first half of June; ii) the type of density trend, varying from a single peak in July/August to multiple peaks increasing in magnitude from May through September. A 3-modal trend, recorded for P. tobbi in Cyprus, represents a novel

  13. Species frequency dynamics in an old-field succession: Effects of disturbance, fertilization and scale

    USGS Publications Warehouse

    Gibson, D.J.; Middleton, B.A.; Foster, K.; Honu, Y.A.K.; Hoyer, E.W.; Mathis, M.

    2005-01-01

    Question: Can patterns of species frequency in an old-field be explained within the context of a metapopulation model? Are the patterns observed related to time, spatial scale, disturbance, and nutrient availability? Location: Upland and lowland old-fields in Illinois, USA. Method: Species richness was recorded annually for seven years following plowing of an upland and lowland old-field subject to crossed fertilizer and disturbance treatments (mowing and rototilling). Species occupancy distributions were assessed with respect to the numbers of core and satellite species. Results: In both fields, species richness became higher in disturbed plots than in undisturbed plots over time, and decreased in fertilized plots irrespective of time. A bimodal pattern of species richness consistent with the Core-satellite species (CSS) hypothesis occurred in the initial seed bank and through the course of early succession. The identity of native and exotic core species (those present in > 90% of blocks) changed with time. Some core species from the seed bank became core species in the vegetation, albeit after several years. At the scale of individual plots, a bimodal fit consistent with the CSS hypothesis applied only in year 1 and rarely thereafter. Conclusions: The CSS hypothesis provides a metapopulation perspective for understanding patterns of species richness but requires the assessment of spatial and temporal scaling effects. Regional processes (e.g. propagule availability) at the largest scale have the greatest impact influencing community structure during early secondary succession. Local processes (e.g., disturbance and soil nutrients) are more important at smaller scales and place constraints on species establishment and community structure of both native and exotic species. Under the highest intensity of disturbance, exotic species may be able to use resources unavailable to, or unused by, native species. ?? IAVS; Opulus Press.

  14. The invasive species Ulex europaeus (Fabaceae) shows high dynamism in a fragmented landscape of south-central Chile.

    PubMed

    Altamirano, Adison; Cely, Jenny Paola; Etter, Andrés; Miranda, Alejandro; Fuentes-Ramirez, Andres; Acevedo, Patricio; Salas, Christian; Vargas, Rodrigo

    2016-08-01

    Ulex europaeus (gorse) is an invasive shrub deemed as one of the most invasive species in the world. U. europaeus is widely distributed in the south-central area of Chile, which is considered a world hotspot for biodiversity conservation. In addition to its negative effects on the biodiversity of natural ecosystems, U. europaeus is one of the most severe pests for agriculture and forestry. Despite its importance as an invasive species, U. europaeus has been little studied. Although information exists on the potential distribution of the species, the interaction of the invasion process with the spatial dynamic of the landscape and the landscape-scale factors that control the presence or absence of the species is still lacking. We studied the spatial and temporal dynamics of the landscape and how these relate to U. europaeus invasion in south-central Chile. We used supervised classification of satellite images to determine the spatial distribution of the species and other land covers for the years 1986 and 2003, analysing the transitions between the different land covers. We used logistic regression for modelling the increase, decrease and permanence of U. europaeus invasion considering landscape variables. Results showed that the species covers only around 1 % of the study area and showed a 42 % reduction in area for the studied period. However, U. europaeus was the cover type which presented the greatest dynamism in the landscape. We found a strong relationship between changes in land cover and the invasion process, especially connected with forest plantations of exotic species, which promotes the displacement of U. europaeus. The model of gorse cover increase presented the best performance, and the most important predictors were distance to seed source and landscape complexity index. Our model predicted high spread potential of U. europaeus in areas of high conservation value. We conclude that proper management for this invasive species must take into account

  15. Dynamics of the abundance of some bivalve species in Russian waters of the Sea of Japan and its prognosis

    NASA Astrophysics Data System (ADS)

    Gabaev, D. D.

    2009-04-01

    The abundance dynamics of several species of bivalve mollusks spats were studied on scallop collectors situated in Minonosok bay of Pos’eta Gulf for 27 years and for 4 years in Kit bay of the Sea of Japan (Russia). A significant positive relation was found between the species having similar thermopathy: the Japanese scallop Mizuhopecten yessoensis and Swift’s scallop Swiftopecten swifti, as well as between the wrinkled rock borer Hiatella arctica and Swift’s scallop Swiftopecten swifti. A significant reverse relation was found between the bay mussel Mytilus trossulus and the Northern Pacific seastar Asterias amurensis. Some of the studied mollusks of Minonosok bay and the remote Kit bay display a significant reversed interrelation in their abundance dynamics caused by the precipitation regime. The one-way dispersion analysis a revealed significant influence of the water temperature in June and the precipitation abundance in the summer on Swift’s scallop’s dynamic abundance. The two-way dispersion analysis showed a significant influence of the ice period duration and the solar activity expressed in Wolf’s numbers on the Japanese scallop abundance dynamics. The uneven years in the period from 1977 to 1984 were usually productive for M. yessoensis and S. swifti spat. After 1985, the even years became more productive (there was asynchronicity in the abundance dynamics compared with 1977-1984). Such asynchronicity appeared with the advent of the new 22-year solar cycle, which caused a change in the magnet polarity in 1986.

  16. Simulating Climate, Fire, and Management Influences on Forest Carbon Dynamics in Single- and Multi-Species Forests of the Southwestern and Southeastern US

    NASA Astrophysics Data System (ADS)

    Hurteau, M. D.

    2014-12-01

    The interaction of climate, disturbance, and management on forest structure and composition can alter carbon dynamics. Understanding how these factors influence forest carbon dynamics individually and in combination is necessary for making forest projections under altered climatic conditions. Model and emission scenario uncertainty in climate projections presents one challenge. When simulating disturbance, such as fire, projected climate influences both fire behavior and post-wildfire regeneration. The outcome of management actions implemented to alter forest conditions can be influenced by both climate and disturbance. Simulation results in both single- and multi-species forests occupying different future climate space indicate the importance of between climate model variation and variation between emission scenarios. The variation in projected biomass as a function of climate model input is as much as 40%. Response to emission scenario varies as a function of climate space, with increased late-century divergence in net ecosystem exchange (NEE) and biomass. When fire is simulated, climate model influence on biomass ranged from 0-27 Mg ha-1, while the effect on NEE ranged from -279 to 238 g m-2. Management implemented to reduce fire risk or provide wildlife habitat influences near- and long-term carbon dynamics as a function of projected climate, with the difference between no management and management for fire risk yielding a range in biomass of 0.6 to 10.78 Mg ha-1 and relatively little change in NEE (-8 to 21 g m-2). Given the range of results, including a suite of models and emission scenarios allow for bracketing the range of future forest conditions. However, the mismatch in scales between climate projections and the microclimatic influences on regeneration and the influence of projected climate on wildfire frequency and type add sources of uncertainty to these projections that require additional investigation.

  17. Differences in plant cover and species composition of semiarid grassland communities of central Mexico and its effects on net ecosystem exchange

    NASA Astrophysics Data System (ADS)

    Delgado-Balbuena, J.; Arredondo, J. T.; Loescher, H. W.; Huber-Sannwald, E.; Chavez-Aguilar, G.; Luna-Luna, M.; Barretero-Hernandez, R.

    2013-07-01

    Changes in land use across the semiarid grasslands of northern Mexico have driven a decline of plant cover and alteration of plant species composition. A number of different plant communities have resulted from these changes. Their implications, however, on the carbon (C) cycle and regional carbon balance are still poorly understood. Here, we examined the effects of plant cover loss and changes in species composition on net ecosystem CO2 exchange (NEE) and their biotic and abiotic controls. NEE was measured in five representative plant community types within a semiarid grassland by temporarily enclosing the entire aboveground ecosystem using a chamber method (i.e., geodesic dome). Sites included an oat crop (crop), a moderately grazed grassland (moderate grazing), a 28 yr-old grazing exclosure (exclosure), an overgrazed site with low perennial grass cover (overgrazed), and an overgrazed site presenting shrub encroachment (shrub encroachment). For natural vegetation, rates of standardized daytime NEE for sites with a high plant cover (exclosure and moderate grazing) were similar (P > 0.05) as compared to sites with low plant cover (overgrazed and shrub encroachment). However, yearly total nighttime NEE (carbon loss) was more than double (P < 0.05) for sites with high plant cover compared to sites with low cover, resulting to slight C sinks for the low plant cover sites, and neutral or sources for the high plant cover sites as accounted by daytime and nighttime NEE annual balance. Differences in plant cover and its associated biomass defined the sensitivity to environmental controls. Thus, daytime NEE in low plant cover sites reached light compensation points at lower photosynthetic photon flux density than those from high plant cover sites. Differences in species composition did not influence NEE rates even though there were transient or permanent changes in C3 vs. C4 functional groups. Our results allowed the detection of the large variability and contribution of

  18. Effective carrying capacity and analytical solution of a particular case of the Richards-like two-species population dynamics model

    NASA Astrophysics Data System (ADS)

    Cabella, Brenno Caetano Troca; Ribeiro, Fabiano; Martinez, Alexandre Souto

    2012-02-01

    We consider a generalized two-species population dynamic model and analytically solve it for the amensalism and commensalism ecological interactions. These two-species models can be simplified to a one-species model with a time dependent extrinsic growth factor. With a one-species model with an effective carrying capacity one is able to retrieve the steady state solutions of the previous one-species model. The equivalence obtained between the effective carrying capacity and the extrinsic growth factor is complete only for a particular case, the Gompertz model. Here we unveil important aspects of sigmoid growth curves, which are relevant to growth processes and population dynamics.

  19. Dynamics of competing species in a model of adaptive radiation and macroevolution

    NASA Astrophysics Data System (ADS)

    de Blasio, Birgitte Freiesleben; de Blasio, Fabio Vittorio

    2005-09-01

    We present a simple model of adaptive radiation in evolution based on species competition. Competition is found to promote species divergence and branching, and to dampen the net species production. In the model simulations, high taxonomic diversification and branching take place during the beginning of the radiation. The results show striking similarities with empirical data and highlight the mechanism of competition as an important driving factor for accelerated evolutionary transformation.

  20. Magnetization dynamics in an exchange-coupled NiFe/CoFe bilayer studied by x-ray detected ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Stenning, G. B. G.; Shelford, L. R.; Cavill, S. A.; Hoffmann, F.; Haertinger, M.; Hesjedal, T.; Woltersdorf, G.; Bowden, G. J.; Gregory, S. A.; Back, C. H.; de Groot, P. A. J.; van der Laan, G.

    2015-01-01

    Exchange-coupled hard and soft magnetic layers find extensive use in data storage applications, for which their dynamical response has great importance. With bulk techniques, such as ferromagnetic resonance (FMR), it is difficult to access the behaviour and precise influence of each individual layer. By contrast, the synchrotron radiation-based technique of x-ray detected ferromagnetic resonance (XFMR) allows element-specific and phase-resolved FMR measurements in the frequency range 0.5-11 GHz. Here, we report the study of the magnetization dynamics of an exchange-coupled Ni0.81Fe0.19 (43.5 nm)/Co0.5Fe0.5 (30 nm) bilayer system using magnetometry and vector network analyser FMR, combined with XFMR at the Ni and Co L2 x-ray absorption edges. The epitaxially grown bilayer exhibits two principal resonances denoted as the acoustic and optical modes. FMR experiments show that the Kittel curves of the two layers cannot be taken in isolation, but that their modelling needs to account for an interlayer exchange coupling. The angular dependence of FMR indicates a collective effect for the modes of the magnetically hard CoFe and soft NiFe layer. The XFMR precessional scans show that the acoustic mode is dominated by the Ni signal with the Co and Ni magnetization precessing in phase, whereas the optical mode is dominated by the Co signal with the Co and Ni magnetization precessing in anti-phase. The response of the Co signal at the Ni resonance, and vice versa, show induced changes in both amplitude and phase, which can be ascribed to the interface exchange coupling. An interesting aspect of phase-resolved XFMR is the ability to distinguish between static and dynamic exchange coupling. The element-specific precessional scans of the NiFe/CoFe bilayer clearly have the signature of static exchange coupling, in which the effective field in one layer is aligned along the magnetization direction of the other layer.

  1. The relative roles of density and climatic variation on population dynamics and fecundity rates in three contrasting ungulate species.

    PubMed Central

    Coulson, T; Milner-Gulland, E J; Clutton-Brock, T

    2000-01-01

    The relative influences of density-dependent and -independent processes on vital rates and population dynamics have been debated in ecology for over half a century, yet it is only recently that both processes have been shown to operate within the same population. However, generalizations on the role of each process across species are rare. Using a process-orientated generalized linear modelling approach we show that variations in fecundity rates in populations of three species of ungulates with contrasting life histories are associated with density and winter weather in a remarkably similar manner. However, there are differences and we speculate that they are a result of differences in size between the species. Much previous research exploring the association between vital rates, population dynamics and density-dependent and -independent processes has used pattern-orientated approaches to decompose time-series into contributions from density-dependent and -independent processes. Results from these analyses are sometimes used to infer associations between vital rates, density and climatic variables. We compare results from pattern-orientated analyses of time-series with process-orientated analyses and report that the two approaches give different results. The approach of analysing relationships between vital rates, density and climatic variables may detect important processes influencing population dynamics that time-series methodologies may overlook. PMID:12233776

  2. Studies on cambial activity: advances and challenges in the knowledge of growth dynamics of Brazilian woody species.

    PubMed

    Callado, Cátia H; Vasconcellos, Thaís J de; Costa, Monique S; Barros, Claudia F; Roig, Fidel A; Tomazello-Filho, Mário

    2014-03-01

    The lack of specific research on the sequence of events that determine plant growth from meristem until wood formation represents a gap in the knowledge of growth dynamics in woody species. In this work, we surveyed published studies concerning cambial activity of Brazilian native species aiming at allowing the comparison of applied methods and obtained results. The annual cambial seasonality was observed in all the investigated species. Nevertheless, we found high heterogeneity in the used methodologies. As a result from this analysis, our opinion points to the need for standardizing sampling protocols and for discussing the suitability of experimental designs. This will help to define with greater precision the factors that determine the radial growth in the different tropical ecosystems. PMID:24519008

  3. Vegetation development following stream/river restoration: more natural fluvial dynamics and morphology, return of aquatic and riparian plant species?

    NASA Astrophysics Data System (ADS)

    Soons, M. B.

    2012-04-01

    After centuries of human interventions in stream/river dynamics and morphology aimed at optimizing landscapes for agricultural and industrial purposes, new insights have inspired water managers to try and combine stream and river ecosystem functions with the conservation of biodiversity. Around the world, aquatic and riparian species have declined strongly due to pollution, destruction and fragmentation of their habitat, so that biodiversity conservation initiatives primarily focus on habitat restoration. In the past decades many stream and river restoration projects have been carried out and often hydrological dynamics and morphology have been restored to a more natural state. However, the successful restoration of aquatic and riparian habitats very often failed to result in restoration of their biodiversity. This lack of success from a biodiversity conservation perspective is usually attributed to 'dispersal limitation', meaning that the habitat may be restored, but species fail to reach the site and re-colonize it. Especially re-colonization by aquatic and riparian plant species is important, as such species function as ecosystem engineers: their presence alters fluvial dynamics and morphology, generates additional habitat heterogeneity and provides habitat and food for animal species. Following minor disturbances, re-colonization is often possible through locally remaining populations, by seeds in the seed bank or by surviving plant fragments. However, following major disturbances, colonization and establishment from other source populations are necessary. This usually occurs through dispersal of seeds (and in more aquatic species also by dispersal of vegetative fragments) into the restored wetland area. As dispersal occurs predominantly over short distances and source populations of aquatic and riparian species may be lacking in the surroundings, dispersal may be a limiting factor in the development of aquatic and riparian vegetation at a restored site. But

  4. Evolutionary Dynamics of Microsatellite Distribution in Plants: Insight from the Comparison of Sequenced Brassica, Arabidopsis and Other Angiosperm Species

    PubMed Central

    Shi, Jiaqin; Huang, Shunmou; Fu, Donghui; Yu, Jinyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2013-01-01

    Despite their ubiquity and functional importance, microsatellites have been largely ignored in comparative genomics, mostly due to the lack of genomic information. In the current study, microsatellite distribution was characterized and compared in the whole genomes and both the coding and non-coding DNA sequences of the sequenced Brassica, Arabidopsis and other angiosperm species to investigate their evolutionary dynamics in plants. The variation in the microsatellite frequencies of these angiosperm species was much smaller than those for their microsatellite numbers and genome sizes, suggesting that microsatellite frequency may be relatively stable in plants. The microsatellite frequencies of these angiosperm species were significantly negatively correlated with both their genome sizes and transposable elements contents. The pattern of microsatellite distribution may differ according to the different genomic regions (such as coding and non-coding sequences). The observed differences in many important microsatellite characteristics (especially the distribution with respect to motif length, type and repeat number) of these angiosperm species were generally accordant with their phylogenetic distance, which suggested that the evolutionary dynamics of microsatellite distribution may be generally consistent with plant divergence/evolution. Importantly, by comparing these microsatellite characteristics (especially the distribution with respect to motif type) the angiosperm species (aside from a few species) all clustered into two obviously different groups that were largely represented by monocots and dicots, suggesting a complex and generally dichotomous evolutionary pattern of microsatellite distribution in angiosperms. Polyploidy may lead to a slight increase in microsatellite frequency in the coding sequences and a significant decrease in microsatellite frequency in the whole genome/non-coding sequences, but have little effect on the microsatellite distribution with

  5. Remote-Sensed Monitoring of Dominant Plant Species Distribution and Dynamics at Jiuduansha Wetland in Shanghai, China

    SciTech Connect

    Lin, Wenpeng; Chen, Guangsheng; Guo, Pupu; Zhu, Wenquan; Zhang, Donghai

    2015-08-11

    Spartina alterniflora is one of the most hazardous invasive plant species in China. Monitoring the changes in dominant plant species can help identify the invasion mechanisms of S. alterniflora, thereby providing scientific guidelines on managing or controlling the spreading of this invasive species at Jiuduansha Wetland in Shanghai, China. However, because of the complex terrain and the inaccessibility of tidal wetlands, it is very difficult to conduct field experiments on a large scale in this wetland. Hence, remote sensing plays an important role in monitoring the dynamics of plant species and its distribution on both spatial and temporal scales. In this paper, based on multi-spectral and high resolution (<10 m) remote sensing images and field observational data, we analyzed spectral characteristics of four dominant plant species at different green-up phenophases. Based on the difference in spectral characteristics, a decision tree classification was built for identifying the distribution of these plant species. The results indicated that the overall classification accuracy for plant species was 87.17%, and the Kappa Coefficient was 0.81, implying that our classification method could effectively identify the four plant species. We found that the area of Phragmites australi showed an increasing trend from 1997 to 2004 and from 2004 to 2012, with an annual spreading rate of 33.77% and 31.92%, respectively. The area of Scirpus mariqueter displayed an increasing trend from 1997 to 2004 (12.16% per year) and a decreasing trend from 2004 to 2012 (-7.05% per year). S. alterniflora has the biggest area (3302.20 ha) as compared to other species, accounting for 51% of total vegetated area at the study region in 2012. It showed an increasing trend from 1997 to 2004 and from 2004 to 2012, with an annual spreading rate of 130.63% and 28.11%, respectively. As a result, the native species P. australi was surrounded and the habitats of S. mariqueter were occupied by S

  6. Remote-Sensed Monitoring of Dominant Plant Species Distribution and Dynamics at Jiuduansha Wetland in Shanghai, China

    DOE PAGESBeta

    Lin, Wenpeng; Chen, Guangsheng; Guo, Pupu; Zhu, Wenquan; Zhang, Donghai

    2015-08-11

    Spartina alterniflora is one of the most hazardous invasive plant species in China. Monitoring the changes in dominant plant species can help identify the invasion mechanisms of S. alterniflora, thereby providing scientific guidelines on managing or controlling the spreading of this invasive species at Jiuduansha Wetland in Shanghai, China. However, because of the complex terrain and the inaccessibility of tidal wetlands, it is very difficult to conduct field experiments on a large scale in this wetland. Hence, remote sensing plays an important role in monitoring the dynamics of plant species and its distribution on both spatial and temporal scales. Inmore » this paper, based on multi-spectral and high resolution (<10 m) remote sensing images and field observational data, we analyzed spectral characteristics of four dominant plant species at different green-up phenophases. Based on the difference in spectral characteristics, a decision tree classification was built for identifying the distribution of these plant species. The results indicated that the overall classification accuracy for plant species was 87.17%, and the Kappa Coefficient was 0.81, implying that our classification method could effectively identify the four plant species. We found that the area of Phragmites australi showed an increasing trend from 1997 to 2004 and from 2004 to 2012, with an annual spreading rate of 33.77% and 31.92%, respectively. The area of Scirpus mariqueter displayed an increasing trend from 1997 to 2004 (12.16% per year) and a decreasing trend from 2004 to 2012 (-7.05% per year). S. alterniflora has the biggest area (3302.20 ha) as compared to other species, accounting for 51% of total vegetated area at the study region in 2012. It showed an increasing trend from 1997 to 2004 and from 2004 to 2012, with an annual spreading rate of 130.63% and 28.11%, respectively. As a result, the native species P. australi was surrounded and the habitats of S. mariqueter were occupied by S

  7. Population dynamics along a primary succession gradient: do alpine species fit into demographic succession theory?

    PubMed Central

    Marcante, Silvia; Winkler, Eckart; Erschbamer, Brigitta

    2009-01-01

    Background and Aims Understanding processes and mechanisms governing changes in plant species along primary successions has been of major importance in ecology. However, to date hardly any studies have focused on the complete life cycle of species along a successional gradient, comparing pioneer, early and late-successional species. In this study it is hypothesized that pioneer species should initially have a population growth rate, λ, greater than one with high fecundity rates, and declining growth rates when they are replaced by late-successional species. Populations of late-successional species should also start, at the mid-successional stage (when pioneer species are declining), with growth rates greater than one and arrive at rates equal to one at the late successional stage, mainly due to higher survival rates that allow these species to persist for a long time. Methods The demography of pioneer- (Saxifraga aizoides), early (Artemisia genipi) and late-successional species (Anthyllis vulneraria ssp. alpicola) was investigated together with that of a ubiquitous species (Poa alpina) along the Rotmoos glacier foreland (2300–2400 m a.s.l., Central Alps, Austria) over 3 years. A matrix modelling approach was used to compare the main demographic parameters. Elasticity values were plotted in a demographic triangle using fecundity, individual growth and survival as vital rates contributing to the population growth rates. Key Results The results largely confirmed the predictions for population growth rates during succession. However, high survival rates of larger adults characterized all species, regardless of where they were growing along the succession. At the pioneer site, high mortality rates of seedlings, plantlets and young individuals were recorded. Fecundity was found to be of minor relevance everywhere, but it was nevertheless sufficient to increase or maintain the population sizes. Conclusions Demographically, all the species over all sites behaved like

  8. Effect of Temperature on Nanophase-segregation and Transport in Polysulfone-Based Anion Exchange Membrane Fuel Cell: Molecular Dynamics Simulation Approach

    NASA Astrophysics Data System (ADS)

    Ko, Kwan; Han, Kyung; Choi, Ji; Chang, Ying; Bae, Chulsung; Jang, Seung; Georgia Tech Team; RPI Team

    2013-03-01

    The effect of temperature on hydrated polysulfone-based anion exchange membrane is studied using molecular dynamics. Various temperature conditions such as 313K, 353 K and 393K with two different water contents (10 wt % and 20 wt %) are simulated. From the viewpoint of structure-property relationship, we scrutinize the change in the nanophase-segregated structure of membrane and transport of anionic charge carrier (hydroxide) as a function of temperature. Since it is well known that the anion transport is less than the proton transport, we attempt to pursue a fundamental understanding of the difference between anion transport and proton transport. For this purpose, we simulate the polysulfone-based proton exchange membrane that has the same molecular structure and molecular weight. By analyzing the pair-correlation of charge carriers, we observe the correlation among hydroxides is much stronger than that among hydroniums. The extent of nanophase-segregation is also analyzed using structure factor profile.

  9. Multivalency in the gas phase: H/D exchange reactions unravel the dynamic "rock 'n' roll" motion in dendrimer-dendrimer complexes.

    PubMed

    Qi, Zhenhui; Schlaich, Christoph; Schalley, Christoph A

    2013-10-25

    Noncovalent dendrimer-dendrimer complexes were successfully ionized by electrospray ionization of partly protonated amino-terminated polypropylene amine (POPAM) and POPAM dendrimers fully functionalized with benzo[21]crown-7 on all branches. Hydrogen/deuterium exchange (HDX) experiments conducted on dendrimer-dendrimer complexes in the high vacuum of a mass spectrometer give rise to a complete exchange of all labile NH hydrogen atoms. As crown ethers represent noncovalent protective groups against HDX reactions on the ammonium group to which they are coordinated, this result provides evidence for a very dynamic binding situation: each crown is mobile enough to move from one ammonium binding site to another. Schematically, one might compare this motion with two rock 'n' roll dancers that swirl around each other without completely losing all contact at any time. Although the multivalent attachment certainly increases the overall affinity, the "microdynamics" of individual site binding and dissociation remains fast. PMID:24105808

  10. The role of dynamic surface water-groundwater exchange on streambed denitrification in a first-order, low-relief agricultural watershed

    USGS Publications Warehouse

    Rahimi Kazerooni, Mina N.; Essaid, Hedeff I.; Wilson, John T.

    2015-01-01

    The role of temporally varying surface water-groundwater (SW-GW) exchange on nitrate removal by streambed denitrification was examined along a reach of Leary Weber Ditch (LWD), Indiana, a small, first-order, low-relief agricultural watershed within the Upper Mississippi River basin, using data collected in 2004 and 2005. Stream stage, GW heads (H), and temperatures (T) were continuously monitored in streambed piezometers and stream bank wells for two transects across LWD accompanied by synoptic measurements of stream stage, H, T, and nitrate (NO3) concentrations along the reach. The H and T data were used to develop and calibrate vertical two-dimensional, models of streambed water flow and heat transport across and along the axis of the stream. Model-estimated SW-GW exchange varied seasonally and in response to high-streamflow events due to dynamic interactions between SW stage and GW H. Comparison of 2004 and 2005 conditions showed that small changes in precipitation amount and intensity, evapotranspiration, and/or nearby GW levels within a low-relief watershed can readily impact SW-GW interactions. The calibrated LWD flow models and observed stream and streambed NO3 concentrations were used to predict temporal variations in streambed NO3 removal in response to dynamic SW-GW exchange. NO3 removal rates underwent slow seasonal changes, but also underwent rapid changes in response to high-flow events. These findings suggest that increased temporal variability of SW-GW exchange in low-order, low-relief watersheds may be a factor contributing their more efficient removal of NO3.

  11. The role of dynamic surface water-groundwater exchange on streambed denitrification in a first-order, low-relief agricultural watershed

    NASA Astrophysics Data System (ADS)

    Rahimi, Mina; Essaid, Hedeff I.; Wilson, John T.

    2015-12-01

    The role of temporally varying surface water-groundwater (SW-GW) exchange on nitrate removal by streambed denitrification was examined along a reach of Leary Weber Ditch (LWD), Indiana, a small, first-order, low-relief agricultural watershed within the Upper Mississippi River basin, using data collected in 2004 and 2005. Stream stage, GW heads (H), and temperatures (T) were continuously monitored in streambed piezometers and stream bank wells for two transects across LWD accompanied by synoptic measurements of stream stage, H, T, and nitrate (NO3) concentrations along the reach. The H and T data were used to develop and calibrate vertical two-dimensional, models of streambed water flow and heat transport across and along the axis of the stream. Model-estimated SW-GW exchange varied seasonally and in response to high-streamflow events due to dynamic interactions between SW stage and GW H. Comparison of 2004 and 2005 conditions showed that small changes in precipitation amount and intensity, evapotranspiration, and/or nearby GW levels within a low-relief watershed can readily impact SW-GW interactions. The calibrated LWD flow models and observed stream and streambed NO3 concentrations were used to predict temporal variations in streambed NO3 removal in response to dynamic SW-GW exchange. NO3 removal rates underwent slow seasonal changes, but also underwent rapid changes in response to high-flow events. These findings suggest that increased temporal variability of SW-GW exchange in low-order, low-relief watersheds may be a factor contributing their more efficient removal of NO3.

  12. Occupancy Estimation and Modeling : Inferring Patterns and Dynamics of Species Occurrence

    USGS Publications Warehouse

    MacKenzie, D.I.; Nichols, J.D.; Royle, J. Andrew; Pollock, K.H.; Bailey, L.L.; Hines, J.E.

    2006-01-01

    This is the first book to examine the latest methods in analyzing presence/absence data surveys. Using four classes of models (single-species, single-season; single-species, multiple season; multiple-species, single-season; and multiple-species, multiple-season), the authors discuss the practical sampling situation, present a likelihood-based model enabling direct estimation of the occupancy-related parameters while allowing for imperfect detectability, and make recommendations for designing studies using these models. It provides authoritative insights into the latest in estimation modeling; discusses multiple models which lay the groundwork for future study designs; addresses critical issues of imperfect detectibility and its effects on estimation; and explores the role of probability in estimating in detail.

  13. The seabird paradox: dispersal, genetic structure and population dynamics in a highly mobile, but philopatric albatross species.

    PubMed

    Milot, Emmanuel; Weimerskirch, Henri; Bernatchez, Louis

    2008-04-01

    The philopatric behaviour of albatrosses has intrigued biologists due to the high mobility of these seabirds. It is unknown how albatrosses maintain a system of fragmented populations without frequent dispersal movements, in spite of the long-term temporal heterogeneity in resource distribution at sea. We used both genetic (amplified fragment length polymorphism) and capture-mark-recapture (CMR) data to identify explicitly which among several models of population dynamics best applies to the wandering albatross (Diomedea exulans) and to test for migration-drift equilibrium. We previously documented an extremely low genetic diversity in this species. Here, we show that populations exhibit little genetic differentiation across the species' range (Theta(B) < 0.05, where Theta(B) is an F(ST) analogue). Furthermore, there was no evidence of hierarchical structure or isolation-by-distance. Wright's F(ST) between pairs of colonies were low in general and the pattern was consistent with a nonequilibrium genetic model. In contrast, CMR data collected over the last decades indicated that about one bird per cohort has dispersed among islands. Overall, F(ST) values were not indicative of contemporary dispersal as inferred from CMR data. Moreover, all genotypes grouped together in a cluster analysis, indicating that current colonies may have derived from one ancestral source that had a low genetic diversity. A metapopulation dynamics model including a recent (postglacial) colonization of several islands seems consistent with both the very low levels of genetic diversity and structure within the wandering albatross. Yet, our data suggest that several other factors including ongoing gene flow, recurrent long-distance dispersal and source-sink dynamics have contributed to different extent in shaping the genetic signature observed in this species. Our results show that an absence of genetic structuring may in itself reveal little about the true population dynamics in seabirds, but

  14. Structure and dynamics of mixed-species flocks in a Hawaiian rain forest

    USGS Publications Warehouse

    Hart, P.J.; Freed, L.A.

    2003-01-01

    Mixed-species flocks of native and introduced birds were studied for four years in an upper elevation Hawaiian rain forest. Those flocks were characterized by strong seasonality, large size, low species richness, high intraspecific abundance, a lack of migrants, and a general lack of territoriality or any sort of dominance hierarchy. There was high variability among years in patterns of occurrence at the species level, and high variability within years at the individual level. These flocks are loosely structured social groupings with apparently open membership. The fluid, unstable movement patterns, high degree of variability in size and composition, and lack of positive interspecific associations are not consistent with the "foraging enhancement" hypothesis for flocking. Two resident, endangered insectivores, the Akepa (Loxops coccineus) and Hawaii Creeper (Oreomystis mana) served as "nuclear" species. Flock composition was compared between two study sites that differed significantly in density of these two nuclear species. Flock size was similar at the two sites, primarily because the nuclear species were over-represented relative to their density. This observation suggests that birds are attempting to achieve a more optimal flock size at the lower density site.

  15. Conserved Changes in the Dynamics of Metabolic Processes during Fruit Development and Ripening across Species1[C][W

    PubMed Central

    Klie, Sebastian; Osorio, Sonia; Tohge, Takayuki; Drincovich, María F.; Fait, Aaron; Giovannoni, James J.; Fernie, Alisdair R.; Nikoloski, Zoran

    2014-01-01

    Computational analyses of molecular phenotypes traditionally aim at identifying biochemical components that exhibit differential expression under various scenarios (e.g. environmental and internal perturbations) in a single species. High-throughput metabolomics technologies allow the quantification of (relative) metabolite levels across developmental stages in different tissues, organs, and species. Novel methods for analyzing the resulting multiple data tables could reveal preserved dynamics of metabolic processes across species. The problem we address in this study is 2-fold. (1) We derive a single data table, referred to as a compromise, which captures information common to the investigated set of multiple tables containing data on different fruit development and ripening stages in three climacteric (i.e. peach [Prunus persica] and two tomato [Solanum lycopersicum] cultivars, Ailsa Craig and M82) and two nonclimacteric (i.e. strawberry [Fragaria × ananassa] and pepper [Capsicum chilense]) fruits; in addition, we demonstrate the power of the method to discern similarities and differences between multiple tables by analyzing publicly available metabolomics data from three tomato ripening mutants together with two tomato cultivars. (2) We identify the conserved dynamics of metabolic processes, reflected in the data profiles of the corresponding metabolites that contribute most to the determined compromise. Our analysis is based on an extension to principal component analysis, called STATIS, in combination with pathway overenrichment analysis. Based on publicly available metabolic profiles for the investigated species, we demonstrate that STATIS can be used to identify the metabolic processes whose behavior is similarly affected during fruit development and ripening. These findings ultimately provide insights into the pathways that are essential during fruit development and ripening across species. PMID:24243932

  16. Long-Term Dynamics of Production, Respiration, and Net CO2 Exchange in Two Sagebrush-Steppe Ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present a synthesis of long-term measurements of CO2 exchange in two US Intermountain West sagebrush-steppe ecosystems. The locations near Burns, Oregon (1995-2001) and Dubois, Idaho (1996-2001) are part of the AgriFlux Network of the Agricultural Research Service, United States Department of Ag...

  17. Species and Media Effects on Soil Carbon Dynamics in the Landscape.

    PubMed

    Marble, S Christopher; Prior, Stephen A; Runion, G Brett; Torbert, H Allen; Gilliam, Charles H; Fain, Glenn B; Sibley, Jeff L; Knight, Patricia R

    2016-01-01

    Three woody shrub species [cleyera (Ternstroemia gymnanthera Thunb. 'Conthery'), Indian hawthorn (Rhaphiolepis indica L.) and loropetalum (Loropetalum chinensis Oliv.'Ruby')] were container-grown for one growing season in 2008 using either pinebark (industry standard), clean chip residual or WholeTree (derived by-products from the forestry industry) as potting substrates and then transplanted into the landscape in 2008. An Automated Carbon Efflux System was used to continually monitor soil CO2 efflux from December 2010 through November 2011 in each species and substrate combination. Changes in soil carbon (C) levels as a result of potting substrate were assessed through soil sampling in 2009 and 2011 and plant biomass was determined at study conclusion. Results showed that soil CO2-C efflux was similar among all species and substrates, with few main effects of species or substrate observed throughout the study. Soil analysis showed that plots with pinebark contained higher levels of soil C in both 2009 and 2011, suggesting that pinebark decomposes slower than clean chip residual or WholeTree and consequently has greater C storage potential than the two alternative substrates. Results showed a net C gain for all species and substrate combinations; however, plants grown in pinebark had greater C sequestration potential. PMID:27140321

  18. Evolutionary dynamics of endogenous feline leukemia virus proliferation among species of the domestic cat lineage

    SciTech Connect

    Polani, Sagi; Roca, Alfred L.; Rosensteel, Bryan B.; Kolokotronis, Sergios-Orestis; Bar-Gal, Gila Kahila

    2010-09-30

    Endogenous feline leukemia viruses (enFeLVs) occur in the germ lines of the domestic cat and related wild species (genus Felis). We sequenced the long terminal repeats and part of the env region of enFeLVs in domestic cats and five wild species. A total of 305 enFeLV sequences were generated across 17 individuals, demonstrating considerable diversity within two major clades. Distinct proliferations of enFeLVs occurred before and after the black-footed cat diverged from the other species. Diversity of enFeLVs was limited for the sand cat and jungle cat suggesting that proliferation of enFeLVs occurred within these species after they diverged. Relationships among enFeLVs were congruent with host species relationships except for the jungle cat, which carried only enFeLVs from a lineage that recently invaded the germline (enFeLV-AGTT). Comparison of wildcat and domestic cat enFeLVs indicated that a distinctive germ line invasion of enFeLVs has not occurred since the cat was domesticated.

  19. Niche overlap and species assemblage dynamics in an ageing pasture gradient in north-western France

    NASA Astrophysics Data System (ADS)

    Decaëns, T.; Margerie, P.; Renault, J.; Bureau, F.; Aubert, M.; Hedde, M.

    2011-05-01

    This study aims at describing the mechanisms of earthworm species assemblages in a temperate grassland ageing gradient. Earthworms were sampled by a combination of formaldehyde extraction and hand sorting. Density data were analysed by combining correspondence analysis (CA) and null model analyses of niche overlap patterns and morphological trait dispersion. The first axis of the CA arranged samples according to the pasture ageing gradient and separated "pioneer" (CA1-) from "old pasture" (CA1+) species assemblages. The second axis segregated two different assemblages (CA2- and CA2+) that were consistently represented along the ageing gradient and was assumed to represent intra-plot assemblage heterogeneity. Niche overlap according to soil organic C, C:N ratio and root biomass was higher than expected by chance (EBC) in most assemblages, and was higher when calculated for the whole regional species pool than for local assemblages. Morphological dispersion was random or lower than expected by chance for the regional species pool and both CA1- and CA1+, and higher than expected by chance for both CA2- and CA2+. These results indicate that: (1) habitat and dispersal constraints act as filters by allowing only those species with similar prerequisite traits into assemblages; (2) inter-specific competition limit composition in a further step by calling for a minimal level of overdispersion in morphological traits.

  20. Animal personality meets community ecology: founder species aggression and the dynamics of spider communities.

    PubMed

    Quinn, John L

    2015-11-01

    Silken web-reef created by the spider Anelosimus studiosus (main picture) and close-up (insert picture) of multi-female, adult colony of the same species. (photographs: T. Jones, J. Pruitt and A. Wild) In Focus: Pruitt, J.N. & Modlmeier, A.P. (2015) Animal personality in a foundation species drives community divergence and collapse in the wild. Journal of Animal Ecology, 84 Interspecific interactions form the cornerstone of niche theory in community ecology. The 7-year study In Focus here supports the view that variation within species could also be crucially important. Spider communities created experimentally in the wild, with either aggressive or docile individuals of the same founder species, were highly divergent in patterns of community succession for several years. Eventually, they converged on the same community composition only to collapse entirely shortly after, apparently because of the specific mix of aggression phenotypes within and between species just before collapse. These results suggest numerous avenues of research for behavioural ecology and evolutionary community ecology in metapopulations, and could help to resolve differences between competing theories. PMID:26449191

  1. Species and Media Effects on Soil Carbon Dynamics in the Landscape

    PubMed Central

    Marble, S. Christopher; Prior, Stephen A.; Runion, G. Brett; Torbert, H. Allen; Gilliam, Charles H.; Fain, Glenn B.; Sibley, Jeff L.; Knight, Patricia R.

    2016-01-01

    Three woody shrub species [cleyera (Ternstroemia gymnanthera Thunb. ‘Conthery’), Indian hawthorn (Rhaphiolepis indica L.) and loropetalum (Loropetalum chinensis Oliv.‘Ruby’)] were container-grown for one growing season in 2008 using either pinebark (industry standard), clean chip residual or WholeTree (derived by-products from the forestry industry) as potting substrates and then transplanted into the landscape in 2008. An Automated Carbon Efflux System was used to continually monitor soil CO2 efflux from December 2010 through November 2011 in each species and substrate combination. Changes in soil carbon (C) levels as a result of potting substrate were assessed through soil sampling in 2009 and 2011 and plant biomass was determined at study conclusion. Results showed that soil CO2-C efflux was similar among all species and substrates, with few main effects of species or substrate observed throughout the study. Soil analysis showed that plots with pinebark contained higher levels of soil C in both 2009 and 2011, suggesting that pinebark decomposes slower than clean chip residual or WholeTree and consequently has greater C storage potential than the two alternative substrates. Results showed a net C gain for all species and substrate combinations; however, plants grown in pinebark had greater C sequestration potential. PMID:27140321

  2. Characterization of IgG1 Conformation and Conformational Dynamics by Hydrogen/Deuterium Exchange Mass Spectrometry

    SciTech Connect

    Houde, Damian; Arndt, Joseph; Domeier, Wayne; Berkowitz, Steven; Engen, John R.

    2009-04-22

    Protein function is dictated by protein conformation. For the protein biopharmaceutical industry, therefore, it is important to have analytical tools that can detect changes in protein conformation rapidly, accurately, and with high sensitivity. In this paper we show that hydrogen/deuterium exchange mass spectrometry (H/DX-MS) can play an important role in fulfilling this need within the industry. H/DX-MS was used to assess both global and local conformational behavior of a recombinant monoclonal IgG1 antibody, a major class of biopharmaceuticals. Analysis of exchange into the intact, glycosylated IgG1 (and the Fab and Fc regions thereof) showed that the molecule was folded, highly stable, and highly amenable to analysis by this method using less than a nanomole of material. With improved chromatographic methods, peptide identification algorithms and data-processing steps, the analysis of deuterium levels in peptic peptides produced after labeling was accomplished in 1--2 days. On the basis of peptic peptide data, exchange was localized to specific regions of the antibody. Changes to IgG1 conformation as a result of deglycosylation were determined by comparing exchange into the glycosylated and deglycosylated forms of the antibody. Two regions of the IgG1 (residues 236-253 and 292-308) were found to have altered exchange properties upon deglycosylation. These results are consistent with previous findings concerning the role of glycosylation in the interaction of IgG1 with Fc receptors. Moreover, the data clearly illustrate how H/DX-MS can provide important characterization information on the higher order structure of antibodies and conformational changes that these molecules may experience upon modification.

  3. Dynamics and genetics of a disease-driven species decline to near extinction: lessons for conservation.

    PubMed

    Hudson, M A; Young, R P; D'Urban Jackson, J; Orozco-terWengel, P; Martin, L; James, A; Sulton, M; Garcia, G; Griffiths, R A; Thomas, R; Magin, C; Bruford, M W; Cunningham, A A

    2016-01-01

    Amphibian chytridiomycosis has caused precipitous declines in hundreds of species worldwide. By tracking mountain chicken (Leptodactylus fallax) populations before, during and after the emergence of chytridiomycosis, we quantified the real-time species level impacts of this disease. We report a range-wide species decline amongst the fastest ever recorded, with a loss of over 85% of the population in fewer than 18 months on Dominica and near extinction on Montserrat. Genetic diversity declined in the wild, but emergency measures to establish a captive assurance population captured a representative sample of genetic diversity from Montserrat. If the Convention on Biological Diversity's targets are to be met, it is important to evaluate the reasons why they appear consistently unattainable. The emergence of chytridiomycosis in the mountain chicken was predictable, but the decline could not be prevented. There is an urgent need to build mitigation capacity where amphibians are at risk from chytridiomycosis. PMID:27485994

  4. Dynamics and genetics of a disease-driven species decline to near extinction: lessons for conservation

    PubMed Central

    Hudson, M. A.; Young, R. P.; D’Urban Jackson, J.; Orozco-terWengel, P.; Martin, L.; James, A.; Sulton, M.; Garcia, G.; Griffiths, R. A.; Thomas, R.; Magin, C.; Bruford, M. W.; Cunningham, A. A.

    2016-01-01

    Amphibian chytridiomycosis has caused precipitous declines in hundreds of species worldwide. By tracking mountain chicken (Leptodactylus fallax) populations before, during and after the emergence of chytridiomycosis, we quantified the real-time species level impacts of this disease. We report a range-wide species decline amongst the fastest ever recorded, with a loss of over 85% of the population in fewer than 18 months on Dominica and near extinction on Montserrat. Genetic diversity declined in the wild, but emergency measures to establish a captive assurance population captured a representative sample of genetic diversity from Montserrat. If the Convention on Biological Diversity’s targets are to be met, it is important to evaluate the reasons why they appear consistently unattainable. The emergence of chytridiomycosis in the mountain chicken was predictable, but the decline could not be prevented. There is an urgent need to build mitigation capacity where amphibians are at risk from chytridiomycosis. PMID:27485994

  5. Hierarchical demographic approaches for assessing invasion dynamics of non-indigenous species: An example using northern snakehead (Channa argus)

    USGS Publications Warehouse

    Jiao, Y.; Lapointe, N.W.R.; Angermeier, P.L.; Murphy, B.R.

    2009-01-01

    Models of species' demographic features are commonly used to understand population dynamics and inform management tactics. Hierarchical demographic models are ideal for the assessment of non-indigenous species because our knowledge of non-indigenous populations is usually limited, data on demographic traits often come from a species' native range, these traits vary among populations, and traits are likely to vary considerably over time as species adapt to new environments. Hierarchical models readily incorporate this spatiotemporal variation in species' demographic traits by representing demographic parameters as multi-level hierarchies. As is done for traditional non-hierarchical matrix models, sensitivity and elasticity analyses are used to evaluate the contributions of different life stages and parameters to estimates of population growth rate. We applied a hierarchical model to northern snakehead (Channa argus), a fish currently invading the eastern United States. We used a Monte Carlo approach to simulate uncertainties in the sensitivity and elasticity analyses and to project future population persistence under selected management tactics. We gathered key biological information on northern snakehead natural mortality, maturity and recruitment in its native Asian environment. We compared the model performance with and without hierarchy of parameters. Our results suggest that ignoring the hierarchy of parameters in demographic models may result in poor estimates of population size and growth and may lead to erroneous management advice. In our case, the hierarchy used multi-level distributions to simulate the heterogeneity of demographic parameters across different locations or situations. The probability that the northern snakehead population will increase and harm the native fauna is considerable. Our elasticity and prognostic analyses showed that intensive control efforts immediately prior to spawning and/or juvenile-dispersal periods would be more effective

  6. Species and media effects on soil carbon dynamics in the landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the carbon sequestration potential from woody ornamental plants. Three species [cleyera (Ternstroemia gymnanthera Thunb. ‘Conthery’), Indian hawthorn (Rhaphiolepis indica L.), and loropetalum (Loropetalum chinensis Oliv.‘Ruby’) were container-grown for on...

  7. The evolutionary dynamics of major regulators for sexual development among Hymenoptera species

    PubMed Central

    Biewer, Matthias; Schlesinger, Francisca; Hasselmann, Martin

    2015-01-01

    All hymenopteran species, such as bees, wasps and ants, are characterized by the common principle of haplodiploid sex determination in which haploid males arise from unfertilized eggs and females from fertilized eggs. The underlying molecular mechanism has been studied in detail in the western honey bee Apis mellifera, in which the gene complementary sex determiner (csd) acts as primary signal of the sex determining pathway, initiating female development by csd-heterozygotes. Csd arose from gene duplication of the feminizer (fem) gene, a transformer (tra) ortholog, and mediates in conjunction with transformer2 (tra2) sex-specific splicing of fem. Comparative molecular analyses identified fem/tra and its downstream target doublesex (dsx) as conserved unit within the sex determining pathway of holometabolous insects. In this study, we aim to examine evolutionary differences among these key regulators. Our main hypothesis is that sex determining key regulators in Hymenoptera species show signs of coevolution within single phylogenetic lineages. We take advantage of several newly sequenced genomes of bee species to test this hypothesis using bioinformatic approaches. We found evidences that duplications of fem are restricted to certain bee lineages and notable amino acid differences of tra2 between Apis and non-Apis species propose structural changes in Tra2 protein affecting co-regulatory function on target genes. These findings may help to gain deeper insights into the ancestral mode of hymenopteran sex determination and support the common view of the remarkable evolutionary flexibility in this regulatory pathway. PMID:25914717

  8. Simulating Carbon Dynamics and Species Composition Under Projected Changes in Climate in the Puget Sound, Washington, USA

    NASA Astrophysics Data System (ADS)

    Laflower, D.; Hurteau, M. D.

    2014-12-01

    Changing climate has the potential to directly and indirectly alter forest carbon dynamics and species composition, particularly in temperature or precipitation limited systems. In light-limited systems, species-specific response to changing climate could result in an indirect effect of climate through altered competitive interactions. Joint Base Lewis-McChord, in Washington, contains one of the largest intact forested areas in the Puget Sound. Management priorities include development of late-successional forests and conservation. We sought to quantify how projected changes in climate would affect species diversity and carbon (C) sequestration given management priorities. We used Landis-II to simulate forest dynamics over 100 years using current climate and projected climate under two emission scenarios. Preliminary analyses indicate a decrease in soil C, relative to current climate, beginning mid-century for both emission scenarios. Under the low emission scenario, the decrease is compensated by increased aboveground C, while the high scenario experiences a decline in aboveground C. Total ecosystem C was consistent between baseline and low emission climate throughout the simulation. By late-century, the high scenario had an average decrease of 10 Mg C ha-1. Douglas-fir (DF) accounts for the largest fraction of aboveground biomass (AGB) in the study area. Interestingly, DF AGB was fairly consistent between climate scenarios through mid-century, but diverged during late-century, with the high scenario having the greatest amount of DF AGB (mean 368 Mg ha-1) and current climate having the lowest (mean 341 Mg ha-1). We found the inverse relationship when examining all other species. Given the uncertainty associated with climate projections, future simulations will include a larger suite of climate projections and address the secondary effects of climate change (e.g. increased wildfire, disease or insect outbreaks) that can impact productivity.

  9. [The conformational dynamic of the tetramer hemoglobin molecule as revealed by hydrogen exchange. II. Influence of the intersubunit contact splitting].

    PubMed

    Abaturov, L V; Molchanova, T P; Nosova, N G; Shliapnikov, S V; Faĭzulin, D A

    2006-01-01

    The rate of the H-D exchange of the peptide NH atoms of the isolated alpha and beta subunits of human Hb were studied at the pH range 5.5-9.0 and 20 degrees C by the IR spectroscopy. The factor retardation of the exchange rate of subunits -P in the range -10(2)-10(7). In comparison with tetramer Hb the probability of local fluctuations (1/P) is increased to a slightly greater extent for the monomeric alpha subunits then for the tetramer beta subunits. Unlike Hb oxygenation of subunits does not influence on the probability of the local fluctuations and subunits have no the pH-dependent change of the value 1/P observable for the ligand Hb. The possible mechanisms of the overall intensification of the local fluctuations upon the splitting of the Hb tetrameric contacts between subunits are discussed with the inviting of the structural crystallographic data. PMID:16813166

  10. Scaling up of Carbon Exchange Dynamics from AmeriFlux Sites to a Super-Region in the Eastern United States

    SciTech Connect

    Hans Peter Schmid; Craig Wayson

    2009-05-05

    The primary objective of this project was to evaluate carbon exchange dynamics across a region of North America between the Great Plains and the East Coast. This region contains about 40 active carbon cycle research (AmeriFlux) sites in a variety of climatic and landuse settings, from upland forest to urban development. The core research involved a scaling strategy that uses measured fluxes of CO{sub 2}, energy, water, and other biophysical and biometric parameters to train and calibrate surface-vegetation-atmosphere models, in conjunction with satellite (MODIS) derived drivers. To achieve matching of measured and modeled fluxes, the ecosystem parameters of the models will be adjusted to the dynamically variable flux-tower footprints following Schmid (1997). High-resolution vegetation index variations around the flux sites have been derived from Landsat data for this purpose. The calibrated models are being used in conjunction with MODIS data, atmospheric re-analysis data, and digital land-cover databases to derive ecosystem exchange fluxes over the study domain.

  11. Spin dynamics and criteria for onset of exchange bias in superspin glass Fe/γ-Fe2O3 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Chandra, Sayan; Khurshid, H.; Li, Wanfeng; Hadjipanayis, G. C.; Phan, M. H.; Srikanth, H.

    2012-07-01

    A detailed study is presented on Fe/γ-Fe2O3 core-shell structured nanoparticles (mean size ˜10 nm) to understand the spin dynamics of the core and shell independently and their role in triggering exchange bias (EB) phenomena. The particle dynamics critically slow down at Tg ˜ 68 K, below which they exhibit memory effect in field-cooled and zero-field-cooled protocols associated with a superspin glass state. The field dependence of mean blocking temperature fits the de Almeida-Thouless line and shows two different linear responses in the low and high field regimes corresponding to the core and shell, respectively. We show that the energy barrier distribution estimated from the temperature decay of isothermal remanent magnetization shows two maxima that mark the freezing temperatures of the core (Tf-cr ˜ 48 K) and shell (Tf-sh ˜ 21 K). Last, hysteresis measurements after field cooling reveal strong EB indicated by a loop shift associated with unidirectional anisotropy. The onset of EB is at 35 K when the ferromagnetic core is frozen and the moments in the ferrimagnetic shell begin to block, resulting in enhanced exchange coupling.

  12. Dynamics of Verticillium species microsclerotia in field soils in response to fumigation, cropping patterns, and flooding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many soil-inhabiting fungi are capable of surviving the dynamic soil microenvironment through the formation of resilient resting structures, such as thick-walled spores, melanized hyphae, and sclerotia. Verticillium dahliae is a soil-inhabiting, economically significant plant pathogenic fungus that ...

  13. Ultra-High-Efficiency Strong Cation Exchange LC/RPLC/MS/MS for High Dynamic Range Characterization of the Human Plasma Proteome

    SciTech Connect

    Shen, Yufeng; Jacobs, Jon M.; Camp, David G.; Fang, Ruihua; Moore, Ronald J.; Smith, Richard D.; Xiao, Wenzhong; Davis, Ronald W.; Tompkins, Ronald G.

    2004-02-15

    In this study, we report a comprehensive approach for ultrahigh-efficiency separations by liquid chromatography (LC)/tandem mass spectrometry (MS/MS) for broad protein characterization of human plasma. The power of this approach is demonstrated by the confident identification of 1062 human plasma proteins based upon identification of 2992 tryptic peptides using highly conservative SEQUEST search criteria from a non-depleted human plasma sample. The approach provides a dynamic range of {approx}9 orders of magnitude in protein abundance using conventional ion trap MS/MS, which enabled identification of pg/mL concentration human plasma proteins (e.g. cytokines) co-existing with mg/mL-level human serum albumin. This dynamic range was obtained by combining high-efficiency reversed-phase (RP) LC coupled with efficient pre-fractionation strong cation exchange (SCX) LC to achieve ultrahigh-efficiency separations. A single-dimension, high-efficiency RPLC provided a protein identification dynamic range of 4 orders of magnitude in protein content and identified 433 human plasma proteins; while the ultrahigh-efficiency SCXLC/RPLC (i.e. 15 fractions from SCXLC), with the assistance of the SCXLC-sample component concentration (up to 102 fold), extended the protein identification dynamic range to {approx}9 orders of magnitude in protein content, identifying 822 human plasma proteins; combination of single- and two-dimension LC/MS/MS led to identification of 1062 human plasma proteins.

  14. Dynamical properties of a stage structured three-species model with intra-guild predation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masahiro; Takeuchi, Yasuhiro; Ma, Wanbiao

    2007-04-01

    This paper considers a stage-structured three species model with intra-guild predation (IGP). First, we show local and global stability of IGP model. It is known that introduction of IGP in tritrophic food chain can destabilize the system. So in order to ensure survival of all species for all future time, we show a necessary and sufficient condition for permanence of IGP model. Next, we consider the IGP model with a stage structure for predator. The model uses time delay to express a maturation period and a through-stage survival rate for the predator. By using stability switch criteria which can provide practical guidelines that combine graphical information with analytical work, we can show that the delay can stabilize the IGP model.

  15. Thrips (Thysanoptera: Thripidae) on Cotton in the Lower Rio Grande Valley of Texas: Species Composition, Seasonal Population Dynamics, Damage and Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species composition, population dynamics of thrips on cotton, and their predaceous natural enemies, damage and control, were determined at two different sites during three consecutive seasons from 2005 to 2007 in the Lower Rio Grande Valley (LRGV) of Texas. We observed seven different species of th...

  16. Range Expansion and Population Dynamics of an Invasive Species: The Eurasian Collared-Dove (Streptopelia decaocto)

    PubMed Central

    Scheidt, Spencer N.; Hurlbert, Allen H.

    2014-01-01

    Invasive species offer ecologists the opportunity to study the factors governing species distributions and population growth. The Eurasian Collared-Dove (Streptopelia decaocto) serves as a model organism for invasive spread because of the wealth of abundance records and the recent development of the invasion. We tested whether a set of environmental variables were related to the carrying capacities and growth rates of individual populations by modeling the growth trajectories of individual populations of the Collared-Dove using Breeding Bird Survey (BBS) and Christmas Bird Count (CBC) data. Depending on the fit of our growth models, carrying capacity and growth rate parameters were extracted and modeled using historical, geographical, land cover and climatic predictors. Model averaging and individual variable importance weights were used to assess the strength of these predictors. The specific variables with the greatest support in our models differed between data sets, which may be the result of temporal and spatial differences between the BBS and CBC. However, our results indicate that both carrying capacity and population growth rates are related to developed land cover and temperature, while growth rates may also be influenced by dispersal patterns along the invasion front. Model averaged multivariate models explained 35–48% and 41–46% of the variation in carrying capacities and population growth rates, respectively. Our results suggest that widespread species invasions can be evaluated within a predictable population ecology framework. Land cover and climate both have important effects on population growth rates and carrying capacities of Collared-Dove populations. Efforts to model aspects of population growth of this invasive species were more successful than attempts to model static abundance patterns, pointing to a potentially fruitful avenue for the development of improved invasive distribution models. PMID:25354270

  17. [Dynamics of chromosome number evolution in the Agrodiaetus phyllis species complex (Insecta: Lepidoptera)].

    PubMed

    Vershinina, A O; Lukhtanov, V A

    2013-01-01

    We employed phylogenetic comparative method to study karyotype evolution in the Agrodiaetus phyllis species complex in which haploid chromosome numbers vary greatly ranging from 10 to 134. We have found that different phylogenetic lineages of the group have different rates of chromosome number changes. Chromosome numbers in the complex posses phylogenetic signal, and their evolutionary transformation is difficult to explain in terms of punctual and gradual evolution. PMID:23875457

  18. Population Dynamics of Aspergillus Section Nigri Species on Vineyard Samples of Grapes and Raisins.

    PubMed

    Palumbo, Jeffrey D; O'Keeffe, Teresa L; Ho, Yvonne S; Fidelibus, Matthew W

    2016-03-01

    Several species of Aspergillus section Nigri, including potential mycotoxin producers, are common residents of grape vineyards, but the relative population size of individual species throughout the growing season is difficult to determine using traditional isolation and identification methods. Using a quantitative droplet digital PCR (ddPCR) method in combination with dilution plating, total Aspergillus section Nigri populations and relative proportions of A. niger, A. welwitschiae, A. carbonarius, and A. tubingensis were measured from vineyard samples without the need for identifying individual fungal isolates. Grapes were sampled from two raisin vineyards (vineyards A and B) at berry set, veraison, harvest, and raisin stages in two consecutive years. Plate counts showed that the total population of Aspergillus section Nigri present on the fruit increased from berry set to raisin and became a larger component of the total recovered fungal population in both vineyards in both years. Results from ddPCR analysis showed that the relative proportion of A. carbonarius among the four species assayed increased later in the season (harvest and raisin) in comparison to earlier in the season (berry set and veraison). Total fungal and Aspergillus section Nigri plate counts were not significantly different between vineyards in either year. However, vineyard A generally showed higher proportions of A. carbonarius in harvest and raisin samples than vineyard B. This coincided with higher incidence and levels of ochratoxin A in vineyard A harvest and raisin fruit than in vineyard B fruit. This work demonstrates that this ddPCR method is a useful tool for culture-independent monitoring of populations of mycotoxigenic Aspergillus species during grape and raisin production. PMID:26939655

  19. Legionella species diversity and dynamics from surface reservoir to tap water: from cold adaptation to thermophily.

    PubMed

    Lesnik, René; Brettar, Ingrid; Höfle, Manfred G

    2016-05-01

    Water samples of the Drinking Water Supply System (DWSS) of the city of Braunschweig were analysed for its Legionella species composition using genus-specific PCR amplicons and single-strand conformation polymorphism (SSCP) fingerprint analyses based on 16S rRNA genes. These analyses comprised the whole supply chain including raw water, treatment process and large-scale storage, and a seasonal study of finished drinking water sampled monthly from cold and hot tap water. Treatment of raw water had a major impact on Legionella species by reducing their diversity and abundances. The Legionella species composition of the tap water was highly distinct from that of both source waters. In cold water, 8-14 different phylotypes of Legionella (PTLs) were observed per sample with relative abundances ranging from >1% to 53%. In hot water, L. pneumophila was present during all seasons at high relative abundances (8-40%) accompanied by 5-14 other PTLs of which 6 PTLs were in common with cold water. This thermophilic Legionella community, including L. pneumophila, was able to grow in the hot water above 50 °C. Such thermophilic Legionella populations are of general relevance for drinking water management and public health, but also for the ecology and evolution of the genus Legionella. PMID:26528838

  20. Comparable ecological dynamics underlie early cancer invasion and species dispersal, involving self-organizing processes

    PubMed Central

    Marco, Diana E.; Cannas, Sergio A.; Montemurro, Marcelo A.; Hu, Bo; Cheng, Shi-Yuan

    2010-01-01

    Occupancy of new habitats through dispersion is a central process in nature. In particular, long-distance dispersal is involved in the spread of species and epidemics, although it has not been previously related with cancer invasion, a process that involves cell spreading to tissues far away from the primary tumour. Using simulations and real data we show that the early spread of cancer cells is similar to the species individuals spread and we suggest that both processes are represented by a common spatio-temporal signature of long-distance dispersal and subsequent local proliferation. This signature is characterized by a particular fractal geometry of the boundaries of patches generated, and a power-law scaled, disrupted patch size distribution. In contrast, invasions involving only dispersal but not subsequent proliferation (“physiological invasions”) like trophoblast cells invasion during normal human placentation did not show the patch size power-law pattern. Our results are consistent under different temporal and spatial scales, and under different resolution levels of analysis. We conclude that the scaling properties are a hallmark and a direct result of long-distance dispersal and proliferation, and that they could reflect homologous ecological processes of population self-organization during cancer and species spread. Our results are significant for the detection of processes involving long-range dispersal and proliferation like cancer local invasion and metastasis, biological invasions and epidemics, and for the formulation of new cancer therapeutical approaches. PMID:18930739

  1. Species Diversity, Community Dynamics, and Metabolite Kinetics of the Microbiota Associated with Traditional Ecuadorian Spontaneous Cocoa Bean Fermentations▿

    PubMed Central

    Papalexandratou, Zoi; Falony, Gwen; Romanens, Edwina; Jimenez, Juan Carlos; Amores, Freddy; Daniel, Heide-Marie; De Vuyst, Luc

    2011-01-01

    Traditional fermentations of the local Ecuadorian cocoa type Nacional, with its fine flavor, are carried out in boxes and on platforms for a short time. A multiphasic approach, encompassing culture-dependent and -independent microbiological analyses of fermenting cocoa pulp-bean samples, metabolite target analyses of both cocoa pulp and beans, and sensory analysis of chocolates produced from the respective fermented dry beans, was applied for the investigation of the influence of these fermentation practices on the yeast and bacterial species diversity and community dynamics during cocoa bean fermentation. A wide microbial species diversity was found during the first 3 days of all fermentations carried out. The prevailing ethanol-producing yeast species were Pichia kudriavzevii and Pichia manshurica, followed by Saccharomyces cerevisiae. Leuconostoc pseudomesenteroides (glucose and fructose fermenting), Fructobacillus tropaeoli-like (fructose fermenting), and Lactobacillus fermentum (citrate converting, mannitol producing) represented the main lactic acid bacterial species in the fermentations studied, resulting in intensive heterolactate metabolism of the pulp substrates. Tatumella saanichensis and Tatumella punctata were among the members of the family Enterobacteriaceae present during the initial phase of the cocoa bean fermentations and could be responsible for the production of gluconic acid in some cases. Also, a potential new yeast species was isolated, namely, Candida sorbosivorans-like. Acetic acid bacteria, whose main representative was Acetobacter pasteurianus, generally appeared later during fermentation and oxidized ethanol to acetic acid. However, acetic acid bacteria were not always present during the main course of the platform fermentations. All of the data taken together indicated that short box and platform fermentation methods caused incomplete fermentation, which had a serious impact on the quality of the fermented dry cocoa beans. PMID

  2. Climate variability and spatiotemporal dynamics of five Southern Ocean krill species

    NASA Astrophysics Data System (ADS)

    Loeb, Valerie J.; Santora, Jarrod A.

    2015-05-01

    Understanding the ecological response of marine organisms to future climate change will benefit from quantifying spatiotemporal aspects of their distribution and abundance as well as the influence of ocean-atmospheric climate modes on their population cycles. Our study provides a synthesis of 18 years of data (1992-2009) for 5 krill (euphausiid) species monitored near the North Antarctic Peninsula (NAP) during austral summer. Distribution and abundance data are presented for postlarval stages of Euphausia crystallorophias, E. frigida, E. superba, E. triacantha and Thysanoessa macrura and larval E. superba and T. macrura. Intraseasonal, interannual and longer-term distribution and abundance patterns are quantified relative to climate modes driving ecosystem variability off the Antarctic Peninsula: El Niño-Southern Oscillation (ENSO), Southern Annual Mode (SAM) and associated zonal and meridional winds. Interannual abundance variations of all 5 species are significantly correlated with seasonally averaged ENSO indices and, with the exception of E. triacantha, elevated population sizes are associated with the higher productivity La Niña phase. Time-lagged responses of each species to ENSO indices approximate their generation times and suggest evolution of their life histories and reproductive efforts in accordance with the ENSO cycle. Postlarval E. crystallorophias and E. frigida and larval T. macrura demonstrate significant abundance increases after 1998 associated with a shift from an El Niño dominated period to predominantly La Niña and "Nino-neutral" conditions. Seasonal changes in species distributions and co-occurrence indicate portions of the southernmost E. frigida, E. triacantha and T. macrura populations move poleward with E. superba during late-summer, suggesting that environmental conditions associated with sea ice development (e.g., food, retention) may be more favorable than within the Antarctic Circumpolar Current during low productivity seasons

  3. Exploring Verbal, Visual and Schematic Learners' Static and Dynamic Mental Images of Scientific Species and Processes in Relation to Their Spatial Ability

    ERIC Educational Resources Information Center

    Al-Balushi, Sulaiman M.; Coll, Richard Kevin

    2013-01-01

    The current study compared different learners' static and dynamic mental images of unseen scientific species and processes in relation to their spatial ability. Learners were classified into verbal, visual and schematic. Dynamic images were classified into: appearing/disappearing, linear-movement, and rotation. Two types of scientific…

  4. Species differentiation on a dynamic landscape: shifts in metapopulation genetic structure using the chronology of the Hawaiian Archipelago

    USGS Publications Warehouse

    Roderick, George K.; Croucher, Peter J.P.; Vandergast, Amy G.; Gillespie, Rosemary G.

    2012-01-01

    Species formation during adaptive radiation often occurs in the context of a changing environment. The establishment and arrangement of populations, in space and time, sets up ecological and genetic processes that dictate the rate and pattern of differentiation. Here, we focus on how a dynamic habitat can affect genetic structure, and ultimately, differentiation among populations. We make use of the chronology and geographical history provided by the Hawaiian archipelago to examine the initial stages of population establishment and genetic divergence. We use data from a set of 6 spider lineages that differ in habitat affinities, some preferring low elevation habitats with a longer history of connection, others being more specialized for high elevation and/or wet forest, some with more general habitat affinities. We show that habitat preferences associated with lineages are important in ecological and genetic structuring. Lineages that have more restricted habitat preferences are subject to repeated episodes of isolation and fragmentation as a result of lava flows and vegetation succession. The initial dynamic set up by the landscape translates over time into discrete lineages. Further work is needed to understand how genetic changes interact with a changing set of ecological interactions amongst a shifting mosaic of landscapes to achieve species formation.

  5. Subpicosecond surface dynamics in genomic DNA from in vitro-grown plant species: a SERS assessment.

    PubMed

    Muntean, Cristina M; Bratu, Ioan; Leopold, Nicolae; Morari, Cristian; Buimaga-Iarinca, Luiza; Purcaru, Monica A P

    2015-09-01

    In this work the surface-enhanced Raman total half band widths of seven genomic DNAs from leaves of chrysanthemum (Dendranthema grandiflora Ramat.), common sundew (Drosera rotundifolia L.), edelweiss (Leontopodium alpinum Cass), Epilobium hirsutum L., Hypericum richeri ssp. transsilvanicum (Čelak) Ciocârlan, rose (Rosa x hybrida L.) and redwood (Sequoia sempervirens D. Don. Endl.) have been measured. We have shown that surface-enhanced Raman spectroscopy (SERS) can be used to study the fast subpicosecond dynamics of DNA in the proximity of a metallic surface. The dependencies of the total half band widths and the global relaxation times, on the DNA molecular subgroup structure and on the type of genomic DNA, are reported. In our study, the full widths at half-maximum (FWHMs) for the SERS bands of genomic DNAs from different leaf tissues are typically in the wavenumber range from 15 to 55 cm(-1). Besides, it can be observed that molecular relaxation processes studied in this work have a global relaxation time smaller than 0.71 ps and larger than 0.19 ps. A comparison between different ranges of FT-Raman and SERS band parameters, respectively, corresponding to DNA extracted from leaf tissues is given. It is shown that the interaction between DNA and a metallic surface has the potential to lead to a shortening of the global relaxation times, as compared with molecular dynamics in solution. We have found that the surface dynamics of molecular subgroups in plant DNA is, in some cases, about two times faster than the solution dynamics of nucleic acids. This can be rationalized in a qualitative manner by invoking the complex landscape of the interaction energy between the molecule and the silver surface. PMID:25687823

  6. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes

    PubMed Central

    Curtis, Janelle M.R.

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along

  7. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes.

    PubMed

    Naujokaitis-Lewis, Ilona; Curtis, Janelle M R

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along

  8. Altered dynamics of broad-leaved tree species in a Chinese subtropical montane mixed forest: the role of an anomalous extreme 2008 ice storm episode

    PubMed Central

    Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang

    2015-01-01

    Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations. PMID:25897387

  9. Hydrogen exchange mass spectrometry reveals protein interfaces and distant dynamic coupling effects during the reversible self-association of an IgG1 monoclonal antibody

    PubMed Central

    Arora, Jayant; Hickey, John M; Majumdar, Ranajoy; Esfandiary, Reza; Bishop, Steven M; Samra, Hardeep S; Middaugh, C Russell; Weis, David D; Volkin, David B

    2015-01-01

    There is a need for new analytical approaches to better characterize the nature of the concentration-dependent, reversible self-association (RSA) of monoclonal antibodies (mAbs) directly, and with high resolution, when these proteins are formulated as highly concentrated solutions. In the work reported here, hydrogen exchange mass spectrometry (HX-MS) was used to define the concentration-dependent RSA interface, and to characterize the effects of association on the backbone dynamics of an IgG1 mAb (mAb-C). Dynamic light scattering, chemical cross-linking, and solution viscosity measurements were used to determine conditions that caused the RSA of mAb-C. A novel HX-MS experimental approach was then applied to directly monitor differences in local flexibility of mAb-C due to RSA at different protein concentrations in deuterated buffers. First, a stable formulation containing lyoprotectants that permitted freeze-drying of mAb-C at both 5 and 60 mg/mL was identified. Upon reconstitution with RSA-promoting deuterated solutions, the low vs. high protein concentration samples displayed different levels of solution viscosity (i.e., approx. 1 to 75 mPa.s). The reconstituted mAb-C samples were then analyzed by HX-MS. Two specific sequences covering complementarity-determining regions CDR2H and CDR2L (in the variable heavy and light chains, respectively) showed significant protection against deuterium uptake (i.e., decreased hydrogen exchange). These results define the major protein-protein interfaces associated with the concentration-dependent RSA of mAb-C. Surprisingly, certain peptide segments in the VH domain, the constant domain (CH2), and the hinge region (CH1-CH2 interface) concomitantly showed significant increases in local flexibility at high vs. low protein concentrations. These results indicate the presence of longer-range, distant dynamic coupling effects within mAb-C occurring upon RSA. PMID:25875351

  10. Solute-solvent complex switching dynamics of chloroform between acetone and dimethylsulfoxide-two-dimensional IR chemical exchange spectroscopy.

    PubMed

    Kwak, Kyungwon; Rosenfeld, Daniel E; Chung, Jean K; Fayer, Michael D

    2008-11-01

    Hydrogen bonds formed between C-H and various hydrogen bond acceptors play important roles in the structure of proteins and organic crystals, and the mechanisms of C-H bond cleavage reactions. Chloroform, a C-H hydrogen bond donor, can form weak hydrogen-bonded complexes with acetone and with dimethylsulfoxide (DMSO). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO, both types of hydrogen-bonded complexes exist. The two complexes, chloroform-acetone and chloroform-DMSO, are in equilibrium, and they rapidly interconvert by chloroform exchanging hydrogen bond acceptors. This fast hydrogen bond acceptor substitution reaction is probed using ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy. Deuterated chloroform is used in the experiments, and the 2D-IR spectrum of the C-D stretching mode is measured. The chemical exchange of the chloroform hydrogen bonding partners is tracked by observing the time-dependent growth of off-diagonal peaks in the 2D-IR spectra. The measured substitution rate is 1/30 ps for an acetone molecule to replace a DMSO molecule in a chloroform-DMSO complex and 1/45 ps for a DMSO molecule to replace an acetone molecule in a chloroform-acetone complex. Free chloroform exists in the mixed solvent, and it acts as a reactive intermediate in the substitution reaction, analogous to a SN1 type reaction. From the measured rates and the equilibrium concentrations of acetone and DMSO, the dissociation rates for the chloroform-DMSO and chloroform-acetone complexes are found to be 1/24 ps and 1/5.5 ps, respectively. The difference between the measured rate for the complete substitution reaction and the rate for complex dissociation corresponds to the diffusion limited rate. The estimated diffusion limited rate agrees well with the result from a Smoluchowski treatment of diffusive reactions. PMID:18855462

  11. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  12. A fast vectorized multispin coding algorithm for 3D Monte Carlo simulations using Kawasaki spin-exchange dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, M. Q.

    1989-09-01

    A new Monte Carlo algorithm for 3D Kawasaki spin-exchange simulations and its implementation on a CDC CYBER 205 is presented. This approach is applicable to lattices with sizes between 4×4×4 and 256×L2×L3 ((L2+2)(L3+4)/4⩽65535) and periodic boundary conditions. It is adjustable to various kinetic models in which the total magnetization is conserved. Maximum speed on 10 million steps per second can be reached for 3-D Ising model with Metropolis rate.

  13. Of Monkeys and Men: A Metabolomic Analysis of Static and Dynamic Urinary Metabolic Phenotypes in Two Species

    PubMed Central

    Saccenti, Edoardo; Tenori, Leonardo; Verbruggen, Paul; Timmerman, Marieke E.; Bouwman, Jildau; van der Greef, Jan; Luchinat, Claudio; Smilde, Age K.

    2014-01-01

    Background Metabolomics has attracted the interest of the medical community for its potential in predicting early derangements from a healthy to a diseased metabolic phenotype. One key issue is the diversity observed in metabolic profiles of different healthy individuals, commonly attributed to the variation of intrinsic (such as (epi)genetic variation, gut microbiota, etc.) and extrinsic factors (such as dietary habits, life-style and environmental conditions). Understanding the relative contributions of these factors is essential to establish the robustness of the healthy individual metabolic phenotype. Methods To assess the relative contribution of intrinsic and extrinsic factors we compared multilevel analysis results obtained from subjects of Homo sapiens and Macaca mulatta, the latter kept in a controlled environment with a standardized diet by making use of previously published data and results. Results We observed similarities for the two species and found the diversity of urinary metabolic phenotypes as identified by nuclear magnetic resonance (NMR) spectroscopy could be ascribed to the complex interplay of intrinsic factors and, to a lesser extent, of extrinsic factors in particular minimizing the role played by diet in shaping the metabolic phenotype. Moreover, we show that despite the standardization of diet as the most relevant extrinsic factor, a clear individual and discriminative metabolic fingerprint also exists for monkeys. We investigate the metabolic phenotype both at the static (i.e., at the level of the average metabolite concentration) and at the dynamic level (i.e., concerning their variation over time), and we show that these two components sum up to the overall phenotype with different relative contributions of about 1/4 and 3/4, respectively, for both species. Finally, we show that the great degree diversity observed in the urinary metabolic phenotype of both species can be attributed to differences in both the static and dynamic part of

  14. Population dynamics of three aphid species (Hemiptera: Aphididae) on four Ipomoea spp. infected or noninfected with sweetpotato potyviruses.

    PubMed

    Wosula, E N; Davis, J A; Clark, C A

    2013-08-01

    Three aphid species, Aphis gossypii Glover and Myzus persicae (Sulzer) (efficient sweetpotato potyvirus vectors) and Rhopalosiphum padi (L.) (an inefficient vector), are commonly found in sweet potato, Ipomoea batatas (L.), in Louisiana. Field-grown sweet potatoes are naturally infected with several potyviruses: Sweet potato feathery mottle virus, Sweet potato virus G, and Sweet potato virus 2. Thus, these aphids commonly encounter virus-infected hosts. What is not known is how each of these aphids responds to sweet potato, either infected or virus-free. The objectives of this study were to 1) determine if these aphid species can colonize mixed virus-infected sweet potato 'Beauregard', and if so, 2) determine the effects of virus infection on the population dynamics of each aphid. A. gossypii failed to larviposit and R. padi deposited a single nymph that died within a day on mixed virus-infected Beauregard. M. persicae larviposited and colonized Beauregard and further life-table analyses were warranted. M. persicae had a significantly greater reproduction on sweet potato cultivars Beauregard and 'Evangeline' with mixed virus infection compared with noninfected plants. On morning glory species, Ipomoea cordatotriloba (Dennestedt) and Ipomoea hederacea (Jacquin), M. persicae had a significantly lower reproduction on Sweet potato feathery mottle virus-infected compared with noninfected plants. PMID:24020267

  15. Stochastic model of self-driven two-species objects inspired by particular aspects of a pedestrian dynamics

    NASA Astrophysics Data System (ADS)

    da Silva, Roberto; Hentz, Agenor; Alves, Alexandre

    2015-11-01

    In this work we propose a model to describe the fluctuations of self-driven objects (species A) walking against a crowd of particles in the opposite direction (species B) in order to simulate the spatial properties of the particle distribution from a stochastic point of view. Driven by concepts from pedestrian dynamics, in a particular regime known as stop-and-go waves, we propose a particular single-biased random walk (SBRW). This setup is modeled both via partial differential equations (PDE) and by using a probabilistic cellular automaton (PCA) method. The problem is non-interacting until the opposite particles visit the same cell of the target particles, which generates delays on the crossing time that depends on the concentration of particles of opposite species per cell. We analyzed the fluctuations on the position of particles and our results show a non-regular propagation characterized by long-tailed and asymmetric distributions which are better fitted by some chromatograph distributions found in the literature. We also show that effects of the crowd of particles in this situation are able to generate a pattern where we observe a small decrease of the target particle dispersion followed by an increase, differently from the observed straightforward non-interacting case. For a particular initial condition we present an interesting solution via constant density approximation (CDA).

  16. Closely-related taxa influence woody species discrimination via DNA barcoding: evidence from global forest dynamics plots.

    PubMed

    Pei, Nancai; Erickson, David L; Chen, Bufeng; Ge, Xuejun; Mi, Xiangcheng; Swenson, Nathan G; Zhang, Jin-Long; Jones, Frank A; Huang, Chun-Lin; Ye, Wanhui; Hao, Zhanqing; Hsieh, Chang-Fu; Lum,