Science.gov

Sample records for dynamic test system

  1. Dynamic testing of docking system hardware

    NASA Technical Reports Server (NTRS)

    Dorland, W. D.

    1972-01-01

    Extensive dynamic testing was conducted to verify the flight readiness of the Apollo docking hardware. Testing was performed on a unique six degree-of-freedom motion simulator controlled by a computer that calculated the associated spacecraft motions. The test system and the results obtained by subjecting flight-type docking hardware to actual impact loads and resultant spacecraft dynamics are described.

  2. Innovations in dynamic test restraint systems

    NASA Technical Reports Server (NTRS)

    Fuld, Christopher J.

    1990-01-01

    Recent launch system development programs have led to a new generation of large scale dynamic tests. The variety of test scenarios share one common requirement: restrain and capture massive high velocity flight hardware with no structural damage. The Space Systems Lab of McDonnell Douglas developed a remarkably simple and cost effective approach to such testing using ripstitch energy absorbers adapted from the sport of technical rockclimbing. The proven system reliability of the capture system concept has led to a wide variety of applications in test system design and in aerospace hardware design.

  3. Stability precision dynamic testing system on artillery

    NASA Astrophysics Data System (ADS)

    Wang, Chunyan; Li, Bo

    2014-12-01

    Dynamic feature of Weapon equipments is one of important performance index for evaluating the performance of the whole weapon system. The construction of target range in our country in fire control dynamic testing is relatively backward; therefore, it has greatly influenced the evaluation on the fire control system. In order to solve this problem, it's urgent to develop a new testing instrument so as to adjust to the armament research process and promote weapon system working more efficiently and thereby meeting the needs of modernization in national defense. This paper proposes a new measure which is used to test the stability precision of the fire control system, and it is installed on the moving base. Using the method, we develop a testing system which can test the stability precision of the fire control system and achieve a high precision results after testing. The innovation of the system is we can receive the image not only by CCD, but our eyes. It also adopts digital image-forming and image processing technique for real-time measurement and storing of the target information; it simultaneously adopts the method adjusting the platform and the corresponding fixture mounted on a sample to measure the stable precision and the precision of corner of stabilizator. In this paper, we make a description on the construction of the system and the idea of the designing of the optical system. Finally, we introduce the actual application of the system and testing results.

  4. Testing relativity with solar system dynamics

    NASA Technical Reports Server (NTRS)

    Hellings, R. W.

    1984-01-01

    A major breakthrough is described in the accuracy of Solar System dynamical tests of relativistic gravity. The breakthrough was achieved by factoring in ranging data from Viking Landers 1 and 2 from the surface of Mars. Other key data sources included optical transit circle observations, lunar laser ranging, planetary radar, and spacecraft (Mariner 9 to Mars and Mariner 10 to Mercury). The Solar System model which is used to fit the data and the process by which such fits are performed are explained and results are discussed. The results are fully consistent with the predictions of General Relativity.

  5. Dynamic Docking Test System (DDTS) active table frequency response test results. [Apollo Soyuz Test Project

    NASA Technical Reports Server (NTRS)

    Gates, R. M.

    1974-01-01

    Results are presented of the frequency response test performed on the dynamic docking test system (DDTS) active table. Sinusoidal displacement commands were applied to the table and the dynamic response determined from measured actuator responses and accelerometers mounted to the table and one actuator.

  6. Analyses of the dynamic docking test system for advanced mission docking system test programs. [Apollo Soyuz Test Project

    NASA Technical Reports Server (NTRS)

    Gates, R. M.; Williams, J. E.

    1974-01-01

    Results are given of analytical studies performed in support of the design, implementation, checkout and use of NASA's dynamic docking test system (DDTS). Included are analyses of simulator components, a list of detailed operational test procedures, a summary of simulator performance, and an analysis and comparison of docking dynamics and loads obtained by test and analysis.

  7. Solar simulator for solar dynamic space power system testing

    NASA Technical Reports Server (NTRS)

    Jefferies, Kent S.

    1993-01-01

    Planned vacuum tank testing of a solar dynamic space power system requires a solar simulator. Several solar simulators were previously built and used for vacuum tank testing of various space systems. However, the apparent solar subtense angle, i.e., the angular size of the apparent sun as viewed from the experiment, of these solar simulators is too large to enable testing of solar dynamic systems. A new design was developed to satisfy the requirements of the solar dynamic testing. This design provides 1.8 kW/m(sup 2) onto a 4.5M diameter test area from a source that subtends only 1 deg, full cone angle. Key features that enable this improved performance are (1) elimination of the collimating mirror commonly used in solar simulators to transform the diverging beam into a parallel beam; (2) a redesigned lamp module that has increased efficiency; and (3) the use of a segmented reflective surface to combine beams from several individual lamp modules at the pseudosun. Each segment of this reflective surface has complex curvature to control the distribution of light. By developing a new solar simulator design for testing of the solar dynamic system instead of modifying current designs, the initial cost was cut in half, the efficiency was increased by 50 percent reducing the operating costs by one-third, and the volume occupied by the solar simulator was reduced by a factor of 10.

  8. Dynamic (Vibration) Testing: Design-Certification of Aerospace System

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin K.

    2010-01-01

    Various types of dynamic testing of structures for certification purposes are described, including vibration, shock and acoustic testing. Modal testing is discussed as it frequently complements dynamic testing and is part of the structural verification/validation process leading up to design certification. Examples of dynamic and modal testing are presented as well as the common practices, procedures and standards employed.

  9. Dynamic testing of MFTF containment-vessel structural system

    SciTech Connect

    Weaver, H.J.; McCallen, D.B.; Eli, M.W.

    1982-04-01

    Dynamic (modal) testing was performed on the Magnetic Fusion Test Facility (MFTF) containment vessel. The seismic design of this vessel was heavily dependent upon the value of structural damping used in the analysis. Typically for welded steel vessels, a value of 2 to 3% of critical is used. However, due to the large mass of the vessel and magnet supported inside, we felt that the interaction between the structure and its foundation would be enhanced. This would result in a larger value of damping because vibrational energy in the structure would be transferred through the foundation into the surrounding soil. The dynamic test performed on this structure (with the magnet in place) confirmed this later theory and resulted in damping values of approximately 4 to 5% for the whole body modes. This report presents a brief description of dynamic testing emphasizing the specific test procedure used on the MFTF-A system. It also presents an interpretation of the damping mechanisms observed (material and geometric) based upon the spatial characteristics of the modal parameters (mode shapes).

  10. Testing quasilinear modified Newtonian dynamics in the Solar System

    NASA Astrophysics Data System (ADS)

    Galianni, Pasquale; Feix, Martin; Zhao, Hongsheng; Horne, Keith

    2012-08-01

    A unique signature of the modified Newtonian dynamics (MOND) paradigm is its peculiar behavior in the vicinity of the points where the total Newtonian acceleration exactly cancels. In the Solar System, these are the saddle points of the gravitational potential near the planets. Typically, such points are embedded into low-acceleration bubbles where modified gravity theories à la MOND predict significant deviations from Newton’s laws. As it has been pointed out recently, the Earth-Sun bubble may be visited by the LISA Pathfinder spacecraft in the near future, providing a unique occasion to put these theories to a direct test. In this work, we present a high-precision model of the Solar System’s gravitational potential to determine accurate positions and motions of these saddle points and study the predicted dynamical anomalies within the framework of quasilinear MOND. Considering the expected sensitivity of the LISA Pathfinder probe, we argue that interpolation functions which exhibit a “faster” transition between the two dynamical regimes have a good chance of surviving a null result. An example of such a function is the QMOND analog of the so-called simple interpolating function which agrees well with much of the extragalactic phenomenology. We have also discovered that several of Saturn’s outermost satellites periodically intersect the Saturn-Sun bubble, providing the first example of Solar System objects that regularly undergo the MOND regime.

  11. 16 CFR 1203.16 - Dynamic strength of retention system test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Dynamic strength of retention system test... ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS The Standard § 1203.16 Dynamic strength of.... (2) The retention system strength test equipment shall consist of a dynamic impact apparatus...

  12. 16 CFR 1203.16 - Dynamic strength of retention system test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Dynamic strength of retention system test... ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS The Standard § 1203.16 Dynamic strength of.... (2) The retention system strength test equipment shall consist of a dynamic impact apparatus...

  13. 16 CFR 1203.16 - Dynamic strength of retention system test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Dynamic strength of retention system test... ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS The Standard § 1203.16 Dynamic strength of.... (2) The retention system strength test equipment shall consist of a dynamic impact apparatus...

  14. 16 CFR 1203.16 - Dynamic strength of retention system test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Dynamic strength of retention system test... ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS The Standard § 1203.16 Dynamic strength of.... (2) The retention system strength test equipment shall consist of a dynamic impact apparatus...

  15. 16 CFR 1203.16 - Dynamic strength of retention system test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Dynamic strength of retention system test... ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS The Standard § 1203.16 Dynamic strength of.... (2) The retention system strength test equipment shall consist of a dynamic impact apparatus...

  16. Dynamic Docking Test System (DDTS) active table computer program NASA Advanced Docking System (NADS)

    NASA Technical Reports Server (NTRS)

    Gates, R. M.; Jantz, R. E.

    1974-01-01

    A computer program was developed to describe the three-dimensional motion of the Dynamic Docking Test System active table. The input consists of inertia and geometry data, actuator structural data, forcing function data, hydraulics data, servo electronics data, and integration control data. The output consists of table responses, actuator bending responses, and actuator responses.

  17. The effect of test system misalignment in the dynamic tension test

    NASA Technical Reports Server (NTRS)

    Wu, H. C.; Wang, T. P.; Yip, M. C.

    1980-01-01

    The effects of test system misalignment are analyzed for dynamic tension tests using sheet type rectangular 1100-0 aluminum specimens. The strain rate is assumed constant only on the natural axis of the specimen even though the specimen is subjected to a constant strain rate test. The results include: (1) the lower the strain rate, the more significant the misalignment errors become; (2) misalignment errors of 50% are found at the extreme fibers of the specimen; (3) the strain rate variation in the cross section decreases with increasing plastic strain and vanishes at plastic strain equal to 0.8% at the midspan of the specimen; and (4) the neutral axis shifts toward the centerline of the specimen as the plastic strain increases, but it reaches a limit and does not completely move back to the centerline.

  18. 2-kW Solar Dynamic Space Power System Tested in Lewis' Thermal Vacuum Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Working together, a NASA/industry team successfully operated and tested a complete solar dynamic space power system in a large thermal vacuum facility with a simulated sun. This NASA Lewis Research Center facility, known as Tank 6 in building 301, accurately simulates the temperatures, high vacuum, and solar flux encountered in low-Earth orbit. The solar dynamic space power system shown in the photo in the Lewis facility, includes the solar concentrator and the solar receiver with thermal energy storage integrated with the power conversion unit. Initial testing in December 1994 resulted in the world's first operation of an integrated solar dynamic system in a relevant environment.

  19. Measurement of rotor system dynamic stiffness by perturbation testing

    NASA Technical Reports Server (NTRS)

    Bently, D. E.; Muszynska, A.

    1985-01-01

    Specific aspects of the application of Modal Analysis to rotating machines are discussed. For lowest mode analysis, the circular force perturbation testing gives the best results. Examples of application are presented.

  20. PACE: A test bed for the dynamics and control of flexible multibody systems

    NASA Technical Reports Server (NTRS)

    Kwak, Moon K.; Smith, Monty J.; Das, Alok

    1993-01-01

    The Phillips Laboratory at Edwards AFB has constructed a test bed for the validation and comparison of modeling and control theories for the dynamics and control of flexible multibody systems. This project is called the Planar Articulating Controls Experiment (PACE). This paper presents the experimental apparatus for PACE and the problem formulation. An in-depth analysis on DC motor dynamics was also performed.

  1. Measurements of SCRF cavity dynamic heat load in horizontal test system

    SciTech Connect

    DeGraff, B.D.; Bossert, R.J.; Pei, L.; Soyars, W.M.; /Fermilab

    2009-11-01

    The Horizontal Test System (HTS) at Fermilab is currently testing fully assembled, dressed superconducting radio frequency (SCRF) cavities. These cavities are cooled in a bath of superfluid helium at 1.8K. Dissipated RF power from the cavities is a dynamic heat load on the cryogenic system. The magnitude of heat flux from these cavities into the helium is also an important variable for understanding cavity performance. Methods and hardware used to measure this dynamic heat load are presented. Results are presented from several cavity tests and testing accuracy is discussed.

  2. DDS-Suite - A Dynamic Data Acquisition, Processing, and Analysis System for Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Burnside, Jathan J.

    2012-01-01

    Wind Tunnels have optimized their steady-state data systems for acquisition and analysis and even implemented large dynamic-data acquisition systems, however development of near real-time processing and analysis tools for dynamic-data have lagged. DDS-Suite is a set of tools used to acquire, process, and analyze large amounts of dynamic data. Each phase of the testing process: acquisition, processing, and analysis are handled by separate components so that bottlenecks in one phase of the process do not affect the other, leading to a robust system. DDS-Suite is capable of acquiring 672 channels of dynamic data at rate of 275 MB / s. More than 300 channels of the system use 24-bit analog-to-digital cards and are capable of producing data with less than 0.01 of phase difference at 1 kHz. System architecture, design philosophy, and examples of use during NASA Constellation and Fundamental Aerodynamic tests are discussed.

  3. Few-Nucleon Systems - Test of Hadron Dynamics

    SciTech Connect

    Sauer, P. U.; Deltuva, A.; Fonseca, A. C.

    2010-11-12

    Three- and four-nucleon systems are studied. The theoretical concept of two- and many-nucleon potentials is discussed. Many-nucleon-force effects are investigated. The Coulomb interaction between protons is included in the description. Remaining open problems are summarized.

  4. Numerical test for hyperbolicity of chaotic dynamics in time-delay systems.

    PubMed

    Kuptsov, Pavel V; Kuznetsov, Sergey P

    2016-07-01

    We develop a numerical test of hyperbolicity of chaotic dynamics in time-delay systems. The test is based on the angle criterion and includes computation of angle distributions between expanding, contracting, and neutral manifolds of trajectories on the attractor. Three examples are tested. For two of them, previously predicted hyperbolicity is confirmed. The third one provides an example of a time-delay system with nonhyperbolic chaos. PMID:27575062

  5. Numerical test for hyperbolicity of chaotic dynamics in time-delay systems

    NASA Astrophysics Data System (ADS)

    Kuptsov, Pavel V.; Kuznetsov, Sergey P.

    2016-07-01

    We develop a numerical test of hyperbolicity of chaotic dynamics in time-delay systems. The test is based on the angle criterion and includes computation of angle distributions between expanding, contracting, and neutral manifolds of trajectories on the attractor. Three examples are tested. For two of them, previously predicted hyperbolicity is confirmed. The third one provides an example of a time-delay system with nonhyperbolic chaos.

  6. A test for a conjecture on the nature of attractors for smooth dynamical systems

    SciTech Connect

    Gottwald, Georg A.; Melbourne, Ian

    2014-06-15

    Dynamics arising persistently in smooth dynamical systems ranges from regular dynamics (periodic, quasiperiodic) to strongly chaotic dynamics (Anosov, uniformly hyperbolic, nonuniformly hyperbolic modelled by Young towers). The latter include many classical examples such as Lorenz and Hénon-like attractors and enjoy strong statistical properties. It is natural to conjecture (or at least hope) that most dynamical systems fall into these two extreme situations. We describe a numerical test for such a conjecture/hope and apply this to the logistic map where the conjecture holds by a theorem of Lyubich, and to the 40-dimensional Lorenz-96 system where there is no rigorous theory. The numerical outcome is almost identical for both (except for the amount of data required) and provides evidence for the validity of the conjecture.

  7. Large Scale Dynamic Testing of Rock Support System at Kiirunavaara Underground Mine

    NASA Astrophysics Data System (ADS)

    Shirzadegan, Shahin; Nordlund, Erling; Zhang, Ping

    2016-07-01

    A series of five large scale dynamic tests were conducted at the LKAB Kiirunavaara mine using explosives to generate the dynamic load on the support system. This was done with the aim of developing a testing methodology for in situ testing of ground support. Furthermore, the response of the installed rock support system to strong dynamic loading was evaluated. The tests included ground motion measurements, fracture investigation, ground and support motion imaging, as well as deformation measurements. The results indicated that the relation between the burden and the used amount of explosive had a vital role in either reducing or involving the effect of the detonation gases in the test results. In addition, the type of explosive which was used in the tests had a great impact on minimising the gas expansion effects. Higher peak particle velocities were measured compared to those of similar large scale tests carried out in other countries. However, the level of induced damage was limited to a fractured zone behind the support system and propagation of cracks in the shotcrete. Measured peak particle velocities were used to calculate the kinetic energy transmitted to the fractured zone of the test wall. The energy absorption by the Swellex, reinforced shotcrete and weld mesh was estimated by measuring the elongation/deflection of the support elements and relating these measurements to previously conducted laboratory tests. The comparison of maximum estimated energy absorbed by support system with the maximum estimated kinetic energy indicated that as the support system is still functional, the energy is partly reflected back to the surrounding rock. The results of the measurements in Tests 1, 2, 4 and 5 are presented in this paper and the methodology used to design the tests is discussed.

  8. Mathematical model for the simulation of Dynamic Docking Test System (DDST) active table motion

    NASA Technical Reports Server (NTRS)

    Gates, R. M.; Graves, D. L.

    1974-01-01

    The mathematical model developed to describe the three-dimensional motion of the dynamic docking test system active table is described. The active table is modeled as a rigid body supported by six flexible hydraulic actuators which produce the commanded table motions.

  9. Camera-based noncontact metrology for static/dynamic testing of flexible multibody systems

    NASA Astrophysics Data System (ADS)

    Pai, P. Frank; Ramanathan, Suresh; Hu, Jiazhu; Chernova, DarYa K.; Qian, Xin; Wu, Genyong

    2010-08-01

    Presented here is a camera-based noncontact measurement theory for static/dynamic testing of flexible multibody systems that undergo large rigid, elastic and/or plastic deformations. The procedure and equations for accurate estimation of system parameters (i.e. the location and focal length of each camera and the transformation matrix relating its image and object coordinate systems) using an L-frame with four retroreflective markers are described in detail. Moreover, a method for refinement of estimated system parameters and establishment of a lens distortion model for correcting optical distortions using a T-wand with three markers is described. Dynamically deformed geometries of a multibody system are assumed to be obtained by tracing the three-dimensional instantaneous coordinates of markers adhered to the system's outside surfaces, and cameras and triangulation techniques are used for capturing marker images and identifying markers' coordinates. Furthermore, an EAGLE-500 motion analysis system is used to demonstrate measurements of static/dynamic deformations of six different flexible multibody systems. All numerical simulations and experimental results show that the use of camera-based motion analysis systems is feasible and accurate enough for static/dynamic experiments on flexible multibody systems, especially those that cannot be measured using conventional contact sensors.

  10. Initial test results from FHWA project Dynamic Bridge Substructure Evaluation and Monitoring System

    NASA Astrophysics Data System (ADS)

    Aouad, Marwan F.; Olson, Larry D.; Liu, Ming

    1998-03-01

    The FHWA project 'Dynamic Bridge Substructure Evaluation and Monitoring System' was conceived to use dynamic characteristics of the bridge substructure to determine the condition of the foundation and to identify the type of the underground substructure (deep or shallow foundation). The determination of the foundation condition will be used to quantify losses in foundation stiffness caused by seismic and scour events. The dynamic characteristics of natural frequencies and mode shapes are extracted from the experimental data and compared with the computer simulation results. The computer simulations are based on a 3-D finite element modeling with Super-Soil-Structural (SSS) elements. The stiffness and mass of these Super-Soil-Structural elements are indicative of the foundation conditions which may be quantified by structural parameter identification techniques. Discussed in this paper are experimental test setups and initial test results for three kinds of foundation conditions at the Trinity River Bridge in Liberty County, Texas.

  11. Design of a dynamic test platform for autonomous robot vision systems

    NASA Technical Reports Server (NTRS)

    Rich, G. C.

    1980-01-01

    The concept and design of a dynamic test platform for development and evluation of a robot vision system is discussed. The platform is to serve as a diagnostic and developmental tool for future work with the RPI Mars Rover's multi laser/multi detector vision system. The platform allows testing of the vision system while its attitude is varied, statically or periodically. The vision system is mounted on the test platform. It can then be subjected to a wide variety of simulated can thus be examined in a controlled, quantitative fashion. Defining and modeling Rover motions and designing the platform to emulate these motions are also discussed. Individual aspects of the design process are treated separately, as structural, driving linkages, and motors and transmissions.

  12. A New 3-Dimensional Dynamic Quantitative Analysis System of Facial Motion: An Establishment and Reliability Test

    PubMed Central

    Feng, Guodong; Zhao, Yang; Tian, Xu; Gao, Zhiqiang

    2014-01-01

    This study aimed to establish a 3-dimensional dynamic quantitative facial motion analysis system, and then determine its accuracy and test-retest reliability. The system could automatically reconstruct the motion of the observational points. Standardized T-shaped rod and L-shaped rods were used to evaluate the static and dynamic accuracy of the system. Nineteen healthy volunteers were recruited to test the reliability of the system. The average static distance error measurement was 0.19 mm, and the average angular error was 0.29°. The measuring results decreased with the increase of distance between the cameras and objects, 80 cm of which was considered to be optimal. It took only 58 seconds to perform the full facial measurement process. The average intra-class correlation coefficient for distance measurement and angular measurement was 0.973 and 0.794 respectively. The results demonstrated that we successfully established a practical 3-dimensional dynamic quantitative analysis system that is accurate and reliable enough to meet both clinical and research needs. PMID:25390881

  13. Six-Degree-of-Freedom Dynamic Test System (SDTS) User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Stokes, LeBarian

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the SDTS. The User Test Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  14. Preliminary results from dynamic model tests of an air cushion landing system.

    NASA Technical Reports Server (NTRS)

    Leland, T. J. W.; Thompson, W. C.; Vohinger, D. S.

    1973-01-01

    Experimental study of the behavior of an air cushion landing system on 1:10 and 1:4-scale dynamic models of the CC-115 aircraft over a range of initial impact, on a smooth hard surface of fiberglass-coated plywood, on calm water, and on rough water with waves 5 ft high and 100 ft crest-to-crest wide. The performance was satisfactory with the 1:10 scale model on hard surfaces and calm water and was less certain, requiring more tests, on rough water, while substantial pitching oscillations were observed in tests on the 1:4 scale model.

  15. Incorporating Vibration Test Results for the Advanced Stirling Convertor into the System Dynamic Model

    NASA Technical Reports Server (NTRS)

    Meer, David W.; Lewandowski, Edward J.

    2010-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Convertors (ASC) at NASA GRC undergo a vibration test sequence intended to simulate the vibration history that an ASC would experience when used in an ASRG for a space mission. During these tests, a data system collects several performance-related parameters from the convertor under test for health monitoring and analysis. Recently, an additional sensor recorded the slip table position during vibration testing to qualification level. The System Dynamic Model (SDM) integrates Stirling cycle thermodynamics, heat flow, mechanical mass, spring, damper systems, and electrical characteristics of the linear alternator and controller. This Paper presents a comparison of the performance of the ASC when exposed to vibration to that predicted by the SDM when exposed to the same vibration.

  16. Experimental testing procedures and dynamic model validation for vanadium redox flow battery storage system

    NASA Astrophysics Data System (ADS)

    Baccino, Francesco; Marinelli, Mattia; Nørgård, Per; Silvestro, Federico

    2014-05-01

    The paper aims at characterizing the electrochemical and thermal parameters of a 15 kW/320 kWh vanadium redox flow battery (VRB) installed in the SYSLAB test facility of the DTU Risø Campus and experimentally validating the proposed dynamic model realized in Matlab-Simulink. The adopted testing procedure consists of analyzing the voltage and current values during a power reference step-response and evaluating the relevant electrochemical parameters such as the internal resistance. The results of different tests are presented and used to define the electrical characteristics and the overall efficiency of the battery system. The test procedure has general validity and could also be used for other storage technologies. The storage model proposed and described is suitable for electrical studies and can represent a general model in terms of validity. Finally, the model simulation outputs are compared with experimental measurements during a discharge-charge sequence.

  17. Connectivity structures local population dynamics: a long-term empirical test in a large metapopulation system.

    PubMed

    Castorani, Max C N; Reed, Daniel C; Alberto, Filipe; Bell, Tom W; Simons, Rachel D; Cavanaugh, Kyle C; Siegel, David A; Raimondi, Peter T

    2015-12-01

    Ecological theory predicts that demographic connectivity structures the dynamics of local populations within metapopulation systems, but empirical support has been constrained by major limitations in data and methodology. We tested this prediction for giant kelp Macrocystis pyrifera, a key habitat-forming species in temperate coastal ecosystems worldwide, in southern California, USA. We combined a long-term (22 years), large-scale (~500 km coastline), high-resolution census of abundance with novel patch delineation methods and an innovative connectivity measure incorporating oceanographic transport and source fecundity. Connectivity strongly predicted local dynamics (well-connected patches had lower probabilities of extinction and higher probabilities of colonization, leading to greater likelihoods of occupancy) but this relationship was mediated by patch size. Moreover, the relationship between connectivity and local population dynamics varied over time, possibly due to temporal variation in oceanographic transport processes. Surprisingly, connectivity had a smaller influence on colonization relative to extinction, possibly because local ecological factors differ greatly between extinct and extant patches. Our results provide the first comprehensive evidence that southern California giant kelp populations function as a metapopulation system, challenging the view that populations of this important foundation species are governed exclusively by self-replenishment. PMID:26909421

  18. Study on Dynamical Simulation of Railway Vehicle Bogie Parameters Test-bench Electro-hydraulic Servo System

    NASA Astrophysics Data System (ADS)

    Lan, Zhikun; Su, Jian; Xu, Guan; Cao, Xiaoning

    Dynamical mathematical model was established for accurately positioning, fast response and real-time tracing of electro-hydraulic servo control system in railway vehicle bog ie parameters test system with elastic load. The model could precisely control the output of position and force of the hydraulic cylinders. Induction method was proposed in the paper. Dynamical simulation verified the mathematical model by SIMULINK software. Meanwhile the key factors affecting the dynamical characteristics of the system were discussed in detail. Through the simulation results, high precision is obtained in application and the need of real-time control on the railway vehicle bogie parameters test-bench is realized.

  19. System Dynamics

    NASA Astrophysics Data System (ADS)

    Morecroft, John

    System dynamics is an approach for thinking about and simulating situations and organisations of all kinds and sizes by visualising how the elements fit together, interact and change over time. This chapter, written by John Morecroft, describes modern system dynamics which retains the fundamentals developed in the 1950s by Jay W. Forrester of the MIT Sloan School of Management. It looks at feedback loops and time delays that affect system behaviour in a non-linear way, and illustrates how dynamic behaviour depends upon feedback loop structures. It also recognises improvements as part of the ongoing process of managing a situation in order to achieve goals. Significantly it recognises the importance of context, and practitioner skills. Feedback systems thinking views problems and solutions as being intertwined. The main concepts and tools: feedback structure and behaviour, causal loop diagrams, dynamics, are practically illustrated in a wide variety of contexts from a hot water shower through to a symphony orchestra and the practical application of the approach is described through several real examples of its use for strategic planning and evaluation.

  20. Low-Speed Flight Dynamic Tests and Analysis of the Orion Crew Module Drogue Parachute System

    NASA Technical Reports Server (NTRS)

    Hahne, David E.; Fremaux, C. Michael

    2008-01-01

    A test of a dynamically scaled model of the NASA Orion Crew Module (CM) with drogue parachutes was conducted in the NASA-Langley 20-Foot Vertical Spin Tunnel. The primary test objective was to assess the ability of the Orion Crew Module drogue parachute system to adequately stabilize the CM and reduce angular rates at low subsonic Mach numbers. Two attachment locations were tested: the current design nominal and an alternate. Experimental results indicated that the alternate attachment location showed a somewhat greater tendency to attenuate initial roll rate and reduce roll rate oscillations than the nominal location. Comparison of the experimental data to a Program To Optimize Simulated Trajectories (POST II) simulation of the experiment yielded results for the nominal attachment point that indicate differences between the low-speed pitch and yaw damping derivatives in the aerodynamic database and the physical model. Comparisons for the alternate attachment location indicate that riser twist plays a significant role in determining roll rate attenuation characteristics. Reevaluating the impact of the alternate attachment points using a simulation modified to account for these results showed significantly reduced roll rate attenuation tendencies when compared to the original simulation. Based on this modified simulation the alternate attachment point does not appear to offer a significant increase in allowable roll rate over the nominal configuration.

  1. Dynamic remediation test of polluted river water by Eco-tank system.

    PubMed

    Xiao, Jibo; Wang, Huiming; Chu, Shuyi; Wong, Ming-Hung

    2013-01-01

    Dynamic remediation of river water polluted by domestic sewage using an aquatic plants bed-based Eco-tank system was investigated. Over a period of 18 days, the test demonstrated that average effluent concentrations of chemical oxygen demand (COD), ammonium nitrogen (NH4(+)-N) and total phosphorus (TP) were as low as 17.28, 0.23 and 0.03 mg/L, respectively, under the hydraulic retention time (HRT) of 8.7 d. The average removal efficiencies in terms of COD, NH4(+)-N and TP could reach 71.95, 97.96 and 97.84%, respectively. The loss of both NH4(+)-N and TP was mainly ascribed to the uptake by plants. Hydrocotyle leucocephala was effective in promoting the dissolved oxygen (DO) level, while Pistia stratiotes with numerous fibrous roots was significantly effective for the removal of organic compounds. The net photosynthetic rate, stomatal conductance, transpiration rate and biomass accumulation rate of Myriophyllum aquaticum were the highest among all tested plants. Thus, the Eco-tank system could be considered as an alternative approach for the in situ remediation of polluted river water, especially nutrient-laden river water. PMID:23530371

  2. An atmospheric turbulence generator for dynamic tests with LINC-NIRVANA's adaptive optics system

    NASA Astrophysics Data System (ADS)

    Meschke, D.; Bizenberger, P.; Gaessler, W.; Zhang, X.; Mohr, L.; Baumeister, H.; Diolaiti, E.

    2010-07-01

    LINC-NIRVANA[1] (LN) is an instrument for the Large Binocular Telescope[2] (LBT). Its purpose is to combine the light coming from the two primary mirrors in a Fizeau-type interferometer. In order to compensate turbulence-induced dynamic aberrations, the layer oriented adaptive optics system of LN[3] consists of two major subsystems for each side: the Ground-Layer-Wavefront sensor (GLWS) and the Mid- and High-Layer Wavefront sensor (MHLWS). The MHLWS is currently set up in a laboratory at the Max-Planck-Institute for Astronomy in Heidelberg. To test the multi-conjugate AO with multiple simulated stars in the laboratory and to develop the necessary control software, a dedicated light source is needed. For this reason, we designed an optical system, operating in visible as well as in infrared light, which imitates the telescope's optical train (f-ratio, pupil position and size, field curvature). By inserting rotating surface etched glass phase screens, artificial aberrations corresponding to the atmospheric turbulence are introduced. In addition, different turbulence altitudes can be simulated depending on the position of these screens along the optical axis. In this way, it is possible to comprehensively test the complete system, including electronics and software, in the laboratory before integration into the final LINC-NIRVANA setup. Combined with an atmospheric piston simulator, also this effect can be taken into account. Since we are building two identical sets, it is possible to feed the complete instrument with light for the interferometric combination during the assembly phase in the integration laboratory.

  3. Reduced gravity multibody dynamics testing

    NASA Technical Reports Server (NTRS)

    Sillanpaa, Meija

    1993-01-01

    The Final Report on reduced gravity multibody dynamics testing is presented. Tests were conducted on board the NASA KC-135 RGA in Houston, Texas. The objective was to analyze the effects of large angle rotations on flexible, multi-segmented structures. The flight experiment was conducted to provide data which will be compared to the data gathered from ground tests of the same configurations. The flight and ground tested data will be used to validate the TREETOPS software, software which models dynamic multibody systems, and other multibody codes. The flight experiment consisted of seven complete flights on board the KC-135 RGA during two one-week periods. The first period of testing was 4-9 Apr. 1993. The second period of testing was 13-18 Jun. 1993.

  4. AirSTAR: A UAV Platform for Flight Dynamics and Control System Testing

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Foster, John V.; Bailey, Roger M.; Belcastro, Christine M.

    2006-01-01

    As part of the NASA Aviation Safety Program at Langley Research Center, a dynamically scaled unmanned aerial vehicle (UAV) and associated ground based control system are being developed to investigate dynamics modeling and control of large transport vehicles in upset conditions. The UAV is a 5.5% (seven foot wingspan), twin turbine, generic transport aircraft with a sophisticated instrumentation and telemetry package. A ground based, real-time control system is located inside an operations vehicle for the research pilot and associated support personnel. The telemetry system supports over 70 channels of data plus video for the downlink and 30 channels for the control uplink. Data rates are in excess of 200 Hz. Dynamic scaling of the UAV, which includes dimensional, weight, inertial, actuation, and control system scaling, is required so that the sub-scale vehicle will realistically simulate the flight characteristics of the full-scale aircraft. This testbed will be utilized to validate modeling methods, flight dynamics characteristics, and control system designs for large transport aircraft, with the end goal being the development of technologies to reduce the fatal accident rate due to loss-of-control.

  5. Integrated Docking Simulation and Testing with the Johnson Space Center Six-Degree of Freedom Dynamic Test System

    NASA Technical Reports Server (NTRS)

    Mitchell, Jennifer D.; Cryan, Scott P.; Baker, Kenneth; Martin, Toby; Goode, Robert; Key, Kevin W.; Manning, Thomas; Chien, Chiun-Hong

    2008-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as Automated Rendezvous and Docking, AR&D). The crewed versions may also perform AR&D, possibly with a different level of automation and/or autonomy, and must also provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Constellation Program; this is carried as one of the CEV Project top risks. The Exploration Technology Development Program (ETDP) AR&D Sensor Technology Project seeks to reduce this risk by increasing technology maturation of selected relative navigation sensor technologies through testing and simulation. One of the project activities is a series of "pathfinder" testing and simulation activities to integrate relative navigation sensors with the Johnson Space Center Six-Degree-of-Freedom Test System (SDTS). The SDTS will be the primary testing location for the Orion spacecraft s Low Impact Docking System (LIDS). Project team members have integrated the Orion simulation with the SDTS computer system so that real-time closed loop testing can be performed with relative navigation sensors and the docking system in the loop during docking and undocking scenarios. Two relative navigation sensors are being used as part of a "pathfinder" activity in order to pave the way for future testing with the actual Orion sensors. This paper describes the test configuration and test results.

  6. Integrated Docking Simulation and Testing with the Johnson Space Center Six-Degree-of-Freedom Dynamic Test System

    NASA Astrophysics Data System (ADS)

    Mitchell, Jennifer D.; Cryan, Scott P.; Baker, Kenneth; Martin, Toby; Goode, Robert; Key, Kevin W.; Manning, Thomas; Chien, Chiun-Hong

    2008-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as Automated Rendezvous and Docking, AR&D). The crewed versions may also perform AR&D, possibly with a different level of automation and/or autonomy, and must also provide the crew with relative navigation information for manual piloting. The capabilities of the Rendezvous, Proximity Operations and Docking (RPOD) sensors are critical to the success of the Constellation Program; this is carried as one of the CEV Project top risks. The Exploration Technology Development Program (ETDP) AR&D Sensor Technology Project seeks to reduce this risk by increasing technology maturation of selected relative navigation sensor technologies through testing and simulation. One of the project activities is a series of ``pathfinder'' testing and simulation activities to integrate relative navigation sensors with the Johnson Space Center Six-Degree-of-Freedom Test System (SDTS). The SDTS will be the primary testing location for the Orion spacecraft's Low Impact Docking System (LIDS). Project team members have integrated the Orion GN&C simulation with the SDTS computer system so that real-time closed loop testing can be performed with relative navigation sensors and the docking system in the loop during docking and undocking scenarios. Two relative navigation sensors are being used as part of a ``pathfinder'' activity in preparation for future testing with the actual Orion sensors. This paper describes the test configuration and test results.

  7. Mission load dynamic tests of two undensified Space shuttle thermal protection system tiles

    NASA Technical Reports Server (NTRS)

    Leatherwood, J. D.; Gowdey, J. C.

    1981-01-01

    Two tests of undensified Space Shuttle thermal protection tiles under combined static and dynamic loads were conducted. The tiles had a density of approximately 144 Kg/cum (LI900 tiles) and were mounted on a strain isolation pad which was 0.41 cm (.160 inch) thick. A combined static and dynamic mission stress histogram representative of the W-3 area of the wing of the orbiter vehicle was applied. The stress histogram was provided by the space shuttle project. Results presented include: tabulation of measured peak and root-mean-square (RMS) accelerations in both compression and tension; peak SIP stress in compression and tension, peak and RMS amplitude response ratios; lateral to vertical response ratios; response time histories; peak stress distributions (histograms), and SIP extension measured both with and without static tension at various mission times.

  8. Automatic Stress Testing of Multi-tier Systems by Dynamic Bottleneck Switch Generation

    NASA Astrophysics Data System (ADS)

    Casale, Giuliano; Kalbasi, Amir; Krishnamurthy, Diwakar; Rolia, Jerry

    The performance of multi-tier systems is known to be significantly degraded by workloads that place bursty service demands on system resources. Burstiness can cause queueing delays, oversubscribe limited threading resources, and even cause dynamic bottleneck switches between resources. Thus, there is need for a methodology to create benchmarks with controlled burstiness and bottleneck switches to evaluate their impact on system performance. We tackle this problem using a model-based technique for the automatic and controlled generation of bursty benchmarks. Markov models are constructed in an automated manner to model the distribution of service demands placed by sessions of a given system on various system resources. The models are then used to derive session submission policies that result in user-specified levels of service demand burstiness for resources at the different tiers in a system. Our approach can also predict under what conditions these policies can create dynamic bottleneck switching among resources. A case study using a three-tier TPC-W testbed shows that our method is able to control and predict burstiness for session service demands. Further, results from the study demonstrate that our approach was able to inject controlled bottleneck switches. Experiments show that these bottleneck switches cause dramatic latency and throughput degradations that are not shown by the same session mix with non-bursty conditions.

  9. Structural Dynamic Assessment of the GN2 Piping System for NASA's New and Powerful Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, WIlliam O.; Chang, Li, C.; Hozman, Aron D.; Henry, Michael W.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007-2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cu ft in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their "t-junctions" connecting the 12 inch supply line to their respective 4 inch branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed "t-junction" connections through non-destructive evaluation testing . Through structural dynamic modeling of the piping system, the root cause of the "t-junction" connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.

  10. Structural Dynamic Assessment of the GN2 Piping System for NASA's New and Powerful Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, William O.; Chang, Li C.; Hozman, Aron D.; Henry, Michael W.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007 to 2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cubic feet in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their T-junctions connecting the 12 in. supply line to their respective 4 in. branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed T-junction connections through non-destructive evaluation testing. Through structural dynamic modeling of the piping system, the root cause of the T-junction connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.

  11. Fluid dynamics of a pressure measuring system for underground explosive tests

    SciTech Connect

    Dykhuizen, R.C.

    1987-01-01

    Numerical and analytical models are used to optimize a pressure measuring system for underground nuclear tests. This system uses a long pipe filled with gas to communicate the pressure level to a transducer in a pressure chamber remote from the explosion cavity. The pressure chamber and pipe are pressurized above the final pressure expected from the explosion. During the explosion, the high pressure gas blows down, preventing debris from entering and clogging the system. The models were first checked against the Junior Jade test series, which used an undergound non-nuclear explosion to simulate a nuclear test. It was found that the measured pressure oscillated for some time before settling down to a steady value. This is shown to be a result of an organ pipe oscillation that can develop in the short pipes used for this test series. The analytical model provided a simple means to optimize the system design parameters and showed that changing the working fluid from nitrogen to helium would improve the time response of the system significantly. The numerical model is then used to obtain more accurate predictions of the sytem response. 2 refs., 5 figs., 1 tab.

  12. Very low frequency suspension systems for dynamic testing. [of flexible spacecraft structures

    NASA Technical Reports Server (NTRS)

    Kienholz, David A.; Crawley, Edward F.; Harvey, T. Jeffrey

    1989-01-01

    Specifications for a Space Station suspension system which can provide rigid-body translation frequencies on the order of 0.1-0.2 Hz for a 50-foot payload weighing about 3400 lb and having a number of highly flexible appendages are discussed. Two suspension devices are considered, an all-mechanical passive device based on coil springs and a device using a combination of a passive pneumatic system and an active electromagnetic system. Test results show that both devices meet the initial requirements.

  13. Objective research and application of multi-channel human meridian impedance dynamic testing system

    NASA Astrophysics Data System (ADS)

    Li, Bo; Zhang, Jun; Jiao, Jianling

    2008-10-01

    This paper is an in-depth study on the basis of the passed summary of relevant technologies. Multi-channel ring electrode has been developed to point impedance testing of the human body for the first time. Here, we build such a system, which bases on the hardware platform of AT89C52 combined with M82C54-2, besides, the integrated software development tools micro-soft visual c++ and the technical advantages such as multi-threading, databases, serial communication and the characteristics of real-time supported by Windows XP are used in here too. Except for the point impedance testing of the human body, the conductive volume of the human meridian and infrared-photoelectric absorption properties of physical quantities can also be detected by such an on-site data acquisition, analysis, display, record and communicate with the PC portable System. Currently, the system was being in the testing phase, we have collected some real data of human body with this vehicle, whose results are expected to be more satisfactory in the near future.

  14. Fostering assumption-based stress-test thinking in managing groundwater systems: learning to avoid failures due to basic dynamics

    NASA Astrophysics Data System (ADS)

    Guillaume, Joseph H. A.; El Sawah, Sondoss

    2014-06-01

    Sustainable groundwater resource management can only be achieved if planning processes address the basic dynamics of the groundwater system. Conceptual and distributed groundwater models do not necessarily translate into an understanding of how a plan might operate in reality. Prompted by Australian experiences, `iterative closed-question modelling' has been used to develop a process of iterative dialogue about management options, objectives and knowledge. Simple hypothetical models of basic system dynamics that satisfy agreed assumptions are used to stress-test the ability of a proposed management plan to achieve desired future conditions. Participants learn from models in which a plan succeeds and fails, updating their assumptions, expectations or plan. Their new understanding is tested against further hypothetical models. The models act as intellectual devices that confront users with new scenarios to discuss. This theoretical approach is illustrated using simple one and two-cell groundwater models that convey basic notions of capture and spatial impacts of pumping. Simple extensions can address uncertain climate, managed-aquifer recharge and alternate water sources. Having learnt to address the dynamics captured by these models, participants may be better placed to address local conditions and develop more effective arrangements to achieve management outcomes.

  15. Fluid dynamics test method

    NASA Technical Reports Server (NTRS)

    Gayman, W. H.

    1974-01-01

    Test method and apparatus determine fluid effective mass and damping in frequency range where effective mass may be considered as total mass less sum of slosh masses. Apparatus is designed so test tank and its mounting yoke are supported from structural test wall by series of flexures.

  16. Dynamic Biomechanical Examination of the Lumbar Spine with Implanted Total Spinal Segment Replacement (TSSR) Utilizing a Pendulum Testing System

    PubMed Central

    Daniels, Alan H.; Paller, David J.; Koruprolu, Sarath; Palumbo, Mark A.; Crisco, Joseph J.

    2013-01-01

    Background Biomechanical investigations of spinal motion preserving implants help in the understanding of their in vivo behavior. In this study, we hypothesized that the lumbar spine with implanted total spinal segment replacement (TSSR) would exhibit decreased dynamic stiffness and more rapid energy absorption compared to native functional spinal units under simulated physiologic motion when tested with the pendulum system. Methods Five unembalmed, frozen human lumbar functional spinal units were tested on the pendulum system with axial compressive loads of 181 N, 282 N, 385 N, and 488 N before and after Flexuspine total spinal segment replacement implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5°; resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and bending stiffness (N-m/°) was calculated and compared for each testing mode. Results The total spinal segment replacement reached equilibrium with significantly fewer cycles to equilibrium compared to the intact functional spinal unit at all loads in flexion (p<0.011), and at loads of 385 N and 488 N in lateral bending (p<0.020). Mean bending stiffness in flexion, extension, and lateral bending increased with increasing load for both the intact functional spinal unit and total spinal segment replacement constructs (p<0.001), with no significant differences in stiffness between the intact functional spinal unit and total spinal segment replacement in any of the test modes (p>0.18). Conclusions Lumbar functional spinal units with implanted total spinal segment replacement were found to have similar dynamic bending stiffness, but absorbed energy at a more rapid rate than intact functional spinal units during cyclic loading with an unconstrained pendulum system. Although the effects on clinical performance of motion preserving devices is not fully known, these results provide further insight into the biomechanical

  17. Microclimate measuring and fluid‑dynamic simulation in an industrial broiler house: testing of an experimental ventilation system.

    PubMed

    Bianchi, Biagio; Giametta, Ferruccio; La Fianza, Giovanna; Gentile, Andrea; Catalano, Pasquale

    2015-01-01

    The environment in the broiler house is a combination of physical and biological factors generating a complex dynamic system of interactions between birds, husbandry system, light, temperature, and the aerial environment. Ventilation plays a key role in this scenario. It is pivotal to remove carbon dioxide and water vapor from the air of the hen house. Adequate ventilation rates provide the most effective method of controlling temperature within the hen house. They allow for controlling the relative humidity and can play a key role in alleviating the negative effects of high stocking density and of wet litter. In the present study the results of experimental tests performed in a breeding broiler farm are shown. In particular the efficiency of a semi transversal ventilation system was studied against the use of a pure transversal one. In order to verify the efficiency of the systems, fluid dynamic simulations were carried out using the software Comsol multiphysics. The results of this study show that a correct architectural and structural design of the building must be supported by a design of the ventilation system able to maintain the environmental parameters within the limits of the thermo‑neutral and welfare conditions and to achieve the highest levels of productivity. PMID:26129658

  18. Dynamic Testing of Gasifier Refractory

    SciTech Connect

    Michael D. Mann; John P. Hurley

    2002-09-27

    As DOE continues to advance new power systems, materials issues are often pivotal in determining the ultimate efficiency that can be reached in the system. Refractory performance in slagging gasification represents one of these issues. The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The focus of the proposed work is to test the corrosion resistance of commercially available refractories to flowing coal slag, and propose the mechanisms of corrosion for the conditions studied. Corrosion is the degradation of material surfaces or grain boundaries by chemical reactions with melts, liquids, or gases, causing loss of material and consequently a decrease in strength of the structure. In order to develop methods of reducing corrosion, the microstructure that is attacked must be identified along with the mechanism and rates of attack. Once these are identified, methods for reducing corrosion rates can be developed. The work will take advantage of equipment and experimental techniques developed at the EERC under funding from several DOE programs. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) will be utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. To date, efforts have focused on final shakedown of the CADCAF and obtaining representative samples of slag and refractory for testing.

  19. What Sensing Tells Us: Towards a Formal Theory of Testing for Dynamical Systems

    NASA Technical Reports Server (NTRS)

    McIlraith, Sheila; Scherl, Richard

    2005-01-01

    Just as actions can have indirect effects on the state of the world, so too can sensing actions have indirect effects on an agent's state of knowledge. In this paper, we investigate "what sensing actions tell us", i.e., what an agent comes to know indirectly from the outcome of a sensing action, given knowledge of its actions and state constraints that hold in the world. To this end, we propose a formalization of the notion of testing within a dialect of the situation calculus that includes knowledge and sensing actions. Realizing this formalization requires addressing the ramification problem for sensing actions. We formalize simple tests as sensing actions. Complex tests are expressed in the logic programming language Golog. We examine what it means to perform a test, and how the outcome of a test affects an agent's state of knowledge. Finally, we propose automated reasoning techniques for test generation and complex-test verification, under certain restrictions. The work presented in this paper is relevant to a number of application domains including diagnostic problem solving, natural language understanding, plan recognition, and active vision.

  20. Dynamic Response Testing in an Electrically Heated Reactor Test Facility

    NASA Astrophysics Data System (ADS)

    Bragg-Sitton, Shannon M.; Morton, T. J.

    2006-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe (HP) cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system. Reactivity feedback calculations were then based on a bulk reactivity feedback coefficient and measured average core temperature. This paper presents preliminary results from similar dynamic testing of a direct drive gas cooled reactor system (DDG), demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. Although the HP and DDG designs both utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility. Planned system upgrades to allow implementation of higher fidelity dynamic testing are also discussed. Proposed DDG

  1. Space station structures and dynamics test program

    NASA Technical Reports Server (NTRS)

    Moore, Carleton J.; Townsend, John S.; Ivey, Edward W.

    1987-01-01

    The design, construction, and operation of a low-Earth orbit space station poses unique challenges for development and implementation of new technology. The technology arises from the special requirement that the station be built and constructed to function in a weightless environment, where static loads are minimal and secondary to system dynamics and control problems. One specific challenge confronting NASA is the development of a dynamics test program for: (1) defining space station design requirements, and (2) identifying the characterizing phenomena affecting the station's design and development. A general definition of the space station dynamic test program, as proposed by MSFC, forms the subject of this report. The test proposal is a comprehensive structural dynamics program to be launched in support of the space station. The test program will help to define the key issues and/or problems inherent to large space structure analysis, design, and testing. Development of a parametric data base and verification of the math models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The philosophy is to integrate dynamics into the design phase through extensive ground testing and analytical ground simulations of generic systems, prototype elements, and subassemblies. On-orbit testing of the station will also be used to define its capability.

  2. Expert consensus on dynamics of laboratory tests for diagnosis of macrophage activation syndrome complicating systemic juvenile idiopathic arthritis

    PubMed Central

    Ravelli, Angelo; Minoia, Francesca; Davì, Sergio; Horne, AnnaCarin; Bovis, Francesca; Pistorio, Angela; Aricò, Maurizio; Avcin, Tadej; Behrens, Edward M; De Benedetti, Fabrizio; Filipovic, Alexandra; Grom, Alexei A; Henter, Jan-Inge; Ilowite, Norman T; Jordan, Michael B; Khubchandani, Raju; Kitoh, Toshiyuki; Lehmberg, Kai; Lovell, Daniel J; Miettunen, Paivi; Nichols, Kim E; Ozen, Seza; Pachlopnik Schmid, Jana; Ramanan, Athimalaipet V; Russo, Ricardo; Schneider, Rayfel; Sterba, Gary; Uziel, Yosef; Wallace, Carol; Wouters, Carine; Wulffraat, Nico; Demirkaya, Erkan; Brunner, Hermine I; Martini, Alberto; Ruperto, Nicolino; Cron, Randy Q

    2016-01-01

    Objective To identify which laboratory tests that change over time are most valuable for the timely diagnosis of macrophage activation syndrome (MAS) complicating systemic juvenile idiopathic arthritis (sJIA). Methods A multistep process, based on a combination of expert consensus and analysis of real patient data, was conducted. A panel of experts was first asked to evaluate 115 profiles of patients with MAS, which included the values of laboratory tests at the pre-MAS visit and at MAS onset, and the change in values between the two time points. The experts were asked to choose the 5 laboratory tests in which change was most important for the diagnosis of MAS and to rank the 5 selected tests in order of importance. The relevance of change in laboratory parameters was further discussed and ranked by the same experts at a consensus conference. Results Platelet count was the most frequently selected test, followed by ferritin level, aspartate aminotransferase (AST), white cell count, neutrophil count, and fibrinogen and erythrocyte sedimentation rate. Ferritin was most frequently assigned the highest score. At the end of the process, platelet count, ferritin level and AST were the laboratory tests in which the experts found change over time to be most important. Conclusions We identified the laboratory tests in which change over time is most valuable for the early diagnosis of MAS in sJIA. The dynamics of laboratory values during the course of MAS should be further scrutinised in a prospective study in order to establish the optimal cut-off values for their variation. PMID:26848401

  3. Dynamic Biomechanical Examination of the Lumbar Spine with Implanted Total Disc Replacement (TDR) Utilizing a Pendulum Testing System

    PubMed Central

    Daniels, Alan H; Paller, David J; Koruprolu, Sarath; McDonnell, Matthew; Palumbo, Mark A; Crisco, Joseph J

    2013-01-01

    Study Design Biomechanical cadaver investigation Objective To examine dynamic bending stiffness and energy absorption of the lumbar spine with and without implanted Total Disc Replacement (TDR) under simulated physiologic motion. Summary of background data The pendulum testing system is capable of applying physiologic compressive loads without constraining motion of functional spinal units (FSUs). The number of cycles to equilibrium observed under pendulum testing is a measure of the energy absorbed by the FSU. Methods Five unembalmed, frozen human lumbar FSUs were tested on the pendulum system with axial compressive loads of 181N, 282N, 385N, and 488N before and after Synthes ProDisc-L TDR implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5° resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and bending stiffness (N-m/°) was calculated and compared for each testing mode. Results In flexion/extension, the TDR constructs reached equilibrium with significantly (p<0.05) fewer cycles than the intact FSU with compressive loads of 282N, 385N and 488N. Mean dynamic bending stiffness in flexion, extension, and lateral bending increased significantly with increasing load for both the intact FSU and TDR constructs (p<0.001). In flexion, with increasing compressive loading from 181N to 488N, the bending stiffness of the intact FSUs increased from 4.0N-m/° to 5.5N-m/°, compared to 2.1N-m/° to 3.6N-m/° after TDR implantation. At each compressive load, the intact FSU was significantly more stiff than the TDR (p<0.05). Conclusion Lumbar FSUs with implanted TDR were found to be less stiff, but also absorbed more energy during cyclic loading with an unconstrained pendulum system. Although the effects on clinical performance of motion preserving devices are not fully known, these results provide further insight into the biomechanical behavior of this device under approximated

  4. Dynamic Response Testing in an Electrically Heated Reactor Test Facility

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Morton, T. J.

    2006-01-01

    Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and full nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system (Bragg-Sitton, 2005). The current paper applies the same testing methodology to a direct drive gas cooled reactor system, demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. In each testing application, core power transients were controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. Although both system designs utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility.

  5. Solar dynamic systems

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.

    1985-01-01

    The development of the solar dynamic system is discussed. The benefits of the solar dynamic system over pv systems are enumerated. The history of the solar dynamic development is recounted. The purpose and approach of the advanced development are outlined. Critical concentrator technology and critical heat recover technology are examined.

  6. Dynamic impact testing with servohydraulic testing machines

    NASA Astrophysics Data System (ADS)

    Bardenheier, R.; Rogers, G.

    2006-08-01

    The design concept of “Crashworthiness” requires the information on material behaviour under dynamic impact loading in order to describe and predict the crash behaviour of structures. Especially the transport related industries, like car, railway or aircraft industry, pursue the concept of lightweight design for a while now. The materials' maximum constraint during loading is pushed to permanently increasing figures. This means in terms of crashworthiness that the process of energy absorption in structures and the mechanical behaviour of materials must well understood and can be described appropriately by material models. In close cooperation with experts from various industries and research institutes Instron has developed throughout the past years a new family of servohydraulic testing machines specifically designed to cope with the dynamics of high rate testing. Main development steps are reflected versus their experimental necessities.

  7. Design and Testing of a Pulsatile Conditioning System for Dynamic Endothelialization of Polyphenol-Stabilized Tissue Engineered Heart Valves

    PubMed Central

    Sierad, Leslie Neil; Simionescu, Agneta; Albers, Christopher; Chen, Joseph; Maivelett, Jordan; Tedder, Mary Elizabeth; Liao, Jun; Simionescu, Dan T.

    2011-01-01

    Heart valve tissue engineering requires biocompatible and hemocompatible scaffolds that undergo remodeling and repopulation, but that also withstand harsh mechanical forces immediately following implantation. We hypothesized that reversibly stabilized acellular porcine valves, seeded with endothelial cells and conditioned in pulsatile bioreactors would pave the way for next generations of tissue engineered heart valves (TEHVs). A novel valve conditioning system was first designed, manufactured and tested to adequately assess TEHVs. The bioreactor created proper closing and opening of valves and allowed for multiple mounting methods in sterile conditions. Porcine aortic heart valve roots were decellularized by chemical extractions and treated with penta-galloyl glucose (PGG) for stabilization. Properties of the novel scaffolds were evaluated by testing resistance to collagenase and elastase, biaxial mechanical analysis, and thermal denaturation profiles. Porcine aortic endothelial cells were seeded onto the leaflets and whole aortic roots were mounted within the dynamic pulsatile heart valve bioreactor system under physiologic pulmonary valve pressures and analyzed after 17 days for cell viability, morphology, and metabolic activity. Our tissue preparation methods effectively removed cells, including the potent α-Gal antigen, while leaving a well preserved extra-cellular matrix scaffold with adequate mechanical properties. PGG enhanced stabilization of extracellular matrix components but also showed the ability to be reversible. Engineered valve scaffolds encouraged attachment and survival of endothelial cells for extended periods and showed signs of widespread cell coverage after conditioning. Our novel approach shows promise toward development of sturdy and durable TEHVs capable of remodeling and cellular repopulation. PMID:21340043

  8. Testing the Patriot air defense weapon system

    NASA Astrophysics Data System (ADS)

    Graham, W. L.; McClay, L. F.

    1983-11-01

    A summary of the overall test program of the Patriot air defense weapon system is presented, including preparations for system integration tests and surveillance tests, with particular emphasis placed on the guidance flight test program. The major components of the system are described, and subsystem tests consisting of static and dynamic plume tests, static propulsion tests, dynamic propulsion test firings, and control system test firings are discussed. A series of system-level preflight guidance tests which consisted of a captive carry flight test program and other tests is considered. Tests on more sophisticated missions such as ECM, jamming, and combinations of ECM and chaff are addressed. Test data collection techniques are covered.

  9. Development of a dynamic thermal system model for a low inertia reheating furnace: Comparison of test data with predictions

    SciTech Connect

    Yoshino, H.; Viskanta, R.

    1999-07-01

    The batch, indirectly-fired furnace, called low inertia furnace (LIF), is simulated using a dynamic thermal model. The load consisting of a basket filled with small parts is placed on the hearth (bottom) of the furnace, and the LIF is heated by flat radiant heaters (FRH) which are installed on the sidewalls, the ends and the roof of the furnace. Transient heat transfer in the load, walls, roof and gas are modeled. Natural gas is burned in the heaters, but the combustion and heat transfer processes in the FRHs are not treated. Instead, measured heater surface temperature vs. time is used to drive the dynamic thermal system model. The mathematical model of the furnace integrates the models for heat transfer within the enclosure and walls with the porous medium load model. Radiation heat exchange between the load, the radiant heaters and the furnace walls are analyzed using the radiosity method. Heat transfer in the porous medium is by conduction, radiation and convection between the solid and gas phases. Radiation within the load is considered to be a diffusion process. Two different porous medium models for the load are developed, and the model predictions are compared with test data obtained by the Institute of Gas Technology on a low inertia indirectly-fired furnace. Parametric calculations are performed to identify the important model parameters and validate the models.

  10. Intelligent test integration system

    NASA Technical Reports Server (NTRS)

    Sztipanovits, J.; Padalkar, S.; Rodriguez-Moscoso, J.; Kawamura, K.; Purves, B.; Williams, R.; Biglari, H.

    1988-01-01

    A new test technology is described which was developed for space system integration. The ultimate purpose of the system is to support the automatic generation of test systems in real time, distributed computing environments. The Intelligent Test Integration System (ITIS) is a knowledge based layer above the traditional test system components which can generate complex test configurations from the specification of test scenarios.

  11. 3. VIEW LOOKING NORTH, COMPONENTS TEST LABORATORY, DYNAMIC TEST FACILITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW LOOKING NORTH, COMPONENTS TEST LABORATORY, DYNAMIC TEST FACILITY (SATURN V IN BACKGROUND). - Marshall Space Flight Center, East Test Area, Components Test Laboratory, Huntsville, Madison County, AL

  12. NASA Langley's AirSTAR Testbed: A Subscale Flight Test Capability for Flight Dynamics and Control System Experiments

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Bailey, Roger M.

    2008-01-01

    As part of the Airborne Subscale Transport Aircraft Research (AirSTAR) project, NASA Langley Research Center (LaRC) has developed a subscaled flying testbed in order to conduct research experiments in support of the goals of NASA s Aviation Safety Program. This research capability consists of three distinct components. The first of these is the research aircraft, of which there are several in the AirSTAR stable. These aircraft range from a dynamically-scaled, twin turbine vehicle to a propeller driven, off-the-shelf airframe. Each of these airframes carves out its own niche in the research test program. All of the airplanes have sophisticated on-board data acquisition and actuation systems, recording, telemetering, processing, and/or receiving data from research control systems. The second piece of the testbed is the ground facilities, which encompass the hardware and software infrastructure necessary to provide comprehensive support services for conducting flight research using the subscale aircraft, including: subsystem development, integrated testing, remote piloting of the subscale aircraft, telemetry processing, experimental flight control law implementation and evaluation, flight simulation, data recording/archiving, and communications. The ground facilities are comprised of two major components: (1) The Base Research Station (BRS), a LaRC laboratory facility for system development, testing and data analysis, and (2) The Mobile Operations Station (MOS), a self-contained, motorized vehicle serving as a mobile research command/operations center, functionally equivalent to the BRS, capable of deployment to remote sites for supporting flight tests. The third piece of the testbed is the test facility itself. Research flights carried out by the AirSTAR team are conducted at NASA Wallops Flight Facility (WFF) on the Eastern Shore of Virginia. The UAV Island runway is a 50 x 1500 paved runway that lies within restricted airspace at Wallops Flight Facility. The

  13. Tri-directional shaking table tests of vibration sensitive equipment with static dynamics interchangeable-ball pendulum system

    NASA Astrophysics Data System (ADS)

    Tsai, C. S.; Lin, Yung-Chang; Chen, Wen-Shin; Su, H. C.

    2010-03-01

    Recently, the high-tech industry has become a key industry for economic development in many countries. However, vibration sensitive equipment located in these industrial buildings is vulnerable during earthquakes, which may cause huge economic loss. In this study, an innovative isolator for safeguarding the vibration sensitive equipment, namely, the static dynamics interchangeable-ball pendulum system (SDI-BPS) is proposed and investigated to examine its protective capability for the vibration sensitive equipment during earthquakes through a series of tri-directional shaking table tests. The experimental results illustrate that the SDI-BPS isolator can provide significant damping to rolling types of base isolation systems for reducing the bearing displacement and size, and avoid the stress concentration, which can cause damage or scratches on the rolling surface of the isolator, to prolong its life span of service. The SDI-BPS isolator also provides excellent capability in protecting the vibration sensitive equipment and exhibits a stable behavior under long terms of service loadings and earthquakes.

  14. Static and dynamic analyses on the MFTF (Mirror Fusion Test Facility)-B Axicell Vacuum Vessel System: Final report

    SciTech Connect

    Ng, D.S.

    1986-09-01

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory (LLNL) is a large-scale, tandem-mirror-fusion experiment. MFTF-B comprises many highly interconnected systems, including a magnet array and a vacuum vessel. The vessel, which houses the magnet array, is supported by reinforced concrete piers and steel frames resting on an array of foundations and surrounded by a 7-ft-thick concrete shielding vault. The Pittsburgh-Des Moines (PDM) Corporation, which was awarded the contract to design and construct the vessel, carried out fixed-base static and dynamic analyses of a finite-element model of the axicell vessel and magnet systems, including the simulation of various loading conditions and three postulated earthquake excitations. Meanwhile, LLNL monitored PDM's analyses with modeling studies of its own, and independently evaluated the structural responses of the vessel in order to define design criteria for the interface members and other project equipment. The assumptions underlying the finite-element model and the behavior of the axicell vessel are described in detail in this report, with particular emphasis placed on comparing the LLNL and PDM studies and on analyzing the fixed-base behavior with the soil-structure interaction, which occurs between the vessel and the massive concrete vault wall during a postulated seismic event. The structural members that proved sensitive to the soil effect are also reevaluated.

  15. Development and full-scale dynamic test of a combined system of heterogeneous laser sensors for structural displacement measurement

    NASA Astrophysics Data System (ADS)

    Kim, Kiyoung; Kim, Junhee; Sohn, Hoon

    2016-06-01

    The displacement responses of civil structures reveal the overall state of the structures and consist of two distinctive dynamic behaviors: pseudo-static deflection and structural vibration. In this study, a dynamic displacement estimation system is developed by integrating a laser Doppler vibrometer (LDV) and terrestrial laser scanner (TLS). The TLS displacement data contaminated with high noise and measured with a low sampling rate is converted to high sampling rate dynamic displacements including the pseudo-static motion by fusing with the velocity data measured by the LDV which are at a high sampling rate but miss the pseudo-static components.

  16. A Dynamic Testing Complexity Metric

    NASA Technical Reports Server (NTRS)

    Voas, Jeffrey

    1991-01-01

    This paper introduces a dynamic metric that is based on the estimated ability of a program to withstand the effects of injected "semantic mutants" during execution by computing the same function as if the semantic mutants had not been injected. Semantic mutants include: (1) syntactic mutants injected into an executing program and (2) randomly selected values injected into an executing program's internal states. The metric is a function of a program, the method used for injecting these two types of mutants, and the program's input distribution; this metric is found through dynamic executions of the program. A program's ability to withstand the effects of injected semantic mutants by computing the same function when executed is then used as a tool for predicting the difficulty that will be incurred during random testing to reveal the existence of faults, i.e., the metric suggests the likelihood that a program will expose the existence of faults during random testing assuming faults were to exist. If the metric is applied to a module rather than to a program, the metric can be used to guide the allocation of testing resources among a program's modules. In this manner the metric acts as a white-box testing tool for determining where to concentrate testing resources. Index Terms: Revealing ability, random testing, input distribution, program, fault, failure.

  17. Dynamic Testing of Gasifier Refractory

    SciTech Connect

    Michael D. Mann; Devdutt Shukla; Xi Hong; John P. Hurley

    2004-09-27

    The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. Shakedown testing of the CADCAF has been completed. Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained for testing in the CADCAF. The slag has been dried and sieved to the size needed for our flowing slag corrosion tests. Screening tests are in currently in progress. Detailed analysis of corrosion rates from the first tests is in progress.

  18. Dynamic Testing of Gasifier Refractory

    SciTech Connect

    Michael D. Mann; Wayne S. Seames; Devdutt Shukla; Xi Hong; John P. Hurley

    2005-12-01

    The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by refractory materials under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) was utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. High-alumina and high-chromia refractory bricks were tested using slags obtained from two solid fuel gasifiers. Testing was performed at 1475 C in a reducing atmosphere (2% H{sub 2} in N{sub 2}) The CADCAF tests show that high-chrome refractories have greater corrosion resistance than high-aluminum refractories; coal slag readily diffuses into the refractory through its grain boundaries; the refractory grains are more stable than the matrix in the tests, and the grains are the first line of defense against corrosion; calcium and alkali in the slag are more corrosive than iron; and silicon and calcium penetrate the deepest into the refractory. The results obtained from this study are preliminary and should be combined with result from other research programs. In particular, the refractory corrosion results from this study should be compared with refractories removed from commercial gasifiers.

  19. Dynamic Testing of Gasifier Refractory

    SciTech Connect

    Michael D. Mann; Devdutt Shukla; John P. Hurley

    2003-09-27

    The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. Shakedown testing of the CADCAF is in progress. Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained for testing in the CADCAF. The slag has been dried and sieved to the size needed for our flowing slag corrosion tests. Testing is expected to begin in October.

  20. Application of system identification to analytic rotor modeling from simulated and wind tunnel dynamic test data, part 2

    NASA Technical Reports Server (NTRS)

    Hohenemser, K. H.; Banerjee, D.

    1977-01-01

    An introduction to aircraft state and parameter identification methods is presented. A simplified form of the maximum likelihood method is selected to extract analytical aeroelastic rotor models from simulated and dynamic wind tunnel test results for accelerated cyclic pitch stirring excitation. The dynamic inflow characteristics for forward flight conditions from the blade flapping responses without direct inflow measurements were examined. The rotor blades are essentially rigid for inplane bending and for torsion within the frequency range of study, but flexible in out-of-plane bending. Reverse flow effects are considered for high rotor advance ratios. Two inflow models are studied; the first is based on an equivalent blade Lock number, the second is based on a time delayed momentum inflow. In addition to the inflow parameters, basic rotor parameters like the blade natural frequency and the actual blade Lock number are identified together with measurement bias values. The effect of the theoretical dynamic inflow on the rotor eigenvalues is evaluated.

  1. Micro-tensile testing system

    DOEpatents

    Wenski, Edward G.

    2006-01-10

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  2. Micro-tensile testing system

    DOEpatents

    Wenski, Edward G.

    2007-08-21

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  3. Micro-tensile testing system

    DOEpatents

    Wenski, Edward G.

    2007-07-17

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  4. Industry review: Locomotive dynamic characterization test-analysis

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Data are given relative to tests performed on locomotive components. Dynamic characteristics related to safety are described. Suspension systems, shock absorbers, data processing, bearings, and damping are discussed.

  5. Steady-state and dynamic evaluation of the electric propulsion system test bed vehicle on a road load simulator

    NASA Astrophysics Data System (ADS)

    Dustin, M. O.

    1983-08-01

    The propulsion system of the Lewis Research Center's electric propulsion system test bed vehicle was tested on the road load simulator under the DOE Electric and Hybrid Vehicle Program. This propulsion system, consisting of a series-wound dc motor controlled by an infinitely variable SCR chopper and an 84-V battery pack, is typical of those used in electric vehicles made in 1976. Steady-state tests were conducted over a wide range of differential output torques and vehicle speeds. Efficiencies of all of the components were determined. Effects of temperature and voltage variations on the motor and the effect of voltage changes on the controller were examined. Energy consumption and energy efficiency for the system were determined over the B and C driving schedules of the SAE J227a test procedure.

  6. Steady-state and dynamic evaluation of the electric propulsion system test bed vehicle on a road load simulator

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.

    1983-01-01

    The propulsion system of the Lewis Research Center's electric propulsion system test bed vehicle was tested on the road load simulator under the DOE Electric and Hybrid Vehicle Program. This propulsion system, consisting of a series-wound dc motor controlled by an infinitely variable SCR chopper and an 84-V battery pack, is typical of those used in electric vehicles made in 1976. Steady-state tests were conducted over a wide range of differential output torques and vehicle speeds. Efficiencies of all of the components were determined. Effects of temperature and voltage variations on the motor and the effect of voltage changes on the controller were examined. Energy consumption and energy efficiency for the system were determined over the B and C driving schedules of the SAE J227a test procedure.

  7. NASA Handbook for Spacecraft Structural Dynamics Testing

    NASA Technical Reports Server (NTRS)

    Kern, Dennis L.; Scharton, Terry D.

    2005-01-01

    Recent advances in the area of structural dynamics and vibrations, in both methodology and capability, have the potential to make spacecraft system testing more effective from technical, cost, schedule, and hardware safety points of view. However, application of these advanced test methods varies widely among the NASA Centers and their contractors. Identification and refinement of the best of these test methodologies and implementation approaches has been an objective of efforts by the Jet Propulsion Laboratory on behalf of the NASA Office of the Chief Engineer. But to develop the most appropriate overall test program for a flight project from the selection of advanced methodologies, as well as conventional test methods, spacecraft project managers and their technical staffs will need overall guidance and technical rationale. Thus, the Chief Engineer's Office has recently tasked JPL to prepare a NASA Handbook for Spacecraft Structural Dynamics Testing. An outline of the proposed handbook, with a synopsis of each section, has been developed and is presented herein. Comments on the proposed handbook are solicited from the spacecraft structural dynamics testing community.

  8. NASA Handbook for Spacecraft Structural Dynamics Testing

    NASA Technical Reports Server (NTRS)

    Kern, Dennis L.; Scharton, Terry D.

    2004-01-01

    Recent advances in the area of structural dynamics and vibrations, in both methodology and capability, have the potential to make spacecraft system testing more effective from technical, cost, schedule, and hardware safety points of view. However, application of these advanced test methods varies widely among the NASA Centers and their contractors. Identification and refinement of the best of these test methodologies and implementation approaches has been an objective of efforts by the Jet Propulsion Laboratory on behalf of the NASA Office of the Chief Engineer. But to develop the most appropriate overall test program for a flight project from the selection of advanced methodologies, as well as conventional test methods, spacecraft project managers and their technical staffs will need overall guidance and technical rationale. Thus, the Chief Engineer's Office has recently tasked JPL to prepare a NASA Handbook for Spacecraft Structural Dynamics Testing. An outline of the proposed handbook, with a synopsis of each section, has been developed and is presented herein. Comments on the proposed handbook is solicited from the spacecraft structural dynamics testing community.

  9. Max Launch Abort System (MLAS) Pad Abort Test Vehicle (PATV) II Attitude Control System (ACS) Integration and Pressurization Subsystem Dynamic Random Vibration Analysis

    NASA Technical Reports Server (NTRS)

    Ekrami, Yasamin; Cook, Joseph S.

    2011-01-01

    In order to mitigate catastrophic failures on future generation space vehicles, engineers at the National Aeronautics and Space Administration have begun to integrate a novel crew abort systems that could pull a crew module away in case of an emergency at the launch pad or during ascent. The Max Launch Abort System (MLAS) is a recent test vehicle that was designed as an alternative to the baseline Orion Launch Abort System (LAS) to demonstrate the performance of a "tower-less" LAS configuration under abort conditions. The MLAS II test vehicle will execute a propulsive coast stabilization maneuver during abort to control the vehicles trajectory and thrust. To accomplish this, the spacecraft will integrate an Attitude Control System (ACS) with eight hypergolic monomethyl hydrazine liquid propulsion engines that are capable of operating in a quick pulsing mode. Two main elements of the ACS include a propellant distribution subsystem and a pressurization subsystem to regulate the flow of pressurized gas to the propellant tanks and the engines. The CAD assembly of the Attitude Control System (ACS) was configured and integrated into the Launch Abort Vehicle (LAV) design. A dynamic random vibration analysis was conducted on the Main Propulsion System (MPS) helium pressurization panels to assess the response of the panel and its components under increased gravitational acceleration loads during flight. The results indicated that the panels fundamental and natural frequencies were farther from the maximum Acceleration Spectral Density (ASD) vibrations which were in the range of 150-300 Hz. These values will direct how the components will be packaged in the vehicle to reduce the effects high gravitational loads.

  10. Vulnerability of dynamic systems

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.

    1976-01-01

    Directed graphs are associated with dynamic systems in order to determine in any given system if each state can be reached by at least one input (input reachability), or can each state reach at least one output (output reachability). Then, the structural perturbations of a dynamic system are identified as lines or points removals from the corresponding digraph, and a system is considered vulnerable at those lines or points of the digraph whose removal destroys its input or output reachability. A suitable framework is formulated for resolving the problems of reachability and vulnerability which applies to both linear and nonlinear systems alike.

  11. Large scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Doolin, B. F.

    1975-01-01

    Classes of large scale dynamic systems were discussed in the context of modern control theory. Specific examples discussed were in the technical fields of aeronautics, water resources and electric power.

  12. The Effects of Longitudinal Control-System Dynamics on Pilot Opinion and Response Characteristics as Determined from Flight Tests and from Ground Simulator Studies

    NASA Technical Reports Server (NTRS)

    Sadoff, Melvin

    1958-01-01

    The results of a fixed-base simulator study of the effects of variable longitudinal control-system dynamics on pilot opinion are presented and compared with flight-test data. The control-system variables considered in this investigation included stick force per g, time constant, and dead-band, or stabilizer breakout force. In general, the fairly good correlation between flight and simulator results for two pilots demonstrates the validity of fixed-base simulator studies which are designed to complement and supplement flight studies and serve as a guide in control-system preliminary design. However, in the investigation of certain problem areas (e.g., sensitive control-system configurations associated with pilot- induced oscillations in flight), fixed-base simulator results did not predict the occurrence of an instability, although the pilots noted the system was extremely sensitive and unsatisfactory. If it is desired to predict pilot-induced-oscillation tendencies, tests in moving-base simulators may be required. It was found possible to represent the human pilot by a linear pilot analog for the tracking task assumed in the present study. The criterion used to adjust the pilot analog was the root-mean-square tracking error of one of the human pilots on the fixed-base simulator. Matching the tracking error of the pilot analog to that of the human pilot gave an approximation to the variation of human-pilot behavior over a range of control-system dynamics. Results of the pilot-analog study indicated that both for optimized control-system dynamics (for poor airplane dynamics) and for a region of good airplane dynamics, the pilot response characteristics are approximately the same.

  13. Short-Run Learning Dynamics under a Test-Based Accountability System: Evidence from Pakistan. Policy Research Working Paper 5465

    ERIC Educational Resources Information Center

    Barrera-Osorio, Felipe; Raju, Dhushyanth

    2010-01-01

    Low student learning is a common finding in much of the developing world. This paper uses a relatively unique dataset of five semiannual rounds of standardized test data to characterize and explain the short-term changes in student learning. The data are collected as part of the quality assurance system for a public-private partnership program…

  14. Molecular Dynamics with the United-Residue Model of Polypeptide Chains. II. Langevin and Berendsen-Bath Dynamics and Tests on Model α-Helical Systems

    PubMed Central

    Khalili, Mey; Liwo, Adam; Jagielska, Anna; Scheraga, Harold A.

    2008-01-01

    The implementation of molecular dynamics (MD) with our physics-based protein united-residue (UNRES) force field, described in the accompanying paper (Khalili et al. J. Phys. Chem. B 2005, 109, 13785), was extended to Langevin dynamics. The equations of motion are integrated by using a simplified stochastic velocity Verlet algorithm. To compare the results to those with all-atom simulations with implicit solvent in which no explicit stochastic and friction forces are present, we alternatively introduced the Berendsen thermostat. Test simulations on the Ala10 polypeptide demonstrated that the average kinetic energy is stable with about a 5 fs time step. To determine the correspondence between the UNRES time step and the time step of all-atom molecular dynamics, all-atom simulations with the AMBER 99 force field and explicit solvent and also with implicit solvent taken into account within the framework of the generalized Born/surface area (GBSA) model were carried out on the unblocked Ala10 polypeptide. We found that the UNRES time scale is 4 times longer than that of all-atom MD simulations because the degrees of freedom corresponding to the fastest motions in UNRES are averaged out. When the reduction of the computational cost for evaluation of the UNRES energy function is also taken into account, UNRES (with hydration included implicitly in the side chain–side chain interaction potential) offers about at least a 4000-fold speed up of computations relative to all-atom simulations with explicit solvent and at least a 65-fold speed up relative to all-atom simulations with implicit solvent. To carry out an initial full-blown test of the UNRES/MD approach, we ran Berendsen-bath and Langevin dynamics simulations of the 46-residue B-domain of staphylococcal protein A. We were able to determine the folding temperature at which all trajectories converged to nativelike structures with both approaches. For comparison, we carried out ab initio folding simulations of this

  15. Dynamic system classifier

    NASA Astrophysics Data System (ADS)

    Pumpe, Daniel; Greiner, Maksim; Müller, Ewald; Enßlin, Torsten A.

    2016-07-01

    Stochastic differential equations describe well many physical, biological, and sociological systems, despite the simplification often made in their derivation. Here the usage of simple stochastic differential equations to characterize and classify complex dynamical systems is proposed within a Bayesian framework. To this end, we develop a dynamic system classifier (DSC). The DSC first abstracts training data of a system in terms of time-dependent coefficients of the descriptive stochastic differential equation. Thereby the DSC identifies unique correlation structures within the training data. For definiteness we restrict the presentation of the DSC to oscillation processes with a time-dependent frequency ω (t ) and damping factor γ (t ) . Although real systems might be more complex, this simple oscillator captures many characteristic features. The ω and γ time lines represent the abstract system characterization and permit the construction of efficient signal classifiers. Numerical experiments show that such classifiers perform well even in the low signal-to-noise regime.

  16. Smart HIV testing system.

    PubMed

    El Kateeb, Ali; Law, Peter; Chan, King

    2005-06-01

    The quick HIV testing method called "MiraWell Rapid HIV Test" uses a specialized testing kit to determine whether an individual's blood is contaminated with the HIV virus or not. When a drop of blood is placed on the center of the testing kit, a simple pattern will appear in the middle of the kit to indicate the test status, i.e., positive or negative. This HIV test should be done in a small clinic or in a lab and the test must be conducted by a trained technician. A smart HIV testing system was developed through this research to eliminate the human error that is associated with the use of the quick HIV testing kits. Also, the smart HIV system will improve the testing productivity in comparison to those achieved by the trained technicians. In this research, we have developed a cost-effective system that analyzes the image produced by the HIV kits. We have used a System-On-Chip (SOC) design approach based on the Field Programmable Gate Array (FPGA) technology and the Xilinx Virtex SOC chip in building the system's prototype. The system used a CMOS digital camera to capture the image and an FPGA chip to process the captured image and send the testing results to the display unit. The system can be used in small clinics and pharmacies and eliminates the need for trained technicians. The system has been tested successfully and 98% of the tests were correct. PMID:16078623

  17. Dynamic tests of cracked pipe components

    SciTech Connect

    Hale, D.A.; Heald, J.D.; Sharma, S.R.

    1984-02-01

    Dynamic tests were conducted involving notched sections of 4-in. (10-cm) stainless steel and Inconel-600 pipe. The specimen was a four-point bending beam with end masses sized to give an elastic first-mode frequency near that of typical field installed piping systems (15 Hz). Specimens were loaded using sinewave excitation at this first mode natural frequency. Specimen response was compared to predictions from an elastic-plastic dynamic analysis previously developed on this program. In addition, specimen loads at failure were compared to those predicted from a net section collapse failure criterion. The results confirmed that the elasticplastic dynamic analysis adequately predicted the dynamic response of flawed pipes under seismic-type excitation. Furthermore, net section collapse does not occur under dynamic loading conditions which simulate natural frequencies of asinstalled light water reactor piping systems. Finally, a net section collapse criterion yields conservative estimates of the load capacity of flawed pipe sections provided crack growth is properly accounted for.

  18. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  19. Dynamic test techniques - Concepts and practices. [flight tests

    NASA Technical Reports Server (NTRS)

    Rawlings, K., III; Cooper, J. M.; Hughes, D. L.

    1976-01-01

    An initial investigation of dynamic flight test analysis techniques indicated that a strict, comprehensive force-moment accounting system would be necessary. An implementation of the longitudinal force-moment accounting system provided excellent results in accounting for small lift/drag and tail deflection changes. Attention is given to gross thrust calculation, instrumentation, maneuvers, and aspects of data correlation. The results of the studies demonstrate that it is possible to generate a lift/drag model which is capable of predicting performance from nearly any maneuver.

  20. Finite element modeling of a shaking table test to evaluate the dynamic behaviour of a soil-foundation system

    SciTech Connect

    Abate, G.; Massimino, M. R.; Maugeri, M.

    2008-07-08

    The deep investigation of soil-foundation interaction behaviour during earthquakes represent one of the key-point for a right seismic design of structures, which can really behave well during earthquake, avoiding dangerous boundary conditions, such as weak foundations supporting the superstructures. The paper presents the results of the FEM modeling of a shaking table test involving a concrete shallow foundation resting on a Leighton Buzzard sand deposit. The numerical simulation is performed using a cap-hardening elasto-plastic constitutive model for the soil and specific soil-foundation contacts to allow slipping and up-lifting phenomena. Thanks to the comparison between experimental and numerical results, the power and the limits of the proposed numerical model are focused. Some aspects of the dynamic soil-foundation interaction are also pointed out.

  1. Nemesis Autonomous Test System

    NASA Technical Reports Server (NTRS)

    Barltrop, Kevin J.; Lee, Cin-Young; Horvath, Gregory A,; Clement, Bradley J.

    2012-01-01

    A generalized framework has been developed for systems validation that can be applied to both traditional and autonomous systems. The framework consists of an automated test case generation and execution system called Nemesis that rapidly and thoroughly identifies flaws or vulnerabilities within a system. By applying genetic optimization and goal-seeking algorithms on the test equipment side, a "war game" is conducted between a system and its complementary nemesis. The end result of the war games is a collection of scenarios that reveals any undesirable behaviors of the system under test. The software provides a reusable framework to evolve test scenarios using genetic algorithms using an operation model of the system under test. It can automatically generate and execute test cases that reveal flaws in behaviorally complex systems. Genetic algorithms focus the exploration of tests on the set of test cases that most effectively reveals the flaws and vulnerabilities of the system under test. It leverages advances in state- and model-based engineering, which are essential in defining the behavior of autonomous systems. It also uses goal networks to describe test scenarios.

  2. Steady-state and dynamic evaluation of the electric-propulsion system test-bed vehicle on a road load simulator

    SciTech Connect

    Dustin, M.O.

    1983-08-01

    The propulsion system from the electric propulsion system test bed vehicle was evaluated on the road load simulator (RLS). Track tests had previously been conducted. The electric vehicle was built from components representative of 1976 technology, including a series-wound dc motor and a commercially avaiable silicon-controlled rectifier (SCR) chopper type of controller. An 84-V battery pack was used with the system in the vehicle. A large motor-generator battery simulator was used in all of the RLS tests. Steady-state tests were conducted over a wide range of differential outputs and vehicle speeds. Efficiencies of the system and of the individual components were mapped. The maximum system efficiency measured was 67 percent at 64-km/h (40-mph) vehicle speed and 113-N-m (1000-lb-in) differential torque. The effects of motor temperature on motor efficiency and of battery voltage on motor and controller efficiencies were evaluated. Dynamic tests were also conducted on the system by running it over the SAE J227a B and C driving schedules. The energy efficiency over schedule B was 55 percent; that over schedule C was 58 percent. Over schedule B the total energy taken from the battery was 155 Wh/km (249 Wh/mile). Over schedule C, 178 Wh/km (287 Wh/mile) was removed from the battery.

  3. A practical test for noisy chaotic dynamics

    NASA Astrophysics Data System (ADS)

    BenSaïda, Ahmed

    2015-12-01

    This code computes the largest Lyapunov exponent and tests for the presence of a chaotic dynamics, as opposed to stochastic dynamics, in a noisy scalar series. The program runs under MATLAB​® programming language.

  4. Collaborative Systems Testing

    ERIC Educational Resources Information Center

    Pocatilu, Paul; Ciurea, Cristian

    2009-01-01

    Collaborative systems are widely used today in various activity fields. Their complexity is high and the development involves numerous resources and costs. Testing collaborative systems has a very important role for the systems' success. In this paper we present taxonomy of collaborative systems. The collaborative systems are classified in many…

  5. Programmable, automated transistor test system

    NASA Technical Reports Server (NTRS)

    Truong, L. V.; Sundburg, G. R.

    1986-01-01

    A programmable, automated transistor test system was built to supply experimental data on new and advanced power semiconductors. The data will be used for analytical models and by engineers in designing space and aircraft electric power systems. A pulsed power technique was used at low duty cycles in a nondestructive test to examine the dynamic switching characteristic curves of power transistors in the 500 to 1000 V, 10 to 100 A range. Data collection, manipulation, storage, and output are operator interactive but are guided and controlled by the system software.

  6. Dynamics insulation systems

    NASA Astrophysics Data System (ADS)

    Chen, W. E. W.; Hepler, W. A.; Yuan, S. W. K.; Frederking, T. H. K.

    1985-10-01

    Advanced dynamic insulation systems were analyzed from a thermodynamic point of view. A particular performance measure is proposed in order to characterize various insulations in a unique manner. This measure is related to a base quantity, the refrigeration power ratio. The latter is the minimum refrigeration power, for a particular dynamic insulation limit, to the actual reliquefaction power associated with cryoliquid boiloff. This ratio serves as reference quantity which is approximately constant for a specific ductless insulation at a chosen normal boiling point. Each real container with support structure, vent tube, and other transverse components requires a larger refrigeration power. The ratio of the actual experimental power to the theoretical value of the support-less system is a suitable measure of the entire insulation performance as far as parasitic heat leakage is concerned. The present characterization is illustrated using simple thermodynamic system examples including experiments with liquid nitrogen. Numerical values are presented and a comparison with liquid helium is given.

  7. System dynamics and energy use

    SciTech Connect

    Mitchell, J.W.

    1986-01-01

    The goals of the project were to evaluate the importance of process dynamics in building HVAC systems. The specific objectives were: 1. To study the dynamics of a building HVAC system using test data and computer models; 2. To determine the effect of the time between control decisions on the energy consumption of an HVAC system; 3. To determine dynamic HVAC operating strategies that will potentially reduce energy consumption. The HVAC system of the 11 story IBM building in Atlanta, Georgia, was studied using a combination of data collected at the site and models of the components. The HVAC system consists of two 550 ton centrifugal chillers, a cooling tower with two cells and a two speed fan in each cell, and variable and constant air volume air distribution systems. An energy management and control system (EMCS) that monitors the flow rates, temperatures, and pressures throughout the system, controls the operating modes, and sets the status of major components was installed in the building.

  8. Viking Mars lander 1975 dynamic test model/orbiter developmental test model forced vibration test

    NASA Technical Reports Server (NTRS)

    Fortenberry, J.; Brownlee, G. R.

    1974-01-01

    The Viking Mars Lander 1975 dynamic test model and orbiter developmental test model were subjected to forced vibration sine tests. Flight acceptance (FA) and type approval (TA) test levels were applied to the spacecraft structure in a longitudinal test configuration using a 133,440-N (30,000-lb) force shaker. Testing in the two lateral axes (X, Y) was performed at lower levels using four 667-N (150-lb) force shakers. Forced vibration qualification (TA) test levels were successfully imposed on the spacecraft at frequencies down to 10 Hz. Measured responses showed the same character as analytical predictions, and correlation was reasonably good. Because of control system test tolerances, orbiter primary structure generally did not reach the design load limits attained in earlier static testing. A post-test examination of critical orbiter structure disclosed no apparent damage to the structure as a result of the test environment.

  9. Derivation of mass and stiffness matrices from dynamic test data.

    NASA Technical Reports Server (NTRS)

    Thoren, A. R.

    1972-01-01

    A technique is described by which orthonormal modal vectors, computed from dynamic test response data, are used to derive mass, stiffness, and damping matrices for a discrete model of the distributed elastic system. Matrices thus computed from subsystems tests may be readily incorporated into larger system models. The method has been applied to a test of the Saturn V S-II stage LOX tank-engine support system. The dynamic responses of the discrete model are shown to correlate well with test data throughout the frequency range tested.

  10. Flash evaporator systems test

    NASA Technical Reports Server (NTRS)

    Dietz, J. B.

    1976-01-01

    A flash evaporator heat rejection system representative of that proposed for the space shuttle orbiter underwent extensive system testing at the NASA Johnson Space Center (JSC) to determine its operational suitability and to establish system performance/operational characteristics for use in the shuttle system. During the tests the evaporator system demonstrated its suitability to meet the shuttle requirements by: (1) efficient operation with 90 to 95% water evaporation efficiency, (2) control of outlet temperature to 40 + or - 2 F for partial heat load operation, (3) stability of control system for rapid changes in Freon inlet temperature, and (4) repeated dormant-to-active device operation without any startup procedures.

  11. Solar System Dynamics

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack

    2002-01-01

    In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.

  12. Recent developments in dynamic testing of materials

    NASA Astrophysics Data System (ADS)

    Gilat, Amos; Seidt, Jeremy D.

    2015-09-01

    New techniques for dynamic characterization of materials that have been developed in the last three years (since the last DYMAT conference in 2012), and results from recent dynamic testing of Inconel 718 are presented. The first development is a dynamic punch test in which three dimensional Digital Image Correlation (DIC) is used to measure the deformation of the rear surface of a specimen as it being penetrated. The second experimental technique that is under development is a dynamic tension experiment in which full-field strain measurement with DIC and full-field temperature measurement are done simultaneously during the test.

  13. Nanomechanical testing system

    DOEpatents

    Vodnick, David James; Dwivedi, Arpit; Keranen, Lucas Paul; Okerlund, Michael David; Schmitz, Roger William; Warren, Oden Lee; Young, Christopher David

    2014-07-08

    An automated testing system includes systems and methods to facilitate inline production testing of samples at a micro (multiple microns) or less scale with a mechanical testing instrument. In an example, the system includes a probe changing assembly for coupling and decoupling a probe of the instrument. The probe changing assembly includes a probe change unit configured to grasp one of a plurality of probes in a probe magazine and couple one of the probes with an instrument probe receptacle. An actuator is coupled with the probe change unit, and the actuator is configured to move and align the probe change unit with the probe magazine and the instrument probe receptacle. In another example, the automated testing system includes a multiple degree of freedom stage for aligning a sample testing location with the instrument. The stage includes a sample stage and a stage actuator assembly including translational and rotational actuators.

  14. Nanomechanical testing system

    SciTech Connect

    Vodnick, David James; Dwivedi, Arpit; Keranen, Lucas Paul; Okerlund, Michael David; Schmitz, Roger William; Warren, Oden Lee; Young, Christopher David

    2015-01-27

    An automated testing system includes systems and methods to facilitate inline production testing of samples at a micro (multiple microns) or less scale with a mechanical testing instrument. In an example, the system includes a probe changing assembly for coupling and decoupling a probe of the instrument. The probe changing assembly includes a probe change unit configured to grasp one of a plurality of probes in a probe magazine and couple one of the probes with an instrument probe receptacle. An actuator is coupled with the probe change unit, and the actuator is configured to move and align the probe change unit with the probe magazine and the instrument probe receptacle. In another example, the automated testing system includes a multiple degree of freedom stage for aligning a sample testing location with the instrument. The stage includes a sample stage and a stage actuator assembly including translational and rotational actuators.

  15. Nanomechanical testing system

    SciTech Connect

    Vodnick, David James; Dwivedi, Arpit; Keranen, Lucas Paul; Okerlund, Michael David; Schmitz, Roger William; Warren, Oden Lee; Young, Christopher David

    2015-02-24

    An automated testing system includes systems and methods to facilitate inline production testing of samples at a micro (multiple microns) or less scale with a mechanical testing instrument. In an example, the system includes a probe changing assembly for coupling and decoupling a probe of the instrument. The probe changing assembly includes a probe change unit configured to grasp one of a plurality of probes in a probe magazine and couple one of the probes with an instrument probe receptacle. An actuator is coupled with the probe change unit, and the actuator is configured to move and align the probe change unit with the probe magazine and the instrument probe receptacle. In another example, the automated testing system includes a multiple degree of freedom stage for aligning a sample testing location with the instrument. The stage includes a sample stage and a stage actuator assembly including translational and rotational actuators.

  16. Structural Dynamics of Electronic Systems

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2013-03-01

    The published work on analytical ("mathematical") and computer-aided, primarily finite-element-analysis (FEA) based, predictive modeling of the dynamic response of electronic systems to shocks and vibrations is reviewed. While understanding the physics of and the ability to predict the response of an electronic structure to dynamic loading has been always of significant importance in military, avionic, aeronautic, automotive and maritime electronics, during the last decade this problem has become especially important also in commercial, and, particularly, in portable electronics in connection with accelerated testing of various surface mount technology (SMT) systems on the board level. The emphasis of the review is on the nonlinear shock-excited vibrations of flexible printed circuit boards (PCBs) experiencing shock loading applied to their support contours during drop tests. At the end of the review we provide, as a suitable and useful illustration, the exact solution to a highly nonlinear problem of the dynamic response of a "flexible-and-heavy" PCB to an impact load applied to its support contour during drop testing.

  17. Automated Testing System

    Energy Science and Technology Software Center (ESTSC)

    2006-05-09

    ATS is a Python-language program for automating test suites for software programs that do not interact with thier users, such as scripted scientific simulations. ATS features a decentralized approach especially suited to larger projects. In its multinode mode it can utilize many nodes of a cluster in order to do many test in parallel. It has features for submitting longer-running tests to a batch system and would have to be customized for use elsewhere.

  18. Space station structures and dynamics test program

    NASA Technical Reports Server (NTRS)

    Bugg, Frank M.; Ivey, E. W.; Moore, C. J.; Townsend, John S.

    1987-01-01

    The design, construction, and operation of a low-Earth orbit space station poses challenges for development and implementation of technology. One specific challenge is the development of a dynamics test program for defining the space station design requirements, and identifying and characterizing phenomena affecting the space station's design and development. The test proposal, as outlined, is a comprehensive structural dynamics program to be launched in support of the space station (SS). Development of a parametric data base and verification of the mathematical models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The four test phases planned are discussed: testing of SS applicable structural concepts; testing of SS prototypes; testing of actual SS structural hardware; and on-orbit testing of SS construction.

  19. Rapid-to-deploy wireless monitoring systems for static and dynamic load testing of bridges: validation on the Grove Street Bridge

    NASA Astrophysics Data System (ADS)

    Hou, Tsung-Chin; Lynch, Jerome P.

    2006-03-01

    Bridge management officials have expressed a keen interest in the use of low-cost and easy-to-install wireless sensors to record bridge responses during short-term load testing. To illustrate the suitability of wireless sensors for short-term monitoring of highway bridges, a wireless monitoring system is installed upon the Grove Street Bridge to monitor structural responses during static and dynamic load testing. Specifically, load testing of the Grove Street Bridge is conducted after its construction to validate the behavior of a novel jointless bridge deck constructed from a high-performance fiber reinforced cementitious composite (HPFRCC) material. A heterogeneous array of sensing transducers are installed in the bridge including metal foil strain gages, accelerometers and linear variable differential transducers (LVDTs). First, the acceleration response of the bridge is monitored by the wireless system during routine traffic loading. Modal parameters (modal frequencies and mode shapes) are calculated by the wireless sensors so that an analytical model of the bridge constructed in a standard commercial finite element package can be updated off-line. Next, the bridge is closed to traffic and trucks of known weight are parked on the bridge to induce static deformations. The installation strategy of the wireless monitoring system during static load testing is optimized to monitor the strain and rotation response of the HPFRCC deck. The measured static response of the deck is compared to that predicted by the updated analytical model.

  20. Optical Disk Testing System

    NASA Astrophysics Data System (ADS)

    Manns, Basil H.

    1987-01-01

    This paper describes the development of the basics of an optical disk testing system used to test 12 inch, write once, Alcatel Thomson Gigadisk (ATG) media that are used at the Library of Congress in a pilot document storage and retrieval system. Since very little is known regarding the longevity of optical disk media and the fact that disk manufacturers are still refining processing techniques, any conclusions regarding error patterns, failure modes, or longevity may be superceded by a new "batch" of disks. Therefore, this paper focuses on the development of procedures for testing disks that can be used as the write once optical disk technology continues to advance.

  1. Experimental Testing of Dynamically Optimized Photoelectron Beams

    SciTech Connect

    Rosenzweig, J. B.; Cook, A. M.; Dunning, M.; England, R. J.; Musumeci, P.; Bellaveglia, M.; Boscolo, M.; Catani, L.; Cianchi, A.; Di Pirro, G.; Ferrario, M.; Fillipetto, D.; Gatti, G.; Palumbo, L.; Vicario, C.; Serafini, L.; Jones, S.

    2006-11-27

    We discuss the design of and initial results from an experiment in space-charge dominated beam dynamics which explores a new regime of high-brightness electron beam generation at the SPARC photoinjector. The scheme under study employs the tendency of intense electron beams to rearrange to produce uniform density, giving a nearly ideal beam from the viewpoint of space charge-induced emittance. The experiments are aimed at testing the marriage of this idea with a related concept, emittance compensation. We show that this new regime of operating photoinjector may be the preferred method of obtaining highest brightness beams with lower energy spread. We discuss the design of the experiment, including developing of a novel time-dependent, aerogel-based imaging system. This system has been installed at SPARC, and first evidence for nearly uniformly filled ellipsoidal charge distributions recorded.

  2. Material Fatigue Testing System

    NASA Technical Reports Server (NTRS)

    Gilley, P. J. (Inventor)

    1973-01-01

    A system for cyclicly applying a varying load to a material under test is described. It includes a load sensor which senses the magnitude of load being applied to a material, and, upon sensing a selected magnitude of loading, causes the load to be maintained for a predetermined time and then cause the system to resume cyclical loading.

  3. Dynamic Information Architecture System

    SciTech Connect

    Christiansen, John

    1997-02-12

    The Dynamic Information System (DIAS) is a flexible object-based software framework for concurrent, multidiscplinary modeling of arbitrary (but related) processes. These processes are modeled as interrelated actions caused by and affecting the collection of diverse real-world objects represented in a simulation. The DIAS architecture allows independent process models to work together harmoniously in the same frame of reference and provides a wide range of data ingestion and output capabilities, including Geographic Information System (GIS) type map-based displays and photorealistic visualization of simulations in progress. In the DIAS implementation of the object-based approach, software objects carry within them not only the data which describe their static characteristics, but also the methods, or functions, which describe their dynamic behaviors. There are two categories of objects: (1) Entity objects which have real-world counterparts and are the actors in a simulation, and (2) Software infrastructure objects which make it possible to carry out the simulations. The Entity objects contain lists of Aspect objects, each of which addresses a single aspect of the Entity''s behavior. For example, a DIAS Stream Entity representing a section of a river can have many aspects correspondimg to its behavior in terms of hydrology (as a drainage system component), navigation (as a link in a waterborne transportation system), meteorology (in terms of moisture, heat, and momentum exchange with the atmospheric boundary layer), and visualization (for photorealistic visualization or map type displays), etc. This makes it possible for each real-world object to exhibit any or all of its unique behaviors within the context of a single simulation.

  4. Dynamic Information Architecture System

    Energy Science and Technology Software Center (ESTSC)

    1997-02-12

    The Dynamic Information System (DIAS) is a flexible object-based software framework for concurrent, multidiscplinary modeling of arbitrary (but related) processes. These processes are modeled as interrelated actions caused by and affecting the collection of diverse real-world objects represented in a simulation. The DIAS architecture allows independent process models to work together harmoniously in the same frame of reference and provides a wide range of data ingestion and output capabilities, including Geographic Information System (GIS) typemore » map-based displays and photorealistic visualization of simulations in progress. In the DIAS implementation of the object-based approach, software objects carry within them not only the data which describe their static characteristics, but also the methods, or functions, which describe their dynamic behaviors. There are two categories of objects: (1) Entity objects which have real-world counterparts and are the actors in a simulation, and (2) Software infrastructure objects which make it possible to carry out the simulations. The Entity objects contain lists of Aspect objects, each of which addresses a single aspect of the Entity''s behavior. For example, a DIAS Stream Entity representing a section of a river can have many aspects correspondimg to its behavior in terms of hydrology (as a drainage system component), navigation (as a link in a waterborne transportation system), meteorology (in terms of moisture, heat, and momentum exchange with the atmospheric boundary layer), and visualization (for photorealistic visualization or map type displays), etc. This makes it possible for each real-world object to exhibit any or all of its unique behaviors within the context of a single simulation.« less

  5. Structural dynamics analyses testing and correlation

    NASA Technical Reports Server (NTRS)

    Caughey, T. K.

    1982-01-01

    Some aspects of the lack of close correlation between the predictions of analytical modeling of dynamic structures and the results of vibration tests on such structures are examined. Ways in which the correlation may be improved are suggested.

  6. Viking 1975 Orbiter Development Test Model/Lander Dynamic Test Model dynamic environmental testing - An overview

    NASA Technical Reports Server (NTRS)

    Milder, G.

    1975-01-01

    The current work presents an overview of the Viking 1975 environmental testing from an engineering standpoint. An extremely large vibration test fixture had to be designed, analyzed, and integrated into a test setup that employed hydrostatic bearings in a new fashion. A vibration control system was also required that would allow for thirty-six channels of sine-wave peak select control from acceleration, force-of-strain transducers. In addition, some 68 channels of peak limiting shutdown capability were needed for backup and monitoring of other data during the forced vibration test. Pretesting included analyses of the fixture design, overturning moment, control system capabilities, and response of the entire spacecraft/fixture/exciter system to the test environment. Closed-loop control for acoustic testing was a necessity due to the fact that the Viking spacecraft took up a major portion of the volume of the 10,000 cu ft chamber. The spacecraft emerged from testing undamaged.

  7. Data Systems Dynamic Simulator

    NASA Technical Reports Server (NTRS)

    Rouff, Christopher; Clark, Melana; Davenport, Bill; Message, Philip

    1993-01-01

    The Data System Dynamic Simulator (DSDS) is a discrete event simulation tool. It was developed for NASA for the specific purpose of evaluating candidate architectures for data systems of the Space Station era. DSDS provides three methods for meeting this requirement. First, the user has access to a library of standard pre-programmed elements. These elements represent tailorable components of NASA data systems and can be connected in any logical manner. Secondly, DSDS supports the development of additional elements. This allows the more sophisticated DSDS user the option of extending the standard element set. Thirdly, DSDS supports the use of data streams simulation. Data streams is the name given to a technique that ignores packet boundaries, but is sensitive to rate changes. Because rate changes are rare compared to packet arrivals in a typical NASA data system, data stream simulations require a fraction of the CPU run time. Additionally, the data stream technique is considerably more accurate than another commonly-used optimization technique.

  8. Robust Systems Test Framework

    SciTech Connect

    Ballance, Robert A.

    2003-01-01

    The Robust Systems Test Framework (RSTF) provides a means of specifying and running test programs on various computation platforms. RSTF provides a level of specification above standard scripting languages. During a set of runs, standard timing information is collected. The RSTF specification can also gather job-specific information, and can include ways to classify test outcomes. All results and scripts can be stored into and retrieved from an SQL database for later data analysis. RSTF also provides operations for managing the script and result files, and for compiling applications and gathering compilation information such as optimization flags.

  9. System for testing bearings

    NASA Astrophysics Data System (ADS)

    Gibson, John C.

    1993-07-01

    Disclosed here is a system for testing bearings wherein a pair of spaced bearings provides support for a shaft on which is mounted a bearing to be tested, this bearing being mounted in a bearing holder spaced from and in alignment with the pair of bearings. The bearing holder is provided with an annular collar positioned in an opening in the bearing holder for holding the bearing to be tested. A screw threaded through the bearing holder into engagement with the annular collar can be turned to force the collar radially out of alignment with the pair of bearings to apply a radial load to the bearing.

  10. Robust Systems Test Framework

    Energy Science and Technology Software Center (ESTSC)

    2003-01-01

    The Robust Systems Test Framework (RSTF) provides a means of specifying and running test programs on various computation platforms. RSTF provides a level of specification above standard scripting languages. During a set of runs, standard timing information is collected. The RSTF specification can also gather job-specific information, and can include ways to classify test outcomes. All results and scripts can be stored into and retrieved from an SQL database for later data analysis. RSTF alsomore » provides operations for managing the script and result files, and for compiling applications and gathering compilation information such as optimization flags.« less

  11. Subsonic Dynamic Stability Tests of a Sample Return Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Fremaux, C. Michael; Johnson, R. Keith

    2006-01-01

    An investigation has been conducted in the NASA Langley 20-Foot Vertical Spin Tunnel (VST) to determine the subsonic dynamic stability characteristics of a proposed atmospheric entry vehicle for sample return missions. In particular, the effects of changes in aft-body geometry on stability were examined. Freeflying tests of a dynamically scaled model with various geometric features were conducted, including cases in which the model was perturbed to measure dynamic response. Both perturbed and non-perturbed runs were recorded as motion time histories using the VST optical data acquisition system and reduced for post-test analysis. In addition, preliminary results from a static force and moment test of a similar model in the Langley 12-Foot Low Speed Tunnel are presented. Results indicate that the configuration is dynamically stable for the baseline geometry, but exhibits degraded dynamic behavior for the geometry modifications tested.

  12. Dynamic assertion testing of flight control software

    NASA Technical Reports Server (NTRS)

    Andrews, D. M.; Mahmood, A.; Mccluskey, E. J.

    1985-01-01

    Assertions are used to dynamically test fault tolerant flight software. The experiment showed that 87% of typical errors introduced into the program would be detected by assertions. Detailed analysis of the test data showed that the number of assertions needed to detect those errors could be reduced to a minimal set. The analysis also revealed that the most effective assertions tested program parameters that provided greater indirect (collateral) testing of other parameters.

  13. Dynamic assertion testing of flight control software

    NASA Technical Reports Server (NTRS)

    Andrews, D. M.; Mahmood, A.; Mccluskey, E. J.

    1985-01-01

    An experiment in using assertions to dynamically test fault tolerant flight software is described. The experiment showed that 87% of typical errors introduced into the program would be detected by assertions. Detailed analysis of the test data showed that the number of assertions needed to detect those errors could be reduced to a minimal set. The analysis also revealed that the most effective assertions tested program parameters that provided greater indirect (collateral) testing of other parameters.

  14. Single timepoint models of dynamic systems.

    PubMed

    Sachs, K; Itani, S; Fitzgerald, J; Schoeberl, B; Nolan, G P; Tomlin, C J

    2013-08-01

    Many interesting studies aimed at elucidating the connectivity structure of biomolecular pathways make use of abundance measurements, and employ statistical and information theoretic approaches to assess connectivities. These studies often do not address the effects of the dynamics of the underlying biological system, yet dynamics give rise to impactful issues such as timepoint selection and its effect on structure recovery. In this work, we study conditions for reliable retrieval of the connectivity structure of a dynamic system, and the impact of dynamics on structure-learning efforts. We encounter an unexpected problem not previously described in elucidating connectivity structure from dynamic systems, show how this confounds structure learning of the system and discuss possible approaches to overcome the confounding effect. Finally, we test our hypotheses on an accurate dynamic model of the IGF signalling pathway. We use two structure-learning methods at four time points to contrast the performance and robustness of those methods in terms of recovering correct connectivity. PMID:24511382

  15. Single timepoint models of dynamic systems

    PubMed Central

    Sachs, K.; Itani, S.; Fitzgerald, J.; Schoeberl, B.; Nolan, G. P.; Tomlin, C. J.

    2013-01-01

    Many interesting studies aimed at elucidating the connectivity structure of biomolecular pathways make use of abundance measurements, and employ statistical and information theoretic approaches to assess connectivities. These studies often do not address the effects of the dynamics of the underlying biological system, yet dynamics give rise to impactful issues such as timepoint selection and its effect on structure recovery. In this work, we study conditions for reliable retrieval of the connectivity structure of a dynamic system, and the impact of dynamics on structure-learning efforts. We encounter an unexpected problem not previously described in elucidating connectivity structure from dynamic systems, show how this confounds structure learning of the system and discuss possible approaches to overcome the confounding effect. Finally, we test our hypotheses on an accurate dynamic model of the IGF signalling pathway. We use two structure-learning methods at four time points to contrast the performance and robustness of those methods in terms of recovering correct connectivity. PMID:24511382

  16. Verification Challenges of Dynamic Testing of Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Winnitoy, Susan

    2010-01-01

    The Six Degree-of-Freedom Dynamic Test System (SDTS) is a test facility at the National Aeronautics and Space Administration (NASA) Johnson Space Center in Houston, Texas for performing dynamic verification of space structures and hardware. Some examples of past and current tests include the verification of on-orbit robotic inspection systems, space vehicle assembly procedures and docking/berthing systems. The facility is able to integrate a dynamic simulation of on-orbit spacecraft mating or demating using flight-like mechanical interface hardware. A force moment sensor is utilized for input to the simulation during the contact phase, thus simulating the contact dynamics. While the verification of flight hardware presents many unique challenges, one particular area of interest is with respect to the use of external measurement systems to ensure accurate feedback of dynamic contact. There are many commercial off-the-shelf (COTS) measurement systems available on the market, and the test facility measurement systems have evolved over time to include two separate COTS systems. The first system incorporates infra-red sensing cameras, while the second system employs a laser interferometer to determine position and orientation data. The specific technical challenges with the measurement systems in a large dynamic environment include changing thermal and humidity levels, operational area and measurement volume, dynamic tracking, and data synchronization. The facility is located in an expansive high-bay area that is occasionally exposed to outside temperature when large retractable doors at each end of the building are opened. The laser interferometer system, in particular, is vulnerable to the environmental changes in the building. The operational area of the test facility itself is sizeable, ranging from seven meters wide and five meters deep to as much as seven meters high. Both facility measurement systems have desirable measurement volumes and the accuracies vary

  17. Nonlinear Dynamic Inversion Baseline Control Law: Flight-Test Results for the Full-scale Advanced Systems Testbed F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2011-01-01

    A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.

  18. Shake Test Results and Dynamic Calibration Efforts for the Large Rotor Test Apparatus

    NASA Technical Reports Server (NTRS)

    Russell, Carl R.

    2014-01-01

    A shake test of the Large Rotor Test Apparatus (LRTA) was performed in an effort to enhance NASAscapability to measure dynamic hub loads for full-scale rotor tests. This paper documents the results of theshake test as well as efforts to calibrate the LRTA balance system to measure dynamic loads.Dynamic rotor loads are the primary source of vibration in helicopters and other rotorcraft, leading topassenger discomfort and damage due to fatigue of aircraft components. There are novel methods beingdeveloped to reduce rotor vibrations, but measuring the actual vibration reductions on full-scale rotorsremains a challenge. In order to measure rotor forces on the LRTA, a balance system in the non-rotatingframe is used. The forces at the balance can then be translated to the hub reference frame to measure therotor loads. Because the LRTA has its own dynamic response, the balance system must be calibrated toinclude the natural frequencies of the test rig.

  19. Dynamic Modeling of ALS Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    The purpose of dynamic modeling and simulation of Advanced Life Support (ALS) systems is to help design them. Static steady state systems analysis provides basic information and is necessary to guide dynamic modeling, but static analysis is not sufficient to design and compare systems. ALS systems must respond to external input variations and internal off-nominal behavior. Buffer sizing, resupply scheduling, failure response, and control system design are aspects of dynamic system design. We develop two dynamic mass flow models and use them in simulations to evaluate systems issues, optimize designs, and make system design trades. One model is of nitrogen leakage in the space station, the other is of a waste processor failure in a regenerative life support system. Most systems analyses are concerned with optimizing the cost/benefit of a system at its nominal steady-state operating point. ALS analysis must go beyond the static steady state to include dynamic system design. All life support systems exhibit behavior that varies over time. ALS systems must respond to equipment operating cycles, repair schedules, and occasional off-nominal behavior or malfunctions. Biological components, such as bioreactors, composters, and food plant growth chambers, usually have operating cycles or other complex time behavior. Buffer sizes, material stocks, and resupply rates determine dynamic system behavior and directly affect system mass and cost. Dynamic simulation is needed to avoid the extremes of costly over-design of buffers and material reserves or system failure due to insufficient buffers and lack of stored material.

  20. Delta distributary dynamics in the Skagit River Delta (Washington, USA): Extending, testing, and applying avulsion theory in a tidal system

    NASA Astrophysics Data System (ADS)

    Hood, W. Gregory

    2010-11-01

    Analysis of historical aerial photos shows that Skagit Delta (Washington, USA) distributary dynamics are consistent with the Slingerland and Smith model of avulsion dynamics where the ratio of the water surface slopes of the two branches of a bifurcation predicts avulsion stability. This model was extended to predict distributary inlet (upstream) width and bankfull cross-sectional area. The water surface gradient ratio for a bifurcation pair predicted distributary width well; the lowest R2 was 0.61 for the 1937 data points, but R2 ranged from 0.83 to 0.90 for other year-specific regression lines. Gradient ratios were not constant over the historical record; from 1937 to 1972 the mainstem river channel lengthened by 1250 m in the course of marsh progradation, while distributary lengthening was comparatively negligible. Consequently, the gradient advantage of the distributaries increased and their channels widened. After the mainstem river terminus stabilized from 1972 to the present, the distributaries continued to lengthen with marsh progradation, so that distributary gradient advantage steadily declined and the distributaries narrowed. While distributary cross sections were not available for the historical period, they were surveyed in 2007 near the distributary inlets. Gradient ratio was more closely related to distributary inlet bankfull cross-sectional area ( R2 = 0.95) than to minimum distributary width for any photo year examined. Applying this form of analysis to Skagit Delta distributaries that have been dammed in the course of agricultural development suggests that their restoration to stabilize eroding marshes at their outlets and recover salmon migration pathways would be feasible without significant risk of full river avulsion.

  1. Power systems testing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Station Freedom (SSF) will give the U.S. a permanent manned presence in space in 1999. The SSF underwent its final design concept in 1991. Launches of hardware will begin in late 1995, and the SSF will become operational in the man tended configuration in 1997. Additional Space Shuttle flights between 1997 and 1999 will complete the SSF. Along with international partners, a crew of four astronauts will conduct long-term experimentation in the microgravity environment of the orbiting spacecraft. Lewis Research Center, along with its prime contractor, will provide the electrical power system (EPS) for SSF. Two major testing facilities at the Lewis Research Center will support the Lewis EPS. The Power Systems Facility provides test beds for life testing the station batteries and the power management distribution system testbed. This testbed simulates two channels of the EPS. The Space Power Facility at the Lewis Plum Brook Station is the largest vacuum chamber in the world. Within this chamber, a simulated space environment, testing of full-size EPS components will occur.

  2. Flexible Material Systems Testing

    NASA Technical Reports Server (NTRS)

    Lin, John K.; Shook, Lauren S.; Ware, Joanne S.; Welch, Joseph V.

    2010-01-01

    An experimental program has been undertaken to better characterize the stress-strain characteristics of flexible material systems to support a NASA ground test program for inflatable decelerator material technology. A goal of the current study is to investigate experimental methods for the characterization of coated woven material stiffness. This type of experimental mechanics data would eventually be used to define the material inputs of fluid-structure interaction simulation models. The test methodologies chosen for this stress-strain characterization are presented along with the experimental results.

  3. Vendor System Vulnerability Testing Test Plan

    SciTech Connect

    James R. Davidson

    2005-01-01

    The Idaho National Laboratory (INL) prepared this generic test plan to provide clients (vendors, end users, program sponsors, etc.) with a sense of the scope and depth of vulnerability testing performed at the INL’s Supervisory Control and Data Acquisition (SCADA) Test Bed and to serve as an example of such a plan. Although this test plan specifically addresses vulnerability testing of systems applied to the energy sector (electric/power transmission and distribution and oil and gas systems), it is generic enough to be applied to control systems used in other critical infrastructures such as the transportation sector, water/waste water sector, or hazardous chemical production facilities. The SCADA Test Bed is established at the INL as a testing environment to evaluate the security vulnerabilities of SCADA systems, energy management systems (EMS), and distributed control systems. It now supports multiple programs sponsored by the U.S. Department of Energy, the U.S. Department of Homeland Security, other government agencies, and private sector clients. This particular test plan applies to testing conducted on a SCADA/EMS provided by a vendor. Before performing detailed vulnerability testing of a SCADA/EMS, an as delivered baseline examination of the system is conducted, to establish a starting point for all-subsequent testing. The series of baseline tests document factory delivered defaults, system configuration, and potential configuration changes to aid in the development of a security plan for in depth vulnerability testing. The baseline test document is provided to the System Provider,a who evaluates the baseline report and provides recommendations to the system configuration to enhance the security profile of the baseline system. Vulnerability testing is then conducted at the SCADA Test Bed, which provides an in-depth security analysis of the Vendor’s system.b a. The term System Provider replaces the name of the company/organization providing the system

  4. PTR 9000, a system for large dynamic digitisation and real-time recording of infrared images: applications to the nondestructive testing of materials by photothermography

    NASA Astrophysics Data System (ADS)

    Potet, Pierre

    1990-10-01

    CEDIP 13S has designed the RTIS 8902 under license of ONERA, a Pc compatible system for the digital recording of infrared images in real time and over a large dynamic of digitization (12 bits). The RTIS 8902 operates with AGEMA cameras, an extension to JI1FRAMETRICS camera is currently under development The unit is able to store to hard disk evezy infrared image from a single camera or a dual camera, the maximum storage time is related to the hard disk capacity and is about 10 minutes for a 600 MBytes hard disic Several applications for the RTIS 8902 have already been developed among whose infrared signature analysis, combustion analysis and nondestructive testing of matezials. The present paper describes a commercially available equipment, the PTR 9000, developped and build with the RTLS 8902 unit, and dedicated to the NDT of materials.

  5. Chaos Cryptography with Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Anderson, Robert; Morse, Jack; Schimmrigk, Rolf

    2001-11-01

    Cryptography is a subject that draws strength from an amazing variety of different mathematical fields, including such deep results as the Weil-Dwork-Deligne theorem on the zeta function. Physical theories have recently entered the subject as well, an example being the subject of quantum cryptography, motivated in part by Shor's insight into the vulnerability of prime number factorization based crypto systems. In this contribution we describe a cryptographic algorithm which is based on the dynamics of a class of physical models that exhibit chaotic behavior. More precisely, we consider dissipative systems which are described by nonlinear three-dimensional systems of differential equations with strange attractor surfaces of non-integer Lyapunov dimension. The time evolution of such systems in part of the moduli space shows unpredictable behavior, which suggests that they might be useful as pseudorandom number generators. We will show that this is indeed the case and illustrate our procedure mainly with the Lorenz attractor, though we also briefly mention the Rössler system. We use this class of nonlinear models to construct an extremely fast stream cipher with a large keyspace, which we test with Marsaglia's battery of DieHard tests.

  6. Landscape Construction in Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Tang, Ying; Yuan, Ruoshi; Wang, Gaowei; Ao, Ping

    The idea of landscape has been recently applied to study various of biological problems. We demonstrate that a dynamical structure built into nonlinear dynamical systems allows us to construct such a global optimization landscape, which serves as the Lyapunov function for the ordinary differential equation. We find exact constructions on the landscape for a class of dynamical systems, including a van der Pol type oscillator, competitive Lotka-Volterra systems, and a chaotic system. The landscape constructed provides a new angle for understanding and modelling biological network dynamics.

  7. Active control rotor model testing at Princeton's Rotorcraft Dynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Mckillip, Robert M., Jr.

    1988-01-01

    A description of the model helicopter rotor tests currently in progress at Princeton's Rotorcraft Dynamics Laboratory is presented. The tests are designed to provide data for rotor dynamic modeling for use with active control system design. The model rotor to be used incoporates the capability for Individual Blade Control (IBC) or Higher Harmonic Control through the use of a standard swashplate on a three bladed hub. Sample results from the first series of tests are presented, along with the methodology used for state and parameter identification. Finally, pending experiments and possible research directions using this model and test facility are outlined.

  8. Small-scale dynamic gap test

    NASA Astrophysics Data System (ADS)

    Cook, Malcolm David

    2012-03-01

    In this paper we describe a new small-scale test, requiring small quantities of energetic material, designed using our CHARM ignition and growth routine in the DYNA2D hydrocode. The new test is a modified gap test and uses detonating nitromethane to provide dynamic confinement (instead of a thick metal case) whilst exposing the sample to a long duration shock wave. This arrangement allows less reactive materials that are below their critical diameter, more time to react. We present details of the modelling of the test together with some preliminary experiments to demonstrate the potential of the new test method.

  9. Insulation bonding test system

    NASA Technical Reports Server (NTRS)

    Beggs, J. M.; Johnston, G. D.; Coleman, A. D.; Portwood, J. N.; Saunders, J. M.; Redmon, J. W.; Porter, A. C. (Inventor)

    1984-01-01

    A method and a system for testing the bonding of foam insulation attached to metal is described. The system involves the use of an impacter which has a calibrated load cell mounted on a plunger and a hammer head mounted on the end of the plunger. When the impacter strikes the insulation at a point to be tested, the load cell measures the force of the impact and the precise time interval during which the hammer head is in contact with the insulation. This information is transmitted as an electrical signal to a load cell amplifier where the signal is conditioned and then transmitted to a fast Fourier transform (FFT) analyzer. The FFT analyzer produces energy spectral density curves which are displayed on a video screen. The termination frequency of the energy spectral density curve may be compared with a predetermined empirical scale to determine whether a igh quality bond, good bond, or debond is present at the point of impact.

  10. SAFER Rescue System Tested

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronauts Carl J. Meade and Mark C. Lee (red strip on suit) test the new Simplified Aid for EVA Rescue (SAFER) system some 130 nautical miles above Earth. The pair was actually performing an in-space rehearsal or demonstration of a contingency rescue using never-before flown hardware. Meade, who here wears the small back-pack unit with its complementary chest-mounted control unit, and Lee anchored to the Space Shuttle Discovery's Remote Manipulator System (RMS) robot arm, took turns using the SAFER hardware during their shared space walk.

  11. Vehicle brake testing system

    DOEpatents

    Stevens, Samuel S [Harriman, TN; Hodgson, Jeffrey W [Lenoir City, TN

    2002-11-19

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  12. Recent rotorcraft aeroelastic testing in the Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Yeager, William T., Jr.; Mirick, Paul H.; Wilbur, Matthew L.; Singleton, Jeffrey D.; Wilkie, W. K.; Hamouda, M.-N. H.

    1991-01-01

    Wind-tunnel testing of a properly scaled aeroelastic model helicopter rotor is considered a necessary phase in the design and development of new rotor systems. For this reason, extensive testing of aeroelastically scaled model rotors is done in the Transonic Dynamics Tunnel (TDT) located at the Langley Research Center. A unique capability of this facility, which enables proper dynamic scaling, is the use of diflourodichloromethane, or Refrigerant-12 (R-12) as a test medium. The paper presents a description of the TDT and a discussion of the benefits of using R-12 as a test medium. A description of the system used to conduct model tests is provided and examples of recent rotor tests are cited to illustrate the types of aeroelastic model rotor tests conducted in the TDT.

  13. Continuous waves probing in dynamic acoustoelastic testing

    NASA Astrophysics Data System (ADS)

    Scalerandi, M.; Gliozzi, A. S.; Ait Ouarabi, M.; Boubenider, F.

    2016-05-01

    Consolidated granular media display a peculiar nonlinear elastic behavior, which is normally analysed with dynamic ultrasonic testing exploiting the dependence on amplitude of different measurable quantities, such as the resonance frequency shift, the amount of harmonics generation, or the break of the superposition principle. However, dynamic testing allows measuring effects which are averaged over one (or more) cycles of the exciting perturbation. Dynamic acoustoelastic testing has been proposed to overcome this limitation and allow the determination of the real amplitude dependence of the modulus of the material. Here, we propose an implementation of the approach, in which the pulse probing waves are substituted by continuous waves. As a result, instead of measuring a time-of-flight as a function of the pump strain, we study the dependence of the resonance frequency on the strain amplitude, allowing to derive the same conclusions but with an easier to implement procedure.

  14. Dynamic Breaking Tests of Airplane Parts

    NASA Technical Reports Server (NTRS)

    Hertel, Heinrich

    1933-01-01

    The static stresses of airplane parts, the magnitude of which can be determined with the aid of static load assumptions, are mostly superposed by dynamic stresses, the magnitude of which has been but little explored. The object of the present investigation is to show how the strength of airplane parts can best be tested with respect to dynamic stresses with and without superposed static loading, and to what extent the dynamic strength of the parts depends on their structural design. Experimental apparatus and evaluation methods were developed and tried for the execution of vibration-strength tests with entire structural parts both with and without superposed static loading. Altogether ten metal spars and spar pieces and two wooden spars were subjected to vibration breaking tests.

  15. Analytical qualification of system identification (modal analysis) codes for use in the dynamic testing of nuclear power plant structures

    SciTech Connect

    Weaver, H.J.; Ng, D.; Lager, D.

    1980-01-02

    The analytical evaluation of two particular system identification codes used at Lawrence Livermore Laboratory is presented. Both codes are eigenparameter identification codes; however, one uses a time domain approach while the other a frequency domain approach. The evaluation was accomplished by analytically generating several time history signals in which the true modal parameters were known. These time histories ranged from widely spaced modes with spacing factors of 100 percent to closely spaced modes with spacing factors of 6 percent. These signals were then polluted with various levels of simulated measurement noise and the ability of our computer codes to extract the parameters from this noisy data was evaluated.

  16. Resonance test system

    DOEpatents

    Musial, Walter; White, Darris

    2011-05-31

    An apparatus (10) for applying at least one load to a specimen (12) according to one embodiment of the invention may comprise a mass (18). An actuator (20) mounted to the specimen (12) and operatively associated with the mass (18) moves the mass (18) along a linear displacement path (22) that is perpendicular to a longitudinal axis of the specimen (12). A control system (26) operatively associated with the actuator (20) operates the actuator (20) to reciprocate the mass (18) along the linear displacement path (22) at a reciprocating frequency, the reciprocating frequency being about equal to a resonance frequency of the specimen (12) in a test configuration.

  17. Dynamic testing of the Kearfott 2401 accelerometer

    NASA Technical Reports Server (NTRS)

    Katz, B.

    1975-01-01

    A Kearfott pendulous accelerometer was integrated with a United Aircraft pulse torque servo assembly (PTSA) forced binary loop. The test objective was to measure dynamic errors due to anisoinertia and OA coupling effects. The instrument and its torque loop are described, and the technique for isolating the anisoinertia error from centripetal acceleration effects is discussed in detail. The measured anisoinertia error coefficient was 3.0 cm, and the testing confirmed that no rectified OA coupling error was present.

  18. An Introduction to Dynamic Systems and Feedback.

    ERIC Educational Resources Information Center

    Rabins, Michael J.

    This introduction to dynamic systems is intended for freshman and sophomore students in engineering, physical science, or social science. Material has been class tested and has led to increased student interest in further work in systems analysis and operations research. Notes are written for the student and are self-contained. Material can be…

  19. SPECTR System Operational Test Report

    SciTech Connect

    W.H. Landman Jr.

    2011-08-01

    This report overviews installation of the Small Pressure Cycling Test Rig (SPECTR) and documents the system operational testing performed to demonstrate that it meets the requirements for operations. The system operational testing involved operation of the furnace system to the design conditions and demonstration of the test article gas supply system using a simulated test article. The furnace and test article systems were demonstrated to meet the design requirements for the Next Generation Nuclear Plant. Therefore, the system is deemed acceptable and is ready for actual test article testing.

  20. Dynamics Explorer twin spacecraft under evaluation tests

    NASA Technical Reports Server (NTRS)

    Redmond, C.

    1981-01-01

    The Dynamics Explorer A and B satellites designed to explore the interactive processes occuring between the magnetosphere and Earth's ionosphere, upper atmosphere, and plasmasphere are described. Effects of these interactions, satellite orbits, data collecting antennas, solar power systems, axes, configurations, and Earth based command, control and data display systems are mentioned.

  1. Cumulative Measurement Errors for Dynamic Testing of Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Winnitoy, Susan

    2012-01-01

    Located at the NASA Johnson Space Center in Houston, TX, the Six-Degree-of-Freedom Dynamic Test System (SDTS) is a real-time, six degree-of-freedom, short range motion base simulator originally designed to simulate the relative dynamics of two bodies in space mating together (i.e., docking or berthing). The SDTS has the capability to test full scale docking and berthing systems utilizing a two body dynamic docking simulation for docking operations and a Space Station Remote Manipulator System (SSRMS) simulation for berthing operations. The SDTS can also be used for nonmating applications such as sensors and instruments evaluations requiring proximity or short range motion operations. The motion base is a hydraulic powered Stewart platform, capable of supporting a 3,500 lb payload with a positional accuracy of 0.03 inches. The SDTS is currently being used for the NASA Docking System testing and has been also used by other government agencies. The SDTS is also under consideration for use by commercial companies. Examples of tests include the verification of on-orbit robotic inspection systems, space vehicle assembly procedures and docking/berthing systems. The facility integrates a dynamic simulation of on-orbit spacecraft mating or de-mating using flight-like mechanical interface hardware. A force moment sensor is used for input during the contact phase, thus simulating the contact dynamics. While the verification of flight hardware presents unique challenges, one particular area of interest involves the use of external measurement systems to ensure accurate feedback of dynamic contact. The measurement systems for the test facility have two separate functions. The first is to take static measurements of facility and test hardware to determine both the static and moving frames used in the simulation and control system. The test hardware must be measured after each configuration change to determine both sets of reference frames. The second function is to take dynamic

  2. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    NASA Technical Reports Server (NTRS)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  3. Impact Landing Dynamics Facility Crash Test

    NASA Technical Reports Server (NTRS)

    1975-01-01

    By 1972 the Lunar Landing Research Facility was no longer in use for its original purpose. The 400-foot high structure was swiftly modified to allow engineers to study the dynamics of aircraft crashes. 'The Impact Dynamics Research Facility is used to conduct crash testing of full-scale aircraft under controlled conditions. The aircraft are swung by cables from an A-frame structure that is approximately 400 ft. long and 230 foot high. The impact runway can be modified to simulate other grand crash environments, such as packed dirt, to meet a specific test requirement.' 'In 1972, NASA and the FAA embarked on a cooperative effort to develop technology for improved crashworthiness and passenger survivability in general aviation aircraft with little or no increase in weight and acceptable cost. Since then, NASA has 'crashed' dozens of GA aircraft by using the lunar excursion module (LEM) facility originally built for the Apollo program.' This photograph shows Crash Test No. 7.

  4. Constructing minimal models for complex system dynamics

    NASA Astrophysics Data System (ADS)

    Barzel, Baruch; Liu, Yang-Yu; Barabási, Albert-László

    2015-05-01

    One of the strengths of statistical physics is the ability to reduce macroscopic observations into microscopic models, offering a mechanistic description of a system's dynamics. This paradigm, rooted in Boltzmann's gas theory, has found applications from magnetic phenomena to subcellular processes and epidemic spreading. Yet, each of these advances were the result of decades of meticulous model building and validation, which are impossible to replicate in most complex biological, social or technological systems that lack accurate microscopic models. Here we develop a method to infer the microscopic dynamics of a complex system from observations of its response to external perturbations, allowing us to construct the most general class of nonlinear pairwise dynamics that are guaranteed to recover the observed behaviour. The result, which we test against both numerical and empirical data, is an effective dynamic model that can predict the system's behaviour and provide crucial insights into its inner workings.

  5. Small-scale dynamic confinement gap test

    NASA Astrophysics Data System (ADS)

    Cook, Malcolm

    2011-06-01

    Gap tests are routinely used to ascertain the shock sensitiveness of new explosive formulations. The tests are popular since that are easy and relatively cheap to perform. However, with modern insensitive formulations with big critical diameters, large test samples are required. This can make testing and screening of new formulations expensive since large quantities of test material are required. Thus a new test that uses significantly smaller sample quantities would be very beneficial. In this paper we describe a new small-scale test that has been designed using our CHARM ignition and growth routine in the DYNA2D hydrocode. The new test is a modified gap test and uses detonating nitromethane to provide dynamic confinement (instead of a thick metal case) whilst exposing the sample to a long duration shock wave. The long duration shock wave allows less reactive materials that are below their critical diameter, more time to react. We present details on the modelling of the test together with some preliminary experiments to demonstrate the potential of the new test method.

  6. Test of a flexible spacecraft dynamics simulator

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald; Sedlak, Joseph

    1998-01-01

    There are a number of approaches one can take to modeling the dynamics of a flexible body. While one can attempt to capture the full dynamical behavior subject to disturbances from actuators and environmental torques, such a detailed description often is unnecessary. Simplification is possible either by limiting the amplitude of motion to permit linearization of the dynamics equations or by restricting the types of allowed motion. In this work, we study the nonlinear dynamics of bending deformations of wire booms on spinning spacecraft. The theory allows for large amplitude excursions from equilibrium while enforcing constraints on the dynamics to prohibit those modes that are physically less relevant or are expected to damp out fast. These constraints explicitly remove the acoustic modes (i.e., longitudinal sound waves and shear waves) while allowing for arbitrary bending and twisting, motions which typically are of lower frequency. As a test case, a spin axis reorientation maneuver by the Polar Plasma Laboratory (POLAR) spacecraft has been simulated. POLAR was chosen as a representative spacecraft because it has flexible wire antennas that extend to a length of 65 meters. Bending deformations in these antennas could be quite large and have a significant effect on the attitude dynamics of the spacecraft body. Summary results from the simulation are presented along, with a comparison with POLAR flight data.

  7. The Lethality Test System

    NASA Astrophysics Data System (ADS)

    Parsons, W. M.; Sims, J. R.; Parker, J. V.

    1986-11-01

    The Lethality Test System (LTS) under construction at Los Alamos is an electromagnetic launcher facility designed to perform impact experiments at velocities up to 15 km/sec. The launcher is a 25 mm round bore, plasma armature railgun 22 m in length. Preinjection is accomplished with a two-stage light gas gun capable of 7 km/sec. The railgun power supply utilizes traction motors, vacuum interrupters, and pulse transformers. An assembly of 28 traction motors, equipped with flywheels, stores approximately 80 MJ at 92 percent of full speed and energizes the primary windings of three pulse transformers at a current of 50 kA. At peak current an array of vacuum interrupters disconnects the transformer primary windings and forces the current to flow in the secondary windings. The secondary windings are connected to the railgun, and by staging the vacuum interrupter openings, a 1-1.3 MA ramped current waveform will be delivered to the railgun.

  8. Lethality test system

    SciTech Connect

    Parsons, W.M.; Sims, J.R.; Parker, J.V.

    1986-01-01

    The Lethality Test System (LTS), presently under construction at Los Alamos, is an electromagnetic launcher facility designed to perform impact experiments at velocities up to 15 km/s. The launcher is a 25 mm round bore, plasma armature railgun extending 22 m in length. Preinjection is accomplished with a two-stage gas gun capable of 7 km/s. The railgun power supply utilizes traction motors, vacuum interrupters, and pulse transformers. An assembly of 28 traction motors, equipped with flywheels, stores approximately 80 MJ at 92% of full speed and energizes the primary windings of three pulse transformers at a current of 50 kA. At peak current an array of vacuum interrupters disconnects the transformer primary windings and forces the current to flow in the secondary windings. The secondary windings are connected to the railgun, and by staging the vacuum interrupter openings, a 1 MA to 1.3 MA ramped current waveform will be delivered to the railgun.

  9. Similarity Metrics for Closed Loop Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.; Yang, Lee C.; Bedrossian, Naz; Hall, Robert A.

    2008-01-01

    To what extent and in what ways can two closed-loop dynamic systems be said to be "similar?" This question arises in a wide range of dynamic systems modeling and control system design applications. For example, bounds on error models are fundamental to the controller optimization with modern control design methods. Metrics such as the structured singular value are direct measures of the degree to which properties such as stability or performance are maintained in the presence of specified uncertainties or variations in the plant model. Similarly, controls-related areas such as system identification, model reduction, and experimental model validation employ measures of similarity between multiple realizations of a dynamic system. Each area has its tools and approaches, with each tool more or less suited for one application or the other. Similarity in the context of closed-loop model validation via flight test is subtly different from error measures in the typical controls oriented application. Whereas similarity in a robust control context relates to plant variation and the attendant affect on stability and performance, in this context similarity metrics are sought that assess the relevance of a dynamic system test for the purpose of validating the stability and performance of a "similar" dynamic system. Similarity in the context of system identification is much more relevant than are robust control analogies in that errors between one dynamic system (the test article) and another (the nominal "design" model) are sought for the purpose of bounding the validity of a model for control design and analysis. Yet system identification typically involves open-loop plant models which are independent of the control system (with the exception of limited developments in closed-loop system identification which is nonetheless focused on obtaining open-loop plant models from closed-loop data). Moreover the objectives of system identification are not the same as a flight test and

  10. 2 kWe Solar Dynamic Ground Test Demonstration Project. Volume 3; Fabrication and Test Report

    NASA Technical Reports Server (NTRS)

    Alexander, Dennis

    1997-01-01

    The Solar Dynamic Ground Test Demonstration (SDGTD) project has successfully designed and fabricated a complete solar-powered closed Brayton electrical power generation system and tested it in a relevant thermal vacuum facility at NASA Lewis Research Center (LeRC). In addition to completing technical objectives, the project was completed 3-l/2 months early, and under budget.

  11. Dynamic granularity of imaging systems

    NASA Astrophysics Data System (ADS)

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.

    2015-11-01

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the "dynamic granularity" G dyn as a standardized, objective relation between a detector's spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rather than the widely found characterization of detectors such as cameras or films by themselves. This relation can partly be explained through consideration of the signal's photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system's performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. This article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia's Z-Backlighter facility.

  12. Solderability test system

    DOEpatents

    Yost, Fred; Hosking, Floyd M.; Jellison, James L.; Short, Bruce; Giversen, Terri; Reed, Jimmy R.

    1998-01-01

    A new test method to quantify capillary flow solderability on a printed wiring board surface finish. The test is based on solder flow from a pad onto narrow strips or lines. A test procedure and video image analysis technique were developed for conducting the test and evaluating the data. Feasibility tests revealed that the wetted distance was sensitive to the ratio of pad radius to line width (l/r), solder volume, and flux predry time.

  13. Solderability test system

    DOEpatents

    Yost, F.; Hosking, F.M.; Jellison, J.L.; Short, B.; Giversen, T.; Reed, J.R.

    1998-10-27

    A new test method to quantify capillary flow solderability on a printed wiring board surface finish. The test is based on solder flow from a pad onto narrow strips or lines. A test procedure and video image analysis technique were developed for conducting the test and evaluating the data. Feasibility tests revealed that the wetted distance was sensitive to the ratio of pad radius to line width (l/r), solder volume, and flux predry time. 11 figs.

  14. Dynamics and controls in MAGLEV systems

    NASA Astrophysics Data System (ADS)

    Cai, Y.; Chen, S. S.; Rote, D. M.

    1992-09-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, and vehicle stability is an important safety-related element. To design a proper guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade-off between guideway smoothness and the levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. In this study, the role of dynamics and controls in maglev vehicle/guideway interactions is discussed, and the literature on modeling the dynamic interactions of vehicle/guideway and suspension controls for ground vehicles is reviewed.

  15. Dynamic granularity of imaging systems

    DOE PAGESBeta

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.

    2015-11-04

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” Gdyn as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rathermore » than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.« less

  16. Dynamic granularity of imaging systems

    SciTech Connect

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.

    2015-11-04

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” Gdyn as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rather than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.

  17. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    NASA Technical Reports Server (NTRS)

    Nance, Donald; Liever, Peter; Nielsen, Tanner

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test, conducted at Marshall Space Flight Center. The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  18. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    NASA Technical Reports Server (NTRS)

    Nance, Donald K.; Liever, Peter A.

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test (SMAT), conducted at Marshall Space Flight Center (MSFC). The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  19. Impact Landing Dynamics Facility Crash Test

    NASA Technical Reports Server (NTRS)

    1975-01-01

    By 1972 the Lunar Landing Research Facility was no longer in use for its original purpose. The 400-foot high structure was swiftly modified to allow engineers to study the dynamics of aircraft crashes. The Impact Dynamics Research Facility is used to conduct crash testing of full- scale aircraft under controlled conditions. The aircraft are swung by cables from an A-frame structure that is approximately 400 ft. long and 230 foot high. The impact runway can be modified to simulate other grand crash environments, such as packed dirt, to meet a specific test requirement. In 1972, NASA and the FAA embarked on a cooperative effort to develop technology for improved crashworthiness and passenger survivability in general aviation aircraft with little or no increase in weight and cceptable cost. Since then, NASA has 'crashed' dozens of GA aircraft by using the lunar excursion module (LEM) facility originally built for the Apollo program.

  20. Ergodicity convergence test suggests telomere motion obeys fractional dynamics.

    PubMed

    Kepten, E; Bronshtein, I; Garini, Y

    2011-04-01

    Anomalous diffusion, observed in many biological processes, is a generalized description of a wide variety of processes, all obeying the same law of mean-square displacement. Identifying the basic mechanisms of these observations is important for deducing the nature of the biophysical systems measured. We implement a previously suggested method for distinguishing between fractional Langevin dynamics, fractional Brownian motion, and continuous time random walk based on the ergodic nature of the data. We apply the method together with the recently suggested P-variation test and the displacement correlation to the lately measured dynamics of telomeres in the nucleus of mammalian cells and find strong evidence that the telomeres motion obeys fractional dynamics. The ergodic dynamics are observed experimentally to fit fractional Brownian or Langevin dynamics. PMID:21599212

  1. Ergodicity convergence test suggests telomere motion obeys fractional dynamics

    NASA Astrophysics Data System (ADS)

    Kepten, E.; Bronshtein, I.; Garini, Y.

    2011-04-01

    Anomalous diffusion, observed in many biological processes, is a generalized description of a wide variety of processes, all obeying the same law of mean-square displacement. Identifying the basic mechanisms of these observations is important for deducing the nature of the biophysical systems measured. We implement a previously suggested method for distinguishing between fractional Langevin dynamics, fractional Brownian motion, and continuous time random walk based on the ergodic nature of the data. We apply the method together with the recently suggested P-variation test and the displacement correlation to the lately measured dynamics of telomeres in the nucleus of mammalian cells and find strong evidence that the telomeres motion obeys fractional dynamics. The ergodic dynamics are observed experimentally to fit fractional Brownian or Langevin dynamics.

  2. Time-Reversal Test for Stochastic Quantum Dynamics

    NASA Astrophysics Data System (ADS)

    Dowling, Mark R.; Drummond, Peter D.; Davis, Matthew J.; Deuar, Piotr

    2005-04-01

    The calculation of quantum dynamics is currently a central issue in theoretical physics, with diverse applications ranging from ultracold atomic Bose-Einstein condensates to condensed matter, biology, and even astrophysics. Here we demonstrate a conceptually simple method of determining the regime of validity of stochastic simulations of unitary quantum dynamics by employing a time-reversal test. We apply this test to a simulation of the evolution of a quantum anharmonic oscillator with up to 6.022×1023 (Avogadro’s number) of particles. This system is realizable as a Bose-Einstein condensate in an optical lattice, for which the time-reversal procedure could be implemented experimentally.

  3. Rotor/bearing system dynamic stiffness measurements

    NASA Technical Reports Server (NTRS)

    Muszynska, A.

    1985-01-01

    Sweep perturbation testing as used in Modal Analysis when applied to a rotating machine has to take into consideration the machine dynamic state of equilibrium at its operational rotative speed. This stands in contrasts to a static equilibrium of nonrotating structures. The rotational energy has a significant influence on rotor dynamic characteristics. The best perturbing input for rotating machines is a forward or reverse rotating, circular force applied directly to the shaft. Determination of Dynamic Stiffness Characteristics of the rotor bearing system by nonsynchronous perturbation of a symmetric rotating shaft supported in one relatively rigid and one oil lubricated bearing.

  4. Dynamic Investigation of Static Divergence: Analysis and Testing

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    2000-01-01

    The phenomenon known as aeroelastic divergence is the focus of this work. The analyses and experiment presented here show that divergence can occur without a structural dynamic mode losing its oscillatory nature. Aeroelastic divergence occurs when the structural restorative capability or stiffness of a structure is overwhelmed by the static aerodynamic moment. This static aeroelastic coupling does not require the structural dynamic system behavior to cease, however. Aeroelastic changes in the dynamic mode behavior are governed not only by the stiffness, but by damping and inertial properties. The work presented here supports these fundamental assertions by examining a simple system: a typical section airfoil with only a rotational structural degree of freedom. Analytical results identified configurations that exhibit different types of dynamic mode behavior as the system encounters divergence. A wind tunnel model was designed and tested to examine divergence experimentally. The experimental results validate the analytical calculations and explicitly examine the divergence phenomenon where the dynamic mode persists. Three configurations of the wind tunnel model were tested. The experimental results agree very well with the analytical predictions of subcritical characteristics, divergence velocity, and behavior of the noncritical dynamic mode at divergence.

  5. Dynamic stability of maglev systems

    SciTech Connect

    Cai, Y.; Chen, S.S.; Mulcahy, T.M.; Rote, D.M.

    1992-09-01

    Since the occurrence of dynamic instabilities is not acceptable for any commercial maglev systems, it is important to consider the dynamic instability in the development of all maglev systems. This study is to consider the stability of maglev systems based on experimental data, scoping calculations and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on the guideway which consists of double L-shaped aluminum segments attached to a rotating wheel. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev system.

  6. Dynamic stability of maglev systems

    SciTech Connect

    Cai, Y.; Chen, S.S.; Mulcahy, T.M.; Rote, D.M.

    1992-01-01

    Since the occurrence of dynamic instabilities is not acceptable for any commercial maglev systems, it is important to consider the dynamic instability in the development of all maglev systems. This study is to consider the stability of maglev systems based on experimental data, scoping calculations and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on the guideway which consists of double L-shaped aluminum segments attached to a rotating wheel. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev system.

  7. Dynamic stability of maglev systems

    SciTech Connect

    Cai, Y.; Chen, S.S.; Mulcahy, T.M.; Rote, D.M.

    1994-05-01

    Because dynamic instabilities are not acceptable in any commercial maglev system, it is important to consider dynamic instability in the development of all maglev systems. This study considers the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.

  8. Systoles in discrete dynamical systems

    NASA Astrophysics Data System (ADS)

    Fernandes, Sara; Grácio, Clara; Ramos, Carlos Correia

    2013-01-01

    The fruitful relationship between Geometry and Graph Theory has been explored by several authors benefiting also the Theory of discrete dynamical systems seen as Markov chains in graphs. In this work we will further explore the relation between these areas, giving a geometrical interpretation of notions from dynamical systems. In particular, we relate the topological entropy with the systole, here defined in the context of discrete dynamical systems. We show that for continuous interval maps the systole is trivial; however, for the class of interval maps with one discontinuity point the systole acquires relevance from the point of view of the dynamical behavior. Moreover, we define the geodesic length spectrum associated to a Markov interval map and we compute the referred spectrum in several examples.

  9. Dynamic testing of regional viscoelastic behavior of canine sclera

    PubMed Central

    Palko, Joel R.; Pan, Xueliang; Liu, Jun

    2011-01-01

    Intraocular pressure (IOP) fluctuations have gained recent clinical interest and thus warrant an understanding of how the sclera responds to dynamic mechanical insults. The objective of this study was to characterize the regional dynamic viscoelastic properties of canine sclera under physiological cyclic loadings. Scleral strips were excised from the anterior, equatorial, and posterior sclera in ten canine eyes. The dimensions of each strip were measured using a high resolution ultrasound imaging system. The strips were tested in a humidity chamber at approximately 37°C using a Rheometrics Systems Analyzer. A cyclic strain input (0.25%, 1 Hz) was applied to the strips, superimposed upon pre-stresses corresponding to an IOP of 15, 25, and 45 mmHg. The cyclic stress output was recorded and the dynamic properties were calculated based on linear viscoelasticity. Uniaxial tensile tests were also performed on the same samples and the results were compared to those reported for human eyes. The results showed that the sclera’s resistance to dynamic loading increased significantly while the damping capability decreased significantly with increasing pre-stresses for all regions of sclera (P<0.001). Anterior sclera appeared to have a significantly higher damping capability than equatorial and posterior sclera (P=0.003 and 0.018, respectively). The secant modulus from uniaxial tensile tests showed a decreasing trend from anterior to posterior sclera, displaying a similar pattern as in the human eye. In conclusion, all scleral regions in the canine eyes exhibited an increased ability to resist and a decreased ability to dampen cyclic stress insults at increasing prestress (i.e., increasing steady-state IOP). The regional variation of the dynamic properties differed from those of uniaxial tensile tests. Dynamic testing may provide useful information to better understand the mechanical behavior of the sclera in response to dynamic IOP. PMID:21983041

  10. Dynamic modeling of power systems

    SciTech Connect

    Reed, M.; White, J.

    1995-12-01

    Morgantown Energy Technology Center`s (METC) Process and Project Engineering (P&PE) personnel continue to refine and modify dynamic modeling or simulations for advanced power systems. P&PE, supported by Gilbert/Commonwealth, Inc. (G/C), has adapted PC/TRAX commercial dynamic software to include equipment found in advanced power systems. PC/TRAX`s software contains the equations that describe the operation of standard power plant equipment such as gas turbines, feedwater pumps, and steam turbines. The METC team has incorporated customized dynamic models using Advanced Continuous Simulation Language (ACSL) code for pressurized circulating fluidized-bed combustors, carbonizers, and other components that are found in Advanced Pressurized Fluidized-Bed Combustion (APFBC) systems. A dynamic model of a commercial-size APFBC power plant was constructed in order to determine representative operating characteristics of the plant and to gain some insight into the best type of control system design. The dynamic model contains both process and control model components. This presentation covers development of a model used to describe the commercial APFBC power plant. Results of exercising the model to simulate plant performance are described and illustrated. Information gained during the APFBC study was applied to a dynamic model of a 1-1/2 generation PFBC system. Some initial results from this study are also presented.

  11. Dynamic assertion testing of flight control software

    NASA Technical Reports Server (NTRS)

    Andrews, D. M.; Mahmood, A.; Mccluskey, E. J.

    1985-01-01

    Digital Flight Control System (DFCS) software was used as a test case for assertion testing. The assertions were written and embedded in the code, then errors were inserted (seeded) one at a time and the code executed. Results indicate that assertion testing is an effective and efficient method of detecting errors in flight software. Most errors are eliminate at an earlier stage in the development than before.

  12. Realization of dynamical electronic systems

    NASA Astrophysics Data System (ADS)

    Hammari, Elena; Catthoor, Francky; Iasemidis, Leonidas; Kjeldsberg, Per Gunnar; Huisken, Jos; Tsakalis, Konstantinos

    2014-04-01

    This article gives an overview of a methodology for building dynamical electronic systems. As an example a part of a system for epileptic seizure prediction is used, which monitors EEG signals and continuously calculates the largest short-term Lyapunov exponents. In dynamical electronic systems, the cost of exploitation, for instance energy consumption, may vary substantially with the values of input signals. In addition, the functions describing the variations are not known at the time the system is designed. As a result, the architecture of the system must accommodate for the worst case exploitation costs, which rapidly exceed the available resources (for instance battery life) when accumulated over time. The presented system scenario methodology solves these challenges by identifying at design time groups of possible exploitation costs, called system scenarios, and implementing a mechanism to detect system scenarios at run time and re-configure the system to cost-efficiently accommodate them. During reconfiguration, the optimized system architecture settings for the active system scenario are selected and the total exploitation cost is reduced. When the dynamic behavior is due to input data variables with a large number of possible values, current techniques for bottom-up scenario identification and detection becomes too complex. A new top-down technique, based on polygonal regions, is presented in this paper. The results for the example system indicate that with 10 system scenarios the average energy consumption of the system can be reduced by 28% and brought within 5% of the theoretically best solution.

  13. Solar system dynamics

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack

    1987-01-01

    The rotational dynamics of irregularly shaped satellites and the origin of Kirkwood Gaps are discussed. The chaotic tumbling of Hyperion and the anomalously low eccentricity of Deimos are examined. The Digital Orrery is used to explore the phase space of the ellipic restricted three body problem near the principal commensurabilities (2/1, 5/2, 3/1, and 3/2). The results for the 3/1 commensurability are in close agreement with those found earlier with the algebraic mapping method. Large chaotic zones are associated with the 3/1, 2/1 and 5/2 resonances, where there are gaps in the distribution of asteroids. The region near the 3/2 resonance, where the Hilda group of asteroids is located, is largely devoid of chaotic behavior. Thus, there is a qualitative agreement between the character of the motion and the distribution of asteroids.

  14. Photovoltaic systems test facility

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Facility provides broad and flexible capability for evaluating photovoltaic systems and design concepts. As 'breadboard' system, it can be used to check out complete systems, subsystems, and components before installation in actual service.

  15. Overview of the solar dynamic ground test demonstration program

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Boyle, Robert V.

    1993-01-01

    The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LeRC) vacuum facility. An aerospace industry/ government team is working together to design, fabricate, build, and test a complete SD system. This paper reviews the goals and status of the SD GTD program. A description of the SD system includes key design features of the system, subsystems, and components as reported at the Critical Design Review (CDR).

  16. Biologically inspired dynamic material systems.

    PubMed

    Studart, André R

    2015-03-01

    Numerous examples of material systems that dynamically interact with and adapt to the surrounding environment are found in nature, from hair-based mechanoreceptors in animals to self-shaping seed dispersal units in plants to remodeling bone in vertebrates. Inspired by such fascinating biological structures, a wide range of synthetic material systems have been created to replicate the design concepts of dynamic natural architectures. Examples of biological structures and their man-made counterparts are herein revisited to illustrate how dynamic and adaptive responses emerge from the intimate microscale combination of building blocks with intrinsic nanoscale properties. By using top-down photolithographic methods and bottom-up assembly approaches, biologically inspired dynamic material systems have been created 1) to sense liquid flow with hair-inspired microelectromechanical systems, 2) to autonomously change shape by utilizing plantlike heterogeneous architectures, 3) to homeostatically influence the surrounding environment through self-regulating adaptive surfaces, and 4) to spatially concentrate chemical species by using synthetic microcompartments. The ever-increasing complexity and remarkable functionalities of such synthetic systems offer an encouraging perspective to the rich set of dynamic and adaptive properties that can potentially be implemented in future man-made material systems. PMID:25583299

  17. Self-Supervised Dynamical Systems

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2003-01-01

    Some progress has been made in a continuing effort to develop mathematical models of the behaviors of multi-agent systems known in biology, economics, and sociology (e.g., systems ranging from single or a few biomolecules to many interacting higher organisms). Living systems can be characterized by nonlinear evolution of probability distributions over different possible choices of the next steps in their motions. One of the main challenges in mathematical modeling of living systems is to distinguish between random walks of purely physical origin (for instance, Brownian motions) and those of biological origin. Following a line of reasoning from prior research, it has been assumed, in the present development, that a biological random walk can be represented by a nonlinear mathematical model that represents coupled mental and motor dynamics incorporating the psychological concept of reflection or self-image. The nonlinear dynamics impart the lifelike ability to behave in ways and to exhibit patterns that depart from thermodynamic equilibrium. Reflection or self-image has traditionally been recognized as a basic element of intelligence. The nonlinear mathematical models of the present development are denoted self-supervised dynamical systems. They include (1) equations of classical dynamics, including random components caused by uncertainties in initial conditions and by Langevin forces, coupled with (2) the corresponding Liouville or Fokker-Planck equations that describe the evolutions of probability densities that represent the uncertainties. The coupling is effected by fictitious information-based forces, denoted supervising forces, composed of probability densities and functionals thereof. The equations of classical mechanics represent motor dynamics that is, dynamics in the traditional sense, signifying Newton s equations of motion. The evolution of the probability densities represents mental dynamics or self-image. Then the interaction between the physical and

  18. Dynamically reconfigurable photovoltaic system

    DOEpatents

    Okandan, Murat; Nielson, Gregory N.

    2016-05-31

    A PV system composed of sub-arrays, each having a group of PV cells that are electrically connected to each other. A power management circuit for each sub-array has a communications interface and serves to connect or disconnect the sub-array to a programmable power grid. The power grid has bus rows and bus columns. A bus management circuit is positioned at a respective junction of a bus column and a bus row and is programmable through its communication interface to connect or disconnect a power path in the grid. As a result, selected sub-arrays are connected by selected power paths to be in parallel so as to produce a low system voltage, and, alternately in series so as to produce a high system voltage that is greater than the low voltage by at least a factor of ten.

  19. Dynamics and controls in maglev systems

    SciTech Connect

    Cai, Y.; Chen, S.S.; Rote, D.M.

    1992-09-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, and vehicle stability is an important safety-related element. To design a proper guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore the trade-off between guideway smoothness and the levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. In this study, the role of dynamics and controls in maglev vehicle/guideway interactions is discussed, and the literature on modeling the dynamic interactions of vehicle/guideway and suspension controls for ground vehicles is reviewed. Particular emphasis is placed on modeling vehicle/guideway interactions and response characteristics of maglev systems for a multicar, multiload vehicle traveling on a single- or doublespan flexible guideway, including coupling effects of vehicle/guideway, comparison of concentrated and distributed loads, and ride comfort. Different control-law designs are introduced into vehicle suspensions when a simple two-degree-of-freedom vehicle model is applied. Active and semiactive control designs for primary and secondary suspensions do improve the response of vehicle and provide acceptable ride comfort. Finally, future research associated with dynamics and controls of vehicle/guideway systems is identified.

  20. Constraint elimination in dynamical systems

    NASA Technical Reports Server (NTRS)

    Singh, R. P.; Likins, P. W.

    1989-01-01

    Large space structures (LSSs) and other dynamical systems of current interest are often extremely complex assemblies of rigid and flexible bodies subjected to kinematical constraints. A formulation is presented for the governing equations of constrained multibody systems via the application of singular value decomposition (SVD). The resulting equations of motion are shown to be of minimum dimension.

  1. Managing Complex Dynamical Systems

    ERIC Educational Resources Information Center

    Cox, John C.; Webster, Robert L.; Curry, Jeanie A.; Hammond, Kevin L.

    2011-01-01

    Management commonly engages in a variety of research designed to provide insight into the motivation and relationships of individuals, departments, organizations, etc. This paper demonstrates how the application of concepts associated with the analysis of complex systems applied to such data sets can yield enhanced insights for managerial action.

  2. Software configurable optical test system: a computerized reverse Hartmann test.

    PubMed

    Su, Peng; Parks, Robert E; Wang, Lirong; Angel, Roger P; Burge, James H

    2010-08-10

    A software configurable optical test system (SCOTS) based on the geometry of the fringe reflection or phase measuring deflectometry method was developed for rapidly, robustly, and accurately measuring large, highly aspherical shapes such as solar collectors and primary mirrors for astronomical telescopes. In addition to using phase shifting methods for data collection and reduction, we explore the test from the point view of performing traditional optical testing methods, such as Hartmann or Hartmann-Shack tests, in a reverse way. Using this concept, the slope data calculation and unwrapping in the test can also be done with centroiding and line-scanning methods. These concepts expand the test to work in more general situations where fringe illumination is not practical. Experimental results show that the test can be implemented without complex calibration for many applications by taking the geometric advantage of working near the center curvature of the test part. The results also show that the test has a large dynamic range, can achieve measurement accuracy comparable with interferometric methods, and can provide a good complement to interferometric tests in certain circumstances. A variation of this method is also useful for measuring refractive optics and optical systems. As such, SCOTS provides optical manufacturers with a new tool for performing quantitative full field system evaluation. PMID:20697443

  3. Mapping dynamical systems onto complex networks

    NASA Astrophysics Data System (ADS)

    Borges, E. P.; Cajueiro, D. O.; Andrade, R. F. S.

    2007-08-01

    The objective of this study is to design a procedure to characterize chaotic dynamical systems, in which they are mapped onto a complex network. The nodes represent the regions of space visited by the system, while the edges represent the transitions between these regions. Parameters developed to quantify the properties of complex networks, including those related to higher order neighbourhoods, are used in the analysis. The methodology is tested on the logistic map, focusing on the onset of chaos and chaotic regimes. The corresponding networks were found to have distinct features that are associated with the particular type of dynamics that generated them.

  4. Linear pattern dynamics in nonlinear threshold systems

    SciTech Connect

    Rundle, John B.; Klein, W.; Tiampo, Kristy; Gross, Susanna

    2000-03-01

    Complex nonlinear threshold systems frequently show space-time behavior that is difficult to interpret. We describe a technique based upon a Karhunen-Loeve expansion that allows dynamical patterns to be understood as eigenstates of suitably constructed correlation operators. The evolution of space-time patterns can then be viewed in terms of a ''pattern dynamics'' that can be obtained directly from observable data. As an example, we apply our methods to a particular threshold system to forecast the evolution of patterns of observed activity. Finally, we perform statistical tests to measure the quality of the forecasts. (c) 2000 The American Physical Society.

  5. Two-Speed Gearbox Dynamic Simulation Predictions and Test Validation

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; DeSmidt, Hans; Smith, Edward C.; Bauman, Steven W.

    2010-01-01

    Dynamic simulations and experimental validation tests were performed on a two-stage, two-speed gearbox as part of the drive system research activities of the NASA Fundamental Aeronautics Subsonics Rotary Wing Project. The gearbox was driven by two electromagnetic motors and had two electromagnetic, multi-disk clutches to control output speed. A dynamic model of the system was created which included a direct current electric motor with proportional-integral-derivative (PID) speed control, a two-speed gearbox with dual electromagnetically actuated clutches, and an eddy current dynamometer. A six degree-of-freedom model of the gearbox accounted for the system torsional dynamics and included gear, clutch, shaft, and load inertias as well as shaft flexibilities and a dry clutch stick-slip friction model. Experimental validation tests were performed on the gearbox in the NASA Glenn gear noise test facility. Gearbox output speed and torque as well as drive motor speed and current were compared to those from the analytical predictions. The experiments correlate very well with the predictions, thus validating the dynamic simulation methodologies.

  6. Electronics systems test laboratory testing of shuttle communications systems

    NASA Technical Reports Server (NTRS)

    Stoker, C. J.; Bromley, L. K.

    1985-01-01

    Shuttle communications and tracking systems space to space and space to ground compatibility and performance evaluations are conducted in the NASA Johnson Space Center Electronics Systems Test Laboratory (ESTL). This evaluation is accomplished through systems verification/certification tests using orbiter communications hardware in conjunction with other shuttle communications and tracking external elements to evaluate end to end system compatibility and to verify/certify that overall system performance meets program requirements before manned flight usage. In this role, the ESTL serves as a multielement major ground test facility. The ESTL capability and program concept are discussed. The system test philosophy for the complex communications channels is described in terms of the major phases. Results of space to space and space to ground systems tests are presented. Several examples of the ESTL's unique capabilities to locate and help resolve potential problems are discussed in detail.

  7. Coherent structures and dynamical systems

    NASA Technical Reports Server (NTRS)

    Jimenez, Javier

    1987-01-01

    Any flow of a viscous fluid has a finite number of degrees of freedom, and can therefore be seen as a dynamical system. A coherent structure can be thought of as a lower dimensional manifold in whose neighborhood the dynamical system spends a substantial fraction of its time. If such a manifold exists, and if its dimensionality is substantially lower that that of the full flow, it is conceivable that the flow could be described in terms of the reduced set of degrees of freedom, and that such a description would be simpler than one in which the existence of structure was not recognized. Several examples are briefly summarized.

  8. Advanced Stirling Convertor Dynamic Test Approach and Results

    NASA Technical Reports Server (NTRS)

    Meer, David W.; Hill, Dennis; Ursic, Joseph J.

    2010-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Convertors (ASC) at NASA GRC undergo a vibration test sequence intended to simulate the vibration history that an ASC would experience when used in an ASRG for a space mission. This sequence includes testing at workmanship and flight acceptance levels interspersed with periods of extended operation to simulate prefueling and post fueling. The final step in the test sequence utilizes additional testing at flight acceptance levels to simulate launch. To better replicate the acceleration profile seen by an ASC incorporated into an ASRG, the input spectra used in testing the convertors was modified based on dynamic testing of the ASRG Engineering Unit (ASRG EU) at LM. This paper outlines the overall test approach, summarizes the test results from the ASRG EU, describes the incorporation of those results into the test approach, and presents the results of applying the test approach to the ASC-1 #3 and #4 convertors. The test results include data from several accelerometers mounted on the convertors as well as the piston position and output power variables.

  9. Tethered satellite system dynamics and control

    NASA Technical Reports Server (NTRS)

    Musetti, B.; Cibrario, B.; Bussolino, L.; Bodley, C. S.; Flanders, H. A.; Mowery, D. K.; Tomlin, D. D.

    1990-01-01

    The first tethered satellite system, scheduled for launch in May 1991, is reviewed. The system dynamics, dynamics control, and dynamics simulations are discussed. Particular attention is given to in-plane and out-of-plane librations; tether oscillation modes; orbiter and sub-satellite dynamics; deployer control system; the sub-satellite attitude measurement and control system; the Aeritalia Dynamics Model; the Martin-Marietta and NASA-MSFC Dynamics Model; and simulation results.

  10. Systems Engineering, Quality and Testing

    NASA Technical Reports Server (NTRS)

    Shepherd, Christena C.

    2015-01-01

    AS9100 has little to say about how to apply a Quality Management System (QMS) to aerospace test programs. There is little in the quality engineering Body of Knowledge that applies to testing, unless it is nondestructive examination or some type of lab or bench testing. If one examines how the systems engineering processes are implemented throughout a test program; and how these processes can be mapped to AS9100, a number of areas for involvement of the quality professional are revealed.

  11. Global dynamic modeling of a transmission system

    NASA Astrophysics Data System (ADS)

    Choy, F. K.; Qian, W.

    1993-04-01

    The work performed on global dynamic simulation and noise correlation of gear transmission systems at the University of Akron is outlined. The objective is to develop a comprehensive procedure to simulate the dynamics of the gear transmission system coupled with the effects of gear box vibrations. The developed numerical model is benchmarked with results from experimental tests at NASA Lewis Research Center. The modal synthesis approach is used to develop the global transient vibration analysis procedure used in the model. Modal dynamic characteristics of the rotor-gear-bearing system are calculated by the matrix transfer method while those of the gear box are evaluated by the finite element method (NASTRAN). A three-dimensional, axial-lateral coupled bearing model is used to couple the rotor vibrations with the gear box motion. The vibrations between the individual rotor systems are coupled through the nonlinear gear mesh interactions. The global equations of motion are solved in modal coordinates and the transient vibration of the system is evaluated by a variable time-stepping integration scheme. The relationship between housing vibration and resulting noise of the gear transmission system is generated by linear transfer functions using experimental data. A nonlinear relationship of the noise components to the fundamental mesh frequency is developed using the hypercoherence function. The numerically simulated vibrations and predicted noise of the gear transmission system are compared with the experimental results from the gear noise test rig at NASA Lewis Research Center. Results of the comparison indicate that the global dynamic model developed can accurately simulate the dynamics of a gear transmission system.

  12. Global dynamic modeling of a transmission system

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Qian, W.

    1993-01-01

    The work performed on global dynamic simulation and noise correlation of gear transmission systems at the University of Akron is outlined. The objective is to develop a comprehensive procedure to simulate the dynamics of the gear transmission system coupled with the effects of gear box vibrations. The developed numerical model is benchmarked with results from experimental tests at NASA Lewis Research Center. The modal synthesis approach is used to develop the global transient vibration analysis procedure used in the model. Modal dynamic characteristics of the rotor-gear-bearing system are calculated by the matrix transfer method while those of the gear box are evaluated by the finite element method (NASTRAN). A three-dimensional, axial-lateral coupled bearing model is used to couple the rotor vibrations with the gear box motion. The vibrations between the individual rotor systems are coupled through the nonlinear gear mesh interactions. The global equations of motion are solved in modal coordinates and the transient vibration of the system is evaluated by a variable time-stepping integration scheme. The relationship between housing vibration and resulting noise of the gear transmission system is generated by linear transfer functions using experimental data. A nonlinear relationship of the noise components to the fundamental mesh frequency is developed using the hypercoherence function. The numerically simulated vibrations and predicted noise of the gear transmission system are compared with the experimental results from the gear noise test rig at NASA Lewis Research Center. Results of the comparison indicate that the global dynamic model developed can accurately simulate the dynamics of a gear transmission system.

  13. Cascade Distiller System Performance Testing Interim Results

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Pensinger, Stuart; Sargusingh, Miriam J.

    2014-01-01

    The Cascade Distillation System (CDS) is a rotary distillation system with potential for greater reliability and lower energy costs than existing distillation systems. Based upon the results of the 2009 distillation comparison test (DCT) and recommendations of the expert panel, the Advanced Exploration Systems (AES) Water Recovery Project (WRP) project advanced the technology by increasing reliability of the system through redesign of bearing assemblies and improved rotor dynamics. In addition, the project improved the CDS power efficiency by optimizing the thermoelectric heat pump (TeHP) and heat exchanger design. Testing at the NASA-JSC Advanced Exploration System Water Laboratory (AES Water Lab) using a prototype Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell d International, Torrance, Calif.) with test support equipment and control system developed by Johnson Space Center was performed to evaluate performance of the system with the upgrades as compared to previous system performance. The system was challenged with Solution 1 from the NASA Exploration Life Support (ELS) distillation comparison testing performed in 2009. Solution 1 consisted of a mixed stream containing human-generated urine and humidity condensate. A secondary objective of this testing is to evaluate the performance of the CDS as compared to the state of the art Distillation Assembly (DA) used in the ISS Urine Processor Assembly (UPA). This was done by challenging the system with ISS analog waste streams. This paper details the results of the AES WRP CDS performance testing.

  14. Operationalizing sustainability in urban coastal systems: a system dynamics analysis.

    PubMed

    Mavrommati, Georgia; Bithas, Kostas; Panayiotidis, Panayiotis

    2013-12-15

    We propose a system dynamics approach for Ecologically Sustainable Development (ESD) in urban coastal systems. A systematic analysis based on theoretical considerations, policy analysis and experts' knowledge is followed in order to define the concept of ESD. The principles underlying ESD feed the development of a System Dynamics Model (SDM) that connects the pollutant loads produced by urban systems' socioeconomic activities with the ecological condition of the coastal ecosystem that it is delineated in operational terms through key biological elements defined by the EU Water Framework Directive. The receiving waters of the Athens Metropolitan area, which bears the elements of typical high population density Mediterranean coastal city but which currently has also new dynamics induced by the ongoing financial crisis, are used as an experimental system for testing a system dynamics approach to apply the concept of ESD. Systems' thinking is employed to represent the complex relationships among the components of the system. Interconnections and dependencies that determine the potentials for achieving ESD are revealed. The proposed system dynamics analysis can facilitate decision makers to define paths of development that comply with the principles of ESD. PMID:24200010

  15. Waddington, Dynamic Systems, and Epigenetics

    PubMed Central

    Tronick, Ed; Hunter, Richard G.

    2016-01-01

    Waddington coined the term “epigenetic” to attempt to explain the complex, dynamic interactions between the developmental environment and the genome that led to the production of phenotype. Waddington's thoughts on the importance of both adaptability and canalization of phenotypic development are worth recalling as well, as they emphasize the available range for epigenetic action and the importance of environmental feedback (or lack thereof) in the development of complex traits. We suggest that a dynamic systems view fits well with Waddington's conception of epigenetics in the developmental context, as well as shedding light on the study of the molecular epigenetic effects of the environment on brain and behavior. Further, the dynamic systems view emphasizes the importance of the multi-directional interchange between the organism, the genome and various aspects of the environment to the ultimate phenotype. PMID:27375447

  16. Dynamics of Variable Mass Systems

    NASA Technical Reports Server (NTRS)

    Eke, Fidelis O.

    1998-01-01

    This report presents the results of an investigation of the effects of mass loss on the attitude behavior of spinning bodies in flight. The principal goal is to determine whether there are circumstances under which the motion of variable mass systems can become unstable in the sense that their transverse angular velocities become unbounded. Obviously, results from a study of this kind would find immediate application in the aerospace field. The first part of this study features a complete and mathematically rigorous derivation of a set of equations that govern both the translational and rotational motions of general variable mass systems. The remainder of the study is then devoted to the application of the equations obtained to a systematic investigation of the effect of various mass loss scenarios on the dynamics of increasingly complex models of variable mass systems. It is found that mass loss can have a major impact on the dynamics of mechanical systems, including a possible change in the systems stability picture. Factors such as nozzle geometry, combustion chamber geometry, propellant's initial shape, size and relative mass, and propellant location can all have important influences on the system's dynamic behavior. The relative importance of these parameters on-system motion are quantified in a way that is useful for design purposes.

  17. Portable Health Algorithms Test System

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Wong, Edmond; Fulton, Christopher E.; Sowers, Thomas S.; Maul, William A.

    2010-01-01

    A document discusses the Portable Health Algorithms Test (PHALT) System, which has been designed as a means for evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT system allows systems health management algorithms to be developed in a graphical programming environment, to be tested and refined using system simulation or test data playback, and to be evaluated in a real-time hardware-in-the-loop mode with a live test article. The integrated hardware and software development environment provides a seamless transition from algorithm development to real-time implementation. The portability of the hardware makes it quick and easy to transport between test facilities. This hard ware/software architecture is flexible enough to support a variety of diagnostic applications and test hardware, and the GUI-based rapid prototyping capability is sufficient to support development execution, and testing of custom diagnostic algorithms. The PHALT operating system supports execution of diagnostic algorithms under real-time constraints. PHALT can perform real-time capture and playback of test rig data with the ability to augment/ modify the data stream (e.g. inject simulated faults). It performs algorithm testing using a variety of data input sources, including real-time data acquisition, test data playback, and system simulations, and also provides system feedback to evaluate closed-loop diagnostic response and mitigation control.

  18. Thermal Performance of Biological Substance Systems in Vitro Under Static and Dynamic Conditions at the Cryogenic Test Laboratory, NASA Kennedy Space Center, USA

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, James E.; Steinrock, T. (Technical Monitor)

    2001-01-01

    A unique research program, including a comprehensive study of thermal performance at cryogenic vacuum insulation systems, was performed at the NASA Kennedy Space Center. The main goal was to develop a new soft vacuum system (from 1 torr to 10 torr) that provides an intermediate level of performance (k-value below 4.8 mW/m-K). Liquid nitrogen boil-off methods were used to test conventional materials, novel materials, and certain combinations. The test articles included combinations of aluminum foil, fiberglass paper, polyester fabric, silica aerogel composite blanket, fumed silica, silica aerogel powder, and syntactic foam. A new LCI system was developed at the Cryogenics Test Laboratory. This system performs exceptionally well at soft vacuum levels and nearly as good as an MLI at high vacuum levels. Apparent thermal conductivities for the LCI range from 2 mW/m-K at soft vacuum to 0.1 mW/m-K at high vacuum. Several cryostats were designed, constructed, and calibrated by the Cryogenics Test Laboratory at KSC NASA as part of this research program. The cryostat test apparatus is a liquid nitrogen boil-off calorimeter system for direct measurement of the apparent thermal conductivity at a fixed vacuum level between 5 x 10(exp -5) and 760 torr. The apparatus is also used for transient measurements of temperature profiles. The development of efficient, robust cryogenic insulation systems has been a targeted area of research for a number of years. Improved methods of characterization, testing, and evaluation of complex biological substance systems for cryosurgery and cryobiology are the focus of this paper.

  19. Robust Integrated Neurocontroller for Complex Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Zein-Sabatto, S.; Marpaka, D.; Hwang, W.

    1996-01-01

    The goal of this research effort is to develop an integrated control software environment for the purpose of creating an intelligent neurocontrol system. The system will be capable of estimating states, identifying parameters, diagnosing conditions, planning control strategies, and producing intelligent control actions. The distinct features of such control system are: adaptability and on-line learning capability. The proposed system will be flexible to allow structure adaptability to account for changes in the dynamic system such as: sensory failures and/or component degradations. The developed system should learn system uncertainties and changes, as they occur, while maintaining minimal control level on the dynamic system. The research activities set to achieve the research objective are summarized by the following general items: (1) Development of a system identifier or diagnostic system, (2) Development of a robust neurocontroller system, and 3. Integration of above systems to create a Robust Integrated Control system (RIC-system). Two contrary approaches are investigated in this research: classical (traditional) design approach, and the simultaneous design approach. However, in both approaches neural network is the base for the development of different functions of the system. The two resulting designs will be tested and simulation results will be compared for better possible implementation.

  20. Robust integrated neurocontroller for complex dynamic systems

    NASA Technical Reports Server (NTRS)

    Zein-Sabbato, S.; Marpaka, D.; Hwang, W.

    1995-01-01

    The goal of this research effort is to develop an integrated control software environment for the purpose of creating an intelligent neurocontrol system. The system will be capable of estimating states, identifying parameters, diagnosing conditions, planning control strategies, and producing intelligent control actions. The distinct features of such control system are adaptability and on-line learning capability. The proposed system will be flexible to allow structure adaptability to account for changes in the dynamic system such as sensory failures and/or component degradations. The developed system should learn system uncertainties and changes, as they occur, while maintaining minimal control level on the dynamic system. The research activities set to achieve the research objective are summarized by the following general items: (1) Development of a system identifier or diagnostic system; (2) Development of a robust neurocontroller system, and; (3) Integration of above systems to create a robust Integration Control system (RIC-system). Two contrary approaches are investigated in this research: classical (traditional) design approach, and the simultaneous design approach. However, in both approaches neural network is the base for the development of different functions of the system. The two resulting designs will be tested and simulation results will be compared for better possible implementation.

  1. Dynamic Stability Testing of the Mars Science Laboratory Entry Capsule

    NASA Technical Reports Server (NTRS)

    Schroenenberger, Mark; Yates, Leslie; Hathaway, Wayne

    2009-01-01

    Results from a 26 shot ballistic range test of the Mars Science Laboratory (MSL) entry capsule are presented. The supersonic pitch damping properties of the MSL capsule were characterized between Mach 1.35 and Mach 3.5 and total angles-of-attack from 0 to 30 degrees. In flight, the MSL entry capsule will utilize a radial center-of-gravity offset to produce a non-zero trim angle-of-attack. This offset trim angle will produce lift, enabling the capsule to fly a guided entry and reducing the landing footprint dimensions to within 10 km of the desired landing site. A lifting configuration could not be tested at the ballistic range used for this test as the models would swerve into the range walls, possibly damaging cameras, the coordinate reference system or other facility assets. Ballistic (non-lifting) data was extracted and will be implemented in a conservative fashion to ensure that the dynamic stability characteristics of the flight vehicle are bounded. A comparison between the MSL pitch damping results and the dynamic model of the Mars Exploration Rover capsule shows generally close agreement with no significant differences in damping characteristics due to the change in backshell geometry. Dynamic moments are also compared to the MSL reaction control system (RCS) control authority to show the controller has sufficient margin to easily damp any dynamic stability effects.

  2. Dynamic Operations of Thought Systems.

    ERIC Educational Resources Information Center

    McGuire, William J.

    1990-01-01

    Reports on two studies on the dynamic relationships among parts of a thought system. The first study examines the effects of changes in the desirability or likelihood of a core event on thoughts about antecedents and consequences; the second examines the effects of changes in the antecedents and consequences on the core thought. (FMW)

  3. Mass properties measurement system dynamics

    NASA Technical Reports Server (NTRS)

    Doty, Keith L.

    1993-01-01

    The MPMS mechanism possess two revolute degrees-of-freedom and allows the user to measure the mass, center of gravity, and the inertia tensor of an unknown mass. The dynamics of the Mass Properties Measurement System (MPMS) from the Lagrangian approach to illustrate the dependency of the motion on the unknown parameters.

  4. Dynamic stability of maglev systems

    SciTech Connect

    Cai, Y.; Chen, S.S.; Mulcahy, T.M.; Rote, D.M.

    1992-04-01

    Because dynamic instability is not acceptable for any commercial maglev systems, it is important to consider this phenomenon in the development of all maglev systems. This study considers the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments attached to a rotating wheel. The theory and analysis developed in this study identifies basic stability characteristics and future research needs of maglev systems.

  5. Analog computation with dynamical systems

    NASA Astrophysics Data System (ADS)

    Siegelmann, Hava T.; Fishman, Shmuel

    1998-09-01

    Physical systems exhibit various levels of complexity: their long term dynamics may converge to fixed points or exhibit complex chaotic behavior. This paper presents a theory that enables to interpret natural processes as special purpose analog computers. Since physical systems are naturally described in continuous time, a definition of computational complexity for continuous time systems is required. In analogy with the classical discrete theory we develop fundamentals of computational complexity for dynamical systems, discrete or continuous in time, on the basis of an intrinsic time scale of the system. Dissipative dynamical systems are classified into the computational complexity classes P d, Co-RP d, NP d and EXP d, corresponding to their standard counterparts, according to the complexity of their long term behavior. The complexity of chaotic attractors relative to regular ones leads to the conjecture P d ≠ NP d. Continuous time flows have been proven useful in solving various practical problems. Our theory provides the tools for an algorithmic analysis of such flows. As an example we analyze the continuous Hopfield network.

  6. Dynamic leaching test of personal computer components.

    PubMed

    Li, Yadong; Richardson, Jay B; Niu, Xiaojun; Jackson, Ollie J; Laster, Jeremy D; Walker, Aaron K

    2009-11-15

    A dynamic leaching test (DLT) was developed and used to evaluate the leaching of toxic substances for electronic waste in the environment. The major components in personal computers (PCs) including motherboards, hard disc drives, floppy disc drives, and compact disc drives were tested. The tests lasted for 2 years for motherboards and 1.5 year for the disc drives. The extraction fluids for the standard toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) were used as the DLT leaching solutions. A total of 18 elements including Ag, Al, As, Au, Ba, Be, Cd, Cr, Cu, Fe, Ga, Ni, Pd, Pb, Sb, Se, Sn, and Zn were analyzed in the DLT leachates. Only Al, Cu, Fe, Ni, Pb, and Zn were commonly found in the DLT leachates of the PC components. Their leaching levels were much higher in TCLP extraction fluid than in SPLP extraction fluid. The toxic heavy metal Pb was found to continuously leach out of the components over the entire test periods. The cumulative amounts of Pb leached out of the motherboards in TCLP extraction fluid reached 2.0 g per motherboard over the 2-year test period, and that in SPLP extraction fluid were 75-90% less. The leaching rates or levels of Pb were largely affected by the content of galvanized steel in the PC components. The higher was the steel content, the lower the Pb leaching rate would be. The findings suggest that the obsolete PCs disposed of in landfills or discarded in the environment continuously release Pb for years when subjected to landfill leachate or rains. PMID:19616380

  7. The investigation of tethered satellite system dynamics

    NASA Technical Reports Server (NTRS)

    Lorenzini, E.

    1985-01-01

    Progress in tethered satellite system dynamics research is reported. A retrieval rate control law with no angular feedback to investigate the system's dynamic response was studied. The initial conditions for the computer code which simulates the satellite's rotational dynamics were extended to a generic orbit. The model of the satellite thrusters was modified to simulate a pulsed thrust, by making the SKYHOOK integrator suitable for dealing with delta functions without loosing computational efficiency. Tether breaks were simulated with the high resolution computer code SLACK3. Shuttle's maneuvers were tested. The electric potential around a severed conductive tether with insulator, in the case of a tether breakage at 20 km from the Shuttle, was computed. The electrodynamic hazards due to the breakage of the TSS electrodynamic tether in a plasma are evaluated.

  8. Dynamics of immune system vulnerabilities

    NASA Astrophysics Data System (ADS)

    Stromberg, Sean P.

    The adaptive immune system can be viewed as a complex system, which adapts, over time, to reflect the history of infections experienced by the organism. Understanding its operation requires viewing it in terms of tradeoffs under constraints and evolutionary history. It typically displays "robust, yet fragile" behavior, meaning common tasks are robust to small changes but novel threats or changes in environment can have dire consequences. In this dissertation we use mechanistic models to study several biological processes: the immune response, the homeostasis of cells in the lymphatic system, and the process that normally prevents autoreactive cells from entering the lymphatic system. Using these models we then study the effects of these processes interacting. We show that the mechanisms that regulate the numbers of cells in the immune system, in conjunction with the immune response, can act to suppress autoreactive cells from proliferating, thus showing quantitatively how pathogenic infections can suppress autoimmune disease. We also show that over long periods of time this same effect can thin the repertoire of cells that defend against novel threats, leading to an age correlated vulnerability. This vulnerability is shown to be a consequence of system dynamics, not due to degradation of immune system components with age. Finally, modeling a specific tolerance mechanism that normally prevents autoimmune disease, in conjunction with models of the immune response and homeostasis we look at the consequences of the immune system mistakenly incorporating pathogenic molecules into its tolerizing mechanisms. The signature of this dynamic matches closely that of the dengue virus system.

  9. Advanced Stirling Convertor Dynamic Test Approach and Results

    NASA Technical Reports Server (NTRS)

    Meer, David W.; Hill, Dennis; Ursic, Joseph

    2009-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Converters (ASC) at NASA John H. Glenn Research Center undergo a vibration test sequence intended to simulate the vibration history of an ASC used in an ASRG for a space mission. This sequence includes testing at Workmanship and Flight Acceptance levels interspersed with periods of extended operation to simulate pre and post fueling. The final step in the test sequence utilizes additional testing at Flight Acceptance levels to simulate launch. To better replicate the acceleration profile seen by an ASC incorporated into an ASRG, the input spectra used in testing the convertors was modified based on dynamic testing of the ASRG Engineering Unit ( ASRG-EU) at Lockheed Martin. This paper presents the vibration test plan for current and future ASC units, including the modified input spectra, and the results of recent tests using these spectra. The test results include data from several accelerometers mounted on the convertors as well as the piston position and output power variables.

  10. Dynamical systems probabilistic risk assessment.

    SciTech Connect

    Denman, Matthew R.; Ames, Arlo Leroy

    2014-03-01

    Probabilistic Risk Assessment (PRA) is the primary tool used to risk-inform nuclear power regulatory and licensing activities. Risk-informed regulations are intended to reduce inherent conservatism in regulatory metrics (e.g., allowable operating conditions and technical specifications) which are built into the regulatory framework by quantifying both the total risk profile as well as the change in the risk profile caused by an event or action (e.g., in-service inspection procedures or power uprates). Dynamical Systems (DS) analysis has been used to understand unintended time-dependent feedbacks in both industrial and organizational settings. In dynamical systems analysis, feedback loops can be characterized and studied as a function of time to describe the changes to the reliability of plant Structures, Systems and Components (SSCs). While DS has been used in many subject areas, some even within the PRA community, it has not been applied toward creating long-time horizon, dynamic PRAs (with time scales ranging between days and decades depending upon the analysis). Understanding slowly developing dynamic effects, such as wear-out, on SSC reliabilities may be instrumental in ensuring a safely and reliably operating nuclear fleet. Improving the estimation of a plant's continuously changing risk profile will allow for more meaningful risk insights, greater stakeholder confidence in risk insights, and increased operational flexibility.

  11. Energy efficiency of a dynamic glazing system

    SciTech Connect

    Lollini, R.; Danza, L.; Meroni, I.

    2010-04-15

    The reduction of air-conditioning energy consumptions is one of the main indicators to act on when improving the energy efficiency in buildings. In the case of advanced technological buildings, a meaningful contribution to the thermal loads and the energy consumptions reduction could depend on the correct configuration and management of the envelope systems. In recent years, the architectural trend toward highly transparent all-glass buildings presents a unique challenge and opportunity to advance the market for emerging, smart, dynamic window and dimmable daylighting control technologies (). A prototype dynamic glazing system was developed and tested at ITC-CNR; it is aimed at actively responding to the external environmental loads. Both an experimental campaign and analyses by theoretical models were carried out, aimed at evaluating the possible configurations depending on different weather conditions in several possible places. Therefore, the analytical models of the building-plant system were defined by using a dynamic energy simulation software (EnergyPlus). The variables that determine the system performance, also influenced by the boundary conditions, were analysed, such as U- and g-value; they concern both the morphology of the envelope system, such as dimensions, shading and glazing type, gap airflow thickness, in-gap airflow rate, and management, in terms of control algorithm parameters tuning fan and shading systems, as a function of the weather conditions. The configuration able to provide the best performances was finally identified by also assessing such performances, integrating the dynamic system in several building types and under different weather conditions. The dynamic envelope system prototype has become a commercial product with some applications in facade systems, curtain walls and windows. The paper describes the methodological approach to prototype development and the main results obtained, including simulations of possible applications on

  12. Ultrasonic test system

    NASA Astrophysics Data System (ADS)

    Smith, Anthony; Goff, Dan; Kruchowy, Roman; Rhoads, Carl

    1994-08-01

    An ultrasonic system for determining the quality of concrete under water without inaccuracies caused by electromagnetic interference from the ultrasonic generator. An ultrasonic generator applies pulses to the concrete. An ultrasonic detector detects the ultrasonic pulses and produces corresponding signals that are indicative of ultrasonic pulses that have passed through the material. Signal processing circuitry processes the signals to determine the transit time of the ultrasonic pulses through the material. The signal processing circuitry is disabled for a predetermined time after application of each ultrasonic pulse to the material to prevent noise produced by the means for applying ultrasonic pulses to the material from entering the signal processing circuitry and causing spurious measurements.

  13. Holographic system for nondestructive testing

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L. (Inventor)

    1975-01-01

    A description is given of a holographic system for nondestructive testing. The system is comprised of a mirror which illuminates the test object surface; the mirror is positionable to direct illumination on an object at varying angles with respect to a line normal to the surface of the object. In this manner holograms may be produced with varying degrees of sensitivity enabling optimum observation of dimensions of deformation of an object occurring between test exposures.

  14. Testing particle filters on convective scale dynamics

    NASA Astrophysics Data System (ADS)

    Haslehner, Mylene; Craig, George. C.; Janjic, Tijana

    2014-05-01

    Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical

  15. Automated flight test management system

    NASA Technical Reports Server (NTRS)

    Hewett, M. D.; Tartt, D. M.; Agarwal, A.

    1991-01-01

    The Phase 1 development of an automated flight test management system (ATMS) as a component of a rapid prototyping flight research facility for artificial intelligence (AI) based flight concepts is discussed. The ATMS provides a flight engineer with a set of tools that assist in flight test planning, monitoring, and simulation. The system is also capable of controlling an aircraft during flight test by performing closed loop guidance functions, range management, and maneuver-quality monitoring. The ATMS is being used as a prototypical system to develop a flight research facility for AI based flight systems concepts at NASA Ames Dryden.

  16. STOVL propulsion system volume dynamics approximations

    NASA Technical Reports Server (NTRS)

    Drummond, Colin K.

    1989-01-01

    Two approaches to modeling turbofan engine component volume dynamics are explored and compared with a view toward application to real-time simulation of short take-off vertical landing (STOVL) aircraft propulsion systems. The first (and most popular) approach considers only heat and mass balances; the second approach includes a momentum balance and substitutes the heat equation with a complete energy balance. Results for a practical test case are presented and discussed.

  17. Testing Orions Fairing Separation System

    NASA Technical Reports Server (NTRS)

    Martinez, Henry; Cloutier, Chris; Lemmon, Heber; Rakes, Daniel; Oldham, Joe; Schlagel, Keith

    2014-01-01

    Traditional fairing systems are designed to fully encapsulate and protect their payload from the harsh ascent environment including acoustic vibrations, aerodynamic forces and heating. The Orion fairing separation system performs this function and more by also sharing approximately half of the vehicle structural load during ascent. This load-share condition through launch and during jettison allows for a substantial increase in mass to orbit. A series of component-level development tests were completed to evaluate and characterize each component within Orion's unique fairing separation system. Two full-scale separation tests were performed to verify system-level functionality and provide verification data. This paper summarizes the fairing spring, Pyramidal Separation Mechanism and forward seal system component-level development tests, system-level separation tests, and lessons learned.

  18. Hidden attractors in dynamical systems

    NASA Astrophysics Data System (ADS)

    Dudkowski, Dawid; Jafari, Sajad; Kapitaniak, Tomasz; Kuznetsov, Nikolay V.; Leonov, Gennady A.; Prasad, Awadhesh

    2016-06-01

    Complex dynamical systems, ranging from the climate, ecosystems to financial markets and engineering applications typically have many coexisting attractors. This property of the system is called multistability. The final state, i.e., the attractor on which the multistable system evolves strongly depends on the initial conditions. Additionally, such systems are very sensitive towards noise and system parameters so a sudden shift to a contrasting regime may occur. To understand the dynamics of these systems one has to identify all possible attractors and their basins of attraction. Recently, it has been shown that multistability is connected with the occurrence of unpredictable attractors which have been called hidden attractors. The basins of attraction of the hidden attractors do not touch unstable fixed points (if exists) and are located far away from such points. Numerical localization of the hidden attractors is not straightforward since there are no transient processes leading to them from the neighborhoods of unstable fixed points and one has to use the special analytical-numerical procedures. From the viewpoint of applications, the identification of hidden attractors is the major issue. The knowledge about the emergence and properties of hidden attractors can increase the likelihood that the system will remain on the most desirable attractor and reduce the risk of the sudden jump to undesired behavior. We review the most representative examples of hidden attractors, discuss their theoretical properties and experimental observations. We also describe numerical methods which allow identification of the hidden attractors.

  19. Automatic tools for system testing

    NASA Technical Reports Server (NTRS)

    Peccia, N. M.

    1993-01-01

    As spacecraft control and other space-related ground systems become increasingly complex, the effort required in testing and validation also increases. Implementation of a spacecraft control system normally involves a number of incremental deliveries. In addition kernel or general purpose software may also be involved, which must itself be considered in the integration and testing program. Tools can be used to assist this testing. These can reduce the effort required or alternatively they can ensure that for a given level of effort, a better job is done. Great benefit could be derived by automating certain types of testing (interactive software) which up to now has been performed manually at a terminal. This paper reports on an on-going study. The study examines means of automating spacecraft control system testing, evaluates relevant commercial tools and aims to prototype basic automatic testing functions.

  20. CMIF ECLS system test findings

    NASA Technical Reports Server (NTRS)

    Schunk, Richard G.; Carrasquillo, Robyn L.; Ogle, Kathyrn Y.; Wieland, Paul O.; Bagdigian, Robert M.

    1989-01-01

    During 1987 three Space Station integrated Environmental Control and Life Support System (ECLSS) tests were conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) as part of the MSFC ECLSS Phase II test program. The three tests ranged in duration from 50 to 150 hours and were conducted inside of the CMIF module simulator. The Phase II partial integrated system test configuration consisted of four regenerative air revitalization subsystems and one regenerative water reclamation subsystem. This paper contains a discussion of results and lessons learned from the Phase II test program. The design of the Phase II test configuration and improvements made throughout the program are detailed. Future plans for the MSFC CMIF test program are provided, including an overview of planned improvements for the Phase III program.

  1. On Rank Driven Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Veerman, J. J. P.; Prieto, F. J.

    2014-08-01

    We investigate a class of models related to the Bak-Sneppen (BS) model, initially proposed to study evolution. The BS model is extremely simple and yet captures some forms of "complex behavior" such as self-organized criticality that is often observed in physical and biological systems. In this model, random fitnesses in are associated to agents located at the vertices of a graph . Their fitnesses are ranked from worst (0) to best (1). At every time-step the agent with the worst fitness and some others with a priori given rank probabilities are replaced by new agents with random fitnesses. We consider two cases: The exogenous case where the new fitnesses are taken from an a priori fixed distribution, and the endogenous case where the new fitnesses are taken from the current distribution as it evolves. We approximate the dynamics by making a simplifying independence assumption. We use Order Statistics and Dynamical Systems to define a rank-driven dynamical system that approximates the evolution of the distribution of the fitnesses in these rank-driven models, as well as in the BS model. For this simplified model we can find the limiting marginal distribution as a function of the initial conditions. Agreement with experimental results of the BS model is excellent.

  2. From dynamical systems to renormalization

    SciTech Connect

    Menous, Frédéric

    2013-09-15

    In this paper we study logarithmic derivatives associated to derivations on completed graded Lie algebra, as well as the existence of inverses. These logarithmic derivatives, when invertible, generalize the exp-log correspondence between a Lie algebra and its Lie group. Such correspondences occur naturally in the study of dynamical systems when dealing with the linearization of vector fields and the non linearizability of a resonant vector fields corresponds to the non invertibility of a logarithmic derivative and to the existence of normal forms. These concepts, stemming from the theory of dynamical systems, can be rephrased in the abstract setting of Lie algebra and the same difficulties as in perturbative quantum field theory (pQFT) arise here. Surprisingly, one can adopt the same ideas as in pQFT with fruitful results such as new constructions of normal forms with the help of the Birkhoff decomposition. The analogy goes even further (locality of counter terms, choice of a renormalization scheme) and shall lead to more interactions between dynamical systems and quantum field theory.

  3. PNNL Tests Fish Passage System

    SciTech Connect

    Colotelo, Alison

    2015-03-13

    Scientists from PNNL are testing a fish transportation system developed by Whooshh Innovations. The Whooshh system uses a flexible tube that works a bit like a vacuum, guiding fish over hydroelectric dams or other structures. Compared to methods used today, this system could save money while granting fish quicker, safer passage through dams and hatcheries.

  4. Dynamic Investigation Test-rig on hAptics (DITA)

    NASA Astrophysics Data System (ADS)

    Cannella, F.; Scalise, L.; Olivieri, E.; Memeo, M.; Caldwell, D. G.

    2013-09-01

    Research on tactile sensitivity has been conducted since the last century and many devices have been proposed to study in detail this sense through experimental tests. The sense of touch is essential in every-day life of human beings, but it can also play a fundamental role for the assessment of some neurological disabilities and pathologies. In fact, the level of tactile perception can provide information on the health state of the nervous system. In this paper, authors propose the design and development of a novel test apparatus, named DITA (Dynamic Investigation Test-rig on hAptics), aiming to provide the measurement of the tactile sensitivity trough the determination of the Just Noticeable Difference (JND) curve of a subject. The paper reports the solution adopted for the system design and the results obtained on the set of experiments carried out on volunteers.

  5. Dynamically controlled crystal growth system

    NASA Technical Reports Server (NTRS)

    Bray, Terry L. (Inventor); Kim, Larry J. (Inventor); Harrington, Michael (Inventor); DeLucas, Lawrence J. (Inventor)

    2002-01-01

    Crystal growth can be initiated and controlled by dynamically controlled vapor diffusion or temperature change. In one aspect, the present invention uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from a number of different growth solutions simultaneously by means of an evaporative gas flow. A static laser light scattering sensor can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. A control/follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the control chamber. In a second aspect, the invention exploits the varying solubility of proteins versus temperature to control the growth of protein crystals. This system contains miniature thermoelectric devices under microcomputer control that change temperature as needed to grow crystals of a given protein. Complex temperature ramps are possible using this approach. A static laser light scattering probe also can be used in this system as a non-invasive probe for detection of aggregation events. The automated dynamic control system provides systematic and predictable responses with regard to crystal size. These systems can be used for microgravity crystallization projects, for example in a space shuttle, and for crystallization work under terrestial conditions. The present invention is particularly useful for macromolecular crystallization, e.g. for proteins, polypeptides, nucleic acids, viruses and virus particles.

  6. Dynamic security assessment processing system

    NASA Astrophysics Data System (ADS)

    Tang, Lei

    The architecture of dynamic security assessment processing system (DSAPS) is proposed to address online dynamic security assessment (DSA) with focus of the dissertation on low-probability, high-consequence events. DSAPS upgrades current online DSA functions and adds new functions to fit into the modern power grid. Trajectory sensitivity analysis is introduced and its applications in power system are reviewed. An index is presented to assess transient voltage dips quantitatively using trajectory sensitivities. Then the framework of anticipatory computing system (ACS) for cascading defense is presented as an important function of DSAPS. ACS addresses various security problems and the uncertainties in cascading outages. Corrective control design is automated to mitigate the system stress in cascading progressions. The corrective controls introduced in the dissertation include corrective security constrained optimal power flow, a two-stage load control for severe under-frequency conditions, and transient stability constrained optimal power flow for cascading outages. With state-of-the-art computing facilities to perform high-speed extended-term time-domain simulation and optimization for large-scale systems, DSAPS/ACS efficiently addresses online DSA for low-probability, high-consequence events, which are not addressed by today's industrial practice. Human interference is reduced in the computationally burdensome analysis.

  7. Dynamic test input generation for multiple-fault isolation

    NASA Technical Reports Server (NTRS)

    Schaefer, Phil

    1990-01-01

    Recent work is Causal Reasoning has provided practical techniques for multiple fault diagnosis. These techniques provide a hypothesis/measurement diagnosis cycle. Using probabilistic methods, they choose the best measurements to make, then update fault hypotheses in response. For many applications such as computers and spacecraft, few measurement points may be accessible, or values may change quickly as the system under diagnosis operates. In these cases, a hypothesis/measurement cycle is insufficient. A technique is presented for a hypothesis/test-input/measurement diagnosis cycle. In contrast to generating tests a priori for determining device functionality, it dynamically generates tests in response to current knowledge about fault probabilities. It is shown how the mathematics previously used for measurement specification can be applied to the test input generation process. An example from an efficient implementation called Multi-Purpose Causal (MPC) is presented.

  8. The dynamic modelling of a slotted test section

    NASA Technical Reports Server (NTRS)

    Gumas, G.

    1979-01-01

    A mathematical model of the wind tunnel dynamics was developed. The modelling techniques were restricted to the use of one dimensional unsteady flow. The dynamic characteristics of slotted test section incorporated into the model are presented.

  9. Survivability of Deterministic Dynamical Systems

    PubMed Central

    Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen

    2016-01-01

    The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures. PMID:27405955

  10. Survivability of Deterministic Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen

    2016-07-01

    The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures.

  11. Survivability of Deterministic Dynamical Systems.

    PubMed

    Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen

    2016-01-01

    The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures. PMID:27405955

  12. Noise in Nonlinear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Moss, Frank; McClintock, P. V. E.

    2009-08-01

    List of contributors; Preface; Introduction to volume three; 1. The effects of coloured quadratic noise on a turbulent transition in liquid He II J. T. Tough; 2. Electrohydrodynamic instability of nematic liquid crystals: growth process and influence of noise S. Kai; 3. Suppression of electrohydrodynamic instabilities by external noise Helmut R. Brand; 4. Coloured noise in dye laser fluctuations R. Roy, A. W. Yu and S. Zhu; 5. Noisy dynamics in optically bistable systems E. Arimondo, D. Hennequin and P. Glorieux; 6. Use of an electronic model as a guideline in experiments on transient optical bistability W. Lange; 7. Computer experiments in nonlinear stochastic physics Riccardo Mannella; 8. Analogue simulations of stochastic processes by means of minimum component electronic devices Leone Fronzoni; 9. Analogue techniques for the study of problems in stochastic nonlinear dynamics P. V. E. McClintock and Frank Moss; Index.

  13. Objective measures on knee instability: dynamic tests: a review of devices for assessment of dynamic knee laxity through utilization of the pivot shift test.

    PubMed

    Sundemo, David; Alentorn-Geli, Eduard; Hoshino, Yuichi; Musahl, Volker; Karlsson, Jón; Samuelsson, Kristian

    2016-06-01

    Current reconstructive methods used after anterior cruciate ligament (ACL) injury do not entirely restore native knee kinematics. Evaluation of dynamic knee laxity is important to accurately diagnose ACL deficiency, to evaluate reconstructive techniques, and to construct treatment algorithms for patients with ACL injury. The purpose of this study is to present recent progress in evaluation of dynamic knee laxity through utilization of the pivot shift test. A thorough electronic search was performed and relevant studies were assessed. Certain dynamic knee laxity measurement methods have been present for over 10 years (Navigation system, Electromagnetic sensor system) while other methods (Inertial sensor, Image analysis system) have been introduced recently. Methods to evaluate dynamic knee laxity through the pivot shift test are already potent. However, further refinement is warranted. In addition, to correctly quantify the pivot shift test, the involved forces need to be controlled through either standardization or mechanization of the pivot shift test. PMID:26984465

  14. Space Fission System Test Effectiveness

    SciTech Connect

    Houts, Mike; Schmidt, Glen L.; Van Dyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky; Salvail, Pat; Harper, Roger

    2004-02-04

    Space fission technology has the potential to enable rapid access to any point in the solar system. If fission propulsion systems are to be developed to their full potential, however, near-term customers need to be identified and initial fission systems successfully developed, launched, and utilized. One key to successful utilization is to develop reactor designs that are highly testable. Testable reactor designs have a much higher probability of being successfully converted from paper concepts to working space hardware than do designs which are difficult or impossible to realistically test. ''Test Effectiveness'' is one measure of the ability to realistically test a space reactor system. The objective of this paper is to discuss test effectiveness as applied to the design, development, flight qualification, and acceptance testing of space fission systems. The ability to perform highly effective testing would be particularly important to the success of any near-term mission, such as NASA's Jupiter Icy Moons Orbiter, the first mission under study within NASA's Project Prometheus, the Nuclear Systems Program.

  15. Using Spare Logic Resources To Create Dynamic Test Points

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor

    2011-01-01

    A technique has been devised to enable creation of a dynamic set of test points in an embedded digital electronic system. As a result, electronics contained in an application specific circuit [e.g., gate array, field programmable gate array (FPGA)] can be internally probed, even when contained in a closed housing during all phases of test. In the present technique, the test points are not fixed and limited to a small number; the number of test points can vastly exceed the number of buffers or pins, resulting in a compact footprint. Test points are selected by means of spare logic resources within the ASIC(s) and/or FPGA(s). A register is programmed with a command, which is used to select the signals that are sent off-chip and out of the housing for monitoring by test engineers and external test equipment. The register can be commanded by any suitable means: for example, it could be commanded through a command port that would normally be used in the operation of the system. In the original application of the technique, commanding of the register is performed via a MIL-STD-1553B communication subsystem.

  16. Controlling Complex Systems and Developing Dynamic Technology

    NASA Astrophysics Data System (ADS)

    Avizienis, Audrius Victor

    In complex systems, control and understanding become intertwined. Following Ilya Prigogine, we define complex systems as having control parameters which mediate transitions between distinct modes of dynamical behavior. From this perspective, determining the nature of control parameters and demonstrating the associated dynamical phase transitions are practically equivalent and fundamental to engaging with complexity. In the first part of this work, a control parameter is determined for a non-equilibrium electrochemical system by studying a transition in the morphology of structures produced by an electroless deposition reaction. Specifically, changing the size of copper posts used as the substrate for growing metallic silver structures by the reduction of Ag+ from solution under diffusion-limited reaction conditions causes a dynamical phase transition in the crystal growth process. For Cu posts with edge lengths on the order of one micron, local forces promoting anisotropic growth predominate, and the reaction produces interconnected networks of Ag nanowires. As the post size is increased above 10 microns, the local interfacial growth reaction dynamics couple with the macroscopic diffusion field, leading to spatially propagating instabilities in the electrochemical potential which induce periodic branching during crystal growth, producing dendritic deposits. This result is interesting both as an example of control and understanding in a complex system, and as a useful combination of top-down lithography with bottom-up electrochemical self-assembly. The second part of this work focuses on the technological development of devices fabricated using this non-equilibrium electrochemical process, towards a goal of integrating a complex network as a dynamic functional component in a neuromorphic computing device. Self-assembled networks of silver nanowires were reacted with sulfur to produce interfacial "atomic switches": silver-silver sulfide junctions, which exhibit

  17. Solar Dynamic Power System Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Dias, Lakshman G.

    1996-01-01

    The objective of this research is to conduct various fault simulation studies for diagnosing the type and location of faults in the power distribution system. Different types of faults are simulated at different locations within the distribution system and the faulted waveforms are monitored at measurable nodes such as at the output of the DDCU's. These fault signatures are processed using feature extractors such as FFT and wavelet transforms. The extracted features are fed to a clustering based neural network for training and subsequent testing using previously unseen data. Different load models consisting of constant impedance and constant power are used for the loads. Open circuit faults and short circuit faults are studied. It is concluded from present studies that using features extracted from wavelet transforms give better success rates during ANN testing. The trained ANN's are capable of diagnosing fault types and approximate locations in the solar dynamic power distribution system.

  18. Dynamical Tests in a Linear Superconducting Magnetic Bearing

    NASA Astrophysics Data System (ADS)

    Dias, D. H. N.; Sotelo, G. G.; Sass, F.; Motta, E. S.; , R. de Andrade, Jr.; Stephan, R. M.

    The unique properties of high critical temperature superconductors (HTS) make possible the development of an effective and self-stable magnetic levitation (MagLev) transportation system. In this context, a full scale MagLev vehicle, named MagLev-Cobra, has been developed at the Laboratory for Applied Superconductivity (LASUP/UFRJ). The vehicle is borne by a linear superconducting magnetic bearing (LSMB). The most important design constraint of the levitation system is the force that appears due to the interaction between the HTS and the permanent magnetic (PM) rail, which composes the LSMB. Static and dynamic characteristics of this force must be studied. The static behavior was already reported in previous work. The dynamic operation of this kind of vehicle, which considers the entry and exit of passengers and vibration movements, may result in the decrease of the gap between the superconductor and the PM rail in LSMB. In order to emulate the vehicle operation and to study the gap variation with time, the superconductors are submitted to a series of vertical displacements performed with the help of an experimental test rig. These movements are controlled by a time-variant reference force that reproduces the vehicle dynamic. In the present work, the results obtained for the dynamic gap behavior are presented. These measurements are essential to the commissioning process of a superconducting MagLev full scale vehicle.

  19. Track/train dynamics test procedure transfer function test

    NASA Technical Reports Server (NTRS)

    Vigil, R. A.

    1975-01-01

    A transfer function vibration test was made on an 80 ton open hopper freight car in an effort to obtain validation data on the car's nonlinear elastic model. Test configuration, handling, test facilities, test operations, and data acquisition/reduction activities necessary to meet the conditions of test requirements are given.

  20. Thermospheric dynamics - A system theory approach

    NASA Technical Reports Server (NTRS)

    Codrescu, M.; Forbes, J. M.; Roble, R. G.

    1990-01-01

    A system theory approach to thermospheric modeling is developed, based upon a linearization method which is capable of preserving nonlinear features of a dynamical system. The method is tested using a large, nonlinear, time-varying system, namely the thermospheric general circulation model (TGCM) of the National Center for Atmospheric Research. In the linearized version an equivalent system, defined for one of the desired TGCM output variables, is characterized by a set of response functions that is constructed from corresponding quasi-steady state and unit sample response functions. The linearized version of the system runs on a personal computer and produces an approximation of the desired TGCM output field height profile at a given geographic location.

  1. Dynamical habitability of planetary systems.

    PubMed

    Dvorak, Rudolf; Pilat-Lohinger, Elke; Bois, Eric; Schwarz, Richard; Funk, Barbara; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Lammer, Helmut; Léger, Alain; Liseau, René; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Selsis, Frank; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The problem of the stability of planetary systems, a question that concerns only multiplanetary systems that host at least two planets, is discussed. The problem of mean motion resonances is addressed prior to discussion of the dynamical structure of the more than 350 known planets. The difference with regard to our own Solar System with eight planets on low eccentricity is evident in that 60% of the known extrasolar planets have orbits with eccentricity e > 0.2. We theoretically highlight the studies concerning possible terrestrial planets in systems with a Jupiter-like planet. We emphasize that an orbit of a particular nature only will keep a planet within the habitable zone around a host star with respect to the semimajor axis and its eccentricity. In addition, some results are given for individual systems (e.g., Gl777A) with regard to the stability of orbits within habitable zones. We also review what is known about the orbits of planets in double-star systems around only one component (e.g., gamma Cephei) and around both stars (e.g., eclipsing binaries). PMID:20307181

  2. Dynamic testing of nuclear power plant structures: an evaluation

    SciTech Connect

    Weaver, H.J.

    1980-02-01

    Lawrence Livermore Laboratory (LLL) evaluated the applications of system identification techniques to the dynamic testing of nuclear power plant structures and subsystems. These experimental techniques involve exciting a structure and measuring, digitizing, and processing the time-history motions that result. The data can be compared to parameters calculated using finite element or other models of the test systems to validate the model and to verify the seismic analysis. This report summarizes work in three main areas: (1) analytical qualification of a set of computer programs developed at LLL to extract model parameters from the time histories; (2) examination of the feasibility of safely exciting nuclear power plant structures and accurately recording the resulting time-history motions; (3) study of how the model parameters that are extracted from the data be used best to evaluate structural integrity and analyze nuclear power plants.

  3. Optimization of the dynamic inducer wind turbine system

    NASA Astrophysics Data System (ADS)

    Lissaman, P. B. S.; Zalay, A. D.; Hibbs, B.

    The dynamic inducer, essentially a horizontal axis wind turbine (HAWT) rotor with small vanes at the tips is a promising, advanced technology wind turbine concept. By adding small vanes to the tip of the conventional rotor, significant increases in power can be obtained with the dynamic inducer system. The development of the system is reviewed, including past theoretical and experimental programs. Recent tow tests and wind tunnel tests established the predicted augmentation power. A new optimization program is outlined, based on advanced theory back by extensive wind tunnel testing, aimed at developing an advanced dynamic inducer system for a state-of-the art high performance, two-bladed rotor system. It is estimated that the dynamic inducer rotor is about 20% more cost-effective than a conventional system.

  4. Structural dynamic testing of the Engineering Test Satellite-IV

    NASA Astrophysics Data System (ADS)

    Shiraki, K.; Mitsuma, H.; Matsushita, T.; Izumi, H.

    The Engineering Test Satellite-IV (ETS-IV) was the first large scale spacecraft developed and launched successfully in Japan on a new N-II launch vehicle. This paper presents an approach taken for the structural development of the ETS-IV. Extensive structural tests were performed to demonstrate that the ETS-IV spacecraft meets all design requirements and will survive all critical environments. Details of the static load test, vibration tests, acoustic test, and pyrotechnic shock test were described. The test results were compared with analyses and measured flight data.

  5. Stability in dynamical systems I

    SciTech Connect

    Courant, E.D.; Ruth, R.D.; Weng, W.T.

    1984-08-01

    We have reviewed some of the basic techniques which can be used to analyze stability in nonlinear dynamical systems, particularly in circular particle accelerators. We have concentrated on one-dimensional systems in the examples in order to simply illustrate the general techniques. We began with a review of Hamiltonian dynamics and canonical transformations. We then reviewed linear equations with periodic coefficients using the basic techniques from accelerator theory. To handle nonlinear terms we developed a canonical perturbation theory. From this we calculated invariants and the amplitude dependence of the frequency. This led us to resonances. We studied the cubic resonance in detail by using a rotating coordinate system in phase space. We then considered a general isolated nonlinear resonance. In this case we calculated the width of the resonance and estimated the spacing of resonances in order to use the Chirikov criterion to restrict the validity of the analysis. Finally the resonance equation was reduced to the pendulum equation, and we examined the motion on a separatrix. This brought us to the beginnings of stochastic behavior in the neighborhood of the separatrix. It is this complex behavior in the neighborhood of the separatrix which causes the perturbation theory used here to diverge in many cases. In spite of this the methods developed here have been and are used quite successfully to study nonlinear effects in nearly integrable systems. When used with caution and in conjunction with numerical work they give tremendous insight into the nature of the phase space structure and the stability of nonlinear differential equations. 14 references.

  6. Water impact shock test system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The basic objective was to design, manufacture, and install a shock test system which, in part, would have the ability to subject test articles weighing up to 1,000 pounds to both half sine and/or full sine pulses having peak levels of up to 50 G's with half sine pulse durations of 100 milliseconds or full sine period duration of 200 milliseconds. The tolerances associated with the aforementioned pulses were +20% and -10% for the peak levels and plus or minus 10% for the pulse durations. The subject shock test system was to be capable of accepting test article sizes of up to 4 feet by 4 feet mounting surface by 4 feet in length.

  7. Singularity perturbed zero dynamics of nonlinear systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Sastry, S. S.; Kokotovic, P. V.; Byrnes, C. I.

    1992-01-01

    Stability properties of zero dynamics are among the crucial input-output properties of both linear and nonlinear systems. Unstable, or 'nonminimum phase', zero dynamics are a major obstacle to input-output linearization and high-gain designs. An analysis of the effects of regular perturbations in system equations on zero dynamics shows that whenever a perturbation decreases the system's relative degree, it manifests itself as a singular perturbation of zero dynamics. Conditions are given under which the zero dynamics evolve in two timescales characteristic of a standard singular perturbation form that allows a separate analysis of slow and fast parts of the zero dynamics.

  8. A dynamic ball compression test for understanding rock crushing.

    PubMed

    Huang, S; Liu, H; Xia, K

    2014-12-01

    During crushing, rock particles are subjected to complicated loading. It is desired to establish the relation between the loading and the fragmentation parameters for better understanding rock crushing mechanism. In this work, a split Hopkinson pressure bar system in combination with high speed cameras is utilized in the dynamic ball compression test, in which the spherical rock sample is adopted to avoid the shape effect. Using elasticity theory, the loading rate and the dynamic indirect tensile strength are first calculated. With the aid of the moment-trap technique and high speed cameras, the surface energy is determined for each sample. The relations between the loading rate and the fragmentation parameters, i.e., the number of fragments and the surface energy are established. The application of this method to a granitic rock shows that it is flexible and can be applied to the crushing study of generic brittle solids. PMID:25554304

  9. Reveal for Salmonella test system.

    PubMed

    Bird, C B; Miller, R L; Miller, B M

    1999-01-01

    The Reveal for Salmonella (RSS) test system is a presumptive qualitative test that detects the presence of Salmonella organisms in foods within 21 h total testing time, allowing the user to release negative products 24 h earlier than when using other rapid test kits. Foods are enriched with a proprietary resuscitation medium called Revive and then selectively enriched with either Selenite Cystine or Rappaport-Vassiliadis selective media. The enriched culture is used to inoculate the RSS detection device, which initiates a lateral flow through a reagent zone containing anti-Salmonella antibodies conjugated to colloidal gold particles that capture antigens present in the culture. The antigen-antibody complex migrates farther and is captured by an additional anti-Salmonella antibody, causing the colloidal gold to precipitate and form a visual line, indicating a positive result. A procedural control line also will form regardless of the presence of Salmonella organisms to indicate the test is working properly. Existing AOAC Official Methods for Salmonella organisms require a 48 h enrichment before testing. Hence, a food product has to be held before release, adding extra cost to the company and the consumer. The RSS test system was evaluated by quantitative spiking studies. Although AOAC encourages inclusion of naturally contaminated foods, almost all microbiological AOAC validation studies have been performed with artificially contaminated foods for absolute control over the study. The RSS test system is designed to test many food types for Salmonella organisms and has a limit of detection of 5-10 colony-forming units (cfu)/25 g with a false-negative rate of < 1% and a false-positive rate of < 5.0%. It showed an 81% overall agreement with the traditional procedure of the U.S. Department of Agriculture's Food Safety Inspection Service. PMID:10367381

  10. Spatial Operator Algebra for multibody system dynamics

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.

    1992-01-01

    The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.

  11. Test report - caustic addition system operability test procedure

    SciTech Connect

    Parazin, R.E.

    1995-10-13

    This Operability Test Report documents the test results of test procedure WHC-SD-WM-OTP-167 ``Caustic Addition System Operability Test Procedure``. The Objective of the test was to verify the operability of the 241-AN-107 Caustic Addition System. The objective of the test was met

  12. Estimating Power System Dynamic States Using Extended Kalman Filter

    SciTech Connect

    Huang, Zhenyu; Schneider, Kevin P.; Nieplocha, Jaroslaw; Zhou, Ning

    2014-10-31

    Abstract—The state estimation tools which are currently deployed in power system control rooms are based on a steady state assumption. As a result, the suite of operational tools that rely on state estimation results as inputs do not have dynamic information available and their accuracy is compromised. This paper investigates the application of Extended Kalman Filtering techniques for estimating dynamic states in the state estimation process. The new formulated “dynamic state estimation” includes true system dynamics reflected in differential equations, not like previously proposed “dynamic state estimation” which only considers the time-variant snapshots based on steady state modeling. This new dynamic state estimation using Extended Kalman Filter has been successfully tested on a multi-machine system. Sensitivity studies with respect to noise levels, sampling rates, model errors, and parameter errors are presented as well to illustrate the robust performance of the developed dynamic state estimation process.

  13. Photographic Equipment Test System (PETS)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Photographic Equipment Test System is presented. The device is a mobile optical system designed for evaluating performance of various sensors in a laboratory, in a vacuum chamber or on a flight line. The carriage is designed to allow elevation as well as azimuth control of the direction of the light from the collimator. The pneumatic tires provide an effective vibration isolation system. A target/illumination system is mounted on a motor driven linear slide, and focusing and exposure control can be operated remotely from the small electronics control console.

  14. MPD arcjet system performance test

    NASA Astrophysics Data System (ADS)

    Kuriki, Kyoichi; Shimizu, Yukio; Morimoto, Shinji; Kuwahara, Keiichi; Kisaragi, Takayasu; Uematsu, Kazuo; Enya, Shintaro; Sasao, Yoshio

    A new MPD (magnetoplasmadynamic) arcjet system was developed and tested to demonstrate its technological readiness for flight model design. The MPD arcjet, of quasisteady type, was repetitively operated. In the endurance test, more than 10 5 shots were cleared in continuous operation. Some components cleared more than 10 6 shots. Cathode erosion was markedly reduced through the use of newly developed material. Thermal data were obtained which define the thermal interface between the spacecraft and the MPD arcjet system. Waste heat from the electrodes was found to be 20-30% of the input power and to vary with repetition frequency. No technological difficulties are foreseen for further continuation of repetitive operation.

  15. Error response test system and method using test mask variable

    NASA Technical Reports Server (NTRS)

    Gender, Thomas K. (Inventor)

    2006-01-01

    An error response test system and method with increased functionality and improved performance is provided. The error response test system provides the ability to inject errors into the application under test to test the error response of the application under test in an automated and efficient manner. The error response system injects errors into the application through a test mask variable. The test mask variable is added to the application under test. During normal operation, the test mask variable is set to allow the application under test to operate normally. During testing, the error response test system can change the test mask variable to introduce an error into the application under test. The error response system can then monitor the application under test to determine whether the application has the correct response to the error.

  16. 14 CFR 23.726 - Ground load dynamic tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ground load dynamic tests. 23.726 Section 23.726 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Landing Gear § 23.726 Ground load dynamic tests. (a) If compliance with the ground load requirements...

  17. 14 CFR 23.726 - Ground load dynamic tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ground load dynamic tests. 23.726 Section 23.726 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Landing Gear § 23.726 Ground load dynamic tests. (a) If compliance with the ground load requirements...

  18. 14 CFR 23.726 - Ground load dynamic tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ground load dynamic tests. 23.726 Section 23.726 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Landing Gear § 23.726 Ground load dynamic tests. (a) If compliance with the ground load requirements...

  19. 14 CFR 23.726 - Ground load dynamic tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ground load dynamic tests. 23.726 Section 23.726 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Landing Gear § 23.726 Ground load dynamic tests. (a) If compliance with the ground load requirements...

  20. 14 CFR 23.726 - Ground load dynamic tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ground load dynamic tests. 23.726 Section 23.726 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Landing Gear § 23.726 Ground load dynamic tests. (a) If compliance with the ground load requirements...

  1. Need for Instruction: Dynamic Testing in Special Education

    ERIC Educational Resources Information Center

    Bosma, Tirza; Resing, Wilma C. M.

    2012-01-01

    The aim of this study was to examine the contribution of dynamic testing in the measuring of children's need for instruction and to explore responses of special education teachers to dynamic testing results. Thirty-six 10-12-year-old children with a moderate to mild intellectual disability and their teachers participated. Children in the…

  2. The Dynamics of Multiagent Systems

    NASA Astrophysics Data System (ADS)

    Youssefmir, Michael

    Large distributed multiagent systems are characterized by vast numbers of agents trying to gain access to limited resources in a changing and unpredictable environment. Key issues in the study and design of such systems involve the trade-off between local procedures that agents follow and global controls for the whole system. On one hand, the need for fast responses, reduced spatial complexity, and low bandwidth dictates the use of local rather than global control procedures. On the other hand, local controls may not be well suited to the achievement of a desired global stability. It is interesting to note, however, that many systems such as financial markets achieve a measure of stability even though not all agents have access to perfect information. This thesis investigates the nature of this type of aggregate stability in a particular model of a multiagent system. Drawing a correspondence from economic institutions, we model agents as locally maximizing their perceived payoffs given incomplete information and as locally adapting their crude processing abilities. As the dynamics of the multiagent system unfold, and equilibrium is achieved, the system explores a set of strategy distributions consistent with overall equilibrium. The aggregate stability is achieved without any agent forming a complete local model of the macroscopic system. This equilibrium state, however, is punctuated by episodes of instability that take place at random. These bursts are the resultant of the fact that the system can explore a wealth of degenerate strategy distributions consistent with the overall equilibrium. These instabilities occur near the stability boundary in the space of strategies and are then quenched as the system "relearns" a stable configuration. This thesis characterizes the types of instabilities, illustrates their relevant signatures, and discusses the relevance of this work to economic systems. Sudden instabilities do indeed appear in economic time series in the

  3. Dynamical Localization in Molecular Systems.

    NASA Astrophysics Data System (ADS)

    Wang, Xidi

    In the first four chapters of this thesis we concentrate on the Davydov model which describes the vibrational energy quanta of Amide I bonds (C=O bonds on the alpha -helix) coupled to the acoustic phonon modes of the alpha-helix backbone in the form of a Frohlich Hamiltonian. Following a brief introduction in chapter one, in chapter two we formulate the dynamics of vibrational quanta at finite temperature by using coherent state products. The fluctuation-dissipation relation is derived. At zero temperature, in the continuum limit, we recover the original results of Davydov. We also achieve good agreement with numerical simulations. In chapter three, the net contraction of the lattice is calculated exactly at any temperature, and its relation to the so -call "topological stability" of the Davydov soliton is discussed. In the second section of the chapter three we calculate the overtone spectra of crystalline acetanilide (according to some opinions ACN provides experimental evidence for the existence of Davydov solitons). Good agreement with experimental data has been obtained. In chapter four we study the self-trapped vibrational excitations by the Quantum Monte Carlo technique. For a single excitation, the temperature dependence of different physical observables is calculated. The quasi-particle which resembles the Davydov soliton has been found to be fairly narrow using the most commonly used data for the alpha -helix; at temperatures above a few Kelvin, the quasi-particle reaches its smallest limit (extends over three sites), which implies diffusive motion of the small polaron-like quasi-particle at high temperatures. For the multi-excitation case, bound pairs and clusters of excitations are found at low temperatures; they gradually dissociate when the temperature of the system is increased as calculated from the density-density correlation function. In the last chapter of this thesis, we study a more general model of dynamical local modes in molecular systems

  4. Architectural Analysis of Dynamically Reconfigurable Systems

    NASA Technical Reports Server (NTRS)

    Lindvall, Mikael; Godfrey, Sally; Ackermann, Chris; Ray, Arnab; Yonkwa, Lyly

    2010-01-01

    oTpics include: the problem (increased flexibility of architectural styles decrease analyzability, behavior emerges and varies depending on the configuration, does the resulting system run according to the intended design, and architectural decisions can impede or facilitate testing); top down approach to architecture analysis, detection of defects and deviations, and architecture and its testability; currently targeted projects GMSEC and CFS; analyzing software architectures; analyzing runtime events; actual architecture recognition; GMPUB in Dynamic SAVE; sample output from new approach; taking message timing delays into account; CFS examples of architecture and testability; some recommendations for improved testablity; and CFS examples of abstract interfaces and testability; CFS example of opening some internal details.

  5. Quantitative Adaptation Analytics for Assessing Dynamic Systems of Systems.

    SciTech Connect

    Gauthier, John H.; Miner, Nadine E.; Wilson, Michael L.; Le, Hai D.; Kao, Gio K; Melander, Darryl J.; Longsine, Dennis Earl; Vander Meer, Robert Charles,

    2015-01-01

    Our society is increasingly reliant on systems and interoperating collections of systems, known as systems of systems (SoS). These SoS are often subject to changing missions (e.g., nation- building, arms-control treaties), threats (e.g., asymmetric warfare, terrorism), natural environments (e.g., climate, weather, natural disasters) and budgets. How well can SoS adapt to these types of dynamic conditions? This report details the results of a three year Laboratory Directed Research and Development (LDRD) project aimed at developing metrics and methodologies for quantifying the adaptability of systems and SoS. Work products include: derivation of a set of adaptability metrics, a method for combining the metrics into a system of systems adaptability index (SoSAI) used to compare adaptability of SoS designs, development of a prototype dynamic SoS (proto-dSoS) simulation environment which provides the ability to investigate the validity of the adaptability metric set, and two test cases that evaluate the usefulness of a subset of the adaptability metrics and SoSAI for distinguishing good from poor adaptability in a SoS. Intellectual property results include three patents pending: A Method For Quantifying Relative System Adaptability, Method for Evaluating System Performance, and A Method for Determining Systems Re-Tasking.

  6. Thermal Performance Testing Of Cryogenic Piping Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.

    2003-01-01

    Thermal performance measurement of piping systems under actual field conditions is important for space launch development and commercial industry. Knowledge of the true insulating effectiveness is needed in system design, development, and research activities. A new 18-meter-long test apparatus for cryogenic pipelines has been developed. Three different pipelines, rigid or flexible, can be tested simultaneously. Critical factors in heat leak measurements include eliminating heat transfer at end connections and obtaining proper liquid saturation condition. Effects due to variations in the external ambient conditions like wind, humidity, and solar radiation must be minimized. The static method of liquid nitrogen evaporation has been demonstrated, but the apparatus can be adapted for dynamic testing with cryogens, chilled water, or other working fluids. This technology is suited for the development of an industry standard test apparatus and method. Examples of the heat transfer data from testing commercially available pipelines are given. Prototype pipelines are currently being tested and evaluated at the Cryogenics Test Laboratory of NASA Kennedy Space Center.

  7. Automated System Tests Ferroelectric Capacitors

    NASA Technical Reports Server (NTRS)

    Lakata, Mark; Thakoor, Sarita

    1994-01-01

    Polarization-switching parameters measured under computer control. Ferroelectric-capacitor-testing system applies voltage pulses and measures responses of ferroelectric capacitor to determine write; "time dependence of polarization," polarization-retention and fatigue characteristics of capacitor. Highly integrated setup quite flexible, versatile, and interactive, and allows convenient computer storage and analysis of data.

  8. Dynamical Signatures of Living Systems

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1999-01-01

    One of the main challenges in modeling living systems is to distinguish a random walk of physical origin (for instance, Brownian motions) from those of biological origin and that will constitute the starting point of the proposed approach. As conjectured, the biological random walk must be nonlinear. Indeed, any stochastic Markov process can be described by linear Fokker-Planck equation (or its discretized version), only that type of process has been observed in the inanimate world. However, all such processes always converge to a stable (ergodic or periodic) state, i.e., to the states of a lower complexity and high entropy. At the same time, the evolution of living systems directed toward a higher level of complexity if complexity is associated with a number of structural variations. The simplest way to mimic such a tendency is to incorporate a nonlinearity into the random walk; then the probability evolution will attain the features of diffusion equation: the formation and dissipation of shock waves initiated by small shallow wave disturbances. As a result, the evolution never "dies:" it produces new different configurations which are accompanied by an increase or decrease of entropy (the decrease takes place during formation of shock waves, the increase-during their dissipation). In other words, the evolution can be directed "against the second law of thermodynamics" by forming patterns outside of equilibrium in the probability space. Due to that, a specie is not locked up in a certain pattern of behavior: it still can perform a variety of motions, and only the statistics of these motions is constrained by this pattern. It should be emphasized that such a "twist" is based upon the concept of reflection, i.e., the existence of the self-image (adopted from psychology). The model consists of a generator of stochastic processes which represents the motor dynamics in the form of nonlinear random walks, and a simulator of the nonlinear version of the diffusion

  9. Structural system identification: Structural dynamics model validation

    SciTech Connect

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  10. Microcomputer based test system for charge coupled devices

    SciTech Connect

    Sidman, S.

    1981-02-01

    A microcomputer based system for testing analog charge coupled integrated circuits has been developed. It measures device performance for three parameters: dynamic range, baseline shift due to leakage current, and transfer efficiency. A companion board tester has also been developed. The software consists of a collection of BASIC and assembly language routines developed on the test system microcomputer.

  11. A Historical Perspective on Dynamics Testing at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Kvaternik, Raymond G.; Hanks, Brantley R.

    2000-01-01

    The experience and advancement of Structural dynamics testing for space system applications at the Langley Research Center of the National Aeronautics and Space Administration (NASA) over the past four decades is reviewed. This experience began in the 1960's with the development of a technology base using a variety of physical models to explore dynamic phenomena and to develop reliable analytical modeling capability for space systems. It continued through the 1970's and 80's with the development of rapid, computer-aided test techniques, the testing of low-natural frequency, gravity-sensitive systems, the testing of integrated structures with active flexible motion control, and orbital flight measurements, It extended into the 1990's where advanced computerized system identification methods were developed for estimating the dynamic states of complex, lightweight, flexible aerospace systems, The scope of discussion in this paper includes ground and flight tests and summarizes lessons learned in both successes and failures.

  12. Use of the docking dynamics test facility for rendezvous and docking final approach verification

    NASA Astrophysics Data System (ADS)

    Noirault, P.; Pairot, J. M.

    1991-12-01

    The Docking and Dynamics Test Facility (DDTF) and its current areas of investigation are reviewed. The following topics are described: tests of an automatic scenario with a closed loop control of the approach to docking using a RV (Rendezvous) sensor breadboard; tests with a representative mockup of the future Docking/Berthing System (DBS), to derive relevant allocation between the GNC (Guidance, Navigation, and Control) system performances and the DBS capabilities; and tests on the last 5 m translation with full human control of the chaser for the Hermes/Columbus mission, where astronauts performed the docking mission. Some recommendations for a future dynamical test bench are given in conclusion.

  13. Symbolic Execution Enhanced System Testing

    NASA Technical Reports Server (NTRS)

    Davies, Misty D.; Pasareanu, Corina S.; Raman, Vishwanath

    2012-01-01

    We describe a testing technique that uses information computed by symbolic execution of a program unit to guide the generation of inputs to the system containing the unit, in such a way that the unit's, and hence the system's, coverage is increased. The symbolic execution computes unit constraints at run-time, along program paths obtained by system simulations. We use machine learning techniques treatment learning and function fitting to approximate the system input constraints that will lead to the satisfaction of the unit constraints. Execution of system input predictions either uncovers new code regions in the unit under analysis or provides information that can be used to improve the approximation. We have implemented the technique and we have demonstrated its effectiveness on several examples, including one from the aerospace domain.

  14. SSME Post Test Diagnostic System: Systems Section

    NASA Technical Reports Server (NTRS)

    Bickmore, Timothy

    1995-01-01

    An assessment of engine and component health is routinely made after each test firing or flight firing of a Space Shuttle Main Engine (SSME). Currently, this health assessment is done by teams of engineers who manually review sensor data, performance data, and engine and component operating histories. Based on review of information from these various sources, an evaluation is made as to the health of each component of the SSME and the preparedness of the engine for another test or flight. The objective of this project - the SSME Post Test Diagnostic System (PTDS) - is to develop a computer program which automates the analysis of test data from the SSME in order to detect and diagnose anomalies. This report primarily covers work on the Systems Section of the PTDS, which automates the analyses performed by the systems/performance group at the Propulsion Branch of NASA Marshall Space Flight Center (MSFC). This group is responsible for assessing the overall health and performance of the engine, and detecting and diagnosing anomalies which involve multiple components (other groups are responsible for analyzing the behavior of specific components). The PTDS utilizes several advanced software technologies to perform its analyses. Raw test data is analyzed using signal processing routines which detect features in the data, such as spikes, shifts, peaks, and drifts. Component analyses are performed by expert systems, which use 'rules-of-thumb' obtained from interviews with the MSFC data analysts to detect and diagnose anomalies. The systems analysis is performed using case-based reasoning. Results of all analyses are stored in a relational database and displayed via an X-window-based graphical user interface which provides ranked lists of anomalies and observations by engine component, along with supporting data plots for each.

  15. Vibration Test Demonstrated Dynamic Capability of an Operating Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Hughes, William O.

    2001-01-01

    The NASA Glenn Research Center and the U.S. Department of Energy are currently developing a high-efficiency, long-life, free piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions. As part of this development, a Stirling Technology Demonstrator Converter (TDC), developed by Stirling Technology Company for the Department of Energy, was vibration tested at Glenn's Structural Dynamics Laboratory in November and December 1999. This testing demonstrated that the Stirling TDC is able to withstand the harsh random vibration (20 to 2000 Hz) seen during a typical spacecraft launch and to survive with no structural damage or functional power performance degradation, thereby enabling its use in future spacecraft power systems. Glenn and Stirling personnel conducted tests on a single 55 We TDC. The purpose was to characterize the TDC's structural response to vibration and to determine if the TDC could survive the vibration criteria established by the Jet Propulsion Laboratory for launch environments. The TDC was operated at full-stroke and full power conditions during the vibration testing.

  16. Well test tool and system

    SciTech Connect

    Rumbaugh, W.D.

    1987-06-02

    A system is described for testing a selected earth formation, comprising: a well bore penetrating and communicating with the selected earth formation; a flow conductor in the well bore and having its lower end in fluid communication with the selected earth formation, the flow conductor including receptacle means; means sealing the well bore about the flow conductor at the surface; valve means at the surface for controlling flow through the flow conductor; and test tool means removably locked and sealed in the receptacle means of the flow conductor.

  17. System-level flight test

    SciTech Connect

    Cornwall, J.; Dyson, F.; Eardley, D.; Happer, W.; LeLevier, R.; Nierenberg, W.; Press, W.; Ruderman, M.; Sullivan, J.; York, H.

    1999-11-23

    System-level flight tests are an important part of the overall effort by the United States to maintain confidence in the reliability, safety, and performance of its nuclear deterrent forces. This study of activities by the Department of Energy in support of operational tests by the Department of Defense was originally suggested by Dr. Rick Wayne, Director, National Security Programs, Sandia National Laboratory/Livermore, and undertaken at the request of the Department of Energy, Defense Programs Division. It follows two 1997 studies by JASON that focused on the Department of Energy's Enhanced Surveillance Program for the physics package — i.e. the nuclear warhead.

  18. Remote Excavation System test plan

    SciTech Connect

    Walker, S.; Hyde, R.A.

    1993-05-01

    The Office of Technology Development (OTD) established the Robotics Technology Development Program (RTDP) to integrate robotic development activities on a national basis; provide needs-oriented, timely, and economical robotics technology to support environmental and waste operations activities at Department of Energy (DOE) sites; and provide the focus and direction for the near term (less than five years) and guidance for the tong-term (five to twenty years) research and development efforts for site-specific problems. The RTDP consists of several programs including the Buried Waste Robotics Program (BWRP), which addresses remote buried waste applications. The Remote Excavation System (RES) was developed under the RTDP to provide a safer method of excavating hazardous materials for both the DOE and the Department of Defense (DOD). The excavator, initially developed by the DOD as a manually-operated small excavator, has been modified for teleoperation with joint funding from the BWRP and the DOD. The Buried Waste Integrated Demonstration (BWID) and the Uranium Soils Integrated Demonstration (USID) are funding the demonstration, testing, and evaluation of the RES covered in this test plan. This document covers testing both at Oak Ridge National Laboratory (ORNL) and the Idaho National Engineering Laboratory (INEL), as funded by BWID and USID. This document describes the tests planned for the RES demonstration for the BWRP. The purposes of the test plan are (1) to establish test parameters to ensure that the demonstration results are deemed useful and usable and (2) to demonstrate performance in a safe manner within all regulatory requirements.

  19. An approach to operating system testing

    NASA Technical Reports Server (NTRS)

    Sum, R. N., Jr.; Campbell, R. H.; Kubitz, W. J.

    1984-01-01

    To ensure the reliability and performance of a new system, it must be verified or validated in some manner. Currently, testing is the only resonable technique available for doing this. Part of this testing process is the high level system test. System testing is considered with respect to operating systems and in particular UNIX. This consideration results in the development and presentation of a good method for performing the system test. The method includes derivations from the system specifications and ideas for management of the system testing project. Results of applying the method to the IBM System/9000 XENIX operating system test and the development of a UNIX test suite are presented.

  20. GENIE Flight Test Results and System Overview

    NASA Technical Reports Server (NTRS)

    Brady, Tye; Paschall, Stephen, II; Crain, Timothy P., II; Demars, Kyle; Bishop, Robert

    2011-01-01

    NASA has envisioned a suite of lander test vehicles that will be flown in Earth s atmosphere to incrementally demonstrate applicable lunar lander performance in the terrestrial environment. As each terrestrial rocket progresses in maturity, relevant space flight technology matures to a higher technology readiness level, preparing it for inclusion on a future lunar lander design.. NASA s "Project M" lunar mission concept flew its first terrestrial rocket, RR1, in June 2010 in Caddo Mills, Texas. The Draper Laboratory built GENIE (Guidance Embedded Navigator Integration Environment) successfully demonstrated accurate, real time, embedded performance of Project M navigation and guidance algorithms in a highly dynamic environment. The RR1 vehicle, built by Armadillo Aerospace, performed a successful 60 second free flight and gave the team great confidence in Project M s highly reliable and robust GNC system design and implementation. This paper provides an overview of the GENIE system and describes recent flight performance test results onboard the RR1 terrestrial rocket.

  1. Stability of Dynamical Systems with Discontinuous Motions:

    NASA Astrophysics Data System (ADS)

    Michel, Anthony N.; Hou, Ling

    In this paper we present a stability theory for discontinuous dynamical systems (DDS): continuous-time systems whose motions are not necessarily continuous with respect to time. We show that this theory is not only applicable in the analysis of DDS, but also in the analysis of continuous dynamical systems (continuous-time systems whose motions are continuous with respect to time), discrete-time dynamical systems (systems whose motions are defined at discrete points in time) and hybrid dynamical systems (HDS) (systems whose descriptions involve simultaneously continuous-time and discrete-time). We show that the stability results for DDS are in general less conservative than the corresponding well-known classical Lyapunov results for continuous dynamical systems and discrete-time dynamical systems. Although the DDS stability results are applicable to general dynamical systems defined on metric spaces (divorced from any kind of description by differential equations, or any other kinds of equations), we confine ourselves to finite-dimensional dynamical systems defined by ordinary differential equations and difference equations, to make this paper as widely accessible as possible. We present only sample results, namely, results for uniform asymptotic stability in the large.

  2. Overview of Dynamic Test Techniques for Flight Dynamics Research at NASA LaRC (Invited)

    NASA Technical Reports Server (NTRS)

    Owens, D. Bruce; Brandon, Jay M.; Croom, Mark A.; Fremaux, C. Michael; Heim, Eugene H.; Vicroy, Dan D.

    2006-01-01

    An overview of dynamic test techniques used at NASA Langley Research Center on scale models to obtain a comprehensive flight dynamics characterization of aerospace vehicles is presented. Dynamic test techniques have been used at Langley Research Center since the 1920s. This paper will provide a partial overview of the current techniques available at Langley Research Center. The paper will discuss the dynamic scaling necessary to address the often hard-to-achieve similitude requirements for these techniques. Dynamic test techniques are categorized as captive, wind tunnel single degree-of-freedom and free-flying, and outside free-flying. The test facilities, technique specifications, data reduction, issues and future work are presented for each technique. The battery of tests conducted using the Blended Wing Body aircraft serves to illustrate how the techniques, when used together, are capable of characterizing the flight dynamics of a vehicle over a large range of critical flight conditions.

  3. First cell magnet system tests

    SciTech Connect

    Schneider, W.J.; Brown, D.P.; Briggs, J.J.; Foerster, C.L.; Halama, H.J.; Schlafke, A.P.; Werner, A.P.

    1981-01-01

    The ISABELLE refrigeration system utilizes compressed liquid helium to supply refrigeration to nearly 1100 superconducting bending and focusing magnets. These magnets steer the proton orbits of the accelerator and are arranged into two interlocking rings. The total heat load that the refrigerator must provide is made up of the heat load of the magnets, magnet leads and vessels and the interconnecting piping to the refrigerator. The design and test results of the magnet system during various operating conditions in use on the ISABELLE prototype, the First Cell, are described.

  4. Lie cascades and Random Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Schertzer, D.; Lovejoy, S.; Tchiguirinskaia, I.

    2009-04-01

    Lie cascades were defined as a broad generalization of scalar cascades (Schertzer and Lovejoy 1995, Tchiguirinskaia and Schertzer, 1996) with the help of (infinitesimal) sub-generators being white noise vector fields on manifolds, instead of being white noise scalar fields on vector spaces. Lie cascades were thus closely related to stochastic flows on manifolds as defined by Kunita (1990). However, the concept of random dynamical systems (Arnold,1998) allows to make a closer and simpler connection between stochastic differential equations and the dynamical system approach. In this talk, we point out some relationships between Lie cascades and random dynamical systems, and therefore to dynamical system approach.

  5. Dynamic tests on the NASA Langley CSI evolutionary model

    NASA Technical Reports Server (NTRS)

    Troidl, H.; Elliott, K. B.

    1993-01-01

    A modal analysis study, representing one of the anticipated 'Cooperative Spacecraft Structural Dynamics Experiments on the NASA Langley CSI Evolutionary Model', was carried out as a sub-task under the NASA/DLR collaboration in dynamics and control of large space systems. The CSI evolutionary testbed (CEM) is designed for the development of Controls-Structures Interaction (CSI) technology to improve space science platform pointing. For orbiting space structures like large flexible trusses, new identification challenges arise due to their specific dynamic characteristics (low frequencies and high modal density) on the one hand, and the limited possibilities of exciting such structures and measuring their responses on orbit on the other. The main objective was to investigate the modal identification potential of several different types of forcing functions that could possibly be realized with on-board excitation equipment using a minimum number of exciter locations as well as response locations. These locations were defined in an analytical test prediction process used to study the implications of measuring and analyzing the responses thus produced. It turned out that broadband excitation is needed for a general modal survey, but if only certain modes are of particular interest, combinations of exponentially decaying sine functions provide favorable excitation conditions as they allow to concentrate the available energy on the modes being of special interest. From a practical point-of-view structural nonlinearities as well as noisy measurements make the analysis more difficult, especially in the low frequency range and when the modes are closely spaced.

  6. Structural Monitoring of a Weapons Test Unit Using Imaging Methods for Dynamic Signature Analysis

    SciTech Connect

    Jensen, S A; Malsbury, T N; Leach Jr., R R; Tsap, L V

    2004-09-23

    A methodology to identify structural changes in weapons systems during environmental tests is being developed at Lawrence Livermore National Laboratory. The method is coherence based and relies on comparing the ''dynamic signature'' response of the test article before and after an environmental test or test series. Physical changes in the test article result in changes in the dynamic signature and are mapped to an image matrix where a color scale represents changes in sensor-to-sensor coherence. This methodology is convenient because it allows an image to represent large amounts of information in a very compact form, where even subtle system changes may be easily and quickly identified. Furthermore, comparison of the dynamic signature response data before and after any test event can be made on a quasi-real-time basis. This approach is particularly useful on large and/or complex test articles where many sensors are present, and large volumes of data are generated.

  7. Dynamic Assessment: An Approach Toward Reducing Test Bias.

    ERIC Educational Resources Information Center

    Carlson, Jerry S.; Wiedl, Karl Heinz

    Through dynamic testing (the notion that tailored testing can be extended to the use of a learning oriented approach to assessment), analysis were made of how motivational, personality, and cognitive style factors interact with assessment approaches to yield performance data. Testing procedures involving simple feedback, elaborated feedback, and…

  8. Testing and analysis of dual-mode adaptive landing gear, taxi mode test system for YF-12A

    NASA Technical Reports Server (NTRS)

    Gamon, M. A.

    1979-01-01

    The effectiveness of a dual mode adaptive landing gear system in reducing the dynamic response of an airplane during ground taxiing was studied. The dynamic taxi tests of the YF-12A research airplane are presented. A digital computer program which simulated the test conditions is discussed. The dual mode system as tested provides dynamic taxi response reductions of 25 percent at the cg and 30 to 45 percent at the cockpit.

  9. Data management system DIU test system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An operational and functional description is given of the data management system. Descriptions are included for the test control unit, analog stimulus panel, discrete stimulus panel, and the precision source. The mechanical configuration is defined and illustrated to provide card and component location for modification or repair. The unit level interfaces are mirror images of the DIU interfaces and are described in the Final Technical Report for NASA-MSFC contract NAS8-29155.

  10. A dynamical systems view of network centrality.

    PubMed

    Grindrod, Peter; Higham, Desmond J

    2014-05-01

    To gain insights about dynamic networks, the dominant paradigm is to study discrete snapshots, or timeslices, as the interactions evolve. Here, we develop and test a new mathematical framework where network evolution is handled over continuous time, giving an elegant dynamical systems representation for the important concept of node centrality. The resulting system allows us to track the relative influence of each individual. This new setting is natural in many digital applications, offering both conceptual and computational advantages. The novel differential equations approach is convenient for modelling and analysis of network evolution and gives rise to an interesting application of the matrix logarithm function. From a computational perspective, it avoids the awkward up-front compromises between accuracy, efficiency and redundancy required in the prevalent discrete-time setting. Instead, we can rely on state-of-the-art ODE software, where discretization takes place adaptively in response to the prevailing system dynamics. The new centrality system generalizes the widely used Katz measure, and allows us to identify and track, at any resolution, the most influential nodes in terms of broadcasting and receiving information through time-dependent links. In addition to the classical static network notion of attenuation across edges, the new ODE also allows for attenuation over time, as information becomes stale. This allows 'running measures' to be computed, so that networks can be monitored in real time over arbitrarily long intervals. With regard to computational efficiency, we explain why it is cheaper to track good receivers of information than good broadcasters. An important consequence is that the overall broadcast activity in the network can also be monitored efficiently. We use two synthetic examples to validate the relevance of the new measures. We then illustrate the ideas on a large-scale voice call network, where key features are discovered that are not

  11. One testing method of dynamic linearity of an accelerometer

    NASA Astrophysics Data System (ADS)

    Lei, Jing-Yu; Guo, Wei-Guo; Tan, Xue-Ming; Shi, Yun-Bo

    2015-09-01

    To effectively test dynamic linearity of an accelerometer over a wide rang of 104 g to about 20 × 104g, one published patent technology is first experimentally verified and analysed, and its deficient is presented, then based on stress wave propagation theory on the thin long bar, the relation between the strain signal and the corresponding acceleration signal is obtained, one special link of two coaxial projectile is developed. These two coaxial metal cylinders (inner cylinder and circular tube) are used as projectiles, to prevent their mutual slip inside the gun barrel during movement, the one end of two projectiles is always fastened by small screws. Ti6-AL4-V bar with diameter of 30 mm is used to propagate loading stress pulse. The resultant compression wave can be measured by the strain gauges on the bar, and a half -sine strain pulse is obtained. The measuring accelerometer is attached on the other end of the bar by a vacuum clamp. In this clamp, the accelerometer only bear compression wave, the reflected tension pulse make the accelerometer off the bar. Using this system, dynamic linearity measurement of accelerometer can be easily tested in wider range of acceleration values. And a really measuring results are presented.

  12. Performance of a dynamic atmosphere generation system

    SciTech Connect

    Nano, G.; Borroni, A.; Mazza, B.

    1987-09-01

    A controlled test atmosphere system for gaseous pollutants was designed and constructed. For a reliable characterization of indoor air pollution, a suitable set of sampling and analysis procedures has to be devised and accomplished. The precision and accuracy of the measurements must be determined exactly for a correct interpretation of the results. The two main difficulties appear to be the actual generation of the individual standard and the preparations of physico-chemically thoroughly characterized mixtures. This system utilized two methods for generation of dynamic standards: permeation tubes and gas saturators. Special care also was devoted to the achievement of both a good time stability of the concentration of the standard mixtures and a satisfactory agreement between expected and measured concentration values.

  13. Dynamics of Nanoscopic Magnetic Systems

    NASA Astrophysics Data System (ADS)

    Chamberlin, R. V.; Scheinfein, M. R.

    1998-03-01

    We have investigated the dynamics of nanoscopic magnetic systems using magnetic relaxation and nonresonant spectral hole burning (NSHB).(B. Schiener, R. Böhmer, A. Loidl and R.V. Chamberlin, Science \\underline274), 752 (1996) Magnetic relaxation of arrays of nanometer-sized Fe particles(A. Sugawara and M.R. Scheinfein, Phys. Rev. B\\underline56), R8499 (1997) was measured as a function of time from 10-4 to 10^3 s after removing an applied field, H. For H>1 Oe, relaxation occurs at times from 0.1 ms to 100 s via uneven jumps and steps. For H<1 Oe, smooth but nonexponental relaxation occurs in the 0.1-10 ms time range, similar to the relaxation exhibited by bulk Fe. NSHB was used to investigate this net nonexponential relaxation in a single-crystal whisker of Fe. The frequency of an oscillating magnetic field is found to govern the time at which the subsequent magnetic relaxation is modified, indicating that the net relaxation arises from distinct degrees of freedom that relax independently, presumably due to a distribution of nanoscopic domains in the bulk crystal.

  14. Dynamical systems theory and applications

    NASA Astrophysics Data System (ADS)

    Awrejcewicz, Jan

    2006-08-01

    The 7th International Conference devoted to "Dynamical Systems-Theory and Applications" hold in 8-11 December, 2003 in Łódź, Poland, and it was organized by the staff of Department of Automatics and Biomechanics of the Technical University of Łódź. It was financially supported by the Rector of the Technical University of Łódź and the Department of Education and Physical Culture of the Łódź City Hall. The members of the International Scientific Committee included: Igor V. Andrianov (Dniepropetrovsk), Jan Awrejcewicz (Łódź), Iliya Blekhman (Sankt Petersburg), Roman Bogacz (Warszawa), Dick van Campen (Eindhoven), Zbigniew Engel (Kraków), Lothar Gaul (Stuttgart), Józef Giergiel (Kraków), Michał Kleiber (Warszawa), Vadim A. Krysko (Saratov), Włodzimierz Kurnik (Warszawa), Claude-Henri Lamarque (Lyon), Leonid I. Manevitch (Moscow), Jan Osiecki (Warszawa), Wiesaw Ostachowicz (Gdańsk), Ladislav Pust (Prague), Giuseppe Rega (Rome), Tsuneo Someya (Tokyo), Zbigniew Starczewski (Warszawa), Eugeniusz Świtoński (Gliwice), Andrzej Tylikowski (Warszawa), Tadeusz Uhl (Kraków), Aleksander F. Vakakis (Illinois), Józef Wojnarowski (Gliwice).

  15. Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.

    1996-01-01

    An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.

  16. Reliability of dynamic systems under limited information.

    SciTech Connect

    Field, Richard V., Jr.; Grigoriu, Mircea

    2006-09-01

    A method is developed for reliability analysis of dynamic systems under limited information. The available information includes one or more samples of the system output; any known information on features of the output can be used if available. The method is based on the theory of non-Gaussian translation processes and is shown to be particularly suitable for problems of practical interest. For illustration, we apply the proposed method to a series of simple example problems and compare with results given by traditional statistical estimators in order to establish the accuracy of the method. It is demonstrated that the method delivers accurate results for the case of linear and nonlinear dynamic systems, and can be applied to analyze experimental data and/or mathematical model outputs. Two complex applications of direct interest to Sandia are also considered. First, we apply the proposed method to assess design reliability of a MEMS inertial switch. Second, we consider re-entry body (RB) component vibration response during normal re-entry, where the objective is to estimate the time-dependent probability of component failure. This last application is directly relevant to re-entry random vibration analysis at Sandia, and may provide insights on test-based and/or model-based qualification of weapon components for random vibration environments.

  17. Evaluating effectiveness of dynamic soundfield system in the classroom

    PubMed Central

    da Cruz, Aline Duarte; Alves Silvério, Kelly Cristina; Da Costa, Aline Roberta Aceituno; Moret, Adriane Lima Mortari; Lauris, José Roberto Pereira; de Souza Jacob, Regina Tangerino

    2016-01-01

    Research has reported on the use of soundfield amplification devices in the classroom. However, no study has used standardized tests to determine the potential advantages of the dynamic soundfield system for normally hearing students and for the teacher's voice. Our aim was to evaluate the impact of using dynamic soundfield system on the noise of the classroom, teacher's voice and students’ academic performance. This was a prospective cohort study in which 20 student participants enrolled in the third year of basic education were divided into two groups (i.e., control and experimental); their teacher participated. The experimental group was exposed to the dynamic soundfield system for 3 consecutive months. The groups were assessed using standardized tests to evaluate their academic performance. Further, questionnaires and statements were collected on the participants’ experience of using the soundfield system. We statistically analyzed the results to compare the academic performance of the control group with that of the experimental group. In all cases, a significance level of P < .05 was adopted. Use of the dynamic soundfield system was effective for improving the students’ academic performance on standardized tests for reading, improving the teacher's speech intelligibility, and reducing the teacher's vocal strain. The dynamic soundfield system minimizes the impact of noise in the classroom as demonstrated by the mensuration of the signal-to-noise ratio (SNR) and pupil performance on standardized tests for reading and student and teacher ratings of amplification system effectiveness. PMID:26780961

  18. Evaluating effectiveness of dynamic soundfield system in the classroom.

    PubMed

    da Cruz, Aline Duarte; Alves Silvério, Kelly Cristina; Da Costa, Aline Roberta Aceituno; Moret, Adriane Lima Mortari; Lauris, José Roberto Pereira; de Souza Jacob, Regina Tangerino

    2016-01-01

    Research has reported on the use of soundfield amplification devices in the classroom. However, no study has used standardized tests to determine the potential advantages of the dynamic soundfield system for normally hearing students and for the teacher's voice. Our aim was to evaluate the impact of using dynamic soundfield system on the noise of the classroom, teacher's voice and students' academic performance. This was a prospective cohort study in which 20 student participants enrolled in the third year of basic education were divided into two groups (i.e., control and experimental); their teacher participated. The experimental group was exposed to the dynamic soundfield system for 3 consecutive months. The groups were assessed using standardized tests to evaluate their academic performance. Further, questionnaires and statements were collected on the participants' experience of using the soundfield system. We statistically analyzed the results to compare the academic performance of the control group with that of the experimental group. In all cases, a significance level of P < .05 was adopted. Use of the dynamic soundfield system was effective for improving the students' academic performance on standardized tests for reading, improving the teacher's speech intelligibility, and reducing the teacher's vocal strain. The dynamic soundfield system minimizes the impact of noise in the classroom as demonstrated by the mensuration of the signal-to-noise ratio (SNR) and pupil performance on standardized tests for reading and student and teacher ratings of amplification system effectiveness. PMID:26780961

  19. The 3-axis Dynamic Motion Simulator (DMS) system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A three-axis dynamic motion simulator (DMS) consisting of a test table with three degrees of freedom and an electronics control system was designed, constructed, delivered, and tested. Documentation, as required in the Data Requirements List (DRL), was also provided.

  20. Dynamic causal models and autopoietic systems.

    PubMed

    David, Olivier

    2007-01-01

    Dynamic Causal Modelling (DCM) and the theory of autopoietic systems are two important conceptual frameworks. In this review, we suggest that they can be combined to answer important questions about self-organising systems like the brain. DCM has been developed recently by the neuroimaging community to explain, using biophysical models, the non-invasive brain imaging data are caused by neural processes. It allows one to ask mechanistic questions about the implementation of cerebral processes. In DCM the parameters of biophysical models are estimated from measured data and the evidence for each model is evaluated. This enables one to test different functional hypotheses (i.e., models) for a given data set. Autopoiesis and related formal theories of biological systems as autonomous machines represent a body of concepts with many successful applications. However, autopoiesis has remained largely theoretical and has not penetrated the empiricism of cognitive neuroscience. In this review, we try to show the connections that exist between DCM and autopoiesis. In particular, we propose a simple modification to standard formulations of DCM that includes autonomous processes. The idea is to exploit the machinery of the system identification of DCMs in neuroimaging to test the face validity of the autopoietic theory applied to neural subsystems. We illustrate the theoretical concepts and their implications for interpreting electroencephalographic signals acquired during amygdala stimulation in an epileptic patient. The results suggest that DCM represents a relevant biophysical approach to brain functional organisation, with a potential that is yet to be fully evaluated. PMID:18575681

  1. Test facilities of the structural dynamics branch of NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Montague, Gerald T.; Kielb, Robert E.

    1988-01-01

    The NASA Lewis Research Center Structural Dynamics Branch conducts experimental and analytical research related to the structural dynamics of aerospace propulsion and power systems. The experimental testing facilities of the branch are examined. Presently there are 10 research rigs and 4 laboratories within the branch. These facilities are described along with current and past research work.

  2. Final test report: demonsration testing in support of the Track 3system waste dislodging, retrieval and conveyance concepts

    SciTech Connect

    Berglin, E.J.

    1997-07-24

    This report contains the quantitative and qualitative data and information collected during performance of the Track 3 System testing protocol. Information contained herein focuses on the data collected during performance ofthe following Tests Procedures. *Test Procedure-1, Position Management Test Procedure-2, Waste Dislodging, Retrieval, and Conveyance and Decontamination *Test Procedure-3, Dynamic Response Test procedures, Safety Demonstration

  3. Problems experienced and envisioned for dynamical physical systems

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.

    1985-01-01

    The use of high performance systems, which is the trend of future space systems, naturally leads to lower margins and a higher sensitivity to parameter variations and, therefore, more problems of dynamical physical systems. To circumvent dynamic problems of these systems, appropriate design, verification analysis, and tests must be planned and conducted. The basic design goal is to define the problem before it occurs. The primary approach for meeting this goal is a good understanding and reviewing of the problems experienced in the past in terms of the system under design. This paper reviews many of the dynamic problems experienced in space systems design and operation, categorizes them as to causes, and envisions future program implications, developing recommendations for analysis and test approaches.

  4. Selection of Solar Simulator for Solar Dynamic Ground Test

    NASA Technical Reports Server (NTRS)

    Tolbert, Carol M.

    1994-01-01

    The 2 kWe Solar Dynamic (SD) Ground Test Demonstration (GTD) experiment will be conducted in 1995 at NASA Lewis Research Center (LeRC). This solar dynamic power system test will be conducted in a simulated space environment and will require an artificial sun. To address the solar simulator requirements for the GTD, Arnold Engineering Development Center (AEDC) was hired under contract to review and visit four existing solar simulator facilities. The four facilities included, AEDC's Mark 1 Chamber, NASA-JSC Chamber A, AEDC's 12V Chamber, and NASA-JPL Space Simulator Chamber. Two design concepts were considered following several months of evaluating existing solar simulator facilities throughout the United States. To satisfy system requirements for the SD GTD experiment the solar simulator needs to provide a uniform light flux to the SD concentrator, provide the light within a subtense angle of one degree, and provide an intensity of one solar constant (1.37 kW/sq m) at airmass zero. Most solar simulators are designed for supplying heat loads to spacecraft where a cone angle as large as 3 degrees is acceptable. It was also concluded that a solar simulator, such like these considered in the AEDC study, would require major facility modifications for NASA LeRC and result in significant impacts to the program. The advanced solar simulator concept developed by NASA LeRC will meet the system requirements for the SD GTD experiment Since SD GTD solar simulator requirements could not be addressed by existing simulator, an advanced concept was considered.

  5. Control system health test system and method

    DOEpatents

    Hoff, Brian D.; Johnson, Kris W.; Akasam, Sivaprasad; Baker, Thomas M.

    2006-08-15

    A method is provided for testing multiple elements of a work machine, including a control system, a component, a sub-component that is influenced by operations of the component, and a sensor that monitors a characteristic of the sub-component. In one embodiment, the method is performed by the control system and includes sending a command to the component to adjust a first parameter associated with an operation of the component. Also, the method includes detecting a sensor signal from the sensor reflecting a second parameter associated with a characteristic of the sub-component and determining whether the second parameter is acceptable based on the command. The control system may diagnose at least one of the elements of the work machine when the second parameter of the sub-component is not acceptable.

  6. The Next Generation of High-Speed Dynamic Stability Wind Tunnel Testing (Invited)

    NASA Technical Reports Server (NTRS)

    Tomek, Deborah M.; Sewall, William G.; Mason, Stan E.; Szchur, Bill W. A.

    2006-01-01

    Throughout industry, accurate measurement and modeling of dynamic derivative data at high-speed conditions has been an ongoing challenge. The expansion of flight envelopes and non-conventional vehicle design has greatly increased the demand for accurate prediction and modeling of vehicle dynamic behavior. With these issues in mind, NASA Langley Research Center (LaRC) embarked on the development and shakedown of a high-speed dynamic stability test technique that addresses the longstanding problem of accurately measuring dynamic derivatives outside the low-speed regime. The new test technique was built upon legacy technology, replacing an antiquated forced oscillation system, and greatly expanding the capabilities beyond classic forced oscillation testing at both low and high speeds. The modern system is capable of providing a snapshot of dynamic behavior over a periodic cycle for varying frequencies, not just a damping derivative term at a single frequency.

  7. Testing Lorentz symmetry with planetary orbital dynamics

    NASA Astrophysics Data System (ADS)

    Hees, A.; Bailey, Q. G.; Le Poncin-Lafitte, C.; Bourgoin, A.; Rivoldini, A.; Lamine, B.; Meynadier, F.; Guerlin, C.; Wolf, P.

    2015-09-01

    Planetary ephemerides are a very powerful tool to constrain deviations from the theory of general relativity (GR) using orbital dynamics. The effective field theory framework called the Standard-Model Extension (SME) has been developed in order to systematically parametrize hypothetical violations of Lorentz symmetry (in the Standard Model and in the gravitational sector). In this communication, we use the latest determinations of the supplementary advances of the perihelia and of the nodes obtained by planetary ephemerides analysis to constrain SME coefficients from the pure gravity sector and also from gravity-matter couplings. Our results do not show any deviation from GR and they improve current constraints. Moreover, combinations with existing constraints from Lunar Laser Ranging and from atom interferometry gravimetry allow us to disentangle contributions from the pure gravity sector from the gravity-matter couplings.

  8. LETS: Lunar Environments Test System

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Schneider, Todd; Craven, Paul; Norwood, Joey

    2008-01-01

    The Environmental Effects Branch (EM50) at the Marshall Space Flight Center has developed a unique capability within the agency, namely the Lunar Environment Test System (LETS). LETS is a cryo-pumped vacuum chamber facility capable of high vacuum (10-7 Torr). LETS is a cylindrical chamber, 30 in. (0.8 m) diameter by 48 in. (1.2 m) long thermally controlled vacuum system. The chamber is equipped with a full array of radiation sources including vacuum ultraviolet, electron, and proton radiation. The unique feature of LETS is that it contains a large lunar simulant bed (18 in. x 40 in. x 6 in.) holding 75 kg of JSC-1a simulant while operating at a vacuum of 10-7 Torr. This facility allows three applications: 1) to study the charging, levitation and migration of dust particles, 2) to simulate the radiation environment on the lunar surface, and 3) to electrically charge the lunar simulant enhancing the attraction and adhesion of dust particles to test articles more closely simulating the lunar surface dust environment. LETS has numerous diagnostic instruments including TREK electrostatic probes, residual gas analyzer (RGA), temperature controlled quartz crystal microbalance (TQCM), and particle imaging velocimeter (PIV). Finally, LETS uses continuous Labview data acquisition for computer monitoring and system control.

  9. DEM modeling of penetration test in static and dynamic conditions

    NASA Astrophysics Data System (ADS)

    Tran, Quoc Anh; Chevalier, Bastien; Breul, Pierre

    2013-06-01

    Recent developments in dynamic penetration testing made it possible to measure a force-displacement response of the soil during each single blow. Mechanical properties other than the classical tip resistance could be deduced and possibly linked to properties usually measured from model tests. However, the loading process implied in penetration test is highly non homogeneous and very different from those of laboratory model tests. It is then important to find out how to link the properties obtained from both kinds of tests. As a preliminary step in this process, a numerical model was built to reproduce penetration tests conducted in static and dynamic conditions. Two-dimensional Discrete Element Method, based on molecular dynamics was used. A rod was driven in a confined sample either with a constant velocity (static conditions) or by applying a blow on it (dynamic conditions). The magnitudes of rod velocity used in both static and dynamic conditions tests were similar. The model was validated based on the qualitative comparison between classical experimental results and numerical results. The repeatability of numerical tests was also checked in terms of tip resistance and volume deformations.

  10. Cosmological test using strong gravitational lensing systems

    NASA Astrophysics Data System (ADS)

    Yuan, C. C.; Wang, F. Y.

    2015-09-01

    As one of the probes of universe, strong gravitational lensing systems allow us to compare different cosmological models and constrain vital cosmological parameters. This purpose can be reached from the dynamic and geometry properties of strong gravitational lensing systems, for instance, time-delay Δτ of images, the velocity dispersion σ of the lensing galaxies and the combination of these two effects, Δτ/σ2. In this paper, in order to carry out one-on-one comparisons between ΛCDM universe and Rh = ct universe, we use a sample containing 36 strong lensing systems with the measurement of velocity dispersion from the Sloan Lens Advanced Camera for Surveys (SLACS) and Lens Structure and Dynamic survey (LSD) survey. Concerning the time-delay effect, 12 two-image lensing systems with Δτ are also used. In addition, Monte Carlo simulations are used to compare the efficiency of the three methods as mentioned above. From simulations, we estimate the number of lenses required to rule out one model at the 99.7 per cent confidence level. Comparing with constraints from Δτ and the velocity dispersion σ, we find that using Δτ/σ2 can improve the discrimination between cosmological models. Despite the independence tests of these methods reveal a correlation between Δτ/σ2 and σ, Δτ/σ2 could be considered as an improved method of σ if more data samples are available.

  11. Reliability of degrading dynamic systems subject to dynamic random loads

    NASA Technical Reports Server (NTRS)

    Grigoriu, Mircea

    1990-01-01

    Reliability was determined for two degrading dynamic systems subject to random load processes. Damage is caused by loss of components for Daniels systems and crack extension for plates with cracks. The analysis accounted for the coupling between response and current damage state of the system. It is based on mean crossing rates of conditional processes and properties of diffusion models. Simple systems are used to illustrate proposed methods for estimating reliability.

  12. New directions in algebraic dynamical systems

    NASA Astrophysics Data System (ADS)

    Schmidt, Klaus; Verbitskiy, Evgeny

    2011-02-01

    The logarithmic Mahler measure of certain multivariate polynomials occurs frequently as the entropy or the free energy of solvable lattice models (especially dimer models). It is also known that the entropy of an algebraic dynamical system is the logarithmic Mahler measure of the defining polynomial. The connection between the lattice models and the algebraic dynamical systems is still rather mysterious.

  13. Systems-Dynamic Analysis for Neighborhood Study

    EPA Science Inventory

    Systems-dynamic analysis (or system dynamics (SD)) helps planners identify interrelated impacts of transportation and land-use policies on neighborhood-scale economic outcomes for households and businesses, among other applications. This form of analysis can show benefits and tr...

  14. Development of Test-Analysis Models (TAM) for correlation of dynamic test and analysis results

    NASA Technical Reports Server (NTRS)

    Angelucci, Filippo; Javeed, Mehzad; Mcgowan, Paul

    1992-01-01

    The primary objective of structural analysis of aerospace applications is to obtain a verified finite element model (FEM). The verified FEM can be used for loads analysis, evaluate structural modifications, or design control systems. Verification of the FEM is generally obtained as the result of correlating test and FEM models. A test analysis model (TAM) is very useful in the correlation process. A TAM is essentially a FEM reduced to the size of the test model, which attempts to preserve the dynamic characteristics of the original FEM in the analysis range of interest. Numerous methods for generating TAMs have been developed in the literature. The major emphasis of this paper is a description of the procedures necessary for creation of the TAM and the correlation of the reduced models with the FEM or the test results. Herein, three methods are discussed, namely Guyan, Improved Reduced System (IRS), and Hybrid. Also included are the procedures for performing these analyses using MSC/NASTRAN. Finally, application of the TAM process is demonstrated with an experimental test configuration of a ten bay cantilevered truss structure.

  15. Stirling Engine Dynamic System Modeling

    NASA Technical Reports Server (NTRS)

    Nakis, Christopher G.

    2004-01-01

    The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.

  16. Development of test methodology for dynamic mechanical analysis instrumentation

    NASA Technical Reports Server (NTRS)

    Allen, V. R.

    1982-01-01

    Dynamic mechanical analysis instrumentation was used for the development of specific test methodology in the determination of engineering parameters of selected materials, esp. plastics and elastomers, over a broad range of temperature with selected environment. The methodology for routine procedures was established with specific attention given to sample geometry, sample size, and mounting techniques. The basic software of the duPont 1090 thermal analyzer was used for data reduction which simplify the theoretical interpretation. Clamps were developed which allowed 'relative' damping during the cure cycle to be measured for the fiber-glass supported resin. The correlation of fracture energy 'toughness' (or impact strength) with the low temperature (glassy) relaxation responses for a 'rubber-modified' epoxy system was negative in result because the low-temperature dispersion mode (-80 C) of the modifier coincided with that of the epoxy matrix, making quantitative comparison unrealistic.

  17. Identification of dynamic systems, theory and formulation

    NASA Technical Reports Server (NTRS)

    Maine, R. E.; Iliff, K. W.

    1985-01-01

    The problem of estimating parameters of dynamic systems is addressed in order to present the theoretical basis of system identification and parameter estimation in a manner that is complete and rigorous, yet understandable with minimal prerequisites. Maximum likelihood and related estimators are highlighted. The approach used requires familiarity with calculus, linear algebra, and probability, but does not require knowledge of stochastic processes or functional analysis. The treatment emphasizes unification of the various areas in estimation in dynamic systems is treated as a direct outgrowth of the static system theory. Topics covered include basic concepts and definitions; numerical optimization methods; probability; statistical estimators; estimation in static systems; stochastic processes; state estimation in dynamic systems; output error, filter error, and equation error methods of parameter estimation in dynamic systems, and the accuracy of the estimates.

  18. Discriminating chaotic and stochastic dynamics through the permutation spectrum test

    SciTech Connect

    Kulp, C. W.; Zunino, L.

    2014-09-01

    In this paper, we propose a new heuristic symbolic tool for unveiling chaotic and stochastic dynamics: the permutation spectrum test. Several numerical examples allow us to confirm the usefulness of the introduced methodology. Indeed, we show that it is robust in situations in which other techniques fail (intermittent chaos, hyperchaotic dynamics, stochastic linear and nonlinear correlated dynamics, and deterministic non-chaotic noise-driven dynamics). We illustrate the applicability and reliability of this pragmatic method by examining real complex time series from diverse scientific fields. Taking into account that the proposed test has the advantages of being conceptually simple and computationally fast, we think that it can be of practical utility as an alternative test for determinism.

  19. Discriminating chaotic and stochastic dynamics through the permutation spectrum test.

    PubMed

    Kulp, C W; Zunino, L

    2014-09-01

    In this paper, we propose a new heuristic symbolic tool for unveiling chaotic and stochastic dynamics: the permutation spectrum test. Several numerical examples allow us to confirm the usefulness of the introduced methodology. Indeed, we show that it is robust in situations in which other techniques fail (intermittent chaos, hyperchaotic dynamics, stochastic linear and nonlinear correlated dynamics, and deterministic non-chaotic noise-driven dynamics). We illustrate the applicability and reliability of this pragmatic method by examining real complex time series from diverse scientific fields. Taking into account that the proposed test has the advantages of being conceptually simple and computationally fast, we think that it can be of practical utility as an alternative test for determinism. PMID:25273196

  20. Dynamic test of radio altimeter based on IQ modulation

    NASA Astrophysics Data System (ADS)

    Pan, Hongfei; Tian, Yu; Li, Miao

    2010-08-01

    This paper based on the analysis and research of radio altimeter and its basic principles, it introduces a design for I/Q modulator's radio altimeter testing system. Further, data got from the test had been analyzed. Combined with the testing data of the altimeter, a construction of the I/Q modulator's radio altimeter testing system is built.

  1. ISDSN Sensor System Phase One Test Report

    SciTech Connect

    Gail Heath

    2011-09-01

    This Phase 1 Test Report documents the test activities and results completed for the Idaho National Laboratory (INL) sensor systems that will be deployed in the meso-scale test bed (MSTB) at Florida International University (FIU), as outlined in the ISDSN-MSTB Test Plan. This report captures the sensor system configuration tested; test parameters, testing procedure, any noted changes from the implementation plan, acquired test data sets, and processed results.

  2. Tests of a Dynamic Systems Account of the A-not-B Error: The Influence of Prior Experience on the Spatial Memory Abilities of Two-Year-Olds.

    ERIC Educational Resources Information Center

    Spencer, John P.; Smith, Linda B.; Thelen, Esther

    2001-01-01

    Five experiments tested hypothesis that the A-not-B error results from general processes that make goal-directed actions to remembered locations. Findings showed that 2-year-olds' performance on the A trial was accurate. When the object was hidden at Location B, searches after 10-second delay were biased in the direction of Location A. This bias…

  3. Dynamic Stability Instrumentation System (DSIS). Volume 3; User Manual

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Boyden, Richmond P.; Dress, David A.; Jordan, Thomas L.

    1996-01-01

    The paper is an operating manual for the Dynamic Stability Instrumentation System in specific NASA Langley wind tunnels. The instrumentation system performs either a synchronous demodulation or a Fast Fourier Transform on dynamic balance strain gage signals, and ultimately computes aerodynamic coefficients. The dynamic balance converts sting motor rotation into pitch or yaw plane or roll axis oscillation, with timing information provided by a shaft encoder. Additional instruments control model attitude and balance temperature and monitor sting vibrations. Other instruments perform self-calibration and diagnostics. Procedures for conducting calibrations and wind-off and wind-on tests are listed.

  4. Detailed modal testing of a solid rocket motor using a portable test system

    NASA Technical Reports Server (NTRS)

    Glozman, Vladimir; Brillhart, Ralph D.

    1990-01-01

    Modern analytical techniques have expended the ability to evaluate solid rocket motors used in launch vehicles. As more detailed models of solid rocket motors were developed, testing methods were required to verify the models. Experimental modal analysis (modal testing) of space structures and launch vehicles has been a requirement for model validation for many years. However, previous testing of solid rocket motors has not typically involved dynamic modal testing of full scale motors for verification of solid propellant or system assembly properties. Innovative approaches to the testing of solid rocket motors were developed and modal testing of a full scale, two segment Titan 34D Solid Rocket Motor (SRM) was performed to validate detailed computer modeling. Special modifications were made to convert an existing facility into a temporary modal test facility which would accommodate the test article. The assembly of conventional data acquisition equipment into a multiple channel count portable system has made modal testing in the field feasible. Special purpose hydraulic exciters were configured to apply the dynamic driving forces required. All instrumentation and data collection equipment were installed at the test site for the duration of the test program and removed upon completion. Conversion of an existing test facility into a temporary modal test facility, and use of a multiple channel count portable test data acquisition system allowed all test objectives to be met and resulted in validation of the computer model in a minimum time.

  5. Unique Testing Capabilities of the NASA Langley Transonic Dynamics Tunnel, an Exercise in Aeroelastic Scaling

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G.

    2013-01-01

    NASA Langley Research Center's Transonic Dynamics Tunnel (TDT) is the world's most capable aeroelastic test facility. Its large size, transonic speed range, variable pressure capability, and use of either air or R-134a heavy gas as a test medium enable unparalleled manipulation of flow-dependent scaling quantities. Matching these scaling quantities enables dynamic similitude of a full-scale vehicle with a sub-scale model, a requirement for proper characterization of any dynamic phenomenon, and many static elastic phenomena. Select scaling parameters are presented in order to quantify the scaling advantages of TDT and the consequence of testing in other facilities. In addition to dynamic testing, the TDT is uniquely well-suited for high risk testing or for those tests that require unusual model mount or support systems. Examples of recently conducted dynamic tests requiring unusual model support are presented. In addition to its unique dynamic test capabilities, the TDT is also evaluated in its capability to conduct aerodynamic performance tests as a result of its flow quality. Results of flow quality studies and a comparison to a many other transonic facilities are presented. Finally, the ability of the TDT to support future NASA research thrusts and likely vehicle designs is discussed.

  6. Dynamic testing of NOVA laser switchyard tower

    SciTech Connect

    Weaver, H.J.; Pastrnak, J.W.; Fields, D.E.

    1984-06-01

    NOVA is the latest in a series of powerful laser systems designed to study the feasibility of initiating a controlled fusion reaction by concentrating several laser beams on a small fuel target. The laser components, turning mirrors and target chamber are all mounted on large steel frame structures. These structures were first analyzed via finite element models to access their seismic integrity as well as their overall vibrational stability. When construction was completed, a modal analysis was performed on the structures to verify and improve the finite element models. This report discusses the linking of the analytical and experimental studies for the NOVA switchyard tower structure.

  7. Solar Dynamic Power System Stability Analysis and Control

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Wang, Yanchun

    1996-01-01

    The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.

  8. Information Processing Capacity of Dynamical Systems

    PubMed Central

    Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge

    2012-01-01

    Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory. PMID:22816038

  9. A comparison of results from dynamic-response field tests

    NASA Astrophysics Data System (ADS)

    Hock, Susan M.; Thresher, Robert W.; Wright, Alan D.

    1988-11-01

    The dynamic response of Howden's 330-kW horizontal-axis wind turbine (HAWT) and the Northern Power Systems 100-kW North Wind 100 HAWT has been measured. The Howden machine incorporates a 26-m-diameter, upwind, three-bladed, wood/epoxy rotor that operates at 42 rpm and is a rigid-hub design. The North Wind 100 rotor has a diameter of 17.8 m, is upwind, two-bladed, and constructed of fiberglass, and has a teetered hub. The Northern Power turbine's blades are fully pitchable, while the Howden machine uses pitchable blade tips. This paper will present the results from each of these test programs in an effort to compare the dynamic response of each turbine. The analysis will focus on rotor bending loads in terms of both time domain and frequency response. The FLAP code will be used to explore sensitivity to teeter stiffness and natural frequency placement to provide a better understanding of the differences in behavior caused by configuration alone. The results are presented in the form of normalized azimuth-averaged plots of the deterministic loads, and spectral density plots of the stochastic responses. This presentation of the results will contrast major response differences due to design configurations.

  10. Dynamic Particle Growth Testing - Phase I Studies

    SciTech Connect

    Hu, M.Z-C.

    2001-05-17

    There is clearly a great need to understand the processes of crystallization and solid scale formation that led to the shutdown of 2H evaporator operation at the Savannah River Site (SRS) and could possibly cause similar problems in the future in other evaporators. Waste streams from SRS operations that enter the evaporators generally contain alkaline, sodium nitrate/nitrite-based solutions with various changing concentrations of silicates and aluminates. It has been determined. that the silicates and aluminates served as precursor reactants for forming unwanted minerals during solution evaporation, upon transport, or upon storage. Mineral forms of the Zeolite Linde A group--sodalites and cancrinite--along with gibbsite, have often been identified as contributing to deposit (scale) formation on surfaces of the 2H evaporator as well as to the formation of solid plugs in the gravity drain line and lift line. Meanwhile, solids (amorphous or crystalline minerals) are believed, without direct evidence, to form in the bulk solutions in the evaporator. In addition, the position of deposits in the 2H evaporator suggests that scale formation depends on the interplay of heat and mass transfer, hydrodynamics, and reaction mechanisms and kinetics. The origin of solid scale formation on walls could be due to heterogeneous nucleation and/or to homogeneous nucleation followed by cluster/particle deposition. Preliminary laboratory tests at the Savannah River Technology Center (SRTC) with standing metal coupons seem to support the latter mechanism for initial deposition; that is, the solid particles form in the bulk solution first and then deposit on the metal surfaces. Further buildup of deposits may involve both mechanisms: deposition and crystal growth. Therefore, there may be a direct linkage between the solid particle growth in bulk solution and the scale buildup on the wall surfaces. On the other hand, even if scale formation is due solely to a heterogeneous mechanism

  11. Development and correlation: Viking Orbiter analytical dynamic model with modal test

    NASA Technical Reports Server (NTRS)

    Wada, B. K.; Garba, J. A.; Chen, J. C.

    1974-01-01

    The Viking Orbiter (VO) experience in the achievement of a mathematical model is described along with the following project activities: (1) the generation of the overall plan for load analysis, an analytical dynamic model, and development tests; (2) the performance of VO subsystem static and modal tests; and (3) the correlation of the VO system model analysis and test. Success is attributed to the coordination of analysis and test using substructure modal coupling techniques.

  12. TRADES: TRAnsits and Dynamics of Exoplanetary Systems

    NASA Astrophysics Data System (ADS)

    Borsato, Luca

    2016-01-01

    TRADES (TRAnsits and Dynamics of Exoplanetary Systems) simultaneously fits observed radial velocities and transit times data to determine the orbital parameters of exoplanetary systems from observational data. It uses a dynamical simulator for N-body systems that also fits the available data during the orbital integration and determines the best combination of the orbital parameters using grid search, χ2 minimization, genetic algorithms, particle swarm optimization, and bootstrap analysis.

  13. Session 6: Dynamic Modeling and Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; Chapman, Jeffryes; May, Ryan

    2013-01-01

    These presentations cover some of the ongoing work in dynamic modeling and dynamic systems analysis. The first presentation discusses dynamic systems analysis and how to integrate dynamic performance information into the systems analysis. The ability to evaluate the dynamic performance of an engine design may allow tradeoffs between the dynamic performance and operability of a design resulting in a more efficient engine design. The second presentation discusses the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a Simulation system with a library containing the basic building blocks that can be used to create dynamic Thermodynamic Systems. Some of the key features include Turbo machinery components, such as turbines, compressors, etc., and basic control system blocks. T-MAT is written in the Matlab-Simulink environment and is open source software. The third presentation focuses on getting additional performance from the engine by allowing the limit regulators only to be active when a limit is danger of being violated. Typical aircraft engine control architecture is based on MINMAX scheme, which is designed to keep engine operating within prescribed mechanical/operational safety limits. Using a conditionally active min-max limit regulator scheme, additional performance can be gained by disabling non-relevant limit regulators

  14. Saturn V S-IC Stage at Dynamic Test Stand

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Engineers and technicians at the Marshall Space Flight Center placed a Saturn V ground test booster (S-IC-D) into the dynamic test stand. The stand was constructed to test the integrity of the vehicle. Forces were applied to the tail of the vehicle to simulate the engines thrusting, and various other flight factors were fed to the vehicle to test reactions. The Saturn V launch vehicle, with the Apollo spacecraft, was subjected to more than 450 hours of shaking. The photograph shows the 300,000 pound S-IC stage being lifted from its transporter into place inside the 360-foot tall test stand. This dynamic test booster has one dummy F-1 engine and weight simulators are used at the other four engine positions.

  15. Correlation of ground tests and analyses of a dynamically scaled space station model configuration

    NASA Technical Reports Server (NTRS)

    Javeed, Mehzad; Edighoffer, Harold H.; Mcgowan, Paul E.

    1993-01-01

    Verification of analytical models through correlation with ground test results of a complex space truss structure is demonstrated. A multi-component, dynamically scaled space station model configuration is the focus structure for this work. Previously established test/analysis correlation procedures are used to develop improved component analytical models. Integrated system analytical models, consisting of updated component analytical models, are compared with modal test results to establish the accuracy of system-level dynamic predictions. Design sensitivity model updating methods are shown to be effective for providing improved component analytical models. Also, the effects of component model accuracy and interface modeling fidelity on the accuracy of integrated model predictions is examined.

  16. Correlation of ground tests and analyses of a dynamically scaled Space Station model configuration

    NASA Technical Reports Server (NTRS)

    Javeed, Mehzad; Edighoffer, Harold H.; Mcgowan, Paul E.

    1993-01-01

    Verification of analytical models through correlation with ground test results of a complex space truss structure is demonstrated. A multi-component, dynamically scaled space station model configuration is the focus structure for this work. Previously established test/analysis correlation procedures are used to develop improved component analytical models. Integrated system analytical models, consisting of updated component analytical models, are compared with modal test results to establish the accuracy of system-level dynamic predictions. Design sensitivity model updating methods are shown to be effective for providing improved component analytical models. Also, the effects of component model accuracy and interface modeling fidelity on the accuracy of integrated model predictions is examined.

  17. Partial Dynamical Symmetry in Nuclear Systems

    SciTech Connect

    Escher, J E

    2003-06-02

    Partial dynamical symmetry (PDS) extends and complements the concepts of exact and dynamical symmetry. It allows one to remove undesired constraints from an algebraic theory, while preserving some of the useful aspects of a dynamical symmetry, and to study the effects of symmetry breaking in a controlled manner. An example of a PDS in an interacting fermion system is presented. The associated PDS Hamiltonians are closely related with a realistic quadrupole-quadrupole interaction and provide new insights into this important interaction.

  18. Development testing of TSS-1 Deployer tether control system mechanisms

    NASA Technical Reports Server (NTRS)

    Bentley, D. P.; Tisdale, D.

    1989-01-01

    Successful tether deployment and retrieval, consistent with established control laws, is predicated upon statusing real time tether dynamic conditions. This paper reports on the initial phase of engineering tests performed on various components and subassemblies integral to the TSS-1 tether control system as part of the TSS Deployer. The tests were conducted as part of the tether control system development and verification plan to confirm the functionality and map the performance of the hardware in both ambient and environmental test conditions. The result of this development effort is a lessons-learned list and design upgrades to both the flight and test hardware and to the test methods and procedures.

  19. Categorizing dynamic textures using a bag of dynamical systems.

    PubMed

    Ravichandran, Avinash; Chaudhry, Rizwan; Vidal, René

    2013-02-01

    We consider the problem of categorizing video sequences of dynamic textures, i.e., nonrigid dynamical objects such as fire, water, steam, flags, etc. This problem is extremely challenging because the shape and appearance of a dynamic texture continuously change as a function of time. State-of-the-art dynamic texture categorization methods have been successful at classifying videos taken from the same viewpoint and scale by using a Linear Dynamical System (LDS) to model each video, and using distances or kernels in the space of LDSs to classify the videos. However, these methods perform poorly when the video sequences are taken under a different viewpoint or scale. In this paper, we propose a novel dynamic texture categorization framework that can handle such changes. We model each video sequence with a collection of LDSs, each one describing a small spatiotemporal patch extracted from the video. This Bag-of-Systems (BoS) representation is analogous to the Bag-of-Features (BoF) representation for object recognition, except that we use LDSs as feature descriptors. This choice poses several technical challenges in adopting the traditional BoF approach. Most notably, the space of LDSs is not euclidean; hence, novel methods for clustering LDSs and computing codewords of LDSs need to be developed. We propose a framework that makes use of nonlinear dimensionality reduction and clustering techniques combined with the Martin distance for LDSs to tackle these issues. Our experiments compare the proposed BoS approach to existing dynamic texture categorization methods and show that it can be used for recognizing dynamic textures in challenging scenarios which could not be handled by existing methods. PMID:23257470

  20. q-entropy for symbolic dynamical systems

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Pesin, Yakov

    2015-12-01

    For symbolic dynamical systems we use the Carathéodory construction as described in (Pesin 1997 Dimension Theory in Dynamical Systems, ConTemporary Views and Applications (Chicago: University of Chicago Press)) to introduce the notions of q-topological and q-metric entropies. We describe some basic properties of these entropies and in particular, discuss relations between q-metric entropy and local metric entropy. Both q-topological and q-metric entropies are new invariants respectively under homeomorphisms and metric isomorphisms of dynamical systems.

  1. SIAM conference on applications of dynamical systems

    SciTech Connect

    Not Available

    1992-01-01

    A conference (Oct.15--19, 1992, Snowbird, Utah; sponsored by SIAM (Society for Industrial and Applied Mathematics) Activity Group on Dynamical Systems) was held that highlighted recent developments in applied dynamical systems. The main lectures and minisymposia covered theory about chaotic motion, applications in high energy physics and heart fibrillations, turbulent motion, Henon map and attractor, integrable problems in classical physics, pattern formation in chemical reactions, etc. The conference fostered an exchange between mathematicians working on theoretical issues of modern dynamical systems and applied scientists. This two-part document contains abstracts, conference program, and an author index.

  2. Evolution of Ada technology in the flight dynamics area: Implementation/testing phase analysis

    NASA Technical Reports Server (NTRS)

    Quimby, Kelvin L.; Esker, Linda; Miller, John; Smith, Laurie; Stark, Mike; Mcgarry, Frank

    1989-01-01

    An analysis is presented of the software engineering issues related to the use of Ada for the implementation and system testing phases of four Ada projects developed in the flight dynamics area. These projects reflect an evolving understanding of more effective use of Ada features. In addition, the testing methodology used on these projects has changed substantially from that used on previous FORTRAN projects.

  3. Dynamic stability experiment of Maglev systems

    SciTech Connect

    Cai, Y.; Mulcahy, T.M.; Chen, S.S.

    1995-04-01

    This report summarizes the research performed on Maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also documents magnetic-force data obtained from both measurements and calculations. Because dynamic instability is not acceptable for any commercial Maglev system, it is important to consider this phenomenon in the development of all Maglev systems. This report presents dynamic stability experiments on Maglev systems and compares their numerical simulation with predictions calculated by a nonlinear dynamic computer code. Instabilities of an electrodynamic system (EDS)-type vehicle model were obtained from both experimental observations and computer simulations for a five-degree-of-freedom Maglev vehicle moving on a guideway consisting of double L-shaped aluminum segments attached to a rotating wheel. The experimental and theoretical analyses developed in this study identify basic stability characteristics and future research needs of Maglev systems.

  4. Functional systems with orthogonal dynamic covalent bonds.

    PubMed

    Wilson, Adam; Gasparini, Giulio; Matile, Stefan

    2014-03-21

    This review summarizes the use of orthogonal dynamic covalent bonds to build functional systems. Dynamic covalent bonds are unique because of their dual nature. They can be as labile as non-covalent interactions or as permanent as covalent bonds, depending on conditions. Examples from nature, reaching from the role of disulfides in protein folding to thioester exchange in polyketide biosynthesis, indicate how dynamic covalent bonds are best used in functional systems. Several synthetic functional systems that employ a single type of dynamic covalent bonds have been reported. Considering that most functional systems make simultaneous use of several types of non-covalent interactions together, one would expect the literature to contain many examples in which different types of dynamic covalent bonds are similarly used in tandem. However, the incorporation of orthogonal dynamic covalent bonds into functional systems is a surprisingly rare and recent development. This review summarizes the available material comprehensively, covering a remarkably diverse collection of functions. However, probably more revealing than the specific functions addressed is that the questions asked are consistently quite unusual, very demanding and highly original, focusing on molecular systems that can self-sort, self-heal, adapt, exchange, replicate, transcribe, or even walk and "think" (logic gates). This focus on adventurous chemistry off the beaten track supports the promise that with orthogonal dynamic covalent bonds we can ask questions that otherwise cannot be asked. The broad range of functions and concepts covered should appeal to the supramolecular organic chemist but also to the broader community. PMID:24287608

  5. Dynamical systems, attractors, and neural circuits

    PubMed Central

    Miller, Paul

    2016-01-01

    Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic—they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions. PMID:27408709

  6. Laboratory performance of a dynamic ice storage system

    SciTech Connect

    Stovall, T.K.; Tomlinson, J.J.

    1991-06-01

    The performance of a commercial 30-ton dynamic ice storage system was measured in a dedicated laboratory test facility and the results analyzed. The ice storage system was tested over a wide range of operating conditions to characterize the ice generating performance as a function of condensing conditions, ice build time, and defrost time. The overall efficiency of ice production was determined and the effect of refrigeration system component performance on the overall system efficiency was evaluated. The ability of the charged system -- a tank of ice slush -- to meet a simulated cooling load over was also evaluated. 18 refs., 9 figs.

  7. Test techniques for determining laser ranging system performance

    NASA Technical Reports Server (NTRS)

    Zagwodzki, T. W.

    1981-01-01

    Procedures and results of an on going test program intended to evaluate laser ranging system performance levels in the field as well as in the laboratory are summarized. Tests show that laser ranging system design requires consideration of time biases and RMS jitters of individual system components. All simple Q switched lasers tested were found to be inadequate for 10 centimeter ranging systems. Timing discriminators operating over a typical 100:1 dynamic signal range may introduce as much as 7 to 9 centimeters of range bias. Time interval units commercially available today are capable of half centimeter performance and are adequate for all field systems currently deployed. Photomultipliers tested show typical tube time biases of one centimeter with single photoelectron transit time jitter of approximately 10 centimeters. Test results demonstrate that NASA's Mobile Laser Ranging System (MOBLAS) receiver configuration is limiting system performance below the 100 photoelectron level.

  8. Dynamics of Solar System Dust

    NASA Technical Reports Server (NTRS)

    Dermott, Stanley F.

    2002-01-01

    The ongoing aim of the research is to investigate the dynamical and physical evolution of interplanetary dust particles in order to produce a detailed global model of the zodiacal cloud and its constituent components that is capable of predicting thermal fluxes in mid-infrared wave bands to an accuracy of 1% or better; with the additional aim of exploiting this research as a basis for predicting structure in exozodiacal clouds that may be signatures of unseen planets.

  9. Energy Systems Test Area (ESTA) Electrical Power Systems Test Operations: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Salinas, Michael J.

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ESTA Electrical Power Systems Test Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  10. Cooperative Autonomic Management in Dynamic Distributed Systems

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Zhao, Ming; Fortes, José A. B.

    The centralized management of large distributed systems is often impractical, particularly when the both the topology and status of the system change dynamically. This paper proposes an approach to application-centric self-management in large distributed systems consisting of a collection of autonomic components that join and leave the system dynamically. Cooperative autonomic components self-organize into a dynamically created overlay network. Through local information sharing with neighbors, each component gains access to global information as needed for optimizing performance of applications. The approach has been validated and evaluated by developing a decentralized autonomic system consisting of multiple autonomic application managers previously developed for the In-VIGO grid-computing system. Using analytical results from complex random network and measurements done in a prototype system, we demonstrate the robustness, self-organization and adaptability of our approach, both theoretically and experimentally.

  11. Constraint Embedding for Multibody System Dynamics

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan

    2009-01-01

    This paper describes a constraint embedding approach for the handling of local closure constraints in multibody system dynamics. The approach uses spatial operator techniques to eliminate local-loop constraints from the system and effectively convert the system into tree-topology systems. This approach allows the direct derivation of recursive O(N) techniques for solving the system dynamics and avoiding the expensive steps that would otherwise be required for handling the closedchain dynamics. The approach is very effective for systems where the constraints are confined to small-subgraphs within the system topology. The paper provides background on the spatial operator O(N) algorithms, the extensions for handling embedded constraints, and concludes with some examples of such constraints.

  12. The investigation of tethered satellite system dynamics

    NASA Technical Reports Server (NTRS)

    Lorenzini, E.

    1984-01-01

    Tethered satellite system (TSS) dynamics were studied. The dynamic response of the TSS during the entire stationkeeping phase for the first electrodynamic mission was investigated. An out of plane swing amplitude and the tether's bowing were observed. The dynamics of the slack tether was studied and computer code, SLACK2, was improved both in capabilities and computational speed. Speed hazard related to tether breakage or plasma contactor failure was examined. Preliminary values of the potential difference after the failure and of the drop of the electric field along the tether axis have been computed. The update of the satellite rotational dynamics model is initiated.

  13. A comparative study on the restrictions of dynamic test methods

    NASA Astrophysics Data System (ADS)

    Majzoobi, GH.; Lahmi, S.

    2015-09-01

    Dynamic behavior of materials is investigated using different devices. Each of the devices has some restrictions. For instance, the stress-strain curve of the materials can be captured at high strain rates only with Hopkinson bar. However, by using a new approach some of the other techniques could be used to obtain the constants of material models such as Johnson-Cook model too. In this work, the restrictions of some devices such as drop hammer, Taylor test, Flying wedge, Shot impact test, dynamic tensile extrusion and Hopkinson bars which are used to characterize the material properties at high strain rates are described. The level of strain and strain rate and their restrictions are very important in examining the efficiency of each of the devices. For instance, necking or bulging in tensile and compressive Hopkinson bars, fragmentation in dynamic tensile extrusion and petaling in Taylor test are restricting issues in the level of strain rate attainable in the devices.

  14. Dynamics of the diffusive DM-DE interaction – Dynamical system approach

    NASA Astrophysics Data System (ADS)

    Haba, Zbigniew; Stachowski, Aleksander; Szydłowski, Marek

    2016-07-01

    We discuss dynamics of a model of an energy transfer between dark energy (DE) and dark matter (DM) . The energy transfer is determined by a non-conservation law resulting from a diffusion of dark matter in an environment of dark energy. The relativistic invariance defines the diffusion in a unique way. The system can contain baryonic matter and radiation which do not interact with the dark sector. We treat the Friedman equation and the conservation laws as a closed dynamical system. The dynamics of the model is examined using the dynamical systems methods for demonstration how solutions depend on initial conditions. We also fit the model parameters using astronomical observation: SNIa, H(z), BAO and Alcock-Paczynski test. We show that the model with diffuse DM-DE is consistent with the data.

  15. Note on entropies for quantum dynamical systems.

    PubMed

    Watanabe, Noboru

    2016-05-28

    Quantum entropy and channel are fundamental concepts for quantum information theory progressed recently in various directions. We will review the fundamental aspects of mean entropy and mean mutual entropy and calculate them for open system dynamics. PMID:27091165

  16. Dynamic Impregnator Reactor System (Poster)

    SciTech Connect

    Not Available

    2012-09-01

    IBRF poster developed for the IBRF showcase. Describes the multifarious system designed for complex feedstock impregnation and processing. IBRF feedstock system has several unit operations combined into one robust system that provides for flexible and staged process configurations, such as spraying, soaking, low-severity pretreatment, enzymatic hydrolysis, fermentation, concentration/evaporation, and distillation.

  17. On dynamic stability boundaries for binary systems

    NASA Technical Reports Server (NTRS)

    Young, M. I.

    1990-01-01

    Dynamic stability boundaries are developed for linear two-degree-of-freedom systems with damping and elastic couplings. Special emphasis is placed on the influence of natural frequency proximity and those instabilities which stem from skew-symmetric stiffness properties. These arise in aeroelasticity and flight dynamics systems. Insight is provided into the destabilizing effects of the 'dreaded modal resonance' which results when the two natural frequencies in the modal natural frequency ratio match or nearly match.

  18. Digital simulation of stiff linear dynamic systems.

    NASA Technical Reports Server (NTRS)

    Holland, L. D.; Walsh, J. R., Jr.; Kerr, J. H.

    1972-01-01

    A method is derived for digital computer simulation of linear time-invariant systems when the insignificant eigenvalues involved in such systems are eliminated by an ALSAP root removal technique. The method is applied to a thirteenth-order dynamic system representing a passive RLC network.

  19. Water monitor system: Phase 1 test report

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Jeffers, E. L.

    1976-01-01

    Automatic water monitor system was tested with the objectives of assuring high-quality effluent standards and accelerating the practice of reclamation and reuse of water. The NASA water monitor system is described. Various components of the system, including the necessary sensors, the sample collection system, and the data acquisition and display system, are discussed. The test facility and the analysis methods are described. Test results are reviewed, and recommendations for water monitor system design improvement are presented.

  20. Testing batteries for photovoltaic power systems

    NASA Astrophysics Data System (ADS)

    Verardo, A. E.; Butler, P. C.; Bush, D. M.; Miller, D. W.

    A battery evaluation laboratory was established to investigate the application of various battery technologies for energy storage in a photovoltaic power system. The evaluation laboratory provides a controlled test environment in which batteries can be exposed to any one or all of the following: (1) long term performance testing; (2) accelerated life testing; (3) simulated photovoltaic power system operational testing. Several battery systems are being tested. A description is presented of the laboratory and the tests currently being conducted and a brief description of the battery systems under test.

  1. Dynamic flow control strategies of vehicle SCR Urea Dosing System

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Zhang, Youtong; Asif, Malik

    2015-03-01

    Selective Catalyst Reduction(SCR) Urea Dosing System(UDS) directly affects the system accuracy and the dynamic response performance of a vehicle. However, the UDS dynamic response is hard to keep up with the changes of the engine's operating conditions. That will lead to low NO X conversion efficiency or NH3 slip. In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions, an advanced control strategy based on an air-assisted volumetric UDS is presented. It covers the methods of flow compensation and switching working conditions. The strategy is authenticated on an UDS and tested in different dynamic conditions. The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS. The inject deviation range is improved from being between -8% and 10% to -4% and 2% and became more stable than before, and the dynamic response time was shortened from 200 ms to 150 ms. The ETC cycle result shows that after using the new strategy the NH3 emission is reduced by 60%, and the NO X emission remains almost unchanged. The trade-off between NO X conversion efficiency and NH3 slip is mitigated. The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine's operating conditions quickly.

  2. Dynamics and kinematics of simple neural systems

    SciTech Connect

    Rabinovich, M. |; Selverston, A.; Rubchinsky, L.; Huerta, R.

    1996-09-01

    The dynamics of simple neural systems is of interest to both biologists and physicists. One of the possible roles of such systems is the production of rhythmic patterns, and their alterations (modification of behavior, processing of sensory information, adaptation, control). In this paper, the neural systems are considered as a subject of modeling by the dynamical systems approach. In particular, we analyze how a stable, ordinary behavior of a small neural system can be described by simple finite automata models, and how more complicated dynamical systems modeling can be used. The approach is illustrated by biological and numerical examples: experiments with and numerical simulations of the stomatogastric central pattern generators network of the California spiny lobster. {copyright} {ital 1996 American Institute of Physics.}

  3. Dynamics and kinematics of simple neural systems

    NASA Astrophysics Data System (ADS)

    Rabinovich, Mikhail; Selverston, Allen; Rubchinsky, Leonid; Huerta, Ramón

    1996-09-01

    The dynamics of simple neural systems is of interest to both biologists and physicists. One of the possible roles of such systems is the production of rhythmic patterns, and their alterations (modification of behavior, processing of sensory information, adaptation, control). In this paper, the neural systems are considered as a subject of modeling by the dynamical systems approach. In particular, we analyze how a stable, ordinary behavior of a small neural system can be described by simple finite automata models, and how more complicated dynamical systems modeling can be used. The approach is illustrated by biological and numerical examples: experiments with and numerical simulations of the stomatogastric central pattern generators network of the California spiny lobster.

  4. Application of dynamical systems theory to nonlinear aircraft dynamics

    NASA Technical Reports Server (NTRS)

    Culick, Fred E. C.; Jahnke, Craig C.

    1988-01-01

    Dynamical systems theory has been used to study nonlinear aircraft dynamics. A six degree of freedom model that neglects gravity has been analyzed. The aerodynamic model, supplied by NASA, is for a generic swept wing fighter and includes nonlinearities as functions of the angle of attack. A continuation method was used to calculate the steady states of the aircraft, and bifurcations of these steady states, as functions of the control deflections. Bifurcations were used to predict jump phenomena and the onset of periodic motion for roll coupling instabilities and high angle of attack maneuvers. The predictions were verified with numerical simulations.

  5. Visco-elastic Dynamics of an Active Polar Dynamic System

    NASA Astrophysics Data System (ADS)

    Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.

    2015-03-01

    We study the dynamics of systems with a polar dynamic preferred direction that are embedded in visco-elastic media. Examples include the pattern-forming growth of bacteria and molecular motors. Because the ordered state only exists dynamically, but not statically, the macroscopic variable of choice is the velocity of the active units. The passive visco-elastic medium is described by a relaxing strain tensor. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this two-fluid (two-velocity) system. The dynamics is rather different compared to the case of passive, static polar order. In particular, we find a complicated normal mode structure that reflects the broken time-reversal symmetry due to the non-equilibrium situation, anisotropy of first sound and a possible second sound excitation due to the active velocity, and various manifestations of the visco-elastic relaxation. We discuss critically the role of the so-called active term in the stress tensor as well as the thermodynamically correct description of the hydrodynamic transport velocities.

  6. Irreversible thermodynamics in multiscale stochastic dynamical systems.

    PubMed

    Santillán, Moisés; Qian, Hong

    2011-04-01

    This work extends the results of a recently developed theory of a rather complete thermodynamic formalism for discrete-state, continuous-time Markov processes with and without detailed balance. We investigate whether and in what way the thermodynamic structure is invariant in a multiscale stochastic system, that is, whether the relations between thermodynamic functions of state and process variables remain unchanged when the system is viewed at different time scales and resolutions. Our results show that the dynamics on a fast time scale contribute an entropic term to the internal energy function u(S)(x) for the slow dynamics. Based on the conditional free energy u(S)(x), we can then treat the slow dynamics as if the fast dynamics is nonexistent. Furthermore, we show that the free energy, which characterizes the spontaneous organization in a system without detailed balance, is invariant with or without the fast dynamics: The fast dynamics is assumed to reach stationarity instantaneously on the slow time scale; it has no effect on the system's free energy. The same cannot be said for the entropy and the internal energy, both of which contain the same contribution from the fast dynamics. We also investigate the consequences of time-scale separation in connection to the concepts of quasi-stationarity and steady adiabaticity introduced in the phenomenological steady-state thermodynamics. PMID:21599138

  7. Thermal Systems and Materials Testing

    NASA Technical Reports Server (NTRS)

    Aguirre, Nathan

    2010-01-01

    During my internship, I was involved in Boeing Thermal System/M&P, which handles maintenance and repairs of shuttle tiles, blankets, gap fillers, etc. One project I took part in was the revision of TPS-227, a repair process to tiles that entailed drilling out tile damage and using a cylindrical insert to fill the hole. The previous specification used minimal adhesive for application and when the adhesive cured, there would be several voids in the adhered material, causing an unsatisfactory bond. The testing compared several new methods and I analyzed the number of voids produced by each method to determine which one was most effective at eliminating void space. We revised the original process to apply a light adhesive coat to the top 25% of the borehole and a heavy coat to 100% of the insert. I was also responsible for maintaining the subnominal bond database, which records all unsatisfactory SIP (Strain Isolator Pad) bonds. I then archived each SIP physically for future referral data and statistics. In addition, I performed post-flight tile inspections for damages and wrote dispositions to have these tiles repaired. This also included writing a post-flight damage report for a section of Atlantis and creating summarized repair process guidelines for orbiter technicians.

  8. Dynamic visual acuity testing for screening patients with vestibular impairments

    PubMed Central

    Peters, Brian T.; Mulavara, Ajitkumar P.; Cohen, Helen S.; Sangi-Haghpeykar, Haleh; Bloomberg, Jacob J.

    2013-01-01

    Dynamic visual acuity (DVA) may be a useful indicator of the function of the vestibulo-ocular reflex (VOR) but most DVA tests involve active head motion in the yaw plane. During gait the passive, vertical VOR may be more relevant and passive testing would be less likely to elicit compensatory strategies. The goal of this study was to determine if testing dynamic visual acuity during passive vertical motion of the subject would differentiate normal subjects from patients with known vestibular disorders. Subjects, normals and patients who had been diagnosed with either unilateral vestibular weaknesses or were post-acoustic neuroma resections, sat in a chair that could oscillate vertically with the head either free or constrained with a cervical orthosis. They viewed a computer screen 2 m away that showed Landholt C optotypes in one of 8 spatial configurations and which ranged in size from 0.4 to 1.0 logMAR. They were tested while the chair was stationary and while it was moving. Scores were worse for both groups during the dynamic condition compared to the static condition. In the dynamic condition patients’ scores were significantly worse than normals’ scores. Younger and older age groups differed slightly but significantly; the sample size was too small to examine age differences by decade. The data suggest that many well-compensated patients have dynamic visual acuity that is as good as age-matched normals. Results of ROC analyses were only moderate, indicating that the differences between patients and normals were not strong enough, under the conditions tested, for this test to be useful for screening people to determine if they have vestibular disorders. Modifications of the test paradigm may make it more useful for screening potential patients. PMID:23000614

  9. Dynamic visual acuity testing for screening patients with vestibular impairments.

    PubMed

    Peters, Brian T; Mulavara, Ajitkumar P; Cohen, Helen S; Sangi-Haghpeykar, Haleh; Bloomberg, Jacob J

    2012-01-01

    Dynamic visual acuity (DVA) may be a useful indicator of the function of the vestibulo-ocular reflex (VOR) but most DVA tests involve active head motion in the yaw plane. During gait the passive, vertical VOR may be more relevant and passive testing would be less likely to elicit compensatory strategies. The goal of this study was to determine if testing dynamic visual acuity during passive vertical motion of the subject would differentiate normal subjects from patients with known vestibular disorders. Subjects, normals and patients who had been diagnosed with either unilateral vestibular weaknesses or were post-acoustic neuroma resections, sat in a chair that could oscillate vertically with the head either free or constrained with a cervical orthosis. They viewed a computer screen 2 m away that showed Landholt C optotypes in one of 8 spatial configurations and which ranged in size from 0.4 to 1.0 logMAR. They were tested while the chair was stationary and while it was moving. Scores were worse for both groups during the dynamic condition compared to the static condition. In the dynamic condition patients' scores were significantly worse than normals' scores. Younger and older age groups differed slightly but significantly; the sample size was too small to examine age differences by decade. The data suggest that many well-compensated patients have dynamic visual acuity that is as good as age-matched normals. Results of ROC analyses were only moderate, indicating that the differences between patients and normals were not strong enough, under the conditions tested, for this test to be useful for screening people to determine if they have vestibular disorders. Modifications of the test paradigm may make it more useful for screening potential patients. PMID:23000614

  10. Dynamic Stability Testing of the Genesis Sample Return Capsule

    NASA Technical Reports Server (NTRS)

    Cheatwood, F. McNeil; Winchenbach, Gerald L.; Hathaway, Wayne; Chapman, Gary

    2000-01-01

    This paper documents a series of free flight tests of a scale model of the Genesis Sample Return Capsule. These tests were conducted in the Aeroballistic Research Facility (ARF), located at Eglin AFB, FL, during April 1999 and were sponsored by NASA Langley Research Center. Because these blunt atmospheric entry shapes tend to experience small angle of attack dynamic instabilities (frequently leading to limit cycle motions), the primary purpose of the present tests was to determine the dynamic stability characteristics of the Genesis configuration. The tests were conducted over a Mach number range of 1.0 to 4.5. The results for this configuration indicate that the models were dynamically unstable at low angles of attack for all Mach numbers tested. At Mach numbers below 2.5, the models were also unstable at the higher angles of attack (above 15 deg), and motion amplitudes of up to 40 deg were experienced. Above Mach 2.5, the models were dynamically stable at the higher angles of attack.

  11. Dynamic system simulation of small satellite projects

    NASA Astrophysics Data System (ADS)

    Raif, Matthias; Walter, Ulrich; Bouwmeester, Jasper

    2010-11-01

    A prerequisite to accomplish a system simulation is to have a system model holding all necessary project information in a centralized repository that can be accessed and edited by all parties involved. At the Institute of Astronautics of the Technische Universitaet Muenchen a modular approach for modeling and dynamic simulation of satellite systems has been developed called dynamic system simulation (DySyS). DySyS is based on the platform independent description language SysML to model a small satellite project with respect to the system composition and dynamic behavior. A library of specific building blocks and possible relations between these blocks have been developed. From this library a system model of the satellite of interest can be created. A mapping into a C++ simulation allows the creation of an executable system model with which simulations are performed to observe the dynamic behavior of the satellite. In this paper DySyS is used to model and simulate the dynamic behavior of small satellites, because small satellite projects can act as a precursor to demonstrate the feasibility of a system model since they are less complex compared to a large scale satellite project.

  12. System reliability analysis through corona testing

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Mueller, L. A.; Koutnik, E. A.

    1975-01-01

    A corona vacuum test facility for nondestructive testing of power system components was built in the Reliability and Quality Engineering Test Laboratories at the NASA Lewis Research Center. The facility was developed to simulate operating temperature and vacuum while monitoring corona discharges with residual gases. The facility is being used to test various high-voltage power system components.

  13. Dynamic cell culture system (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Cogoli, Augusto

    1992-01-01

    This experiment is one of the Biorack experiments being flown on the International Microgravity Laboratory 1 (MIL-1) mission as part of an investigation studying cell proliferation and performance in space. One of the objectives of this investigation is to assess the potential benefits of bioprocessing in space with the ultimate goal of developing a bioreactor for continuous cell cultures in space. This experiment will test the operation of an automated culture chamber that was designed for use in a Bioreactor in space. The device to be tested is called the Dynamic Cell Culture System (DCCS). It is a simple device in which media are renewed or chemicals are injected automatically, by means of osmotic pumps. This experiment uses four Type I/O experiment containers. One DCCS unit, which contains a culture chamber with renewal of medium and a second chamber without a medium supply fits in each container. Two DCCS units are maintained under zero gravity conditions during the on-orbit period. The other two units are maintained under 1 gh conditions in a 1 g centrifuge. The schedule for incubator transfer is given.

  14. Contributions of Transonic Dynamics Tunnel Testing to Airplane Flutter Clearance

    NASA Technical Reports Server (NTRS)

    Rivera, Jose A.; Florance, James R.

    2000-01-01

    The Transonic Dynamics Tunnel (TDT) became in operational in 1960, and since that time has achieved the status of the world's premier wind tunnel for testing large in aeroelastically scaled models at transonic speeds. The facility has many features that contribute to its uniqueness for aeroelastic testing. This paper will briefly describe these capabilities and features, and their relevance to aeroelastic testing. Contributions to specific airplane configurations and highlights from the flutter tests performed in the TDT aimed at investigating the aeroelastic characteristics of these configurations are presented.

  15. Dynamic modeling of solar dynamic components and systems. Final Report

    SciTech Connect

    Hochstein, J.I.; Korakianitis, T.

    1992-09-01

    The purpose of this grant was to support NASA in modeling efforts to predict the transient dynamic and thermodynamic response of the space station solar dynamic power generation system. In order to meet the initial schedule requirement of providing results in time to support installation of the system as part of the initial phase of space station, early efforts were executed with alacrity and often in parallel. Initially, methods to predict the transient response of a Rankine as well as a Brayton cycle were developed. Review of preliminary design concepts led NASA to select a regenerative gas-turbine cycle using a helium-xenon mixture as the working fluid and, from that point forward, the modeling effort focused exclusively on that system. Although initial project planning called for a three year period of performance, revised NASA schedules moved system installation to later and later phases of station deployment. Eventually, NASA selected to halt development of the solar dynamic power generation system for space station and to reduce support for this project to two-thirds of the original level.

  16. Dynamic Modeling of Solar Dynamic Components and Systems

    NASA Technical Reports Server (NTRS)

    Hochstein, John I.; Korakianitis, T.

    1992-01-01

    The purpose of this grant was to support NASA in modeling efforts to predict the transient dynamic and thermodynamic response of the space station solar dynamic power generation system. In order to meet the initial schedule requirement of providing results in time to support installation of the system as part of the initial phase of space station, early efforts were executed with alacrity and often in parallel. Initially, methods to predict the transient response of a Rankine as well as a Brayton cycle were developed. Review of preliminary design concepts led NASA to select a regenerative gas-turbine cycle using a helium-xenon mixture as the working fluid and, from that point forward, the modeling effort focused exclusively on that system. Although initial project planning called for a three year period of performance, revised NASA schedules moved system installation to later and later phases of station deployment. Eventually, NASA selected to halt development of the solar dynamic power generation system for space station and to reduce support for this project to two-thirds of the original level.

  17. Dynamic Calibration of the NASA Ames Rotor Test Apparatus Steady/Dynamic Rotor Balance

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; vanAken, Johannes M.

    1996-01-01

    The NASA Ames Rotor Test Apparatus was modified to include a Steady/Dynamic Rotor Balance. The dynamic calibration procedures and configurations are discussed. Random excitation was applied at the rotor hub, and vibratory force and moment responses were measured on the steady/dynamic rotor balance. Transfer functions were computed using the load cell data and the vibratory force and moment responses from the rotor balance. Calibration results showing the influence of frequency bandwidth, hub mass, rotor RPM, thrust preload, and dynamic loads through the stationary push rods are presented and discussed.

  18. Solar-System Tests of Gravitational Theories

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin

    1997-01-01

    We are engaged in testing gravitational theory by means of observations of objects in the solar system. These tests include an examination of the Principle Of Equivalence (POE), the Shapiro delay, the advances of planetary perihelia, the possibility of a secular variation G in the "gravitational constant" G, and the rate of the de Sitter (geodetic) precession of the Earth-Moon system. These results are consistent with our preliminary results focusing on the contribution of Lunar Laser Ranging (LLR), which were presented at the seventh Marcel Grossmann meeting on general relativity. The largest improvement over previous results comes in the uncertainty for (eta): a factor of five better than our previous value. This improvement reflects the increasing strength of the LLR data. A similar analysis presented at the same meeting by a group at the Jet Propulsion Laboratory gave a similar result for (eta). Our value for (beta) represents our first such result determined simultaneously with the solar quadrupole moment from the dynamical data set. These results are being prepared for publication. We have shown how positions determined from different planetary ephemerides can be compared and how the combination of VLBI and pulse timing information can yield a direct tie between planetary and radio frames. We have continued to include new data in our analysis as they became available. Finally, we have made improvement in our analysis software (PEP) and ported it to a network of modern workstations from its former home on a "mainframe" computer.

  19. Dynamic stability of electrodynamic maglev systems

    SciTech Connect

    Cai, Y.; Chen, S.S.; Mulcahy, T.M.; Rote, D.M.

    1997-01-01

    Because dynamic instabilities are not acceptable in any commercial maglev system, it is important to consider dynamic instability in the development of all maglev systems. This study considers the stability of maglev systems based on mathematical models and experimental data. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis for motion-dependent magnetic-force-induced instability developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.

  20. Coupled dynamics analysis of wind energy systems

    NASA Technical Reports Server (NTRS)

    Hoffman, J. A.

    1977-01-01

    A qualitative description of all key elements of a complete wind energy system computer analysis code is presented. The analysis system addresses the coupled dynamics characteristics of wind energy systems, including the interactions of the rotor, tower, nacelle, power train, control system, and electrical network. The coupled dynamics are analyzed in both the frequency and time domain to provide the basic motions and loads data required for design, performance verification and operations analysis activities. Elements of the coupled analysis code were used to design and analyze candidate rotor articulation concepts. Fundamental results and conclusions derived from these studies are presented.

  1. Multiple Bifurcations of a Cylindrical Dynamical System

    NASA Astrophysics Data System (ADS)

    Han, Ning; Cao, Qingjie

    2016-03-01

    This paper focuses on multiple bifurcations of a cylindrical dynamical system, which is evolved from a rotating pendulum with SD oscillator. The rotating pendulum system exhibits the coupling dynamics property of the bistable state and conventional pendulum with the ho- moclinic orbits of the first and second type. A double Andronov-Hopf bifurcation, two saddle-node bifurcations of periodic orbits and a pair of homoclinic bifurcations are detected by using analytical analysis and nu- merical calculation. It is found that the homoclinic orbits of the second type can bifurcate into a pair of rotational limit cycles, coexisting with the oscillating limit cycle. Additionally, the results obtained herein, are helpful to explore different types of limit cycles and the complex dynamic bifurcation of cylindrical dynamical system.

  2. A rigorous testing methodology for control systems

    NASA Technical Reports Server (NTRS)

    Lewin, Andrew W.

    1991-01-01

    This paper discusses the development of a generalized verification testing methodology as applied to control systems. The methodology is based upon determining inputs that rigorously test each element of a system in order to verify that it has been specified properly. The methodology was successfully applied to testing of Boeing 737 autoland control system.

  3. A review of dynamic characteristics of magnetically levitated vehicle systems

    SciTech Connect

    Cai, Y.; Chen, S.S.

    1995-11-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, while vehicle stability is an important safety-related element. To design a guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade-off between guideway smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which reviews various aspects of the dynamic characteristics, experiments and analysis, and design guidelines for maglev systems, discusses vehicle stability, motion dependent magnetic force components, guideway characteristics, vehicle/ guideway interaction, ride quality, suspension control laws, aerodynamic loads and other excitations, and research needs.

  4. Dynamic characteristics of magnetically-levitated vehicle systems.

    SciTech Connect

    Cai, Y.; Chen, S. S.; Energy Technology

    1997-11-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, while vehicle stability is an important safety related element. To design a guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade off between guideway smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which reviews various aspects of the dynamic characteristics, experiments and analysis, and design guidelines for maglev systems, discusses vehicle stability, motion dependent magnetic force components, guideway characteristics, vehicle/ guideway interaction, ride quality, suspension control laws, aerodynamic loads and other excitations, and research needs.

  5. A Microcomputer Dynamical Modelling System.

    ERIC Educational Resources Information Center

    Ogborn, Jon; Wong, Denis

    1984-01-01

    Presents a system that permits students to engage directly in the process of modelling and to learn some important lessons about models and classes of models. The system described currently runs on RML 380Z and 480Z, Apple II and IIe, and BBC model B microcomputers. (JN)

  6. A dynamic motion simulator for future European docking systems

    NASA Technical Reports Server (NTRS)

    Brondino, G.; Marchal, PH.; Grimbert, D.; Noirault, P.

    1990-01-01

    Europe's first confrontation with docking in space will require extensive testing to verify design and performance and to qualify hardware. For this purpose, a Docking Dynamics Test Facility (DDTF) was developed. It allows reproduction on the ground of the same impact loads and relative motion dynamics which would occur in space during docking. It uses a 9 degree of freedom, servo-motion system, controlled by a real time computer, which simulates the docking spacecraft in a zero-g environment. The test technique involves and active loop based on six axis force and torque detection, a mathematical simulation of individual spacecraft dynamics, and a 9 degree of freedom servomotion of which 3 DOFs allow extension of the kinematic range to 5 m. The configuration was checked out by closed loop tests involving spacecraft control models and real sensor hardware. The test facility at present has an extensive configuration that allows evaluation of both proximity control and docking systems. It provides a versatile tool to verify system design, hardware items and performance capabilities in the ongoing HERMES and COLUMBUS programs. The test system is described and its capabilities are summarized.

  7. Research on new dynamic torque calibration system

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Wang, Zhong Yu; Yin, Xiao

    2016-06-01

    Dynamic torque calibration method based on rotating table and interferometric system is studied in this paper. A load mass with certain moment of inertia are screwed on the top of torque transducer, the dynamic torque is realized by load object are traceable to angular acceleration and moment of inertia of the object by M (t)=I θ ¨(t) , where I is the total moment of inertia acting on the sensing element of the torque transducer and θ ¨ is the time and spatial-dependent angular acceleration of the load object which is directly measured by a laser interferometer. This paper will introduce a dynamic torque calibration system developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses servomotor to generate dynamic torque in the range from 0.1Nm to 200Nm, and heterodyne laser interferometers cooperated with column grating are used for angular acceleration measurement. An airbearing system is developed to increase the performance of the dynamic turque calibration system. This paper introduce the setup of the dynamic torque calibration system.

  8. Non-Nuclear NEP System Testing

    NASA Astrophysics Data System (ADS)

    Hrbud, Ivana; Goodfellow, Keith; van Dyke, Melissa; Houts, Mike

    2003-01-01

    The Safe Affordable Fission Engine (SAFE) test series addresses Phase 1 Space Fission Systems issues in particular non-nuclear testing and system integration issues leading to the testing and non-nuclear demonstration of a 400-kW fully integrated flight unit. The first part of the SAFE 30 test series demonstrated operation of the simulated nuclear core and heat pipe system. Experimental data acquired in a number of different test scenarios will validate existing computational models, demonstrated system flexibility (fast start-ups, multiple start-ups/shut downs), simulate predictable failure modes and operating environments. The objective of the second part is to demonstrate an integrated propulsion system consisting of a core, conversion system and a thruster where the system converts thermal heat into jet power. This end-to-end system demonstration sets a precedent for ground testing of nuclear electric propulsion systems. The paper describes the SAFE 30 end-to-end system demonstration and its subsystems.

  9. Modular interdependency in complex dynamical systems.

    PubMed

    Watson, Richard A; Pollack, Jordan B

    2005-01-01

    Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability. PMID:16197673

  10. TMACS Test Procedure TP007: System administration

    SciTech Connect

    Scanlan, P.; Washburn, S.; Seghers, R.

    1994-05-24

    The TMACS Software Project Test Procedures translate the project`s acceptance criteria into test steps. Software releases are certified when the affected Test Procedures are successfully performed and the customers authorize installation of these changes. This Test Procedure tests the TMACS System Administration functions.

  11. Dynamics of test bodies with spin in de Sitter spacetime

    SciTech Connect

    Obukhov, Yuri N.; Puetzfeld, Dirk

    2011-02-15

    We study the motion of spinning test bodies in the de Sitter spacetime of constant positive curvature. With the help of the 10 Killing vectors, we derive the 4-momentum and the tensor of spin explicitly in terms of the spacetime coordinates. However, in order to find the actual trajectories, one needs to impose the so-called supplementary condition. We discuss the dynamics of spinning test bodies for the cases of the Frenkel and Tulczyjew conditions.

  12. Irreversible thermodynamics in multiscale stochastic dynamical systems

    NASA Astrophysics Data System (ADS)

    Santillán, Moisés; Qian, Hong

    2011-04-01

    This work extends the results of a recently developed theory of a rather complete thermodynamic formalism for discrete-state, continuous-time Markov processes with and without detailed balance. We investigate whether and in what way the thermodynamic structure is invariant in a multiscale stochastic system, that is, whether the relations between thermodynamic functions of state and process variables remain unchanged when the system is viewed at different time scales and resolutions. Our results show that the dynamics on a fast time scale contribute an entropic term to the internal energy function uS(x) for the slow dynamics. Based on the conditional free energy uS(x), we can then treat the slow dynamics as if the fast dynamics is nonexistent. Furthermore, we show that the free energy, which characterizes the spontaneous organization in a system without detailed balance, is invariant with or without the fast dynamics: The fast dynamics is assumed to reach stationarity instantaneously on the slow time scale; it has no effect on the system’s free energy. The same cannot be said for the entropy and the internal energy, both of which contain the same contribution from the fast dynamics. We also investigate the consequences of time-scale separation in connection to the concepts of quasi-stationarity and steady adiabaticity introduced in the phenomenological steady-state thermodynamics.

  13. Dynamics of Multibody Systems Near Lagrangian Points

    NASA Astrophysics Data System (ADS)

    Wong, Brian

    This thesis examines the dynamics of a physically connected multi-spacecraft system in the vicinity of the Lagrangian points of a Circular Restricted Three-Body System. The spacecraft system is arranged in a wheel-spoke configuration with smaller and less massive satellites connected to a central hub using truss/beams or tether connectors. The kinematics of the system is first defined, and the kinetic, gravitational potential energy and elastic potential energy of the system are derived. The Assumed Modes Method is used to discretize the continuous variables of the system, and a general set of ordinary differential equations describing the dynamics of the connectors and the central hub are obtained using the Lagrangian method. The flexible body dynamics of the tethered and truss connected systems are examined using numerical simulations. The results show that these systems experienced only small elastic deflections when they are naturally librating or rotating at moderate angular velocities, and these deflections have relatively small effect on the attitude dynamics of the systems. Based on these results, it is determined that the connectors can be modeled as rigid when only the attitude dynamics of the system is of interest. The equations of motion of rigid satellites stationed at the Lagrangian points are linearized, and the stability conditions of the satellite are obtained from the linear equations. The required conditions are shown to be similar to those of geocentric satellites. Study of the linear equations also revealed the resonant conditions of rigid Lagrangian point satellites, when a librational natural frequency of the satellite matches the frequency of its station-keeping orbit leading to large attitude motions. For tethered satellites, the linear analysis shows that the tethers are in stable equilibrium when they lie along a line joining the two primary celestial bodies of the Three-Body System. Numerical simulations are used to study the long term

  14. Initial results from the Solar Dynamic (SD) Ground Test Demonstration (GTD) project at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Boyle, Robert V.

    1995-01-01

    A government/industry team designed, built, and tested a 2 kWe solar dynamic space power system in a large thermal/vacuum facility with a simulated sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum, and solar flux as encountered in low earth orbit. This paper reviews the goals and status of the Solar Dynamic (SD) Ground Test Demonstration (GTD) program and describes the initial testing, including both operational and performance data. This SD technology has the potential as a future power source for the International Space Station Alpha.

  15. Engineering evaluation of SSME dynamic data from engine tests and SSV flights

    NASA Technical Reports Server (NTRS)

    1986-01-01

    An engineering evaluation of dynamic data from SSME hot firing tests and SSV flights is summarized. The basic objective of the study is to provide analyses of vibration, strain and dynamic pressure measurements in support of MSFC performance and reliability improvement programs. A brief description of the SSME test program is given and a typical test evaluation cycle reviewed. Data banks generated to characterize SSME component dynamic characteristics are described and statistical analyses performed on these data base measurements are discussed. Analytical models applied to define the dynamic behavior of SSME components (such as turbopump bearing elements and the flight accelerometer safety cut-off system) are also summarized. Appendices are included to illustrate some typical tasks performed under this study.

  16. Nonequilibrium quantum dynamics in optomechanical systems

    NASA Astrophysics Data System (ADS)

    Patil, Yogesh Sharad; Cheung, Hil F. H.; Shaffer, Airlia; Wang, Ke; Vengalattore, Mukund

    2016-05-01

    The thermalization dynamics of isolated quantum systems has so far been explored in the context of cold atomic systems containing a large number of particles and modes. Quantum optomechanical systems offer prospects of studying such dynamics in a qualitatively different regime - with few individually addressable modes amenable to continuous quantum measurement and thermalization times that vastly exceed those observed in cold atomic systems. We have experimentally realized a dynamical continuous phase transition in a quantum compatible nondegenerate mechanical parametric oscillator. This system is formally equivalent to the optical parametric amplifiers whose dynamics have been a subject of intense theoretical study. We experimentally verify its phase diagram and observe nonequilibrium behavior that was only theorized, but never directly observed, in the context of optical parametric amplifiers. We discuss prospects of using nonequilibrium protocols such as quenches in optomechanical systems to amplify weak nonclassical correlations and to realize macroscopic nonclassical states. This work was supported by the DARPA QuASAR program through a Grant from the ARO and the ARO MURI on non-equilibrium manybody dynamics.

  17. Track/train dynamics test report transfer function test. Volume 1: Test

    NASA Technical Reports Server (NTRS)

    Vigil, R. A.

    1975-01-01

    A description is presented of the transfer function test performed on an open hopper freight car loaded with 80 tons of coal. Test data and a post-test update of the requirements document and test procedure are presented. Included are a statement of the test objective, a description of the test configurations, test facilities, test methods, data acquisition/reduction operations, and a chronological test summary. An index to the data for the three test configurations (X, Y, and Z-axis tests) is presented along with test sequence, run number, test reference, and input parameters.

  18. Substructurability: the effect of interface location on a real-time dynamic substructuring test

    PubMed Central

    Neild, S. A.; Lowenberg, M.; Szalai, R.; Krauskopf, B.

    2016-01-01

    A full-scale experimental test for large and complex structures is not always achievable. This can be due to many reasons, the most prominent one being the size limitations of the test. Real-time dynamic substructuring is a hybrid testing method where part of the system is modelled numerically and the rest of the system is kept as the physical test specimen. The numerical–physical parts are connected via actuators and sensors and the interface is controlled by advanced algorithms to ensure that the tested structure replicates the emulated system with sufficient accuracy. The main challenge in such a test is to overcome the dynamic effects of the actuator and associated controller, that inevitably introduce delay into the substructured system which, in turn, can destabilize the experiment. To date, most research concentrates on developing control strategies for stable recreation of the full system when the interface location is given a priori. Therefore, substructurability is mostly studied in terms of control. Here, we consider the interface location as a parameter and study its effect on the stability of the system in the presence of delay due to actuator dynamics and define substructurability as the system’s tolerance to delay in terms of the different interface locations. It is shown that the interface location has a major effect on the tolerable delays in an experiment and, therefore, careful selection of it is necessary. PMID:27616930

  19. Preoperational test report, vent building ventilation system

    SciTech Connect

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  20. Preoperational test report, primary ventilation system

    SciTech Connect

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Primary Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space filtered venting of tanks AY101, AY102, AZ101, AZ102. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  1. Accelerated Testing of Polymeric Composites Using the Dynamic Mechanical Analyzer

    NASA Technical Reports Server (NTRS)

    Abdel-Magid, Becky M.; Gates, Thomas S.

    2000-01-01

    Creep properties of IM7/K3B composite material were obtained using three accelerated test methods at elevated temperatures. Results of flexural creep tests using the dynamic mechanical analyzer (DMA) were compared with results of conventional tensile and compression creep tests. The procedures of the three test methods are described and the results are presented. Despite minor differences in the time shift factor of the creep compliance curves, the DMA results compared favorably with the results from the tensile and compressive creep tests. Some insight is given into establishing correlations between creep compliance in flexure and creep compliance in tension and compression. It is shown that with careful consideration of the limitations of flexure creep, a viable and reliable accelerated test procedure can be developed using the DMA to obtain the viscoelastic properties of composites in extreme environments.

  2. Efficient dynamic models of tensegrity systems

    NASA Astrophysics Data System (ADS)

    Skelton, Robert

    2009-03-01

    The multi-body dynamics appear in a new form, as a matrix differential equation, rather than the traditional vector differential equation. The model has a constant mass matrix, and the equations are non-minimal. A specific focus of this paper is tensegrity systems. A tensegrity system requires prestress for stabilization of the configuration of rigid bodies and tensile members. This paper provides an efficient model for both static and dynamic behavior of such systems, specialized for the case when the rigid bodies are axi-symmetric rods.

  3. Dynamic stability experiment of Maglev systems

    SciTech Connect

    Cai, Y.; Chen, S.S.; Zhu, S.; Rote, D.M.

    1995-12-31

    This paper presents dynamic stability experiments on maglev systems and compares with predictions calculated by a nonlinear dynamic computer code. Instabilities of an electrodynamic system (EDS)-type vehicle model were obtained from both experimental observations and computer simulations for a five-degree-of-freedom maglev vehicle moving on a guideway consisting of double L-shaped aluminum segments attached to a rotating wheel. The experimental and theoretical analyses developed in this study identify basic stability characteristics and future research needs of maglev systems.

  4. Dimensionality reduction of dynamical systems with parameters

    NASA Astrophysics Data System (ADS)

    Welshman, Ch.; Brooke, J.

    2013-01-01

    We describe a method for reproducing the dynamical behaviour observed in systems of very high dimension in a state space of much lower dimension. The method is designed for systems where the solution evolves onto an attractor of dimension m which is much lower than that of the state space of the full system, n. Whitney's embedding theorem guarantees that the attractor can be embedded in a space of dimension d = 2m+1. We describe how such methods can be extended to reproducing the vector field on the attractor so that the dynamics of a parameterized family of attractors can be explored in the low dimensional space Rd.

  5. Phase control of intermittency in dynamical systems.

    PubMed

    Zambrano, Samuel; Mariño, Inés P; Salvadori, Francesco; Meucci, Riccardo; Sanjuán, Miguel A F; Arecchi, F T

    2006-07-01

    We present a nonfeedback method to tame or enhance crisis-induced intermittency in dynamical systems. By adding a small harmonic perturbation to a parameter of the system, the intermittent behavior can be suppressed or enhanced depending on the value of the phase difference between the main driving and the perturbation. The validity of the method is shown both in the model and in an experiment with a CO2 laser. An analysis of this scheme applied to the quadratic map near crisis illustrates the role of phase control in nonlinear dynamical systems. PMID:16907172

  6. Solar dynamic space power system heat rejection

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Gustafson, E.; Mclallin, K. L.

    1986-01-01

    A radiator system concept is described that meets the heat rejection requirements of the NASA Space Station solar dynamic power modules. The heat pipe radiator is a high-reliability, high-performance approach that is capable of erection in space and is maintainable on orbit. Results are present of trade studies that compare the radiator system area and weight estimates for candidate advanced high performance heat pipes. The results indicate the advantages of the dual-slot heat pipe radiator for high temperature applications as well as its weight-reduction potential over the range of temperatures to be encountered in the solar dynamic heat rejection systems.

  7. Impulsive synchronization of networked nonlinear dynamical systems

    NASA Astrophysics Data System (ADS)

    Jiang, Haibo; Bi, Qinsheng

    2010-06-01

    In this Letter, we investigate the problem of impulsive synchronization of networked multi-agent systems, where each agent can be modeled as an identical nonlinear dynamical system. Firstly, an impulsive control protocol is designed for network with fixed topology based on the local information of agents. Then sufficient conditions are given to guarantee the synchronization of the networked nonlinear dynamical system by using algebraic graph theory and impulsive control theory. Furthermore, how to select the discrete instants and impulsive constants is discussed. The case that the topologies of the networks are switching is also considered. Numerical simulations show the effectiveness of our theoretical results.

  8. Central limit behavior of deterministic dynamical systems

    NASA Astrophysics Data System (ADS)

    Tirnakli, Ugur; Beck, Christian; Tsallis, Constantino

    2007-04-01

    We investigate the probability density of rescaled sums of iterates of deterministic dynamical systems, a problem relevant for many complex physical systems consisting of dependent random variables. A central limit theorem (CLT) is valid only if the dynamical system under consideration is sufficiently mixing. For the fully developed logistic map and a cubic map we analytically calculate the leading-order corrections to the CLT if only a finite number of iterates is added and rescaled, and find excellent agreement with numerical experiments. At the critical point of period doubling accumulation, a CLT is not valid anymore due to strong temporal correlations between the iterates. Nevertheless, we provide numerical evidence that in this case the probability density converges to a q -Gaussian, thus leading to a power-law generalization of the CLT. The above behavior is universal and independent of the order of the maximum of the map considered, i.e., relevant for large classes of critical dynamical systems.

  9. Reaction dynamics in polyatomic molecular systems

    SciTech Connect

    Miller, W.H.

    1993-12-01

    The goal of this program is the development of theoretical methods and models for describing the dynamics of chemical reactions, with specific interest for application to polyatomic molecular systems of special interest and relevance. There is interest in developing the most rigorous possible theoretical approaches and also in more approximate treatments that are more readily applicable to complex systems.

  10. Dynamic Systems Theory and Team Sport Coaching

    ERIC Educational Resources Information Center

    Gréhaigne, Jean-Francis; Godbout, Paul

    2014-01-01

    This article examines the theory of dynamic systems and its use in the domains of the study and coaching of team sports. The two teams involved in a match are looked at as two interacting systems in movement, where opposition is paramount. A key element for the observation of game play is the notion of configuration of play and its ever-changing…

  11. Dynamics, stability, and control of maglev systems

    SciTech Connect

    Cai, Y.; Chen, S.S.; Rote, D.M.; Coffey, H.T.

    1993-01-01

    The dynamic response of maglev systems is important in several respects: Safety and ride quality, guideway design, and system costs. The dynamic response of vehicles is the key element in the determination of ride quality, and vehicle stability is one of the important elements relative to safety. To design a proper guideway that provides acceptable ride quality in the stable region, the vehicle dynamics must be understood. The trade-off between guideway smoothness and the levitation and control systems must be considered if maglev systems are to be economically feasible. This paper is a summary of our previous work on dynamics, stability and control of maglev systems. First of all, the importance of dynamics of vehicle/guideway of maglev systems is discussed. Emphasis is placed on the modeling vehicle/guideway interactions of maglev systems with a multicar, or multiload vehicle traversing on a single or double-span flexible guideway. Coupled effects of vehicle/guideway interactions in wide range of vehicle speeds with various vehicle and guideway parameters for maglev systems are investigated. Secondly, the alternative control designs of maglev vehicle suspension systems are investigated in this study to achieve safe, stable operation and acceptable ride comfort requires some form of vehicle motion control. Active and semi-active control law designs are introduced into primary and secondary suspensions of maglev vehicles. Finally, this paper discusses the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.

  12. Dynamics, stability, and control of maglev systems

    SciTech Connect

    Cai, Y.; Chen, S.S.; Rote, D.M.; Coffey, H.T.

    1993-06-01

    The dynamic response of maglev systems is important in several respects: Safety and ride quality, guideway design, and system costs. The dynamic response of vehicles is the key element in the determination of ride quality, and vehicle stability is one of the important elements relative to safety. To design a proper guideway that provides acceptable ride quality in the stable region, the vehicle dynamics must be understood. The trade-off between guideway smoothness and the levitation and control systems must be considered if maglev systems are to be economically feasible. This paper is a summary of our previous work on dynamics, stability and control of maglev systems. First of all, the importance of dynamics of vehicle/guideway of maglev systems is discussed. Emphasis is placed on the modeling vehicle/guideway interactions of maglev systems with a multicar, or multiload vehicle traversing on a single or double-span flexible guideway. Coupled effects of vehicle/guideway interactions in wide range of vehicle speeds with various vehicle and guideway parameters for maglev systems are investigated. Secondly, the alternative control designs of maglev vehicle suspension systems are investigated in this study to achieve safe, stable operation and acceptable ride comfort requires some form of vehicle motion control. Active and semi-active control law designs are introduced into primary and secondary suspensions of maglev vehicles. Finally, this paper discusses the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.

  13. Dynamic stall of small wind systems

    SciTech Connect

    Noll, R.B.; Ham, N.D.

    1983-02-01

    Aerospace Systems, Inc. (ASI) conducted a study of dynamic stall in order to define its influence on the airfoil force and moment coefficients so that these effects can be included in the calculation of small wind energy conversion system (SWECS) loads and response. The effort includes a review of past work to determine its applicability to SWECS requirements, a definition of a dynamic stall theory for use in SWECS design, and computer implementation of the theory in SWECS loads and dynamic response analyses. Sample calculations are made for representative vertical-axis (VAWT) and horizontal-axis (HAWT) wind turbines. The basic results for the fixed-pitch HAWT show that dynamic stall effects may increase normal loads and moments by about ten percent. For the cyclic pitch VAWT, the peak normal load may be slightly underestimated but the peak moment may be significantly underestimated. The consequences of dynamic stall may be a change in performance with resultant mismatch of selected components or a reduction in the fatigue life of the SWECS structure. Semiempirical methods are used for the practical estimation of the forces and moments on oscillating airfoils or airfoils in an oscillating airstream. The dynamic stall method presented in this report is applicable primarily to large amplitude oscillations of the airfoil. Fully-developed dynamic stall is presumed and, therefore, the method may not be adequate for predicting aerodynamic loads and moments for incipient or light stall.

  14. Study on service test procedure for SMES systems

    NASA Astrophysics Data System (ADS)

    Ren, L.; Tang, Y.; Li, J.; Shi, J.; Hu, Y.; Guo, F.; Chen, L.; Cheng, S.

    2009-10-01

    Some superconducting magnetic energy storage (SMES) systems have been developed successfully, and the function of them was verified by experiment. Considering the impact on the system security and stability when they are connected to the power system, it is important to build a standard test procedure and propose the main experimental contents for some representative superconducting devices. Based on the experimental results of a 35 kJ/7 kW conduction-cooled high- T c SMES system, which was developed by Huazhong University of Science and Technology, the test items and methods for a conduction-cooled high- T c SMES system are studied. For performance evaluation of this high- T c SMES, three superconducting magnet performance tests, power conditioning characteristic test and dynamic experiment in a simulated power system were fulfilled.

  15. Dynamic stereoacuity: a test for hitting a baseball?

    PubMed

    Solomon, H; Zinn, W J; Vacroux, A

    1988-07-01

    Vision is a critical ingredient in professional sports such as baseball. It would, therefore, be logical to assume that vision testing should be able to discriminate between good and bad performance. Past attempts to establish this vision/performance relationship have not been successful. We believe the fault is anchored in the fact that all routine vision testing is static and unable to measure motion parameters. Using an instrument of our design to test dynamic stereoacuity, we have been able to detect subtle differences among individuals. The data show a segregation between major league hitters and pitchers. Such information could be used as one clue to predict hitting performance. PMID:3403900

  16. Numerical Simulations of Granular Dynamics: Method and Tests

    NASA Astrophysics Data System (ADS)

    Richardson, Derek C.; Walsh, K. J.; Murdoch, N.; Michel, P.; Schwartz, S. R.

    2010-10-01

    We present a new particle-based numerical method for the simulation of granular dynamics, with application to motions of particles (regolith) on small solar system bodies and planetary surfaces [1]. The method employs the parallel N-body tree code pkdgrav [2] to search for collisions and compute particle trajectories. Particle confinement is achieved by combining arbitrary combinations of four provided wall primitives, namely infinite plane, finite disk, infinite cylinder, and finite cylinder, and degenerate cases of these. Various wall movements, including translation, oscillation, and rotation, are supported. Several tests of the method are presented, including a model granular "atmosphere” that achieves correct energy equipartition, and a series of tumbler simulations that compare favorably with actual laboratory experiments [3]. DCR and SRS acknowledge NASA Grant No. NNX08AM39G and NSF Grant No. AST0524875; KJW, the Poincaré Fellowship at OCA; NM, Thales Alenia Space and The Open University; and PM and NM, the French Programme National de Planétologie. References: [1] Richardson et al. (2010), Icarus, submitted; [2] Cf. Richardson et al. (2009), P&SS 57, 183 and references therein; [3] Brucks et al. (2007), PRE 75, 032301-1-032301-4.

  17. Terminal Dynamics Approach to Discrete Event Systems

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Meyers, Ronald

    1995-01-01

    This paper presents and discusses a mathematical formalism for simulation of discrete event dynamic (DED)-a special type of 'man-made' systems to serve specific purposes of information processing. The main objective of this work is to demonstrate that the mathematical formalism for DED can be based upon a terminal model of Newtonian dynamics which allows one to relax Lipschitz conditions at some discrete points.!.

  18. Novel dynamic fatigue-testing device: design and measurements

    NASA Astrophysics Data System (ADS)

    Foong, Chee-Hoe; Wiercigroch, Marian; Deans, William F.

    2006-08-01

    The influence of dynamics on a propagating fatigue crack has not been studied experimentally yet mainly due to quasi-static loading from traditional fatigue-testing machines. To overcome this serious drawback, a novel base-excited fatigue-testing device was designed and built to allow measurement of the dynamic responses of a single-edge-notch beam (SENB) under a growing fatigue crack. In this paper, the details of the novel test rig including initial development, modification and instrumentation are given. The experimental time histories obtained for harmonic and chaotic excitations have shown that the fatigue rig is capable of generating a wide range of loading patterns. Moreover, the experimental crack growth curves and features of the fracture surface have confirmed that the rig is capable of inducing proper fatigue cracks.

  19. Solar dynamic power system definition study

    NASA Technical Reports Server (NTRS)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  20. Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

    NASA Astrophysics Data System (ADS)

    Park, Sangwook; Lee, Young-Ran; Hwang, Yoola; Javier Santiago Noguero Galilea

    2009-12-01

    This paper describes the Flight Dynamics Automation (FDA) system for COMS Flight Dynamics System (FDS) and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator’s tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system’s quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

  1. Progress in the Phase 0 Model Development of a STAR Concept for Dynamics and Control Testing

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Armand, Sasan C.

    2003-01-01

    The paper describes progress in the development of a lightweight, deployable passive Synthetic Thinned Aperture Radiometer (STAR). The spacecraft concept presented will enable the realization of 10 km resolution global soil moisture and ocean salinity measurements at 1.41 GHz. The focus of this work was on definition of an approximately 1/3-scaled, 5-meter Phase 0 test article for concept demonstration and dynamics and control testing. Design requirements, parameters and a multi-parameter, hybrid scaling approach for the dynamically scaled test model were established. The El Scaling Approach that was established allows designers freedom to define the cross section of scaled, lightweight structural components that is most convenient for manufacturing when the mass of the component is small compared to the overall system mass. Static and dynamic response analysis was conducted on analytical models to evaluate system level performance and to optimize panel geometry for optimal tension load distribution.

  2. Near Identifiability of Dynamical Systems

    NASA Technical Reports Server (NTRS)

    Hadaegh, F. Y.; Bekey, G. A.

    1987-01-01

    Concepts regarding approximate mathematical models treated rigorously. Paper presents new results in analysis of structural identifiability, equivalence, and near equivalence between mathematical models and physical processes they represent. Helps establish rigorous mathematical basis for concepts related to structural identifiability and equivalence revealing fundamental requirements, tacit assumptions, and sources of error. "Structural identifiability," as used by workers in this field, loosely translates as meaning ability to specify unique mathematical model and set of model parameters that accurately predict behavior of corresponding physical system.

  3. Testing of electro-optical imaging systems

    NASA Astrophysics Data System (ADS)

    Chrzanowski, Krzysztof; Barela, Jaroslaw; Firmanty, Krzysztof

    2004-08-01

    Humans cannot objectively judge electro-optical imaging systems looking on an image of typical scenery. Quality of the image can be bad for some people but good for others and therefore objective test methods and advanced equipment are needed to evaluate these imaging systems. Test methods and measuring systems that enable reliable testing and evaluation of modern thermal cameras, color and monochrome TV cameras, LLLTV cameras and image intensifier systems are presented in this paper.

  4. Software design of missile integrated test system

    NASA Astrophysics Data System (ADS)

    Dai, Jing; Zhang, Ping; Li, Xingshan; Liao, Canxing; Wang, Zongli

    2006-11-01

    Based on virtual instrument, software design precept of missile integrated test system is proposed in this paper. The integrated test system software was developed under modular, intelligent and structured precept. In this way, the expansion capability of the test software is improved, and it is very convenient for second-development and maintenance. This test software is of higher-degree automation, its integrated test environment gives full play to the hardware platform of the missile integrated test system. In response to the specific hardware configuration of the test system and special missile test requirements, the application of test resources was optimized in the test procedure to improve test speed greatly and satisfy the power-on time limit for missile test. At the same time, by applying multithreading and hardware clock on a data acquisition card, accurate data acquisition, data calculating and data injecting can be completed in a millisecond to satisfy the harsh missile test requirement. This automatic test equipment can automatically test the nose cabin and control cabin only of a missile and a training missile; all the missile test items can be accomplished in a short period of time to enhance the efficiency and reliability of the test.

  5. A corrosion database system for exposure tests

    SciTech Connect

    Yamamoto, Masahiro; Kato, Chuichi; Nogami, Atsushi; Matsuoka, Ai

    1997-12-31

    A computerized corrosion database system for exposure tests has been designed and developed. This system was developed to help researchers carry out each experimental procedure in exposure tests. The system includes a function to manage not only the experimental data but also the timetable of exposure tests and the environmental factors of exposure sites. An easily used graphical user interface (GUI) and graph plot software are provided for users to help analyze exposure test results from various viewpoints. The data accumulated in this system are measurements of past exposure tests and exposure tests in progress. The analyses of past exposure tests using the present database system resulted in several ideas on atmospheric corrosion different from the conventional ideas on atmospheric corrosion. If the data of exposure tests in progress are compared with past data, the relationships between atmospheric corrosion and environmental factors will be more clarified.

  6. Supersonic Flight Dynamics Test: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad; Karlgaard, Christopher D.; Blood, Eric M.; O'Farrell, Clara; Ginn, Jason M.; Shoenenberger, Mark; Dutta, Soumyo

    2015-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of a Supersonic Inflatable Aerodynamic Decelerator, which is part of the Low Density Supersonic Decelerator technology development project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and Supersonic Parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. This test was used to validate the test architecture for future missions. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, atmosphere, and aerodynamics. The results of the reconstruction show significantly higher lofting of the trajectory, which can partially be explained by off-nominal booster motor performance. The reconstructed vehicle force and moment coefficients fall well within pre-flight predictions. A parameter identification analysis indicates that the vehicle displayed greater aerodynamic static stability than seen in pre-flight computational predictions and ballistic range tests.

  7. Human systems dynamics: Toward a computational model

    NASA Astrophysics Data System (ADS)

    Eoyang, Glenda H.

    2012-09-01

    A robust and reliable computational model of complex human systems dynamics could support advancements in theory and practice for social systems at all levels, from intrapersonal experience to global politics and economics. Models of human interactions have evolved from traditional, Newtonian systems assumptions, which served a variety of practical and theoretical needs of the past. Another class of models has been inspired and informed by models and methods from nonlinear dynamics, chaos, and complexity science. None of the existing models, however, is able to represent the open, high dimension, and nonlinear self-organizing dynamics of social systems. An effective model will represent interactions at multiple levels to generate emergent patterns of social and political life of individuals and groups. Existing models and modeling methods are considered and assessed against characteristic pattern-forming processes in observed and experienced phenomena of human systems. A conceptual model, CDE Model, based on the conditions for self-organizing in human systems, is explored as an alternative to existing models and methods. While the new model overcomes the limitations of previous models, it also provides an explanatory base and foundation for prospective analysis to inform real-time meaning making and action taking in response to complex conditions in the real world. An invitation is extended to readers to engage in developing a computational model that incorporates the assumptions, meta-variables, and relationships of this open, high dimension, and nonlinear conceptual model of the complex dynamics of human systems.

  8. Simulation of the dynamic environment for missile component testing: Demonstration

    NASA Technical Reports Server (NTRS)

    Chang, Kurng Y.

    1989-01-01

    The problems in defining a realistic test requirement for missile and space vehicle components can be classified into two categories: (1) definition of the test environment representing the expected service condition, and (2) simulation of the desired environment in the test laboratory. Recently, a new three-dimensional (3-D) test facility was completed at the U.S. Army Harry Diamond Laboratory (HDL) to simulate triaxial vibration input to a test specimen. The vibration test system is designed to support multi-axial vibration tests over the frequency range of 5 to 2000 Hertz. The availability of this 3-D test system motivates the development of new methodologies addressing environmental definition and simulation.

  9. Unique Features and Spacecraft Applications of Dynamic Isotope Power Systems

    SciTech Connect

    Raab, B.

    1982-01-01

    The dynamic isotope power system represents the most recent attempt to develop a heat-engine generator for space electric power. A major objective in this most recent effort was to increase the power and to reduce the cost of nuclear space power systems to the point where the unique features of this power source could be brought to bear for Earth-orbit missions which could benefit therefrom. This objective was largely achieved; both weight and cost of the dynamic isotope systems are comparable to solar power systems. The dynamic isotope power system, designed for spacecraft requiring prime power in the 500-2000 W range, has been successfully built and ground tested. A number of studies, summarized herein, have demonstrated the advantages of using such a power system instead of the conventional solar system for a variety of Earth-orbit missions. These advantages stem from the unique nature of the dynamic isotope system, different in kind from solar power systems. As a result, in many cases, the spacecraft design can be significantly simplified and more closely harmonized with mission requirements. This overall advantage can be crucial in missions which have stringent pointing, stability, viewing, and/or positioning requirements.

  10. Modeling the dynamical systems on experimental data

    SciTech Connect

    Janson, N.B.; Anishchenko, V.S.

    1996-06-01

    An attempt is made in the work to create qualitative models of some real biological systems, i.e., isolated frog{close_quote}s heart, a human{close_quote}s heart and a blood circulation system of a white rat. Sampled one-dimensional realizations of these systems were taken as the initial data. Correlation dimensions were calculated to evaluate the embedding dimensions of the systems{close_quote} attractors. The result of the work are the systems of ordinary differential equations which approximately describe the dynamics of the systems under investigation. {copyright} {ital 1996 American Institute of Physics.}

  11. Crew system dynamics - Combining humans and automation

    NASA Technical Reports Server (NTRS)

    Connors, Mary

    1989-01-01

    Some of the human factor issues involved in effectively combining human and automated systems are examined with particular reference to spaceflights. The concepts of the crew system and crew systems dynamics are defined, and the present status of crew systems is summarized. The possibilities and potential problems aasociated with the use of automated systems are discussed, as are unique capabilities and possible errors introduced by human participants. It is emphasized that the true integration of human and automated systems must allow for the characteristics of both.

  12. The Computerized Adaptive Testing System Development Project.

    ERIC Educational Resources Information Center

    McBride, James R.; Sympson, J. B.

    The Computerized Adaptive Testing (CAT) project is a joint Armed Services coordinated effort to develop and evaluate a system for automated, adaptive administration of the Armed Services Vocational Aptitude Battery (ASVAB). The CAT is a system for administering personnel tests that differs from conventional test administration in two major…

  13. Computer controlled thermal fatigue test system

    SciTech Connect

    Schmale, D.T.; Jones, W.B.

    1986-01-01

    A servo-controlled hydraulic mechanical test system has been configured to conduct computer-controlled thermal fatigue tests. The system uses induction heating, a digital temperature controller, infrared pyrometry, forced air cooling, and quartz rod extensometry. In addition, a digital computer controls the tests and allows precise data analysis and interpretation.

  14. Computerized Adaptive Mastery Tests as Expert Systems.

    ERIC Educational Resources Information Center

    Frick, Theodore W.

    1992-01-01

    Discussion of expert systems and computerized adaptive tests describes two versions of EXSPRT, a new approach that combines uncertain inference in expert systems with sequential probability ratio test (SPRT) stopping rules. Results of two studies comparing EXSPRT to adaptive mastery testing based on item response theory and SPRT approaches are…

  15. Adaptive synchronization and anticipatory dynamical systems

    NASA Astrophysics Data System (ADS)

    Yang, Ying-Jen; Chen, Chun-Chung; Lai, Pik-Yin; Chan, C. K.

    2015-09-01

    Many biological systems can sense periodical variations in a stimulus input and produce well-timed, anticipatory responses after the input is removed. Such systems show memory effects for retaining timing information in the stimulus and cannot be understood from traditional synchronization consideration of passive oscillatory systems. To understand this anticipatory phenomena, we consider oscillators built from excitable systems with the addition of an adaptive dynamics. With such systems, well-timed post-stimulus responses similar to those from experiments can be obtained. Furthermore, a well-known model of working memory is shown to possess similar anticipatory dynamics when the adaptive mechanism is identified with synaptic facilitation. The last finding suggests that this type of oscillator can be common in neuronal systems with plasticity.

  16. Dynamical system modeling via signal reduction and neural network simulation

    SciTech Connect

    Paez, T.L.; Hunter, N.F.

    1997-11-01

    Many dynamical systems tested in the field and the laboratory display significant nonlinear behavior. Accurate characterization of such systems requires modeling in a nonlinear framework. One construct forming a basis for nonlinear modeling is that of the artificial neural network (ANN). However, when system behavior is complex, the amount of data required to perform training can become unreasonable. The authors reduce the complexity of information present in system response measurements using decomposition via canonical variate analysis. They describe a method for decomposing system responses, then modeling the components with ANNs. A numerical example is presented, along with conclusions and recommendations.

  17. A Diffusive Strategic Dynamics for Social Systems

    NASA Astrophysics Data System (ADS)

    Agliari, Elena; Burioni, Raffaella; Contucci, Pierluigi

    2010-05-01

    We propose a model for the dynamics of a social system, which includes diffusive effects and a biased rule for spin-flips, reproducing the effect of strategic choices. This model is able to mimic some phenomena taking place during marketing or political campaigns. Using a cost function based on the Ising model defined on the typical quenched interaction environments for social systems (Erdös-Renyi graph, small-world and scale-free networks), we find, by numerical simulations, that a stable stationary state is reached, and we compare the final state to the one obtained with standard dynamics, by means of total magnetization and magnetic susceptibility. Our results show that the diffusive strategic dynamics features a critical interaction parameter strictly lower than the standard one. We discuss the relevance of our findings in social systems.

  18. Surveillance systems test and evaluation facilities

    NASA Technical Reports Server (NTRS)

    Matty, Jere J.; Dawbarn, Ronald

    1986-01-01

    In January of 1983, a team was formed to explore test methodologies and test facility concepts required to meet the needs of space-based surveillance systems. The output of this study was a road map of test methodologies and test facilities that will aid the development of this country's critical space-based sensor assets. A condensation of those results is given.

  19. Uncertain dynamical systems: A differential game approach

    NASA Technical Reports Server (NTRS)

    Gutman, S.

    1976-01-01

    A class of dynamical systems in a conflict situation is formulated and discussed, and the formulation is applied to the study of an important class of systems in the presence of uncertainty. The uncertainty is deterministic and the only assumption is that its value belongs to a known compact set. Asymptotic stability is fully discussed with application to variable structure and model reference control systems.

  20. System dynamic simulation of precision segmented reflector

    NASA Technical Reports Server (NTRS)

    Shih, Choon-Foo; Lou, Michael C.

    1991-01-01

    A joint effort was undertaken on a Precision Segmented Reflector (PSR) Project. The missions in which the PSR is to be used will use large (up to 20 m in diameter) telescopes. The essential requirement for the telescopes is that the reflector surface of the primary mirror must be made extremely precise to allow no more than a few microns of errors and, additionally, this high surface precision must be maintained when the telescope is subjected to on-orbital mechanical and thermal disturbances. Based on the mass, size, and stability considerations, reflector surface formed by segmented, probably actively or passively controlled, composite panels are regarded as most suitable for future space based astronomical telescope applications. In addition to the design and fabrication of composite panels with a surface error of less than 3 microns RMS, PSR also develops related reflector structures, materials, control, and sensing technologies. As part of the planning effort for PSR Technology Demonstration, a system model which couples the reflector, consisting of panels, support truss and actuators, and the optical bench was assembled for dynamic simulations. Random vibration analyses using seismic data obtained from actual measurements at the test site designated for PSR Technology Demonstration are described.

  1. PREFACE: Complex Dynamics in Spatially Extended Systems

    NASA Astrophysics Data System (ADS)

    Mosekilde, Erik; Bohr, Tomas; Rasmussen, Jens Juul; Leth Christiansen, Peter

    1996-01-01

    Self-organization, or the spontaneous emergence of patterns and structures under far-from-equilibrium conditions, turbulence, and related nonlinear dynamic phenomena in spatially extended systems have developed into one of the most exciting topics of modern science. Phenomena of this type arise in a wide variety of different fields, ranging from the development of chemical and biological patterns in reaction-diffusion systems over vortex formation in connection with chemical, optical, hydrodynamic or magnetohydrodynamic turbulence to technical applications in connection with liquid crystal displays or pulse compression in optical communication systems. Lasers often show interesting patterns produced by self-focusing and other nonlinear phenomena, diffusion limited aggregation is known to generate fractal-like structures, and amazing struc- tures also arise in bacterial growth processes or when a droplet of an oil suspension of finely divided magnetic particles is subject to a magnetic field perpendicular to the surface of the cell in which it is contained. In September 1995 the Niels Bohr Institute in Copenhagen was the venue of an International Conference on Complex Dynamics in Spatially Extended Systems. Organizers of the conference were the three Danish centers for nonlinear dynamics: The Center for Chaos and Turbulence Studies (CATS), located at the Niels Bohr Institute; the Center for Modeling, Nonlinear Dynamics and Irreversible Thermodynamics (MIDIT), located at the Technical University of Denmark, and the Center for Nonlinear Dynamics in Continuum Systems, located at the Risø National Laboratories. In the spirit of the successful NATO Advanced Research Workshops on Spatiotemporal Patterns in Nonequilibrium Systems of which the last was held in Santa Fe, New Mexico in 1993, the conference aimed at stimulating new ideas and providing a forum for the exchange of knowledge between leading practitioners of the field. With its 50 invited speakers and more than

  2. Nonlinear Dynamics, Chaotic and Complex Systems

    NASA Astrophysics Data System (ADS)

    Infeld, E.; Zelazny, R.; Galkowski, A.

    2011-04-01

    Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G. Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P. Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H. Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile cellular automata M. Markosova; 9. Transport in an incompletely chaotic magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in statistical physics B. Chirikov; 12. Foundations of non-equilibrium statistical mechanics J. P. Dougherty; 13. Thermomechanical particle simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover, A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov background and irreversibility B. Pavlov; 15. Time chaos and the laws of nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive systems: dynamic entropies and predictability of evolutionary processes W. Ebeling; 17. Spatiotemporal chaos information processing in neural networks H. Szu; 18. Phase transitions and learning in neural networks C. Van den Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20. Computational complexity of continuous problems H. Wozniakowski; Part IV. Complex Systems As An Interface Between Natural Sciences and Environmental Social and Economic Sciences: 21. Stochastic differential geometry in finance studies V. G. Makhankov; Part V. Conference Banquet

  3. Interaction of feel system and flight control system dynamics on lateral flying qualities

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Powers, Bruce G.; Shafer, Mary F.

    1988-01-01

    An investigation of feel system and flight control system dynamics on lateral flying qualities was conducted using the variable stability USAF NT-33 aircraft. Experimental variations in feel system natural frequency, force-deflection gradient, control system command architecture type, flight control system filter frequency, and control system delay were made. The experiment data include pilot ratings using the Cooper-Harper (1969) rating scale, pilot comments, and tracking performance statistic. Three test pilots served as evaluators. The data indicate that as the feel system natural frequency is reduced lateral flying qualities degrade. At the slowest feel system frequency, the closed-loop response becomes nonlinear with a 'bobweight' effect apparent in the feel system. Feel system influences were essentially independent of the control system architecture. The flying qualities influence due to the feel system was different than when the identical dynamic systenm was used as a flight control system element.

  4. Operational test report integrated system test (ventilation upgrade)

    SciTech Connect

    HARTY, W.M.

    1999-10-05

    Operational Final Test Report for Integrated Systems, Project W-030 (Phase 2 test, RECIRC and HIGH-HEAT Modes). Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks, including upgraded vapor space cooling and filtered venting of tanks AY101, Ay102, AZ101, AZ102.

  5. Stress testing of digital flight-control system software

    NASA Technical Reports Server (NTRS)

    Rajan, N.; Defeo, P. V.; Saito, J.

    1983-01-01

    A technique for dynamically testing digital flight-control system software on a module-by-module basis is described. Each test module is repetitively executed faster than real-time with an exhaustive input sequence. Outputs of the test module are compared with outputs generated by an alternate, simpler implementation for the same input data. Discrepancies between the two sets of output indicate the possible presence of a software error. The results of an implementation of this technique in the Digital Flight-Control System Software Verification Laboratory are discussed.

  6. Very Large System Dynamics Models - Lessons Learned

    SciTech Connect

    Jacob J. Jacobson; Leonard Malczynski

    2008-10-01

    This paper provides lessons learned from developing several large system dynamics (SD) models. System dynamics modeling practice emphasize the need to keep models small so that they are manageable and understandable. This practice is generally reasonable and prudent; however, there are times that large SD models are necessary. This paper outlines two large SD projects that were done at two Department of Energy National Laboratories, the Idaho National Laboratory and Sandia National Laboratories. This paper summarizes the models and then discusses some of the valuable lessons learned during these two modeling efforts.

  7. FAST TRACK COMMUNICATION: Complexified dynamical systems

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.; Holm, Darryl D.; Hook, Daniel W.

    2007-08-01

    Many dynamical systems, such as the Lotka-Volterra predator-prey model and the Euler equations for the free rotation of a rigid body, are {{\\cal P}}{{\\cal T}} symmetric. The standard and well-known real solutions to such dynamical systems constitute an infinitessimal subclass of the full set of complex solutions. This paper examines a subset of the complex solutions that contains the real solutions, namely those having {{\\cal P}}{{\\cal T}} symmetry. The condition of {{\\cal P}}{{\\cal T}} symmetry selects out complex solutions that are periodic.

  8. Dynamics of biosonar systems in Horseshoe bats

    NASA Astrophysics Data System (ADS)

    Müller, R.

    2015-12-01

    Horseshoe bats have an active ultrasonic sonar system that allows the animals to navigate and hunt prey in structure-rich natural environments. The physical components of this biosonar system contain an unusual dynamics that could play a key role in achieving the animals' superior sensory performance. Horseshoe bat biosonar employs elaborate baffle shapes to diffract the outgoing and incoming ultrasonic wave packets; ultrasound is radiated from nostrils that are surrounded by noseleaves and received by large outer ears. Noseleaves and pinnae can be actuated while ultrasonic diffraction takes place. On the emission side, two noseleaf parts, the anterior leaf and the sella, have been shown to be in motion in synchrony with sound emission. On the reception side, the pinnae have been shown to change their shapes by up to 20% of their total length within ˜100 milliseconds. Due to these shape changes, diffraction of the incoming and outgoing waves is turned into a dynamic physical process. The dynamics of the diffraction process results in likewise dynamic device characteristics. If this additional dynamic dimension was found to enhance the encoding of sensory information substantially, horseshoe bat biosonar could be a model for the use of dynamic physical processes in sensing technology.

  9. Testing Microwave Landing Systems With Satellite Navigation

    NASA Technical Reports Server (NTRS)

    Kiriazes, John J.

    1990-01-01

    Less time and equipment needed to perform tests. Satellite-based Global Positioning System (GPS) measures accuracy of microwave scanning-beam landing system (MSBLS) at airports used to support Shuttle landings. Provides time and three-dimensional information on position and velocity with unprecedented accuracy. Useful for testing other electronic navigation aids like LORAN, TACAN and microwave landing systems (MLS).

  10. Vitrification Facility integrated system performance testing report

    SciTech Connect

    Elliott, D.

    1997-05-01

    This report provides a summary of component and system performance testing associated with the Vitrification Facility (VF) following construction turnover. The VF at the West Valley Demonstration Project (WVDP) was designed to convert stored radioactive waste into a stable glass form for eventual disposal in a federal repository. Following an initial Functional and Checkout Testing of Systems (FACTS) Program and subsequent conversion of test stand equipment into the final VF, a testing program was executed to demonstrate successful performance of the components, subsystems, and systems that make up the vitrification process. Systems were started up and brought on line as construction was completed, until integrated system operation could be demonstrated to produce borosilicate glass using nonradioactive waste simulant. Integrated system testing and operation culminated with a successful Operational Readiness Review (ORR) and Department of Energy (DOE) approval to initiate vitrification of high-level waste (HLW) on June 19, 1996. Performance and integrated operational test runs conducted during the test program provided a means for critical examination, observation, and evaluation of the vitrification system. Test data taken for each Test Instruction Procedure (TIP) was used to evaluate component performance against system design and acceptance criteria, while test observations were used to correct, modify, or improve system operation. This process was critical in establishing operating conditions for the entire vitrification process.

  11. Rotor systems research aircraft risk-reduction shake test

    NASA Technical Reports Server (NTRS)

    Wellman, J. Brent

    1990-01-01

    A shake test and an extensive analysis of results were performed to evaluate the possibility of and the method for dynamically calibrating the Rotor Systems Research Aircraft (RSRA). The RSRA airframe was subjected to known vibratory loads in several degrees of freedom and the responses of many aircraft transducers were recorded. Analysis of the transducer responses using the technique of dynamic force determination showed that the RSRA, when used as a dynamic measurement system, could predict, a posteriori, an excitation force in a single axis to an accuracy of about 5 percent and sometimes better. As the analysis was broadened to include multiple degrees of freedom for the excitation force, the predictive ability of the measurement system degraded to about 20 percent, with the error occasionally reaching 100 percent. The poor performance of the measurement system is explained by the nonlinear response of the RSRA to vibratory forces and the inadequacy of the particular method used in accounting for this nonlinearity.

  12. Dynamic scaling for avalanches in disordered systems

    SciTech Connect

    Zheng, Guang-Ping; Li, Mo

    2001-03-01

    Dynamic scaling for fracture or breakdown process in disordered systems is investigated in a two-dimensional random field Ising model (RFIM). We find two evolving stages in the avalanche process in the RFIM. At the short-time regime, a power-law growth of the avalanche size {Delta}s is observed; and at late times, the conventional nucleation and growth process is found. At the critical point of the RFIM, the avalanche size is found to obey the dynamic scaling law {Delta}s{approx}t{sup (d-{beta}/{nu})/z}. From this dynamic scaling relation, the critical strength of the random field D{sub c} and the critical exponents, {beta}, {nu}, and z, are determined. The observed dynamics is explained by a simple nucleation theory of first-order phase transformations.

  13. The investigation of tethered satellite system dynamics

    NASA Technical Reports Server (NTRS)

    Lorenzini, E.

    1985-01-01

    A progress report is presented that deals with three major topics related to Tethered Satellite System Dynamics. The SAO rotational dynamics computer code was updated. The program is now suitable to deal with inclined orbits. The output has been also modified in order to show the satellite Euler angles referred to the rotating orbital frame. The three-dimensional high resolution computer program SLACK3 was developed. The code simulates the three-dimensional dynamics of a tether going slack taking into account the effect produced by boom rotations. Preliminary simulations on the three-dimensional dynamics of a recoiling slack tether are shown in this report. A program to evaluate the electric potential around a severed tether is immersed in a plasma. The potential is computed on a three-dimensional grid axially symmetric with respect to the tether longitudinal axis. The electric potential variations due to the plasma are presently under investigation.

  14. Microfluidic systems for single DNA dynamics

    PubMed Central

    Mai, Danielle J.; Brockman, Christopher

    2012-01-01

    Recent advances in microfluidics have enabled the molecular-level study of polymer dynamics using single DNA chains. Single polymer studies based on fluorescence microscopy allow for the direct observation of non-equilibrium polymer conformations and dynamical phenomena such as diffusion, relaxation, and molecular stretching pathways in flow. Microfluidic devices have enabled the precise control of model flow fields to study the non-equilibrium dynamics of soft materials, with device geometries including curved channels, cross-slots, and microfabricated obstacles and structures. This review explores recent microfluidic systems that have advanced the study of single polymer dynamics, while identifying new directions in the field that will further elucidate the relationship between polymer microstructure and bulk rheological properties. PMID:23139700

  15. Update of the 2 Kw Solar Dynamic Ground Test Demonstration Program

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Boyle, Robert V.

    1994-01-01

    The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the operation of a complete 2 kW, SD system in a simulated space environment at a NASA Lewis Research Center (LeRC) thermal-vacuum facility. This paper reviews the goals and status of the SD GTD program. A brief description of the SD system identifying key design features of the system, subsystems, and components is included. An aerospace industry/government team is working together to design, fabricate, assemble, and test a complete SD system.

  16. Constraint Embedding Technique for Multibody System Dynamics

    NASA Technical Reports Server (NTRS)

    Woo, Simon S.; Cheng, Michael K.

    2011-01-01

    Multibody dynamics play a critical role in simulation testbeds for space missions. There has been a considerable interest in the development of efficient computational algorithms for solving the dynamics of multibody systems. Mass matrix factorization and inversion techniques and the O(N) class of forward dynamics algorithms developed using a spatial operator algebra stand out as important breakthrough on this front. Techniques such as these provide the efficient algorithms and methods for the application and implementation of such multibody dynamics models. However, these methods are limited only to tree-topology multibody systems. Closed-chain topology systems require different techniques that are not as efficient or as broad as those for tree-topology systems. The closed-chain forward dynamics approach consists of treating the closed-chain topology as a tree-topology system subject to additional closure constraints. The resulting forward dynamics solution consists of: (a) ignoring the closure constraints and using the O(N) algorithm to solve for the free unconstrained accelerations for the system; (b) using the tree-topology solution to compute a correction force to enforce the closure constraints; and (c) correcting the unconstrained accelerations with correction accelerations resulting from the correction forces. This constraint-embedding technique shows how to use direct embedding to eliminate local closure-loops in the system and effectively convert the system back to a tree-topology system. At this point, standard tree-topology techniques can be brought to bear on the problem. The approach uses a spatial operator algebra approach to formulating the equations of motion. The operators are block-partitioned around the local body subgroups to convert them into aggregate bodies. Mass matrix operator factorization and inversion techniques are applied to the reformulated tree-topology system. Thus in essence, the new technique allows conversion of a system with

  17. Do dynamical systems follow Benford's law?

    PubMed

    Tolle, Charles R.; Budzien, Joanne L.; LaViolette, Randall A.

    2000-06-01

    Data compiled from a variety of sources follow Benford's law, which gives a monotonically decreasing distribution of the first digit (1 through 9). We examine the frequency of the first digit of the coordinates of the trajectories generated by some common dynamical systems. One-dimensional cellular automata fulfill the expectation that the frequency of the first digit is uniform. The molecular dynamics of fluids, on the other hand, provides trajectories that follow Benford's law. Finally, three chaotic systems are considered: Lorenz, Henon, and Rossler. The Lorenz system generates trajectories that follow Benford's law. The Henon system generates trajectories that resemble neither the uniform distribution nor Benford's law. Finally, the Rossler system generates trajectories that follow the uniform distribution for some parameters choices, and Benford's law for others. (c) 2000 American Institute of Physics. PMID:12779387

  18. Do dynamical systems follow Benford's law?

    SciTech Connect

    Tolle, Charles R.; Budzien, Joanne L.; LaViolette, Randall A.

    2000-06-01

    Data compiled from a variety of sources follow Benford's law, which gives a monotonically decreasing distribution of the first digit (1 through 9). We examine the frequency of the first digit of the coordinates of the trajectories generated by some common dynamical systems. One-dimensional cellular automata fulfill the expectation that the frequency of the first digit is uniform. The molecular dynamics of fluids, on the other hand, provides trajectories that follow Benford's law. Finally, three chaotic systems are considered: Lorenz, Henon, and Roessler. The Lorenz system generates trajectories that follow Benford's law. The Henon system generates trajectories that resemble neither the uniform distribution nor Benford's law. Finally, the Roessler system generates trajectories that follow the uniform distribution for some parameters choices, and Benford's law for others. (c) 2000 American Institute of Physics.

  19. Cardea: Dynamic Access Control in Distributed Systems

    NASA Technical Reports Server (NTRS)

    Lepro, Rebekah

    2004-01-01

    Modern authorization systems span domains of administration, rely on many different authentication sources, and manage complex attributes as part of the authorization process. This . paper presents Cardea, a distributed system that facilitates dynamic access control, as a valuable piece of an inter-operable authorization framework. First, the authorization model employed in Cardea and its functionality goals are examined. Next, critical features of the system architecture and its handling of the authorization process are then examined. Then the S A M L and XACML standards, as incorporated into the system, are analyzed. Finally, the future directions of this project are outlined and connection points with general components of an authorization system are highlighted.

  20. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Suarez, Vicente J.; Goodnight, Thomas W.; Callahan, John

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical radioisotope power system (RPS) launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources were designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  1. Topological analysis of chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Gilmore, Robert

    1998-10-01

    Topological methods have recently been developed for the analysis of dissipative dynamical systems that operate in the chaotic regime. They were originally developed for three-dimensional dissipative dynamical systems, but they are applicable to all ``low-dimensional'' dynamical systems. These are systems for which the flow rapidly relaxes to a three-dimensional subspace of phase space. Equivalently, the associated attractor has Lyapunov dimension dL<3. Topological methods supplement methods previously developed to determine the values of metric and dynamical invariants. However, topological methods possess three additional features: they describe how to model the dynamics; they allow validation of the models so developed; and the topological invariants are robust under changes in control-parameter values. The topological-analysis procedure depends on identifying the stretching and squeezing mechanisms that act to create a strange attractor and organize all the unstable periodic orbits in this attractor in a unique way. The stretching and squeezing mechanisms are represented by a caricature, a branched manifold, which is also called a template or a knot holder. This turns out to be a version of the dynamical system in the limit of infinite dissipation. This topological structure is identified by a set of integer invariants. One of the truly remarkable results of the topological-analysis procedure is that these integer invariants can be extracted from a chaotic time series. Furthermore, self-consistency checks can be used to confirm the integer values. These integers can be used to determine whether or not two dynamical systems are equivalent; in particular, they can determine whether a model developed from time-series data is an accurate representation of a physical system. Conversely, these integers can be used to provide a model for the dynamical mechanisms that generate chaotic data. In fact, the author has constructed a doubly discrete classification of strange

  2. 3D Dynamic Earthquake Fracture Simulation (Test Case)

    NASA Astrophysics Data System (ADS)

    Korkusuz Öztürk, Yasemin; Meral Özel, Nurcan; Ando, Ryosuke

    2016-04-01

    A 3D dynamic earthquake fracture simulation is being developed for the fault structures which are non-planar to understand heterogeneous stress states in the Marmara Sea. Locating in a seismic gap, a large earthquake is expected in the center of the Sea of Marmara. Concerning the fact that more than 14 million inhabitants of İstanbul, located very closely to the Marmara Sea, the importance of the analysis of the Central Marmara Sea is extremely high. A few 3D dynamic earthquake fracture studies have been already done in the Sea of Marmara for pure right lateral strike-slip stress regimes (Oglesby and Mai, 2012; Aochi and Ulrich, 2015). In this study, a 3D dynamic earthquake fracture model with heterogeneous stress patches from the TPV5, a SCEC code validation case, is adapted. In this test model, the fault and the ground surfaces are gridded by a scalene triangulation technique using GMSH program. For a grid size changing between 0.616 km and 1.050 km the number of elements for the fault surface is 1984 and for the ground surface is 1216. When these results are compared with Kaneko's results for TPV5 from SPECFEM3D, reliable findings could be observed for the first 6.5 seconds (stations on the fault) although a stability problem is encountered after this time threshold. To solve this problem grid sizes are made smaller, so the number of elements increase 7986 for the fault surface and 4867 for the ground surface. On the other hand, computational problems arise in that case, since the computation time is directly proportional to the number of total elements and the required memory also increases with the square of that. Therefore, it is expected that this method can be adapted for less coarse grid cases, regarding the main difficulty coming from the necessity of an effective supercomputer and run time limitations. The main objective of this research is to obtain 3D dynamic earthquake rupture scenarios, concerning not only planar and non-planar faults but also

  3. High Power Alternator Test Unit (ATU) Electrical System Test

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2007-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, OH was used to simulate the operating conditions and evaluate the performance of the ATU and it s interaction with various LPSF components in accordance with the JIMO AC Power System Requirements. The testing was carried out at the breadboard development level. Results of these tests will be used for the development and validation of analytical models for performance and lifetime prediction.

  4. Solar dynamic power systems for space station

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.

    1986-01-01

    The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.

  5. Testing Air-Filtering Systems

    PubMed Central

    Songer, Joseph R.; Sullivan, James F.; Hurd, James W.

    1963-01-01

    A procedure was developed for evaluating high-efficiency filters mounted in exhaust ducts at the National Animal Disease Laboratory. An aerosol of the test organism, Escherichia coli B T3 bacteriophage, was generated in a chamber attached to a ceiling exhaust register in concentrations of at least 1000 viable organisms per ft3 of air. Samples were collected from both the pre- and postfilter areas, and the number of organisms per ft3 of air was determined. The efficiency of the filter was calculated from these figures. A total of 269 high-efficiency filters were tested. Of these, 249 had efficiencies of 98% or greater. The remaining 20, with efficiencies of less than 98%, were repaired and retested. No filter was accepted with an efficiency of less than 98%. Images Fig. 2 PMID:14063779

  6. Transient rotor dynamic rub phenomena - Theory and test

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.; Montaque, G.; Palazzolo, A. B.

    1987-01-01

    This paper develops an implicit integration scheme for transient rotor dynamic rub prediction and includes a correlation study with actual test results. A Nordsieck-like numerical integration scheme is applied directly to the second-order equations of motion. The assumption that forces and torques on the rotor are functions of the position and velocity at the point of application and its nearest neighbor is made in order to make the computational time proportional to the number of elements in the rotor dynamics model rather than the cube of the number. The test rig consists of a turbine driven, flexible shaft supported by squeeze film dampers. The blade loss event occurs due to collision of a balance bolt on one of the disks with a high speed plunger. The rotor is seen to spiral outward and contact against a stationary assemblage of seal shoes.

  7. Systems test facilities existing capabilities compilation

    NASA Technical Reports Server (NTRS)

    Weaver, R.

    1981-01-01

    Systems test facilities (STFS) to test total photovoltaic systems and their interfaces are described. The systems development (SD) plan is compilation of existing and planned STFs, as well as subsystem and key component testing facilities. It is recommended that the existing capabilities compilation is annually updated to provide and assessment of the STF activity and to disseminate STF capabilities, status and availability to the photovoltaics program.

  8. [Development and testing of theories of population dynamics]. First annual report

    SciTech Connect

    Murdoch, W.W.; Bence, J.R.; McCauley, E.; Nisbet, R.M.

    1990-03-15

    We report new analyses to test competing models of the Daphnia/algal interaction. Our model is good at predicting equilibrium algal densities, and if our new insights can account for stability in this system across a wide range of natural environments, this may contribute to understanding predator-prey dynamics in general.

  9. Flexible substructure online hybrid test system using conventional testing devices

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Nakashima, Masayoshi

    2013-09-01

    This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests. This system consists of a set of devices conventionally used for cyclic tests to load the tested substructures onto the target displacement or the target force. Due to their robustness and portability, individual sets of conventional loading devices can be transported and reconfigured to realize physical loading in geographically remote laboratories. Another appealing feature is the flexible displacement-force mixed control that is particularly suitable for specimens having large disparities in stiffness during various performance stages. To conduct a substructure online hybrid test, an extensible framework is developed, which is equipped with a generalized interface to encapsulate each substructure. Multiple tested substructures and analyzed substructures using various structural program codes can be accommodated within the single framework, simply interfaced with the boundary displacements and forces. A coordinator program is developed to keep the boundaries among all substructures compatible and equilibrated. An Internet-based data exchange scheme is also devised to transfer data among computers equipped with different software environments. A series of online hybrid tests are introduced, and the portability, flexibility, and extensibility of the online hybrid test system are demonstrated.

  10. Static tests of the propulsion system. [Propfan Test Assessment program

    NASA Technical Reports Server (NTRS)

    Withers, C. C.; Bartel, H. W.; Turnberg, J. E.; Graber, E. J.

    1987-01-01

    Advanced, highly-loaded, high-speed propellers, called propfans, are promising to revolutionize the transport aircraft industry by offering a 15- to 30-percent fuel savings over the most advanced turbofans without sacrificing passenger comfort or violating community noise standards. NASA Lewis Research Center and industry have been working jointly to develop the needed propfan technology. The NASA-funded Propfan Test Assessment (PTA) Program represents a key element of this joint program. In PTA, Lockheed-Georgia, working in concert with Hamilton Standard, Rohr Industries, Gulfstream Aerospace, and Allison, is developing a propfan propulsion system which will be mounted on the left wing of a modified Gulfstream GII aircraft and flight tested to verify the in-flight characteristics of a 9-foot diameter, single-rotation propfan. The propfan, called SR-7L, was designed and fabricated by Hamilton Standard under a separate NASA contract. Prior to flight testing, the PTA propulsion system was static tested at the Rohr Brown Field facility. In this test, propulsion system operational capability was verified and data was obtained on propfan structural response, system acoustic characteristics, and system performance. This paper reports on the results of the static tests.

  11. Flight Tests Validate Collision-Avoidance System

    NASA Video Gallery

    Flights tests of a smartphone-assisted automatic ground collision avoidance system at NASA's Dryden Flight Research Center consistently commanded evasive maneuvers when it sensed that the unmanned ...

  12. Test procedure for boxed waste assay system

    SciTech Connect

    Wachter, J.

    1994-12-07

    This document, prepared by Los Alamos National Laboratory`s NMT-4 group, details the test methodology and requirements for Acceptance/Qualification testing of a Boxed Waste Assay System (BWAS) designed and constructed by Pajarito Scientific Corporation. Testing of the BWAS at the Plutonium Facility (TA55) at Los Alamos National Laboratory will be performed to ascertain system adherence to procurement specification requirements. The test program shall include demonstration of conveyor handling capabilities, gamma ray energy analysis, and imaging passive/active neutron accuracy and sensitivity. Integral to these functions is the system`s embedded operating and data reduction software.

  13. Analysis and test for space shuttle propellant dynamics

    NASA Technical Reports Server (NTRS)

    Berry, R. L.; Demchak, L. J.; Tegart, J. R.

    1983-01-01

    This report presents the results of a study to develop an analytical model capable of predicting the dynamic interaction forces on the Shuttle External Tank, due to large amplitude propellant slosh during RTLS separation. The report details low-g drop tower and KC-135 test programs that were conducted to investigate propellant reorientation during RTLS. In addition, the development of a nonlinear finite element slosh model (LAMPS2, two dimensional, and one LAMPS3, three dimensional) is presented. Correlation between the model and test data is presented as a verification of the modeling approach.

  14. Study on test metrology of large aperture optical system wavefront

    NASA Astrophysics Data System (ADS)

    Liu, Zhiying; Fu, Yuegang; Gao, Tianyuan; Wang, Zhijian

    2009-05-01

    Large aperture optical system test has been a key problem for a long time. It could be solved by sub-aperture stitching method after the sub-apertures are tested. Sub-aperture stitching technology is a feasible method for testing large diameter optical system with small diameter interferometer sub-aperture stitching. Auto-collimating component will be needed with interferometer stitching method. Auto-collimating component is defined that the image could be kept stable when the optical component rotates about any axis in space. And the beam could be back along original optical path. By this means, auto collimation could be realized. The auto-collimating component is smaller than the test system. The whole wavefront of large aperture system could be tested through the method that the auto-collimating component moves along the guide rail and rotates about optical axis. A right angle roof prism is chosen as the auto-collimating component due to its character of easier manufacture. The active matrix, characteristic orientation and extreme axial is deduced with dynamic optics. The sub-aperture stitching testing process is simulated by ZEMAX in detail. The test result by stitching method is compared with that by directive test method for large aperture optical system. It is shown that the relative test error is less than 4.3λ 0/00. The sub -aperture stitching test method is verified.

  15. Novel test of modified Newtonian dynamics with gas rich galaxies.

    PubMed

    McGaugh, Stacy S

    2011-03-25

    The current cosmological paradigm, the cold dark matter model with a cosmological constant, requires that the mass-energy of the Universe be dominated by invisible components: dark matter and dark energy. An alternative to these dark components is that the law of gravity be modified on the relevant scales. A test of these ideas is provided by the baryonic Tully-Fisher relation (BTFR), an empirical relation between the observed mass of a galaxy and its rotation velocity. Here, I report a test using gas rich galaxies for which both axes of the BTFR can be measured independently of the theories being tested and without the systematic uncertainty in stellar mass that affects the same test with star dominated spirals. The data fall precisely where predicted a priori by the modified Newtonian dynamics. The scatter in the BTFR is attributable entirely to observational uncertainty, consistent with a single effective force law. PMID:21517295

  16. Dynamic response tests of inertial and optical wind-tunnel model attitude measurement devices

    NASA Technical Reports Server (NTRS)

    Buehrle, R. D.; Young, C. P., Jr.; Burner, A. W.; Tripp, J. S.; Tcheng, P.; Finley, T. D.; Popernack, T. G., Jr.

    1995-01-01

    Results are presented for an experimental study of the response of inertial and optical wind-tunnel model attitude measurement systems in a wind-off simulated dynamic environment. This study is part of an ongoing activity at the NASA Langley Research Center to develop high accuracy, advanced model attitude measurement systems that can be used in a dynamic wind-tunnel environment. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration which results in a model attitude measurement bias error. Significant bias errors in model attitude measurement were found for the measurement using the inertial device during wind-off dynamic testing of a model system. The amount of bias present during wind-tunnel tests will depend on the amplitudes of the model dynamic response and the modal characteristics of the model system. Correction models are presented that predict the vibration-induced bias errors to a high degree of accuracy for the vibration modes characterized in the simulated dynamic environment. The optical system results were uncorrupted by model vibration in the laboratory setup.

  17. Topic: Catchment system dynamics: Processes and feedbacks

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia

    2015-04-01

    In this meeting we can talk about my main expertise: the focus of my research ocus revolves around understanding catchment system dynamics in a holistic way by incorporating both processes on hillslopes as well as in the river channel. Process knowledge enables explanation of the impact of natural and human drivers on the catchment systems and which consequences these drivers have for water and sediment connectivity. Improved understanding of the catchment sediment and water dynamics will empower sustainable land and river management and mitigate soil threats like erosion and off-side water and sediment accumulation with the help of nature's forces. To be able to understand the system dynamics of a catchment, you need to study the catchment system in a holistic way. In many studies only the hillslopes or even plots are studied; or only the channel. However, these systems are connected and should be evaluated together. When studying a catchment system any intervention to the system will create both on- as well as off sites effects, which should especially be taken into account when transferring science into policy regulations or management decisions.

  18. Percolation-based precursors of transitions in dynamical systems

    NASA Astrophysics Data System (ADS)

    Rodriguez Mendez, Victor Manuel; Eguiluz, Victor M.; Ramasco, Jose J.; Hernandez-Garcia, Emilio

    2015-04-01

    Transitions in complex dynamical systems are ubiquitous in nature. Finding leading indicators in such systems is a fundamental task in many areas of science, such as financial markets, the extinction of species or climate change studies. Here we propose a new framework to study systems close to a bifurcation point by analyzing topological properties, based on clusters and percolation, of functional networks defined from the time series. The use of networks allows us for a global parametrization of the system going far beyond simple two-point relations (classical correlations). The generality and versatility of the cluster-based method to forecast transitions is shown in two different kinds of data. In one hand, three theoretical dynamical systems displaying very different transitions and crossovers were used as a test bed. On the other hand, we have used the field of surface air temperature in the NINO 3.4 zone. In this new approach, critical transitions are identified before they occur.

  19. Structural dynamic testing of composite propfan blades for a cruise missile wind tunnel model

    NASA Technical Reports Server (NTRS)

    Elgin, Stephen D.; Sutliff, Thomas J.

    1993-01-01

    The Naval Weapons Center at China Lake, California is currently evaluating a counter rotating propfan system as a means of propulsion for the next generation of cruise missiles. The details and results of a structural dynamic test program are presented for scale model graphite-epoxy composite propfan blades. These blades are intended for use on a cruise missile wind tunnel model. Both dynamic characteristics and strain operating limits of the blades are presented. Complications associated with high strain level fatigue testing methods are also discussed.

  20. Evaluation of WES one-dimensional dynamic soil testing procedures

    NASA Astrophysics Data System (ADS)

    Seaman, L.

    1983-06-01

    The Geomechanics Division of the Waterways Experiment Station (WES) tests soils to provide material property data for ground motion calculations in support of high explosives experiments. Thus, the validity of the ground motion predictions depends greatly on the WES material properties used. The usual WES experiments are uniaxial strain (UX) and triaxial shear (TX) tests that can be performed at static testing rates and at dynamic rates with rise times down to about one millisecond. However, in the field experiments being simulated, the measured rise times are often 0.01 ms up to 0.1 ms. Recently, an effort has been made to obtain test data in UX and TX devices with rise times of about 0.1 ms. Some of the test data obtained at these very high rates have appeared to be anomalous, suggesting that wave propagation or other effects may be invalidating the data. Because of these questions about the high rate soils test data, WES asked SRI to evaluate the testing methods used at WES and the data reduction device. This report documents an evaluation of laboratory test data obtained from the explosive-loaded uniaxial strain device developed at WES and the data analysis procedures currently being used.