Science.gov

Sample records for dynamic texture scaling

  1. The interactive scaling hypothesis and dynamic textures in nematics

    NASA Astrophysics Data System (ADS)

    Rozhkov, S.

    2002-03-01

    A new approach to the description of the dynamic textures (DT) in the systems with continuous symmetry is proposed. Such textures take place in various dissipative motions of liquid crystals with participation of different extended objects: topological defects in the order parameter field and suspended particles. The main idea of the approach is to transfer the law of interaction between the extended objects (hedgehogs, disclinations, boojums, colloidal particles, etc.) to the host system by redefining its spatiotemporal scales. I call this procedure the interactive scaling (IS). In a number of experiments with nematics^1-3 a pair of objects behaves itself as two point particles interacting by means of the attractive force F_a=CK(a/r)^m-1, where r is the separation between particle centers, K is the Frank elastic constant, C is a constant, and m>= 1. The dynamics of the objects is purely dissipative with the Stokes-type drag due to the reorientation of the order parameter (director) field in some vicinities of the objects. For the pair's dissipative dynamics in nematics we find the velocity v of reducing the interparticle distance r: v(r)=v_c(a/r)^m-1, with v_c=2CK/lη, where η is the orientational viscosity and l is the drag length. The parameters C, a and l can be estimated theoretically and defined experimentally. The IS hypothesis postulates the time dependence of the director field in the form n (r,; t)= n(x+ɛ v(2|x|)t/2,;y,;z) to yield the DT equation for n(r): (2νɛ^m/ax^m-1)partial_xn=nabla^2 n+(nablan)^2n, where ν=Ca/l is the IS ratio, ɛ=sign(x) and v(2|x|) coincides with the velocity of approaching the pair's particles in the x direction. This equation corresponds to the "one-constant approximation" and the absence of fluid flow. For m=2 (the "Coulombic" force) in the planar case: n=[\\cosΦ,sinΦ,0], we find the disclination solution of the DT equation: Φ=(k/2)C_νint_0^φ\\cos^2νφdφ, where k is an integer, φ is the polar angle and C

  2. Emotional effects of dynamic textures.

    PubMed

    Toet, Alexander; Henselmans, Menno; Lucassen, Marcel P; Gevers, Theo

    2011-01-01

    This study explores the effects of various spatiotemporal dynamic texture characteristics on human emotions. The emotional experience of auditory (eg, music) and haptic repetitive patterns has been studied extensively. In contrast, the emotional experience of visual dynamic textures is still largely unknown, despite their natural ubiquity and increasing use in digital media. Participants watched a set of dynamic textures, representing either water or various different media, and self-reported their emotional experience. Motion complexity was found to have mildly relaxing and nondominant effects. In contrast, motion change complexity was found to be arousing and dominant. The speed of dynamics had arousing, dominant, and unpleasant effects. The amplitude of dynamics was also regarded as unpleasant. The regularity of the dynamics over the textures' area was found to be uninteresting, nondominant, mildly relaxing, and mildly pleasant. The spatial scale of the dynamics had an unpleasant, arousing, and dominant effect, which was larger for textures with diverse content than for water textures. For water textures, the effects of spatial contrast were arousing, dominant, interesting, and mildly unpleasant. None of these effects were observed for textures of diverse content. The current findings are relevant for the design and synthesis of affective multimedia content and for affective scene indexing and retrieval. PMID:23145257

  3. Fine-scale Textures

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 19 May 2003

    This image shows fine-scale textures around a crater southwest of Athabasca Vallis. These fine scale ridges are most likely the remnants of older flood eroded layered rocks and not longitudinal grooves carved out of the landscape by flooding. These features are ridges and not grooves. Also note the layers visible on the southeast side of the island.

    Image information: VIS instrument. Latitude 9.6, Longitude 155.9 East (204.1). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Categorizing dynamic textures using a bag of dynamical systems.

    PubMed

    Ravichandran, Avinash; Chaudhry, Rizwan; Vidal, René

    2013-02-01

    We consider the problem of categorizing video sequences of dynamic textures, i.e., nonrigid dynamical objects such as fire, water, steam, flags, etc. This problem is extremely challenging because the shape and appearance of a dynamic texture continuously change as a function of time. State-of-the-art dynamic texture categorization methods have been successful at classifying videos taken from the same viewpoint and scale by using a Linear Dynamical System (LDS) to model each video, and using distances or kernels in the space of LDSs to classify the videos. However, these methods perform poorly when the video sequences are taken under a different viewpoint or scale. In this paper, we propose a novel dynamic texture categorization framework that can handle such changes. We model each video sequence with a collection of LDSs, each one describing a small spatiotemporal patch extracted from the video. This Bag-of-Systems (BoS) representation is analogous to the Bag-of-Features (BoF) representation for object recognition, except that we use LDSs as feature descriptors. This choice poses several technical challenges in adopting the traditional BoF approach. Most notably, the space of LDSs is not euclidean; hence, novel methods for clustering LDSs and computing codewords of LDSs need to be developed. We propose a framework that makes use of nonlinear dimensionality reduction and clustering techniques combined with the Martin distance for LDSs to tackle these issues. Our experiments compare the proposed BoS approach to existing dynamic texture categorization methods and show that it can be used for recognizing dynamic textures in challenging scenarios which could not be handled by existing methods. PMID:23257470

  5. Heterogeneous patterns enhancing static and dynamic texture classification

    NASA Astrophysics Data System (ADS)

    Rosa da Silva, Núbia; Martinez Bruno, Odemir

    2013-02-01

    Some mixtures, such as colloids like milk, blood, and gelatin, have homogeneous appearance when viewed with the naked eye, however, to observe them at the nanoscale is possible to understand the heterogeneity of its components. The same phenomenon can occur in pattern recognition in which it is possible to see heterogeneous patterns in texture images. However, current methods of texture analysis can not adequately describe such heterogeneous patterns. Common methods used by researchers analyse the image information in a global way, taking all its features in an integrated manner. Furthermore, multi-scale analysis verifies the patterns at different scales, but still preserving the homogeneous analysis. On the other hand various methods use textons to represent the texture, breaking texture down into its smallest unit. To tackle this problem, we propose a method to identify texture patterns not small as textons at distinct scales enhancing the separability among different types of texture. We find sub patterns of texture according to the scale and then group similar patterns for a more refined analysis. Tests were performed in four static texture databases and one dynamical one. Results show that our method provide better classification rate compared with conventional approaches both in static and in dynamic texture.

  6. Network-scale dynamics of sediment mixtures: how do tectonics affect surface bed texture and channel slope?

    NASA Astrophysics Data System (ADS)

    Gasparini, N. M.; Bras, R. L.; Tucker, G. E.

    2003-04-01

    An alluvial channel's slope and bed texture are intimately linked. Along with fluvial discharge, these variables are the key players in setting alluvial transport rates. We know that both channel slope and mean grain size usually decrease downstream, but how sensitive are these variables to tectonic changes? Are basin concavity and downstream fining drastically disrupted during transitions from one tectonic regime to another? We explore these questions using the CHILD numerical landscape evolution model to generate alluvial networks composed of a sand and gravel mixture. The steady-state and transient patterns of both channel slope and sediment texture are investigated. The steady-state patterns in slope and sediment texture are verified independently by solving the erosion equations under equilibrium conditions, i.e. the case when the erosion rate is equal to the uplift rate across the entire landscape. The inclusion of surface texture as a free parameter (as opposed to just channel slope) leads to some surprising results. In all cases, an increase in uplift rate results in channel beds which are finer at equilibrium (for a given drainage area). Higher uplift rates imply larger equilibrium transport rates; this leads to finer channels that have a smaller critical shear stress to entrain material, and therefore more material can be transported for a given discharge (and channel slope). Changes in equilibrium slopes are less intuitive. An increase in uplift rates can cause channel slopes to increase, remain the same, or decrease, depending on model parameter values. In the surprising case in which equilibrium channel slopes decrease with increasing uplift rates, we suggest that surface texture changes more than compensate for the required increase in transport rates, causing channel slopes to decrease. These results highlight the important role of sediment grain size in determining transport rates and caution us against ignoring this important variable in fluvial

  7. Scale-free texture of the fast solar wind.

    PubMed

    Hnat, B; Chapman, S C; Gogoberidze, G; Wicks, R T

    2011-12-01

    The higher-order statistics of magnetic field magnitude fluctuations in the fast quiet solar wind are quantified systematically, scale by scale. We find a single global non-Gaussian scale-free behavior from minutes to over 5 h. This spans the signature of an inertial range of magnetohydrodynamic turbulence and a ~1/f range in magnetic field components. This global scaling in field magnitude fluctuations is an intrinsic component of the underlying texture of the solar wind and puts a strong constraint on any theory of solar corona and the heliosphere. Intriguingly, the magnetic field and velocity components show scale-dependent dynamic alignment outside of the inertial range. PMID:22304144

  8. Scale-Space Mutual Information for Textural-Patterns Characterization

    SciTech Connect

    Seedahmed, Gamal H.; Ward, Andy L.

    2005-08-22

    The essence of image texture is typically understood by two aspects. First, within a texture-pattern there is a significant variation in intensity values between nearby pixels. Second, texture is a homogeneous property at some spatial scale larger than the spatial resolution of the image. Motivated by the essential aspects of image texture, this paper proposes a novel methodology that combines the use of scale-space and mutual information to characterize textural-patterns. Scale-space offers the mechanism for a multi-scale representation of the image, which will be used to address the scale aspect of texture. On the other hand, mutual information provides a measure to quantify the dependency relationship across the scale-space. It has been found that the proposed methodology has the potential to capture different properties of texture such as periodicity, scale, fineness, coarseness, and spatial extent or size. Practical examples are provided to demonstrate the applicability of the proposed methodology.

  9. Magnetization dynamics of imprinted non-collinear spin textures

    SciTech Connect

    Streubel, Robert Kopte, Martin; Makarov, Denys; Fischer, Peter; Schmidt, Oliver G.

    2015-09-14

    We study the magnetization dynamics of non-collinear spin textures realized via imprint of the magnetic vortex state in soft permalloy into magnetically hard out-of-plane magnetized Co/Pd nanopatterned heterostructures. Tuning the interlayer exchange coupling between soft- and hard-magnetic subsystems provides means to tailor the magnetic state in the Co/Pd stack from being vortex- to donut-like with different core sizes. While the imprinted vortex spin texture leads to the dynamics similar to the one observed for vortices in permalloy disks, the donut-like state causes the appearance of two gyrofrequencies characteristic of the early and later stages of the magnetization dynamics. The dynamics are described using the Thiele equation supported by the full scale micromagnetic simulations by taking into account an enlarged core size of the donut states compared to magnetic vortices.

  10. Differential rotation and cloud texture: Analysis using generalized scale invariance

    SciTech Connect

    Pflug, K.; Lovejoy, S. ); Schertzer, D. )

    1993-02-14

    The standard picture of atmospheric dynamics is that of an isotropic two-dimensional large scale and an isotropic three-dimensional small scale, the two separated by a dimensional transition called the [open quotes]mesoscale gap.[close quotes] Evidence now suggests that, on the contrary, atmospheric fields, while strongly anisotropic, are nonetheless scale invariant right through the mesoscale. Using visible and infrared satellite cloud images and the formalism of generalized scale invariance (GSI), the authors attempt to quantify the anisotropy for cloud radiance fields in the range 1-1000 km. To do this, the statistical translational invariance of the fields is exploited by studying the anisotropic scaling of lines of constant Fourier amplitude. This allows the investigation of the change in shape and orientation of average structures with scale. For the three texturally-and meteorologically-very different images analyzed, three different generators of anisotropy are found that generally reproduce well the Fourier space anisotropy. Although three cases are a small number from which to infer ensemble-averaged properties, the authors conclude that while cloud radiances are not isotropic (self-similar), they are nonetheless scaling. Since elsewhere (with the help of simulations) it is shown that the generator of the anisotropy is related to the texture, it is argued here that GSI could potentially provide a quantitative basis for cloud classification and modeling. 59 refs., 21 figs., 2 tabs.

  11. Topologically protected dynamics of spin textures

    NASA Astrophysics Data System (ADS)

    Tretiakov, O. A.; Abanov, Ar.

    2015-06-01

    We study current-induced dynamics of spin textures in thin magnetic nanowires. We derive effective equations of motion describing the dynamics of the domain-wall soft modes associated with topological defects. Because the magnetic domain walls are topological objects, these equations are universal and depend only on a few parameters. We obtain spin spiral domain-wall structure in ferromagnetic wires with Dzyaloshinskii-Moriya interaction and critical current dependence on this interaction. We also find the most efficient way to move the domain walls by resonant current pulses and propose a procedure to determine their dynamics by measuring the voltage induced by a moving domain wall. Based on translationally non-invariant nanowires, we show how to make prospective magnetic memory nanodevices much more energy efficient.

  12. Robust Texture Image Representation by Scale Selective Local Binary Patterns.

    PubMed

    Guo, Zhenhua; Wang, Xingzheng; Zhou, Jie; You, Jane

    2016-02-01

    Local binary pattern (LBP) has successfully been used in computer vision and pattern recognition applications, such as texture recognition. It could effectively address grayscale and rotation variation. However, it failed to get desirable performance for texture classification with scale transformation. In this paper, a new method based on dominant LBP in scale space is proposed to address scale variation for texture classification. First, a scale space of a texture image is derived by a Gaussian filter. Then, a histogram of pre-learned dominant LBPs is built for each image in the scale space. Finally, for each pattern, the maximal frequency among different scales is considered as the scale invariant feature. Extensive experiments on five public texture databases (University of Illinois at Urbana-Champaign, Columbia Utrecht Database, Kungliga Tekniska Högskolan-Textures under varying Illumination, Pose and Scale, University of Maryland, and Amsterdam Library of Textures) validate the efficiency of the proposed feature extraction scheme. Coupled with the nearest subspace classifier, the proposed method could yield competitive results, which are 99.36%, 99.51%, 99.39%, 99.46%, and 99.71% for UIUC, CUReT, KTH-TIPS, UMD, and ALOT, respectively. Meanwhile, the proposed method inherits simple and efficient merits of LBP, for example, it could extract scale-robust feature for a 200×200 image within 0.24 s, which is applicable for many real-time applications. PMID:26685235

  13. Adaptive Texture Synthesis for Large Scale City Modeling

    NASA Astrophysics Data System (ADS)

    Despine, G.; Colleu, T.

    2015-02-01

    Large scale city models textured with aerial images are well suited for bird-eye navigation but generally the image resolution does not allow pedestrian navigation. One solution to face this problem is to use high resolution terrestrial photos but it requires huge amount of manual work to remove occlusions. Another solution is to synthesize generic textures with a set of procedural rules and elementary patterns like bricks, roof tiles, doors and windows. This solution may give realistic textures but with no correlation to the ground truth. Instead of using pure procedural modelling we present a method to extract information from aerial images and adapt the texture synthesis to each building. We describe a workflow allowing the user to drive the information extraction and to select the appropriate texture patterns. We also emphasize the importance to organize the knowledge about elementary pattern in a texture catalogue allowing attaching physical information, semantic attributes and to execute selection requests. Roofs are processed according to the detected building material. Façades are first described in terms of principal colours, then opening positions are detected and some window features are computed. These features allow selecting the most appropriate patterns from the texture catalogue. We experimented this workflow on two samples with 20 cm and 5 cm resolution images. The roof texture synthesis and opening detection were successfully conducted on hundreds of buildings. The window characterization is still sensitive to the distortions inherent to the projection of aerial images onto the facades.

  14. Cosmological texture is incompatible with Planck-scale physics

    NASA Technical Reports Server (NTRS)

    Holman, Richard; Hsu, Stephen D. H.; Kolb, Edward W.; Watkins, Richard; Widrow, Lawrence M.

    1992-01-01

    Nambu-Goldstone modes are sensitive to the effects of physics at energies comparable to the scale of spontaneous symmetry breaking. We show that as a consequence of this the global texture proposal for structure formation requires rather severe assumptions about the nature of physics at the Planck scale.

  15. Texture

    SciTech Connect

    Gee, Glendon W.

    2005-01-03

    The chapter focuses on the quantitative aspect of soil texture, the classification of size separates, methods for obtaining particle-size distributions, textural classifications, and how quantitative textural information can be used to estimate other soil properties.

  16. Spatiotemporal Directional Number Transitional Graph for Dynamic Texture Recognition.

    PubMed

    Rivera, Adín Ramírez; Chae, Oksam

    2015-10-01

    Spatiotemporal image descriptors are gaining attention in the image research community for better representation of dynamic textures. In this paper, we introduce a dynamic-micro-texture descriptor, i.e., spatiotemporal directional number transitional graph (DNG), which describes both the spatial structure and motion of each local neighborhood by capturing the direction of natural flow in the temporal domain. We use the structure of the local neighborhood, given by its principal directions, and compute the transition of such directions between frames. Moreover, we present the statistics of the direction transitions in a transitional graph, which acts as a signature for a given spatiotemporal region in the dynamic texture. Furthermore, we create a sequence descriptor by dividing the spatiotemporal volume into several regions, computing a transitional graph for each of them, and represent the sequence as a set of graphs. Our results validate the robustness of the proposed descriptor in different scenarios for expression recognition and dynamic texture analysis. PMID:26340258

  17. Scale invariant texture descriptors for classifying celiac disease

    PubMed Central

    Hegenbart, Sebastian; Uhl, Andreas; Vécsei, Andreas; Wimmer, Georg

    2013-01-01

    Scale invariant texture recognition methods are applied for the computer assisted diagnosis of celiac disease. In particular, emphasis is given to techniques enhancing the scale invariance of multi-scale and multi-orientation wavelet transforms and methods based on fractal analysis. After fine-tuning to specific properties of our celiac disease imagery database, which consists of endoscopic images of the duodenum, some scale invariant (and often even viewpoint invariant) methods provide classification results improving the current state of the art. However, not each of the investigated scale invariant methods is applicable successfully to our dataset. Therefore, the scale invariance of the employed approaches is explicitly assessed and it is found that many of the analyzed methods are not as scale invariant as they theoretically should be. Results imply that scale invariance is not a key-feature required for successful classification of our celiac disease dataset. PMID:23481171

  18. Effect of texturing on polarization switching dynamics in ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Zhukov, Sergey; Genenko, Yuri A.; Koruza, Jurij; Schultheiß, Jan; von Seggern, Heinz; Sakamoto, Wataru; Ichikawa, Hiroki; Murata, Tatsuro; Hayashi, Koichiro; Yogo, Toshinobu

    2016-01-01

    Highly (100),(001)-oriented (Ba0.85Ca0.15)TiO3 (BCT) lead-free piezoelectric ceramics were fabricated by the reactive templated grain growth method using a mixture of plate-like CaTiO3 and BaTiO3 particles. Piezoelectric properties of the ceramics with a high degree of texture were found to be considerably enhanced compared with the BCT ceramics with a low degree of texture. With increasing the Lotgering factor from 26% up to 94%, the piezoelectric properties develop towards the properties of a single crystal. The dynamics of polarization switching was studied over a broad time domain of 8 orders of magnitude and was found to strongly depend on the degree of orientation of the ceramics. Samples with a high degree of texture exhibited 2-3 orders of magnitude faster polarization switching, as compared with the ones with a low degree of texture. This was rationalized by means of the Inhomogeneous Field Mechanism model as a result of the narrower statistical distribution of the local electric field values in textured media, which promotes a more coherent switching process. The extracted microscopic parameters of switching revealed a decrease of the critical nucleus energy in systems with a high degree of texture providing more favorable switching conditions related to the enhanced ferroelectric properties of the textured material.

  19. Identifying Differences and Similarities in Static and Dynamic Contact Angles between Nanoscale and Microscale Textured Surfaces Using Molecular Dynamics Simulations.

    PubMed

    Slovin, Mitchell R; Shirts, Michael R

    2015-07-28

    We quantify some of the effects of patterned nanoscale surface texture on static contact angles, dynamic contact angles, and dynamic contact angle hysteresis using molecular dynamics simulations of a moving Lennard-Jones droplet in contact with a solid surface. We observe static contact angles that change with the introduction of surface texture in a manner consistent with theoretical and experimental expectations. However, we find that the introduction of nanoscale surface texture at the length scale of 5-10 times the fluid particle size does not affect dynamic contact angle hysteresis even though it changes both the advancing and receding contact angles significantly. This result differs significantly from microscale experimental results where dynamic contact angle hysteresis decreases with the addition of surface texture due to an increase in the receding contact angle. Instead, we find that molecular-kinetic theory, previously applied only to nonpatterned surfaces, accurately describes dynamic contact angle and dynamic contact angle hysteresis behavior as a function of terminal fluid velocity. Therefore, at length scales of tens of nanometers, the kinetic phenomena such as contact line pinning observed at larger scales become insignificant in comparison to the effects of molecular fluctuations for moving droplets, even though the static properties are essentially scale-invariant. These findings may have implications for the design of highly hierarchical structures with particular wetting properties. We also find that quantitatively determining the trends observed in this article requires the careful selection of system and analysis parameters in order to achieve sufficient accuracy and precision in calculated contact angles. Therefore, we provide a detailed description of our two-surface, circular-fit approach to calculating static and dynamic contact angles on surfaces with nanoscale texturing. PMID:26110823

  20. Multi-Scale Fractal Analysis of Image Texture and Pattern

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.

    1998-01-01

    Fractals embody important ideas of self-similarity, in which the spatial behavior or appearance of a system is largely independent of scale. Self-similarity is defined as a property of curves or surfaces where each part is indistinguishable from the whole, or where the form of the curve or surface is invariant with respect to scale. An ideal fractal (or monofractal) curve or surface has a constant dimension over all scales, although it may not be an integer value. This is in contrast to Euclidean or topological dimensions, where discrete one, two, and three dimensions describe curves, planes, and volumes. Theoretically, if the digital numbers of a remotely sensed image resemble an ideal fractal surface, then due to the self-similarity property, the fractal dimension of the image will not vary with scale and resolution. However, most geographical phenomena are not strictly self-similar at all scales, but they can often be modeled by a stochastic fractal in which the scaling and self-similarity properties of the fractal have inexact patterns that can be described by statistics. Stochastic fractal sets relax the monofractal self-similarity assumption and measure many scales and resolutions in order to represent the varying form of a phenomenon as a function of local variables across space. In image interpretation, pattern is defined as the overall spatial form of related features, and the repetition of certain forms is a characteristic pattern found in many cultural objects and some natural features. Texture is the visual impression of coarseness or smoothness caused by the variability or uniformity of image tone or color. A potential use of fractals concerns the analysis of image texture. In these situations it is commonly observed that the degree of roughness or inexactness in an image or surface is a function of scale and not of experimental technique. The fractal dimension of remote sensing data could yield quantitative insight on the spatial complexity and

  1. Dynamics of Spreading on Micro-Textured Surfaces

    NASA Astrophysics Data System (ADS)

    Mohammad Karim, Alireza; Rothstein, Jonathan; Kavehpour, Pirouz

    2015-11-01

    Ultrahydrophobic surfaces, due to their large water-repellency characteristic, have a vast variety of applications in technology and nature, such as de-icing of airplane wings, efficiency increase of power plants, and efficiency of pesticides on plants, etc. The significance of ultrahydrophobic surfaces requires enhancing the knowledge on the spreading dynamics on such surfaces. The best way to produce an ultrahydrophobic surface is by patterning of smooth hydrophobic surfaces with micron sized posts. In this research, the micro-textured surfaces have been fabricated by patterning several different sizes of micro-textured posts on Teflon plates. The experimental study has been performed using forced spreading with Tensiometer to obtain the dependencw of dynamic contact angle to the contact line velocity to describe the spreading dynamics of Newtonian liquids on the micro-textured surfaces. The effect of the geometrical descriptions of the micro-posts along with the physical properties of liquids on the spreading dynamics on micro-textured Teflon plates have been also studied.

  2. Model for interacting instabilities and texture dynamics of patterns.

    PubMed

    Das, A; Kumar, K; Ganesh, N

    2001-07-01

    A simple model to study interacting instabilities and textures of resulting patterns for thermal convection is presented. The model, consisting of a twelve-mode dynamical system derived for periodic square lattice, describes convective patterns in the form of stripes and patchwork quilt. The interaction between stationary zigzag stripes and standing patchwork quilt pattern leads to spatiotemporal patterns of twisted patchwork quilt. Textures of these patterns, which depend strongly on Prandtl number, are investigated numerically using the model. The model also shows an interesting possibility of a multicritical point, where stability boundaries of four different structures meet. PMID:11461385

  3. Temperature dependent droplet impact dynamics on flat and textured surfaces

    SciTech Connect

    Azar Alizadeh; Vaibhav Bahadur; Sheng Zhong; Wen Shang; Ri Li; James Ruud; Masako Yamada; Liehi Ge; Ali Dhinojwala; Manohar S Sohal

    2012-03-01

    Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially for hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures can explain the decreased retraction. The present findings serve to guide further studies of dynamic fluid-structure interaction at various temperatures.

  4. Uterus segmentation in dynamic MRI using LBP texture descriptors

    NASA Astrophysics Data System (ADS)

    Namias, R.; Bellemare, M.-E.; Rahim, M.; Pirró, N.

    2014-03-01

    Pelvic floor disorders cover pathologies of which physiopathology is not well understood. However cases get prevalent with an ageing population. Within the context of a project aiming at modelization of the dynamics of pelvic organs, we have developed an efficient segmentation process. It aims at alleviating the radiologist with a tedious one by one image analysis. From a first contour delineating the uterus-vagina set, the organ border is tracked along a dynamic mri sequence. The process combines movement prediction, local intensity and texture analysis and active contour geometry control. Movement prediction allows a contour intitialization for next image in the sequence. Intensity analysis provides image-based local contour detection enhanced by local binary pattern (lbp) texture descriptors. Geometry control prohibits self intersections and smoothes the contour. Results show the efficiency of the method with images produced in clinical routine.

  5. Large scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Doolin, B. F.

    1975-01-01

    Classes of large scale dynamic systems were discussed in the context of modern control theory. Specific examples discussed were in the technical fields of aeronautics, water resources and electric power.

  6. Texture sensing of cytoskeletal dynamics in cell migration

    NASA Astrophysics Data System (ADS)

    Das, Satarupa; Lee, Rachel; Hourwitz, Matthew J.; Sun, Xiaoyu; Parent, Carole; Fourkas, John T.; Losert, Wolfgang

    Migrating cells can be directed towards a target by gradients in properties such as chemical concentration or mechanical properties of the surrounding microenvironment. In previous studies we have shown that micro/nanotopographical features on scales comparable to those of natural collagen fibers can guide fast migrating amoeboid cells by aligning actin polymerization waves to such nanostructures. We find that actin microfilaments and microtubules are aligned along the nanoridge topographies, modulating overall cell polarity and directional migration in epithelial cells. This work shows that topographic features on a biologically relevant length scale can modulate migration outcomes by affecting the texture sensing property of the cytoskeleton.

  7. Probabilistic latent semantic analysis for dynamic textures recognition and localization

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Hu, Shiqiang

    2014-11-01

    We present a framework for dynamic textures (DTs) recognition and localization by using a model developed in the text analysis literature: probabilistic latent semantic analysis (pLSA). The novelty is revealed in three aspects. First, chaotic feature vector is introduced and characterizes each pixel intensity series. Next, the pLSA model is employed to discover the topics by using the bag of words representation. Finally, the spatial layout of DTs can be found. Experimental results are conducted on the well-known DTs datasets. The results show that the proposed method can successfully build DTs models and achieve higher accuracies in DTs recognition and effectively localize DTs.

  8. Classifying scaled and rotated textures using a region-matched algorithm

    NASA Astrophysics Data System (ADS)

    Yao, Chih-Chia; Chen, Yu-Tin

    2012-07-01

    A novel method to correct texture variations resulting from scale magnification, narrowing caused by cropping into the original size, or spatial rotation is discussed. The variations usually occur in images captured by a camera using different focal lengths. A representative region-matched algorithm is developed to improve texture classification after magnification, narrowing, and spatial rotation. By using a minimum ellipse, a representative region-matched algorithm encloses a specific region extracted by the J-image segmentation algorithm. After translating the coordinates, the equation of an ellipse in the rotated texture can be formulated as that of an ellipse in the original texture. The rotated invariant property of ellipse provides an efficient method to identify the rotated texture. Additionally, the scale-variant representative region can be classified by adopting scale-invariant parameters. Moreover, a hybrid texture filter is developed. In the hybrid texture filter, the scheme of texture feature extraction includes the Gabor wavelet and the representative region-matched algorithm. Support vector machines are introduced as the classifier. The proposed hybrid texture filter performs excellently with respect to classifying both the stochastic and structural textures. Furthermore, experimental results demonstrate that the proposed algorithm outperforms conventional design algorithms.

  9. Textural constraints on the dynamics of the 2000 Miyakejima eruption

    NASA Astrophysics Data System (ADS)

    Garozzo, Ileana; Romano, Claudia; Giordano, Guido; Geshi, Nobuo; Vona, Alessandro

    2016-04-01

    Miyakejima Volcano is a basaltic-andesite stratovolcano active from ~10.000 years, located on the north of the Izu-Bonin arc. During the last 600 years the volcano has been characterized mainly by flank fissure activity, with explosive phreatomagmatic eruptions on the coastal areas. In the last century, the activity became more frequent and regular with intervals of 20 to 70 years (1940, 1962, 1983 and 2000). The last activity started on 27 June 2000, with a minor submarine eruption on the west coast of the volcano, and proceeded with six major summit eruptions from July 8 to August 29. The eruptions led to the formation of a collapse caldera ~1.6 km across. The total erupted tephra represents only 1.7% in volume of the caldera, the high fragmentation of magma produced mainly fine-grained volcanic ash. In order to improve the understanding on the triggering and dynamics of this explosive eruption, we carried out a detailed investigation of the erupted materials with particular attention to the textural features of juvenile pyroclasts (Vesicle and Crystal Size Distributions). The stratigraphic record can be divided into six fall units, corresponding to the six summit eruptions, although juvenile materials were identified only in 4 units (unit 2, 4, 5, 6). We selected about 100 juvenile grains sampled from the bottom to the top of each level, to be analyzed by scanning electron microscopy. The study of juvenile morphological features allowed us to recognize the existence of three characteristic morphotypes, showing marked differences in their external morphologies and internal textures (from poorly to highly crystallized and vesiculated clasts). The distribution of these morphotypes is non-homogeneous along the eruptive sequence indicating changes of dynamics during magma ascent. Juveniles do not show features inherited from the interaction with external water. Vesicle Volume Distributions of the selected ash grains show that the three types of pyroclasts experienced

  10. Droplets impact on textured surfaces: Mesoscopic simulation of spreading dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Yuxiang; Chen, Shuo

    2015-02-01

    Superhydrophobic surfaces have attracted much attention due to their excellent water-repellent property. In the present study, droplets in the ideal Cassie state were focused on, and a particle-based numerical method, many-body dissipative particle dynamics, was employed to explore the mechanism of droplets impact on textured surfaces. A solid-fluid interaction with three linear weight functions was used to generate different wettability and a simple but efficient method was introduced to compute the contact angle. The simulated results show that the static contact angle is in good agreement with the Cassie-Baxter formula for smaller ∅S and Fa, but more deviation will be produced for larger ∅S and Fa, and it is related to the fact that the Cassie-Baxter theory does not consider the contact angle hysteresis effect in their formula. Furthermore, high impact velocity can induce large contact angle hysteresis on textured surfaces with larger ∅S and Fa. The typical time-based evolutions of the spreading diameter were simulated, and they were analyzed from an energy transformation viewpoint. These results also show that the dynamical properties of droplet, such as rebounding or pinning, contact time and maximum spreading diameters, largely depend on the comprehensive effects of the material wettability, fraction of the pillars and impact velocities of the droplets.

  11. Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells

    NASA Astrophysics Data System (ADS)

    Toor, Fatima; Branz, Howard M.; Page, Matthew R.; Jones, Kim M.; Yuan, Hao-Chih

    2011-09-01

    We characterize the optical and carrier-collection physics of multi-scale textured p-type black Si solar cells with conversion efficiency of 17.1%. The multi-scale texture is achieved by combining density-graded nanoporous layer made by metal-assisted etching with micron-scale pyramid texture. We found that (1) reducing the thickness of nanostructured Si layer improves the short-wavelength spectral response and (2) multi-scale texture permits thinning of the nanostructured layer while maintaining low surface reflection. We have reduced the nanostructured layer thickness by 60% while retaining a solar-spectrum-averaged black Si reflectance of less than 2%. Spectral response at 450 nm has improved from 57% to 71%.

  12. Control carrier recombination of multi-scale textured black silicon surface for high performance solar cells

    NASA Astrophysics Data System (ADS)

    Hong, M.; Yuan, G. D.; Peng, Y.; Chen, H. Y.; Zhang, Y.; Liu, Z. Q.; Wang, J. X.; Cai, B.; Zhu, Y. M.; Chen, Y.; Liu, J. H.; Li, J. M.

    2014-06-01

    We report an enhanced performance of multi-scale textured black silicon solar cell with power conversion efficiency of 15.5% by using anisotropic tetramethylammonium hydroxide etching to control the recombination. The multi-scale texture can effectively reduce the surface reflectance in a wide wavelength range, and both the surface and Auger recombination can be effectively suppressed by etching the samples after the n++ emitter formed. Our result shows that the reformed solar cell has higher conversion efficiency than that of conventional pyramid textured cell (15.3%). This work presents an effective method for improving the performance of nanostructured silicon solar cells.

  13. Texture descriptions of lunar surface derived from LOLA data: Kilometer-scale roughness and entropy maps

    NASA Astrophysics Data System (ADS)

    Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian; Wu, Zhongchen; Ni, Yuheng; Zhao, Haowei

    2015-11-01

    The lunar global texture maps of roughness and entropy are derived at kilometer scales from Digital Elevation Models (DEMs) data obtained by Lunar Orbiter Laser Altimeter (LOLA) aboard on Lunar Reconnaissance Orbiter (LRO) spacecraft. We use statistical moments of a gray-level histogram of elevations in a neighborhood to compute the roughness and entropy value. Our texture descriptors measurements are shown in global maps at multi-sized square neighborhoods, whose length of side is 3, 5, 10, 20, 40 and 80 pixels, respectively. We found that large-scale topographical changes can only be displayed in maps with longer side of neighborhood, but the small scale global texture maps are more disorderly and unsystematic because of more complicated textures' details. Then, the frequency curves of texture maps are made out, whose shapes and distributions are changing as the spatial scales increases. Entropy frequency curve with minimum 3-pixel scale has large fluctuations and six peaks. According to this entropy curve we can classify lunar surface into maria, highlands, different parts of craters preliminarily. The most obvious textures in the middle-scale roughness and entropy maps are the two typical morphological units, smooth maria and rough highlands. For the impact crater, its roughness and entropy value are characterized by a multiple-ring structure obviously, and its different parts have different texture results. In the last, we made a 2D scatter plot between the two texture results of typical lunar maria and highlands. There are two clusters with largest dot density which are corresponded to the lunar highlands and maria separately. In the lunar mare regions (cluster A), there is a high correlation between roughness and entropy, but in the highlands (Cluster B), the entropy shows little change. This could be subjected to different geological processes of maria and highlands forming different landforms.

  14. The Relationship between Filling-in Induction and Spatio-Temporal Frequency of Sorrounding Dynamic Textures

    NASA Astrophysics Data System (ADS)

    Yokota, Masae; Yokota, Yasunari

    To elucidate perceptual filling-in mechanisms in peripheral vision, we investigated dependency of filling-in occurrence on spatio-temporal frequency of dynamic textures surrounding the filling-in target. We first measured spatial frequency sensitivity of the filling-in target in static texture. Then, the time to filling-in, when dynamic textures which have variously limited spatio-temporal frequency are surrounding the filling-in target, were measured. According to the hypothesis of filling-in process which has already proposed by the authors, the tendency of inducing filling-in, i.e., the attenuation factor of perceptual power for filling-in target in dynamic textures, is estimated as a function of spatio-temporal frequency. It was suggested that surrounding texture with stronger perception promotes filling-in more intensively.

  15. Learning How to Extract Rotation-Invariant and Scale-Invariant Features from Texture Images

    NASA Astrophysics Data System (ADS)

    Montoya-Zegarra, Javier A.; Papa, João Paulo; Leite, Neucimar J.; da Silva Torres, Ricardo; Falcão, Alexandre

    2008-12-01

    Learning how to extract texture features from noncontrolled environments characterized by distorted images is a still-open task. By using a new rotation-invariant and scale-invariant image descriptor based on steerable pyramid decomposition, and a novel multiclass recognition method based on optimum-path forest, a new texture recognition system is proposed. By combining the discriminating power of our image descriptor and classifier, our system uses small-size feature vectors to characterize texture images without compromising overall classification rates. State-of-the-art recognition results are further presented on the Brodatz data set. High classification rates demonstrate the superiority of the proposed system.

  16. Simulation studies of defect textures and dynamics in 3-d cholesteric droplets

    NASA Astrophysics Data System (ADS)

    Gimenez-Pinto, Vianney; Lu, Shin-Ying; Selinger, Jonathan; Selinger, Robin

    2010-03-01

    We model defect texture evolution in droplets of cholesteric liquid crystals by solving for the dynamics of the nematic director field. In order to accommodate defects in the simulated texture, we use a finite difference formulation that is explicitly independent of sign reversal of the director at any position in the sample. Textures are visualized using either the Berreman 4x4 matrix method or by mapping free energy density. We study both planar and focal conic cholesteric textures in 3-d spherical and cylindrical droplets, with the goal to optimize device geometries for bistable display applications.

  17. Simulation studies of dynamics and defect textures in 3-d cholesteric droplets

    NASA Astrophysics Data System (ADS)

    Gimenez-Pinto, Vianney; Lu, Shin-Ying; Selinger, Jonathan; Selinger, Robin

    2010-04-01

    We model defect texture evolution in droplets of cholesteric liquid crystals by solving for the dynamics of the nematic director field. In order to accommodate defects in the simulated texture, we use a finite difference formulation that is explicitly independent of sign reversal of the director at any position in the sample. Textures are visualized using either the Berreman 4x4 matrix method or by mapping free energy density. We study both planar and focal conic cholesteric textures in 3-d spherical and cylindrical droplets, with the goal to optimize device geometries for bistable display applications.

  18. A scale- and orientation-adaptive extension of Local Binary Patterns for texture classification

    PubMed Central

    Hegenbart, Sebastian; Uhl, Andreas

    2015-01-01

    Local Binary Patterns (LBPs) have been used in a wide range of texture classification scenarios and have proven to provide a highly discriminative feature representation. A major limitation of LBP is its sensitivity to affine transformations. In this work, we present a scale- and rotation-invariant computation of LBP. Rotation-invariance is achieved by explicit alignment of features at the extraction level, using a robust estimate of global orientation. Scale-adapted features are computed in reference to the estimated scale of an image, based on the distribution of scale normalized Laplacian responses in a scale-space representation. Intrinsic-scale-adaption is performed to compute features, independent of the intrinsic texture scale, leading to a significantly increased discriminative power for a large amount of texture classes. In a final step, the rotation- and scale-invariant features are combined in a multi-resolution representation, which improves the classification accuracy in texture classification scenarios with scaling and rotation significantly. PMID:26240440

  19. The influence of bulk composition and dynamic melting conditions on olivine chondrule textures

    NASA Technical Reports Server (NTRS)

    Connolly, Harold C., Jr.; Hewins, Roger H.

    1991-01-01

    The effects of the bulk composition and the dynamic melting conditions on the texture of olivine chondrules were investigated in a series of heating experiments. It is shown that variations in the olivine chondrule textures can be produced by varying the FeO/(FeO + MgO) ratio between the average Type IA and Type II chondrule compositions, could affect the texture of a chondrule at a constant initial melting temperature and heating time. A range of the heating times and the masses of precursor spheres caused variations in the degree of melting and in chondrule textures. Chondrule textures were distributed on a graph of initial temperatures vs. FeO/(FeO + MgO) ratios as bands parallel to the olivine disappearance curve. This graph could be used to predict chondrule textures from Fe/(FeO + MgO) ratios at specific initial melting temperatures.

  20. The effect of multi-scale laser textured surface on lubrication regime

    NASA Astrophysics Data System (ADS)

    Segu, Dawit Zenebe; Choi, Si Geun; Choi, Jae hyouk; Kim, Seock Sam

    2013-04-01

    Laser surface texturing (LST) is a surface engineering process used to improve tribological characteristics of materials by creating patterned microstructures on the mechanical contact surface. In LST technology, a pulsated laser beam is used to create arranged dimples on surface by a material ablation process, which can improve load capacity, wear resistances, lubrication lifetime, and reduce friction coefficients. In the present study, the effect of multi-scale LST on lubricant regime was investigated. A pulsed Nd:YAG laser was applied on steel (AISI 52100) to create arranged dimples. To optimize the surface texturing effect on friction, multi-scale texture dimples with some specific formula arrays were fabricated by laser ablation process by combining circles and ellipses. The tribological testing of multi-scale textured surface was performed by a flat-on-flat unidirectional tribometer under lubrication, and the results compared with that of untextured surface. Through an increase in sliding speed and dimple depth the beneficial effect of multi-scale LST performance was achieved. The multi-scale textured surface had lower friction coefficient performance than the untextured surface due to hydrodynamic lubrication effect.

  1. Rotation and Scale Invariant Wavelet Feature for Content-Based Texture Image Retrieval.

    ERIC Educational Resources Information Center

    Lee, Moon-Chuen; Pun, Chi-Man

    2003-01-01

    Introduces a rotation and scale invariant log-polar wavelet texture feature for image retrieval. The underlying feature extraction process involves a log-polar transform followed by an adaptive row shift invariant wavelet packet transform. Experimental results show that this rotation and scale invariant wavelet feature is quite effective for image…

  2. Computer-aided mass detection in mammography: False positive reduction via gray-scale invariant ranklet texture features

    SciTech Connect

    Masotti, Matteo; Lanconelli, Nico; Campanini, Renato

    2009-02-15

    In this work, gray-scale invariant ranklet texture features are proposed for false positive reduction (FPR) in computer-aided detection (CAD) of breast masses. Two main considerations are at the basis of this proposal. First, false positive (FP) marks surviving our previous CAD system seem to be characterized by specific texture properties that can be used to discriminate them from masses. Second, our previous CAD system achieves invariance to linear/nonlinear monotonic gray-scale transformations by encoding regions of interest into ranklet images through the ranklet transform, an image transformation similar to the wavelet transform, yet dealing with pixels' ranks rather than with their gray-scale values. Therefore, the new FPR approach proposed herein defines a set of texture features which are calculated directly from the ranklet images corresponding to the regions of interest surviving our previous CAD system, hence, ranklet texture features; then, a support vector machine (SVM) classifier is used for discrimination. As a result of this approach, texture-based information is used to discriminate FP marks surviving our previous CAD system; at the same time, invariance to linear/nonlinear monotonic gray-scale transformations of the new CAD system is guaranteed, as ranklet texture features are calculated from ranklet images that have this property themselves by construction. To emphasize the gray-scale invariance of both the previous and new CAD systems, training and testing are carried out without any in-between parameters' adjustment on mammograms having different gray-scale dynamics; in particular, training is carried out on analog digitized mammograms taken from a publicly available digital database, whereas testing is performed on full-field digital mammograms taken from an in-house database. Free-response receiver operating characteristic (FROC) curve analysis of the two CAD systems demonstrates that the new approach achieves a higher reduction of FP marks

  3. Modelling Nonlinear Dynamic Textures using Hybrid DWT-DCT and Kernel PCA with GPU

    NASA Astrophysics Data System (ADS)

    Ghadekar, Premanand Pralhad; Chopade, Nilkanth Bhikaji

    2016-06-01

    Most of the real-world dynamic textures are nonlinear, non-stationary, and irregular. Nonlinear motion also has some repetition of motion, but it exhibits high variation, stochasticity, and randomness. Hybrid DWT-DCT and Kernel Principal Component Analysis (KPCA) with YCbCr/YIQ colour coding using the Dynamic Texture Unit (DTU) approach is proposed to model a nonlinear dynamic texture, which provides better results than state-of-art methods in terms of PSNR, compression ratio, model coefficients, and model size. Dynamic texture is decomposed into DTUs as they help to extract temporal self-similarity. Hybrid DWT-DCT is used to extract spatial redundancy. YCbCr/YIQ colour encoding is performed to capture chromatic correlation. KPCA is applied to capture nonlinear motion. Further, the proposed algorithm is implemented on Graphics Processing Unit (GPU), which comprise of hundreds of small processors to decrease time complexity and to achieve parallelism.

  4. Geomorphometric analysis of fine-scale morphology for extensive areas: a new surface-texture operator

    NASA Astrophysics Data System (ADS)

    Trevisani, Sebastiano; Rocca, Michele

    2014-05-01

    The application of geomorphometric analysis to high resolution digital terrain models (HRDTM) amplifies our capability to characterize and interpret fine-scale solid earth surface morphology. In this context it is possible to analyze fine-scale morphology in term of surface texture (e.g. Trevisani, 2012; Lucieer, 2005) and retrieve information linked to the different geomorphic processes and factors; this kind of analysis has an interesting potential to be exploited in the context of quantitative geomorphologic/geologic interpretation and geo-engineering. We developed a multiscale texture operator capable to synthetize the main characteristics of local surface texture in an efficient way. The proposed operator can be viewed as an hybrid between classical geostatistical spatial continuity indexes (e.g. variogram, Atkinson, 2000) and the well-known operator based on (rotation invariant) local binary patterns (Ojala, 2002). An important characteristic of the operator is to derive information on surface texture in an easily interpretable form so as to facilitate its use by experts for the interpretation of geomorphic processes and factors. Moreover this surface texture operator could be used for the derivation of more complex and ad-hoc surface texture indexes. We present the application of the operator in the analysis of different HRDTMs, mainly in the context of alpine environment. A particular interesting example is the application of the surface texture analysis in an extensive area (hundreds of km2), including also urbanized zones, and the evaluation of potential links between surface texture and lithological and geo-structural factors. References Atkinson, P.M. & Lewis, P. 2000, "Geostatistical classification for remote sensing: An introduction", Computers and Geosciences, vol. 26, no. 4, pp. 361-371. Lucieer, A., Stein, A., 2005. Texture-based landform segmentation of LiDAR imagery. International Journal of Applied Earth Observation and Geoinformation 6, 261

  5. High-dynamic-range texture compression for rendering systems of different capacities.

    PubMed

    Sun, Wen; Lu, Yan; Wu, Feng; Li, Shipeng; Tardif, John

    2010-01-01

    In this paper, we propose a novel approach for high-dynamic-range (HDR) texture compression (TC) suitable for rendering systems of different capacities. Based on the previously proposed DHTC scheme, we first work out an improved joint-channel compression framework, which is robust and flexible enough to provide compressed HDR textures at different bit rates. Then, two compressed HDR texture formats based on the proposed framework are developed. The 8 bpp format is of near lossless visual quality, improving upon known state-of-the-art algorithms. And, to our knowledge, the 4 bpp format is the first workable 4 bpp solution with good quality. We also show that HDR textures in the proposed 4 bpp and 8 bpp formats can compose a layered architecture in the texture consumption pipeline, to significantly save the memory bandwidth and storage in real-time rendering. In addition, the 8 bpp format can also be used to handle traditional low dynamic range (LDR) RGBA textures. Our scheme exhibits a practical solution for compressing HDR textures at different rates and LDR textures with alpha maps. PMID:19910661

  6. Soil Texture Controls Broad Scale DOC Transport Efficiency in Watersheds (Invited)

    NASA Astrophysics Data System (ADS)

    Green, M.

    2013-12-01

    Global change is altering the carbon cycle, including the movement of dissolved organic carbon (DOC) through river basins. The transport of DOC is controlled by climate dynamics and watershed configuration, including land cover, thus the many factors hamper our ability to predict DOC transport across broad spatial scales. We present an analysis of DOC transport across the conterminous United States using the U.S. Geological Survey's historical data, including over 400 sites ranging from small headwater watersheds to large river basins. We analyzed the slope of the log-log DOC concentration versus discharge relationship (C-Q slope). This slope, across sites, generally follows a log-normal distribution with a mode very close to zero (no change in concentration per unit increase in discharge), and a skew towards positive values. We used watershed attributes from these sites to build a regression tree model for predicting the C-Q slope. Generally, the two most important factors for predicting C-Q slope were soil texture and indices of groundwater contributions to a site. Watersheds with coarser soils and greater groundwater contributions tended to have the highest C-Q slopes. Surprisingly, the model did not choose watershed scale as an important predictor. The results emphasize the importance of hydrologic flow pathways in controlling DOC transport, and suggest that aquatic processes play a relatively smaller role in regulating DOC transport.

  7. Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification.

    PubMed

    Agner, Shannon C; Soman, Salil; Libfeld, Edward; McDonald, Margie; Thomas, Kathleen; Englander, Sarah; Rosen, Mark A; Chin, Deanna; Nosher, John; Madabhushi, Anant

    2011-06-01

    Dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) of the breast has emerged as an adjunct imaging tool to conventional X-ray mammography due to its high detection sensitivity. Despite the increasing use of breast DCE-MRI, specificity in distinguishing malignant from benign breast lesions is low, and interobserver variability in lesion classification is high. The novel contribution of this paper is in the definition of a new DCE-MRI descriptor that we call textural kinetics, which attempts to capture spatiotemporal changes in breast lesion texture in order to distinguish malignant from benign lesions. We qualitatively and quantitatively demonstrated on 41 breast DCE-MRI studies that textural kinetic features outperform signal intensity kinetics and lesion morphology features in distinguishing benign from malignant lesions. A probabilistic boosting tree (PBT) classifier in conjunction with textural kinetic descriptors yielded an accuracy of 90%, sensitivity of 95%, specificity of 82%, and an area under the curve (AUC) of 0.92. Graph embedding, used for qualitative visualization of a low-dimensional representation of the data, showed the best separation between benign and malignant lesions when using textural kinetic features. The PBT classifier results and trends were also corroborated via a support vector machine classifier which showed that textural kinetic features outperformed the morphological, static texture, and signal intensity kinetics descriptors. When textural kinetic attributes were combined with morphologic descriptors, the resulting PBT classifier yielded 89% accuracy, 99% sensitivity, 76% specificity, and an AUC of 0.91. PMID:20508965

  8. Formations of Bacteria-like Textures by dynamic reactions in Meteorite and Syntheses

    NASA Astrophysics Data System (ADS)

    Miura, Y.

    2009-05-01

    1. Introduction Spherule texture can be formed in dynamic reaction during meteoritic impact in air. However, there are no reports on nano-bacteria-like (i.e. spherule-chained) textures with iron (and Nickel) oxides (with chlorine) in composition and micro-texture with 100nm order [1] in meteorite and synthetic experiment. The purpose of the present study is to elucidate spherule-chained texture with micro-texture of 100nm in order found in the Kuga iron meteorite, Iwakuni, Yamaguchi, Japan, and its first artificial synthesis in laboratory. 2. Two textures in the Kuga meteorite: The Kuga iron meteorite found in Kuga, Iwakuni, Yamaguchi, Japan reveals spherule-chained texture with Fe, Ni-rich composition with 10μm in size, where each spherule contained "long micro-texture in 100nm in size"[1,2]. The complex texture of flow and chained shapes can be found only in the fusion crust of the meteorite formed by quenched and random processes with vapor-melting process in air of the Earth. The FE-ASEM with EDX analyses by an in-situ observation indicate that the matrix of the spherule-chained texture with Fe, Ni, O-rich (with minor Cl) composition is carbon-rich composition formed by impact reactions in air. 3. Comparison with Martian meteorite Remnant of life in ocean can be found by mineralized fossil, which can be found in the Martian meteorite ALH84001 as bacteria-like chained texture of magnetite in composition (in 100nm order) around carbonate spherules [3]. Similarity of bacteria-like texture of the ALH84001 compared with the Kuga meteorites in this study are composition of Fe-rich, C-bearing, and chained texture of small size replaced by Fe and O-rich composition in air. Major difference of these textures is no carbonates minerals in the Kuga meteorite at dynamic reaction in air [1, 2, 3]. 4. First synthesis of bacteria- like akaganeite: A bacteria-like texture with Fe oxides (with minor chlorine as akaganeite-like compositions) is synthesized by chlorine and water

  9. Correlation modeling between process condition of sandblasting and surface texture: A multi-scale approach.

    PubMed

    Ho, Hsin Shen; Bigerelle, Maxence; Vincent, Renald; Deltomb, Raphael

    2016-05-01

    In the present study, the influence of sandblasting condition (working pressure) on surface texture is modeled, relying on a multi-scale approach and statistical analysis. To improve the correlation modeling between the process condition and surface texture, special effort is made to identification of an optimal parameter set, including 3D roughness parameters, cut-off lengths, filter types and model types. A power law relationship is identified between the pressure and Sdq computed with a cut-off length of 120 µm using a low-pass filter. Experimental and theoretical arguments are provided for justification. SCANNING 38:191-201, 2016. © 2015 Wiley Periodicals, Inc. PMID:26249107

  10. Dynamic recrystallization and texture evolution of Mg–Y–Zn alloy during hot extrusion process

    SciTech Connect

    Tong, L.B.; Li, X.; Zhang, D.P.; Cheng, L.R.; Meng, J.; Zhang, H.J.

    2014-06-01

    The microstructure and texture evolution of Mg{sub 98.5}Y{sub 1}Zn{sub 0.5} and Mg{sub 92.5}Y{sub 5}Zn{sub 2.5} (atomic percent) alloys during hot extrusion were systematically investigated. The coarse LPSO phases with higher volume fraction (∼ 57%) suppressed the twinning generation in the initial stage of extrusion, and accelerated the dynamic recrystallization through the particle deformation zones. Therefore, the volume fraction of DRXed grains in as-extruded Mg{sub 92.5}Y{sub 5}Zn{sub 2.5} alloy was much higher than that of Mg{sub 98.5}Y{sub 1}Zn{sub 0.5} alloy. The intensive recrystallization process resulted in the conventional basal texture weakening, although the texture evolution was mainly dominated by flow behavior. The dynamic recrystallization behavior in Mg{sub 92.5}Y{sub 5}Zn{sub 2.5} alloy restricted the formation of deformation texture, and thus the more random texture was observed during the whole extrusion process. - Highlights: • The densely coarse LPSO phases suppressed the twinning deformation. • Coarse LPSO phases induced the particle stimulated nucleation effect. • Dynamic recrystallization resulted in the basal texture weakening effect.

  11. Probability maps as a way to communicate uncertainty in soil texture classes at landscape scale

    NASA Astrophysics Data System (ADS)

    Rawlins, Barry; Lark, Murray

    2014-05-01

    Soil texture is critical for a range of functions and degradation threats including soil carbon cycling, hydrology and erosion. The texture of a soil at a point in the landscape is often expressed as a class in a soil texture triangle. The boundaries between these classes are based on the proportions of sand, silt and clay-sized particles. Soils are typically attributed to a single class, without considering the uncertainty associated with class membership. We demonstrate an approach for communicating uncertainty in spatial prediction of soil texture classes using a database of 2600 measurements of particle size distribution across part of England. A subset of these measurements included repeated analyses of separate aliquots from the same sample from which we could compute uncertainties associated with analytical and subsampling variance to include in our uncertainty analysis. After appropriate transformation for compositional variables, the spatial variation of the soil particle size classes was modelled geostatistically using robust variogram estimators to produce a validated linear model of coregionalization. This was then used to predict the composition of topsoil at the nodes of a fine grid. The predictions were backtransformed to the original scales of measurement by a Monte Carlo integration over the prediction distribution on the transformed scale. This approach allowed the probability to be computed for each class in the soil texture classification, at each node on the grid. The probability of each class, and derived information such as the class of maximum probability could therefore be mapped. We validated the predictions at a set of randomly sampled locations. We consider this technique has the potential to improve the communication of uncertainty associated with the application of soil texture classifications in soil science.

  12. Multi-modality registration via multi-scale textural and spectral embedding representations

    NASA Astrophysics Data System (ADS)

    Li, Lin; Rusu, Mirabela; Viswanath, Satish; Penzias, Gregory; Pahwa, Shivani; Gollamudi, Jay; Madabhushi, Anant

    2016-03-01

    Intensity-based similarity measures assume that the original signal intensity of different modality images can provide statistically consistent information regarding the two modalities to be co-registered. In multi-modal registration problems, however, intensity-based similarity measures are often inadequate to identify an optimal transformation. Texture features can improve the performance of the multi-modal co-registration by providing more similar appearance representations of the two images to be co-registered, compared to the signal intensity representations. Furthermore, texture features extracted at different length scales (neighborhood sizes) can reveal similar underlying structural attributes between the images to be co-registered similarities that may not be discernible on the signal intensity representation alone. However one limitation of using texture features is that a number of them may be redundant and dependent and hence there is a need to identify non-redundant representations. Additionally it is not clear which features at which specific scales reveal similar attributes across the images to be co-registered. To address this problem, we introduced a novel approach for multimodal co-registration that employs new multi-scale image representations. Our approach comprises 4 distinct steps: (1) texure feature extraction at each length scale within both the target and template images, (2) independent component analysis (ICA) at each texture feature length scale, and (3) spectrally embedding (SE) the ICA components (ICs) obtained for the texture features at each length scale, and finally (4) identifying and combining the optimal length scales at which to perform the co-registration. To combine and co-register across different length scales, -mutual information (-MI) was applied in the high dimensional space of spectral embedding vectors to facilitate co-registration. To validate our multi-scale co-registration approach, we aligned 45 pairs of prostate

  13. Bio-inspired scale-like surface textures and their tribological properties.

    PubMed

    Greiner, Christian; Schäfer, Michael

    2015-08-01

    Friction, wear and the associated energy dissipation are major challenges in all systems containing moving parts. Examples range from nanoelectromechanical systems over hip prosthesis to off-shore wind turbines. Bionic approaches have proven to be very successful in many engineering problems, while investigating the potential of a bio-inspired approach in creating morphological surface textures is a relatively new field of research. Here, we developed laser-created textures inspired by the scales found on the skin of snakes and certain lizards. We show that this bio-inspired surface morphology reduced dry sliding friction forces by more than 40%. In lubricated contacts the same morphology increased friction by a factor of three. Two different kinds of morphologies, one with completely overlapping scales and one with the scales arranged in individual rows, were chosen. In lubricated as well as unlubricated contacts, the surface texture with the scales in rows showed lower friction forces than the completely overlapping ones. We anticipate that these results could have significant impact in all dry sliding contacts, ranging from nanoelectromechanical and micro-positioning systems up to large-scale tribological contacts which cannot be lubricated, e.g. because they are employed in a vacuum environment. PMID:26125522

  14. Multi-Scale Fractal Analysis of Image Texture and Pattern

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.; Quattrochi, Dale A.; Luvall, Jeffrey C.

    1997-01-01

    Fractals embody important ideas of self-similarity, in which the spatial behavior or appearance of a system is largely scale-independent. Self-similarity is a property of curves or surfaces where each part is indistinguishable from the whole. The fractal dimension D of remote sensing data yields quantitative insight on the spatial complexity and information content contained within these data. Analyses of Normalized Difference Vegetation Index (NDVI) images of homogeneous land covers near Huntsville, Alabama revealed that the fractal dimension of an image of an agricultural land cover indicates greater complexity as pixel size increases, a forested land cover gradually grows smoother, and an urban image remains roughly self-similar over the range of pixel sizes analyzed(l0 to 80 meters). The forested scene behaves as one would expect-larger pixel sizes decrease the complexity of the image as individual clumps of trees are averaged into larger blocks. The increased complexity of the agricultural image with increasing pixel size results from the loss of homogeneous groups of pixels in the large fields to mixed pixels composed of varying combinations of NDVI values that correspond to roads and vegetation. The same process occur's in the urban image to some extent, but the lack of large, homogeneous areas in the high resolution NDVI image means the initially high D value is maintained as pixel size increases. The slope of the fractal dimension-resolution relationship provides indications of how image classification or feature identification will be affected by changes in sensor resolution.

  15. Large-scale structure in a texture-seeded cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Park, Changbom; Spergel, David N.; Turok, Nail

    1991-01-01

    This paper studies the formation of large-scale structure by global texture in a flat universe dominated by cold dark matter. A code for evolution of the texture fields was combined with an N-body code for evolving the dark matter. The results indicate some promising aspects: with only one free parameter, the observed galaxy-galaxy correlation function is reproduced, clusters of galaxies are found to be significantly clustered on a scale of 20-50/h Mpc, and coherent structures of over 50/h Mpc in the galaxy distribution were found. The large-scale streaming motions observed are in good agreement with the observations: the average magnitude of the velocity field smoothed over 30/h Mpc is 430 km/sec. Global texture produces a cosmic Mach number that is compatible with observation. Also, significant evolution of clusters at low redshift was seen. Possible problems for the theory include too high velocity dispersions in clusters, and voids which are not as empty as those observed.

  16. Lunar textural analysis based on WAC-derived kilometer-scale roughness and entropy maps

    NASA Astrophysics Data System (ADS)

    Li, Bo; Wang, XueQiang; Zhang, Jiang; Chen, Jian; Ling, Zongcheng

    2016-06-01

    In general, textures are thought to be some complicated repeated patterns formed by elements, or primitives which are sorted in certain rules. Lunar surfaces record the interactions between its outside environment and itself, thus, based on high-resolution DEM model or image data, there are some topographic features which have different roughness and entropy values or signatures on lunar surfaces. Textures of lunar surfaces can help us to concentrate on typical topographic and photometric variations and reveal the relationships between obvious features (craters, impact basins, sinuous rilles (SRs) and ridges) with resurfacing processes on the Moon. In this paper, the term surface roughness is an expression of the variability of a topographic or photometric surface at kilometer scale, and the term entropy can characterize the variability inherent in a geological and topographic unit and evaluate the uncertainty of predictions made by a given geological process. We use the statistical moments of gray-level histograms in different-sized neighborhoods (e.g., 3, 5, 10, 20, 40 and 80 pixels) to compute the kilometer-scale roughness and entropy values, using the mosaic image from 70°N to 70°S obtained by Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC). Large roughness and entropy signatures were only found in the larger scale maps, while the smallest 3-pixel scale map had more disorderly and unsystematic textures. According to the entropy values in 10-pixel scale entropy map, we made a frequency curve and categorized lunar surfaces into three types, shadow effects, maria and highlands. A 2D scatter plot of entropy versus roughness values was produced and we found that there were two point clusters corresponding to the highlands and maria, respectively. In the last, we compared the topographic and photometric signatures derived from Lunar Orbiter Laser Altimeter (LOLA) data and WAC mosaic image. On the lunar surfaces, the ridges have obvious multilevel

  17. Nanometer-scale features on micrometer-scale surface texturing: a bone histological, gene expression, and nanomechanical study.

    PubMed

    Coelho, Paulo G; Takayama, Tadahiro; Yoo, Daniel; Jimbo, Ryo; Karunagaran, Sanjay; Tovar, Nick; Janal, Malvin N; Yamano, Seiichi

    2014-08-01

    Micro- and nanoscale surface modifications have been the focus of multiple studies in the pursuit of accelerating bone apposition or osseointegration at the implant surface. Here, we evaluated histological and nanomechanical properties, and gene expression, for a microblasted surface presenting nanometer-scale texture within a micrometer-scale texture (MB) (Ossean Surface, Intra-Lock International, Boca Raton, FL) versus a dual-acid etched surface presenting texture at the micrometer-scale only (AA), in a rodent femur model for 1, 2, 4, and 8weeks in vivo. Following animal sacrifice, samples were evaluated in terms of histomorphometry, biomechanical properties through nanoindentation, and gene expression by real-time quantitative reverse transcription polymerase chain reaction analysis. Although the histomorphometric, and gene expression analysis results were not significantly different between MB and AA at 4 and 8 weeks, significant differences were seen at 1 and 2 weeks. The expression of the genes encoding collagen type I (COL-1), and osteopontin (OPN) was significantly higher for MB than for AA at 1 week, indicating up-regulated osteoprogenitor and osteoblast differentiation. At 2 weeks, significantly up-regulated expression of the genes for COL-1, runt-related transcription factor 2 (RUNX-2), osterix, and osteocalcin (OCN) indicated progressive mineralization in newly formed bone. The nanomechanical properties tested by the nanoindentation presented significantly higher-rank hardness and elastic modulus for the MB compared to AA at all time points tested. In conclusion, the nanotopographical featured surfaces presented an overall higher host-to-implant response compared to the microtextured only surfaces. The statistical differences observed in some of the osteogenic gene expression between the two groups may shed some insight into the role of surface texture and its extent in the observed bone healing mechanisms. PMID:24813260

  18. Scale Space Graph Representation and Kernel Matching for Non Rigid and Textured 3D Shape Retrieval.

    PubMed

    Garro, Valeria; Giachetti, Andrea

    2016-06-01

    In this paper we introduce a novel framework for 3D object retrieval that relies on tree-based shape representations (TreeSha) derived from the analysis of the scale-space of the Auto Diffusion Function (ADF) and on specialized graph kernels designed for their comparison. By coupling maxima of the Auto Diffusion Function with the related basins of attraction, we can link the information at different scales encoding spatial relationships in a graph description that is isometry invariant and can easily incorporate texture and additional geometrical information as node and edge features. Using custom graph kernels it is then possible to estimate shape dissimilarities adapted to different specific tasks and on different categories of models, making the procedure a powerful and flexible tool for shape recognition and retrieval. Experimental results demonstrate that the method can provide retrieval scores similar or better than state-of-the-art on textured and non textured shape retrieval benchmarks and give interesting insights on effectiveness of different shape descriptors and graph kernels. PMID:26372206

  19. Dynamic crystallization of chondrule melts of porphyritic olivine composition - Textures experimental and natural

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary

    1989-01-01

    A full range of textures characteristic for porphyritic olivine chondrules was reproduced in melts of the same composition, crystallized under dynamic crystallization conditions (under controlled cooling), as determined by electron microprobe analyses. The primary differences between the natural and experimentally produced porphyritic olivine textures were the nature and the extent of matrix crystallization, which reflected the subsolidus or low-temperature cooling history. The most confining limits on the chondrule-forming process were found to be the presence of crystalline precursors for the chondrule melts and the upper temperature limit of melting.

  20. Internal stresses at the crystalline scale in textured ZrO2 films before lateral cracking

    NASA Astrophysics Data System (ADS)

    Berdin, Clotilde; Pascal, Serge; Tang, Yan

    2015-05-01

    Zirconium oxide layers are submitted to internal stresses that play a role in damage of the layer. Lateral cracking is often observed during Zr alloys oxidation. In this paper, we investigated the influence of the microstresses at the crystalline scale on the lateral cracking within a growing oxide on a plane substrate. A parametric study was carried out taking into account the crystallographic texture of the oxide and the presence of a tetragonal zirconia at the metal-oxide interface. Macroscopic computations and polycrystalline aggregate computations were performed. The result indicating the (1 0 6 bar) fiber texture as the most favorable was recovered. It was found that under macroscopic compressive stresses parallel to the plane metal-oxide interface, positive microstresses perpendicular to the interface develops. They can trigger the lateral cracking and the phenomenon is promoted by the presence of tetragonal zirconia at the metal-oxide interface.

  1. Post-black etching on emitter to improve performance of multi-scale texture silicon solar cells

    NASA Astrophysics Data System (ADS)

    Jiang, Yurong; Yang, Haigang; Cao, Weiwei; Wang, Guangna; Ma, Heng; Chang, Fanggao

    2014-09-01

    A simple, low-cost, post-black etching process atop the random pyramidal emitter has been proposed and investigated. The multi-scale texture is achieved by combining nanoporous layer formed by the post-black etching with micron-scale pyramid texture. Compared to the pre-black etched Si solar cells, our experiments clearly show the advantage of post-black etched texturing: it enables high blue response and improved conversion efficiency. As a result, the enhancement of 7.1 mA/cm2 on the short-circuit current density and improvement of 31 % in the conversion efficiency have been reached.

  2. Dynamic Crystallization Experiments on LEW97008: Experimental Reproduction of Chondroid Textures

    NASA Technical Reports Server (NTRS)

    Nettles, J. W.; Le, L.; Lofgren, G. E.; McSween, H. Y, Jr.

    2003-01-01

    Dynamic crystallization experiments were conducted using LEW97008 (L3.4) as starting material. Experiments were melted at temperatures well below its liquidus (1250-1450 C) in order to document the textural and compositional changes that occur in UOC material with modest amounts of partial melting and subsequent crystallization. The textures of the experimental products compare very well to natural chondroids (partially melted nebular particles that would become chondrules if more completely melted). Thus it is possible to use the textures in these experiments as a guide to unraveling the melting and cooling histories of natural chondroids. The Antarctic meteorite LEW97008 was chosen as the starting material for our experiments. As an L3.4 it is slightly more metamorphosed than would ordinarily be preferred, but this meteorite is unusually fresh for an Antarctic meteorite, which made it attractive.

  3. 17.1%-Efficient Multi-Scale-Textured Black Silicon Solar Cells without Dielectric Antireflection Coating: Preprint

    SciTech Connect

    Toor, F.; Page, M. R.; Branz, H. M.; Yuan, H. C.

    2011-07-01

    In this work we present 17.1%-efficient p-type single crystal Si solar cells with a multi-scale-textured surface and no dielectric antireflection coating. Multi-scale texturing is achieved by a gold-nanoparticle-assisted nanoporous etch after conventional micron scale KOH-based pyramid texturing (pyramid black etching). By incorporating geometric enhancement of antireflection, this multi-scale texturing reduces the nanoporosity depth required to make silicon 'black' compared to nanoporous planar surfaces. As a result, it improves short-wavelength spectral response (blue response), previously one of the major limiting factors in 'black-Si' solar cells. With multi-scale texturing, the spectrum-weighted average reflectance from 350- to 1000-nm wavelength is below 2% with a 100-nm deep nanoporous layer. In comparison, roughly 250-nm deep nanopores are needed to achieve similar reflectance on planar surface. Here, we characterize surface morphology, reflectivity and solar cell performance of the multi-scale textured solar cells.

  4. Dynamics of convective scale interaction

    NASA Technical Reports Server (NTRS)

    Purdom, James F. W.; Sinclair, Peter C.

    1988-01-01

    Several of the mesoscale dynamic and thermodynamic aspects of convective scale interaction are examined. An explanation of how sounding data can be coupled with satellite observed cumulus development in the warm sector and the arc cloud line's time evolution to develop a short range forecast of expected convective intensity along an arc cloud line. The formative, mature and dissipating stages of the arc cloud line life cycle are discussed. Specific properties of convective scale interaction are presented and the relationship between arc cloud lines and tornado producing thunderstorms is considered.

  5. Rotation invariant texture retrieval considering the scale dependence of Gabor wavelet.

    PubMed

    Chaorong Li; Guiduo Duan; Fujin Zhong

    2015-08-01

    Obtaining robust and efficient rotation-invariant texture features in content-based image retrieval field is a challenging work. We propose three efficient rotation-invariant methods for texture image retrieval using copula model based in the domains of Gabor wavelet (GW) and circularly symmetric GW (CSGW). The proposed copula models use copula function to capture the scale dependence of GW/CSGW for improving the retrieval performance. It is well known that the Kullback-Leibler distance (KLD) is the commonly used similarity measurement between probability models. However, it is difficult to deduce the closed-form of KLD between two copula models due to the complexity of the copula model. We also put forward a kind of retrieval scheme using the KLDs of marginal distributions and the KLD of copula function to calculate the KLD of copula model. The proposed texture retrieval method has low computational complexity and high retrieval precision. The experimental results on VisTex and Brodatz data sets show that the proposed retrieval method is more effective compared with the state-of-the-art methods. PMID:25879945

  6. Large-Scale Point-Cloud Visualization through Localized Textured Surface Reconstruction.

    PubMed

    Arikan, Murat; Preiner, Reinhold; Scheiblauer, Claus; Jeschke, Stefan; Wimmer, Michael

    2014-09-01

    In this paper, we introduce a novel scene representation for the visualization of large-scale point clouds accompanied by a set of high-resolution photographs. Many real-world applications deal with very densely sampled point-cloud data, which are augmented with photographs that often reveal lighting variations and inaccuracies in registration. Consequently, the high-quality representation of the captured data, i.e., both point clouds and photographs together, is a challenging and time-consuming task. We propose a two-phase approach, in which the first (preprocessing) phase generates multiple overlapping surface patches and handles the problem of seamless texture generation locally for each patch. The second phase stitches these patches at render-time to produce a high-quality visualization of the data. As a result of the proposed localization of the global texturing problem, our algorithm is more than an order of magnitude faster than equivalent mesh-based texturing techniques. Furthermore, since our preprocessing phase requires only a minor fraction of the whole data set at once, we provide maximum flexibility when dealing with growing data sets. PMID:26357377

  7. Dynamic scaling in spin glasses

    NASA Astrophysics Data System (ADS)

    Pappas, C.; Mezei, F.; Ehlers, G.; Manuel, P.; Campbell, I. A.

    2003-08-01

    We present neutron spin echo (NSE) results and a revisited analysis of historical data on spin glasses, which reveal a pure power-law time decay of the spin autocorrelation function s(Q,t)=S(Q,t)/S(Q) at the glass temperature Tg. The power law exponent is in excellent agreement with that calculated from dynamic and static critical exponents deduced from macroscopic susceptibility measurements made on a quite different time scale. This scaling relation involving exponents of different physical quantities determined by completely independent experimental methods is stringently verified experimentally in a spin glass. As spin glasses are a subgroup of the vast family of glassy systems also comprising structural glasses and other noncrystalline systems the observed strict critical scaling behavior is important. Above the phase transition the strikingly nonexponential relaxation, best fitted by the Ogielski (power-law times stretched exponential) function, appears as an intrinsic, homogeneous feature of spin glasses.

  8. Flavor hierarchies from dynamical scales

    NASA Astrophysics Data System (ADS)

    Panico, Giuliano; Pomarol, Alex

    2016-07-01

    One main obstacle for any beyond the SM (BSM) scenario solving the hierarchy problem is its potentially large contributions to electric dipole moments. An elegant way to avoid this problem is to have the light SM fermions couple to the BSM sector only through bilinears, overline{f}f . This possibility can be neatly implemented in composite Higgs models. We study the implications of dynamically generating the fermion Yukawa couplings at different scales, relating larger scales to lighter SM fermions. We show that all flavor and CP-violating constraints can be easily accommodated for a BSM scale of few TeV, without requiring any extra symmetry. Contributions to B physics are mainly mediated by the top, giving a predictive pattern of deviations in Δ F = 2 and Δ F = 1 flavor observables that could be seen in future experiments.

  9. Dynamic superhydrophobic behavior in scalable random textured polymeric surfaces

    NASA Astrophysics Data System (ADS)

    Moreira, David; Park, Sung-hoon; Lee, Sangeui; Verma, Neil; Bandaru, Prabhakar R.

    2016-03-01

    Superhydrophobic (SH) surfaces, created from hydrophobic materials with micro- or nano- roughness, trap air pockets in the interstices of the roughness, leading, in fluid flow conditions, to shear-free regions with finite interfacial fluid velocity and reduced resistance to flow. Significant attention has been given to SH conditions on ordered, periodic surfaces. However, in practical terms, random surfaces are more applicable due to their relative ease of fabrication. We investigate SH behavior on a novel durable polymeric rough surface created through a scalable roll-coating process with varying micro-scale roughness through velocity and pressure drop measurements. We introduce a new method to construct the velocity profile over SH surfaces with significant roughness in microchannels. Slip length was measured as a function of differing roughness and interstitial air conditions, with roughness and air fraction parameters obtained through direct visualization. The slip length was matched to scaling laws with good agreement. Roughness at high air fractions led to a reduced pressure drop and higher velocities, demonstrating the effectiveness of the considered surface in terms of reduced resistance to flow. We conclude that the observed air fraction under flow conditions is the primary factor determining the response in fluid flow. Such behavior correlated well with the hydrophobic or superhydrophobic response, indicating significant potential for practical use in enhancing fluid flow efficiency.

  10. Sound texture recognition through dynamical systems modeling of empirical mode decomposition.

    PubMed

    Van Nort, Doug; Braasch, Jonas; Oliveros, Pauline

    2012-10-01

    This paper describes a system for modeling, recognizing, and classifying sound textures. The described system translates contemporary approaches from video texture analysis, creating a unique approach in the realm of audio and music. The signal is first represented as a set of mode functions by way of the Empirical Mode Decomposition technique for time/frequency analysis, before expressing the dynamics of these modes as a linear dynamical system (LDS). Both linear and nonlinear techniques are utilized in order to learn the system dynamics, which leads to a successful distinction between unique classes of textures. Five classes of sounds comprised a data set, consisting of crackling fire, typewriter action, rainstorms, carbonated beverages, and crowd applause, drawing on a variety of source recordings. Based on this data set the system achieved a classification accuracy of 90%, which outperformed both a Mel-Frequency Cepstral Coefficient based LDS-modeling approach from the literature, as well as one based on a standard Gaussian Mixture Model classifier. PMID:23039465

  11. Impact of Sub-grid Soil Textural Properties on Simulations of Hydrological Fluxes at the Continental Scale Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Samaniego, L. E.; Livneh, B.

    2013-12-01

    Knowledge of soil hydraulic properties such as porosity and saturated hydraulic conductivity is required to accurately model the dynamics of near-surface hydrological processes (e.g. evapotranspiration and root-zone soil moisture dynamics) and provide reliable estimates of regional water and energy budgets. Soil hydraulic properties are commonly derived from pedo-transfer functions using soil textural information recorded during surveys, such as the fractions of sand and clay, bulk density, and organic matter content. Typically large scale land-surface models are parameterized using a relatively coarse soil map with little or no information on parametric sub-grid variability. In this study we analyze the impact of sub-grid soil variability on simulated hydrological fluxes over the Mississippi River Basin (≈3,240,000 km2) at multiple spatio-temporal resolutions. A set of numerical experiments were conducted with the distributed mesoscale hydrologic model (mHM) using two soil datasets: (a) the Digital General Soil Map of the United States or STATSGO2 (1:250 000) and (b) the recently collated Harmonized World Soil Database based on the FAO-UNESCO Soil Map of the World (1:5 000 000). mHM was parameterized with the multi-scale regionalization technique that derives distributed soil hydraulic properties via pedo-transfer functions and regional coefficients. Within the experimental framework, the 3-hourly model simulations were conducted at four spatial resolutions ranging from 0.125° to 1°, using meteorological datasets from the NLDAS-2 project for the time period 1980-2012. Preliminary results indicate that the model was able to capture observed streamflow behavior reasonably well with both soil datasets, in the major sub-basins (i.e. the Missouri, the Upper Mississippi, the Ohio, the Red, and the Arkansas). However, the spatio-temporal patterns of simulated water fluxes and states (e.g. soil moisture, evapotranspiration) from both simulations, showed marked

  12. Evolution of foredune texture following dynamic restoration, Doughboy Bay, Stewart Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Konlechner, T. M.; Ryu, W.; Hilton, M. J.; Sherman, D. J.

    2015-12-01

    Growing concern regarding the geomorphic and associated biotic effects of dune management practises has led to an increase in the number of dune restoration projects globally. Most recent projects aim to enhance the efficiency of aeolian sediment dynamics and increase dune mobility by decreasing vegetation cover, but we lack objective measures to evaluate such projects. Here we demonstrate the use of landscape metrics to quantify the evolution of foredune texture following the removal of vegetation. A long-term program of marram grass (Ammophila arenaria) eradication in southern New Zealand (Doughboy Bay, Stewart Island) is examined. Four metrics: bare sand area, patch adjacency, complexity, and the range of proximity, are used to classify a series of foredune textures beginning with the pre-restoration state through the phases of marram removal, to the current state. Foredune texture at Doughboy Bay has evolved from a semi-stable to an active state as the consequence of restoration. Two metrics, bare sand and adjacency, appear to be particularly good measures of change following marram removal. Patterns and rates of change for these metrics are consistent with ground observations of increased 'naturalness' (native plant communities, sand mobility) over the same period. The set of landscape metrics derived for Doughboy Bay were compared to similar sets measured for a nearby foredune system where marram invasion has not occurred, and where conditions presumably represent equilibrium foredune texture. Since the removal of marram at Doughboy Bay and the consequent remobilization of the sand surface, the foredune texture has increased in similarity to that of the reference site, indicating a favourable shift in plant cover as a result of the restoration program. We conclude that landscape metrics can be used to track changes in foredune morphology following restoration. Second, the planning, management, and monitoring of coastal dune restoration programs will benefit

  13. Using Parameters of Dynamic Pulse Function for 3d Modeling in LOD3 Based on Random Textures

    NASA Astrophysics Data System (ADS)

    Alizadehashrafi, B.

    2015-12-01

    The pulse function (PF) is a technique based on procedural preprocessing system to generate a computerized virtual photo of the façade with in a fixed size square(Alizadehashrafi et al., 2009, Musliman et al., 2010). Dynamic Pulse Function (DPF) is an enhanced version of PF which can create the final photo, proportional to real geometry. This can avoid distortion while projecting the computerized photo on the generated 3D model(Alizadehashrafi and Rahman, 2013). The challenging issue that might be handled for having 3D model in LoD3 rather than LOD2, is the final aim that have been achieved in this paper. In the technique based DPF the geometries of the windows and doors are saved in an XML file schema which does not have any connections with the 3D model in LoD2 and CityGML format. In this research the parameters of Dynamic Pulse Functions are utilized via Ruby programming language in SketchUp Trimble to generate (exact position and deepness) the windows and doors automatically in LoD3 based on the same concept of DPF. The advantage of this technique is automatic generation of huge number of similar geometries e.g. windows by utilizing parameters of DPF along with defining entities and window layers. In case of converting the SKP file to CityGML via FME software or CityGML plugins the 3D model contains the semantic database about the entities and window layers which can connect the CityGML to MySQL(Alizadehashrafi and Baig, 2014). The concept behind DPF, is to use logical operations to project the texture on the background image which is dynamically proportional to real geometry. The process of projection is based on two vertical and horizontal dynamic pulses starting from upper-left corner of the background wall in down and right directions respectively based on image coordinate system. The logical one/zero on the intersections of two vertical and horizontal dynamic pulses projects/does not project the texture on the background image. It is possible to define

  14. The Effects of Grain Size and Texture on Dynamic Abnormal Grain Growth in Mo

    NASA Astrophysics Data System (ADS)

    Noell, Philip J.; Taleff, Eric M.

    2016-07-01

    This is the first report of abnormal grain morphologies specific to a Mo sheet material produced from a commercial-purity arc-melted ingot. Abnormal grains initiated and grew during plastic deformation of this material at temperatures of 1793 K and 1813 K (1520 °C and 1540 °C). This abnormal grain growth during high-temperature plastic deformation is termed dynamic abnormal grain growth, DAGG. DAGG in this material readily consumes nearly all grains near the sheet center while leaving many grains near the sheet surface unconsumed. Crystallographic texture, grain size, and other microstructural features are characterized. After recrystallization, a significant through-thickness variation in crystallographic texture exists in this material but does not appear to directly influence DAGG propagation. Instead, dynamic normal grain growth, which may be influenced by texture, preferentially occurs near the sheet surface prior to DAGG. The large grains thus produced near the sheet surface inhibit the subsequent growth of the abnormal grains produced by DAGG, which preferentially consume the finer grains near the sheet center. This produces abnormal grains that span the sheet center but leave unconsumed polycrystalline microstructure near the sheet surface. Abnormal grains are preferentially oriented with the < 110rangle approximately along the tensile axis. These results provide additional new evidence that boundary curvature is the primary driving force for DAGG in Mo.

  15. Electrical manipulation of dynamic magnetic impurity and spin texture of helical Dirac fermions

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Qiang; Zhong, Min; Zheng, Shi-Han; Yang, Mou; Wang, Guang-Hui

    2016-05-01

    We have theoretically investigated the spin inelastic scattering of helical electrons off a high-spin nanomagnet absorbed on a topological surface. The nanomagnet is treated as a dynamic quantum spin and driven by the spin transfer torque effect. We proposed a mechanism to electrically manipulate the spin texture of helical Dirac fermions rather than by an external magnetic field. By tuning the bias voltage and the direction of impurity magnetization, we present rich patterns of spin texture, from which important fingerprints exclusively associated with the spin helical feature are obtained. Furthermore, it is found that the nonmagnetic potential can create the resonance state in the spin density with different physics as the previously reported resonance of charge density.

  16. Lava Textures, Magma Crystallization History, and the Dynamics of Merapi and Aleutian Mush Columns

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.; Del Marmol, M. A.

    2014-12-01

    The subsurface dynamics of magma in mush columns beneath arc volcanoes is recorded in the textures of the basic lavas. A detailed comparison of lava textures from large mature volcanoes in Indonesia (Merapi) and the Aleutian Islands (Adak and Atka), shows remarkably similar, often indistinguishable, textures of high alumina basalts (HAB) and basaltic andesites (BA). We suggest a systematic characterization of these distinctive textures into a few simple categories reflecting the subsurface history of crystallization within solidification fronts (SFs) and subsequent transport dynamics. The HABs are strongly plagioclase-phyric and of two main groups: A1 consists of large, idiomorphic, mildly zoned, plagioclase (20-30 vol.%) with small amounts of olivine (2-8%) set in a finely crystalline groundmass of these same phases; A2 is similar, but contains an additional pervasive population of large 'old' plagioclase, rounded, often highly zoned, and sometimes broken; A1+ is a subclass of A1 where traces of 'old' plagioclase are present. Similar categories exist in the BA lavas except overall crystallinity is higher and olivine is replaced by large clinopyroxenes containing or mantled with magnetite. In a temporal stratigraphic sense, the early lavas are generally HAB A1 types and transition into, sometimes alternating, HAB A2 types followed by BA types. The initial establishment of the mush column is by hot, highly mobile primary magmas, followed by increasingly more thermally mature magmas containing debris from disrupted SFs. The detailed nature of this debris, its variation in time, and the volumes give important insights on the size and vigor of the mush column staging chambers.

  17. A Comparison of Texture Development in an Experimental and Industrial Tertiary Oxide Scale in a Hot Strip Mill

    NASA Astrophysics Data System (ADS)

    Yu, Xianglong; Jiang, Zhengyi; Zhao, Jingwei; Wei, Dongbin; Zhou, Ji; Zhou, Cunlong; Huang, Qingxue

    2015-12-01

    Electron backscatter diffraction (EBSD) has been used to investigate the microstructure and texture-based features of an industrial tertiary oxide scale formed on a micro-alloyed low-carbon steel from a hot strip mill. EBSD-derived maps demonstrate that the oxide scale consists primarily of magnetite (Fe3O4) with a small amount of hematite ( α-Fe2O3) which scatters near the surface, at the oxide/steel interface and at the cracking edges. The results extracted from these maps reveal that there is a significant difference between the industrial and the laboratory oxide scales in their grain boundaries, phase boundaries, and texture evolutions. There are high proportions of special coincidence site lattice boundaries Σ3 and Σ13b in the magnetite of the industrial oxide scale, rather than the lower orders of Σ5, Σ7, and Σ17b, which develop in the experimental oxide scale. Within the phase boundaries, the orientation relationships between the magnetite and the hematite correspond to the matching planes and directions {111}Fe3O4||{0001} α-Fe2O3 and {110}Fe3O4||{110} α-Fe2O3. Magnetite in both of these oxide scales develops a relatively weak {001} fiber texture component including a strong {001}<100> cube and a slightly strong {100}<210> texture components. Unlike the {001}<110> rotated cube component in the experimental oxide scale, the magnetite in the industrial tertiary oxide scale develops a strong {112}<110> and a relatively strong {113}<110> and {111}<110> texture components. These findings have the potential to provide a convincing step forward for oxidation research.

  18. Biaxial Texture Evolution of Nanostructured Films under Dynamic Shadowing Effect and Applications

    NASA Astrophysics Data System (ADS)

    Chen, Liang

    Texture formation and evolution in polycrystalline films are quite complicated, and they still remain as challenging subjects. Oblique angle deposition is an effective way to control the texture due to the shadowing effect introduced by oblique incident flux. A new dynamic oblique angle sputter deposition technique, called flipping rotation, was developed. In this rotation mode, the substrate is arranged to rotate continuously at a fixed speed around an axis lying within and parallel to the substrate. The incident flux is always perpendicular to the rotational axis and the flux incident angle relative to the substrate normal changes continuously. To study the texture formation and evolution of Mo and W films grown by DC magnetron sputter depositions, three film categories were prepared: (1) normal incidence deposition without the shadowing effect, (2) stationary oblique angle deposition at various fixed flux incident angles with static shadowing effect, and (3) convention rotation and flipping rotation deposition with dynamic shadowing effect. Under the normal incidence deposition, ultrathin (2.5 nm) to thin (100 nm) Mo films have been deposited on SO2 membranes on transmission electron microscopy (TEM) grids. These samples can be directly compared with the films grown on glass or native oxide covered Si substrates. The result of a fiber texture with the [110] out-of-plane direction implies that the growth has gone through a recrystallization process that selects the minimum surface energy plane parallel to the substrate. This is in contrast to the conventional understanding of the selection of out-of-plane orientation, which is the fastest growth direction [100] at room temperature based on the low Mo homologous temperature (room temperature/melting temperature) of ~0.1. Under stationary oblique angle deposition, Mo thin films in the range of 175 nm to 1300 nm were observed to undergo a dramatic change in crystal texture orientation from a (110)[11¯¯0] biaxial

  19. EFFECT OF TEMPERATURE ON TEXTURE EVOLUTION IN TANTALUM DURING DYNAMIC-EXTRUSION

    SciTech Connect

    Trujillo, Carl P.; Escobedo-Diaza, Juan P.; Gray III, George T.; Cerreta, Ellen K.; Martinez, Daniel T.

    2012-06-20

    Motivation of this project is: (1) Build a furnace as a cross section of a gun barrel capable of temperatures up to 600 Celsius; (2) To examine the influence of temperature, texture, and extrusion velocity in Tantalum; (3) Constrain parameters to improve and assist in constitutive model development using high speed imaging & PDV (in-situ); (4) Understanding microstructural development in materials using the dynamic extrusion technique; and (5) Use as a validation test for developing fracture models important to industry, the DoD, and the DOE.

  20. Use of mobile gammaspectrometry for estimation of texture at regional scale

    NASA Astrophysics Data System (ADS)

    Dierke, C.; Werban, U.; Dietrich, P.

    2012-04-01

    In the last years gamma-ray measurements from air and ground were increasingly used for spatial mapping of physical soil parameters. Many applications of gamma-ray measurements for soil characterisation and in digital soil mapping (DSM) are known from Australia or single once from Northern America. During the last years there are attempts to use that method in Europe as well. The measured isotope concentration of the gamma emitter 40K, 238U and 232Th in soils depends on different soil parameters, which are the result of composition and properties of parent rock and processes during soil geneses under different climatic conditions. Grain size distribution, type of clay minerals and organic matter are soil parameters which influence directly the gamma-ray concentration. From former studies we know, that there are site specific relationships at the field scale between gamma-ray measurements and soil properties. One of the target soil properties in DSM is for e.g. the spatial distribution of texture at the landscape scale. Thus there is a need of more regional understanding of gamma-ray concentration and soil properties with regard to the complex geology of Europe. We did systematic measurements at different field sites across Europe to investigate the relationship between the concentrations of gamma radiant and grain size. The areas are characterised by different pedogenesis and varying clay content. For the measurement we used a mobile 4l Na(I) detector with GPS connection, which is mounted on a sledge and can be towed across the agricultural used plane. Additionally we selected points for soil sampling and analysis of soil texture. For the interpretation we used the single nuclide concentration as well as the ratios. The results show site specific relationships dependent from source material. At soils developed from alluvial sediments the K/Th ratio is an indicator for clay content at regional scale. At soils developed from loess sediments Th can be used do

  1. Tribological analysis of the ventral scale structure in a Python regius in relation to laser textured surfaces

    NASA Astrophysics Data System (ADS)

    Abdel-Aal, H. A.; El Mansori, M.

    2013-09-01

    Laser texturing is one of the leading technologies applied to modify surface topography. To date, however, a standardized procedure to generate deterministic textures is virtually non-existent. In nature, especially in squamata, there are many examples of deterministic structured textures that allow species to control friction and condition their tribological response for efficient function. In this work, we draw a comparison between industrial surfaces and reptilian surfaces. We chose the Python regius species as a bio-analogue with a deterministic surface. We first study the structural make up of the ventral scales of the snake (both construction and metrology). We further compare the metrological features of the ventral scales to experimentally recommended performance indicators of industrial surfaces extracted from open literature. The results indicate the feasibility of engineering a laser textured surface based on the reptilian ornamentation constructs. It is shown that the metrological features, key to efficient function of a rubbing deterministic surface, are already optimized in the reptile. We further show that optimization in reptilian surfaces is based on synchronizing surface form, textures and aspects to condition the frictional response. Mimicking reptilian surfaces, we argue, may form a design methodology potentially capable of generating advanced deterministic surface constructs capable of efficient tribological function.

  2. Multi-scale texture-based level-set segmentation of breast B-mode images.

    PubMed

    Lang, Itai; Sklair-Levy, Miri; Spitzer, Hedva

    2016-05-01

    Automatic segmentation of ultrasonographic breast lesions is very challenging, due to the lesions' spiculated nature and the variance in shape and texture of the B-mode ultrasound images. Many studies have tried to answer this challenge by applying a variety of computational methods including: Markov random field, artificial neural networks, and active contours and level-set techniques. These studies focused on creating an automatic contour, with maximal resemblance to a manual contour, delineated by a trained radiologist. In this study, we have developed an algorithm, designed to capture the spiculated boundary of the lesion by using the properties from the corresponding ultrasonic image. This is primarily achieved through a unique multi-scale texture identifier (inspired by visual system models) integrated in a level-set framework. The algorithm׳s performance has been evaluated quantitatively via contour-based and region-based error metrics. We compared the algorithm-generated contour to a manual contour delineated by an expert radiologist. In addition, we suggest here a new method for performance evaluation where corrections made by the radiologist replace the algorithm-generated (original) result in the correction zones. The resulting corrected contour is then compared to the original version. The evaluation showed: (1) Mean absolute error of 0.5 pixels between the original and the corrected contour; (2) Overlapping area of 99.2% between the lesion regions, obtained by the algorithm and the corrected contour. These results are significantly better than those previously reported. In addition, we have examined the potential of our segmentation results to contribute to the discrimination between malignant and benign lesions. PMID:27010737

  3. Instrumental measurement of cooked rice texture by dynamic rheological testing and its relation to the fine structure of rice starch.

    PubMed

    Li, Hongyan; Prakash, Sangeeta; Nicholson, Timothy M; Fitzgerald, Melissa A; Gilbert, Robert G

    2016-08-01

    Increasing demands for better instrumental methods to evaluate cooked rice texture is driving innovations in rice texture research. This study characterized cooked rice texture by descriptive sensory analysis and two instrumental methods (texture profile analysis (TPA) and dynamic rheological testing) using a set of 18 varieties of rice with a wide range in amylose content (0-30%). The panellists' results indicated that hardness and stickiness were the two most discriminating attributes among 13 tested textural attributes. The consistency coefficient (K(*)) and loss tangent (tan δ) from a dynamic frequency sweep were used to compare with hardness and stickiness tested by TPA and sensory panellists, showing that using K(*) to express hardness, and tan δ to express stickiness, are both statistically and mechanistically meaningful. The instrumental method is rationalized in terms of starch structural differences between rices: a higher proportion of both amylose and long amylopectin branches with DP 70-100 causes a more elastic and less viscous texture, which is readily understood in terms of polymer dynamics in solution. PMID:27112873

  4. Variability sensitivity of dynamic texture based recognition in clinical CT data

    NASA Astrophysics Data System (ADS)

    Kwitt, Roland; Razzaque, Sharif; Lowell, Jeffrey; Aylward, Stephen

    2014-03-01

    Dynamic texture recognition using a database of template models has recently shown promising results for the task of localizing anatomical structures in Ultrasound video. In order to understand its clinical value, it is imperative to study the sensitivity with respect to inter-patient variability as well as sensitivity to acquisition parameters such as Ultrasound probe angle. Fully addressing patient and acquisition variability issues, however, would require a large database of clinical Ultrasound from many patients, acquired in a multitude of controlled conditions, e.g., using a tracked transducer. Since such data is not readily attainable, we advocate an alternative evaluation strategy using abdominal CT data as a surrogate. In this paper, we describe how to replicate Ultrasound variabilities by extracting subvolumes from CT and interpreting the image material as an ordered sequence of video frames. Utilizing this technique, and based on a database of abdominal CT from 45 patients, we report recognition results on an organ (kidney) recognition task, where we try to discriminate kidney subvolumes/videos from a collection of randomly sampled negative instances. We demonstrate that (1) dynamic texture recognition is relatively insensitive to inter-patient variation while (2) viewing angle variability needs to be accounted for in the template database. Since naively extending the template database to counteract variability issues can lead to impractical database sizes, we propose an alternative strategy based on automated identification of a small set of representative models.

  5. A multi-scale model for texture development in Zr/Nb nanolayered composites processed by accumulative roll bonding

    NASA Astrophysics Data System (ADS)

    Ardeljan, M.; Knezevic, M.; Nizolek, T.; Beyerlein, I. J.; Zheng, S. J.; Carpenter, J. S.; McCabe, R. J.; Mara, N. A.; Pollock, T. M.

    2014-08-01

    Recently it has been demonstrated that nanolayered hcp/bcc Zr/Nb composites can be fabricated with a severe plastic deformation technique called accumulative roll bonding (ARB) [1]. The final layer thickness averaged to approximately 90 nm for both phases. Interestingly, the texture measurements show that the textures in each phase correspond to those of rolled single-phase rolled Zr and Nb for a wide range of layer thickness from the micron to the nanoscales. This is in remarkable contrast to fcc/bcc Cu/Nb layered composites made by the same ARB technique, which developed textures that strongly deviated from theoretical rolling textures of Cu or Nb alone when the layers were refined to submicron and nanoscale dimensions. To model texture evolution and reveal the underlying deformation mechanisms, we developed a 3D multiscale model that combines crystal plasticity finite element with a thermally activated dislocation density based hardening law [2]. For systematic study, the model is applied to a two-phase Zr/Nb polycrystalline laminate and to the same polycrystalline Zr and polycrystalline Nb as single-phase metals. Consistent with the measurement, the model predicts that texture evolution in the phases in the composite and the relative activities of the hcp slip modes are very similar to those in the phases in monolithic form. In addition, the two-phase model also finds that no through-thickness texture gradient develops. This result suggests that neither the nanoscale grain sizes nor the bimetal Zr/Nb interfaces induce deformation mechanisms different from those at the coarse-grain scale.

  6. Synchrotron X-ray diffraction study of texture evolution in 904L stainless steel under dynamic shock compression

    SciTech Connect

    Li, Nanan; Wang, Y. D.; Peng, R. Lin; Sun, Xin; Ren, Yang; Wang, L.; Cai, H. N.

    2011-01-01

    The influence of strain rate on development of deformation texture under a dynamic shock compression of a 904L stainless steel was quantitatively investigated using synchrotron X-ray diffraction and crystallographic orientation distribution function (ODF) analysis. Split-Hopkinson Pressure Bar technique was used to generate a high strain rate of > 103 s-1 for preparing the deformed samples. Starting with an almost random texture in a solution treatment condition, the deformed material developed several typical texture components, such as ‘Goss’ texture and ‘Brass’ texture. Compared to the texture components displayed in the state of quasi-static compression deformation, it was found that the high-speed deformation generated much weaker texture components. In combination with the change in microstructures observed by EBSD and TEM technique, the high-energy X-ray diffraction provides a powerful tool for characterizing the strain-rate dependence of grain rotation at each stage of deformation. The deformation heterogeneity evident in our experiment can be explained by a transition of deformation mechanism from the dislocation/twin-dominated mode to shear-band-dominated one with increasing strain rate.

  7. Nanometer Scale Titanium Surface Texturing Are Detected by Signaling Pathways Involving Transient FAK and Src Activations

    PubMed Central

    Zambuzzi, Willian F.; Bonfante, Estevam A.; Jimbo, Ryo; Hayashi, Mariko; Andersson, Martin; Alves, Gutemberg; Takamori, Esther R.; Beltrão, Paulo J.; Coelho, Paulo G.; Granjeiro, José M.

    2014-01-01

    Background It is known that physico/chemical alterations on biomaterial surfaces have the capability to modulate cellular behavior, affecting early tissue repair. Such surface modifications are aimed to improve early healing response and, clinically, offer the possibility to shorten the time from implant placement to functional loading. Since FAK and Src are intracellular proteins able to predict the quality of osteoblast adhesion, this study evaluated the osteoblast behavior in response to nanometer scale titanium surface texturing by monitoring FAK and Src phosphorylations. Methodology Four engineered titanium surfaces were used for the study: machined (M), dual acid-etched (DAA), resorbable media microblasted and acid-etched (MBAA), and acid-etch microblasted (AAMB). Surfaces were characterized by scanning electron microscopy, interferometry, atomic force microscopy, x-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. Thereafter, those 4 samples were used to evaluate their cytotoxicity and interference on FAK and Src phosphorylations. Both Src and FAK were investigated by using specific antibody against specific phosphorylation sites. Principal Findings The results showed that both FAK and Src activations were differently modulated as a function of titanium surfaces physico/chemical configuration and protein adsorption. Conclusions It can be suggested that signaling pathways involving both FAK and Src could provide biomarkers to predict osteoblast adhesion onto different surfaces. PMID:24999733

  8. Efficient Black Silicon Solar Cells with Multi-Scale Surface Texture

    NASA Astrophysics Data System (ADS)

    Toor, Fatima; Nemeth, William; Page, Matthew; Wang, Qi; Branz, Howard; Yuan, Hao-Chih

    2011-03-01

    A nanostructured, density-graded surface layer can replace conventional quarter-wavelength coatings as the anti-reflection layer in photovoltaics. If the layer is comprised of structures smaller than the wavelength of the incident light and the density is graded across more than about half the wavelength of the light, reflection is strongly suppressed (H. M. Branz et al., APL {94} 2009). We developed an inexpensive liquid etch technique for silicon to produce ``black Si'' based upon this physics. However, the problem of high carrier recombination within this nanostructured layer must be overcome to improve beyond the present best solar cell with its confirmed 16.8% black silicon sunlight-to-electricity conversion efficiency (H-C. Yuan et al., APL {95} 2009). In this work, we combine the black Si layer with conventional KOH-etched pyramidal surface texture (Y. Xiu et al., Langmuir {24 }2008) at micron-scale. Pyramids contribute anti-reflection based on geometric optics. Combining the pyramids with nanostructures only 100 nm deep provides reflectivity below 2% across a wavelength range from 350 - 1000 nm. To-date, we have obtained a solar cell efficiency of 17% with a Voc of 613 mV, Jsc of 35 mA/cm2 and fill-factor of 78%. These cells have improved blue response compared to the best planar black Si cells.

  9. Assessing texture measures with respect to their sensitivity to scale-dependent higher order correlations in medical images using surrogates

    NASA Astrophysics Data System (ADS)

    Räth, Christoph; Müller, Dirk; Sidorenko, Irina; Monetti, Roberto; Bauer, Jan

    2010-03-01

    The quantitative characterization of images showing tissue probes being visualized by e.g. CT or MR is of great interest in many fields of medical image analysis. A proper quantification of the information content in such images can be realized by calculating well-suited texture measures, which are able to capture the main characteristics of the image structures under study. Using test images showing the complex trabecular structure of the inner bone of a healthy and osteoporotic patient we propose and apply a novel statistical framework, with which one can systematically assess the sensitivity of texture measures to scale-dependent higher order correlations (HOCs). To this end, so-called surrogate images are generated, in which the linear properties are exactly preserved, while parts of the higher order correlations (if present) are wiped out in a scale dependent manner. This is achieved by dedicated Fourier phase shuffling techniques. We compare three commonly used classes of texture measures, namely spherical Mexican hat wavelets (SMHW), Minkowski functionals (MF) and scaling indices (SIM). While the SMHW were sensitive to HOCs on small scales (Significance S=19-23), the MF and SIM could detect the HOCs very well for the larger scales (S = 39 (MF) and S = 29 (SIM)). Thus the three classes of texture measures are complimentary with respect to their ability to detect scaledependent HOCs. The MF and SIM are, however, slightly preferable, because they are more sensitive to HOCs on length scales, which the important structural elements, i.e. the trabeculae, are considered to have.

  10. Inpainting for videos with dynamic objects using texture and structure reconstruction

    NASA Astrophysics Data System (ADS)

    Voronin, V. V.; Marchuk, V. I.; Gapon, N. V.; Zhuravlev, A. V.; Maslennikov, S.; Stradanchenko, S.

    2015-05-01

    This paper describes a novel inpainting approach for removing marked dynamic objects from videos captured with a camera, so long as the objects occlude parts of the scene with a static background. Proposed approach allow to remove objects or restore missing or tainted regions present in a video sequence by utilizing spatial and temporal information from neighboring scenes. The algorithm iteratively performs following operations: achieve frame; update the scene model; update positions of moving objects; replace parts of the frame occupied by the objects marked for remove with use of a background model. In this paper, we extend an image inpainting algorithm based texture and structure reconstruction by incorporating an improved strategy for video. An image inpainting approach based on the construction of a composite curve for the restoration of the edges of objects in a frame using the concepts of parametric and geometric continuity is presented. It is shown that this approach allows to restore the curved edges and provide more flexibility for curve design in damaged frame by interpolating the boundaries of objects by cubic splines. After edge restoration stage, a texture reconstruction using patch-based method is carried out. We demonstrate the performance of a new approach via several examples, showing the effectiveness of our algorithm and compared with state-of-the-art video inpainting methods.

  11. A lattice-based MRF model for dynamic near-regular texture tracking.

    PubMed

    Lin, Wen-Chieh; Liu, Yanxi

    2007-05-01

    A near-regular texture (NRT) is a geometric and photometric deformation from its regular origin--a congruent wallpaper pattern formed by 2D translations of a single tile. A dynamic NRT is an NRT under motion. Although NRTs are pervasive in man-made and natural environments, effective computational algorithms for NRTs are few. This paper addresses specific computational challenges in modeling and tracking dynamic NRTs, including ambiguous correspondences, occlusions, and drastic illumination and appearance variations. We propose a lattice-based Markov-Random-Field (MRF) model for dynamic NRTs in a 3D spatiotemporal space. Our model consists of a global lattice structure that characterizes the topological constraint among multiple textons and an image observation model that handles local geometry and appearance variations. Based on the proposed MRF model, we develop a tracking algorithm that utilizes belief propagation and particle filtering to effectively handle the special challenges of the dynamic NRT tracking without any assumption on the motion types or lighting conditions. We provide quantitative evaluations of the proposed method against existing tracking algorithms and demonstrate its applications in video editing. PMID:17356199

  12. A Framework for Establishing Standard Reference Scale of Texture by Multivariate Statistical Analysis Based on Instrumental Measurement and Sensory Evaluation.

    PubMed

    Zhi, Ruicong; Zhao, Lei; Xie, Nan; Wang, Houyin; Shi, Bolin; Shi, Jingye

    2016-01-13

    A framework of establishing standard reference scale (texture) is proposed by multivariate statistical analysis according to instrumental measurement and sensory evaluation. Multivariate statistical analysis is conducted to rapidly select typical reference samples with characteristics of universality, representativeness, stability, substitutability, and traceability. The reasonableness of the framework method is verified by establishing standard reference scale of texture attribute (hardness) with Chinese well-known food. More than 100 food products in 16 categories were tested using instrumental measurement (TPA test), and the result was analyzed with clustering analysis, principal component analysis, relative standard deviation, and analysis of variance. As a result, nine kinds of foods were determined to construct the hardness standard reference scale. The results indicate that the regression coefficient between the estimated sensory value and the instrumentally measured value is significant (R(2) = 0.9765), which fits well with Stevens's theory. The research provides reliable a theoretical basis and practical guide for quantitative standard reference scale establishment on food texture characteristics. PMID:26630554

  13. Molecular dynamics study on the wettability of a hydrophobic surface textured with nanoscale pillars.

    PubMed

    Zhang, Zhengqing; Kim, Hyojeong; Ha, Man Yeong; Jang, Joonkyung

    2014-03-28

    Using molecular dynamics simulation, we studied the wetting properties of a surface textured with hydrophobic pillars, several nanometers in size. The drying transition of water confined between square or circular pillars was related to the Wenzel (WZ) to Cassie-Baxter (CB) transition of a water droplet deposited on periodic pillars. The inter-pillar spacing at which the drying occurs was compared to that predicted from the continuum theory. Such a comparison revealed that the line tension plays an important role in the drying behavior of the present nm-sized pillars. The water molecules near the pillar walls were layered and ordered in orientation. Our simulation showed a long-lived CB state which eventually turns into the WZ state. In this transition, water slowly penetrated down into the inter-pillar gap until it reached the half height of the pillar, and then quickly reached the base of the pillar. PMID:24513852

  14. Textured micrometer scale templates as light managing fabrication platform for organic solar cells

    DOEpatents

    Chaudhary, Sumit; Ho, Kai-Ming; Park, Joong-Mok; Nalwa, Kanwar Singh; Leung, Wai Y.

    2016-07-26

    A three-dimensional, microscale-textured, grating-shaped organic solar cell geometry. The solar cells are fabricated on gratings to give them a three-dimensional texture that provides enhanced light absorption. Introduction of microscale texturing has a positive effect on the overall power conversion efficiency of the devices. This grating-based solar cell having a grating of pre-determined pitch and height has shown improved power-conversion efficiency over a conventional flat solar cell. The improvement in efficiency is accomplished by homogeneous coverage of the grating with uniform thickness of the active layer, which is attributed to a sufficiently high pitch and low height of the underlying gratings. Also the microscale texturing leads to suppressed reflection of incident light due to the efficient coupling of the incident light into modes that are guided in the active layer.

  15. Fluid dynamics: Swimming across scales

    NASA Astrophysics Data System (ADS)

    Baumgart, Johannes; Friedrich, Benjamin M.

    2014-10-01

    The myriad creatures that inhabit the waters of our planet all swim using different mechanisms. Now, a simple relation links key physical observables of underwater locomotion, on scales ranging from millimetres to tens of metres.

  16. Dynamical scaling analysis of plant callus growth

    NASA Astrophysics Data System (ADS)

    Galeano, J.; Buceta, J.; Juarez, K.; Pumariño, B.; de la Torre, J.; Iriondo, J. M.

    2003-07-01

    We present experimental results for the dynamical scaling properties of the development of plant calli. We have assayed two different species of plant calli, Brassica oleracea and Brassica rapa, under different growth conditions, and show that their dynamical scalings share a universality class. From a theoretical point of view, we introduce a scaling hypothesis for systems whose size evolves in time. We expect our work to be relevant for the understanding and characterization of other systems that undergo growth due to cell division and differentiation, such as, for example, tumor development.

  17. Dynamic scaling for avalanches in disordered systems

    SciTech Connect

    Zheng, Guang-Ping; Li, Mo

    2001-03-01

    Dynamic scaling for fracture or breakdown process in disordered systems is investigated in a two-dimensional random field Ising model (RFIM). We find two evolving stages in the avalanche process in the RFIM. At the short-time regime, a power-law growth of the avalanche size {Delta}s is observed; and at late times, the conventional nucleation and growth process is found. At the critical point of the RFIM, the avalanche size is found to obey the dynamic scaling law {Delta}s{approx}t{sup (d-{beta}/{nu})/z}. From this dynamic scaling relation, the critical strength of the random field D{sub c} and the critical exponents, {beta}, {nu}, and z, are determined. The observed dynamics is explained by a simple nucleation theory of first-order phase transformations.

  18. Motion Estimation for Dynamic Texture Videos Based on Locally and Globally Varying Models.

    PubMed

    Sakaino, Hidetomo

    2015-11-01

    Motion estimation, i.e., optical flow, of fluid-like and dynamic texture (DT) images/videos is an important challenge, particularly for understanding outdoor scene changes created by objects and/or natural phenomena. Most optical flow models use smoothness-based constraints using terms such as fluidity from the fluid dynamics framework, with constraints typically being incompressibility and low Reynolds numbers (Re ). Such constraints are assumed to impede the clear capture of locally abrupt image intensity and motion changes, i.e., discontinuities and/or high Re over time. This paper exploits novel physics-based optical flow models/constraints for both smooth and discontinuous changes using a wave generation theory that imposes no constraint on Re or compressibility of an image sequence. Iterated two-step optimization between local and global optimization is also used: first, an objective function with varying multiple sine/cosine bases with new local image properties, i.e., orientation and frequency, and with a novel transformed dispersion relationship equation are used. Second, the statistical property of image features is used to globally optimize model parameters. Experiments on synthetic and real DT image sequences with smooth and discontinuous motions demonstrate that the proposed locally and globally varying models outperform the previous optical flow models. PMID:26099146

  19. Characterization of Urban Landscape Using Super-Resolution UAS Data, Multiple Textural Scales and Data-Mining Techniques

    NASA Astrophysics Data System (ADS)

    Voss, M.; Blundell, B.

    2015-12-01

    Characterization of urban environments is a high priority for the U.S. Army as battlespaces have transitioned from the predominantly open spaces of the 20th century to urban areas where soldiers have reduced situational awareness due to the diversity and density of their surroundings. Creating high-resolution urban terrain geospatial information will improve mission planning and soldier effectiveness. In this effort, super-resolution true-color imagery was collected with an Altivan NOVA unmanned aerial system over the Muscatatuck Urban Training Center near Butlerville, Indiana on September 16, 2014. Multispectral texture analysis using different algorithms was conducted for urban surface characterization at a variety of scales. Training samples extracted from the true-color and texture images. These data were processed using a variety of meta-algorithms with a decision tree classifier to create a high-resolution urban features map. In addition to improving accuracy over traditional image classification methods, this technique allowed the determination of the most significant textural scales in creating urban terrain maps for tactical exploitation.

  20. Analyzing fine-scale wetland composition using high resolution imagery and texture features

    NASA Astrophysics Data System (ADS)

    Szantoi, Zoltan; Escobedo, Francisco; Abd-Elrahman, Amr; Smith, Scot; Pearlstine, Leonard

    2013-08-01

    In order to monitor natural and anthropogenic disturbance effects to wetland ecosystems, it is necessary to employ both accurate and rapid mapping of wet graminoid/sedge communities. Thus, it is desirable to utilize automated classification algorithms so that the monitoring can be done regularly and in an efficient manner. This study developed a classification and accuracy assessment method for wetland mapping of at-risk plant communities in marl prairie and marsh areas of the Everglades National Park. Maximum likelihood (ML) and Support Vector Machine (SVM) classifiers were tested using 30.5 cm aerial imagery, the normalized difference vegetation index (NDVI), first and second order texture features and ancillary data. Additionally, appropriate window sizes for different texture features were estimated using semivariogram analysis. Findings show that the addition of NDVI and texture features increased classification accuracy from 66.2% using the ML classifier (spectral bands only) to 83.71% using the SVM classifier (spectral bands, NDVI and first order texture features).

  1. Change in Magma Dynamics at Okataina Rhyolite Caldera revealed by Plagioclase Textures and Geochemistry

    NASA Astrophysics Data System (ADS)

    Shane, P. A. R.

    2015-12-01

    A fundamental reorganization of magma dynamics at Okataina volcano, New Zealand, occurred at 26 ka involving a change from smaller volume, high-temperature rhyodacite magmas to a lower eruptive tempo of larger volume, low-temperature, rhyolite magmas. Zircon studies demonstrate the presence of a periodically active, long-lived (100,000 yr) magmatic reservoir. However, there is little correlation between periods of zircon crystallization and eruption events. In contrast, the changing magmatic dynamics is revealed in plagioclase growth histories. Crystals from the ~0.7 ka Kaharoa eruption are characterized by resorbed cores displaying a cellular-texture of high-An (>40) zones partially replaced by low-An (<30) zones, surrounded by a resorption surface and a prominent normal-zoned rim (An50-20). Elevated An, Fe, Mg, Sr and Ti follow the resorption surface and display rimward depletion trends, accompanied by Ba and REE enrichment. The zonation is consistent with fractional crystallization and cooling. The cores display wide trace element diversity, pointing to crystallization in a variety of melts, before transport and mixing into a common magma where the rims grew. Plagioclase from the ~36 ka Hauparu eruption display several regrowth zones separated by resorption surfaces, which surround small resorbed cores with a spongy cellular texture of variable An content (An 40-50). The crystals display step-wise re-growth of successively higher An, Fe, Mg and Ti content, consistent with progressive mafic recharge. Two crystal groups are distinguished by trace element chemistry indicating growth in separate melts and co-occurrence via magma-mingling. The contrasting zoning patterns in plagioclase correspond to the evolutionary history of magmatism at Okataina. Emptying of the magma reservoir following caldera eruption at 46 ka reduced barriers to mafic magma ascent. This is recorded by the frequent resorption and recharge episodes in Hauparu crystals. Subsequent re

  2. Automated retrieval of forest structure variables based on multi-scale texture analysis of VHR satellite imagery

    NASA Astrophysics Data System (ADS)

    Beguet, Benoit; Guyon, Dominique; Boukir, Samia; Chehata, Nesrine

    2014-10-01

    The main goal of this study is to design a method to describe the structure of forest stands from Very High Resolution satellite imagery, relying on some typical variables such as crown diameter, tree height, trunk diameter, tree density and tree spacing. The emphasis is placed on the automatization of the process of identification of the most relevant image features for the forest structure retrieval task, exploiting both spectral and spatial information. Our approach is based on linear regressions between the forest structure variables to be estimated and various spectral and Haralick's texture features. The main drawback of this well-known texture representation is the underlying parameters which are extremely difficult to set due to the spatial complexity of the forest structure. To tackle this major issue, an automated feature selection process is proposed which is based on statistical modeling, exploring a wide range of parameter values. It provides texture measures of diverse spatial parameters hence implicitly inducing a multi-scale texture analysis. A new feature selection technique, we called Random PRiF, is proposed. It relies on random sampling in feature space, carefully addresses the multicollinearity issue in multiple-linear regression while ensuring accurate prediction of forest variables. Our automated forest variable estimation scheme was tested on Quickbird and Pléiades panchromatic and multispectral images, acquired at different periods on the maritime pine stands of two sites in South-Western France. It outperforms two well-established variable subset selection techniques. It has been successfully applied to identify the best texture features in modeling the five considered forest structure variables. The RMSE of all predicted forest variables is improved by combining multispectral and panchromatic texture features, with various parameterizations, highlighting the potential of a multi-resolution approach for retrieving forest structure

  3. Electrically Switchable and Permanently Stable Light Scattering Modes by Dynamic Fingerprint Chiral Textures.

    PubMed

    Cheng, Ko-Ting; Lee, Po-Yi; Qasim, Malik M; Liu, Cheng-Kai; Cheng, Wen-Fa; Wilkinson, Timothy D

    2016-04-27

    Negative dielectric nematic liquid crystals (LCs) doped with two azobenzene materials provide electrically switchable and permanently stable scattering mode light modulators based on dynamic fingerprint chiral textures (DFCT) with inhomogeneously helical axes. These light modulators can be switched between transparent (stable large domains of DFCT) states and scattering (stable small domains of DFCT) states by applying electric fields with different frequencies. The generation of DFCT results from the long flexible side chains of the doped chiral dopant. That is, if the DFCT can be obtained, then the large domains of DFCT reflect an intrinsically stable state. Moreover, the stabilization of the small domains of DFCT are caused by the terminal rigid restricted side chains of the other doped chiral dopant. Experimentally, the required amplitude to switch the light modulator from a scattering (transparent) state to a transparent (scattering) state decreases as the frequency of the applied electric field increases (decreases) within the set limits. This study is the first report on the advantages of the light scattering mode of DFCT, including low operating voltage, permanently stable transmission, wide viewing angle, high contrast, and polarization-independent scattering and transparency. PMID:27035635

  4. Magnitude correlations and dynamical scaling for seismicity

    SciTech Connect

    Godano, Cataldo; Lippiello, Eugenio; De Arcangelis, Lucilla

    2007-12-06

    We analyze the experimental seismic catalog of Southern California and we show the existence of correlations between earthquake magnitudes. We propose a dynamical scaling hypothesis relating time and magnitude as the physical mechanism responsible of the observed magnitude correlations. We show that experimental distributions in size and time naturally originate solely from this scaling hypothesis. Furthermore we generate a synthetic catalog reproducing the organization in time and magnitude of experimental data.

  5. Dynamical Scaling in Branching Models for Seismicity

    SciTech Connect

    Lippiello, Eugenio; Godano, Cataldo; De Arcangelis, Lucilla

    2007-03-02

    We propose a branching process based on a dynamical scaling hypothesis relating time and mass. In the context of earthquake occurrence, we show that experimental power laws in size and time distribution naturally originate solely from this scaling hypothesis. We present a numerical protocol able to generate a synthetic catalog with an arbitrary large number of events. The numerical data reproduce the hierarchical organization in time and magnitude of experimental interevent time distribution.

  6. Untangling the effects of shallow groundwater and soil texture as drivers of subfield-scale yield variability

    NASA Astrophysics Data System (ADS)

    Zipper, Samuel C.; Soylu, Mehmet Evren; Booth, Eric G.; Loheide, Steven P.

    2015-08-01

    Water table depth (WTD), soil texture, and growing season weather conditions all play critical roles in determining agricultural yield; however, the interactions among these three variables have never been explored in a systematic way. Using a combination of field observations and biophysical modeling, we answer two questions: (1) under what conditions can a shallow water table provide a groundwater yield subsidy and/or penalty to corn production?; and (2) how do soil texture and growing season weather conditions influence the relationship between WTD and corn yield?. Subfield-scale yield patterns during a dry (2012) and wet (2013) growing season are used to identify sensitivity to weather. Areas of the field that are negatively impacted by wet growing seasons have the shallowest observed WTD (<1 m), while areas with consistently strong yield have intermediate WTD (1-3 m). Parts of the field that perform consistently poorly are characterized by deep WTD (>3 m) and coarse soil textures. Modeling results find that beneficial impacts of shallow groundwater are more common than negative impacts under the conditions studied, and that the optimum WTD is shallower in coarser soils. While groundwater yield subsidies have a higher frequency and magnitude in coarse-grained soils, the optimum WTD responds to growing season weather at a relatively constant rate across soil types. We conclude that soil texture defines a baseline upon which WTD and weather interact to determine overall yield. Our work has implications for water resource management, climate/land use change impacts on agricultural production, and precision agriculture.

  7. Multi-scale textural feature extraction and particle swarm optimization based model selection for false positive reduction in mammography.

    PubMed

    Zyout, Imad; Czajkowska, Joanna; Grzegorzek, Marcin

    2015-12-01

    The high number of false positives and the resulting number of avoidable breast biopsies are the major problems faced by current mammography Computer Aided Detection (CAD) systems. False positive reduction is not only a requirement for mass but also for calcification CAD systems which are currently deployed for clinical use. This paper tackles two problems related to reducing the number of false positives in the detection of all lesions and masses, respectively. Firstly, textural patterns of breast tissue have been analyzed using several multi-scale textural descriptors based on wavelet and gray level co-occurrence matrix. The second problem addressed in this paper is the parameter selection and performance optimization. For this, we adopt a model selection procedure based on Particle Swarm Optimization (PSO) for selecting the most discriminative textural features and for strengthening the generalization capacity of the supervised learning stage based on a Support Vector Machine (SVM) classifier. For evaluating the proposed methods, two sets of suspicious mammogram regions have been used. The first one, obtained from Digital Database for Screening Mammography (DDSM), contains 1494 regions (1000 normal and 494 abnormal samples). The second set of suspicious regions was obtained from database of Mammographic Image Analysis Society (mini-MIAS) and contains 315 (207 normal and 108 abnormal) samples. Results from both datasets demonstrate the efficiency of using PSO based model selection for optimizing both classifier hyper-parameters and parameters, respectively. Furthermore, the obtained results indicate the promising performance of the proposed textural features and more specifically, those based on co-occurrence matrix of wavelet image representation technique. PMID:25795630

  8. Simple scaling of catastrophic landslide dynamics.

    PubMed

    Ekström, Göran; Stark, Colin P

    2013-03-22

    Catastrophic landslides involve the acceleration and deceleration of millions of tons of rock and debris in response to the forces of gravity and dissipation. Their unpredictability and frequent location in remote areas have made observations of their dynamics rare. Through real-time detection and inverse modeling of teleseismic data, we show that landslide dynamics are primarily determined by the length scale of the source mass. When combined with geometric constraints from satellite imagery, the seismically determined landslide force histories yield estimates of landslide duration, momenta, potential energy loss, mass, and runout trajectory. Measurements of these dynamical properties for 29 teleseismogenic landslides are consistent with a simple acceleration model in which height drop and rupture depth scale with the length of the failing slope. PMID:23520108

  9. Texture analysis on parametric maps derived from dynamic contrast-enhanced magnetic resonance imaging in head and neck cancer

    PubMed Central

    Jansen, Jacobus FA; Lu, Yonggang; Gupta, Gaorav; Lee, Nancy Y; Stambuk, Hilda E; Mazaheri, Yousef; Deasy, Joseph O; Shukla-Dave, Amita

    2016-01-01

    AIM: To investigate the merits of texture analysis on parametric maps derived from pharmacokinetic modeling with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) as imaging biomarkers for the prediction of treatment response in patients with head and neck squamous cell carcinoma (HNSCC). METHODS: In this retrospective study, 19 HNSCC patients underwent pre- and intra-treatment DCE-MRI scans at a 1.5T MRI scanner. All patients had chemo-radiation treatment. Pharmacokinetic modeling was performed on the acquired DCE-MRI images, generating maps of volume transfer rate (Ktrans) and volume fraction of the extravascular extracellular space (ve). Image texture analysis was then employed on maps of Ktrans and ve, generating two texture measures: Energy (E) and homogeneity. RESULTS: No significant changes were found for the mean and standard deviation for Ktrans and ve between pre- and intra-treatment (P > 0.09). Texture analysis revealed that the imaging biomarker E of ve was significantly higher in intra-treatment scans, relative to pretreatment scans (P < 0.04). CONCLUSION: Chemo-radiation treatment in HNSCC significantly reduces the heterogeneity of tumors. PMID:26834947

  10. Slope-scale dynamic states of rockfalls

    NASA Astrophysics Data System (ADS)

    Agliardi, F.; Crosta, G. B.

    2009-04-01

    Rockfalls are common earth surface phenomena characterised by complex dynamics at the slope scale, depending on local block kinematics and slope geometry. We investigated the nature of this slope-scale dynamics by parametric 3D numerical modelling of rockfalls over synthetic slopes with different inclination, roughness and spatial resolution. Simulations were performed through an original code specifically designed for rockfall modeling, incorporating kinematic and hybrid algorithms with different damping functions available to model local energy loss by impact and pure rolling. Modelling results in terms of average velocity profiles suggest that three dynamic regimes (i.e. decelerating, steady-state and accelerating), previously recognized in the literature through laboratory experiments on granular flows, can set up at the slope scale depending on slope average inclination and roughness. Sharp changes in rock fall kinematics, including motion type and lateral dispersion of trajectories, are associated to the transition among different regimes. Associated threshold conditions, portrayed in "phase diagrams" as slope-roughness critical lines, were analysed depending on block size, impact/rebound angles, velocity and energy, and model spatial resolution. Motion in regime B (i.e. steady state) is governed by a slope-scale "viscous friction" with average velocity linearly related to the sine of slope inclination. This suggest an analogy between rockfall motion in regime B and newtonian flow, whereas in regime C (i.e. accelerating) an analogy with a dilatant flow was observed. Thus, although local behavior of single falling blocks is well described by rigid body dynamics, the slope scale dynamics of rockfalls seem to statistically approach that of granular media. Possible outcomes of these findings include a discussion of the transition from rockfall to granular flow, the evaluation of the reliability of predictive models, and the implementation of criteria for a

  11. Multi-scale modelling and dynamics

    NASA Astrophysics Data System (ADS)

    Müller-Plathe, Florian

    Moving from a fine-grained particle model to one of lower resolution leads, with few exceptions, to an acceleration of molecular mobility, higher diffusion coefficient, lower viscosities and more. On top of that, the level of acceleration is often different for different dynamical processes as well as for different state points. While the reasons are often understood, the fact that coarse-graining almost necessarily introduces unpredictable acceleration of the molecular dynamics severely limits its usefulness as a predictive tool. There are several attempts under way to remedy these shortcoming of coarse-grained models. On the one hand, we follow bottom-up approaches. They attempt already when the coarse-graining scheme is conceived to estimate their impact on the dynamics. This is done by excess-entropy scaling. On the other hand, we also pursue a top-down development. Here we start with a very coarse-grained model (dissipative particle dynamics) which in its native form produces qualitatively wrong polymer dynamics, as its molecules cannot entangle. This model is modified by additional temporary bonds, so-called slip springs, to repair this defect. As a result, polymer melts and solutions described by the slip-spring DPD model show correct dynamical behaviour. Read more: ``Excess entropy scaling for the segmental and global dynamics of polyethylene melts'', E. Voyiatzis, F. Müller-Plathe, and M.C. Böhm, Phys. Chem. Chem. Phys. 16, 24301-24311 (2014). [DOI: 10.1039/C4CP03559C] ``Recovering the Reptation Dynamics of Polymer Melts in Dissipative Particle Dynamics Simulations via Slip-Springs'', M. Langeloth, Y. Masubuchi, M. C. Böhm, and F. Müller-Plathe, J. Chem. Phys. 138, 104907 (2013). [DOI: 10.1063/1.4794156].

  12. Supervised classification of brain tissues through local multi-scale texture analysis by coupling DIR and FLAIR MR sequences

    NASA Astrophysics Data System (ADS)

    Poletti, Enea; Veronese, Elisa; Calabrese, Massimiliano; Bertoldo, Alessandra; Grisan, Enrico

    2012-02-01

    The automatic segmentation of brain tissues in magnetic resonance (MR) is usually performed on T1-weighted images, due to their high spatial resolution. T1w sequence, however, has some major downsides when brain lesions are present: the altered appearance of diseased tissues causes errors in tissues classification. In order to overcome these drawbacks, we employed two different MR sequences: fluid attenuated inversion recovery (FLAIR) and double inversion recovery (DIR). The former highlights both gray matter (GM) and white matter (WM), the latter highlights GM alone. We propose here a supervised classification scheme that does not require any anatomical a priori information to identify the 3 classes, "GM", "WM", and "background". Features are extracted by means of a local multi-scale texture analysis, computed for each pixel of the DIR and FLAIR sequences. The 9 textures considered are average, standard deviation, kurtosis, entropy, contrast, correlation, energy, homogeneity, and skewness, evaluated on a neighborhood of 3x3, 5x5, and 7x7 pixels. Hence, the total number of features associated to a pixel is 56 (9 textures x3 scales x2 sequences +2 original pixel values). The classifier employed is a Support Vector Machine with Radial Basis Function as kernel. From each of the 4 brain volumes evaluated, a DIR and a FLAIR slice have been selected and manually segmented by 2 expert neurologists, providing 1st and 2nd human reference observations which agree with an average accuracy of 99.03%. SVM performances have been assessed with a 4-fold cross-validation, yielding an average classification accuracy of 98.79%.

  13. Improving the textural characterization of trabecular bone structure to quantify its changes: the locally adapted scaling vector method

    NASA Astrophysics Data System (ADS)

    Raeth, Christoph W.; Mueller, Dirk; Boehm, Holger F.; Rummeny, Ernst J.; Link, Thomas M.; Monetti, Roberto

    2005-04-01

    We extend the recently introduced scaling vector method (SVM) to improve the textural characterization of oriented trabecular bone structures in the context of osteoporosis. Using the concept of scaling vectors one obtains non-linear structural information from data sets, which can account for global anisotropies. In this work we present a method which allows us to determine the local directionalities in images by using scaling vectors. Thus it becomes possible to better account for local anisotropies and to implement this knowledge in the calculation of the scaling properties of the image. By applying this adaptive technique, a refined quantification of the image structure is possible: we test and evaluate our new method using realistic two-dimensional simulations of bone structures, which model the effect of osteoblasts and osteoclasts on the local change of relative bone density. The partial differential equations involved in the model are solved numerically using cellular automata (CA). Different realizations with slightly varying control parameters are considered. Our results show that even small changes in the trabecular structures, which are induced by variation of a control parameters of the system, become discernible by applying the locally adapted scaling vector method. The results are superior to those obtained by isotropic and/or bulk measures. These findings may be especially important for monitoring the treatment of patients, where the early recognition of (drug-induced) changes in the trabecular structure is crucial.

  14. Cell water dynamics on multiple time scales

    PubMed Central

    Persson, Erik; Halle, Bertil

    2008-01-01

    Water–biomolecule interactions have been extensively studied in dilute solutions, crystals, and rehydrated powders, but none of these model systems may capture the behavior of water in the highly organized intracellular milieu. Because of the experimental difficulty of selectively probing the structure and dynamics of water in intact cells, radically different views about the properties of cell water have proliferated. To resolve this long-standing controversy, we have measured the 2H spin relaxation rate in living bacteria cultured in D2O. The relaxation data, acquired in a wide magnetic field range (0.2 mT–12 T) and analyzed in a model-independent way, reveal water dynamics on a wide range of time scales. Contradicting the view that a substantial fraction of cell water is strongly perturbed, we find that ≈85% of cell water in Escherichia coli and in the extreme halophile Haloarcula marismortui has bulk-like dynamics. The remaining ≈15% of cell water interacts directly with biomolecular surfaces and is motionally retarded by a factor 15 ± 3 on average, corresponding to a rotational correlation time of 27 ps. This dynamic perturbation is three times larger than for small monomeric proteins in solution, a difference we attribute to secluded surface hydration sites in supramolecular assemblies. The relaxation data also show that a small fraction (≈0.1%) of cell water exchanges from buried hydration sites on the microsecond time scale, consistent with the current understanding of protein hydration in solutions and crystals. PMID:18436650

  15. Effect of micro/nano-scale textures on anti-adhesive wear properties of WC/Co-based TiAlN coated tools in AISI 316 austenitic stainless steel cutting

    NASA Astrophysics Data System (ADS)

    Zhang, Kedong; Deng, Jianxin; Sun, Jialin; Jiang, Chao; Liu, Yayun; Chen, Shuai

    2015-11-01

    In cutting of stainless steel with coated tool, the steel chip adhering to tool surface is usually severe and consequently causes serious adhesive and frictional problems, which is the major reason for the failure of coated tool. To solve the problem, a surface engineering approach, namely, a highly functionalization of tool surfaces by textures may be of great importance. Thus, the effect of micro/nano-scale textures on anti-adhesive wear properties of TiAlN coated tools in AISI 316 austenitic stainless steel cutting was investigated. For this purpose, two types of surface textures were fabricated on the rake faces of WC/Co carbide tools: (i) micro-scale textures fabricated by Nd:YAG laser, (ii) micro/nano-scales textures fabricated by Nd:YAG laser and femtosecond laser. Then, these textured tools were deposited with TiAlN coatings using cathode arc-evaporation technique. Wet cutting experiments were carried out with the micro-scale textured coated tool (MCT), micro/nano-scale textured coated tool (MNCT), and the conventional coated tool (CCT). Results obtained in this work demonstrated the feasibility of fabricating micro- or micro/nano-scale textures on tools substrate surfaces to improve the anti-adhesive wear properties of TiAlN coated tool. The rake face micro/nano-scale textured tool was the most effective. Moreover, mechanisms for the anti-adhesive properties enhancement were proposed.

  16. Multi-Scale Modeling of Magnetospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Toth, G.

    2012-01-01

    Magnetic reconnection is a key element in many phenomena in space plasma, e.g. Coronal mass Ejections, Magnetosphere substorms. One of the major challenges in modeling the dynamics of large-scale systems involving magnetic reconnection is to quantifY the interaction between global evolution of the magnetosphere and microphysical kinetic processes in diffusion regions near reconnection sites. Recent advances in small-scale kinetic modeling of magnetic reconnection significantly improved our understanding of physical mechanisms controlling the dissipation in the vicinity of the reconnection site in collisionless plasma. However the progress in studies of small-scale geometries was not very helpful for large scale simulations. Global magnetosphere simulations usually include non-ideal processes in terms of numerical dissipation and/or ad hoc anomalous resistivity. Comparative studies of magnetic reconnection in small scale geometries demonstrated that MHD simulations that included non-ideal processes in terms of a resistive term 11 J did not produce fast reconnection rates observed in kinetic simulations. In collisionless magnetospheric plasma, the primary mechanism controlling the dissipation in the vicinity of the reconnection site is nongyrotropic pressure effects with spatial scales comparable with the particle Larmor radius. We utilize the global MHD code BATSRUS and replace ad hoc parameters such as "critical current density" and "anomalous resistivity" with a physically motivated model of dissipation. The primary mechanism controlling the dissipation in the vicinity of the reconnection site in incorporated into MHD description in terms of non-gyrotropic corrections to the induction equation. We will demonstrate that kinetic nongyrotropic effects can significantly alter the global magnetosphere evolution. Our approach allowed for the first time to model loading/unloading cycle in response to steady southward IMF driving. The role of solar wind parameters and

  17. Correlation of object-based texture measures at multiple scales in sub-decimeter resolution aerial photography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Texture measures are commonly used to increase the number of input bands in order to improve classification accuracy, especially for panchromatic or true color imagery. While the use of texture measures in pixel-based analysis has been well documented, this is not the case for texture measures calcu...

  18. Effects of texture on salt precipitation dynamics and deposition patterns in drying porous media

    NASA Astrophysics Data System (ADS)

    Norouzi Rad, Mansoureh; Shokri, Nima

    2015-04-01

    Understanding the physics of water evaporation from saline porous media is important in many natural and engineering applications such as durability of building materials and preservation of monuments, CO2 sequestration and water quality. Also excess of salt accumulation in soil may result in soil salinization which is a global problem adversely affecting vegetation, plant growth and crop production. Thus it is important to understand the parameters affecting salt transport and precipitation in porous media. We applied X-ray micro-tomography to investigate the dynamics of salt precipitation during evaporation from porous media as influenced by the particle and pore sizes. The packed beds were saturated with NaCl solution of 3 Molal and the time-lapse X-ray imaging was continued for one day. The results show that the presence of preferential evaporation sites (associated with fine pores) on the surface of the sand columns influences significantly the patterns and dynamics of NaCl precipitation (Norouzi Rad et al., 2013; Norouzi Rad and Shokri, 2014). They confirm the formation of an increasingly thick and discrete salt crust with increasing grain size in the sand column due to the presence of fewer fine pores (preferential precipitation sites) at the surface compared to the sand packs with finer grains. Fewer fine pores on the surface also results in shorter stage-1 precipitation for the columns with larger grain sizes. A simple model for the evolution of salt crust thickness based on this principle shows a good agreement with our experiments. Our results provide new insights regarding the physics of salt precipitation and its complex dynamics in porous media during evaporation. References Norouzi Rad, M., Shokri, N., Sahimi, M. (2013), Pore-Scale Dynamics of Salt Precipitation in Drying Porous Media, Phys. Rev. E, 88, 032404. Norouzi Rad, M., Shokri, N. (2014), Effects of grain angularity on NaCl precipitation in porous media during evaporation, Water Resour. Res

  19. Large-scale Molecular Dynamics Simulations of Glancing Angle Deposition

    NASA Astrophysics Data System (ADS)

    Hubartt, Bradley; Liu, Xuejing; Amar, Jacques

    2013-03-01

    While a variety of methods have been developed to carry out atomistic simulations of thin-film growth at small deposition angles with respect to the substrate normal, due to the complex morphology as well as the existence of multiple scattering of depositing atoms by the growing thin-film, realistically modeling the deposition process for large deposition angles can be quite challenging. Accordingly, we have developed a computationally efficient method based on the use of a single graphical processing unit (GPU) to carry out molecular dynamics (MD) simulations of the deposition and growth of thin-films via glancing angle deposition. Using this method we have carried out large-scale MD simulations, based on an embedded-atom-method potential, of Cu/Cu(100) growth up to 20 monolayers for deposition angles ranging from 50° to 85° and for both random and fixed azimuthal angles. Our results for the thin-film porosity, roughness, lateral correlation length, and density vs height will be presented and compared with experiments. Results for the dependence of the microstructure, grain-size distribution, surface texture, and defect concentration on deposition angle will also be presented. Supported by NSF DMR-0907399

  20. Small-scale dynamic gap test

    NASA Astrophysics Data System (ADS)

    Cook, Malcolm David

    2012-03-01

    In this paper we describe a new small-scale test, requiring small quantities of energetic material, designed using our CHARM ignition and growth routine in the DYNA2D hydrocode. The new test is a modified gap test and uses detonating nitromethane to provide dynamic confinement (instead of a thick metal case) whilst exposing the sample to a long duration shock wave. This arrangement allows less reactive materials that are below their critical diameter, more time to react. We present details of the modelling of the test together with some preliminary experiments to demonstrate the potential of the new test method.

  1. Testing particle filters on convective scale dynamics

    NASA Astrophysics Data System (ADS)

    Haslehner, Mylene; Craig, George. C.; Janjic, Tijana

    2014-05-01

    Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical

  2. Is micro-nano texture the only reason for under-water superoleophobicity of fish scale?

    NASA Astrophysics Data System (ADS)

    Gunda, Naga Siva Kumar; Waghmare, Prashant; Mitra, Sushanta

    2014-11-01

    There is a huge surge in developing liquid repellant surfaces based on the micro/nanostructures that are inherently present in nature, like the one in case of fish scales. Through systematic contact angle measurement of oil drops on fish scales submerged in souring water medium, we have demonstrated that the superhydrophobic/superoleophobic nature of fish scales is attributed to a combination of the mucus layer and the hierarchical structures. The mucus layer on the fish scales produces an unprecedented contact angle close to 180o in contrast to the contact angle of 150o produced in the absence of the mucus layer. We have also identified, through FTIR analysis, that the distinct chemical signatures of mucus accountable for such large contact angles.

  3. Using Parameters of Dynamic Pulse Function for 3d Modeling in LOD3 Based on Random Textures

    NASA Astrophysics Data System (ADS)

    Alizadehashrafi, B.

    2015-12-01

    The pulse function (PF) is a technique based on procedural preprocessing system to generate a computerized virtual photo of the façade with in a fixed size square(Alizadehashrafi et al., 2009, Musliman et al., 2010). Dynamic Pulse Function (DPF) is an enhanced version of PF which can create the final photo, proportional to real geometry. This can avoid distortion while projecting the computerized photo on the generated 3D model(Alizadehashrafi and Rahman, 2013). The challenging issue that might be handled for having 3D model in LoD3 rather than LOD2, is the final aim that have been achieved in this paper. In the technique based DPF the geometries of the windows and doors are saved in an XML file schema which does not have any connections with the 3D model in LoD2 and CityGML format. In this research the parameters of Dynamic Pulse Functions are utilized via Ruby programming language in SketchUp Trimble to generate (exact position and deepness) the windows and doors automatically in LoD3 based on the same concept of DPF. The advantage of this technique is automatic generation of huge number of similar geometries e.g. windows by utilizing parameters of DPF along with defining entities and window layers. In case of converting the SKP file to CityGML via FME software or CityGML plugins the 3D model contains the semantic database about the entities and window layers which can connect the CityGML to MySQL(Alizadehashrafi and Baig, 2014). The concept behind DPF, is to use logical operations to project the texture on the background image which is dynamically proportional to real geometry. The process of projection is based on two vertical and horizontal dynamic pulses starting from upper-left corner of the background wall in down and right directions respectively based on image coordinate system. The logical one/zero on the intersections of two vertical and horizontal dynamic pulses projects/does not project the texture on the background image. It is possible to define

  4. Analysis of image versus position, scale and direction reveals pattern texture anisotropy

    NASA Astrophysics Data System (ADS)

    Lehoucq, Roland; Weiss, Jerome; Dubrulle, Berengere; Amon, Axelle; Le Bouil, Antoine; Crassous, Jerome; Amitrano, David; Graner, Francois

    2014-12-01

    Pattern heterogeneities and anisotropies often carry significant physical information. We provide a toolbox which: (i) cumulates analysis in terms of position, direction and scale; (ii) is as general as possible; (iii) is simple and fast to understand, implement, execute and exploit. It consists in dividing the image into analysis boxes at a chosen scale; in each box an ellipse (the inertia tensor) is fitted to the signal and thus determines the direction in which the signal is more present. This tensor can be averaged in position and/or be used to study the dependence with scale. This choice is formally linked with Leray transforms and anisotropic wavelet analysis. Such protocol is intutively interpreted and consistent with what the eye detects: relevant scales, local variations in space, priviledged directions. It is fast and parallelizable. Its several variants are adaptable to the user's data and needs. It is useful to statistically characterize anisotropies of 2D or 3D patterns in which individual objects are not easily distinguished, with only minimal pre-processing of the raw image, and more generally applies to data in higher dimensions. It is less sensitive to edge effects, and thus better adapted for a multiscale analysis down to small scale boxes, than pair correlation function or Fourier transform. Easy to understand and implement, it complements more sophisticated methods such as Hough transform or diffusion tensor imaging. We use it on various fracture patterns (sea ice cover, thin sections of granite, granular materials), to pinpoint the maximal anisotropy scales. The results are robust to noise and to user choices. This toolbox could turn also useful for granular materials, hard condensed matter, geophysics, thin films, statistical mechanics, characterisation of networks, fluctuating amorphous systems, inhomogeneous and disordered systems, or medical imaging, among others.

  5. Potassium Feldspar Megacrysts in Granites: Passive Markers of Magma Dynamics or Products of Textural Coarsening?

    NASA Astrophysics Data System (ADS)

    Johnson, B. R.; Glazner, A. F.; Coleman, D. S.

    2006-12-01

    Megacrysts of potassium feldspar (K-spar) in granitic rocks are commonly interpreted as early-crystallizing phases whose textural relationships record flow, settling, and diapirism within evolving magma chambers. However, experimental studies on granitic magmas show that K-spar does not begin to nucleate until the system is at least 30% crystalline, and that much of the final crystallization history records co-crystallization of K-spar, quartz, and sodic plagioclase. These data require that the megacrysts cannot have reached large sizes until the magma was largely crystallized and incapable of flow. We have made chemical and textural observations of K-spar megacrysts from the Tuolumne Intrusive Suite (TIS), California. Cathodoluminescence images show sawtooth oscillatory zoning in K-spars, albite-rich rims on plagioclase, reaction zones at boundaries between plagioclase and K-spar, and almost no perthite. Electron microprobe analyses of the sawtooth zones reveal a sharp outward increase in Ba concentration at each zone boundary. Plagioclase core compositions follow whole-rock compositions, becoming increasingly albitic toward the center of the TIS, but K-spar in all units is highly potassic (Or80-95). A three-feldspar assemblage (An15-35, An1-7, and Or80-95) occurs in several megacrystic samples. Stained rock slabs reveal tentacles of interstitial K-spar radiating from megacryst edges far into the adjacent matrix, and a deficit of smaller K-spar crystals in megacrystic units. K-spar size measurements across the contacts of the TIS from the 10 largest crystals within a 1 m2 area show a steady increase in the average megacryst area from 0.2 to 30 cm2. In contrast, bulk rock K2O and K-spar mode (vol%) are constant across this same transect (at 3.7± 0.5 wt% and 22± 5 vol% respectively). Extreme feldspar compositions, phase equilibria, and textural observations argue for late development of K- spar megacrysts during the prolonged and probably cyclic cooling history of

  6. Coevolutionary dynamics on scale-free networks

    NASA Astrophysics Data System (ADS)

    Lee, Sungmin; Kim, Yup

    2005-05-01

    We investigate Bak-Sneppen coevolution models on scale-free networks with various degree exponents γ including random networks. For γ>3 , the critical fitness value fc approaches a nonzero finite value in the limit N→∞ , whereas fc approaches zero as 2<γ⩽3 . These results are explained by showing analytically fc(N)≃A/⟨(k+1)2⟩N on the networks with size N . The avalanche size distribution P(s) shows the normal power-law behavior for γ>3 . In contrast, P(s) for 2<γ⩽3 has two power-law regimes. One is a short regime for small s with a large exponent τ1 and the other is a long regime for large s with a small exponent τ2(τ1>τ2) . The origin of the two power regimes is explained by the dynamics on an artificially made star-linked network.

  7. Colloquium: Hierarchy of scales in language dynamics

    NASA Astrophysics Data System (ADS)

    Blythe, Richard A.

    2015-11-01

    Methods and insights from statistical physics are finding an increasing variety of applications where one seeks to understand the emergent properties of a complex interacting system. One such area concerns the dynamics of language at a variety of levels of description, from the behaviour of individual agents learning simple artificial languages from each other, up to changes in the structure of languages shared by large groups of speakers over historical timescales. In this Colloquium, we survey a hierarchy of scales at which language and linguistic behaviour can be described, along with the main progress in understanding that has been made at each of them - much of which has come from the statistical physics community. We argue that future developments may arise by linking the different levels of the hierarchy together in a more coherent fashion, in particular where this allows more effective use of rich empirical data sets.

  8. Scaling and dynamics of washboard roads.

    PubMed

    Bitbol, Anne-Florence; Taberlet, Nicolas; Morris, Stephen W; McElwaine, Jim N

    2009-06-01

    Granular surfaces subjected to forces due to rolling wheels develop ripples above a critical speed. The resulting pattern, known as washboard or corrugated road, is common on dry unpaved roads. We investigated this phenomenon theoretically and experimentally using laboratory-scale apparatus and beds of dry sand. A thick layer of sand on a circular track was forced by a rolling wheel on an arm whose weight and moment of inertia could be varied. We compared the ripples made by the rolling wheel to those made using a simple inclined plow blade. We investigated the dependence of the critical speed on various parameters and described a scaling argument that leads to a dimensionless ratio, analogous to the hydrodynamic Froude number, which controls the instability. This represents the crossover between conservative dynamic forces and dissipative static forces. Above onset wheel-driven ripples move in the direction of motion of the wheel, but plow-driven ripples move in the reverse direction for a narrow range of Froude numbers. PMID:19658502

  9. Slip Dynamics in Small Scale Crystals

    NASA Astrophysics Data System (ADS)

    Maass, Robert; Derlet, Peter; Greer, Julia; Volkert, Cynthia

    2015-03-01

    Classical work showed that dislocation velocities are strongly dependent on applied stress. Numerous experiments have validated this for individual or groups of dislocations in macroscopic crystals by using imaging techniques combined with either mechanical data or time resolved topological data. Developments in small scale mechanical testing allow to correlate the intermittency of collective dislocation motion with the mechanical response. Discrete forward surges in displacement can be related to dislocation avalanches, which are triggered by the evolving dislocation sub-structure. We study the spatiotemporal characteristics of intermittent plastic flow in quasi-statically sheared single crystalline Au crystals with diameters between 300 nm and 10000 nm, whose displacement bursts were recorded at several kHz (Scripta Mater. 2013, 69, 586; Small, available online). Both the crystallographic slip magnitude, as well as the velocity of the slip events are exhibiting power-law scaling as. The obtained slip velocity distribution has a cubic decay at high values, and a saturated flat shoulder at lower velocities. No correlation between the slip velocity and the applied stress or plastic strain is found. Further, we present DD-simulations that are supportive of our experimental findings. The simulations suggest that the dynamics of the internal stress fields dominate the evolving dislocation structure leading to velocities that are insensitive to the applied stress - a regime indicative of microplasticity.

  10. Textural and rheological properties of Pacific whiting surimi as affected by nano-scaled fish bone and heating rates.

    PubMed

    Yin, Tao; Park, Jae W

    2015-08-01

    Textural and rheological properties of Pacific whiting (PW) surimi were investigated at various heating rates with the use of nano-scaled fish bone (NFB) and calcium chloride. Addition of NFB and slow heating improved gel strength significantly. Activity of endogenous transglutaminase (ETGase) from PW surimi was markedly induced by both NFB calcium and calcium chloride, showing an optimal temperature at 30°C. Initial storage modulus increased as NFB calcium concentration increased and the same trend was maintained throughout the temperature sweep. Rheograms with temperature sweep at slow heating rate (1°C/min) exhibited two peaks at ∼ 35°C and ∼ 70°C. However, no peak was observed during temperature sweep from 20 to 90°C at fast heating rate (20°C/min). Protein patterns of surimi gels were affected by both heating rate and NFB calcium concentration. Under slow heating, myosin heavy chain intensity decreased with NFB calcium concentration, indicating formation of ε-(γ-glutamyl) lysine cross-links by ETGase and NFB calcium ion. PMID:25766799

  11. Symmetric textures

    SciTech Connect

    Ramond, P. . Dept. of Physics)

    1993-01-01

    The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures.

  12. Symmetric textures

    SciTech Connect

    Ramond, P.

    1993-04-01

    The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures.

  13. Long length scales of element transport during reaction texture development in orthoamphibole-cordierite gneiss: Thor-Odin dome, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Goergen, Eric T.; Whitney, Donna L.

    2012-02-01

    First-order factors controlling the textural and chemical evolution of metamorphic rocks are bulk composition and pressure-temperature-time ( P- T- t) path. Although it is common to assume that major element bulk composition does not change during regional metamorphism, rocks with reaction textures such as corona structures record evidence for major changes in effective bulk composition (EBC) and therefore provide significant insight into the scale, pathways, and mechanisms of element transport during metamorphism. Quantifying changes in EBC is essential for petrologic applications such as calculation of phase diagrams (pseudosections). The progressive growth of complex corona structures on garnet and Al2SiO5 porphyroblasts in orthoamphibole-cordierite gneiss Thor-Odin dome (British Columbia, Canada) reduced the EBC volume of the rock during metamorphism and therefore had a dramatic effect on the evolution of the stable mineral assemblage. These rocks contain a chemical and textural record of metamorphic reactions and preserve 3D networks (reaction pathways) connecting corona structures. These coronal networks record long (>cm) length scales of localized element transport during metamorphism. P- T, T- X, and P- X pseudosections are used to investigate the control of effective bulk composition on phase assemblage evolution. Despite textural complexity and evidence for disequilibrium, mineral assemblages and compositions were successfully modeled and peak metamorphic conditions estimated at 750°C and 9 kbar. These results illustrate how textural and chemical changes during metamorphism can be evaluated using an integrated petrographic and pseudosection approach, highlight the importance of effective bulk composition choice for application of phase equilibria methods in metamorphic rocks, and show how corona structures can be used to understand the scale of compositional change and element transport during metamorphism.

  14. Texture Fish

    ERIC Educational Resources Information Center

    Stone, Julie

    2007-01-01

    In an effort to provide an opportunity for her first graders to explore texture through an engaging subject, the author developed a three-part lesson that features fish in a mixed-media artwork: (1) Exploring Textured Paint; (2) Creating the Fish; and (3) Role Playing. In this lesson, students effectively explore texture through painting, drawing,…

  15. Impacts of pore to regional scale variations in authigenic composition and texture on anthropogenically influenced fluid-rock interactions

    NASA Astrophysics Data System (ADS)

    Bowen, B. B.

    2015-12-01

    Diagenetic history plays a dominant role in determining the suitability of subsurface rock units as hosts for fluids that have societal importance. The performance of subsurface aquifers and storage facilities for CO2, natural gas, and liquid waste, is largely tied to the evolution of pore space and distribution and composition of authigenic minerals. While geoscientists may be well aware of the importance and nuances of diagenesis, project managers and decision-makers are unlikely to have a geologic understanding of determining factors such as burial history, fluid flow, and mineral thermodynamics. Thus, if falls to the geoscientists to effectively communicate meaningful conceptual models that adequately capture diagenetic heterogeneity and the potential for temporal changes with anthropogenically-induced changes in subsurface chemistry. This can be particularly difficult in subsurface systems that are sparsely sampled. Here, we look at the example of the basal Cambrian Mount Simon Sandstone and overlying Eau Claire Formation in the Illinois Basin, the respective reservoir and seal for the largest ongoing demonstration of anthropogenic CO2 sequestration in the United States. Relatively few cores are available to study the pore-scale composition and structure of these units, and those that are available show a complex and spatially variable diagenetic history. Compilation of past studies and new analyses from the Illinois Basin are combined to illustrate the burial history and fluid flow record that will influence how these units respond to the massive volumes of supercritical CO2 injected into the subsurface. Pore to regional scale differences in authigenic mineral composition and texture result in significantly different predicted fluid-rock interactions and various potential consequences of injection. This project provides examples of both successes and challenges associated with communicating the diagentic complexity to stakeholders and the potential

  16. Texture and Composition of Pumice and Scoria Provide New Insights into the Dynamics of Explosive Eruptions at Campi Flegrei (Italy)

    NASA Astrophysics Data System (ADS)

    Polacci, M.; Piochi, M.; de Astis, G.; Zanetti, A.; Mangiacapra, A.; Vannucci, R.; Giordano, D.

    2007-12-01

    Campi Flegrei (CF), a nested caldera located west of the densely-inhabited city of Naples, has been the site of volcanic activity for the past 60 ka BP. The last eruption occurred in AD 1538, but geochemical and geophysical signals have been monitored for the last tens of years clearly indicating that the magmatic system is still active. Volcanic risk mitigation in this area is therefore a primary goal of the scientific community. Here we combine new and literature data on the texture and composition of pumice and scoria clasts of selected CF eruptions with the goal to investigate their relationship to, and implications for, the eruption dynamics. We focus on three events with decreasing eruption intensity and magnitude: the Campanian Ignimbrite (39 ka), Agnano Monte Spina (4.1 ka) and Monte Nuovo (AD 1538) eruptions. Previous studies indicate that phenocryst and major element bulk compositions, as well as the original volatile content, are comparable in samples from the investigated eruptions. From these observations we derive that similar pre-eruptive physico-chemical conditions governed magma storage in the shallow crust before the occurrence of the above eruptions. Our investigation displays however a significant heterogeneity among the studied samples in terms of crystal and vesicle texture and abundance, composition of microlites and glassy groundmass, residual groundmass water content, and, finally, rheological properties of the related magmas. We ascribe such textural, compositional and rheological variability to different mechanisms of volatile exsolution, separation from the melt and outgassing accompanying magma ascent along the conduit and generated primarily by changes in the magma ascent rate. Low ascent rates allow open-system degassing, groundmass crystallization in response to water exsolution and the development of permeable flow pathways through which volatiles escape non-explosively to the surface potentially decreasing the overall eruption

  17. An informal paper on large-scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Ho, Y. C.

    1975-01-01

    Large scale systems are defined as systems requiring more than one decision maker to control the system. Decentralized control and decomposition are discussed for large scale dynamic systems. Information and many-person decision problems are analyzed.

  18. Small-scale dynamic confinement gap test

    NASA Astrophysics Data System (ADS)

    Cook, Malcolm

    2011-06-01

    Gap tests are routinely used to ascertain the shock sensitiveness of new explosive formulations. The tests are popular since that are easy and relatively cheap to perform. However, with modern insensitive formulations with big critical diameters, large test samples are required. This can make testing and screening of new formulations expensive since large quantities of test material are required. Thus a new test that uses significantly smaller sample quantities would be very beneficial. In this paper we describe a new small-scale test that has been designed using our CHARM ignition and growth routine in the DYNA2D hydrocode. The new test is a modified gap test and uses detonating nitromethane to provide dynamic confinement (instead of a thick metal case) whilst exposing the sample to a long duration shock wave. The long duration shock wave allows less reactive materials that are below their critical diameter, more time to react. We present details on the modelling of the test together with some preliminary experiments to demonstrate the potential of the new test method.

  19. Current Scientific Issues in Large Scale Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, T. L. (Compiler)

    1986-01-01

    Topics in large scale atmospheric dynamics are discussed. Aspects of atmospheric blocking, the influence of transient baroclinic eddies on planetary-scale waves, cyclogenesis, the effects of orography on planetary scale flow, small scale frontal structure, and simulations of gravity waves in frontal zones are discussed.

  20. Texture Representations Using Subspace Embeddings

    PubMed Central

    Yang, Xiaodong; Tian, YingLi

    2013-01-01

    In this paper, we propose a texture representation framework to map local texture patches into a low-dimensional texture subspace. In natural texture images, textons are entangled with multiple factors, such as rotation, scaling, viewpoint variation, illumination change, and non-rigid surface deformation. Mapping local texture patches into a low-dimensional subspace can alleviate or eliminate these undesired variation factors resulting from both geometric and photometric transformations. We observe that texture representations based on subspace embeddings have strong resistance to image deformations, meanwhile, are more distinctive and more compact than traditional representations. We investigate both linear and non-linear embedding methods including Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Locality Preserving Projections (LPP) to compute the essential texture subspace. The experiments in the context of texture classification on benchmark datasets demonstrate that the proposed subspace embedding representations achieve the state-of-the-art results while with much fewer feature dimensions. PMID:23710105

  1. Texture Representations Using Subspace Embeddings.

    PubMed

    Yang, Xiaodong; Tian, Yingli

    2013-07-15

    In this paper, we propose a texture representation framework to map local texture patches into a low-dimensional texture subspace. In natural texture images, textons are entangled with multiple factors, such as rotation, scaling, viewpoint variation, illumination change, and non-rigid surface deformation. Mapping local texture patches into a low-dimensional subspace can alleviate or eliminate these undesired variation factors resulting from both geometric and photometric transformations. We observe that texture representations based on subspace embeddings have strong resistance to image deformations, meanwhile, are more distinctive and more compact than traditional representations. We investigate both linear and non-linear embedding methods including Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Locality Preserving Projections (LPP) to compute the essential texture subspace. The experiments in the context of texture classification on benchmark datasets demonstrate that the proposed subspace embedding representations achieve the state-of-the-art results while with much fewer feature dimensions. PMID:23710105

  2. Ascent and emplacement dynamics of obsidian lavas inferred from microlite textures

    NASA Astrophysics Data System (ADS)

    Befus, Kenneth S.; Manga, Michael; Gardner, James E.; Williams, Matthew

    2015-10-01

    To assess the eruption and emplacement of volumetrically diverse rhyolite lavas, we measured microlite number densities and orientations from samples collected from nine lavas in Yellowstone Caldera and two from Mono Craters, USA. Microlite populations are composed of Fe-Ti oxides ± alkali feldspar ± clinopyroxene. Number densities range from 108.11 ± 0.03 to 109.45 ± 0.15 cm-3 and do not correlate with distance from the vent across individual flows and are remarkably similar between large- and small-volume lavas. Together, those observations suggest that number densities are unmodified during emplacement and that ascent rates in the conduit are similar between small domes and large lava flows. Microtextures produced by continuous decompression experiments best replicate natural textures at decompression rates of 1-2 MPa hr-1. Acicular microlites have a preferred orientation in all natural samples. Because the standard deviation of microlite orientation does not become better aligned with distance travelled, we conclude that microlites exit the conduit aligned and that strain during subaerial flow was insufficient to further align microlites. The orientations of microlite trend and plunge in near-vent samples indicate that pure shear was the dominant style of deformation in the conduit. We speculate that collapsing permeable foam(s) provides a mechanism to concurrently allow microlite formation and alignment in response to the combination of degassing and flattening by pure shear.

  3. Pore Scale Dynamics of Microemulsion Formation.

    PubMed

    Unsal, Evren; Broens, Marc; Armstrong, Ryan T

    2016-07-19

    Experiments in various porous media have shown that multiple parameters come into play when an oleic phase is displaced by an aqueous solution of surfactant. In general, the displacement efficiency is improved when the fluids become quasi-miscible. Understanding the phase behavior oil/water/surfactant systems is important because microemulsion has the ability to generate ultralow interfacial tension (<10(-2) mN m(-1)) that is required for miscibility to occur. Many studies focus on microemulsion formation and the resulting properties under equilibrium conditions. However, the majority of applications where microemulsion is present also involve flow, which has received relatively less attention. It is commonly assumed that the characteristics of an oil/water/surfactant system under flowing conditions are identical to the one under equilibrium conditions. Here, we show that this is not necessarily the case. We studied the equilibrium phase behavior of a model system consisting of n-decane and an aqueous solution of olefin sulfonate surfactant, which has practical applications for enhanced oil recovery. The salt content of the aqueous solution was varied to provide a range of different microemulsion compositions and oil-water interfacial tensions. We then performed microfluidic flow experiments to study the dynamic in situ formation of microemulsion by coinjecting bulk fluids of n-decane and surfactant solution into a T-junction capillary geometry. A solvatochromatic fluorescent dye was used to obtain spatially resolved compositional information. In this way, we visualized the microemulsion formation and the flow of it along with the excess phases. A complex interaction between the flow patterns and the microemulsion properties was observed. The formation of microemulsion influenced the flow regimes, and the flow regimes affected the characteristics of the microemulsion formation. In particular, at low flow rates, slug flow was observed, which had profound

  4. Texture and composition of pumices and scoriae from the Campi Flegrei caldera (Italy): Implications on the dynamics of explosive eruptions

    NASA Astrophysics Data System (ADS)

    Piochi, M.; Polacci, M.; de Astis, G.; Zanetti, A.; Mangiacapra, A.; Vannucci, R.; Giordano, D.

    2008-03-01

    The Campi Flegrei (CF) caldera is one of the most dangerous quiescent volcanic systems in the world. Its activity mostly resulted in low-magnitude explosive eruptions, such as that of the Monte Nuovo tuff cone that represents the last eruptive event within the caldera (A.D. 1538). However, there have been more energetic Plinian events, e.g., the Agnano Monte Spina eruption (4.1 ka), and very highly explosive, caldera-forming eruptions, e.g., the Campanian Ignimbrite eruption (39 ka). Here, we integrate new and literature data on the groundmass texture and composition of pyroclastic products from the three above eruptions with the aim of unraveling how volatiles content, degassing mechanisms, and crystallization processes influence magma explosivity and eruption dynamics at CF. Previous studies indicate that the investigated rocks share similar major element bulk and phenocryst chemistry; also similar is the water content of their trapped melt inclusions. These observations suggest that the magmas feeding these eruptions had comparable physicochemical properties during storage in the shallow crust. However, our investigations indicate that the studied rocks differ in texture and composition of the groundmass and viscosity of the related magmas. We ascribe such differences to the variable style of volatile exsolution and outgassing from the melt, primarily in response to changes of the rate of magma ascent to the surface. We conclude that the magma ascent rate was the key parameter in driving explosive eruptions at CF, and we suggest that this parameter may be influenced by magma-water interaction and/or magma chamber geometry and replenishment.

  5. Multiscale functions, scale dynamics, and applications to partial differential equations

    NASA Astrophysics Data System (ADS)

    Cresson, Jacky; Pierret, Frédéric

    2016-05-01

    Modeling phenomena from experimental data always begins with a choice of hypothesis on the observed dynamics such as determinism, randomness, and differentiability. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following: "With a finite set of data concerning a phenomenon, can we recover its underlying nature? From this problem, we introduce in this paper the definition of multi-scale functions, scale calculus, and scale dynamics based on the time scale calculus [see Bohner, M. and Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (Springer Science & Business Media, 2001)] which is used to introduce the notion of scale equations. These definitions will be illustrated on the multi-scale Okamoto's functions. Scale equations are analysed using scale regimes and the notion of asymptotic model for a scale equation under a particular scale regime. The introduced formalism explains why a single scale equation can produce distinct continuous models even if the equation is scale invariant. Typical examples of such equations are given by the scale Euler-Lagrange equation. We illustrate our results using the scale Newton's equation which gives rise to a non-linear diffusion equation or a non-linear Schrödinger equation as asymptotic continuous models depending on the particular fractional scale regime which is considered.

  6. The Challenge of Scale - SEM Imaging of the Textural and Compositional Heterogeneity of Tight Shales from the Nanometer to Centimeter Scale (Invited)

    NASA Astrophysics Data System (ADS)

    Schieber, J.; Green, S.; Suarez-Rivera, R. F.

    2013-12-01

    Shales and mudstones are heterogeneous at all scales. Their inherent variability derives from the complex interplay between original composition, processes of transport and deposition, compaction, and diagenetic processes that start shortly after deposition and may continue for 100,000's and even millions of years. Multiple pathways lead from fresh mud to solid shale, and the course taken determines the physical and chemical characteristics of the resulting rock. The journey from mud to rock and the controls on rock properties are encoded in the fine scale microscopic details of rock constituents. To visualize these details in a context that extends multiple orders of length scales away from a specific observation is critical, and requires high resolution SEM imaging across representative areas that include the full assemblage of shale components (fecal pellets, silt streaks, winnowed lags, clay drapes, fossil tests, organic macerals, etc.) as well as fine scale stratification (sub-mm to mm scale). Characterization of shale cores (or outcrop) through mm-cm scale visual observations of sedimentary structures and textures, as well as through closely spaced (mm-scale) measurements of physical and compositional properties, enables robust differentiation of rock intervals with unique characteristics. The latter can be designated as representative shale microfacies, and it is these that we then sample for high resolution imaging. The micro-scale fabrics revealed by this imaging are critical for understanding the small scale spatial variability that crucially influences how fluids and gases travel through this rock, how well it may perform as a seal, how likely it may leak, or how well it might perform as a reservoir. We found that high resolution examination of argon ion milled areas of approximately 5 mm by 5 mm size allows us to overcome the contextual limitations of traditional SEM study of shales where typical observation footprints range from of 50 to 100 μm in

  7. Automatic Texture Mapping with AN Omnidirectional Camera Mounted on a Vehicle Towards Large Scale 3d City Models

    NASA Astrophysics Data System (ADS)

    Deng, F.; Li, D.; Yan, L.; Fan, H.

    2012-07-01

    Today high resolution panoramic images with competitive quality have been widely used for rendering in some commercial systems. However the potential applications such as mapping, augmented reality and modelling which need accurate orientation information are still poorly studied. Urban models can be quickly obtained from aerial images or LIDAR, however with limited quality or efficiency due to low resolution textures and manual texture mapping work flow. We combine an Extended Kalman Filter (EKF) with the traditional Structure from Motion (SFM) method without any prior information based on a general camera model which can handle various kinds of omnidirectional and other kind of single perspective image sequences even with unconnected or weakly connected frames. The orientation results is then applied to mapping the textures from panoramas to the existing building models obtained from aerial photogrammetry. It turns out to largely improve the quality of the models and the efficiency of the modelling procedure.

  8. Extrapolating Dynamic Leidenfrost Principles to Metallic Nanodroplets on Asymmetrically Textured Surfaces.

    PubMed

    Horne, Joseph E; Lavrik, Nickolay V; Terrones, Humberto; Fuentes-Cabrera, Miguel

    2015-01-01

    In an effort to enhance our knowledge on how to control the movement of metallic nanodroplets, here we have used classical molecular dynamics simulations to investigate whether Cu nanostructures deposited on nanopillared substrates can be made to jump at desired angles. We find that such control is possible, especially for Cu nanostructures that are symmetric; for asymmetric nanostructures, however, control is more uncertain. The work presented here borrows ideas from two seemingly different fields, metallic droplets and water droplets in the dynamic Leidenfrost regime. Despite the differences in the respective systems, we find common ground in their behavior on nanostructured surfaces. Due to this, we suggest that the ongoing research in Leidenfrost droplets is a fertile area for scientists working on metallic nanodroplets. PMID:26123648

  9. Extrapolating dynamic leidenfrost principles to metallic nanodroplets on asymmetrically textured surfaces

    SciTech Connect

    Horne, Joseph E.; Lavrik, Nickolay V.; Terrones, Humberto; Fuentes-Cabrera, Miguel

    2015-06-30

    In an effort to enhance our knowledge on how to control the movement of metallic nanodroplets, here we have used classical molecular dynamics simulations to investigate whether Cu nanostructures deposited on nanopillared substrates can be made to jump at desired angles. We find that such control is possible, especially for Cu nanostructures that are symmetric; for asymmetric nanostructures, however, control is more uncertain. The work presented here borrows ideas from two seemingly different fields, metallic droplets and water droplets in the dynamic Leidenfrost regime. Despite the differences in the respective systems, we find common ground in their behavior on nanostructured surfaces. As a result, we suggest that the ongoing research in Leidenfrost droplets is a fertile area for scientists working on metallic nanodroplets.

  10. Extrapolating dynamic leidenfrost principles to metallic nanodroplets on asymmetrically textured surfaces

    DOE PAGESBeta

    Horne, Joseph E.; Lavrik, Nickolay V.; Terrones, Humberto; Fuentes-Cabrera, Miguel

    2015-06-30

    In an effort to enhance our knowledge on how to control the movement of metallic nanodroplets, here we have used classical molecular dynamics simulations to investigate whether Cu nanostructures deposited on nanopillared substrates can be made to jump at desired angles. We find that such control is possible, especially for Cu nanostructures that are symmetric; for asymmetric nanostructures, however, control is more uncertain. The work presented here borrows ideas from two seemingly different fields, metallic droplets and water droplets in the dynamic Leidenfrost regime. Despite the differences in the respective systems, we find common ground in their behavior on nanostructuredmore » surfaces. As a result, we suggest that the ongoing research in Leidenfrost droplets is a fertile area for scientists working on metallic nanodroplets.« less

  11. Scaling Parameters of the Lewis-Kostiakov Water Infiltration Equation Across Soil Textural Classes and Extension to Rain Infiltration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recent study showed that the Brooks-Corey equation parameters for soil hydraulic properties were strongly correlated to the pore-size distribution index (lambda), the slope of the log-log soil moisture characteristic curve across eleven soil textural classes from sand to clay. It further showed th...

  12. Molecular Scale Dynamics of Large Ring Polymers

    NASA Astrophysics Data System (ADS)

    Gooßen, S.; Brás, A. R.; Krutyeva, M.; Sharp, M.; Falus, P.; Feoktystov, A.; Gasser, U.; Pyckhout-Hintzen, W.; Wischnewski, A.; Richter, D.

    2014-10-01

    We present neutron scattering data on the structure and dynamics of melts from polyethylene oxide rings with molecular weights up to ten times the entanglement mass of the linear counterpart. The data reveal a very compact conformation displaying a structure approaching a mass fractal, as hypothesized by recent simulation work. The dynamics is characterized by a fast Rouse relaxation of subunits (loops) and a slower dynamics displaying a lattice animal-like loop displacement. The loop size is an intrinsic property of the ring architecture and is independent of molecular weight. This is the first experimental observation of the space-time evolution of segmental motion in ring polymers illustrating the dynamic consequences of their topology that is unique among all polymeric systems of any other known architecture.

  13. Molecular scale dynamics of large ring polymers.

    PubMed

    Gooßen, S; Brás, A R; Krutyeva, M; Sharp, M; Falus, P; Feoktystov, A; Gasser, U; Pyckhout-Hintzen, W; Wischnewski, A; Richter, D

    2014-10-17

    We present neutron scattering data on the structure and dynamics of melts from polyethylene oxide rings with molecular weights up to ten times the entanglement mass of the linear counterpart. The data reveal a very compact conformation displaying a structure approaching a mass fractal, as hypothesized by recent simulation work. The dynamics is characterized by a fast Rouse relaxation of subunits (loops) and a slower dynamics displaying a lattice animal-like loop displacement. The loop size is an intrinsic property of the ring architecture and is independent of molecular weight. This is the first experimental observation of the space-time evolution of segmental motion in ring polymers illustrating the dynamic consequences of their topology that is unique among all polymeric systems of any other known architecture. PMID:25361284

  14. Quasiparticle dynamics and spin-orbital texture of the SrTiO3 two-dimensional electron gas.

    PubMed

    King, P D C; McKeown Walker, S; Tamai, A; de la Torre, A; Eknapakul, T; Buaphet, P; Mo, S-K; Meevasana, W; Bahramy, M S; Baumberger, F

    2014-01-01

    Two-dimensional electron gases (2DEGs) in SrTiO3 have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Here we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the d-electron subband ladder of this complex-oxide 2DEG. Combined with realistic tight-binding supercell calculations, we uncover how quantum confinement and inversion symmetry breaking collectively tune the delicate interplay of charge, spin, orbital and lattice degrees of freedom in this system. We reveal how they lead to pronounced orbital ordering, mediate an orbitally enhanced Rashba splitting with complex subband-dependent spin-orbital textures and markedly change the character of electron-phonon coupling, co-operatively shaping the low-energy electronic structure of the 2DEG. Our results allow for a unified understanding of spectroscopic and transport measurements across different classes of SrTiO3-based 2DEGs, and yield new microscopic insights on their functional properties. PMID:24572991

  15. Quasiparticle dynamics and spin-orbital texture of the SrTiO3 two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    King, P. D. C.; McKeown Walker, S.; Tamai, A.; de la Torre, A.; Eknapakul, T.; Buaphet, P.; Mo, S.-K.; Meevasana, W.; Bahramy, M. S.; Baumberger, F.

    2014-02-01

    Two-dimensional electron gases (2DEGs) in SrTiO3 have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Here we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the d-electron subband ladder of this complex-oxide 2DEG. Combined with realistic tight-binding supercell calculations, we uncover how quantum confinement and inversion symmetry breaking collectively tune the delicate interplay of charge, spin, orbital and lattice degrees of freedom in this system. We reveal how they lead to pronounced orbital ordering, mediate an orbitally enhanced Rashba splitting with complex subband-dependent spin-orbital textures and markedly change the character of electron-phonon coupling, co-operatively shaping the low-energy electronic structure of the 2DEG. Our results allow for a unified understanding of spectroscopic and transport measurements across different classes of SrTiO3-based 2DEGs, and yield new microscopic insights on their functional properties.

  16. Planck scale unification and dynamical symmetry breaking

    SciTech Connect

    Lykken, Joseph D.; Willenbrock, Scott

    1993-09-01

    We explore the possibility of unification of gauge couplings near the Planck scale in models of extended technicolor. We observe that models of the form G X SU(3)_c X SU(2)_L X U(1)_Y cannot be realized, due to the presence of massless neutral Goldstone bosons (axions) and light charged pseudo-Goldstone bosons; thus, unification of the known forces near the Planck scale cannot be achieved. The next simplest possibility, G X SU(4)_{PS} X SU(2)_L X U(1)_{T_{3R}}, cannot lead to unification of the Pati-Salam and weak gauge groups near the Planck scale. However, superstring theory provides relations between couplings at the Planck scale without the need for an underlying grand-unified gauge group, which allows unification of the SU(4)PS and SU(2)L couplings.

  17. Texture-defined objects influence responses of blowfly motion-sensitive neurons under natural dynamical conditions

    PubMed Central

    Ullrich, Thomas W.; Kern, Roland; Egelhaaf, Martin

    2014-01-01

    The responses of visual interneurons of flies involved in the processing of motion information do not only depend on the velocity, but also on other stimulus parameters, such as the contrast and the spatial frequency content of the stimulus pattern. These dependencies have been known for long, but it is still an open question how they affect the neurons’ performance in extracting information about the structure of the environment under the specific dynamical conditions of natural flight. Free-flight of blowflies is characterized by sequences of phases of translational movements lasting for just 30–100 ms interspersed with even shorter and extremely rapid saccade-like rotational shifts in flight and gaze direction. Previous studies already analyzed how nearby objects, leading to relative motion on the retina with respect to a more distant background, influenced the response of a class of fly motion sensitive visual interneurons, the horizontal system (HS) cells. In the present study, we focused on objects that differed from their background by discontinuities either in their brightness contrast or in their spatial frequency content. We found strong object-induced effects on the membrane potential even during the short intersaccadic intervals, if the background contrast was small and the object contrast sufficiently high. The object evoked similar response increments provided that it contained higher spatial frequencies than the background, but not under reversed conditions. This asymmetry in the response behavior is partly a consequence of the depolarization level induced by the background. Thus, our results suggest that, under the specific dynamical conditions of natural flight, i.e., on a very short timescale, the responses of HS cells represent object information depending on the polarity of the difference between object and background contrast and spatial frequency content. PMID:24808836

  18. Design of periodic nano- and macro-scale textures for high-performance thin-film multi-junction solar cells

    NASA Astrophysics Data System (ADS)

    Krc, J.; Sever, M.; Kovacic, M.; Moulin, E.; Campa, A.; Lipovsek, B.; Steltenpool, M.; van Erven, A. J. M.; Haug, F.-J.; Ballif, C.; Topic, M.

    2016-06-01

    Surface textures in thin-film silicon multi-junction solar cells play an important role in gaining the photocurrent of the devices. In this paper, a design of the textures is carried out for the case of amorphous silicon/micro-crystalline silicon (a-Si:H/μc-Si:H) solar cells, employing advanced modelling to determine the textures for defect-free silicon layer growth and to increase the photocurrent. A model of non-conformal layer growth and a hybrid optical modelling approach are used to perform realistic 3D simulations of the structures. The hybrid optical modelling includes rigorous modelling based on the finite element method and geometrical optics models. This enables us to examine the surface texture scaling from nano- to macro-sized (several tens or hundreds of micrometers) texturisation features. First, selected random and periodic nanotextures are examined with respect to critical positions of defect-region formation in Si layers. We show that despite careful selection of a well-suited semi-ellipsoidal periodic texture for defect-free layer growth, defective regions in Si layers of a-Si:H/μc-Si:H cell cannot be avoided if the lateral and vertical dimensions of the nano features are optimised only for high gain in photocurrent. Macro features are favourable for defect-free layer growth, but do not render the photocurrent gains as achieved with light-scattering properties of the optimised nanotextures. Simulation results show that from the optical point of view the semi-ellipsoidal periodic nanotextures with lateral features smaller than 0.4 μm and vertical peak-to-peak heights around or above 0.3 μm are required to achieve a gain in short-circuit current of the top cell with respect to the state-of-the-art random texture (>16% increase), whereas lateral dimensions around 0.8 μm and heights around 0.6 μm lead to a >6% gain in short-circuit current of the bottom cell.

  19. On the density scaling of liquid dynamics

    NASA Astrophysics Data System (ADS)

    Fragiadakis, D.; Roland, C. M.

    2011-01-01

    Superpositioning of relaxation data as a function of the product variable TVγ, where T is temperature, V the specific volume, and γ a material constant, is an experimental fact demonstrated for approximately 100 liquids and polymers. Such scaling behavior would result from the intermolecular potential having the form of an inverse power law (IPL), suggesting that an IPL is a good approximation for certain relaxation properties over the relevant range of intermolecular distances. However, the derivation of the scaling property of an IPL liquid is based on reduced quantities, for example, the reduced relaxation time equal to T1/2V-1/3 times the actual relaxation time. The difference between scaling using reduced rather than unreduced units is negligible in the supercooled regime; however, at higher temperature the difference can be substantial, accounting for the purported breakdown of the scaling and giving rise to different values of the scaling exponent. Only the γ obtained using reduced quantities can be sensibly related to the intermolecular potential.

  20. Role of integrin α2 β1 in mediating osteoblastic differentiation on three-dimensional titanium scaffolds with submicron-scale texture.

    PubMed

    Wang, Xiaokun; Schwartz, Zvi; Gittens, Rolando A; Cheng, Alice; Olivares-Navarrete, Rene; Chen, Haifeng; Boyan, Barbara D

    2015-06-01

    Hierarchical surface roughness of titanium and titanium alloy implants plays an important role in osseointegration. In vitro and in vivo studies show greater osteoblast differentiation and bone formation when implants have submicron-scale textured surfaces. In this study, we tested the potential benefit of combining a submicron-scale textured surface with three-dimensional (3D) structure on osteoblast differentiation and the involvement of an integrin-driven mechanism. 3D titanium scaffolds were made using orderly oriented titanium meshes and microroughness was added to the wire surface by acid-etching. MG63 and human osteoblasts were seeded on 3D scaffolds and 2D surfaces with or without acid etching. At confluence, increased osteocalcin, vascular endothelial growth factor, osteoprotegerin (OPG), and alkaline phosphatase (ALP) activity were observed in MG63 and human osteoblasts on 3D scaffolds in comparison to 2D surfaces at the protein level, indicating enhanced osteoblast differentiation. To further investigate the mechanism of osteoblast-3D scaffold interaction, the role of integrin α2β1 was examined. The results showed β1 and α2β1 integrin silencing abolished the increase in osteoblastic differentiation markers on 3D scaffolds. Time course studies showed osteoblasts matured faster in the 3D environment in the early stage of culture, while as cells proliferated, the maturation slowed down to a comparative level as 2D surfaces. After 12 days of postconfluent culture, osteoblasts on 3D scaffolds showed a second-phase increase in ALP activity. This study shows that osteoblastic differentiation is improved on 3D scaffolds with submicron-scale texture and is mediated by integrin α2β1. PMID:25203434

  1. Role of integrin α2β1 in mediating osteoblastic differentiation on three-dimensional titanium scaffolds with submicron-scale texture

    PubMed Central

    Wang, Xiaokun; Schwartz, Zvi; Gittens, Rolando A.; Cheng, Alice; Olivares-Navarrete, Rene; Chen, Haifeng; Boyan, Barbara D.

    2014-01-01

    Hierarchical surface roughness of titanium and titanium alloy implants plays an important role in osseointegration. In vitro and in vivo studies show greater osteoblast differentiation and bone formation when implants have submicron-scale textured surfaces. In this study, we tested the potential benefit of combining a submicron-scale textured surface with three-dimensional (3D) structure on osteoblast differentiation and the involvement of an integrin-driven mechanism. 3D titanium scaffolds were made using orderly oriented titanium meshes and microroughness was added to the wire surface by acid-etching. MG63 and human osteoblasts were seeded on 3D scaffolds and 2D surfaces with or without acid etching. At confluence, increased osteocalcin, vascular endothelial growth factor, osteoprotegerin (OPG), and alkaline phosphatase (ALP) activity were observed in MG63 and human osteoblasts on 3D scaffolds in comparison to 2D surfaces at the protein level, indicating enhanced osteoblast differentiation. To further investigate the mechanism of osteoblast-3D scaffold interaction, the role of integrin α2β1 was examined. The results showed β1 and α2β1 integrin silencing abolished the increase in osteoblastic differentiation markers on 3D scaffolds. Time course studies showed osteoblasts matured faster in the 3D environment in the early stage of culture, while as cells proliferated, the maturation slowed down to a comparative level as 2D surfaces. After 12 days of postconfluent culture, osteoblasts on 3D scaffolds showed a second-phase increase in ALP activity. This study shows that osteoblastic differentiation is improved on 3D scaffolds with submicron-scale texture and is mediated by integrin α2β1. PMID:25203434

  2. Multi-Scale Dynamics From Earth's Surface into the Thermosphere

    NASA Astrophysics Data System (ADS)

    Fritts, David

    2016-07-01

    Atmospheric structures ranging from very small scales near Earth's surface to much larger scales in the mesosphere and lower thermosphere (MLT) appear to exhibit common features and underlying dynamics. Above the turbopause at ~110 km, kinematic viscosity and thermal diffusivity largely suppress flow instabilities leading to turbulence. Below the turbopause, however, multi-scale dynamics appear to drive systematic transfers of energy both among quasi-two-dimensional (2D) motions at larger scales and to three-dimensional (3D) instabilities and turbulence at smaller scales. Such multi-scale dynamics arise due to superposed GWs and background wind shears and readily drive local layered structures comprising thinner, strongly stratified and sheared "sheets" and thicker, weakly stratified and sheared "layers". These environments initiate various types of instabilities that yield local turbulence and mixing that contribute to maintenance of the "sheet and layer" (S&L) structures. Idealized modeling of these dynamics describe many S&L flow, instability, and turbulence features that are confirmed by observations from the stable boundary layer into the mesosphere. Similar dynamics accompany larger-scale gravity waves that encounter variable stratification and shear, and that induce strong local body forces, throughout the atmosphere.

  3. Dynamic control of substrate bias for highly c-axis textured thin ferromagnetic CoCrTa film in inductively coupled plasma-assisted sputtering

    SciTech Connect

    Okimura, Kunio; Oyanagi, Junya

    2005-01-01

    This study shows highly c-axis textured thin ferromagnetic Co-based alloy (CoCrTa) film growth in inductively coupled plasma (ICP)-assisted sputtering with an internal coil with an insulated surface. Dynamic control of the substrate bias achieved highly c-axis textured CoCrTa film with a thickness of 70 nm in 3 min depositions on a Si substrate. The prepared film showed a smooth, dense surface consisting of small crystal grains. The film had a perpendicular magnetic coercivity of 1030 Oe and coercive squareness of 0.36. ICP-assisted sputtering with an internal coil with an insulated surface enabled higher-density ({>=}1.0x10{sup 11} cm{sup -3}) plasma with lower space potential ({<=}30 V) compared to ICP-assisted sputtering with bare coil systems. Therefore, the proposed bias control is quite effective for textured growth of thinner Co layers via the effect of a high flux of ions with proper energies. This method can be a candidate for the deposition technique of c-axis textured films as perpendicular magnetic recording media.

  4. Dynamic Assessment in Phonological Disorders: The Scaffolding Scale of Stimulability

    ERIC Educational Resources Information Center

    Glaspey, Amy M.; Stoel-Gammon, Carol

    2005-01-01

    Dynamic assessment is applied to phonological disorders with the Scaffolding Scale of Stimulability (SSS). The SSS comprises a 21-point hierarchical scale of cues and linguistic environments. With the SSS, clinicians assess stimulability as a diagnostic indicator and use the measure to monitor progress across treatment. Unlike other phonological…

  5. Scale invariance in the dynamics of spontaneous behavior

    PubMed Central

    Proekt, Alex; Banavar, Jayanth R.; Maritan, Amos; Pfaff, Donald W.

    2012-01-01

    Typically one expects that the intervals between consecutive occurrences of a particular behavior will have a characteristic time scale around which most observations are centered. Surprisingly, the timing of many diverse behaviors from human communication to animal foraging form complex self-similar temporal patterns reproduced on multiple time scales. We present a general framework for understanding how such scale invariance may arise in nonequilibrium systems, including those that regulate mammalian behaviors. We then demonstrate that the predictions of this framework are in agreement with detailed analysis of spontaneous mouse behavior observed in a simple unchanging environment. Neural systems operate on a broad range of time scales, from milliseconds to hours. We analytically show that such a separation between time scales could lead to scale-invariant dynamics without any fine tuning of parameters or other model-specific constraints. Our analyses reveal that the specifics of the distribution of resources or competition among several tasks are not essential for the expression of scale-free dynamics. Rather, we show that scale invariance observed in the dynamics of behavior can arise from the dynamics intrinsic to the brain. PMID:22679281

  6. Metastable and scaling regimes of one-dimensional Kawasaki dynamics

    NASA Astrophysics Data System (ADS)

    Albarracín, F. A. Gómez; Rosales, H. D.; Grynberg, M. D.

    2016-04-01

    We investigate the large-time scaling regimes arising from a variety of metastable structures in a chain of Ising spins with both first- and second-neighbor couplings while subject to Kawasaki dynamics. Depending on the ratio and sign of these former, different dynamic exponents are suggested by finite-size scaling analyses of relaxation times. At low but nonzero temperatures these are calculated via exact diagonalizations of the evolution operator in finite chains under several activation barriers. In the absence of metastability the dynamics is always diffusive.

  7. Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.

    PubMed

    Cawkwell, M J; Niklasson, Anders M N

    2012-10-01

    Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces. PMID:23039583

  8. Dynamic scaling and temperature effects in thin film roughening

    NASA Astrophysics Data System (ADS)

    de Assis, T. A.; Aarão Reis, F. D. A.

    2015-06-01

    The dynamic scaling of mesoscopically thick films (up to 104 atomic layers) grown with the Clarke-Vvedensky model is investigated numerically in 2 + 1 dimensions for broad ranges of values of the diffusion-to-deposition ratio R and lateral neighbor detachment probability ɛ, but with no barrier at step edges. The global roughness scales with the film thickness t as W ˜ tβ/[R3/2(ɛ + a)], where β ≈ 0.2 is the growth exponent consistent with Villain-Lai-Das Sarma (VLDS) scaling and a = 0.025. This general dependence on R and ɛ is inferred from renormalization studies and shows a remarkable effect of the former but a small effect of the latter, for ɛ ⩽ 0.1. For R ⩾ 104, very smooth surfaces are always produced. The local roughness shows apparent anomalous scaling for very low temperatures (R ⩽ 102), which is a consequence of large scaling corrections to asymptotic normal scaling. The scaling variable R3/2(ɛ + a) also represents the temperature effects in the scaling of the correlation length and appears in the dynamic scaling relation of the local roughness, which gives dynamic exponent z ≈ 3.3 also consistent with the VLDS class.

  9. Scale-invariant entropy-based theory for dynamic ordering

    SciTech Connect

    Mahulikar, Shripad P. E-mail: spm@aero.iitb.ac.in; Kumari, Priti

    2014-09-01

    Dynamically Ordered self-organized dissipative structure exists in various forms and at different scales. This investigation first introduces the concept of an isolated embedding system, which embeds an open system, e.g., dissipative structure and its mass and/or energy exchange with its surroundings. Thereafter, scale-invariant theoretical analysis is presented using thermodynamic principles for Order creation, existence, and destruction. The sustainability criterion for Order existence based on its structured mass and/or energy interactions with the surroundings is mathematically defined. This criterion forms the basis for the interrelationship of physical parameters during sustained existence of dynamic Order. It is shown that the sufficient condition for dynamic Order existence is approached if its sustainability criterion is met, i.e., its destruction path is blocked. This scale-invariant approach has the potential to unify the physical understanding of universal dynamic ordering based on entropy considerations.

  10. SU-E-I-100: Heterogeneity Studying for Primary and Lymphoma Tumors by Using Multi-Scale Image Texture Analysis with PET-CT Images

    SciTech Connect

    Li, Dengwang; Wang, Qinfen; Li, H; Chen, J

    2014-06-01

    Purpose: The purpose of this research is studying tumor heterogeneity of the primary and lymphoma by using multi-scale texture analysis with PET-CT images, where the tumor heterogeneity is expressed by texture features. Methods: Datasets were collected from 12 lung cancer patients, and both of primary and lymphoma tumors were detected with all these patients. All patients underwent whole-body 18F-FDG PET/CT scan before treatment.The regions of interest (ROI) of primary and lymphoma tumor were contoured by experienced clinical doctors. Then the ROI of primary and lymphoma tumor is extracted automatically by using Matlab software. According to the geometry size of contour structure, the images of tumor are decomposed by multi-scale method.Wavelet transform was performed on ROI structures within images by L layers sampling, and then wavelet sub-bands which have the same size of the original image are obtained. The number of sub-bands is 3L+1.The gray level co-occurrence matrix (GLCM) is calculated within different sub-bands, thenenergy, inertia, correlation and gray in-homogeneity were extracted from GLCM.Finally, heterogeneity statistical analysis was studied for primary and lymphoma tumor using the texture features. Results: Energy, inertia, correlation and gray in-homogeneity are calculated with our experiments for heterogeneity statistical analysis.Energy for primary and lymphomatumor is equal with the same patient, while gray in-homogeneity and inertia of primaryare 2.59595±0.00855, 0.6439±0.0007 respectively. Gray in-homogeneity and inertia of lymphoma are 2.60115±0.00635, 0.64435±0.00055 respectively. The experiments showed that the volume of lymphoma is smaller than primary tumor, but thegray in-homogeneity and inertia were higher than primary tumor with the same patient, and the correlation with lymphoma tumors is zero, while the correlation with primary tumor isslightly strong. Conclusion: This studying showed that there were effective heterogeneity

  11. Grain-scale Dynamics in Explosives

    SciTech Connect

    Reaugh, J E

    2002-09-30

    High explosives can have reactions to external stimuli that range from mild pressure bursts to full detonation. The ability to predict these responses is important for understanding the performance as well as the safety and reliability of these important materials. At present, we have only relatively simple phenomenological computational models for the behavior of high explosives under these conditions. These models are limited by the assumption that the explosive can be treated as homogeneous. In reality the explosive is a highly heterogeneous composite of irregular crystallites and plastic binder. The heterogeneous nature of explosives is responsible for many of their unique mechanical and chemical properties. We use computational models to simulate the response of explosives to external mechanical stimuli at the grain-scale level. The ultimate goal of this work is to understand the detailed processes involved with the material response, so that we can develop realistic material models, which can be used in a hydrodynamics/multi-physics code to model real systems. The new material models will provide a more realistic description of the explosive system during the most critical period of ignition and initiation. The focus of this work is to use the results of grain-scale simulations to develop an advanced macroscopic reactive flow model that is consistent with our understanding of the grain-scale details, and that can incorporate such information quantitatively. The objective is to connect changes to observed properties of the explosive (grain size distribution, binder thickness distribution, void shape, size, and separation distribution, binder mechanical properties, etc.) with predictions of the resulting sensitivity and performance.

  12. Scaling and Universality at Dynamical Quantum Phase Transitions.

    PubMed

    Heyl, Markus

    2015-10-01

    Dynamical quantum phase transitions (DQPTs) at critical times appear as nonanalyticities during nonequilibrium quantum real-time evolution. Although there is evidence for a close relationship between DQPTs and equilibrium phase transitions, a major challenge is still to connect to fundamental concepts such as scaling and universality. In this work, renormalization group transformations in complex parameter space are formulated for quantum quenches in Ising models showing that the DQPTs are critical points associated with unstable fixed points of equilibrium Ising models. Therefore, these DQPTs obey scaling and universality. On the basis of numerical simulations, signatures of these DQPTs in the dynamical buildup of spin correlations are found with an associated power-law scaling determined solely by the fixed point's universality class. An outlook is given on how to explore this dynamical scaling experimentally in systems of trapped ions. PMID:26551800

  13. Scaling and Universality at Dynamical Quantum Phase Transitions

    NASA Astrophysics Data System (ADS)

    Heyl, Markus

    2015-10-01

    Dynamical quantum phase transitions (DQPTs) at critical times appear as nonanalyticities during nonequilibrium quantum real-time evolution. Although there is evidence for a close relationship between DQPTs and equilibrium phase transitions, a major challenge is still to connect to fundamental concepts such as scaling and universality. In this work, renormalization group transformations in complex parameter space are formulated for quantum quenches in Ising models showing that the DQPTs are critical points associated with unstable fixed points of equilibrium Ising models. Therefore, these DQPTs obey scaling and universality. On the basis of numerical simulations, signatures of these DQPTs in the dynamical buildup of spin correlations are found with an associated power-law scaling determined solely by the fixed point's universality class. An outlook is given on how to explore this dynamical scaling experimentally in systems of trapped ions.

  14. Independent Component Analysis of Textures

    NASA Technical Reports Server (NTRS)

    Manduchi, Roberto; Portilla, Javier

    2000-01-01

    A common method for texture representation is to use the marginal probability densities over the outputs of a set of multi-orientation, multi-scale filters as a description of the texture. We propose a technique, based on Independent Components Analysis, for choosing the set of filters that yield the most informative marginals, meaning that the product over the marginals most closely approximates the joint probability density function of the filter outputs. The algorithm is implemented using a steerable filter space. Experiments involving both texture classification and synthesis show that compared to Principal Components Analysis, ICA provides superior performance for modeling of natural and synthetic textures.

  15. Scaling properties of excursions in heartbeat dynamics

    NASA Astrophysics Data System (ADS)

    Reyes-Ramírez, I.; Guzmán-Vargas, L.

    2010-02-01

    In this work we study the excursions, defined as the number of beats to return to a local mean value, in heartbeat interval time series from healthy subjects and patients with congestive heart failure (CHF). First, we apply the segmentation procedure proposed by Bernaola-Galván et al. (Phys. Rev. Lett., 87 (2001) 168105), to nonstationary heartbeat time series to identify stationary segments with a local mean value. Next, we identify local excursions around the local mean value and construct the distributions to analyze the time organization and memory in the excursions sequences from the whole time series. We find that the cumulative distributions of excursions are consistent with a stretched exponential function given by g(x)~e-aτb, with a=1.09±0.15 (mean value±SD) and b=0.91±0.11 for healthy subjects and a=1.31±0.23 and b=0.77±0.13 for CHF patients. The cumulative conditional probability G(τ|τ0) is considered to evaluate if τ depends on a given interval τ0, that is, to evaluate the memory effect in excursion sequences. We find that the memory in excursions sequences under healthy conditions is characterized by the presence of clusters related to the fact that large excursions are more likely to be followed by large ones whereas for CHF data we do not observe this behavior. The presence of correlations in healthy data is confirmed by means of the detrended fluctuation analysis (DFA) while for CHF records the scaling exponent is characterized by a crossover, indicating that for short scales the sequences resemble uncorrelated noise.

  16. Triadic closure dynamics drives scaling laws in social multiplex networks

    NASA Astrophysics Data System (ADS)

    Klimek, Peter; Thurner, Stefan

    2013-06-01

    Social networks exhibit scaling laws for several structural characteristics, such as degree distribution, scaling of the attachment kernel and clustering coefficients as a function of node degree. A detailed understanding if and how these scaling laws are inter-related is missing so far, let alone whether they can be understood through a common, dynamical principle. We propose a simple model for stationary network formation and show that the three mentioned scaling relations follow as natural consequences of triadic closure. The validity of the model is tested on multiplex data from a well-studied massive multiplayer online game. We find that the three scaling exponents observed in the multiplex data for the friendship, communication and trading networks can simultaneously be explained by the model. These results suggest that triadic closure could be identified as one of the fundamental dynamical principles in social multiplex network formation.

  17. Probing scale interaction in brain dynamics through synchronization.

    PubMed

    Barardi, Alessandro; Malagarriga, Daniel; Sancristobal, Belén; Garcia-Ojalvo, Jordi; Pons, Antonio J

    2014-10-01

    The mammalian brain operates in multiple spatial scales simultaneously, ranging from the microscopic scale of single neurons through the mesoscopic scale of cortical columns, to the macroscopic scale of brain areas. These levels of description are associated with distinct temporal scales, ranging from milliseconds in the case of neurons to tens of seconds in the case of brain areas. Here, we examine theoretically how these spatial and temporal scales interact in the functioning brain, by considering the coupled behaviour of two mesoscopic neural masses (NMs) that communicate with each other through a microscopic neuronal network (NN). We use the synchronization between the two NM models as a tool to probe the interaction between the mesoscopic scales of those neural populations and the microscopic scale of the mediating NN. The two NM oscillators are taken to operate in a low-frequency regime with different peak frequencies (and distinct dynamical behaviour). The microscopic neuronal population, in turn, is described by a network of several thousand excitatory and inhibitory spiking neurons operating in a synchronous irregular regime, in which the individual neurons fire very sparsely but collectively give rise to a well-defined rhythm in the gamma range. Our results show that this NN, which operates at a fast temporal scale, is indeed sufficient to mediate coupling between the two mesoscopic oscillators, which evolve dynamically at a slower scale. We also establish how this synchronization depends on the topological properties of the microscopic NN, on its size and on its oscillation frequency. PMID:25180311

  18. Large Scale, High Resolution, Mantle Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Geenen, T.; Berg, A. V.; Spakman, W.

    2007-12-01

    To model the geodynamic evolution of plate convergence, subduction and collision and to allow for a connection to various types of observational data, geophysical, geodetical and geological, we developed a 4D (space-time) numerical mantle convection code. The model is based on a spherical 3D Eulerian fem model, with quadratic elements, on top of which we constructed a 3D Lagrangian particle in cell(PIC) method. We use the PIC method to transport material properties and to incorporate a viscoelastic rheology. Since capturing small scale processes associated with localization phenomena require a high resolution, we spend a considerable effort on implementing solvers suitable to solve for models with over 100 million degrees of freedom. We implemented Additive Schwartz type ILU based methods in combination with a Krylov solver, GMRES. However we found that for problems with over 500 thousend degrees of freedom the convergence of the solver degraded severely. This observation is known from the literature [Saad, 2003] and results from the local character of the ILU preconditioner resulting in a poor approximation of the inverse of A for large A. The size of A for which ILU is no longer usable depends on the condition of A and on the amount of fill in allowed for the ILU preconditioner. We found that for our problems with over 5×105 degrees of freedom convergence became to slow to solve the system within an acceptable amount of walltime, one minute, even when allowing for considerable amount of fill in. We also implemented MUMPS and found good scaling results for problems up to 107 degrees of freedom for up to 32 CPU¡¯s. For problems with over 100 million degrees of freedom we implemented Algebraic Multigrid type methods (AMG) from the ML library [Sala, 2006]. Since multigrid methods are most effective for single parameter problems, we rebuild our model to use the SIMPLE method in the Stokes solver [Patankar, 1980]. We present scaling results from these solvers for 3D

  19. Leptogenesis with a dynamical seesaw scale

    SciTech Connect

    Sierra, D. Aristizabal; Vicente, A.; Tórtola, M.; Valle, J.W.F. E-mail: mariam@ific.uv.es E-mail: Avelino.Vicente@ulg.ac.be

    2014-07-01

    In the simplest type-I seesaw leptogenesis scenario right-handed neutrino annihilation processes are absent. However, in the presence of new interactions these processes are possible and can affect the resulting B-L asymmetry in an important way. A prominent example is provided by models with spontaneous lepton number violation, where the existence of new dynamical degrees of freedom can play a crucial role. In this context, we provide a model-independent discussion of the effects of right-handed neutrino annihilations. We show that in the weak washout regime, as long as the scattering processes remain slow compared with the Hubble expansion rate throughout the relevant temperature range, the efficiency can be largely enhanced, reaching in some cases maximal values. Moreover, the B-L asymmetry yield turns out to be independent upon initial conditions, in contrast to the ''standard'' case. On the other hand, when the annihilation processes are fast, the right-handed neutrino distribution tends to a thermal one down to low temperatures, implying a drastic suppression of the efficiency which in some cases can render the B-L generation mechanism inoperative.

  20. Scale-Independent Measures and Pathologic Cardiac Dynamics

    NASA Astrophysics Data System (ADS)

    Amaral, Luís A.; Goldberger, Ary L.; Ivanov, Plamen Ch.; Stanley, H. Eugene

    1998-09-01

    We study several scale-independent measures of cardiac interbeat interval dynamics defined through the application of the wavelet transform. We test their performance in detecting heart disease using a database consisting of records of interbeat intervals for a group of healthy individuals and subjects with congestive heart failure. We find that scale-independent measures effectively distinguish healthy from pathologic behavior and propose a new two-variable scale-independent measure that could be clinically useful. We compare the performance of a recently proposed scale-dependent measure and find that the results depend on the database analyzed and on the analyzing wavelet.

  1. Analyzing µCT images of bone specimen with wavelets and scaling indices: Which texture measure does better to depict the trabecular bone structure?

    NASA Astrophysics Data System (ADS)

    Raeth, Christoph W.; Bauer, Jan; Mueller, Dirk; Rummeny, Ernst J.; Link, Thomas M.; Majumdar, Sharmila; Eckstein, Felix; Monetti, Roberto

    2007-03-01

    The visualisation and subsequent quantification of the inner bone structure plays an important role for better understanding the disease- or drug-induced changes of the bone in the context of osteoporosis. Scaling indices (SIM) are well suited to quantify these structures on a local level, especially to discriminate between plate-like and rod-like structural elements. Local filters based on wavelets (WVL) are a standard technique in texture analysis. So far, they are mainly used for two-dimensional image data sets. Here we extend the formalism of the spherical Mexican hat wavelets to the analysis of three-dimensional tomographic images and evaluate its performance in comparison with scaling indices, histomorphometric measures and BMD. μCT images with isotropic resolution of 30 x 30 x 30 μm of a sample of 19 trabecular bone specimen of human thoracic vertebrae were acquired. In addition, the bone mineral density was measured by QCT. The maximum compressive strength (MCS) was determined in a biomechanical test. Some wavelet-based as well as all scaling index- based texture measures show a significantly higher correlation with MCS (WVL: ρ2=0.54, SIM: ρ2=0.53-0.56) than BMD (ρ2=0.46), where we find slightly better correlations for SIM than for WVL. The SIM and WVL results are comparable but not better to those obtained with histomorphometric measures (BV/TV: ρ2=0.45, Tr. N.: ρ2=0.67, Tr.Sp.: ρ2=0.67). In conclusion, WVL and SIM techniques can successfully be applied to μCT image data. Since the two measures characterize the image structures on a local scale, they offer the possibility to directly identify and discriminate rods and sheets of the trabecular structure. This property may give new insights about the bone constituents responsible for the mechanical strength.

  2. Micro-scale drop dynamics for heat transfer enhancement

    NASA Astrophysics Data System (ADS)

    Francois, Marianne; Shyy, Wei

    2002-05-01

    With rapid advances in micro-device fabrication, computational techniques, and diagnostic tools, there is a significant interest in applying micro-scale fluid dynamics and heat transfer to flow control, flight vehicle protection, and thermal management. Utilizing energy transfer associated with phase change, multiphase systems offer many new opportunities. To elucidate the main scientific issues and technical implications, recent research addressing the interplay between capillarity, moving boundaries, fluid dynamics, heat transfer, and phase change of micro-scale multiphase systems is reviewed. The parametric variations in contact angle, surface tension, impact velocity, and liquid viscosity related to drop impingement and heat transfer are discussed.

  3. High-scale axions without isocurvature from inflationary dynamics

    NASA Astrophysics Data System (ADS)

    Kearney, John; Orlofsky, Nicholas; Pierce, Aaron

    2016-05-01

    Observable primordial tensor modes in the cosmic microwave background (CMB) would point to a high scale of inflation HI . If the scale of Peccei-Quinn (PQ) breaking fa is greater than H/I 2 π , CMB constraints on isocurvature naively rule out QCD axion dark matter. This assumes the potential of the axion is unmodified during inflation. We revisit models where inflationary dynamics modify the axion potential and discuss how isocurvature bounds can be relaxed. We find that models that rely solely on a larger PQ-breaking scale during inflation fI require either late-time dilution of the axion abundance or highly super-Planckian fI that somehow does not dominate the inflationary energy density. Models that have enhanced explicit breaking of the PQ symmetry during inflation may allow fa close to the Planck scale. Avoiding disruption of inflationary dynamics provides important limits on the parameter space.

  4. High-scale axions without isocurvature from inflationary dynamics

    DOE PAGESBeta

    Kearney, John; Orlofsky, Nicholas; Pierce, Aaron

    2016-05-31

    Observable primordial tensor modes in the cosmic microwave background (CMB) would point to a high scale of inflation HI. If the scale of Peccei-Quinn (PQ) breaking fa is greater than HI/2π, CMB constraints on isocurvature naively rule out QCD axion dark matter. This assumes the potential of the axion is unmodified during inflation. We revisit models where inflationary dynamics modify the axion potential and discuss how isocurvature bounds can be relaxed. We find that models that rely solely on a larger PQ-breaking scale during inflation fI require either late-time dilution of the axion abundance or highly super-Planckian fI that somehowmore » does not dominate the inflationary energy density. Models that have enhanced explicit breaking of the PQ symmetry during inflation may allow fa close to the Planck scale. Lastly, avoiding disruption of inflationary dynamics provides important limits on the parameter space.« less

  5. Dynamical generation of the weak and dark matter scale

    NASA Astrophysics Data System (ADS)

    Hambye, Thomas; Strumia, Alessandro

    2013-09-01

    Assuming that naturalness should be modified by ignoring quadratic divergences, we propose a simple extension of the standard model where the weak scale is dynamically generated together with an automatically stable vector. Identifying it as thermal dark matter, the model has one free parameter. It predicts one extra scalar, detectable at colliders, which triggers a first-order dark/electroweak cosmological phase transition with production of gravitational waves. Vacuum stability holds up to the Planck scale.

  6. Improved scaling of temperature-accelerated dynamics using localization

    NASA Astrophysics Data System (ADS)

    Shim, Yunsic; Amar, Jacques G.

    2016-07-01

    While temperature-accelerated dynamics (TAD) is a powerful method for carrying out non-equilibrium simulations of systems over extended time scales, the computational cost of serial TAD increases approximately as N3 where N is the number of atoms. In addition, although a parallel TAD method based on domain decomposition [Y. Shim et al., Phys. Rev. B 76, 205439 (2007)] has been shown to provide significantly improved scaling, the dynamics in such an approach is only approximate while the size of activated events is limited by the spatial decomposition size. Accordingly, it is of interest to develop methods to improve the scaling of serial TAD. As a first step in understanding the factors which determine the scaling behavior, we first present results for the overall scaling of serial TAD and its components, which were obtained from simulations of Ag/Ag(100) growth and Ag/Ag(100) annealing, and compare with theoretical predictions. We then discuss two methods based on localization which may be used to address two of the primary "bottlenecks" to the scaling of serial TAD with system size. By implementing both of these methods, we find that for intermediate system-sizes, the scaling is improved by almost a factor of N1/2. Some additional possible methods to improve the scaling of TAD are also discussed.

  7. Improved scaling of temperature-accelerated dynamics using localization.

    PubMed

    Shim, Yunsic; Amar, Jacques G

    2016-07-01

    While temperature-accelerated dynamics (TAD) is a powerful method for carrying out non-equilibrium simulations of systems over extended time scales, the computational cost of serial TAD increases approximately as N(3) where N is the number of atoms. In addition, although a parallel TAD method based on domain decomposition [Y. Shim et al., Phys. Rev. B 76, 205439 (2007)] has been shown to provide significantly improved scaling, the dynamics in such an approach is only approximate while the size of activated events is limited by the spatial decomposition size. Accordingly, it is of interest to develop methods to improve the scaling of serial TAD. As a first step in understanding the factors which determine the scaling behavior, we first present results for the overall scaling of serial TAD and its components, which were obtained from simulations of Ag/Ag(100) growth and Ag/Ag(100) annealing, and compare with theoretical predictions. We then discuss two methods based on localization which may be used to address two of the primary "bottlenecks" to the scaling of serial TAD with system size. By implementing both of these methods, we find that for intermediate system-sizes, the scaling is improved by almost a factor of N(1/2). Some additional possible methods to improve the scaling of TAD are also discussed. PMID:27394097

  8. Balance models for equatorial planetary-scale dynamics

    NASA Astrophysics Data System (ADS)

    Chan, Ian Hiu-Fung

    This thesis aims at advancing our understanding of large-scale dynamics in the tropics, specifically the characterization of slow planetary-scale motions through a balance theory; current balance theories in the tropics are unsatisfactory as they filter out Kelvin waves, which are an important component of variability, along with fast inertia-gravity (IG) waves. Recent studies have shown that estimations of tropical variability (particularly Kelvin waves) differ significantly between different reanalysis datasets, and we hypothesize that this discrepancy is largely driven by the lack of suitable balance relations that maximize information obtained from observations. The first part of the thesis concerns the derivation of a balance model that filters out IG waves, but retains slow Rossby and Kelvin waves. Our theory relies on the anisotropy of planetary-scale motions in the tropics, where the zonal scale is typically much larger than the meridional scale. We show that the dynamics of the balance model reproduces planetary-scale dynamics well, but an important point is that the balance relations can also accurately describe the slow dynamics even in the isotropic regime. Moreover, the method can be generalized to cases with strong nonlinearity, diabatic heating, or to more realistic models of the atmosphere. From a practical perspective, our model is an improvement over existing theories as in addition to accurately capturing Kelvin wave dynamics, it also has the potential to provide better constraints on diabatic heating, which is a significant source of uncertainty in tropical variability at present. In the second part of the thesis we explore how our balance theory can be applied to data assimilation systems. Through `identical twin' experiments, we determined that our theory can be used in an ensemble Kalman filter system to produce more accurate and balanced analyses. This is achieved by using a modified localization function and analysis schemes that partition

  9. Scaled control moment gyroscope dynamics effects on performance

    NASA Astrophysics Data System (ADS)

    Leve, Frederick A.

    2015-05-01

    The majority of the literature that discusses the dynamics of control moment gyroscopes (CMG) contains formulations that are not derived from first principles and make simplifying assumptions early in the derivation, possibly neglecting important contributions. For small satellites, additional dynamics that are no longer negligible are shown to cause an increase in torque error and loss of torque amplification. The goal of the analysis presented here is to provide the reader with a complete and general analytical derivation of the equations for dynamics of a spacecraft with n-CMG and to discuss the performance degradation imposed to CMG actuators when scaling them for small satellites. The paper first derives the equations of motion from first principles for a very general case of a spacecraft with n-CMG. Each contribution of the dynamics is described with its effect on the performance of CMG and its significance on scaled CMG performance is addressed. It is shown analytically and verified numerically, that CMG do not scale properly with performance and care must be taken in their design to trade performance, size, mass, and power when reducing their scale.

  10. Emergence of scaling in human-interest dynamics.

    PubMed

    Zhao, Zhi-Dan; Yang, Zimo; Zhang, Zike; Zhou, Tao; Huang, Zi-Gang; Lai, Ying-Cheng

    2013-01-01

    Human behaviors are often driven by human interests. Despite intense recent efforts in exploring the dynamics of human behaviors, little is known about human-interest dynamics, partly due to the extreme difficulty in accessing the human mind from observations. However, the availability of large-scale data, such as those from e-commerce and smart-phone communications, makes it possible to probe into and quantify the dynamics of human interest. Using three prototypical "Big Data" sets, we investigate the scaling behaviors associated with human-interest dynamics. In particular, from the data sets we uncover fat-tailed (possibly power-law) distributions associated with the three basic quantities: (1) the length of continuous interest, (2) the return time of visiting certain interest, and (3) interest ranking and transition. We argue that there are three basic ingredients underlying human-interest dynamics: preferential return to previously visited interests, inertial effect, and exploration of new interests. We develop a biased random-walk model, incorporating the three ingredients, to account for the observed fat-tailed distributions. Our study represents the first attempt to understand the dynamical processes underlying human interest, which has significant applications in science and engineering, commerce, as well as defense, in terms of specific tasks such as recommendation and human-behavior prediction. PMID:24326949

  11. Emergence of scaling in human-interest dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, Zhi-Dan; Yang, Zimo; Zhang, Zike; Zhou, Tao; Huang, Zi-Gang; Lai, Ying-Cheng

    2013-12-01

    Human behaviors are often driven by human interests. Despite intense recent efforts in exploring the dynamics of human behaviors, little is known about human-interest dynamics, partly due to the extreme difficulty in accessing the human mind from observations. However, the availability of large-scale data, such as those from e-commerce and smart-phone communications, makes it possible to probe into and quantify the dynamics of human interest. Using three prototypical ``Big Data'' sets, we investigate the scaling behaviors associated with human-interest dynamics. In particular, from the data sets we uncover fat-tailed (possibly power-law) distributions associated with the three basic quantities: (1) the length of continuous interest, (2) the return time of visiting certain interest, and (3) interest ranking and transition. We argue that there are three basic ingredients underlying human-interest dynamics: preferential return to previously visited interests, inertial effect, and exploration of new interests. We develop a biased random-walk model, incorporating the three ingredients, to account for the observed fat-tailed distributions. Our study represents the first attempt to understand the dynamical processes underlying human interest, which has significant applications in science and engineering, commerce, as well as defense, in terms of specific tasks such as recommendation and human-behavior prediction.

  12. Emergence of scaling in human-interest dynamics

    PubMed Central

    Zhao, Zhi-Dan; Yang, Zimo; Zhang, Zike; Zhou, Tao; Huang, Zi-Gang; Lai, Ying-Cheng

    2013-01-01

    Human behaviors are often driven by human interests. Despite intense recent efforts in exploring the dynamics of human behaviors, little is known about human-interest dynamics, partly due to the extreme difficulty in accessing the human mind from observations. However, the availability of large-scale data, such as those from e-commerce and smart-phone communications, makes it possible to probe into and quantify the dynamics of human interest. Using three prototypical “Big Data” sets, we investigate the scaling behaviors associated with human-interest dynamics. In particular, from the data sets we uncover fat-tailed (possibly power-law) distributions associated with the three basic quantities: (1) the length of continuous interest, (2) the return time of visiting certain interest, and (3) interest ranking and transition. We argue that there are three basic ingredients underlying human-interest dynamics: preferential return to previously visited interests, inertial effect, and exploration of new interests. We develop a biased random-walk model, incorporating the three ingredients, to account for the observed fat-tailed distributions. Our study represents the first attempt to understand the dynamical processes underlying human interest, which has significant applications in science and engineering, commerce, as well as defense, in terms of specific tasks such as recommendation and human-behavior prediction. PMID:24326949

  13. Seismic texture and amplitude analysis of large scale fluid escape pipes using time lapses seismic surveys: examples from the Loyal Field (Scotland, UK)

    NASA Astrophysics Data System (ADS)

    Maestrelli, Daniele; Jihad, Ali; Iacopini, David; Bond, Clare

    2016-04-01

    Fluid escape pipes are key features of primary interest for the analysis of vertical fluid flow and secondary hydrocarbon migration in sedimentary basin. Identified worldwide (Løset et al., 2009), they acquired more and more importance as they represent critical pathways for supply of methane and potential structure for leakage into the storage reservoir (Cartwright & Santamarina, 2015). Therefore, understanding their genesis, internal characteristics and seismic expression, is of great significance for the exploration industry. Here we propose a detailed characterization of the internal seismic texture of some seal bypass system (e.g fluid escape pipes) from a 4D seismic survey (released by the BP) recently acquired in the Loyal Field. The seal by pass structure are characterized by big-scale fluid escape pipes affecting the Upper Paleogene/Neogene stratigraphic succession in the Loyal Field, Scotland (UK). The Loyal field, is located on the edge of the Faroe-Shetland Channel slope, about 130 km west of Shetland (Quadrants 204/205 of the UKCS) and has been recently re-appraised and re developed by a consortium led by BP. The 3D detailed mapping analysis of the full and partial stack survey (processed using amplitude preservation workflows) shows a complex system of fluid pipe structure rooted in the pre Lista formation and developed across the paleogene and Neogene Units. Geometrical analysis show that pipes got diameter varying between 100-300 m and a length of 500 m to 2 km. Most pipes seem to terminate abruptly at discrete subsurface horizons or in diffuse termination suggesting multiple overpressured events and lateral fluid migration (through Darcy flows) across the overburden units. The internal texture analysis of the large pipes, (across both the root and main conduit zones), using near, medium and far offset stack dataset (processed through an amplitude preserved PSTM workflow) shows a tendency of up-bending of reflection (rather than pulls up artefacts

  14. Global and Multi-scale Dynamics of the Magnetosphere

    NASA Astrophysics Data System (ADS)

    Sharma, A. S.; Sitnov, M. I.

    2001-05-01

    Earth's magnetosphere during substorms demonstrates a number of characteristic features such as low effective dimension, hysteresis and power-law spectra of fluctuations on different scales. The dynamics, on the largest scale, associated with substorms, are in reasonable agreement with low-dimensional magnetospheric models and in particular those of inverse bifurcations. However, deviations from the low-dimensional picture are not negligible, making the nonequilibrium phase transition more appropriate as a dynamical analogue of the substorm activity. On the other hand, the multi- scale magnetospheric dynamics cannot be restricted to the self-organized criticality (SOC), which is based on a class of mathematical analogues of sandpiles. Like real sandpiles the magnetosphere demonstrates during substorms the features, which are distinct from SOC and more reminiscent again to conventional phase transitions. While the multi-scale substorm activity resembles second-order phase transitions, the largest substorm avalanches are shown to reveal the features of first-order nonequilibrium transitions including hysteresis phenomenon and global structure of the type of the "temperature-pressure-density" diagram. Moreover, this diagram allows one to compute a critical exponent, consistent with the second-order phase transitions, and reflects the multiscale aspect of the substorm activity, different from power-law frequency and scale spectra of autonomous systems. In contrast to SOC exponents, the exponent relates input and output parameters of the magnetosphere. Using an analogy with the dynamical Ising model in the mean-field approximation we show the connection between this data-derived exponent of nonequilibrium transitions in the magnetosphere and the standard critical exponent β of equilibrium second-order phase transitions. We discuss also further developments of the phase tarnsition approach to modeling magnetospheric activity using the multifractal, mutual information

  15. Thermodynamic scaling of dynamic properties of liquid crystals: Verifying the scaling parameters using a molecular model

    NASA Astrophysics Data System (ADS)

    Satoh, Katsuhiko

    2013-08-01

    The thermodynamic scaling of molecular dynamic properties of rotation and thermodynamic parameters in a nematic phase was investigated by a molecular dynamic simulation using the Gay-Berne potential. A master curve for the relaxation time of flip-flop motion was obtained using thermodynamic scaling, and the dynamic property could be solely expressed as a function of TV^{γ _τ }, where T and V are the temperature and volume, respectively. The scaling parameter γτ was in excellent agreement with the thermodynamic parameter Γ, which is the logarithm of the slope of a line plotted for the temperature and volume at constant P2. This line was fairly linear, and as good as the line for p-azoxyanisole or using the highly ordered small cluster model. The equivalence relation between Γ and γτ was compared with results obtained from the highly ordered small cluster model. The possibility of adapting the molecular model for the thermodynamic scaling of other dynamic rotational properties was also explored. The rotational diffusion constant and rotational viscosity coefficients, which were calculated using established theoretical and experimental expressions, were rescaled onto master curves with the same scaling parameters. The simulation illustrates the universal nature of the equivalence relation for liquid crystals.

  16. Thermodynamic scaling of dynamic properties of liquid crystals: verifying the scaling parameters using a molecular model.

    PubMed

    Satoh, Katsuhiko

    2013-08-28

    The thermodynamic scaling of molecular dynamic properties of rotation and thermodynamic parameters in a nematic phase was investigated by a molecular dynamic simulation using the Gay-Berne potential. A master curve for the relaxation time of flip-flop motion was obtained using thermodynamic scaling, and the dynamic property could be solely expressed as a function of TV(γτ) , where T and V are the temperature and volume, respectively. The scaling parameter γτ was in excellent agreement with the thermodynamic parameter Γ, which is the logarithm of the slope of a line plotted for the temperature and volume at constant P2. This line was fairly linear, and as good as the line for p-azoxyanisole or using the highly ordered small cluster model. The equivalence relation between Γ and γ(τ) was compared with results obtained from the highly ordered small cluster model. The possibility of adapting the molecular model for the thermodynamic scaling of other dynamic rotational properties was also explored. The rotational diffusion constant and rotational viscosity coefficients, which were calculated using established theoretical and experimental expressions, were rescaled onto master curves with the same scaling parameters. The simulation illustrates the universal nature of the equivalence relation for liquid crystals. PMID:24007031

  17. Observing scale-invariance in non-critical dynamical systems

    NASA Astrophysics Data System (ADS)

    Gros, C.; Marković, D.

    2013-01-01

    Recent observation for scale invariant neural avalanches in the brain have been discussed in details in the scientific literature. We point out, that these results do not necessarily imply that the properties of the underlying neural dynamics are also scale invariant. The reason for this discrepancy lies in the fact that the sampling statistics of observations and experiments is generically biased by the size of the basins of attraction of the processes to be studied. One has hence to precisely define what one means with statements like 'the brain is critical' . We recapitulate the notion of criticality, as originally introduced in statistical physics for second order phase transitions, turning then to the discussion of critical dynamical systems. We elucidate in detail the difference between a 'critical system', viz a system on the verge of a phase transition, and a 'critical state', viz state with scaleinvariant correlations, stressing the fact that the notion of universality is linked to critical states. We then discuss rigorous results for two classes of critical dynamical systems, the Kauffman net and a vertex routing model, which both have non-critical states. However, an external observer that samples randomly the phase space of these two critical models, would find scale invariance. We denote this phenomenon as 'observational criticality' and discuss its relevance for the response properties of critical dynamical systems.

  18. Micron-scale coherence in interphase chromatin dynamics

    PubMed Central

    Zidovska, Alexandra; Weitz, David A.; Mitchison, Timothy J.

    2013-01-01

    Chromatin structure and dynamics control all aspects of DNA biology yet are poorly understood, especially at large length scales. We developed an approach, displacement correlation spectroscopy based on time-resolved image correlation analysis, to map chromatin dynamics simultaneously across the whole nucleus in cultured human cells. This method revealed that chromatin movement was coherent across large regions (4–5 µm) for several seconds. Regions of coherent motion extended beyond the boundaries of single-chromosome territories, suggesting elastic coupling of motion over length scales much larger than those of genes. These large-scale, coupled motions were ATP dependent and unidirectional for several seconds, perhaps accounting for ATP-dependent directed movement of single genes. Perturbation of major nuclear ATPases such as DNA polymerase, RNA polymerase II, and topoisomerase II eliminated micron-scale coherence, while causing rapid, local movement to increase; i.e., local motions accelerated but became uncoupled from their neighbors. We observe similar trends in chromatin dynamics upon inducing a direct DNA damage; thus we hypothesize that this may be due to DNA damage responses that physically relax chromatin and block long-distance communication of forces. PMID:24019504

  19. Multi-Scale Dynamics of Twinning in SMA

    NASA Astrophysics Data System (ADS)

    Faran, Eilon; Shilo, Doron

    2015-06-01

    The mechanical response of shape memory alloys (SMA) is determined by the dynamics of discrete twin boundaries, and is quantified through constitutive material laws called kinetic relations. Extracting reliable kinetic relations, as well as revealing the physical characteristics of the energy barriers that dictate these relations, are essential for understanding and modeling the overall twinning phenomena. Here, we present a comprehensive, multi-scale study of discrete twin boundary dynamics in a ferromagnetic SMA, NiMnGa. The combination of dynamic-pulsed magnetic field experiments, in conjunction with low-rate uniaxial compression tests, leads to the identification of the dominant energy barriers for twinning. In particular, we show how different mechanisms of motion for overcoming the atomic-scale lattice potential give rise to several kinetic relations that are valid at different ranges of the driving force. In addition, a unique statistical analysis of the low-rate loading curve allows distinguishing between events at different length scales. This analysis leads to the identification of a characteristic length scale (~15 μm) for the distance between barriers that are responsible for the twinning stress property. This characteristic distance is in agreement with the typical thickness of the internal micro-twin structure, which was recently found in these materials.

  20. The Acceleration Scale, Modified Newtonian Dynamics and Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Diaferio, Antonaldo; Angus, Garry W.

    General relativity is able to describe the dynamics of galaxies and larger cosmic structures only if most of the matter in the universe is dark, namely, it does not emit any electromagnetic radiation. Intriguingly, on the scale of galaxies, there is strong observational evidence that the presence of dark matter appears to be necessary only when the gravitational field inferred from the distribution of the luminous matter falls below an acceleration of the order of 10^{-10} m s^{-2}. In the standard model, which combines Newtonian gravity with dark matter, the origin of this acceleration scale is challenging and remains unsolved. On the contrary, the full set of observations can be neatly described, and were partly predicted, by a modification of Newtonian dynamics, dubbed MOND, that does not resort to the existence of dark matter. On the scale of galaxy clusters and beyond, however, MOND is not as successful as on the scale of galaxies, and the existence of some dark matter appears unavoidable. A model combining MOND with hot dark matter made of sterile neutrinos seems to be able to describe most of the astrophysical phenomenology, from the power spectrum of the cosmic microwave background anisotropies to the dynamics of dwarf galaxies. Whether there exists a yet unknown covariant theory that contains general relativity and Newtonian gravity in the weak field limit and MOND as the ultra-weak field limit is still an open question.

  1. Solar chromospheric fine scale structures: dynamics and energetics

    NASA Astrophysics Data System (ADS)

    Tziotziou, K.

    2012-01-01

    The solar chromosphere is a very inhomogeneous and dynamic layer of the solar atmosphere that exhibits several phenomena on a wide range of spatial and temporal scales. High-resolution and long-duration observations, employing mostly lines, such as Halpha, the Ca II infrared lines and the Ca II H and K lines, obtained both from ground-based telescope facilities (e.g. DST, VTT, THEMIS, SST, DOT), as well as state-of-the-art satellites (e.g. SOHO, TRACE, HINODE) reveal an incredibly rich, dynamic and highly structured chromospheric environment. What is known in literature as the chromospheric fine-scale structure mainly consists of small fibrilar-like features that connect various parts of quiet/active regions or span across the chromospheric network cell interiors, showing a large diversity of both physical and dynamic characteristics. The highly dynamic, fine-scale chromospheric structures are mostly governed by flows which reflect the complex geometry and dynamics of the local magnetic field and play an important role in the propagation and dissipation of waves. A comprehensive study of these structures requires deep understanding of the physical processes involved and investigation of their intricate link with structures/processes at lower photospheric levels. Furthermore, due to their large number present on the solar surface, it is essential to investigate their impact on the mass and energy transport to higher atmospheric layers through processes such as magnetic reconnection and propagation of waves. The in-depth study of all aforementioned characteristics and processes, with the further addition of non-LTE physics, as well as the use of three-dimensional numerical simulations poses a fascinating challenge for both theory and numerical modeling of chromospheric fine-scale structures.

  2. Dynamics of deep submarine silicic explosive eruptions in the Kermadec arc, as reflected in pumice vesicularity textures

    NASA Astrophysics Data System (ADS)

    Rotella, Melissa D.; Wilson, Colin J. N.; Barker, Simon J.; Ian Schipper, C.; Wright, Ian C.; Wysoczanski, Richard J.

    2015-08-01

    Despite increasing recognition of silicic pumice-bearing deposits in the deep marine environment, the processes involved in explosive silicic submarine eruptions remain in question. Here we present data on bubble sizes and number densities (number of bubbles per unit of melt matrix) for deep submarine-erupted pumices from three volcanoes (Healy, Raoul SW and Havre) along the Kermadec arc (SW Pacific) to investigate the effects of a significant (>~1 km) overlying water column and the associated increased hydrostatic pressure on magma vesiculation and fragmentation. We compare these textural data with those from chemically similar, subaerially-erupted pyroclasts from nearby Raoul volcano as well as submarine-erupted 'Tangaroan' fragments derived by non-explosive, buoyant detachment of foaming magma from Macauley volcano, also along the Kermadec arc. Deep submarine-erupted pumices are macroscopically similar (colour, density, texture) to subaerial or shallow submarine-erupted pumices, but show contrasting microscopic bubble textures. Deep submarine-erupted pyroclasts have fewer small (< 10 μm diameter) bubbles and narrower bubble size distributions (BSDs) when compared to subaerially erupted pyroclasts from Raoul (35-55 μm vs. 20-70 μm range in volume based median bubble size, respectively). Bubble number density (BND) values are consistently lower than subaerial-erupted pyroclasts and do not display the same trends of decreasing BND with increasing vesicularity. We interpret these textural differences to result from deep submarine eruptions entering the water column at higher pressures than subaerial eruptions entering the atmosphere (~ 10 MPa vs. 0.1 MPa for a vent at 1000 mbsl). The presence of an overlying water column acts to suppress rapid acceleration of magma, as occurs in the upper conduit of subaerial eruptions, therefore suppressing coalescence, permeability development and gas loss, amounting to closed-system degassing conditions. The higher confining

  3. Improving predictions of large scale soil carbon dynamics: Integration of fine-scale hydrological and biogeochemical processes, scaling, and benchmarking

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.

    2015-12-01

    Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we

  4. A Lagrangian dynamic subgrid-scale model turbulence

    NASA Technical Reports Server (NTRS)

    Meneveau, C.; Lund, T. S.; Cabot, W.

    1994-01-01

    A new formulation of the dynamic subgrid-scale model is tested in which the error associated with the Germano identity is minimized over flow pathlines rather than over directions of statistical homogeneity. This procedure allows the application of the dynamic model with averaging to flows in complex geometries that do not possess homogeneous directions. The characteristic Lagrangian time scale over which the averaging is performed is chosen such that the model is purely dissipative, guaranteeing numerical stability when coupled with the Smagorinsky model. The formulation is tested successfully in forced and decaying isotropic turbulence and in fully developed and transitional channel flow. In homogeneous flows, the results are similar to those of the volume-averaged dynamic model, while in channel flow, the predictions are superior to those of the plane-averaged dynamic model. The relationship between the averaged terms in the model and vortical structures (worms) that appear in the LES is investigated. Computational overhead is kept small (about 10 percent above the CPU requirements of the volume or plane-averaged dynamic model) by using an approximate scheme to advance the Lagrangian tracking through first-order Euler time integration and linear interpolation in space.

  5. Anisotropic texture of ice sheet surfaces

    NASA Astrophysics Data System (ADS)

    Smith, Benjamin E.; Raymond, Charles F.; Scambos, Theodore

    2006-03-01

    In this paper we analyze the magnitude and spatial organization of small-scale surface features (the surface texture) of the Greenland and Antarctic ice sheets. The texture is revealed in shaded relief maps of digital elevation models because surface slopes emphasize short-wavelength topography. We show that the surface slope components parallel to and perpendicular to the ice flow direction of ice sheets are both qualitatively and quantitatively different from one another. The parallel component variations are larger in magnitude than the perpendicular component variations, and features in maps of the parallel component are elongated perpendicular to the ice flow direction, while features in maps of the perpendicular component are elongated at a diagonal to the ice flow direction. These properties may be explained by a simple model of glacier dynamics in which a linearly viscous slab of ice flows over a random, isotropic, red noise bed. In this model an anisotropic surface results from an isotropic bed because the surface anisotropy derives from the anisotropic transfer of bed topography to the surface by viscous flow dynamics. The modeling results suggest that analysis of surface texture magnitude and anisotropy can be used to identify areas of sliding ice from surface topography data alone and can be used to roughly estimate sliding rates where bed topography is known.

  6. Bed form dynamics in distorted lightweight scale models

    NASA Astrophysics Data System (ADS)

    Aberle, Jochen; Henning, Martin; Ettmer, Bernd

    2016-04-01

    The adequate prediction of flow and sediment transport over bed forms presents a major obstacle for the solution of sedimentation problems in alluvial channels because bed forms affect hydraulic resistance, sediment transport, and channel morphodynamics. Moreover, bed forms can affect hydraulic habitat for biota, may introduce severe restrictions to navigation, and present a major problem for engineering structures such as water intakes and groynes. The main body of knowledge on the geometry and dynamics of bed forms such as dunes originates from laboratory and field investigations focusing on bed forms in sand bed rivers. Such investigations enable insight into the physics of the transport processes, but do not allow for the long term simulation of morphodynamic development as required to assess, for example, the effects of climate change on river morphology. On the other hand, this can be achieved through studies with distorted lightweight scale models allowing for the modification of the time scale. However, our understanding of how well bed form geometry and dynamics, and hence sediment transport mechanics, are reproduced in such models is limited. Within this contribution we explore this issue using data from investigations carried out at the Federal Waterways and Research Institute in Karlsruhe, Germany in a distorted lightweight scale model of the river Oder. The model had a vertical scale of 1:40 and a horizontal scale of 1:100, the bed material consisted of polystyrene particles, and the resulting dune geometry and dynamics were measured with a high spatial and temporal resolution using photogrammetric methods. Parameters describing both the directly measured and up-scaled dune geometry were determined using the random field approach. These parameters (e.g., standard deviation, skewness, kurtosis) will be compared to prototype observations as well as to results from the literature. Similarly, parameters describing the lightweight bed form dynamics, which

  7. Multi-Scale Dynamics, Control, and Simulation of Granular Spacecraft

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.; Basinger, Scott; Swartzlander, Grover

    2013-01-01

    In this paper, we present some ideas regarding the modeling, dynamics and control aspects of granular spacecraft. Granular spacecraft are complex multibody systems composed of a spatially disordered distribution of a large number of elements, for instance a cloud of grains in orbit. An example of application is a spaceborne observatory for exoplanet imaging, where the primary aperture is a cloud instead of a monolithic aperture. A model is proposed of a multi-scale dynamics of the grains and cloud in orbit, as well as a control approach for cloud shape maintenance and alignment, and preliminary simulation studies are carried out for the representative imaging system.

  8. Scale-Invariant Correlations in Dynamic Bacterial Clusters

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Dong, Xu; Be'er, Avraham; Swinney, Harry L.; Zhang, H. P.

    2012-04-01

    In Bacillus subtilis colonies, motile bacteria move collectively, spontaneously forming dynamic clusters. These bacterial clusters share similarities with other systems exhibiting polarized collective motion, such as bird flocks or fish schools. Here we study experimentally how velocity and orientation fluctuations within clusters are spatially correlated. For a range of cell density and cluster size, the correlation length is shown to be 30% of the spatial size of clusters, and the correlation functions collapse onto a master curve after rescaling the separation with correlation length. Our results demonstrate that correlations of velocity and orientation fluctuations are scale invariant in dynamic bacterial clusters.

  9. Survey of decentralized control methods. [for large scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1975-01-01

    An overview is presented of the types of problems that are being considered by control theorists in the area of dynamic large scale systems with emphasis on decentralized control strategies. Approaches that deal directly with decentralized decision making for large scale systems are discussed. It is shown that future advances in decentralized system theory are intimately connected with advances in the stochastic control problem with nonclassical information pattern. The basic assumptions and mathematical tools associated with the latter are summarized, and recommendations concerning future research are presented.

  10. Dynamic response of scale models subjected to impact loading

    NASA Astrophysics Data System (ADS)

    Hillsdon, Graham K.

    1997-05-01

    Presented with the problem of possible failure of large structures due to dynamic loading, and the cost of staging full scale tests. The Oxford University's Department of Engineering Science, supported by British Gas and Rolls Royce, has been scale modeling these events experimentally. The paper looks at two areas of research: (1) The structural integrity of a particular type of Liquified Natural Gas Storage Tank, and its vulnerability to blast loading. (2) The ability of Large Aero Engine Fan blades to withstand impacts associated with birds, stones, ice etc.

  11. Dynamics symmetries of Hamiltonian system on time scales

    SciTech Connect

    Peng, Keke Luo, Yiping

    2014-04-15

    In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.

  12. Toward Simplification of Dynamic Subgrid-Scale Models

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    We examine the relationship between the filter and the subgrid-scale (SGS) model for large-eddy simulations, in general, and for those with dynamic SGS models, in particular. From a review of the literature, it would appear that many practitioners of LES consider the link between the filter and the model more or less as a formality of little practical effect. In contrast, we will show that the filter and the model are intimately linked, that the Smagorinsky SGS model is appropriate only for filters of first- or second-order, and that the Smagorinsky model is inconsistent with spectral filters. Moreover, the Germano identity is shown to be both problematic and unnecessary for the development of dynamic SGS models. Its use obscures the following fundamental realization: For a suitably chosen filter, the computible resolved turbulent stresses, property scaled, closely approximate the SGS stresses.

  13. Dynamical decoupling leads to improved scaling in noisy quantum metrology

    NASA Astrophysics Data System (ADS)

    Sekatski, Pavel; Skotiniotis, Michalis; Dür, Wolfgang

    2016-07-01

    We consider the usage of dynamical decoupling in quantum metrology, where the joint evolution of system plus environment is described by a Hamiltonian. We show that by ultra-fast unitary control operations acting locally only on system qubits, noise can be eliminated while the desired evolution is only reduced by at most a constant factor, leading to Heisenberg scaling. We identify all kinds of noise where such an approach is applicable. Only noise that is generated by the Hamiltonian to be estimated itself cannot be altered. However, even for such parallel noise, one can achieve an improved scaling as compared to the standard quantum limit for any local noise by means of symmetrization. Our results are also applicable in other schemes based on dynamical decoupling, e.g. the generation of high-fidelity entangling gates.

  14. Scaling law for dynamical hysteresis of cavity solitons

    NASA Astrophysics Data System (ADS)

    Ahmadipanah, Sahar; Kheradmand, Reza; Prati, Franco

    2016-02-01

    By applying to a cavity soliton a control beam modulated in time, we study numerically the performance of the soliton as a flip-flop memory. The soliton is switched on and off periodically through a hysteresis cycle whose size increases dynamically with the modulation frequency. We show that the phenomenon is ruled by a scaling law with an exponent compatible with the theoretical value 2/3 predicted in much simpler systems in the low-frequency limit.

  15. Unveiling Bacterial Interactions through Multidimensional Scaling and Dynamics Modeling

    PubMed Central

    Dorado-Morales, Pedro; Vilanova, Cristina; P. Garay, Carlos; Martí, Jose Manuel; Porcar, Manuel

    2015-01-01

    We propose a new strategy to identify and visualize bacterial consortia by conducting replicated culturing of environmental samples coupled with high-throughput sequencing and multidimensional scaling analysis, followed by identification of bacteria-bacteria correlations and interactions. We conducted a proof of concept assay with pine-tree resin-based media in ten replicates, which allowed detecting and visualizing dynamical bacterial associations in the form of statistically significant and yet biologically relevant bacterial consortia. PMID:26671778

  16. Dynamically Scaled Glottal Flow Through Symmetrically Oscillating Vocal Fold Models

    NASA Astrophysics Data System (ADS)

    Halvorson, Lori; Baitinger, Andrew; Sherman, Erica; Krane, Michael; Zhang, Lucy; Wei, Timothy

    2011-11-01

    Experimental results derived from DPIV measurements in a scaled up dynamic human vocal fold model are presented. The 10x scale vocal fold model is a new design that incorporates key features of vocal fold oscillatory motion. This includes coupling of down/upstream rocking as well as the oscillatory open/close motions. Experiments were dynamically scaled to examine a range of frequencies, 100 - 200 Hz, corresponding to the male and female voice. By using water as the working fluid, very high resolution, both spatial and temporal resolution, was achieved. Time resolved movies of flow through symmetrically oscillating vocal folds will be presented. Both individual realizations as well as phase-averaged data will be shown. Key features, such as randomness and development time of the Coanda effect, vortex shedding, and volume flow rate data will be shown. In this talk, effects associated with paralysis of one vocal fold will be discussed. This talk provides the baseline fluid dynamics for the vocal fold paralysis study presented in Sherman, et al. Supported by the NIH.

  17. Dynamic Leidenfrost Effect: Relevant Time and Length Scales.

    PubMed

    Shirota, Minori; van Limbeek, Michiel A J; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2016-02-12

    When a liquid droplet impacts a hot solid surface, enough vapor may be generated under it to prevent its contact with the solid. The minimum solid temperature for this so-called Leidenfrost effect to occur is termed the Leidenfrost temperature, or the dynamic Leidenfrost temperature when the droplet velocity is non-negligible. We observe the wetting or drying and the levitation dynamics of the droplet impacting on an (isothermal) smooth sapphire surface using high-speed total internal reflection imaging, which enables us to observe the droplet base up to about 100 nm above the substrate surface. By this method we are able to reveal the processes responsible for the transitional regime between the fully wetting and the fully levitated droplet as the solid temperature increases, thus shedding light on the characteristic time and length scales setting the dynamic Leidenfrost temperature for droplet impact on an isothermal substrate. PMID:26918994

  18. Dynamic Leidenfrost Effect: Relevant Time and Length Scales

    NASA Astrophysics Data System (ADS)

    Shirota, Minori; van Limbeek, Michiel A. J.; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2016-02-01

    When a liquid droplet impacts a hot solid surface, enough vapor may be generated under it to prevent its contact with the solid. The minimum solid temperature for this so-called Leidenfrost effect to occur is termed the Leidenfrost temperature, or the dynamic Leidenfrost temperature when the droplet velocity is non-negligible. We observe the wetting or drying and the levitation dynamics of the droplet impacting on an (isothermal) smooth sapphire surface using high-speed total internal reflection imaging, which enables us to observe the droplet base up to about 100 nm above the substrate surface. By this method we are able to reveal the processes responsible for the transitional regime between the fully wetting and the fully levitated droplet as the solid temperature increases, thus shedding light on the characteristic time and length scales setting the dynamic Leidenfrost temperature for droplet impact on an isothermal substrate.

  19. Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding.

    PubMed

    Liu, Yu-Ying; Chen, Mei; Ishikawa, Hiroshi; Wollstein, Gadi; Schuman, Joel S; Rehg, James M

    2011-10-01

    We address a novel problem domain in the analysis of optical coherence tomography (OCT) images: the diagnosis of multiple macular pathologies in retinal OCT images. The goal is to identify the presence of normal macula and each of three types of macular pathologies, namely, macular edema, macular hole, and age-related macular degeneration, in the OCT slice centered at the fovea. We use a machine learning approach based on global image descriptors formed from a multi-scale spatial pyramid. Our local features are dimension-reduced local binary pattern histograms, which are capable of encoding texture and shape information in retinal OCT images and their edge maps, respectively. Our representation operates at multiple spatial scales and granularities, leading to robust performance. We use 2-class support vector machine classifiers to identify the presence of normal macula and each of the three pathologies. To further discriminate sub-types within a pathology, we also build a classifier to differentiate full-thickness holes from pseudo-holes within the macular hole category. We conduct extensive experiments on a large dataset of 326 OCT scans from 136 subjects. The results show that the proposed method is very effective (all AUC>0.93). PMID:21737338

  20. Automated Macular Pathology Diagnosis in Retinal OCT Images Using Multi-Scale Spatial Pyramid and Local Binary Patterns in Texture and Shape Encoding

    PubMed Central

    Liu, Yu-Ying; Chen, Mei; Ishikawa, Hiroshi; Wollstein, Gadi; Schuman, Joel S.; Rehg, James M.

    2011-01-01

    We address a novel problem domain in the analysis of optical coherence tomography (OCT) images: the diagnosis of multiple macular pathologies in retinal OCT images. The goal is to identify the presence of normal macula and each of three types of macular pathologies, namely, macular edema, macular hole, and age-related macular degeneration, in the OCT slice centered at the fovea. We use a machine learning approach based on global image descriptors formed from a multi-scale spatial pyramid. Our local features are dimension-reduced Local Binary Pattern histograms, which are capable of encoding texture and shape information in retinal OCT images and their edge maps, respectively. Our representation operates at multiple spatial scales and granularities, leading to robust performance. We use 2-class Support Vector Machine classifiers to identify the presence of normal macula and each of the three pathologies. To further discriminate sub-types within a pathology, we also build a classifier to differentiate full-thickness holes from pseudo-holes within the macular hole category. We conduct extensive experiments on a large dataset of 326 OCT scans from 136 subjects. The results show that the proposed method is very effective (all AUC > 0.93). PMID:21737338

  1. Dislocation dynamics simulations of plasticity at small scales

    SciTech Connect

    Zhou, Caizhi

    2010-01-01

    As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this research is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.

  2. Validation of Bubble Dynamics Equation for a Nano-scale Bubble via Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Tsuda, S.; Hyodo, H.; Watanabe, S.

    2015-12-01

    For a validation of the application of conventional bubble dynamics to a nano-scale bubble behaviour, we simulated a nano-scale bubble collapsing or vibration by Molecular Dynamics (MD) method and compared the result with the solution of Rayleigh-Plesset (RP) equation and that of Confined RP (CRP) equation, whose boundary condition was corrected to be consistent with that of MD simulation. As a result, a good coincidence was obtained between MD, RP, and CRP in the case of one-component fluid. In addition, also a good correspondence was obtained particularly in the comparison between MD and CRP in the case of two-component fluid containing non-condensable gas. The present results indicate that conventional bubble dynamics equation can be applied even to a nano-scale tiny bubble.

  3. Polar Textures

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03638 Polar Textures

    This image illustrates the variety of textures that appear in the south polar region during late summer.

    Image information: VIS instrument. Latitude 80.5S, Longitude 57.9E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Polar Textures

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03646 Polar Textures

    This VIS image shows part of the south polar region. The ejecta from the relatively young crater covers the rougher textured polar surface.

    Image information: VIS instrument. Latitude 81S, Longitude 54.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Probabilistic multi-scale modeling of pathogen dynamics in rivers

    NASA Astrophysics Data System (ADS)

    Packman, A. I.; Drummond, J. D.; Aubeneau, A. F.

    2014-12-01

    Most parameterizations of microbial dynamics and pathogen transport in surface waters rely on classic assumptions of advection-diffusion behavior in the water column and limited interactions between the water column and sediments. However, recent studies have shown that strong surface-subsurface interactions produce a wide range of transport timescales in rivers, and greatly the opportunity for long-term retention of pathogens in sediment beds and benthic biofilms. We present a stochastic model for pathogen dynamics, based on continuous-time random walk theory, that properly accounts for such diverse transport timescales, along with the remobilization and inactivation of pathogens in storage reservoirs. By representing pathogen dynamics probabilistically, the model framework enables diverse local-scale processes to be incorporated in system-scale models. We illustrate the application of the model to microbial dynamics in rivers based on the results of a tracer injection experiment. In-stream transport and surface-subsurface interactions are parameterized based on observations of conservative tracer transport, while E. coli retention and inactivation in sediments is parameterized based on direct local-scale experiments. The results indicate that sediments are an important reservoir of enteric organisms in rivers, and slow remobilization from sediments represents a long-term source of bacteria to streams. Current capability, potential advances, and limitations of this model framework for assessing pathogen transmission risks will be discussed. Because the transport model is probabilistic, it is amenable to incorporation into risk models, but a lack of characterization of key microbial processes in sediments and benthic biofilms hinders current application.

  6. Some distinguishing characteristics of contour and texture phenomena in images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1992-01-01

    The development of generalized contour/texture discrimination techniques is a central element necessary for machine vision recognition and interpretation of arbitrary images. Here, the visual perception of texture, selected studies of texture analysis in machine vision, and diverse small samples of contour and texture are all used to provide insights into the fundamental characteristics of contour and texture. From these, an experimental discrimination scheme is developed and tested on a battery of natural images. The visual perception of texture defined fine texture as a subclass which is interpreted as shading and is distinct from coarse figural similarity textures. Also, perception defined the smallest scale for contour/texture discrimination as eight to nine visual acuity units. Three contour/texture discrimination parameters were found to be moderately successful for this scale discrimination: (1) lightness change in a blurred version of the image, (2) change in lightness change in the original image, and (3) percent change in edge counts relative to local maximum.

  7. An integrated spectral-textural approach for environmental change monitoring and assessment: analyzing the dynamics of green covers in a highly developing region.

    PubMed

    Sakieh, Yousef; Gholipour, Mostafa; Salmanmahiny, Abdolrassoul

    2016-04-01

    The present study compares the effectiveness of two common preclassification change detection (CD) methods that use two-dimensional data space of spectral-textural (S-T) change information. The methods are principal component analysis (PCA) and change vector analysis (CVA) in the Gorgan Township area, Golestn Province, Iran. A series of texture-based information was calculated mainly to separate those land use/land cover (LULC) conversions that are spectrally indistinguishable and also to provide a basis for automatic classification of S-T data space. Both methods were evaluated in terms of accuracy and the required time and expertise. Having the two-dimensional S-T data space generated, support vector machine (SVM) classifier was implemented to automatically extract changed pixels and the receiving operator characteristic (ROC) was employed to assess the accuracy of the output. According to the results, the study area has witnessed substantial mutual transformations between various LULCs among agricultural lands were the most dynamic category in the region. The PCA method applied to the S-T information achieved a ROC of 0.90-indicating an acceptable performance-while the S-T CVA method achieved a lower value of 0.75. The S-T PCA method was considerably less time-consuming and less expertise demanding as well as more accurate in our study area. PMID:26935736

  8. Physical naturalness and dynamical breaking of classical scale invariance

    NASA Astrophysics Data System (ADS)

    Heikinheimo, Matti; Racioppi, Antonio; Spethmann, Christian; Raidal, Martti; Tuominen, Kimmo

    2014-05-01

    We propose a model of a confining dark sector, dark technicolor, that communicates with the Standard Model (SM) through the Higgs portal. In this model electroweak (EW) symmetry breaking and dark matter (DM) share a common origin, and the EW scale is generated dynamically. Our motivation to suggest this model is the absence of evidence for new physics from recent Large Hadron Collider (LHC) data. Although the conclusion is far from certain at this point, this lack of evidence may suggest that no mechanism exists at the EW scale to stabilize the Higgs mass against radiative corrections from ultraviolet (UV) physics. The usual reaction to this puzzling situation is to conclude that the stabilizing new physics is either hidden from us by accident, or that it appears at energies that are currently inaccessible, such that nature is indeed fine-tuned. In order to re-examine the arguments that have led to this dichotomy, we review the concept of naturalness in effective field theories, discussing in particular the role of quadratic divergences in relation to different energy scales. This leads us to suggest classical scale invariance as a guideline for model building, implying that explicit mass scales are absent in the underlying theory.

  9. Irradiation direction from texture

    NASA Astrophysics Data System (ADS)

    Koenderink, Jan J.; Pont, Sylvia C.

    2003-10-01

    We present a theory of image texture resulting from the shading of corrugated (three-dimensional textured) surfaces, Lambertian on the micro scale, in the domain of geometrical optics. The derivation applies to isotropic Gaussian random surfaces, under collimated illumination, in normal view. The theory predicts the structure tensors from either the gradient or the Hessian of the image intensity and allows inferences of the direction of irradiation of the surface. Although the assumptions appear prima facie rather restrictive, even for surfaces that are not at all Gaussian, with the bidirectional reflectance distribution function far from Lambertian and vignetting and multiple scattering present, we empirically recover the direction of irradiation with an accuracy of a few degrees.

  10. A physical scaling model for aggregation and disaggregation of field-scale surface soil moisture dynamics

    NASA Astrophysics Data System (ADS)

    Ojha, Richa; Govindaraju, Rao S.

    2015-07-01

    Scaling relationships are needed as measurements and desired predictions are often not available at concurrent spatial support volumes or temporal discretizations. Surface soil moisture values of interest to hydrologic studies are estimated using ground based measurement techniques or utilizing remote sensing platforms. Remote sensing based techniques estimate field-scale surface soil moisture values, but are unable to provide the local-scale soil moisture information that is obtained from local measurements. Further, obtaining field-scale surface moisture values using ground-based measurements is exhaustive and time consuming. To bridge this scale mismatch, we develop analytical expressions for surface soil moisture based on sharp-front approximation of the Richards equation and assumed log-normal distribution of the spatial surface saturated hydraulic conductivity field. Analytical expressions for field-scale evolution of surface soil moisture to rainfall events are utilized to obtain aggregated and disaggregated response of surface soil moisture evolution with knowledge of the saturated hydraulic conductivity. The utility of the analytical model is demonstrated through numerical experiments involving 3-D simulations of soil moisture and Monte-Carlo simulations for 1-D renderings—with soil moisture dynamics being represented by the Richards equation in each instance. Results show that the analytical expressions developed here show promise for a principled way of scaling surface soil moisture.

  11. Scaling in the aggregation dynamics of a magnetorheological fluid.

    PubMed

    Domínguez-García, P; Melle, Sonia; Pastor, J M; Rubio, M A

    2007-11-01

    We present experimental results on the aggregation dynamics of a magnetorheological fluid, namely, an aqueous suspension of micrometer-sized superparamagnetic particles, under the action of a constant uniaxial magnetic field using video microscopy and image analysis. We find a scaling behavior in several variables describing the aggregation kinetics. The data agree well with the Family-Vicsek scaling ansatz for diffusion-limited cluster-cluster aggregation. The kinetic exponents z and z' are obtained from the temporal evolution of the mean cluster size S(t) and the number of clusters N(t), respectively. The crossover exponent Delta is calculated in two ways: first, from the initial slope of the scaling function; second, from the evolution of the nonaggregated particles, n1(t). We report on results of Brownian two-dimensional dynamics simulations and compare the results with the experiments. Finally, we discuss the differences obtained between the kinetic exponents in terms of the variation in the crossover exponent and relate this behavior to the physical interpretation of the crossover exponent. PMID:18233655

  12. Spontaneous Neural Dynamics and Multi-scale Network Organization

    PubMed Central

    Foster, Brett L.; He, Biyu J.; Honey, Christopher J.; Jerbi, Karim; Maier, Alexander; Saalmann, Yuri B.

    2016-01-01

    Spontaneous neural activity has historically been viewed as task-irrelevant noise that should be controlled for via experimental design, and removed through data analysis. However, electrophysiology and functional MRI studies of spontaneous activity patterns, which have greatly increased in number over the past decade, have revealed a close correspondence between these intrinsic patterns and the structural network architecture of functional brain circuits. In particular, by analyzing the large-scale covariation of spontaneous hemodynamics, researchers are able to reliably identify functional networks in the human brain. Subsequent work has sought to identify the corresponding neural signatures via electrophysiological measurements, as this would elucidate the neural origin of spontaneous hemodynamics and would reveal the temporal dynamics of these processes across slower and faster timescales. Here we survey common approaches to quantifying spontaneous neural activity, reviewing their empirical success, and their correspondence with the findings of neuroimaging. We emphasize invasive electrophysiological measurements, which are amenable to amplitude- and phase-based analyses, and which can report variations in connectivity with high spatiotemporal precision. After summarizing key findings from the human brain, we survey work in animal models that display similar multi-scale properties. We highlight that, across many spatiotemporal scales, the covariance structure of spontaneous neural activity reflects structural properties of neural networks and dynamically tracks their functional repertoire. PMID:26903823

  13. Dynamic pattern evolution on scale-free networks

    PubMed Central

    Zhou, Haijun; Lipowsky, Reinhard

    2005-01-01

    A general class of dynamic models on scale-free networks is studied by analytical methods and computer simulations. Each network consists of N vertices and is characterized by its degree distribution, P(k), which represents the probability that a randomly chosen vertex is connected to k nearest neighbors. Each vertex can attain two internal states described by binary variables or Ising-like spins that evolve in time according to local majority rules. Scale-free networks, for which the degree distribution has a power law tail P(k) ∼ k-γ, are shown to exhibit qualitatively different dynamic behavior for γ < 5/2 and γ > 5/2, shedding light on the empirical observation that many real-world networks are scale-free with 2 < γ < 5/2. For 2 < γ < 5/2, strongly disordered patterns decay within a finite decay time even in the limit of infinite networks. For γ > 5/2, on the other hand, this decay time diverges as ln(N) with the network size N. An analogous distinction is found for a variety of more complex models including Hopfield models for associative memory networks. In the latter case, the storage capacity is found, within mean field theory, to be independent of N in the limit of large N for γ > 5/2 but to grow as Nα with α = (5 - 2γ)/(γ - 1) for 2 < γ < 5/2. PMID:16006533

  14. Pattern Formation and Reaction Textures during Dunite Carbonation

    NASA Astrophysics Data System (ADS)

    Lisabeth, H. P.; Zhu, W.

    2015-12-01

    Alteration of olivine-bearing rocks by fluids is one of the most pervasive geochemical processes on the surface of the Earth. Serpentinized and/or carbonated ultramafic rocks often exhibit characteristic textures on many scales, from polygonal mesh textures on the grain-scale to onion-skin or kernel patterns on the outcrop scale. Strong disequilibrium between pristine ultramafic rocks and common geological fluids such as water and carbon dioxide leads to rapid reactions and coupled mechanical and chemical feedbacks that manifest as characteristic textures. Textural evolution during metasomatic reactions can control effective reaction rates by modulating dynamic porosity and therefore reactant supply and reactive surface area. We run hydrostatic experiments on thermally cracked dunites saturated with carbon dioxide bearing brine at 15 MPa confining pressure and 150°C to explore the evolution of physical properties and reaction textures as carbon mineralization takes place in the sample. Compaction and permeability reduction are observed throughout experiments. Rates of porosity and permeability changes are sensitive to pore fluid chemistry. After reaction, samples are imaged in 3-dimension (3D) using a dual-beam FIB-SEM. Analysis of the high resolution 3D microstructure shows that permeable, highly porous domains are created by olivine dissolution at a characteristic distance from pre-existing crack surfaces while precipitation of secondary minerals such as serpentine and magnesite is limited largely to the primary void space. The porous dissolution channels provide an avenue for fluid ingress, allow reactions to continue and could lead to progressive hierarchical fracturing. Initial modeling of the system indicates that this texture is the result of coupling between dissolution-precipitation reactions and the local stress state of the sample.

  15. Current scaling of axially radiated power in dynamic hohlraums and dynamic hohlraum load design for ZR.

    SciTech Connect

    Mock, Raymond Cecil; Nash, Thomas J.; Sanford, Thomas W. L.

    2007-03-01

    We present designs for dynamic hohlraum z-pinch loads on the 28 MA, 140 ns driver ZR. The scaling of axially radiated power with current in dynamic hohlraums is reviewed. With adequate stability on ZR this scaling indicates that 30 TW of axially radiated power should be possible. The performance of the dynamic hohlraum load on the 20 MA, 100 ns driver Z is extensively reviewed. The baseline z-pinch load on Z is a nested tungsten wire array imploding onto on-axis foam. Data from a variety of x-ray diagnostics fielded on Z are presented. These diagnostics include x-ray diodes, bolometers, fast x-ray imaging cameras, and crystal spectrometers. Analysis of these data indicates that the peak dynamic radiation temperature on Z is between 250 and 300 eV from a diameter less than 1 mm. Radiation from the dynamic hohlraum itself or from a radiatively driven pellet within the dynamic hohlraum has been used to probe a variety of matter associated with the dynamic hohlraum: the tungsten z-pinch itself, tungsten sliding across the end-on apertures, a titanium foil over the end aperture, and a silicon aerogel end cap. Data showing the existence of asymmetry in radiation emanating from the two ends of the dynamic hohlraum is presented, along with data showing load configurations that mitigate this asymmetry. 1D simulations of the dynamic hohlraum implosion are presented and compared to experimental data. The simulations provide insight into the dynamic hohlraum behavior but are not necessarily a reliable design tool because of the inherently 3D behavior of the imploding nested tungsten wire arrays.

  16. Dynamic coupling of pore-scale and reservoir-scale models for multiphase flow

    NASA Astrophysics Data System (ADS)

    Sheng, Qiang; Thompson, Karsten

    2013-09-01

    The concept of coupling pore-scale and continuum-scale models for subsurface flow has long been viewed as beneficial, but implementation has been slow. In this paper, we present an algorithm for direct coupling of a dynamic pore-network model for multiphase flow with a traditional continuum-scale simulator. The ability to run the two models concurrently (exchanging parameters and boundary conditions in real numerical time) is made possible by a new dynamic pore-network model that allows simultaneous injection of immiscible fluids under either transient-state or steady-state conditions. Allowing the pore-scale model to evolve to steady state during each time step provides a unique method for reconciling the dramatically different time and length scales across the coupled models. The model is implemented by embedding networks in selected gridblocks in the reservoir model. The network model predicts continuum-scale parameters such as relative permeability or average capillary pressure from first principles, which are used in the continuum model. In turn, the continuum reservoir simulator provides boundary conditions from the current time step back to the network model to complete the coupling process. The model is tested for variable-rate immiscible displacements under conditions in which relative permeability depends on flow rate, thus demonstrating a situation that cannot be modeled using a traditional approach. The paper discusses numerical challenges with this approach, including the fact that there is not a way to explicitly force pore-scale phase saturation to equal the continuum saturation in the host gridblock without an artificial constraint. Hurdles to implementing this type of modeling in practice are also discussed.

  17. Local dynamic subgrid-scale models in channel flow

    NASA Astrophysics Data System (ADS)

    Cabot, William H.

    1994-12-01

    The dynamic subgrid-scale (SGS) model has given good results in the large-eddy simulation (LES) of homogeneous isotropic or shear flow, and in the LES of channel flow, using averaging in two or three homogeneous directions (the DA model). In order to simulate flows in general, complex geometries (with few or no homogeneous directions), the dynamic SGS model needs to be applied at a local level in a numerically stable way. Channel flow, which is inhomogeneous and wall-bounded flow in only one direction, provides a good initial test for local SGS models. Tests of the dynamic localization model were performed previously in channel flow using a pseudospectral code and good results were obtained. Numerical instability due to persistently negative eddy viscosity was avoided by either constraining the eddy viscosity to be positive or by limiting the time that eddy viscosities could remain negative by co-evolving the SGS kinetic energy (the DLk model). The DLk model, however, was too expensive to run in the pseudospectral code due to a large near-wall term in the auxiliary SGS kinetic energy (k) equation. One objective was then to implement the DLk model in a second-order central finite difference channel code, in which the auxiliary k equation could be integrated implicitly in time at great reduction in cost, and to assess its performance in comparison with the plane-averaged dynamic model or with no model at all, and with direct numerical simulation (DNS) and/or experimental data. Other local dynamic SGS models have been proposed recently, e.g., constrained dynamic models with random backscatter, and with eddy viscosity terms that are averaged in time over material path lines rather than in space. Another objective was to incorporate and test these models in channel flow.

  18. Local dynamic subgrid-scale models in channel flow

    NASA Technical Reports Server (NTRS)

    Cabot, William H.

    1994-01-01

    The dynamic subgrid-scale (SGS) model has given good results in the large-eddy simulation (LES) of homogeneous isotropic or shear flow, and in the LES of channel flow, using averaging in two or three homogeneous directions (the DA model). In order to simulate flows in general, complex geometries (with few or no homogeneous directions), the dynamic SGS model needs to be applied at a local level in a numerically stable way. Channel flow, which is inhomogeneous and wall-bounded flow in only one direction, provides a good initial test for local SGS models. Tests of the dynamic localization model were performed previously in channel flow using a pseudospectral code and good results were obtained. Numerical instability due to persistently negative eddy viscosity was avoided by either constraining the eddy viscosity to be positive or by limiting the time that eddy viscosities could remain negative by co-evolving the SGS kinetic energy (the DLk model). The DLk model, however, was too expensive to run in the pseudospectral code due to a large near-wall term in the auxiliary SGS kinetic energy (k) equation. One objective was then to implement the DLk model in a second-order central finite difference channel code, in which the auxiliary k equation could be integrated implicitly in time at great reduction in cost, and to assess its performance in comparison with the plane-averaged dynamic model or with no model at all, and with direct numerical simulation (DNS) and/or experimental data. Other local dynamic SGS models have been proposed recently, e.g., constrained dynamic models with random backscatter, and with eddy viscosity terms that are averaged in time over material path lines rather than in space. Another objective was to incorporate and test these models in channel flow.

  19. Ultrafast cooling reveals microsecond-scale biomolecular dynamics.

    PubMed

    Polinkovsky, Mark E; Gambin, Yann; Banerjee, Priya R; Erickstad, Michael J; Groisman, Alex; Deniz, Ashok A

    2014-01-01

    The temperature-jump technique, in which the sample is rapidly heated by a powerful laser pulse, has been widely used to probe the fast dynamics of folding of proteins and nucleic acids. However, the existing temperature-jump setups tend to involve sophisticated and expensive instrumentation, while providing only modest temperature changes of ~10-15 °C, and the temperature changes are only rapid for heating, but not cooling. Here we present a setup comprising a thermally conductive sapphire substrate with light-absorptive nano-coating, a microfluidic device and a rapidly switched moderate-power infrared laser with the laser beam focused on the nano-coating, enabling heating and cooling of aqueous solutions by ~50 °C on a 1-μs time scale. The setup is used to probe folding and unfolding dynamics of DNA hairpins after direct and inverse temperature jumps, revealing low-pass filter behaviour during periodic temperature variations. PMID:25517430

  20. Brain structure and dynamics across scales: in search of rules.

    PubMed

    Wang, Xiao-Jing; Kennedy, Henry

    2016-04-01

    Louis Henry Sullivan, the father of skyscrapers, famously stated 'Form ever follows function'. In this short review, we will focus on the relationship between form (structure) and function (dynamics) in the brain. We summarize recent advances on the quantification of directed- and weighted-mesoscopic connectivity of mammalian cortex, the exponential distance rule for mesoscopic and microscopic circuit wiring, a spatially embedded random model of inter-areal cortical networks, and a large-scale dynamical circuit model of money's cortex that gives rise to a hierarchy of timescales. These findings demonstrate that inter-areal cortical networks are dense (hence such concepts as 'small-world' need to be refined when applied to the brain), spatially dependent (therefore purely topological approach of graph theory has limited applicability) and heterogeneous (consequently cortical areas cannot be treated as identical 'nodes'). PMID:26868043

  1. Efficient Schmidt number scaling in dissipative particle dynamics.

    PubMed

    Krafnick, Ryan C; García, Angel E

    2015-12-28

    Dissipative particle dynamics is a widely used mesoscale technique for the simulation of hydrodynamics (as well as immersed particles) utilizing coarse-grained molecular dynamics. While the method is capable of describing any fluid, the typical choice of the friction coefficient γ and dissipative force cutoff rc yields an unacceptably low Schmidt number Sc for the simulation of liquid water at standard temperature and pressure. There are a variety of ways to raise Sc, such as increasing γ and rc, but the relative cost of modifying each parameter (and the concomitant impact on numerical accuracy) has heretofore remained undetermined. We perform a detailed search over the parameter space, identifying the optimal strategy for the efficient and accuracy-preserving scaling of Sc, using both numerical simulations and theoretical predictions. The composite results recommend a parameter choice that leads to a speed improvement of a factor of three versus previously utilized strategies. PMID:26723591

  2. Efficient Schmidt number scaling in dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Krafnick, Ryan C.; García, Angel E.

    2015-12-01

    Dissipative particle dynamics is a widely used mesoscale technique for the simulation of hydrodynamics (as well as immersed particles) utilizing coarse-grained molecular dynamics. While the method is capable of describing any fluid, the typical choice of the friction coefficient γ and dissipative force cutoff rc yields an unacceptably low Schmidt number Sc for the simulation of liquid water at standard temperature and pressure. There are a variety of ways to raise Sc, such as increasing γ and rc, but the relative cost of modifying each parameter (and the concomitant impact on numerical accuracy) has heretofore remained undetermined. We perform a detailed search over the parameter space, identifying the optimal strategy for the efficient and accuracy-preserving scaling of Sc, using both numerical simulations and theoretical predictions. The composite results recommend a parameter choice that leads to a speed improvement of a factor of three versus previously utilized strategies.

  3. Quantum Geometry and Quantum Dynamics at the Planck Scale

    SciTech Connect

    Bojowald, Martin

    2009-12-15

    Canonical quantum gravity provides insights into the quantum dynamics as well as quantum geometry of space-time by its implications for constraints. Loop quantum gravity in particular requires specific corrections due to its quantization procedure, which also results in a discrete picture of space. The corresponding changes compared to the classical behavior can most easily be analyzed in isotropic models, but perturbations around them are more involved. For one type of corrections, consistent equations have been found which shed light on the underlying space-time structure at the Planck scale: not just quantum dynamics but also the concept of space-time manifolds changes in quantum gravity. Effective line elements provide indications for possible relationships to other frameworks, such as non-commutative geometry.

  4. Small-Scale Tropopause Dynamics and TOMS Total Ozone

    NASA Technical Reports Server (NTRS)

    Stanford, John L.

    2002-01-01

    This project used Earth Probe Total Ozone Mapping Spectrometer (EP TOMS) along-track ozone retrievals, in conjunction with ancillary meteorological fields and modeling studies, for high resolution investigations of upper troposphere and lower stratosphere dynamics. Specifically, high resolution along-track (Level 2) EP TOMS data were used to investigate the beautiful fine-scale structure in constituent and meteorological fields prominent in the evolution of highly non-linear baroclinic storm systems. Comparison was made with high resolution meteorological models. The analyses provide internal consistency checks and validation of the EP TOMS data which are vital for monitoring ozone depletion in both polar and midlatitude regions.

  5. Examining a scaled dynamical system of telomere shortening

    NASA Astrophysics Data System (ADS)

    Cyrenne, Benoit M.; Gooding, Robert J.

    2015-02-01

    A model of telomere dynamics is proposed and examined. Our model, which extends a previously introduced model that incorporates stem cells as progenitors of new cells, imposes the Hayflick limit, the maximum number of cell divisions that are possible. This new model leads to cell populations for which the average telomere length is not necessarily a monotonically decreasing function of time, in contrast to previously published models. We provide a phase diagram indicating where such results would be expected via the introduction of scaled populations, rate constants and time. The application of this model to available leukocyte baboon data is discussed.

  6. Investigations of Static and Dynamic Scaling Phenomena in Polymeric Systems

    NASA Astrophysics Data System (ADS)

    Chang, Iksoo

    In this dissertation we study two aspects of polymer physics, namely polymer statics and polymer dynamics. Particularly we investigate the tricritical collapse transition of trails in two dimensions and the dynamics of an entangled linear polymer in a fixed network. In order to clarify whether tricritical trails belong to the same universality class of the self-avoiding walk (SAW) at the Theta- and Theta^'-temperatures, we systematically investigate the asymptotic scaling behavior of different properties of tricritical trials. Using numerical methods such as exact series enumeration on a triangular lattice and the scanning simulation method on a square lattice, we estimate accurately the tricritical temperature T_ t, size exponent nu _ t, partition function exponent gamma_ t, connectivity constant mu_ t, crossover exponent phi_ t, specific heat exponent alpha_ t, universal ratio < G^2>/ < R^2>, winding angle distribution P_ N(theta), and surface partition function exponents gamma _{1t}, gamma_ {11t} for tricritical trails. We provide analytic bounds for T_ t, gamma_ t and mu_ t. We also study the tricritical collapse transition of trails as well as other lattice walks on a two dimensional Sierpinski gasket using real space renormalization group. Comparison of our results with those of the SAW at the Theta - and Theta^' -temperatures suggests that tricritical trails may not belong to the same universality class as that of the SAW at the Theta- and Theta^ '-temperatures. We investigate the dynamics of an entangled linear polymer in a fixed network on the basis of the recently proposed repton model. We put a special emphasis on resolving the discrepancies between the reptation theory and experiments. First we examine the scaling of the disengagement time tau_ d, Rouse time tau _ R, and a mean square displacement of a single repton phi(t) for the whole hierarchy of characteristic time scales. The scaling of these quantities agree with Doi's theory. We examine the

  7. Multifractality and scale invariance in human heartbeat dynamics

    NASA Astrophysics Data System (ADS)

    Ching, Emily S. C.; Tsang, Yue-Kin

    2007-10-01

    Human heart rate is known to display complex fluctuations. Evidence of multifractality in heart rate fluctuations in healthy state has been reported [Ivanov , Nature (London) 399, 461 (1999)]. This multifractal character could be manifested as the dependence of the probability density functions (PDFs) of the interbeat interval increments, which are the differences in two interbeat intervals that are separated by n beats, on n . On the other hand, “scale invariance in the PDFs of detrended healthy human heart rate increments” was recently reported [Kiyono , Phys. Rev. Lett. 93, 178103 (2004)]. In this paper, we clarify that the scale invariance reported is actually exhibited by the PDFs of the increments of the “detrended” integrated healthy interbeat interval and should, therefore, be more accurately referred as the scale invariance or n independence of the PDFs of the sum of n detrended interbeat intervals. Indeed, we demonstrate explicitly that the PDFs of detrended healthy interbeat interval increments are scale or n dependent in accord with its multifractal character. Our work also establishes that this n independence of the PDFs of the sum of n detrended interbeat intervals is a general feature of human heartbeat dynamics, shared by heart rate fluctuations in both healthy and pathological states.

  8. Global texture and the microwave background

    SciTech Connect

    Turok, N. ); Spergel, D. )

    1990-06-04

    The metric perturbation produced by a collapsing knot'' of global texture in a flat background is calculated. This is used to calculate the energy shift for photons traversing such knots, leading to a prediction for the microwave anisotropy pattern produced in the global-texture scenario for large-scale structure formation. The metric is also used to calculate the velocity field induced in nonrelativistic matter, on scales well inside the horizon. This would produce an early generation of small gravitationally bound objects. At larger scales, the texture field would induce coherent velocity fields on a scale comparable to that seen in galaxy surveys.

  9. Wavelet transform analysis of chromatin texture changes during heat shock.

    PubMed

    Herbomel, G; Grichine, A; Fertin, A; Delon, A; Vourc'h, C; Souchier, C; Usson, Y

    2016-06-01

    Texture analysis can be a useful tool to investigate the organization of chromatin. Approaches based on multiscale analysis and in particular the 'à trou' wavelet analysis has already been used for microscopy (Olivo Marin). In order to analyse texture changes, the statistical properties of the wavelet coefficient images were summarized by the first four statistical orders: mean, standard deviation, skewness and kurtosis of the coefficient image histogram. The 'à trou' transform provided a representation of the wavelet coefficients and texture parameters with the same statistical robustness throughout the scale spaces. It was applied for quantifying chromatin texture and heat-induced chromatin changes in living cells. We investigated the changes by both laser scanning and spinning disk confocal microscopies and compared the texture parameters before and after increasing duration of heat shock exposure (15 min, 30 min and 1 h). Furthermore, as activation of the heat shock response also correlates with a rapid localization of HSF1 within a few nuclear structures termed nuclear stress bodies (nSBs), we compared the dynamics of nSBs formation with that of textural changes during 1 h of continuous heat shock. Next, we studied the recovery phase following a 1-h heat shock. Significant differences were observed, particularly affecting the perinucleolar region, even for the shortest heat shock time affecting mostly the skewness and standard deviation. Furthermore, progressive changes could be observed according to the duration of heat shock, mostly affecting fine details (pixel-wise changes) as revealed by the parameters, obtained from the first- and second-order wavelet coefficients. 'A trou' wavelet texture analysis provided a sensitive and efficient tool to investigate minute changes of chromatin. PMID:26694695

  10. Multi-Scale Modeling of Global of Magnetospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Rastatter, L.; Toth, G.; DeZeeuw, D.; Gombosi, T.

    2010-01-01

    To understand the role of magnetic reconnection in global evolution of magnetosphere and to place spacecraft observations into global context it is essential to perform global simulations with physically motivated model of dissipation that is capable to reproduce reconnection rates predicted by kinetic models. In our efforts to bridge the gap between small scale kinetic modeling and global simulations we introduced an approach that allows to quantify the interaction between large-scale global magnetospheric dynamics and microphysical processes in diffusion regions near reconnection sites. We utilized the high resolution global MHD code BATSRUS and incorporate primary mechanism controlling the dissipation in the vicinity of reconnection sites in terms of kinetic corrections to induction and energy equations. One of the key elements of the multiscale modeling of magnetic reconnection is identification of reconnection sites and boundaries of surrounding diffusion regions where non-MHD corrections are required. Reconnection site search in the equatorial plane implemented in our previous studies is extended to cusp and magnetopause reconnection, as well as for magnetotail reconnection in realistic asymmetric configurations. The role of feedback between the non-ideal effects in diffusion regions and global magnetosphere structure and dynamics will be discussed.