Superfluid 4He dynamics beyond quasiparticle excitations
NASA Astrophysics Data System (ADS)
Beauvois, K.; Campbell, C. E.; Dawidowski, J.; Fâk, B.; Godfrin, H.; Krotscheck, E.; Lauter, H.-J.; Lichtenegger, T.; Ollivier, J.; Sultan, A.
2016-07-01
The dynamics of superfluid 4He at and above the Landau quasiparticle regime is investigated by high-precision inelastic neutron scattering measurements of the dynamic structure factor. A highly structured response is observed above the familiar phonon-maxon-roton spectrum, characterized by sharp thresholds for phonon-phonon, maxon-roton, and roton-roton coupling processes. The experimental dynamic structure factor is compared to the calculation of the same physical quantity by a dynamic many-body theory including three-phonon processes self-consistently. The theory is found to provide a quantitative description of the dynamics of the correlated bosons for energies up to about three times that of the Landau quasiparticles.
Quasiparticle properties of Ge(111)-2 times 1 surface
Zhu, X.; Louie, S.G.
1992-08-01
We have studied from first principles the quasiparticle properties of the 2 {times} 1 reconstructed (111) surface of Ge. Quasiparticle energies are calculated using the GW expansion of the electron self energy operator. The calculations explain a spectrum of experimental results obtained from photoemission, inverse photoemission, optical absorption, scanning tunneling microscopy, etc., for this surface. We also present a quasiparticle theory for the photoelectric threshold and examine the effects of many body corrections for this quantity.
Nonequilibrium electron dynamics: Formation of the quasiparticle peak
NASA Astrophysics Data System (ADS)
Sayyad, Sharareh; Eckstein, Martin
We characterize how the narrow quasiparticle band of the one-band Hubbard model forms out of a bad metallic state in a time-dependent metal-insulator transition, using nonequilibrium slave-rotor dynamical mean field theory. Our results exhibit a nontrivial electronic timescale which is much longer than the width of the quasiparticle peak itself. To study this timescale, we perform a fast ramp from the insulating phase into the metallic region of the phase diagram, resulting in a highly excited state, and study the equilibration of the system with a weakly coupled phononic bath. The slow relaxation behavior is explained by surveilling the interplay between spinon and rotor degrees of freedom. Since the system is initially prepared in an insulating phase, the quasi-particle peak emerges when spinons catch up the metal-insulator crossover region, which is reached earlier by the rotor. At this point, spinon and rotor become weakly coupled, and the resulting very slow equilibration of the spinon is a bottleneck for the dynamics. After the birth of the quasiparticle peak, its height enhances by the construction of the low-energy spectrum of the rotor, which then lacks behind the relaxation of the spinon.
Quark susceptibility in a generalized dynamical quasiparticle model
NASA Astrophysics Data System (ADS)
Berrehrah, H.; Cassing, W.; Bratkovskaya, E.; Steinert, Th.
2016-04-01
The quark susceptibility χq at zero and finite quark chemical potential provides a critical benchmark to determine the quark-gluon-plasma (QGP) degrees of freedom in relation to the results from lattice QCD (lQCD) in addition to the equation of state and transport coefficients. Here we extend the familiar dynamical quasiparticle model (DQPM) to partonic propagators that explicitly depend on the three-momentum with respect to the partonic medium at rest in order to match perturbative QCD (pQCD) at high momenta. Within the extended dynamical quasiparticle model (DQPM*) we reproduce simultaneously the lQCD results for the quark number density and susceptibility and the QGP pressure at zero and finite (but small) chemical potential μq. The shear viscosity η and the electric conductivity σe from the extended quasiparticle model (DQPM*) also turn out to be in close agreement with lattice results for μq=0 . The DQPM*, furthermore, allows one to evaluate the momentum p , temperature T , and chemical potential μq dependencies of the partonic degrees of freedom also for larger μq, which are mandatory for transport studies of heavy-ion collisions in the regime 5 <√{sN N}<10 GeV.
Dynamics of Hubbard-Band Quasiparticles in Disordered Optical Lattices
NASA Astrophysics Data System (ADS)
Scarola, Vito; Demarco, Brian
Recent experiments use transport of degenerate Fermi gases in optical lattices (Kondov et al. Phys. Rev. Lett. 114, 083002 (2015) to probe the interplay of disorder and strong interactions. These experiments find evidence for an intriguing insulating phase where quantum diffusion is completely suppressed by strong disorder. Quantitative interpretation of these experiments remains an open problem that requires inclusion of non-zero entropy, strong interaction, and trapping in an Anderson-Hubbard model. We construct a theory of dynamics of Hubbard-band quasiparticles tailored to trapped optical lattice experiments. We compare the theory directly with center-of-mass transport experiments of Kondov et al. with no fitting parameters. The close agreement between theory and experiments shows that the suppression of transport is only partly due to finite entropy effects. We argue that the complete suppression of transport is consistent with short-time, finite size precursors of Anderson localization of Hubbard-band quasiparticles. The combination of our theoretical framework and optical lattice experiments offers an important platform for studying localization in isolated many-body quantum systems. V.W.S. acknowledges support from AFOSR under Grant FA9550-11-1-0313.
Pump probe spectroscopy of quasiparticle dynamics in cuprate superconductors
Segre, Gino P.
2001-05-01
Pump probe spectroscopy is used to examine the picosecond response of a BSCCO thin film, and two YBCO crystals in the near infrared. The role of pump fluence and temperature have been closely examined in an effort to clarify the mechanism by which the quasiparticles rejoin the condensate. BSCCO results suggest that the recombination behavior is consistent with the d-wave density of states in that quasiparticles appear to relax to the nodes immediately before they rejoin the condensate. The first substantial investigation of polarized pump probe response in detwinned YBCO crystals is also reported. Dramatic doping dependent anisotropies along the a and b axes are observed in time and temperature resolved studies. Among many results, we highlight the discovery of an anomalous temperature and time dependence of a- axis response in optimally doped YBCO. We also report on the first observation of the photoinduced response in a magnetic field. We find the amplitude of the response, and in some cases, the dynamics considerably changed with the application of a 6T field. Finally, we speculate on two of the many theoretical directions stimulated by our results. We find that the two-fluid model suggests a mechanism to explain how changes at very low energies are visible to a high-energy probe. Also discussed are basic recombination processes which may play a role in the observed decay.
Mixed quantum-classical versus full quantum dynamics: Coupled quasiparticle-oscillator system
NASA Astrophysics Data System (ADS)
Schanz, Holger; Esser, Bernd
1997-05-01
The relation between the dynamical properties of a coupled quasiparticle-oscillator system in the mixed quantum-classical and fully quantized descriptions is investigated. The system is considered as a model for applying a stepwise quantization. Features of the nonlinear dynamics in the mixed description such as the presence of a separatrix structure or regular and chaotic motion are shown to be reflected in the evolu- tion of the quantum state vector of the fully quantized system. In particular, it is demonstrated how wave packets propagate along the separatrix structure of the mixed description, and that chaotic dynamics leads to a strongly entangled quantum state vector. Special emphasis is given to viewing the system from a dyn- amical Born-Oppenheimer approximation defining integrable reference oscillators, and elucidating the role of the nonadiabatic couplings which complement this approximation into a rigorous quantization scheme.
Dilepton production by dynamical quasi-particles in the strongly interacting quark-gluon plasma
NASA Astrophysics Data System (ADS)
Linnyk, O.
2011-02-01
We address the dilepton production by the constituents of the strongly interacting quark-gluon plasma (sQGP). In order to make quantitative predictions for dilepton rates at experimentally relevant low dilepton mass (O(1GeV)) and strong coupling (αS ~ 0.5-1), we take into account non-perturbative spectral functions and self-energies of the quarks, antiquarks and gluons. For this purpose, we use parametrizations of the quark and gluon propagators provided by the dynamical quasi-particle model (DQPM) matched to reproduce lattice quantum chromodynamics (QCD) data. The DQPM describes QCD properties in terms of the single-particle Green's functions and leads to the notion of the constituents of the sQGP being effective quasi-particles, which are massive and have broad spectral functions (due to large interaction rates). By 'dressing' the quark and gluon lines with the effective propagators, we derive the off-shell cross sections for dilepton production in the reactions q+\\,\\bar{q}\\rightarrow l^+l^- (Born mechanism), q+ \\,\\bar{q}\\rightarrow g+\\,l^+l^- (quark annihilation with the gluon bremsstrahlung in the final state), q(\\bar{q})+g\\rightarrow q(\\bar{q})+ l^+l^- (gluon-Compton scattering), g\\rightarrow q+\\bar{q}+l^+l^- and q(\\bar{q})\\rightarrow q(\\bar{q})+g+l^+l^- (virtual gluon decay, virtual quark decay). In contrast to previous calculations of these cross sections, we account for virtualities of all the quarks and gluons. We find that finite masses of the effective quasi-particles not only screen the singularities typical of the perturbative cross sections with massless quarks, but also modify the shape of the dilepton production cross sections, especially at low dilepton mass Q and at the edges of the phase space. Finally, we use the calculated mass-dependent cross sections to identify the dependence of the dilepton rates on the spectral function widths of the initial and final quarks and gluons, which has not been estimated so far. The results
Quasiparticle and optical properties of polythiophene-derived polymers
NASA Astrophysics Data System (ADS)
Samsonidze, Georgy; Ribeiro, Filipe J.; Cohen, Marvin L.; Louie, Steven G.
2014-07-01
Electron donor conjugated polymers blended with electron acceptor fullerene derivatives is one of the promising technologies for organic photovoltaics. However, with the energy conversion efficiency of only 9% in a single bulk heterojunction device structure, these solar cells are not yet competitive with conventional inorganic semiconductor technology. Some of the limitations are large optical band gaps and small electron affinities of polymers preventing the absorption of infrared radiation and leading to energy losses during charge separation at the donor-acceptor interface, respectively. In this work, we compute from first principles the quasiparticle and optical spectra of several different thiophene-, ethyne-, and vinylene-based copolymers using the GW method and the GW plus Bethe-Salpeter equation approach. One of the polymers is identified which has a preferential alignment of the energy levels at the interface with fullerene molecule compared to the reference case of polythiophene.
NASA Astrophysics Data System (ADS)
Kumar, Nardeep
Layered materials in which atomic sheets are stacked together by weak van der Waals forces can be used to fabricate two-dimensional systems. They represent a diverse and rich, but largely unexplored, source of materials. Atomically-thin structures derived from these materials possess a number of interesting electrical, optical, and mechanical properties, and are attractive for new nanodevices. For their applications in semiconductor industry, it is necessary to understand the dynamics of photoexcited quasiparticles that occur on ultrafast time scales of less than one nanosecond. In this dissertation, I discuss ultrafast optical experimental techniques and results from various two-dimensional materials, which provide information about electronic dynamics. First, a second harmonic generation technique that can be used to find the crystalline orientation, thickness uniformity, layer stacking, and single-crystal domain size is discussed, with results presented on exfoliated and chemical vapor deposition MoS2 samples. Second, a third harmonic generation technique is discussed, which can be used to explore nonlinear optical properties of materials, and results are presented on graphene and few-layer graphite films. Third, a spatially resolved femtosecond pump-probe is described, which can be used to study hot carrier and photoexcited phonon dynamics and results are presented on Bi2 Se3 sample. Then, exciton dynamics in MoS2 and MoSe2 are explored by using transient absorption microscopy with a high spatiotemporal resolution. Finally, a polarization-resolved femtosecond transient absorption spectroscopy that can be used to study valley and spin dynamics is discussed, with results presented on monolayer, few-layer, and bulk MoSe2 samples.
Inflationary Quasiparticle Creation and Thermalization Dynamics in Coupled Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Posazhennikova, Anna; Trujillo-Martinez, Mauricio; Kroha, Johann
2016-06-01
A Bose gas in a double-well potential, exhibiting a true Bose-Einstein condensate (BEC) amplitude and initially performing Josephson oscillations, is a prototype of an isolated, nonequilibrium many-body system. We investigate the quasiparticle (QP) creation and thermalization dynamics of this system by solving the time-dependent Keldysh-Bogoliubov equations. We find avalanchelike QP creation due to a parametric resonance between BEC and QP oscillations, followed by slow, exponential relaxation to a thermal state at an elevated temperature, controlled by the initial excitation energy of the oscillating BEC above its ground state. The crossover between the two regimes occurs because of an effective decoupling of the QP and BEC oscillations. This dynamics is analogous to elementary particle creation in models of the early universe. The thermalization in our setup occurs because the BEC acts as a grand canonical reservoir for the quasiparticle system.
Posazhennikova, Anna; Trujillo-Martinez, Mauricio; Kroha, Johann
2016-06-01
A Bose gas in a double-well potential, exhibiting a true Bose-Einstein condensate (BEC) amplitude and initially performing Josephson oscillations, is a prototype of an isolated, nonequilibrium many-body system. We investigate the quasiparticle (QP) creation and thermalization dynamics of this system by solving the time-dependent Keldysh-Bogoliubov equations. We find avalanchelike QP creation due to a parametric resonance between BEC and QP oscillations, followed by slow, exponential relaxation to a thermal state at an elevated temperature, controlled by the initial excitation energy of the oscillating BEC above its ground state. The crossover between the two regimes occurs because of an effective decoupling of the QP and BEC oscillations. This dynamics is analogous to elementary particle creation in models of the early universe. The thermalization in our setup occurs because the BEC acts as a grand canonical reservoir for the quasiparticle system. PMID:27314725
Ultrafast momentum-dependent quasiparticle dynamics in high-Tc superconductors
NASA Astrophysics Data System (ADS)
Bovensiepen, Uwe
2013-03-01
Femtosecond time- and angle-resolved photoelectron spectroscopy trARPES facilitates insight into electronic relaxation and electronic structure of non-equilibrium states of matter. Hot electrons and holes relax in metals on ultrafast time scales due to the screened Coulomb interaction. In superconductors the relaxation rates of quasiparticles at energies close to the superconducting gap edge are reduced because of the loss of quasiparticle states near EF. Since in the superconducting state the relaxation of optically excited carriers proceeds partly by Cooper pair reformation, the study of the quasiparticle dynamics bears the potential to analyze the interaction responsible for Cooper pair formation. Results of trARPES will be discussed for optimally doped Bi2Sr2CaCu2O8+δ in the superconducting state and on EuFe2As2 in the antiferromagnetic state. In the cuprate system we find a predominant excitation of quasiparticles at momenta near the antinode. We show furthermore, that at excitation densities of several 10 μJ/cm2 quasiparticle relaxation is dominated by Cooper pair reformation, which again proceeds near the antinode. In the Fe-pnictide material we monitor a difference in the relaxation rate for electrons and holes near the Fermi momentum, which disappears above the Neel temperature. We conclude that this anisotropic relaxation of electrons and holes is a consequence of the optical modification of the antiferromagnetic order. Analysis of energy transfer from electrons to phonons allows to determine the momentum averaged electron-phonon coupling constant λ. We find values below 0.25 for Bi2Sr2CaCu2O8+δ and below 0.15 for EuFe2As2. We acknowledge funding through the Deutsche Forschungsgemeinschaft through BO 1823/2, SPP 1458 and the Alexander von Humboldt foundation.
Hung, N. Quang; Dang, N. Dinh
2010-10-15
The thermodynamic properties of hot nuclei are described within the canonical and microcanonical ensemble approaches. These approaches are derived based on the solutions of the BCS and self-consistent quasiparticle random-phase approximation at zero temperature embedded into the canonical and microcanonical ensembles. The results obtained agree well with the recent data extracted from experimental level densities by the Oslo group for {sup 94}Mo, {sup 98}Mo, {sup 162}Dy, and {sup 172}Yb nuclei.
Properties of quark matter in a new quasiparticle model with QCD running coupling
NASA Astrophysics Data System (ADS)
Lu, ZhenYan; Peng, GuangXiong; Xu, JianFeng; Zhang, ShiPeng
2016-06-01
The running of the QCD coupling in the effective mass causes thermodynamic inconsistency problem in the conventional quasiparticle model. We provide a novel treatment which removes the inconsistency by an effective bag constant. The chemical potential dependence of the renormalization subtraction point is constrained by the Cauchy condition in the chemical potential space. The stability and microscopic properties of strange quark matter are then studied within the completely self-consistent quasiparticle model, and the obtained equation of state of quark matter is applied to the investigation of strange stars. It is found that our improved model can describe well compact stars with mass about two times the solar mass, which indicates that such massive compact stars could be strange stars.
Quasiparticle and optical properties of rutile and anatase TiO2
NASA Astrophysics Data System (ADS)
Kang, Wei; Hybertsen, Mark S.
2010-08-01
Quasiparticle excitation energies and optical properties of TiO2 in the rutile and anatase structures are calculated using many-body perturbation-theory methods. Calculations are performed for a frozen crystal lattice; electron-phonon coupling is not explicitly considered. In the GW method, several approximations are compared and it is found that inclusion of the full frequency dependence as well as explicit treatment of the Ti semicore states are essential for accurate calculation of the quasiparticle energy-band gap. The calculated quasiparticle energies are in good agreement with available photoemission and inverse photoemission experiments. The results of the GW calculations, together with the calculated static screened Coulomb interaction, are utilized in the Bethe-Salpeter equation to calculate the dielectric function γ2(ω) for both the rutile and anatase structures. The results are in good agreement with experimental observations, particularly the onset of the main absorption features around 4 eV. For comparison to low-temperature optical-absorption measurements that resolve individual excitonic transitions in rutile, the low-lying discrete excitonic energy levels are calculated with electronic screening only. The lowest energy exciton found in the energy gap of rutile has a binding energy of 0.13 eV. In agreement with experiment, it is not dipole allowed but the calculated exciton energy exceeds that measured in absorption experiments by about 0.22 eV and the scale of the exciton binding energy is also too large. The quasiparticle energy alignment of rutile is calculated for nonpolar (110) surfaces. In the GW approximation, the valence-band maximum is 7.8 eV below the vacuum level, showing a small shift from density-functional theory results.
Ab Initio Study of Quasiparticle and Excitonic Properties of MoS2
NASA Astrophysics Data System (ADS)
Qiu, Diana; Jornada, Felipe; Louie, Steven
2013-03-01
MoS2 is a layered, transition-metal dichalcogenide that can be cleaved into single-layer sheets, in a manner similar to graphene. Monolayer MoS2 has a direct band gap, strong spin-orbit coupling and strongly enhanced photoluminescence, compared with the bulk. MoS2's interesting electronic and optical properties mean that it could have many applications in single-layer electronic devices, but on the theoretical level, when many-electron interaction effects are included, there is still some uncertainty about the quasiparticle and excitonic properties of MoS2. We use first-principles calculations to study the quasiparticle band structure and optical absorption spectrum of MoS2 at the GW +BSE level. We include spin-orbit coupling as a perturbation either before or after the GW calculation of the band structure, and we demonstrate that our calculations are fully converged with respect to the dielectric cutoff and summation over empty bands. This work was supported by NSF grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by NERSC.
Quasiparticle properties of the nonlinear Holstein model at finite doping and temperature
NASA Astrophysics Data System (ADS)
Li, Shaozhi; Nowadnick, Beth; Johnston, Steven
Models with linear electron-phonon (e-ph) interactions often predict the formation of small polarons with large lattice displacements. This directly violates the approximations made in deriving the linear model, which implies that one should consider higher order terms in the interaction. Previously we have shown that even small positive nonlinear e-ph interactions dramatically suppress charge-density-wave formation and s-wave superconductivity relative to the linear model [EPL. 109, 27007 (2015)]. In this talk, we present a determinant quantum Monte Carlo study of thesingle-particle properties of quasiparticles and phonons in a two-dimensional Holstein model that includes an additional nonlinear e-ph interaction. We show that a small positive nonlinear e-ph interaction reduces the effective coupling between electrons and phonons and hardens the effective phonon frequency. Conversely, a small negative nonlinear interaction can enhance e-ph coupling resulting in heavier quasiparticles. In addition, we find that an effective linear model fails to simultaneously capture the quantitative effects of the nonlinearity of both the electronic and phononic degrees of freedom, even though it can qualitatively reproduce properties.
Quasiparticle properties of the nonlinear Holstein model at finite doping and temperature
NASA Astrophysics Data System (ADS)
Li, Shaozhi; Nowadnick, E. A.; Johnston, S.
2015-08-01
We use determinant quantum Monte Carlo to study the single-particle properties of quasiparticles and phonons in a variant of the two-dimensional Holstein model that includes an additional nonlinear electron-phonon (e-ph) interaction. We find that a small positive nonlinear interaction reduces the effective coupling between the electrons and the lattice, suppresses charge-density-wave (CDW) correlations, and hardens the effective phonon frequency. Conversely, a small negative nonlinear interaction can enhance the e-ph coupling resulting in heavier quasiparticles, an increased tendency towards a CDW phase at all fillings, and a softened phonon frequency. An effective linear model with a renormalized interaction strength and phonon frequency can qualitatively capture this physics; however, the quantitative effects of the nonlinearity on both the electronic and phononic degrees of freedom cannot be captured by such a model. These results are significant for typical nonlinear coupling strengths found in real materials, indicating that nonlinearity can have an important influence on the physics of many e-ph coupled systems.
Quasiparticle Properties of a Mobile Impurity in a Bose-Einstein Condensate
NASA Astrophysics Data System (ADS)
Christensen, Rasmus Søgaard; Levinsen, Jesper; Bruun, Georg M.
2015-10-01
We develop a systematic perturbation theory for the quasiparticle properties of a single impurity immersed in a Bose-Einstein condensate. Analytical results are derived for the impurity energy, effective mass, and residue to third order in the impurity-boson scattering length. The energy is shown to depend logarithmically on the scattering length to third order, whereas the residue and the effective mass are given by analytical power series. When the boson-boson scattering length equals the boson-impurity scattering length, the energy has the same structure as that of a weakly interacting Bose gas, including terms of the Lee-Huang-Yang and fourth order logarithmic form. Our results, which cannot be obtained within the canonical Fröhlich model of an impurity interacting with phonons, provide valuable benchmarks for many-body theories and for experiments.
Quasiparticle Properties of a Mobile Impurity in a Bose-Einstein Condensate.
Christensen, Rasmus Søgaard; Levinsen, Jesper; Bruun, Georg M
2015-10-16
We develop a systematic perturbation theory for the quasiparticle properties of a single impurity immersed in a Bose-Einstein condensate. Analytical results are derived for the impurity energy, effective mass, and residue to third order in the impurity-boson scattering length. The energy is shown to depend logarithmically on the scattering length to third order, whereas the residue and the effective mass are given by analytical power series. When the boson-boson scattering length equals the boson-impurity scattering length, the energy has the same structure as that of a weakly interacting Bose gas, including terms of the Lee-Huang-Yang and fourth order logarithmic form. Our results, which cannot be obtained within the canonical Fröhlich model of an impurity interacting with phonons, provide valuable benchmarks for many-body theories and for experiments. PMID:26550852
Quasiparticle dynamics and spin-orbital texture of the SrTiO3 two-dimensional electron gas.
King, P D C; McKeown Walker, S; Tamai, A; de la Torre, A; Eknapakul, T; Buaphet, P; Mo, S-K; Meevasana, W; Bahramy, M S; Baumberger, F
2014-01-01
Two-dimensional electron gases (2DEGs) in SrTiO3 have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Here we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the d-electron subband ladder of this complex-oxide 2DEG. Combined with realistic tight-binding supercell calculations, we uncover how quantum confinement and inversion symmetry breaking collectively tune the delicate interplay of charge, spin, orbital and lattice degrees of freedom in this system. We reveal how they lead to pronounced orbital ordering, mediate an orbitally enhanced Rashba splitting with complex subband-dependent spin-orbital textures and markedly change the character of electron-phonon coupling, co-operatively shaping the low-energy electronic structure of the 2DEG. Our results allow for a unified understanding of spectroscopic and transport measurements across different classes of SrTiO3-based 2DEGs, and yield new microscopic insights on their functional properties. PMID:24572991
Quasiparticle dynamics and spin-orbital texture of the SrTiO3 two-dimensional electron gas
NASA Astrophysics Data System (ADS)
King, P. D. C.; McKeown Walker, S.; Tamai, A.; de la Torre, A.; Eknapakul, T.; Buaphet, P.; Mo, S.-K.; Meevasana, W.; Bahramy, M. S.; Baumberger, F.
2014-02-01
Two-dimensional electron gases (2DEGs) in SrTiO3 have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Here we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the d-electron subband ladder of this complex-oxide 2DEG. Combined with realistic tight-binding supercell calculations, we uncover how quantum confinement and inversion symmetry breaking collectively tune the delicate interplay of charge, spin, orbital and lattice degrees of freedom in this system. We reveal how they lead to pronounced orbital ordering, mediate an orbitally enhanced Rashba splitting with complex subband-dependent spin-orbital textures and markedly change the character of electron-phonon coupling, co-operatively shaping the low-energy electronic structure of the 2DEG. Our results allow for a unified understanding of spectroscopic and transport measurements across different classes of SrTiO3-based 2DEGs, and yield new microscopic insights on their functional properties.
NASA Astrophysics Data System (ADS)
Mertelj, T.; Stojchevska, L.; Zhigadlo, N. D.; Karpinski, J.; Mihailovic, D.
2013-05-01
We investigate temperature and fluence dependent dynamics of the photoexcited quasiparticle relaxation and low-energy electronic structure in electron-doped 1111-structure Sm(Fe0.93Co0.07)AsO single crystal. We find that the behavior is qualitatively identical to the 122-structure Ba(Fe,Co)2As2 including the presence of a normal state pseudogap and a marked twofold symmetry breaking in the tetragonal phase that we relate to the electronic nematicity. The twofold symmetry breaking appears to be a general feature of the electron-doped iron pnictides.
Non-analytic magnetic field dependence of quasi-particle properties of two-dimensional metals
NASA Astrophysics Data System (ADS)
Drukier, Casper; Lange, Philipp; Kopietz, Peter
2015-02-01
We show that in a weak external magnetic field H the quasi-particle residue and the renormalized electron Landé factor of two-dimensional Fermi liquids exhibit a non-analytic magnetic field dependence proportional to | H | which is due to electron-electron interactions and the Zeeman effect. We explicitly calculate the corresponding prefactors to second order in the interaction and show that they are determined by low-energy scattering processes involving only momenta close to the Fermi surface. These non-analytic terms appear in measurable quantities such as the density of states and the magnetoconductivity.
NASA Astrophysics Data System (ADS)
Lin, Kung-Hsuan; Wang, Kuan-Jen; Chang, Chung-Chieh; Wen, Yu-Chieh; Lv, Bing; Chu, Ching-Wu; Wu, Maw-Kuen
2016-05-01
We have utilized ultrafast optical spectroscopy to study carrier dynamics in slightly underdoped (BaK)Fe2As2 crystals without magnetic transition. The photoelastic signals due to coherent acoustic phonons have been quantitatively investigated. According to our temperature-dependent results, we found that the relaxation component of superconducting quasiparticles persisted from the superconducting state up to at least 70 K in the normal state. Our findings suggest that the pseudogaplike feature in the normal state is possibly the precursor of superconductivity. We also highlight that the pseudogap feature of K-doped BaFe2As2 is different from that of other iron-based superconductors, including Co-doped or P-doped BaFe2As2.
Lin, Kung-Hsuan; Wang, Kuan-Jen; Chang, Chung-Chieh; Wen, Yu-Chieh; Lv, Bing; Chu, Ching-Wu; Wu, Maw-Kuen
2016-01-01
We have utilized ultrafast optical spectroscopy to study carrier dynamics in slightly underdoped (BaK)Fe2As2 crystals without magnetic transition. The photoelastic signals due to coherent acoustic phonons have been quantitatively investigated. According to our temperature-dependent results, we found that the relaxation component of superconducting quasiparticles persisted from the superconducting state up to at least 70 K in the normal state. Our findings suggest that the pseudogaplike feature in the normal state is possibly the precursor of superconductivity. We also highlight that the pseudogap feature of K-doped BaFe2As2 is different from that of other iron-based superconductors, including Co-doped or P-doped BaFe2As2. PMID:27180873
Lin, Kung-Hsuan; Wang, Kuan-Jen; Chang, Chung-Chieh; Wen, Yu-Chieh; Lv, Bing; Chu, Ching-Wu; Wu, Maw-Kuen
2016-01-01
We have utilized ultrafast optical spectroscopy to study carrier dynamics in slightly underdoped (BaK)Fe2As2 crystals without magnetic transition. The photoelastic signals due to coherent acoustic phonons have been quantitatively investigated. According to our temperature-dependent results, we found that the relaxation component of superconducting quasiparticles persisted from the superconducting state up to at least 70 K in the normal state. Our findings suggest that the pseudogaplike feature in the normal state is possibly the precursor of superconductivity. We also highlight that the pseudogap feature of K-doped BaFe2As2 is different from that of other iron-based superconductors, including Co-doped or P-doped BaFe2As2. PMID:27180873
Quasiparticle band structures and thermoelectric transport properties of p-type SnSe
Shi, Guangsha; Kioupakis, Emmanouil
2015-02-14
We used density functional and many-body perturbation theory to calculate the quasiparticle band structures and electronic transport parameters of p-type SnSe both for the low-temperature Pnma and high-temperature Cmcm phases. The Pnma phase has an indirect band gap of 0.829 eV, while the Cmcm has a direct band gap of 0.464 eV. Both phases exhibit multiple local band extrema within an energy range comparable to the thermal energy of carriers from the global extrema. We calculated the electronic transport coefficients as a function of doping concentration and temperature for single-crystal and polycrystalline materials to understand the previous experimental measurements. The electronic transport coefficients are highly anisotropic and are strongly affected by bipolar transport effects at high temperature. Our results indicate that SnSe exhibits optimal thermoelectric performance at high temperature when doped in the 10{sup 19}–10{sup 20 }cm{sup −3} range.
Recombination and propagation of quasiparticles in cuprate superconductors
Gedik, Nuh
2004-05-20
Rapid developments in time-resolved optical spectroscopy have led to renewed interest in the nonequilibrium state of superconductors and other highly correlated electron materials. In these experiments, the nonequilibrium state is prepared by the absorption of short (less than 100 fs) laser pulses, typically in the near-infrared, that perturb the density and energy distribution of quasiparticles. The evolution of the nonequilibrium state is probed by time resolving the changes in the optical response functions of the medium that take place after photoexcitation. Ultimately, the goal of such experiments is to understand not only the nonequilibrium state, but to shed light on the still poorly understood equilibrium properties of these materials. We report nonequilibrium experiments that have revealed aspects of the cup rates that have been inaccessible by other techniques. Namely, the diffusion and recombination coefficients of quasiparticles have been measured in both YBa{sub 2}Cu{sub 3}O{sub 6.5} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x} using time-resolved optical spectroscopy. Dependence of these measurements on doping, temperature and laser intensity is also obtained. To study the recombination of quasiparticles, we measure the change in reflectivity {Delta}R which is directly proportional to the nonequilibrium quasiparticle density created by the laser. From the intensity dependence, we estimate {beta}, the inelastic scattering coefficient and {gamma}{sub th} thermal equilibrium quasiparticle decay rate. We also present the dependence of recombination measurements on doping in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x}. Going from underdoped to overdoped regime, the sign of {Delta}R changes from positive to negative right at the optimal doping. This is accompanied by a change in dynamics. The decay of {Delta}R stops being intensity dependent exactly at the optimal doping. We provide possible interpretations of these two observations. To study the propagation of
NASA Astrophysics Data System (ADS)
Wu, Meng; Qiu, Diana; Louie, Steven G.
2015-03-01
Unlike most semiconducting transition metal dichalcogenides, SnS2, another layered metal dichalcogenide, is calculated within density functional theory to be an indirect bandgap semiconductor in both its bulk and monolayer forms. Experimental characterization of mono- and bi-layer SnS2 has been performed, but the details of its quasiparticle and excitonic properties remain unclear. Thus, we employ ab initio GW and GW +BSE calculations to study the quasiparticle band structure and optical absorption spectrum, respectively, of mono- and bi-layer SnS2 with spin-orbit coupling included throughout the calculations. We further investigate the character of excitonic states contributing to the optical spectrum. This work was supported by NSF Grant No. DMR10-1006184 and the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at Lawrence Berkeley National Laboratory's NERSC facility.
NASA Astrophysics Data System (ADS)
van Roekeghem, Ambroise; Richard, Pierre; Ding, Hong; Biermann, Silke
2016-01-01
Electronic Coulomb correlations lead to characteristic signatures in the spectroscopy of transition metal pnictides and chalcogenides: quasi-particle renormalizations, lifetime effects or incoherent badly metallic behavior above relatively low coherence temperatures are measures of many-body effects due to local Hubbard and Hund's couplings. We review and compare the results of angle-resolved photoemission spectroscopy experiments (ARPES) and of combined density functional/dynamical mean-field theory (DFT+DMFT) calculations. We emphasize the doping-dependence of the quasi-particle mass renormalization and coherence properties.
Quasiparticle excitations of adsorbates on doped graphene
NASA Astrophysics Data System (ADS)
Lischner, Johannes; Wickenburg, Sebastian; Wong, Dillon; Karrasch, Christoph; Wang, Yang; Lu, Jiong; Omrani, Arash A.; Brar, Victor; Tsai, Hsin-Zon; Wu, Qiong; Corsetti, Fabiano; Mostofi, Arash; Kawakami, Roland K.; Moore, Joel; Zettl, Alex; Louie, Steven G.; Crommie, Mike
Adsorbed atoms and molecules can modify the electronic structure of graphene, but in turn it is also possible to control the properties of adsorbates via the graphene substrate. In my talk, I will discuss the electronic structure of F4-TCNQ molecules on doped graphene and present a first-principles based theory of quasiparticle excitations that captures the interplay of doping-dependent image charge interactions between substrate and adsorbate and electron-electron interaction effects on the molecule. The resulting doping-dependent quasiparticle energies will be compared to experimental scanning tunnelling spectra. Finally, I will also discuss the effects of charged adsorbates on the electronic structure of doped graphene.
Coherent Suppression of Quasiparticle Dissipation in Superconducting Artificial Atom
NASA Astrophysics Data System (ADS)
Pop, Ioan M.
2015-03-01
We demonstrate immunity to quasiparticle dissipation in a Josephson junction. At the foundation of this protection rests a prediction by Brian Josephson from fifty years ago: the particle-hole interference of superconducting quasiparticles when tunneling across a Josephson junction. The junction under study is the central element of a fluxonium artificial atom, which we place in an extremely low loss environment and measure using radio-frequency dispersive techniques. Furthermore, by using a quantum limited amplifier (a Josephson Parametric Converter) we can observe quantum jumps between the 0 and 1 states of the qubit in thermal equilibrium with the environment. The distribution of the times in-between the quantum jumps reveals quantitative information about the population and dynamics of quasiparticles. The data is entirely consistent with the hypothesis that our system is sensitive to single quasiparticle excitations, which opens new perspectives for quasiparticle monitoring in low temperature devices. Work supported by: IARPA, ARO, and ONR.
Spectral Function and Quasiparticle Damping of Interacting Bosons in Two Dimensions
Sinner, Andreas; Kopietz, Peter; Hasselmann, Nils
2009-03-27
We employ the functional renormalization group to study dynamical properties of the two-dimensional Bose gas. Our approach is free of infrared divergences, which plague the usual diagrammatic approaches, and is consistent with the exact Nepomnyashchy identity, which states that the anomalous self-energy vanishes at zero frequency and momentum. We recover the correct infrared behavior of the propagators and present explicit results for the spectral line shape, from which we extract the quasiparticle dispersion and dampi0008.
Polyakov loop and gluon quasiparticles in Yang-Mills thermodynamics
NASA Astrophysics Data System (ADS)
Ruggieri, M.; Alba, P.; Castorina, P.; Plumari, S.; Ratti, C.; Greco, V.
2012-09-01
We study the interpretation of lattice data about the thermodynamics of the deconfinement phase of SU(3) Yang-Mills theory, in terms of gluon quasiparticles propagating in a background of a Polyakov loop. A potential for the Polyakov loop, inspired by the strong coupling expansion of the QCD action, is introduced; the Polyakov loop is coupled to transverse gluon quasiparticles by means of a gaslike effective potential. This study is useful to identify the effective degrees of freedom propagating in the gluon medium above the critical temperature. A main general finding is that a dominant part of the phase transition dynamics is accounted for by the Polyakov loop dynamics; hence, the thermodynamics can be described without the need for diverging or exponentially increasing quasiparticle masses as T→Tc, at variance respect to standard quasiparticle models.
Suppressing decoherence of superconducting qubits by trapping non-equilibrium quasiparticles
NASA Astrophysics Data System (ADS)
Gao, Yvonne; Wang, Chen; Pop, I. M.; Vool, U.; Axline, C.; Brecht, T.; Heeres, R. W.; Frunzio, L.; Devoret, M. H.; Catelani, G.; Glazman, L. I.; Schoelkopf, R. J.
2015-03-01
We report a counter-intuitive observation that vortices can improve the coherence of superconducting qubits by suppressing non-equilibrium quasiparticles. This effect is systematically studied by measuring the magnetic-field dependence of qubit coherence times and quasiparticle lifetimes in transmons with different geometries in a 3D cQED architecture. Varying quasiparticle dynamics by vortices allows separation of dissipation mechanisms and measurement of the stray generation rate of quasiparticles in our devices. More details are described in Ref. Our results indicate that quasiparticles contribute significantly to qubit decoherence. Hence suppression of quasiparticle density in the device is essential for further improvement of coherence times of superconducting qubits and we will present recent results aimed at alleviating decoherence due to quasiparticles.
Anisotropic System of Quasiparticles in Superfluid Helium
Adamenko, I.N.; Nemchenko, K.E.; Slipko, V.A.; Wyatt, A.F.G.
2006-02-17
The thermodynamic properties of anisotropic quasiparticle systems of He II are considered for all degrees of anisotropy. It is shown that the thermodynamic functions of a strongly anisotropic phonon-roton system are mainly determined by rotons at all temperatures. Analytical expressions for the roton thermodynamic functions are obtained for all degrees of anisotropy. The maximum anisotropy is limited by the criterion for thermodynamic stability, which is here derived for the whole temperature range.
NASA Astrophysics Data System (ADS)
Shen, Yi
Methods to produce MgB2 thin films and tunneling devices have been developed. Thin films have been optimized for high field applications by exploring a range of doping and growth conditions. Josephson junction devices have been produced using a novel technique to optimize the quality of the barrier and near-interface superconducting materials. The effects of impurities incorporation in MgB2 thin films in the physical properties were studied. First, rubidium and cesium were ex-situ introduced into thin films by annealing in quartz ampoules containing elemental alkali metals. No significant change in transition temperature (Tc) was observed by resistivity measurement, in contrast to an earlier report of enhanced Tcs (>50 K) from susceptibility measurements. A significant drop in Jc and an increase in Deltarho (rho 300-rho40) arise from a decrease in inter-granular connectivity during annealing. Second, oxygen was incorporated using in-situ post-growth anneals in an oxygen environment. Analysis of the electrical data indicates that oxygen is distributed both within and between the grains. High values of Jc (˜4x105 A/cm2 at 8 T and 4.2 K), extrapolated Hc2(0) > 45 T and |dHc2/dT| Tc| ≈ 1.4 T/K are observed. A novel deposition approach allows films of magnesium plus boron to be deposited on unheated c-plane sapphire substrates by co-evaporation, and then subsequently annealed in a reducing atmosphere at temperatures below 600°C. The use of a combination of a magnesium rich stoichiometry (Mg/B > 1/2) in the as-deposited film, and a two-step annealing process, was found to be critical in obtaining unusual high values of Hc2(0) > 43 T and |dH c2/dT|Tc| ≈ 2.5 T/K. Josephson junctions fabricated by pressing two oxidized MgB2 thin films together. This facilitates the production of Josephson Junctions with two MgB2 electrodes without exposure to the high second electrode deposition temperature. These junctions, with electrode Tcs of ˜32 K, have critical currents up to
Phonon quasiparticles and anharmonic free energy in complex systems.
Zhang, Dong-Bo; Sun, Tao; Wentzcovitch, Renata M
2014-02-01
We use a hybrid strategy to obtain anharmonic frequency shifts and lifetimes of phonon quasiparticles from first principles molecular dynamics simulations in modest size supercells. This approach is effective irrespective of crystal structure complexity and facilitates calculation of full anharmonic phonon dispersions, as long as phonon quasiparticles are well defined. We validate this approach to obtain anharmonic effects with calculations in MgSiO3 perovskite, the major Earth forming mineral phase. First, we reproduce irregular thermal frequency shifts of well characterized Raman modes. Second, we combine the phonon gas model (PGM) with quasiparticle frequencies and reproduce free energies obtained using thermodynamic integration. Combining thoroughly sampled quasiparticle dispersions with the PGM we then obtain first-principles anharmonic free energy in the thermodynamic limit (N→∞). PMID:24580631
Phonon Quasiparticles and Anharmonic Free Energy in Complex Systems
NASA Astrophysics Data System (ADS)
Zhang, Dong-Bo; Sun, Tao; Wentzcovitch, Renata M.
2014-02-01
We use a hybrid strategy to obtain anharmonic frequency shifts and lifetimes of phonon quasiparticles from first principles molecular dynamics simulations in modest size supercells. This approach is effective irrespective of crystal structure complexity and facilitates calculation of full anharmonic phonon dispersions, as long as phonon quasiparticles are well defined. We validate this approach to obtain anharmonic effects with calculations in MgSiO3 perovskite, the major Earth forming mineral phase. First, we reproduce irregular thermal frequency shifts of well characterized Raman modes. Second, we combine the phonon gas model (PGM) with quasiparticle frequencies and reproduce free energies obtained using thermodynamic integration. Combining thoroughly sampled quasiparticle dispersions with the PGM we then obtain first-principles anharmonic free energy in the thermodynamic limit (N→∞).
Quasiparticle interactions in frustrated Heisenberg chains
NASA Astrophysics Data System (ADS)
Vanderstraeten, Laurens; Haegeman, Jutho; Verstraete, Frank; Poilblanc, Didier
2016-06-01
Interactions between elementary excitations in quasi-one-dimensional antiferromagnets are of experimental relevance and their quantitative theoretical treatment has been a theoretical challenge for many years. Using matrix product states, one can explicitly determine the wave functions of the one- and two-particle excitations, and, consequently, the contributions to dynamical correlations. We apply this framework to the (nonintegrable) frustrated dimerized spin-1/2 chain, a model for generic spin-Peierls systems, where low-energy quasiparticle excitations are bound states of topological solitons. The spin structure factor involving two quasiparticle scattering states is obtained in the thermodynamic limit with full momentum and frequency resolution. This allows very subtle features in the two-particle spectral function to be revealed which, we argue, could be seen, e.g., in inelastic neutron scattering of spin-Peierls compounds under a change of the external pressure.
Quantum Numbers of Textured Hall Effect Quasiparticles
Nayak, C.; Wilczek, F.
1996-11-01
We propose a class of variational wave functions with slow variation in spin and charge density and simple vortex structure at infinity, which properly generalize both the Laughlin quasiparticles and baby Skyrmions. We argue, on the basis of these wave functions and a spin-statistics relation in the relevant effective field theory, that the spin of the corresponding quasiparticle has a fractional part related in a universal fashion to the properties of the bulk state. We propose a direct experimental test of this claim. We show that certain spin-singlet quantum Hall states can be understood as arising from primary polarized states by Skyrmion condensation. {copyright} {ital 1996 The American Physical Society.}
NASA Astrophysics Data System (ADS)
Deslippe, Jack; Samsonidze, Georgy; Strubbe, David A.; Jain, Manish; Cohen, Marvin L.; Louie, Steven G.
2012-06-01
BerkeleyGW is a massively parallel computational package for electron excited-state properties that is based on the many-body perturbation theory employing the ab initio GW and GW plus Bethe-Salpeter equation methodology. It can be used in conjunction with many density-functional theory codes for ground-state properties, including PARATEC, PARSEC, Quantum ESPRESSO, SIESTA, and Octopus. The package can be used to compute the electronic and optical properties of a wide variety of material systems from bulk semiconductors and metals to nanostructured materials and molecules. The package scales to 10 000s of CPUs and can be used to study systems containing up to 100s of atoms. Program summaryProgram title: BerkeleyGW Catalogue identifier: AELG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Open source BSD License. See code for licensing details. No. of lines in distributed program, including test data, etc.: 576 540 No. of bytes in distributed program, including test data, etc.: 110 608 809 Distribution format: tar.gz Programming language: Fortran 90, C, C++, Python, Perl, BASH Computer: Linux/UNIX workstations or clusters Operating system: Tested on a variety of Linux distributions in parallel and serial as well as AIX and Mac OSX RAM: (50-2000) MB per CPU (Highly dependent on system size) Classification: 7.2, 7.3, 16.2, 18 External routines: BLAS, LAPACK, FFTW, ScaLAPACK (optional), MPI (optional). All available under open-source licenses. Nature of problem: The excited state properties of materials involve the addition or subtraction of electrons as well as the optical excitations of electron-hole pairs. The excited particles interact strongly with other electrons in a material system. This interaction affects the electronic energies, wavefunctions and lifetimes. It is well known that ground-state theories, such as standard methods
Quasiparticle energy studies of bulk semiconductors, surfaces and nanotubes
Blase, X.F.
1994-12-01
Effects of many-body effects on electronic excitation energies (quasiparticle band structure) of these materials are explored. GW approximation, including local field effects, for self-energy operator is used to calculate quasi-particle energies. The newly discovered carbon nanotubes are studied; structural stability and band structures are calculated. BN nanotubes are also studied, and their stability is predicted. Unexpected electronic features are predicted for both systems. Filling of carbon nanotubes with metal atoms and the doping of BN nanotubes by carbon and other impurites is also studied. The occupied surface states at H/Si(111)-(1{times}1) surface are studied; it is shown that the electronic structure requires a full quasiparticle calculation even for this simple chemisorption system. The core level shift of the Si 2p levels for atoms near the H/Si(111)-(1{times}1) surface is calculated; a simple first order perturbation theory using pseudopotential and the local density approximation gives good results for the photoemission spectra of the core electrons. The quasiparticle energies of bulk hexagonal BN and those of an isolated BN sheet are studied; this provides an understanding of the quasiparticle band structure of BN nanotubes. A nearly free electron state with a wavefunction in the interlayer or vacuum region composes the bottom of the conduction bands. A mixed-space formalism is presented for calculating the dynamical screening effects and electron self-energy operator in solids; this provides an efficient algorithm to calculate quasiparticle energies for large systems.
Quasiparticle relaxation mechanisms in superconductor/ferromagnet bilayers.
Attanasio, Carmine; Cirillo, Carla
2012-02-29
In this paper we review some recent results obtained on superconducting/ferromagnetic (S/F) structures when measuring the dynamic instabilities of the vortex lattice at high driving currents. The role played on the non-equilibrium properties of the hybrids by both the ferromagnetic and the superconducting materials has been analyzed with a special focus on the values and the temperature dependence of the quasiparticle relaxation times, τ(E). Knowledge of the relaxation mechanisms in these systems is extremely important in view of possible applications since it can drive the optimal choice of both materials to realize, in particular, ultrafast superconducting single photon detectors based on S/F hybrid structures. PMID:22314798
Dynamic properties of ceramic materials
Grady, D.E.; Wise, J.L.
1993-09-01
Controlled impact methods have been employed to obtain dynamic response properties of armor materials. Experimental data have been obtained for high-strength ceramics. Continued analysis of time-resolved velocity interferometer measurements has produced systematic material-property data for Hugoniot and release response, initial and post-yield strength, pressure-induced phase transformation, and dynamic fracture strength. A new technique has been developed to measure hydrodynamic properties of ceramic through shock-wave experiments on metal-ceramic composites and data obtained for silicon carbide. Additional data on several titanium diboride ceramics and high-quality aluminum oxide ceramic have been acquired, and issues regarding the influence of microstructure on dynamic properties have emerged. Comparison of dynamic (Hugoniot elastic limit) strength and indentation hardness data has been performed and important correlations revealed. Innovative impact experiments on confined and unconfined alumina rods using axial and transverse VISAR diagnostics have been demonstrated which permit acquisition of multiaxial dynamic response data. Dynamic failure properties of a high-density aluminosilicate glass, similar in composition to the intergranular glassy phase of some aluminas, have been investigated with regard to yield, spall, and failure-wave propagation.
Condensing Non-Abelian Quasiparticles
Hermanns, M.
2010-02-05
A most interesting feature of certain fractional quantum Hall states is that their quasiparticles obey non-Abelian fractional statistics. So far, candidate non-Abelian wave functions have been constructed from conformal blocks in cleverly chosen conformal field theories. In this work we present a hierarchy scheme by which we can construct daughter states by condensing non-Abelian quasiparticles (as opposed to quasiholes) in a parent state, and show that the daughters have a non-Abelian statistics that differs from the parent. In particular, we discuss the daughter of the bosonic, spin-polarized Moore-Read state at nu=4/3 as an explicit example.
Mass properties measurement system dynamics
NASA Technical Reports Server (NTRS)
Doty, Keith L.
1993-01-01
The MPMS mechanism possess two revolute degrees-of-freedom and allows the user to measure the mass, center of gravity, and the inertia tensor of an unknown mass. The dynamics of the Mass Properties Measurement System (MPMS) from the Lagrangian approach to illustrate the dependency of the motion on the unknown parameters.
Controlling quasiparticle excitations in a trapped Bose-Einstein condensate
Woo, S.J.; Choi, S.; Bigelow, N.P.
2005-08-15
We describe an approach to quantum control of the quasiparticle excitations in a trapped Bose-Einstein condensate based on adiabatic and diabatic changes in the trap anisotropy. We describe our approach in the context of the Landau-Zener transition at the avoided crossings in the quasiparticle excitation spectrum. We find also that there can be population oscillation between different modes at the specific aspect ratios of the trapping potential at which the mode energies are almost degenerate. These effects may have implications in the expansion of an excited condensate as well as the dynamics of a moving condensate in an atomic waveguide with a varying width.
Topological and dynamical properties of a generalized cluster model in one dimension
NASA Astrophysics Data System (ADS)
Ohta, Takumi; Tanaka, Shu; Danshita, Ippei; Totsuka, Keisuke
2016-04-01
We study the ground-state phase diagram and dynamics of the one-dimensional cluster model with several competing interactions. Paying particular attention to the relation between the entanglement spectrum (ES) and the bulk topological (winding) number, we first map out the ground-state phases of the model and determine the universality classes of the transitions from the exact solution. We then investigate the dynamical properties during interaction sweeps through the critical points of topological phase transitions. When the sweep speed is slow, the correlation functions and the entanglement entropy exhibit spatially periodic structures. On top of this, the levels in the ES oscillate temporally during the dynamics. By explicitly calculating the above quantities for excited states, we attribute these behaviors to the Bogoliubov quasiparticles generated near the critical points. We also show that the ES reflects the strength of the Majorana correlation even for the excited states.
Lightwave-driven quasiparticle collisions on a subcycle timescale.
Langer, F; Hohenleutner, M; Schmid, C P; Poellmann, C; Nagler, P; Korn, T; Schüller, C; Sherwin, M S; Huttner, U; Steiner, J T; Koch, S W; Kira, M; Huber, R
2016-05-12
Ever since Ernest Rutherford scattered α-particles from gold foils, collision experiments have revealed insights into atoms, nuclei and elementary particles. In solids, many-body correlations lead to characteristic resonances--called quasiparticles--such as excitons, dropletons, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity. However, the extremely short lifetimes of these entities make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport, the foundation of attosecond science, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron-hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses. PMID:27172045
Dakovski, Georgi L.; Durakiewicz, Tomasz; Zhu, Jian-Xin; Riseborough, Peter S.; Gu, Genda; Gilbertson, Steve M.; Taylor, Antoinette; Rodriguez, George
2015-10-12
A hallmark in the cuprate family of high-temperature superconductors is the nodal-antinodal dichotomy. In this regard, angle-resolved photoemission spectroscopy (ARPES) has proven especially powerful, providing band structure information directly in energy-momentum space. Time-resolved ARPES (trARPES) holds great promise of adding ultrafast temporal information, in an attempt to identify different interaction channels in the time domain. Previous studies of the cuprates using trARPES were handicapped by the low probing energy which significantly limits the accessible momentum space. Using 20.15eV, 12 fs pulses we show for the first time the evolution of quasiparticles in the antinodal region of Bi2Sr2CaCu2O8+δ and demonstrate thatmore » nonmonotonic relaxation dynamics dominates above a certain fluence threshold. The dynamics is heavily influenced by transient modification of the electron-phonon interaction and phase space restrictions, in severe contrast to the monotonic relaxation in the nodal and off-nodal regions.« less
Dakovski, Georgi L.; Durakiewicz, Tomasz; Zhu, Jian-Xin; Riseborough, Peter S.; Gu, Genda; Gilbertson, Steve M.; Taylor, Antoinette; Rodriguez, George
2015-01-01
A hallmark in the cuprate family of high-temperature superconductors is the nodal-antinodal dichotomy. In this regard, angle-resolved photoemission spectroscopy (ARPES) has proven especially powerful, providing band structure information directly in energy-momentum space. Time-resolved ARPES (trARPES) holds great promise of adding ultrafast temporal information, in an attempt to identify different interaction channels in the time domain. Previous studies of the cuprates using trARPES were handicapped by the low probing energy, which significantly limits the accessible momentum space. Using 20.15 eV, 12 fs pulses, we show for the first time the evolution of quasiparticles in the antinodal region of Bi2Sr2CaCu2O8+δ and demonstrate that non-monotonic relaxation dynamics dominates above a certain fluence threshold. The dynamics is heavily influenced by transient modification of the electron-phonon interaction and phase space restrictions, in stark contrast to the monotonic relaxation in the nodal and off-nodal regions. PMID:26798826
Dynamic properties of ceramic materials
Grady, D.E.
1995-02-01
The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process.
Shear viscosity over entropy density ratio with extended quasiparticles
NASA Astrophysics Data System (ADS)
Horváth, M.; Jakovác, A.
2016-03-01
We consider an effective field theory description of beyond-quasiparticle excitations aiming to associate the transport properties of the system with the spectral density of states. Tuning various properties of the many-particle correlations, we investigate how the robust microscopic features are translated into the macroscopic observables like shear viscosity and entropy density. The liquid-gas crossover is analysed using several examples. A thermal constraint on the fluidity measure η /s is discussed.
Dynamical properties of piano soundboards.
Chaigne, Antoine; Cotté, Benjamin; Viggiano, Roberto
2013-04-01
In pianos, the transfer of energy from strings to soundboard and the radiation of sound are highly dependent on the dynamical properties of the soundboard. In this paper, a numerical study is conducted for various rib configurations, showing that even slight irregularities in rib spacing can induce a strong localization of the soundboard velocity pattern. The effective vibrating area can be further reduced due to the spatial filtering effect of the bridge. Numerical predictions of modal shapes and operating deflection shapes are confirmed by series of measurements made on upright piano soundboards. Simulations of radiated pressure based on measured and calculated soundboard velocity fields show that localization tends to broaden the cone of directivity and to reduce the number of lobes. PMID:23556610
Qubit dephasing due to quasiparticle tunneling
NASA Astrophysics Data System (ADS)
Zanker, Sebastian; Marthaler, Michael
2015-05-01
We study dephasing of a superconducting qubit due to quasiparticle tunneling through a Josephson junction. While qubit decay due to tunneling processes is well understood within a golden rule approximation, pure dephasing due to BCS quasiparticles gives rise to a divergent golden rule rate. We calculate qubit dephasing due to quasiparticle tunneling beyond lowest-order approximation in coupling between qubit and quasiparticles. Summing up a certain class of diagrams, we show that qubit dephasing due to purely longitudinal coupling to quasiparticles leads to dephasing ˜exp[-x (t )] where x (t ) ∝t3 /2 for short-time scales and x (t )∝t ln(t ) for long-time scales.
A Quasiparticle Detector for Quantum Turbulence Imaging in Superfluid 3 He-B
NASA Astrophysics Data System (ADS)
Fisher, Shaun; Bradley, Ian; Clovevcko, Marcel; Ahlstrom, Sean; Guise, Ed; Haley, Rich; Holt, Steve; Pickett, George; Schanon, Roch; Tsepelin, Viktor; Woods, Andrew
2014-03-01
We describe the development of a two-dimensional quasiparticle detector to visualise quantum turbulence in superfluid 3He-B at ultra-low temperatures. The detector consists of 25 pixels each containing a miniature quartz tuning fork. The damping on each fork provides a measure of the local quasiparticle flux. The detector is illuminated by a beam of ballistic quasiparticles generated from a near-by black-body radiator. Vortices have a large cross-section for Andreev reflecting ballistic quasiparticles at low temperatures. We generate a tangle of vortices (quantum turbulence) in the path of the beam using a vibrating wire resonator. The vortices cast a shadow onto the face of the detector due to the Andreev reflection. This allows us to image the vortex tangle and to investigate the tangle dynamics. We describe the detector and present some preliminary results.
Tunable quasiparticle trapping in Meissner and vortex states of mesoscopic superconductors.
Taupin, M; Khaymovich, I M; Meschke, M; Mel'nikov, A S; Pekola, J P
2016-01-01
Nowadays, superconductors serve in numerous applications, from high-field magnets to ultrasensitive detectors of radiation. Mesoscopic superconducting devices, referring to those with nanoscale dimensions, are in a special position as they are easily driven out of equilibrium under typical operating conditions. The out-of-equilibrium superconductors are characterized by non-equilibrium quasiparticles. These extra excitations can compromise the performance of mesoscopic devices by introducing, for example, leakage currents or decreased coherence time in quantum devices. By applying an external magnetic field, one can conveniently suppress or redistribute the population of excess quasiparticles. In this article, we present an experimental demonstration and a theoretical analysis of such effective control of quasiparticles, resulting in electron cooling both in the Meissner and vortex states of a mesoscopic superconductor. We introduce a theoretical model of quasiparticle dynamics, which is in quantitative agreement with the experimental data. PMID:26980225
Tunable quasiparticle trapping in Meissner and vortex states of mesoscopic superconductors
NASA Astrophysics Data System (ADS)
Taupin, M.; Khaymovich, I. M.; Meschke, M.; Mel'Nikov, A. S.; Pekola, J. P.
2016-03-01
Nowadays, superconductors serve in numerous applications, from high-field magnets to ultrasensitive detectors of radiation. Mesoscopic superconducting devices, referring to those with nanoscale dimensions, are in a special position as they are easily driven out of equilibrium under typical operating conditions. The out-of-equilibrium superconductors are characterized by non-equilibrium quasiparticles. These extra excitations can compromise the performance of mesoscopic devices by introducing, for example, leakage currents or decreased coherence time in quantum devices. By applying an external magnetic field, one can conveniently suppress or redistribute the population of excess quasiparticles. In this article, we present an experimental demonstration and a theoretical analysis of such effective control of quasiparticles, resulting in electron cooling both in the Meissner and vortex states of a mesoscopic superconductor. We introduce a theoretical model of quasiparticle dynamics, which is in quantitative agreement with the experimental data.
Tunable quasiparticle trapping in Meissner and vortex states of mesoscopic superconductors
Taupin, M.; Khaymovich, I. M.; Meschke, M.; Mel'nikov, A. S.; Pekola, J. P.
2016-01-01
Nowadays, superconductors serve in numerous applications, from high-field magnets to ultrasensitive detectors of radiation. Mesoscopic superconducting devices, referring to those with nanoscale dimensions, are in a special position as they are easily driven out of equilibrium under typical operating conditions. The out-of-equilibrium superconductors are characterized by non-equilibrium quasiparticles. These extra excitations can compromise the performance of mesoscopic devices by introducing, for example, leakage currents or decreased coherence time in quantum devices. By applying an external magnetic field, one can conveniently suppress or redistribute the population of excess quasiparticles. In this article, we present an experimental demonstration and a theoretical analysis of such effective control of quasiparticles, resulting in electron cooling both in the Meissner and vortex states of a mesoscopic superconductor. We introduce a theoretical model of quasiparticle dynamics, which is in quantitative agreement with the experimental data. PMID:26980225
Phonon Quasi-Particles and Anharmonic Free Energy in Complex Systems
NASA Astrophysics Data System (ADS)
Zhang, Dong-Bo; Sun, Tao; Wentzcovitch, Renata
2014-03-01
We use a hybrid strategy to obtain anharmonic frequency shifts and lifetimes of phonon quasi-particles from first principles molecular dynamics simulations in modest size supercells. This approach is effective irrespective of crystal structure complexity and facilitates calculation of full anharmonic phonon dispersions, as long as phonon quasi-particles are well defined. We validate this approach to obtaining anharmonic effects with calculations in MgSiO3-perovskite, the major Earth forming mineral phase. First, we reproduce irregular temperature induced frequency shifts of well characterized Raman modes. Second, we combine the phonon gas model (PGM) with quasi-particle frequencies and reproduce free energies obtained using a direct approach such as thermodynamic integration. Using thoroughly sampled quasi-particle dispersions with the PGM we then obtain first-principles anharmonic free energy in the thermodynamic limit (N --> ∞) . Research supported by Abu Dhabi-Minnesota Institute for Research Excellence (ADMIRE) and NSF grant EAR-1047629.
Quasiparticle interference from magnetic impurities
NASA Astrophysics Data System (ADS)
Derry, Philip G.; Mitchell, Andrew K.; Logan, David E.
2015-07-01
Fourier transform scanning tunneling spectroscopy (FT-STS) measures the scattering of conduction electrons from impurities and defects, giving information about the electronic structure of both the host material and adsorbed impurities. We interpret such FT-STS measurements in terms of the quasiparticle interference (QPI), here investigating in detail the QPI due to single magnetic impurities adsorbed on a range of representative nonmagnetic host surfaces, and contrasting with the case of a simple scalar impurity or point defect. We demonstrate how the electronic correlations present for magnetic impurities markedly affect the QPI, showing, e.g., a large intensity enhancement due to the Kondo effect, and universality at low temperatures/scanning energies. The commonly used joint density of states interpretation of FT-STS measurements is also considered, and shown to be insufficient in many cases, including that of magnetic impurities.
Lightwave-driven quasiparticle collisions on a subcycle timescale
NASA Astrophysics Data System (ADS)
Langer, F.; Hohenleutner, M.; Schmid, C. P.; Poellmann, C.; Nagler, P.; Korn, T.; Schüller, C.; Sherwin, M. S.; Huttner, U.; Steiner, J. T.; Koch, S. W.; Kira, M.; Huber, R.
2016-05-01
Ever since Ernest Rutherford scattered α-particles from gold foils, collision experiments have revealed insights into atoms, nuclei and elementary particles. In solids, many-body correlations lead to characteristic resonances—called quasiparticles—such as excitons, dropletons, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity. However, the extremely short lifetimes of these entities make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport, the foundation of attosecond science, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron–hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses.
Thermal Transport by Ballistic Quasiparticles in Superfluid 3He-B in the Low Temperature Limit
Bradley, D. I.; Fisher, S. N.; Guenault, A. M.; Haley, R. P.; Martin, H.; Pickett, G. R.; Roberts, J. E.; Tsepelin, V.
2006-09-07
In the temperature range below 0.2Tc, the gas of thermal excitations from the superfluid 3He-B ground state is in the ultra-dilute ballistic regime. Here we discuss preliminary measurements of the transport properties of this quasiparticle gas in a cell of cylindrical geometry with dimensions much smaller than any mean free path. The vertical cylinder, constructed from epoxy-coated paper, has vibrating wire resonator (VWR) heaters and thermometers at the top and bottom, and a small aperture at the top which provides the only exit for quasiparticles. Using the thermometer VWRs, we measure the difference in quasiparticle density between the top and bottom of the tube when we excite the top or bottom VWR heater. This gives information about the transport of energy along the cylindrical 3He sample and hence about the scattering behaviour involved when a quasiparticle impinges on the cylinder wall.
Obtaining railpad properties via dynamic mechanical analysis
NASA Astrophysics Data System (ADS)
Oregui, M.; de Man, A.; Woldekidan, M. F.; Li, Z.; Dollevoet, R.
2016-02-01
In this paper, we propose combining dynamic mechanical analysis (DMA) and the time-temperature superposition principle to determine various railpad dynamic properties. Having accurate information regarding the dynamic properties of a railpad is a fundamental requirement for designing tracks and understanding track deterioration. By testing three different railpad types, we demonstrate that the dynamic behavior of railpads over a wide frequency range can be successfully obtained under different preloads and temperatures if time-temperature superposition can be applied. To investigate railpad aging, worn railpads taken from a mainline in the Netherlands are tested. In this case, worn railpads are softer and possess a lower damping capacity than new railpads. In addition to performing these measurements, a Prony series material model is proposed to reproduce the dynamic behavior of railpads. The Prony series model is in good agreement with the measurements. Measured railpad dynamic properties and the corresponding Prony series numerical model provide valuable information for track design and modeling.
Quasiparticle electronic structure of bismuth telluride in the GW approximation
NASA Astrophysics Data System (ADS)
Kioupakis, Emmanouil; Tiago, Murilo L.; Louie, Steven G.
2010-12-01
The quasiparticle band structure of bismuth telluride (Bi2Te3) , an important thermoelectric material that exhibits topologically insulating surface states, is calculated from first principles in the GW approximation. The quasiparticle energies are evaluated in fine detail in the first Brillouin zone using a Wannier-function interpolation method, allowing the accurate determination of the location of the band extrema (which is in the mirror plane) as well as the values of the quasiparticle band gap (0.17 eV) and effective-mass tensors. Spin-orbit interaction effects were included. The valence band exhibits two distinct maxima in the mirror plane that differ by just 1 meV, giving rise to one direct and one indirect band gap of very similar magnitude. The effective-mass tensors are in reasonable agreement with experiment. The Wannier interpolation coefficients can be used for the tight-binding parametrization of the band structure. Our work elucidates the electronic structure of Bi2Te3 and sheds light on its exceptional thermoelectric and topologically insulating properties.
Quasiparticle electronic structure of bismuth telluride in the GW approximation
Kioupakis, Emmanouil; Tiago, Murilo L; Louie, Steven G.
2010-01-01
The quasiparticle band structure of bismuth telluride Bi2Te3 , an important thermoelectric material that exhibits topologically insulating surface states, is calculated from first principles in the GW approximation. The quasiparticle energies are evaluated in fine detail in the first Brillouin zone using a Wannier-function interpo- lation method, allowing the accurate determination of the location of the band extrema which is in the mirror plane as well as the values of the quasiparticle band gap 0.17 eV and effective-mass tensors. Spin-orbit interaction effects were included. The valence band exhibits two distinct maxima in the mirror plane that differ by just 1 meV, giving rise to one direct and one indirect band gap of very similar magnitude. The effective- mass tensors are in reasonable agreement with experiment. The Wannier interpolation coefficients can be used for the tight-binding parametrization of the band structure. Our work elucidates the electronic structure of Bi2Te3 and sheds light on its exceptional thermoelectric and topologically insulating properties.
Challenges associated with sampling dynamic soil properties
Technology Transfer Automated Retrieval System (TEKTRAN)
The determination of dynamic soil properties (DSPs) for agricultural practices poses significant challenges, particularly in the context of values derived as part of the National Soil Survey. Although DSPs have been defined as those properties that change over human time scales, limits on the time ...
Exact-exchange-based quasiparticle calculations
Aulbur, Wilfried G.; Staedele, Martin; Goerling, Andreas
2000-09-15
One-particle wave functions and energies from Kohn-Sham calculations with the exact local Kohn-Sham exchange and the local density approximation (LDA) correlation potential [EXX(c)] are used as input for quasiparticle calculations in the GW approximation (GWA) for eight semiconductors. Quasiparticle corrections to EXX(c) band gaps are small when EXX(c) band gaps are close to experiment. In the case of diamond, quasiparticle calculations are essential to remedy a 0.7 eV underestimate of the experimental band gap within EXX(c). The accuracy of EXX(c)-based GWA calculations for the determination of band gaps is as good as the accuracy of LDA-based GWA calculations. For the lowest valence band width a qualitatively different behavior is observed for medium- and wide-gap materials. The valence band width of medium- (wide-) gap materials is reduced (increased) in EXX(c) compared to the LDA. Quasiparticle corrections lead to a further reduction (increase). As a consequence, EXX(c)-based quasiparticle calculations give valence band widths that are generally 1-2 eV smaller (larger) than experiment for medium- (wide-) gap materials. (c) 2000 The American Physical Society.
Pairing within the self-consistent quasiparticle random-phase approximation at finite temperature
Dang, N. Dinh; Hung, N. Quang
2008-06-15
An approach to pairing in finite nuclei at nonzero temperature is proposed, which incorporates the effects due to the quasiparticle-number fluctuation (QNF) around Bardeen-Cooper-Schrieffer (BCS) mean field and dynamic coupling to quasiparticle-pair vibrations within the self-consistent quasiparticle random-phase approximation (SCQRPA). The numerical calculations of pairing gap, total energy, and heat capacity were carried out within a doubly folded multilevel model as well as realistic nuclei {sup 56}Fe and {sup 120}Sn. The results obtained show that, under the effect of QNF, in the region of moderate and strong couplings, the sharp transition between the superconducting and normal phases is smoothed out, resulting in a thermal pairing gap, which does not collapse at the BCS critical temperature, but has a tail, which extends to high temperature. The dynamic coupling of quasiparticles to SCQRPA vibrations significantly improves the agreement with the results of exact calculations and those obtained within the finite-temperature quantal Monte Carlo method for the total energy and heat capacity. It also causes a deviation of the quasiparticle occupation numbers from the Fermi-Dirac distributions for free fermions.
NASA Astrophysics Data System (ADS)
Seki, Kazuhiro; Shirakawa, Tomonori; Zhang, Qinfang; Li, Tao; Yunoki, Seiji
2016-04-01
Using the variational cluster approximation (VCA) and the cluster perturbation theory, we study the finite-temperature phase diagram of a half-depleted periodic Anderson model on the honeycomb lattice at half-filling for a model of graphone, i.e., single-side hydrogenated graphene. The ground state of this model is found to be ferromagnetic (FM) semimetal. The origin of this FM state is attributed to the instability of a flat band located at the Fermi energy in the noninteracting limit and is smoothly connected to the Lieb-Mattis-type ferromagnetism. The spin-wave dispersion in the FM state is linear in momentum at zero temperature but becomes quadratic at finite temperatures, implying that the FM state is fragile against thermal fluctuations. Indeed, our VCA calculations find that the paramagnetic (PM) state dominates the finite-temperature phase diagram. More surprisingly, we find that massless Dirac quasiparticles with the linear energy dispersion emerge at the Fermi energy upon introducing the electron correlation U at the impurity sites in the PM phase. The Dirac Fermi velocity is found to be highly correlated to the quasiparticle weight of the emergent massless Dirac quasiparticles at the Fermi energy and monotonically increases with U . These unexpected massless Dirac quasiparticles are also examined with the Hubbard-I approximation and the origin is discussed in terms of the spectral weight redistribution involving a large energy scale of U . Considering an effective quasiparticle Hamiltonian which reproduces the single-particle excitations obtained by the Hubbard-I approximation, we argue that the massless Dirac quasiparticles are protected by the electron correlation. Our finding therefore provides a unique example of the emergence of massless Dirac quasiparticles due to dynamical electron correlations without breaking any spatial symmetry. The experimental implications of our results for graphone as well as a graphene sheet on transition-metal substrates
Quasiparticles of strongly correlated Fermi liquids at high temperatures and in high magnetic fields
Shaginyan, V. R.
2011-08-15
Strongly correlated Fermi systems are among the most intriguing, best experimentally studied and fundamental systems in physics. There is, however, lack of theoretical understanding in this field of physics. The ideas based on the concepts like Kondo lattice and involving quantum and thermal fluctuations at a quantum critical point have been used to explain the unusual physics. Alas, being suggested to describe one property, these approaches fail to explain the others. This means a real crisis in theory suggesting that there is a hidden fundamental law of nature. It turns out that the hidden fundamental law is well forgotten old one directly related to the Landau-Migdal quasiparticles, while the basic properties and the scaling behavior of the strongly correlated systems can be described within the framework of the fermion condensation quantum phase transition (FCQPT). The phase transition comprises the extended quasiparticle paradigm that allows us to explain the non-Fermi liquid (NFL) behavior observed in these systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Our observations are in good agreement with experimental facts and show that FCQPT is responsible for the observed NFL behavior and quasiparticles survive both high temperatures and high magnetic fields.
Bogoliubov quasiparticles coupled to the antiferromagnetic spin mode in a vortex core
NASA Astrophysics Data System (ADS)
Berthod, C.
2015-12-01
In copper- and iron-based unconventional superconductors, the Bogoliubov quasiparticles interact with a spin resonance at momentum (π ,π ) . This interaction is revealed by specific signatures in the quasiparticle spectroscopies, like kinks in photoemission and dips in tunneling. We study these signatures, as they appear inside and around a vortex core in the local density of states (LDOS), a property accessible experimentally by scanning tunneling spectroscopy. Our model retains the whole nonlocal structure of the self-energy in space and time and is therefore not amenable to a Hamiltonian treatment using Bogoliubov-de Gennes equations. The interaction with the spin resonance does not suppress the zero-bias peak at the vortex center, although it reduces its spectral weight; neither does it smear out the vortex LDOS, but rather it adds structure to it. Some of the signatures we find may have been already measured in FeSe, but remained unnoticed. We compare the LDOS as a function of both energy and position with and without coupling to the spin resonance and observe, in particular, that the quasiparticle interference patterns around the vortex are strongly damped by the coupling. We study in detail the transfer of spectral weight induced both locally and globally by the interaction and also by the formation of the vortex. Finally, we introduce a new way of imaging the quasiparticles in real space, which combines locality and momentum-space sensitivity. This approach allows one to access quasiparticle properties that are not contained in the LDOS.
Quasiparticles near domain walls in hexagonal superconductors
NASA Astrophysics Data System (ADS)
Mukherjee, Soumya; Samokhin, Kirill
We calculate the energy spectrum of quasiparticles trapped by a domain wall separating different time reversal symmetry-breaking ground states in a hexagonal superconductor, such as UPt3. The bound state energy is found to be strongly dependent on the gap symmetry, the domain wall orientation, the quasiparticle's direction of semiclassical propagation, and the phase difference between the domains. We calculate the corresponding density of states and show how one can use its prominent features, in particular, the zero-energy singularity, to distinguish between different pairing symmetries. Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.
Quasiparticles near domain walls in hexagonal superconductors
NASA Astrophysics Data System (ADS)
Mukherjee, S. P.; Samokhin, K. V.
2016-02-01
We calculate the energy spectrum of quasiparticles trapped by a domain wall separating different time-reversal symmetry-breaking ground states in a hexagonal superconductor, such as UPt3. The bound-state energy is found to be strongly dependent on the gap symmetry, the domain-wall orientation, the quasiparticle's direction of semiclassical propagation, and the phase difference between the domains. We calculate the corresponding density of states and show how one can use its prominent features, in particular, the zero-energy singularity, to distinguish between different pairing symmetries.
Physical properties and mantle dynamics
Shankland, T.J.; Johnson, P.A.; McCall, K.R.
1997-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Because planetary interiors are remote, laboratory methods and associated theory are an essential step for interpreting geophysical measurements in terms of quantities that are needed for understanding Earth--temperature, composition, stress state, history, and hazards. One objective is the study of minerals and rocks as materials using experimental methods; another is to develop new methods, as in high pressure research, codes for computation in rock/soil physics, or nuclear-based analysis. Accomplishments include developing a single-crystal x-ray diffraction apparatus with application to materials at extremely high pressure and temperature; P-V-T equations of state and seismic velocity measurements for understanding the composition of Earth`s outer 1,000 km; creating computational tools to explain complex stress-strain histories of rocks; and measuring tungsten/thorium ratios W/Th that agree with the hypothesis that Earth accreted heterogeneously. Work performed in this project applies to geosciences, geothermal energy, mineral and rock properties, seismic detection, and isotope dating.
A Quasiparticle Detector for Imaging Quantum Turbulence in Superfluid He-B
NASA Astrophysics Data System (ADS)
Ahlstrom, S. L.; Bradley, D. I.; Fisher, S. N.; Guénault, A. M.; Guise, E. A.; Haley, R. P.; Holt, S.; Kolosov, O.; McClintock, P. V. E.; Pickett, G. R.; Poole, M.; Schanen, R.; Tsepelin, V.; Woods, A. J.
2014-06-01
We describe the development of a two-dimensional quasiparticle detector for use in visualising quantum turbulence in superfluid He-B at ultra-low temperatures. The detector consists of a matrix of pixels, each a 1 mm diameter hole in a copper block containing a miniature quartz tuning fork. The damping on each fork provides a measure of the local quasiparticle flux. The detector is illuminated by a beam of ballistic quasiparticles generated from a nearby black-body radiator. A comparison of the damping on the different forks provides a measure of the cross-sectional profile of the beam. Further, we generate a tangle of vortices (quantum turbulence) in the path of the beam using a vibrating wire resonator. The vortices cast a shadow onto the face of the detector due to the Andreev reflection of quasiparticles in the beam. This allows us to image the vortices and to investigate their dynamics. Here we give details of the design and construction of the detector and show some preliminary results for one row of pixels which demonstrates its successful application to measuring quasiparticle beams and quantum turbulence.
Dynamic property studies of Sterling engines
NASA Technical Reports Server (NTRS)
Tani, Y.; Seibara, M.; Takenai, K.; Yamaguchi, W.
1984-01-01
A description is given of the results of dynamic property tests that were carried out using a trial produced prototype of a 50 KW Sterling engine. The features of the engine are shown graphically. A high thermal efficiency is found in the low rotation region.
Dynamical simulation of dipolar Janus colloids: Dynamical properties
NASA Astrophysics Data System (ADS)
Hagy, Matthew C.; Hernandez, Rigoberto
2013-05-01
The dynamical properties of dipolar Janus particles are studied through simulation using our previously-developed detailed pointwise (PW) model and an isotropically coarse-grained (CG) model [M. C. Hagy and R. Hernandez, J. Chem. Phys. 137, 044505 (2012), 10.1063/1.4737432]. The CG model is found to have accelerated dynamics relative to the PW model over a range of conditions for which both models have near identical static equilibrium properties. Physically, this suggests dipolar Janus particles have slower transport properties (such as diffusion) in comparison to isotropically attractive particles. Time rescaling and damping with Langevin friction are explored to map the dynamics of the CG model to that of the PW model. Both methods map the diffusion constant successfully and improve the velocity autocorrelation function and the mean squared displacement of the CG model. Neither method improves the distribution of reversible bond durations f(tb) observed in the CG model, which is found to lack the longer duration reversible bonds observed in the PW model. We attribute these differences in f(tb) to changes in the energetics of multiple rearrangement mechanisms. This suggests a need for new methods that map the coarse-grained dynamics of such systems to the true time scale.
Chemical potential beyond the quasiparticle mean field
Dinh Dang, N.; Hung, N. Quang
2010-03-15
The effects of quantal and thermal fluctuations beyond the BCS quasiparticle mean field on the chemical potential are studied within a model, which consists of N particles distributed amongst {Omega} doubly folded equidistant levels interacting via a pairing force with parameter G. The results obtained at zero and finite temperatures T within several approaches, which include the fluctuations beyond the BCS theory, are compared with the exact results. The chemical potential, defined as the Lagrangian multiplier to preserve the average number of particles, is compared with the corresponding quantity, which includes the effect from fluctuations of particle and quasiparticle numbers beyond the BCS quasiparticle mean field. The analysis of the results shows that the latter differs significantly from the former as functions of G and T. The chemical potential loses its physical meaning in the system with a fixed number of particles or after eliminating quantal fluctuations of particle (quasiparticle) numbers by means of particle number projection. The validity of the criterion for the signature of the transition to Bose-Einstein condensation, which occurs in infinite systems when the chemical potential hits the bottom of the energy spectrum, is reexamined for the finite multilevel model.
Using Quasiparticle Poisoning To Detect Photons
NASA Technical Reports Server (NTRS)
Echternach, Pierre; Day, Peter
2006-01-01
According to a proposal, a phenomenon associated with excitation of quasiparticles in certain superconducting quantum devices would be exploited as a means of detecting photons with exquisite sensitivity. The phenomenon could also be exploited to perform medium-resolution spectroscopy. The proposal was inspired by the observation that Coulomb blockade devices upon which some quantum logic gates are based are extremely sensitive to quasiparticles excited above the superconducting gaps in their leads. The presence of quasiparticles in the leads can be easily detected via the charge states. If quasiparticles could be generated in the leads by absorption of photons, then the devices could be used as very sensitive detectors of electromagnetic radiation over the spectral range from x-rays to submillimeter waves. The devices in question are single-Cooper-pair boxes (SCBs), which are mesoscopic superconducting devices developed for quantum computing. An SCB consists of a small superconducting island connected to a reservoir via a small tunnel junction and connected to a voltage source through a gate capacitor. An SCB is an artificial two-level quantum system, the Hamiltonian of which can be controlled by the gate voltage. One measures the expected value of the charge of the eigenvectors of this quantum system by use of a radio-frequency single-electron transistor. A plot of this expected value of charge as a function of gate voltage resembles a staircase that, in the ideal case, consists of steps of height 2 e (where e is the charge of one electron). Experiments have shown that depending on the parameters of the device, quasiparticles in the form of "broken" Cooper pairs present in the reservoir can tunnel to the island, giving rise to steps of 1 e. This effect is sometimes called "poisoning." Simulations have shown that an extremely small average number of quasiparticles can generate a 1-e periodic signal. In a device according to the proposal, this poisoning would be
Comparing quasiparticle GW+DMFT and LDA+DMFT for the test bed material SrVO3
NASA Astrophysics Data System (ADS)
Taranto, C.; Kaltak, M.; Parragh, N.; Sangiovanni, G.; Kresse, G.; Toschi, A.; Held, K.
2013-10-01
We have implemented the quasiparticle GW+dynamical mean field theory (DMFT) approach in the Vienna ab initio simulation package. To this end, a quasiparticle Hermitization of the G0W0 self-energy a lá Kotani-Schilfgaarde is employed, and the interaction values are obtained from the locally unscreened random phase approximation (RPA) using a projection onto Wannier orbitals. We compare quasiparticle GW+DMFT and local density approximation (LDA)+DMFT against each other and against experiment for SrVO3. We observe a partial compensation of stronger electronic correlations due to the reduced GW bandwidth and weaker correlations due to a larger screening of the RPA interaction, so that the obtained spectra are quite similar and agree well with experiment. Noteworthy, the quasiparticle GW+DMFT better reproduces the position of the lower Hubbard side band.
Quasiparticle electronic structure of bulk and slab Bi2Se3 and Bi2Te3
NASA Astrophysics Data System (ADS)
Barker, Bradford; Deslippe, Jack; Yazyev, Oleg; Louie, Steven G.
2014-03-01
We present ab initio calculations of the quasiparticle electronic band structure of three-dimensional topological insulator materials Bi2Se3 and Bi2Te3. The mean-field DFT calculation is performed with fully relativistic pseudopotentials, generating spinor wavefunctions in a plane-wave basis. Quasiparticle properties are computed with a one-shot ab initio GW calculation. We use both bulk and slab forms of the materials to better understand the quasiparticle band gaps and Fermi velocities of the topological surface states of these materials. This work was supported by NSF grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at LBNL's NERSC facility and the NSF through XSEDE resources at NICS.
Gap-engineered quasiparticle traps in the fluxonium artificial atom
NASA Astrophysics Data System (ADS)
Serniak, K.; de Lange, G.; Vool, U.; Hays, M.; Burkhart, L. D.; Gao, Y. Y.; Wang, C.; Sliwa, K. M.; Pop, I. M.; Frunzio, L.; Glazman, L. I.; Schoelkopf, R. J.; Devoret, M. H.
Recent experiments have shown that the density of quasiparticles in superconducting quantum circuits exceeds the expected thermal density. In Josephson junction based superconducting qubits, these non-equilibrium quasiparticles can tunnel through the junctions of the circuit, causing decoherence. Quasiparticle traps aim to reduce the density of quasiparticles near the junctions, and therefore the rate of energy loss and dephasing due to tunneling events. These traps must be designed to not introduce any additional losses in the qubit. In this talk we will discuss recent progress in the design and implementation of quasiparticle traps in the fluxonium artificial atom. Work supported by ARO, ONR, YINQE, and the European Union.
Superconducting resonators with trapped vortices under direct injection of quasiparticles
NASA Astrophysics Data System (ADS)
Nsanzineza, Ibrahim; Patel, Umesh; Dodge, K. R.; McDermott, R. F.; Plourde, B. L. T.
Nonequilibrium quasiparticles and trapped magnetic flux vortices can significantly impact the performance of superconducting microwave resonant circuits and qubits at millikelvin temperatures. Quasiparticles result in excess loss, reducing resonator quality factors and qubit lifetimes. Vortices trapped near regions of large microwave currents also contribute excess loss. However, vortices located in current-free areas in the resonator or in the ground plane of a device can actually trap quasiparticles and lead to a reduction in the quasiparticle loss. We will describe experiments involving the controlled trapping of vortices in superconducting resonators with direct injection of quasiparticles using Normal metal-Insulator-Superconductor (NIS)-tunnel junctions.
Field-induced dynamical properties of the XXZ model on a honeycomb lattice
NASA Astrophysics Data System (ADS)
Maksimov, P. A.; Chernyshev, A. L.
2016-01-01
We present a comprehensive 1 /S study of the field-induced dynamical properties of the nearest-neighbor XXZ antiferromagnet on a honeycomb lattice using the formalism of nonlinear spin-wave theory developed for this model. The external magnetic field controls spin frustration in the system and induces noncollinearity of the spin structure, which is essential for the two-magnon decay processes. Our results include an intriguing field-evolution of the regions of the Brillouin zone wherein decays of spin excitations are prominent, a detailed classification of the decay channels involving magnons from both excitation branches, and a thorough analysis of the singularities in the magnon spectra due to coupling to the two-magnon continuum, all of which are illustrated for several field and anisotropy values. We highlight a number of features related to either the non-Bravais nature of the lattice or the existence of the Dirac-like points in the spectrum. In addition, the asymptotic behavior of the decay rates near high-symmetry points is analyzed in detail. The inelastic neutron-scattering spin-spin structure factor is obtained in the leading 1 /S order and is shown to exhibit qualitatively distinct fingerprints of the decay-induced magnon dynamics such as quasiparticle peaks broadened by decays and strong spectral weight redistribution.
Quasiparticle-continuum level repulsion in a quantum magnet
Plumb, K. W.; Hwang, Kyusung; Qiu, Y.; Harriger, Leland W.; Granroth, G. Â E.; Kolesnikov, Alexander I.; Shu, G. J.; Chou, F. C.; Rüegg, Ch.; Kim, Yong Baek; Kim, Young-June
2015-11-30
When the energy eigenvalues of two coupled quantum states approach each other in a certain parameter space, their energy levels repel each other and level crossing is avoided. Such level repulsion, or avoided level crossing, is commonly used to describe the dispersion relation of quasiparticles in solids. But, little is known about the level repulsion when more than two quasiparticles are present; for example, in a strongly interacting quantum system where a quasiparticle can spontaneously decay into a many-particle continuum. Here we show that even in this case level repulsion exists between a long-lived quasiparticle state and a continuum. Here, we observe a renormalization of the quasiparticle dispersion relation due to the presence of the continuum of multi-quasiparticle states, in our fine-resolution neutron spectroscopy study of magnetic quasiparticles in the frustrated quantum magnet BiCu_{2}PO_{6}.
Normal Metal Quasiparticle Traps in 3D-Transmon Qubits
NASA Astrophysics Data System (ADS)
Burkhart, Luke D.; Gao, Yvonne Y.; Wang, Chen; Serniak, Kyle; de Lange, Gijs; Chu, Yiwen; Vool, Uri; Frunzio, Luigi; Devoret, Michel H.; Catelani, Gianluigi; Glazman, Leonid I.; Schoelkopf, Robert J.
Quasiparticles are a known source of decoherence in Josephson-junction based superconducting qubits. While equilibrium quasiparticles should not be present in devices operated at dilution refrigeration temperatures well below the superconducting energy gap, non-thermal quasiparticles have been observed in many different superconducting qubits, including 3D-transmons and fluxonium qubits. Vortices induced by applied magnetic fields have been shown to improve non-equilibrium quasiparticle decay rates and improve coherence times by creating regions of the superconductor with vanishing energy gap, which act as quasiparticle traps. We aim to further mitigate quasiparticle-induced limits on coherence by engineering strong trapping via the introduction of normal metal to the superconducting qubit. In this talk, we present recent results regarding normal metal quasiparticle traps in 3D-transmon qubits. Work supported by ARO, A*STAR.
Quasiparticle-continuum level repulsion in a quantum magnet
Plumb, K. W.; Hwang, Kyusung; Qiu, Y.; Harriger, Leland W.; Granroth, G. Â E.; Kolesnikov, Alexander I.; Shu, G. J.; Chou, F. C.; Rüegg, Ch.; Kim, Yong Baek; et al
2015-11-30
When the energy eigenvalues of two coupled quantum states approach each other in a certain parameter space, their energy levels repel each other and level crossing is avoided. Such level repulsion, or avoided level crossing, is commonly used to describe the dispersion relation of quasiparticles in solids. But, little is known about the level repulsion when more than two quasiparticles are present; for example, in a strongly interacting quantum system where a quasiparticle can spontaneously decay into a many-particle continuum. Here we show that even in this case level repulsion exists between a long-lived quasiparticle state and a continuum. Here,more » we observe a renormalization of the quasiparticle dispersion relation due to the presence of the continuum of multi-quasiparticle states, in our fine-resolution neutron spectroscopy study of magnetic quasiparticles in the frustrated quantum magnet BiCu2PO6.« less
Quasiparticle-continuum level repulsion in a quantum magnet
NASA Astrophysics Data System (ADS)
Plumb, K. W.; Hwang, Kyusung; Qiu, Y.; Harriger, Leland W.; Granroth, G. E.; Kolesnikov, Alexander I.; Shu, G. J.; Chou, F. C.; Rüegg, Ch.; Kim, Yong Baek; Kim, Young-June
2016-03-01
When the energy eigenvalues of two coupled quantum states approach each other in a certain parameter space, their energy levels repel each other and level crossing is avoided. Such level repulsion, or avoided level crossing, is commonly used to describe the dispersion relation of quasiparticles in solids. However, little is known about the level repulsion when more than two quasiparticles are present; for example, in a strongly interacting quantum system where a quasiparticle can spontaneously decay into a many-particle continuum. Here we show that even in this case level repulsion exists between a long-lived quasiparticle state and a continuum. In our fine-resolution neutron spectroscopy study of magnetic quasiparticles in the frustrated quantum magnet BiCu2PO6, we observe a renormalization of the quasiparticle dispersion relation due to the presence of the continuum of multi-quasiparticle states.
Multifractal properties of ball milling dynamics
Budroni, M. A. Pilosu, V.; Rustici, M.; Delogu, F.
2014-06-15
This work focuses on the dynamics of a ball inside the reactor of a ball mill. We show that the distribution of collisions at the reactor walls exhibits multifractal properties in a wide region of the parameter space defining the geometrical characteristics of the reactor and the collision elasticity. This feature points to the presence of restricted self-organized zones of the reactor walls where the ball preferentially collides and the mechanical energy is mainly dissipated.
Quasiparticles and Fermi liquid behaviour in an organic metal
Kiss, T.; Chainani, A.; Yamamoto, H.M.; Miyazaki, T.; Akimoto, T.; Shimojima, T.; Ishizaka, K.; Watanabe, S.; Chen, C.-T.; Fukaya, A.; Kato, R.; Shin, S.
2012-01-01
Many organic metals display exotic properties such as superconductivity, spin-charge separation and so on and have been described as quasi-one-dimensional Luttinger liquids. However, a genuine Fermi liquid behaviour with quasiparticles and Fermi surfaces have not been reported to date for any organic metal. Here, we report the experimental Fermi surface and band structure of an organic metal (BEDT-TTF)3Br(pBIB) obtained using angle-resolved photoelectron spectroscopy, and show its consistency with first-principles band structure calculations. Our results reveal a quasiparticle renormalization at low energy scales (effective mass m*=1.9 me) and ω2 dependence of the imaginary part of the self energy, limited by a kink at ~50 meV arising from coupling to molecular vibrations. The study unambiguously proves that (BEDT-TTF)3Br(pBIB) is a quasi-2D organic Fermi liquid with a Fermi surface consistent with Shubnikov-de Haas results. PMID:23011143
Polymer nanocomposites: permeability, chain dynamics, mechanical properties
NASA Astrophysics Data System (ADS)
Sahu, Laxmi
2005-03-01
Polymer nanocomposites based on dispersion of surfactant treated expandable smectite clays such as montmorillonite layered silicates (MLS) have shown promise as organic-inorganic hybrids with the potential to improve barrier properties. Separately, flexible displays based on plastic substrates have reduced lifetimes tied to the low barrier properties. While there has been a general attribution of improved barrier properties to the tortuous path, this does not consider the influence the introduction of a secondary filler has on the morphology of the host polymer. Here we examine the influence of MLS nanoplatelets on the barrier properties and chain dynamics of polymers. We investigate the potential for host polymer modification by comparing two crystallizable polymers nylon and PET and resulting well dispersed nanocomposites. We study mechanical, cyclic fatigue and permeability of films. Permeability of the biaxially stretched film and when the film undergoes fatigue of 50 and 10000 cycles are also measured. Chain dynamics were modeled based on the Burger model fit to creep-recovery data. A systematic approach to predict the permeability considering amorphous, crystalline and MLS content and comparison with experimental values were done. We also conducted water absorption measurements to highlight the water absorption differences in the two polymers. Dimensional stability of PET was studied by measuring coefficient of thermal expansion of thin film on Si substrate by ellipsometry method.
Dynamic properties of Drosophila olfactory electroantennograms.
Schuckel, Julia; Meisner, Shannon; Torkkeli, Päivi H; French, Andrew S
2008-05-01
Time-dependent properties of chemical signals are probably crucially important to many animals, but little is known about the dynamics of chemoreceptors. Behavioral evidence of dynamic sensitivity includes the control of moth flight by pheromone plume structure, and the ability of some blood-sucking insects to detect varying concentrations of carbon dioxide, possibly matched to host breathing rates. Measurement of chemoreceptor dynamics has been limited by the technical challenge of producing controlled, accurate modulation of olfactory and gustatory chemical concentrations over suitably wide ranges of amplitude and frequency. We used a new servo-controlled laminar flow system, combined with photoionization detection of surrogate tracer gas, to characterize electroantennograms (EAG) of Drosophila antennae during stimulation with fruit odorants or aggregation pheromone in air. Frequency response functions and coherence functions measured over a bandwidth of 0-100 Hz were well characterized by first-order low-pass linear filter functions. Filter time constant varied over almost a tenfold range, and was characteristic for each odorant, indicating that several dynamically different chemotransduction mechanisms are present. Pheromone response was delayed relative to fruit odors. Amplitude of response, and consequently signal-to-noise ratio, also varied consistently with different compounds. Accurate dynamic characterization promises to provide important new information about chemotransduction and odorant-stimulated behavior. PMID:18320197
Dynamic molecular crystals with switchable physical properties.
Sato, Osamu
2016-06-21
The development of molecular materials whose physical properties can be controlled by external stimuli - such as light, electric field, temperature, and pressure - has recently attracted much attention owing to their potential applications in molecular devices. There are a number of ways to alter the physical properties of crystalline materials. These include the modulation of the spin and redox states of the crystal's components, or the incorporation within the crystalline lattice of tunable molecules that exhibit stimuli-induced changes in their molecular structure. A switching behaviour can also be induced by changing the molecular orientation of the crystal's components, even in cases where the overall molecular structure is not affected. Controlling intermolecular interactions within a molecular material is also an effective tool to modulate its physical properties. This Review discusses recent advances in the development of such stimuli-responsive, switchable crystalline compounds - referred to here as dynamic molecular crystals - and suggests how different approaches can serve to prepare functional materials. PMID:27325090
Dynamic tensile properties of human placenta.
Manoogian, Sarah J; Bisplinghoff, Jill A; McNally, Craig; Kemper, Andrew R; Santago, Anthony C; Duma, Stefan M
2008-12-01
Automobile crashes are the largest cause of injury death for pregnant females and the leading cause of traumatic fetal injury mortality in the United States. Computational models, useful tools to evaluate the risk of fetal loss in motor vehicle crashes, are based on a limited number of quasi-static material tests of the placenta. This study presents a total of 20 dynamic uniaxial tensile tests on the maternal side of the placenta and 10 dynamic uniaxial tensile tests on the chorion layer of the placenta. These tests were completed from 6 human placentas to determine material properties at a strain rate of 7.0 strains/s. The results show that the average peak strain at failure for both the maternal portion and the chorion layer of the placenta are similar with a value of 0.56 and 0.61, respectively. However, the average failure stress for the chorion layer, 167.8 kPa, is much higher than the average failure stress for the placenta with the chorionic plate removed, 18.6 kPa. This is due to differences in the structure and function of these layers in the placenta. In summary, dynamic loading data for the placenta have been determined for use in computational modeling of pregnant occupant kinematics in motor vehicle crashes. Moreover the computational model should utilize the material properties for the placenta without the chorion layer. PMID:18996533
Structural and dynamical properties of complex networks
NASA Astrophysics Data System (ADS)
Ghoshal, Gourab
Recent years have witnessed a substantial amount of interest within the physics community in the properties of networks. Techniques from statistical physics coupled with the widespread availability of computing resources have facilitated studies ranging from large scale empirical analysis of the worldwide web, social networks, biological systems, to the development of theoretical models and tools to explore the various properties of these systems. Following these developments, in this dissertation, we present and solve for a diverse set of new problems, investigating the structural and dynamical properties of both model and real world networks. We start by defining a new metric to measure the stability of network structure to disruptions, and then using a combination of theory and simulation study its properties in detail on artificially generated networks; we then compare our results to a selection of networks from the real world and find good agreement in most cases. In the following chapter, we propose a mathematical model that mimics the structure of popular file-sharing websites such as Flickr and CiteULike and demonstrate that many of its properties can solved exactly in the limit of large network size. The remaining part of the dissertation primarily focuses on the dynamical properties of networks. We first formulate a model of a network that evolves under the addition and deletion of vertices and edges, and solve for the equilibrium degree distribution for a variety of cases of interest. We then consider networks whose structure can be manipulated by adjusting the rules by which vertices enter and leave the network. We focus in particular on degree distributions and show that, with some mild constraints, it is possible by a suitable choice of rules to arrange for the network to have any degree distribution we desire. In addition we define a simple local algorithm by which appropriate rules can be implemented in practice. Finally, we conclude our
Robustness of superconducting quantum modes against direct quasiparticle injection
NASA Astrophysics Data System (ADS)
Patel, U.; Nsanzineza, I.; Vavilov, M. G.; Plourde, B. L. T.; McDermott, R.
Classical Josephson digital logic based on Single Flux Quantum (SFQ) pulses offers a path to high-fidelity coherent control of large-scale superconducting quantum machines. However, an SFQ pulse driver generates nonequilibrium quasiparticles that contribute to qubit relaxation, and steps must be taken to protect the qubit from this decoherence channel. Here we describe experiments to characterize the robustness of high-Q superconducting linear resonators and qubits against direct quasiparticle injection. We use NIS junctions and SFQ elements to controllably inject quasiparticles into the groundplane of superconducting resonator and qubit chips, and we characterize the quasiparticle contribution to dissipation. We examine the effectiveness of groundplane cuts, normal metal quasiparticle traps, and spatially-varying superconducting gaps at protecting the quantum modes against quasiparticle loss. Finally, we discuss strategies for the integration of multiqubit circuits with on-chip SFQ control elements.
Quasiparticle Tunneling in the Fractional Quantum Hall effect at filling fraction ν=5/2
NASA Astrophysics Data System (ADS)
Radu, Iuliana P.
2009-03-01
In a two-dimensional electron gas (2DEG), in the fractional quantum Hall regime, the quasiparticles are predicted to have fractional charge and statistics, as well as modified Coulomb interactions. The state at filling fraction ν=5/2 is predicted by some theories to have non-abelian statistics, a property that might be exploited for topological quantum computing. However, alternative models with abelian properties have been proposed as well. Weak quasiparticle tunneling between counter-propagating edges is one of the methods that can be used to learn about the properties of the state and potentially distinguish between models describing it. We employ an electrostatically defined quantum point contact (QPC) fabricated on a high mobility GaAs/AlGaAs 2DEG to create a constriction where quasiparticles can tunnel between counter-propagating edges. We study the temperature and dc bias dependence of the tunneling conductance, while preserving the same filling fraction in the constriction and the bulk of the sample. The data show scaling of the bias-dependent tunneling over a range of temperatures, in agreement with the theory of weak quasiparticle tunneling, and we extract values for the effective charge and interaction parameter of the quasiparticles. The ranges of values obtained are consistent with those predicted by certain models describing the 5/2 state, indicating as more probable a non-abelian state. This work was done in collaboration with J. B. Miller, C. M. Marcus, M. A. Kastner, L. N. Pfeiffer and K. W. West. This work was supported in part by the Army Research Office (W911NF-05-1-0062), the Nanoscale Science and Engineering Center program of NSF (PHY-0117795), NSF (DMR-0701386), the Center for Materials Science and Engineering program of NSF (DMR-0213282) at MIT, the Microsoft Corporation Project Q, and the Center for Nanoscale Systems at Harvard University.
Physical and Dynamical Properties of Asteroid Families
NASA Astrophysics Data System (ADS)
Zappalà, V.; Cellino, A.; dell'Oro, A.; Paolicchi, P.
2002-03-01
The availability of a number of statistically reliable asteroid families and the independent confirmation of their likely collisional origin from dedicated spectroscopic campaigns has been a major breakthrough, making it possible to develop detailed studies of the physical properties of these groupings. Having been produced in energetic collisional events, families are an invaluable source of information on the physics governing these phenomena. In particular, they provide information about the size distribution of the fragments, and on the overall properties of the original ejection velocity fields. Important results have been obtained during the last 10 years on these subjects, with important implications for the general understanding of the collisional history of the asteroid main belt, and the origin of near-Earth asteroids. Some important problems have been raised from these studies and are currently debated. In particular, it has been difficult so far to reconcile the inferred properties of family-forming events with current understanding of the physics of catastrophic collisional breakup. Moreover, the contribution of families to the overall asteroid inventory, mainly at small sizes, is currently controversial. Recent investigations are also aimed at understanding which kind of dynamical evolution might have affected family members since the time of their formation. In addition to potential consequences on the interpretation of current data, there is some speculative possibility of obtaining some estimate of the ages of these groupings. Physical characterization of families will likely represent a prerequisite for further advancement in understanding the properties and history of the asteroid population.
Exact dynamic properties of molecular motors
NASA Astrophysics Data System (ADS)
Boon, N. J.; Hoyle, R. B.
2012-08-01
Molecular motors play important roles within a biological cell, performing functions such as intracellular transport and gene transcription. Recent experimental work suggests that there are many plausible biochemical mechanisms that molecules such as myosin-V could use to achieve motion. To account for the abundance of possible discrete-stochastic frameworks that can arise when modeling molecular motor walks, a generalized and straightforward graphical method for calculating their dynamic properties is presented. It allows the calculation of the velocity, dispersion, and randomness ratio for any proposed system through analysis of its structure. This article extends work of King and Altman ["A schematic method of deriving the rate laws of enzyme-catalyzed reactions," J. Phys. Chem. 60, 1375-1378 (1956)], 10.1021/j150544a010 on networks of enzymatic reactions by calculating additional dynamic properties for spatially hopping systems. Results for n-state systems are presented: single chain, parallel pathway, divided pathway, and divided pathway with a chain. A novel technique for combining multiple system architectures coupled at a reference state is also demonstrated. Four-state examples illustrate the effectiveness and simplicity of these methods.
Exact dynamic properties of molecular motors.
Boon, N J; Hoyle, R B
2012-08-28
Molecular motors play important roles within a biological cell, performing functions such as intracellular transport and gene transcription. Recent experimental work suggests that there are many plausible biochemical mechanisms that molecules such as myosin-V could use to achieve motion. To account for the abundance of possible discrete-stochastic frameworks that can arise when modeling molecular motor walks, a generalized and straightforward graphical method for calculating their dynamic properties is presented. It allows the calculation of the velocity, dispersion, and randomness ratio for any proposed system through analysis of its structure. This article extends work of King and Altman ["A schematic method of deriving the rate laws of enzyme-catalyzed reactions," J. Phys. Chem. 60, 1375-1378 (1956)] on networks of enzymatic reactions by calculating additional dynamic properties for spatially hopping systems. Results for n-state systems are presented: single chain, parallel pathway, divided pathway, and divided pathway with a chain. A novel technique for combining multiple system architectures coupled at a reference state is also demonstrated. Four-state examples illustrate the effectiveness and simplicity of these methods. PMID:22938213
Friedel oscillations as a probe of fermionic quasiparticles
NASA Astrophysics Data System (ADS)
Dalla Torre, Emanuele G.; Benjamin, David; He, Yang; Dentelski, David; Demler, Eugene
2016-05-01
When immersed in a sea of electrons, local impurities give rise to density modulations known as Friedel oscillations. In spite of the generality of this phenomenon, the exact shape of these modulations is usually computed only for noninteracting electrons with a quadratic dispersion relation. In actual materials, Friedel oscillations are a viable way to access the properties of electronic quasiparticles, including their dispersion relation, lifetime, and pairing. In this work we analyze the signatures of Friedel oscillations in STM and x-ray scattering experiments, focusing on the concrete example of cuprate superconductors. We identify signatures of Friedel oscillations seeded by impurities and vortices, and explain experimental observations that have been previously attributed to a competing charge order.
Intact quasiparticles at an unconventional quantum critical point
NASA Astrophysics Data System (ADS)
Sutherland, M. L.; O'Farrell, E. C. T.; Toews, W. H.; Dunn, J.; Kuga, K.; Nakatsuji, S.; Machida, Y.; Izawa, K.; Hill, R. W.
2015-07-01
We report measurements of in-plane electrical and thermal transport properties in the limit T →0 near the unconventional quantum critical point in the heavy-fermion metal β -YbAlB4 . The high Kondo temperature TK≃200 K in this material allows us to probe transport extremely close to the critical point, at unusually small values of T /TK<5 ×10-4 . Here we find that the Wiedemann-Franz law is obeyed at the lowest temperatures, implying that the Landau quasiparticles remain intact in the critical region. At finite temperatures we observe a non-Fermi-liquid T -linear dependence of inelastic-scattering processes to energies lower than those previously accessed. These processes have a weaker temperature dependence than in comparable heavy fermion quantum critical systems, revealing a temperature scale of T ˜0.3 K which signals a sudden change in the character of the inelastic scattering.
Quasiparticle energies and lifetimes in a metallic chain model of a tunnel junction.
Szepieniec, Mark; Yeriskin, Irene; Greer, J C
2013-04-14
As electronics devices scale to sub-10 nm lengths, the distinction between "device" and "electrodes" becomes blurred. Here, we study a simple model of a molecular tunnel junction, consisting of an atomic gold chain partitioned into left and right electrodes, and a central "molecule." Using a complex absorbing potential, we are able to reproduce the single-particle energy levels of the device region including a description of the effects of the semi-infinite electrodes. We then use the method of configuration interaction to explore the effect of correlations on the system's quasiparticle peaks. We find that when excitations on the leads are excluded, the device's highest occupied molecular orbital and lowest unoccupied molecular orbital quasiparticle states when including correlation are bracketed by their respective values in the Hartree-Fock (Koopmans) and ΔSCF approximations. In contrast, when excitations on the leads are included, the bracketing property no longer holds, and both the positions and the lifetimes of the quasiparticle levels change considerably, indicating that the combined effect of coupling and correlation is to alter the quasiparticle spectrum significantly relative to an isolated molecule. PMID:24981526
Quasiparticle band structure of HgSe
Rohlfing, M.; Louie, S.G.
1998-04-01
Motivated by a recent discussion about the existence of a fundamental gap in HgSe [Phys. Rev. Lett. {bold 78}, 3165 (1997)], we calculate the quasiparticle band structure of HgSe within the GW approximation for the electron self-energy. The band-structure results show that HgSe is a semimetal, which is in agreement with most experimental data. We observe a strong wave-vector dependence of the self-energy of the lowest conduction band, leading to an increased dispersion and a small effective mass. This may help to interpret recent photoemission spectroscopy measurements. {copyright} {ital 1998} {ital The American Physical Society}
NASA Astrophysics Data System (ADS)
Sharifzadeh, Sahar; Biller, Ariel; Kronik, Leeor; Neaton, Jeffrey B.
2012-03-01
The broad use of organic semiconductors for optoelectronic applications relies on quantitative understanding and control of their spectroscopic properties. Of paramount importance are the transport gap—the difference between ionization potential and electron affinity—and the exciton binding energy—inferred from the difference between the transport and optical absorption gaps. Transport gaps are commonly established via photoemission and inverse photoemission spectroscopy (PES/IPES). However, PES and IPES are surface-sensitive, average over a dynamic lattice, and are subject to extrinsic effects, leading to significant uncertainty in gaps. Here, we use density functional theory and many-body perturbation theory to calculate the spectroscopic properties of two prototypical organic semiconductors, pentacene, and 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA), quantitatively comparing with measured PES, IPES, and optical absorption spectra. For bulk pentacene and PTCDA, the computed transport gaps are 2.4 and 3.0 eV, and optical gaps are 1.7 and 2.1 eV, respectively. Computed bulk quasiparticle spectra are in excellent agreement with surface-sensitive photoemission measurements over several eV only if the measured gap is reduced by 0.6 eV for pentacene and 0.6-0.9 eV for PTCDA. We attribute this redshift to several physical effects, including incomplete charge screening at the surface, static and dynamical disorder, and experimental resolution. Optical gaps are in excellent agreement with experiment with solid-state exciton binding energies of ˜0.5 eV for both systems; for pentacene the exciton is delocalized over several molecules and exhibits significant charge transfer character. Our parameter-free calculations provide new interpretation of spectroscopic properties of organic semiconductors critical to optoelectronics.
Charge of a quasiparticle in a superconductor
Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas
2016-01-01
Nonlinear charge transport in superconductor–insulator–superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e=n, with n = 1–4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD∼2Δ, we found a reproducible and clear dip in the extracted charge to q ∼0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure. PMID:26831071
Charge of a quasiparticle in a superconductor.
Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas
2016-02-16
Nonlinear charge transport in superconductor-insulator-superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e = n, with n = 1-4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD ~ 2Δ, we found a reproducible and clear dip in the extracted charge to q ~ 0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure. PMID:26831071
Aspects of nodal quasiparticle transport in high-Tc superconductors
NASA Astrophysics Data System (ADS)
Smith, Michael F.
Various low-temperature thermodynamic and transport properties of high TC superconductors at temperatures well below TC are studied theoretically under the assumption that the low-energy excited states can be regarded as independent Bogolubov quasiparticles near the nodes of the superconducting order parameter. In the limiting case of temperatures well above that corresponding to the impurity scattering rate, a Boltzmann-equation description of the quasiparticle distribution is used to study thermal and electrical transport for several scattering mechanisms. In particular, the dominant scattering mechanism for the relaxation of microwave electrical currents well below TC is identified, and the observed temperature dependence of the microwave conductivity data in optimally-doped YBa2Cu3O7-delta thus explained. The Knight shift and nuclear spin relaxation rate at temperatures well above the impurity scattering rate are also calculated and compared with available data. In the opposite limiting case of temperatures well below that corresponding to the impurity scattering rate, the sound attenuation and electron-phonon heat transfer rate are calculated. A model for the electron-phonon interaction in square-lattice tight-binding materials is developed and used to explain the huge measured anisotropy of the normal-state sound attenuation in the unconventional superconductor Sr2RuO4 and to rule out certain candidates for the order parameter symmetry of this material. A calculation of the electron-phonon heat transfer rate for d-wave superconductors gives the dependence of this quantity on various material parameters. Finally, the result for the electron-phonon heat transfer rate is used to explain the origin of the anomalous downturns in the thermal conductivity that have been observed in both the normal and superconducting state of cuprate superconductors, most notably in Pr2-xCe xCuO7-delta.
Quasiparticle Aggregation in the Fractional Quantum Hall Effect
DOE R&D Accomplishments Database
Laughlin, R. B.
1984-10-10
Quasiparticles in the Fractional Quantum Hall Effect behave qualitatively like electrons confined to the lowest landau level, and can do everything electrons can do, including condense into second generation Fractional Quantum Hall ground states. I review in this paper the reasoning leading to variational wavefunctions for ground state and quasiparticles in the 1/3 effect. I then show how two-quasiparticle eigenstates are uniquely determined from symmetry, and how this leads in a natural way to variational wavefunctions for composite states which have the correct densities (2/5, 2/7, ...). I show in the process that the boson, anyon and fermion representations for the quasiparticles used by Haldane, Halperin, and me are all equivalent. I demonstrate a simple way to derive Halperin`s multiple-valued quasiparticle wavefunction from the correct single-valued electron wavefunction. (auth)
Arguello, C. J.; Rosenthal, E. P.; Andrade, E. F.; Jin, W.; Yeh, P. C.; Zaki, N.; Jia, S.; Cava, R. J.; Fernandes, R. M.; Millis, A. J.; et al
2015-01-21
We show that a small number of intentionally introduced defects can be used as a spectroscopic tool to amplify quasiparticle interference in 2H-NbSe₂, that we measure by scanning tunneling spectroscopic imaging. We show from the momentum and energy dependence of the quasiparticle interference that Fermi surface nesting is inconsequential to charge density wave formation in 2H-NbSe₂. Thus, we demonstrate that by combining quasiparticle interference data with additional knowledge of the quasiparticle band structure from angle resolved photoemission measurements, one can extract the wavevector and energy dependence of the important electronic scattering processes thereby obtaining direct information both about the fermiologymore » and the interactions. In 2H-NbSe₂, we use this combination to show that the important near-Fermi-surface electronic physics is dominated by the coupling of the quasiparticles to soft mode phonons at a wave vector different from the CDW ordering wave vector.« less
Xu, Wenhu; Haule, Kristjan; Kotliar, Gabriel
2013-07-19
We investigate the transport properties of a correlated metal within dynamical mean-field theory. Canonical Fermi liquid behavior emerges only below a very low temperature scale T(FL). Surprisingly the quasiparticle scattering rate follows a quadratic temperature dependence up to much higher temperatures and crosses over to saturated behavior around a temperature scale T(sat). We identify these quasiparticles as constituents of the hidden Fermi liquid. The non-Fermi-liquid transport above T(FL), in particular the linear-in-T resistivity, is shown to be a result of a strongly temperature dependent band dispersion. We derive simple expressions for the resistivity, Hall angle, thermoelectric power and Nernst coefficient in terms of a temperature dependent renormalized band structure and the quasiparticle scattering rate. We discuss possible tests of the dynamical mean-field theory picture of transport using ac measurements. PMID:23909344
Dakovski, Georgi L.; Durakiewicz, Tomasz; Zhu, Jian-Xin; Riseborough, Peter S.; Gu, Genda; Gilbertson, Steve M.; Taylor, Antoinette; Rodriguez, George
2015-10-12
A hallmark in the cuprate family of high-temperature superconductors is the nodal-antinodal dichotomy. In this regard, angle-resolved photoemission spectroscopy (ARPES) has proven especially powerful, providing band structure information directly in energy-momentum space. Time-resolved ARPES (trARPES) holds great promise of adding ultrafast temporal information, in an attempt to identify different interaction channels in the time domain. Previous studies of the cuprates using trARPES were handicapped by the low probing energy which significantly limits the accessible momentum space. Using 20.15eV, 12 fs pulses we show for the first time the evolution of quasiparticles in the antinodal region of Bi_{2}Sr_{2}CaCu_{2}O_{8+δ} and demonstrate that nonmonotonic relaxation dynamics dominates above a certain fluence threshold. The dynamics is heavily influenced by transient modification of the electron-phonon interaction and phase space restrictions, in severe contrast to the monotonic relaxation in the nodal and off-nodal regions.
Dynamical properties of the Watsonia asteroid family
NASA Astrophysics Data System (ADS)
Tsirvoulis, G.; Novakovic, B.; Knezevic, Z.; Cellino, A.
2014-07-01
Introduction: In recent years, a rare class of asteroids has been discovered [1], with its distinguishing characteristic being the anomalous polarimetric properties of its members. Named Barbarians, after (234) Barbara, the prototype of the class, these asteroids show negative polarization at unusually high phase-angles compared to normal asteroids. Motivated by the fact that some of the few discovered Barbarians seemed to be related to the Watsonia asteroid family, Cellino et al. [2] performed a search for more Barbarians among its members. A positive result of this search led to the conclusion that Watsonia is indeed an important repository of Barbarian asteroids. Based on these findings, we decided to analyze this family in detail. Basic information: According to available data, Watsonia is an L-type asteroid family, located in the middle of the main asteroid belt (2.68 < a_{p} < 2.82 au), with low to moderate orbital eccentricities (0.1 < e_{p} < 0.15) and relatively high inclinations (16.5^{o} < i_{p} < 18^{o}). Methodology: The first step in our study is to derive a reliable list of Watsonia family members. To that purpose, we first calculate the synthetic proper elements [3] of an extended catalogue including numbered, as well as multi and single opposition asteroids, in a wide region around the family. To this catalogue we apply the Hierarchical Clustering Method (HCM)[4] to determine the membership of the family, coinciding with the requirement that all confirmed neighboring Barbarians are included (see figure). To detect potential interlopers and refine the membership list, additional data such as the SDSS colors and WISE albedos are used. Moreover, we identify all relevant resonances and analyze the dynamical characteristics of the region occupied by the family. Then we estimate the age of the family, and finally, we perform numerical integrations of test particles to investigate possible dynamical links to other known Barbarians and to the near
Finite quasiparticle lifetime in disordered superconductors.
Zemlicka, M.; Neilinger, P.; Trgala, M; Rehak, M; Manca, D.; Grajcar, M.; Szabo, P.; Samuely, P.; Gazi, S.; Hubner, U.; Vinokur, V. M.; Il'ichev, E.
2015-12-08
We investigate the complex conductivity of a highly disordered MoC superconducting film with k(F)l approximate to 1, where k(F) is the Fermi wave number and l is the mean free path, derived from experimental transmission characteristics of coplanar waveguide resonators in a wide temperature range below the superconducting transition temperature T-c. We find that the original Mattis-Bardeen model with a finite quasiparticle lifetime, tau, offers a perfect description of the experimentally observed complex conductivity. We show that iota is appreciably reduced by scattering effects. Characteristics of the scattering centers are independently found by scanning tunneling spectroscopy and agree with those determined from the complex conductivity.
Novelli, Fabio; De Filippis, Giulio; Cataudella, Vittorio; Esposito, Martina; Vergara, Ignacio; Cilento, Federico; Sindici, Enrico; Amaricci, Adriano; Giannetti, Claudio; Prabhakaran, Dharmalingam; Wall, Simon; Perucchi, Andrea; Dal Conte, Stefano; Cerullo, Giulio; Capone, Massimo; Mishchenko, Andrey; Grüninger, Markus; Nagaosa, Naoto; Parmigiani, Fulvio; Fausti, Daniele
2014-01-01
The non-equilibrium approach to correlated electron systems is often based on the paradigm that different degrees of freedom interact on different timescales. In this context, photo-excitation is treated as an impulsive injection of electronic energy that is transferred to other degrees of freedom only at later times. Here, by studying the ultrafast dynamics of quasi-particles in an archetypal strongly correlated charge-transfer insulator (La2CuO(4+δ)), we show that the interaction between electrons and bosons manifests itself directly in the photo-excitation processes of a correlated material. With the aid of a general theoretical framework (Hubbard-Holstein Hamiltonian), we reveal that sub-gap excitation pilots the formation of itinerant quasi-particles, which are suddenly dressed by an ultrafast reaction of the bosonic field. PMID:25290587
NASA Astrophysics Data System (ADS)
Novelli, Fabio; de Filippis, Giulio; Cataudella, Vittorio; Esposito, Martina; Vergara, Ignacio; Cilento, Federico; Sindici, Enrico; Amaricci, Adriano; Giannetti, Claudio; Prabhakaran, Dharmalingam; Wall, Simon; Perucchi, Andrea; Dal Conte, Stefano; Cerullo, Giulio; Capone, Massimo; Mishchenko, Andrey; Grüninger, Markus; Nagaosa, Naoto; Parmigiani, Fulvio; Fausti, Daniele
2014-10-01
The non-equilibrium approach to correlated electron systems is often based on the paradigm that different degrees of freedom interact on different timescales. In this context, photo-excitation is treated as an impulsive injection of electronic energy that is transferred to other degrees of freedom only at later times. Here, by studying the ultrafast dynamics of quasi-particles in an archetypal strongly correlated charge-transfer insulator (La2CuO4+δ), we show that the interaction between electrons and bosons manifests itself directly in the photo-excitation processes of a correlated material. With the aid of a general theoretical framework (Hubbard-Holstein Hamiltonian), we reveal that sub-gap excitation pilots the formation of itinerant quasi-particles, which are suddenly dressed by an ultrafast reaction of the bosonic field.
Efficient quasiparticle band-structure calculations for cubic and noncubic crystals
Wenzien, B.; Cappellini, G.; Bechstedt, F.
1995-05-15
An efficient method developed for the calculation of quasiparticle corrections to density-functional-theory--local-density-approximation (DFT-LDA) band structures of diamond and zinc-blende materials is generalized for crystals with other cubic, hexagonal, tetragonal, and orthorhombic Bravais lattices. Local-field effects are considered in the framework of a LDA-like approximation. The dynamical screening is treated by expanding the self-energy linearly in energy. The anisotropy of the inverse dielectric matrix is taken into account. The singularity of the Coulomb potential in the screened-exchange part of the electronic self-energy is treated using auxiliary functions of the appropriate symmetry. An application to the electronic quasiparticle band structure of wurtzite 2{ital H}-SiC is presented within the approach of norm-conserving, nonlocal, fully separable pseudopotentials and a plane-wave expansion of the wave functions for the underlying DFT-LDA.
Separable pairing force for relativistic quasiparticle random-phase approximation
Tian Yuan; Ma Zhongyu; Ring, Peter
2009-06-15
We have introduced a separable pairing force, which was adjusted to reproduce the pairing properties of the Gogny force in nuclear matter. This separable pairing force is able to describe in relativistic Hartree-Bogoliubov (RHB) calculations the pairing properties in the ground state of finite nuclei on almost the same footing as the original Gogny interaction. In this work we investigate excited states using the Relativistic Quasiparticle Random-Phase Approximation (RQRPA) with the same separable pairing force. For consistency the Goldstone modes and the convergence with various cutoff parameters in this version of RQRPA are studied. The first excited 2{sup +} states for the chain of Sn isotopes with Z=50 and the chain of isotones with N=82 isotones are calculated in RQRPA together with the 3{sup -} states of Sn isotopes. By comparing our results with experimental data and with the results of the original Gogny force we find that this simple separable pairing interaction is very successful in depicting the pairing properties of vibrational excitations.
Quasiparticles in the pseudogap Phase of Underdoped Cuprate
Yang, K.; Yang, H; Johnson, P; Rice, T; Zhang, F
2009-01-01
Recent angle-resolved photoemission (Yang H.-B. et al., Nature, 456 (2008) 77) and scanning tunneling microscopy (Kohsaka Y. et al., Nature, 454 (2008) 1072) measurements on underdoped cuprates have yielded new spectroscopic information on quasiparticles in the pseudogap phase. New features of the normal state such as particle-hole asymmetry, maxima in the energy dispersion, and accompanying drops in the spectral weight of quasiparticles agree with the ansatz of Yang et al. for the single-particle propagator in the pseudogap phase. The coherent quasiparticle dispersion and reduced asymmetry in the tunneling density of states in the superconducting state can also be described by this propagator.
Quasiparticle-mediated spin Hall effect in a superconductor.
Wakamura, T; Akaike, H; Omori, Y; Niimi, Y; Takahashi, S; Fujimaki, A; Maekawa, S; Otani, Y
2015-07-01
In some materials the competition between superconductivity and magnetism brings about a variety of unique phenomena such as the coexistence of superconductivity and magnetism in heavy-fermion superconductors or spin-triplet supercurrent in ferromagnetic Josephson junctions. Recent observations of spin-charge separation in a lateral spin valve with a superconductor evidence that these remarkable properties are applicable to spintronics, although there are still few works exploring this possibility. Here, we report the experimental observation of the quasiparticle-mediated spin Hall effect in a superconductor, NbN. This compound exhibits the inverse spin Hall (ISH) effect even below the superconducting transition temperature. Surprisingly, the ISH signal increases by more than 2,000 times compared with that in the normal state with a decrease of the injected spin current. The effect disappears when the distance between the voltage probes becomes larger than the charge imbalance length, corroborating that the huge ISH signals measured are mediated by quasiparticles. PMID:25985459
Localization of Bogoliubov quasiparticles in interacting Bose gases with correlated disorder
NASA Astrophysics Data System (ADS)
Lugan, P.; Sanchez-Palencia, L.
2011-07-01
We study the Anderson localization of Bogoliubov quasiparticles (elementary many-body excitations) in a weakly interacting Bose gas of chemical potential μ subjected to a disordered potential V. We introduce a general mapping (valid for weak inhomogeneous potentials in any dimension) of the Bogoliubov-de Gennes equations onto a single-particle Schrödinger-like equation with an effective potential. For disordered potentials, the Schrödinger-like equation accounts for the scattering and localization properties of the Bogoliubov quasiparticles. We derive analytically the localization lengths for correlated disordered potentials in the one-dimensional geometry. Our approach relies on a perturbative expansion in V/μ, which we develop up to third order, and we discuss the impact of the various perturbation orders. Our predictions are shown to be in very good agreement with direct numerical calculations. We identify different localization regimes: For low energy, the effective disordered potential exhibits a strong screening by the quasicondensate density background, and localization is suppressed. For high-energy excitations, the effective disordered potential reduces to the bare disordered potential, and the localization properties of quasiparticles are the same as for free particles. The maximum of localization is found at intermediate energy when the quasicondensate healing length is of the order of the disorder correlation length. Possible extensions of our work to higher dimensions are also discussed.
Fermionic q-deformation and its connection to thermal effective mass of a quasiparticle
NASA Astrophysics Data System (ADS)
Algin, Abdullah; Senay, Mustafa
2016-04-01
A fermionic deformation scheme is applied to a study on the low-temperature quantum statistical behavior of a quasifermion gas model with intermediate statistics. Such a model does not satisfy the Pauli exclusion principle, and its quantum statistical properties are based on a formalism of the fermionic q-calculus. For low temperatures, several thermostatistical functions of the model such as the chemical potential, the heat capacity, and the entropy are derived by means of a function of the model deformation parameter q. The effect of fermionic q-deformation on the low-temperature thermostatistical properties of the model are discussed in detail. Our results show that the present deformed (quasi)fermion model provides remarkable connections of the model deformation parameter q, first, with the thermal effective mass of a quasiparticle, and second, with the temperature parameter. Hence, it turns out that the model deformation parameter q has also a role controlling the strength of effective quasiparticle interactions in the model. Finally, we conclude that this work can be useful for understanding the details of interaction mechanism of fermions such as quasiparticle states emergent in the fractional quantum Hall effect.
Rate of tunneling nonequilibrium quasiparticles in superconducting qubits
NASA Astrophysics Data System (ADS)
Ansari, Mohammad H.
2015-04-01
In superconducting qubits the lifetime of quantum states cannot be prolonged arbitrarily by decreasing temperature. At low temperature quasiparticles tunneling between the electromagnetic environment and superconducting islands takes the condensate state out of equilibrium due to charge imbalance. We obtain the tunneling rate from a phenomenological model of non-equilibrium, where nonequilibrium quasiparticle tunnelling stimulates a temperature-dependent chemical potential shift in the superconductor. As a result we obtain a non-monotonic behavior for relaxation rate as a function of temperature. Depending on the fabrication parameters for some qubits, the lowest tunneling rate of nonequilibrium quasiparticles can take place only near the onset temperature below which nonequilibrium quasiparticles dominate over equilibrium one. Our theory also indicates that such tunnelings can influence the probability of transitions in qubits through a coupling to the zero-point energy of phase fluctuations.
Spin-flip scattering of critical quasiparticles and the phase diagram of YbRh2Si2
NASA Astrophysics Data System (ADS)
Wölfle, Peter; Abrahams, Elihu
2015-10-01
Several observed transport and thermodynamic properties of the heavy-fermion compound YbRh2Si2 in the quantum critical regime are unusual and suggest that the fermionic quasiparticles are critical, characterized by a scale-dependent diverging effective mass. A theory based on the concept of critical quasiparticles scattering off antiferromagnetic spin fluctuations in a strong-coupling regime has been shown to successfully explain the unusual existing data and to predict a number of so far unobserved properties. In this paper, we point out a new feature of a magnetic field-tuned quantum critical point of a heavy-fermion metal: anomalies in the transport and thermodynamic properties caused by the freezing out of spin-flip scattering of critical quasiparticles and the scattering off collective spin excitations. We show a steplike behavior as a function of magnetic field of, e.g., the Hall coefficient and magnetoresistivity results, which accounts quantitatively for the observed behavior of these quantities. That behavior has been described as a crossover line T*(H ) in the T -H phase diagram of YbRh2Si2 . Whereas some authors have interpreted this observation as signaling the breakdown of Kondo screening and an associated abrupt change of the Fermi surface, our results suggest that the T* line may be quantitatively understood within the picture of robust critical quasiparticles.
One-quasiparticle states in odd-Z heavy nuclei
Adamian, G. G.; Antonenko, N. V.; Kuklin, S. N.; Scheid, W.
2010-11-15
The isotopic dependencies of one-quasiparticle states in Es and Md are treated. In {sup 253,255}Lr, the energies of the lowest one-quasiproton states are calculated. The one-quasiparticle isomer states are revealed in the nuclei of an {alpha}-decay chain starting from {sup 269}Rg. The {alpha} decays from some isomer states are predicted. The population of isomer states in the complete fusion reactions is discussed.
Shooting quasiparticles from Andreev bound states in a superconducting constriction
NASA Astrophysics Data System (ADS)
Riwar, R.-P.; Houzet, M.; Meyer, J. S.; Nazarov, Y. V.
2014-12-01
A few-channel superconducting constriction provides a set of discrete Andreev bound states that may be populated with quasiparticles. Motivated by recent experimental research, we study the processes in an a.c. driven constriction whereby a quasiparticle is promoted to the delocalized states outside the superconducting gap and flies away. We distinguish two processes of this kind. In the process of ionization, a quasiparticle present in the Andreev bound state is transferred to the delocalized states leaving the constriction. The refill process involves two quasiparticles: one flies away while another one appears in the Andreev bound state. We notice an interesting asymmetry of these processes. The electron-like quasiparticles are predominantly emitted to one side of the constriction while the hole-like ones are emitted to the other side. This produces a charge imbalance of accumulated quasiparticles, that is opposite on opposite sides of the junction. The imbalance may be detected with a tunnel contact to a normal metal lead.
Shooting quasiparticles from Andreev bound states in a superconducting constriction
Riwar, R.-P.; Houzet, M.; Meyer, J. S.; Nazarov, Y. V.
2014-12-15
A few-channel superconducting constriction provides a set of discrete Andreev bound states that may be populated with quasiparticles. Motivated by recent experimental research, we study the processes in an a.c. driven constriction whereby a quasiparticle is promoted to the delocalized states outside the superconducting gap and flies away. We distinguish two processes of this kind. In the process of ionization, a quasiparticle present in the Andreev bound state is transferred to the delocalized states leaving the constriction. The refill process involves two quasiparticles: one flies away while another one appears in the Andreev bound state. We notice an interesting asymmetry of these processes. The electron-like quasiparticles are predominantly emitted to one side of the constriction while the hole-like ones are emitted to the other side. This produces a charge imbalance of accumulated quasiparticles, that is opposite on opposite sides of the junction. The imbalance may be detected with a tunnel contact to a normal metal lead.
Quasiparticle Level Alignment for Photocatalytic Interfaces
Migani, Annapaola; Mowbray, Duncan J.; Zhao, Jin; Petek, Hrvoje; Rubio, Angel
2014-05-13
Electronic level alignment at the interface between an adsorbed molecular layer and a semiconducting substrate determines the activity and efficiency of many photocatalytic materials. Standard density functional theory (DFT)-based methods have proven unable to provide a quantitative description of this level alignment. This requires a proper treatment of the anisotropic screening, necessitating the use of quasiparticle (QP) techniques. However, the computational complexity of QP algorithms has meant a quantitative description of interfacial levels has remained elusive. We provide a systematic study of a prototypical interface, bare and methanol-covered rutile TiO2(110) surfaces, to determine the type of many-body theory required to obtain an accurate description of the level alignment. This is accomplished via a direct comparison with metastable impact electron spectroscopy (MIES), ultraviolet photoelectron spectroscopy (UPS), and two-photon photoemission (2PP) spectroscopy. We consider GGA DFT, hybrid DFT, and G0W0, scQPGW1, scQPGW0, and scQPGW QP calculations. Our results demonstrate that G0W0, or our recently introduced scQPGW1 approach, are required to obtain the correct alignment of both the highest occupied and lowest unoccupied interfacial molecular levels (HOMO/LUMO). These calculations set a new standard in the interpretation of electronic structure probe experiments of complex organic molecule/semiconductor interfaces.
Quasiparticle Level Alignment for Photocatalytic Interfaces.
Migani, Annapaoala; Mowbray, Duncan J; Zhao, Jin; Petek, Hrvoje; Rubio, Angel
2014-05-13
Electronic level alignment at the interface between an adsorbed molecular layer and a semiconducting substrate determines the activity and efficiency of many photocatalytic materials. Standard density functional theory (DFT)-based methods have proven unable to provide a quantitative description of this level alignment. This requires a proper treatment of the anisotropic screening, necessitating the use of quasiparticle (QP) techniques. However, the computational complexity of QP algorithms has meant a quantitative description of interfacial levels has remained elusive. We provide a systematic study of a prototypical interface, bare and methanol-covered rutile TiO2(110) surfaces, to determine the type of many-body theory required to obtain an accurate description of the level alignment. This is accomplished via a direct comparison with metastable impact electron spectroscopy (MIES), ultraviolet photoelectron spectroscopy (UPS), and two-photon photoemission (2PP) spectroscopy. We consider GGA DFT, hybrid DFT, and G0W0, scQPGW1, scQPGW0, and scQPGW QP calculations. Our results demonstrate that G0W0, or our recently introduced scQPGW1 approach, are required to obtain the correct alignment of both the highest occupied and lowest unoccupied interfacial molecular levels (HOMO/LUMO). These calculations set a new standard in the interpretation of electronic structure probe experiments of complex organic molecule/semiconductor interfaces. PMID:26580537
Signatures of Weyl semimetals in quasiparticle interference
NASA Astrophysics Data System (ADS)
Mitchell, Andrew K.; Fritz, Lars
2016-01-01
Impurities act as in situ probes of nontrivial electronic structure, causing real-space modulations in the density of states detected by scanning tunneling spectroscopy on the sample surface. We show that distinctive topological features of Weyl semimetals can be revealed in the Fourier transform of this map, interpreted in terms of quasiparticle interference (QPI). We develop an exact Green's function formalism and apply it to generalized models of Weyl semimetals with an explicit surface. The type of perturbation lifting the Dirac node degeneracy to produce the three-dimensional bulk Weyl phase determines the specific QPI signatures appearing on the surface. QPI Fermi arcs may or may not appear, depending on the relative surface orientation and quantum interference effects. Line nodes give rise to tube projections of width controlled by the bias voltage. We consider the effect of crystal warping, distinguishing dispersive arclike features from true Fermi arcs. Finally, we demonstrate that the commonly used joint-density-of-states approach fails qualitatively, and cannot describe QPI extinction.
QCD critical point in a quasiparticle model
Srivastava, P. K.; Tiwari, S. K.; Singh, C. P.
2010-07-01
Recent theoretical investigations have unveiled a rich structure in the quantum chromodynamics phase diagram, which consists of quark-gluon plasma and the hadronic phases but also supports the existence of a crossover transition ending at a critical end point (CEP). We find a too large variation in the determination of the coordinates of the CEP in the temperature (T) baryon chemical potential ({mu}{sub B}) plane; and, therefore, its identification in the current heavy-ion experiments becomes debatable. Here we use an equation of state for a deconfined quark-gluon plasma using a thermodynamically-consistent quasiparticle model involving noninteracting quarks and gluons having thermal masses. We further use a thermodynamically-consistent excluded-volume model for the hadron gas, which was recently proposed by us. Using these equations of state, a first-order deconfining phase transition is constructed using Gibbs's criteria. This leads to an interesting finding that the phase transition line ends at a critical end point (CEP) beyond which a crossover region exists. Using our thermal hadron gas model, we obtain a chemical freeze out curve, and we find that the CEP lies in close proximity to this curve as proposed by some authors. The coordinates of CEP are found to lie within the reach of Relativistic heavy-ion collider experiment.
Nodal Quasiparticle in Pseudogapped Colossal Magnetoresistive Manganites
Mannella, N.
2010-06-02
A characteristic feature of the copper oxide high-temperature superconductors is the dichotomy between the electronic excitations along the nodal (diagonal) and antinodal (parallel to the Cu-O bonds) directions in momentum space, generally assumed to be linked to the d-wave symmetry of the superconducting state. Angle-resolved photoemission measurements in the superconducting state have revealed a quasiparticle spectrum with a d-wave gap structure that exhibits a maximum along the antinodal direction and vanishes along the nodal direction. Subsequent measurements have shown that, at low doping levels, this gap structure persists even in the high-temperature metallic state, although the nodal points of the superconducting state spread out in finite Fermi arcs. This is the so-called pseudogap phase, and it has been assumed that it is closely linked to the superconducting state, either by assigning it to fluctuating superconductivity or by invoking orders which are natural competitors of d-wave superconductors. Here we report experimental evidence that a very similar pseudogap state with a nodal-antinodal dichotomous character exists in a system that is markedly different from a superconductor: the ferromagnetic metallic groundstate of the colossal magnetoresistive bilayer manganite La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7}. Our findings therefore cast doubt on the assumption that the pseudogap state in the copper oxides and the nodal-antinodal dichotomy are hallmarks of the superconductivity state.
Quasiparticle bands and spectra of Ga2O3 polymorphs
NASA Astrophysics Data System (ADS)
Furthmüller, J.; Bechstedt, F.
2016-03-01
Within the framework of density functional theory and Hedin's G W approximation for single-particle excitations, we present quasiparticle band structures and densities of states for two gallium oxide polymorphs: rhombohedral α -Ga2O3 and monoclinic β -Ga2O3 . The gap problem is attacked. In addition, their electron effective mass tensors are given. Solving the Bethe-Salpeter equation we also calculate excitonic optical spectra of the two polymorphs. The treatment of excitonic effects allows for a trustable prediction of optical properties from the band gap to the ultraviolet region. In addition, for few other polymorphs we also discuss the frequency-dependent dielectric tensor within the independent-particle approximation (random phase approximation) and densities of states on density functional level. We demonstrate that apart from subtle details, the overall densities of states and optical spectra, in particular the isotropically averaged spectra, are rather similar for all polymorphs, while the electronic dielectric constants vary with the structure. For all polymorphs, complete sets of elastic constants are given.
NASA Astrophysics Data System (ADS)
Brennan, John K.; Lísal, Martin; Gubbins, Keith E.; Rice, Betsy M.
2004-12-01
A molecular simulation method to study the dynamics of chemically reacting mixtures is presented. The method uses a combination of stochastic and dynamic simulation steps, allowing for the simulation of both thermodynamic and transport properties. The method couples a molecular dynamics simulation cell (termed dynamic cell) to a reaction mixture simulation cell (termed control cell) that is formulated upon the reaction ensemble Monte Carlo (RxMC) method, hence the term reaction ensemble molecular dynamics. Thermodynamic and transport properties are calculated in the dynamic cell by using a constant-temperature molecular dynamics simulation method. RxMC forward and reverse reaction steps are performed in the control cell only, while molecular dynamics steps are performed in both the dynamic cell and the control cell. The control cell, which acts as a sink and source reservoir, is maintained at reaction equilibrium conditions via the RxMC algorithm. The reaction ensemble molecular dynamics method is analogous to the grand canonical ensemble molecular dynamics technique, while using some elements of the osmotic molecular dynamics method, and so simulates conditions that directly relate to real, open systems. The accuracy and stability of the method is assessed by considering the ammonia synthesis reaction N2+3H2⇔2NH3 . It is shown to be a viable method for predicting the effects of nonideal environments on the dynamic properties (particularly diffusion) as well as reaction equilibria for chemically reacting mixtures.
Properties of earthquakes generated by fault dynamics
NASA Technical Reports Server (NTRS)
Carlson, J. M.; Langer, J. S.
1989-01-01
A model for fault dynamics consisting of a uniform chain of blocks and springs pulled slowly across a rough surface is presented. The only nonlinear element of the model is a slip-stick friction force between the blocks and the surface. It is found that this model gives rise to events of all sizes. The numerical evaluation of the distribution of earthquake magnitudes results in a power-law spectrum similar to what is observed in nature. Like certain other dissipative dynamical systems, the observed large fluctuations in earthquake magnitude persist because the system is in a state of marginal stability.
STARCH FILLED TERNARY POLYMER COMPOSITES I: DYNAMIC MECHANICAL PROPERTIES
Technology Transfer Automated Retrieval System (TEKTRAN)
It has been shown that the dynamic mechanical properties of starch filled blends of polyethylene (PE) and poly (hydroxy ester ether) (PHEE) are strongly dependent on the properties and distribution of the minor component of the blend (PHEE). The effect of this minor component on the viscoelastic pr...
Quasiparticle band structure for the Hubbard systems: Application to. alpha. -CeAl sub 2
Costa-Quintana, J.; Lopez-Aguilar, F. ); Balle, S. ); Salvador, R. Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306-4052 )
1990-04-01
A self-energy formalism for determining the quasiparticle band structure of the Hubbard systems is deduced. The self-energy is obtained from the dynamically screened Coulomb interaction whose bare value is the correlation energy {ital U}. A method for integrating the Schroedingerlike equation with the self-energy operator is given. The method is applied to the cubic Laves phase of {alpha}-CeAl{sub 2} because it is a clear Hubbard system with a very complex electronic structure and, moreover, this system provides us with sufficient experimental data for testing our method.
Impurity effects in quasiparticle spectrum of high-Tc superconductors (Review Article)
NASA Astrophysics Data System (ADS)
Pogorelov, Yu. G.; Santos, M. C.; Loktev, V. M.
2011-08-01
The revision is made of Green function methods that describe the dynamics of electronic quasiparticles in disordered superconducting systems with d-wave symmetry of order parameter. Various types of impurity perturbations are analyzed within the simplest T-matrix approximation. The extension of the common self-consistent T-matrix approximation (SCTMA) to the so-called group expansions in clusters of interacting impurity centers is discussed and hence the validity criteria for SCTMA are established. A special attention is paid to the formation of impurity resonance states and localized states near the characteristic points of energy spectrum, corresponding to nodal points on the Fermi surface.
In Vitro Tissue Differentiation using Dynamics of Tissue Mechanical Properties
NASA Astrophysics Data System (ADS)
Lin, Wei-Chiang; Phillips, Paul J.
2002-03-01
Dynamics of tissue mechanical properties of various human tissue types were studied at macroscopic as well as microscopic level in vitro. This study was conducted to enable the development of a feedback system based on dynamics of tissue mechanical properties for intraoperative guidance for tumor treatment (e.g., RF ablation of liver tumor) and noninvasive tumor localization. Human liver tissues, including normal, cancerous, and cirrhotic tissues, were obtained from patients receiving liver transplant or tumor resection at Vanderbilt University Medical Center with the approval of the Vanderbilt Institutional Review Board. Tissue samples, once resected from the patients, were snap-frozen using liquid nitrogen and stored at -70 oC. Measurements of the mechanical properties of these tissue samples were conducted at the University of Tennessee at Knoxville. Dynamics of tissue mechanical properties were measured from both native and thermally coagulated tissue samples at macroscopic and microscopic level. Preliminary results suggest the dynamics of mechanical properties of normal liver tissues are very different from those of cancerous liver tissues. The correlation between the dynamics of mechanical properties at macroscopic level and those at microscopic level is currently under investigation.
Evaluation of overlaps between arbitrary fermionic quasiparticle vacua
NASA Astrophysics Data System (ADS)
Avez, B.; Bender, M.
2012-03-01
We derive an expression that allows for the unambiguous evaluation of the overlap between two arbitrary quasiparticle vacua, including its sign. Our expression is based on the Pfaffian of a skew-symmetric matrix, extending the overlap formula recently proposed by Robledo [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.79.021302 79, 021302(R) (2009)] to the most general case of quasiparticle vacua, including the one of the overlap between two different blocked n-quasiparticle states for either even or odd systems. The powerfulness of the method is illustrated for a few typical matrix elements that appear in realistic angular-momentum-restored generator coordinate method calculations when breaking time-reversal invariance and using the full model space of occupied single-particle states.
Quasiparticle energies, excitonic effects, and dielectric screening in transparent conducting oxides
NASA Astrophysics Data System (ADS)
Schleife, André
Using the power of high-performance super computers, computational materials scientists nowadays employ highly accurate quantum-mechanical approaches to reliably predict materials properties. In particular, many-body perturbation theory is an excellent framework for performing theoretical spectroscopy on novel materials including transparent conducting oxides, since this framework accurately describes quasiparticle and excitonic effects.We recently used hybrid exchange-correlation functionals and an efficient implementation of the Bethe-Salpeter approach to investigate several important transparent conducting oxides. Despite their exceptional potential for applications in photovoltaics and optoelectronics their optical properties oftentimes remain poorly understood: Our calculations explain the optical spectrum of bixbyite indium oxide over a very large photon energy range, which allows us to discuss the importance of quasiparticle and excitonic effects at low photon energies around the absorption onset, but also for excitations up to 40 eV. We show that in this regime the energy dependence of the electronic self energy cannot be neglected. Furthermore, we investigated the influence of excitonic effects on optical absorption for lanthanum-aluminum oxide and hafnium oxide. Their complicated conduction band structures require an accurate description of quasiparticle energies and we find that for these strongly polar materials, a contribution of the lattice polarizability to dielectric screening needs to be taken into account. We discuss how this affects the electron-hole interaction and find a strong influence on excitonic effects.The deep understanding of electronic excitations that can be obtained using these modern first-principles techniques, eventually will allow for computational materials design, e.g. of band gaps, densities of states, and optical properties of transparent conducting oxides and other materials with societally important applications.
Optical techniques for determining dynamic material properties
Paisley, D.L.; Stahl, D.B.
1996-12-31
Miniature plates are laser-launched with a 10-Joule Nd:YAG for one-dimensional (1-D) impacts on to target materials much like gas gun experiments and explosive plane wave plate launch. By making the experiments small, flyer plates (3 mm diameter x 50 micron thick) and targets (10 mm diameter x 200 micron thick), 1-D impact experiments can be performed in a standard laser-optical laboratory with minimum confinement and collateral damage. The laser-launched plates do not require the traditional sabot on gas guns nor the explosives needed for explosive planewave lenses, and as a result are much more amenable to a wide variety of materials and applications. Because of the small size very high pressure gradients can be generated with relative ease. The high pressure gradients result in very high strains and strain rates that are not easily generated by other experimental methods. The small size and short shock duration (1 - 20 ns) are ideal for dynamically measuring bond strengths of micron-thick coatings. Experimental techniques, equipment, and dynamic material results are reported.
Multi-quasiparticle isomers in the vicinity of {sup 132}Sn
Watanabe, Hiroshi
2010-05-12
Nuclear isomers with multi-quasiparticle configurations near closed shells serve as valuable experimental probes which reveal the nature of residual nucleon-nucleon interactions. We have populated stable and neutron-rich odd-A antimony (Z = 51) and iodine (Z = 53) isotopes using multi-nucleon transfer and fusion-fission reactions with {sup 136}Xe beams and also using incomplete-fusion reactions with {sup 7}Li beams. The decay properties of high-spin isomers have been investigated by means of time-correlated gamma-ray and electron spectroscopy and the measurement of gamma-ray angular correlations.
Band Mapping and Quasiparticle Suppression in the One-Dimensional Organic Conductor TTF-TCNQ
NASA Astrophysics Data System (ADS)
Zwick, F.; Jérome, D.; Margaritondo, G.; Onellion, M.; Voit, J.; Grioni, M.
1998-10-01
Dispersing 1D bands have been observed for the first time in an organic conductor by high resolution photoemission experiments on TTF-TCNQ (tetrathiafulvalene-tetracyanoquinodimethane). Their properties are extremely unusual: the bandwidth is much larger than traditional estimates, and the quasiparticle states are strongly renormalized, with no weight at the chemical potential. A deep pseudogap around the Fermi energy persists, and even increases, up to room temperature. We also report a direct determination of kF in this material, and the observation of the opening of a Peierls gap in the low-temperature charge density wave phase.
Light quasiparticles dominate electronic transport in molecular crystal field-effect transistors
Li, Z. Q.; Podzorov, V.; Sai, N.; Martin, Michael C.; Gershenson, M. E.; Di Ventra, M.; Basov, D. N.
2007-03-01
We report on an infrared spectroscopy study of mobile holes in the accumulation layer of organic field-effect transistors based on rubrene single crystals. Our data indicate that both transport and infrared properties of these transistors at room temperature are governed by light quasiparticles in molecular orbital bands with the effective masses m[small star, filled]comparable to free electron mass. Furthermore, the m[small star, filled]values inferred from our experiments are in agreement with those determined from band structure calculations. These findings reveal no evidence for prominent polaronic effects, which is at variance with the common beliefs of polaron formation in molecular solids.
Equation of state of a quasiparticle model at finite chemical potential and quark star
NASA Astrophysics Data System (ADS)
Tian, Ya-Lan; Yan, Yan; Li, Hua; Luo, Xin-Lian; Zong, Hong-Shi
2012-02-01
In this paper, we employ the equation of state (EOS) of the quasiparticle model proposed in A. M. Zhao , Mod. Phys. Lett. A 25, 47 (2010)MPLAEQ0217-732310.1142/S0217732310031361] which incorporates the effect of vacuum negative pressure to study the properties of quark stars. In our model the EOS has the correct behavior required by QCD in the small and large μ limit. We employ this EOS to calculate the mass-radii relation and mass-energy density relation of quark stars. Our results are found to be consistent with the most recent astronomical observations.
Deformed nuclear state as a quasiparticle-pair condensate
Dobaczewski, J.; Skalski, J.
1988-07-01
The deformed nuclear states, obtained in terms of the Hartree-Fock plus Bardeen-Cooper-Schrieffer (BCS) method with the Skyrme SIII interaction, are approximated by condensates of the low-angular-momentum quasiparticle and particle pairs. It is shown that the quasiparticle pairs, which are essentially the particle-hole nuclear excitations, provide for a better approximation than the valence particle pairs. In both cases, the inclusion of J = 0, 2, and 4 components is necessary to reproduce the Hartree-Fock plus BCS equilibrium deformation and deformation energy.
Clustering properties of dynamical dark energy models
Avelino, P. P.; Beca, L. M. G.; Martins, C. J. A. P.
2008-05-15
We provide a generic but physically clear discussion of the clustering properties of dark energy models. We explicitly show that in quintessence-type models the dark energy fluctuations, on scales smaller than the Hubble radius, are of the order of the perturbations to the Newtonian gravitational potential, hence necessarily small on cosmological scales. Moreover, comparable fluctuations are associated with different gauge choices. We also demonstrate that the often used homogeneous approximation is unrealistic, and that the so-called dark energy mutation is a trivial artifact of an effective, single fluid description. Finally, we discuss the particular case where the dark energy fluid is nonminimally coupled to dark matter.
Dynamic and rheological properties of soft biological cell suspensions
Yazdani, Alireza; Li, Xuejin
2016-01-01
Quantifying dynamic and rheological properties of suspensions of soft biological particles such as vesicles, capsules, and red blood cells (RBCs) is fundamentally important in computational biology and biomedical engineering. In this review, recent studies on dynamic and rheological behavior of soft biological cell suspensions by computer simulations are presented, considering both unbounded and confined shear flow. Furthermore, the hemodynamic and hemorheological characteristics of RBCs in diseases such as malaria and sickle cell anemia are highlighted. PMID:27540271
Dynamical Properties of Collisionless Star Streams
NASA Astrophysics Data System (ADS)
Carlberg, R. G.
2015-02-01
A sufficiently extended satellite in the tidal field of a host galaxy loses mass to create nearly symmetric leading and trailing tidal streams. We study the case in which tidal heating drives mass loss from a low mass satellite. The stream effectively has two dynamical components, a common angular momentum core superposed with episodic pulses with a broader angular momentum distribution. The pulses appear as spurs on the stream, oscillating above and below the stream centerline, stretching and blurring in configuration space as they move away from the cluster. Low orbital eccentricity streams are smoother and have less differential motion than high eccentricity streams. The tail of a high eccentricity stream can develop a fan of particles that wraps around at apocenter in a shell feature. We show that scaling the essentially stationary action-angle variables with the cube root of the satellite mass allows a low mass satellite stream to accurately predict the features in the stream from a satellite a thousand times more massive. As a practical astrophysical application, we demonstrate that narrow gaps in a moderate eccentricity stream, such as GD-1, blur out to 50% contrast over approximately six radial periods. A high eccentricity stream, such as Pal 5, will blur small gaps in only two radial orbits as can be understood from the much larger dispersion of angular momentum in the stream.
OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES
Grant, C D; Zhang, J Z
2007-09-28
This chapter provides an overview of some recent research activities on the study of optical and dynamic properties of semiconductor nanomaterials. The emphasis is on unique aspects of these properties in nanostructures as compared to bulk materials. Linear, including absorption and luminescence, and nonlinear optical as well as dynamic properties of semiconductor nanoparticles are discussed with focus on their dependence on particle size, shape, and surface characteristics. Both doped and undoped semiconductor nanomaterials are highlighted and contrasted to illustrate the use of doping to effectively alter and probe nanomaterial properties. Some emerging applications of optical nanomaterials are discussed towards the end of the chapter, including solar energy conversion, optical sensing of chemicals and biochemicals, solid state lighting, photocatalysis, and photoelectrochemistry.
Quasiparticle collapsing in an anisotropic t -J ladder
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Weng, Zheng-Yu
2015-12-01
Quasiparticle collapsing is a central issue in the study of strongly correlated electron systems. In the one-dimensional case, the quasiparticle collapsing in a form of spin-charge separation has been well established, but the problem remains elusive in dimensions higher than one. By using the density matrix renormalization group (DMRG) algorithm, we show that in an anisotropic two-leg t -J ladder, an injected single hole behaves like a well-defined quasiparticle in the strong rung limit but undergoes a "phase transition" with the effective mass diverging at a quantum critical point (QCP) towards the isotropic limit. After the transition, the quasiparticle collapses into a loosely bound object of a charge (holon) and a spin-1/2 (spinon) accompanied by an unscreened phase string as well as a substantially enhanced binding energy between two doped holes. A phase diagram of multileg ladders is further obtained, which extrapolates the QCP towards the two-dimensional limit. The underlying mechanism generic for any dimensions is also discussed.
Kondo physics from quasiparticle poisoning in Majorana devices
NASA Astrophysics Data System (ADS)
Plugge, S.; Zazunov, A.; Eriksson, E.; Tsvelik, A. M.; Egger, R.
2016-03-01
We present a theoretical analysis of quasiparticle poisoning in Coulomb-blockaded Majorana fermion systems tunnel-coupled to normal-conducting leads. Taking into account finite-energy quasiparticles, we derive the effective low-energy theory and present a renormalization group analysis. We find qualitatively new effects when a quasiparticle state with very low energy is localized near a tunnel contact. For M =2 attached leads, such "dangerous" quasiparticle poisoning processes cause a spin S =1 /2 single-channel Kondo effect, which can be detected through a characteristic zero-bias anomaly conductance peak in all Coulomb blockade valleys. For more than two attached leads, the topological Kondo effect of the unpoisoned system becomes unstable. A strong-coupling bosonization analysis indicates that at low energy the poisoned lead is effectively decoupled and hence, for M >3 , the topological Kondo fixed point re-emerges, though now it involves only M -1 leads. As a consequence, for M =3 , the low-energy fixed point becomes trivial corresponding to decoupled leads.
Kondo physics from quasiparticle poisoning in Majorana devices
Plugge, S.; Tsvelik, A. M.; Zazunov, A.; Eriksson, E.; Egger, R.
2016-03-24
Here, we present a theoretical analysis of quasiparticle poisoning in Coulomb-blockaded Majorana fermion systems tunnel-coupled to normal-conducting leads. Taking into account finite-energy quasiparticles, we derive the effective low-energy theory and present a renormalization group analysis. We find qualitatively new effects when a quasiparticle state with very low energy is localized near a tunnel contact. For M = 2 attached leads, such “dangerous” quasiparticle poisoning processes cause a spin S = 1/2 single-channel Kondo effect, which can be detected through a characteristic zero-bias anomaly conductance peak in all Coulomb blockade valleys. For more than two attached leads, the topological Kondo effectmore » of the unpoisoned system becomes unstable. A strong-coupling bosonization analysis indicates that at low energy the poisoned lead is effectively decoupled and hence, for M > 3, the topological Kondo fixed point re-emerges, though now it involves only M–1 leads. As a consequence, for M = 3, the low-energy fixed point becomes trivial corresponding to decoupled leads.« less
Mass properties measurement system: Dynamics and statics measurements
NASA Technical Reports Server (NTRS)
Doty, Keith L.
1993-01-01
This report presents and interprets experimental data obtained from the Mass Properties Measurement System (MPMS). Statics measurements yield the center-of-gravity of an unknown mass and dynamics measurements yield its inertia matrix. Observations of the MPMS performance has lead us to specific design criteria and an understanding of MPMS limitations.
Static and dynamic properties of supercooled water in small nanotubes.
Khademi, Mahdi; Sahimi, Muhammad
2016-07-14
The static and dynamic properties of water in small silicon-carbide and carbon nanotubes have been studied over the temperature range 100 K-298 K, using extensive molecular dynamics simulations. The computed properties include the radial distribution function, the cage correlation function, the space-time autocorrelation function, the velocity autocorrelation function, and the self-diffusivity. They all indicate that, under the conditions that we study, water does not freeze in small nanotubes; the Stokes-Einstein relation breaks down, and the self-diffusivity exhibits a transition around 230 K, very close to 228 K, the temperature at which a fragile-to-strong dynamic crossover is supposed to happen. The cage correlation function C(t) decays according to a stretched-exponential function, C(t) ∼ exp[ - (t/τ)(β)], where τ is a relaxation time and β is a topological exponent. PMID:27421415
Static and dynamic properties of supercooled water in small nanotubes
NASA Astrophysics Data System (ADS)
Khademi, Mahdi; Sahimi, Muhammad
2016-07-01
The static and dynamic properties of water in small silicon-carbide and carbon nanotubes have been studied over the temperature range 100 K-298 K, using extensive molecular dynamics simulations. The computed properties include the radial distribution function, the cage correlation function, the space-time autocorrelation function, the velocity autocorrelation function, and the self-diffusivity. They all indicate that, under the conditions that we study, water does not freeze in small nanotubes; the Stokes-Einstein relation breaks down, and the self-diffusivity exhibits a transition around 230 K, very close to 228 K, the temperature at which a fragile-to-strong dynamic crossover is supposed to happen. The cage correlation function C(t) decays according to a stretched-exponential function, C(t) ˜ exp[ - (t/τ)β], where τ is a relaxation time and β is a topological exponent.
NASA Astrophysics Data System (ADS)
Zhang, ZhenHua
2016-07-01
The high-spin rotational properties of two-quasiparticle bands in the doubly-odd 166Ta are analyzed using the cranked shell model with pairing correlations treated by a particle-number conserving method, in which the blocking effects are taken into account exactly. The experimental moments of inertia and alignments and their variations with the rotational frequency hω are reproduced very well by the particle-number conserving calculations, which provides a reliable support to the configuration assignments in previous works for these bands. The backbendings in these two-quasiparticle bands are analyzed by the calculated occupation probabilities and the contributions of each orbital to the total angular momentum alignments. The moments of inertia and alignments for the Gallagher-Moszkowski partners of these observed two-quasiparticle rotational bands are also predicted.
Dirac charge dynamics in graphene by infrared spectroscopy
Martin, Michael C; Li, Z.Q.; Henriksen, E.A.; Jiang, Z.; Hao, Z.; Martin, Michael C; Kim, P.; Stormer, H.L.; Basov, Dimitri N.
2008-04-29
A remarkable manifestation of the quantum character of electrons in matter is offered by graphene, a single atomic layer of graphite. Unlike conventional solids where electrons are described with the Schrödinger equation, electronic excitations in graphene are governed by the Dirac hamiltonian. Some of the intriguing electronic properties of graphene, such as massless Dirac quasiparticles with linear energy-momentum dispersion, have been confirmed by recent observations. Here, we report an infrared spectromicroscopy study of charge dynamics in graphene integrated in gated devices. Our measurements verify the expected characteristics of graphene and, owing to the previously unattainable accuracy of infrared experiments, also uncover significant departures of the quasiparticle dynamics from predictions made for Dirac fermions in idealized, free-standing graphene. Several observations reported here indicate the relevance of many-body interactions to the electromagnetic response of graphene.
Evaluation of biological cell properties using dynamic indentation measurement.
Cao, Guoxin; Chandra, Namas
2010-02-01
Viscoelastic mechanical properties of biological cells are commonly measured using atomic force microscope (AFM) dynamic indentation with spherical tips. A semiempirical analysis based on numerical simulation is built to determine the cell mechanical properties. It is shown that the existing analysis cannot reflect the accurate values of cell elastic/dynamic modulus due to the effects of substrate, indenter tip size, and cell size. Among these factors, substrate not only increases the true contact radius but also interferes the indentation stress field, which can cause the overestimation of cell moduli. Typically, the substrate effect is much stronger than the other two influences in cell indentation; and, thus, the cell modulii are usually overestimated. It is estimated that the moduli can be overestimated by as high as over 200% using the existing analysis. In order to obtain the accurate properties of cells, correction factors that account for these effects are required in the existing analysis. PMID:20365612
Shimizu, Yusei; Kittaka, Shunichiro; Sakakibara, Toshiro; Haga, Yoshinori; Yamamoto, Etsuji; Amitsuka, Hiroshi; Tsutsumi, Yasumasa; Machida, Kazushige
2015-04-10
Low-energy quasiparticle excitations in the superconducting (SC) state of UBe_{13} were studied by means of specific-heat (C) measurements in a rotating field. Quite unexpectedly, the magnetic-field dependence of C(H) is linear in H with no angular dependence at low fields in the SC state, implying that the gap is fully open over the Fermi surfaces, in stark contrast to previous expectations. In addition, a characteristic cubic anisotropy of C(H) was observed above 2 T with a maximum (minimum) for H∥[001] ([111]) within the (11[over ¯]0) plane, in the normal as well as in the SC states. This oscillation possibly originates from the anisotropic response of the heavy quasiparticle bands, and might be a key to understand the unusual properties of UBe_{13}. PMID:25910153
Dynamic properties of elastomer cartridge specimens under a rotating load
NASA Technical Reports Server (NTRS)
Darlow, M. S.; Smalley, A. J.; Cunningham, R. E.
1979-01-01
This paper presents the results of a program of analysis and test to determine the dynamic properties of elastomer cartridges operating under a rotating load. These measured properties were compared to predictions based on results of unidirectional tests with the same elastomer material. The test method for the dynamic stiffness and damping measurements was essentially the same as the Base Excitation Resonant Mass Method. The primary difference is that the exciting force used for these most recent tests was exerted by rotating unbalance in a rotational test rig rather than a shake table. The specimens tested were: two rectangular cross-section, continuous ring cartridges of different cross-section and three cylindrical button cartridges of different button thickness. Tests were performed for strains from about 0.0001 to about 0.01 (double amplitude). Material properties and prediction equations determined from reciprocating tests were used to make numerical predictions of stiffness, damping, and loss coefficient for the test elements, with encouraging results. Strain was shown to be an important parameter in determining these dynamic properties, particularly damping and loss coefficient.
Structural and dynamical properties of hot dense matter by a Thomas-Fermi-Dirac molecular dynamics
NASA Astrophysics Data System (ADS)
Lambert, F.; Clérouin, J.; Mazevet, S.
2006-09-01
We use a model combining, in a consistent way, orbital-free density functional theory (OF-DFT) and molecular dynamics (MD), to compute the thermodynamical, structural and dynamical properties of Fe and Au plasmas at conditions relevant to astrophysics and inertial confinement fusion (ICF). The newly developed parallel numerical scheme presented here allows to propagate hundreds of particles and to obtain accurate transport properties. This allows us to investigate the validity of the commonly used one-component plasma (OCP) model in predicting the pair correlation, the diffusion and viscosity coefficients for these two high-temperature high-density plasmas.
Relating Dynamic Properties to Atomic Structure in Metallic Glasses
Sheng, H.W.; Ma, E.; Kramer, Matthew J.
2012-07-18
Atomic packing in metallic glasses is not completely random but displays various degrees of structural ordering. While it is believed that local structures profoundly affect the properties of glasses, a fundamental understanding of the structure–property relationship has been lacking. In this article, we provide a microscopic picture to uncover the intricate interplay between structural defects and dynamic properties of metallic glasses, from the perspective of computational modeling. Computational methodologies for such realistic modeling are introduced. Exploiting the concept of quasi-equivalent cluster packing, we quantify the structural ordering of a prototype metallic glass during its formation process, with a new focus on geometric measures of subatomic “voids.” Atomic sites connected with the voids are found to be crucial in terms of understanding the dynamic, including vibrational and atomic transport, properties. Normal mode analysis is performed to reveal the structural origin of the anomalous boson peak (BP) in the vibration spectrum of the glass, and its correlation with atomic packing cavities. Through transition-state search on the energy landscape of the system, such structural disorder is found to be a facilitating factor for atomic diffusion, with diffusion energy barriers and diffusion pathways significantly varying with the degree of structural relaxation/ordering. The implications of structural defects for the mechanical properties of metallic glasses are also discussed.
Photoluminescence properties and exciton dynamics in monolayer WSe2
NASA Astrophysics Data System (ADS)
Yan, Tengfei; Qiao, Xiaofen; Liu, Xiaona; Tan, Pingheng; Zhang, Xinhui
2014-09-01
In this work, comprehensive temperature and excitation power dependent photoluminescence and time-resolved photoluminescence studies are carried out on monolayer WSe2 to reveal its properties of exciton emissions and related excitonic dynamics. Competitions between the localized and delocalized exciton emissions, as well as the exciton and trion emissions are observed, respectively. These competitions are suggested to be responsible for the abnormal temperature and excitation intensity dependent photoluminescence properties. The radiative lifetimes of both excitons and trions exhibit linear dependence on temperature within the temperature regime below 260 K, providing further evidence for two-dimensional nature of monolayer material.
Finite temperature quasiparticle self-consistent GW approximation
Vanschilfgaarde, Mark; Leonard, Francois; Desjarlais, Michael Paul; Kotani, Takao; Faleev, Sergey V
2005-10-01
We present a new ab initio method for electronic structure calculations of materials at finite temperature (FT) based on the all-electron quasiparticle self-consistent GW (QPscGW) approximation and Keldysh time-loop Green's function approach. We apply the method to Si, Ge, GaAs, InSb, and diamond and show that the band gaps of these materials universally decrease with temperature in contrast with the local density approximation (LDA) of density functional theory (DFT) where the band gaps universally increase. At temperatures of a few eV the difference between quasiparticle energies obtained in FT-QPscGW and FT-LDA approaches significantly reduces. This result suggests that existing simulations of very high temperature materials based on the FT-LDA are more justified then it might appear from well-known LDA band gap errors at zero-temperature.
Effect of spin fluctuations on quasiparticles in simple metals
NASA Astrophysics Data System (ADS)
Lischner, Johannes; Bazhirov, Timur; MacDonald, Allan; Cohen, Marvin; Louie, Steven
2014-03-01
We present a first-principles theory for quasiparticle excitations in condensed matter systems that includes their interaction with spin fluctuations. We apply this theory to sodium and lithium. Despite several previous studies, the importance of spin fluctuations in these materials and, in particular, their effect on the occupied band width remains unclear. We show that the coupling to spin fluctuations does not significantly change the occupied band width, but gives an important contribution to the quasiparticle lifetime. To obtain quantitative agreement with experiment for the occupied band width, we find that it is necessary to include vertex corrections beyond the random-phase approximation in the screening by charge fluctuations. S. G. L. acknowledges support by a Simons Foundation Fellowship in Theoretical Physics. This work was supported by NSF Grant No. DMR10-1006184 and by DOE Grant No. DE-AC02-05CH11231.
Quasi-Particle Self-Consistent GW for Molecules.
Kaplan, F; Harding, M E; Seiler, C; Weigend, F; Evers, F; van Setten, M J
2016-06-14
We present the formalism and implementation of quasi-particle self-consistent GW (qsGW) and eigenvalue only quasi-particle self-consistent GW (evGW) adapted to standard quantum chemistry packages. Our implementation is benchmarked against high-level quantum chemistry computations (coupled-cluster theory) and experimental results using a representative set of molecules. Furthermore, we compare the qsGW approach for five molecules relevant for organic photovoltaics to self-consistent GW results (scGW) and analyze the effects of the self-consistency on the ground state density by comparing calculated dipole moments to their experimental values. We show that qsGW makes a significant improvement over conventional G0W0 and that partially self-consistent flavors (in particular evGW) can be excellent alternatives. PMID:27168352
Quasiparticle spin resonance and coherence in superconducting aluminium
Quay, C. H. L.; Weideneder, M.; Chiffaudel, Y.; Strunk, C.; Aprili, M.
2015-01-01
Conventional superconductors were long thought to be spin inert; however, there is now increasing interest in both (the manipulation of) the internal spin structure of the ground-state condensate, as well as recently observed long-lived, spin-polarized excitations (quasiparticles). We demonstrate spin resonance in the quasiparticle population of a mesoscopic superconductor (aluminium) using novel on-chip microwave detection techniques. The spin decoherence time obtained (∼100 ps), and its dependence on the sample thickness are consistent with Elliott–Yafet spin–orbit scattering as the main decoherence mechanism. The striking divergence between the spin coherence time and the previously measured spin imbalance relaxation time (∼10 ns) suggests that the latter is limited instead by inelastic processes. This work stakes out new ground for the nascent field of spin-based electronics with superconductors or superconducting spintronics. PMID:26497744
γ vibrational band and quasiparticle excitations in 80Sr
NASA Astrophysics Data System (ADS)
Sienko, T. A.; Lister, C. J.; Kaye, R. A.
2003-06-01
Non-yrast states in 80Sr were populated in the 24Mg(58Ni,2p)80Sr reaction at 200 MeV and their γ decays investigated using Gammasphere, in order to investigate shape softness and quasiparticle excitations. A large data set was collected which was A and Z gated, using the Argonne Fragment Mass Analyzer and a focal plane ion chamber. The excellent channel selection enhanced the sensitivity to energetically nonfavored configurations. Several new rotational bands were found, and many conflicts between previous experiments were resolved. In particular, the gamma vibrational band is now clearly delineated, and more than ten quasiparticle bandheads have been identified. At the highest spins, evidence for a long-predicted shape change was found.
Quasiparticle and excitonic gaps of one-dimensional carbon chains.
Mostaani, E; Monserrat, B; Drummond, N D; Lambert, C J
2016-06-01
We report diffusion quantum Monte Carlo (DMC) calculations of the quasiparticle and excitonic gaps of hydrogen-terminated oligoynes and extended polyyne. The electronic gaps are found to be very sensitive to the atomic structure in these systems. We have therefore optimised the geometry of polyyne by directly minimising the DMC energy with respect to the lattice constant and the Peierls-induced carbon-carbon bond-length alternation. We find the bond-length alternation of polyyne to be 0.136(2) Å and the excitonic and quasiparticle gaps to be 3.30(7) and 3.4(1) eV, respectively. The DMC zone-centre longitudinal optical phonon frequency of polyyne is 2084(5) cm(-1), which is consistent with Raman spectroscopic measurements for large oligoynes. PMID:27104222
Quasiparticle spin resonance and coherence in superconducting aluminium
NASA Astrophysics Data System (ADS)
Quay, C. H. L.; Weideneder, M.; Chiffaudel, Y.; Strunk, C.; Aprili, M.
2015-10-01
Conventional superconductors were long thought to be spin inert; however, there is now increasing interest in both (the manipulation of) the internal spin structure of the ground-state condensate, as well as recently observed long-lived, spin-polarized excitations (quasiparticles). We demonstrate spin resonance in the quasiparticle population of a mesoscopic superconductor (aluminium) using novel on-chip microwave detection techniques. The spin decoherence time obtained (~100 ps), and its dependence on the sample thickness are consistent with Elliott-Yafet spin-orbit scattering as the main decoherence mechanism. The striking divergence between the spin coherence time and the previously measured spin imbalance relaxation time (~10 ns) suggests that the latter is limited instead by inelastic processes. This work stakes out new ground for the nascent field of spin-based electronics with superconductors or superconducting spintronics.
El-Batanouny, Maged
2015-08-03
We propose to investigate the surface structural, dynamics and magnetic properties of the novel class of topological insulator crystals, as well as crystals that exhibit multiferroicity, magnetoelectricity and thermoelectricity. Topological insulators (TIs) are a new class of insulators in which a bulk gap for electronic excitations is generated because of the strong spin-orbit coupling inherent to these systems. These materials are distinguished from ordinary insulators by the presence of gapless metallic surface states, resembling chiral edge modes in quantum Hall systems, but with unconventional spin textures. These exotic metallic states are formed by topological conditions that also render the electrons travelling on such surfaces insensitive to scattering by impurities. The electronic quasi-particles populating the topological surface state are Dirac fermions; they have a linear dispersion and thus are massless just like photons. We propose to investigate the interaction of these massless Dirac fermions with the massive lattice in the newly discovered crystals, Bi2Se3, Bi2Te3 and Sb2Te3. We shall use inelastic helium beam scattering from surfaces to search for related signatures in surface phonon dispersions mappings that cover the entire surface Brillouin zone of these materials. Our recent investigations of the (001) surface of the multiferroic crystals (Li/Na)Cu2O2 revealed an anomalous surface structural behavior where surface Cu$^{2+}$ row rise above the surface plane as the crystal was cooled. Subsequent worming revealed the onset of a thermally activated incommensurate surface phase, driven by the elevated rows. We are currently investigating the structure of the magnetic phases in these quasi-one-dimensional magnetic rows. Multiferroics are excellent candidates for large magnetoelectric response. We propose to extend this investigation to the class of delafossites which are also multiferroics and have been investigated as good candidates for
The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors
Hinton, J. P.; Thewalt, E.; Alpichshev, Z.; Mahmood, F.; Koralek, J. D.; Chan, M. K.; Veit, M. J.; Dorow, C. J.; Barišić, N.; Kemper, A. F.; Bonn, D. A.; Hardy, W. N.; Liang, Ruixing; Gedik, N.; Greven, M.; Lanzara, A.; Orenstein, J.
2016-01-01
In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic ”pseudogap” phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp, as a function of temperature and magnetic field in underdoped HgBa2CuO4+δ (Hg-1201) and YBa2Cu3O6+x (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T ) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs. PMID:27071712
The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors
NASA Astrophysics Data System (ADS)
Hinton, J. P.; Thewalt, E.; Alpichshev, Z.; Mahmood, F.; Koralek, J. D.; Chan, M. K.; Veit, M. J.; Dorow, C. J.; Barišić, N.; Kemper, A. F.; Bonn, D. A.; Hardy, W. N.; Liang, Ruixing; Gedik, N.; Greven, M.; Lanzara, A.; Orenstein, J.
2016-04-01
In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic ”pseudogap” phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp, as a function of temperature and magnetic field in underdoped HgBa2CuO4+δ (Hg-1201) and YBa2Cu3O6+x (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T ) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs.
Quasiparticle-random-phase approximation treatment of the transverse wobbling mode reconsidered
NASA Astrophysics Data System (ADS)
Frauendorf, S.; Dönau, F.
2015-12-01
The quasiparticle-random-phase approximation is used to study the properties of the wobbling bands in 163Lu. Assuming that the wobbling mode represents pure isoscalar orientation oscillations results in too low wobbling frequencies and transition probabilities between the one- and zero-phonon wobbling bands that are strongly collective but yet too weak for B (E2 ) out and too strong for B (M1 ) out . The inclusion of an LL interaction, which couples the wobbling mode to the scissors mode, generates the right upshift of the wobbling frequencies and the right suppression of the B (M1 ) out values toward the experimental values, but does not change the B (E2 ) out values. In analogy to the quenching of low-energy E 1 transition by coupling to the isovector giant dipole resonance, a general reduction of the M 1 transitions between quasiparticle configurations caused by coupling to the scissors mode is suggested. The small B (E2 ) out values are related to small triaxiality of the density distribution, which is found by all mean field calculations for the triaxial strongly deformed nuclei in the mass 160 region.
The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors
Hinton, J. P.; Thewalt, E.; Alpichshev, Z.; Mahmood, F.; Koralek, J. D.; Chan, M. K.; Veit, M. J.; Dorow, C. J.; Barisic, N.; Kemper, A. F.; et al
2016-04-13
In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic ”pseudogap” phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp,more » as a function of temperature and magnetic field in underdoped HgBa2CuO4+δ (Hg-1201) and YBa2Cu3O6+x (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Lastly, our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs.« less
The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors.
Hinton, J P; Thewalt, E; Alpichshev, Z; Mahmood, F; Koralek, J D; Chan, M K; Veit, M J; Dorow, C J; Barišić, N; Kemper, A F; Bonn, D A; Hardy, W N; Liang, Ruixing; Gedik, N; Greven, M; Lanzara, A; Orenstein, J
2016-01-01
In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic "pseudogap" phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp, as a function of temperature and magnetic field in underdoped HgBa2CuO(4+δ) (Hg-1201) and YBa2Cu3O(6+x) (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs. PMID:27071712
The Quasiparticle Puzzle: Reconciling ARPES and FTSTS Studies of Bi2212
Vishik, I.M.; Nowadnick, E.A.; Lee, W.S.; Shen, Z.X.; Moritz, B.; Devereaux, T.P.; Tanaka, K.; Sasagawa, T.; Fujii, T.; /Tokyo U.
2009-12-17
Angle Resolved Photoemission Spectroscopy (ARPES) probes the momentum-space electronic structure of materials, and provides invaluable information about the high-temperature superconducting cuprates. Likewise, cuprates real-space, inhomogeneous electronic structure is elucidated by Scanning Tunneling Spectroscopy (STS). Recently, STS has exploited quasiparticle interference (QPI) - wave-like electrons scattering off impurities to produce periodic interference patterns - to infer properties of the QP in momentum-space. Surprisingly, some interference peaks in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi-2212) are absent beyond the antiferromagnetic (AF) zone boundary, implying the dominance of particular scattering process. Here, we show that ARPES sees no evidence of quasiparticle (QP) extinction: QP-like peaks are measured everywhere on the Fermi surface, evolving smoothly across the AF zone boundary. This apparent contradiction stems from different natures of single-particle (ARPES) and two-particle (STS) processes underlying these probes. Using a simple model, we demonstrate extinction of QPI without implying the loss of QP beyond the AF zone boundary.
On the fundamental properties of dynamically hot galaxies
NASA Astrophysics Data System (ADS)
Kritsuk, Alexei G.
1997-01-01
A two-component isothermal equilibrium model is applied to reproduce basic structural properties of dynamically hot stellar systems immersed in their massive dark haloes. The origin of the fundamental plane relation for giant ellipticals is naturally explained as a consequence of dynamical equilibrium in the context of the model. The existence of two galactic families displaying different behaviour in the luminosity-surface-brightness diagram is shown to be a result of a smooth transition from dwarfs, dominated by dark matter near the centre, to giants dominated by the luminous stellar component. The comparison of empirical scaling relations with model predictions suggests that probably a unique dissipative process was operating during the violent stage of development of stellar systems in the dark haloes, and the depth of the potential well controlled the observed luminosity of the resulting galaxies. The interpretation also provides some restrictions on the properties of dark haloes implied by the fundamental scaling laws.
NASA Astrophysics Data System (ADS)
Vig, Sean; Kogar, Anshul; Mishra, Vivek; Norman, Mike; Gu, Genda; Abbamonte, Peter
2015-03-01
The kink features in the low energy quasiparticle dispersion in cuprate superconductors have been extensively studied using angle-resolved photoemission spectroscopy (ARPES). The existence of these kinks is a signature of a renormalization of the fermionic quasiparticles due to coupling to some bosonic collective mode at a scale related to the kink energy. In this talk, I will present angle-resolved inelastic electron scattering studies of the bosonic collective excitations in optimally doped Bi2Sr2CaCu2O8+δ. Performing a 2D momentum parameterization of these modes, we reconstruct the complete dynamical susceptibility, χ (q , ω) , which we use to perform a one-loop self energy correction to the quasiparticle dispersion. The result reproduces well the dispersion observed with ARPES, indicating that these excitations are the origin of the observed kinks. I will discuss the implications of our study for phonon vs. spin fluctuation interpretation of these effects. This work was supported as part of the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science.
Josephson effect and quasiparticle states in d-wave superconductors
Tanaka, Yukio; Kashiwaya, Satoshi
1996-12-31
A general formula for the Josephson current in a d-wave/insulator/d-wave-superconductor junction is presented by taking account of the zero-energy states formed around the interfaces. For a fixed phase difference between the two superconductors, the current component becomes either positive or negative depending on the injection angle of the quasiparticle. Anomalous temperature dependences are predicted in the maximum Josephson current and in the free energy minima.
Real Spin in Pseudospin Quasiparticles of Bilayer Quantum Hall systems
NASA Astrophysics Data System (ADS)
Roostaei, Bahman; Fertig, H. A.; Mullen, Kieran
2005-03-01
Recent experiments have observed enhanced nuclear spin relaxation in double layer quantum Hall systems near the phase boundary between compressible and incompressible states(1). We investigate the electronic spin structure of such systems by calculating the groundstate close to ν= 1 using the Hartree-Fock approximation. This state is a quasiparticle lattice, and we examine the possibility of optimizing its energy by allowing the real spin to tilt away from the majority direction in the quasiparticle cores, analogous to what has been suggested in field theoretic studies of single quasiparticles(2). A broken symmetry of these states introduces low energy spin modes which may couple to the nuclear spins. We calculate both the spin and pseudospin textures for the system near the transition and discuss whether they can account for the observed relaxation rates.1) I.B. Spielman et al., cond-mat/0410092; N. Kumada et al., cond-mat/04104952) S. Ghosh and R. Rajaraman, Phys. Rev. B63, 035304 (2001); Z.F. Izawa and G. Tsitsishvili, cond- mat/0311406.Grants: NSF MRSEC DMR-0080054, NSF EPS-9720651 and NSF DMR- 0454699
Information for coarticulation: Static signal properties or formant dynamics?
Viswanathan, Navin; Magnuson, James S; Fowler, Carol A
2014-06-01
Perception of a speech segment changes depending on properties of surrounding segments in a phenomenon called compensation for coarticulation (Mann, 1980). The nature of information that drives these perceptual changes is a matter of debate. One account attributes perceptual shifts to low-level auditory system contrast effects based on static portions of the signal (e.g., third formant [F3] center or average frequency; Lotto & Kluender, 1998). An alternative account is that listeners' perceptual shifts result from listeners attuning to the acoustic effects of gestural overlap and that this information for coarticulation is necessarily dynamic (Fowler, 2006). In a pair of experiments, we used sinewave speech precursors to investigate the nature of information for compensation for coarticulation. In Experiment 1, as expected by both accounts, we found that sinewave speech precursors produce shifts in following segments. In Experiment 2, we investigated whether effects in Experiment 1 were driven by static F3 offsets of sinewave speech precursors, or by dynamic relationships among their formants. We temporally reversed F1 and F2 in sinewave precursors, preserving static F3 offset and average F1, F2 and F3 frequencies, but disrupting dynamic formant relationships. Despite having identical F3s, selectively reversed precursors produced effects that were significantly smaller and restricted to only a small portion of the continuum. We conclude that dynamic formant relations rather than static properties of the precursor provide information for compensation for coarticulation. PMID:24730744
Information for Coarticulation: Static Signal Properties or Formant Dynamics?
Viswanathan, Navin; Magnuson, James S.; Fowler, Carol A.
2014-01-01
Perception of a speech segment changes depending on properties of surrounding segments in a phenomenon called compensation for coarticulation (Mann, 1980). The nature of information that drives these perceptual changes is a matter of debate. One account attributes perceptual shifts to low-level auditory system contrast effects based on static portions of the signal (e.g., third formant [F3] center or average frequency; Lotto & Kluender, 1998). An alternative account is that listeners' perceptual shifts result from listeners attuning to the acoustic effects of gestural overlap and that this information for coarticulation is necessarily dynamic (Fowler, 2006). In a pair of experiments, we used sinewave speech precursors to investigate the nature of information for compensation for coarticulation. In Experiment 1, as expected by both accounts, we found that sinewave speech precursors produce shifts in following segments. In Experiment 2, we investigated whether effects in Experiment 1 were driven by static F3 offsets of sinewave speech precursors, or by dynamic relationships among their formants. We temporally reversed F1 and F2 in sinewave precursors, preserving static F3 offset and average F1, F2, and F3 frequencies, but disrupting dynamic formant relationships. Despite having identical F3s, selectively-reversed precursors produced effects that were significantly smaller and restricted to only a small portion of the continuum. We conclude that dynamic formant relations rather than static properties of the precursor provide information for compensation for coarticulation. PMID:24730744
Dynamic and mechanical properties of supported lipid bilayers.
Wu, Hsing-Lun; Tsao, Heng-Kwong; Sheng, Yu-Jane
2016-04-21
Supported lipid bilayers (SLBs) offer an excellent model system for investigating the physico-chemical properties of the cell membrane. In this work, dynamic and mechanical properties of SLBs are explored by dissipative particle dynamics simulations for lipids with different architectures (chain length, kink, and asymmetry associated with lipid tails). It is found that the lateral diffusivity (Dx) and flip-flop rate (FF) grow with increasing temperature in both gel and liquid phases and can be described by an Arrhenius-like expression. Three regimes can be clearly identified for symmetric and asymmetric saturated lipids but only two regimes are observed for kinked lipids. Both Dx and FF grow with decreasing tail length and increasing number of kinks. The stretching (KA) and apparent bending (KB) moduli exhibit concave upward curves with temperature and the minima are attained at Tm. In general, the minima of KA and KB decrease with the chain length and increase with number of kinks. The typical relation among the bending modulus, area stretching modulus, and bilayer thickness is still followed, KB = βKAh(2) and β is much smaller in the gel phase. The dynamic and mechanical properties of lipids with asymmetric tails are found to situate between their symmetric counterparts. PMID:27389237
Dynamic and mechanical properties of supported lipid bilayers
NASA Astrophysics Data System (ADS)
Wu, Hsing-Lun; Tsao, Heng-Kwong; Sheng, Yu-Jane
2016-04-01
Supported lipid bilayers (SLBs) offer an excellent model system for investigating the physico-chemical properties of the cell membrane. In this work, dynamic and mechanical properties of SLBs are explored by dissipative particle dynamics simulations for lipids with different architectures (chain length, kink, and asymmetry associated with lipid tails). It is found that the lateral diffusivity (Dx) and flip-flop rate (FF) grow with increasing temperature in both gel and liquid phases and can be described by an Arrhenius-like expression. Three regimes can be clearly identified for symmetric and asymmetric saturated lipids but only two regimes are observed for kinked lipids. Both Dx and FF grow with decreasing tail length and increasing number of kinks. The stretching (KA) and apparent bending (KB) moduli exhibit concave upward curves with temperature and the minima are attained at Tm. In general, the minima of KA and KB decrease with the chain length and increase with number of kinks. The typical relation among the bending modulus, area stretching modulus, and bilayer thickness is still followed, KB = βKAh2 and β is much smaller in the gel phase. The dynamic and mechanical properties of lipids with asymmetric tails are found to situate between their symmetric counterparts.
Quasiparticle-phonon model and quadrupole mixed-symmetry states of 96Ru
NASA Astrophysics Data System (ADS)
Stoyanov, Ch.; Pietralla, N.
2016-01-01
The structure of low-lying quadrupole states of 96Ru was calculated within the Quasiparticle-Phonon Model. It is shown that symmetric and mixed-symmetry properties manifest themselves via the structure of the excited states. The first 2+ state is collective and neutron and proton transition matrix elements Mn and Mp are in-phase, while the neutron and proton transition matrix elements Mn and Mp have opposite signs for the third 2+ state. This property of the third 2+ state leads to a large M1 transition between the first and third 2+ states. It is an unambigous demonstration of the mixed-symmetry nature of the third 2+ state. The structure of the first 1+ state is calculated. The state is a member of the two-phonon multiplet generated by the coupling of the [21+]QRPA and the [22+]QRPA states.
Viscoelastic properties of a spinal posterior dynamic stabilisation device.
Lawless, Bernard M; Barnes, Spencer C; Espino, Daniel M; Shepherd, Duncan E T
2016-06-01
The purpose of this study was to quantify the frequency dependent viscoelastic properties of two types of spinal posterior dynamic stabilisation devices. In air at 37°C, the viscoelastic properties of six BDyn 1 level, six BDyn 2 level posterior dynamic stabilisation devices (S14 Implants, Pessac, France) and its elastomeric components (polycarbonate urethane and silicone) were measured using Dynamic Mechanical Analysis. The viscoelastic properties were measured over the frequency range 0.01-30Hz. The BDyn devices and its components were viscoelastic throughout the frequency range tested. The mean storage stiffness and mean loss stiffness of the BDyn 1 level device, BDyn 2 level device, silicone component and polycarbonate urethane component all presented a logarithmic relationship with respect to frequency. The storage stiffness of the BDyn 1 level device ranged from 95.56N/mm to 119.29N/mm, while the BDyn 2 level storage stiffness ranged from 39.41N/mm to 42.82N/mm. BDyn 1 level device and BDyn 2 level device loss stiffness ranged from 10.72N/mm to 23.42N/mm and 4.26N/mm to 9.57N/mm, respectively. No resonant frequencies were recorded for the devices or its components. The elastic property of BDyn 1 level device is influenced by the PCU and silicone components, in the physiological frequency range. The viscoelastic properties calculated in this study may be compared to spinal devices and spinal structures. PMID:27018832
Graph Theoretic Foundations of Multibody Dynamics Part I: Structural Properties.
Jain, Abhinandan
2011-06-21
This is the first part of two papers that use concepts from graph theory to obtain a deeper understanding of the mathematical foundations of multibody dynamics. The key contribution is the development of a unifying framework that shows that key analytical results and computational algorithms in multibody dynamics are a direct consequence of structural properties and require minimal assumptions about the specific nature of the underlying multibody system. This first part focuses on identifying the abstract graph theoretic structural properties of spatial operator techniques in multibody dynamics. The second part paper exploits these structural properties to develop a broad spectrum of analytical results and computational algorithms.Towards this, we begin with the notion of graph adjacency matrices and generalize it to define block-weighted adjacency (BWA) matrices and their 1-resolvents. Previously developed spatial operators are shown to be special cases of such BWA matrices and their 1-resolvents. These properties are shown to hold broadly for serial and tree topology multibody systems. Specializations of the BWA and 1-resolvent matrices are referred to as spatial kernel operators (SKO) and spatial propagation operators (SPO). These operators and their special properties provide the foundation for the analytical and algorithmic techniques developed in the companion paper.We also use the graph theory concepts to study the topology induced sparsity structure of these operators and the system mass matrix. Similarity transformations of these operators are also studied. While the detailed development is done for the case of rigid-link multibody systems, the extension of these techniques to a broader class of systems (e.g. deformable links) are illustrated. PMID:22102790
NASA Astrophysics Data System (ADS)
Banuelos, E. U.; Amarillas, A. P.
2004-02-01
In this work we studied the temperature-induced changes in the structural and dynamical properties of liquid Ag using molecular dynamics (DM) computer simulation. The atomic interactions are modeled through a semiempirical potential function which incorporates n-body effects and is based on the second moments approximation of the density of states of a tight-binding Hamiltonian. The caloric curve was used to calculate the latent heat of fusion and the pair distribution function, g(r), was calculated from a set of atomic configurations collected at several time-steps. The dynamical properties are studied through the velocity autocorrelation function and the mean-square displacement. The self-diffusion coefficient and its behavior with the temperature, obtained from our simulations, shows the typical behavior of the simple liquids. Our results are compared to available experimental data.
Estimating the biophysical properties of neurons with intracellular calcium dynamics
NASA Astrophysics Data System (ADS)
Ye, Jingxin; Rozdeba, Paul J.; Morone, Uriel I.; Daou, Arij; Abarbanel, Henry D. I.
2014-06-01
We investigate the dynamics of a conductance-based neuron model coupled to a model of intracellular calcium uptake and release by the endoplasmic reticulum. The intracellular calcium dynamics occur on a time scale that is orders of magnitude slower than voltage spiking behavior. Coupling these mechanisms sets the stage for the appearance of chaotic dynamics, which we observe within certain ranges of model parameter values. We then explore the question of whether one can, using observed voltage data alone, estimate the states and parameters of the voltage plus calcium (V+Ca) dynamics model. We find the answer is negative. Indeed, we show that voltage plus another observed quantity must be known to allow the estimation to be accurate. We show that observing both the voltage time course V (t) and the intracellular Ca time course will permit accurate estimation, and from the estimated model state, accurate prediction after observations are completed. This sets the stage for how one will be able to use a more detailed model of V+Ca dynamics in neuron activity in the analysis of experimental data on individual neurons as well as functional networks in which the nodes (neurons) have these biophysical properties.
Dynamic properties influence the perception of facial expressions.
Kamachi, Miyuki; Bruce, Vicki; Mukaida, Shigeru; Gyoba, Jiro; Yoshikawa, Sakiko; Akamatsu, Shigeru
2013-01-01
Two experiments were conducted to investigate the role played by dynamic information in identifying facial expressions of emotion. Dynamic expression sequences were created by generating and displaying morph sequences which changed the face from neutral to a peak expression in different numbers of intervening intermediate stages, to create fast (6 frames), medium (26 frames), and slow (101 frames) sequences. In experiment 1, participants were asked to describe what the person shown in each sequence was feeling. Sadness was more accurately identified when slow sequences were shown. Happiness, and to some extent surprise, was better from faster sequences, while anger was most accurately detected from the sequences of medium pace. In experiment 2 we used an intensity-rating task and static images as well as dynamic ones to examine whether effects were due to total time of the displays or to the speed of sequence. Accuracies of expression judgments were derived from the rated intensities and the results were similar to those of experiment 1 for angry and sad expressions (surprised and happy were close to ceiling). Moreover, the effect of display time was found only for dynamic expressions and not for static ones, suggesting that it was speed, not time, which was responsible for these effects. These results suggest that representations of basic expressions of emotion encode information about dynamic as well as static properties. PMID:24601038
Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex
Procyk, Emmanuel; Dominey, Peter Ford
2016-01-01
Primates display a remarkable ability to adapt to novel situations. Determining what is most pertinent in these situations is not always possible based only on the current sensory inputs, and often also depends on recent inputs and behavioral outputs that contribute to internal states. Thus, one can ask how cortical dynamics generate representations of these complex situations. It has been observed that mixed selectivity in cortical neurons contributes to represent diverse situations defined by a combination of the current stimuli, and that mixed selectivity is readily obtained in randomly connected recurrent networks. In this context, these reservoir networks reproduce the highly recurrent nature of local cortical connectivity. Recombining present and past inputs, random recurrent networks from the reservoir computing framework generate mixed selectivity which provides pre-coded representations of an essentially universal set of contexts. These representations can then be selectively amplified through learning to solve the task at hand. We thus explored their representational power and dynamical properties after training a reservoir to perform a complex cognitive task initially developed for monkeys. The reservoir model inherently displayed a dynamic form of mixed selectivity, key to the representation of the behavioral context over time. The pre-coded representation of context was amplified by training a feedback neuron to explicitly represent this context, thereby reproducing the effect of learning and allowing the model to perform more robustly. This second version of the model demonstrates how a hybrid dynamical regime combining spatio-temporal processing of reservoirs, and input driven attracting dynamics generated by the feedback neuron, can be used to solve a complex cognitive task. We compared reservoir activity to neural activity of dorsal anterior cingulate cortex of monkeys which revealed similar network dynamics. We argue that reservoir computing is a
The Evolving Properties of Water in a Dynamic Protoplanetary Disk
NASA Astrophysics Data System (ADS)
Ciesla, Fred
2015-08-01
Protoplanetary disks are dynamic objects, through which mass and angular momentum are transported as part of the final stages of pre-main sequence evolution of their central stars. These disks are also rich chemical factories, in which materials inherited from the interstellar medium are transformed through a series of reactions (involving, gases, solids, ions, and photons) to the eventual building blocks of the planets.The chemical and physical evolution of a protoplanetary disk are intimately connected. Both solids and gases are subjected to large-scale motions associated with disk evolution and diffusion within the gas. Solids also settle toward the disk midplane and migrate inwards due to gravity and gas drag. This dynamical evolution exposes primitive materials to a range of physical conditions (pressure, temperature, radiation environment) within the disk. It is the integrated effects of these environments that define the physical and chemical properties of a solid grain prior to its incorporation into a planetesimal or planet.Water serves as an interesting tracer of this evolution, as it would be processed in a variety of ways within a protoplanetary disk. I will discuss new methods that allow us to trace the dynamical movement of water vapor and ice throughout the lifetime of a protoplanetary disk and to determine the physical environments to which the water would be exposed. In particular, I will show how the early evolution of a protoplanetary disk impacts the D/H ratio of the water inherited by planetary materials. I will also explore how photodesorption of water by UV photons can lead to the formation of amorphous ice and thus the trapping of noble gases and other volatiles at levels that are much greater than predicted by equilibrium chemistry models. These effects combine to lead to constantly evolving properties of water during the early stages of planet formation. I will also discuss how the observed properties of Solar System bodies constrain these
Inferring Network Dynamics and Neuron Properties from Population Recordings
Linaro, Daniele; Storace, Marco; Mattia, Maurizio
2011-01-01
Understanding the computational capabilities of the nervous system means to “identify” its emergent multiscale dynamics. For this purpose, we propose a novel model-driven identification procedure and apply it to sparsely connected populations of excitatory integrate-and-fire neurons with spike frequency adaptation (SFA). Our method does not characterize the system from its microscopic elements in a bottom-up fashion, and does not resort to any linearization. We investigate networks as a whole, inferring their properties from the response dynamics of the instantaneous discharge rate to brief and aspecific supra-threshold stimulations. While several available methods assume generic expressions for the system as a black box, we adopt a mean-field theory for the evolution of the network transparently parameterized by identified elements (such as dynamic timescales), which are in turn non-trivially related to single-neuron properties. In particular, from the elicited transient responses, the input–output gain function of the neurons in the network is extracted and direct links to the microscopic level are made available: indeed, we show how to extract the decay time constant of the SFA, the absolute refractory period and the average synaptic efficacy. In addition and contrary to previous attempts, our method captures the system dynamics across bifurcations separating qualitatively different dynamical regimes. The robustness and the generality of the methodology is tested on controlled simulations, reporting a good agreement between theoretically expected and identified values. The assumptions behind the underlying theoretical framework make the method readily applicable to biological preparations like cultured neuron networks and in vitro brain slices. PMID:22016731
Experiments on Interaction of Quasiparticles with Two-Level-Systems in a Superconducting Phase Qubit
NASA Astrophysics Data System (ADS)
Bilmes, Alexander; Lisenfeld, Jürgen; Heimes, Andreas; Zanker, Sebastian; Schön, Gerd; Ustinov, Alexey
2015-03-01
Two-Level-Systems (TLS) are one of the main sources of decoherence in superconducting qubits. Some individual and coherent TLS, present in the tunnel barrier of the qubit's Josephson junction, can be coherently operated via the qubit. In the past, experiments on superconducting glasses indicated that quasiparticles may give rise to TLS energy loss similar to Korringa relaxation. We will present experiments in which we use a phase qubit to explore the interaction of single TLS with non-equilibrium quasiparticles. We have implemented in-situ quasiparticle injection by using an on-chip dc-SQUID that is pulse-biased beyond its critical current. The quasiparticle density is calibrated by measuring associated characteristic changes to the qubit resonance frequency and energy relaxation rate. The coherence times of individual TLS is measured in dependence of the non-equilibrium quasiparticle density and compared to thermally generated quasiparticles. PI, KIT, Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany.
Stochastic dynamics of penetrable rods in one dimension: Entangled dynamics and transport properties
Craven, Galen T.; Popov, Alexander V.; Hernandez, Rigoberto
2015-04-21
The dynamical properties of a system of soft rods governed by stochastic hard collisions (SHCs) have been determined over a varying range of softness using molecular dynamics simulations in one dimension and analytic theory. The SHC model allows for interpenetration of the system’s constituent particles in the simulations, generating overlapping clustering behavior analogous to the spatial structures observed in systems governed by deterministic bounded potentials. Through variation of an assigned softness parameter δ, the limiting ranges of intermolecular softness are bridged, connecting the limiting ensemble behavior from hard to ideal (completely soft). Various dynamical and structural observables are measured from simulation and compared to developed theoretical values. The spatial properties are found to be well predicted by theories developed for the deterministic penetrable-sphere model with a transformation from energetic to probabilistic arguments. While the overlapping spatial structures are complex, the dynamical properties can be adequately approximated through a theory built on impulsive interactions with Enskog corrections. Our theory suggests that as the softness of interaction is varied toward the ideal limit, correlated collision processes are less important to the energy transfer mechanism, and Markovian processes dominate the evolution of the configuration space ensemble. For interaction softness close to hard limit, collision processes are highly correlated and overlapping spatial configurations give rise to entanglement of single-particle trajectories.
Craven, Galen T; Popov, Alexander V; Hernandez, Rigoberto
2015-04-21
The dynamical properties of a system of soft rods governed by stochastic hard collisions (SHCs) have been determined over a varying range of softness using molecular dynamics simulations in one dimension and analytic theory. The SHC model allows for interpenetration of the system's constituent particles in the simulations, generating overlapping clustering behavior analogous to the spatial structures observed in systems governed by deterministic bounded potentials. Through variation of an assigned softness parameter δ, the limiting ranges of intermolecular softness are bridged, connecting the limiting ensemble behavior from hard to ideal (completely soft). Various dynamical and structural observables are measured from simulation and compared to developed theoretical values. The spatial properties are found to be well predicted by theories developed for the deterministic penetrable-sphere model with a transformation from energetic to probabilistic arguments. While the overlapping spatial structures are complex, the dynamical properties can be adequately approximated through a theory built on impulsive interactions with Enskog corrections. Our theory suggests that as the softness of interaction is varied toward the ideal limit, correlated collision processes are less important to the energy transfer mechanism, and Markovian processes dominate the evolution of the configuration space ensemble. For interaction softness close to hard limit, collision processes are highly correlated and overlapping spatial configurations give rise to entanglement of single-particle trajectories. PMID:25903909
Quasiparticle Diffusion in CRESST Light Detectors
NASA Astrophysics Data System (ADS)
Angloher, G.; Bauer, P.; Ferreiro, N.; Hauff, D.; Tanzke, A.; Strauss, R.; Kiefer, M.; Petricia, F.; Reindl, F.; Seidel, W.; Pröbst, F.; Wüstrich, M.
2016-07-01
CRESST-II is a direct dark matter experiment that uses scintillating calorimeters to detect WIMP-induced nuclear scatter processes. Heat and light signals are read out with tungsten transition edge sensors (TESs) that are optimized toward their sensitivity to non-thermal phonons. The usage of superconducting thin film structures (e.g., aluminum) serving as phonon collectors to increase the collection area for this signal component is an approach to improve the sensitivity of the TES. The performance of the phonon collectors depends on the material properties and the quality achieved in the production process. We optimized the size of the phonon collectors for the given quality of CRESST-II light detectors. The diffusion lengths measured in this work are mathcal {O}(1 mm) and show a strong correlation to the Residual Resistivity Ratio of the respective films. First tests of CRESST-II light detectors with larger as well as thicker phonon collectors individually show improvements in the measured pulse height of 30 %.
Quasiparticle Diffusion in CRESST Light Detectors
NASA Astrophysics Data System (ADS)
Angloher, G.; Bauer, P.; Ferreiro, N.; Hauff, D.; Tanzke, A.; Strauss, R.; Kiefer, M.; Petricia, F.; Reindl, F.; Seidel, W.; Pröbst, F.; Wüstrich, M.
2016-02-01
CRESST-II is a direct dark matter experiment that uses scintillating calorimeters to detect WIMP-induced nuclear scatter processes. Heat and light signals are read out with tungsten transition edge sensors (TESs) that are optimized toward their sensitivity to non-thermal phonons. The usage of superconducting thin film structures (e.g., aluminum) serving as phonon collectors to increase the collection area for this signal component is an approach to improve the sensitivity of the TES. The performance of the phonon collectors depends on the material properties and the quality achieved in the production process. We optimized the size of the phonon collectors for the given quality of CRESST-II light detectors. The diffusion lengths measured in this work are {O} (1 mm) and show a strong correlation to the Residual Resistivity Ratio of the respective films. First tests of CRESST-II light detectors with larger as well as thicker phonon collectors individually show improvements in the measured pulse height of 30 %.
Quasiparticle Diffusion in CRESST Light Detectors
NASA Astrophysics Data System (ADS)
Angloher, G.; Bauer, P.; Ferreiro, N.; Hauff, D.; Tanzke, A.; Strauss, R.; Kiefer, M.; Petricia, F.; Reindl, F.; Seidel, W.; Pröbst, F.; Wüstrich, M.
2016-07-01
CRESST-II is a direct dark matter experiment that uses scintillating calorimeters to detect WIMP-induced nuclear scatter processes. Heat and light signals are read out with tungsten transition edge sensors (TESs) that are optimized toward their sensitivity to non-thermal phonons. The usage of superconducting thin film structures (e.g., aluminum) serving as phonon collectors to increase the collection area for this signal component is an approach to improve the sensitivity of the TES. The performance of the phonon collectors depends on the material properties and the quality achieved in the production process. We optimized the size of the phonon collectors for the given quality of CRESST-II light detectors. The diffusion lengths measured in this work are {O}(1 mm) and show a strong correlation to the Residual Resistivity Ratio of the respective films. First tests of CRESST-II light detectors with larger as well as thicker phonon collectors individually show improvements in the measured pulse height of 30 %.
The Stationary Dirac Equation as a Generalized Pauli Equation for Two Quasiparticles
NASA Astrophysics Data System (ADS)
Chuprikov, Nikolay L.
2015-06-01
By analyzing the Dirac equation with static electric and magnetic fields it is shown that Dirac's theory is nothing but a generalized one-particle quantum theory compatible with the special theory of relativity. This equation describes a quantum dynamics of a single relativistic fermion, and its solution is reduced to solution of the generalized Pauli equation for two quasiparticles which move in the Euclidean space with their effective masses holding information about the Lorentzian symmetry of the four-dimensional space-time. We reveal the correspondence between the Dirac bispinor and Pauli spinor (two-component wave function), and show that all four components of the Dirac bispinor correspond to a fermion (or all of them correspond to its antiparticle). Mixing the particle and antiparticle states is prohibited. On this basis we discuss the paradoxical phenomena of Zitterbewegung and the Klein tunneling.
The number comb for a soil physical properties dynamic measurement
NASA Astrophysics Data System (ADS)
Olechko, K.; Patiño, P.; Tarquis, A. M.
2012-04-01
We propose the prime numbers distribution extracted from the soil digital multiscale images and some physical properties time series as the precise indicator of the spatial and temporal dynamics under soil management changes. With this new indicator the soil dynamics can be studied as a critical phenomenon where each phase transition is estimated and modeled by the graph partitioning induced phase transition. The critical point of prime numbers distribution was correlated with the beginning of Andosols, Vertisols and saline soils physical degradation under the unsustainable soil management in Michoacan, Guanajuato and Veracruz States of Mexico. The data banks corresponding to the long time periods (between 10 and 28 years) were statistically compared by RISK 5.0 software and our own algorithms. Our approach makes us able to distill free-form natural laws of soils physical properties dynamics directly from the experimental data. The Richter (1987) and Schmidt and Lipson (2009) original approaches were very useful to design the algorithms to identify Hamiltonians, Lagrangians and other laws of geometric and momentum conservation especially for erosion case.
Optical properties of X-rays--dynamical diffraction.
Authier, André
2012-01-01
The first attempts at measuring the optical properties of X-rays such as refraction, reflection and diffraction are described. The main ideas forming the basis of Ewald's thesis in 1912 are then summarized. The first extension of Ewald's thesis to the X-ray case is the introduction of the reciprocal lattice. In the next step, the principles of the three versions of the dynamical theory of diffraction, by Darwin, Ewald and Laue, are given. It is shown how the comparison of the dynamical and geometrical theories of diffraction led Darwin to propose his extinction theory. The main optical properties of X-ray wavefields at the Bragg incidence are then reviewed: Pendellösung, shift of the Bragg peak, fine structure of Kossel lines, standing waves, anomalous absorption, paths of wavefields inside the crystal, Borrmann fan and double refraction. Lastly, some of the modern applications of the dynamical theory are briefly outlined: X-ray topography, location of adsorbed atoms at crystal surfaces, optical devices for synchrotron radiation and X-ray interferometry. PMID:22186282
Dynamics of hydraulic properties due to biological clogging
NASA Astrophysics Data System (ADS)
Rosenzweig, R.; Shavit, U.; Furman, A.
2012-04-01
Classic treatment of soil-water flow is described by the unsaturated version of Darcy's law and Richards' equation, assuming time invariant hydraulic properties, e.g. the saturated hydraulic conductivity, Ks, and van Genuchten-Mualem's α and n. However, when bacteria is present the soil is quite far from being time invariant and biological activity constantly alters the pore-scale structure, leading to macro-scale alteration of the hydraulic properties. This may be of high relevance to processes such as subsurface bioremediation, soil aquifer treatment, wastewater irrigation, and more. In this work we explore the dynamic alteration of soil hydraulic properties by a combination of column experiments and pore-network modeling. We experimentally demonstrate how biological activity clogs an unsaturated soil column and reduces its hydraulic conductivity, while a similar column where biological activity is limited does not clog. Further, we demonstrate that the clogging is preferential to the nutrient input. Next, we develop a pore-network model that uses triangular shape channels. This allows a dual occupancy (water-air) of each channel and high connectivity. The model solves the flow of water, nutrient transport, and biological dynamics. It includes biofilm growth and decay, attachment and detachment, and nutrient exchange between the water and biofilm phases. We perform a sensitivity analysis of the model and qualitatively show through the loss of connectivity how the clogging that was observed in our experiment can be explained.
Locomotion as an emergent property of muscle contractile dynamics.
Biewener, Andrew A
2016-01-01
Skeletal muscles share many common, highly conserved features of organization at the molecular and myofilament levels, giving skeletal muscle fibers generally similar and characteristic mechanical and energetic properties; properties well described by classical studies of muscle mechanics and energetics. However, skeletal muscles can differ considerably in architectural design (fiber length, pinnation, and connective tissue organization), as well as fiber type, and how they contract in relation to the timing of neuromotor activation and in vivo length change. The in vivo dynamics of muscle contraction is, therefore, crucial to assessing muscle design and the roles that muscles play in animal movement. Architectural differences in muscle-tendon organization combined with differences in the phase of activation and resulting fiber length changes greatly affect the time-varying force and work that muscles produce, as well as the energetic cost of force generation. Intrinsic force-length and force-velocity properties of muscles, together with their architecture, also play important roles in the control of movement, facilitating rapid adjustments to changing motor demands. Such adjustments complement slower, reflex-mediated neural feedback control of motor recruitment. Understanding how individual fiber forces are integrated to whole-muscle forces, which are transmitted to the skeleton for producing and controlling locomotor movement, is therefore essential for assessing muscle design in relation to the dynamics of movement. PMID:26792341
Dynamic properties of high structural integrity auxetic open cell foam
NASA Astrophysics Data System (ADS)
Scarpa, F.; Ciffo, L. G.; Yates, J. R.
2004-02-01
This paper illustrates various dynamic characteristics of open cell compliant polyurethane foam with auxetic (negative Poisson's ratio) behaviour. The foam is obtained from off-the-shelf open cell polyurethane grey foam with a manufacturing process based on mechanical deformation on a mould in a temperature-controlled oven. The Poisson's ratio is measured with an image processing technique based on edge detection with wavelet methods. Foam samples have been tested in a viscoelastic analyser tensile test machine to determine the Young's modulus and loss factor for small dynamic strains. The same samples have also been tested in an acoustic impedance tube to measure acoustic absorption and specific acoustic resistance and reactance with a transmissibility technique. Another set of tests has been set up on a cam plastometer machine for constant strain rate dynamic crushing analysis. All the tests have been carried out on auxetic and normal foam samples to provide a comparison between the two types of cellular solids. The results from the experimental tests are discussed and interpreted using microstructure models for cellular materials existing in the literature. The negative Poisson's ratio foam presented in this paper shows an overall superiority regarding damping and acoustic properties compared to the original conventional foam. Its dynamic crushing performance is also significantly superior to the normal foam, suggesting a possible use in structural integrity compliant elements.
Dynamic Properties of DNA-Programmable Nanoparticle Crystallization.
Yu, Qiuyan; Zhang, Xuena; Hu, Yi; Zhang, Zhihao; Wang, Rong
2016-08-23
The dynamics of DNA hybridization is very important in DNA-programmable nanoparticle crystallization. Here, coarse-grained molecular dynamics is utilized to explore the structural and dynamic properties of DNA hybridizations for a self-complementary DNA-directed nanoparticle self-assembly system. The hexagonal close-packed (HCP) and close-packed face-centered cubic (FCC) ordered structures are identified for the systems of different grafted DNA chains per nanoparticle, which are in good agreement with the experimental results. Most importantly, the dynamic crystallization processes of DNA hybridizations are elucidated by virtue of the mean square displacement, the percentage of hybridizations, and the lifetime of DNA bonds. The lifetime can be modeled by the DNA dehybridization, which has an exponential form. The lifetime of DNA bonds closely depends on the temperature. A suitable temperature for the DNA-nanoparticle crystallization is obtained in the work. Moreover, a too large volume fraction hinders the self-assembly process due to steric effects. This work provides some essential information for future design of nanomaterials. PMID:27409362
Dynamic relaxation of the elastic properties of hard carbon films
Hirvonen, J.; Koskinen, J.; Kaukonen, M.; Nieminen, R.; Scheibe, H.
1997-06-01
The effect of enhanced atomic mobility on the growth of hard carbon films was examined. Tetrahedrally bonded amorphous carbon films were deposited by condensing energetic carbon ions using an arc-discharge deposition method. The deposition temperature varied between 50 and 400{degree}C. The dependence of elastic properties on deposition temperature was examined by determining the frequency-dependent propagation velocity of ultrasonic surface acoustic waves induced by a laser. A remarkable decrease in elastic coefficient was revealed above the deposition temperature of 300{degree}C and complete relaxation was obtained at 400{degree}C. This observation was analyzed by using a simple model which was in turn supported by molecular dynamics simulations. The relaxation turns out to be a thermally activated, dynamic process with an activation energy of 0.57 eV. Possible relaxation mechanisms associated with the migration of atoms or defects on a growing surface are discussed. {copyright} {ital 1997 American Institute of Physics.}
TRITIUM EFFECTS ON DYNAMIC MECHANICAL PROPERTIES OF POLYMERIC MATERIALS
Clark, E
2008-11-12
Dynamic mechanical analysis has been used to characterize the effects of tritium gas (initially 1 atm. pressure, ambient temperature) exposure over times up to 2.3 years on several thermoplastics-ultrahigh molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE), and Vespel{reg_sign} polyimide, and on several formulations of elastomers based on ethylene propylene diene monomer (EPDM). Tritium exposure stiffened the elastic modulus of UHMW-PE up to about 1 year and then softened it, and reduced the viscous response monotonically with time. PTFE initially stiffened, however the samples became too weak to handle after nine months exposure. The dynamic properties of Vespel{reg_sign} were not affected. The glass transition temperature of the EPDM formulations increased approximately 4 C. following three months tritium exposure.
Nickel-aluminum alloy clusters -- structural and dynamical properties
Jellinek, J.; Krissinel, E.B.
1997-08-01
Structural and dynamical properties of mixed Ni{sub n}Al{sub m} alloy clusters mimicked by a many-body potential are studied computationally for all the possible compositions n and m such that n + m = 13. It is shown that the manifold of the usually very large number of the different possible structural forms can be systematized by introducing classes of structures corresponding to the same concentration of the components, geometry and type of the central atom. General definitions of mixing energy and mixing coefficient are introduced, and it is shown that the energy ordering of the structural forms within each class is governed by the mixing coefficient. The peculiarities of the solid-to-liquid-like transition are described as a function of the concentration of the two types of atoms. These peculiarities are correlated with and explained in terms of the energy spectra of the structural forms. Class-dependent features of the dynamics are described and analyzed.
Dynamic properties of interfaces in soft matter: Experiments and theory
NASA Astrophysics Data System (ADS)
Sagis, Leonard M. C.
2011-10-01
The dynamic properties of interfaces often play a crucial role in the macroscopic dynamics of multiphase soft condensed matter systems. These properties affect the dynamics of emulsions, of dispersions of vesicles, of biological fluids, of coatings, of free surface flows, of immiscible polymer blends, and of many other complex systems. The study of interfacial dynamic properties, surface rheology, is therefore a relevant discipline for many branches of physics, chemistry, engineering, and life sciences. In the past three to four decades a vast amount of literature has been produced dealing with the rheological properties of interfaces stabilized by low molecular weight surfactants, proteins, (bio)polymers, lipids, colloidal particles, and various mixtures of these surface active components. In this paper recent experiments are reviewed in the field of surface rheology, with particular emphasis on the models used to analyze surface rheological data. Most of the models currently used are straightforward generalizations of models developed for the analysis of rheological data of bulk phases. In general the limits on the validity of these generalizations are not discussed. Not much use is being made of recent advances in nonequilibrium thermodynamic formalisms for multiphase systems, to construct admissible models for the stress-deformation behavior of interfaces. These formalisms are ideally suited to construct thermodynamically admissible constitutive equations for rheological behavior that include the often relevant couplings to other fluxes in the interface (heat and mass), and couplings to the transfer of mass from the bulk phase to the interface. In this review recent advances in the application of classical irreversible thermodynamics, extended irreversible thermodynamics, rational thermodynamics, extended rational thermodynamics, and the general equation for the nonequilibrium reversible-irreversible coupling formalism to multiphase systems are also discussed
Static and Dynamical Properties of heavy actinide Monopnictides of Lutetium
Mir, Showkat H.; Jha, Prakash C.; Islam, M. S.; Banarjee, Amitava; Luo, Wei; Dabhi, Shweta D.; Jha, Prafulla K.; Ahuja, R.
2016-01-01
In this work, density functional theory within the framework of generalized gradient approximation has been used to investigate the structural, elastic, mechanical, and phonon properties of lutetium monopnictides in rock-salt crystal structure. The spin orbit coupling and Hubbard-U corrections are included to correctly predict the essential properties of these compounds. The elastic constants, Young’s modulus E, Poisson’s ratio v, shear modulus G, anisotropy factor A and Pugh’s ratio are computed. We found that all lutetium monopnictides are anisotropic and show brittle character. From the wave velocities along [100], [110] and [111] directions, melting temperature of lutetium monopnictides are predicted. Dynamical stability of these monopnictides has been studied by density functional perturbation theory. PMID:27384709
Tuning properties and dynamic range of type 1 vomeronasal receptors
Haga-Yamanaka, Sachiko; Ma, Limei; Yu, C. Ron
2015-01-01
The mouse vomeronasal organ (VNO) expresses chemosensory receptors that detect intra-species as well as inter-species cues. The vomeronasal neurons are thought to be highly selective in their responses. The tuning properties of individual receptors remain difficult to characterize due to the lack of a robust heterologous expression system. Here, we take a transgenic approach to ectopically express two type 1 vomeronasal receptors in the mouse VNO and characterize their responses to steroid compounds. We find that V1rj2 and V1rj3 are sensitive to two sulfated estrogens (SEs) and can be activated by a broad variety of sulfated and glucuronidated steroids at high concentrations. Individual neurons exhibit narrow range of concentration-dependent activation. Collectively, a neuronal population expressing the same receptor covers a wide dynamic range in their responses to SEs. These properties recapitulate the response profiles of endogenous neurons to SEs. PMID:26236183
Tuning properties and dynamic range of type 1 vomeronasal receptors.
Haga-Yamanaka, Sachiko; Ma, Limei; Yu, C Ron
2015-01-01
The mouse vomeronasal organ (VNO) expresses chemosensory receptors that detect intra-species as well as inter-species cues. The vomeronasal neurons are thought to be highly selective in their responses. The tuning properties of individual receptors remain difficult to characterize due to the lack of a robust heterologous expression system. Here, we take a transgenic approach to ectopically express two type 1 vomeronasal receptors in the mouse VNO and characterize their responses to steroid compounds. We find that V1rj2 and V1rj3 are sensitive to two sulfated estrogens (SEs) and can be activated by a broad variety of sulfated and glucuronidated steroids at high concentrations. Individual neurons exhibit narrow range of concentration-dependent activation. Collectively, a neuronal population expressing the same receptor covers a wide dynamic range in their responses to SEs. These properties recapitulate the response profiles of endogenous neurons to SEs. PMID:26236183
World-trade web: Topological properties, dynamics, and evolution
NASA Astrophysics Data System (ADS)
Fagiolo, Giorgio; Reyes, Javier; Schiavo, Stefano
2009-03-01
This paper studies the statistical properties of the web of import-export relationships among world countries using a weighted-network approach. We analyze how the distributions of the most important network statistics measuring connectivity, assortativity, clustering, and centrality have coevolved over time. We show that all node-statistic distributions and their correlation structure have remained surprisingly stable in the last 20years —and are likely to do so in the future. Conversely, the distribution of (positive) link weights is slowly moving from a log-normal density towards a power law. We also characterize the autoregressive properties of network-statistics dynamics. We find that network-statistics growth rates are well-proxied by fat-tailed densities like the Laplace or the asymmetric exponential power. Finally, we find that all our results are reasonably robust to a few alternative, economically meaningful, weighting schemes.
Dynamic compressive properties of bovine knee layered tissue
NASA Astrophysics Data System (ADS)
Nishida, Masahiro; Hino, Yuki; Todo, Mitsugu
2015-09-01
In Japan, the most common articular disease is knee osteoarthritis. Among many treatment methodologies, tissue engineering and regenerative medicine have recently received a lot of attention. In this field, cells and scaffolds are important, both ex vivo and in vivo. From the viewpoint of effective treatment, in addition to histological features, the compatibility of mechanical properties is also important. In this study, the dynamic and static compressive properties of bovine articular cartilage-cancellous bone layered tissue were measured using a universal testing machine and a split Hopkinson pressure bar method. The compressive behaviors of bovine articular cartilage-cancellous bone layered tissue were examined. The effects of strain rate on the maximum stress and the slope of stress-strain curves of the bovine articular cartilage-cancellous bone layered tissue were discussed.
Static and Dynamical Properties of heavy actinide Monopnictides of Lutetium.
Mir, Showkat H; Jha, Prakash C; Islam, M S; Banarjee, Amitava; Luo, Wei; Dabhi, Shweta D; Jha, Prafulla K; Ahuja, R
2016-01-01
In this work, density functional theory within the framework of generalized gradient approximation has been used to investigate the structural, elastic, mechanical, and phonon properties of lutetium monopnictides in rock-salt crystal structure. The spin orbit coupling and Hubbard-U corrections are included to correctly predict the essential properties of these compounds. The elastic constants, Young's modulus E, Poisson's ratio v, shear modulus G, anisotropy factor A and Pugh's ratio are computed. We found that all lutetium monopnictides are anisotropic and show brittle character. From the wave velocities along [100], [110] and [111] directions, melting temperature of lutetium monopnictides are predicted. Dynamical stability of these monopnictides has been studied by density functional perturbation theory. PMID:27384709
Losa, C.; Doessing, T.; Pastore, A.; Vigezzi, E.; Broglia, R. A.
2010-06-15
We present a calculation of the properties of vibrational states in deformed, axially-symmetric even-even nuclei, within the framework of a fully self-consistent quasiparticle random phase approximation (QRPA). The same Skyrme energy density and density-dependent pairing functionals are used to calculate the mean field and the residual interaction in the particle-hole and particle-particle channels. We have tested our software in the case of spherical nuclei against fully self-consistent calculations published in the literature, finding excellent agreement. We investigate the consequences of neglecting the spin-orbit and Coulomb residual interactions in QRPA. Furthermore we discuss the improvement obtained in the QRPA result associated with the removal of spurious modes. Isoscalar and isovector responses in the deformed {sup 24-26}Mg, {sup 34}Mg isotopes are presented and compared to experimental findings.
Hung, N. Quang; Dang, N. Dinh
2010-05-15
We propose a description of pairing properties in finite systems within the canonical and microcanonical ensembles. The approach is derived by solving the BCS and self-consistent quasiparticle random-phase approximation with the Lipkin-Nogami particle-number projection at zero temperature. The obtained eigenvalues are embedded into the canonical and microcanonical ensembles. The results obtained are found in quite good agreement with the exact solutions of the doubly-folded equidistant multilevel pairing model as well as the experimental data for {sup 56}Fe nucleus. The merit of the present approach resides in its simplicity and its application to a wider range of particle number, where the exact solution is impracticable.
Quasiparticle band structure of the almost-gapless transition-metal-based Heusler semiconductors
NASA Astrophysics Data System (ADS)
Tas, M.; Şaşıoǧlu, E.; Galanakis, I.; Friedrich, C.; Blügel, S.
2016-05-01
Transition-metal-based Heusler semiconductors are promising materials for a variety of applications ranging from spintronics to thermoelectricity. Employing the G W approximation within the framework of the FLAPW method, we study the quasiparticle band structure of a number of such compounds being almost gapless semiconductors. We find that in contrast to the s p -electron based semiconductors such as Si and GaAs, in these systems, the many-body corrections have a minimal effect on the electronic band structure and the energy band gap increases by less than 0.2 eV, which makes the starting point density functional theory (DFT) a good approximation for the description of electronic and optical properties of these materials. Furthermore, the band gap can be tuned either by the variation of the lattice parameter or by the substitution of the s p -chemical element.
Adaptation of the Landau-Migdal quasiparticle pattern to strongly correlated Fermi systems
Khodel, V. A.; Clark, J. W.; Zverev, M. V.
2011-09-15
A quasiparticle pattern advanced in Landau's first article on Fermi-liquid theory is adapted to elucidate the properties of a class of strongly correlated Fermi systems characterized by a Lifshitz phase diagram featuring a quantum critical point (QCP) where the density of states diverges. The necessary condition for stability of the Landau Fermi-Liquid state is shown to break down in such systems, triggering a cascade of topological phase transitions that lead, without symmetry violation, to states with multi-connected Fermi surfaces. The end point of this evolution is found to be an exceptional state whose spectrum of single-particle excitations exhibits a completely flat portion at zero temperature. Analysis of the evolution of the temperature dependence of the single-particle spectrum yields results that provide a natural explanation of classical behavior of this class of Fermi systems in the QCP region.
Massive Dirac quasiparticles in the optical absorbance of graphene, silicene, germanene, and tinene
NASA Astrophysics Data System (ADS)
Matthes, Lars; Pulci, Olivia; Bechstedt, Friedhelm
2013-10-01
We present first-principles studies of the optical absorbance of the group IV honeycomb crystals graphene, silicene, germanene, and tinene. We account for many-body effects on the optical properties by using the non-local hybrid functional HSE06. The optical absorption peaks are blueshifted due to quasiparticle corrections, while the influence on the low-frequency absorbance remains unchanged and reduces to a universal value related to the Sommerfeld fine structure constant. At the Dirac points spin-orbit interaction opens fundamental band gaps; parabolic bands with a very small effective mass emerge. Consequently, the low-frequency absorbance is modified with a spin-orbit-induced transparency region and an increase of the absorbance at the fundamental absorption edge.
Dynamic linear viscoelastic properties and extensional failure of asphalt binders
NASA Astrophysics Data System (ADS)
Ruan, Yonghong
Billions of dollars are spent annually in USA to maintain old pavements that are badly cracked. In order to reduce this expenditure, it is desirable to have criteria for selecting asphalts with superior cracking resistance that will provide pavements with longer durability. Literature reports indicate that the ductility of binders recovered from asphalt pavements correlates with cracking failure. However, ductility measurement is a time and material consuming process, and subject to reproducibility difficulties, as are all failure tests. In addition, ductility measurement does not belong to the currently used Superpave(TM) specification. Correlations between ductility and dynamic viscoelastic properties (measured with the dynamic shear rheometer, DSR), which are much easier and faster to perform and may be included into the Superpave(TM) system, are studied for both straight and modified binders. Ductility correlates quite well with G'/(eta '/G') for conventional asphalt binders aged at different conditions, especially when ductility is below 10 cm. However, for modified asphalts, there is no universal correlation between ductility and G'/(eta'/G'), even in the low ductility region. As far as the asphalt binder in pavement is concerned, the loss due to oxidative aging of its ductility is an important reason for pavement cracking. Polymer modification modifies the rheological and oxidative hardening properties of asphalt binders. The effect of polymeric modifiers on various properties of asphalt binders was investigated. Modifiers studied were diblock poly (styrene-b-butadiene) rubber (SBR), triblock poly (styrene-b-butadiene-b-styrene) (SBS), and tire rubber. Polymer modified binders have a lower hardening and oxidation rate than their corresponding base asphalts. In addition, modified binders have lower hardening susceptibility compared with their base materials and in some cases the results can be dramatic. Polymer modification improves asphalt binders' shear
Simultaneous quasiparticle and Josephson tunneling in BSCCO-2212 break junctions.
Ozyuzer, L.
1998-10-27
Tunneling measurements are reported for superconductor-insulator-superconductor (SIS) break junctions on underdoped, optimally-doped, and overdoped single crystals of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi-2212). The junction I-V characteristics exhibit well-defined quasiparticle current jumps at eV = 2A as well as hysteretic Josephson currents. The quasiparticle branch has been analyzed in the framework of d{sub x{sup 2}-y{sup 2}} (d-wave) superconductivity and indicates that there is preferential tunneling along the lobe directions of the d-wave gap. For overdoped Bi-2212 with T{sub c} = 62 K, the Josephson current is measured as a function of junction resistance, R{sub n}, which varied by two orders of magnitude (1 k{Omega} to 100 k{Omega}). I{sub c}R{sub n} product is proportional to the 0.47 power of I{sub c} and displays a maximum of 7.0 mV. When the hole doping is decreased from overdoped (T{sub c} = 62 K) to the underdoped regime (T{sub c} = 70 K), the average I{sub c}R{sub n} product increases as does the quasiparticle gap. The maximum I{sub c}R{sub n} is {approximately} 40% of the {Delta}/e at each doping level, with a value as high as 25 mV in underdoped Bi-2212.
Electronic structure from relativistic quasiparticle self-consistent GW calculations
NASA Astrophysics Data System (ADS)
Blügel, Stefan
Most theoretical studies of topological insulators (TIs) are based on tight-binding descriptions and density functional theory (DFT). But recently, many-body calculations within the GW approximation attract much attention in the study of these materials. We present an implementation of the quasiparticle self-consistent (QS) GW method where the spin-orbit coupling (SOC) is fully taken into account in each iteration rather than added a posteriori. Within the all-electron FLAPW formalism, we show DFT, one-shot GW , and QS GW calculations for several, well-known TIs. We present a comparison of the calculations to photoemission spectroscopy and show that the GW corrected bands agree much better with experiment. For example, we show that Bi2Se3 is a direct gap semiconductor, in contrast to what was believed for many years by interpreting experimental results on the basis of DFT and that small strains in Bi can lead to a semimetal-to-semiconductor or trivial-to-topological transitions. Quasiparticle calculations for low-dimensional systems are still very demanding. In order to study the topological surface states with an approach based on GW , we use Wannier functions to construct a Hamiltonian that reproduces the many-body band structure of the bulk, and that is used to construct a slab Hamiltonian. With this approach, we discuss the effect of quasiparticle corrections on the surface states of TIs and on the interaction between bulk and surface states Work was funded by the Virtual Institute for Topological Insulators of the Helmholtz Association and carried out in collaboration with Irene Aguilera, Gustav Bihlmayer, and Christoph Friedrich.
Finite amplitude method for the quasiparticle random-phase approximation
Avogadro, Paolo; Nakatsukasa, Takashi
2011-07-15
We present the finite amplitude method (FAM), originally proposed in Ref. [17], for superfluid systems. A Hartree-Fock-Bogoliubov code may be transformed into a code of the quasiparticle-random-phase approximation (QRPA) with simple modifications. This technique has advantages over the conventional QRPA calculations, such as coding feasibility and computational cost. We perform the fully self-consistent linear-response calculation for the spherical neutron-rich nucleus {sup 174}Sn, modifying the hfbrad code, to demonstrate the accuracy, feasibility, and usefulness of the FAM.
Disappearance of quasiparticles in a Bose lattice gas
NASA Astrophysics Data System (ADS)
Chen, David; Meldgin, Carolyn; Russ, Philip; DeMarco, Brian; Mueller, Erich
2016-08-01
We use a momentum-space hole-burning technique implemented via stimulated Raman transitions to measure the momentum relaxation time for a gas of bosonic atoms trapped in an optical lattice. By changing the lattice potential depth, we observe a smooth crossover between relaxation times larger and smaller than the bandwidth. The latter condition violates the Mott-Ioffe-Regel bound and indicates a breakdown of the quasiparticle picture. We produce a simple kinetic model that quantitatively predicts these relaxation times. Finally, we introduce a cooling technique based upon our hole-burning technique.
Transport properties of the hot and dense sQGP
NASA Astrophysics Data System (ADS)
Berrehrah, H.; Bratkovskaya, E.; Cassing, W.; Marty, R.
2015-05-01
The transport properties of the quark gluon plasma (QGP) are studied in a QCD medium at finite temperature and chemical potential. We calculate the shear viscosity η(T,μq) and the electric conductivity σe(T, μq) for a system of interacting massive and broad quasi-particles as described by the dynamical quasi-particle model “DQPM” at finite temperature T and quark chemical potential μq within the relaxation time approximation. Our results are in a good agreement with lattice QCD at finite temperature and show clearly the increase of the transport coefficients with increasing T and μq. Our results provide the basic ingredients for the study of the hot and dense matter in the Beam Energy Scan (BES) at RHIC and CBM at FAIR.
NASA Astrophysics Data System (ADS)
Yuya, Philip A.; Patel, Nimitt G.
2014-08-01
In the last few decades, nanoindentation has gained widespread acceptance as a technique for materials properties characterization at micron and submicron length scales. Accurate and precise characterization of material properties with a nanoindenter is critically dependent on the ability to correctly model the response of the test equipment in contact with the material. In dynamic nanoindention analysis, a simple Kelvin-Voigt model is commonly used to capture the viscoelastic response. However, this model oversimplifies the response of real viscoelastic materials such as polymers. A model is developed that captures the dynamic nanoindentation response of a viscoelastic material. Indenter tip-sample contact forces are modelled using a generalized Maxwell model. The results on a silicon elastomer were analysed using conventional two element Kelvin-Voigt model and contrasted to analysis done using the Maxwell model. The results show that conventional Kelvin-Voigt model overestimates the storage modulus of the silicone elastomer by ~30%. Maxwell model represents a significant improvement in capturing the viscoelastic material behaviour over the Voigt model.
Thermally induced changes in dynamic mechanical properties of native silks.
Guan, Juan; Porter, David; Vollrath, Fritz
2013-03-11
Dynamic mechanical thermal analysis (DMTA) on individual native silk fibers demonstrates changes in the dynamic mechanical properties of storage modulus and loss tangent as a function of temperature and temperature history ranging from -100 to 250 °C. These property changes are linked quantitatively to two main types of change in the silk structure. First, the evaporation of water with increasing temperature up to 100 °C increases the storage modulus and removes two characteristic loss tangent peaks at -60 and +60 °C. Second, various discrete loss tangent peaks in the range 150-220 °C are associated with specific disordered silk structures that are removed or converted to a limiting high-temperature relaxed structure by the combination of increasing temperature and static load in the DMTA tests. The results identify important origins of silk filament quality based on the analysis of measurements that can be traced back to differences in production and processing history. PMID:23405856
Dynamic material properties of the pregnant human uterus.
Manoogian, Sarah J; Bisplinghoff, Jill A; Kemper, Andrew R; Duma, Stefan M
2012-06-01
Given that automobile crashes are the largest single cause of death for pregnant females, scientists are developing advanced computer models of pregnant occupants. The purpose of this study is to quantify the dynamic material properties of the human uterus in order to increase the biofidelity of these models. A total of 19 dynamic tension tests were performed on pregnant human uterus tissues taken from six separate donors. The tissues were collected during full term Cesarean style deliveries and tested within 36 h of surgery. The tissues were processed into uniform coupon sections and tested at 1.5 strains/s using linear motors. Local stress and strain were determined from load data and optical markers using high speed video. The experiments resulted in a non-linear stress versus strain curves with an overall average peak failure true strain of 0.32±0.112 and a corresponding peak failure true stress of 656.3±483.9 kPa. These are the first data available for the dynamic response of pregnant human uterus tissues, and it is anticipated they will increase the accuracy of future pregnant female computational models. PMID:22542221
Effect of dynamical interactions on integrated properties of globular clusters
NASA Astrophysics Data System (ADS)
Zhuang, Yulong; Zhang, Fenghui; Anders, Peter; Ruan, Zhifeng; Cheng, Liantao; Kang, Xiaoyu
2015-02-01
Globular clusters (GCs) are generally treated as natural validators of simple stellar population (SSP) models. However, there are still some differences between real GCs and SSPs. In this work, we use a direct N-body simulation code NBODY6 to study the influences of dynamical interactions, metallicity and primordial binaries on Milky Way GCs' integrated properties. Our models start with N = 100 000 stars, covering a metallicity range Z = 0.0001 ˜ 0.02, a subset of our models contain primordial binaries, resulting in a binary fraction as currently observed at a model age of GCs. Stellar evolution and external tidal field representative for an average Milky Way GC are taken into consideration. The integrated colours and Lick indices are calculated using BaSeL and Bluered stellar spectral libraries separately. By including dynamical interactions, our model clusters show integrated features (i.e. colours up to 0.01 mag bluer, Hβ up to 0.1 Å greater and [MgFe]' 0.05 Å smaller) making the clusters appear slightly younger than the model clusters without dynamical interactions. This effect is caused mainly by the preferential loss of low-mass stars which have a stronger contribution to redder passbands as well as different spectral features compared to higher mass stars. In addition, this effect is larger at lower metallicities. On the contrary, the incorporation of primordial binaries reduces this effect.
Lu, Bo; Lamnawar, Khalid; Maazouz, Abderrahim; Zhang, Huagui
2016-04-01
An effort was made to demonstrate the dynamic heterogeneity of poly(methyl methacrylate) (PMMA)/poly(vinylidene fluoride) (PVDF) blends, where its composition dependence and the role of interphase were probed. Firstly, the composition dependence of thermorheological complexity of PMMA/PVDF blends in the melt was revealed. The molecular entanglement state involving intra- and interchain entanglements was found to govern the scenario of thermorheological complexity. Intriguingly, local heterogeneity was further demonstrated to exist in the melt-state blends with intermediate compositions, and its origin was depicted to be the interphase. The interphase, coupled with unfavourable interchain entanglements in those blends, could explain the reduced viscosity and speed-up relaxations, contributing to the overall thermorheological complexity. Besides, two experimental glass transition temperatures of blends were resolved in view of segment motions in the miscible phase and the crystal-amorphous interphase, and further assessed via the "self-concentration" concept. The presence of a crystal-amorphous interphase, likely leading to three distinct dynamics of segments in blends, was supposed to contribute to the dynamic heterogeneity in segment relaxations for PMMA/PVDF blends in the solid state. Lastly, effects of dynamic heterogeneity on dynamic mechanical properties were also evaluated. PMID:26932245
Temporal dynamics of connectivity and epidemic properties of growing networks
NASA Astrophysics Data System (ADS)
Fotouhi, Babak; Shirkoohi, Mehrdad Khani
2016-01-01
Traditional mathematical models of epidemic disease had for decades conventionally considered static structure for contacts. Recently, an upsurge of theoretical inquiry has strived towards rendering the models more realistic by incorporating the temporal aspects of networks of contacts, societal and online, that are of interest in the study of epidemics (and other similar diffusion processes). However, temporal dynamics have predominantly focused on link fluctuations and nodal activities, and less attention has been paid to the growth of the underlying network. Many real networks grow: Online networks are evidently in constant growth, and societal networks can grow due to migration flux and reproduction. The effect of network growth on the epidemic properties of networks is hitherto unknown, mainly due to the predominant focus of the network growth literature on the so-called steady state. This paper takes a step towards alleviating this gap. We analytically study the degree dynamics of a given arbitrary network that is subject to growth. We use the theoretical findings to predict the epidemic properties of the network as a function of time. We observe that the introduction of new individuals into the network can enhance or diminish its resilience against endemic outbreaks and investigate how this regime shift depends upon the connectivity of newcomers and on how they establish connections to existing nodes. Throughout, theoretical findings are corroborated with Monte Carlo simulations over synthetic and real networks. The results shed light on the effects of network growth on the future epidemic properties of networks and offers insights for devising a priori immunization strategies.
Temporal dynamics of connectivity and epidemic properties of growing networks.
Fotouhi, Babak; Shirkoohi, Mehrdad Khani
2016-01-01
Traditional mathematical models of epidemic disease had for decades conventionally considered static structure for contacts. Recently, an upsurge of theoretical inquiry has strived towards rendering the models more realistic by incorporating the temporal aspects of networks of contacts, societal and online, that are of interest in the study of epidemics (and other similar diffusion processes). However, temporal dynamics have predominantly focused on link fluctuations and nodal activities, and less attention has been paid to the growth of the underlying network. Many real networks grow: Online networks are evidently in constant growth, and societal networks can grow due to migration flux and reproduction. The effect of network growth on the epidemic properties of networks is hitherto unknown, mainly due to the predominant focus of the network growth literature on the so-called steady state. This paper takes a step towards alleviating this gap. We analytically study the degree dynamics of a given arbitrary network that is subject to growth. We use the theoretical findings to predict the epidemic properties of the network as a function of time. We observe that the introduction of new individuals into the network can enhance or diminish its resilience against endemic outbreaks and investigate how this regime shift depends upon the connectivity of newcomers and on how they establish connections to existing nodes. Throughout, theoretical findings are corroborated with Monte Carlo simulations over synthetic and real networks. The results shed light on the effects of network growth on the future epidemic properties of networks and offers insights for devising a priori immunization strategies. PMID:26871086
Extinction of quasiparticle interference in underdoped cuprates with coexisting order
NASA Astrophysics Data System (ADS)
Andersen, Brian M.; Hirschfeld, P. J.
2009-04-01
Scanning tunneling spectroscopy (STS) measurements [Y. Kohsaka , Nature (London) 454, 1072 (2008)] have shown that dispersing quasiparticle interference (QPI) peaks in Fourier-transformed conductance maps disappear as the bias voltage exceeds a certain threshold corresponding to the coincidence of the contour of constant quasiparticle energy with the period-doubled (e.g., antiferromagnetic) zone boundary. Here we show that this may be caused by coexisting order present in the d -wave superconducting phase. We show explicitly how QPI peaks are extinguished in the situation with coexisting long-range spin-density wave order and discuss the connection with the more realistic case where short-range order is created by quenched disorder. Since it is the localized QPI peaks rather than the underlying antinodal states themselves which are destroyed at a critical bias, our proposal resolves a conflict between STS and photoemission spectroscopy regarding the nature of these states. We also study the momentum-summed density of states in the coexisting phase and show how the competing order produces a kink inside the “V”-shaped d -wave superconducting gap in agreement with recent STS measurements [J. W. Alldredge , Nat. Phys. 4, 319 (2008)].
Quasiparticle Trapping in Microwave Kinetic Inductance Strip Detectors
NASA Astrophysics Data System (ADS)
Moore, D. C.; Mazing, B. A.; Golwala, S.; Bumble, B.; Gao, J.; Young, B. A.; McHugth, S.; Day, P. K.; LeDuc, H. G.; Zmuidzinas, J.
2009-12-01
Microwave Kinetic Inductance Detectors (MKIDs) are thin-film, superconducting resonators, which are attractive for making large detector arrays due to their natural frequency domain multiplexing at GHz frequencies. For X-ray to IR wavelengths, MKIDs can provide high-resolution energy and timing information for each incoming photon. By fabricating strip detectors consisting of a rectangular absorber coupled to MKIDs at each end, high quantum efficiency and spatial resolution can be obtained. A similar geometry is being pursued for phonon sensing in a WIMP dark matter detector. Various materials have been tested including tantalum, tin, and aluminum for the absorbing strip, and aluminum, titanium, and aluminum manganese for the MKID. Initial Ta/Al X-ray devices have shown energy resolutions as good as 62 eV at 6 keV. A Ta/Al UV strip detector with an energy resolution of 0.8 eV at 4.9 eV has been demonstrated, but we find the coupling of the MKIDs to the absorbers is unreliable for these thinner devices. We report on progress probing the thicknesses at which the absorber/MKID coupling begins to degrade by using a resonator to inject quasiparticles directly into the absorber. In order to eliminate the absorber/MKID interface, a modified design for implanted AlMn/Al UV strip detectors was developed, and results showing good transmission of quasiparticles from the absorber to MKID in these devices are presented.
Li, Huashan; Lin, Zhibin; Lusk, Mark T. Wu, Zhigang
2014-10-21
The universal and fundamental criteria for charge separation at interfaces involving nanoscale materials are investigated. In addition to the single-quasiparticle excitation, all the two-quasiparticle effects including exciton binding, Coulomb stabilization, and exciton transfer are considered, which play critical roles on nanoscale interfaces for optoelectronic applications. We propose a scheme allowing adding these two-quasiparticle interactions on top of the single-quasiparticle energy level alignment for determining and illuminating charge separation at nanoscale interfaces. Employing the many-body perturbation theory based on Green's functions, we quantitatively demonstrate that neglecting or simplifying these crucial two-quasiparticle interactions using less accurate methods is likely to predict qualitatively incorrect charge separation behaviors at nanoscale interfaces where quantum confinement dominates.
NASA Astrophysics Data System (ADS)
Suthar, K.; Angom, D.
2016-06-01
We explore the collective excitation of two-species Bose-Einstein condensates (TBECs) confined in quasi-two-dimensional optical lattices. For this we use a set of coupled discrete nonlinear Schrödinger equations to describe the system and we employ Hartree-Fock-Bogoliubov theory with the Popov approximation to analyze the quasiparticle spectra at zero temperature. The ground-state geometry, evolution of quasiparticle energies, structure of quasiparticle amplitudes, and dispersion relations are examined in detail. We observe that the TBEC acquires a side-by-side density profile when it is tuned from the miscible to the immiscible phase. In addition, the quasiparticle energies are softened as the system is tuned towards phase separation, but harden after phase separation and mode degeneracies are lifted. In terms of structure, in the miscible phase the quasiparticles have well-defined azimuthal quantum numbers, but that is not the case for the immiscible phase.
Quasiparticle Self-Recombination in Double STJs Strip X-ray Detectors
Andrianov, V. A.; Gorkov, V. P.
2009-12-16
The quasiparticle self-recombination was considered in the frame of 2D diffusion model of the strip X-ray detectors. The detector consists of a long superconducting strip, which is ended by the trapping layers and superconducting tunnel junctions at each end. The model takes into account the 2D-diffusion of the excess quasiparticles, quasiparticle trapping at the tunnel junctions and quasiparticle losses in the volume of the strip and at the strip boundaries. Self-recombination was described by a quadratic term. As the analytical solution is absent, the numeric calculations were carried out. It has been shown that the self-recombination as well as quasiparticle losses at the strip boundaries caused the dependence of the signals on the photon absorption site in transverse direction. The latter worsens the energy resolution and transforms the spectral line of the detector to nongaussian shape.
Dynamic properties of bacterial pili measured by optical tweezers
NASA Astrophysics Data System (ADS)
Fallman, Erik G.; Andersson, Magnus J.; Schedin, Staffan S.; Jass, Jana; Uhlin, Bernt Eric; Axner, Ove
2004-10-01
The ability of uropathogenic Escherichia coli (UPEC) to cause urinary tract infections is dependent on their ability to colonize the uroepithelium. Infecting bacteria ascend the urethra to the bladder and then kidneys by attaching to the uroepithelial cells via the differential expression of adhesins. P pili are associated with pyelonephritis, the more severe infection of the kidneys. In order to find means to treat pyelonephritis, it is therefore of interest to investigate the properties P pili. The mechanical behavior of individual P pili of uropathogenic Escherichia coli has recently been investigated using optical tweezers. P pili, whose main part constitutes the PapA rod, composed of ~1000 PapA subunits in a helical arrangement, are distributed over the bacterial surface and mediate adhesion to host cells. We have earlier studied P pili regarding its stretching/elongation properties where we have found and characterized three different elongation regions, of which one constitute an unfolding of the quaternary (helical) structure of the PapA rod. It was shown that this unfolding takes place at an elongation independent force of 27 +/- 2 pN. We have also recently performed studies on its folding properties and shown that the unfolding/folding of the PapA rod is completely reversible. Here we present a study of the dynamical properties of the PapA rod. We show, among other things, that the unfolding force increases and that the folding force decreases with the speed of unfolding and folding respectively. Moreover, the PapA rod can be folded-unfolded a significant number of times without loosing its characteristics, a phenomenon that is believed to be important for the bacterium to keep close contact to the host tissue and consequently helps the bacterium to colonize the host tissue.
Nodal Quasiparticle Meltdown in Ultra-High Resolution Pump-Probe Angle-Resolved Photoemission
Graf, Jeff; Jozwiak, Chris; Smallwood, Chris L.; Eisaki, H.; Kaindl, Robert A.; Lee, Dung-Hai; Lanzara, Alessandra
2011-06-03
High-T{sub c} cuprate superconductors are characterized by a strong momentum-dependent anisotropy between the low energy excitations along the Brillouin zone diagonal (nodal direction) and those along the Brillouin zone face (antinodal direction). Most obvious is the d-wave superconducting gap, with the largest magnitude found in the antinodal direction and no gap in the nodal direction. Additionally, while antin- odal quasiparticle excitations appear only below T{sub c}, superconductivity is thought to be indifferent to nodal excitations as they are regarded robust and insensitive to T{sub c}. Here we reveal an unexpected tie between nodal quasiparticles and superconductivity using high resolution time- and angle-resolved photoemission on optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} . We observe a suppression of the nodal quasiparticle spectral weight following pump laser excitation and measure its recovery dynamics. This suppression is dramatically enhanced in the superconducting state. These results reduce the nodal-antinodal dichotomy and challenge the conventional view of nodal excitation neutrality in superconductivity. The electronic structures of high-Tc cuprates are strongly momentum-dependent. This is one reason why the momentum-resolved technique of angle-resolved photoemission spectroscopy (ARPES) has been a central tool in the field of high-temperature superconductivity. For example, coherent low energy excitations with momenta near the Brillouin zone face, or antinodal quasiparticles (QPs), are only observed below T{sub c} and have been linked to superfluid density. They have therefore been the primary focus of ARPES studies. In contrast, nodal QPs, with momenta along the Brillouin zone diagonal, have received less attention and are usually regarded as largely immune to the superconducting transition because they seem insensitive to perturbations such as disorder, doping, isotope exchange, charge ordering, and temperature. Clearly
Anisotropic mechanical properties of graphene: a molecular dynamics study
NASA Astrophysics Data System (ADS)
Yu, Ming; Zeng, Anna; Zeng, Kevin
2014-03-01
The anisotropic mechanical properties of monolayer graphene with different shapes have been studied using an efficient quantum mechanics molecular dynamics scheme based on a semi-empirical Hamiltonian (refereed as SCED-LCAO) [PRB 74, 15540; PHYSE 42, 1]. We have found the anisotropic nature of the membrane stress. The stresses along the armchair direction are slightly stronger than that along the zigzag direction, showing strong direction selectivity. The graphene with the rectangular shape could sustain strong load (i . e ., 20%) in both armchair and zigzag directions. The graphene with the rhombus shape show large difference in the strain direction: it will quickly crack after 18 % of strain in armchair the direction, but slowly destroyed after 20% in the zigzag direction. The obtained 2D Young's modulus at infinitesimal strain and the third-order (effective nonlinear) elastic modulus are in good consistent with the experimental observation.
Quantum molecular dynamics simulations of thermophysical properties of fluid ethane
NASA Astrophysics Data System (ADS)
Zhang, Yujuan; Wang, Cong; Zheng, Fawei; Zhang, Ping
2012-12-01
We have performed first-principles molecular-dynamics simulations based on density-functional theory to study the thermophysical properties of ethane under extreme conditions. We present results for the equation of state of fluid ethane in the warm dense region. The optical conductivity is calculated via the Kubo-Greenwood formula from which the dc conductivity and optical reflectivity are derived. The close correlation between the nonmetal-metal transition of ethane and its decomposition, that ethane dissociates significantly into molecular and/or atomic hydrogen and some long alkane chains, has been systematically studied by analyzing the optical conductivity spectra, pair correlation functions, electronic density of states, and charge density distribution of fluid ethane.