Science.gov

Sample records for dysfunctional hdl cholesterol

  1. HDL Function, Dysfunction, and Reverse Cholesterol Transport

    PubMed Central

    Fisher, Edward A.; Feig, Jonathan E.; Hewing, Bernd; Hazen, Stanley L.; Smith, Jonathan D.

    2012-01-01

    Although high HDL-cholesterol levels are associated with decreased cardiovascular risk in epidemiological studies, recent genetic and pharmacological findings have raised doubts about the beneficial effects of HDL. Raising HDL levels in animal models by infusion or over expression of apolipoprotein A-I has shown clear vascular improvements, such as delayed atherosclerotic lesion progression and accelerated lesion regression, along with increased reverse cholesterol transport. Inflammation and other factors, such as myeloperoxidase mediated oxidation, can impair HDL production and HDL function, in regard to its reverse cholesterol transport, antioxidant, and anti-inflammatory activities. Thus, tests of HDL function, which have not yet been developed as routine diagnostic assays, may prove useful and be a better predictor of cardiovascular risk than HDL-cholesterol levels. PMID:23152494

  2. ABCG1 and HDL protect against endothelial dysfunction in mice fed a high-cholesterol diet

    PubMed Central

    Terasaka, Naoki; Yu, Shuiqing; Yvan-Charvet, Laurent; Wang, Nan; Mzhavia, Nino; Langlois, Read; Pagler, Tamara; Li, Rong; Welch, Carrie L.; Goldberg, Ira J.; Tall, Alan R.

    2008-01-01

    Plasma HDL levels are inversely related to the incidence of atherosclerotic disease. Some of the atheroprotective effects of HDL are likely mediated via preservation of EC function. Whether the beneficial effects of HDL on ECs depend on its involvement in cholesterol efflux via the ATP-binding cassette transporters ABCA1 and ABCG1, which promote efflux of cholesterol and oxysterols from macrophages, has not been investigated. To address this, we assessed endothelial function in Abca1–/–, Abcg1–/–, and Abca1–/–Abcg1–/– mice fed either a high-cholesterol diet (HCD) or a Western diet (WTD). Non-atherosclerotic arteries from WTD-fed Abcg1–/– and Abca1–/–Abcg1–/– mice exhibited a marked decrease in endothelium-dependent vasorelaxation, while Abca1–/– mice had a milder defect. In addition, eNOS activity was reduced in aortic homogenates generated from Abcg1–/– mice fed either a HCD or a WTD, and this correlated with decreased levels of the active dimeric form of eNOS. More detailed analysis indicated that ABCG1 was expressed primarily in ECs, and that these cells accumulated the oxysterol 7-ketocholesterol (7-KC) when Abcg1–/– mice were fed a WTD. Consistent with these data, ABCG1 had a major role in promoting efflux of cholesterol and 7-KC in cultured human aortic ECs (HAECs). Furthermore, HDL treatment of HAECs prevented 7-KC–induced ROS production and active eNOS dimer disruption in an ABCG1-dependent manner. Our data suggest that ABCG1 and HDL maintain EC function in HCD-fed mice by promoting efflux of cholesterol and 7-oxysterols and preserving active eNOS dimer levels. PMID:18924609

  3. Raising HDL cholesterol in women

    PubMed Central

    Eapen, Danny J; Kalra, Girish L; Rifai, Luay; Eapen, Christina A; Merchant, Nadya; Khan, Bobby V

    2010-01-01

    High-density lipoprotein cholesterol (HDL-C) concentration is essential in the determination of coronary heart disease (CHD) risk in women. This is especially true in the postmenopausal state, where lipid profiles and CHD risk mimic that of age-matched men. Thus, interventions designed to reduce CHD risk by raising HDL-C levels may have particular significance during the transition to menopause. This review discusses HDL-C-raising therapies and the role of HDL in the primary prevention of CHD in women. Lifestyle-based interventions such as dietary change, aerobic exercise regimens, and smoking cessation are initial steps that are effective in raising HDL-C, and available data suggest women respond similarly to men with these interventions. When combined with pharmacotherapy, the effects of these lifestyle alterations are further amplified. Though studies demonstrating gender-specific differences in therapy are limited, niacin continues to be the most effective agent in raising HDL-C levels, especially when used in combination with fibrate or statin therapy. Emerging treatments such as HDL mimetic therapy show much promise in further raising HDL-C levels and improving cardiovascular outcomes. PMID:21072287

  4. Dysfunctional HDL and atherosclerotic cardiovascular disease.

    PubMed

    Rosenson, Robert S; Brewer, H Bryan; Ansell, Benjamin J; Barter, Philip; Chapman, M John; Heinecke, Jay W; Kontush, Anatol; Tall, Alan R; Webb, Nancy R

    2016-01-01

    High-density lipoproteins (HDLs) protect against atherosclerosis by removing excess cholesterol from macrophages through the ATP-binding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G1 (ABCG1) pathways involved in reverse cholesterol transport. Factors that impair the availability of functional apolipoproteins or the activities of ABCA1 and ABCG1 could, therefore, strongly influence atherogenesis. HDL also inhibits lipid oxidation, restores endothelial function, exerts anti-inflammatory and antiapoptotic actions, and exerts anti-inflammatory actions in animal models. Such properties could contribute considerably to the capacity of HDL to inhibit atherosclerosis. Systemic and vascular inflammation has been proposed to convert HDL to a dysfunctional form that has impaired antiatherogenic effects. A loss of anti-inflammatory and antioxidative proteins, perhaps in combination with a gain of proinflammatory proteins, might be another important component in rendering HDL dysfunctional. The proinflammatory enzyme myeloperoxidase induces both oxidative modification and nitrosylation of specific residues on plasma and arterial apolipoprotein A-I to render HDL dysfunctional, which results in impaired ABCA1 macrophage transport, the activation of inflammatory pathways, and an increased risk of coronary artery disease. Understanding the features of dysfunctional HDL or apolipoprotein A-I in clinical practice might lead to new diagnostic and therapeutic approaches to atherosclerosis. PMID:26323267

  5. HDL cholesterol: physiology, pathophysiology, and management.

    PubMed

    Link, Jeffrey J; Rohatgi, Anand; de Lemos, James A

    2007-05-01

    Numerous epidemiological studies have identified high-density lipoprotein cholesterol (HDL) to be an independent risk factor for coronary heart disease (CHD). HDL is an emerging therapeutic target that could rival the impact of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibitors (statins) on LDL and CHD risk reduction. HDL metabolism, HDL kinetics, the concentration of various HDL subclasses, and other genetic factors affecting HDL functionality may all contribute to the anti-atherogenic properties of HDL; thus, standard plasma measurement may not capture the full range of HDL effects. Algorithms have been suggested to treat low HDL levels in subgroups of patients; however, no formal HDL target goals or treatment guidelines have been implemented as there is a lack of strong clinical evidence to support effective pharmacologic therapy for primary risk reduction. Available therapies have a modest impact on serum HDL levels; however, emerging therapies could have a more significant influence. PMID:17481993

  6. Intestinal nuclear receptors in HDL cholesterol metabolism

    PubMed Central

    Degirolamo, Chiara; Sabbà, Carlo; Moschetta, Antonio

    2015-01-01

    The intestine plays a pivotal role in cholesterol homeostasis by functioning as an absorptive and secretory organ in the reverse cholesterol transport pathway. Enterocytes control cholesterol absorption, apoAI synthesis, HDL biogenesis, and nonbiliary cholesterol fecal disposal. Thus, intestine-based therapeutic interventions may hold promise in the management of diseases driven by cholesterol overload. Lipid-sensing nuclear receptors (NRs) are highly expressed in the intestinal epithelium and regulate transcriptionally the handling of cholesterol by the enterocytes. Here, we discuss the NR regulation of cholesterol fluxes across the enterocytes with special emphasis on NR exploitation as a bona fide novel HDL-raising strategy. PMID:25070952

  7. Intestinal nuclear receptors in HDL cholesterol metabolism.

    PubMed

    Degirolamo, Chiara; Sabbà, Carlo; Moschetta, Antonio

    2015-07-01

    The intestine plays a pivotal role in cholesterol homeostasis by functioning as an absorptive and secretory organ in the reverse cholesterol transport pathway. Enterocytes control cholesterol absorption, apoAI synthesis, HDL biogenesis, and nonbiliary cholesterol fecal disposal. Thus, intestine-based therapeutic interventions may hold promise in the management of diseases driven by cholesterol overload. Lipid-sensing nuclear receptors (NRs) are highly expressed in the intestinal epithelium and regulate transcriptionally the handling of cholesterol by the enterocytes. Here, we discuss the NR regulation of cholesterol fluxes across the enterocytes with special emphasis on NR exploitation as a bona fide novel HDL-raising strategy. PMID:25070952

  8. Subfractions of high-density lipoprotein (HDL) and dysfunctional HDL in chronic kidney disease patients.

    PubMed

    Rysz-Górzyńska, Magdalena; Banach, Maciej

    2016-08-01

    A number of studies have shown that chronic kidney disease (CKD) is associated with increased risk for cardiovascular disease (CVD). Chronic kidney disease is characterized by significant disturbances in lipoprotein metabolism, including differences in quantitative and qualitative content of high-density lipoprotein (HDL) particles. Recent studies have revealed that serum HDL cholesterol levels do not predict CVD in CKD patients; thus CKD-induced modifications in high-density lipoprotein (HDL) may be responsible for the increase in CV risk in CKD patients. Various methods are available to separate several subclasses of HDL and confirm their atheroprotective properties. However, under pathological conditions associated with inflammation and oxidation, HDL can progressively lose normal biological activities and be converted into dysfunctional HDL. In this review, we highlight the current state of knowledge on subfractions of HDL and HDL dysfunction in CKD. PMID:27478466

  9. Subfractions of high-density lipoprotein (HDL) and dysfunctional HDL in chronic kidney disease patients

    PubMed Central

    Banach, Maciej

    2016-01-01

    A number of studies have shown that chronic kidney disease (CKD) is associated with increased risk for cardiovascular disease (CVD). Chronic kidney disease is characterized by significant disturbances in lipoprotein metabolism, including differences in quantitative and qualitative content of high-density lipoprotein (HDL) particles. Recent studies have revealed that serum HDL cholesterol levels do not predict CVD in CKD patients; thus CKD-induced modifications in high-density lipoprotein (HDL) may be responsible for the increase in CV risk in CKD patients. Various methods are available to separate several subclasses of HDL and confirm their atheroprotective properties. However, under pathological conditions associated with inflammation and oxidation, HDL can progressively lose normal biological activities and be converted into dysfunctional HDL. In this review, we highlight the current state of knowledge on subfractions of HDL and HDL dysfunction in CKD. PMID:27478466

  10. HDL Cholesterol, Apolipoproteins, and Cardiovascular Risk in Hemodialysis Patients

    PubMed Central

    Genser, Bernd; Drechsler, Christiane; Scharnagl, Hubert; Grammer, Tanja B.; Stojakovic, Tatjana; Krane, Vera; Ritz, Eberhard; Wanner, Christoph; März, Winfried

    2015-01-01

    High concentrations of HDL cholesterol are considered to indicate efficient reverse cholesterol transport and to protect from atherosclerosis. However, HDL has been suggested to be dysfunctional in ESRD. Hence, our main objective was to investigate the effect of HDL cholesterol on outcomes in maintenance hemodialysis patients with diabetes. Moreover, we investigated the associations between the major protein components of HDL (apoA1, apoA2, and apoC3) and end points. We performed an exploratory, post hoc analysis with 1255 participants (677 men and 578 women) of the German Diabetes Dialysis study. The mean age was 66.3 years and the mean body mass index was 28.0 kg/m2. The primary end point was a composite of cardiac death, myocardial infarction, and stroke. The secondary end point included all-cause mortality. The mean duration of follow-up was 3.9 years. A total of 31.3% of the study participants reached the primary end point and 49.1% died from any cause. HDL cholesterol and apoA1 and apoC3 quartiles were not related to end points. However, there was a trend toward an inverse association between apoA2 and all-cause mortality. The hazard ratio for death from any cause in the fourth quartile compared with the first quartile of apoA2 was 0.63 (95% confidence interval, 0.40 to 0.89). The lack of an association between HDL cholesterol and cardiovascular risk may support the concept of dysfunctional HDL in hemodialysis. The possible beneficial effect of apoA2 on survival requires confirmation in future studies. PMID:25012163

  11. Impact of Mifepristone, a Glucocorticoid/Progesterone Antagonist, on HDL Cholesterol, HDL Particle Concentration, and HDL Function

    PubMed Central

    Krauss, Ronald M.; Gross, Coleman; Ishida, Brian; Heinecke, Jay W.; Tang, Chongren; Amory, John K.; Schaefer, Peter M.; Cox, Cheryl J.; Kane, John; Purnell, Jonathan Q.; Weinstein, Richard L.; Vaisar, Tomáš

    2012-01-01

    Context: Mifepristone is a glucocorticoid and progestin antagonist under investigation for the treatment of Cushing's syndrome. Mifepristone decreases high-density lipoprotein (HDL) cholesterol (HDL-C) levels in treated patients, but the clinical significance of this is unclear because recent studies suggest that functional properties of HDL predict cardiovascular disease status better than does HDL-C concentration. Objective: The aim of the study was to characterize the impact of mifepristone administration on HDL particle concentration and function. Design and Setting: We conducted a double-blind, randomized, placebo-controlled trial at a single-site, clinical research center. Participants: Thirty healthy postmenopausal female volunteers participated in the study. Intervention: Individuals were randomized to receive daily oral mifepristone (600 mg) or placebo for 6 wk. Main Outcome Measures: We measured HDL-C, serum HDL particle concentration, and HDL-mediated cholesterol efflux by treatment group. Results: As expected, ACTH, cortisol, estradiol, and testosterone levels increased in the mifepristone group. Mifepristone treatment decreased HDL-C and HDL particle concentration by 26 and 25%, respectively, but did not alter pre-β HDL concentration. In contrast, the serum HDL-mediated cholesterol efflux decreased with mifepristone treatment by only 12%, resulting in an effective increase of the efflux capacity per HDL particle. No changes were observed in cholesterol ester transfer protein or lecithin:cholesterol acyltransferase activity. Conclusions: Treatment with mifepristone reduced HDL-C, HDL particle concentration, and serum HDL cholesterol efflux in postmenopausal women. However, on a per particle basis, the efflux capacity of serum HDL increased. These observations support the concept that a decrease in HDL-C may not represent proportional impairment of HDL function. PMID:22399518

  12. Inflammatory remodeling of the HDL proteome impairs cholesterol efflux capacity.

    PubMed

    Vaisar, Tomáš; Tang, Chongren; Babenko, Ilona; Hutchins, Patrick; Wimberger, Jake; Suffredini, Anthony F; Heinecke, Jay W

    2015-08-01

    Recent studies demonstrate that HDL's ability to promote cholesterol efflux from macrophages associates strongly with cardioprotection in humans independently of HDL-cholesterol (HDL-C) and apoA-I, HDL's major protein. However, the mechanisms that impair cholesterol efflux capacity during vascular disease are unclear. Inflammation, a well-established risk factor for cardiovascular disease, has been shown to impair HDL's cholesterol efflux capacity. We therefore tested the hypothesis that HDL's impaired efflux capacity is mediated by specific changes of its protein cargo. Humans with acute inflammation induced by low-level endotoxin had unchanged HDL-C levels, but their HDL-C efflux capacity was significantly impaired. Proteomic analyses demonstrated that HDL's cholesterol efflux capacity correlated inversely with HDL content of serum amyloid A (SAA)1 and SAA2. In mice, acute inflammation caused a marked impairment of HDL-C efflux capacity that correlated with a large increase in HDL SAA. In striking contrast, the efflux capacity of mouse inflammatory HDL was preserved with genetic ablation of SAA1 and SAA2. Our observations indicate that the inflammatory impairment of HDL-C efflux capacity is due in part to SAA-mediated remodeling of HDL's protein cargo. PMID:25995210

  13. [HDL cholesterol as a sensitive diagnostic parameter in malaria].

    PubMed

    Kittl, E M; Diridl, G; Lenhart, V; Neuwald, C; Tomasits, J; Pichler, H; Bauer, K

    1992-01-01

    In patients with malaria the lipid parameters triglycerides, cholesterol, and HDL-cholesterol were determined routinely. At the time of admission hypertriglyceridemia, hypocholesterolemia, and an extreme decrease in HDL-cholesterol were found. This dyslipoproteinemia was present in cases of falciparum malaria, as well as in cases of benign tertian malaria. The extent of HDL-cholesterol decrease showed no correlation to the severity of the clinical course of disease. HDL-cholesterol has proven to be an independent diagnostic laboratory finding in cases of suspected malarial infection. This parameter displays high diagnostic sensitivity, but no specificity for malaria. PMID:1546481

  14. Emerging therapies for raising high-density lipoprotein cholesterol (HDL-C) and augmenting HDL particle functionality.

    PubMed

    Barylski, Marcin; Toth, Peter P; Nikolic, Dragana; Banach, Maciej; Rizzo, Manfredi; Montalto, Giuseppe

    2014-06-01

    High-density lipoprotein (HDL) particles are highly complex polymolecular aggregates capable of performing a remarkable range of atheroprotective functions. Considerable research is being performed throughout the world to develop novel pharmacologic approaches to: (1) promote apoprotein A-I and HDL particle biosynthesis; (2) augment capacity for reverse cholesterol transport so as to reduce risk for the development and progression of atherosclerotic disease; and (3) modulate the functionality of HDL particles in order to increase their capacity to antagonize oxidation, inflammation, thrombosis, endothelial dysfunction, insulin resistance, and other processes that participate in arterial wall injury. HDL metabolism and the molecular constitution of HDL particles are highly complex and can change in response to both acute and chronic alterations in the metabolic milieu. To date, some of these interventions have been shown to positively impact rates of coronary artery disease progression. However, none of them have as yet been shown to significantly reduce risk for cardiovascular events. In the next 3-5 years a variety of pharmacologic interventions for modulating HDL metabolism and functionality will be tested in large, randomized, prospective outcomes trials. It is hoped that one or more of these therapeutic approaches will result in the ability to further reduce risk for cardiovascular events once low-density lipoprotein cholesterol and non-HDL-cholesterol targets have been attained. PMID:24840270

  15. Niacin Therapy, HDL Cholesterol, and Cardiovascular Disease: Is the HDL Hypothesis Defunct?

    PubMed Central

    Mani, Preethi; Rohatgi, Anand

    2016-01-01

    High-density lipoprotein cholesterol (HDL-C) has been shown in epidemiologic studies to be associated with cardiovascular (CV) risk and thus significant efforts have been focused on HDL-C modulation. Multiple pharmaceutical agents have been developed with the goal of increasing HDL-C. Niacin, the most widely used medication to raise HDL-C, increases HDL-C by up to 25 % and was shown in multiple surrogate end point studies to reduce CV risk. However, two large randomized controlled trials of niacin, AIM-HIGH and HPS2-THRIVE, have shown that despite its effects on HDL-C, niacin does not decrease the incidence of CV events and may have significant adverse effects. Studies of other classes of agents such as cholesteryl ester transfer protein (CETP) inhibitors have also shown that even dramatic increases in HDL-C do not necessarily translate to reduction in clinical events. While these findings have cast doubt upon the importance of HDL-C modulation on CV risk, it is becoming increasingly clear that HDL function-related measures may be better targets for CV risk reduction. Increasing ApoA-I, the primary apolipoprotein associated with HDL, correlates with reduced risk of events, and HDL particle concentration (HDL-P) inversely associates with incident CV events adjusted for HDL-C and LDL particle measures. Cholesterol efflux, the mechanism by which macrophages in vessel walls secrete cholesterol outside cells, correlates with both surrogate end points and clinical events. The effects of niacin on these alternate measures of HDL have been conflicting. Further studies should determine if modulation of these HDL function markers translates to clinical benefits. Although the HDL cholesterol hypothesis may be defunct, the HDL function hypothesis is now poised to be rigorously tested. PMID:26048725

  16. [Raising HDL cholesterol: which is the best strategy?].

    PubMed

    Alfonso, John Edwin Feliciano; Ariza, Iván Darío Sierra

    2008-01-01

    After having reached the objective for the LDL cholesterol levels, it becomes imperative to reach the objective for HDL cholesterol, known for its anti-atherogenic properties, generally confirmed in many epidemiological studies. This review deals, in a clear and concise manner, with the different alternatives available in daily clinical practice to raise the HDL cholesterol levels of patients, to achieve better outcomes in terms of morbidity and mortality in cardiovascular disease. PMID:18719798

  17. High Pre-β1 HDL Concentrations and Low Lecithin: Cholesterol Acyltransferase Activities Are Strong Positive Risk Markers for Ischemic Heart Disease and Independent of HDL-Cholesterol

    PubMed Central

    Sethi, Amar A.; Sampson, Maureen; Warnick, Russell; Muniz, Nehemias; Vaisman, Boris; Nordestgaard, Børge G.; Tybjærg-Hansen, Anne; Remaley, Alan T.

    2016-01-01

    BACKGROUND We hypothesized that patients with high HDL-cholesterol (HDL-C) and ischemic heart disease (IHD) may have dysfunctional HDL or unrecognized nonconventional risk factors. METHODS Individuals with IHD (Copenhagen University Hospital) and either high HDL-C (n = 53; women ≥735 mg/L; men ≥619 mg/L) or low HDL-C (n = 42; women ≤387 mg/L; men ≤341 mg/L) were compared with individuals without IHD (Copenhagen City Heart Study) matched by age, sex, and HDL-C concentrations (n = 110). All participants had concentrations within reference intervals for LDL-C (<1600 mg/L) and triglyceride (<1500 mg/L), and none were treated with lipid-lowering medications. Pre-β1 HDL and phospholipid transfer protein concentrations were measured by using commercial kits and lecithin:cholesterol acyltransferase (LCAT) activity by using a proteoliposome cholesterol esterification assay. RESULTS Pre-β1 HDL concentrations were 2-fold higher in individuals with IHD vs no IHD in both the high [63 (5.7) vs 35 (2.3) mg/L; P < 0.0001] and low HDL-C [49 (5.0) vs 27 (1.5) mg/L; P = 0.001] groups. Low LCAT activity was also associated with IHD in the high [95.2 (6.7) vs 123.0 (5.3) μmol · L−1 · h−1; P = 0.002] and low [93.4 (8.3) vs 113.5 (4.9) μmol · L−1 · h−1; P = 0.03] HDL-C groups. ROC curves for pre-β1 HDL in the high–HDL-C groups yielded an area under the curve of 0.71 (95% CI: 0.61–0.81) for predicting IHD, which increased to 0.92 (0.87–0.97) when LCAT was included. Similar results were obtained for low HDL-C groups. An inverse correlation between LCAT activity and pre-β1 HDL was observed (r2 = 0.30; P < 0.0001) in IHD participants, which was stronger in the low HDL-C group (r2 = 0.56; P < 0.0001). CONCLUSIONS IHD was associated with high pre-β1 HDL concentrations and low LCAT levels, yielding correct classification in more than 90% of the IHD cases for which both were measured, thus making pre-β1 HDL concentration and LCAT activity level potentially

  18. HDL in children with CKD promotes endothelial dysfunction and an abnormal vascular phenotype.

    PubMed

    Shroff, Rukshana; Speer, Thimoteus; Colin, Sophie; Charakida, Marietta; Zewinger, Stephen; Staels, Bart; Chinetti-Gbaguidi, Giulia; Hettrich, Inga; Rohrer, Lucia; O'Neill, Francis; McLoughlin, Eve; Long, David; Shanahan, Catherine M; Landmesser, Ulf; Fliser, Danilo; Deanfield, John E

    2014-11-01

    Endothelial dysfunction begins in early CKD and contributes to cardiovascular mortality. HDL is considered antiatherogenic, but may have adverse vascular effects in cardiovascular disease, diabetes, and inflammatory conditions. The effect of renal failure on HDL properties is unknown. We studied the endothelial effects of HDL isolated from 82 children with CKD stages 2-5 (HDL(CKD)), who were free of underlying inflammatory diseases, diabetes, or active infections. Compared with HDL from healthy children, HDL(CKD) strongly inhibited nitric oxide production, promoted superoxide production, and increased vascular cell adhesion molecule-1 expression in human aortic endothelial cells, and reduced cholesterol efflux from macrophages. The effects on endothelial cells correlated with CKD grade, with the most profound changes induced by HDL from patients on dialysis, and partial recovery observed with HDL isolated after kidney transplantation. Furthermore, the in vitro effects on endothelial cells associated with increased aortic pulse wave velocity, carotid intima-media thickness, and circulating markers of endothelial dysfunction in patients. Symmetric dimethylarginine levels were increased in serum and fractions of HDL from children with CKD. In a longitudinal follow-up of eight children undergoing kidney transplantation, HDL-induced production of endothelial nitric oxide, superoxide, and vascular cell adhesion molecule-1 in vitro improved significantly at 3 months after transplantation, but did not reach normal levels. These results suggest that in children with CKD without concomitant disease affecting HDL function, HDL dysfunction begins in early CKD, progressing as renal function declines, and is partially reversed after kidney transplantation. PMID:24854267

  19. [Therapeutic targets in the treatment of dyslipidemia: HDL and non-HDL cholesterol].

    PubMed

    Brea Hernando, Ángel Julián

    2014-07-01

    Atherogenic dyslipidemia (AD) consists of the combination of an increase in very low density lipoproteins (VLDL), which results in increased plasma triglyceride (TG) levels, with a reduction of levels of high-density lipoprotein bound cholesterol (HDL-C), also accompanied by a high proportion of small and dense LDL particles. AD is considered the main cause of the residual risk of experiencing cardiovascular disease (CVD), which is still presented by any patient on treatment with statins despite maintaining low-density lipoprotein bound cholesterol (LDL-C) levels below the values considered to be the objective. Non-HDL cholesterol (non-HDL-c) reflects the number of atherogenic particles present in the plasma. This includes VLDL, intermediate density lipoproteins (IDL) and LDL. Non-HDL-c provides a better estimate of cardiovascular risk than LDL-c, especially in the presence of hypertriglyceridemia or AD. The European guidelines for managing dyslipidemia recommend that non-HDL-c values be less than 100 and 130 mg/dL for individuals with very high and high cardiovascular risk, respectively. However, these guidelines state that there is insufficient evidence to suggest that raising HDL-c levels incontrovertibly results in a reduction in CVD. Therefore, the guidelines do not set recommended HDL-c levels as a therapeutic objective. The guidelines, however, state that individuals with AD on treatment with statins could benefit from an additional reduction in their risk by using fibrates. PMID:25043539

  20. HDL-Mediated Cellular Cholesterol Efflux Assay Method.

    PubMed

    Hafiane, Anouar; Genest, Jacques

    2015-01-01

    Biomarkers of high-density lipoprotein (HDL) function may provide mechanistic insights and better cardiovascular risk discrimination than HDL-cholesterol mass. The purpose of this work is to describe a simplified experimental protocol that can be used in the determination of cholesterol efflux from macrophages cultured cells and be brought to a medium throughput volume. The cellular cholesterol efflux assay is designed to quantify the rate of cholesterol efflux from cultured cells to an acceptor particle or to plasma. This assay is multi step, cell based assay. Various factors, if not carefully controlled may influence the accuracy and reproducibility of the assay. Attempts were made to address factors influencing this assay and to provide a standardized method that is relatively rapid and scalable. We demonstrate that further centrifugation of the HDL fraction is necessary to avoid apolipoprotein B contamination when using polyethylene glycol (PEG) method. We demonstrate also no effect on cholesterol efflux efficiency when using PEG with plasma or serum. This method has been previously applied in our laboratory in context of cardiovascular research, cardiovascular disease and pharmacologic therapies. PMID:26663796

  1. HDL phospholipid content and cholesterol efflux capacity are reduced in patients with very high HDL-C and coronary disease

    PubMed Central

    Agarwala, Anandita P.; Rodrigues, Amrith; Risman, Marjorie; McCoy, Mary; Trindade, Kevin; Qu, Liming; Cuchel, Marina; Billheimer, Jeffrey; Rader, Daniel J.

    2015-01-01

    Objective Plasma levels of high-density lipoprotein cholesterol (HDL-C) are strongly inversely associated with coronary artery disease (CAD), and high HDL-C is generally associated with reduced risk of CAD. Extremely high HDL-C with CAD is an unusual phenotype, and we hypothesized that the HDL in such individuals may have an altered composition and reduced function when compared to controls with similarly high HDL-C and no CAD. Approach 55 subjects with very high HDL-C (mean 86 mg/dL) and onset of CAD around age 60 with no known risk factors for CAD (‘cases’) were identified through systematic recruitment. 120 control subjects without CAD, matched for race, gender, and HDL-C level (‘controls’), were identified. In all subjects, HDL composition was analyzed and HDL cholesterol efflux capacity was assessed. Results HDL phospholipid composition was significantly lower in cases (92 ± 37 mg/dL) than in controls (109 ± 43 mg/dL, p= 0.0095). HDL cholesterol efflux capacity was significantly lower in cases (1.96 ± 0.39) compared with controls (2.11 ± 0.43, p= 0.04). Conclusions In persons with very high HDL-C, reduced HDL phospholipid content and cholesterol efflux capacity is associated with the paradoxical development of CAD. PMID:25838421

  2. In vivo effects of anacetrapib on preβ HDL: improvement in HDL remodeling without effects on cholesterol absorption.

    PubMed

    Wang, Sheng-Ping; Daniels, Erin; Chen, Ying; Castro-Perez, Jose; Zhou, Haihong; Akinsanya, Karen O; Previs, Stephen F; Roddy, Thomas P; Johns, Douglas G

    2013-10-01

    Cholesteryl ester transfer protein (CETP) transfers cholesteryl ester and triglyceride between HDL and apoB-containing lipoproteins. Anacetrapib (ANA), a reversible inhibitor of CETP, raises HDL cholesterol and lowers LDL cholesterol in dyslipidemic patients. We previously demonstrated that ANA increases macrophage-to-feces reverse cholesterol transport and fecal cholesterol excretion in hamsters, and increased preβ HDL-dependent cholesterol efflux via ABCA1 in vitro. However, the effects of ANA on in vivo preβ HDL have not been characterized. In vitro, ANA inhibited the formation of preβ, however in ANA-treated dyslipidemic hamsters, preβ HDL levels (measured by two-dimensional gel electrophoresis) were increased, in contrast to in vitro findings. Because changes in plasma preβ HDL have been proposed to potentially affect markers of cholesterol absorption with other CETP inhibitors, a dual stable isotope method was used to directly measure cholesterol absorption in hamsters. ANA treatment of hamsters (on either dyslipidemic or normal diet) had no effect on cholesterol absorption, while dalcetrapib-treated hamsters displayed an increase in cholesterol absorption. Taken together, these data support the notion that ANA promotes preβ HDL functionality in vivo, with no effects on cholesterol absorption. PMID:23898048

  3. Differing rates of cholesterol absorption among inbred mouse strains yield differing levels of HDL-cholesterol.

    PubMed

    Sontag, Timothy J; Chellan, Bijoy; Getz, Godfrey S; Reardon, Catherine A

    2013-09-01

    Inbred strains of mice with differing susceptibilities to atherosclerosis possess widely varying plasma HDL levels. Cholesterol absorption and lipoprotein formation were compared between atherosclerosis-susceptible, low-HDL C57BL6/J mice and atherosclerosis-resistant, high-HDL FVBN/J mice. [(3)H]cholesterol and triglyceride appeared in the plasma of FVB mice gavaged with cholesterol in olive oil at a much higher rate than in C57 mice. The plasma cholesterol was found almost entirely as HDL-cholesterol in both strains. Inhibition of lipoprotein catabolism with Tyloxapol revealed that the difference in the rate of [(3)H]cholesterol appearance in the plasma was due entirely to a greater rate of chylomicron secretion from the intestine of the FVB mice. Lipid absorption into the 2nd quarter of the small intestine is greater in the FVB mice and indicates that this region may contain the factors that give rise to the differences in absorption observed between the two mouse strains. Additionally, ad libitum feeding prior to cholesterol gavage accentuates the absorption rate differences compared with fasting. The resultant remodeling of the increased levels of chylomicron in the plasma may contribute to increased plasma HDL. Intestinal gene expression analysis reveals several genes that may play a role in these differences, including microsomal triglyceride transfer protein and ABCG8. PMID:23812556

  4. Selective delipidation of plasma HDL enhances reverse cholesterol transport in vivo

    PubMed Central

    Sacks, Frank M.; Rudel, Lawrence L.; Conner, Adam; Akeefe, Hassibullah; Kostner, Gerhard; Baki, Talal; Rothblat, George; de la Llera-Moya, Margarita; Asztalos, Bela; Perlman, Timothy; Zheng, Chunyu; Alaupovic, Petar; Maltais, Jo-Ann B.; Brewer, H. Bryan

    2009-01-01

    Uptake of cholesterol from peripheral cells by nascent small HDL circulating in plasma is necessary to prevent atherosclerosis. This process, termed reverse cholesterol transport, produces larger cholesterol-rich HDL that transfers its cholesterol to the liver facilitating excretion. Most HDL in plasma is cholesterol-rich. We demonstrate that treating plasma with a novel selective delipidation procedure converts large to small HDL [HDL-selectively delipidated (HDL-sdl)]. HDL-sdl contains several cholesterol-depleted species resembling small α, preβ-1, and other preβ forms. Selective delipidation markedly increases efficacy of plasma to stimulate ABCA1-mediated cholesterol transfer from monocytic cells to HDL. Plasma from African Green monkeys underwent selective HDL delipidation. The delipidated plasma was reinfused into five monkeys. Preβ-1-like HDL had a plasma residence time of 8 ± 6 h and was converted entirely to large α-HDL having residence times of 13–14 h. Small α-HDL was converted entirely to large α-HDL. These findings suggest that selective HDL delipidation activates reverse cholesterol transport, in vivo and in vitro. Treatment with delipidated plasma tended to reduce diet-induced aortic atherosclerosis in monkeys measured by intravascular ultrasound. These findings link the conversion of small to large HDL, in vivo, to improvement in atherosclerosis. PMID:19144994

  5. Selective delipidation of plasma HDL enhances reverse cholesterol transport in vivo.

    PubMed

    Sacks, Frank M; Rudel, Lawrence L; Conner, Adam; Akeefe, Hassibullah; Kostner, Gerhard; Baki, Talal; Rothblat, George; de la Llera-Moya, Margarita; Asztalos, Bela; Perlman, Timothy; Zheng, Chunyu; Alaupovic, Petar; Maltais, Jo-Ann B; Brewer, H Bryan

    2009-05-01

    Uptake of cholesterol from peripheral cells by nascent small HDL circulating in plasma is necessary to prevent atherosclerosis. This process, termed reverse cholesterol transport, produces larger cholesterol-rich HDL that transfers its cholesterol to the liver facilitating excretion. Most HDL in plasma is cholesterol-rich. We demonstrate that treating plasma with a novel selective delipidation procedure converts large to small HDL [HDL-selectively delipidated (HDL-sdl)]. HDL-sdl contains several cholesterol-depleted species resembling small alpha, prebeta-1, and other prebeta forms. Selective delipidation markedly increases efficacy of plasma to stimulate ABCA1-mediated cholesterol transfer from monocytic cells to HDL. Plasma from African Green monkeys underwent selective HDL delipidation. The delipidated plasma was reinfused into five monkeys. Prebeta-1-like HDL had a plasma residence time of 8 +/- 6 h and was converted entirely to large alpha-HDL having residence times of 13-14 h. Small alpha-HDL was converted entirely to large alpha-HDL. These findings suggest that selective HDL delipidation activates reverse cholesterol transport, in vivo and in vitro. Treatment with delipidated plasma tended to reduce diet-induced aortic atherosclerosis in monkeys measured by intravascular ultrasound. These findings link the conversion of small to large HDL, in vivo, to improvement in atherosclerosis. PMID:19144994

  6. Mechanism of transfer of LDL-derived free cholesterol to HDL subfractions in human plasma

    SciTech Connect

    Miida, T.; Fielding, C.J.; Fielding, P.E. )

    1990-11-01

    The transfer of ({sup 3}H)cholesterol in low-density lipoprotein (LDL) to different high-density lipoprotein (HDL) species in native human plasma was determined by using nondenaturing two-dimensional electrophoresis. Transfer from LDL had a t{sub 1/2} at 37{degree}C of 51 {plus minus} 8 min and an activation energy of 18.0 kCal mol{sup {minus}1}. There was unexpected specificity among HDL species as acceptors of LDL-derived labeled cholesterol. The largest fraction of the major {alpha}-migrating class (HDL{sub 2b}) was the major initial acceptor of LDL-derived cholesterol. Kinetic analysis indicated a rapid secondary transfer from HDL{sub 2b} to smaller {alpha}HDL (particularly HDL{sub 3}) driven enzymatically by the lecithin-cholesterol acyltransferase reaction. Rates of transfer among {alpha}HDL were most rapid from the largest {alpha}HDL fraction (HDL{sub 2b}), suggesting possible protein-mediated facilitation. Simultaneous measurements of the transport of LDL-derived and cell-derived isotopic cholesterol indicated that the former preferably utilized the {alpha}HDL pathyway, with little label in pre-{beta}HDL. The same experiments confirmed earlier data that cell-derived cholesterol is preferentially channeled through pre-{beta}HDL. The authors suggest that the functional heterogeneity of HDL demonstrated here includes the ability to independently process cell- and LDL-derived free cholesterol.

  7. Hyperhomocysteinemia: a missing link to dysfunctional HDL via paraoxanase-1.

    PubMed

    Givvimani, Srikanth; Kundu, Sourav; Pushpakumar, Sathnur; Doyle, Vivian; Narayanan, Nithya; Winchester, Lee J; Veeranki, Sudhakar; Metreveli, Naira; Tyagi, Suresh C

    2015-09-01

    Paraoxanase-1 (PON1) is an HDL-associated enzyme that contributes to the antioxidant and antiatherosclerotic properties of HDL. Lack of PON1 results in dysfunctional HDL. HHcy is a risk factor for cardiovascular disorders, and instigates vascular dysfunction and ECM remodeling. Although studies have reported HHcy during atherosclerosis, the exact mechanism is unclear. Here, we hypothesize that dysfunctional HDL due to lack of PON1 contributes to endothelial impairment and atherogenesis through HHcy-induced ECM re-modeling. To verify this hypothesis, we used C57BL6/J and PON1 knockout mice (KO) and fed them an atherogenic diet. The expression of Akt, ADMA, and DDAH, as well as endothelial gap junction proteins such as Cx-37 and Cx-40 and eNOS was measured for vascular dysfunction and inflammation. We observed that cardiac function was decreased and plasma Hcy levels were increased in PON1 KO mice fed the atherogenic diet compared with the controls. Expression of Akt, eNOS, DDAH, Cx-37, and Cx-40 was decreased, and the expression of MMP-9 and ADMA was increased in PON1 KO mice fed an atherogenic diet compared with the controls. Our results suggest that HHcy plays an intricate role in dysfunctional HDL, owing to the lack of PON1. This contributes to vascular endothelial impairment and atherosclerosis through MMP-9-induced vascular remodeling. PMID:26176406

  8. Adiponectin and the mediation of HDL-cholesterol change with improved lifestyle: the Look AHEAD Study.

    PubMed

    Belalcazar, L Maria; Lang, Wei; Haffner, Steven M; Hoogeveen, Ron C; Pi-Sunyer, F Xavier; Schwenke, Dawn C; Balasubramanyam, Ashok; Tracy, Russell P; Kriska, Andrea P; Ballantyne, Christie M

    2012-12-01

    Adipose tissue dysfunction plays a key role in the development of the metabolic abnormalities characteristic of type 2 diabetes (T2DM) and participates actively in lipid metabolism. Adiponectin, found abundantly in circulation and a marker of adipose health, is decreased in obese persons with T2DM. We investigated whether the changes in adiponectin with an intensive lifestyle intervention (ILI) for weight loss could potentially mediate the increase in low HDL-cholesterol (HDL-C) with ILI. Adiponectin and its fractions were determined using an ELISA with selective protease treatment in 1,397 participants from Look AHEAD, a trial examining whether ILI will reduce cardiovascular events in overweight/obese subjects with T2DM when compared with a control arm, diabetes support and education (DSE). Multivariable regression and mediational analyses were performed for adiponectin and its high-molecular-weight (HMW) and non-HMW fractions. ILI increased baseline HDL-C by 9.7% and adiponectin by 11.9%; changes with DSE were 1.3% and 0.2%, respectively (P < 0.0001). In a model including changes in weight, fitness, triglycerides, and glucose control and that adjusted for demographics and medical history, adiponectin changes remained significantly associated with HDL-C change. Data supported the contribution of changes in both HMW- and non-HMW-adiponectin to the improvement in HDL-C with ILI. PMID:22956782

  9. Serum Opacity Factor Enhances HDL-Mediated Cholesterol Efflux, Esterification and Anti Inflammatory Effects

    PubMed Central

    Tchoua, Urbain; Rosales, Corina; Tang, Daming; Gillard, Baiba K.; Vaughan, Ashley; Lin, Hu Yu; Courtney, Harry S.

    2011-01-01

    Serum opacity factor (SOF) is a streptococcal protein that disrupts the structure of human high density lipoproteins (HDL) releasing lipid-free apo A-I while forming a large cholesteryl ester-rich particle and a small neo HDL. Given its low cholesterol and high phospholipid contents, we tested the hypotheses that neo HDL is a better substrate for cholesterol esterification via lecithin:cholesterol acyltransferase (LCAT), better than HDL as an acceptor of THP-1 macrophage cholesterol efflux, and improves reduction of oxidized LDL-induced production of inflammatory markers. We observed that both cholesterol efflux and esterification were improved by recombinant (r)SOF treatment of whole plasma and that the underlying cause of the improved cholesterol esterification in plasma and macrophage cholesterol efflux to rSOF-treated plasma was due to the rSOF-mediated conversion of HDL to neo HDL. Moreover, the reduction of secretion of TNF-α and IL-6 by THP-1 cells by neo HDL was twice that of HDL. Studies in BHK cells overexpressing cholesterol transporters showed that efflux to neo HDL occurred primarily via ABCA1 not ABCG1. Thus, rSOF improves two steps in reverse cholesterol transport with a concomitant reduction in the release of macrophage markers of inflammation. We conclude that rSOF catalyzes a novel reaction that might be developed as a new therapy that prevents or reverses atherosclerosis via improved reverse cholesterol transport. PMID:20972840

  10. Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile.

    PubMed

    Wang, Jing; Bie, Jinghua; Ghosh, Shobha

    2016-09-01

    While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[(3)H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [(3)H]cholesterol from HDL-[(3)H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2(-/-) mice. Increased flux of HDL-[(3)H]CE to biliary FC was noted with FABP1 overexpression and in SCP2(-/-) mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[(3)H]CE to biliary FC or bile acids in FABP1(-/-) mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination. PMID:27381048

  11. HDL-apolipoprotein A-I exchange is independently associated with cholesterol efflux capacity.

    PubMed

    Borja, Mark S; Ng, Kit F; Irwin, Angela; Hong, Jaekyoung; Wu, Xing; Isquith, Daniel; Zhao, Xue-Qiao; Prazen, Bryan; Gildengorin, Virginia; Oda, Michael N; Vaisar, Tomáš

    2015-10-01

    HDL is the primary mediator of cholesterol mobilization from the periphery to the liver via reverse cholesterol transport (RCT). A critical first step in this process is the uptake of cholesterol from lipid-loaded macrophages by HDL, a function of HDL inversely associated with prevalent and incident cardiovascular disease. We hypothesized that the dynamic ability of HDL to undergo remodeling and exchange of apoA-I is an important and potentially rate-limiting aspect of RCT. In this study, we investigated the relationship between HDL-apoA-I exchange (HAE) and serum HDL cholesterol (HDL-C) efflux capacity. We compared HAE to the total and ABCA1-specific cholesterol efflux capacity of 77 subjects. We found that HAE was highly correlated with both total (r = 0.69, P < 0.0001) and ABCA1-specific (r = 0.47, P < 0.0001) efflux, and this relationship remained significant after adjustment for HDL-C or apoA-I. Multivariate models of sterol efflux capacity indicated that HAE accounted for approximately 25% of the model variance for both total and ABCA1-specific efflux. We conclude that the ability of HDL to exchange apoA-I and remodel, as measured by HAE, is a significant contributor to serum HDL efflux capacity, independent of HDL-C and apoA-I, indicating that HDL dynamics are an important factor in cholesterol efflux capacity and likely RCT. PMID:26254308

  12. Anthocyanin-rich black elderberry extract improves markers of HDL function and reduces aortic cholesterol in hyperlipidemic mice.

    PubMed

    Farrell, Nicholas; Norris, Gregory; Lee, Sang Gil; Chun, Ock K; Blesso, Christopher N

    2015-04-01

    Serum high-density lipoprotein-cholesterol (HDL-C) is a risk factor considered to be protective of atherosclerosis. However, atherosclerosis is an inflammatory disease and contributes to impairment in high-density lipoprotein (HDL) function, including reductions in HDL-C, HDL antioxidant and anti-inflammatory activities. Anthocyanins are polyphenols that have demonstrated antioxidant and anti-inflammatory properties. The objective of this study was to determine whether an anthocyanin-rich black elderberry extract (Sambucus nigra) (BEE) (13% anthocyanins) would protect against inflammation-related impairments in HDL function and atherosclerosis in apoE(-/-) mice, a mouse model of hyperlipidemia and HDL dysfunction. We fed an AIN-93M diet supplemented with 1.25% (w/w) BEE or control diet to 10 week old male apoE(-/-) mice for 6 weeks. The BEE fed to mice was rich in cyanidin 3-sambubioside (∼ 9.8% w/w) and cyanidin 3-glucoside (∼ 3.8% w/w). After 6 weeks, serum lipids did not differ significantly between groups, while aspartate transaminase (AST) and fasting glucose were reduced in BEE-fed mice. Hepatic and intestinal mRNA changes with BEE-feeding were consistent with an improvement in HDL function (Apoa1, Pon1, Saa1, Lcat, Clu) and a reduction in hepatic cholesterol levels (increased Ldlr and Hmgcr, reduced Cyp7a1). In BEE-fed mice, serum paraoxonase-1 (PON1) arylesterase activity was significantly higher. In addition, mice fed BEE had significantly lower serum chemokine (C-C motif) ligand 2 (CCL2) compared to control-fed mice. Notably, we observed significant reductions in total cholesterol content of the aorta of BEE-fed mice, indicating less atherosclerosis progression. This study suggests that black elderberry may have the potential to influence HDL dysfunction associated with chronic inflammation by impacting hepatic gene expression. PMID:25758596

  13. Tailoring of Biomimetic High-Density Lipoprotein (HDL) Nanostructures Changes Cholesterol Binding and Efflux

    PubMed Central

    Luthi, Andrea J.; Zhang, Heng; Kim, Dongwoo; Giljohann, David A.; Mirkin, Chad A.; Thaxton, C. Shad

    2014-01-01

    Gold nanoparticles (Au NPs) were employed as templates to synthesize spherical, high-density lipoprotein (HDL) biomimics (HDL Au NPs) of different sizes and surface chemistries. The effect of size and surface chemistry on the cholesterol binding properties and the ability of the HDL Au NPs to efflux cholesterol from macrophage cells were measured. Results demonstrate that Au NPs may be utilized as templates to generate nanostructures with different physical characteristics that mimic natural HDL. Furthermore, the properties of the HDL Au NPs may be tailored to modulate the ability to bind cholesterol in solution and efflux cholesterol from macrophages. From the conjugates tested, the optimum size and surface chemistry for preparing functional Au NP-templated HDL biomimics were identified. PMID:22117189

  14. LXR driven induction of HDL-cholesterol is independent of intestinal cholesterol absorption and ABCA1 protein expression.

    PubMed

    Kannisto, Kristina; Gåfvels, Mats; Jiang, Zhao-Yan; Slätis, Katharina; Hu, Xiaoli; Jorns, Carl; Steffensen, Knut R; Eggertsen, Gösta

    2014-01-01

    We investigated whether: (1) liver X receptor (LXR)-driven induction of high-density lipoprotein cholesterol (HDL-C) and other LXR-mediated effects on cholesterol metabolism depend on intestinal cholesterol absorption; and (2) combined treatment with the LXR agonist GW3965 and the cholesterol absorption inhibitor ezetimibe results in synergistic effects on cholesterol metabolism that could be beneficial for treatment of atherosclerosis. Mice were fed 0.2 % cholesterol and treated with GW3965+ezetimibe, GW3965 or ezetimibe. GW3965+ezetimibe treatment elevated serum HDL-C and Apolipoprotein (Apo) AI, effectively reduced the intestinal cholesterol absorption and increased the excretion of faecal neutral sterols. No changes in intestinal ATP-binding cassette (ABC) A1 or ABCG5 protein expression were observed, despite increased mRNA expression, while hepatic ABCA1 was slightly reduced. The combined treatment caused a pronounced down-regulation of intestinal Niemann-Pick C1-like 1 (NPC1L1) and reduced hepatic and intestinal cholesterol levels. GW3965 did not affect the intestinal cholesterol absorption, but increased serum HDL-C and ApoAI levels. GW3965 also increased Apoa1 mRNA levels in primary mouse hepatocytes and HEPA1-6 cells. Ezetimibe reduced the intestinal cholesterol absorption, ABCA1 and ABCG5, but did not affect the serum HDL-C or ApoAI levels. Thus, the LXR-driven induction of HDL-C and ApoAI was independent of the intestinal cholesterol absorption and increased expression of intestinal or hepatic ABCA1 was not required. Inhibited influx of cholesterol via NPC1L1 and/or low levels of intracellular cholesterol prevented post-transcriptional expression of intestinal ABCA1 and ABCG5, despite increased mRNA levels. Combined LXR activation and blocked intestinal cholesterol absorption induced effective faecal elimination of cholesterol. PMID:24163219

  15. The macrophage and its related cholesterol efflux as a HDL function index in atherosclerosis.

    PubMed

    Yamamoto, Suguru; Narita, Ichiei; Kotani, Kazuhiko

    2016-06-01

    The macrophage and its related cholesterol efflux are considered to be a key player in atherosclerotic formation in relation to the function of high-density lipoprotein (HDL). The HDL function can be evaluated by the reaction between lipid-loaded macrophages and lipid-acceptors in the HDL fraction from the plasma, apolipoprotein B-depleted serum, and/or whole serum/plasma. Recent studies have reported that an impaired cholesterol efflux of HDL is observed in patients with cardiometabolic diseases, such as dyslipidemia, diabetes mellitus, and chronic kidney disease. A population-based cohort study has reported an inverse association between the cholesterol efflux capacity of HDL and the incidence of atherosclerotic disease, regardless of the serum HDL-cholesterol level. Moreover, in this paper, when we summarized several clinical interventional studies of statin treatment that examined cholesterol efflux, a potential increase in the efflux in patients treated with statins was implied. However, the effect was not fully defined in the current situation because of the small sample sizes, lack of a unified protocol for measuring the efflux, and short-term intervention periods without cardiovascular outcomes in available studies. Further investigation is necessary to determine the effect of drugs on cholesterol efflux. With additional advanced studies, cholesterol efflux is a promising laboratory index to understand the HDL function. PMID:27087419

  16. Hemorheological and Glycemic Parameters and HDL Cholesterol for the Prediction of Cardiovascular Events

    PubMed Central

    Cho, Sung Woo; Kim, Byung Gyu; Kim, Byung Ok; Byun, Young Sup; Goh, Choong Won; Rhee, Kun Joo; Kwon, Hyuck Moon; Lee, Byoung Kwon

    2016-01-01

    Background Hemorheological and glycemic parameters and high density lipoprotein (HDL) cholesterol are used as biomarkers of atherosclerosis and thrombosis. Objective To investigate the association and clinical relevance of erythrocyte sedimentation rate (ESR), fibrinogen, fasting glucose, glycated hemoglobin (HbA1c), and HDL cholesterol in the prediction of major adverse cardiovascular events (MACE) and coronary heart disease (CHD) in an outpatient population. Methods 708 stable patients who visited the outpatient department were enrolled and followed for a mean period of 28.5 months. Patients were divided into two groups, patients without MACE and patients with MACE, which included cardiac death, acute myocardial infarction, newly diagnosed CHD, and cerebral vascular accident. We compared hemorheological and glycemic parameters and lipid profiles between the groups. Results Patients with MACE had significantly higher ESR, fibrinogen, fasting glucose, and HbA1c, while lower HDL cholesterol compared with patients without MACE. High ESR and fibrinogen and low HDL cholesterol significantly increased the risk of MACE in multivariate regression analysis. In patients with MACE, high fibrinogen and HbA1c levels increased the risk of multivessel CHD. Furthermore, ESR and fibrinogen were significantly positively correlated with HbA1c and negatively correlated with HDL cholesterol, however not correlated with fasting glucose. Conclusion Hemorheological abnormalities, poor glycemic control, and low HDL cholesterol are correlated with each other and could serve as simple and useful surrogate markers and predictors for MACE and CHD in outpatients. PMID:26690693

  17. Hepatobiliary cholesterol transport is not impaired in Abca1-null mice lacking HDL

    PubMed Central

    Groen, Albert K.; Bloks, Vincent W.; Bandsma, Robert H.J.; Ottenhoff, Roelof; Chimini, Giovanna; Kuipers, Folkert

    2001-01-01

    The ABC transporter ABCA1 regulates HDL levels and is considered to control the first step of reverse cholesterol transport from the periphery to the liver. To test this concept, we studied the effect of ABCA1 deficiency on hepatic metabolism and hepatobiliary flux of cholesterol in mice. Hepatic lipid contents and biliary secretion rates were determined in Abca1–/–, Abca1+/–, and Abca1+/+ mice with a DBA background that were fed either standard chow or a high-fat, high-cholesterol diet. Hepatic cholesterol and phospholipid contents in Abca1–/– mice were indistinguishable from those in Abca1+/– and Abca1+/+ mice on both diets. In spite of the absence of HDL, biliary secretion rates of cholesterol, bile salts, and phospholipid were unimpaired in Abca1–/– mice. Neither the hepatic expression levels of genes controlling key steps in cholesterol metabolism nor the contribution of de novo synthesis to biliary cholesterol and bile salts were affected by Abca genotype. Finally, fecal excretion of neutral and acidic sterols was similar in all groups. We conclude that plasma HDL levels and ABCA1 activity do not control net cholesterol transport from the periphery via the liver into the bile, indicating that the importance of HDL in reverse cholesterol transport requires re-evaluation. PMID:11560953

  18. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease.

    PubMed

    Zanoni, Paolo; Khetarpal, Sumeet A; Larach, Daniel B; Hancock-Cerutti, William F; Millar, John S; Cuchel, Marina; DerOhannessian, Stephanie; Kontush, Anatol; Surendran, Praveen; Saleheen, Danish; Trompet, Stella; Jukema, J Wouter; De Craen, Anton; Deloukas, Panos; Sattar, Naveed; Ford, Ian; Packard, Chris; Majumder, Abdullah al Shafi; Alam, Dewan S; Di Angelantonio, Emanuele; Abecasis, Goncalo; Chowdhury, Rajiv; Erdmann, Jeanette; Nordestgaard, Børge G; Nielsen, Sune F; Tybjærg-Hansen, Anne; Schmidt, Ruth Frikke; Kuulasmaa, Kari; Liu, Dajiang J; Perola, Markus; Blankenberg, Stefan; Salomaa, Veikko; Männistö, Satu; Amouyel, Philippe; Arveiler, Dominique; Ferrieres, Jean; Müller-Nurasyid, Martina; Ferrario, Marco; Kee, Frank; Willer, Cristen J; Samani, Nilesh; Schunkert, Heribert; Butterworth, Adam S; Howson, Joanna M M; Peloso, Gina M; Stitziel, Nathan O; Danesh, John; Kathiresan, Sekar; Rader, Daniel J

    2016-03-11

    Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328 individuals with extremely high plasma HDL-C levels, we identified a homozygote for a loss-of-function variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells derived from induced pluripotent stem cells from the homozygous subject, and in mice. Large population-based studies revealed that subjects who are heterozygous carriers of the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is statistically significant). PMID:26965621

  19. Higher HDL cholesterol is associated with better cognitive function: the Maine-Syracuse study.

    PubMed

    Crichton, Georgina E; Elias, Merrill F; Davey, Adam; Sullivan, Kevin J; Robbins, Michael A

    2014-11-01

    Few studies have examined associations between different subcategories of cholesterol and cognitive function. We examined relationships between total cholesterol (TC), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), triglyceride levels and cognitive performance in the Maine-Syracuse Longitudinal Study, a community-based study of cardiovascular risk factors. Cross-sectional analyses were undertaken on data from 540 participants, aged 60 to 98 years, free of dementia and stroke. TC, HDL, LDL, and triglyceride levels were obtained. Cognitive function was assessed using a thorough neuropsychological test battery, including domains of cognitive function indexed by multiple cognitive tests. The cognitive outcomes studied were as follows: Visual-Spatial Memory and Organization, Verbal and Working Memory, Scanning and Tracking, Abstract Reasoning, a Global Composite score, and the Mini-Mental State Examination (MMSE). Significant positive associations were observed between HDL-cholesterol and the Global Composite score, Working Memory, and the MMSE after adjustment for demographic and cardiovascular risk factors. Participants with desirable levels of HDL (≥60 mg/dL) had the highest scores on all cognitive outcomes. There were no significant associations observed between TC, LDL, or triglyceride concentrations and cognition. In older individuals, HDL-cholesterol was related to a composite of Working Memory tests and for general measures of cognitive ability when adjusted for cardiovascular variables. We speculate that persons over 60 are survivors and thus less likely to show cognitive deficit in relation to TC, LDL-cholesterol, and triglycerides. Longitudinal studies are needed to examine relations between specific cognitive abilities and the different subcategories of cholesterol. PMID:25382185

  20. HDL Cholesterol and Cancer Risk Among Patients With Type 2 Diabetes

    PubMed Central

    Zhao, Wenhui; Guan, Jing; Horswell, Ronald; Li, Weiqin; Wang, Yujie; Wu, Xiaocheng

    2014-01-01

    OBJECTIVE To investigate the relationship between HDL cholesterol (HDL-C) and cancer risk among type 2 diabetic patients. RESEARCH DESIGN AND METHODS We performed a retrospective cohort study of 14,169 men and 23,176 women with type 2 diabetes. Cox proportional hazards regression models were used to estimate the association of various levels of HDL cholesterol (HDL-C) with cancer risk. RESULTS During a mean follow-up period of 6.4 years, 3,711 type 2 diabetic patients had a cancer diagnosis. A significant inverse association between HDL-C and the risk of cancer was found among men and women. The multivariable-adjusted hazard ratios (HRs) of cancer at various levels of HDL-C at baseline (<30, 30–39.9, 40–49.9, 50–59.9, 60–69.9, 70–79.9, and ≥80 mg/dL) were 1.00, 0.87, 0.95, 1.01, 0.61, 0.45, and 0.37, respectively, in men (Ptrend = 0.027) and 1.00, 0.98, 0.88, 0.85, 0.84, 0.86, and 0.84, respectively, in women (Ptrend = 0.025). When stratified by race, BMI, smoking status, or medication use, the inverse association was still present. With an updated mean of HDL-C used in the analysis, the inverse association of HDL-C with cancer risk did not change. The inverse association substantially attenuated after excluding patients who died of or were diagnosed with cancer during the first 2 years of follow-up. CONCLUSIONS The study suggests an inverse association of HDL-C with cancer risk among men and women with type 2 diabetes, whereas the effect of HDL-C was partially mediated by reverse causation. PMID:25216507

  1. Adrenal steroidogenesis disruption caused by HDL/cholesterol suppression in diethylstilbestrol-treated adult male rat.

    PubMed

    Haeno, Satoko; Maeda, Naoyuki; Yamaguchi, Kousuke; Sato, Michiko; Uto, Aika; Yokota, Hiroshi

    2016-04-01

    The synthetic estrogen diethylstilbestrol is used to prevent miscarriages and as a therapeutic treatment for prostate cancer, but it has been reported to have adverse effects on endocrine homeostasis. However, the toxicity mechanism is poorly understood. Recently, we reported that diethylstilbestrol impairs adrenal steroidogenesis via cholesterol insufficiency in adult male rats. In the present study, we found that the adrenal cholesterol level was significantly reduced without of the decrease in other precursors in the adrenal steroidogenesis 24 h after a single dose of diethylstilbestrol (0.33 μg/g body mass). The serum HDL/cholesterol level was also reduced only 12 h after the diethylstilbestrol exposure. The level of Apo E, which is indispensable for HDL/cholesterol maturation, was decreased in both the HDL and VLDL/LDL fractions, whereas the level of Apo A1, which is an essential constituent of HDL, was not altered in the HDL fraction. Because the liver is a major source of Apo E and Apo A1, the secretion rates of these proteins were examined using a liver perfusion experiment. The secretion rate of Apo A1 from the liver was consistent between DES-treated and control rats, but that of Apo E was comparatively suppressed in the DES-treated rats. The disruption of adrenal steroidogenesis by diethylstilbestrol was caused by a decrease in serum HDL/cholesterol, which is the main source of adrenal steroidogenesis, due to the inhibition of Apo E secretion from the liver. PMID:26349937

  2. Associations of high HDL cholesterol level with all-cause mortality in patients with heart failure complicating coronary heart disease

    PubMed Central

    Cai, Anping; Li, Xida; Zhong, Qi; Li, Minming; Wang, Rui; Liang, Yingcong; Chen, Wenzhong; Huang, Tehui; Li, Xiaohong; Zhou, Yingling; Li, Liwen

    2016-01-01

    Abstract The aim of the present study was to evaluate the association between HDL cholesterol level and all-cause mortality in patients with ejection fraction reduced heart failure (EFrHF) complicating coronary heart disease (CHD). A total of 323 patients were retrospectively recruited. Patients were divided into low and high HDL cholesterol groups. Between-group differences and associations between HDL cholesterol level and all-cause mortality were assessed. Patients in the high HDL cholesterol group had higher HDL cholesterol level and other lipid components (P <0.05 for all comparison). Lower levels of alanine aminotransferase (ALT), high-sensitivity C-reactive protein (Hs-CRP), and higher albumin (ALB) level were observed in the high HDL cholesterol group (P <0.05 for all comparison). Although left ventricular ejection fraction (LVEF) were comparable (28.8 ± 4.5% vs 28.4 ± 4.6%, P = 0.358), mean mortality rate in the high HDL cholesterol group was significantly lower (43.5% vs 59.1%, P = 0.007). HDL cholesterol level was positively correlated with ALB level, while inversely correlated with ALT, Hs-CRP, and NYHA classification. Logistic regression analysis revealed that after extensively adjusted for confounding variates, HDL cholesterol level remained significantly associated with all-cause mortality although the magnitude of association was gradually attenuated with odds ratio of 0.007 (95% confidence interval 0.001–0.327, P = 0.012). Higher HDL cholesterol level is associated with better survival in patients with EFrHF complicating CHD, and future studies are necessary to demonstrate whether increasing HDL cholesterol level will confer survival benefit in these populations of patients. PMID:27428188

  3. Proteomic analysis of HDL from inbred mouse strains implicates APOE associated with HDL in reduced cholesterol efflux capacity via the ABCA1 pathway[S

    PubMed Central

    Pamir, Nathalie; Hutchins, Patrick; Ronsein, Graziella; Vaisar, Tomas; Reardon, Catherine A.; Getz, Godfrey S.; Lusis, Aldons J.; Heinecke, Jay W.

    2016-01-01

    Cholesterol efflux capacity associates strongly and negatively with the incidence and prevalence of human CVD. We investigated the relationships of HDL’s size and protein cargo with its cholesterol efflux capacity using APOB-depleted serum and HDLs isolated from five inbred mouse strains with different susceptibilities to atherosclerosis. Like humans, mouse HDL carried >70 proteins linked to lipid metabolism, the acute-phase response, proteinase inhibition, and the immune system. HDL’s content of specific proteins strongly correlated with its size and cholesterol efflux capacity, suggesting that its protein cargo regulates its function. Cholesterol efflux capacity with macrophages strongly and positively correlated with retinol binding protein 4 (RBP4) and PLTP, but not APOA1. In contrast, ABCA1-specific cholesterol efflux correlated strongly with HDL’s content of APOA1, APOC3, and APOD, but not RBP4 and PLTP. Unexpectedly, APOE had a strong negative correlation with ABCA1-specific cholesterol efflux capacity. Moreover, the ABCA1-specific cholesterol efflux capacity of HDL isolated from APOE-deficient mice was significantly greater than that of HDL from wild-type mice. Our observations demonstrate that the HDL-associated APOE regulates HDL’s ABCA1-specific cholesterol efflux capacity. These findings may be clinically relevant because HDL’s APOE content associates with CVD risk and ABCA1 deficiency promotes unregulated cholesterol accumulation in human macrophages. PMID:26673204

  4. HDL cholesterol and bone mineral density: Is there a genetic link?

    PubMed Central

    Ackert-Bicknell, Cheryl L.

    2011-01-01

    Overwhelming evidence has linked cardiovascular disease and osteoporosis, but the shared root cause of these two diseases of the elderly remains unknown. Low levels of high-density lipoprotein cholesterol (HDL) and bone mineral density (BMD) are risk factors for cardiovascular disease and osteoporosis respectively. A number of correlation studies have attempted to determine if there is a relationship between serum HDL and BMD but these studies are confounded by a number of variables including age, diet, genetic background, gender and hormonal status. Collectively, these data suggest that there is a relationship between these two phenotypes, but that the nature of this relationship is context specific. Studies in mice plainly demonstrate that genetic loci for BMD and HDL co-map and transgenic mouse models have been used to show that a single gene can affect both serum HDL and BMD. Work completed to date has demonstrated that HDL can interact directly with both osteoblasts and osteoclasts, but no direct evidence links bone back to the regulation of HDL levels. Understanding the genetic relationship between BMD and HDL has huge implications for understanding the clinical relationship between CVD and osteoporosis and for the development of safe treatment options for both diseases. PMID:21810493

  5. Inhibition of ABCA1 protein degradation promotes HDL cholesterol efflux capacity and RCT and reduces atherosclerosis in mice.

    PubMed

    Huang, LinZhang; Fan, BaoYan; Ma, Ang; Shaul, Philip W; Zhu, HaiBo

    2015-05-01

    ABCA1 plays a key role in the initial lipidation of apoA-I, which generates circulating HDL cholesterol. Whereas it is known that the transcriptional upregulation of ABCA1 promotes HDL formation and reverse cholesterol transport (RCT), it is not known how the inhibition of ABCA1 protein degradation impacts HDL function. Employing the small molecule triacetyl-3-hydroxyphenyladenosine (IMM-H007), we determined how the attenuation of ABCA1 protein degradation affects HDL cholesterol efflux capacity, RCT, and atherosclerotic lesion formation. Pulse-chase analysis revealed that IMM-H007 inhibits ABCA1 degradation and facilitates its cell-surface localization in macrophages, and additional studies in macrophages showed that IMM-H007 thereby promotes cholesterol efflux. IMM-H007 treatment of Paigen diet-fed mice caused an increase in circulating HDL level, it increased the cholesterol efflux capacity of HDL, and it enhanced in vivo RCT from macrophages to the plasma, liver, and feces. Furthermore, ABCA1 degradation suppression by IMM-H007 reduced atherosclerotic plaque formation in apoE(-/-) mice. Thus, via effects on both ABCA1-expressing cells and circulating HDL function, the inhibition of ABCA1 protein degradation by IMM-H007 promotes HDL cholesterol efflux capacity and RCT and attenuates atherogenesis. IMM-H007 potentially represents a lead compound for the development of agents to augment HDL function. PMID:25761370

  6. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study

    PubMed Central

    Voight, Benjamin F; Peloso, Gina M; Orho-Melander, Marju; Frikke-Schmidt, Ruth; Barbalic, Maja; Jensen, Majken K; Hindy, George; Hólm, Hilma; Ding, Eric L; Johnson, Toby; Schunkert, Heribert; Samani, Nilesh J; Clarke, Robert; Hopewell, Jemma C; Thompson, John F; Li, Mingyao; Thorleifsson, Gudmar; Newton-Cheh, Christopher; Musunuru, Kiran; Pirruccello, James P; Saleheen, Danish; Chen, Li; Stewart, Alexandre FR; Schillert, Arne; Thorsteinsdottir, Unnur; Thorgeirsson, Gudmundur; Anand, Sonia; Engert, James C; Morgan, Thomas; Spertus, John; Stoll, Monika; Berger, Klaus; Martinelli, Nicola; Girelli, Domenico; McKeown, Pascal P; Patterson, Christopher C; Epstein, Stephen E; Devaney, Joseph; Burnett, Mary-Susan; Mooser, Vincent; Ripatti, Samuli; Surakka, Ida; Nieminen, Markku S; Sinisalo, Juha; Lokki, Marja-Liisa; Perola, Markus; Havulinna, Aki; de Faire, Ulf; Gigante, Bruna; Ingelsson, Erik; Zeller, Tanja; Wild, Philipp; de Bakker, Paul I W; Klungel, Olaf H; Maitland-van der Zee, Anke-Hilse; Peters, Bas J M; de Boer, Anthonius; Grobbee, Diederick E; Kamphuisen, Pieter W; Deneer, Vera H M; Elbers, Clara C; Onland-Moret, N Charlotte; Hofker, Marten H; Wijmenga, Cisca; Verschuren, WM Monique; Boer, Jolanda MA; van der Schouw, Yvonne T; Rasheed, Asif; Frossard, Philippe; Demissie, Serkalem; Willer, Cristen; Do, Ron; Ordovas, Jose M; Abecasis, Gonçalo R; Boehnke, Michael; Mohlke, Karen L; Daly, Mark J; Guiducci, Candace; Burtt, Noël P; Surti, Aarti; Gonzalez, Elena; Purcell, Shaun; Gabriel, Stacey; Marrugat, Jaume; Peden, John; Erdmann, Jeanette; Diemert, Patrick; Willenborg, Christina; König, Inke R; Fischer, Marcus; Hengstenberg, Christian; Ziegler, Andreas; Buysschaert, Ian; Lambrechts, Diether; Van de Werf, Frans; Fox, Keith A; El Mokhtari, Nour Eddine; Rubin, Diana; Schrezenmeir, Jürgen; Schreiber, Stefan; Schäfer, Arne; Danesh, John; Blankenberg, Stefan; Roberts, Robert; McPherson, Ruth; Watkins, Hugh; Hall, Alistair S; Overvad, Kim; Rimm, Eric; Boerwinkle, Eric; Tybjaerg-Hansen, Anne; Cupples, L Adrienne; Reilly, Muredach P; Melander, Olle; Mannucci, Pier M; Ardissino, Diego; Siscovick, David; Elosua, Roberto; Stefansson, Kari; O'Donnell, Christopher J; Salomaa, Veikko; Rader, Daniel J; Peltonen, Leena; Schwartz, Stephen M; Altshuler, David; Kathiresan, Sekar

    2012-01-01

    Summary Background High plasma HDL cholesterol is associated with reduced risk of myocardial infarction, but whether this association is causal is unclear. Exploiting the fact that genotypes are randomly assigned at meiosis, are independent of non-genetic confounding, and are unmodified by disease processes, mendelian randomisation can be used to test the hypothesis that the association of a plasma biomarker with disease is causal. Methods We performed two mendelian randomisation analyses. First, we used as an instrument a single nucleotide polymorphism (SNP) in the endothelial lipase gene (LIPG Asn396Ser) and tested this SNP in 20 studies (20 913 myocardial infarction cases, 95 407 controls). Second, we used as an instrument a genetic score consisting of 14 common SNPs that exclusively associate with HDL cholesterol and tested this score in up to 12 482 cases of myocardial infarction and 41 331 controls. As a positive control, we also tested a genetic score of 13 common SNPs exclusively associated with LDL cholesterol. Findings Carriers of the LIPG 396Ser allele (2·6% frequency) had higher HDL cholesterol (0·14 mmol/L higher, p=8×10−13) but similar levels of other lipid and non-lipid risk factors for myocardial infarction compared with non-carriers. This difference in HDL cholesterol is expected to decrease risk of myocardial infarction by 13% (odds ratio [OR] 0·87, 95% CI 0·84–0·91). However, we noted that the 396Ser allele was not associated with risk of myocardial infarction (OR 0·99, 95% CI 0·88–1·11, p=0·85). From observational epidemiology, an increase of 1 SD in HDL cholesterol was associated with reduced risk of myocardial infarction (OR 0·62, 95% CI 0·58–0·66). However, a 1 SD increase in HDL cholesterol due to genetic score was not associated with risk of myocardial infarction (OR 0·93, 95% CI 0·68–1·26, p=0·63). For LDL cholesterol, the estimate from observational epidemiology (a 1 SD increase in LDL cholesterol

  7. Impaired HDL cholesterol efflux in metabolic syndrome is unrelated to glucose tolerance status: the CODAM study

    PubMed Central

    Annema, Wijtske; Dikkers, Arne; de Boer, Jan Freark; van Greevenbroek, Marleen M. J.; van der Kallen, Carla J. H.; Schalkwijk, Casper G.; Stehouwer, Coen D. A.; Dullaart, Robin P. F.; Tietge, Uwe J. F.

    2016-01-01

    Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS) increase atherosclerotic cardiovascular disease risk. Cholesterol efflux capacity (CEC) is a key metric of the anti-atherosclerotic functionality of high-density lipoproteins (HDL). The present study aimed to delineate if T2DM and MetS cross-sectionally associate with altered CEC in a large high cardiometabolic risk population. CEC was determined from THP-1 macrophage foam cells towards apolipoprotein B-depleted plasma from 552 subjects of the CODAM cohort (288 controls, 126 impaired glucose metabolism [IGM], 138 T2DM). MetS was present in 297 participants. CEC was not different between different glucose tolerance categories but was lower in MetS (P < 0.001), at least partly attributable to lower HDL cholesterol (HDL-C) and apoA-I levels (P < 0.001 for each). Low grade inflammation was increased in IGM, T2DM and MetS as determined by a score comprising 8 different biomarkers (P < 0.05-< 0.001; n = 547). CEC inversely associated with low-grade inflammation taking account of HDL-C or apoA-I in MetS (P < 0.02), but not in subjects without MetS (interaction: P = 0.015). This study demonstrates that IGM and T2DM do not impact the HDL CEC function, while efflux is lower in MetS, partly dependent on plasma HDL-C levels. Enhanced low-grade inflammation in MetS may conceivably impair CEC even independent of HDL-C and apoA-I. PMID:27270665

  8. Impaired HDL cholesterol efflux in metabolic syndrome is unrelated to glucose tolerance status: the CODAM study.

    PubMed

    Annema, Wijtske; Dikkers, Arne; de Boer, Jan Freark; van Greevenbroek, Marleen M J; van der Kallen, Carla J H; Schalkwijk, Casper G; Stehouwer, Coen D A; Dullaart, Robin P F; Tietge, Uwe J F

    2016-01-01

    Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS) increase atherosclerotic cardiovascular disease risk. Cholesterol efflux capacity (CEC) is a key metric of the anti-atherosclerotic functionality of high-density lipoproteins (HDL). The present study aimed to delineate if T2DM and MetS cross-sectionally associate with altered CEC in a large high cardiometabolic risk population. CEC was determined from THP-1 macrophage foam cells towards apolipoprotein B-depleted plasma from 552 subjects of the CODAM cohort (288 controls, 126 impaired glucose metabolism [IGM], 138 T2DM). MetS was present in 297 participants. CEC was not different between different glucose tolerance categories but was lower in MetS (P < 0.001), at least partly attributable to lower HDL cholesterol (HDL-C) and apoA-I levels (P < 0.001 for each). Low grade inflammation was increased in IGM, T2DM and MetS as determined by a score comprising 8 different biomarkers (P < 0.05-< 0.001; n = 547). CEC inversely associated with low-grade inflammation taking account of HDL-C or apoA-I in MetS (P < 0.02), but not in subjects without MetS (interaction: P = 0.015). This study demonstrates that IGM and T2DM do not impact the HDL CEC function, while efflux is lower in MetS, partly dependent on plasma HDL-C levels. Enhanced low-grade inflammation in MetS may conceivably impair CEC even independent of HDL-C and apoA-I. PMID:27270665

  9. 9-cis β-Carotene Increased Cholesterol Efflux to HDL in Macrophages.

    PubMed

    Bechor, Sapir; Zolberg Relevy, Noa; Harari, Ayelet; Almog, Tal; Kamari, Yehuda; Ben-Amotz, Ami; Harats, Dror; Shaish, Aviv

    2016-01-01

    Cholesterol efflux from macrophages is a key process in reverse cholesterol transport and, therefore, might inhibit atherogenesis. 9-cis-β-carotene (9-cis-βc) is a precursor for 9-cis-retinoic-acid (9-cis-RA), which regulates macrophage cholesterol efflux. Our objective was to assess whether 9-cis-βc increases macrophage cholesterol efflux and induces the expression of cholesterol transporters. Enrichment of a mouse diet with βc from the alga Dunaliella led to βc accumulation in peritoneal macrophages. 9-cis-βc increased the mRNA levels of CYP26B1, an enzyme that regulates RA cellular levels, indicating the formation of RA from βc in RAW264.7 macrophages. Furthermore, 9-cis-βc, as well as all-trans-βc, significantly increased cholesterol efflux to high-density lipoprotein (HDL) by 50% in RAW264.7 macrophages. Likewise, food fortification with 9-cis-βc augmented cholesterol efflux from macrophages ex vivo. 9-cis-βc increased both the mRNA and protein levels of ABCA1 and apolipoprotein E (APOE) and the mRNA level of ABCG1. Our study shows, for the first time, that 9-cis-βc from the diet accumulates in peritoneal macrophages and increases cholesterol efflux to HDL. These effects might be ascribed to transcriptional induction of ABCA1, ABCG1, and APOE. These results highlight the beneficial effect of βc in inhibition of atherosclerosis by improving cholesterol efflux from macrophages. PMID:27447665

  10. 9-cis β-Carotene Increased Cholesterol Efflux to HDL in Macrophages

    PubMed Central

    Bechor, Sapir; Zolberg Relevy, Noa; Harari, Ayelet; Almog, Tal; Kamari, Yehuda; Ben-Amotz, Ami; Harats, Dror; Shaish, Aviv

    2016-01-01

    Cholesterol efflux from macrophages is a key process in reverse cholesterol transport and, therefore, might inhibit atherogenesis. 9-cis-β-carotene (9-cis-βc) is a precursor for 9-cis-retinoic-acid (9-cis-RA), which regulates macrophage cholesterol efflux. Our objective was to assess whether 9-cis-βc increases macrophage cholesterol efflux and induces the expression of cholesterol transporters. Enrichment of a mouse diet with βc from the alga Dunaliella led to βc accumulation in peritoneal macrophages. 9-cis-βc increased the mRNA levels of CYP26B1, an enzyme that regulates RA cellular levels, indicating the formation of RA from βc in RAW264.7 macrophages. Furthermore, 9-cis-βc, as well as all-trans-βc, significantly increased cholesterol efflux to high-density lipoprotein (HDL) by 50% in RAW264.7 macrophages. Likewise, food fortification with 9-cis-βc augmented cholesterol efflux from macrophages ex vivo. 9-cis-βc increased both the mRNA and protein levels of ABCA1 and apolipoprotein E (APOE) and the mRNA level of ABCG1. Our study shows, for the first time, that 9-cis-βc from the diet accumulates in peritoneal macrophages and increases cholesterol efflux to HDL. These effects might be ascribed to transcriptional induction of ABCA1, ABCG1, and APOE. These results highlight the beneficial effect of βc in inhibition of atherosclerosis by improving cholesterol efflux from macrophages. PMID:27447665

  11. β-COP as a Component of Transport Vesicles for HDL Apolipoprotein-Mediated Cholesterol Exocytosis

    PubMed Central

    Ma, Weilie; Lin, Margarita; Ding, Hang; Lin, Guorong; Zhang, Zhizhen

    2016-01-01

    Objective HDL and its apolipoproteins protect against atherosclerotic disease partly by removing excess cholesterol from macrophage foam cells. But the underlying mechanisms of cholesterol clearance are still not well defined. We investigated roles of vesicle trafficking of coatomer β-COP in delivering cholesterol to the cell surface during apoA-1 and apoE-mediated lipid efflux from fibroblasts and THP-1 macrophages. Methods shRNA knockout, confocal and electron microscopy and biochemical analysis were used to investigate the roles of β-COP in apolipoprotein-mediated cholesterol efflux in fibroblasts and THP-1 macrophages. Results We showed that β-COP knockdown by lentiviral shRNA resulted in reduced apoA-1-mediated cholesterol efflux, while increased cholesterol accumulation and formation of larger vesicles were observed in THP-1 macrophages by laser scanning confocal microscopy. Immunogold electron microscopy showed that β-COP appeared on the membrane protrusion complexes and colocalized with apoA-1 or apoE during cholesterol efflux. This was associated with releasing heterogeneous sizes of small particles into the culture media of THP-1 macrophage. Western blotting also showed that apoA-1 promotes β-COP translocation to the cell membrane and secretion into culture media, in which a total of 17 proteins were identified by proteomics. Moreover, β-COP exclusively associated with human plasma HDL fractions. Conclusion ApoA-1 and apoE promoted transport vesicles consisting of β-COP and other candidate proteins to exocytose cholesterol, forming the protrusion complexes on cell surface, which were then released from the cell membrane as small particles to media. PMID:26986486

  12. Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study

    PubMed Central

    Saleheen, Danish; Scott, Robert; Javad, Sundas; Zhao, Wei; Rodrigues, Amrith; Picataggi, Antonino; Lukmanova, Daniya; Mucksavage, Megan L; Luben, Robert; Billheimer, Jeffery; Kastelein, John J P; Boekholdt, S Matthijs; Khaw, Kay-Tee; Wareham, Nick; Rader, Daniel J

    2015-01-01

    Summary Background Although HDL cholesterol concentrations are strongly and inversely associated with risk of coronary heart disease, interventions that raise HDL cholesterol do not reduce risk of coronary heart disease. HDL cholesterol efflux capacity—a prototypical measure of HDL function—has been associated with coronary heart disease after adjusting for HDL cholesterol, but its effect on incident coronary heart disease risk is uncertain. Methods We measured cholesterol efflux capacity and assessed its relation with vascular risk factors and incident coronary heart disease events in a nested case-control sample from the prospective EPIC-Norfolk study of 25 639 individuals aged 40–79 years, assessed in 1993–97 and followed up to 2009. We quantified cholesterol efflux capacity in 1745 patients with incident coronary heart disease and 1749 control participants free of any cardiovascular disorders by use of a validated ex-vivo radiotracer assay that involved incubation of cholesterol-labelled J774 macrophages with apoB-depleted serum from study participants. Findings Cholesterol efflux capacity was positively correlated with HDL cholesterol concentration (r=0·40; p<0·0001) and apoA-I concentration (r=0·22; p<0·0001). It was also inversely correlated with type 2 diabetes (r=–0·18; p<0·0001) and positively correlated with alcohol consumption (r=0·12; p<0·0001). In analyses comparing the top and bottom tertiles, cholesterol efflux capacity was significantly and inversely associated with incident coronary heart disease events, independent of age, sex, diabetes, hypertension, smoking and alcohol use, waist:hip ratio, BMI, LDL cholesterol concentration, log-triglycerides, and HDL cholesterol or apoA-I concentrations (odds ratio 0·64, 95% CI 0·51–0·80). After a similar multivariable adjustment the risk of incident coronary heart disease was 0·80 (95% CI 0·70–0·90) for a per-SD change in cholesterol efflux capacity. Interpretation HDL

  13. Monogenic causes of elevated HDL cholesterol and implications for development of new therapeutics.

    PubMed

    Larach, Daniel B; Cuchel, Marina; Rader, Daniel J

    2013-12-01

    Identification of the CETP, LIPG (encoding endothelial lipase) and APOC3 genes, and ana lysis of rare genetic variants in them, have allowed researchers to increase understanding of HDL metabolism significantly. However, development of cardiovascular risk-reducing therapeutics targeting the proteins encoded by these genes has been less straightforward. The failure of two CETP inhibitors is complex but illustrates a possible over-reliance on HDL cholesterol as a marker of therapeutic efficacy. The case of endothelial lipase exemplifies the importance of utilizing population-wide genetic studies of rare variants in potential therapeutic targets to gain information on cardiovascular disease end points. Similar population-wide studies of cardiovascular end points make apoC-III a potentially attractive target for lipid-related drug discovery. These three cases illustrate the positives and negatives of single-gene studies relating to HDL-related cardiovascular drug discovery; such studies should focus not only on HDL cholesterol and other components of the lipid profile, but also on the effect genetic variants have on cardiovascular end points. PMID:25374625

  14. Transient increase in HDL-cholesterol during weight gain by hyperalimentation in healthy subjects.

    PubMed

    Lindström, Torbjörn; Kechagias, Stergios; Carlsson, Martin; Nystrom, Fredrik H

    2011-04-01

    Determination of lipid levels is fundamental in cardiovascular risk assessment. We studied the short-term effects of fast food-based hyperalimentation on lipid levels in healthy subjects. Twelve healthy men and six healthy women with a mean age of 26 ± 6.6 years and an aged-matched control group were recruited for this prospective interventional study. Subjects in the intervention group aimed for a body weight increase of 5-15% by doubling the baseline caloric intake by eating at least two fast food-based meals a day in combination with adoption of a sedentary lifestyle for 4 weeks. This protocol induced a weight gain from 67.6 ± 9.1 kg to 74.0 ± 11 kg (P < 0.001). A numerical increase in the levels of high-density lipoprotein (HDL)-cholesterol occurred in all subjects during the study and this was apparent already at the first week in 16/18 subjects (mean increase at week 1: +22.0 ± 16%, range from -7 to +50%), whereas the highest level of HDL during the study as compared with baseline values varied from +6% to +58% (mean +31.6 ± 15%). The intake of saturated fat in the early phase of the trial related positively with the HDL-cholesterol-increase in the second week (r = 0.53, P = 0.028). Although the levels of insulin doubled at week 2, the increase in low-density lipoprotein (LDL)-cholesterol was only +12 ± 17%, and there was no statistically significant changes in fasting serum triglycerides. We conclude that hyperalimentation can induce a fast but transient increase in HDL-cholesterol that is of clinical interest when estimating cardiovascular risk based on serum lipid levels. PMID:20814413

  15. Truncal and abdominal fat as determinants of high triglycerides and low HDL-cholesterol in adolescents.

    PubMed

    Tresaco, Beatriz; Moreno, Luis A; Ruiz, Jonatan R; Ortega, Francisco B; Bueno, Gloria; González-Gross, Marcela; Wärnberg, Julia; Gutiérrez, Angel; García-Fuentes, Miguel; Marcos, Ascensión; Castillo, Manuel J; Bueno, Manuel

    2009-05-01

    We examined whether abdominal and truncal adiposity, assessed with simple anthropometric indices, determines serum triglycerides and high-density lipoprotein (HDL)-cholesterol levels independently of total adiposity amount in adolescents. A total of 547 Spanish adolescents (284 males and 263 females) aged 13-18.5 years were included in this study. Measures of truncal adiposity included subscapular to triceps ratio, and trunk-to-total skinfolds ratio (TTS%). Waist circumference was used as a surrogate of abdominal adiposity, and BMI was used as a measure of total adiposity. The results of the regression models indicated that levels of triglycerides were positively associated with waist circumference and TTS% after controlling for age and Tanner stage in both sexes. Once BMI was entered in the model, these associations remained significant for waist circumference in females. HDL-cholesterol levels were negatively associated with waist circumference in both sexes, and with subscapular to triceps ratio and TTS% in males, after controlling for age and Tanner stage. Once BMI was entered in the model, these associations remained significant for subscapular to triceps ratio and for TTS% in males. The results of this study suggest that in male adolescents, truncal adiposity is negatively associated with levels of HDL-cholesterol, whereas in females, abdominal adiposity is positively associated with levels of triglycerides independently of total adiposity. These findings highlight the deleterious effect of both truncal and abdominal fat depots on the lipid profile already from the first decades of life. PMID:19180070

  16. Using advanced intercross lines for high-resolution mapping of HDL cholesterol quantitative trait loci.

    PubMed

    Wang, Xiaosong; Le Roy, Isabelle; Nicodeme, Edwige; Li, Renhua; Wagner, Richard; Petros, Christina; Churchill, Gary A; Harris, Stephen; Darvasi, Ariel; Kirilovsky, Jorge; Roubertoux, Pierre L; Paigen, Beverly

    2003-07-01

    Mapping quantitative trait loci (QTLs) with high resolution facilitates identification and positional cloning of the underlying genes. The novel approach of advanced intercross lines (AILs) generates many more recombination events and thus can potentially narrow QTLs significantly more than do conventional backcrosses and F2 intercrosses. In this study, we carried out QTL analyses in (C57BL/6J x NZB/BlNJ) x C57BL/6J backcross progeny fed either chow or an atherogenic diet to detect QTLs that regulate high-density lipoprotein cholesterol (HDL)concentrations, and in (C57BL/6J x NZB/BlNJ) F11 AIL progeny to confirm and narrow those QTLs. QTLs for HDL concentrations were found on chromosomes 1, 5, and 16. AIL not only narrowed the QTLs significantly more than did a conventional backcross but also resolved a chromosome 5 QTL identified in the backcross into two QTLs, the peaks of both being outside the backcross QTL region. We tested 27 candidate genes and found significant mRNA expression differences for 12 (Nr1i3, Apoa2, Sap, Tgfb2, Fgfbp1, Prom, Ppargc1, Tcf1, Ncor2, Srb1, App, and Ifnar). Some of these underlay the same QTL, indicating that expression differences are common and not sufficient to identify QTL genes. All the major HDL QTLs in our study had homologous counterparts in humans, implying that their underlying genes regulate HDL in humans. PMID:12805272

  17. Using Advanced Intercross Lines for High-Resolution Mapping of HDL Cholesterol Quantitative Trait Loci

    PubMed Central

    Wang, Xiaosong; Le Roy, Isabelle; Nicodeme, Edwige; Li, Renhua; Wagner, Richard; Petros, Christina; Churchill, Gary A.; Harris, Stephen; Darvasi, Ariel; Kirilovsky, Jorge; Roubertoux, Pierre L.; Paige, Beverly

    2003-01-01

    Mapping quantitative trait loci (QTLs)with high resolution facilitates identification and positional cloning of the underlying genes. The novel approach of advanced intercross lines (AILs) generates many more recombination events and thus can potentially narrow QTLs significantly more than do conventional backcrosses and F2 intercrosses. In this study, we carried out QTL analyses in (C57BL/6J × NZB/BlNJ)× C57BL/6J backcross progeny fed either chow or an atherogenic diet to detect QTLs that regulate high-density lipoprotein cholesterol (HDL)concentrations, and in (C57BL/6J × NZB/BlNJ)F11 AIL progeny to confirm and narrow those QTLs. QTLs for HDL concentrations were found on chromosomes 1, 5, and 16. AIL not only narrowed the QTLs significantly more than did a conventional backcross but also resolved a chromosome 5 QTL identified in the backcross into two QTLs, the peaks of both being outside the backcross QTL region. We tested 27 candidate genes and found significant mRNA expression differences for 12 (Nr1i3, Apoa2, Sap, Tgfb2, Fgfbp1, Prom, Ppargc1, Tcf1, Ncor2, Srb1, App, and Ifnar). Some of these underlay the same QTL, indicating that expression differences are common and not sufficient to identify QTL genes. All the major HDL QTLs in our study had homologous counterparts in humans, implying that their underlying genes regulate HDL in humans. PMID:12805272

  18. Reference Ranges for Serum Total Cholesterol, HDL-Cholesterol, LDL-Cholesterol, and VLDL-Cholesterol and Triglycerides in Healthy Iranian Ahvaz Population.

    PubMed

    Jalali, Mohammad Taha; Honomaror, Abdolhosain Mosavi; Rekabi, Abdolkarim; Latifi, Mahmod

    2013-07-01

    Cardiovascular diseases (CVD) are recognized as major mortality causes and imposes tremendously heavy socio-economic burden worldwide. A vast variety of risk factors have been introduced in the literature known to enhance the incidence of CVD, such as hyperlipidemia. Therefore in order to make an accurate clinical decision it is essential to have appropriate reference ranges for lipids and lipoprotein particles in a particular population. Healthy female (n = 601) and male (n = 617) cases were randomly selected according to certain exclusion criteria from individuals visiting the major University hospital clinics situated in different part of Ahvaz city, Iran, from June 2010 to December 2010. Fasting blood samples (10 ml) were collected and analyzed for total cholesterol, total triglyceride and HDL-C employing enzymatic assays of CHOD-PAP, GPO-PAP and homogenous methods respectively. The samples were obtained such to include the ethnic populations of Persian, Arab. Lore leaving in this city. The data were analyzed statistically by SPSS-18 software. The obtained results were analyzed then age ethnic-wise and reference ranges (mean ± 1SD) were calculated. Remarkable differences between the obtained results for our population with other nations were seen. Also ethnic difference for HDL-C among our cases was noted. The observed significant differences among different nations and ethnicities emphasizes the need for nation-specific, local reference ranges for lipids and lipoproteins particles, to be established. PMID:24426224

  19. Loss-of-function variants in endothelial lipase are a cause of elevated HDL cholesterol in humans

    PubMed Central

    Edmondson, Andrew C.; Brown, Robert J.; Kathiresan, Sekar; Cupples, L. Adrienne; Demissie, Serkalem; Manning, Alisa Knodle; Jensen, Majken K.; Rimm, Eric B.; Wang, Jian; Rodrigues, Amrith; Bamba, Vaneeta; Khetarpal, Sumeet A.; Wolfe, Megan L.; DerOhannessian, Stephanie; Li, Mingyao; Reilly, Muredach P.; Aberle, Jens; Evans, David; Hegele, Robert A.; Rader, Daniel J.

    2009-01-01

    Elevated plasma concentrations of HDL cholesterol (HDL-C) are associated with protection from atherosclerotic cardiovascular disease. Animal models indicate that decreased expression of endothelial lipase (LIPG) is inversely associated with HDL-C levels, and genome-wide association studies have identified LIPG variants as being associated with HDL-C levels in humans. We hypothesized that loss-of-function mutations in LIPG may result in elevated HDL-C and therefore performed deep resequencing of LIPG exons in cases with elevated HDL-C levels and controls with decreased HDL-C levels. We identified a significant excess of nonsynonymous LIPG variants unique to cases with elevated HDL-C. In vitro lipase activity assays demonstrated that these variants significantly decreased endothelial lipase activity. In addition, a meta-analysis across 5 cohorts demonstrated that the low-frequency Asn396Ser variant is significantly associated with increased HDL-C, while the common Thr111Ile variant is not. Functional analysis confirmed that the Asn396Ser variant has significantly decreased lipase activity both in vitro and in vivo, while the Thr111Ile variant has normal lipase activity. Our results establish that loss-of-function mutations in LIPG lead to increased HDL-C levels and support the idea that inhibition of endothelial lipase may be an effective mechanism to raise HDL-C. PMID:19287092

  20. HDL functionality in reverse cholesterol transport--Challenges in translating data emerging from mouse models to human disease.

    PubMed

    Lee-Rueckert, Miriam; Escola-Gil, Joan Carles; Kovanen, Petri T

    2016-07-01

    Whereas LDL-derived cholesterol accumulates in atherosclerotic lesions, HDL particles are thought to facilitate removal of cholesterol from the lesions back to the liver thereby promoting its fecal excretion from the body. Because generation of cholesterol-loaded macrophages is inherent to atherogenesis, studies on the mechanisms stimulating the release of cholesterol from these cells and its ultimate excretion into feces are crucial to learn how to prevent lesion development or even induce lesion regression. Modulation of this key anti-atherogenic pathway, known as the macrophage-specific reverse cholesterol transport, has been extensively studied in several mouse models with the ultimate aim of applying the emerging knowledge to humans. The present review provides a detailed comparison and critical analysis of the various steps of reverse cholesterol transport in mouse and man. We attempt to translate this in vivo complex scenario into practical concepts, which could serve as valuable tools when developing novel HDL-targeted therapies. PMID:26968096

  1. HDL derived from the different phases of conjugated diene formation reduces membrane fluidity and contributes to a decrease in free cholesterol efflux from human THP-1 macrophages.

    PubMed

    Girona, Josefa; LaVille, Agnes E; Solà, Rosa; Motta, Claude; Masana, Lluís

    2003-09-22

    Oxidized HDL (ox-HDL) has been reported to reduce free cholesterol efflux from cells. In this study we investigate the effect of different stages of ox-HDL on macrophage membrane fluidity and its effect on free cholesterol efflux from macrophages as a cell function influenced by ox-HDL. HDL was oxidized by means of conjugated diene production using copper as a prooxidant. Fluidity of HDL and human THP-1 macrophage membranes was evaluated by changes in fluorescence anisotropy (r) by DPH probe where lower (r) values give higher fluidity. We found that ox-HDL derived from the propagation phase (PP-HDL) and the decomposition phase (DP-HDL) became less fluid ((r): 0.263+/-0.001, 0.279+/-0.002, respectively) than HDL from the lag phase (LP-HDL) and native HDL (nat-HDL) ((r): 0.206+/-0.001) (P<0.05). Macrophages incubated with PP-HDL and DP-HDL had less fluid membranes ((r): 0.231+/-0.001, 0.243+/-0.002, respectively) than those incubated with LP-HDL and nat-HDL ((r): 0.223+/-0.001) (P<0.05). Consequently, fluidity was reduced not only in ox-HDL but also in the cell membranes exposed to ox-HDL. A significant negative correlation was observed between macrophage membrane fluorescence anisotropy (r) and free cholesterol efflux from these cells (-0.876; P<0.05). Thus, lower membrane fluidity was associated with lower free cholesterol efflux from cells. In conclusion, the increase in the HDL oxidation process leads to a lost of macrophage membrane fluidity that could contribute to an explanation of the reduction of free cholesterol efflux from cells by ox-HDL. PMID:14499733

  2. A nutrient-dense, high-fiber, fruit-based supplement bar increases HDL cholesterol, particularly large HDL, lowers homocysteine, and raises glutathione in a 2-wk trial

    PubMed Central

    Mietus-Snyder, Michele L.; Shigenaga, Mark K.; Suh, Jung H.; Shenvi, Swapna V.; Lal, Ashutosh; McHugh, Tara; Olson, Don; Lilienstein, Joshua; Krauss, Ronald M.; Gildengoren, Ginny; McCann, Joyce C.; Ames, Bruce N.

    2012-01-01

    Dietary intake modulates disease risk, but little is known how components within food mixtures affect pathophysiology. A low-calorie, high-fiber, fruit-based nutrient-dense bar of defined composition (e.g., vitamins and minerals, fruit polyphenolics, β-glucan, docosahexaenoic acid) appropriate for deconstruction and mechanistic studies is described and evaluated in a pilot trial. The bar was developed in collaboration with the U.S. Department of Agriculture. Changes in cardiovascular disease and diabetes risk biomarkers were measured after 2 wk twice-daily consumption of the bar, and compared against baseline controls in 25 healthy adults. Plasma HDL-cholesterol (HDL-c) increased 6.2% (P=0.001), due primarily to a 28% increase in large HDL (HDL-L; P<0.0001). Total plasma homocysteine (Hcy) decreased 19% (P=0.017), and glutathione (GSH) increased 20% (P=0.011). The changes in HDL and Hcy are in the direction associated with decreased risk of cardiovascular disease and cognitive decline; increased GSH reflects improved antioxidant defense. Changes in biomarkers linked to insulin resistance and inflammation were not observed. A defined food-based supplement can, within 2 wk, positively impact metabolic biomarkers linked to disease risk. These results lay the groundwork for mechanistic/deconstruction experiments to identify critical bar components and putative synergistic combinations responsible for observed effects.—Mietus-Snyder, M. L., Shigenaga, M. K., Suh, J. H., Shenvi, S. V., Lal, A., McHugh, T., Olson, D., Lilienstein, J., Krauss, R. M., Gildengoren, G., McCann, J. C., Ames, B. N. A nutrient-dense, high-fiber, fruit-based supplement bar increases HDL cholesterol, particularly large HDL, lowers homocysteine, and raises glutathione in a 2-wk trial. PMID:22549511

  3. Enhanced vascular permeability facilitates entry of plasma HDL and promotes macrophage-reverse cholesterol transport from skin in mice.

    PubMed

    Kareinen, Ilona; Cedó, Lídia; Silvennoinen, Reija; Laurila, Pirkka-Pekka; Jauhiainen, Matti; Julve, Josep; Blanco-Vaca, Francisco; Escola-Gil, Joan Carles; Kovanen, Petri T; Lee-Rueckert, Miriam

    2015-02-01

    Reverse cholesterol transport (RCT) pathway from macrophage foam cells initiates when HDL particles cross the endothelium, enter the interstitial fluid, and induce cholesterol efflux from these cells. We injected [(3)H]cholesterol-loaded J774 macrophages into the dorsal skin of mice and measured the transfer of macrophage-derived [(3)H]cholesterol to feces [macrophage-RCT (m-RCT)]. Injection of histamine to the macrophage injection site increased locally vascular permeability, enhanced influx of intravenously administered HDL, and stimulated m-RCT from the histamine-treated site. The stimulatory effect of histamine on m-RCT was abolished by prior administration of histamine H1 receptor (H1R) antagonist pyrilamine, indicating that the histamine effect was H1R-dependent. Subcutaneous administration of two other vasoactive mediators, serotonin or bradykinin, and activation of skin mast cells to secrete histamine and other vasoactive compounds also stimulated m-RCT. None of the studied vasoactive mediators affected serum HDL levels or the cholesterol-releasing ability of J774 macrophages in culture, indicating that acceleration of m-RCT was solely due to increased availability of cholesterol acceptors in skin. We conclude that disruption of the endothelial barrier by vasoactive compounds enhances the passage of HDL into interstitial fluid and increases the rate of RCT from peripheral macrophage foam cells, which reveals a novel tissue cholesterol-regulating function of these compounds. PMID:25473102

  4. Evidence for a role of CETP in HDL remodeling and cholesterol efflux: role of cysteine 13 of CETP.

    PubMed

    Maugeais, Cyrille; Perez, Anne; von der Mark, Elisabeth; Magg, Christine; Pflieger, Philippe; Niesor, Eric J

    2013-11-01

    Cholesteryl ester transfer protein (CETP), a key regulator of high-density lipoprotein (HDL) metabolism, induces HDL remodeling by transferring lipids between apolipoprotein B-containing lipoproteins and HDL, and/or by promoting lipid transfer between HDL subparticles. In this study, we investigated the mechanism as to how CETP induces the generation of lipid-poor particles (pre-β-HDL) from HDL, which increases ATP-binding cassette transporter 1-mediated cholesterol efflux. This CETP-dependent HDL remodeling is enhanced by the CETP modulator dalcetrapib both in plasma and isolated HDL. The interaction of dalcetrapib with cysteine 13 of CETP is required, since this effect was abolished when using mutant CETP in which cysteine 13 was substituted for a serine residue. Other thiol-containing compounds were identified as CETP modulators interacting with cysteine 13 of CETP. In order to mimic dalcetrapib-bound CETP, mutant CETP proteins were prepared by replacing cysteine 13 with the bulky amino acid tyrosine or tryptophan. The resultant mutants showed virtually no CETP-dependent lipid transfer activity but demonstrated preserved CETP-dependent pre-β-HDL generation. Overall, these data demonstrate that the two functions of CETP i.e., cholesteryl ester transfer and HDL remodeling can be uncoupled by interaction of thiol-containing compounds with cysteine 13 of CETP or by introducing large amino acid residues in place of cysteine 13. PMID:23872476

  5. Reflex Testing for Carbohydrate-Deficient Transferrin (CDT) in Insurance Applicants with Elevated High Density Lipoprotein Cholesterol (HDL).

    PubMed

    Singh, Gurmukh

    2015-01-01

    Objectives .- Ascertain the utility of testing carbohydrate deficient transferrin (CDT) levels in insurance applicants with elevated high density lipoprotein cholesterol (HDL) levels. Background .- Chronic alcoholism is not uncommon and is a risk factor for health and longevity and thus of interest to providers of insurance. A number of tests serve as markers of alcohol use, eg, blood alcohol level, elevated liver enzymes, ethyl glucuronide in urine, whole blood associated aldehyde (WBAA), macrocytosis, elevated HDL, elevated CDT and others. WBAA and CDT are usually only done, if some other screening test suggests alcohol use. HDL testing is routinely done for assessing cardiac risk, however, chronic alcohol intake tends to raise HDL and some insurance providers reflex to CDT testing when HDL is elevated. Methods .- A number of the clients of Heritage Labs Inc. have rules in place to test for CDT levels in specimens showing elevated HDL levels. The commonest HDL level that serves as the trigger for reflex testing for CDT is 80mg/dL. The results of this practice were analyzed to assess the utility of reflex testing for CDT to identify chronic alcohol abusers among the applicants. Results .- In examining the results of CDT levels done as a reflex test due to elevated HDL levels, about 2% of the applicants, 0.7% of women and 3% of men, tested positive for elevated CDT levels. Conclusions .- The incidence of elevated CDT levels is high enough to warrant routinely testing for this analyte in applicants, especially men, with high HDL levels. PMID:27584808

  6. A nutrient-dense, high-fiber, fruit-based supplement bar increases HDL cholesterol, particularly large HDL, lowers homocysteine, and raises glutathione in a 2-wk trial.

    PubMed

    Mietus-Snyder, Michele L; Shigenaga, Mark K; Suh, Jung H; Shenvi, Swapna V; Lal, Ashutosh; McHugh, Tara; Olson, Don; Lilienstein, Joshua; Krauss, Ronald M; Gildengoren, Ginny; McCann, Joyce C; Ames, Bruce N

    2012-08-01

    Dietary intake modulates disease risk, but little is known how components within food mixtures affect pathophysiology. A low-calorie, high-fiber, fruit-based nutrient-dense bar of defined composition (e.g., vitamins and minerals, fruit polyphenolics, β-glucan, docosahexaenoic acid) appropriate for deconstruction and mechanistic studies is described and evaluated in a pilot trial. The bar was developed in collaboration with the U.S. Department of Agriculture. Changes in cardiovascular disease and diabetes risk biomarkers were measured after 2 wk twice-daily consumption of the bar, and compared against baseline controls in 25 healthy adults. Plasma HDL-cholesterol (HDL-c) increased 6.2% (P=0.001), due primarily to a 28% increase in large HDL (HDL-L; P<0.0001). Total plasma homocysteine (Hcy) decreased 19% (P=0.017), and glutathione (GSH) increased 20% (P=0.011). The changes in HDL and Hcy are in the direction associated with decreased risk of cardiovascular disease and cognitive decline; increased GSH reflects improved antioxidant defense. Changes in biomarkers linked to insulin resistance and inflammation were not observed. A defined food-based supplement can, within 2 wk, positively impact metabolic biomarkers linked to disease risk. These results lay the groundwork for mechanistic/deconstruction experiments to identify critical bar components and putative synergistic combinations responsible for observed effects. PMID:22549511

  7. Marrubium vulgare extract inhibits human-LDL oxidation and enhances HDL-mediated cholesterol efflux in THP-1 macrophage.

    PubMed

    Berrougui, Hicham; Isabelle, Maxim; Cherki, Mounia; Khalil, Abdelouahed

    2006-12-14

    The objective of the present study was to elucidate the beneficial properties of aqueous extracts of Marrubium vulgare (AEM) towards cardiovascular disease by protecting human-LDL against lipid peroxidation and promoting HDL-mediated cholesterol efflux. Human-LDL were oxidised by incubation with CuSO(4) in the presence of increased concentrations of AEM (0-100 microg/ml). LDL lipid peroxidation was evaluated by conjugated diene formation, vitamin E disappearance as well as LDL-electrophoretic mobility. HDL-mediated cholesterol efflux assay was carried out in human THP-1 macrophages. Incubation of LDL with AEM significantly prolonged the lag phase (P=0.014), lowered the progression rate of lipid peroxidation (P=0.004), reduced the disappearance of vitamin E and the electrophoretic mobility in a dose-dependent manner. Also, incubation of HDL with AEM significantly increased HDL-mediated cholesterol efflux from THP-1 macrophages implicating an independent ATP binding cassette A1 (ABCA1) pathways. Our findings suggest that M. vulgare provides a source of natural antioxidants, which inhibit LDL oxidation and enhance reverse cholesterol transport and thus can prevent cardiovascular diseases development. These antioxidant properties increase the anti-atherogenic potential of HDL. PMID:17045616

  8. Gene Therapy Targeting LDL Cholesterol but not HDL Cholesterol Induces Regression of Advanced Atherosclerosis in a Mouse Model of Familial Hypercholesterolemia

    PubMed Central

    Li, Rongying; Chao, Hsu; Ko, Kerry W.S.; Cormier, Shelley; Dieker, Carrie; Nour, Elie A.; Wang, Shining; Chan, Lawrence; Oka, Kazuhiro

    2012-01-01

    A reduction in low density lipoprotein (LDL) cholesterol or an increase in high density lipoprotein (HDL) cholesterol can reduce the risk of development of atherosclerosis through overlapping or independent mechanisms. However, the clinical outcome of combined therapy remains in debate. In this study, we first characterized effects of various constructs of helper-dependent adenoviral vector (HDAd) expressing apolipoprotein E3 or LDL receptor (LDLR) in vivo on plasma cholesterol levels. Using this information, we designed experiments and compared the effects of long-term (28 weeks) LDL cholesterol lowering or raising HDL cholesterol, or a combination of both on advanced atherosclerosis in Ldlr−/− mice, a mouse model of familial hypercholesterolemia. Our major findings are: (i) various factors influence in vivo functional activity, which appear to be context dependent; (ii) apolipoprotein AI (APOAI) gene transfer, which raises HDL cholesterol, retards progression of atherosclerosis but does not induce regression; (iii) LDLR or LDLR and APOAI combination gene therapy induces lesion regression; however, LDLR gene transfer accounts for the majority of the effects of combined gene therapy; (iv) LDLR gene therapy reduces interleukin-7, which is a master regulator of T-cell homeostasis, but APOAI gene therapy does not. These results indicate that LDL cholesterol lowering is effective and sufficient in protection against atherosclerosis and induction of regression of pre-existing atherosclerosis. PMID:23106034

  9. Unacylated Ghrelin is associated with the isolated low HDL-cholesterol obese phenotype independently of insulin resistance and CRP level

    PubMed Central

    2012-01-01

    Background Low plasma high-density lipoprotein-cholesterol (HDL-c) level is commonly present in obesity and represents an independent cardiovascular risk factor. However, obese patients are a very heterogeneous population and the factors and mechanisms that contribute to low HDL-c remain unclear. The aim of this study was to investigate the association between plasma HDL-c levels and plasma hormonal profiles (insulin, adiponectin, resistin, leptin and ghrelin) in subsets of class II and III obese patients. Methods Fasting plasma levels of glucose, total cholesterol, LDL-c, HDL-c, triglycerides, free fatty acids, apoproteins A-I, B-100, B-48, C-II, C-III, insulin, hs-CRP, adipocytokines (adiponectin, resistin, leptin), unacylated ghrelin, body composition (DXA) and resting energy expenditure were measured in three subsets of obese patients: 17 metabolically abnormal obese (MAO) with metabolic syndrome and the typical metabolic dyslipidaemia, 21 metabolically healthy obese (MHO) without metabolic syndrome and with a normal lipid profile, and 21 isolated low HDL-c obese patients (LHO) without metabolic syndrome, compared to 21 healthy lean control subjects. Results Insulin resistance (HOMA-IR) increased gradually from MHO to LHO and from LHO to MAO patients (p < 0.05 between MHO and MAO and between LHO and MAO). In multiple regression analysis, serum unacylated ghrelin levels were only positively and independently associated with HDL-c levels in the LHO group (p = 0.032). Conclusions These results suggest that, in class II and III obese patients with an isolated low HDL-c phenotype, unacylated ghrelin is positively associated with HDL-c level independently of insulin resistance and CRP levels, and may contribute to the highly prevalent low HDL-c level seen in obesity. PMID:22413940

  10. Variation in the Phosphoinositide 3-Kinase Gamma Gene Affects Plasma HDL-Cholesterol without Modification of Metabolic or Inflammatory Markers

    PubMed Central

    Kächele, Martin; Hennige, Anita M.; Machann, Jürgen; Hieronimus, Anja; Lamprinou, Apostolia; Machicao, Fausto; Schick, Fritz; Fritsche, Andreas; Stefan, Norbert; Nürnberg, Bernd; Häring, Hans-Ulrich; Staiger, Harald

    2015-01-01

    Objective Phosphoinositide 3-kinase γ (PI3Kγ) is a G-protein-coupled receptor-activated lipid kinase mainly expressed in leukocytes and cells of the cardiovascular system. PI3Kγ plays an important signaling role in inflammatory processes. Since subclinical inflammation is a hallmark of atherosclerosis, obesity-related insulin resistance, and pancreatic β-cell failure, we asked whether common genetic variation in the PI3Kγ gene (PIK3CG) contributes to body fat content/distribution, serum adipokine/cytokine concentrations, alterations in plasma lipid profiles, insulin sensitivity, insulin release, and glucose homeostasis. Study Design Using a tagging single nucleotide polymorphism (SNP) approach, we analyzed genotype-phenotype associations in 2,068 German subjects genotyped for 10 PIK3CG SNPs and characterized by oral glucose tolerance tests. In subgroups, data from hyperinsulinaemic-euglycaemic clamps, magnetic resonance spectroscopy of the liver, whole-body magnetic resonance imaging, and intravenous glucose tolerance tests were available, and peripheral blood mononuclear cells (PBMCs) were used for gene expression analysis. Results After appropriate adjustment, none of the PIK3CG tagging SNPs was significantly associated with body fat content/distribution, adipokine/cytokine concentrations, insulin sensitivity, insulin secretion, or blood glucose concentrations (p>0.0127, all; Bonferroni-corrected α-level: 0.0051). However, six non-linked SNPs displayed at least nominal associations with plasma HDL-cholesterol concentrations, two of them (rs4288294 and rs116697954) reaching the level of study-wide significance (p = 0.0003 and p = 0.0004, respectively). More precisely, rs4288294 and rs116697954 influenced HDL2-, but not HDL3-, cholesterol. With respect to the SNPs’ in vivo functionality, rs4288294 was significantly associated with PIK3CG mRNA expression in PBMCs. Conclusions We could demonstrate that common genetic variation in the PIK3CG locus, possibly

  11. Spontaneous remodeling of HDL particles at acidic pH enhances their capacity to induce cholesterol efflux from human macrophage foam cells[S

    PubMed Central

    Nguyen, Su Duy; Öörni, Katariina; Lee-Rueckert, Miriam; Pihlajamaa, Tero; Metso, Jari; Jauhiainen, Matti; Kovanen, Petri T.

    2012-01-01

    HDL particles may enter atherosclerotic lesions having an acidic intimal fluid. Therefore, we investigated whether acidic pH would affect their structural and functional properties. For this purpose, HDL2 and HDL3 subfractions were incubated for various periods of time at different pH values ranging from 5.5 to 7.5, after which their protein and lipid compositions, size, structure, and cholesterol efflux capacity were analyzed. Incubation of either subfraction at acidic pH induced unfolding of apolipoproteins, which was followed by release of lipid-poor apoA-I and ensuing fusion of the HDL particles. The acidic pH-modified HDL particles exhibited an enhanced ability to promote cholesterol efflux from cholesterol-laden primary human macrophages. Importantly, treatment of the acidic pH-modified HDL with the mast cell-derived protease chymase completely depleted the newly generated lipid-poor apoA-I, and prevented the acidic pH-dependent increase in cholesterol efflux. The above-found pH-dependent structural and functional changes were stronger in HDL3 than in HDL2. Spontaneous acidic pH-induced remodeling of mature spherical HDL particles increases HDL-induced cholesterol efflux from macrophage foam cells, and therefore may have atheroprotective effects. PMID:22855736

  12. Identification of four novel genes contributing to familial elevated plasma HDL cholesterol in humans.

    PubMed

    Singaraja, Roshni R; Tietjen, Ian; Hovingh, G Kees; Franchini, Patrick L; Radomski, Chris; Wong, Kenny; vanHeek, Margaret; Stylianou, Ioannis M; Lin, Linus; Wang, Liangsu; Mitnaul, Lyndon; Hubbard, Brian; Winther, Michael; Mattice, Maryanne; Legendre, Annick; Sherrington, Robin; Kastelein, John J; Akinsanya, Karen; Plump, Andrew; Hayden, Michael R

    2014-08-01

    While genetic determinants strongly influence HDL cholesterol (HDLc) levels, most genetic causes underlying variation in HDLc remain unknown. We aimed to identify novel rare mutations with large effects in candidate genes contributing to extreme HDLc in humans, utilizing family-based Mendelian genetics. We performed next-generation sequencing of 456 candidate HDLc-regulating genes in 200 unrelated probands with extremely low (≤10th percentile) or high (≥90th percentile) HDLc. Probands were excluded if known mutations existed in the established HDLc-regulating genes ABCA1, APOA1, LCAT, cholesteryl ester transfer protein (CETP), endothelial lipase (LIPG), and UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2 (GALNT2). We identified 93 novel coding or splice-site variants in 72 candidate genes. Each variant was genotyped in the proband's family. Family-based association analyses were performed for variants with sufficient power to detect significance at P < 0.05 with a total of 627 family members being assessed. Mutations in the genes glucokinase regulatory protein (GCKR), RNase L (RNASEL), leukocyte immunoglobulin-like receptor 3 (LILRA3), and dynein axonemal heavy chain 10 (DNAH10) segregated with elevated HDLc levels in families, while no mutations associated with low HDLc. Taken together, we have identified mutations in four novel genes that may play a role in regulating HDLc levels in humans. PMID:24891332

  13. Genetic-epidemiological evidence on genes associated with HDL cholesterol levels: A systematic in-depth review

    PubMed Central

    Boes, Eva; Coassin, Stefan; Kollerits, Barbara; Heid, Iris M.; Kronenberg, Florian

    2009-01-01

    High-density lipoprotein (HDL) particles exhibit multiple antiatherogenic effects. They are key players in the reverse cholesterol transport which shuttles cholesterol from peripheral cells (e.g. macrophages) to the liver or other tissues. This complex process is thought to represent the basis for the antiatherogenic properties of HDL particles. The amount of cholesterol transported in HDL particles is measured as HDL cholesterol (HDLC) and is inversely correlated with the risk for coronary artery disease: an increase of 1 mg/dL of HDLC levels is associated with a 2% and 3% decrease of the risk for coronary artery disease in men and women, respectively. Genetically determined conditions with high HDLC levels (e.g. familial hyperalphalipoproteinemia) often coexist with longevity, and higher HDLC levels were found among healthy elderly individuals. HDLC levels are under considerable genetic control with heritability estimates of up to 80%. The identification and characterization of genetic variants associated with HDLC concentrations can provide new insights into the background of longevity. This review provides an extended overview on the current genetic-epidemiological evidence from association studies on genes involved in HDLC metabolism. It provides a path through the jungle of association studies which are sometimes confusing due to the varying and sometimes erroneous names of genetic variants, positions and directions of associations. Furthermore, it reviews the recent findings from genome-wide association studies which have identified new genes influencing HDLC levels. The yet identified genes together explain only a small amount of less than 10% of the HDLC variance, which leaves an enormous room for further yet to be identified genetic variants. This might be accomplished by large population-based genome-wide meta-analyses and by deep-sequencing approaches on the identified genes. The resulting findings will probably result in a re-drawing and extension of

  14. HDL cholesterol: all hope is not lost after the torcetrapib setback--emerging therapeutic strategies on the horizon.

    PubMed

    Verma, Nitin; Figueredo, Vincent M

    2014-01-01

    Lowering low-density lipoprotein cholesterol (LDL) has been definitely shown to reduce cardiovascular events and improve clinical outcomes in the literature. As a result, LDL lowering has become the cornerstone of therapeutic approaches to cardiovascular disease prevention. Recently, there has been a focus on targeting other lipid fractions to improve the clinical risk profile of patients. Raising high-density lipoprotein (HDL) has received considerable attention. Low HDL levels are often seen in combination with elevated triglyceride levels. New therapeutic modalities are being developed to increase HDL levels. Recent failure of agents such as cholesteryl ester transferase protein inhibitor torcetrapib has highlighted the importance of measuring functionality of HDL particles and not just focus quantitatively on HDL-C levels. The heterogeneity of HDL within the systemic circulation results from constant remodeling of particles in response to several factors. Established dyslipidemia therapies such as stains, fibrates, and niacin have already been well known in the literature to have a substantial benefit. Lifestyle changes such as smoking cessation and moderate alcohol consumption have also shown to have some benefit. Several novel HDL therapies are currently being developed, but only the cholesteryl ester transferase protein inhibitors have received considerable attention. Although torcetrapib has received some negative attention due to adverse effects, this overall class of therapeutic agents still holds a lot of promise. Newer agents without the concerned toxicities are currently being developed. ApoA-1-related peptides, peroxisome proliferator-activated receptor agonists, endothelial lipase inhibitors, and liver X receptor agonists are some of the other novel agents currently in various stages of development. PMID:22967983

  15. Beneficial effects of artichoke leaf extract supplementation on increasing HDL-cholesterol in subjects with primary mild hypercholesterolaemia: a double-blind, randomized, placebo-controlled trial.

    PubMed

    Rondanelli, Mariangela; Giacosa, Attilio; Opizzi, Annalisa; Faliva, Milena Anna; Sala, Patrizio; Perna, Simone; Riva, Antonella; Morazzoni, Paolo; Bombardelli, Ezio

    2013-02-01

    The aim of this study was to evaluate the effects of artichoke leaf extract (ALE) supplementation (250 mg, 2 b.i.d.) on the lipid pattern. A randomized, double-blind, placebo-controlled clinical trial was performed on 92 overweight subjects with primary mild hypercholesterolaemia for 8 weeks. Forty-six subjects were randomized to supplementation (age: 54.2 ± 6.6 years, body mass index (BMI): 25.8 ± 3.9 kg/m(2), male/female: 20/26) and 46 subjects to placebo (age: 53.8 ± 9.0 years, BMI: 24.8 ± 1.6 kg/m(2), male/female: 21/25). Verum supplementation was associated with a significant increase in mean high-density lipoprotein (HDL)-cholesterol (p < 0.001) and in mean change in HDL-cholesterol (HDL-C) (p = 0.004). A significantly decreased difference was also found for the mean change in total cholesterol (p = 0.033), low-density lipoprotein (LDL)-cholesterol (p < 0.001), total cholesterol/HDL ratio (p < 0.001) and LDL/HDL ratio (p < 0.001), when verum and placebo treatment were compared. These results indicate that ALE could play a relevant role in the management of mild hypercholesterolaemia, favouring in particular the increase in HDL-C, besides decreasing total cholesterol and LDL-cholesterol. PMID:22746542

  16. Effects of extended-release niacin/laropiprant, simvastatin, and the combination on correlations between apolipoprotein B, LDL cholesterol, and non-HDL cholesterol in patients with dyslipidemia

    PubMed Central

    Farnier, Michel; Chen, Erluo; Johnson-Levonas, Amy O; McCrary Sisk, Christine; Mitchel, Yale B

    2014-01-01

    Background Statins modify correlations between apolipoprotein B (apoB) and low-density lipoprotein cholesterol (LDL-C) and apoB and non-high-density lipoprotein cholesterol (non-HDL-C); however, it is not known whether niacin-based therapies have similar effects. Objective To evaluate the effects of extended-release niacin (ERN)/laropiprant (LRPT), simvastatin (SIMVA), and ERN/LRPT + SIMVA (pooled ERN/LRPT + SIMVA) on apoB:LDL-C and apoB:non-HDL-C correlations in dyslipidemic patients. Methods This post-hoc analysis of a 12-week study evaluated the apoB:LDL-C and apoB:non-HDL-C correlations in dyslipidemic patients randomized equally to double-blind ERN/LRPT 1 g/20 mg, SIMVA 10, 20, or 40 mg, or ERN/LRPT 1 g/20 mg + SIMVA (10, 20, or 40 mg) once daily for 4 weeks. At week 5, doses were doubled in all groups except SIMVA 40 mg (unchanged) and ERN/LRPT 1 g/20 mg + SIMVA 40 mg (switched to ERN/LRPT 2 g/40 mg + SIMVA 40 mg). Simple linear regression analyses were used to calculate LDL-C and non-HDL-C levels corresponding to known apoB baseline values (ie, in untreated patients) and following treatment. Results The apoB:LDL-C and apoB:non-HDL-C correlations were higher and the predicted LDL-C and non-HDL-C levels for a known apoB value were considerably lower following treatment with ERN/LRPT, SIMVA and ERN/LRPT + SIMVA compared with untreated patients at baseline. Conclusion Greater dissociation of apoB, LDL-C, and non-HDL-C targets occur following treatment with ERN/LRPT, SIMVA, and ERN/LRPT + SIMVA in patients with dyslipidemia. The achievement of more aggressive LDL-C and non-HDL-C goals in patients receiving lipid-modifying therapy may further reduce coronary risk by normalizing apoB-containing atherogenic lipoproteins. PMID:24855368

  17. Impairment of the ABCA1 and SR-BI-mediated cholesterol efflux pathways and HDL anti-inflammatory activity in Alzheimer's disease.

    PubMed

    Khalil, Abdelouahed; Berrougui, Hicham; Pawelec, Graham; Fulop, Tamas

    2012-01-01

    The aim of our study was to investigate the effect of Alzheimer's disease (AD) on the cholesterol efflux capacity and anti-inflammatory activity of HDL. HDL and apoA-I were isolated from 20 healthy subjects and from 39 AD patients. Our results showed that serum- and HDL-mediated cholesterol efflux is significantly impaired in AD patients. This impairment of serum and HDL cholesterol efflux capacity was significantly inversely correlated to the AD severity as evaluated by MMSE scores. Results obtained from SR-BI-enriched Fu5AH and ABCA1-enriched J774 cells revealed that AD impaired the interaction of HDL and apoA-I with both the ABCA1 transporter and SR-BI receptor. Purified apoA-I from AD patients also failed to remove free excess cholesterol from ABCA1-enriched J774 macrophages. Interestingly, the decrease in plasma α-tocopherol content and the increase in MDA formation and HDL relative electrophoretic mobility indicated that AD patients had higher levels of oxidative stress. The anti-inflammatory activity of HDL was also significantly lower in AD patients as measured by the level of ICAM-1 expression. In conclusion, our study provides evidence for the first time that the functionality of HDL is impaired in AD and that this alteration might be caused by AD-associated oxidative stress and inflammation. PMID:22178419

  18. Cholesterol stimulation of HDL binding to human endothelial cells EAhy 926 and skin fibroblasts: evidence for a mechanism independent of cellular metabolism.

    PubMed

    Bernini, F; Bellosta, S; Corsini, A; Maggi, F M; Fumagalli, R; Catapano, A L

    1991-04-24

    The properties of the HDL binding site on the permanent human cell line EAhy 926 were studied. This cell line presents with highly differentiated functions of vascular endothelium. EAhy 926 cells possess HDL3 saturable binding sites with a Kd of about 20 micrograms/ml, which were up-regulated by cholesterol and were pronase- and EDTA-insensitive. Furthermore, HDL3 promoted cholesterol efflux from EAhy 926 cells in a dose-dependent manner. Thus, the HDL-binding site in EAhy 926 cells is similar to that present in fibroblasts, smooth muscle cells and endothelial cells. Up-regulation of HDL binding by cholesterol did not require de novo synthesis of HDL 'receptor' protein, as shown by the lack of effect of cycloheximide and alpha-amanitin and also occurred in fixed, non-living cells. Similar results were obtained using human skin fibroblasts. From these data we conclude that: (a) EAhy 926 cells are a good model for studying the HDL interaction with endothelial cells; (b) a mechanism independent of cellular metabolism is involved in the cholesterol-mediated up-regulation of HDL binding sites in EAhy 926 cells and human skin fibroblasts. PMID:1851638

  19. A thiocarbamate inhibitor of endothelial lipase raises HDL cholesterol levels in mice.

    PubMed

    Greco, M N; Connelly, M A; Leo, G C; Olson, M W; Powell, E; Huang, Z; Hawkins, M; Smith, C; Schalk-Hihi, C; Darrow, A L; Xin, H; Lang, W; Damiano, B P; Hlasta, D J

    2013-05-01

    By screening directed libraries of serine hydrolase inhibitors using the cell surface form of endothelial lipase (EL), we identified a series of carbamate-derived (EL) inhibitors. Compound 3 raised plasma HDL-C levels in the mouse, and a correlation was found between HDL-C and plasma compound levels. Spectroscopic and kinetic studies support a covalent mechanism of inhibition. Our findings represent the first report of EL inhibition as an effective means for increasing HDL-C in an in vivo model. PMID:23528297

  20. Cynanchum wilfordii ameliorates hypertension and endothelial dysfunction in rats fed with high fat/cholesterol diets.

    PubMed

    Choi, Deok Ho; Lee, Yun Jung; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2012-02-01

    Hypercholesterolemia increases the incidence of atherosclerosis and its pathologic complications. This study was performed to test the effect of an ethanol extract of Cynanchum wilfordii (ECW) on vascular dysfunction in rats fed with high fat/cholesterol diets (HFCD). Male rats were fed a HFCD consisting of 7.5% cocoa butter and 1.25% cholesterol, with or without 100, 200 mg/day/kg ECW. Rats fed with HFCD increased body weight associated with an increase in plasma low-density lipoprotein (LDL) cholesterol level. Chronic ECW treatment in HFCD-fed rats lessened LDL cholesterol and triglyceride levels as well as elevated high-density lipoprotein (HDL) cholesterol. Chronic ECW treatment recovered the HFCD-induced increase in systolic blood pressure, maintained smooth and soft intima endothelial layers by the decrease of intima-media thickness. ECW significantly recovered the diet-induced decrease in vasorelaxation to acetylcholine, high-dose ECW apparently increased vasorelaxation response to sodium nitroprusside in rats fed with HFCD. ECW clearly restored the HFCD-induced reduction in endothelial nitric oxide (NO) synthase expression and Akt expression levels in aortic tissue, leading to improve endothelial function through an increase in endothelium-derived NO production. Furthermore, treatment of ECW significantly recovered the HFCD-induced decrease in aortic cGMP levels in rats. These findings suggest that ECW ameliorates hypertension and endothelial dysfunction via improvement of NO/cGMP signaling pathway in aortic tissue of rats fed with HFCD, suggesting a vascular protective role for this herb in the treatment and prevention of atherosclerotic vascular disease. PMID:22176675

  1. Serum amyloid A impairs the antiinflammatory properties of HDL

    PubMed Central

    Han, Chang Yeop; Tang, Chongren; Guevara, Myriam E.; Wei, Hao; Wietecha, Tomasz; Shao, Baohai; Subramanian, Savitha; Omer, Mohamed; Wang, Shari; O’Brien, Kevin D.; Marcovina, Santica M.; Wight, Thomas N.; Vaisar, Tomas; de Beer, Maria C.; de Beer, Frederick C.; Osborne, William R.; Elkon, Keith B.; Chait, Alan

    2015-01-01

    HDL from healthy humans and lean mice inhibits palmitate-induced adipocyte inflammation; however, the effect of the inflammatory state on the functional properties of HDL on adipocytes is unknown. Here, we found that HDL from mice injected with AgNO3 fails to inhibit palmitate-induced inflammation and reduces cholesterol efflux from 3T3-L1 adipocytes. Moreover, HDL isolated from obese mice with moderate inflammation and humans with systemic lupus erythematosus had similar effects. Since serum amyloid A (SAA) concentrations in HDL increase with inflammation, we investigated whether elevated SAA is a causal factor in HDL dysfunction. HDL from AgNO3-injected mice lacking Saa1.1 and Saa2.1 exhibited a partial restoration of antiinflammatory and cholesterol efflux properties in adipocytes. Conversely, incorporation of SAA into HDL preparations reduced antiinflammatory properties but not to the same extent as HDL from AgNO3-injected mice. SAA-enriched HDL colocalized with cell surface–associated extracellular matrix (ECM) of adipocytes, suggesting impaired access to the plasma membrane. Enzymatic digestion of proteoglycans in the ECM restored the ability of SAA-containing HDL to inhibit palmitate-induced inflammation and cholesterol efflux. Collectively, these findings indicate that inflammation results in a loss of the antiinflammatory properties of HDL on adipocytes, which appears to partially result from the SAA component of HDL binding to cell-surface proteoglycans, thereby preventing access of HDL to the plasma membrane. PMID:26642365

  2. Serum amyloid A impairs the antiinflammatory properties of HDL.

    PubMed

    Han, Chang Yeop; Tang, Chongren; Guevara, Myriam E; Wei, Hao; Wietecha, Tomasz; Shao, Baohai; Subramanian, Savitha; Omer, Mohamed; Wang, Shari; O'Brien, Kevin D; Marcovina, Santica M; Wight, Thomas N; Vaisar, Tomas; de Beer, Maria C; de Beer, Frederick C; Osborne, William R; Elkon, Keith B; Chait, Alan

    2016-01-01

    HDL from healthy humans and lean mice inhibits palmitate-induced adipocyte inflammation; however, the effect of the inflammatory state on the functional properties of HDL on adipocytes is unknown. Here, we found that HDL from mice injected with AgNO3 fails to inhibit palmitate-induced inflammation and reduces cholesterol efflux from 3T3-L1 adipocytes. Moreover, HDL isolated from obese mice with moderate inflammation and humans with systemic lupus erythematosus had similar effects. Since serum amyloid A (SAA) concentrations in HDL increase with inflammation, we investigated whether elevated SAA is a causal factor in HDL dysfunction. HDL from AgNO3-injected mice lacking Saa1.1 and Saa2.1 exhibited a partial restoration of antiinflammatory and cholesterol efflux properties in adipocytes. Conversely, incorporation of SAA into HDL preparations reduced antiinflammatory properties but not to the same extent as HDL from AgNO3-injected mice. SAA-enriched HDL colocalized with cell surface-associated extracellular matrix (ECM) of adipocytes, suggesting impaired access to the plasma membrane. Enzymatic digestion of proteoglycans in the ECM restored the ability of SAA-containing HDL to inhibit palmitate-induced inflammation and cholesterol efflux. Collectively, these findings indicate that inflammation results in a loss of the antiinflammatory properties of HDL on adipocytes, which appears to partially result from the SAA component of HDL binding to cell-surface proteoglycans, thereby preventing access of HDL to the plasma membrane. PMID:26642365

  3. A Common CNR1 (Cannabinoid Receptor 1) Haplotype Attenuates the Decrease in HDL Cholesterol That Typically Accompanies Weight Gain

    PubMed Central

    Feng, Qiping; Jiang, Lan; Berg, Richard L.; Antonik, Melissa; MacKinney, Erin; Gunnell-Santoro, Jennifer; McCarty, Catherine A.; Wilke, Russell A.

    2010-01-01

    We have previously shown that genetic variability in CNR1 is associated with low HDL dyslipidemia in a multigenerational obesity study cohort of Northern European descent (209 families, median  = 10 individuals per pedigree). In order to assess the impact of CNR1 variability on the development of dyslipidemia in the community, we genotyped this locus in all subjects with class III obesity (body mass index >40 kg/m2) participating in a population-based biobank of similar ancestry. Twenty-two haplotype tagging SNPs, capturing the entire CNR1 gene locus plus 15 kb upstream and 5 kb downstream, were genotyped and tested for association with clinical lipid data. This biobank contains data from 645 morbidly obese study subjects. In these subjects, a common CNR1 haplotype (H3, frequency 21.1%) is associated with fasting TG and HDL cholesterol levels (p = 0.031 for logTG; p = 0.038 for HDL-C; p = 0.00376 for log[TG/HDL-C]). The strength of this relationship increases when the data are adjusted for age, gender, body mass index, diet and physical activity. Mean TG levels were 160±70, 155±70, and 120±60 mg/dL for subjects with 0, 1, and 2 copies of the H3 haplotype. Mean HDL-C levels were 45±10, 47±10, and 48±9 mg/dL, respectively. The H3 CNR1 haplotype appears to exert a protective effect against development of obesity-related dyslipidemia. PMID:21209828

  4. Cholesteryl Ester Transfer Protein Genetic Polymorphisms, HDL Cholesterol, and Subclinical Cardiovascular Disease in the Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    Tsai, Michael Y.; Johnson, Craig; Kao, W.H. Linda; Sharrett, A. Richey; Arends, Valerie L.; Kronmal, Richard; Jenny, Nancy Swords; Jacobs, David R.; Arnett, Donna; O’Leary, Daniel; Post, Wendy

    2013-01-01

    The cholesteryl ester transport protein (CETP) plays a key role in high-density lipoprotein (HDL) metabolism. Genetic variants that alter CETP activity and concentration may cause significant alterations in HDL-cholesterol (HDL-C) concentration; however, controversies remain about whether these genetic variants are associated with atherosclerosis. We genotyped the CETP R451Q, A373P, -629C/A, Taq1B, and -2505C/A polymorphisms in a cohort of Caucasian, Chinese, African-American, and Hispanic individuals within the Multi-Ethnic Study of Atherosclerosis. Genotypes were examined in relationship to HDL-C, CETP activity, CETP concentration, and three measures of subclinical cardiovascular disease (CVD): coronary artery calcium (CAC) measured by fast CT scanning, and carotid intimal-medial thickness (IMT) and carotid artery plaque, measured by ultrasonography. Carriers of the 451Q and 373P alleles have significantly higher CETP concentration (22.4% and 19.5%, respectively; p<0.001) and activity (13.1% and 9.4%, respectively; p<0.01) and lower HDL-C (5.6% and 6.0%, respectively; p<0.05). The minor alleles of the R451Q and A373P polymorphisms are associated with the presence of CAC, even after adjusting for CVD risk factors and HDL-C (p=0.006 and p=0.01, respectively). The R451Q polymorphism is also associated with presence of carotid artery plaque (p=0.036). Neither polymorphism is associated with common or internal carotid IMT. We confirmed that the -629A, Taq1B B2, and -2505A alleles are significantly associated with lower CETP concentration (20.8%, 25.0%, and 23.7%, respectively; p<0.001) and activity (14.8%, 19.8%, and 18.4%, respectively; p<0.001) and higher HDL-C concentration (9.7%, 11.5%, and 10.4%, respectively; p<0.01). However, we did not find any associations between these non-coding polymorphisms and subclinical CVD. PMID:18243217

  5. The importance of low serum levels of high-density lipoprotein cholesterol (HDL-C) as a cardiovascular risk factor.

    PubMed

    Espinosa-Larrañaga, Francisco; Vejar-Jalaf, Margarita; Medina-Santillán, Roberto

    2005-10-01

    In order to discuss and establish a joint position on the treatment of low serum levels of high-density lipoprotein cholesterol (HDL-C), a group of experts involved in the care of people with dyslipidaemia and at risk of cardiovascular disease met in Miami, Florida, U.S., on 5th and 6th March 2005. The experts came from the Latin American countries Argentina, Brazil, Chile, Colombia, Ecuador, Guatemala, Mexico and Venezuela and had at least five years of experience in the care of patients with dyslipidaemia and low HDL-C. The main objective of the meeting was to discuss and propose a treatment for low serum HDL-C levels as a cardiovascular risk factor in patients and to create a group of useful recommendations in this regard, applicable to the daily clinical practice of physicians dealing with patients with dyslipidaemia and cardiovascular disease. This document describes the methodology developed to obtain these recommendations and presents the results of this academic meeting. PMID:16342610

  6. The effect of quitting smoking on HDL-cholesterol - a review based on within-subject changes

    PubMed Central

    2013-01-01

    A higher concentration of high density lipoprotein cholesterol (HDL-C) in ex-smokers than smokers has consistently been observed. Better evidence of quitting effects comes from within-subject changes. We extend an earlier meta-analysis to quantify the reduction, and investigate variation by time quit and other factors. We conducted Medline and Cochrane searches for studies measuring HDL-C in subjects while still smoking and later having quit. Using unweighted and inverse-variance weighted regression analysis, we related changes (in mmol/l) to intra-measurement period, and estimated time quit, and to study type, location and start year, age, sex, product smoked, validation of quitting, baseline HDL-C, baseline and change in weight/BMI, and any study constraints on diet or exercise. Forty-five studies were identified (17 Europe, 16 North America, 11 Asia, 1 Australia). Thirteen were observational, giving changes over at least 12 months, with most involving >1000 subjects. Others were smoking cessation trials, 12 randomized and 20 non-randomized. These were often small (18 of <100 subjects) and short (14 of <10 weeks, the longest a year). Thirty studies provided results for only one time interval. From 94 estimates of HDL-C change, the unweighted mean was 0.107 (95% CI 0.085-0.128). The weighted mean 0.060 (0.044 to 0.075) was lower, due to smaller estimates in longer term studies. Weighted means varied by time quit (0.083, 0.112, 0.111, 0.072, 0.058 and 0.040 for <3, 3 to <6, 6 to <13, 13 to <27, 27 to <52 and 52+ weeks, p=0.006). After adjustment for time quit, estimates varied by study constraint on diet/exercise (p=0.003), being higher in studies requiring subjects to maintain their pre-quitting habits, but no other clear differences were seen, with significant (p<0.05) increases following quitting being evident in all subgroups studied, except where data were very limited. For both continuing and never smokers, the data are (except for two large studies

  7. Adverse effect of pregnancy on high density lipoprotein (HDL) cholesterol in young adult women. The CARDIA Study. Coronary Artery Risk Development in Young Adults.

    PubMed

    Lewis, C E; Funkhouser, E; Raczynski, J M; Sidney, S; Bild, D E; Howard, B V

    1996-08-01

    The authors analyzed data from the Coronary Artery Risk Development in Young Adults (CARDIA) Study in order to examine associations between parity and lipoproteins. Of 2,787 women recruited in 1985-1986, 2,534 (91%) returned in 1987-1988 and 2,393 (86%) returned in 1990-1991 for repeat evaluations. Two-year change (1987-1988 to 1985-1986) in high density lipoprotein (HDL) cholesterol was significantly different among the parity groups. HDL cholesterol decreased in women who had their first pregnancy of at least 28 weeks duration during follow-up (mean +/- standard error, -3.5 +/- 1.2 mg/dl), and this change was significantly different from the increase in women parous at baseline who had no further pregnancies (2.5 +/- 0.3 mg/dl) and in nullipara (2.4 +/- 0.3 mg/dl). There was a nonsignificant trend for a greater decrease in HDL2 cholesterol fraction in the primipara compared with the other groups. The HDL cholesterol decrease remained significant after controlling for race, age, education, oral contraceptive use, and changes in body mass index, waist-hip ratio, physical activity, smoking status, and alcohol intake. Change in HDL cholesterol was also significantly different among the parity groups in analyses of pregnancies that occurred during the subsequent 3 years of follow-up. There were no differences for change in LDL cholesterol or triglycerides. Potential mechanisms for a detrimental effect of pregnancy on HDL cholesterol include hormonal, body composition, or life-style/behavioral changes. PMID:8686693

  8. A Population Pharmacokinetic/Pharmacodynamic Model Predicts Favorable HDL Cholesterol Changes Over the First 5 Years in Children Treated With Current Efavirenz-Based Regimens.

    PubMed

    Homkham, Nontiya; Cressey, Tim R; Ingsrisawang, Lily; Bouazza, Naïm; Ngampiyaskul, Chaiwat; Hongsiriwon, Suchat; Srirojana, Sakulrat; Kanjanavanit, Suparat; Bhakeecheep, Sorakij; Coeur, Sophie Le; Salvadori, Nicolas; Treluyer, Jean Marc; Jourdain, Gonzague; Urien, Saik

    2016-09-01

    Efavirenz use is associated with changes in cholesterol concentrations, but it is unclear whether this effect is related to drug concentrations. Using efavirenz and cholesterol plasma concentrations measured in 87 antiretroviral-naive children in Thailand, we assessed indirect response models to describe the evolution of high- and low-density lipoprotein (HDL, LDL) cholesterol concentrations in relation to efavirenz plasma concentrations over time where efavirenz was assumed to either stimulate cholesterol production or inhibit its elimination. Simulations of cholesterol evolution for children with different average efavirenz concentrations (Cav ) according to their assumed status of "fast" or "slow" metabolizers of efavirenz were performed. At treatment initiation, children's median (interquartile range, IQR) age was 8 years (5 to 10), body mass index z-score 0.01 (-1.05 to 1.44), HDL 31 mg/dL (24 to 44), and LDL 83 mg/dL (69 to 100). Median (IQR) efavirenz Cav was 1.7 mg/L (1.3 to 2.1) during the period of observation. The best model describing the evolution of HDL and LDL cholesterol concentrations over time assumed that efavirenz inhibited their elimination. HDL concentrations increase over 5 years, whereas LDL concentrations increased only during the first 4 months and then returned to baseline levels afterward. Simulations predicted that, after 3 years, HDL would increase to 63 mg/dL in "fast" metabolizers and 97 mg/dL in "slow" metabolizers of efavirenz. The population pharmacokinetic-pharmacodynamic (PK-PD) model shows that favorable HDL cholesterol changes can be expected in children with current efavirenz dosing guidelines over 5 years of treatment. PMID:26749102

  9. Correlation between high density lipoprotein-cholesterol and remodeling index in patients with coronary artery disease: IDEAS (IVUS diagnostic evaluation of atherosclerosis in Singapore)-HDL study.

    PubMed

    Lee, Chi-Hang; Tai, Bee-Choo; Lim, Gek-Hsiang; Chan, Mark Y; Low, Adrian F; Tan, Kathryn C; Chia, Boon-Lock; Tan, Huay-Cheem

    2012-01-01

    Serum level of high density lipoprotein (HDL)-cholesterol is associated with risk of coronary artery disease. We correlated the serum level of cholesterol with coronary artery remodeling index of patients with coronary artery disease. A total of 120 patients with de novo lesions located in native coronary artery were studied. Remodeling index was based on intravascular ultrasound (IVUS) interrogation of the lesions using the static approach, and was defined as external elastic membrane (EEM) area at lesion/average EEM area at proximal and distal reference segments. The average remodeling index was 0.9 (SD: 0.2). The remodeling index was not associated with any of the demographic and coronary risk factors. Stable angina was associated with a low remodeling index. Remodeling index correlated with white blood cell count and HDL-cholesterol, but not with total cholesterol, LDL-cholesterol and triglyceride. In the multiple linear regression analysis, HDL-cholesterol and procedure indication were the only 2 significant predictors of remodeling index. An increase of 1 mg/dL of HDL-cholesterol resulted in a decrease of 0.003 (95% CI: 0.0001, 0.007; P = 0.046) in remodeling index, after adjusting for procedural indications. When stratified according to diabetic status, the negative correlation persisted in non-diabetic (P = 0.023), but not in diabetic, patients (P = 0.707). We found a negative correlation between HDL-cholesterol level and remodeling index. Diabetic status may have an influence on the observed relationship. PMID:21197580

  10. Variation at the hepatic lipase and apolipoprotein AI/CIII/AIV loci is a major cause of genetically determined variation in plasma HDL cholesterol levels.

    PubMed Central

    Cohen, J C; Wang, Z; Grundy, S M; Stoesz, M R; Guerra, R

    1994-01-01

    Genetic factors have been shown to play an important role in determining interindividual variation in plasma HDL-C levels, but the specific genetic determinants of HDL cholesterol (HDL-C) levels have not been elucidated. In this study, the effects of variation in the genomic regions encoding hepatic lipase, apolipoprotein AI/CIII/AIV, and the cholesteryl ester transfer protein on plasma HDL-C levels were examined in 73 normotriglyceridemic, Caucasian nuclear families. Genetic factors accounted for 56.5 +/- 13% of the interindividual variation in plasma HDL-C levels. For each candidate gene, adjusted plasma HDL-C levels of sibling pairs who shared zero, one, or two parental alleles identical-by-descent were compared using sibling-pair linkage analysis. Allelic variation in the genes encoding hepatic lipase and apolipoprotein AI/CIII/AIV accounted for 25 and 22%, respectively, of the total interindividual variation in plasma HDL-C levels. In contrast, none of the variation in plasma HDL-C levels could be accounted for by allelic variation in the cholesteryl ester transfer protein. These findings indicate that a major fraction of the genetically determined variation in plasma HDL-C levels is conferred by allelic variation at the hepatic lipase and the apolipoprotein AI/CIII/AIV gene loci. PMID:7989594

  11. Quantitative trait locus mapping of genes that regulate HDL cholesterol in SM/J and NZB/B1NJ inbred mice.

    PubMed

    Pitman, Wendy A; Korstanje, Ron; Churchill, Gary A; Nicodeme, Edwige; Albers, John J; Cheung, Marian C; Staton, Megan A; Sampson, Stephen S; Harris, Stephen; Paigen, Beverly

    2002-01-01

    To investigate the quantitative trait loci (QTL) regulating plasma cholesterol, the female progeny of an (SMxNZB/ B1NJ)xNZB/B1NJ backcross were fed an atherogenic diet. After 18 wk, plasma total cholesterol and high-density lipoprotein cholesterol (HDL-C) was measured. HDL-C concentrations were greater in NZB than in SM mice. For standard chow-fed mice, QTL were found near D5Mit370 and D18Mit34. For mice fed an atherogenic diet, a QTL was found near D5Mit239. The QTL for chow-fed and atherogenic-fed mice on chromosome 5 seem to be two different loci. We used a multitrait analysis to rule out pleiotropy in favor of a two-QTL hypothesis. Furthermore, the HDL-C in these strains was induced by the high-fat diet. For inducible HDL-C, one significant locus was found near D15Mit39. The gene for an HDL receptor, Srb1, maps close to the HDL-C QTL at D5Mit370, but the concentrations of Srb1 mRNA and SR-B1 protein and the gene sequence of NZB/B1NJ and SM/J did not support Srb1 as a candidate gene. With these QTL, we have identified chromosomal regions that affect lipoprotein profiles in these strains. PMID:12006675

  12. Extra Virgin Olive Oil Polyphenols Promote Cholesterol Efflux and Improve HDL Functionality

    PubMed Central

    Berrougui, Hicham; Ikhlef, Souad; Khalil, Abdelouahed

    2015-01-01

    Results of the present work give evidence from the beneficial role of extra virgin olive of oil (EVOO) consumption towards oxidative stress and cardiovascular diseases. Polyphenols contained in EVOO are responsible for inhibiting lipoproteins oxidative damages and promoting reverse cholesterol transport process via ABCA1 pathway. PMID:26495005

  13. Acute Decrease in HDL Cholesterol Associated With Exposure to Welding Fumes

    PubMed Central

    Rice, Mary Berlik; Cavallari, Jenn; Fang, Shona; Christiani, David

    2011-01-01

    Objective To investigate acute changes in circulating lipids after exposure to relatively high levels of particulate matter through welding. Methods Using a repeated measures panel study, lipid levels before and after welding and personal exposures to fine particulate matter (PM2.5) were measured in 36 male welders over 63 exposure and/or control days. Results There was a trend toward decrease in HDL (−2.3 mg/dL, P = 0.08) 18 hours after welding. This effect became significant (−2.6 mg/dL, P = 0.05) after adjustment for possible confounders. The effect was strongest (−4.3 mg/dL, P = 0.02) among welders who did not weld the day before the study. There were no significant changes in other lipids associated with welding or PM2.5 exposure. Conclusion Welding exposure was associated with an acute decrease in circulating HDL, which may relate to the inflammatory and proatherosclerotic effects of fine particle exposure. PMID:21187793

  14. ATHENA: a tool for meta-dimensional analysis applied to genotypes and gene expression data to predict HDL cholesterol levels.

    PubMed

    Holzinger, Emily R; Dudek, Scott M; Frase, Alex T; Krauss, Ronald M; Medina, Marisa W; Ritchie, Marylyn D

    2013-01-01

    Technology is driving the field of human genetics research with advances in techniques to generate high-throughput data that interrogate various levels of biological regulation. With this massive amount of data comes the important task of using powerful bioinformatics techniques to sift through the noise to find true signals that predict various human traits. A popular analytical method thus far has been the genome-wide association study (GWAS), which assesses the association of single nucleotide polymorphisms (SNPs) with the trait of interest. Unfortunately, GWAS has not been able to explain a substantial proportion of the estimated heritability for most complex traits. Due to the inherently complex nature of biology, this phenomenon could be a factor of the simplistic study design. A more powerful analysis may be a systems biology approach that integrates different types of data, or a meta-dimensional analysis. For this study we used the Analysis Tool for Heritable and Environmental Network Associations (ATHENA) to integrate high-throughput SNPs and gene expression variables (EVs) to predict high-density lipoprotein cholesterol (HDL-C) levels. We generated multivariable models that consisted of SNPs only, EVs only, and SNPs + EVs with testing r-squared values of 0.16, 0.11, and 0.18, respectively. Additionally, using just the SNPs and EVs from the best models, we generated a model with a testing r-squared of 0.32. A linear regression model with the same variables resulted in an adjusted r-squared of 0.23. With this systems biology approach, we were able to integrate different types of high-throughput data to generate meta-dimensional models that are predictive for the HDL-C in our data set. Additionally, our modeling method was able to capture more of the HDL-C variation than a linear regression model that included the same variables. PMID:23424143

  15. Betatrophin Acts as a Diagnostic Biomarker in Type 2 Diabetes Mellitus and Is Negatively Associated with HDL-Cholesterol

    PubMed Central

    Yi, Min; Chen, Rong-ping; Yang, Rui; Guo, Xian-feng; Zhang, Jia-chun; Chen, Hong

    2015-01-01

    Objective. By assessing its circulating concentrations in type 2 diabetes mellitus (T2DM) patients, we aimed to explore the associations of betatrophin with various metabolic parameters and evaluate its diagnostic value in T2DM. Methods. A total of 58 non-diabetes-mellitus (NDM) subjects and 73 age- and sex-matched newly diagnosed T2DM patients were enrolled. Correlation analyses between circulating betatrophin levels and multiple metabolic parameters were performed. Receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic value of betatrophin concentration in T2DM. Results. Circulating betatrophin levels were approximately 1.8 times higher in T2DM patients than in NDM individuals (median 747.12 versus 407.41 pg/mL, P < 0.001). Correlation analysis showed that betatrophin was negatively associated with high-density lipoprotein cholesterol (HDL-C) levels in all subjects. ROC curve analysis identified betatrophin as a potent diagnostic biomarker for T2DM. The optimal cut-off point of betatrophin concentration for predicting T2DM was 501.23 pg/mL. Conclusions. Serum betatrophin levels were markedly increased in newly diagnosed T2DM patients and further elevated in obese T2DM subjects. Betatrophin was negatively correlated with HDL-C levels. Our findings indicate that betatrophin could be a potent diagnostic biomarker for T2DM. PMID:26819617

  16. Novel Apo E-Derived ABCA1 Agonist Peptide (CS-6253) Promotes Reverse Cholesterol Transport and Induces Formation of preβ-1 HDL In Vitro

    PubMed Central

    Hafiane, Anouar; Bielicki, John K.; Johansson, Jan O.; Genest, Jacques

    2015-01-01

    Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from the carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are

  17. Novel apo E-derived ABCA1 agonist peptide (CS-6253) promotes reverse cholesterol transport and induces formation of preβ-1 HDL in vitro

    DOE PAGESBeta

    Hafiane, Anouar; Bielicki, John K.; Johansson, Jan O.; Genest, Jacques; Zhu, Xuewei

    2015-07-24

    Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from themore » carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are

  18. Circulating levels of linoleic acid and HDL-cholesterol are major determinants of 4-hydroxynonenal protein adducts in patients with heart failure☆

    PubMed Central

    Asselin, Caroline; Ducharme, Anique; Ntimbane, Thierry; Ruiz, Matthieu; Fortier, Annik; Guertin, Marie-Claude; Lavoie, Joël; Diaz, Ariel; Levy, Émile; Tardif, Jean-Claude; Des Rosiers, Christine

    2013-01-01

    Objective Measurements of oxidative stress biomarkers in patients with heart failure (HF) have yielded controversial results. This study aimed at testing the hypothesis that circulating levels of the lipid peroxidation product 4-hydroxynonenal bound to thiol proteins (4HNE-P) are strongly associated with those of its potential precursors, namely n-6 polyunsaturated fatty acids (PUFA). Methods and results Circulating levels of 4HNE-P were evaluated by gas chromatography-mass spectrometry in 71 control subjects and 61 ambulatory symptomatic HF patients along with various other clinically- and biochemically-relevant parameters, including other oxidative stress markers, and total levels of fatty acids from all classes, which reflect both free and bound to cholesterol, phospholipids and triglycerides. All HF patients had severe systolic functional impairment despite receiving optimal evidence-based therapies. Compared to controls, HF patients displayed markedly lower circulating levels of HDL- and LDL-cholesterol, which are major PUFA carriers, as well as of PUFA of the n-6 series, specifically linoleic acid (LA; P=0.001). Circulating 4HNE-P in HF patients was similar to controls, albeit multiple regression analysis revealed that LA was the only factor that was significantly associated with circulating 4HNE-P in the entire population (R2=0.086; P=0.02). In HF patients only, 4HNE-P was even more strongly associated with LA (P=0.003) and HDL-cholesterol (p<0.0002). Our results demonstrate that 4HNE-P levels, expressed relative to HDL-cholesterol, increase as HDL-cholesterol plasma levels decrease in the HF group only. Conclusion Results from this study emphasize the importance of considering changes in lipids and lipoproteins in the interpretation of measurements of lipid peroxidation products. Further studies appear warranted to explore the possibility that HDL-cholesterol particles may be a carrier of 4HNE adducts. PMID:24494189

  19. Presence of unsedimented precipitate in visually non-turbid supernates in the heparin-manganese method for HDL-cholesterol quantitation.

    PubMed

    Kiss, Z; Simo, I E; Ooi, T C; Meuffels, M; Hindmarsh, J T

    1986-08-01

    An inherent problem with the heparin-manganese precipitation procedure for high density lipoprotein-cholesterol (HDL-C) quantitation is the inability to sediment all the precipitated lipoproteins, especially in hypertriglyceridemic samples. This results in overestimation of HDL-C. Thus ultrafiltration has been recommended for turbid supernates. We have investigated 47 non-turbid supernates for possible presence of unsedimented precipitate. Optical turbidity in these samples was found to correlate with the serum triglyceride level. With ultrafiltration of the supernates, there was a significant decrease in cholesterol, optical turbidity and apoprotein A-I. The percent change in turbidity correlated with the percent change in cholesterol. There was also correlation between percent change in cholesterol and the prefiltration supernate turbidity. These results indicate that visually clear supernates may show optical turbidity; the turbidity is likely due to triglyceride-rich particles, which contain cholesterol; the fall in cholesterol with ultrafiltration is due to removal of these floating particles and some adsorbance of HDL particles to the filters. PMID:3093118

  20. Adiponectin and the mediation of HDL cholesterol change with improved lifestyle: The Look AHEAD Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue dysfunction plays a key role in the development of the metabolic abnormalities characteristic of type 2 diabetes (T2DM) and participates actively in lipid metabolism. Adiponectin, found abundantly in circulation and a marker of adipose health, is decreased in obese persons with T2DM. ...

  1. The effects of ABCG5/G8 polymorphisms on plasma HDL cholesterol concentrations depend on smoking habit in the Boston Puerto Rican Health Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background-Low high-density lipoprotein cholesterol (HDL-C) is associated with an increased risk for atherosclerosis and concentrations are modulated by genetic and environmental factors such as smoking. Objective- To assess whether the association of common single nucleotide polymorphisms (SNPs...

  2. Dialysis Modalities and HDL Composition and Function.

    PubMed

    Holzer, Michael; Schilcher, Gernot; Curcic, Sanja; Trieb, Markus; Ljubojevic, Senka; Stojakovic, Tatjana; Scharnagl, Hubert; Kopecky, Chantal M; Rosenkranz, Alexander R; Heinemann, Akos; Marsche, Gunther

    2015-09-01

    Lipid abnormalities may have an effect on clinical outcomes of patients on dialysis. Recent studies have indicated that HDL dysfunction is a hallmark of ESRD. In this study, we compared HDL composition and metrics of HDL functionality in patients undergoing hemodialysis (HD) or peritoneal dialysis (PD) with those in healthy controls. We detected a marked suppression of several metrics of HDL functionality in patients on HD or PD. Compositional analysis revealed that HDL from both dialysis groups shifted toward a more proinflammatory phenotype with profound alterations in the lipid moiety and protein composition. With regard to function, cholesterol efflux and anti-inflammatory and antiapoptotic functions seemed to be more severely suppressed in patients on HD, whereas HDL-associated paraoxonase activity was lowest in patients on PD. Quantification of enzyme activities involved in HDL metabolism suggested that HDL particle maturation and remodeling are altered in patients on HD or PD. In summary, our study provides mechanistic insights into the formation of dysfunctional HDL in patients with ESRD who are on HD or PD. PMID:25745027

  3. Dialysis Modalities and HDL Composition and Function

    PubMed Central

    Holzer, Michael; Schilcher, Gernot; Curcic, Sanja; Trieb, Markus; Ljubojevic, Senka; Stojakovic, Tatjana; Scharnagl, Hubert; Kopecky, Chantal M.; Rosenkranz, Alexander R.; Heinemann, Akos

    2015-01-01

    Lipid abnormalities may have an effect on clinical outcomes of patients on dialysis. Recent studies have indicated that HDL dysfunction is a hallmark of ESRD. In this study, we compared HDL composition and metrics of HDL functionality in patients undergoing hemodialysis (HD) or peritoneal dialysis (PD) with those in healthy controls. We detected a marked suppression of several metrics of HDL functionality in patients on HD or PD. Compositional analysis revealed that HDL from both dialysis groups shifted toward a more proinflammatory phenotype with profound alterations in the lipid moiety and protein composition. With regard to function, cholesterol efflux and anti-inflammatory and antiapoptotic functions seemed to be more severely suppressed in patients on HD, whereas HDL-associated paraoxonase activity was lowest in patients on PD. Quantification of enzyme activities involved in HDL metabolism suggested that HDL particle maturation and remodeling are altered in patients on HD or PD. In summary, our study provides mechanistic insights into the formation of dysfunctional HDL in patients with ESRD who are on HD or PD. PMID:25745027

  4. The Ala54Thr Polymorphism of the Fatty Acid Binding Protein 2 Gene Modulates HDL Cholesterol in Mexican-Americans with Type 2 Diabetes

    PubMed Central

    Salto, Lorena M.; Bu, Liming; Beeson, W. Lawrence; Firek, Anthony; Cordero-MacIntyre, Zaida; De Leon, Marino

    2015-01-01

    The alanine to threonine amino acid substitution at codon 54 (Ala54Thr) of the intestinal fatty acid binding protein (FABP2) has been associated with elevated levels of insulin and blood glucose as well as with dyslipidemia. The aim of this study was to characterize the effect of this FABP2 polymorphism in Mexican-Americans with type 2 diabetes (T2D) in the context of a three-month intervention to determine if the polymorphism differentially modulates selected clinical outcomes. For this study, we genotyped 43 participant samples and performed post-hoc outcome analysis of the profile changes in fasting blood glucose, HbA1c, insulin, lipid panel and body composition, stratified by the Ala54Thr polymorphism. Our results show that the Thr54 allele carriers (those who were heterozygous or homozygous for the threonine-encoding allele) had lower HDL cholesterol and higher triglyceride levels at baseline compared to the Ala54 homozygotes (those who were homozygous for the alanine-encoding allele). Both groups made clinically important improvements in lipid profiles and glycemic control as a response to the intervention. Whereas the Ala54 homozygotes decreased HDL cholesterol in the context of an overall total cholesterol decrease, Thr54 allele carriers increased HDL cholesterol as part of an overall total cholesterol decrease. We conclude that the Ala54Thr polymorphism of FABP2 modulates HDL cholesterol in Mexican-Americans with T2D and that Thr54 allele carriers may be responsive in interventions that include dietary changes. PMID:26703680

  5. [The new atherogenic plasma index reflects the triglyceride and HDL-cholesterol ratio, the lipoprotein particle size and the cholesterol esterification rate: changes during lipanor therapy].

    PubMed

    Dobiásová, M; Frohlich, J

    2000-03-01

    The new atherogenic plasma index (AIP) is a logarithmic transformation of the ratio of the molar triglyceride (TG) concentration and high density lipoprotein cholesterol (HDL-C). AIP correlates closely with the size of LDL particles (r = 0.8) and esterification rate of plasma cholesterol devoid of apo B lipoproteins (FERHDL), r = 0.9 which are considered at present the most sensitive indicators of the atherogenic plasma profile. AIP was recommended by the authors, based on analysis of results of 11 previous studies (1156 subjects) where FERHDL and plasma lipid parameters were investigated in different groups of people who differed as to the atherogenic risk. The AIP index was moreover used for evaluation of a clinical study comprising 609 patients with hyperlipidaemia, who were treated for three months with ciprofibrate (Lipanor). The mean AIP values of non-risk groups (plasma from umbilical blood, children, healthy women etc.) equalled zero or were lower, while with an increasing atherogenic risk (men, women after the menopause) AIP reached positive values, incl. high positive values in risk groups (plasma of diabetic subjects, patients with HLP, patients with positive angiography, myocardial infarction etc.). In all groups women had lower AIP values as compared with males. In patients after Lipanor therapy the AIP declined (from 0.58 +/- 0.17 to 0.33_0.18 in men, from 0.50 +/- 0.18 to 0.21 +/- 0.19 in women). If we consider AIP values from negative ones to 0.15 as "safe" from the aspect of atherogenicity, before Lipanor treatment these "safe" levels were recorded in 1.5% men and in 5.2% women and after treatment in 32% men and 48% women. The results indicate, that AIP which reflects the plasma lipoprotein profile quantifies the relations between TG and HDL-C and thus can be an objective indicator of the atherogenic risk and effectiveness of treatment and it is useful because it can be assessed in any surgery. PMID:11048517

  6. Self-rated health showed a consistent association with serum HDL-cholesterol in the cross-sectional Oslo Health Study

    PubMed Central

    Tomten, Sissel E.; Høstmark, Arne T.

    2007-01-01

    Objective: To examine the association between serum HDL-cholesterol concentration (HDL-C) and self rated health (SRH) in several age groups of men and women. Study design and setting: The study had a cross-sectional design and included 18,770 men and women of the Oslo Health Study aged 30; 40 and 45; 69-60; 75-76 years. Results: In both sexes and all age groups, SRH (3 categories: poor, good, very good) was positively correlated with HDL-C. Logistic regression analysis on dichotomized values of SRH (i.e. poor vs. good health) in each age group of men and women showed that increasing HDL-C values were associated with increasing odds for reporting good health; the odds ratio (OR) was highest in young men, and was generally lower in women than in men. Odds ratios in the 4 age groups of men were 4.94 (2.63-9.29), 2.25 (1.63-3.09), 2.12 (1.58-2.86), 1.87 (1.37-2.54); and in women: 3.58 (2.46-5.21), 2.81 (2.23-3.53), 2.28 (1.84-2.82), 1.61 (1.31-1.99). In the whole material, 1 mmol/L increase in HDL-C increased the odds for reporting good health by 2.27 (2.06-2.50; p<0.001), when adjusting for sex, age group, time since food intake and use of cholesterol lowering drugs. Chronic diseases, pain, psychological distress, smoking, alcohol, length of education, and dietary items did not have any major influence on the pattern of the HDL-C vs. SRH association. Conclusion: There was a consistent positive association between HDL-C and SRH, in both men and women in four different age groups, with the strongest association in young people. PMID:18071582

  7. Ablating L-FABP in SCP-2/SCP-x null mice impairs bile acid metabolism and biliary HDL-cholesterol secretion

    PubMed Central

    Martin, Gregory G.; Atshaves, Barbara P.; Landrock, Kerstin K.; Landrock, Danilo; Storey, Stephen M.; Howles, Philip N.; Kier, Ann B.

    2014-01-01

    On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol. PMID:25277800

  8. Ablating L-FABP in SCP-2/SCP-x null mice impairs bile acid metabolism and biliary HDL-cholesterol secretion.

    PubMed

    Martin, Gregory G; Atshaves, Barbara P; Landrock, Kerstin K; Landrock, Danilo; Storey, Stephen M; Howles, Philip N; Kier, Ann B; Schroeder, Friedhelm

    2014-12-01

    On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol. PMID:25277800

  9. THE CONSUMPTION OF RED PUPUNHA (BACTRIS GASIPAES KUNTH) INCREASES HDL CHOLESTEROL AND REDUCES WEIGHT GAIN OF LACTATING AND POST-LACTATING WISTAR RATS

    PubMed Central

    Carvalho, R. Piccolotto; Lemos, J.R. Gonzaga; de Aquino Sales, R. Souza; Martins, M. Gassen; Nascimento, C.H.; Bayona, M.; Marcon, J.L.; Monteiro, J. Barros

    2014-01-01

    Introduction The lactating and post-lactating periods are marked by large metabolic change. Production of milk is 60% lipid dependent. We reported in a recent scientific meeting that Red pupunha palm tree fruit increases HDL cholesterol in lactating rats. This study evaluated if consumption of Red Pupunha by adult female rats has a beneficial impact on the lipid metabolism of lacting and post-lacting adult rats. Objective Evaluate if consumption of red pupunha has a beneficial effect in the lipid metabolism of lacting and post-lacting adult Wistar rats. Research Methods Four groups including two for control; (1) control adult lactating rats, (2) control adults post-lactating rats; and two experimental groups; (3) pupunha adults lactating rats and (4) pupunha adult post-lactating rats were evaluated and compared regarding: weight gain, food consumption, plasma total protein, glucose, total lipid, triglycerides, total cholesterol and HDL-cholesterol levels. The mean difference and its 95% confidence intervals were used for group comparisons. Group comparisons were evaluated by using analysis of variance (one-way ANOVA). The statistical significance of the pairwise differences among groups was assessed by using the two-sided Tukey test. Results There were no important differences in food consumption, plasma glucose, total lipids and triglycerides among groups. The red pupunha lactating group gain less weight showing lower body mass index (BMI) than controls (p < 0.05). Total cholesterol was lower in red pupunha lactating than in controls but not in the red pupunha post-lactating group as compared to controls. Triglycerides were lower in the post-lactating red pupunha group as compared to the control group (p = 0.039) but not for the lactating groups. Red pupunha lactating and post-lactating groups had higher HDL-cholesterol than their corresponding control groups (p ≤ 0.01). Conclusion Original findings include the beneficial effect of red pupunha in post

  10. Changes in HDL-cholesterol and lipoprotein Lp(a) after 6-month treatment with finasteride in males affected by benign prostatic hyperplasia (BPH).

    PubMed

    Denti, L; Pasolini, G; Cortellini, P; Sanfelici, L; Benedetti, R; Cecchetti, A; Ferretti, S; Bruschieri, L; Ablondi, F; Valenti, G

    2000-09-01

    Androgen effects on lipoproteins, mainly high density lipoprotein (HDL), could be exerted by a direct interaction of testosterone (T) or dihydrotestosterone (DHT) with liver androgen receptors. To assess if T needs to be converted into DHT to affect lipid metabolism, 13 patients were studied, affected with benign prostatic hyperplasia (BPH) and treated with an inhibitor of 5 alpha-reductase (finasteride). They were compared with 15 untreated controls. At baseline and after 3 and 6 months of therapy, each patient was evaluated as for lipoprotein and hormone concentrations, as well as for nutritional status. Body composition was assessed by anthropometry and bio-impedance analysis (BIA). Treatment was associated with a significant increase of HDL-cholesterol (HDL-C), mainly HDL3 subclass, and lipoprotein(a) (Lp(a)), as well as a decline of DHT, whereas no significant changes were apparent for T, estradiol (E2), sex hormone binding hormone (SHBG) and body composition indexes. However, no significant associations between DHT and lipid relative changes were apparent at bivariate correlation analysis. This finding was confirmed by comparing patient subsets identified by cluster analysis, according to HDL subclass individual responses. Rather, a slight association with E2 for HDL2 (positive) and HDL3 (negative) was found. In conclusion, finasteride can modify HDL and Lp(a) concentrations. However, by the data, these effects cannot be definitively attributed to the changes in DHT synthesis induced by finasteride, since a direct and non-specific interference of the drug on liver metabolism cannot be excluded. PMID:10996351

  11. Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets

    PubMed Central

    2012-01-01

    Background Arctium lappa L. (Asteraceae), burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL) seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD). Method EAL-I (100 mg·kg−1/day), EAL-II (200 mg·kg−1/day), and fluvastatin (3 mg·kg−1/day) groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Results Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL) in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh)-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP) and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP)-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. Conclusion The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation. PMID:22866890

  12. The Type 2 Diabetes and Insulin-Resistance Locus Near IRS1 Is A Determinant of HDL Cholesterol and Triglycerides Levels Among Diabetic Subjects

    PubMed Central

    Sharma, Rajani; Prudente, Sabrina; Andreozzi, Francesco; Powers, Christine; Mannino, Gaia; Bacci, Simonetta; Gervino, Ernest V.; Hauser, Thomas H.; Succurro, Elena; Mercuri, Luana; Goheen, Elizabeth H.; Shah, Hetal; Trischitta, Vincenzo; Sesti, Giorgio; Doria, Alessandro

    2011-01-01

    OBJECTIVE SNP rs2943641 near the insulin receptor substrate 1 (IRS1) gene has been found to be associated with type 2 diabetes (T2D) and insulin-resistance in genome-wide association studies. We investigated whether this SNP is associated with cardiovascular risk factors and coronary artery disease (CAD) among diabetic individuals. METHODS SNP rs2943641 was typed in 2,133 White T2D subjects and tested for association with BMI, serum HDL cholesterol and triglycerides, hypertension history, and CAD risk. RESULTS HDL cholesterol decreased by 1 mg/dl (p=0.0045) and serum triglycerides increased by 6 mg/dl (p=0.018) for each copy of the insulin-resistance allele. Despite these effects, no association was found with increased CAD risk (OR=1.00, 95% CI 0.88–1.13). CONCLUSIONS The insulin-resistance and T2D locus near the IRS1 gene is a determinant of lower HDL cholesterol among T2D subjects. However, this effect is small and does not translate into a detectable increase in CAD risk in this population. PMID:21353221

  13. Relationship of Lifestyle Medical Advice and Non-HDL Cholesterol Control of a Nationally Representative US Sample with Hypercholesterolemia by Race/Ethnicity

    PubMed Central

    Vaccaro, Joan Anne; Huffman, Fatma G.

    2012-01-01

    Objective. The main purpose of this study was to evaluate the associations of lifestyle medical advice and non-HDL cholesterol control of a nationally representative US sample of adults with hypercholesterolemia by race/ethnicity. Methods. Data were collected by appending sociodemographic, anthropometric, and laboratory data from two cycles of the National Health and Nutrition Survey (2007-2008 and 2009-2010). This study acquired data from male and female adults aged ≥ 20 years (N = 11,577), classified as either Mexican American (MA), (n = 2173), other Hispanic (OH) (n = 1298), Black non-Hispanic (BNH) (n = 2349), or White non-Hispanic (WNH) (n = 5737). Results. Minorities were more likely to report having received dietary, weight management, and exercise recommendations by healthcare professionals than WNH, adjusting for confounders. Approximately 80% of those receiving medical advice followed the recommendation, regardless of race/ethnicity. Of those who received medical advice, reporting “currently controlling or losing weight” was associated with lower non-HDL cholesterol. BNH who reported “currently controlling or losing weight” had higher non-HDL cholesterol than WNH who reported following the advice. Conclusion. The results suggest that current methods of communicating lifestyle advice may not be adequate across race/ethnicity and that a change in perspective and delivery of medical recommendations for persons with hypercholesterolemia is needed. PMID:23119150

  14. HDL Cholesterol Test

    MedlinePlus

    Advertisement Proceeds from website advertising help sustain Lab Tests Online. AACC is a not-for-profit organization ... for trustworthy health information. Verify Compliance . Produced by Advertisement

  15. A functional ABCA1 gene variant is associated with low HDL-cholesterol levels and shows evidence of positive selection in Native Americans.

    PubMed

    Acuña-Alonzo, Víctor; Flores-Dorantes, Teresa; Kruit, Janine K; Villarreal-Molina, Teresa; Arellano-Campos, Olimpia; Hünemeier, Tábita; Moreno-Estrada, Andrés; Ortiz-López, Ma Guadalupe; Villamil-Ramírez, Hugo; León-Mimila, Paola; Villalobos-Comparan, Marisela; Jacobo-Albavera, Leonor; Ramírez-Jiménez, Salvador; Sikora, Martin; Zhang, Lin-Hua; Pape, Terry D; Granados-Silvestre, Ma de Angeles; Montufar-Robles, Isela; Tito-Alvarez, Ana M; Zurita-Salinas, Camilo; Bustos-Arriaga, José; Cedillo-Barrón, Leticia; Gómez-Trejo, Celta; Barquera-Lozano, Rodrigo; Vieira-Filho, Joao P; Granados, Julio; Romero-Hidalgo, Sandra; Huertas-Vázquez, Adriana; González-Martín, Antonio; Gorostiza, Amaya; Bonatto, Sandro L; Rodríguez-Cruz, Maricela; Wang, Li; Tusié-Luna, Teresa; Aguilar-Salinas, Carlos A; Lisker, Ruben; Moises, Regina S; Menjivar, Marta; Salzano, Francisco M; Knowler, William C; Bortolini, M Cátira; Hayden, Michael R; Baier, Leslie J; Canizales-Quinteros, Samuel

    2010-07-15

    It has been suggested that the higher susceptibility of Hispanics to metabolic disease is related to their Native American heritage. A frequent cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) gene variant (R230C, rs9282541) apparently exclusive to Native American individuals was associated with low high-density lipoprotein cholesterol (HDL-C) levels, obesity and type 2 diabetes in Mexican Mestizos. We performed a more extensive analysis of this variant in 4405 Native Americans and 863 individuals from other ethnic groups to investigate genetic evidence of positive selection, to assess its functional effect in vitro and to explore associations with HDL-C levels and other metabolic traits. The C230 allele was found in 29 of 36 Native American groups, but not in European, Asian or African individuals. C230 was observed on a single haplotype, and C230-bearing chromosomes showed longer relative haplotype extension compared with other haplotypes in the Americas. Additionally, single-nucleotide polymorphism data from the Human Genome Diversity Panel Native American populations were enriched in significant integrated haplotype score values in the region upstream of the ABCA1 gene. Cells expressing the C230 allele showed a 27% cholesterol efflux reduction (P< 0.001), confirming this variant has a functional effect in vitro. Moreover, the C230 allele was associated with lower HDL-C levels (P = 1.77 x 10(-11)) and with higher body mass index (P = 0.0001) in the combined analysis of Native American populations. This is the first report of a common functional variant exclusive to Native American and descent populations, which is a major determinant of HDL-C levels and may have contributed to the adaptive evolution of Native American populations. PMID:20418488

  16. A functional ABCA1 gene variant is associated with low HDL-cholesterol levels and shows evidence of positive selection in Native Americans

    PubMed Central

    Acuña-Alonzo, Víctor; Flores-Dorantes, Teresa; Kruit, Janine K.; Villarreal-Molina, Teresa; Arellano-Campos, Olimpia; Hünemeier, Tábita; Moreno-Estrada, Andrés; Ortiz-López, Ma Guadalupe; Villamil-Ramírez, Hugo; León-Mimila, Paola; Villalobos-Comparan, Marisela; Jacobo-Albavera, Leonor; Ramírez-Jiménez, Salvador; Sikora, Martin; Zhang, Lin-Hua; Pape, Terry D.; de Ángeles Granados-Silvestre, Ma; Montufar-Robles, Isela; Tito-Alvarez, Ana M.; Zurita-Salinas, Camilo; Bustos-Arriaga, José; Cedillo-Barrón, Leticia; Gómez-Trejo, Celta; Barquera-Lozano, Rodrigo; Vieira-Filho, Joao P.; Granados, Julio; Romero-Hidalgo, Sandra; Huertas-Vázquez, Adriana; González-Martín, Antonio; Gorostiza, Amaya; Bonatto, Sandro L.; Rodríguez-Cruz, Maricela; Wang, Li; Tusié-Luna, Teresa; Aguilar-Salinas, Carlos A.; Lisker, Ruben; Moises, Regina S.; Menjivar, Marta; Salzano, Francisco M.; Knowler, William C.; Bortolini, M. Cátira; Hayden, Michael R.; Baier, Leslie J.; Canizales-Quinteros, Samuel

    2010-01-01

    It has been suggested that the higher susceptibility of Hispanics to metabolic disease is related to their Native American heritage. A frequent cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) gene variant (R230C, rs9282541) apparently exclusive to Native American individuals was associated with low high-density lipoprotein cholesterol (HDL-C) levels, obesity and type 2 diabetes in Mexican Mestizos. We performed a more extensive analysis of this variant in 4405 Native Americans and 863 individuals from other ethnic groups to investigate genetic evidence of positive selection, to assess its functional effect in vitro and to explore associations with HDL-C levels and other metabolic traits. The C230 allele was found in 29 of 36 Native American groups, but not in European, Asian or African individuals. C230 was observed on a single haplotype, and C230-bearing chromosomes showed longer relative haplotype extension compared with other haplotypes in the Americas. Additionally, single-nucleotide polymorphism data from the Human Genome Diversity Panel Native American populations were enriched in significant integrated haplotype score values in the region upstream of the ABCA1 gene. Cells expressing the C230 allele showed a 27% cholesterol efflux reduction (P< 0.001), confirming this variant has a functional effect in vitro. Moreover, the C230 allele was associated with lower HDL-C levels (P = 1.77 × 10−11) and with higher body mass index (P = 0.0001) in the combined analysis of Native American populations. This is the first report of a common functional variant exclusive to Native American and descent populations, which is a major determinant of HDL-C levels and may have contributed to the adaptive evolution of Native American populations. PMID:20418488

  17. Low HDL cholesterol as a cardiovascular risk factor in rural, urban, and rural-urban migrants: PERU MIGRANT cohort study

    PubMed Central

    Lazo-Porras, María; Bernabe-Ortiz, Antonio; Málaga, Germán; Gilman, Robert H.; Acuña-Villaorduña, Ana; Cardenas-Montero, Deborah; Smeeth, Liam; Miranda, J. Jaime

    2016-01-01

    Introduction Whilst the relationship between lipids and cardiovascular mortality has been well studied and appears to be controversial, very little has been explored in the context of rural-to-urban migration in low-resource settings. Objective Determine the profile and related factors for HDL-c patterns (isolated and non-isolated low HDL-c) in three population-based groups according to their migration status, and determine the effect of HDL-c patterns on the rates of cardiovascular outcomes (i.e. non-fatal stroke and non-fatal myocardial infarction) and mortality. Methods Cross-sectional and 5-year longitudinal data from the PERU MIGRANT study, designed to assess the effect of migration on cardiovascular risk profiles and mortality in Peru. Two different analyses were performed: first, we estimated prevalence and associated factors with isolated and non-isolated low HDL-c at baseline. Second, using longitudinal information, relative risk ratios (RRR) of composite outcomes of mortality, non-fatal stroke and non-fatal myocardial infarction were calculated according to HDL-c levels at baseline. Results Data from 988 participants, rural (n = 201), rural-to-urban migrants (n = 589), and urban (n = 199) groups, was analysed. Low HDL-c was present in 56.5% (95%CI: 53.4%–59.6%) without differences by study groups. Isolated low HDL-c was found in 36.5% (95%CI: 33.5–39.5%), with differences between study groups. In multivariable analysis, urban group (vs. rural), female gender, overweight and obesity were independently associated with isolated low HDL-c. Only female gender, overweight and obesity were associated with non-isolated low HDL-c. Longitudinal analyses showed that non-isolated low HDL-c increased the risk of negative cardiovascular outcomes (RRR = 3.46; 95%CI: 1.23–9.74). Conclusions Isolated low HDL-c was the most common dyslipidaemia in the study population and was more frequent in rural subjects. Non-isolated low HDL-c increased three-to fourfold

  18. Low Maternal Vitamin B12 Status Is Associated with Lower Cord Blood HDL Cholesterol in White Caucasians Living in the UK

    PubMed Central

    Adaikalakoteswari, Antonysunil; Vatish, Manu; Lawson, Alexander; Wood, Catherine; Sivakumar, Kavitha; McTernan, Philip G.; Webster, Craig; Anderson, Neil; Yajnik, Chittaranjan S.; Tripathi, Gyanendra; Saravanan, Ponnusamy

    2015-01-01

    Background and Aims: Studies in South Asian population show that low maternal vitamin B12 associates with insulin resistance and small for gestational age in the offspring. Low vitamin B12 status is attributed to vegetarianism in these populations. It is not known whether low B12 status is associated with metabolic risk of the offspring in whites, where the childhood metabolic disorders are increasing rapidly. Here, we studied whether maternal B12 levels associate with metabolic risk of the offspring at birth. Methods: This is a cross-sectional study of 91 mother-infant pairs (n = 182), of white Caucasian origin living in the UK. Blood samples were collected from white pregnant women at delivery and their newborns (cord blood). Serum vitamin B12, folate, homocysteine as well as the relevant metabolic risk factors were measured. Results: The prevalence of low serum vitamin B12 (<191 ng/L) and folate (<4.6 μg/L) were 40% and 11%, respectively. Maternal B12 was inversely associated with offspring’s Homeostasis Model Assessment 2-Insulin Resistance (HOMA-IR), triglycerides, homocysteine and positively with HDL-cholesterol after adjusting for age and BMI. In regression analysis, after adjusting for likely confounders, maternal B12 is independently associated with neonatal HDL-cholesterol and homocysteine but not triglycerides or HOMA-IR. Conclusions: Our study shows that low B12 status is common in white women and is independently associated with adverse cord blood cholesterol. PMID:25849948

  19. Acrolein Impairs the Cholesterol Transport Functions of High Density Lipoproteins

    PubMed Central

    Chadwick, Alexandra C.; Holme, Rebecca L.; Chen, Yiliang; Thomas, Michael J.; Sorci-Thomas, Mary G.; Silverstein, Roy L.; Pritchard, Kirkwood A.; Sahoo, Daisy

    2015-01-01

    High density lipoproteins (HDL) are considered athero-protective, primarily due to their role in reverse cholesterol transport, where they transport cholesterol from peripheral tissues to the liver for excretion. The current study was designed to determine the impact of HDL modification by acrolein, a highly reactive aldehyde found in high abundance in cigarette smoke, on the cholesterol transport functions of HDL. HDL was chemically-modified with acrolein and immunoblot and mass spectrometry analyses confirmed apolipoprotein crosslinking, as well as acrolein adducts on apolipoproteins A-I and A-II. The ability of acrolein-modified HDL (acro-HDL) to serve as an acceptor of free cholesterol (FC) from COS-7 cells transiently expressing SR-BI was significantly decreased. Further, in contrast to native HDL, acro-HDL promotes higher neutral lipid accumulation in murine macrophages as judged by Oil Red O staining. The ability of acro-HDL to mediate efficient selective uptake of HDL-cholesteryl esters (CE) into SR-BI-expressing cells was reduced compared to native HDL. Together, the findings from our studies suggest that acrolein modification of HDL produces a dysfunctional particle that may ultimately promote atherogenesis by impairing functions that are critical in the reverse cholesterol transport pathway. PMID:25849485

  20. High intake of fatty fish, but not of lean fish, affects serum concentrations of TAG and HDL-cholesterol in healthy, normal-weight adults: a randomised trial.

    PubMed

    Hagen, Ingrid V; Helland, Anita; Bratlie, Marianne; Brokstad, Karl A; Rosenlund, Grethe; Sveier, Harald; Mellgren, Gunnar; Gudbrandsen, Oddrun A

    2016-08-01

    The aim of the present study was to examine whether high intake of lean or fatty fish (cod and farmed salmon, respectively) by healthy, normal-weight adults would affect risk factors of type 2 diabetes and CVD when compared with lean meat (chicken). More knowledge is needed concerning the potential health effects of high fish intake (>300 g/week) in normal-weight adults. In this randomised clinical trial, thirty-eight young, healthy, normal-weight participants consumed 750 g/week of lean or fatty fish or lean meat (as control) for 4 weeks at dinner according to provided recipes to ensure similar ways of preparations and choices of side dishes between the groups. Energy and macronutrient intakes at baseline and end point were similar in all groups, and there were no changes in energy and macronutrient intakes within any of the groups during the course of the study. High intake of fatty fish, but not lean fish, significantly reduced TAG and increased HDL-cholesterol concentrations in fasting serum when compared with lean meat intake. When compared with lean fish intake, fatty fish intake increased serum HDL-cholesterol. No differences were observed between lean fish, fatty fish and lean meat groups regarding fasting and postprandial glucose regulation. These findings suggest that high intake of fatty fish, but not of lean fish, could beneficially affect serum concentrations of TAG and HDL-cholesterol, which are CVD risk factors, in healthy, normal-weight adults, when compared with high intake of lean meat. PMID:27363518

  1. Brain Cholesterol Metabolism and Its Defects: Linkage to Neurodegenerative Diseases and Synaptic Dysfunction

    PubMed Central

    Petrov, A. M.; Kasimov, M. R.; Zefirov, A. L.

    2016-01-01

    Cholesterol is an important constituent of cell membranes and plays a crucial role in the compartmentalization of the plasma membrane and signaling. Brain cholesterol accounts for a large proportion of the body’s total cholesterol, existing in two pools: the plasma membranes of neurons and glial cells and the myelin membranes . Cholesterol has been recently shown to be important for synaptic transmission, and a link between cholesterol metabolism defects and neurodegenerative disorders is now recognized. Many neurodegenerative diseases are characterized by impaired cholesterol turnover in the brain. However, at which stage the cholesterol biosynthetic pathway is perturbed and how this contributes to pathogenesis remains unknown. Cognitive deficits and neurodegeneration may be associated with impaired synaptic transduction. Defects in cholesterol biosynthesis can trigger dysfunction of synaptic transmission. In this review, an overview of cholesterol turnover under physiological and pathological conditions is presented (Huntington’s, Niemann-Pick type C diseases, Smith-Lemli-Opitz syndrome). We will discuss possible mechanisms by which cholesterol content in the plasma membrane influences synaptic processes. Changes in cholesterol metabolism in Alzheimer’s disease, Parkinson’s disease, and autistic disorders are beyond the scope of this review and will be summarized in our next paper. PMID:27099785

  2. Brain Cholesterol Metabolism and Its Defects: Linkage to Neurodegenerative Diseases and Synaptic Dysfunction.

    PubMed

    Petrov, A M; Kasimov, M R; Zefirov, A L

    2016-01-01

    Cholesterol is an important constituent of cell membranes and plays a crucial role in the compartmentalization of the plasma membrane and signaling. Brain cholesterol accounts for a large proportion of the body's total cholesterol, existing in two pools: the plasma membranes of neurons and glial cells and the myelin membranes . Cholesterol has been recently shown to be important for synaptic transmission, and a link between cholesterol metabolism defects and neurodegenerative disorders is now recognized. Many neurodegenerative diseases are characterized by impaired cholesterol turnover in the brain. However, at which stage the cholesterol biosynthetic pathway is perturbed and how this contributes to pathogenesis remains unknown. Cognitive deficits and neurodegeneration may be associated with impaired synaptic transduction. Defects in cholesterol biosynthesis can trigger dysfunction of synaptic transmission. In this review, an overview of cholesterol turnover under physiological and pathological conditions is presented (Huntington's, Niemann-Pick type C diseases, Smith-Lemli-Opitz syndrome). We will discuss possible mechanisms by which cholesterol content in the plasma membrane influences synaptic processes. Changes in cholesterol metabolism in Alzheimer's disease, Parkinson's disease, and autistic disorders are beyond the scope of this review and will be summarized in our next paper. PMID:27099785

  3. Levels and changes of HDL cholesterol and apolipoprotein A-I in relation to risk of cardiovascular events among statin-treated patients; a meta-analysis

    PubMed Central

    Boekholdt, S. Matthijs; Arsenault, Benoit J.; Hovingh, G. Kees; Mora, Samia; Pedersen, Terje R.; LaRosa, John C.; Welch, K.M.A.; Amarenco, Pierre; DeMicco, David A.; Tonkin, Andrew M.; Sullivan, David R.; Kirby, Adrienne; Colhoun, Helen M.; Hitman, Graham A.; Betteridge, D. John; Durrington, Paul N.; Clearfield, Michael B.; Downs, John R.; Gotto, Antonio M.; Ridker, Paul M.; Kastelein, John J.P.

    2013-01-01

    Background It is unclear whether levels of high-density lipoprotein cholesterol (HDL-C) or apolipoprotein A-I (apoA-I) remain inversely associated with cardiovascular risk among patients who achieve very low levels of low-density lipoprotein cholesterol (LDL-C) on statin therapy. It is also unknown whether a rise in HDL-C or apoA-I after initiation of statin therapy is associated with a reduced cardiovascular risk. Methods and results We performed a meta-analysis of 8 statin trials in which lipids and apolipoproteins were determined in all study participants at baseline and at 1-year follow-up. Individual patient data were obtained for 38,153 trial participants allocated to statin therapy, of whom 5387 suffered a major cardiovascular event. HDL-C levels were associated with a reduced risk of major cardiovascular events (adjusted hazard ratio 0.83, 95%CI 0.81–0.86 per 1 standard deviation increment), as were apoA-I levels (HR 0.79, 95%CI 0.72–0.82). This association was also observed among patients achieving on-statin LDL-C levels < 50 mg/dL. An increase of HDL-C was not associated with reduced cardiovascular risk (HR 0.98, 95%CI 0.94–1.01 per 1 standard deviation increment), whereas a rise in apoA-I was (HR 0.93, 95%CI 0.90–0.97). Conclusions Among patients treated with statin therapy, HDL-C and apoA-I levels were strongly associated with a reduced cardiovascular risk, even among those achieving very low LDL-C. An apoA-I increase was associated with a reduced risk of major cardiovascular events, whereas for HDL-C this was not the case. These findings suggest that therapies that increase apoA-I concentration require further exploration with regard to cardiovascular risk reduction. PMID:23965489

  4. Mining the LIPG allelic spectrum reveals the contribution of rare and common regulatory variants to HDL cholesterol.

    PubMed

    Khetarpal, Sumeet A; Edmondson, Andrew C; Raghavan, Avanthi; Neeli, Hemanth; Jin, Weijun; Badellino, Karen O; Demissie, Serkalem; Manning, Alisa K; DerOhannessian, Stephanie L; Wolfe, Megan L; Cupples, L Adrienne; Li, Mingyao; Kathiresan, Sekar; Rader, Daniel J

    2011-12-01

    Genome-wide association studies (GWAS) have successfully identified loci associated with quantitative traits, such as blood lipids. Deep resequencing studies are being utilized to catalogue the allelic spectrum at GWAS loci. The goal of these studies is to identify causative variants and missing heritability, including heritability due to low frequency and rare alleles with large phenotypic impact. Whereas rare variant efforts have primarily focused on nonsynonymous coding variants, we hypothesized that noncoding variants in these loci are also functionally important. Using the HDL-C gene LIPG as an example, we explored the effect of regulatory variants identified through resequencing of subjects at HDL-C extremes on gene expression, protein levels, and phenotype. Resequencing a portion of the LIPG promoter and 5' UTR in human subjects with extreme HDL-C, we identified several rare variants in individuals from both extremes. Luciferase reporter assays were used to measure the effect of these rare variants on LIPG expression. Variants conferring opposing effects on gene expression were enriched in opposite extremes of the phenotypic distribution. Minor alleles of a common regulatory haplotype and noncoding GWAS SNPs were associated with reduced plasma levels of the LIPG gene product endothelial lipase (EL), consistent with its role in HDL-C catabolism. Additionally, we found that a common nonfunctional coding variant associated with HDL-C (rs2000813) is in linkage disequilibrium with a 5' UTR variant (rs34474737) that decreases LIPG promoter activity. We attribute the gene regulatory role of rs34474737 to the observed association of the coding variant with plasma EL levels and HDL-C. Taken together, the findings show that both rare and common noncoding regulatory variants are important contributors to the allelic spectrum in complex trait loci. PMID:22174694

  5. Mining the LIPG Allelic Spectrum Reveals the Contribution of Rare and Common Regulatory Variants to HDL Cholesterol

    PubMed Central

    Raghavan, Avanthi; Neeli, Hemanth; Jin, Weijun; Badellino, Karen O.; Demissie, Serkalem; Manning, Alisa K.; DerOhannessian, Stephanie L.; Wolfe, Megan L.; Cupples, L. Adrienne; Li, Mingyao; Kathiresan, Sekar; Rader, Daniel J.

    2011-01-01

    Genome-wide association studies (GWAS) have successfully identified loci associated with quantitative traits, such as blood lipids. Deep resequencing studies are being utilized to catalogue the allelic spectrum at GWAS loci. The goal of these studies is to identify causative variants and missing heritability, including heritability due to low frequency and rare alleles with large phenotypic impact. Whereas rare variant efforts have primarily focused on nonsynonymous coding variants, we hypothesized that noncoding variants in these loci are also functionally important. Using the HDL-C gene LIPG as an example, we explored the effect of regulatory variants identified through resequencing of subjects at HDL-C extremes on gene expression, protein levels, and phenotype. Resequencing a portion of the LIPG promoter and 5′ UTR in human subjects with extreme HDL-C, we identified several rare variants in individuals from both extremes. Luciferase reporter assays were used to measure the effect of these rare variants on LIPG expression. Variants conferring opposing effects on gene expression were enriched in opposite extremes of the phenotypic distribution. Minor alleles of a common regulatory haplotype and noncoding GWAS SNPs were associated with reduced plasma levels of the LIPG gene product endothelial lipase (EL), consistent with its role in HDL-C catabolism. Additionally, we found that a common nonfunctional coding variant associated with HDL-C (rs2000813) is in linkage disequilibrium with a 5′ UTR variant (rs34474737) that decreases LIPG promoter activity. We attribute the gene regulatory role of rs34474737 to the observed association of the coding variant with plasma EL levels and HDL-C. Taken together, the findings show that both rare and common noncoding regulatory variants are important contributors to the allelic spectrum in complex trait loci. PMID:22174694

  6. Discovery of XEN445: a potent and selective endothelial lipase inhibitor raises plasma HDL-cholesterol concentration in mice.

    PubMed

    Sun, Shaoyi; Dean, Richard; Jia, Qi; Zenova, Alla; Zhong, Jing; Grayson, Celene; Xie, Clark; Lindgren, Andrea; Samra, Pritpaul; Sojo, Luis; van Heek, Margaret; Lin, Linus; Percival, David; Fu, Jian-Min; Winther, Michael D; Zhang, Zaihui

    2013-12-15

    Endothelial lipase (EL) activity has been implicated in HDL metabolism and in atherosclerotic plaque development; inhibitors are proposed to be efficacious in the treatment of dyslipidemia related cardiovascular disease. We describe here the discovery of a novel class of anthranilic acids EL inhibitors. XEN445 (compound 13) was identified as a potent and selective EL inhibitor, that showed good ADME and PK properties, and demonstrated in vivo efficacy in raising plasma HDLc concentrations in mice. PMID:24211162

  7. Coffee intake can promote activity of antioxidant enzymes with increasing MDA level and decreasing HDL-cholesterol in physically trained rats

    PubMed Central

    Choi, Eun-Young; Jang, Jin-Young

    2010-01-01

    This study investigated the effect of coffee intake and exercise on the antioxidative activity and plasma cholesterol profile of physically trained rats while they were exercising. Forty eight rats were under either the control diet with water (C) or control diet with coffee (CF) and at the same time they were given physical training for 4 weeks. In terms of physical training, the rats were exercised on a treadmill for 30 minutes everyday. At the end of 4 weeks, animals in each dietary group were subdivided into 3 groups: before-exercise (BE); during-exercise (DE); after-exercise (AE). Animals in the DE group were exercised on a treadmill for one hour, immediately before being sacrificed. Animals in the AE group were allowed to take a rest for one hour after exercise. TG levels were significantly high in coffee intake group than in control group. Also TG level of AE group was significantly higher than that of BE group. Exercise and coffee-exercise interaction effects were significant in total cholesterol (P = 0.0004, 0.0170). The AE of coffee intake group showed highest total cholesterol levels. HDL-cholesterol was significantly lower in coffee intake group than in control group. Coffee, exercise, and coffee-exercise interaction effects were significant in SOD (P = 0.0001, 0.0001, and 0.0001). The AE and BE of coffee intake group showed higher SOD levels than the other four groups. Catalase activities were significantly higher in coffee intake group than control group. No significant main effect was found in GSH/GSSG. Coffee, exercise, and coffee-exercise interaction effects were significant in MDA levels (P = 0.0464, 0.0016, and 0.0353). The DE and AE of coffee intake group and the DE of control group showed higher MDA levels than the BE of control group. Therefore, coffee intake can promote activities of antioxidant enzyme but it also increases MDA and decreases HDL-cholesterol in physically trained rats. PMID:20827343

  8. Novel apo E-derived ABCA1 agonist peptide (CS-6253) promotes reverse cholesterol transport and induces formation of preβ-1 HDL in vitro

    SciTech Connect

    Hafiane, Anouar; Bielicki, John K.; Johansson, Jan O.; Genest, Jacques; Zhu, Xuewei

    2015-07-24

    Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from the carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These

  9. Synbiotic food consumption reduces levels of triacylglycerols and VLDL, but not cholesterol, LDL, or HDL in plasma from pregnant women.

    PubMed

    Taghizadeh, Mohsen; Hashemi, Teibeh; Shakeri, Hossein; Abedi, Fatemeh; Sabihi, Sima-Sadat; Alizadeh, Sabihe-Alsadat; Asemi, Zatolla

    2014-02-01

    To our knowledge, no reports are available indicating the effects of synbiotic food consumption on blood lipid profiles and biomarkers of oxidative stress among pregnant women. This study was conducted to evaluate the effects of daily consumption of a synbiotic food on blood lipid profiles and biomarkers of oxidative stress in pregnant women. This randomized, double-blind, controlled clinical trial was performed among 52 primigravida pregnant women, aged 18 to 35-year-old at their third trimester. After a 2-week run-in period, subjects were randomly assigned to consume either a synbiotic (n = 26) or control food (n = 26) for 9 weeks. The synbiotic food consisted of a probiotic viable and heat-resistant Lactobacillus sporogenes (1 × 10⁷ CFU) and 0.04 g inulin (HPX)/g as the prebiotic. Patients were asked to consume the synbiotic and control foods two times a day. Biochemical measurements including blood lipid profiles, plasma total antioxidant capacity (TAC) and total glutathione (GSH) were conducted before and after 9 weeks of intervention. Consumption of a synbiotic food for 9 weeks resulted in a significant reduction in serum TAG (P = 0.04), VLDL (P = 0.04) and a significant rise in plasma GSH levels (P = 0.004) compared to the control food. No significant effects of the synbiotic food consumption on serum TC, LDL, HDL and plasma TAC levels (P > 0.05) were observed. Trial registry code: http://www.irct.ir . IRCT201212105623N3. PMID:24271261

  10. The Role of Oxidized Cholesterol in Diabetes-Induced Lysosomal Dysfunction in the Brain.

    PubMed

    Sims-Robinson, Catrina; Bakeman, Anna; Rosko, Andrew; Glasser, Rebecca; Feldman, Eva L

    2016-05-01

    Abnormalities in lysosomal function have been reported in diabetes, aging, and age-related degenerative diseases. These lysosomal abnormalities are an early manifestation of neurodegenerative diseases and often precede the onset of clinical symptoms such as learning and memory deficits; however, the mechanism underlying lysosomal dysfunction is not known. In the current study, we investigated the mechanism underlying lysosomal dysfunction in the cortex and hippocampi, key structures involved in learning and memory, of a type 2 diabetes (T2D) mouse model, the leptin receptor deficient db/db mouse. We demonstrate for the first time that diabetes leads to destabilization of lysosomes as well as alterations in the protein expression, activity, and/or trafficking of two lysosomal enzymes, hexosaminidase A and cathepsin D, in the hippocampus of db/db mice. Pioglitazone, a thiazolidinedione (TZD) commonly used in the treatment of diabetes due to its ability to improve insulin sensitivity and reverse hyperglycemia, was ineffective in reversing the diabetes-induced changes on lysosomal enzymes. Our previous work revealed that pioglitazone does not reverse hypercholesterolemia; thus, we investigated whether cholesterol plays a role in diabetes-induced lysosomal changes. In vitro, cholesterol promoted the destabilization of lysosomes, suggesting that lysosomal-related changes associated with diabetes are due to elevated levels of cholesterol. Since lysosome dysfunction precedes neurodegeneration, cognitive deficits, and Alzheimer's disease neuropathology, our results may provide a potential mechanism that links diabetes with complications of the central nervous system. PMID:25976368

  11. HDL, Atherosclerosis, and Emerging Therapies

    PubMed Central

    Genest, Jacques

    2013-01-01

    This review aims to provide an overview on the properties of high-density lipoproteins (HDLs) and their cardioprotective effects. Emergent HDL therapies will be presented in the context of the current understanding of HDL function, metabolism, and protective antiatherosclerotic properties. The epidemiological association between levels of HDL-C or its major apolipoprotein (apoA-I) is strong, graded, and coherent across populations. HDL particles mediate cellular cholesterol efflux, have antioxidant properties, and modulate vascular inflammation and vasomotor function and thrombosis. A link of causality has been cast into doubt with Mendelian randomization data suggesting that genes causing HDL-C deficiency are not associated with increased cardiovascular risk, nor are genes associated with increased HDL-C, with a protective effect. Despite encouraging data from small studies, drugs that increase HDL-C levels have not shown an effect on major cardiovascular end-points in large-scale clinical trials. It is likely that the cholesterol mass within HDL particles is a poor biomarker of therapeutic efficacy. In the present review, we will focus on novel therapeutic avenues and potential biomarkers of HDL function. A better understanding of HDL antiatherogenic functions including reverse cholesterol transport, vascular protective and antioxidation effects will allow novel insight on novel, emergent therapies for cardiovascular prevention. PMID:23781332

  12. Genetic determinants of HDL metabolism.

    PubMed

    Ossoli, A; Gomaraschi, M; Franceschini, G; Calabresi, L

    2014-01-01

    Plasma high density lipoproteins (HDL) comprise a highly heterogeneous family of lipoprotein particles, with subclasses that can be separated and identified according to density, size, surface charge as well as shape and protein composition. There is evidence that these subclasses may differ in their functional properties. The individual plasma HDL cholesterol (HDL-C) level is generally taken as a snapshot of the steady-state concentration of all circulating HDL subclasses together, but this is insufficient to capture the structural and functional variation in HDL particles. HDL are continuously remodeled and metabolized in plasma and interstitial fluids, through the interaction with a large number of factors, including structural proteins, membrane transporters, enzymes, transfer proteins and receptors. Genetic variation in these factors can lead to essential changes in plasma HDL levels, and to remarkable changes in HDL particle density, size, surface charge, shape, and composition in lipids and apolipoproteins. This review discusses the impact of rare mutations and common variants in genes encoding factors involved in HDL remodeling and metabolism on plasma HDL-C levels and particle distribution. The study of the effects of human genetic variation in major players in HDL metabolism provides important clues on how individual factors modulate the formation, maturation, remodeling and catabolism of HDL. PMID:24606513

  13. Impact of HDL oxidation by the myeloperoxidase system on sterol efflux by the ABCA1 pathway.

    PubMed

    Shao, Baohai; Heinecke, Jay W

    2011-10-19

    Protein oxidation by phagocytic white blood cells is implicated in tissue injury during inflammation. One important target might be high-density lipoprotein (HDL), which protects against atherosclerosis by removing excess cholesterol from artery wall macrophages. In the human artery wall, cholesterol-laden macrophages are a rich source of myeloperoxidase (MPO), which uses hydrogen peroxide for oxidative reactions in the extracellular milieu. Levels of two characteristic products of MPO-chlorotyrosine and nitrotyrosine-are markedly elevated in HDL from human atherosclerotic lesions. Here, we describe how MPO-dependent chlorination impairs the ability of apolipoprotein A-I (apoA-I), HDL's major protein, to transport cholesterol by the ATP-binding cassette transporter A1 (ABCA1) pathway. Faulty interactions between apoA-I and ABCA1 are involved. Tandem mass spectrometry and investigations of mutated forms of apoA-I demonstrate that tyrosine residues in apoA-I are chlorinated in a site-specific manner by chloramine intermediates on suitably juxtaposed lysine residues. Plasma HDL isolated from subjects with coronary artery disease (CAD) also contains higher levels of chlorinated and nitrated tyrosine residues than HDL from healthy subjects. Thus, the presence of chlorinated HDL might serve as a marker of CAD risk. Because HDL damaged by MPO in vitro becomes dysfunctional, inhibiting MPO in vivo might be cardioprotective. PMID:21501700

  14. Higher breakfast glycaemic load is associated with increased metabolic syndrome risk, including lower HDL-cholesterol concentrations and increased TAG concentrations, in adolescent girls.

    PubMed

    Nicholl, Analise; du Heaume, Mary; Mori, Trevor A; Beilin, Lawrence J; Oddy, Wendy H; Bremner, Alexandra P; O'Sullivan, Therese A

    2014-12-28

    Almost all previous studies examining the associations between glycaemic load (GL) and metabolic syndrome risk have used a daily GL value. The daily value does not distinguish between peaks of GL intake over the day, which may be more closely associated with the risk of the metabolic syndrome. The aim of the present study was to investigate the cross-sectional associations between daily and mealtime measures of GL and metabolic syndrome risk, including metabolic syndrome components, in adolescents. Adolescents participating in the 14-year follow-up of the Western Australian Pregnancy Cohort (Raine) Study completed 3 d food records and metabolic assessments. Breakfast GL, lunch GL, dinner GL and a score representing meal GL peaks over the day were determined in 516 adolescents. Logistic regression models were used to investigate whether GL variables were independent predictors of the metabolic syndrome in this population-based cohort (3.5% prevalence of the metabolic syndrome). Breakfast GL was found to be predictive of the metabolic syndrome in girls (OR 1.15, 95% CI 1.04, 1.27; P <0.01), but not in boys. Other meal GL values and daily GL were found to be not significant predictors of the metabolic syndrome. When breakfast GL was examined in relation to each of the components of the metabolic syndrome in girls, it was found to be negatively associated with fasting HDL-cholesterol concentrations (P= 0.037; β = - 0.004; 95% CI - 0.008, - 0.002) and positively associated with fasting TAG concentrations (P= 0.008; exp(β) = 1.002; 95% CI 1.001, 1.004). he results of the present study suggest that there may be an association between breakfast composition and metabolic syndrome components in adolescent girls. These findings support further investigation into including lower-GL foods as part of a healthy breakfast in adolescence, particularly for girls. PMID:25327283

  15. Cholesterol testing and results

    MedlinePlus

    ... lipoprotein (LDL cholesterol) High density lipoprotein (HDL cholesterol) Triglycerides (another type of fat in your blood) Very ... made of fat and protein. They carry cholesterol, triglycerides, and other fats, called lipids, in the blood ...

  16. The effects of ABCG5/G8 polymorphisms on HDL-cholesterol concentrations depend on ABCA1 genetic variants in the Boston Puerto Rican health study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and aims: ATP-binding cassette transporters G5/G8 (ABCG5/G8) are associated with HDL-C concentrations. To assess whether the effect of ABCG5/G8 genetic variants on HDL-C concentrations is dependent on ATP-binding cassette transporters A1 (ABCA1), we studied potential interactions between ...

  17. The effect of ABCG5/G8 polymorphisms on plasma HDL cholesterol levels depends on the ABCA1 gene variation in the Boston Puerto Rican Health Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: ATP-binding cassette transporters G5/G8 have shown an association with HDL-C. One of the most likely mechanisms to explain those associations is through ABCA1. Objective: To assess whether the effect of ABCG5/G8 polymorphisms on HDL-C is dependent on ABCA1, we studied potential interacti...

  18. A genetic variant of the CAPN10 gene in Mexican subjects with dyslipidemia is associated with increased HDL-cholesterol concentrations after the consumption of a soy protein and soluble fiber dietary portfolio.

    PubMed

    Guevara-Cruz, Martha; Torres, Nimbe; Tovar, Armando R; Tejero, M Elizabeth; Castellanos-Jankiewicz, Ashley; del Bosque-Plata, Laura

    2014-01-01

    Dyslipidemia is a major public health problem, and therefore, it is important to develop dietary strategies to diminish the prevalence of this disorder. It was recently reported that diet may play an important role in triggering insulin resistance by interacting with genetic variants at the CAPN10 gene locus in patients with metabolic syndrome. Nonetheless, it remains unknown whether genetic variants of genes involved in the development of type 2 diabetes are associated with variations in high-density lipoprotein cholesterol (HDL-C). The study used a single-center, prospective, cohort design. Here, we assessed the effect of four variants of the CAPN10 gene on HDL-C levels in response to a soy protein and soluble fiber dietary portfolio in subjects with dyslipidemia. In 31 Mexican dyslipidemic individuals, we analyzed four CAPN10 gene variants (rs5030952, rs2975762, rs3792267, and rs2975760) associated with type 2 diabetes. Subjects with the GG genotype of the rs2975762 variant of the CAPN10 gene were better responders to dietary intervention, showing increased HDL-C concentrations from the first month of treatment. HDL-C concentrations in participants with the wild type genotype increased by 17.0%, whereas the HDL-C concentration in subjects with the variant genotypes increased by only 3.22% (p = 0.03); the low-density lipoprotein cholesterol levels of GG carriers tended to decrease (-12.6%). These results indicate that Mexican dyslipidemic carriers of the rs2975762-GG genotype are better responders to this dietary intervention. PMID:25238846

  19. Apolipoprotein A-II is a key regulatory factor of HDL metabolism as appears from studies with transgenic animals and clinical outcomes.

    PubMed

    Maïga, Sira Fatoumata; Kalopissis, Athina-Despina; Chabert, Michèle

    2014-01-01

    The structure and metabolism of HDL are linked to their major apolipoproteins (apo) A-I and A-II. HDL metabolism is very dynamic and depends on the constant remodeling by lipases, lipid transfer proteins and receptors. HDL exert several cardioprotective effects, through their antioxidant and antiinflammatory capacities and through the stimulation of reverse cholesterol transport from extrahepatic tissues to the liver for excretion into bile. HDL also serve as plasma reservoir for C and E apolipoproteins, as transport vehicles for a great variety of proteins, and may have more physiological functions than previously recognized. In this review we will develop several aspects of HDL metabolism with emphasis on the structure/function of apo A-I and apo A-II. An important contribution to our understanding of the respective roles of apo A-I and apo A-II comes from studies using transgenic animal models that highlighted the stabilizatory role of apo A-II on HDL through inhibition of their remodeling by lipases. Clinical studies coupled with proteomic analyses revealed the presence of dysfunctional HDL in patients with cardiovascular disease. Beyond HDL cholesterol, a new notion is the functionality of HDL particles. In spite of abundant literature on HDL metabolic properties, a major question remains unanswered: which HDL particle(s) confer(s) protection against cardiovascular risk? PMID:24012775

  20. apo B gene knockout in mice results in embryonic lethality in homozygotes and neural tube defects, male infertility, and reduced HDL cholesterol ester and apo A-I transport rates in heterozygotes.

    PubMed Central

    Huang, L S; Voyiaziakis, E; Markenson, D F; Sokol, K A; Hayek, T; Breslow, J L

    1995-01-01

    apo B is a structural constituent of several classes of lipoprotein particles, including chylomicrons, VLDL, and LDL. To better understand the role of apo B in the body, we have used gene targeting in embryonic stem cells to create a null apo B allele in the mouse. Homozygous apo B deficiency led to embryonic lethality, with resorption of all embryos by gestational day 9. Heterozygotes showed an increased tendency to intrauterine death with some fetuses having incomplete neural tube closure and some live-born heterozygotes developing hydrocephalus. The majority of male heterozygotes were sterile, although the genitourinary system and sperm were grossly normal. Viable heterozygotes had normal triglycerides, but total, LDL, and HDL cholesterol levels were decreased by 37, 37, and 39%, respectively. Hepatic and intestinal apo B mRNA levels were decreased in heterozygotes, presumably contributing to the decreased LDL levels through decreased synthesis of apo B-containing lipoproteins. Kinetic studies indicated that heterozygotes had decreased transport rates of HDL cholesterol ester and apo A-I. As liver and intestinal apo A-I mRNA levels were unchanged, the mechanism for decreased apo A-I transport must be posttranscriptional. Heterozygotes also had normal cholesterol absorption and a normal response of the plasma lipoprotein pattern to chronic consumption of a high fat, high cholesterol, Western-type diet. In summary, we report a mouse model for apo B deficiency with several phenotypic features that were unexpected based on clinical studies of apo B-deficient humans, such as embryonic lethality in homozygotes and neural tube closure defects, male infertility, and a major defect in HDL production in heterozygotes. This model presents an opportunity to study the mechanisms underlying these phenotypic changes. Images PMID:7593600

  1. Cholesterol Secosterol Aldehydes Induce Amyloidogenesis and Dysfunction of Wild Type Tumor Protein p53

    PubMed Central

    Nieva, Jorge; Song, Byeong-Doo; Rogel, Joseph K.; Kujawara, David; Altobel, Lawrence; Izharrudin, Alicia; Boldt, Grant E.; Grover, Rajesh K.; Wentworth, Anita D.; Wentworth, Paul

    2011-01-01

    SUMMARY Epidemiologic and clinical evidence points to an increased risk of cancer when coupled with chronic inflammation. However, the molecular mechanisms that underpin this interrelationship remain largely unresolved. Herein we show that the inflammation-derived cholesterol 5,6-secosterol aldehydes, atheronal-A (KA) and –B (ALD), but not the PUFA-derived aldehydes 4-hydroxynonenal (HNE) and 4-hydroxyhexenal (HHE), induce misfolding of wild-type p53 into an amyloidogenic form that binds thioflavin T and Congo Red dyes but cannot bind to a consensus DNA sequence. Treatment of lung carcinoma cells with KA and ALD leads to a loss of function of extracted p53, as determined by analysis of extracted nuclear protein and in activation of p21. Our results uncover a plausible chemical link between inflammation and cancer and expands the already pivotal role of p53 dysfunction and cancer risk. PMID:21802012

  2. HDL therapy for cardiovascular diseases: the road to HDL mimetics.

    PubMed

    White, C Roger; Datta, Geeta; Zhang, Zhenghao; Gupta, Himanshu; Garber, David W; Mishra, Vinod K; Palgunachari, Mayakonda N; Handattu, Shaila P; Chaddha, Manjula; Anantharamaiah, G M

    2008-10-01

    3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) are currently the drug of choice for the clinical management of elevated low-density lipoprotein (LDL) cholesterol. Although statin treatment provides an overall improvement in outcomes, clinical trial data reveal a significant number of cardiac events despite reaching targeted LDL levels. A low serum high-density lipoprotein (HDL) cholesterol level is an independent predictor of cardiovascular risk. Accordingly, there has been interest in determining whether HDL elevation, in addition to LDL lowering, further reduces risk in patients with coronary artery disease. Several commonly prescribed lipid-lowering therapies modestly raise HDL, but their use may be limited by the development of adverse reactions. Emerging data suggest that HDL quality and function may also be significantly reduced by atherosclerosis and other inflammatory diseases. The goal of this review is to discuss the current status of HDL therapeutics, with emphasis on a novel class of agent, the apolipoprotein A-I mimetic peptides, which improve the functional properties of HDL cholesterol. PMID:18706282

  3. Cholesterol and Statins

    MedlinePlus

    ... the liver makes ldl & hdl In the liver, triglycerides, cholesterol, and proteins form together to make LDL ... This is especially important for individuals with high triglyceride and/or low HDL levels who are overweight ...

  4. HDL biogenesis, remodeling, and catabolism.

    PubMed

    Zannis, Vassilis I; Fotakis, Panagiotis; Koukos, Georgios; Kardassis, Dimitris; Ehnholm, Christian; Jauhiainen, Matti; Chroni, Angeliki

    2015-01-01

    In this chapter, we review how HDL is generated, remodeled, and catabolized in plasma. We describe key features of the proteins that participate in these processes, emphasizing how mutations in apolipoprotein A-I (apoA-I) and the other proteins affect HDL metabolism. The biogenesis of HDL initially requires functional interaction of apoA-I with the ATP-binding cassette transporter A1 (ABCA1) and subsequently interactions of the lipidated apoA-I forms with lecithin/cholesterol acyltransferase (LCAT). Mutations in these proteins either prevent or impair the formation and possibly the functionality of HDL. Remodeling and catabolism of HDL is the result of interactions of HDL with cell receptors and other membrane and plasma proteins including hepatic lipase (HL), endothelial lipase (EL), phospholipid transfer protein (PLTP), cholesteryl ester transfer protein (CETP), apolipoprotein M (apoM), scavenger receptor class B type I (SR-BI), ATP-binding cassette transporter G1 (ABCG1), the F1 subunit of ATPase (Ecto F1-ATPase), and the cubulin/megalin receptor. Similarly to apoA-I, apolipoprotein E and apolipoprotein A-IV were shown to form discrete HDL particles containing these apolipoproteins which may have important but still unexplored functions. Furthermore, several plasma proteins were found associated with HDL and may modulate its biological functions. The effect of these proteins on the functionality of HDL is the topic of ongoing research. PMID:25522986

  5. Plasma cholesterol-lowering and transient liver dysfunction in mice lacking squalene synthase in the liver[S

    PubMed Central

    Nagashima, Shuichi; Yagyu, Hiroaki; Tozawa, Ryuichi; Tazoe, Fumiko; Takahashi, Manabu; Kitamine, Tetsuya; Yamamuro, Daisuke; Sakai, Kent; Sekiya, Motohiro; Okazaki, Hiroaki; Osuga, Jun-ichi; Honda, Akira; Ishibashi, Shun

    2015-01-01

    Squalene synthase (SS) catalyzes the biosynthesis of squalene, the first specific intermediate in the cholesterol biosynthetic pathway. To test the feasibility of lowering plasma cholesterol by inhibiting hepatic SS, we generated mice in which SS is specifically knocked out in the liver (L-SSKO) using Cre-loxP technology. Hepatic SS activity of L-SSKO mice was reduced by >90%. In addition, cholesterol biosynthesis in the liver slices was almost eliminated. Although the hepatic squalene contents were markedly reduced in L-SSKO mice, the hepatic contents of cholesterol and its precursors distal to squalene were indistinguishable from those of control mice, indicating the presence of sufficient centripetal flow of cholesterol and/or its precursors from the extrahepatic tissues. L-SSKO mice showed a transient liver dysfunction with moderate hepatomegaly presumably secondary to increased farnesol production. In a fed state, the plasma total cholesterol and triglyceride were significantly reduced in L-SSKO mice, primarily owing to reduced hepatic VLDL secretion. In a fasted state, the hypolipidemic effect was lost. mRNA expression of liver X receptor α target genes was reduced, while that of sterol-regulatory element binding protein 2 target genes was increased. In conclusion, liver-specific ablation of SS inhibits hepatic cholesterol biosynthesis and induces hypolipidemia without increasing significant mortality. PMID:25755092

  6. Cholesterol efflux and reverse cholesterol transport.

    PubMed

    Favari, Elda; Chroni, Angelika; Tietge, Uwe J F; Zanotti, Ilaria; Escolà-Gil, Joan Carles; Bernini, Franco

    2015-01-01

    Both alterations of lipid/lipoprotein metabolism and inflammatory events contribute to the formation of the atherosclerotic plaque, characterized by the accumulation of abnormal amounts of cholesterol and macrophages in the artery wall. Reverse cholesterol transport (RCT) may counteract the pathogenic events leading to the formation and development of atheroma, by promoting the high-density lipoprotein (HDL)-mediated removal of cholesterol from the artery wall. Recent in vivo studies established the inverse relationship between RCT efficiency and atherosclerotic cardiovascular diseases (CVD), thus suggesting that the promotion of this process may represent a novel strategy to reduce atherosclerotic plaque burden and subsequent cardiovascular events. HDL plays a primary role in all stages of RCT: (1) cholesterol efflux, where these lipoproteins remove excess cholesterol from cells; (2) lipoprotein remodeling, where HDL undergo structural modifications with possible impact on their function; and (3) hepatic lipid uptake, where HDL releases cholesterol to the liver, for the final excretion into bile and feces. Although the inverse association between HDL plasma levels and CVD risk has been postulated for years, recently this concept has been challenged by studies reporting that HDL antiatherogenic functions may be independent of their plasma levels. Therefore, assessment of HDL function, evaluated as the capacity to promote cell cholesterol efflux may offer a better prediction of CVD than HDL levels alone. Consistent with this idea, it has been recently demonstrated that the evaluation of serum cholesterol efflux capacity (CEC) is a predictor of atherosclerosis extent in humans. PMID:25522988

  7. Enhanced HDL Functionality in Small HDL Species Produced Upon Remodeling of HDL by Reconstituted HDL, CSL112

    PubMed Central

    Didichenko, Svetlana A.; Navdaev, Alexei V.; Cukier, Alexandre M.O.; Gille, Andreas; Schuetz, Patrick; Spycher, Martin O.; Thérond, Patrice; Chapman, M. John; Kontush, Anatol

    2016-01-01

    Rationale: CSL112, human apolipoprotein A-I (apoA-I) reconstituted with phosphatidylcholine, is known to cause a dramatic rise in small high-density lipoprotein (HDL). Objective: To explore the mechanisms by which the formation of small HDL particles is induced by CSL112. Methods and Results: Infusion of CSL112 into humans caused elevation of 2 small diameter HDL fractions and 1 large diameter fraction. Ex vivo studies showed that this remodeling does not depend on lipid transfer proteins or lipases. Rather, interaction of CSL112 with purified HDL spontaneously gave rise to 3 HDL species: a large, spherical species composed of apoA-I from native HDL and CSL112; a small, disc-shaped species composed of apoA-I from CSL112, but smaller because of the loss of phospholipids; and the smallest species, lipid-poor apoA-I composed of apoA-I from HDL and CSL112. Time-course studies suggest that remodeling occurs by an initial fusion of CSL112 with HDL and subsequent fission leading to the smaller forms. Functional studies showed that ATP-binding cassette transporter 1–dependent cholesterol efflux and anti-inflammatory effects in whole blood were carried by the 2 small species with little activity in the large species. In contrast, the ability to inactivate lipid hydroperoxides in oxidized low-density lipoprotein was carried predominantly by the 2 largest species and was low in lipid-poor apoA-I. Conclusions: We have described a mechanism for the formation of small, highly functional HDL species involving spontaneous fusion of discoidal HDL with spherical HDL and subsequent fission. Similar remodeling is likely to occur during the life cycle of apoA-I in vivo. PMID:27436846

  8. Data in support of a central role of plasminogen activator inhibitor-2 polymorphism in recurrent cardiovascular disease risk in the setting of high HDL cholesterol and C-reactive protein using Bayesian network modeling.

    PubMed

    Corsetti, James P; Salzman, Peter; Ryan, Dan; Moss, Arthur J; Zareba, Wojciech; Sparks, Charles E

    2016-09-01

    Data is presented that was utilized as the basis for Bayesian network modeling of influence pathways focusing on the central role of a polymorphism of plasminogen activator inhibitor-2 (PAI-2) on recurrent cardiovascular disease risk in patients with high levels of HDL cholesterol and C-reactive protein (CRP) as a marker of inflammation, "Influences on Plasminogen Activator Inhibitor-2 Polymorphism-Associated Recurrent Cardiovascular Disease Risk in Patients with High HDL Cholesterol and Inflammation" (Corsetti et al., 2016; [1]). The data consist of occurrence of recurrent coronary events in 166 post myocardial infarction patients along with 1. clinical data on gender, race, age, and body mass index; 2. blood level data on 17 biomarkers; and 3. genotype data on 53 presumptive CVD-related single nucleotide polymorphisms. Additionally, a flow diagram of the Bayesian modeling procedure is presented along with Bayesian network subgraphs (root nodes to outcome events) utilized as the data from which PAI-2 associated influence pathways were derived (Corsetti et al., 2016; [1]). PMID:27284570

  9. HDL cholesterol levels and weight are the main determinants of subclinical atherosclerosis in the young with type 1 diabetes and suitable glycaemic control.

    PubMed

    Pinto, Camila S; Lana, Janaina M; Gabbay, Monica A L; de Sa, Joao R; Dib, Sergio A

    2014-03-01

    The aim of this study was to evaluate subclinical atherosclerosis and related factors in young type 1 diabetes (T1D) patients and healthy peers. Carotid intima-media thickness (cIMT) and anthropometric/laboratorial data were obtained for 83 T1D patients (mean age 19.5 ± 4.0 years, disease duration 9.8 ± 4.8 years) and for 36 matched healthy subjects. Considering all the participants as one group, male sex (p = 0.008), weight (p = 0.016) and T1D (p < 0.001) were positively associated with a higher cIMT. High-density lipoprotein (HDL) (p = 0.036) was negatively associated with cIMT in T1D. In the male T1D patients, HDL ≤47.5 mg/dL had a sensitivity of 87.5% and specificity of 57% (p = 0.035) in detecting those belonging to a higher cIMT tercile. In conclusion, weight and T1D were associated with increased cIMT. HDL levels ≤47.5 mg/dL were related to a higher cIMT in male T1D patients. PMID:24553254

  10. Metabolic and functional relevance of HDL subspecies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Though the association of high-density lipoprotein cholesterol (HDL-C) with cardiovascular disease (CVD) was described as early as 1950, HDL’s role in CVD still remains to be fully elucidated. There are numerous publications showing the inverse relationship between HDL-C and CVD risk; however, in t...

  11. Anion Exchange HPLC Isolation of High-Density Lipoprotein (HDL) and On-Line Estimation of Proinflammatory HDL

    PubMed Central

    Ji, Xiang; Xu, Hao; Zhang, Hao; Hillery, Cheryl A.; Gao, Hai-qing; Pritchard, Kirkwood A.

    2014-01-01

    Proinflammatory high-density lipoprotein (p-HDL) is a biomarker of cardiovascular disease. Sickle cell disease (SCD) is characterized by chronic states of oxidative stress that many consider to play a role in forming p-HDL. To measure p-HDL, apolipoprotein (apo) B containing lipoproteins are precipitated. Supernatant HDL is incubated with an oxidant/LDL or an oxidant alone and rates of HDL oxidation monitored with dichlorofluorescein (DCFH). Although apoB precipitation is convenient for isolating HDL, the resulting supernatant matrix likely influences HDL oxidation. To determine effects of supernatants on p-HDL measurements we purified HDL from plasma from SCD subjects by anion exchange (AE) chromatography, determined its rate of oxidation relative to supernatant HDL. SCD decreased total cholesterol but not triglycerides or HDL and increased cell-free (cf) hemoglobin (Hb) and xanthine oxidase (XO). HDL isolated by AE-HPLC had lower p-HDL levels than HDL in supernatants after apoB precipitation. XO+xanthine (X) and cf Hb accelerated purified HDL oxidation. Although the plate and AE-HPLC assays both showed p-HDL directly correlated with cf-Hb in SCD plasma, the plate assay yielded p-HDL data that was influenced more by cf-Hb than AE-HPLC generated p-HDL data. The AE-HPLC p-HDL assay reduces the influence of the supernatants and shows that SCD increases p-HDL. PMID:24609013

  12. ABCA1 and nascent HDL biogenesis.

    PubMed

    Wang, Shuhui; Smith, Jonathan D

    2014-01-01

    ABCA1 mediates the secretion of cellular free cholesterol and phospholipids to an extracellular acceptor, apolipoprotein AI, to form nascent high-density lipoprotein (HDL). Thus, ABCA1 is a key molecule in cholesterol homeostasis. Functional studies of certain Tangier disease mutations demonstrate that ABCA1 has multiple activities, including plasma membrane remodeling and apoAI binding to cell surface, which participate in nascent HDL biogenesis. Recent advances in our understanding of ABCA1 have demonstrated that ABCA1also mediates unfolding the N terminus of apoAI on the cell surface, followed by lipidation of apoAI and release of nascent HDL. Although ABCA1-mediated cholesterol efflux to apoAI can occur on the plasma membrane, the role of apoAI retroendocytosis during cholesterol efflux may play a role in macrophage foam cells that store cholesterol esters in cytoplasmic lipid droplets. PMID:25359426

  13. Restoration of renal function does not correct impairment of uremic HDL properties.

    PubMed

    Kopecky, Chantal; Haidinger, Michael; Birner-Grünberger, Ruth; Darnhofer, Barbara; Kaltenecker, Christopher C; Marsche, Gunther; Holzer, Michael; Weichhart, Thomas; Antlanger, Marlies; Kovarik, Johannes J; Werzowa, Johannes; Hecking, Manfred; Säemann, Marcus D

    2015-03-01

    Cardiovascular disease remains the leading cause of death in renal transplant recipients, but the underlying causative mechanisms for this important problem remain elusive. Recent work has indicated that qualitative alterations of HDL affect its functional and compositional properties in ESRD. Here, we systematically analyzed HDL from stable renal transplant recipients, according to graft function, and from patients with ESRD to determine whether structural and functional properties of HDL remain dysfunctional after renal transplantation. Cholesterol acceptor capacity and antioxidative activity, representing two key cardioprotective mechanisms of HDL, were profoundly suppressed in kidney transplant recipients independent of graft function and were comparable with levels in patients with ESRD. Using a mass spectroscopy approach, we identified specific remodeling of transplant HDL with highly enriched proteins, including α-1 microglobulin/bikunin precursor, pigment epithelium-derived factor, surfactant protein B, and serum amyloid A. In conclusion, this study demonstrates that HDL from kidney recipients is uniquely altered at the molecular and functional levels, indicating a direct pathologic role of HDL that could contribute to the substantial cardiovascular risk in the transplant population. PMID:25071090

  14. Restoration of Renal Function Does Not Correct Impairment of Uremic HDL Properties

    PubMed Central

    Kopecky, Chantal; Haidinger, Michael; Birner-Grünberger, Ruth; Darnhofer, Barbara; Kaltenecker, Christopher C.; Marsche, Gunther; Holzer, Michael; Weichhart, Thomas; Antlanger, Marlies; Kovarik, Johannes J.; Werzowa, Johannes; Hecking, Manfred

    2015-01-01

    Cardiovascular disease remains the leading cause of death in renal transplant recipients, but the underlying causative mechanisms for this important problem remain elusive. Recent work has indicated that qualitative alterations of HDL affect its functional and compositional properties in ESRD. Here, we systematically analyzed HDL from stable renal transplant recipients, according to graft function, and from patients with ESRD to determine whether structural and functional properties of HDL remain dysfunctional after renal transplantation. Cholesterol acceptor capacity and antioxidative activity, representing two key cardioprotective mechanisms of HDL, were profoundly suppressed in kidney transplant recipients independent of graft function and were comparable with levels in patients with ESRD. Using a mass spectroscopy approach, we identified specific remodeling of transplant HDL with highly enriched proteins, including α-1 microglobulin/bikunin precursor, pigment epithelium-derived factor, surfactant protein B, and serum amyloid A. In conclusion, this study demonstrates that HDL from kidney recipients is uniquely altered at the molecular and functional levels, indicating a direct pathologic role of HDL that could contribute to the substantial cardiovascular risk in the transplant population. PMID:25071090

  15. A single infusion of MDCO-216 (ApoA-1 Milano/POPC) increases ABCA1-mediated cholesterol efflux and pre-beta 1 HDL in healthy volunteers and patients with stable coronary artery disease

    PubMed Central

    Kallend, D.G.; Reijers, J.A.A.; Bellibas, S.E.; Bobillier, A.; Kempen, H.; Burggraaf, J.; Moerland, M.; Wijngaard, P.L.J.

    2016-01-01

    Aims Apolipoprotein A-1 (ApoA-1), based on epidemiology, is inversely associated with cardiovascular (CV) events. Human carriers of the ApoA-1 Milano variant have a reduced incidence of CV disease. Regression of atherosclerotic plaque burden was previously observed on intravascular ultrasound (IVUS) with ETC-216, a predecessor of MDCO-216. MDCO-216, a complex of dimeric ApoA-1 Milano and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, is being developed to reduce atherosclerotic plaque burden and CV events. We investigated the efficacy and safety of a single infusion of MDCO-216 in healthy volunteers and in patients with coronary artery disease (CAD). Methods and results Twenty-four healthy volunteers and 24 patients with documented CAD received a 2-h infusion of MDCO-216 in a randomized, placebo controlled, single ascending dose study. Five cohorts of healthy volunteers and four cohorts of CAD patients received ApoA-1 Milano doses ranging from 5 to 40 mg/kg. Subjects were followed for 30 days. Dose-dependent increases in ApoA-1, phospholipid, and pre-beta 1 HDL and decreases in ApoE were observed. Prominent and sustained increases in triglyceride, and decreases in HDL-C, endogenous ApoA-1 and ApoA-II occurred at doses >20 mg/kg and profound increases in ABCA1-mediated cholesterol efflux were observed. Other lipid and lipoprotein parameters were generally unchanged. MDCO-216 was well tolerated. Conclusions MDCO-216-modulated lipid parameters profoundly increased ABCA1-mediated cholesterol efflux and was well tolerated. These single-dose data support further development of this agent for reducing atherosclerotic disease and subsequent CV events. PMID:27418968

  16. HDL particle number and size as predictors of cardiovascular disease

    PubMed Central

    Kontush, Anatol

    2015-01-01

    Previous studies indicate that reduced concentrations of circulating high-density lipoprotein (HDL) particles can be superior to HDL-cholesterol (HDL-C) levels as a predictor of cardiovascular disease. Measurements of HDL particle numbers, therefore, bear a potential for the improved assessment of cardiovascular risk. Furthermore, such measurement can be relevant for the evaluation of novel therapeutic approaches targeting HDL. Modern in-depth analyses of HDL particle profile may further improve evaluation of cardiovascular risk. Although clinical relevance of circulating concentrations of HDL subpopulations to cardiovascular disease remains controversial, the negative relationship between the number of large HDL particles and cardiovascular disease suggests that assessment of HDL particle profile can be clinically useful. Reduced mean HDL size is equally associated with cardiovascular disease in large-scale clinical studies. Since HDL-C is primarily carried in the circulation by large, lipid-rich HDL particles, the inverse relationship between HDL size and cardiovascular risk can be secondary to those established for plasma levels of HDL particles, HDL-C, and large HDL. The epidemiological data thereby suggest that HDL particle number may represent a more relevant therapeutic target as compared to HDL-C. PMID:26500551

  17. Cholesterol-mediated surfactant dysfunction is mitigated by surfactant protein A.

    PubMed

    Hiansen, Joshua Qua; Keating, Eleonora; Aspros, Alex; Yao, Li-Juan; Bosma, Karen J; Yamashita, Cory M; Lewis, James F; Veldhuizen, Ruud A W

    2015-03-01

    The ability of pulmonary surfactant to reduce surface tension at the alveolar surface is impaired in various lung diseases. Recent animal studies indicate that elevated levels of cholesterol within surfactant may contribute to its inhibition. It was hypothesized that elevated cholesterol levels within surfactant inhibit human surfactant biophysical function and that these effects can be reversed by surfactant protein A (SP-A). The initial experiment examined the function of surfactant from mechanically ventilated trauma patients in the presence and absence of a cholesterol sequestering agent, methyl-β-cyclodextrin. The results demonstrated improved surface activity when cholesterol was sequestered in vitro using a captive bubble surfactometer (CBS). These results were explored further by reconstitution of surfactant with various concentrations of cholesterol with and without SP-A, and testing of the functionality of these samples in vitro with the CBS and in vivo using surfactant depleted rats. Overall, the results consistently demonstrated that surfactant function was inhibited by levels of cholesterol of 10% (w/w phospholipid) but this inhibition was mitigated by the presence of SP-A. It is concluded that cholesterol-induced surfactant inhibition can actively contribute to physiological impairment of the lungs in mechanically ventilated patients and that SP-A levels may be important to maintain surfactant function in the presence of high cholesterol within surfactant. PMID:25522687

  18. LDL-apheresis depletes apoE-HDL and pre-β1-HDL in familial hypercholesterolemia: relevance to atheroprotection

    PubMed Central

    Orsoni, Alexina; Saheb, Samir; Levels, Johannes H. M.; Dallinga-Thie, Geesje; Atassi, Marielle; Bittar, Randa; Robillard, Paul; Bruckert, Eric; Kontush, Anatol; Carrié, Alain; Chapman, M. John

    2011-01-01

    Subnormal HDL-cholesterol (HDL-C) and apolipoprotein (apo)AI levels are characteristic of familial hypercholesterolemia (FH), reflecting perturbed intravascular metabolism with compositional anomalies in HDL particles, including apoE enrichment. Does LDL-apheresis, which reduces HDL-cholesterol, apoAI, and apoE by adsorption, induce selective changes in HDL subpopulations, with relevance to atheroprotection? Five HDL subpopulations were fractionated from pre- and post-LDL-apheresis plasmas of normotriglyceridemic FH subjects (n = 11) on regular LDL-apheresis (>2 years). Apheresis lowered both plasma apoE (−62%) and apoAI (−16%) levels, with preferential, genotype-independent reduction in apoE. The mass ratio of HDL2:HDL3 was lowered from ∼1:1 to 0.72:1 by apheresis, reflecting selective removal of HDL2 mass (80% of total HDL adsorbed). Pre-LDL-apheresis, HDL2 subpopulations were markedly enriched in apoE, consistent with ∼1 copy of apoE per 4 HDL particles. Large amounts (50-66%) of apoE-HDL were removed by apheresis, preferentially in the HDL2b subfraction (−50%); minor absolute amounts of apoE-HDL were removed from HDL3 subfractions. Furthermore, pre-β1-HDL particle levels were subnormal following removal (−53%) upon apheresis, suggesting that cellular cholesterol efflux may be defective in the immediate postapheresis period. In LDL-receptor (LDL-R) deficiency, LDL-apheresis may enhance flux through the reverse cholesterol transport pathway and equally attenuate potential biglycan-mediated deposition of apoE-HDL in the arterial matrix. PMID:21957200

  19. Divergent effects of alpha-tocopherol and vitamin C on the generation of dysfunctional HDL associated with diabetes and the Hp 2-2 genotype.

    PubMed

    Asleh, Rabea; Levy, Andrew P

    2010-02-01

    The haptoglobin (Hp) 2-2 genotype is associated with increased risk of cardiovascular disease (CVD) in diabetes (DM). We recently proposed this increased risk arises from the tethering of redox active hemoglobin (Hb) to high density lipoprotein (HDL), thereby resulting in oxidative modification of HDL. Clinical trials have demonstrated that vitamin E (alpha-tocopherol) decreases while vitamin C increases CVD in Hp 2-2 DM individuals. We sought to test the hypothesis that the interaction of alpha-tocopherol or vitamin C on CVD in Hp 2-2 DM was due to their divergent effects on HDL oxidation and function. Vitamin C significantly increased while alpha-tocopherol completely blocked oxidation mediated by glycosylated Hb-Hp 2-2. Vitamin C had no benefit while alpha-tocopherol completely restored HDL function in Hp 2-2 DM mice. Co-administration of vitamin C mitigated the protective effects of alpha-tocopherol on HDL. There exists a pharmacogenomic interaction between vitamin C and alpha-tocopherol and the Hp 2-2 genotype on HDL function and structure. Choosing the correct antioxidant in the correct subset of patients may be critical in order to demonstrate benefit from antioxidant therapy. PMID:19769483

  20. Cholesterol Accumulation Is Associated with Lysosomal Dysfunction and Autophagic Stress in Npc1−/− Mouse Brain

    PubMed Central

    Liao, Guanghong; Yao, Yueqin; Liu, Jihua; Yu, Zhang; Cheung, Simon; Xie, Ang; Liang, Xiaoli; Bi, Xiaoning

    2007-01-01

    Niemann-Pick type C (NPC) disease is an autosomal recessive disorder caused by mutations of NPC1 and NPC2 genes. Progressive neurodegeneration that accompanies NPC is fatal, but the underlying mechanisms are still poorly understood. In the present study, we characterized the association of autophagic-lysosomal dysfunction with cholesterol accumulation in Npc1−/− mice during postnatal development. Brain levels of lysosomal cathepsin D were significantly higher in mutant than in wild-type mice. Increases in cathepsin D occurred first in neurons and later in astrocytes and microglia and were both spatially and temporally associated with intracellular cholesterol accumulation and neurodegeneration. Furthermore, levels of ubiquitinated proteins were higher in endosomal/lysosomal fractions of brains from Npc1−/− mice than from wild-type mice. Immunoblotting results showed that levels of LC3-II were significantly higher in brains of mutant than wild-type mice. Combined LC3 immunofluorescence and filipin staining showed that LC3 accumulated within filipin-labeled cholesterol clusters inside Purkinje cells. Electron microscopic examination revealed the existence of autophagic vacuole-like structures and multivesicles in brains from Npc1−/− mice. These results provide strong evidence that cholesterol accumulation-induced changes in autophagy-lysosome function are closely associated with neurodegeneration in NPC. PMID:17631520

  1. Usefulness of High-Density Lipoprotein Cholesterol to Predict Survival in Pulmonary Arterial Hypertension.

    PubMed

    Larsen, Carolyn M; McCully, Robert B; Murphy, Joseph G; Kushwaha, Sudhir S; Frantz, Robert P; Kane, Garvan C

    2016-07-15

    It has been suggested that lipoprotein abnormalities may contribute to the pulmonary arteriolar dysfunction observed in pulmonary arterial hypertension (PAH). High-density lipoprotein cholesterol (HDL) has vasodilatory, anti-inflammatory, and endothelial protective properties. We hypothesized that a higher serum HDL level may be advantageous for survival in PAH and that the serum HDL level at diagnosis would be an independent predictor of survival in PAH and be additive to previously validated predictors of survival. This study included all patients with PAH seen at the Mayo Clinic Pulmonary Hypertension Clinic from January 1, 1995, to December 31, 2009, who had a baseline HDL measurement. Mortality was analyzed over 5 years using the Kaplan-Meier method. Univariate and multivariable Cox proportional hazards ratios were calculated to evaluate the relation between baseline HDL level and survival. HDL levels were available for 227 patients. Higher HDL levels were associated with significantly lower mortality. Patients with an HDL >54 mg/dl at diagnosis had a 5-year survival of 59%. By comparison those with an HDL <34 mg/dl had a 5-year survival of 30%. On multivariate analysis, higher HDL was associated with an age-adjusted risk ratio for death of 0.78 (CI 0.67 to 0.91; p <0.01) per 10 mg/dl increase. In conclusion, HDL was an independent predictor of survival in PAH. PMID:27291969

  2. Home-Use Tests - Cholesterol

    MedlinePlus

    ... this test does: This is a home-use test kit to measure total cholesterol. What cholesterol is: Cholesterol is a fat (lipid) in your blood. High-density lipoprotein (HDL) ("good" cholesterol) helps protect your heart, but low-density lipoprotein (LDL) ("bad" cholesterol) can clog the arteries of your ...

  3. Realistic intake of a flavanol-rich soluble cocoa product increases HDL-cholesterol without inducing anthropometric changes in healthy and moderately hypercholesterolemic subjects.

    PubMed

    Martínez-López, Sara; Sarriá, Beatriz; Sierra-Cinos, José Luis; Goya, Luis; Mateos, Raquel; Bravo, Laura

    2014-02-01

    To assess whether antioxidant, anti-inflammatory and other cardio-protective effects attributed to cocoa are achieved when regularly consuming moderate amounts of a flavanol-rich soluble cocoa product, a non-randomized, controlled, crossover, free-living study was carried out in healthy (n = 24; 25.9 ± 5.6 years) and moderately hypercholesterolemic (200-240 mg dL(-1); n = 20; 30.0 ± 10.3 years) volunteers. Participants consumed two servings per day (7.5 g per serving) of a soluble cocoa product (providing 45.3 mg flavanols per day) in milk, which was compared with consuming only milk during a 4 week period. The effects on systolic and diastolic blood pressure and heart rate were determined, as well as on serum lipid and lipoprotein profiles, interleukins (IL)-1β, IL-6, IL-8, IL-10, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), vascular (VCAM-1) and intercellular cell adhesion molecules (ICAM-1), serum malondialdehyde (MDA), carbonyl groups (CG), ferric reducing/antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and free radical scavenging capacity (ABTS). During the study, the volunteers' diets and physical activity were also evaluated, as well as any changes in weight, skin folds, circumferences and related anthropometric parameters. Cocoa and certain polyphenol-rich fruits and vegetables and their derivatives were restricted. After consuming the cocoa product positive effects were observed such as an increase in serum HDL-C (p < 0.001) and dietary fiber intake (p = 0.050), whereas IL-10 decreased (p = 0.022). Other cardiovascular-related biomarkers and anthropometric parameters were unaffected. We have therefore concluded that regular consumption of this cocoa product in a Spanish-Mediterranean diet may protect against cardiovascular disease in healthy and hypercholesterolemic subjects without producing any weight gain or other anthropometric changes. PMID:24394704

  4. Innovative Target Therapies Are Able to Block the Inflammation Associated with Dysfunction of the Cholesterol Biosynthesis Pathway

    PubMed Central

    Marcuzzi, Annalisa; Piscianz, Elisa; Loganes, Claudia; Vecchi Brumatti, Liza; Knowles, Alessandra; Bilel, Sabrine; Tommasini, Alberto; Bortul, Roberta; Zweyer, Marina

    2015-01-01

    The cholesterol pathway is an essential biochemical process aimed at the synthesis of bioactive molecules involved in multiple crucial cellular functions. The end products of this pathway are sterols, such as cholesterol, which are essential components of cell membranes, precursors of steroid hormones, bile acids and other molecules such as ubiquinone. Several diseases are caused by defects in this metabolic pathway: the most severe forms of which cause neurological involvement (psychomotor retardation and cerebellar ataxia) as a result of a variety of cellular impairments, including mitochondrial dysfunction. These pathologies are induced by convergent mechanisms in which the mitochondrial unit plays a pivotal role contributing to defective apoptosis, autophagy and mitophagy processes. Unraveling these mechanisms would contribute to the development of effective drug treatments for these disorders. In addition, the development of biochemical models could have a substantial impact on the understanding of the mechanism of action of drugs that act on this pathway in multifactor disorders. In this review we will focus in particular on inhibitors of cholesterol synthesis, mitochondria-targeted drugs and inhibitors of the inflammasome. PMID:26729102

  5. Improved endothelial dysfunction by Cynanchum wilfordii in apolipoprotein E(-/-) mice fed a high fat/cholesterol diet.

    PubMed

    Choi, Deok Ho; Lee, Yun Jung; Oh, Hyun Cheol; Cui, Ying Lan; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2012-02-01

    Cynanchum wilfordii is used in traditional Chinese medicine with almost all parts of this plant considered beneficial for various vascular diseases. This study was performed to evaluate the effect of an ethanol extract of C. wilfordii (ECW) on vascular dysfunction in apolipoprotein E (apoE)(-/-) mice fed with high fat/cholesterol diets (HFCDs). The apoE(-/-) mice were fed HFCD consisting of 7.5% cocoa butter and 1.25% cholesterol, with or without 100 or 200 mg/day/kg ECW. Chronic ECW treatment significantly lessened the level of low-density lipoprotein (P<.05) and elevated that of high-density lipoprotein-cholesterol (P<.01). Chronic ECW treatment normalized the HFCD-induced increase in systolic blood pressure, maintained smooth and soft intimal endothelial layers, and decreased intima-media thickness in aortic sections of HFCD-fed apoE(-/-) mice. ECW significantly restored the diet-induced decrease in vasorelaxation response to acetylcholine; however, the response to sodium nitroprusside did not change. ECW clearly restored the HFCD-induced reduction in endothelial nitric oxide synthase expression levels in aortic tissue, leading to decreased vascular inflammation through an inhibition of cellular adhesion molecules such as E-selectin, vascular cell adhesion molecule-1, and intracellular adhesion molecule-1 as well as endothelin-1 (ET-1) expression. In conclusion, ECW ameliorates endothelial dysfunction via improvement of the nitric oxide/cyclic GMP signaling pathway in a diet/genetic model of hyperlipidemia. ECW also substantially inhibited the development of atherosclerosis, possibly by inhibiting ET-1, cell adhesion molecules, and lesion formation, suggesting a vascular protective role for this herb in the treatment and prevention of atherosclerotic vascular disease. PMID:22082065

  6. Improved Endothelial Dysfunction by Cynanchum wilfordii in Apolipoprotein E−/− Mice Fed a High Fat/Cholesterol Diet

    PubMed Central

    Choi, Deok Ho; Lee, Yun Jung; Oh, Hyun Cheol; Cui, Ying Lan; Kim, Jin Sook

    2012-01-01

    Abstract Cynanchum wilfordii is used in traditional Chinese medicine with almost all parts of this plant considered beneficial for various vascular diseases. This study was performed to evaluate the effect of an ethanol extract of C. wilfordii (ECW) on vascular dysfunction in apolipoprotein E (apoE)−/− mice fed with high fat/cholesterol diets (HFCDs). The apoE−/− mice were fed HFCD consisting of 7.5% cocoa butter and 1.25% cholesterol, with or without 100 or 200 mg/day/kg ECW. Chronic ECW treatment significantly lessened the level of low-density lipoprotein (P<.05) and elevated that of high-density lipoprotein-cholesterol (P<.01). Chronic ECW treatment normalized the HFCD-induced increase in systolic blood pressure, maintained smooth and soft intimal endothelial layers, and decreased intima-media thickness in aortic sections of HFCD-fed apoE−/− mice. ECW significantly restored the diet-induced decrease in vasorelaxation response to acetylcholine; however, the response to sodium nitroprusside did not change. ECW clearly restored the HFCD-induced reduction in endothelial nitric oxide synthase expression levels in aortic tissue, leading to decreased vascular inflammation through an inhibition of cellular adhesion molecules such as E-selectin, vascular cell adhesion molecule-1, and intracellular adhesion molecule-1 as well as endothelin-1 (ET-1) expression. In conclusion, ECW ameliorates endothelial dysfunction via improvement of the nitric oxide/cyclic GMP signaling pathway in a diet/genetic model of hyperlipidemia. ECW also substantially inhibited the development of atherosclerosis, possibly by inhibiting ET-1, cell adhesion molecules, and lesion formation, suggesting a vascular protective role for this herb in the treatment and prevention of atherosclerotic vascular disease. PMID:22082065

  7. How to Get Your Cholesterol Tested

    MedlinePlus

    ... HDL) cholesterol, low-density lipoprotein (LDL) cholesterol and triglycerides. A small sample of blood will be drawn ... the amount of LDL (bad) cholesterol level and triglycerides can be affected by what you've recently ...

  8. Structural modifications of HDL and functional consequences.

    PubMed

    Ferretti, Gianna; Bacchetti, Tiziana; Nègre-Salvayre, Anne; Salvayre, Robert; Dousset, Nicole; Curatola, Giovanna

    2006-01-01

    High density lipoproteins (HDL) are susceptible to structural modifications mediated by various mechanisms including oxidation, glycation, homocysteinylation or enzymatic degradation. Structural alterations of HDL may affect their functional and atheroprotective properties. Oxidants, such as hypochlorous acid, peroxyl radicals, metal ions, peroxynitrite, lipoxygenases and smoke extracts, can alter both surface and core components of HDL. The formation of lipid peroxidation derivatives, such as thiobarbituric acid reactive substances, conjugated dienes, lipid hydroperoxides and aldehydes, is associated with changes of physical properties (fluidity, molecular order) and of apoprotein conformation. Non-enzymatic glycation, generally associated with lipoxidation, leads to form irreversible complexes called advanced glycation end products. These HDL modifications are accompanied with altered biological activities of HDL and associated enzymes, including paraoxonase, CETP and LCAT. Homocysteine-induced modification of HDL is mediated by homocysteine-thiolactone, and can be prevented by a calcium-dependent thiolactonase/paraoxonase. Tyrosylation of HDL induces the formation of dimers and trimers of apo AI, and alters cholesterol efflux. Phospholipases and proteolytic enzymes can also modify HDL lipid and apoprotein structure. HDL modification induces generally the loss of their anti-inflammatory and cytoprotective properties. This could play a role in the pathogenesis of atherosclerosis and neurodegenerative diseases such as Alzheimer's disease. PMID:16157342

  9. Simvastatin alleviates myocardial contractile dysfunction and lethal ischemic injury in rat heart independent of cholesterol-lowering effects.

    PubMed

    ADAMEOVA, A; HARCAROVA, A; MATEJIKOVA, J; PANCZA, D; KUZELOVA, M; CARNICKA, S; SVEC, P; BARTEKOVA, M; STYK, J; Ravingerová, T

    2009-01-01

    Statins, the inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are most frequently used drugs in the prevention of coronary artery disease due to their cholesterol-lowering activity. However, it is not exactly known whether these effects of statins or those independent of cholesterol decrease account for the protection against myocardial ischemia-reperfusion (I/R) injury. In this study, we investigated the effect of 5-day treatment with simvastatin (10 mg/kg) in Langendorff-perfused hearts of healthy control (C) and diabetic-hypercholesterolemic (D-H; streptozotocin + high fat-cholesterol diet, 5 days) rats subjected to 30-min global ischemia followed by 40-min reperfusion for the examination of postischemic contractile dysfunction and reperfusion-induced ventricular arrhythmias or to 30-min (left anterior descending) coronary artery occlusion and 2-h reperfusion for the infarct size determination (IS; tetrazolium staining). Postischemic recovery of left ventricular developed pressure (LVDP) in animals with D-H was improved by simvastatin therapy (62.7+/-18.2 % of preischemic values vs. 30.3+/-5.7 % in the untreated D-H; P<0.05), similar to the values in the simvastatin-treated C group, which were 2.5-fold higher than those in the untreated C group. No ventricular fibrillation occurred in the simvastatin-treated C and D-H animals during reperfusion. Likewise, simvastatin shortened the duration of ventricular tachycardia (10.2+/-8.1 s and 57.8+/-29.3 s in C and D-H vs. 143.6+/-28.6 s and 159.3+/-44.3 s in untreated C and D-H, respectively, both P<0.05). The decreased arrhythmogenesis in the simvastatin-treated groups correlated with the limitation of IS (in % of risk area) by 66 % and 62 % in C and D-H groups, respectively. However, simvastatin treatment decreased plasma cholesterol levels neither in the D-H animals nor in C. The results indicate that other effects of statins (independent of cholesterol lowering) are involved in the

  10. HDL and Cognition in Neurodegenerative Disorders

    PubMed Central

    Hottman, David A.; Chernick, Dustin; Cheng, Shaowu; Wang, Zhe; Li, Ling

    2014-01-01

    High-density lipoproteins (HDL) are a heterogeneous group of lipoproteins composed of various lipids and proteins. HDL is formed both in the systemic circulation and in the brain. In addition to being a crucial player in the reverse cholesterol transport pathway, HDL possesses a wide range of other functions including anti-oxidation, anti-inflammation, pro-endothelial function, anti-thrombosis, and modulation of immune function. It has been firmly established that high plasma levels of HDL protect against cardiovascular disease. Accumulating evidence indicates that the beneficial role of HDL extends to many other systems including the central nervous system. Cognition is a complex brain function that includes all aspects of perception, thought, and memory. Cognitive function often declines during aging and this decline manifests as cognitive impairment/dementia in age-related and progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. A growing concern is that no effective therapy is currently available to prevent or treat these devastating diseases. Emerging evidence suggests that HDL may play a pivotal role in preserving cognitive function under normal and pathological conditions. This review attempts to summarize recent genetic, clinical and experimental evidence for the impact of HDL on cognition in aging and in neurodegenerative disorders as well as the potential of HDL-enhancing approaches to improve cognitive function. PMID:25131449

  11. Postmenopausal Women Have Higher HDL and Decreased Incidence of Low HDL than Premenopausal Women with Metabolic Syndrome

    PubMed Central

    Fernandez, Maria Luz; Murillo, Ana Gabriela

    2016-01-01

    It is well known that plasma lipids, waist circumference (WC) and blood pressure (BP) increase following menopause. In addition, there is a perceived notion that plasma high-density lipoprotein-cholesterol (HDL-C) concentrations also decrease in postmenopausal women. In this cross-sectional study, we evaluated plasma lipids, fasting glucose, anthropometrics and BP in 88 post and 100 pre-menopausal women diagnosed with metabolic syndrome. No differences were observed in plasma low-density lipoprotein-cholesterol cholesterol, triglycerides, fasting glucose or systolic and diastolic BP between groups. However, plasma HDL-C was higher (p < 0.01) in postmenopausal women and the percentage of women who had low HDL (<50 mg/dL) was higher (p < 0.01) among premenopausal women. In addition, negative correlations were found between WC and HDL-C (r = −0.148, p < 0.05) and BMI and HDL-C (r = −0.258, p < 0.01) for all subjects indicating that increases in weight and abdominal fat have a deleterious effect on plasma HDL-C. Interestingly, there was a positive correlation between age and plasma HDL-C (r = 0.237 p < 0.01). The results from this study suggest that although HDL is decreased by visceral fat and overall weight, low HDL is not a main characteristic of metabolic syndrome in postmenopausal women. Further, HDL appears to increase, not decrease, with age. PMID:27417608

  12. Postmenopausal Women Have Higher HDL and Decreased Incidence of Low HDL than Premenopausal Women with Metabolic Syndrome.

    PubMed

    Fernandez, Maria Luz; Murillo, Ana Gabriela

    2016-01-01

    It is well known that plasma lipids, waist circumference (WC) and blood pressure (BP) increase following menopause. In addition, there is a perceived notion that plasma high-density lipoprotein-cholesterol (HDL-C) concentrations also decrease in postmenopausal women. In this cross-sectional study, we evaluated plasma lipids, fasting glucose, anthropometrics and BP in 88 post and 100 pre-menopausal women diagnosed with metabolic syndrome. No differences were observed in plasma low-density lipoprotein-cholesterol cholesterol, triglycerides, fasting glucose or systolic and diastolic BP between groups. However, plasma HDL-C was higher (p < 0.01) in postmenopausal women and the percentage of women who had low HDL (<50 mg/dL) was higher (p < 0.01) among premenopausal women. In addition, negative correlations were found between WC and HDL-C (r = -0.148, p < 0.05) and BMI and HDL-C (r = -0.258, p < 0.01) for all subjects indicating that increases in weight and abdominal fat have a deleterious effect on plasma HDL-C. Interestingly, there was a positive correlation between age and plasma HDL-C (r = 0.237 p < 0.01). The results from this study suggest that although HDL is decreased by visceral fat and overall weight, low HDL is not a main characteristic of metabolic syndrome in postmenopausal women. Further, HDL appears to increase, not decrease, with age. PMID:27417608

  13. Inhibition of cholesteryl ester transfer protein increases cholesteryl ester content of large HDL independently of HDL-to-HDL homotypic transfer: in vitro vs in vivo comparison using anacetrapib and dalcetrapib.

    PubMed

    Johns, Douglas G; Chen, Ying; Wang, Sheng-Ping; Castro-Perez, Jose; Previs, Stephen F; Roddy, Thomas P

    2015-09-01

    The increase in high density lipoprotein (HDL)-cholesterol observed with cholesteryl ester transfer protein (CETP) inhibition is commonly attributed to blockade of cholesteryl ester (CE) transfer from HDL to low density lipoprotein particles. In vitro, it has been observed that CETP can mediate transfer of CE between HDL particles ("homotypic transfer"), and it is postulated that this contributes to HDL remodeling and generation of anti-atherogenic pre-beta HDL. Inhibition of CETP could limit this beneficial remodeling and reduce pre-beta HDL levels. We observed that anacetrapib does not reduce pre-beta HDL in vivo, but the role of HDL homotypic transfer was not examined. This study evaluated the effects of anacetrapib on homotypic transfer from HDL3 to HDL2 in vivo using deuterium-labeled HDL3, and compared this to in vitro settings, where homotypic transfer was previously described. In vitro, both anacetrapib and dalcetrapib inhibited transfer of CE from HDL3 to HDL2 particles. In CETP transgenic mice, anacetrapib did not inhibit the appearance of labeled CE derived from HDL3 in HDL2 particles, but rather promoted the appearance of labeled CE in HDL2. We concluded that inhibition of CETP by anacetrapib promoted HDL particle remodeling, and does not impair the flux of cholesterol ester into larger HDL particles when studied in vivo, which is not consistent with in vitro observations. We further conclude, therefore, that the in vitro conditions used to examine HDL-to-HDL homotypic transfer may not recapitulate the in vivo condition, where multiple mechanisms contribute to cholesteryl ester flux into and out of the HDL pool. PMID:26049012

  14. Antioxidant properties of HDL

    PubMed Central

    Soran, Handrean; Schofield, Jonathan D.; Durrington, Paul N.

    2015-01-01

    High-density lipoprotein (HDL) provides a pathway for the passage of lipid peroxides and lysophospholipids to the liver via hepatic scavenger receptors. Perhaps more importantly, HDL actually metabolizes lipid hydroperoxides preventing their accumulation on low-density lipoprotein (LDL), thus impeding its atherogenic structural modification. A number of candidates have been suggested to be responsible for HDL's antioxidant function, with paraoxonase-1 (PON1) perhaps the most prominent. Here we review the evidence for HDL anti-oxidative function and the potential contributions of apolipoproteins, lipid transfer proteins, paraoxonases and other enzymes associated with HDL. PMID:26528181

  15. The Association of Pediatric LDL-cholesterol and HDL-cholesterol Dyslipidemia Classifications and Change in Dyslipidemia Status with Carotid Intima-Media Thickness in Adulthood: Evidence from the Cardiovascular Risk in Young Finns Study, the Bogalusa Heart Study, and the Childhood Determinants of Adult Health (CDAH) Study

    PubMed Central

    Magnussen, Costan G.; Venn, Alison; Thomson, Russell; Juonala, Markus; Srinivasan, Sathanur R.; Viikari, Jorma S.A.; Berenson, Gerald S.; Dwyer, Terence; Raitakari, Olli T.

    2009-01-01

    Objectives – To determine which of the National Cholesterol Education Program (NCEP) or National Health and Nutrition Examination Survey (NHANES) LDL-cholesterol and HDL-cholesterol classifications of dyslipidemia status in adolescents is most effective at predicting high common carotid artery intima-media thickness (IMT) in adulthood. Background – Two classifications of pediatric dyslipidemia status have been proposed. No study has assessed which of these is most effective for predicting adolescents who will develop preclinical atherosclerosis in adulthood. Methods – Three population-based, prospective cohort studies that collected lipoprotein measurements on 1711 adolescents aged 12–18 years who were re-measured as young adults aged 29–39 years. Lipoproteins in adolescence were classified according to NCEP and NHANES cut-points, while high IMT in adulthood was defined as those at or above the age, sex, race, and cohort specific 90th percentile of IMT. Results – Independent of the classification employed, adolescents with dyslipidemia were at significantly increased risk of having high IMT in adulthood (relative risks from 1.6 to 2.5). Differences in predictive capacity between both classifications were minimal. Overweight or obese adolescents with dyslipidemia had increased carotid IMT (males, 0.11mm; females, 0.08mm) in adulthood compared with those who did not have both risk factors. Adolescent dyslipidemia status was more strongly associated with high IMT in adulthood than change in dyslipidemia status. Conclusions – Pediatric dyslipidemia classifications perform equally in the prediction of adolescents who are at increased risk of high IMT in young adulthood. Our data suggest that dyslipidemia screening could be limited to overweight or obese adolescents. PMID:19264243

  16. A big role for small RNAs in HDL homeostasis

    PubMed Central

    Ouimet, Mireille; Moore, Kathryn J.

    2013-01-01

    High-density lipoproteins play a central role in systemic cholesterol homeostasis by stimulating the efflux of excess cellular cholesterol and transporting it to the liver for biliary excretion. HDL has long been touted as the “good cholesterol” because of the strong inverse correlation of plasma HDL cholesterol levels with coronary heart disease. However, the disappointing outcomes of recent clinical trials involving therapeutic elevations of HDL cholesterol have called this moniker into question and revealed our lack of understanding of this complex lipoprotein. At the same time, the discovery of microRNAs (miRNAs) that regulate HDL biogenesis and function have led to a surge in our understanding of the posttranscriptional mechanisms regulating plasma levels of HDL. Furthermore, HDL has recently been shown to selectively transport miRNAs and thereby facilitate cellular communication by shuttling these potent gene regulators to distal tissues. Finally, that miRNA cargo carried by HDL may be altered during disease states further broadened our perspective of how this lipoprotein can have complex effects on target cells and tissues. The unraveling of how these tiny RNAs govern HDL metabolism and contribute to its actions promises to reveal new therapeutic strategies to optimize cardiovascular health. PMID:23509405

  17. Inflammation modulates human HDL composition and function in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inflammation may directly impair HDL functions, in particular reverse cholesterol transport (RCT), but limited data support this concept in humans. Our study was designed to investigate this relationship. We employed low-dose human endotoxemia to assess the effects of inflammation on HDL and RCT-rel...

  18. Relationship between apolipoprotein concentrations and HDL subclasses distribution.

    PubMed

    Tian, Li; Fu, Mingde; Jia, Lianqun; Xu, Yanhua; Long, Shiyin; Tian, Haoming; Tian, Ying

    2007-05-01

    Alterations in plasma apolipoproteins levels can influence the composition, content, and distribution of plasma lipoproteins that affect the risk of atherosclerosis. This study assessed the relationship between plasma apolipoproteins levels, mainly apoAI, and HDL subclass distribution. The contents of plasma HDL subclasses were determined by two-dimensional gel electrophoresis coupled with immunodetection in 545 Chinese subjects. Compared with a low apoAI group, the contents of all HDL subclasses increased significantly both in middle and high apoAI group, and the contents of large-sized HDL(2b) increased more significantly relative to those of small-sized prebeta(1)-HDL in a high apoAI group. When apoAI and HDL-C levels increased simultaneously, in comparison to a low apoAI along with HDL-C concentration group, a significant increase (116%) was shown in HDL2b but only a slight increase (26%) in prebeta1-HDL. In addition, Pearson correlation analysis revealed that apoAI levels were positively and significantly correlated with all HDL subclasses. Multiple liner regression demonstrated that the apoAI concentrations were the most powerful predictor for HDL subclass distribution. With the elevation of apoAI concentrations, the contents of all HDL subclasses increased successively and significantly, especially, an increase in large-sized HDL(2b). Further, when apoAI and HDL-C concentrations increased simultaneously, the shift to larger HDL size was more obvious. Which, in turn, indicated that HDL maturation might be enhanced and, the reverse cholesterol transport might be strengthened along with apoAI levels which might be a more powerful factor influencing the distribution of HDL subclasses. PMID:17476546

  19. Dietary Lipid and Cholesterol Induce Ovarian Dysfunction and Abnormal LH Response to Stimulation in Rabbits

    PubMed Central

    Dupont, Charlotte; Tarrade, Anne; Picone, Olivier; Larcher, Thibaut; Dahirel, Michèle; Poumerol, Elodie; Mandon-Pepin, Béatrice; Lévy, Rachel; Chavatte-Palmer, Pascale

    2013-01-01

    Background/Aim Excess of fat intake is dramatically increasing in women of childbearing age and results in numerous health complications, including reproductive disorders. Using rabbit does as a biomedical model, the aim of this study was to evaluate onset of puberty, endocrine responses to stimulation and ovarian follicular maturation in females fed a high fat high cholesterol diet (HH diet) from 10 weeks of age (i.e., 2 weeks before normal onset of puberty) or a control diet (C diet). Methodology/Principal Findings Three experiments were performed, each including 8 treated (HH group) and 8 control (C group) does. In experiment 1, the endocrine response to Gonadotropin releasing hormone (GnRH) was evaluated at 13, 18 and 22 weeks of age. In experiment 2, the follicular population was counted in ovaries of adult females (18 weeks of age). In experiment 3, the LH response to mating and steroid profiles throughout gestation were evaluated at 18 weeks of age. Fetal growth was monitored by ultrasound and offspring birth weight was recorded. Data showed a significantly higher Luteinizing hormone (LH) response after induction of ovulation at 13 weeks of age in the HH group. There was no difference at 18 weeks, but at 22 weeks, the LH response to GnRH was significantly reduced in the HH group. The number of atretic follicles was significantly increased and the number of antral follicles significantly reduced in HH does vs. controls. During gestation, the HH diet induced intra-uterine growth retardation (IUGR). Conclusion The HH diet administered from before puberty onwards affected onset of puberty, follicular growth, hormonal responses to breeding and GnRH stimulation in relation to age and lead to fetal IUGR. PMID:23690983

  20. Cholesterol and Your Child

    MedlinePlus

    ... traveling together are called lipoproteins . Two kinds — low-density lipoprotein (LDL) and high-density lipoprotein (HDL) — are the ones that most of us have heard about. Low-density lipoproteins , or "bad cholesterol," are the primary cholesterol ...

  1. Where Are We With HDL Raising and Inhibition of Cholesteryl Ester Transfer for Heart Disease Risk Reduction?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: To review recent research in the area of high density lipoprotein (HDL) raising and coronary heart disease (CHD) risk reduction. Recent Findings: It is known that a decreased HDL cholesterol is an important CHD risk factor, and that raising HDL cholesterol has been associated with CHD risk...

  2. Regional variations in HDL metabolism in human fat cells: effect of cell size

    SciTech Connect

    Despres, J.; Fong, B.S.; Julien, P.; Jimenez, J.; Angel, A.

    1987-05-01

    Abdominal obesity is related to reduced plasma high-density lipoprotein (HDL) cholesterol, and both are associated with cardiovascular disease risk. The authors have observed that plasma membranes from abdominal subcutaneous adipocytes have a greater HDL binding capacity than omental fat cell plasma membranes. The present study examined whether these binding characteristics could be due to differences in fat cell size or cholesterol concentration between the two adipose depots. Abdominal subcutaneous and deep omental fat were obtained from massively obese patients at surgery. Subcutaneous abdominal fat cells were significantly larger and their cellular cholesterol content greater than omental adipocytes. The uptake of HDL by collagenase-isolated fat cells was studied by incubating the cells for 2 h at 37/sup 0/C with 10 ..mu..g/ml /sup 125/I-HDL/sub 2/ or /sup 125/I-HDL/sub 3/. In both depots, the cellular uptake of /sup 125/I-HDL/sub 2/ and /sup 125/I-HDL/sub 3/ was specifically inhibited by addition of 25-fold excess unlabeled HDL and a close correlation was observed between the cellular uptake of /sup 125/I-HDL/sub 2/ and /sup 125/I-HDL/sub 3/. In obese patients, the uptake of /sup 125/I-HDL was higher in subcutaneous cells than in omental cells. The cellular /sup 125/I-HDL uptake was significantly correlated with adipocyte size and fat cell cholesterol content but not with adipocyte cholesterol concentration. These results suggest that the higher HDL uptake observed in subcutaneous cells compared with omental cells in obesity is the result of differences in adipocyte size rather than differences in the cholesterol concentration (cholesterol-to-triglyceride ratio). The increased interaction of HDL with hypertrophied abdominal adipocytes may play an important role in determining the lipid composition of HDL in obesity.

  3. The pleiotropic role of HDL in autoimmune diseases.

    PubMed

    Parra, Sandra; Castro, Antoni; Masana, Luis

    2015-01-01

    As is widely known, the classic function of HDL is reverse cholesterol transport (RCT), thus removing cholesterol from peripheral tissues. Early epidemiological studies, such as Framingham's, stated that increased HDL levels were associated with a significant decrease in relative risk for cardiovascular disease (CVD) mortality. However, those with heightened expectations in recent years for the development of therapeutic targets to increase HDL levels have been disappointed, because efforts have demonstrated the opposite effect on cardiovascular and global mortality. However, in contrast, studies have highlighted the complexity and the intriguing role of HDL in different pathological conditions, such as infections, neoplasms, and autoimmune diseases. In this review an attempt is made to summarize some biological pathways that link HDL function with the immune system, and its possible clinical repercussions in autoimmune diseases. PMID:25444650

  4. Synthetic High-Density Lipoprotein (sHDL) Inhibits Steroid Production in HAC15 Adrenal Cells.

    PubMed

    Taylor, Matthew J; Sanjanwala, Aalok R; Morin, Emily E; Rowland-Fisher, Elizabeth; Anderson, Kyle; Schwendeman, Anna; Rainey, William E

    2016-08-01

    High density lipoprotein (HDL) transported cholesterol represents one of the sources of substrate for adrenal steroid production. Synthetic HDL (sHDL) particles represent a new therapeutic option to reduce atherosclerotic plaque burden by increasing cholesterol efflux from macrophage cells. The effects of the sHDL particles on steroidogenic cells have not been explored. sHDL, specifically ETC-642, was studied in HAC15 adrenocortical cells. Cells were treated with sHDL, forskolin, 22R-hydroxycholesterol, or pregnenolone. Experiments included time and concentration response curves, followed by steroid assay. Quantitative real-time RT-PCR was used to study mRNA of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, lanosterol 14-α-methylase, cholesterol side-chain cleavage enzyme, and steroid acute regulatory protein. Cholesterol assay was performed using cell culture media and cell lipid extracts from a dose response experiment. sHDL significantly inhibited production of cortisol. Inhibition occurred in a concentration- and time-dependent manner and in a concentration range of 3μM-50μM. Forskolin (10μM) stimulated cortisol production was also inhibited. Incubation with 22R-hydroxycholesterol (10μM) and pregnenolone (10μM) increased cortisol production, which was unaffected by sHDL treatment. sHDL increased transcript levels for the rate-limiting cholesterol biosynthetic enzyme, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase. Extracellular cholesterol assayed in culture media showed a positive correlation with increasing concentration of sHDL, whereas intracellular cholesterol decreased after treatment with sHDL. The current study suggests that sHDL inhibits HAC15 adrenal cell steroid production by efflux of cholesterol, leading to an overall decrease in steroid production and an adaptive rise in adrenal cholesterol biosynthesis. PMID:27253994

  5. Effects of oral niacin on endothelial dysfunction in patients with coronary artery disease: results of the randomized, double-blind, placebo-controlled INEF study.

    PubMed

    Warnholtz, Ascan; Wild, Philipp; Ostad, Mir Abolfazl; Elsner, Veronika; Stieber, Fabian; Schinzel, Reinhard; Walter, Ulrich; Peetz, Dirk; Lackner, Karl; Blankenberg, Stefan; Munzel, Thomas

    2009-05-01

    High-density-lipoproteins-cholesterol (HDL-C) is invertedly related to the incidence of cardiovascular events. Recent studies suggest that HDL-C directly improves endothelial function. Nicotinic acid (niacin) effectively raises serum HDL-C. We therefore hypothesized that treatment with niacin improves endothelial dysfunction in patients with coronary artery disease (CAD). One hundred seven patients with CAD were randomly assigned to double-blinded treatment for 12 weeks with extended-release (ER)-niacin 1000 mg/day (N) or placebo (C), respectively. Flow-mediated dilation (FMD) of the brachial artery, nitroglycerin-mediated endothelium-independent dilation (NMD) and serum lipid concentrations were measured before and after treatment. Triglycerides (P=0.013), low-density-lipoprotein-cholesterol (LDL-C) (P=0.013) and HDL-C (P<0.0001) were altered by N compared to C. Niacin treatment was without effect on FMD or NMD, respectively, compared to placebo. However, post-hoc subgroup analysis revealed an improvement in FMD in patients with low HDL-C at baseline (absolute change in FMD (mean+/-S.D.) N: +3.25+/-3.88%, C: +1.03+/-2.71% in low tertile HDL-C dysfunction in patients with CAD and low HDL-C, but not with normal HDL-C. PMID:18822413

  6. HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A growing body of evidence from epidemiological data, animal studies, and clinical trials supports HDL as the next target to reduce residual cardiovascular risk in statin-treated, high-risk patients. For more than 3 decades, HDL cholesterol has been employed as the principal clinical measure of HDL ...

  7. The pathophysiological role of oxidized cholesterols in epicardial fat accumulation and cardiac dysfunction: a study in swine fed a high caloric diet with an inhibitor of intestinal cholesterol absorption, ezetimibe.

    PubMed

    Shimabukuro, Michio; Okawa, Chinami; Yamada, Hirotsugu; Yanagi, Shuhei; Uematsu, Etsuko; Sugasawa, Noriko; Kurobe, Hirotsugu; Hirata, Yoichiro; Kim-Kaneyama, Joo-Ri; Lei, Xiao-Feng; Takao, Shoichiro; Tanaka, Yasutake; Fukuda, Daiju; Yagi, Shusuke; Soeki, Takeshi; Kitagawa, Tetsuya; Masuzaki, Hiroaki; Sato, Masao; Sata, Masataka

    2016-09-01

    Oxidized cholesterols (oxycholesterols) in food have been recognized as strong atherogenic components, but their tissue distributions and roles in cardiovascular diseases remain unclear. To investigate whether accumulation of oxycholesterols is linked to cardiac morphology and function, and whether reduction of oxycholesterols can improve cardiac performance, domestic male swine were randomized to a control diet (C), high caloric diet (HCD) or HCD+Ezetimibe, an inhibitor of intestinal cholesterol absorption, group (HCD+E) and evaluated for: (1) distribution of oxycholesterol components in serum and tissues, (2) levels of oxycholesterol-related enzymes, (3) paracardial and epicardial coronary fat thickness, and (4) cardiac performance. Ezetimibe treatment for 8weeks attenuated increases in oxycholesterols in the HCD group almost completely in liver, but reduced only levels of 4β-hydroxycholesterol in left ventricular (LV) myocardium. Ezetimibe treatment altered the expression of genes for cholesterol and fatty acid metabolism and decreased the expression of CYP3A46, which catabolizes cholesterol to 4β-hydroxycholesterol, strongly in liver. An increase in epicardial fat thickness and impaired cardiac performance in the HCD group were improved by ezetimibe treatment, and the improvement was closely related to the reduction in levels of 4β-hydroxycholesterol in LV myocardium. In conclusion, an increase in oxycholesterols in the HCD group was closely related to cardiac hypertrophy and dysfunction, as well as an increase in epicardial fat thickness. Ezetimibe may directly reduce oxycholesterol in liver and LV myocardium, and improve cardiac morphology and function. PMID:27416363

  8. Atomistic MD simulation reveals the mechanism by which CETP penetrates into HDL enabling lipid transfer from HDL to CETP

    PubMed Central

    Cilpa-Karhu, Geraldine; Jauhiainen, Matti; Riekkola, Marja-Liisa

    2015-01-01

    Inhibition of cholesterol ester transfer protein (CETP), a protein mediating transfer of neutral lipids between lipoproteins, has been proposed as a means to elevate atheroprotective HDL subpopulations and thereby reduce atherosclerosis. However, off-target and adverse effects of the inhibition have raised doubts about the molecular mechanism of CETP-HDL interaction. Recent experimental findings have demonstrated the penetration of CETP into HDL. However, atomic level resolution of CETP penetration into HDL, a prerequisite for a better understanding of CETP functionality and HDL atheroprotection, is missing. We constructed an HDL particle that mimics the actual human HDL mass composition and investigated for the first time, by large-scale atomistic molecular dynamics, the interaction of an upright CETP with a human HDL-mimicking model. The results demonstrated how CETP can penetrate the HDL particle surface, with the formation of an opening in the N barrel domain end of CETP, put in evidence the major anchoring role of a tryptophan-rich region of this domain, and unveiled the presence of a phenylalanine barrier controlling further access of HDL-derived lipids to the tunnel of CETP. The findings reveal novel atomistic details of the CETP-HDL interaction mechanism and can provide new insight into therapeutic strategies. PMID:25424006

  9. Endothelial lipase is a major determinant of HDL level

    SciTech Connect

    Ishida, Tatsuro; Choi, Sungshin; Kundu, Ramendra K.; Hirata, Ken-Ichi; Rubin, Edward M.; Cooper, Allen D.; Quertermous, Thomas

    2003-01-30

    For the past three decades, epidemiologic studies have consistently demonstrated an inverse relationship between plasma HDL cholesterol (HDL-C) concentrations and coronary heart disease (CHD). Population-based studies have provided compelling evidence that low HDL-C levels are a risk factor for CHD, and several clinical interventions that increased plasma levels of HDL-C were associated with a reduction in CHD risk. These findings have stimulated extensive investigation into the determinants of plasma HDL-C levels. Turnover studies using radiolabeled apolipoprotein A-I, the major protein component of HDL, suggest that plasma HDL-C concentrations are highly correlated with the rate of clearance of apolipoprotein AI. However, the metabolic mechanisms by which HDL are catabolized have not been fully defined. Previous studies in humans with genetic deficiency of cholesteryl ester transfer protein, and in mice lacking the scavenger receptor BI (SR-BI), have demonstrated that these proteins participate in the removal of cholesterol from HDL, while observations in individuals with mutations in hepatic lipase indicate that this enzyme hydrolyzes HDL triglycerides. In this issue of the JCI, reports from laboratories of Tom Quertermous and Dan Rader now indicate that endothelial lipase (LIPG), a newly identified member of the lipase family, catalyzes the hydrolysis of HDL phospholipids and facilitates the clearance of HDL from the circulation. Endothelial lipase was initially cloned by both of these laboratories using entirely different strategies. Quertermous and his colleagues identified endothelial lipase as a transcript that was upregulated in cultured human umbilical vein endothelial cells undergoing tube formation, whereas the Rader group cloned endothelial lipase as a transcript that was upregulated in the human macrophage-like cell line THP-1 exposed to oxidized LDL. Database searches revealed that endothelial lipase shows strong sequence similarity to lipoprotein

  10. HDL and Atherosclerosis Regression: Evidence from Pre-clinical and Clinical Studies

    PubMed Central

    Feig, Jonathan E.; Hewing, Bernd; Smith, Jonathan D.; Hazen, Stanley L.; Fisher, Edward A.

    2014-01-01

    High density lipoprotein particles (HDL) transport, among other molecules, cholesterol (HDL-C). In epidemiologic studies, plasma HDL-C levels have an inverse relationship to the risk of atherosclerotic cardiovascular disease (CVD). It has been assumed that this reflects the protective functions of HDL, which include their ability to promote cholesterol efflux. Yet, a number of recent pharmacological and genetic studies have failed to demonstrate that increased plasma levels of HDL-C resulted in decreased CVD risk, giving rise to a controversy over whether plasma levels of HDL-C reflect HDL function, or that HDL is even as protective as assumed. On balance, the evidence from pre-clinical and (limited) clinical studies show that HDL can promote the regression of atherosclerosis when the levels of functional particles are increased from endogenous or exogenous sources. The data show that regression results from a combination of reduced plaque lipid and macrophage contents, as well as from a reduction in its inflammatory state. While more research will be needed on basic mechanisms and to establish that these changes translate clinically to reduced CVD events, that HDL can regress plaques suggests that the recent trial failures do not eliminate HDL from consideration as an atheroprotective agent, but emphasizes the important distinction between HDL function and plasma levels of HDL-C. PMID:24385513

  11. Volumetric determination of apolipoprotein stoichiometry of circulating HDL subspecies1[S

    PubMed Central

    Segrest, Jere P.; Cheung, Marian C.; Jones, Martin K.

    2013-01-01

    Although HDL is inversely correlated with coronary heart disease, elevated HDL-cholesterol is not always protective. Additionally, HDL has biological functions that transcend any antiatherogenic role: shotgun proteomics show that HDL particles contain 84 proteins (latest count), many correlating with antioxidant and anti-inflammatory properties of HDL. ApoA-I has been suggested to serve as a platform for the assembly of these protein components on HDL with specific functions - the HDL proteome. However, the stoichiometry of apoA-I in HDL subspecies is poorly understood. Here we use a combination of immunoaffinity chromatography data and volumetric analysis to evaluate the size and stoichiometry of LpA-I and LpA-I,A-II particles. We conclude that there are three major LpA-I subspecies: two major particles, HDL[4] in the HDL3 size range (d = 85.0 ± 1.2 Å) and HDL[7] in the HDL2 size range (d = 108.5 ± 3.8 Å) with apoA-I stoichiometries of 3 and 4, respectively, and a small minor particle, HDL[1] (d = 73.8 ± 2.1Å) with an apoA-I stoichiometry of 2. Additionally, we conclude that the molar ratio of apolipoprotein to surface lipid is significantly higher in circulating HDL subspecies than in reconstituted spherical HDL particles, presumably reflecting a lack of phospholipid transfer protein in reconstitution protocols. PMID:23883582

  12. Nicotinic Acid Accelerates HDL Cholesteryl Ester Turnover in Obese Insulin-Resistant Dogs

    PubMed Central

    Le Bloc'h, Jérôme; Leray, Véronique; Nazih, Hassan; Gauthier, Olivier; Serisier, Samuel; Magot, Thierry; Krempf, Michel; Nguyen, Patrick; Ouguerram, Khadija

    2015-01-01

    Aim Nicotinic acid (NA) treatment decreases plasma triglycerides and increases HDL cholesterol, but the mechanisms involved in these change are not fully understood. A reduction in cholesteryl ester transfer protein (CETP) activity has been advanced to explain most lipid-modulating effects of NA. However, due to the central role of CETP in reverse cholesterol transport in humans, other effects of NA may have been hidden. As dogs have no CETP activity, we conducted this study to examine the specific effects of extended-release niacin (NA) on lipids and high-density lipoprotein (HDL) cholesteryl ester (CE) turnover in obese Insulin-Resistant dogs with increase plasma triglycerides. Methods HDL kinetics were assessed in fasting dogs before and four weeks after NA treatment through endogenous labeling of cholesterol and apolipoprotein AI by simultaneous infusion of [1,2 13C2] acetate and [5,5,5 2H3] leucine for 8 h. Kinetic data were analyzed by compartmental modeling. In vitro cell cholesterol efflux of serum from NA-treated dogs was also measured. Results NA reduced plasma total cholesterol, low-density lipoprotein cholesterol, HDL cholesterol, triglycerides (TG), and very-low-density lipoprotein TG concentrations (p < 0.05). The kinetic study also showed a higher cholesterol esterification rate (p < 0.05). HDL-CE turnover was accelerated (p < 0.05) via HDL removal through endocytosis and selective CE uptake (p < 0.05). We measured an elevated in vitro cell cholesterol efflux (p < 0.05) with NA treatment in accordance with a higher cholesterol esterification. Conclusion NA decreased HDL cholesterol but promoted cholesterol efflux and esterification, leading to improved reverse cholesterol transport. These results highlight the CETP-independent effects of NA in changes of plasma lipid profile. PMID:26366727

  13. Why Targeting HDL Should Work as a Therapeutic Tool, but Hasn’t

    PubMed Central

    Sorci-Thomas, Mary G.; Thomas, Michael J.

    2013-01-01

    Atherosclerosis is one of the most common causes of death and disability in US today despite the availability of statins which reduce hyperlipidemia, a risk factor that predisposes individuals to this disease. Epidemiology of human populations has overwhelmingly demonstrated an inverse correlation between the concentration of plasma HDL cholesterol (HDL-C) and the likelihood of developing cardiovascular disease (CVD). Decades of observations and mechanistic studies suggest that one protective function of HDL is its central role in reverse cholesterol transport (RCT). In this pathway the ATP-binding cassette transporter (ABCA1) releases intracellular cholesterol, which is packaged by apolipoprotein A-I (apoA-I) into nascent HDL (nHDL) particles and released from the plasma membrane. Further lipidation and maturation of HDL occurs in plasma with the eventual uptake by the liver where cholesterol is removed. It is generally accepted that CVD risk can be reduced if plasma HDL-C levels are elevated. Several different pharmacological approaches have been tried, the most popular approach targets the movement of cholesteryl ester from HDL to triglyceride rich particles by cholesteryl ester transfer protein (CETP). Inhibition of CETP increases plasma HDL-C concentration, however, beneficial effects have yet to be demonstrated, likely the result of off-target effects. These revelations have led to a reevaluation of how elevating HDL concentration could decrease risk. A recent, landmark study showed that the inherent cholesterol efflux capacity of an individual’s plasma was a better predictor of CVD status than overall HDL-C concentration. Even more provocative are recent studies showing that apoA-I, the principle protein component of HDL, functions as a modulator of cellular inflammation and oxidation. The following will review all of these potential routes explaining how HDL apoA-I can reduce the risk of CVD. PMID:23743767

  14. The effects of apolipoprotein B depletion on HDL subspecies composition and function.

    PubMed

    Davidson, W Sean; Heink, Anna; Sexmith, Hannah; Melchior, John T; Gordon, Scott M; Kuklenyik, Zsuzsanna; Woollett, Laura; Barr, John R; Jones, Jeffrey I; Toth, Christopher A; Shah, Amy S

    2016-04-01

    HDL cholesterol (HDL-C) efflux function may be a more robust biomarker of coronary artery disease risk than HDL-C. To study HDL function, apoB-containing lipoproteins are precipitated from serum. Whether apoB precipitation affects HDL subspecies composition and function has not been thoroughly investigated. We studied the effects of four common apoB precipitation methods [polyethylene glycol (PEG), dextran sulfate/magnesium chloride (MgCl2), heparin sodium/manganese chloride (MnCl2), and LipoSep immunoprecipitation (IP)] on HDL subspecies composition, apolipoproteins, and function (cholesterol efflux and reduction of LDL oxidation). PEG dramatically shifted the size distribution of HDL and apolipoproteins (assessed by two independent methods), while leaving substantial amounts of reagent in the sample. PEG also changed the distribution of cholesterol efflux and LDL oxidation across size fractions, but not overall efflux across the HDL range. Dextran sulfate/MgCl2, heparin sodium/MnCl2, and LipoSep IP did not change the size distribution of HDL subspecies, but altered the quantity of a subset of apolipoproteins. Thus, each of the apoB precipitation methods affected HDL composition and/or size distribution. We conclude that careful evaluation is needed when selecting apoB depletion methods for existing and future bioassays of HDL function. PMID:26908829

  15. High-Density Lipoproteins (HDL) – Nature’s Multi-Functional Nanoparticles

    PubMed Central

    Kuai, Rui; Li, Dan; Chen, Y. Eugene; Moon, James J.; Schwendeman, Anna

    2016-01-01

    High-density lipoproteins (HDL) are endogenous nanoparticles involved in the transport and metabolism of cholesterol, phospholipids, and triglycerides. HDL is well known as the ―good‖ cholesterol because it not only removes excess cholesterol from atherosclerotic plaques but also has anti-inflammatory and anti-oxidative properties, which protect the cardiovascular system. Circulating HDL also transports endogenous proteins, vitamins, hormones, and microRNA to various organs. Compared with other synthetic nanocarriers, such as liposomes, micelles, inorganic and polymeric nanoparticles, HDL has unique features that allow them to deliver cargo to specific targets more efficiently. These attributes include their ultra-small size (8-12 nm in diameter), high tolerability in humans (up to 8 g of protein per infusion), long circulating half-life (12-24 hours), and intrinsic targeting properties to different recipient cells. Various recombinant ApoA proteins and ApoA mimetic peptides have been recently developed for the preparation of reconstituted HDL that exhibits properties similar to endogenous HDL and has a potential for industrial scale-up. In this review, we will summarize: a) clinical pharmacokinetics and safety of reconstituted HDL products, b) comparison of HDL with inorganic and other organic nanoparticles, c) the rationale for using HDL as drug delivery vehicles for important therapeutic indications, d) the current state-of-the-art in HDL production, and e) HDL-based drug delivery strategies for small molecules, peptides/proteins, nucleic acids, and imaging agents targeted to various organs. PMID:26889958

  16. Autoimmune Lymphoproliferative Syndrome: A Rare Cause of Disappearing HDL Syndrome

    PubMed Central

    Sriram, Swetha; Joshi, Avni Y.; Rodriguez, Vilmarie

    2016-01-01

    The term disappearing HDL syndrome refers to development of severe high density lipoprotein cholesterol (HDL-C) deficiency in noncritically ill patients with previously normal HDL-C and triglyceride levels. Autoimmune lymphoproliferative syndrome (ALPS) is a disorder of the immune system due to an inability to regulate lymphocyte homeostasis resulting in lymphadenopathy and hepatosplenomegaly. We describe a 17-year-old boy who was evaluated in the lipid clinic for history of undetectable or low HDL-C and low density lipoprotein cholesterol (LDL-C) levels. Past medical history was significant for ALPS IA diagnosed at 10 years of age when he presented with bilateral cervical adenopathy. He was known to have a missense mutation in one allele of the FAS protein extracellular domain consistent with ALPS type 1A. HDL-C and LDL-C levels had been undetectable on multiple occasions, though lipids had not been measured prior to the diagnosis of ALPS. He had been receiving sirolimus for immunosuppression. The HDL-C and LDL-C levels correlated with disease activity and improved to normal levels during times when the activity of ALPS was controlled. This case highlights the importance of considering ALPS as a cause of low HDL-C and LDL-C levels in a child with evidence of lymphoproliferation.

  17. Autoimmune Lymphoproliferative Syndrome: A Rare Cause of Disappearing HDL Syndrome.

    PubMed

    Sriram, Swetha; Joshi, Avni Y; Rodriguez, Vilmarie; Kumar, Seema

    2016-01-01

    The term disappearing HDL syndrome refers to development of severe high density lipoprotein cholesterol (HDL-C) deficiency in noncritically ill patients with previously normal HDL-C and triglyceride levels. Autoimmune lymphoproliferative syndrome (ALPS) is a disorder of the immune system due to an inability to regulate lymphocyte homeostasis resulting in lymphadenopathy and hepatosplenomegaly. We describe a 17-year-old boy who was evaluated in the lipid clinic for history of undetectable or low HDL-C and low density lipoprotein cholesterol (LDL-C) levels. Past medical history was significant for ALPS IA diagnosed at 10 years of age when he presented with bilateral cervical adenopathy. He was known to have a missense mutation in one allele of the FAS protein extracellular domain consistent with ALPS type 1A. HDL-C and LDL-C levels had been undetectable on multiple occasions, though lipids had not been measured prior to the diagnosis of ALPS. He had been receiving sirolimus for immunosuppression. The HDL-C and LDL-C levels correlated with disease activity and improved to normal levels during times when the activity of ALPS was controlled. This case highlights the importance of considering ALPS as a cause of low HDL-C and LDL-C levels in a child with evidence of lymphoproliferation. PMID:27579193

  18. Pancreatic β-Cell Dysfunction in Diet-Induced Obese Mice: Roles of AMP-Kinase, Protein Kinase Cε, Mitochondrial and Cholesterol Metabolism, and Alterations in Gene Expression

    PubMed Central

    Pepin, Émilie; Al-Mass, Anfal; Attané, Camille; Zhang, Kezhuo; Lamontagne, Julien; Lussier, Roxane; Madiraju, S. R. Murthy; Joly, Erik; Ruderman, Neil B.; Sladek, Robert; Prentki, Marc; Peyot, Marie-Line

    2016-01-01

    Diet induced obese (DIO) mice can be stratified according to their weight gain in response to high fat diet as low responders (LDR) and high responders (HDR). This allows the study of β-cell failure and the transitions to prediabetes (LDR) and early diabetes (HDR). C57BL/6N mice were fed for 8 weeks with a normal chow diet (ND) or a high fat diet and stratified as LDR and HDR. Freshly isolated islets from ND, LDR and HDR mice were studied ex-vivo for mitochondrial metabolism, AMPK activity and signalling, the expression and activity of key enzymes of energy metabolism, cholesterol synthesis, and mRNA profiling. Severely compromised glucose-induced insulin secretion in HDR islets, as compared to ND and LDR islets, was associated with suppressed AMP-kinase activity. HDR islets also showed reduced acetyl-CoA carboxylase activity and enhanced activity of 3-hydroxy-3-methylglutaryl-CoA reductase, which led respectively to elevated fatty acid oxidation and increased cholesterol biosynthesis. HDR islets also displayed mitochondrial membrane hyperpolarization and reduced ATP turnover in the presence of elevated glucose. Expression of protein kinase Cε, which reduces both lipolysis and production of signals for insulin secretion, was elevated in DIO islets. Genes whose expression increased or decreased by more than 1.2-fold were minor between LDR and ND islets (17 differentially expressed), but were prominent between HDR and ND islets (1508 differentially expressed). In HDR islets, particularly affected genes were related to cell cycle and proliferation, AMPK signaling, mitochondrial metabolism and cholesterol metabolism. In conclusion, chronically reduced AMPK activity, mitochondrial dysfunction, elevated cholesterol biosynthesis in islets, and substantial alterations in gene expression accompany β-cell failure in HDR islets. The β-cell compensation process in the prediabetic state (LDR) is largely independent of transcriptional adaptive changes, whereas the transition

  19. Pancreatic β-Cell Dysfunction in Diet-Induced Obese Mice: Roles of AMP-Kinase, Protein Kinase Cε, Mitochondrial and Cholesterol Metabolism, and Alterations in Gene Expression.

    PubMed

    Pepin, Émilie; Al-Mass, Anfal; Attané, Camille; Zhang, Kezhuo; Lamontagne, Julien; Lussier, Roxane; Madiraju, S R Murthy; Joly, Erik; Ruderman, Neil B; Sladek, Robert; Prentki, Marc; Peyot, Marie-Line

    2016-01-01

    Diet induced obese (DIO) mice can be stratified according to their weight gain in response to high fat diet as low responders (LDR) and high responders (HDR). This allows the study of β-cell failure and the transitions to prediabetes (LDR) and early diabetes (HDR). C57BL/6N mice were fed for 8 weeks with a normal chow diet (ND) or a high fat diet and stratified as LDR and HDR. Freshly isolated islets from ND, LDR and HDR mice were studied ex-vivo for mitochondrial metabolism, AMPK activity and signalling, the expression and activity of key enzymes of energy metabolism, cholesterol synthesis, and mRNA profiling. Severely compromised glucose-induced insulin secretion in HDR islets, as compared to ND and LDR islets, was associated with suppressed AMP-kinase activity. HDR islets also showed reduced acetyl-CoA carboxylase activity and enhanced activity of 3-hydroxy-3-methylglutaryl-CoA reductase, which led respectively to elevated fatty acid oxidation and increased cholesterol biosynthesis. HDR islets also displayed mitochondrial membrane hyperpolarization and reduced ATP turnover in the presence of elevated glucose. Expression of protein kinase Cε, which reduces both lipolysis and production of signals for insulin secretion, was elevated in DIO islets. Genes whose expression increased or decreased by more than 1.2-fold were minor between LDR and ND islets (17 differentially expressed), but were prominent between HDR and ND islets (1508 differentially expressed). In HDR islets, particularly affected genes were related to cell cycle and proliferation, AMPK signaling, mitochondrial metabolism and cholesterol metabolism. In conclusion, chronically reduced AMPK activity, mitochondrial dysfunction, elevated cholesterol biosynthesis in islets, and substantial alterations in gene expression accompany β-cell failure in HDR islets. The β-cell compensation process in the prediabetic state (LDR) is largely independent of transcriptional adaptive changes, whereas the transition

  20. Distinct composition of human fetal HDL attenuates its anti-oxidative capacity.

    PubMed

    Sreckovic, Ivana; Birner-Gruenberger, Ruth; Obrist, Britta; Stojakovic, Tatjana; Scharnagl, Hubert; Holzer, Michael; Scholler, Monika; Philipose, Sonia; Marsche, Gunther; Lang, Uwe; Desoye, Gernot; Wadsack, Christian

    2013-04-01

    In human high-density lipoprotein (HDL) represents the major cholesterol carrying lipoprotein class in cord blood, while cholesterol is mainly carried by low-density lipoprotein in maternal serum. Additionally, to carrying cholesterol, HDL also associates with a range of proteins as cargo. We tested the hypothesis that fetal HDL carries proteins qualitatively and quantitatively different from maternal HDL. These differences then contribute to distinct HDL functionality in both circulations. Shotgun proteomics and biochemical analyses were used to assess composition/function of fetal and maternal HDL isolated from uncomplicated human pregnancies at term of gestation. The pattern of analyzed proteins that were statistically elevated in fetal HDL (apoE, proteins involved in coagulation, transport processes) suggests a particle characteristic for the light HDL2 sub-fraction. In contrast, proteins that were enriched in maternal HDL (apoL, apoF, PON1, apoD, apoCs) have been described almost exclusively in the dense HDL3 fraction and relevant to its anti-oxidative function and role in innate immunity. Strikingly, PON1 mass and activity were 5-fold lower (p<0.01) in the fetus, which was accompanied by attenuation of anti-oxidant capacity of fetal HDL. Despite almost equal quantity of CETP in maternal and fetal HDL, its enzymatic activity was 55% lower (p<0.001) in the fetal circulation, whereas LCAT activity was not altered. These findings indicate that maternally derived HDL differs from fetal HDL with respect to its proteome, size and function. Absence of apoA-1, apoL and PON1 on fetal HDL is associated with decreased anti-oxidative properties together with deficiency in innate immunity collectively indicating distinct HDLs in fetuses. PMID:23321267

  1. HDL/ApoA-1 infusion and ApoA-1 gene therapy in atherosclerosis

    PubMed Central

    Chyu, Kuang-Yuh; Shah, Prediman K.

    2015-01-01

    The HDL hypothesis stating that simply raising HDL cholesterol (HDL-C) may produce cardiovascular benefits has been questioned recently based on several randomized clinical trials using CETP inhibitors or niacin to raise HDL-C levels. However, extensive pre-clinical data support the vascular protective effects of administration of exogenous ApoA-1 containing preβ-HDL like particles. Several small proof-of-concept clinical trials using such HDL/ApoA-1 infusion therapy have shown encouraging results but definitive proof of efficacy must await large scale clinical trials. In addition to HDL infusion therapy an alternative way to exploit beneficial cardiovascular effects of HDL/ApoA-1 is to use gene transfer. Preclinical studies have shown evidence of benefit using this approach; however clinical validation is yet lacking. This review summarizes our current knowledge of the aforementioned strategies. PMID:26388776

  2. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    DOE PAGESBeta

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; et al

    2015-03-04

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobicmore » environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.« less

  3. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    SciTech Connect

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; Johns, Douglas G.; Charles, M. Arthur; Ren, Gang

    2015-03-04

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobic environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.

  4. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; Johns, Douglas G.; Charles, M. Arthur; Ren, Gang

    2015-03-01

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobic environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.

  5. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    PubMed Central

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; Johns, Douglas G.; Charles, M. Arthur; Ren, Gang

    2015-01-01

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobic environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL. PMID:25737239

  6. HDL-Mimetic PLGA Nanoparticle To Target Atherosclerosis Plaque Macrophages

    PubMed Central

    Sanchez-Gaytan, Brenda L.; Fay, Francois; Lobatto, Mark E.; Tang, Jun; Ouimet, Mireille; Kim, YongTae; van der Staay, Susanne E. M.; van Rijs, Sarian M.; Priem, Bram; Zhang, Liangfang; Fisher, Edward A; Moore, Kathryn J.; Langer, Robert; Fayad, Zahi A.; Mulder, Willem J M

    2015-01-01

    High-density lipoprotein (HDL) is a natural nanoparticle that exhibits an intrinsic affinity for atherosclerotic plaque macrophages. Its natural targeting capability as well as the option to incorporate lipophilic payloads, e.g., imaging or therapeutic components, in both the hydrophobic core and the phospholipid corona make the HDL platform an attractive nanocarrier. To realize controlled release properties, we developed a hybrid polymer/HDL nanoparticle composed of a lipid/apolipoprotein coating that encapsulates a poly(lactic-co-glycolic acid) (PLGA) core. This novel HDL-like nanoparticle (PLGA–HDL) displayed natural HDL characteristics, including preferential uptake by macrophages and a good cholesterol efflux capacity, combined with a typical PLGA nanoparticle slow release profile. In vivo studies carried out with an ApoE knockout mouse model of atherosclerosis showed clear accumulation of PLGA–HDL nanoparticles in atherosclerotic plaques, which colocalized with plaque macrophages. This biomimetic platform integrates the targeting capacity of HDL biomimetic nanoparticles with the characteristic versatility of PLGA-based nanocarriers. PMID:25650634

  7. Regulation of HDL genes: transcriptional, posttranscriptional, and posttranslational.

    PubMed

    Kardassis, Dimitris; Gafencu, Anca; Zannis, Vassilis I; Davalos, Alberto

    2015-01-01

    HDL regulation is exerted at multiple levels including regulation at the level of transcription initiation by transcription factors and signal transduction cascades; regulation at the posttranscriptional level by microRNAs and other noncoding RNAs which bind to the coding or noncoding regions of HDL genes regulating mRNA stability and translation; as well as regulation at the posttranslational level by protein modifications, intracellular trafficking, and degradation. The above mechanisms have drastic effects on several HDL-mediated processes including HDL biogenesis, remodeling, cholesterol efflux and uptake, as well as atheroprotective functions on the cells of the arterial wall. The emphasis is on mechanisms that operate in physiologically relevant tissues such as the liver (which accounts for 80% of the total HDL-C levels in the plasma), the macrophages, the adrenals, and the endothelium. Transcription factors that have a significant impact on HDL regulation such as hormone nuclear receptors and hepatocyte nuclear factors are extensively discussed both in terms of gene promoter recognition and regulation but also in terms of their impact on plasma HDL levels as was revealed by knockout studies. Understanding the different modes of regulation of this complex lipoprotein may provide useful insights for the development of novel HDL-raising therapies that could be used to fight against atherosclerosis which is the underlying cause of coronary heart disease. PMID:25522987

  8. Plasma levels of HDL and carotenoids are lower in dementia patients with vascular comorbidities.

    PubMed

    Dias, Irundika H K; Polidori, Maria Cristina; Li, Li; Weber, Daniela; Stahl, Wilhelm; Nelles, Gereon; Grune, Tilman; Griffiths, Helen R

    2014-01-01

    Elevated serum cholesterol concentrations in mid-life increase risk for Alzheimer's disease (AD) in later life. However, lower concentrations of cholesterol-carrying high density lipoprotein (HDL) and its principal apolipoprotein A1 (ApoA1) correlate with increased risk for AD. As HDL transports oxocarotenoids, which are scavengers of peroxynitrite, we have investigated the hypothesis that lower HDL and oxocarotenoid concentrations during AD may render HDL susceptible to nitration and oxidation and in turn reduce the efficiency of reverse cholesterol transport (RCT) from lipid-laden cells. Fasting blood samples were obtained from subjects with (1) AD without cardiovascular comorbidities and risk factors (AD); (2) AD with cardiovascular comorbidities and risk factors (AD Plus); (3) normal cognitive function; for carotenoid determination by HPLC, analysis of HDL nitration and oxidation by ELISA, and 3H-cholesterol export to isolated HDL. HDL concentration in the plasma from AD Plus patients was significantly lower compared to AD or control subject HDL levels. Similarly, lutein, lycopene, and zeaxanthin concentrations were significantly lower in AD Plus patients compared to those in control subjects or AD patients, and oxocarotenoid concentrations correlated with Mini-Mental State Examination scores. At equivalent concentrations of ApoA1, HDL isolated from all subjects irrespective of diagnosis was equally effective at mediating RCT. HDL concentration is lower in AD Plus patients' plasma and thus capacity for RCT is compromised. In contrast, HDL from patients with AD-only was not different in concentration, modifications, or function from HDL of healthy age-matched donors. The relative importance of elevating HDL alone compared with elevating carotenoids alone or elevating both to reduce risk for dementia should be investigated in patients with early signs of dementia. PMID:24448787

  9. Thyroid Dysfunction and Associated Risk Factors among Nepalese Diabetes Mellitus Patients.

    PubMed

    Khatiwada, Saroj; Kc, Rajendra; Sah, Santosh Kumar; Khan, Seraj Ahmed; Chaudhari, Rajendra Kumar; Baral, Nirmal; Lamsal, Madhab

    2015-01-01

    Objectives. To assess thyroid function and associated risk factors in Nepalese diabetes mellitus patients. Methods. A cross-sectional study was carried out among 419 diabetes mellitus patients at B. P. Koirala Institute of Health Sciences, Dharan, Nepal. Information on demographic and anthropometric variables and risk factors for thyroid dysfunction was collected. Blood samples were analysed to measure thyroid hormones, blood sugar, and lipid profile. Results. Prevalence rate of thyroid dysfunction was 36.03%, with subclinical hypothyroidism (26.5%) as the most common thyroid dysfunction. Thyroid dysfunction was much common in females (42.85%) compared to males (30.04%) (p = 0.008) and in type 1 diabetes (50%) compared to type 2 diabetes mellitus (35.41%) (p = 0.218). Diabetic patients with thyroid dysfunction had higher total cholesterol, HDL cholesterol, and LDL cholesterol in comparison to patients without thyroid dysfunction. Significant risk factors for thyroid dysfunction, specifically hypothyroidism (overt and subclinical), were smoking (relative risk of 2.56 with 95% CI (1.99-3.29, p < 0.001)), family history of thyroid disease (relative risk of 2.57 with 95% CI (2.0-3.31, p < 0.001)), and female gender (relative risk of 1.44 with 95% CI (1.09-1.91, p = 0.01)). Conclusions. Thyroid dysfunction is common among Nepalese diabetic patients. Smoking, family history of thyroid disease, and female gender are significantly associated with thyroid dysfunction. PMID:26435714

  10. Dysfunctional High-Density Lipoprotein: An Innovative Target for Proteomics and Lipidomics

    PubMed Central

    Salazar, Juan; Olivar, Luis Carlos; Ramos, Eduardo; Chávez-Castillo, Mervin; Rojas, Joselyn; Bermúdez, Valmore

    2015-01-01

    High-Density Lipoprotein-Cholesterol (HDL-C) is regarded as an important protective factor against cardiovascular disease, with abundant evidence of an inverse relationship between its serum levels and risk of cardiovascular disease, as well as various antiatherogenic, antioxidant, and anti-inflammatory properties. Nevertheless, observations of hereditary syndromes featuring scant HDL-C concentration in absence of premature atherosclerotic disease suggest HDL-C levels may not be the best predictor of cardiovascular disease. Indeed, the beneficial effects of HDL may not depend solely on their concentration, but also on their quality. Distinct subfractions of this lipoprotein appear to be constituted by specific protein-lipid conglomerates necessary for different physiologic and pathophysiologic functions. However, in a chronic inflammatory microenvironment, diverse components of the HDL proteome and lipid core suffer alterations, which propel a shift towards a dysfunctional state, where HDL-C becomes proatherogenic, prooxidant, and proinflammatory. This heterogeneity highlights the need for further specialized molecular studies in this aspect, in order to achieve a better understanding of this dysfunctional state; with an emphasis on the potential role for proteomics and lipidomics as valuable methods in the search of novel therapeutic approaches for cardiovascular disease. PMID:26634153

  11. Atheroprotective role of high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P).

    PubMed

    Potì, Francesco; Simoni, Manuela; Nofer, Jerzy-Roch

    2014-08-01

    Numerous epidemiological studies documented an inverse relationship between plasma high-density lipoprotein (HDL) cholesterol levels and the extent of atherosclerotic disease. However, clinical interventions targeting HDL cholesterol failed to show clinical benefits with respect to cardiovascular risk reduction, suggesting that HDL components distinct from cholesterol may account for anti-atherogenic effects attributed to this lipoprotein. Sphingosine-1-phosphate (S1P)-a lysosphingolipid exerting its biological activity via binding to specific G protein-coupled receptors and regulating a wide array of biological responses in a variety of different organs and tissues including the cardiovascular system-has been identified as an integral constituent of HDL particles. In the present review, we discuss current evidence from epidemiological studies, experimental approaches in vitro, and animal models of atherosclerosis, suggesting that S1P contributes to atheroprotective effects exerted by HDL particles. PMID:24891400

  12. Pantethine, a derivative of vitamin B5, favorably alters total, LDL and non-HDL cholesterol in low to moderate cardiovascular risk subjects eligible for statin therapy: a triple-blinded placebo and diet-controlled investigation.

    PubMed

    Evans, Malkanthi; Rumberger, John A; Azumano, Isao; Napolitano, Joseph J; Citrolo, Danielle; Kamiya, Toshikazu

    2014-01-01

    High serum concentration of low-density lipoprotein cholesterol (LDL-C) is a major risk factor for coronary heart disease. The efficacy of pantethine treatment on cardiovascular risk markers was investigated in a randomized, triple-blinded, placebo-controlled study, in a low to moderate cardiovascular disease (CVD) risk North American population eligible for statin therapy, using the National Cholesterol Education Program (NCEP) guidelines. A total of 32 subjects were randomized to pantethine (600 mg/day from weeks 1 to 8 and 900 mg/day from weeks 9 to 16) or placebo. Compared with placebo, the participants on pantethine showed a significant decrease in total cholesterol at 16 weeks (P=0.040) and LDL-C at 8 and 16 weeks (P=0.020 and P=0.006, respectively), and decreasing trends in non-high-density lipoprotein cholesterol at week 8 and week 12 (P=0.102 and P=0.145, respectively) that reached significance by week 16 (P=0.042). An 11% decrease in LDL-C from baseline was seen in participants on pantethine, at weeks 4, 8, 12, and 16, while participants on placebo showed a 3% increase at week 16. This decrease was significant between groups at weeks 8 (P=0.027) and 16 (P=0.010). The homocysteine levels for both groups did not change significantly from baseline to week 16. Coenzyme Q10 significantly increased from baseline to week 4 and remained elevated until week 16, in both the pantethine and placebo groups. After 16 weeks, the participants on placebo did not show significant improvement in any CVD risk end points. This study confirms that pantethine lowers cardiovascular risk markers in low to moderate CVD risk participants eligible for statins according to NCEP guidelines. PMID:24600231

  13. Pantethine, a derivative of vitamin B5, favorably alters total, LDL and non-HDL cholesterol in low to moderate cardiovascular risk subjects eligible for statin therapy: a triple-blinded placebo and diet-controlled investigation

    PubMed Central

    Evans, Malkanthi; Rumberger, John A; Azumano, Isao; Napolitano, Joseph J; Citrolo, Danielle; Kamiya, Toshikazu

    2014-01-01

    High serum concentration of low-density lipoprotein cholesterol (LDL-C) is a major risk factor for coronary heart disease. The efficacy of pantethine treatment on cardiovascular risk markers was investigated in a randomized, triple-blinded, placebo-controlled study, in a low to moderate cardiovascular disease (CVD) risk North American population eligible for statin therapy, using the National Cholesterol Education Program (NCEP) guidelines. A total of 32 subjects were randomized to pantethine (600 mg/day from weeks 1 to 8 and 900 mg/day from weeks 9 to16) or placebo. Compared with placebo, the participants on pantethine showed a significant decrease in total cholesterol at 16 weeks (P=0.040) and LDL-C at 8 and 16 weeks (P=0.020 and P=0.006, respectively), and decreasing trends in non-high-density lipoprotein cholesterol at week 8 and week 12 (P=0.102 and P=0.145, respectively) that reached significance by week 16 (P=0.042). An 11% decrease in LDL-C from baseline was seen in participants on pantethine, at weeks 4, 8, 12, and 16, while participants on placebo showed a 3% increase at week 16. This decrease was significant between groups at weeks 8 (P=0.027) and 16 (P=0.010). The homocysteine levels for both groups did not change significantly from baseline to week 16. Coenzyme Q10 significantly increased from baseline to week 4 and remained elevated until week 16, in both the pantethine and placebo groups. After 16 weeks, the participants on placebo did not show significant improvement in any CVD risk end points. This study confirms that pantethine lowers cardiovascular risk markers in low to moderate CVD risk participants eligible for statins according to NCEP guidelines. PMID:24600231

  14. Bile acids reduce endocytosis of high-density lipoprotein (HDL) in HepG2 cells.

    PubMed

    Röhrl, Clemens; Eigner, Karin; Fruhwürth, Stefanie; Stangl, Herbert

    2014-01-01

    High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE) uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR) activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36). Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other. PMID:25010412

  15. HDL-S1P: cardiovascular functions, disease-associated alterations, and therapeutic applications

    PubMed Central

    Levkau, Bodo

    2015-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid contained in High-density lipoproteins (HDL) and has drawn considerable attention in the lipoprotein field as numerous studies have demonstrated its contribution to several functions inherent to HDL. Some of them are partly and some entirely due to the S1P contained in HDL (HDL-S1P). Despite the presence of over 1000 different lipids in HDL, S1P stands out as it possesses its own cell surface receptors through which it exercises key physiological functions. Most of the S1P in human plasma is associated with HDL, and the amount of HDL-S1P influences the quality and quantity of HDL-dependent functions. The main binding partner of S1P in HDL is apolipoprotein M but others may also exist particularly under conditions of acute S1P elevations. HDL not only exercise functions through their S1P content but have also an impact on genuine S1P signaling by influencing S1P bioactivity and receptor presentation. HDL-S1P content is altered in human diseases such as atherosclerosis, coronary artery disease, myocardial infarction, renal insufficiency and diabetes mellitus. Low HDL-S1P has also been linked to impaired HDL functions associated with these disorders. Although the pathophysiological and molecular reasons for such disease-associated shifts in HDL-S1P are little understood, there have been successful approaches to circumvent their adverse implications by pharmacologically increasing HDL-S1P as means to improve HDL function. This mini-review will cover the current understanding of the contribution of HDL-S1P to physiological HDL function, its alteration in disease and ways for its restoration to correct HDL dysfunction. PMID:26539121

  16. Glycoxidized HDL, HDL enriched with oxidized phospholipids and HDL from diabetic patients inhibit platelet function

    PubMed Central

    Lê, Quang Huy; El Alaoui, Meddy; Véricel, Evelyne; Ségrestin, Bérénice; Soulère, Laurent; Guichardant, Michel; Lagarde, Michel; Moulin, Philippe; Calzada, Catherine

    2015-01-01

    Context High-density lipoproteins (HDL) possess atheroprotective properties including anti-thrombotic and antioxidant effects. Very few studies relate to the functional effects of oxidized HDL on platelets in type 2 diabetes (T2D). Objective The objective of our study was to investigate the effects of in vitro glycoxidized HDL, and HDL from T2D patients on platelet aggregation and arachidonic acid signaling cascade. At the same time, the contents of hydroxylated fatty acids were assessed in HDL. Results Compared to control HDL, in vitro glycoxidized HDL had decreased proportions of linoleic (LA) and arachidonic (AA) acids in phospholipids and cholesteryl esters, and increased concentrations of hydroxy-octadecadienoic acids (9-HODE and 13-HODE) and 15-hydroxy-eicosatetraenoic acid (15-HETE), derived from LA and AA respectively, especially hydroxy derivatives esterified in phospholipids. Glycoxidized HDL dose-dependently decreased collagen-induced platelet aggregation by binding to SR-BI. Glycoxidized HDL prevented collagen-induced increased phosphorylation of platelet p38 MAPK and cytosolic phospholipase A2, as well as intracellular calcium mobilization. HDL enriched with oxidized phospholipids, namely PC(16:0/13-HODE) dose-dependently inhibited platelet aggregation. Increased concentrations of 9-HODE, 13-HODE and 15-HETE in phospholipids (2.1, 2.1 and 2.4-fold increase respectively) were found in HDL from patients with T2D, and these HDL also inhibited platelet aggregation via SR-BI. Conclusions Altogether, our results indicate that in vitro glycoxidized HDL as well as HDL from T2D patients inhibit platelet aggregation, and suggest that oxidized LA-containing phospholipids may contribute to the anti-aggregatory effects of glycoxidized HDL and HDL from T2D patients. PMID:25794249

  17. Metabolism of low-density lipoprotein free cholesterol by human plasma lecithin-cholesterol acyltransferase

    SciTech Connect

    Fielding, P.E.; Miida, Takashi; Fielding, C.J. )

    1991-09-03

    The metabolism of cholesterol derived from ({sup 3}H) cholesterol-labeled low-density lipoprotein (LDL) was determined in human blood plasma. LDL-derived free cholesterol first appeared in large {alpha}-migrating HDL (HDL{sub 2}) and was then transferred to small {alpha}-HDL (HDL{sub 3}) for esterification. The major part of such esters was retained within HDL of increasing size in the course of lecithin-cholesterol acyltransferase (LCAT) activity; the balance was recovered in LDL. Transfer of preformed cholesteryl esters within HDL contributed little to the labeled cholesteryl ester accumulating HDL{sub 2}. When cholesterol for esterification was derived instead from cell membranes, a significantly smaller proportion of this cholesteryl ester was subsequently recovered in LDL. These data suggest compartmentation of cholesteryl esters within plasma that have been formed from cell membrane or LDL free cholesterol, and the role for HDL{sub 2} as a relatively unreactive sink for LCAT-derived cholesteryl esters.

  18. Protective Effects of HDL Against Ischemia/Reperfusion Injury

    PubMed Central

    Gomaraschi, Monica; Calabresi, Laura; Franceschini, Guido

    2016-01-01

    Several lines of evidence suggest that, besides being a strong independent predictor of the occurrence of primary coronary events, a low plasma high density lipoprotein (HDL) cholesterol level is also associated with short- and long-term unfavorable prognosis in patients, who have recovered from a myocardial infarction, suggesting a direct detrimental effect of low HDL on post-ischemic myocardial function. Experiments performed in ex vivo and in vivo models of myocardial ischemia/reperfusion (I/R) injury have clearly shown that HDL are able to preserve cardiac function when given before ischemia or at reperfusion; the protective effects of HDL against I/R injury have been also confirmed in other tissues and organs, as brain and hind limb. HDL were shown to act on coronary endothelial cells, by limiting the increase of endothelium permeability and promoting vasodilation and neoangiogenesis, on white blood cells, by reducing their infiltration into the ischemic tissue and the release of pro-inflammatory and matrix-degrading molecules, and on cardiomyocytes, by preventing the activation of the apoptotic cascade. Synthetic HDL retains the cardioprotective activity of plasma-derived HDL and may become a useful adjunctive therapy to improve clinical outcomes in patients with acute coronary syndromes or undergoing coronary procedures. PMID:26834639

  19. Hepatic lipase- and endothelial lipase-deficiency in mice promotes macrophage-to-feces RCT and HDL antioxidant properties.

    PubMed

    Escolà-Gil, Joan Carles; Chen, Xiangyu; Julve, Josep; Quesada, Helena; Santos, David; Metso, Jari; Tous, Monica; Jauhiainen, Matti; Blanco-Vaca, Francisco

    2013-04-01

    Hepatic lipase (HL) and endothelial lipase (EL) are negative regulators of plasma HDL cholesterol (HDLc) levels and presumably could affect two main HDL atheroprotective functions, macrophage-to-feces reverse cholesterol transport (RCT) and HDL antioxidant properties. In this study, we assessed the effects of both HL and EL deficiency on macrophage-specific RCT process and HDL ability to protect against LDL oxidation. HL- and EL-deficient and wild-type mice were injected intraperitoneally with [(3)H]cholesterol-labeled mouse macrophages, after which the appearance of [(3)H]cholesterol in plasma, liver, and feces was determined. The degree of HDL oxidation and the protection of oxidative modification of LDL co-incubated with HDL were evaluated by measuring conjugated diene kinetics. Plasma levels of HDLc, HDL phospholipids, apoA-I, and platelet-activated factor acetyl-hydrolase were increased in both HL- and EL-deficient mice. These genetically modified mice displayed increased levels of radiolabeled, HDL-bound [(3)H]cholesterol 48h after the label injection. The magnitude of macrophage-derived [(3)H]cholesterol in feces was also increased in both the HL- and EL-deficient mice. HDL from the HL- and EL-deficient mice was less prone to oxidation and had a higher ability to protect LDL from oxidation, compared with the HDL derived from the wild-type mice. These changes were correlated with plasma apoA-I and apoA-I/HDL total protein levels. In conclusion, targeted inactivation of both HL and EL in mice promoted macrophage-to-feces RCT and enhanced HDL antioxidant properties. PMID:23328279

  20. New horizons for cholesterol ester transfer protein inhibitors.

    PubMed

    Schwartz, Gregory G

    2012-02-01

    High-density lipoprotein (HDL) cholesterol levels bear an inverse relationship to cardiovascular risk. To date, however, no intervention specifically targeting HDL has been demonstrated to reduce cardiovascular risk. Cholesterol ester transfer protein (CETP) mediates transfer of cholesterol ester from HDL to apolipoprotein B-containing particles. Most, but not all observational cohort studies indicate that genetic polymorphisms of CETP associated with reduced activity and higher HDL cholesterol levels are also associated with reduced cardiovascular risk. Some, but not all studies indicate that CETP inhibition in rabbits retards atherosclerosis, whereas transgenic CETP expression in mice promotes atherosclerosis. Torcetrapib, the first CETP inhibitor to reach phase III clinical development, was abandoned due to excess mortality associated with increases in aldosterone and blood pressure. Two other CETP inhibitors have entered phase III clinical development. Anacetrapib is a potent inhibitor of CETP that produces very large increases in HDL cholesterol and large reductions in low-density lipoprotein (LDL) cholesterol, beyond those achieved with statins. Dalcetrapib is a less potent CETP inhibitor that produces smaller increases in HDL cholesterol with minimal effect on LDL cholesterol. Both agents appear to allow efflux of cholesterol from macrophages to HDL in vitro, and neither agent affects blood pressure or aldosterone in vivo. Two large cardiovascular outcomes trials, one with anacetrapib and one with dalcetrapib, should provide a conclusive test of the hypothesis that inhibition of CETP decreases cardiovascular risk. PMID:22083134

  1. Implication of Low HDL-c Levels in Patients with Average LDL-c Levels: A Focus on Oxidized LDL, Large HDL Subpopulation, and Adiponectin

    PubMed Central

    Mascarenhas-Melo, Filipa; Sereno, José; Teixeira-Lemos, Edite; Marado, Daniela; Palavra, Filipe; Pinto, Rui; Rocha-Pereira, Petronila; Teixeira, Frederico; Reis, Flávio

    2013-01-01

    To evaluate the impact of low levels of high density lipoprotein cholesterol (HDL-c) on patients with LDL-c average levels, focusing on oxidative, lipidic, and inflammatory profiles. Patients with cardiovascular risk factors (n = 169) and control subjects (n = 73) were divided into 2 subgroups, one of normal HDL-c and the other of low HDL-c levels. The following data was analyzed: BP, BMI, waist circumference and serum glucose Total-c, TGs, LDL-c, oxidized LDL, total HDL-c and subpopulations (small, intermediate, and large), paraoxonase-1 (PON1) activity, hsCRP, uric acid, TNF-α, adiponectin, VEGF, and iCAM1. In the control subgroup with low HDL-c levels, significantly higher values of BP and TGs and lower values of PON1 activity and adiponectin were found, versus control normal HDL-c subgroup. However, differences in patients' subgroups were clearly more pronounced. Indeed, low HDL-c subgroup presented increased HbA1c, TGs, non-HDL-c, Ox-LDL, hsCRP, VEGF, and small HDL-c and reduced adiponectin and large HDL. In addition, Ox-LDL, large-HDL-c, and adiponectin presented interesting correlations with classical and nonclassical markers, mainly in the normal HDL-c patients' subgroup. In conclusion, despite LDL-c average levels, low HDL-c concentrations seem to be associated with a poor cardiometabolic profile in a population with cardiovascular risk factors, which is better evidenced by traditional and nontraditional CV biomarkers, including Ox-LDL, large HDL-c, and adiponectin. PMID:24282340

  2. Paraoxonase 1 and HDL maturation.

    PubMed

    Gugliucci, Alejandro; Menini, Teresita

    2015-01-15

    Understanding the kinetics and function of paraoxonase 1 (PON1) is becoming an important issue in atherosclerosis. Low PON1 activity has been consistently linked with an increased risk of major cardiovascular events in the setting of secondary prevention of coronary artery disease. Recent studies have shown that there is a specific interaction of myeloperoxidase (MPO)-apoAI-PON1 on HDL surface that seems to be germane to atherogenesis. MPO specifically inhibits PON1 and PON1 mitigates MPO effects. Surprisingly, very little is known about the routes by which PON1 gets integrated into HDL or its fate during HDL remodeling in the intravascular space. We have developed a method that assesses PON1 activity in the individual HDL subclasses with the aid of which we have shown that PON1 is present across the HDL particle range and preferentially in HDL3, confirming data from ultracentrifugation (UC) studies. Upon HDL maturation ex vivo PON1 is activated and it shows a flux to both smaller and larger HDL particles as well as to VLDL and sdLDL. At the same time apoE, AI and AII are shifted across particle sizes. PON1 activation and flux across HDL particles are blocked by CETP and LCAT inhibitors. In a group of particles with such a complex biology as HDL, knowledge of the interaction between apo-lipoproteins, lipids and enzymes is key for an increased understanding of the yet multiple unknown features of its function. Solving the HDL paradox will necessitate the development of techniques to explore HDL function that are practical and well adapted to clinical studies and eventually become useful in patient monitoring. The confluence of proteomic, functional studies, HDL subclasses, PON1 assays and zymogram will yield data to draw a more elaborate and comprehensive picture of the function of HDL. It must be noted that all these studies are static and conducted in the fasting state. The crucial phase will be achieved when human kinetic studies (both in the fasting and post

  3. Hepatic ACAT2 Knock Down Increases ABCA1 and Modifies HDL Metabolism in Mice

    PubMed Central

    Degirolamo, Chiara; Gomaraschi, Monica; Graham, Mark; Ossoli, Alice; Larsson, Lilian; Calabresi, Laura; Gustafsson, Jan-Åke; Steffensen, Knut R.; Eriksson, Mats; Parini, Paolo

    2014-01-01

    Objectives ACAT2 is the exclusive cholesterol-esterifying enzyme in hepatocytes and enterocytes. Hepatic ABCA1 transfers unesterified cholesterol (UC) to apoAI, thus generating HDL. By changing the hepatic UC pool available for ABCA1, ACAT2 may affect HDL metabolism. The aim of this study was to reveal whether hepatic ACAT2 influences HDL metabolism. Design WT and LXRα/β double knockout (DOKO) mice were fed a western-type diet for 8 weeks. Animals were i.p. injected with an antisense oligonucleotide targeted to hepatic ACAT2 (ASO6), or with an ASO control. Injections started 4 weeks after, or concomitantly with, the beginning of the diet. Results ASO6 reduced liver cholesteryl esters, while not inducing UC accumulation. ASO6 increased hepatic ABCA1 protein independently of the diet conditions. ASO6 affected HDL lipids (increased UC) only in DOKO, while it increased apoE-containing HDL in both genotypes. In WT mice ASO6 led to the appearance of large HDL enriched in apoAI and apoE. Conclusions The use of ASO6 revealed a new pathway by which the liver may contribute to HDL metabolism in mice. ACAT2 seems to be a hepatic player affecting the cholesterol fluxes fated to VLDL or to HDL, the latter via up-regulation of ABCA1. PMID:24695360

  4. Robust passive and active efflux of cellular cholesterol to a designer functional mimic of high density lipoprotein.

    PubMed

    Luthi, Andrea J; Lyssenko, Nicholas N; Quach, Duyen; McMahon, Kaylin M; Millar, John S; Vickers, Kasey C; Rader, Daniel J; Phillips, Michael C; Mirkin, Chad A; Thaxton, C Shad

    2015-05-01

    The ability of HDL to support macrophage cholesterol efflux is an integral part of its atheroprotective action. Augmenting this ability, especially when HDL cholesterol efflux capacity from macrophages is poor, represents a promising therapeutic strategy. One approach to enhancing macrophage cholesterol efflux is infusing blood with HDL mimics. Previously, we reported the synthesis of a functional mimic of HDL (fmHDL) that consists of a gold nanoparticle template, a phospholipid bilayer, and apo A-I. In this work, we characterize the ability of fmHDL to support the well-established pathways of cellular cholesterol efflux from model cell lines and primary macrophages. fmHDL received cell cholesterol by unmediated (aqueous) and ABCG1- and scavenger receptor class B type I (SR-BI)-mediated diffusion. Furthermore, the fmHDL holoparticle accepted cholesterol and phospholipid by the ABCA1 pathway. These results demonstrate that fmHDL supports all the cholesterol efflux pathways available to native HDL and thus, represents a promising infusible therapeutic for enhancing macrophage cholesterol efflux. fmHDL accepts cholesterol from cells by all known pathways of cholesterol efflux: unmediated, ABCG1- and SR-BI-mediated diffusion, and through ABCA1. PMID:25652088

  5. Robust passive and active efflux of cellular cholesterol to a designer functional mimic of high density lipoprotein

    PubMed Central

    Luthi, Andrea J.; Lyssenko, Nicholas N.; Quach, Duyen; McMahon, Kaylin M.; Millar, John S.; Vickers, Kasey C.; Rader, Daniel J.; Phillips, Michael C.; Mirkin, Chad A.; Thaxton, C. Shad

    2015-01-01

    The ability of HDL to support macrophage cholesterol efflux is an integral part of its atheroprotective action. Augmenting this ability, especially when HDL cholesterol efflux capacity from macrophages is poor, represents a promising therapeutic strategy. One approach to enhancing macrophage cholesterol efflux is infusing blood with HDL mimics. Previously, we reported the synthesis of a functional mimic of HDL (fmHDL) that consists of a gold nanoparticle template, a phospholipid bilayer, and apo A-I. In this work, we characterize the ability of fmHDL to support the well-established pathways of cellular cholesterol efflux from model cell lines and primary macrophages. fmHDL received cell cholesterol by unmediated (aqueous) and ABCG1- and scavenger receptor class B type I (SR-BI)-mediated diffusion. Furthermore, the fmHDL holoparticle accepted cholesterol and phospholipid by the ABCA1 pathway. These results demonstrate that fmHDL supports all the cholesterol efflux pathways available to native HDL and thus, represents a promising infusible therapeutic for enhancing macrophage cholesterol efflux. fmHDL accepts cholesterol from cells by all known pathways of cholesterol efflux: unmediated, ABCG1- and SR-BI-mediated diffusion, and through ABCA1. PMID:25652088

  6. Beneficial Effect of Higher Dietary Fiber Intake on Plasma HDL-C and TC/HDL-C Ratio among Chinese Rural-to-Urban Migrant Workers

    PubMed Central

    Zhou, Quan; Wu, Jiang; Tang, Jie; Wang, Jia-Ji; Lu, Chu-Hong; Wang, Pei-Xi

    2015-01-01

    Research has shown that high-dose supplemental dietary fiber intake has beneficial effects on cardiovascular risk factors. To clarify such a relationship, we examined the association between daily dietary fiber intake and plasma lipids using a cross-sectional design including 1034 (M 502, F 532) rural-to-urban workers in China. We found a dose-response relationship between increased dietary fiber intakes and increase of HDL cholesterol in male workers. There was also a dose-response relationship between increased dietary fiber intake and decreased total cholesterol to HDL cholesterol (TC/HDL-C) ratio in both male and female workers, after adjusting for potential confounders (p for trend, all p < 0.05). When the average dietary fiber intake increased from less than 18 g/day to over 30 g/day, the average HDL cholesterol level increased by 10.1%, and the TC/HDL-C ratio decreased by 14.4% for males (p = 0.020) and by 11.1% for females (p = 0.048). In conclusion, higher daily dietary fiber consumption is associated with beneficial effect on cholesterol for rural-to-urban workers in China, suggesting its potential beneficial effect on decreasing the risk of cardiovascular diseases. PMID:25938914

  7. Lipoprotein hydrophobic core lipids are partially extruded to surface in smaller HDL: “Herniated” HDL, a common feature in diabetes

    PubMed Central

    Amigó, Núria; Mallol, Roger; Heras, Mercedes; Martínez-Hervás, Sergio; Blanco-Vaca, Francisco; Escolà-Gil, Joan Carles; Plana, Núria; Yanes, Óscar; Masana, Lluís; Correig, Xavier

    2016-01-01

    Recent studies have shown that pharmacological increases in HDL cholesterol concentrations do not necessarily translate into clinical benefits for patients, raising concerns about its predictive value for cardiovascular events. Here we hypothesize that the size-modulated lipid distribution within HDL particles is compromised in metabolic disorders that have abnormal HDL particle sizes, such as type 2 diabetes mellitus (DM2). By using NMR spectroscopy combined with a biochemical volumetric model we determined the size and spatial lipid distribution of HDL subclasses in a cohort of 26 controls and 29 DM2 patients before and after two drug treatments, one with niacin plus laropiprant and another with fenofibrate as an add-on to simvastatin. We further characterized the HDL surface properties using atomic force microscopy and fluorescent probes to show an abnormal lipid distribution within smaller HDL particles, a subclass particularly enriched in the DM2 patients. The reduction in the size, force cholesterol esters and triglycerides to emerge from the HDL core to the surface, making the outer surface of HDL more hydrophobic. Interestingly, pharmacological interventions had no effect on this undesired configuration, which may explain the lack of clinical benefits in DM2 subjects. PMID:26778677

  8. Origins and determinants of HDL populations and their subpopulations

    SciTech Connect

    Nichols, A.V.; Gong, E.L.

    1990-06-01

    This paper describes the origins and determinants of High Density Lipoproteins (HDL) populations and their subpopulations. Our survey of compositional properties of small HDL particles indicates considerable variation in core lipid content reflecting in large part the origins of such particles. Whether small HDL particles of different core content and apolipoprotein composition differ in their metabolic properties and function in reverse cholesterol transport remains to be established. Our studies demonstrate that lipolysis-derived products can facilitate formation in vitro of small Apolipoprotein (AI) particles with properties approximating those of plasma pre-{beta} HDL. Of particular interest is our observation that small AI particles are an exclusive reassembly product in mixtures containing POPE and FFA. This observation may be relevant to the physiologic origins of PE in lipoprotein structure and its role in metabolism and secretion of nascent HDL. Lastly our observations on the reactivity of small AI particles, containing FFA, with LCAT and LDL suggest further linkages between triglyceride and HDL metabolism. 19 refs., 4 figs., 5 tabs.

  9. Effect of alcohol on hepatic receptor of high density lipoproteins (HDL)

    SciTech Connect

    Lin, R.C.; Miller, B.M. V.A. Medical Center, Indianapolis, IN )

    1991-03-11

    Moderate alcohol intake has been shown to increase HDL cholesterol and proteins. The seemingly protective effect' of moderate alcohol drinking against cardiovascular diseases has been attributed to an increase in serum HDL. In this study, the authors show that a receptor for HDL is present in rat liver. Rat liver membrane was prepared by stepwise ultracentrifugation. Apo Al was iodinated using {sup 125}I-NaI and IODO-beads. HDL was labeled by incubating with {sup 125}I-apo Al then refloated be centrifugation. Binding of {sup 125}I-HDL to rat liver membrane reached equilibrium by 2-3 h and was saturable at 37C. The binding was inhibited 80% by excess unlabeled HDL, but was inhibited only 25% by excess LDL. It could also be inhibited by preincubating HDL with anti-apo Al or anti-apo E antisera but not with anti-apo AIV or control sera. The binding affinity of HDL to the liver membrane of rats fed alcohol for 5 wk was 50% that of their pair-fed controls. Thus a decrease in the binding of HDL to liver membrane due to alcohol-drinking may result in a slower clearance of HDL by the liver and consequently a higher HDL concentration in the serum.

  10. Advances in the Study of the Antiatherogenic Function and Novel Therapies for HDL

    PubMed Central

    Cao, Peiqiu; Pan, Haitao; Xiao, Tiancun; Zhou, Ting; Guo, Jiao; Su, Zhengquan

    2015-01-01

    The hypothesis that raising high-density lipoprotein cholesterol (HDL-C) levels could improve the risk for cardiovascular disease (CVD) is facing challenges. There is multitudinous clear clinical evidence that the latest failures of HDL-C-raising drugs show no clear association with risks for CVD. At the genetic level, recent research indicates that steady-state HDL-C concentrations may provide limited information regarding the potential antiatherogenic functions of HDL. It is evident that the newer strategies may replace therapeutic approaches to simply raise plasma HDL-C levels. There is an urgent need to identify an efficient biomarker that accurately predicts the increased risk of atherosclerosis (AS) in patients and that may be used for exploring newer therapeutic targets. Studies from recent decades show that the composition, structure and function of circulating HDL are closely associated with high cardiovascular risk. A vast amount of data demonstrates that the most important mechanism through which HDL antagonizes AS involves the reverse cholesterol transport (RCT) process. Clinical trials of drugs that specifically target HDL have so far proven disappointing, so it is necessary to carry out review on the HDL therapeutics. PMID:26225968

  11. A review on lecithin:cholesterol acyltransferase deficiency.

    PubMed

    Saeedi, Ramesh; Li, Min; Frohlich, Jiri

    2015-05-01

    Lecithin cholesterol acyl transferase (LCAT) is a plasma enzyme which esterifies cholesterol, and plays a key role in the metabolism of high-density lipoprotein cholesterol (HDL-C). Genetic disorders of LCAT are associated with lipoprotein abnormalities including low levels of HDL-C and presence of lipoprotein X, and clinical features mainly corneal opacities, changes in erythrocyte morphology and renal failure. Recombinant LCAT is being developed for the treatment of patients with LCAT deficiency. PMID:25172171

  12. What's Cholesterol?

    MedlinePlus

    ... Most cholesterol is LDL (low-density lipoprotein) cholesterol. LDL cholesterol is more likely to clog blood vessels because ... Here's a way to remember the difference: the LDL cholesterol is the bad kind, so call it "lousy" ...

  13. Expression of the human apolipoprotein A-I gene in transgenic mice alters high density lipoprotein (HDL) particle size distribution and diminishes selective uptake of HDL cholesteryl esters

    SciTech Connect

    Chajekshaul, T.; Hayek, T.; Walsh, A.; Breslow, J.L. )

    1991-08-01

    Transgenic mice carrying the human apolipoprotein (apo) A-I gene (HuAITg mice) were used to examine the effects of overexpression of the human gene on high density lipoprotein (HDL) particle size distribution and metabolism. On a chow diet, control mice had HDL cholesterol and apo A-I levels of 49 {plus minus} 2 and 137 {plus minus} 12 mg/dl of plasma, respectively. HuAITg mice had HDL cholesterol, human apo A-I, and mouse apo A-I levels of 88 {plus minus} 2, 255 {plus minus} 19, and 16 {plus minus} 2 mg/dl, respectively. Nondenaturing gradient gel electrophoresis revealed control mouse plasma HDL to be primarily monodisperse with a particle diameter of 10.2 nm, whereas HuAITg mouse plasma HDL was polydisperse with particles of diameter 11.4, 10.2, and 8.7 nm, which correspond in size to human HDL1, HDL2, and HDL3, respectively. In vivo turnover studies of HDL labeled with (3H)cholesteryl linoleyl ether and 125I-apo A-I were performed. In control animals, the fractional catabolic rate (FCR) for HDL cholesteryl ester was significantly more than the apo A-I FCR. In the HuAITg mice, the HDL cholesteryl ester FCR was the same as the apo A-I FCR. There were no significant differences between control and HuAITg animals in the sites of tissue removal of HDL cholesteryl ester, with the liver extracting most of the injected radioactivity. Control and HuAITg animals had comparable liver and intestinal cholesterol synthesis and LDL FCR. In conclusion, HuAITg mice have principally human and not mouse apo A-I in their plasma. This apparently causes a change in HDL particle size distribution in the transgenic mice to one resembling the human pattern. The replacement of mouse by human apo A-I also apparently causes the loss of the selective uptake pathway of HDL cholesteryl esters present in control mice.

  14. Association of the low-density lipoprotein cholesterol/high-density lipoprotein cholesterol ratio and concentrations of plasma lipids with high-density lipoprotein subclass distribution in the Chinese population

    PubMed Central

    2010-01-01

    Background To evaluate the relationship between the low-density lipoprotein cholesterol (LDL-C)/high-density lipoprotein cholesterol (HDL-C) ratio and HDL subclass distribution and to further examine and discuss the potential impact of LDL-C and HDL-C together with TG on HDL subclass metabolism. Results Small-sized preβ1-HDL, HDL3b and HDL3a increased significantly while large-sized HDL2a and HDL2b decreased significantly as the LDL-C/HDL-C ratio increased. The subjects in low HDL-C level (< 1.03 mmol/L) who had an elevation of the LDL-C/HDL-C ratio and a reduction of HDL2b/preβ1-HDL regardless of an undesirable or high LDL-C level. At desirable LDL-C levels (< 3.34 mmol/L), the HDL2b/preβ1-HDL ratio was 5.4 for the subjects with a high HDL-C concentration (≥ 1.55 mmol/L); however, at high LDL-C levels (≥ 3.36 mmol/L), the ratio of LDL-C/HDL-C was 2.8 in subjects, and an extremely low HDL2b/preβ1-HDL value although with high HDL-C concentration. Conclusion With increase of the LDL-C/HDL-C ratio, there was a general shift toward smaller-sized HDL particles, which implied that the maturation process of HDL was blocked. High HDL-C concentrations can regulate the HDL subclass distribution at desirable and borderline LDL-C levels but cannot counteract the influence of high LDL-C levels on HDL subclass distribution. PMID:20615262

  15. Remarkable quantitative and qualitative differences in HDL after niacin or fenofibrate therapy in type 2 diabetic patients.

    PubMed

    Masana, Luís; Cabré, Anna; Heras, Mercedes; Amigó, Núria; Correig, Xavier; Martínez-Hervás, Sergio; Real, José T; Ascaso, Juan F; Quesada, Helena; Julve, Josep; Palomer, Xavier; Vázquez-Carrera, Manuel; Girona, Josefa; Plana, Núria; Blanco-Vaca, Francisco

    2015-02-01

    HDL-increasing drugs such as fenofibrate and niacin have failed to decrease the cardiovascular risk in patients with type 2 diabetes. Drug-mediated quantitative and qualitative HDL modifications could be involved in these negative results. To evaluate the quantitative and qualitative effects of niacin and fenofibrate on HDL in patients with type 2 diabetes, a prospective, randomised controlled intervention trial was conducted. Thirty type 2 diabetic patients with low HDL were randomised to receive either fenofibrate (FFB) or niacin + laropiprant (ERN/LPR) as an add-on to simvastatin treatment for 12 weeks according to a crossover design. At the basal point and after each intervention period, physical examinations and comprehensive standard biochemical determinations and HDL metabolomics were performed. Thirty nondiabetic patients with normal HDL were used as a basal control group. ERN/LRP, but not FFB, significantly increased HDL cholesterol. Neither ERN/LRP nor FFB reversed the HDL particle size or particle number to normal. ERN/LRP increased apoA-I but not apoA-II, whereas FFB produced the opposite effect. FFB significantly increased Preβ1-HDL, whereas ERN/LRP tended to lower Preβ1-HDL. CETP and LCAT activities were significantly decreased only by ERN/LRP. PAF-AH activity in HDL and plasma decreased with the use of both agents. Despite their different actions on antioxidant parameters, none of the treatments induced detectable antioxidant improvements. ERN/LRP and FFB had strikingly different effects on HDL quantity and quality, as well as on HDL cholesterol concentrations. When prescribing HDL cholesterol increasing drugs, this differential action should be considered. PMID:25528430

  16. PLTP activity in premenopausal women. Relationship with lipoprotein lipase, HDL, LDL, body fat, and insulin resistance.

    PubMed

    Murdoch, S J; Carr, M C; Hokanson, J E; Brunzell, J D; Albers, J J

    2000-02-01

    Plasma phospholipid transfer protein (PLTP) is thought to play a major role in the facilitated transfer of phospholipids between lipoproteins and in the modulation of high density lipoprotein (HDL) particle size and composition. However, little has been reported concerning the relationships of PLTP with plasma lipoprotein parameters, lipolytic enzymes, body fat distribution, insulin, and glucose in normolipidemic individuals, particularly females. In the present study, 50 normolipidemic healthy premenopausal females were investigated. The relationships between the plasma PLTP activity and selected variables were assessed. PLTP activity was significantly and positively correlated with low density lipoprotein (LDL) cholesterol (r(s) = 0.53), apoB (r(s) = 0.44), glucose (r(s) = 0.40), HDL cholesterol (r(s) = 0.38), HDL(3) cholesterol (r(s) = 0.37), lipoprotein lipase activity (r(s) = 0.36), insulin (r(s) = 0.33), subcutaneous abdominal fat (r(s) = 0.36), intra-abdominal fat (r(s) = 0.29), and body mass index (r(s) = 0.29). HDL(2) cholesterol, triglyceride, and hepatic lipase were not significantly related to PLTP activity. As HDL(2) can be decreased by hepatic lipase and hepatic lipase is increased in obesity with increasing intra-abdominal fat, the participants were divided into sub-groups of non-obese (n = 35) and obese (n = 15) individuals and the correlation of PLTP with HDL(2) cholesterol was re-examined. In the non-obese subjects, HDL(2) cholesterol was found to be significantly and positively related to PLTP activity (r(s) = 0.44). Adjustment of the HDL(2) values for the effect of hepatic lipase activity resulted in a significant positive correlation between PLTP and HDL(2) (r(s) = 0.41), indicating that the strength of the relationship between PLTP activity and HDL(2) can be reduced by the opposing effect of hepatic lipase on HDL(2) concentrations. We conclude that PLTP-facilitated lipid transfer activity is related to HDL and LDL metabolism, as well as

  17. Quantification of HDL Proteins, Cardiac Events, and Mortality in Patients with Type 2 Diabetes on Hemodialysis

    PubMed Central

    Kopecky, Chantal; Genser, Bernd; Drechsler, Christiane; Krane, Vera; Kaltenecker, Christopher C.; Hengstschläger, Markus; März, Winfried; Wanner, Christoph; Säemann, Marcus D.

    2015-01-01

    Background and objectives Impairment of HDL function has been associated with cardiovascular events in patients with kidney failure. The protein composition of HDLs is altered in these patients, presumably compromising the cardioprotective effects of HDLs. This post hoc study assessed the relation of distinct HDL-bound proteins with cardiovascular outcomes in a dialysis population. Design, setting, participants, & measurements The concentrations of HDL-associated serum amyloid A (SAA) and surfactant protein B (SP-B) were measured in 1152 patients with type 2 diabetes mellitus on hemodialysis participating in The German Diabetes Dialysis Study who were randomly assigned to double-blind treatment of 20 mg atorvastatin daily or matching placebo. The association of SAA(HDL) and SP-B(HDL) with cardiovascular outcomes was assessed in multivariate regression models adjusted for known clinical risk factors. Results High concentrations of SAA(HDL) were significantly and positively associated with the risk of cardiac events (hazard ratio per 1 SD higher, 1.09; 95% confidence interval, 1.01 to 1.19). High concentrations of SP-B(HDL) were significantly associated with all-cause mortality (hazard ratio per 1 SD higher, 1.10; 95% confidence interval, 1.02 to 1.19). Adjustment for HDL cholesterol did not affect these associations. Conclusions In patients with diabetes on hemodialysis, SAA(HDL) and SP-B(HDL) were related to cardiac events and all-cause mortality, respectively, and they were independent of HDL cholesterol. These findings indicate that a remodeling of the HDL proteome was associated with a higher risk for cardiovascular events and mortality in patients with ESRD. PMID:25424990

  18. Plasma cholesterol and other cardiac risk factors in adolescent girls.

    PubMed Central

    Bermingham, M A; Jones, E; Steinbeck, K; Brock, K

    1995-01-01

    The aim was to examine the effects of smoking, physical activity, and body mass on total cholesterol and high density lipoprotein cholesterol (HDL-C) in adolescent schoolgirls in Sydney, Australia. Body mass index (BMI) and waist to hip ratio (WHR) were determined in 144 girls aged 15 to 18 years. Total cholesterol (TC) and HDL-C were estimated on fingerprick blood and behavioural variables assessed by questionnaire. Prevalence of overweight (> 90th centile for BMI) was less in Australian adolescents than reported from the USA. Smokers had lower total cholesterol than non-smokers; this was partly explained by a lower HDL-C in the smokers. Physical activity was associated with a less atherogenic TC/HDL-C ratio. Girls with BMI > 90th centile had higher mean TC/HDL-C and apoprotein B than the group as a whole but those > 90th centile for WHR did not. PMID:8554353

  19. HDL abnormalities in nephrotic syndrome and chronic kidney disease.

    PubMed

    Vaziri, Nosratola D

    2016-01-01

    Normal HDL activity confers cardiovascular and overall protection by mediating reverse cholesterol transport and through its potent anti-inflammatory, antioxidant, and antithrombotic functions. Serum lipid profile, as well as various aspects of HDL metabolism, structure, and function can be profoundly altered in patients with nephrotic range proteinuria or chronic kidney disease (CKD). These abnormalities can, in turn, contribute to the progression of cardiovascular complications and various other comorbidities, such as foam cell formation, atherosclerosis, and/or glomerulosclerosis, in affected patients. The presence and severity of proteinuria and renal insufficiency, as well as dietary and drug regimens, pre-existing genetic disorders of lipid metabolism, and renal replacement therapies (including haemodialysis, peritoneal dialysis, and renal transplantation) determine the natural history of lipid disorders in patients with kidney disease. Despite the adverse effects associated with dysregulated reverse cholesterol transport and advances in our understanding of the underlying mechanisms, safe and effective therapeutic interventions are currently lacking. This Review provides an overview of HDL metabolism under normal conditions, and discusses the features, mechanisms, and consequences of HDL abnormalities in patients with nephrotic syndrome or advanced CKD. PMID:26568191

  20. The mouse plasma PAF acetylhydrolase: II. It consists of two enzymes both associated with the HDL.

    PubMed

    Tsaoussis, V; Vakirtzi-Lemonias, C

    1994-05-01

    The PAF acetylhydrolase (PAF-AH) of mouse plasma was characterised as to its lipoprotein subclass and apolipoprotein association. Association with plasma lipoproteins was established by cholesteryl-hemisuccinate agarose affinity chromatography while electrophoretic and electrofocusing studies demonstrated almost exclusive association with the HDL-VHDL. Fractionation of [4-14C]cholesterol-labelled plasma on a Bio-Gel A-5m column established that 1% of the enzymic activity was associated with the VLDL-LDL, 4.5% with the HDL1, 80% with the HDL2-HDL3 and 15% with the VHDL. Electrophoresis of the solubilised, HDL2-HDL3 bound enzyme gave two peaks of activity with mobilities of 0.29 and 0.49 and a distribution of the recovered activity of 78 and 22%, respectively. The VHDL associated activity on similar analysis gave a 25 and 75% distribution. These findings showed that two enzymes, both associated with the HDL and VHDL fractions, constitute the PAF-AH activity of mouse plasma. Further fractionation of the HDL2-HDL3 bound activity on heparin-agarose established that 70% of the recovered activity was bound to the apo-E containing HDL. PMID:7921790

  1. Quantification of In Vitro Macrophage Cholesterol Efflux and In Vivo Macrophage-Specific Reverse Cholesterol Transport.

    PubMed

    Escolà-Gil, Joan Carles; Lee-Rueckert, Miriam; Santos, David; Cedó, Lídia; Blanco-Vaca, Francisco; Julve, Josep

    2015-01-01

    Promotion of reverse cholesterol transport (RCT) is thought to be a major HDL-mediated mechanism for protecting against atherosclerosis. Preclinical studies support the concept that increasing cholesterol efflux from macrophages may confer atheroprotective benefits independently of the plasma HDL-cholesterol concentration. The application of the macrophage-to-feces RCT method in genetically engineered mice has provided evidence that this major HDL property correlates closely with changes in atherosclerosis susceptibility. This chapter provides details on the methodologies currently used to measure in vitro cholesterol efflux from macrophages or in vivo macrophage-specific RCT. The general principles and techniques described herein may be applied to measure the in vitro cholesterol efflux capacity of human serum in macrophage cultures and to evaluate the effect of different experimental pathophysiological conditions or the efficacy of different therapeutic strategies on the modulation of in vivo macrophage-RCT in mice. PMID:26445792

  2. Current guidelines for high-density lipoprotein cholesterol in therapy and future directions

    PubMed Central

    Subedi, Bishnu H; Joshi, Parag H; Jones, Steven R; Martin, Seth S; Blaha, Michael J; Michos, Erin D

    2014-01-01

    Many studies have suggested that a significant risk factor for atherosclerotic cardiovascular disease (ASCVD) is low high-density lipoprotein cholesterol (HDL-C). Therefore, increasing HDL-C with therapeutic agents has been considered an attractive strategy. In the prestatin era, fibrates and niacin monotherapy, which cause modest increases in HDL-C, reduced ASCVD events. Since their introduction, statins have become the cornerstone of lipoprotein therapy, the benefits of which are primarily attributed to decrease in low-density lipoprotein cholesterol. Findings from several randomized trials involving niacin or cholesteryl ester transfer protein inhibitors have challenged the concept that a quantitative elevation of plasma HDL-C will uniformly translate into ASCVD benefits. Consequently, the HDL, or more correctly, HDL-C hypothesis has become more controversial. There are no clear guidelines thus far for targeting HDL-C or HDL due to lack of solid outcomes data for HDL specific therapies. HDL-C levels are only one marker of HDL out of its several structural or functional properties. Novel approaches are ongoing in developing and assessing agents that closely mimic the structure of natural HDL or replicate its various functions, for example, reverse cholesterol transport, vasodilation, anti-inflammation, or inhibition of platelet aggregation. Potential new approaches like HDL infusions, delipidated HDL, liver X receptor agonists, Apo A-I upregulators, Apo A mimetics, and gene therapy are in early phase trials. This review will outline current therapies and describe future directions for HDL therapeutics. PMID:24748800

  3. The role of the lymphatic system in cholesterol transport

    PubMed Central

    Huang, Li-Hao; Elvington, Andrew; Randolph, Gwendalyn J.

    2015-01-01

    Reverse cholesterol transport (RCT) is the pathway for removal of peripheral tissue cholesterol and involves transport of cholesterol back to liver for excretion, starting from cellular cholesterol efflux facilitated by lipid-free apolipoprotein A1 (ApoA1) or other lipidated high-density lipoprotein (HDL) particles within the interstitial space. Extracellular cholesterol then is picked up and transported through the lymphatic vasculature before entering into bloodstream. There is increasing evidence supporting a role for enhanced macrophage cholesterol efflux and RCT in ameliorating atherosclerosis, and recent data suggest that these processes may serve as better diagnostic biomarkers than plasma HDL levels. Hence, it is important to better understand the processes governing ApoA1 and HDL influx into peripheral tissues from the bloodstream, modification and facilitation of cellular cholesterol removal within the interstitial space, and transport through the lymphatic vasculature. New findings will complement therapeutic strategies for the treatment of atherosclerotic vascular disease. PMID:26388772

  4. An abundant dysfunctional apolipoprotein A1 in human atheroma

    PubMed Central

    Huang, Ying; DiDonato, Joseph A.; Levison, Bruce S.; Schmitt, Dave; Li, Lin; Wu, Yuping; Buffa, Jennifer; Kim, Timothy; Gerstenecker, Gary; Gu, Xiaodong; Kadiyala, Chandra; Wang, Zeneng; Culley, Miranda K.; Hazen, Jennie E.; DiDonato, Anthony J.; Fu, Xiaoming; Berisha, Stela; Peng, Daoquan; Nguyen, Truc; Liang, Shaohong; Chuang, Chia-Chi; Cho, Leslie; Plow, Edward F.; Fox, Paul L.; Gogonea, Valentin; Tang, W.H. Wilson; Parks, John S.; Fisher, Edward A.; Smith, Jonathan D.; Hazen, Stanley L.

    2014-01-01

    Recent studies indicate high density lipoproteins (HDL) and their major structural protein, apolipoprotein A1 (apoA1), recovered from human atheroma, are dysfunctional and extensively oxidized by myeloperoxidase (MPO), while in vitro oxidation of apoA1/HDL by MPO impairs its cholesterol acceptor function. We developed a high affinity monoclonal antibody (mAb) that specifically recognizes apoA1/HDL modified by the MPO/H2O2/Cl-system using phage display affinity maturation. An oxindolyl alanine (2-OH-Trp) moiety at tryptophan 72 of apoA1 is the immunogenic epitope. Mutagenesis studies confirm a critical role for apoA1 Trp72 in MPO-mediated inhibition of ABCA1-dependent cholesterol acceptor activity of apoA1 in vitro and in vivo. ApoA1 containing a 2-OH-Trp72 group (oxTrp72-apoA1) is in low abundance within the circulation, but accounts for 20% of the apoA1 in atherosclerotic plaque. OxTrp72-apoA1 recovered from human atheroma or plasma was lipid-poor, virtually devoid of cholesterol acceptor activity, and demonstrated both potent pro-inflammatory activities on endothelial cells and impaired HDL biogenesis activity in vivo. Elevated oxTrp72-apoA1 levels in subjects presenting to a cardiology clinic (n=627) were associated with increased cardiovascular disease risk. Circulating oxTrp72-apoA1 levels may serve as a way to monitor a pro-atherogenic process in the artery wall. PMID:24464187

  5. Mechanism of the hepatic lipase induced accumulation of high-density lipoprotein cholesterol by cells in culture

    SciTech Connect

    Bamberger, M.; Lund-Katz, S.; Phillips, M.C.; Rothblat, G.H.

    1985-07-02

    Hepatic lipase can enhance the delivery of high-density lipoprotein (HDL) cholesterol to cells by a process which does not involve apoprotein catabolism. The incorporation of HDL-free (unesterified) cholesterol, phospholipid, and cholesteryl ester by cells has been compared to establish the mechanism of this delivery process. Human HDL was reconstituted with /sup 3/H-free cholesterol and (/sup 14/C)sphingomyelin, treated with hepatic lipase in the presence of albumin to remove the products of lipolysis, reisolated, and then incubated with cultured rat hepatoma cells. Relative to control HDL, modification of HDL with hepatic lipase stimulated both the amount of HDL-free cholesterol taken up by the cell and the esterification of HDL-free cholesterol but did not affect the delivery of sphingomyelin. Experiments utilizing HDL reconstituted with /sup 14/C-free cholesterol and (/sup 3/H)cholesteryl oleoyl ether suggest that hepatic lipase enhances the incorporation of HDL-esterified cholesterol. However, the amount of free cholesterol delivered as a result of treatment with hepatic lipase was 4-fold that of esterified cholesterol. On the basis of HDL composition, the cellular incorporation of free cholesterol was about 10 times that which would occur by the uptake and degradation of intact particles. The preferential incorporation of HDL-free cholesterol did not require the presence of lysophosphatidylcholine. To correlate the events observed at the cellular level with alterations in lipoprotein structure, high-resolution, proton-decoupled /sup 13/C nuclear magnetic resonance spectroscopy (90.55 MHz) was performed on HDL3 in which the cholesterol molecules were replaced with (4-/sup 13/C)cholesterol by particle reconstitution.

  6. Pleiotropy and genotype by diet interaction: A multivariate genetic analysis of HDL-C subfractions

    SciTech Connect

    Mahaney, M.C.; Blangero, J.; Comuzzie, A.G.

    1994-09-01

    Reduced high density lipoprotein cholesterol (HDL-C) is a risk factor for cardiovascular disease in humans. Both major genes and major genotype by diet interaction have been reported for HDL-C, but the genetics of the HDL-C subfractions are less well known. In a baboon model for human atherosclerosis, we investigated the pleiotropic effects of genes on normal quantitative variation in three HDL-C subfractions (HDL{sub 1}-C, HDL{sub 2}-C, and HDL{sub 3}-C) in two dietary environments -- a basal diet and a 7 week high cholesterol, saturated fat (HCSF) diet. We analyzed data on serum HDL-C subfraction levels, quantified by gradient gel eletrophoresis, for 942 baboons (Papo hamadryas, sensu lato) from 17 pedigrees. We used multivariate maximum likelihood methods to simultaneously estimate phenotypic means, standard deviations, and heritabilities (h{sup 2}); effects of sex, age-by-sex, age{sup 2}-by-sex, percent subspecies admixture, and infant feeding modality; plus estimated significant h{sup 2} values for all three subfractions on both diets. When tested within dietary environments, we obtained significant genetic correlations between all three subfractions [i.e., P({rho}{sub G} = 0) < 0.001] and evidence of complete pleiotropy [i.e., P({vert_bar}{rho}{sub G}{vert_bar} = 1.0) > 0.1] between HDL{sub 1}-C and HDL{sub 3}-C ({rho}{sub G} = 0.81) on the basal diet. On the HCSF diet, only the genetic correlation between HDL{sub 1}-C and HDL{sub 3}-C ({rho}{sub g} = 0.61) was significant (p > 0.1). Complete pleiotropy was observed for each of the three subfractions between both diets. Given these results, we reject genotype by diet interaction for HDL{sub 1}-C, HDL{sub 2}-C or HDL{sub 3}-C; i.e., the same genes influence variation in each subfraction to the same degree on either diet. However, the apparent disruption of pleiotropy between HDL{sub 2}-C and the other two subfractions needs to be investigated further.

  7. Effects of dietary fucoxanthin on cholesterol metabolism in diabetic/obese KK-Ay mice

    PubMed Central

    2012-01-01

    Background Fucoxanthin is a xanthophyll present in brown seaweeds and has several beneficial effects, including anti-obesity and anti-diabetic effects. However, we and another group previously observed that fucoxanthin increases serum cholesterol levels in rodents. Cholesterol is an important component of cell membranes and biosynthesis of bile acids. Serum cholesterol levels are also closely associated with atherosclerosis. Therefore, we sought to identify the mechanism underlying the increase in serum cholesterol levels by fucoxanthin. Methods Diabetic/obese KK-Ay mice were fed a diet containing 0.2% fucoxanthin for 4 weeks. The mice were sacrificed, and total blood samples were collected for the measurement of serum total cholesterol, HDL-cholesterol and non-HDL-cholesterol levels. Cholesterol content in tissues was also analyzed. Real-time PCR and Western blotting were performed to determine hepatic mRNA and protein expression of genes involved in cholesterol metabolism, respectively. Results Dietary fucoxanthin significantly increased serum HDL and non-HDL cholesterol levels, and reduced hepatic cholesterol content. In liver, the expression of SREBP1, SREBP2 and their target genes involved in cholesterol biosynthesis significantly increased and tended to increase in the fucoxanthin-fed mice, respectively. In contrast, hepatic levels of LDLR and SR-B1 proteins which is important factors for LDL-cholesterol and HDL-cholesterol uptake in the liver from serum, decreased to 60% and 80% in the fucoxanthin-fed mice, respectively, compared with the control mice. Further, we found that dietary fucoxanthin significantly increased the mRNA expression of proprotein convertase subtilisin/kexin type 9 (PCSK9), which enhances intracellular degradation of LDLR in lysosomes. Conclusions Fucoxanthin increased HDL-cholesterol and non-HDL-cholesterol levels in KK-Ay mice by inducing SREBP expression and reduced cholesterol uptake in the liver via down-regulation of LDLR and SR

  8. Nascent HDL formation by hepatocytes is reduced by the concerted action of serum amyloid A and endothelial lipase.

    PubMed

    Wroblewski, Joanne M; Jahangiri, Anisa; Ji, Ailing; de Beer, Frederick C; van der Westhuyzen, Deneys R; Webb, Nancy R

    2011-12-01

    Inflammation is associated with significant decreases in plasma HDL-cholesterol (HDL-C) and apoA-I levels. Endothelial lipase (EL) is known to be an important determinant of HDL-C in mice and in humans and is upregulated during inflammation. In this study, we investigated whether serum amyloid A (SAA), an HDL apolipoprotein highly induced during inflammation, alters the ability of EL to metabolize HDL. We determined that EL hydrolyzes SAA-enriched HDL in vitro without liberating lipid-free apoA-I. Coexpression of SAA and EL in mice by adenoviral vector produced a significantly greater reduction in HDL-C and apoA-I than a corresponding level of expression of either SAA or EL alone. The loss of HDL occurred without any evidence of HDL remodeling to smaller particles that would be expected to have more rapid turnover. Studies with primary hepatocytes demonstrated that coexpression of SAA and EL markedly impeded ABCA1-mediated lipidation of apoA-I to form nascent HDL. Our findings suggest that a reduction in nascent HDL formation may be partly responsible for reduced HDL-C during inflammation when both EL and SAA are known to be upregulated. PMID:21957202

  9. Effects of Carbohydrate and Dietary Fiber Intake, Glycemic Index and Glycemic Load on HDL Metabolism in Asian Populations

    PubMed Central

    Yanai, Hidekatsu; Katsuyama, Hisayuki; Hamasaki, Hidetaka; Abe, Shinichi; Tada, Norio; Sako, Akahito

    2014-01-01

    High-density lipoprotein (HDL) is a lipoprotein which has anti-atherogenic property by reverse cholesterol transport from the peripheral tissues to liver. Low HDL-cholesterol (HDL-C) levels are associated with the development of coronary artery diseases (CADs). Various epidemiological studies have suggested that the development of CAD increase in individuals with less than 40 mg/dL of HDL-C. In spite of accumulation of evidences which suggest a significant association between low HDL-C and cardiovascular diseases, effects of dietary factors on HDL metabolism remained largely unknown. There may be interracial differences in effects of dietary factors on HDL metabolism. Here we reviewed published articles about effects of carbohydrate and dietary fiber intake, glycemic index (GI) and glycemic load (GL), on HDL-C metabolism, regarding meta-analyses and clinical studies performed in Asian population as important articles. Low carbohydrate intake, GI and GL may be beneficially associated with HDL metabolism. Dietary fiber intake may be favorably associated with HDL metabolism in Asian populations. PMID:25110535

  10. About Cholesterol

    MedlinePlus

    ... High Blood Pressure Tools & Resources Stroke More About Cholesterol Updated:Aug 10,2016 It may surprise you ... our bodies to keep us healthy. What is cholesterol and where does it come from? Cholesterol is ...