Science.gov

Sample records for dysprosium isotopes

  1. Discovery of dysprosium, holmium, erbium, thulium, and ytterbium isotopes

    SciTech Connect

    Fry, C.; Thoennessen, M.

    2013-09-15

    Currently, thirty-one dysprosium, thirty-two holmium, thirty-two erbium, thirty-three thulium, and thirty-one ytterbium isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  2. Level density and thermodynamic properties of dysprosium isotopes

    NASA Astrophysics Data System (ADS)

    Nyhus, H. T.; Siem, S.; Guttormsen, M.; Larsen, A. C.; Bürger, A.; Syed, N. U. H.; Toft, H. K.; Tveten, G. M.; Voinov, A.

    2012-01-01

    163,164Dy nuclei have been measured by use of the Oslo method on data from pick-up (3He,α) and inelastic scattering (3He,3He') reactions, respectively. The level densities for these dysprosium isotopes together with previously measured 160-162Dy are extracted in the region below the neutron binding energy. Thermodynamic properties are deduced within both micro-canonical and canonical ensemble theories. A phase transition from the pair-correlated state at low energies to a less correlated or uncorrelated state is studied in both ensembles. It is investigated whether the temperature of the nucleus is constant or a varying function of excitation energy. It is found that above an excitation energy of 3 MeV the temperature of all five dysprosium nuclei have a constant value within the experimental uncertainties. The impact of a constant-temperature level density versus a Fermi gas level density is discussed with respect to the canonical heat capacity.

  3. Ultracold Dysprosium Gas

    NASA Astrophysics Data System (ADS)

    Bouazza, Chayma; Bose-Einstein Condensate Team

    2016-05-01

    Ultracold quantum gases with long-rang and anisotropic interactions open the door to new possibilities for exploring correlated many-body systems. The advantage of using ultracold atoms in order to realize such systems relies on the high level of control and manipulation offered by this field. Recent progress in trapping and cooling some Lanthanide atoms with a strong magnetic moment such as Erbium or Dysprosium present an important tool to investigate the dipole-dipole interaction. In particular the dysprosium atom has multiple features that make it an interesting candidate to study such systems. It has the largest magnetic moment among all atoms (10μB) and a rich energy level structure which allows the implementation of different cooling schemes. In my talk I will present our experiment with the bosonic isotope 164 Dy. I will set forth the interesting features of Dysprosium and explain the difference with alkali systems. UQUAM

  4. U(5)-SU(3) nuclear shape transition within the interacting boson model applied to dysprosium isotopes

    NASA Astrophysics Data System (ADS)

    Kotb, M.

    2016-07-01

    In the framework of the interacting boson model (IBM) with intrinsic coherent state, the shape Hamiltonian from spherical vibrator U(5) to axially symmetric prolate deformed rotator SU(3) are examined. The Hamiltonian used is composed of a single boson energy term and quadrupole term. The potential energy surfaces (PES' s) corresponding to the U(5)-SU(3) transition are calculated with variation of a scaling and control parameters. The model is applied to 150-162Dy chain of isotopes. In this chain a change from spherical to well deformed nuclei is observed when moving from the lighter to heavier isotopes. 156Dy is a good candidate for the critical point symmetry X(5). The parameters of the model are determined by using a computer simulated search program in order to minimize the deviation between our calculated and some selected experimental energy levels, B(E2) transition rates and the two neutron separation energies S2n. We have also studied the energy ratios and the B(E2) values for the yrast state of the critical nucleus. The nucleon pair transfer intensities between ground-ground and ground-beta states are examined within IBM and boson intrinsic coherent framework.

  5. Total and Capture Cross Sections of Dysprosium Isotopes up to 20 MeV

    SciTech Connect

    Lee, Y.D.; Oh, S.Y.; Chang, J.H.

    2005-11-15

    Neutron data for total and capture cross sections were evaluated on {sup 160}Dy, {sup 161}Dy, {sup 162}Dy, {sup 163}Dy, and {sup 164}Dy up to 20 MeV. The resolved resonance parameters were adopted from the Mughabghab compilation, but one bound level resonance for each isotope except {sup 162}Dy was invoked to reproduce the reference thermal cross sections. The average resonance parameters for s-wave neutrons were obtained from the analysis of the statistical behavior of resolved resonance parameters. Recent measurements of the capture cross sections were taken into account in adjusting the average resonance parameters for p- and d-waves. From the first excited energy to 20 MeV, the optical model, Hauser-Feshbach model, and quantum mechanical models were used to produce total, elastic scattering, and capture cross sections. The energy-dependent optical model potential was decided based on the recent experimental data. The calculated cross sections were in good agreement with the experimental data. The present evaluation resulted in improvement over the ENDF/B-VI.7 code.

  6. Metals fact sheet - Dysprosium

    SciTech Connect

    1997-01-01

    The article contains a summary of factors pertinent to dysprosium use. Geology and exploitation, mineral sources, production processes, global production,applications, and the dysprosium market are reviewed. Applications very briefly described include use as a cooling agent in nuclear control rods, magnets, magnetostrictive devices, phosphors, photoelectric devices, and glass. Current and historical market prices are given.

  7. Dysprosium magneto-optical traps

    SciTech Connect

    Youn, Seo Ho; Lu Mingwu; Ray, Ushnish; Lev, Benjamin L.

    2010-10-15

    Magneto-optical traps (MOTs) of highly magnetic lanthanides open the door to explorations of novel phases of strongly correlated matter such as lattice supersolids and quantum liquid crystals. We recently reported the first MOTs of the five high-abundance isotopes of the most magnetic atom, dysprosium. Described here are details of the experimental technique employed for repumper-free Dy MOTs containing up to half a billion atoms. Extensive characterization of the MOTs' properties--population, temperature, loading, metastable decay dynamics, and trap dynamics--is provided.

  8. Transverse laser cooling of a thermal atomic beam of dysprosium

    SciTech Connect

    Leefer, N.; Cingoez, A.; Gerber-Siff, B.; Sharma, Arijit; Torgerson, J. R.; Budker, D.

    2010-04-15

    A thermal atomic beam of dysprosium atoms is cooled using the 4f{sup 10}6s{sup 2}(J=8){yields}4f{sup 10}6s6p(J=9) transition at 421 nm. The cooling is done via a standing light wave orthogonal to the atomic beam. Efficient transverse cooling to the Doppler limit is demonstrated for all observable isotopes of dysprosium. Branching ratios to metastable states are demonstrated to be <5x10{sup -4}. A scheme for enhancement of the nonzero-nuclear-spin-isotope cooling and a method for direct identification of possible trap states are proposed.

  9. Magnetic relaxation in dysprosium-dysprosium collisions

    SciTech Connect

    Newman, Bonna K.; Johnson, Cort; Kleppner, Daniel; Greytak, Thomas J.; Brahms, Nathan; Au, Yat Shan; Connolly, Colin B.; Doyle, John M.

    2011-01-15

    The collisional magnetic reorientation rate constant g{sub R} is measured for magnetically trapped atomic dysprosium (Dy), an atom with large magnetic dipole moments. Using buffer gas cooling with cold helium, large numbers (>10{sup 11}) of Dy are loaded into a magnetic trap and the buffer gas is subsequently removed. The decay of the trapped sample is governed by collisional reorientation of the atomic magnetic moments. We find g{sub R}=1.9{+-}0.5x10{sup -11} cm{sup 3} s{sup -1} at 390 mK. We also measure the magnetic reorientation rate constant of holmium (Ho), another highly magnetic atom, and find g{sub R}=5{+-}2x10{sup -12} cm{sup 3} s{sup -1} at 690 mK. The Zeeman relaxation rates of these atoms are greater than expected for the magnetic dipole-dipole interaction, suggesting that another mechanism, such as an anisotropic electrostatic interaction, is responsible. Comparison with estimated elastic collision rates suggests that Dy is a poor candidate for evaporative cooling in a magnetic trap.

  10. First search for double β decay of dysprosium

    NASA Astrophysics Data System (ADS)

    Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F. A.; d'Angelo, S.; Di Vacri, M. L.; Incicchitti, A.; Laubenstein, M.; Nagorny, S. S.; Nisi, S.; Tolmachev, A. V.; Tretyak, V. I.; Yavetskiy, R. P.

    2011-06-01

    A search for double β decay of dysprosium was realized for the first time with the help of an ultra-low background HP Ge γ detector. After 2512 h of data taking with a 322 g sample of dysprosium oxide limits on double beta processes in 156Dy and 158Dy have been established on the level of T⩾10-10 yr. Possible resonant double electron captures in 156Dy and 158Dy were restricted on a similar level. As a by-product of the experiment we have measured the radioactive contamination of the Dy 2O 3 sample and set limits on the α decay of dysprosium isotopes to the excited levels of daughter nuclei as T⩾10-10 yr.

  11. Preparation and properties of dysprosium nanocapsules coated with boron, carbon, and dysprosium oxide

    SciTech Connect

    Si, P.Z.; Brueck, E.; Zhang, Z.D.; Skorvanek, I.; Kovac, J.; Zhang, M

    2004-06-08

    Boron-coated dysprosium/dysprosium oxide, carbon-coated dysprosium/DyC{sub 2}, and dysprosium oxide-coated dysprosium nanocapsules were prepared using an arc discharge method in diborane, methane, and argon, respectively. The magnetization of these nanocapsules has been measured at temperatures between 4 and 290 K, in applied fields up to 6 T. The transition temperature of nanocrystalline Dy from the helical phase to the ferromagnetic phase is much lower than that of bulk Dy. The linear temperature dependence of the inverse susceptibility of these nanocapsules, being a mixture of superparamagnetic Dy and paramagnetic dysprosium oxide or carbide, can be explained within the molecular field theory with magnetic moments with the total angular momentum J=15/2 and the Lande factor g=4/3. We discuss the relations between the structure and the magnetization of these nanocapsules.

  12. Theoretical study of some experimentally relevant states of dysprosium

    SciTech Connect

    Dzuba, V. A.; Flambaum, V. V.

    2010-05-15

    Configuration interaction method is used to calculate transition amplitudes and other properties of the low states of dysprosium which are used in cooling and in the study of the time variation of the fine structure constant and violation of fundamental symmetries. The branching ratio for the cooling state to decay to states other than ground states is found to be smaller than 10{sup -4}. The matrix element of the weak interaction between degenerate states at E=19797.96 cm{sup -1} is about 4 Hz which is consistent with the experimental limit |H{sub W}|=|2.3{+-}2.9(stat.){+-}0.7(syst.)| Hz [A. T. Nguyen, D. Budker, D. DeMille, and M. Zolotorev, Phys. Rev. A 56, 3453 (1997)] and points to feasibility of its experimental measurement. Applications include the search for physics beyond the standard model using the parity nonconservation (PNC) isotopic chain approach.

  13. Diode-pumped dysprosium laser materials

    NASA Astrophysics Data System (ADS)

    Bowman, S. R.; Condon, N. J.; O'Connor, S.; Rosenberg, A.

    2009-05-01

    We are investigating materials for direct blue solid-state lasers assuming UV excitation with GaN based laser diodes. Room temperature spectroscopy is reported relevant to a proposed quasi-three level laser from the 4F9/2 level in trivalent dysprosium. Modeling based on these measurements suggests this is a promising new laser transition.

  14. Phenalenyl-based mononuclear dysprosium complexes

    PubMed Central

    Magri, Andrea; Fuhr, Olaf

    2016-01-01

    Summary The phenalenyl-based dysprosium complexes [Dy(PLN)2(HPLN)Cl(EtOH)] (1), [Dy(PLN)3(HPLN)]·[Dy(PLN)3(EtOH)]·2EtOH (2) and [Dy(PLN)3(H2O)2]·H2O (3), HPLN being 9-hydroxy-1H-phenalen-1-one, have been synthesized. All compounds were fully characterized by means of single crystal X-ray analysis, paramagnetic 1H NMR, MALDI-TOF mass spectrometry, UV–vis spectrophotometry and magnetic measurements. Both static (dc) and dynamic (ac) magnetic properties of these complexes have been investigated, showing slow relaxation of magnetization, indicative of single molecule magnet (SMM) behavior. Attempts to synthesize sublimable phenalenyl-based dysprosium complexes have been made by implementing a synthetic strategy under anhydrous conditions. The sublimed species were characterized and their thermal stability was confirmed. This opens up the possibility to deposit phenalenyl-based lanthanides complexes by sublimation onto surfaces, an important prerequisite for ongoing studies in molecular spintronics. PMID:27547617

  15. Phenalenyl-based mononuclear dysprosium complexes.

    PubMed

    Lan, Yanhua; Magri, Andrea; Fuhr, Olaf; Ruben, Mario

    2016-01-01

    The phenalenyl-based dysprosium complexes [Dy(PLN)2(HPLN)Cl(EtOH)] (1), [Dy(PLN)3(HPLN)]·[Dy(PLN)3(EtOH)]·2EtOH (2) and [Dy(PLN)3(H2O)2]·H2O (3), HPLN being 9-hydroxy-1H-phenalen-1-one, have been synthesized. All compounds were fully characterized by means of single crystal X-ray analysis, paramagnetic (1)H NMR, MALDI-TOF mass spectrometry, UV-vis spectrophotometry and magnetic measurements. Both static (dc) and dynamic (ac) magnetic properties of these complexes have been investigated, showing slow relaxation of magnetization, indicative of single molecule magnet (SMM) behavior. Attempts to synthesize sublimable phenalenyl-based dysprosium complexes have been made by implementing a synthetic strategy under anhydrous conditions. The sublimed species were characterized and their thermal stability was confirmed. This opens up the possibility to deposit phenalenyl-based lanthanides complexes by sublimation onto surfaces, an important prerequisite for ongoing studies in molecular spintronics. PMID:27547617

  16. Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films grown by atomic layer deposition

    SciTech Connect

    Tamm, Aile Kozlova, Jekaterina; Aarik, Lauri; Aarik, Jaan; Kukli, Kaupo; Link, Joosep; Stern, Raivo

    2015-01-15

    Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films were grown by atomic layer deposition on silicon substrates. For depositing dysprosium and titanium oxides Dy(thd){sub 3}-O{sub 3} and TiCl{sub 4}-O{sub 3} were used as precursors combinations. Appropriate parameters for Dy(thd){sub 3}-O{sub 3} growth process were obtained by using a quartz crystal microbalance system. The Dy{sub 2}O{sub 3} films were deposited on planar substrates and on three-dimensional substrates with aspect ratio 1:20. The Dy/Ti ratio of Dy{sub 2}O{sub 3}-doped TiO{sub 2} films deposited on a planar silicon substrate ranged from 0.04 to 0.06. Magnetometry studies revealed that saturation of magnetization could not be observed in planar Dy{sub 2}O{sub 3} films, but it was observable in Dy{sub 2}O{sub 3} films on 3D substrates and in doped TiO{sub 2} films with a Dy/Ti atomic ratio of 0.06. The latter films exhibited saturation magnetization 10{sup −6} A cm{sup 2} and coercivity 11 kA/m at room temperature.

  17. Dynamic polarizabilities and magic wavelengths for dysprosium

    SciTech Connect

    Dzuba, V. A.; Flambaum, V. V.; Lev, Benjamin L.

    2011-03-15

    We theoretically study dynamic scalar polarizabilities of the ground and select long-lived excited states of dysprosium, a highly magnetic atom recently laser cooled and trapped. We demonstrate that there is a set of magic wavelengths of the unpolarized lattice laser field for each pair of states, which includes the ground state and one of these excited states. At these wavelengths, the energy shift due to laser field is the same for both states, which can be useful for resolved sideband cooling on narrow transitions and precision spectroscopy. We present an analytical formula that, near resonances, allows for the determination of approximate values of the magic wavelengths without calculating the dynamic polarizabilities of the excited states.

  18. Study of dysprosium in different magnetic states

    NASA Astrophysics Data System (ADS)

    Lakhani, Archana; Baidya, Arunmay; Jena, Rudra Parasad

    2016-05-01

    A magnetotrasnport and magnetization study has been performed in order to probe the changes in the magnetic states of the rare earth element Dysprosium. Primarily there are three magnetic states present in this element in different temperature regions; one changing at Neel temperature (TN ~ 180K) via second order phase transition and another at Curie temperature (TC ~ 90K) via first order magnetic phase transition (FOMT). These two transitions merge at the magnetic field above 1.5T. The first derivative of resistivity indicates the possibility of spin fluctuation above first order phase transition in the spiral antiferromagnetic phase. The magnetoresistance up to 8T reveals distinct features in the para, antiferromagnetic spiral and ferromagnetic regions.

  19. Selected-control synthesis of dysprosium hydroxide and oxide nanorods by adjusting hydrothermal temperature

    SciTech Connect

    Song Xuchun Zheng Yifan; Wang Yun

    2008-05-06

    Dysprosium hydroxide and oxide nanorods were prepared directly from commercial bulk Dy{sub 2}O{sub 3} crystals by facile hydrothermal process at 130 and 210 deg. C, respectively. The as-synthesized dysprosium hydroxide and oxide nanorods were investigated by various techniques of XRD, TEM, SEM, and EDS. In the process, the temperature was found to play important roles in determining produce dysprosium hydroxide and oxide nanorods.

  20. Study of electronic structure and spin polarization of dysprosium

    SciTech Connect

    Mund, H. S.

    2015-06-24

    In this paper, I have presented the spin-dependent momentum density of ferromagnetic dysprosium using spin polarized relativistic Korringa-Kohn-Rostoker method. A fully relativistic approach has been used to determine the magnetic Compton profile. The density of state in term of majority-spin and minority-spin of Dy also calculated using SPR-KKR. The magnetic Compton profile discussed in term of 4f and diffused electrons.

  1. Dysprosium titanate as an absorber material for control rods

    NASA Astrophysics Data System (ADS)

    Risovany, V. D.; Varlashova, E. E.; Suslov, D. N.

    2000-09-01

    Disprosium titanate is an attractive control rod material for the thermal neutron reactors. Its main advantages are: insignificant swelling, no out-gassing under neutron irradiation, rather high neutron efficiency, a high melting point (˜1870°C), non-interaction with the cladding at temperatures above 1000°C, simple fabrication and easily reprocessed non-radioactive waste. It can be used in control rods as pellets and powder. The disprosium titanate control rods have worked off in the MIR reactor for 17 years, in VVER-1000 - for 4 years without any operating problems. After post-irradiation examinations this type of control rod having high lifetime was recommended for the VVER and RBMK. The paper presents the examination results of absorber element dummies containing dysprosium titanate, irradiated in the SM reactor to the neutron fluence of 3.4×10 22 cm -2 ( E>0.1 MeV) and, also, the data on structure, thermal-physical properties of dysprosium titanate, efficiency of dysprosium titanate control rods.

  2. New limits on variation of the fine-structure constant using atomic dysprosium.

    PubMed

    Leefer, N; Weber, C T M; Cingöz, A; Torgerson, J R; Budker, D

    2013-08-01

    We report on the spectroscopy of radio-frequency transitions between nearly degenerate, opposite-parity excited states in atomic dysprosium (Dy). Theoretical calculations predict that these states are very sensitive to variation of the fine-structure constant α owing to large relativistic corrections of opposite sign for the opposite-parity levels. The near degeneracy reduces the relative precision necessary to place constraints on variation of α, competitive with results obtained from the best atomic clocks in the world. Additionally, the existence of several abundant isotopes of Dy allows isotopic comparisons that suppress common-mode systematic errors. The frequencies of the 754-MHz transition in 164Dy and 235-MHz transition in 162Dy are measured over the span of two years. The linear variation of α is α·/α=(-5.8±6.9([1σ]))×10(-17)  yr(-1), consistent with zero. The same data are used to constrain the dimensionless parameter kα characterizing a possible coupling of α to a changing gravitational potential. We find that kα=(-5.5±5.2([1σ]))×10(-7), essentially consistent with zero and the best constraint to date. PMID:23971546

  3. Magnetic structure of dysprosium in epitaxial Dy films and in Dy/Er superlattices

    SciTech Connect

    Dumesnil, K.; Dufour, C.; Mangin, P.; Marchal, G.; Hennion, M.

    1996-09-01

    We present a magnetization and neutron-diffraction study of the basal plane magnetic structure of Dy epitaxial films and Dy/Er superlattices. The thermal evolution of the magnetic phases, the stability of the helical phase under a magnetic field, the thermal variation of the dysprosium in-plane and {ital c} parameters, and of the dysprosium turn angle are successively shown. In Dy/Er superlattices, the dysprosium helix propagates coherently through paramagnetic erbium; at low temperature, individual dysprosium layers undergo a ferromagnetic transition and are coupled antiferromagnetically to each other for erbium layers thicknesses larger than 20 A. In dysprosium films, as expected from the epitaxy effect, the Curie temperature of dysprosium is reduced if dysprosium is grown on yttrium and increased if it is grown on erbium, whereas it is unexpectedly close to the bulk value in Dy/Er superlattices. This amazing value of the Curie temperature in superlattices is correlated to two main experimentally observed effects: (i) the magnetoelastic driving force is reduced compared to bulk dysprosium because of the clamped {gamma} distortion; (ii) the difference between the exchange energies in the helical and the ferromagnetic phases is increased compared to the bulk value. {copyright} {ital 1996 The American Physical Society.}

  4. Dysprosium electrodeposition from a hexaalkylguanidinium-based ionic liquid

    NASA Astrophysics Data System (ADS)

    Berger, Claudia A.; Arkhipova, Maria; Maas, Gerhard; Jacob, Timo

    2016-07-01

    The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(iii) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer.The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important

  5. Dysprosium electrodeposition from a hexaalkylguanidinium-based ionic liquid.

    PubMed

    Berger, Claudia A; Arkhipova, Maria; Maas, Gerhard; Jacob, Timo

    2016-08-01

    The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(iii) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer. PMID:27121463

  6. Joint solubility of samarium and dysprosium in solid magnesium

    NASA Astrophysics Data System (ADS)

    Rokhlin, L. L.; Dobatkina, T. V.; Lukyanova, E. A.; Korolkova, I. G.; Tarytina, I. E.

    2016-03-01

    The phase compositions of solid Mg-Sm-Dy alloys corresponding to the magnesium-corner region of the phase diagram are studied by optical and scanning electron microscopy, electrical resistivity measurements, and electron microprobe analysis. The obtained results allowed us to determine the joint solubility of samarium and dysprosium in solid magnesium at 500, 400, and 300°C; it decreases with decreasing temperature. The magnesium solid solution is found to be in equilibrium only with the Mg41Sm5 and Mg24Dy5 compounds, which are in equilibrium with the magnesium solid solution in the binary Mg-Sm and Mg-Dy systems.

  7. Fluorescent and dynamic properties of optically excited dysprosium trifluoride

    NASA Astrophysics Data System (ADS)

    Xu, Li-Wen; Crosswhite, H. M.; Hessler, Jan P.

    1984-07-01

    Fluorescent, excitation, and absorption spectra of DyF3 are reported. The energies of the electronic states of the ground level are significantly shifted compared to those of the dilute system DyxLa1-xF3 and are consistent with recent specific heat measurements from 5 to 350 K. The fluorescent decay rate K of the (4F9/2)1 state follows the equation K(μs-1)=1.600+0.0307 T(K), where T(K) is the absolute temperature. At 0 K the quantum efficiency is approximately 4.5×10-4. The decay rate is determined by the donor-to-acceptor transfer rate, where an acceptor is a pair of coupled dysprosium ions which deactivate the (4F9/2)1 state. Cross relaxation of the form 4F9/2+6H15/2→6F3/2+6H5/2 is calculated to be the dominant dipole-dipole decay channel. Comparison of high-resolution absorption line shapes, measured above 4.2 K, and below the ferromagnetic transition 2.53 K shows a shift of the line centers, and a reduction, by a factor of 6 in the linewidths. These results are consistent with analogous measurements performed on the Ising antiferromagnet dysprosium aluminum garnet and reflect the short-range order of the system.

  8. Photoelectric and luminescent properties of dysprosium-doped silver chloride

    SciTech Connect

    Novikov, G. F. Rabenok, E. V.; Bocharov, K. V.; Lichkova, N. V.; Ovchinnikov, O. V.; Latyshev, A. N.

    2011-02-15

    The influence of dysprosium doping on the photoelectric and luminescent properties of AgCl crystals is studied by methods of microwave photoconductivity and photoluminescence. Doping affects both the loss kinetics of photogenerated electrons and luminescence spectra and parameters of photostimulated burst of luminescence. It is shown that the charged [Dy{sub Ag}{sup {center_dot}{center_dot}} {center_dot} V Prime {sub Ag}]{sup {center_dot}} or neutral [Dy{sub Ag}{sup {center_dot}{center_dot}} {center_dot} 2V Prime {sub Ag}]{sup x} complexes are responsible for a new luminescence band peaked at 470 nm, which manifests itself at weight concentrations of the doping additive >10{sup -6}%. The long-wavelength shoulder at 570 nm in the photoluminescence spectra is attributed to intracenter transitions in the Dy{sup 3+} ions. The rate constant of the reaction of electron capture into the traps forming upon introduction of the dopant, k{sub t} = (3-5) Multiplication-Sign 10{sup -8} cm{sup 3} s{sup -1}, is evaluated. It is assumed that the traps are Dy{sup 3+} dysprosium ions.

  9. Isolation of 163Ho from dysprosium target material by HPLC for neutrino mass measurements

    DOE PAGESBeta

    Mocko, Veronika; Taylor, Wayne  A.; Nortier, Francois M.; Engle, Jonathan  W.; Barnhart, Todd  E.; Nickles, Robert  J.; Pollington, Anthony  D.; Kunde, Gerd  J.; Rabin, Michael  W.; Birnbaum, Eva  R.

    2015-04-29

    The rare earth isotope 163Ho is of interest for neutrino mass measurements. This report describes the isolation of 163Ho from a proton-irradiated dysprosium target and its purification. A Dy metal target was irradiated with 16 MeV protons for 10 h. After target dissolution, 163Ho was separated from the bulk Dy via cation-exchange high performance liquid chromatography using 70 mmol dm–3 α-hydroxyisobutyric acid as the mobile phase. Subsequent purification of the collected Ho fraction was performed to remove the α-hydroxyisobutyrate chelating agent and to concentrate the Ho in a low ionic strength aqueous matrix. The final solution was characterized by MC-ICP-MSmore » to determine the 163Ho/165Ho ratio, 163Ho and the residual Dy content. The HPLC purification process resulted in a decontamination factor 1.4E5 for Dy. As a result, the isolated Ho fraction contained 24.8 ±1.3 ng of 163Ho corresponding to holmium recovery of 72 ± 3%.« less

  10. Limit on the Temporal Variation of the Fine-Structure Constant Using Atomic Dysprosium

    SciTech Connect

    Cingoez, A.; Lapierre, A.; Leefer, N.; Nguyen, A.-T.; Lamoreaux, S. K.; Torgerson, J. R.; Budker, D.

    2007-01-26

    Over 8 months, we monitored transition frequencies between nearly degenerate, opposite-parity levels in two isotopes of atomic dysprosium (Dy). These frequencies are sensitive to variation of the fine-structure constant ({alpha}) due to relativistic corrections of opposite sign for the opposite-parity levels. In this unique system, in contrast to atomic-clock comparisons, the difference of the electronic energies of the opposite-parity levels can be monitored directly utilizing a rf electric-dipole transition between them. Our measurements show that the frequency variation of the 3.1-MHz transition in {sup 163}Dy and the 235-MHz transition in {sup 162}Dy are 9.0{+-}6.7 Hz/yr and -0.6{+-}6.5 Hz/yr, respectively. These results provide a rate of fractional variation of {alpha} of (-2.7{+-}2.6)x10{sup -15} yr{sup -1} (1{sigma}) without assumptions on constancy of other fundamental constants, indicating absence of significant variation at the present level of sensitivity.

  11. Separation of carrier-free holmium-166 from neutron-irradiated dysprosium targets

    SciTech Connect

    Dadachova, E.; Lambrecht, R.M.; Hetherington, E.L. ); Mirzadeh, S.; Knapp, F.F. Jr. )

    1994-12-01

    Holmium-166 ([sup 166]Ho, t[sub 1/2] = 26.4 h) is utilized in radiotherapeutic applications such as radioimmunospecific pharmaceuticals, bone marrow ablation, and radiation synovectomy. High specific activity [sup 166]Ho can be obtained from the decay of dysprosium-166 ([sup 166]Dy, t[sub 1/2] = 81.5 h). Dysprosium-166 is produced by the [sup 164]Dy[n,[gamma

  12. Measurement and simulation of scattering properties of dysprosium

    NASA Astrophysics Data System (ADS)

    Tang, Yijun; Burdick, Nathaniel; Lev, Benjamin; Sykesy, Andrew; Bohn, John

    2015-05-01

    Ultracold collisions can often be characterized by a single parameter, the s-wave scattering length a, but despite the simplicity of this model, the scattering length a often must be determined experimentally, even for alkali atoms. For highly magnetic lanthanide atoms such as dysprosium (Dy, 10 μB), the dipolar interaction may strongly affect the scattering properties and must also be taken into account. We have characterized the elastic cross-section for scattering between ultracold Dy atoms by measuring the rethermalization rate in a Dy clouds driven out of equilibrium. The experimental data agree well with numerical simulations based on Boltzmann equations that include the dipolar interaction contribution. Our recent work on observations of inelastic dipolar scattering will also be briefly discussed.

  13. Dysprosium oxide ceramic arc tube for HID lamps

    NASA Astrophysics Data System (ADS)

    Wei, G. C.; Lapatovich, W. P.; Browne, J.; Snellgrove, R.

    2008-07-01

    Polycrystalline dysprosium oxide is a candidate arc tube material for advanced metal halide lamps because of high transparency, low thermodynamic driving potentials for corrosion and reaction with the salt fills, satisfactory mechanical strength and resistance to thermal shock. This material is cubic and can be polished to achieve higher in-line transmittance than the conventional polycrystalline alumina arc tubes. Rare-earth halide fills, glass frit seals and niobium leads were used in the construction of the Dy2O3 lamps. The experimental lamps exhibited a colour temperature of ~2500 K and CRI of ~90 with rapid warm-up behaviour. The transparent Dy2O3 ceramic offers opportunities to push the limit of ceramic envelopes for improved discharge lamps.

  14. Peptoid-ligated pentadecanuclear yttrium and dysprosium hydroxy clusters.

    PubMed

    Thielemann, Dominique T; Wagner, Anna T; Lan, Yanhua; Oña-Burgos, Pascual; Fernández, Ignacio; Rösch, Esther S; Kölmel, Dominik K; Powell, Annie K; Bräse, Stefan; Roesky, Peter W

    2015-02-01

    A new family of pentadecanuclear coordination cluster compounds (from now on simply referred to as clusters) [{Ln15 (OH)20 (PepCO2 )10 (DBM)10 Cl}Cl4 ] (PepCO2 =2-[{3-(((tert-butoxycarbonyl)amino)methyl)benzyl}amino]acetate, DBM=dibenzoylmethanide) with Ln=Y and Dy was obtained by using the cell-penetrating peptoid (CPPo) monomer PepCO2 H and dibenzoylmethane (DBMH) as supporting ligands. The combination of an inorganic cluster core with an organic cell-penetrating peptoid in the coordination sphere resulted in a core component {Ln15 (μ3 -OH)20 Cl}(24+) (Ln=Y, Dy), which consists of five vertex-sharing heterocubane {Ln4 (μ3 -OH)4 }(8+) units that assemble to give a pentagonal cyclic structure with one Cl atom located in the middle of the pentagon. The solid-state structures of both clusters were established by single-crystal X-ray crystallography. MS (ESI) experiments suggest that the cluster core is robust and maintained in solution. Pulsed gradient spin echo (PGSE) NMR diffusion measurements were carried out on the diamagnetic yttrium compound and confirmed the stability of the cluster in its dicationic form [{Y15 (μ3 -OH)20 (PepCO2 )10 (DBM)10 Cl}Cl2 ](2+) . The investigation of both static (dc) and dynamic (ac) magnetic properties in the dysprosium cluster revealed a slow relaxation of magnetization, indicative of single-molecule magnet (SMM) behavior below 8 K. Furthermore, the χT product as a function of temperature for the dysprosium cluster gave evidence that this is a ferromagnetically coupled compound below 11 K. PMID:25483296

  15. A nine-coordinated dysprosium(III) compound with an oxalate-bridged dysprosium(III) layer exhibiting two slow magnetic relaxation processes.

    PubMed

    Zhang, Sheng; Ke, Hongshan; Liu, Xiangyu; Wei, Qing; Xie, Gang; Chen, Sanping

    2015-10-21

    A 2D oxalate-bridged dysprosium(III) compound, formulated as [Dy(C2O4)1.5(H2O)3]n·2nH2O (1), has been hydrothermally isolated. As for compound 1, structural analysis reveals that the nine-coordinated Dy(III) ions reside in a slightly distorted tricapped trigonal prism. Under an applied magnetic field of 700 Oe, the compound was magnetically characterized as a new example that two slow relaxations of the magnetization processes can be observed in a 2D oxalate-bridged dysprosium(III) layer. PMID:26327427

  16. Direct measurement of dysprosium(III)···dysprosium(III) interactions in a single-molecule magnet.

    PubMed

    Moreno Pineda, Eufemio; Chilton, Nicholas F; Marx, Raphael; Dörfel, María; Sells, Daniel O; Neugebauer, Petr; Jiang, Shang-Da; Collison, David; van Slageren, Joris; McInnes, Eric J L; Winpenny, Richard E P

    2014-01-01

    Lanthanide compounds show much higher energy barriers to magnetic relaxation than 3d-block compounds, and this has led to speculation that they could be used in molecular spintronic devices. Prototype molecular spin valves and molecular transistors have been reported, with remarkable experiments showing the influence of nuclear hyperfine coupling on transport properties. Modelling magnetic data measured on lanthanides is always complicated due to the strong spin-orbit coupling and subtle crystal field effects observed for the 4f-ions; this problem becomes still more challenging when interactions between lanthanide ions are also important. Such interactions have been shown to hinder and enhance magnetic relaxation in different examples, hence understanding their nature is vital. Here we are able to measure directly the interaction between two dysprosium(III) ions through multi-frequency electron paramagnetic resonance spectroscopy and other techniques, and explain how this influences the dynamic magnetic behaviour of the system. PMID:25308160

  17. 40 CFR 721.9511 - Silicic acid (H6SiO2O7), magnesium, strontium salt(1:1:2), dysprosium and europium-doped.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., strontium salt(1:1:2), dysprosium and europium-doped. 721.9511 Section 721.9511 Protection of Environment...), magnesium, strontium salt(1:1:2), dysprosium and europium-doped. (a) Chemical substance and significant new..., strontium salt(1:1:2), dysprosium and europium-doped. (PMN P-98-848; CAS No.181828-07-9) is subject...

  18. 40 CFR 721.9511 - Silicic acid (H6SiO2O7), magnesium, strontium salt(1:1:2), dysprosium and europium-doped.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., strontium salt(1:1:2), dysprosium and europium-doped. 721.9511 Section 721.9511 Protection of Environment...), magnesium, strontium salt(1:1:2), dysprosium and europium-doped. (a) Chemical substance and significant new..., strontium salt(1:1:2), dysprosium and europium-doped. (PMN P-98-848; CAS No.181828-07-9) is subject...

  19. 40 CFR 721.9511 - Silicic acid (H6SiO2O7), magnesium, strontium salt(1:1:2), dysprosium and europium-doped.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., strontium salt(1:1:2), dysprosium and europium-doped. 721.9511 Section 721.9511 Protection of Environment...), magnesium, strontium salt(1:1:2), dysprosium and europium-doped. (a) Chemical substance and significant new..., strontium salt(1:1:2), dysprosium and europium-doped. (PMN P-98-848; CAS No.181828-07-9) is subject...

  20. 40 CFR 721.9511 - Silicic acid (H6SiO2O7), magnesium, strontium salt(1:1:2), dysprosium and europium-doped.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., strontium salt(1:1:2), dysprosium and europium-doped. 721.9511 Section 721.9511 Protection of Environment...), magnesium, strontium salt(1:1:2), dysprosium and europium-doped. (a) Chemical substance and significant new..., strontium salt(1:1:2), dysprosium and europium-doped. (PMN P-98-848; CAS No.181828-07-9) is subject...

  1. Dysprosium detector for neutron dosimetry in external beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Ostinelli, A.; Berlusconi, C.; Conti, V.; Duchini, M.; Gelosa, S.; Guallini, F.; Vallazza, E.; Prest, M.

    2014-09-01

    Radiotherapy treatments with high-energy (>8 MeV) photon beams are a standard procedure in clinical practice, given the skin and near-target volumes sparing effect, the accurate penetration and the uniform spatial dose distribution. On the other hand, despite these advantages, neutrons may be produced via the photo-nuclear (γ,n) reactions of the high-energy photons with the high-Z materials in the accelerator head, in the treatment room and in the patient, resulting in an unwanted dose contribution which is of concern, given its potential to induce secondary cancers, and which has to be monitored. This work presents the design and the test of a portable Dysprosium dosimeter to be used during clinical treatments to estimate the "in vivo" dose to the patient. The dosimeter has been characterized and validated with tissue-equivalent phantom studies with a Varian Clinical iX 18 MV photon beam, before using it with a group of patients treated at the S. Anna Hospital in Como. The working principle of the dosimeter together with the readout chain and the results in terms of delivered dose are presented.

  2. Anomalous Elastic Behavior in hcp- and Sm-Type Dysprosium

    SciTech Connect

    Tschauner, Oliver; Grubor-Urosevic, Ognjen; Dera, Przemyslaw; Mulcahy, Sean R.

    2012-04-11

    The compression behavior of elemental dysprosium in the hcp- and the Sm-type phases has been examined under hydrostatic pressure. Sm-type Dy has been found about 1% denser than the hcp phase. This increase in density is due to c-axis contraction in Sm-type Dy, whereas the a-axis even expands compared with the hcp-phase. Both the hcp- and the Sm-type phases show an inversion in the pressure derivative of the c/a ratio. For hcp-Dy this inversion is very sharp with minimal c/a at 2.5 GPa. At the same pressure, the compression behavior of hcp-Dy changes abruptly from dominantly c-axis compression to almost isotropic compression with slightly softer S{sub 11}. The bulk modulus increases at this point by a factor of {approx}2. Both hcp- and Sm-type Dy exhibit a crossover from highly anisotropic compression mostly along the c-axis to almost isotropic compression. We discuss these anomalies with respect to a possible Lifshitz transition and structural soft modes.

  3. Exploring the magnetic phase diagram of dysprosium with neutron diffraction

    NASA Astrophysics Data System (ADS)

    Yu, J.; LeClair, P. R.; Mankey, G. J.; Robertson, J. L.; Crow, M. L.; Tian, W.

    2015-01-01

    With one of the highest intrinsic magnetic moments (10.6 μB/atom ) among the heavy rare-earth elements, dysprosium exhibits a rich magnetic phase diagram, including several modulated magnetic phases. Aided by the Ruderman-Kittel-Kasuya-Yosida interaction, the magnetic modulations propagate coherently over a long range. Neutron diffraction experiments were performed to determine the microscopic magnetic origin of the field induced phases in bulk Dy as a function of temperature, covering regions of the well-known ferromagnetic, helical antiferromagnetic, fan phases, and several possible new phases suggested by previous studies. A short-range ordered fan phase was identified as the intermediate state between ferromagnetism and long-range ordered fan. In a field of 1 T applied along the a axis, the temperature range of a coexisting helix/fan phase was determined. The magnetic phase diagram of Dy was thus refined to include the detailed magnetic origin and the associated phase boundaries. Based on the period of the magnetic modulation and the average magnetization, the evolution of the spin arrangement upon heating was derived quantitatively for the modulated magnetic phases.

  4. Molecular beam epitaxy growth and characterization of dysprosium phosphide and dysprosium arsenide in gallium arsenide and gallium phosphide

    NASA Astrophysics Data System (ADS)

    Lee, Paul Piyawong

    The ability to grow thermally stable Schottky/ohmic contacts and buried, epitaxial metallic or semimetallic layers on semiconductors has many potential applications in novel device structures. Many rare earth group-V compounds with the sodium chloride structure possess the properties that make them potential candidates for stable contacts, buried layers, and other applications. In this work, two novel rare earth compounds, namely dysprosium phosphide (DyP) and dysprosium arsenide (DyAs) have been studied for high temperature ohmic/Schottky contacts to III-V semiconductors as well as for buried metal layers in semiconductor/metal/semiconductor structures. DyP and DyAs have been grown by molecular beam epitaxy on GaAs and GaP substrates. Both DyP and DyAs display metallic behavior and have room temperature resistivities of 8 x 10--5 and 1 x 10--4 Ocm, respectively. The electron concentrations for DyP and DyAs are about 4 x 1020 and 1 x 1021 cm--3, respectively. High quality DyP films as determined by XRD, AFM, and TEM can be achieved at a wide range of substrate temperatures (500°C to 600°C) with excess phosphorus pressure. Unlike most rare earth-group V compounds, DyP films are stable in air with no sign of oxidation. DyP films deposited on n-type GaAs and GaP exhibit Schottky behavior with room temperature barrier heights of 0.83 and 0.90 eV, respectively, with ideality factors close to unity and low reverse bias leakage current densities. These contacts are stable up to 250°C and 350°C for GaAs and GaP, respectively. DyAs films on the other hand, oxidize in air and display weak Schottky behavior on n-type GaAs. DyP has been grown as buried layers in both GaAs/DyP/GaAs and GaAs/DyP/GaP structures. Although high quality DyP layers have been achieved, the GaAs overlayers contain defects such as twins. The poor wetting of GaAs on DyP and the crystal symmetry between the two materials are responsible for the three-dimensional growth and the defects found in the Ga

  5. A Low-Symmetry Dysprosium Metallocene Single-Molecule Magnet with a High Anisotropy Barrier.

    PubMed

    Pugh, Thomas; Chilton, Nicholas F; Layfield, Richard A

    2016-09-01

    The single-molecule magnet (SMM) properties of the isocarbonyl-ligated dysprosium metallocene [Cp*2 Dy{μ-(OC)2 FeCp}]2 (1Dy ), which contains a rhombus-shaped Dy2 Fe2 core, are described. Combining a strong axial [Cp*](-) ligand field with a weak equatorial field consisting of the isocarbonyl ligands leads to an anisotropy barrier of 662 cm(-1) in zero applied field. The dominant thermal relaxation pathways in 1Dy involves at least the fourth-excited Kramers doublet, thus demonstrating that prominent SMM behavior can be observed for dysprosium in low-symmetry environments. PMID:27460170

  6. Exploration of dysprosium: the most critical element for Japan

    NASA Astrophysics Data System (ADS)

    Watanabe, Y.

    2012-04-01

    Dysprosium (Dy), one of the heavy rare earth elements, is used mainly as an additive for NdFeB permanent magnets which are installed in various modern industrial products such as voice coil motors in computers, factory automation machinery, hybrid and electric vehicles, home electronics, and wind turbine, to improve heat resistance of the magnets. Dy has been produced about 2,000t per year from the ores from ion adsorption type deposits in southern China. However, the produced amount of Dy was significantly reduced in 2011 in China due to reservation of heavy rare earth resources and protection of natural environment, resulting in soaring of Dy price in the world. In order to respond the increasing demand of Dy, unconventional supply sources are inevitably developed, in addition to heavy rare earth enriched ion adsorption type deposits outside China. Heavy rare earth elements including Dy are dominantly hosted in xenotime, fergusonite, zircon, eudialyte, keiviite, kainosite, iimoriite, etc. Concentration of xenotime is found in placer deposits in Malaysia and India, hydrothermal deposits associated with unconformity-type uranium mineralization (Athabasca basin in Canada, Western Australia), iron-oxide fluorite mineralization (South Africa) and Sn-bearing alkaline granite (Brazil). Zircon and fergusontie concentration is found as igneous and hydrothermal products in peralkaline syenite, alkaline granite and pegmatite (e.g., Nechalacho in Canada). Eudialyte concentration is found in some peralkaline syenite bodies in Greenland, Canada, Sweden and Russia. Among these sources, large Dy resources are estimated in the deposits hosted in peralkaline rocks (Nechalacho: 79,000t, Kvanefjeld: 49,000t, Norra Karr: 15,700t, etc.) compared to the present demand of Dy. Thus, Dy will be supplied from the deposits associated with peralkaline and alkaline deposits in future instead of ion adsorption type deposits in southern China.

  7. Isolation of 163Ho from dysprosium target material by HPLC for neutrino mass measurements

    SciTech Connect

    Mocko, Veronika; Taylor, Wayne  A.; Nortier, Francois M.; Engle, Jonathan  W.; Barnhart, Todd  E.; Nickles, Robert  J.; Pollington, Anthony  D.; Kunde, Gerd  J.; Rabin, Michael  W.; Birnbaum, Eva  R.

    2015-04-29

    The rare earth isotope 163Ho is of interest for neutrino mass measurements. This report describes the isolation of 163Ho from a proton-irradiated dysprosium target and its purification. A Dy metal target was irradiated with 16 MeV protons for 10 h. After target dissolution, 163Ho was separated from the bulk Dy via cation-exchange high performance liquid chromatography using 70 mmol dm–3 α-hydroxyisobutyric acid as the mobile phase. Subsequent purification of the collected Ho fraction was performed to remove the α-hydroxyisobutyrate chelating agent and to concentrate the Ho in a low ionic strength aqueous matrix. The final solution was characterized by MC-ICP-MS to determine the 163Ho/165Ho ratio, 163Ho and the residual Dy content. The HPLC purification process resulted in a decontamination factor 1.4E5 for Dy. As a result, the isolated Ho fraction contained 24.8 ±1.3 ng of 163Ho corresponding to holmium recovery of 72 ± 3%.

  8. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    NASA Astrophysics Data System (ADS)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-07-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70-x) B2O3-30 Li2O-(x) Dy2O3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5-5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy2O3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD).

  9. Observation of an intermediate phase in dysprosium near the Neel point by neutron diffraction

    SciTech Connect

    Bessergenev, V.G.; Gogava, V.V.; Kovalevskaya, Y.A.; Mandzhavidze, A.G.; Fedorov, V.M.; Shilo, S.I.

    1985-11-25

    The magnetic structure of dysprosium near the point of magnetic disordering has been studied as a function of the thermal history of the sample by neutron diffraction. An intermediate vortex phase appears during cooling from the paramagnetic phase and then converts into a helicoidal phase.

  10. Search for variation of the fine-structure constant and violation of Lorentz symmetry using atomic dysprosium

    NASA Astrophysics Data System (ADS)

    Leefer, Nathan Alexander

    We report on the spectroscopy of radio-frequency transitions between nearly-degenerate, opposite-parity excited states in atomic dysprosium (Dy). Theoretical calculations predict that these states are very sensitive to variation of the fine-structure constant, alpha, owing to large relativistic corrections of opposite sign for the opposite-parity levels. The near degeneracy reduces the relative precision necessary to place constraints on variation of alpha competitive with results obtained from the best atomic clocks in the world. Additionally, the existence of several abundant isotopes of Dy allows isotopic comparisons that suppress common-mode systematic errors. The frequencies of the 754-MHz transition in 164Dy and 235-MHz transition in 162Dy were measured over the span of two years. Linear variation of alpha is found to be ȧ/alpha = (--5.8 +/- 6.9) x 10--17 yr--1 , consistent with zero. The same data are used to constrain the dimensionless parameter kalpha, characterizing a possible coupling of alpha to a changing gravitational potential. We find that kalpha = (--5.5 +/- 5.2) x 10--7, essentially consistent with zero and the best constraint to date. The same data are used to report a joint test of local Lorentzinvarianceand the Einstein Equivalence Principle for electrons. We present many-body calculations which demonstrate that the energy splitting of these states is particularly sensitive to violations of both special and general relativity. Lorentz violation for electrons is limited at the level of 10--17 , matching or improving the best laboratory and astrophysical limits by up to a factor of 10, and gravitational redshift anomalies for electrons to the level of 10--8. With some enhancements, our experiment may be sensitive to Lorentz violation at the level of 9 x 10 --20. We also report measurements of the differential polarizabilitybetween the nearly degenerate, opposite parity states. The differential scalar and tensor polarizabilities due to additional

  11. Dysprosium-Catalyzed Growth of Single-Walled Carbon Nanotube Arrays on Substrates

    PubMed Central

    2010-01-01

    In this letter, we report that dysprosium is an effective catalyst for single-walled carbon nanotubes (SWNTs) growth via a chemical vapor deposition (CVD) process for the first time. Horizontally superlong well-oriented SWNT arrays on SiO2/Si wafer can be fabricated by EtOH-CVD under suitable conditions. The structure and properties are characterized by scanning electron microscopy, transition electron microscopy, Raman spectroscopy and atomic force microscopy. The results show that the SWNTs from dysprosium have better structural uniformity and better conductivity with fewer defects. This rare earth metal provides not only an alternative catalyst for SWNTs growth, but also a possible method to generate high percentage of superlong semiconducting SWNT arrays for various applications of nanoelectronic device. PMID:20672139

  12. Technique for direct measurement of magnetic entropy of solids: Results for dysprosium titanium oxide

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1974-01-01

    A measurement technique was devised which permits direct observation of the magnetic entropy of solids as a function of applied magnetic field. Measurements were made of the magnetic entropy, in the temperature range 2 to 20 K, of polycrystalline samples of dysprosium titanium oxide (Dy2Ti2O7) to determine its suitability for use as the working substance of a magnetic refrigerator. Magnetization measurements were also made at 4.2 K and below to provide additional information on the nature of the compound. The measurements indicated that crystalline electric fields perturbed the ground state of the dysprosium ions, removed the 16-fold degeneracy predicted by Hund's rules, and left only a twofold degeneracy in its place. A positive, temperature independent contribution to the magnetization was observed in the saturation region, which indicated that the doublet ground-state wave function was perturbed by a nearby unpopulated upper energy level.

  13. Determination of dysprosium by resonance light scattering technique in the presence of BPMPHD

    NASA Astrophysics Data System (ADS)

    Sun, Shuna; Wu, Xia; Yang, Jinghe; Li, Lei; Wang, Yuebo

    2004-01-01

    Dysprosium has been determined by resonance light scattering (RLS) method in the presence of 1,6-bi(1'-phenyl-3'-methyl-5'-pyrazolone-4'-)hexanedione (BPMPHD) at pH 5.5. The Dy-BPMPHD system has three characteristic peaks at 358, 399 and 450 nm, especially the peak at 358 nm, which is proportional to the concentration of Dy 3+ in the range of 1.0×10 -10-1.0×10 -5 mol l -1. The detection limit (S/N=2) is 5.6×10 -12 mol l -1. Synthetic samples are determined satisfactorily. A new sensitive method for detection of dysprosium has been proposed.

  14. {Delta}I = 2 energy staggering in normal deformed dysprosium nuclei

    SciTech Connect

    Riley, M.A.; Brown, T.B.; Archer, D.E.

    1996-12-31

    Very high spin states (I{ge}50{Dirac_h}) have been observed in {sup 155,156,157}Dy. The long regular band sequences, free from sharp backbending effects, observed in these dysprosium nuclei offer the possibility of investigating the occurence of any {Delta}I = 2 staggering in normal deformed nuclei. Employing the same analysis techniques as used in superdeformed nuclei, certain bands do indeed demonstrate an apparent staggering and this is discussed.

  15. Repeat radiation synovectomy with dysprosium 165-ferric hydroxide macroaggregates in rheumatoid knees unresponsive to initial injection

    SciTech Connect

    Vella, M.; Zuckerman, J.D.; Shortkroff, S.; Venkatesan, P.; Sledge, C.B.

    1988-06-01

    Because of failure to fully respond to an initial intraarticular injection of dysprosium 165-ferric hydroxide macroaggregates, 17 patients with seropositive rheumatoid arthritis underwent repeat radiation synovectomy using this agent. Of the 13 patients who were evaluated 1 year later, 54% (7 knees) had good results, 31% (4 knees) had fair results, and 15% (2 knees) had poor results. The initial lack of significant benefit from radiation synovectomy did not appear to preclude a favorable response to a second injection.

  16. Synovectomy of the rheumatoid knee using intra-articular injection of dysprosium-165-ferric hydroxide macroaggregates

    SciTech Connect

    Sledge, C.B.; Zuckerman, J.D.; Shortkroff, S.; Zalutsky, M.R.; Venkatesan, P.; Snyder, M.A.; Barrett, W.P.

    1987-09-01

    One hundred and eleven patients who had seropositive rheumatoid arthritis and persistent synovitis of the knee were treated with intra-articular injection of 270 millicuries of dysprosium-165 bound to ferric hydroxide macroaggregates. A two-year follow-up was available for fifty-nine of the treated knees. Thirty-nine had a good result; nine, a fair result; and eleven, a poor result. Of the twenty-five knees that had Stage-I radiographic changes, nineteen had a good result. Of the thirty-four knees that had Stage-II radiographic changes, twenty showed a good result. Systemic spread of the radioactivity from the injected joint was minimum. The mean whole-body dose was calculated to be 0.3 rad and that to the liver twenty-four hours after injection, 3.2 rads. The results indicated that dysprosium-165-ferric hydroxide macroaggregate is an effective agent for performing radiation synovectomy, particularly in knees that have Stage-I radiographic changes. Because of the minimum rate of systemic spread of the dysprosium-165, it offers a definite advantage over agents that previously have been used.

  17. The synthesis, structure, magnetic and luminescent properties of a new tetranuclear dysprosium (III) cluster

    SciTech Connect

    Chen, Yen-Han; Tsai, Yun-Fan; Lee, Gene-Hsian; Yang, En-Che

    2012-01-15

    The synthesis and characterization of [Dy{sub 4}(dhampH{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}){sub 2} (1), a new tetranuclear dysprosium (III) complex, is described. The compound was characterized by its X-ray structure, magnetic properties as well as the luminescent spectra. The compound crystallizes in a P1-bar space group with a zig-zag linear form of geometry. The ac magnetic susceptibilities of the molecule indicate that it is a magnetic molecule with a slow magnetization relaxation. The molecule also exhibits an emission spectrum that was confirmed to be ligand based. These results indicate that this molecule has both a slow magnetization relaxation (that could be potentially a SMM) and luminescent properties. - Graphical Abstract: A new tetranuclear dysprosium (III) complex [Dy{sub 4}(dhampH{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}){sub 2} is synthesized and reported in this paper. This molecule has luminescence and can potentially act as a SMM. Highlights: Black-Right-Pointing-Pointer A new designed ligand (dhampH{sub 5}) was syntheisized. Black-Right-Pointing-Pointer A new tetra-dysprosium cluster [Dy{sub 4}(dhampH{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}){sub 2} was made. Black-Right-Pointing-Pointer Slow magnetization relaxation phenomenon was observed. Black-Right-Pointing-Pointer Ligand-based luminescence was observed.

  18. Optical properties and laser potential of dysprosium doped YAl3(BO3)(4) (YAB) crystal

    NASA Astrophysics Data System (ADS)

    Dominiak-Dzik, G.; Solarz, P.; Ryba-Romanowski, W.; Beregi, E.; Hartmann, E.; Kovacs, L.

    The absorption and emission spectra were measured at 5 and 300 K. The positions of the selected Dy3+ levels and their Stark components, determined from optical spectra at 5K, are presented. In this work an attempt is made to assess the potential of dysprosium doped YAl3 (BO3 )(4) crystal as a laser active material operating near 570 nm. The emission cross-section of a potential laser line at 570 nm connected with F-4 (9/2) --> H-6(13/2) transition was estimated.

  19. Structure of dimeric dysprosium (III) d-tartrate of 2:2 composition in aqueous solution

    SciTech Connect

    Chevela, V.V.; Vul`fson, S.G.; Sal`nikov, Yu.I.

    1994-12-20

    The molar constant of paramagnetic birefringence of dimeric dysprosium d-tartrate Dy{sub 2}(d-L){sup 2{minus}}{sub 2} (d-L{sup 4{minus}} is a deprotonated molecule of tartaric acid) was determined experimentally and by mathematical simulation. The structures of the ligand and hydrate environment in Dy{sub 2}(d-L){sup 2{minus}}{sub 2} were simulated by the molecular mechanics method (Dashevskii-Plyamovatyi model). Results consistent with the experimental data can be obtained only when coordination of Na{sup +} is taken into account. 6 refs., 4 figs., 8 tabs.

  20. Therapeutic application of dysprosium-165-FHMA in the treatment of rheumatoid knee effusions

    SciTech Connect

    English, R.J.; Zalutsky, M.; Venkatesan, P.; Sledge, C.B.

    1986-03-01

    Radiation synovectomy utilizing a variety of radionuclides has proven to be an effective technique in the treatment of rheumatoid arthritis. The recent introduction of the short-lived radionuclide, Dysprosium-165 (/sup 165/Dy), as a replacement for the longer-lived radiocolloids has reduced nontarget dosimetry caused by leakage of the agent from the articular cavity. A review of the methods and status of radiation synovectomy, and the application of /sup 165/Dy-ferric hydroxide macroaggregates (FHMA) as an alternative therapeutic agent is described.

  1. Synthesis, crystal structure and magnetic properties of a novel heterobimetallic rhenium(IV)-dysprosium(III) chain.

    PubMed

    Pejo, Carolina; Guedes, Guilherme P; Novak, Miguel A; Speziali, Nivaldo L; Chiozzone, Raúl; Julve, Miguel; Lloret, Francesc; Vaz, Maria G F; González, Ricardo

    2015-06-01

    The use of the mononuclear rhenium(IV) precursor [ReBr5 (H2 pydc)](-) (H2 pydc=3,5-pyridinedicarboxylic acid) as a metalloligand towards dysprosium(III) afforded the first heterobimetallic Re(IV) -Dy(III) complex. Crystal structures and static and dynamic magnetic properties of both rhenium-containing species are reported herein. The 5d-4f compound shows an extended 1D structure and the AC magnetic measurements reveal frequency dependence at low temperature suggesting slow relaxation of the magnetization. PMID:25916407

  2. Far-infrared spectra of dysprosium doped yttrium aluminum garnet nanopowder

    NASA Astrophysics Data System (ADS)

    Trajić, J.; Rabasović, M. S.; Savić-Šević, S.; Ševic, D.; Babić, B.; Romčević, M.; Ristić-Djurović, J. L.; Paunović, N.; Križan, J.; Romčević, N.

    2016-07-01

    The solution combustion synthesis was used to prepare nanopowders of yttrium aluminum garnet (YAG) and YAG doped with dysprosium ions, Dy3+, (YAG:Dy). The morphology, specific surface area, texture, and optical properties of the prepared materials were studied by the means of scanning electron microscopy (SEM), nitrogen adsorption method, and far-infrared spectroscopy at room temperature in the spectral region between 80 and 600 cm-1. It was established that all the examined samples were microporous. The Maxwell-Garnet formula was used to model dielectric function of YAG and YAG:Dy nanopowders as mixtures of homogenous spherical inclusions in air.

  3. Investigation of ac Stark shifts in excited states of dysprosium relevant to testing fundamental symmetries

    NASA Astrophysics Data System (ADS)

    Weber, C. T. M.; Leefer, N.; Budker, D.

    2013-12-01

    We report on measurements of the differential polarizability between the nearly degenerate, opposite parity states in atomic dysprosium at 19 797.96 cm-1, and the differential blackbody radiation induced Stark shift of these states. The differential scalar and tensor polarizabilities due to additional states were measured for the |M|=7,⋯,10 sublevels in 164Dy and 162Dy and determined to be α¯BA(0)=180(45)stat(8)sys mHz/(V/cm)2 and α¯BA(2)=-163(65)stat(5)sys mHz/(V/cm)2, respectively. The average blackbody radiation induced Stark shift of the Zeeman spectrum was measured around 300 K and found to be -34(4) mHz/K and +29(4) mHz/K for 164Dy and 162Dy, respectively. We conclude that ac Stark related systematics will not limit a search for variation of the fine-structure constant, using dysprosium, down to the level of |α˙/α|=2.6×10-17 yr-1, for two measurements of the transition frequency one year apart.

  4. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    NASA Astrophysics Data System (ADS)

    Omar, R. S.; Wagiran, H.; Saeed, M. A.

    2016-01-01

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B2O3 - 20 CaO - 10 MgO-(y) Dy2O3 with 0.05 mol % ≤ y ≤ 0.7 mol % of dyprosium were prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy2O3 concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.

  5. Treatment of rheumatoid synovitis of the knee with intraarticular injection of dysprosium 165-ferric hydroxide macroaggregates

    SciTech Connect

    Sledge, C.B.; Zuckerman, J.D.; Zalutsky, M.R.; Atcher, R.W.; Shortkroff, S.; Lionberger, D.R.; Rose, H.A.; Hurson, B.J.; Lankenner, P.A. Jr.; Anderson, R.J.

    1986-02-01

    One hundred eight knees of 93 patients with seropositive rheumatoid arthritis and persistent synovitis of the knee were treated with an intraarticular injection of 270 mCi of dysprosium 165 bound to ferric hydroxide macroaggregate. Leakage of radioactivity from the injected joint was minimal. Mean leakage to the venous blood 3 hours after injection was 0.11% of the injected dose; this corresponds to a mean whole body dose of 0.2 rads. Mean leakage to the liver 24 hours after injection was 0.64% of the injected dose; this corresponds to a mean liver dose of 3.2 rads. In 7 additional patients examined, there was negligible or near negligible activity found in the draining inguinal lymph nodes. One-year followup was possible for 74 knees (63 patients). Sixty-one percent of the knees had good results, 23% had fair results, and 16% had poor results. There was a direct correlation between the radiographic stage and response to treatment. In knees with stage I radiographic changes, 72% showed good results; 93% showed improvement. In knees with stage II changes, 59% showed good results; 81% showed improvement. These preliminary results indicate that dysprosium 165-ferric hydroxide macroaggregate is an effective agent for radiation synovectomy. The low leakage rates observed offer a definite advantage over agents previously used.

  6. Influencing the properties of dysprosium single-molecule magnets with phosphorus donor ligands.

    PubMed

    Pugh, Thomas; Tuna, Floriana; Ungur, Liviu; Collison, David; McInnes, Eric J L; Chibotaru, Liviu F; Layfield, Richard A

    2015-01-01

    Single-molecule magnets are a type of coordination compound that can retain magnetic information at low temperatures. Single-molecule magnets based on lanthanides have accounted for many important advances, including systems with very large energy barriers to reversal of the magnetization, and a di-terbium complex that displays magnetic hysteresis up to 14 K and shows strong coercivity. Ligand design is crucial for the development of new single-molecule magnets: organometallic chemistry presents possibilities for using unconventional ligands, particularly those with soft donor groups. Here we report dysprosium single-molecule magnets with neutral and anionic phosphorus donor ligands, and show that their properties change dramatically when varying the ligand from phosphine to phosphide to phosphinidene. A phosphide-ligated, trimetallic dysprosium single-molecule magnet relaxes via the second-excited Kramers' doublet, and, when doped into a diamagnetic matrix at the single-ion level, produces a large energy barrier of 256 cm(-1) and magnetic hysteresis up to 4.4 K. PMID:26130418

  7. Influencing the properties of dysprosium single-molecule magnets with phosphorus donor ligands

    PubMed Central

    Pugh, Thomas; Tuna, Floriana; Ungur, Liviu; Collison, David; McInnes, Eric J.L.; Chibotaru, Liviu F.; Layfield, Richard A.

    2015-01-01

    Single-molecule magnets are a type of coordination compound that can retain magnetic information at low temperatures. Single-molecule magnets based on lanthanides have accounted for many important advances, including systems with very large energy barriers to reversal of the magnetization, and a di-terbium complex that displays magnetic hysteresis up to 14 K and shows strong coercivity. Ligand design is crucial for the development of new single-molecule magnets: organometallic chemistry presents possibilities for using unconventional ligands, particularly those with soft donor groups. Here we report dysprosium single-molecule magnets with neutral and anionic phosphorus donor ligands, and show that their properties change dramatically when varying the ligand from phosphine to phosphide to phosphinidene. A phosphide-ligated, trimetallic dysprosium single-molecule magnet relaxes via the second-excited Kramers' doublet, and, when doped into a diamagnetic matrix at the single-ion level, produces a large energy barrier of 256 cm−1 and magnetic hysteresis up to 4.4 K. PMID:26130418

  8. Tuning Slow Magnetic Relaxation in a Two-Dimensional Dysprosium Layer Compound through Guest Molecules.

    PubMed

    Chen, Qi; Li, Jian; Meng, Yin-Shan; Sun, Hao-Ling; Zhang, Yi-Quan; Sun, Jun-Liang; Gao, Song

    2016-08-15

    A novel two-dimensional dysprosium(III) complex, [Dy(L)(CH3COO)]·0.5DMF·H2O·2CH3OH (1), has been successfully synthesized from a new pyridine-N-oxide (PNO)-containing ligand, namely, N'-(2-hydroxy-3-methoxybenzylidene)pyridine-N-oxidecarbohydrazide (H2L). Single-crystal X-ray diffraction studies reveal that complex 1 is composed of a dinuclear dysprosium subunit, which is further extended by the PNO part of the ligand to form a two-dimensional layer. Magnetic studies indicate that complex 1 shows well-defined temperature- and frequency-dependent signals under a zero direct-current (dc) field, typical of slow magnetic relaxation with an effective energy barrier Ueff of 33.6 K under a zero dc field. Interestingly, powder X-ray diffraction and thermogravimetric analysis reveal that compound 1 undergoes a reversible phase transition that is induced by the desorption and absorption of methanol and water molecules. Moreover, the desolvated sample [Dy(L)(CH3COO)]·0.5DMF (1a) also exhibits slow magnetic relaxation but with a higher anisotropic barrier of 42.0 K, indicating the tuning effect of solvent molecules on slow magnetic relaxation. PMID:27483199

  9. Local coordination geometry perturbed β-diketone dysprosium single-ion magnets.

    PubMed

    Zhu, Jing; Wang, Changzheng; Luan, Fang; Liu, Tianqi; Yan, Pengfei; Li, Guangming

    2014-09-01

    A series of three β-diketone mononuclear dysprosium complexes, namely, Dy(TFI)3(H2O)2 (1), Dy(TFI)3(bpy) (2), and [Dy(TFI)3(Phen)]·0.02CHCl3 (3) (TFI = 2-(2,2,2-trifluoroethyl)-1-indone, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline) have been designed and synthesized. Crystal structure analysis reveals that complexes 1-3 have haveisomorphic structures in which the central Dy(III) ion is eight-coordinated by six oxygen atoms from three TFI ligands and two O/N atoms from auxiliary ligands, forming a distorted bicapped trigonal prismatic geometry for 1, a distorted dodecahedral geometry for 2, and a distorted square antiprismatic geometry for 3, respectively. Magnetic studies indicate that complex 2 with D(2d) symmetry and 3 with D(4d) symmetry exhibit slow magnetic relaxation with barrier heights (U(eff)/k(B)) of 48.8 K for 2 and 57.9 K for 3. Strikingly, the relaxation time (τ) of 0.0258 s for 3 is about 20 times that for 2, which is presumably associated with larger rotation of the SAP surroundings for 3. Further, complexes 2 and 3 exhibit essential magnetic hysteresis loops at 1.8 K. These extend the recent reports of the single-ion magnets (SIMs) of β-diketone mononuclear dysprosium complexes. PMID:25137135

  10. Cyclic single-molecule magnets: from the odd-numbered heptanuclear to a dimer of heptanuclear dysprosium clusters.

    PubMed

    Tian, Haiquan; Bao, Song-Song; Zheng, Li-Min

    2016-02-01

    A heptanuclear and a dimer of heptanuclear dysprosium clusters (Dy7 and Dy14) have been successfully synthesized by ingenious coalescence of the single and double pyrazinyl hydrazone as well as phosphonate ligands. The complexes feature the largest odd-numbered cyclic lanthanide clusters reported thus far. Both exhibit single molecule magnet behaviors at low temperature. PMID:26728975

  11. Changes of charge radii and hyperfine interactions of the Dy isotopes

    NASA Astrophysics Data System (ADS)

    Clark, D. L.; Greenlees, G. W.

    1982-10-01

    A continuous wave dye laser and a thermal atomic beam were used to measure the optical isotope shifts and hyperfine splittings for the 5547 Å, 5639 Å, 5652 Å, 5974 Å, and the 5989 Å transition of the seven stable isotopes of dysprosium. The hyperfine splitting of the odd-A isotopes has been analyzed using the formalism of Sanders and Beck and the hyperfine anomaly has been extracted. Comparison with calculations using Nilsson wave functions is presented. The isotope shift measurements have been analyzed with published electronic and muonic x-ray isotope shifts to yield δ values and some estimates of the specific mass shift constant. NUCLEAR STRUCTURE 156-164Dy. Measured optical isotope shifts and hyperfine splittings. Deduced δ, A(4f126s 6p), B(4f126s 6p), and the hyperfine anomaly. Laser spectroscopy on atomic beams.

  12. Models of the nearest surrounding of ions in aqueous solutions of dysprosium chloride

    NASA Astrophysics Data System (ADS)

    Smirnov, P. R.; Kritskii, I. L.; Grechin, O. V.

    2016-02-01

    Structural organization models are developed using radial distribution functions obtained earlier via XRD analysis for aqueous solutions of dysprosium chloride over a wide range of concentrations under standard conditions. The optimum variants are selected by calculating the theoretical functions for each model and comparing how they agree with experimental functions. Quantitative characteristics of the nearest surrounding of Dy3+ and Cl- ions, e.g., coordination numbers, interparticle distances, and varieties of ion pairs, are established. It is shown that the average number of water molecules in the first coordination sphere of a cation falls from 8.5 to 6 as the concentration grows; the structure of the system over the range of concentrations is determined by noncontact ion associates.

  13. Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.

    2014-04-01

    Magnetic ordering temperatures in heavy rare earth metal dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to a pressure of 69 GPa and a temperature of 10 K. Previous studies using magnetic susceptibility measurements at high pressures were able to track magnetic ordering temperature only till 7 GPa in the hexagonal close packed (hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. This is followed by a rapid increase in the magnetic ordering temperatures in the double hcp phase and finally leveling off in the distorted face centered cubic phase of Dy. Our studies reaffirm that 4f-shell remains localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.

  14. A naproxen complex of dysprosium intercalates into calf thymus DNA base pairs

    NASA Astrophysics Data System (ADS)

    Yang, Mengsi; Jin, Jianhua; Xu, Guiqing; Cui, Fengling; Luo, Hongxia

    2014-01-01

    The binding mode and mechanism of dysprosium-naproxen complex (Dy-NAP) with calf thymus deoxyribonucleic acid (ctDNA) were studied using UV-vis and fluorescence spectra in physiological buffer (pH 7.4). The results showed that more than one type of quenching process occurred and the binding mode between Dy-NAP with ctDNA might be intercalation. In addition, ionic strength, iodide quenching and fluorescence polarization experiments corroborated the intercalation binding mode between Dy-NAP and ctDNA. The calculated thermodynamic parameters ΔG, ΔH and ΔS at different temperature demonstrated that hydrophobic interaction force played a major role in the binding process.

  15. Structural and electrical characteristics of dysprosium-doped barium stannate titanate ceramics

    SciTech Connect

    Wang, Shijie; Tan, Tai Aik; Lai, Man On; Lu, Li

    2010-03-15

    Effects of dysprosium (Dy) amphoteric doping on the structural, dielectric and electric properties of barium stannate titanate (BTS) ceramics have been studied. X-ray diffraction analyses reveal that all Dy-doped BTS ceramics exhibit cubic perovskite structure until to 1 mol%. Dy doping at the A site shows lower solubility than that at the B site. SEM surface morphologies display that the Dy B site doping is beneficial for the compact and homogeneous grain distribution. The dielectric constant and loss tangent are reduced with increase of the doping levels. Impedance spectroscopy investigation demonstrates that all samples are insulating at room temperature. Doping alters the full resistive regions of pure BTS ceramics to Doped BTS with insulating grain boundaries and semiconducting bulk regions, but the doping contents has little effect on changing the electric structures.

  16. Distribution of heating in an LVRF bundle due to dysprosium in the central element

    SciTech Connect

    Tsang, K.; Buijs, A.

    2006-07-01

    The computer code MCNP was used to establish the effect of adding dysprosium to the central pin of the proposed BRUCE-B CANFLEX{sup R} Low-Void-Reactivity Fuel (LVRF) on the heat load of the central pin and the heat balance inside the fuel bundle. The Dy generates heat through radiative capture of thermal neutrons, as well as through beta decay of {sup 165}Dy to {sup 165}Ho. We conclude that for fresh fuel, the presence of Dy contributes 26% of the overall heat to the central pin, and 0.5% to the whole fuel bundle. These percentages decrease to 11% and 0.5% at the end-of-life burnup condition. A second, operational quantity is the HPFP ratio (heating-power to fission-power ratio). This ratio is 1.63 for fresh fuel and decreases to 1.19 for fuel at the end-of-life burnup condition. (authors)

  17. Photophysical and electrochemical properties of a dysprosium-zinc tetra(4-sulfonatophenyl)porphyrin complex.

    PubMed

    Chen, Wen-Tong; Liu, Dong-Sheng; Xu, Ya-Ping; Luo, Qiu-Yan; Pei, Yun-Peng

    2016-02-01

    A dysprosium-zinc porphyrin, [DyZn(TPPS)H3O]n (1) (TPPS = tetra(4-sulfonatophenyl)porphyrin), was prepared through solvothermal reactions and structurally characterized by single-crystal X-ray diffraction analyses. Complex 1 features a three-dimensional (3-D) porous open framework that is thermally stable up to 400 °C. Complex 1 displays a void space of 215 Å(3), occupying 9.2% of the unit cell volume. The fluorescence spectra reveal that it shows an emission band in the red region. The fluorescence lifetime is 39 µsec and the quantum yield is 1.7%. The cyclic voltammetry (CV) measurement revealed one quasi-reversible wave with E1/2  = 0.30 V. PMID:26014749

  18. Treatment of antigen-induced arthritis in rabbits with dysprosium-165-ferric hydroxide macroaggregates

    SciTech Connect

    Zuckerman, J.D.; Sledge, C.B.; Shortkroff, S.; Venkatesan, P.

    1989-01-01

    Dysprosium-165-ferric hydroxide macroaggregates (/sup 165/Dy-FHMA) was used as an agent of radiation synovectomy in an antigen-induced arthritis model in New Zealand white rabbits. Animals were killed up to 6 months after treatment. /sup 165/Dy-FHMA was found to have a potent but temporary antiinflammatory effect on synovium for up to 3 months after treatment. Treated knees also showed significant preservation of articular cartilage architecture and proteoglycan content compared with untreated controls, but only during the first 3 months after treatment. In animals killed 3 and 6 months after treatment there were only minimal differences between the treated and untreated knees, indicating that the antiinflammatory effects on synovial tissue and articular cartilage preservation were not sustained.

  19. Decay of the neutron-rich isotope 171Ho and the identification of 169Dy

    NASA Astrophysics Data System (ADS)

    Chasteler, R. M.; Nitschke, J. M.; Firestone, R. B.; Vierinen, K. S.; Wilmarth, P. A.

    1990-10-01

    Neutron-rich rare-earth isotopes were produced in multinucleon transfer reactions between 170Er ions and natW targets. On-line mass separation was used together with β- and γ-ray spectroscopy in these studies. At mass A=169, the heaviest known dysprosium isotope, 39(8) s,169Dy, was identified. It was observed to β- decay to the ground state of 169Ho or through a level at 1578 keV. In the A=171 mass chain, a partial decay scheme for 55(3)-s 171Ho was determined.

  20. Structural, optical, thermal, mechanical and dielectric studies of Sulfamic acid single crystals: An influence of dysprosium (Dy3+) doping

    NASA Astrophysics Data System (ADS)

    Singh, Budhendra; Shkir, Mohd.; AlFaify, S.; Kaushal, Ajay; Nasani, Narendar; Bdikin, Igor; Shoukry, H.; Yahia, I. S.; Algarni, H.

    2016-09-01

    Sulfamic acid is a potential material that exhibits excellent optical properties. A good quality, pure and dysprosium (Dy3+) doped (2.5 and 5 mol %) Sulfamic acid (SA) single crystals were grown successfully by slow cooling method. Structural study revealed a slight change in its lattice parameters and volume, suggesting the successful incorporation of Dy3+ in crystal system. The existence of dysprosium in the system was also confirmed. Presence of various vibrational modes was confirmed. Optical transparency was found to have a significant effect with variation in the doping concentration. Furthermore, a marked enhancement in its mechanical parameters with doping was also identified by nanoindentation technique. Etching study was also performed on the grown crystals to study the etch-pit formation and growth mechanism. Effect of doping on the thermal stability was analysed. All the results were compared and discussed in detail to get insight of the effect of doping concentration on Sulfamic acid crystal.

  1. Peripheral Substitution: An Easy Way to Tuning the Magnetic Behavior of Tetrakis(phthalocyaninato) Dysprosium(III) SMMs

    PubMed Central

    Shang, Hong; Zeng, Suyuan; Wang, Hailong; Dou, Jianmin; Jiang, Jianzhuang

    2015-01-01

    Two tetrakis(phthalocyaninato) dysprosium(III)-cadmium(II) single-molecule magnets (SMMs) with different extent of phthalocyanine peripheral substitution and therefore different coordination geometry for the Dy ions were revealed to exhibit different SMM behavior, providing an easy way to tuning and controlling the molecular structure and in turn the magnetic properties of tetrakis(tetrapyrrole) lanthanide SMMs through simple tetrapyrrole peripheral substitution. PMID:25744587

  2. Peripheral substitution: an easy way to tuning the magnetic behavior of tetrakis(phthalocyaninato) dysprosium(III) SMMs.

    PubMed

    Shang, Hong; Zeng, Suyuan; Wang, Hailong; Dou, Jianmin; Jiang, Jianzhuang

    2015-01-01

    Two tetrakis(phthalocyaninato) dysprosium(III)-cadmium(II) single-molecule magnets (SMMs) with different extent of phthalocyanine peripheral substitution and therefore different coordination geometry for the Dy ions were revealed to exhibit different SMM behavior, providing an easy way to tuning and controlling the molecular structure and in turn the magnetic properties of tetrakis(tetrapyrrole) lanthanide SMMs through simple tetrapyrrole peripheral substitution. PMID:25744587

  3. Evaluating United States and world consumption of neodymium, dysprosium, terbium, and praseodymium in final products

    NASA Astrophysics Data System (ADS)

    Hart, Matthew

    This paper develops scenarios of future rare-earth-magnet metal (neodymium, dysprosium, terbium, and praseodymium) consumption in the permanent magnets used in wind turbines and hybrid electric vehicles. The scenarios start with naive base-case scenarios for growth in wind-turbine and hybrid-electric-vehicle sales over the period 2011 to 2020, using historical data for each good. These naive scenarios assume that future growth follows time trends in historical data and does not depend on any exogenous variable. Specifically, growth of each technological market follows historical time trends, and the amount of rare earths used per unit of technology remains fixed. The chosen reference year is 2010. Implied consumptions of the rare earth magnet metals are calculated from these scenarios. Assumptions are made for the material composition of permanent magnets, the market share of permanent-magnet wind turbines and vehicles, and magnet weight per unit of technology. Different scenarios estimate how changes in factors like the material composition of magnets, growth of the economy, and the price of a substitute could affect future consumption. Each scenario presents a different method for reducing rare earth consumption and could be interpreted as potential policy choices. In 2010, the consumption (metric tons, rare-earth-oxide equivalent) of each rare-earth-magnet metal was as follows. Total neodymium consumption in the world for both technologies was 995 tons; dysprosium consumption was 133 tons; terbium consumption was 50 tons; praseodymium consumption was zero tons. The base scenario for wind turbines shows there could be strong, exponential growth in the global wind turbine market. New U.S. sales of hybrid vehicles would decline (in line with the current economic recession) while non-U.S. sales increase through 2020. There would be an overall increase in the total amount of magnetic rare earths consumed in the world. Total consumption of each rare earth in the short

  4. Decay of the neutron-rich isotope sup 171 Ho and the identification of sup 169 Dy

    SciTech Connect

    Chasteler, R.M.; Nitschke, J.M.; Firestone, R.B.; Vierinen, K.S.; Wilmarth, P.A. )

    1990-10-01

    Neutron-rich rare-earth isotopes were produced in multinucleon transfer reactions between {sup 170}Er ions and {sup nat}W targets. On-line mass separation was used together with {beta}- and {gamma}-ray spectroscopy in these studies. At mass {ital A}=169, the heaviest known dysprosium isotope, 39(8) s,{sup 169}Dy, was identified. It was observed to {beta}{sup {minus}} decay to the ground state of {sup 169}Ho or through a level at 1578 keV. In the {ital A}=171 mass chain, a partial decay scheme for 55(3)-s {sup 171}Ho was determined.

  5. Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures

    SciTech Connect

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.

    2014-04-03

    Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed (hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. This is followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.

  6. Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures

    DOE PAGESBeta

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.

    2014-04-03

    Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed (hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. This ismore » followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.« less

  7. Toxicity of dysprosium nano particles with glucose and sodium chloride on E. Coli

    NASA Astrophysics Data System (ADS)

    Anaya, N. M.; Solomon, F.; Oyanedel-Craver, V.

    2013-12-01

    Application of rare earth elements (REEs) such as, dysprosium nanoparticles (nDy), to the biomedical field are increasing due to their paramagnetic properties. Current applications of nDy in the biomedical field are in MRI screening and anti-cancer therapy. Environmental impacts of nDy released into the environment are unknown or poorly understood and are a concern due to the lack of appropriate recycling systems. The objective of this toxicological study is to assess the impacts of nDy at relevant environmental concentrations on Escherichia coli. A range of glucose concentrations were used to evaluate the impact under different aerobic metabolic stages when the bacteria are exposed to the nanoparticles. Two traditional techniques used to evaluate the physiological response of E. coli at different environmental conditions were dual staining with fluorescent dyes (Live/Dead BacLight viability kit) and respirometric assays. A high-through put array-based methodology was implemented to provide additional toxicity testing. Preliminary toxicology results for both traditional techniques showed a positive trend between nDy and carbon source concentrations. High concentrations of nDy (>5mg/L) in environments with high glucose concentration (>210mg/L) are more toxic to E. coli than environments with low glucose concentrations. On the other hand, Live/Dead experiments showed higher toxicity effect in comparison to the respirometric tests using the same exposure conditions, suggesting that even at high membrane disruption the bacteria can still performed some metabolic activity.

  8. Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition

    SciTech Connect

    Lo, Fang-Yuh Ting, Yi-Chieh; Chou, Kai-Chieh; Hsieh, Tsung-Chun; Ye, Cin-Wei; Hsu, Yung-Yuan; Liu, Hsiang-Lin; Chern, Ming-Yau

    2015-06-07

    Dysprosium(Dy)-doped zinc oxide (Dy:ZnO) thin films were fabricated on c-oriented sapphire substrate by pulsed-laser deposition with doping concentration ranging from 1 to 10 at. %. X-ray diffraction (XRD), Raman-scattering, optical transmission spectroscopy, and spectroscopic ellipsometry revealed incorporation of Dy into ZnO host matrix without secondary phase. Solubility limit of Dy in ZnO under our deposition condition was between 5 and 10 at. % according to XRD and Raman-scattering characteristics. Optical transmission spectroscopy and spectroscopic ellipsometry also showed increase in both transmittance in ultraviolet regime and band gap of Dy:ZnO with increasing Dy density. Zinc vacancies and zinc interstitials were identified by photoluminescence spectroscopy as the defects accompanied with Dy incorporation. Magnetic investigations with a superconducting quantum interference device showed paramagnetism without long-range order for all Dy:ZnO thin films, and a hint of antiferromagnetic alignment of Dy impurities was observed at highest doping concentration—indicating the overall contribution of zinc vacancies and zinc interstitials to magnetic interaction was either neutral or toward antiferromagnetic. From our investigations, Dy:ZnO thin films could be useful for spin alignment and magneto-optical applications.

  9. Thermoluminescence properties of lithium magnesium borate glasses system doped with dysprosium oxide.

    PubMed

    Mhareb, M H A; Hashim, S; Ghoshal, S K; Alajerami, Y S M; Saleh, M A; Razak, N A B; Azizan, S A B

    2015-12-01

    We report the impact of dysprosium (Dy(3+)) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+). An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (μg), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2O-MgO-B2O3 radiation dosimeters. PMID:25828828

  10. A New Fungal Isolate, Penidiella sp. Strain T9, Accumulates the Rare Earth Element Dysprosium

    PubMed Central

    Horiike, Takumi

    2015-01-01

    With an aim to develop a highly efficient method for the recovery of rare earth elements (REEs) by using microorganisms, we attempted to isolate dysprosium (Dy)-accumulating microorganisms that grow under acidic conditions from environmental samples containing high concentrations of heavy metals. One acidophilic strain, T9, which was isolated from an abandoned mine, decreased the concentration of Dy in medium that contained 100 mg/liter Dy to 53 mg/liter Dy after 3 days of cultivation at pH 2.5. The Dy content in the cell pellet of the T9 strain was 910 μg/mg of dry cells. The T9 strain also accumulated other REEs. Based on the results of 28S-D1/D2 rRNA gene sequencing and morphological characterization, we designated this fungal strain Penidiella sp. T9. Bioaccumulation of Dy was observed on the cell surface of the T9 strain by elemental mapping using scanning electron microscopy-energy dispersive X-ray spectroscopy. Our results indicate that Penidiella sp. T9 has the potential to recover REEs such as Dy from mine drainage and industrial liquid waste under acidic conditions. PMID:25710372

  11. Spectral and physicochemical characterization of dysprosium-based multifunctional ionic liquid crystals.

    PubMed

    Lu, Chengfei; Das, Susmita; Siraj, Noureen; Magut, Paul K S; Li, Min; Warner, Isiah M

    2015-05-21

    We report on the synthesis and characterization of multifunctional ionic liquid crystals (melting points below 100 °C) which possess chirality and fluorescent behavior as well as mesomorphic and magnetic properties. In this regard, (1R,2S)-(-)-N-methylephedrine ((-)MeEph), containing a chiral center, is linked with variable alkyl chain lengths (e.g., 14, 16, and 18 carbons) to yield liquid crystalline properties in the cations of these compounds. A complex counteranion consisting of trivalent dysprosium (Dy(3+)) and thiocyanate ligand (SCN(-)) is employed, where Dy(3+) provides fluorescent and magnetic properties. Examination of differential scanning calorimetry (DSC) and hot-stage polarizing optical microscopy (POM) data confirmed liquid crystalline characteristics in these materials. We further report on phase transitions from solid to liquid crystal states, followed by isotropic liquid states with increasing temperature. These compounds exhibited two characteristic emission peaks in acetonitrile solution and the solid state when excited at λex = 366 nm, which are attributed to transitions from (4)F9/2 to (6)H15/2 and (4)F9/2 to (6)H13/2. The emission intensities of these compounds were found to be very sensitive to the phase. PMID:25901534

  12. Luminescence properties of dysprosium doped di-calcium di-aluminium silicate phosphors

    NASA Astrophysics Data System (ADS)

    Tiwari, Geetanjali; Brahme, Nameeta; Sharma, Ravi; Bisen, D. P.; Sao, Sanjay K.; Tigga, Shalinta

    2016-08-01

    A Dysprosium doped di-calcium di-aluminium silicate phosphor emitting long-lasting white light was prepared and investigated. Phosphors were synthesized by combustion-assisted method. The effect of doping concentration on the crystal structure and luminescence properties of Ca2Al2SiO7:Dy3+ phosphors were investigated. The phase structure, surface morphology, particle size, elemental analysis was analyzed by using X-ray diffraction (XRD), transmission electron microscope (TEM), Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDX) techniques. X-ray diffraction (XRD) profiles showed that all peaks could be attributed to the tetragonal Ca2Al2SiO7 phase when the sample was annealed at 1100 °C. The increase in TL intensity indicates that the concentration of traps increases with UV irradiation. Under the UV-excitation, the Thermoluminescence (TL) emission spectra of Ca2Al2SiO7:Dy3+ phosphor shows the characteristic emission of Dy3+ peaking at 484 nm (blue), 583 nm (yellow) and 680 nm (red), originating from the transitions of 4F9/2 → 6H15/2, 4F9/2 → 6H13/2 and 4F9/2 → 6H11/2. Photoluminescence (PL) decay has also reported and it indicates that Ca2Al2SiO7:Dy3+ phosphor contains fast decay and slow decay process. The peak of Mechanoluminescence (ML) intensity increases linearly with increasing impact velocity of the moving piston. The possible mechanism of Thermoluminescence (TL), Photoluminescence (PL) and Mechanoluminescence (ML) of this white light emitting long lasting phosphor is also investigated.

  13. Anions Influence the Relaxation Dynamics of Mono-μ3-OH-Capped Triangular Dysprosium Aggregates.

    PubMed

    Zhang, Li; Zhang, Peng; Zhao, Lang; Wu, Jianfeng; Guo, Mei; Tang, Jinkui

    2015-06-01

    A family of four Dy3 triangular circular helicates, namely, [Dy3(HL)3(μ3-OH)(CH3OH)2(H2O)4]Cl1.5(OH)0.5·0.5H2O (1), [Dy3(HL)3(μ3-OH)(CH3OH)3(H2O)2Cl]Cl·CH3OH (2), [Dy3(HL)3(μ3-OH)(CH3OH)3(H2O)2(NO3)](NO3) (3), and [Dy3(HL)3(μ3-OH)(CH3OH)4(ClO4)](ClO4) (4), were assembled by the reaction of a new acylhydrazone ligand H3L [(3-hydroxy)-N'-((8-hydroxyquinolin-2-yl)methylene)picolinohydrazide] with different dysprosium(III) salts. These compounds represent the first examples of μ-Oacylhydrazone-bridged triangular Dy3 SMMs reported to date. Alternating-current magnetic susceptibility measurements revealed that compounds 1 and 2 show typical SMM behavior with the occurrence of multiple relaxation processes, whereas frequency-dependent relaxation signals without χ″ peaks were observed in 3 and 4 under zero dc field. Such distinct dynamic behaviors are attributed to the different sizes of the terminal coordination solvent/anions (H2O, Cl(-), NO3(-), and ClO4(-) for 1-4, respectively) at the Dy3 site. Here, similar deviations from the ideal monocapped square-antiprismatic (C4v) geometry defined by SHAPE software were observed around local Dy centers in 1 and 2, whereas the situation was completely different in 3 and 4 as a result of the presence of relatively large anions in the limited space defined by three intercrossing rigid hydrazone ligands. PMID:25984586

  14. Isotopic Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.

    1985-01-01

    An overview is provided of the biogeochemical research. The funding, productivity, personnel and facilities are reviewed. Some of the technical areas covered are: carbon isotopic records; isotopic studies of banded iron formations; isotope effects in microbial systems; studies of organic compounds in ancient sediments; and development in isotopic geochemistry and analysis.

  15. 40 CFR 721.9511 - Silicic acid (H6SiO2O7), magnesium, strontium salt(1:1:2), dysprosium and europium-doped.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Silicic acid (H6SiO2O7), magnesium...), magnesium, strontium salt(1:1:2), dysprosium and europium-doped. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as silicic acid (H6SiO2O7)...

  16. Reduction of titanocene dichloride with dysprosium: access to a stable titanocene(ii) equivalent for phosphite-free Takeda carbonyl olefination.

    PubMed

    Bousrez, G; Déchamps, I; Vasse, J-L; Jaroschik, F

    2015-05-28

    The reduction of titanocene dichloride with dysprosium yields a new titanocene(ii) equivalent without the need for further stabilising ligands. This reagent can be employed in combination with dithioacetals for the olefination of different carbonyl groups and allows for a simplified all-in-one procedure. PMID:25919652

  17. A water-stable metal-organic framework of a zwitterionic carboxylate with dysprosium: a sensing platform for Ebolavirus RNA sequences.

    PubMed

    Qin, Liang; Lin, Li-Xian; Fang, Zhi-Ping; Yang, Shui-Ping; Qiu, Gui-Hua; Chen, Jin-Xiang; Chen, Wen-Hua

    2016-01-01

    We herein report a water-stable 3D dysprosium-based metal-organic framework (MOF) that can non-covalently interact with probe ss-DNA. The formed system can serve as an effective fluorescence sensing platform for the detection of complementary Ebolavirus RNA sequences with the detection limit of 160 pM. PMID:26502791

  18. Field and dilution effects on the magnetic relaxation behaviours of a 1D dysprosium(iii)-carboxylate chain built from chiral ligands.

    PubMed

    Han, Tian; Leng, Ji-Dong; Ding, You-Song; Wang, Yanyan; Zheng, Zhiping; Zheng, Yan-Zhen

    2015-08-14

    A one-dimensional dysprosium(iii)-carboxylate chain in which the Dy(III) ions sit in a pseudo D(2d)-symmetry environment is synthesized and shows different slow magnetic relaxation behaviours depending on the field and dilution effects. Besides, the chiral ligand introduces the additional functions of the Cotton effect and polarization for this compound. PMID:26159885

  19. Acute dysprosium toxicity to Daphnia pulex and Hyalella azteca and development of the biotic ligand approach.

    PubMed

    Vukov, Oliver; Smith, D Scott; McGeer, James C

    2016-01-01

    The toxicological understanding of rare earth elements (REEs) in the aquatic environment is very limited but of increasing concern. The objective of this research is to compare the toxicological effect of the REE dysprosium to the freshwater invertebrates Daphnia pulex and Hyalella azteca and in the more sensitive organism, understand the toxicity modifying influence of Ca, Na, Mg, pH and dissolved organic matter (DOM). Standard methods (Environment Canada) were followed for testing and culture in media of intermediate hardness (60mg CaCO3 mg/L) at pH 7.8 with Ca at 0.5, Na 0.5, Mg 0.125 (mM) and 23°C. Acute toxicity tests were done with <24h old neonates for 48h in the case of D. pulex and with 2-9 days old offspring for 96h tests with Hyalella. The potential protective effect of cationic competition was tested with Ca (0.5-2.0mM), Na (0.5-2.0mM) and Mg (0.125-0.5mM). The effect of pH (6.5-8.0) and Suwannee River DOM complexation (at dissolved organic carbon (DOC) concentrations of 9 and 13mg C/L) were evaluated. Dissolved Dy concentrations were lower than total (unfiltered) indicating precipitation, particularly at higher concentrations. Acute toxicity of Dy to H. azteca and D. pulex revealed Hyalella to be 1.4 times more sensitive than Daphnia. Additions of Ca and Na but not Mg provided significant protection against Dy toxicity to Hyalella. Similarly, low pH was associated with reduction in toxicity. Exposures which were pH buffered with and without MOPS were significantly different and indicated that MOPS enhanced Dy toxicity. DOM also mitigated Dy toxicity. Biotic ligand based parameters (LogK values) were calculated based on free ion relationships as determined by geochemical equilibrium modeling software (WHAM ver. 7.02). The logK value for Dy(3+) toxicity to Hyalella was 7.75 while the protective influence of Ca and Na were 3.95 and 4.10, respectively. This study contributes data towards the development of site specific water quality guidelines and

  20. Dysprosium complexes with mono-/di-carboxylate ligands—From simple dimers to 2D and 3D frameworks

    SciTech Connect

    Zhang, Yingjie; Bhadbhade, Mohan; Scales, Nicholas; Karatchevtseva, Inna; Price, Jason R.; Lu, Kim; Lumpkin, Gregory R.

    2014-11-15

    Four dysprosium (Dy) single carboxylates, a formate, a propionate, a butyrate and an oxalate have been synthesized and structurally characterized. The structure of Dy(HCO{sub 2}){sub 3} (1) contains nine-fold coordinated Dy polyhedra in perfect tricapped trigonal prisms. They are linked through trigonal O atoms forming 1D pillars which are further linked together through tricapped O atoms into a 3D pillared metal organic framework. The network structure is stable up to 360 °C. The structure of [Dy{sub 2}(C{sub 2}O{sub 4}){sub 3}(H{sub 2}O){sub 6}]·2.5H{sub 2}O (2) contains nine-fold coordinated Dy polyhedra linking together through μ{sub 2}-bridging oxalate anions into a 2D hexagonal layered structure. Both [Dy{sub 2}(Pr){sub 6}(H{sub 2}O){sub 4}]·(HPr){sub 0.5} (3) [Pr=(C{sub 2}H{sub 5}CO{sub 2}){sup −1}] and [Dy{sub 2}(Bu){sub 6}(H{sub 2}O){sub 4}] (4) [Bu=(C{sub 3}H{sub 7}CO{sub 2}){sup −1}] have similar di-nuclear structures. The Raman vibration modes of the complexes have been investigated. - Graphical abstract: Four dysprosium (Dy) complexes with formate, propionate, butyrate and oxalate ligands have been synthesized and characterized. The Dy formato complex has a 3D pillared metal organic framework and the structure is stable up to 360 °C whilst the complexes with longer alkyl chained mono-carboxylates possess similar di-nuclear structures. The Dy oxalato complex has a 2D hexagonal (honeycomb-type) structure. Their Raman vibration modes have been investigated. - Highlights: • New Dysprosium complexes with formate, propionate, butyrate and oxalate ligands. • Crystal structures range from dimers to two and three dimensional frameworks. • Vibrational modes have been investigated and correlated to the structures. • The complexes are thermal robust and stable to over 300 °C.

  1. Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids.

    PubMed

    Sánchez Lafarga, Ana Karen; Pacheco Moisés, Fermín P; Gurinov, Andrey; Ortiz, Genaro Gabriel; Carbajal Arízaga, Gregorio Guadalupe

    2015-03-01

    The development of probes for biomedical applications demands materials with low toxicity levels besides fluorescence or magnetic properties to be detected by confocal microscopes or MRI resonators. Several drug delivery systems or other biomedical materials prepared with hydroxyapatite have been proposed, however, toxicity effects might arise when the size of particles is nanometric. In this study, hydroxyapatite functionalized with glucuronic or folic acids presented lower oxidative stress, measured from lipoperoxides and nitric oxide indicators in rats than pure hydroxyapatite. In separated experiments, hydroxyapatite was doped with dysprosium cations by coprecipitation producing a single crystal phase with fluorescent properties easily visualized by confocal microscopy when excited at 488nm. These particles also presented the ability to modify the proton relaxation time in T1 maps collected by magnetic resonance imaging. These modified hydroxyapatite nanoparticles could be candidates to design bimodal probes with low toxicity. PMID:25579955

  2. An NCN-pincer ligand dysprosium single-ion magnet showing magnetic relaxation via the second excited state

    NASA Astrophysics Data System (ADS)

    Guo, Yun-Nan; Ungur, Liviu; Granroth, Garrett E.; Powell, Annie K.; Wu, Chunji; Nagler, Stephen E.; Tang, Jinkui; Chibotaru, Liviu F.; Cui, Dongmei

    2014-06-01

    Single-molecule magnets are compounds that exhibit magnetic bistability purely of molecular origin. The control of anisotropy and suppression of quantum tunneling to obtain a comprehensive picture of the relaxation pathway manifold, is of utmost importance with the ultimate goal of slowing the relaxation dynamics within single-molecule magnets to facilitate their potential applications. Combined ab initio calculations and detailed magnetization dynamics studies reveal the unprecedented relaxation mediated via the second excited state within a new DyNCN system comprising a valence-localized carbon coordinated to a single dysprosium(III) ion. The essentially C2v symmetry of the DyIII ion results in a new relaxation mechanism, hitherto unknown for mononuclear DyIII complexes, opening new perspectives for means of enhancing the anisotropy contribution to the spin-relaxation barrier.

  3. An NCN-pincer ligand dysprosium single-ion magnet showing magnetic relaxation via the second excited state

    PubMed Central

    Guo, Yun-Nan; Ungur, Liviu; Granroth, Garrett E.; Powell, Annie K.; Wu, Chunji; Nagler, Stephen E.; Tang, Jinkui; Chibotaru, Liviu F.; Cui, Dongmei

    2014-01-01

    Single-molecule magnets are compounds that exhibit magnetic bistability purely of molecular origin. The control of anisotropy and suppression of quantum tunneling to obtain a comprehensive picture of the relaxation pathway manifold, is of utmost importance with the ultimate goal of slowing the relaxation dynamics within single-molecule magnets to facilitate their potential applications. Combined ab initio calculations and detailed magnetization dynamics studies reveal the unprecedented relaxation mediated via the second excited state within a new DyNCN system comprising a valence-localized carbon coordinated to a single dysprosium(III) ion. The essentially C2v symmetry of the DyIII ion results in a new relaxation mechanism, hitherto unknown for mononuclear DyIII complexes, opening new perspectives for means of enhancing the anisotropy contribution to the spin-relaxation barrier. PMID:24969218

  4. Limits on violations of Lorentz symmetry and the Einstein equivalence principle using radio-frequency spectroscopy of atomic dysprosium.

    PubMed

    Hohensee, M A; Leefer, N; Budker, D; Harabati, C; Dzuba, V A; Flambaum, V V

    2013-08-01

    We report a joint test of local Lorentz invariance and the Einstein equivalence principle for electrons, using long-term measurements of the transition frequency between two nearly degenerate states of atomic dysprosium. We present many-body calculations which demonstrate that the energy splitting of these states is particularly sensitive to violations of both special and general relativity. We limit Lorentz violation for electrons at the level of 10(-17), matching or improving the best laboratory and astrophysical limits by up to a factor of 10, and improve bounds on gravitational redshift anomalies for electrons by 2 orders of magnitude, to 10(-8). With some enhancements, our experiment may be sensitive to Lorentz violation at the level of 9 × 10(-20). PMID:23952369

  5. The effects of the porous buffer layer and doping with dysprosium on internal stresses in the GaInP:Dy/por-GaAs/GaAs(100) heterostructures

    SciTech Connect

    Seredin, P. V.; Gordienko, N. N.; Glotov, A. V.; Zhurbina, I. A.; Domashevskaya, E. P.; Arsent'ev, I. N. Shishkov, M. V.

    2009-08-15

    In structures with a porous buffer layer, residual internal stresses caused by a mismatch between the crystal-lattice parameters of the epitaxial GaInP alloy and the GaAs substrate are redistributed to the porous layer that acts as a buffer and is conducive to disappearance of internal stresses. Doping of the epitaxial layer with dysprosium exerts a similar effect on the internal stresses in the film-substrate structure.

  6. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  7. Epitaxial dysprosium phosphide grown by gas-source and solid-source MBE on gallium arsenide substrates

    NASA Astrophysics Data System (ADS)

    Sadwick, L. P.; Lee, P. P.; Patel, M.; Nikols, M.; Hwu, R. J.; Shield, J. E.; Streit, D. C.; Brehmer, D.; McCormick, K.; Allen, S. J.; Gedridge, R. W.

    1996-07-01

    We report the first known study of the growth of epitaxial dysprosium phosphide (DyP) grown on gallium arsenide (GaAs). DyP is lattice matched to GaAs, with the room-temperature mismatch being less than 0.01%. We have grown DyP on GaAs by gas-source and by solid-source molecular beam epitaxy using custom-designed group V thermal cracker cells and group III high temperature effusion cells. X-ray diffraction results show the DyP epilayer to be (001) single crystal on GaAs(001) substrate. Electrical and optical measurements performed to date are inconclusive as to whether DyP is a semi-metal or a semiconductor with a small band gap. The undoped films are n-type with measured electron concentrations on the order of 5 × 10 19-6 × 10 20cm -3 with mobilities of 1-10 cm 2/V · s. {DyP}/{GaAs} is stable in air with no apparent oxidation taking place, even after months of exposure to ambient untreated air. Material and surface science properties measured for {DyP}/{GaAs} include Hall measurements, 2ϑ and double-crystal X-ray diffraction spectra and photothermal deflection spectroscopy.

  8. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    NASA Astrophysics Data System (ADS)

    Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-08-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  9. Isotopic chirality

    SciTech Connect

    Floss, H.G.

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  10. Transuranium isotopes

    SciTech Connect

    Hoffman, D.C.

    1985-12-01

    The needs of the research community for the production of transuranium isotopes, the quantities required, the continuity of production desired, and what a new steady state neutron source would have to provide to satisfy these needs are discussed. Examples of past frontier research which need these isotopes as well as an outline of the proposed Large Einsteinium Activation Program, LEAP, which requires roughly ten times the current production of /sup 254/Es are given. 15 refs., 5 figs., 4 tabs.

  11. Magnetic circular polarization of luminescence of dysprosium-yttrium aluminum garnet Dy0.2Y2.8Al5O12

    NASA Astrophysics Data System (ADS)

    Valiev, U. V.; Gruber, J. B.; Rakhimov, Sh. A.; Sokolov, V. Yu.

    2004-07-01

    Magnetic circular polarization of the luminescence of the radiative 4 f-4 f transitions 6 H 15/2→6 F 9/2 in dysprosium-yttrium aluminum garnet Dy0.2Y2.8Al5O13 was studied at T=85 K. The revealed features of the spectral dependences of the magnetically polarized luminescence of Dy3+ ions are attributed to the quasi-Ising behavior of rare-earth ions in the garnet structure. The symmetry of the wave functions for a number of Stark sublevels of the multiplets of the ground configuration 4 f( n) that combine in observed radiative transitions is determined.

  12. Optical amplifier operating at 1.3 microns useful for telecommunications and based on dysprosium-doped metal chloride host materials

    DOEpatents

    Page, R.H.; Schaffers, K.I.; Payne, S.A.; Krupke, W.F.; Beach, R.J.

    1997-12-02

    Dysprosium-doped metal chloride materials offer laser properties advantageous for use as optical amplifiers in the 1.3 {micro}m telecommunications fiber optic network. The upper laser level is characterized by a millisecond lifetime, the host material possesses a moderately low refractive index, and the gain peak occurs near 1.31 {micro}m. Related halide materials, including bromides and iodides, are also useful. The Dy{sup 3+}-doped metal chlorides can be pumped with laser diodes and yield 1.3 {micro}m signal gain levels significantly beyond those currently available. 9 figs.

  13. Optical amplifier operating at 1.3 microns useful for telecommunications and based on dysprosium-doped metal chloride host materials

    DOEpatents

    Page, Ralph H.; Schaffers, Kathleen I.; Payne, Stephen A.; Krupke, William F.; Beach, Raymond J.

    1997-01-01

    Dysprosium-doped metal chloride materials offer laser properties advantageous for use as optical amplifiers in the 1.3 .mu.m telecommunications fiber optic network. The upper laser level is characterized by a millisecond lifetime, the host material possesses a moderately low refractive index, and the gain peak occurs near 1.31 .mu.m. Related halide materials, including bromides and iodides, are also useful. The Dy.sup.3+ -doped metal chlorides can be pumped with laser diodes and yield 1.3 .mu.m signal gain levels significantly beyond those currently available.

  14. A 3D MOF constructed from dysprosium(III) oxalate and capping ligands: ferromagnetic coupling and field-induced two-step magnetic relaxation.

    PubMed

    Liu, Cai-Ming; Zhang, De-Qing; Zhu, Dao-Ben

    2016-04-01

    A novel 3D MOF based on dysprosium(iii) oxalate and 1,10-phenanthroline (phen), {[Dy(C2O4)1.5phen]·0.5H2O}n (1), has been hydrothermally synthesized. The Dy(3+) ion acts as a typical Y-shaped node, linking to each other to generate an interesting 3D topology structure. Complex 1 is the first 3D DyMOF displaying both ferromagnetic coupling and field-induced two-step magnetic relaxation. PMID:26961387

  15. Equation of state of zircon- and scheelite-type dysprosium orthovanadates: a combined experimental and theoretical study.

    PubMed

    Paszkowicz, Wojciech; Ermakova, Olga; López-Solano, Javier; Mujica, Andrés; Muñoz, Alfonso; Minikayev, Roman; Lathe, Christian; Gierlotka, Stanisław; Nikolaenko, Irina; Dabkowska, Hanna

    2014-01-15

    Dysprosium orthovanadate, DyVO4, belongs to a family of zircon-type orthovanadates showing a phase transition to scheelite-type structures at moderate pressures below 10 GPa. In the present study, the equations of state (EOSs) for both these phases were determined for the first time using high-pressure x-ray diffraction experiments and ab initio calculations based on the density functional theory. Structural parameters for scheelite-type DyVO4 were calculated from x-ray powder diffraction data as well. The high-pressure experiments were performed under pseudo-hydrostatic conditions at pressures up to 8.44 GPa and 5.5 GPa for the stable zircon-type and metastable (quenched) scheelite-type samples, respectively. Assuming as a compression model the Birch-Murnaghan EOS, we obtained the EOS parameters for both phases. The experimental bulk moduli (K0) for zircon-type and scheelite-type DyVO4 are 118(4) GPa and 153(6) GPa, respectively. Theoretical equations of state were determined by ab initio calculations using the PBE exchange-correlation energy functional of Perdew, Burke, and Ernzerhof. These calculations provide K0 values of 126.1 GPa and 142.9 GPa for zircon-type and scheelite-type DyVO4, respectively. The reliability of the present experimental and theoretical results is supported by (i) the consistency between the values yielded by the two methods (the discrepancy in K0 is as low as about 7% for each of the studied polymorphs) and (ii) their similarity to results obtained under similar compression conditions (hydrostatic or pseudo-hydrostatic) for other rare-earth orthovanadates, such as YVO4 and TbVO4. PMID:24305496

  16. Determination of Diclofenac on a Dysprosium Nanowire- Modified Carbon Paste Electrode Accomplished in a Flow Injection System by Advanced Filtering

    PubMed Central

    Daneshgar, Parandis; Norouzi, Parviz; Ganjali, Mohammad Reza; Dinarvand, Rasoul; Moosavi-Movahedi, Ali Akbar

    2009-01-01

    A new detection technique called Fast Fourier Transform Square-Wave Voltammetry (FFT SWV) is based on measurements of electrode admittance as a function of potential. The response of the detector (microelectrode), which is generated by a redox processes, is fast, which makes the method suitable for most applications involving flowing electrolytes. The carbon paste electrode was modified by nanostructures to improve sensitivity. Synthesized dysprosium nanowires provide a more effective nanotube-like surface [1-4] so they are good candidates for use as a modifier for electrochemical reactions. The redox properties of diclofenac were used for its determination in human serum and urine samples. The support electrolyte that provided a more defined and intense peak current for diclofenac determination was a 0.05 mol L−1 acetate buffer pH = 4.0. The drug presented an irreversible oxidation peak at 850 mV vs. Ag/AgCl on a modified nanowire carbon paste electrode which produced high current and reduced the oxidation potential by about 100 mV. Furthermore, the signal-to-noise ratio was significantly increased by application of a discrete Fast Fourier Transform (FFT) method, background subtraction and two-dimensional integration of the electrode response over a selected potential range and time window. To obtain the much sensivity the effective parameters such as frequency, amplitude and pH was optimized. As a result, CDL of 2.0 × 10−9 M and an LOQ of 5.0 × 10−9 M were found for the determination for diclofenac. A good recovery was obtained for assay spiked urine samples and a good quantification of diclofenac was achieved in a commercial formulation. PMID:22408485

  17. Semiempirical Quantum Chemistry Model for the Lanthanides: RM1 (Recife Model 1) Parameters for Dysprosium, Holmium and Erbium

    PubMed Central

    Filho, Manoel A. M.; Dutra, José Diogo L.; Rocha, Gerd B.; Simas, Alfredo M.; Freire, Ricardo O.

    2014-01-01

    Complexes of dysprosium, holmium, and erbium find many applications as single-molecule magnets, as contrast agents for magnetic resonance imaging, as anti-cancer agents, in optical telecommunications, etc. Therefore, the development of tools that can be proven helpful to complex design is presently an active area of research. In this article, we advance a major improvement to the semiempirical description of lanthanide complexes: the Recife Model 1, RM1, model for the lanthanides, parameterized for the trications of Dy, Ho, and Er. By representing such lanthanide in the RM1 calculation as a three-electron atom with a set of 5 d, 6 s, and 6 p semiempirical orbitals, the accuracy of the previous sparkle models, mainly concentrated on lanthanide-oxygen and lanthanide-nitrogen distances, is extended to other types of bonds in the trication complexes’ coordination polyhedra, such as lanthanide-carbon, lanthanide-chlorine, etc. This is even more important as, for example, lanthanide-carbon atom distances in the coordination polyhedra of the complexes comprise about 30% of all distances for all complexes of Dy, Ho, and Er considered. Our results indicate that the average unsigned mean error for the lanthanide-carbon distances dropped from an average of 0.30 Å, for the sparkle models, to 0.04 Å for the RM1 model for the lanthanides; for a total of 509 such distances for the set of all Dy, Ho, and Er complexes considered. A similar behavior took place for the other distances as well, such as lanthanide-chlorine, lanthanide-bromine, lanthanide, phosphorus and lanthanide-sulfur. Thus, the RM1 model for the lanthanides, being advanced in this article, broadens the range of application of semiempirical models to lanthanide complexes by including comprehensively many other types of bonds not adequately described by the previous models. PMID:24497945

  18. Semiempirical quantum chemistry model for the lanthanides: RM1 (Recife Model 1) parameters for dysprosium, holmium and erbium.

    PubMed

    Filho, Manoel A M; Dutra, José Diogo L; Rocha, Gerd B; Simas, Alfredo M; Freire, Ricardo O

    2014-01-01

    Complexes of dysprosium, holmium, and erbium find many applications as single-molecule magnets, as contrast agents for magnetic resonance imaging, as anti-cancer agents, in optical telecommunications, etc. Therefore, the development of tools that can be proven helpful to complex design is presently an active area of research. In this article, we advance a major improvement to the semiempirical description of lanthanide complexes: the Recife Model 1, RM1, model for the lanthanides, parameterized for the trications of Dy, Ho, and Er. By representing such lanthanide in the RM1 calculation as a three-electron atom with a set of 5 d, 6 s, and 6 p semiempirical orbitals, the accuracy of the previous sparkle models, mainly concentrated on lanthanide-oxygen and lanthanide-nitrogen distances, is extended to other types of bonds in the trication complexes' coordination polyhedra, such as lanthanide-carbon, lanthanide-chlorine, etc. This is even more important as, for example, lanthanide-carbon atom distances in the coordination polyhedra of the complexes comprise about 30% of all distances for all complexes of Dy, Ho, and Er considered. Our results indicate that the average unsigned mean error for the lanthanide-carbon distances dropped from an average of 0.30 Å, for the sparkle models, to 0.04 Å for the RM1 model for the lanthanides; for a total of 509 such distances for the set of all Dy, Ho, and Er complexes considered. A similar behavior took place for the other distances as well, such as lanthanide-chlorine, lanthanide-bromine, lanthanide, phosphorus and lanthanide-sulfur. Thus, the RM1 model for the lanthanides, being advanced in this article, broadens the range of application of semiempirical models to lanthanide complexes by including comprehensively many other types of bonds not adequately described by the previous models. PMID:24497945

  19. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  20. Dysprosium doping induced shape and magnetic anisotropy of Fe3-xDyxO4 (x=0.01-0.1) nanoparticles

    NASA Astrophysics Data System (ADS)

    Jain, Richa; Luthra, Vandna; Gokhale, Shubha

    2016-09-01

    The effect of dysprosium doping on evolution of structural and magnetic properties of magnetite (Fe3O4) nanoparticles is reported. A standard route of co-precipitation was used for the synthesis of undoped and doped magnetite nanoparticles Fe3-xDyxO4 (x=0.0-0.1). Transmission electron microscopy (TEM) shows formation of round shaped particles with diameter in the range of 8-14 nm for undoped sample. On doping beyond x=0.01, the formation of rod like structures is initiated along with the round shaped particles. The number of rods is found to increase with increasing doping concentration. Magnetic characterization using Vibrating Sample Magnetometer (VSM) revealed doping dependent magnetic properties which can be correlated with the crystallite size as determined from X-ray diffraction (XRD). Enhancement in the saturation magnetization in the initial stages of doping can be explained on the basis of incorporation of Dy3+ ions in the inverse spinel structure at the octahedral site in place of Fe3+ ions. Subsequent decrease in saturation magnetization observed beyond x=0.03 could be attributed to precipitation of excess Dy in form of dysprosium ferrite phase.

  1. Slow magnetic relaxation in four square-based pyramidal dysprosium hydroxo clusters ligated by chiral amino acid anions - a comparative study.

    PubMed

    Thielemann, Dominique T; Wagner, Anna T; Lan, Yanhua; Anson, Christopher E; Gamer, Michael T; Powell, Annie K; Roesky, Peter W

    2013-10-01

    The synthesis and characterization of three chiral and one achiral amino acid anion ligated dysprosium hydroxo clusters [Dy5(OH)5(α-AA)4(Ph2acac)6] (α-AA = d-PhGly, l-Pro, l-Trp, Ph2Gly; Ph2acac = dibenzoylmethanide) are reported. The solid state structures were determined using single crystal X-ray diffraction and show that five Dy(iii) ions are arranged in a square-based pyramidal geometry with NO7-donor-sets for the basal and O8-donor-sets for the apical Dy atom. Both static (dc) and dynamic (ac) magnetic properties were investigated for all four compounds and show a slow relaxation of magnetization, indicative of single molecule magnet (SMM) behaviour below 10 K in all cases. The similar SMM behaviour observed for all four compounds suggests that the very similar coordination geometries seen for the dysprosium atoms in all members of this family, which are independent of the amino acid ligand used, play a decisive role in steering the contribution of the single ion anisotropies to the observed magnetic relaxation. PMID:23986134

  2. Dinuclear dysprosium SMMs bridged by a neutral bipyrimidine ligand: two crystal systems that depend on different lattice solvents lead to a distinct slow relaxation behaviour.

    PubMed

    Sun, Wen-Bin; Yan, Bing; Jia, Li-Hui; Wang, Bing-Wu; Yang, Qian; Cheng, Xin; Li, Hong-Feng; Chen, Peng; Wang, Zhe-Ming; Gao, Song

    2016-06-01

    Two dinuclear dysprosium complexes with the Dy(iii) ions bridged by the neutral bipyrimidine (BPYM) ligand were synthesized and magnetically characterized. They crystallized in a monoclinic and triclinic crystal system, respectively, with almost the same structural core, only differing in the lattice solvent molecules. Alternating current (ac) susceptibility measurements revealed that they exhibit significant slow relaxation of magnetization until 25 K in the absence of a dc field. The single and double relaxation processes were assigned to one and two types of Dy(iii) environments in the two dimmers, respectively, with barriers of 266 and 345 K under zero field conditions. The magnetic hysteresis loops of 1 and 2 were both observed up to 2.5 K. PMID:27143486

  3. Another challenge to paramagnetic relaxation theory: a study of paramagnetic proton NMR relaxation in closely related series of pyridine-derivatised dysprosium complexes.

    PubMed

    Rogers, Nicola J; Finney, Katie-Louise N A; Senanayake, P Kanthi; Parker, David

    2016-02-14

    Measurements of the relaxation rate behaviour of two series of dysprosium complexes have been performed in solution, over the field range 1.0 to 16.5 Tesla. The field dependence has been modelled using Bloch-Redfield-Wangsness theory, allowing estimates of the electronic relaxation time, T1e, and the size of the magnetic susceptibility, μeff, to be made. Changes in relaxation rate of the order of 50% at higher fields were measured, following variation of the para-substituent in the single pyridine donor. The magnetic susceptibilities deviated unexpectedly from the free-ion values for certain derivatives in each series examined, in a manner that was independent of the electron-releasing/withdrawing ability of the pyridine substituent, suggesting that the polarisability of just one pyridine donor in octadenate ligands can play a significant role in defining the magnetic susceptibility anisotropy. PMID:26792243

  4. New Family of Lanthanide-Based Complexes with Different Scorpionate-Type Ligands: A Rare Case Where Dysprosium and Ytterbium Analogues Display Single-Ion-Magnet Behavior.

    PubMed

    Lannes, Anthony; Luneau, Dominique

    2015-07-20

    A new family of lanthanide complexes [Ln(Tpz)2Bpz]·xCH2Cl2 (Ln = Gd, Tb, Dy, Ho, x = 0.5; Ln = Yb, x = 1; Tpz = hydrotris(pyrazolyl)borate; Bpz = dihydrobis(pyrazolyl)borate) has been synthesized. Those complexes have been characterized by single-crystal X-ray diffraction, and the magnetic properties have been investigated. Both dysprosium and ytterbium analogues display single-ion-magnet behavior, despite the difference in their spatial distribution of 4f electronic charges. Theoretical calculations with crystal field parameters have been carried out to gain better insight of the relaxation pathways that may be involved in those two complexes. PMID:26132295

  5. Single-molecule magnet behavior in an octanuclear dysprosium(iii) aggregate inherited from helical triangular Dy3 SMM-building blocks.

    PubMed

    Zhang, Li; Zhang, Peng; Zhao, Lang; Wu, Jianfeng; Guo, Mei; Tang, Jinkui

    2016-06-28

    An unprecedented octanuclear dysprosium(iii) cluster with the formula [Dy8L6(μ3-OH)4(μ2-CH3O)2(CH3OH)6(H2O)2]·6H2O·10CH3OH·2CH3CN () based on a nonlinearly tritopic aroylhydrazone ligand H3L has been isolated, realizing the successful linking of pairwise interesting triangular Dy3 SMMs. It is noteworthy that two enantiomers (Λ and Δ configurations) individually behaving as a coordination-induced chirality presented in the Dy3 helicate are connected in the meso Dy8 cluster. Remarkably, alternating-current magnetic susceptibility measurements revealed that the Dy8 cluster shows typical SMM behavior inherited from its Dy3 helical precursor. It is one of the rare polynuclear Lnn SMMs (n > 7) under zero dc field. PMID:27231152

  6. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  7. Stable isotope studies

    SciTech Connect

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

  8. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  9. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  10. METHOD OF ISOTOPE CONCENTRATION

    DOEpatents

    Spevack, J.S.

    1957-04-01

    An isotope concentration process is described which consists of exchanging, at two or more different temperature stages, two isotopes of an element between substances that are physically separate from each other and each of which is capable of containing either of the isotopes, and withdrawing from a point between at least two of the temperatare stages one of the substances containing an increased concentration of the desired isotope.

  11. Single-Molecule-Magnet Behavior in a [2 × 2] Grid Dy(III)4 Cluster and a Dysprosium-Doped Y(III)4 Cluster.

    PubMed

    Guo, Peng-Hu; Liu, Jiang; Wu, Zi-Hao; Yan, Hua; Chen, Yan-Cong; Jia, Jian-Hua; Tong, Ming-Liang

    2015-08-17

    Thanks to the MeCN hydrolysis in situ reaction, a [2 × 2] square grid Dy(III)4 cluster based on a polypyridyl triazolate ligand, [Dy4(OH)2(bpt)4(NO3)4(OAc)2] (1), was separated successfully and characterized through single-crystal X-ray diffraction and SQUID magnetometry. The frequency-dependent signals in the out-of-phase component of the susceptibility associated with slow relaxation of the magnetization confirmed that complex 1 displays single-molecule magnet (SMM) behavior. Two distinct slow magnetic relaxation processes, with effective energy barriers Ueff1 = 93 cm(-1) for fast relaxation and Ueff2 = 143 cm(-1) for slow relaxation observed under a zero direct-current field, are mainly attributed to the origin of single-ion behavior, which can be further acknowledged by the magnetic investigation of a dysprosium-doped yttrium cluster. Besides, it should be noted that complex 1 represents so far the highest energy barrier among the pure Dy(III)4 SMMs. PMID:26247713

  12. Dual-mode T1 and T2 magnetic resonance imaging contrast agent based on ultrasmall mixed gadolinium-dysprosium oxide nanoparticles: synthesis, characterization, and in vivo application.

    PubMed

    Tegafaw, Tirusew; Xu, Wenlong; Ahmad, Md Wasi; Baeck, Jong Su; Chang, Yongmin; Bae, Ji Eun; Chae, Kwon Seok; Kim, Tae Jeong; Lee, Gang Ho

    2015-09-11

    A new type of dual-mode T1 and T2 magnetic resonance imaging (MRI) contrast agent based on mixed lanthanide oxide nanoparticles was synthesized. Gd(3+) ((8)S7/2) plays an important role in T1 MRI contrast agents because of its large electron spin magnetic moment resulting from its seven unpaired 4f-electrons, and Dy(3+) ((6)H15/2) has the potential to be used in T2 MRI contrast agents because of its very large total electron magnetic moment: among lanthanide oxide nanoparticles, Dy2O3 nanoparticles have the largest magnetic moments at room temperature. Using these properties of Gd(3+) and Dy(3+) and their oxide nanoparticles, ultrasmall mixed gadolinium-dysprosium oxide (GDO) nanoparticles were synthesized and their potential to act as a dual-mode T1 and T2 MRI contrast agent was investigated in vitro and in vivo. The D-glucuronic acid coated GDO nanoparticles (davg = 1.0 nm) showed large r1 and r2 values (r2/r1 ≈ 6.6) and as a result clear dose-dependent contrast enhancements in R1 and R2 map images. Finally, the dual-mode imaging capability of the nanoparticles was confirmed by obtaining in vivo T1 and T2 MR images. PMID:26291827

  13. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  14. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  15. Zirconium isotope separation

    SciTech Connect

    Siddall, M.B.

    1984-12-11

    A method of separating zirconium isotopes by converting the zirconium to its iodide salt prior to separation by usual isotope methods is disclosed. After separation the desired isotopes are converted from the salt to the metal by the van Arkel-de Boer iodide process.

  16. Statistical clumped isotope signatures.

    PubMed

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  17. ISOTOPE CONVERSION DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

    1957-12-01

    This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

  18. Isotopically controlled semiconductors

    SciTech Connect

    Haller, Eugene E.

    2001-12-21

    Semiconductor bulk crystals and multilayer structures with controlled isotopic composition have attracted much scientific and technical interest in the past few years. Isotopic composition affects a large number of physical properties, including phonon energies and lifetimes, bandgaps, the thermal conductivity and expansion coefficient and spin-related effects. Isotope superlattices are ideal media for self-diffusion studies. In combination with neutron transmutation doping, isotope control offers a novel approach to metal-insulator transition studies. Spintronics, quantum computing and nanoparticle science are emerging fields using isotope control.

  19. Capillary microextraction combined with fluorinating assisted electrothermal vaporization inductively coupled plasma optical emission spectrometry for the determination of trace lanthanum, europium, dysprosium and yttrium in human hair.

    PubMed

    Wu, Shaowei; Hu, Chengguo; He, Man; Chen, Beibei; Hu, Bin

    2013-10-15

    In this work, a congo red modified single wall carbon nanotubes (CR-SWCNTs) coated fused-silica capillary was prepared and used for capillary microextraction (CME) of trace amounts of lanthanum (La), europium (Eu), dysprosium (Dy) and yttrium (Y) in human hair followed by fluorinating assisted electrothermal vaporization-inductively coupled plasma-optical emission spectrometry (FETV-ICP-OES) determination. The adsorption properties and stability of the prepared CR-SWCNTs coated capillary along with the various factors affecting the separation/preconcentration of La, Eu, Dy and Y by CME were investigated in detail. Under the optimized conditions, with a consumption of 2 mL sample solution, a theoretical enrichment factor of 50 and a detection limit (3σ) of 0.12 ng mL(-1) for La, 0.03 ng mL(-1) for Eu, 0.11 ng mL(-1) for Dy and 0.03 ng mL(-1) for Y were obtained, respectively. The preparation reproducibility of the CR-SWCNTs coated capillary was investigated and the relative standard deviations (RSDs) were ranging from 4.1% (Eu) to 4.4% (La) (CLa, Dy=1.4 ng mL(-1); CY, Eu=0.25 ng mL(-1), n=7) in one batch, and from 5.7% (Eu) to 6.1% (Y) (CLa, Dy=1.4 ng mL(-1); CY, Eu=0.25 ng mL(-1), n=5) among different batches. The proposed method was applied to the analysis of real-world human hair sample and the recoveries for the spiked sample were in the range of 93-105%. The method was also applied to the determination of La, Eu, Dy and Y in Certified Reference Material of GBW07601 human hair, and the determined values were in good agreement with the certified values. PMID:24054601

  20. Hybrid isotope separation scheme

    DOEpatents

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

  1. HYDROGEN ISOTOPE TARGETS

    DOEpatents

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  2. Hybrid isotope separation scheme

    DOEpatents

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus. 2 figures.

  3. The DOE Isotopes Program

    NASA Astrophysics Data System (ADS)

    Gillo, Jehannes

    2015-10-01

    The DOE Isotope Program is a small federal program with a great deal of impact and is managed by the DOE Office of Nuclear Physics. The Isotope Program has been managed by the Office of Nuclear Physics since 2009, and since that time, has been re-defined in terms of mission, scope and operations. The program produces critical isotopes that are in short supply or simply unavailable from elsewhere to facilitate research and applications. Research is also supported to develop or improve production techniques that will increase availability of isotopes in high demand, such as alpha emitters for cancer therapy.

  4. Isotopically engineered semiconductors

    NASA Astrophysics Data System (ADS)

    Haller, E. E.

    1995-04-01

    Scientific interest, technological promise, and increased availability of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This review of mostly recent activities begins with an introduction to some past classical experiments which have been performed on isotopically controlled semiconductors. A review of the natural isotopic composition of the relevant elements follows. Some materials aspects resulting in part from the high costs of enriched isotopes are discussed next. Raman spectroscopy studies with a number of isotopically pure and deliberately mixed Ge bulk crystals show that the Brillouin-zone-center optical phonons are not localized. Their lifetime is almost independent of isotopic disorder, leading to homogeneous Raman line broadening. Studies with short period isotope superlattices consisting of alternating layers of n atomic planes of 70Ge and 74Ge reveal a host of zone-center phonons due to Brillouin-zone folding. At n≳40 one observes two phonon lines at frequencies corresponding to the bulk values of the two isotopes. In natural diamond, isotope scattering of the low-energy phonons, which are responsible for the thermal conductivity, is very strongly affected by small isotope disorder. Isotopically pure 12C diamond crystals exhibit thermal conductivities as high as 410 W cm-1 K-1 at 104 K, leading to projected values of over 2000 W cm-1 K-1 near 80 K. The changes in phonon properties with isotopic composition also weakly affect the electronic band structures and the lattice constants. The latter isotope dependence is most relevant for future standards of length based on crystal lattice constants. Capture of thermal neutrons by isotope nuclei followed by nuclear decay produces new elements, resulting in a very large number of possibilities for isotope selective doping of semiconductors. This neutron transmutation of isotope nuclei, already used

  5. Intracellular Cadmium Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  6. Discovery of the krypton isotopes

    SciTech Connect

    Heim, M.; Fritsch, A.; Schuh, A.; Shore, A.; Thoennessen, M.

    2010-07-15

    Thirty-two krypton isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  7. (Carbon isotope fractionation inplants)

    SciTech Connect

    O'Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  8. Detecting isotopic ratio outliers

    SciTech Connect

    Bayne, C.K.; Smith, D.H.

    1985-01-01

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers. 6 refs., 3 figs., 3 tabs.

  9. Photochemical isotope separation

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  10. Laser isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  11. Photochemical isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  12. Discovery of Isotopes

    NASA Astrophysics Data System (ADS)

    May, Erin; Thoennessen, Michael

    2011-10-01

    To date, no comprehensive study has been undertaken regarding the initial detection and identification of isotopes. At NSCL, a project has been initiated to catalog and report the initial observation of every isotope. The conditions characterizing the successful discovery of an isotope include a clear and unambiguous mass and element identification through decay curves, mass spectroscopy, gamma-ray spectra, and/or relationships to other isotopes, as well as the publication of such findings in a refereed journal. I will present the documentation for eight elements: cesium, lanthanum, praseodymium, promethium, samarium, europium, gadolinium, and terbium. The year and author of each initial publication along with the location and methods of production and identification will be shown. A summary and overview of all ~3000 isotopes documented so far as a function of discovery year, method and place will also be presented.

  13. Laser isotope separation

    DOEpatents

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  14. Dysprosium(III) complexes with a square-antiprism configuration featuring mononuclear single-molecule magnetic behaviours based on different β-diketonate ligands and auxiliary ligands.

    PubMed

    Zhang, Sheng; Ke, Hongshan; Shi, Quan; Zhang, Jangwei; Yang, Qi; Wei, Qing; Xie, Gang; Wang, Wenyuan; Yang, Desuo; Chen, Sanping

    2016-03-28

    Three mononuclear dysprosium(III) complexes derived from three β-diketonate ligands, 4,4,4-trifluoro-1-(4-methylphenyl)-1,3-butanedione (tfmb), 4,4,4-trifluoro-1-(4-fluorophenyl)-1,3-butanedione (tffb) and 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedione (tfnb) as well as auxiliary ligands, 5-nitro-1,10-phenanthroline (5-NO2-Phen), DMF and 2,2'-bipyridine (bpy) have been synthesized and structurally characterized, namely [Dy(5-NO2-Phen)(tfmb)3] (1), [Dy(DMF)2(tffb)3] (2) and [Dy(bpy)2(tfnb)3]·0.5(1,4-dioxane) (3). The metal ions in 1-3 adopt an approximately square-antiprismatic (SAP) coordination environment with D4d axial symmetry. The magnetic properties of 1-3 have been investigated, displaying weak out-of-phase AC signals under a zero-DC field. With an applied DC field of 1200 Oe, the quantum tunnelling of the magnetization was suppressed in 1-3 with the pre-exponential factor τ0 = 5.3 × 10(-7) s and the effective barrier ΔE/kB = 83 K for 1 as well as the pre-exponential factor τ0 = 3.09 × 10(-7) s and the effective barrier ΔE/kB = 39 K for 3. Interestingly, for the frequency dependence of the out-of-phase (χ'') of the AC susceptibility of 2, two slow relaxation of the magnetization processes occurred under the applied magnetic field of 1200 Oe, corresponding to the fast relaxation (FR) phase and slow relaxation (SR) phase, respectively. Arrhenius analysis gave the effective energy barrier (ΔE/kB) of 55 K and the pre-exponential factor (τ0) of 8.23 × 10(-12) for the SR. It is thus very likely that the FR process in complex 2 results from QTM enhanced by dipolar interactions between the Dy ions or the presence of the applied field. The structure-property relationship of some Dy(III) based mononuclear SMMs with the SAP configuration was further discussed. PMID:26902879

  15. Isotopically controlled semiconductors

    SciTech Connect

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  16. ISOTOPE SEPARATING APPARATUS

    DOEpatents

    Kudravetz, M.K.; Greene, H.B.

    1958-09-16

    This patent relates to control systems for a calutron and, in particular, describes an electro-mechanical system for interrupting the collection of charged particles when the ratio between the two isotopes being receivcd deviates from a predetermined value. One embodiment of the invention includes means responsive to the ratio between two isotopes being received for opening a normally closed shutter over the receiver entrance when the isotope ratio is the desired value. In another form of the invention the collection operation is interrupted by changing the beam accelerating voltage to deflect the ion beam away from the receiver.

  17. Carbon isotope techniques

    SciTech Connect

    Coleman, D.C. ); Fry, B. )

    1991-01-01

    This book is a hands-on introduction to using carbon isotope tracers in experimental biology and ecology. It is a bench-top reference with protocols for the study of plants, animals, and soils. The {sup 11}C, {sup 12}C, {sup 13}C, and {sup 14}C carbon isotopes are considered and standard techniques are described by established authors. The compilation includes the following features: specific, well-established, user-oriented techniques; carbon cycles in plants, animals, soils, air, and water; isotopes in ecological research; examples and sample calculations.

  18. Oxygen isotope cosmothermometer.

    NASA Technical Reports Server (NTRS)

    Onuma, N.; Clayton, R. N.; Mayeda, T. K.

    1972-01-01

    Variations in oxygen isotopic abundances of meteoritic minerals, chondrules, whole meteorites, and planets are discussed in terms of a model involving isotopic exchange between primordial dust and a cooling solar nebular gas. From the temperature-dependence of the isotopic fractionation factors, temperatures have been assigned to the processes of initial condensation, chondrule formation, and planetary accretion. Separated phases from carbonaceous chondrites fall into three isotopic groups representing widely differing conditions of formation: (1) low-iron olivine and pyroxene, and calcium-aluminum silicates condensed at temperatures above 1000 K; (2) high-iron olivine and pyroxene melted to form chondrules after prior cooling and exchange to temperatures of 530-620 K; and (3) hydrous silicates condensed at temperatures below 400 K.

  19. Stable isotopes in mineralogy

    USGS Publications Warehouse

    O'Neil, J.R.

    1977-01-01

    Stable isotope fractionations between minerals are functions of the fundamental vibrational frequencies of the minerals and therefore bear on several topics of mineralogical interest. Isotopic compositions of the elements H, C, O, Si, and S can now be determined routinely in almost any mineral. A summary has been made of both published and new results of laboratory investigations, analyses of natural materials, and theoretical considerations which bear on the importance of temperature, pressure, chemical composition and crystal structure to the isotopic properties of minerals. It is shown that stable isotope studies can sometimes provide evidence for elucidating details of crystal structure and can be a powerful tool for use in tracing the reaction paths of mineralogical reactions. ?? 1977 Springer-Verlag.

  20. Perchlorate isotope forensics

    USGS Publications Warehouse

    Böhlke, J.K.; Sturchio, N.C.; Gu, B.; Horita, J.; Brown, G.M.; Jackson, W.A.; Batista, J.; Hatzinger, P.B.

    2005-01-01

    Perchlorate has been detected recently in a variety of soils, waters, plants, and food products at levels that may be detrimental to human health. These discoveries have generated considerable interest in perchlorate source identification. In this study, comprehensive stable isotope analyses ( 37Cl/35Cl and 18O/17O/ 16O) of perchlorate from known synthetic and natural sources reveal systematic differences in isotopic characteristics that are related to the formation mechanisms. In addition, isotopic analyses of perchlorate extracted from groundwater and surface water demonstrate the feasibility of identifying perchlorate sources in contaminated environments on the basis of this technique. Both natural and synthetic sources of perchlorate have been identified in water samples from some perchlorate occurrences in the United States by the isotopic method. ?? 2005 American Chemical Society.

  1. Rare Isotope Accelerators

    NASA Astrophysics Data System (ADS)

    Savard, Guy

    2002-04-01

    The next frontier for low-energy nuclear physics involves experimentation with accelerated beams of short-lived radioactive isotopes. A new facility, the Rare Isotope Accelerator (RIA), is proposed to produce large amount of these rare isotopes and post-accelerate them to energies relevant for studies in nuclear physics, astrophysics and the study of fundamental interactions at low energy. The basic science motivation for this facility will be introduced. The general facility layout, from the 400 kW heavy-ion superconducting linac used for production of the required isotopes to the novel production and extraction schemes and the highly efficient post-accelerator, will be presented. Special emphasis will be put on a number of technical breakthroughs and recent R&D results that enable this new facility.

  2. Isotopically controlled semiconductors

    SciTech Connect

    Haller, E.E.

    2004-11-15

    A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of Solid State Communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.

  3. Oxygen Isotopes in Meteorites

    NASA Astrophysics Data System (ADS)

    Clayton, R. N.

    2003-12-01

    Oxygen isotope abundance variations in meteorites are very useful in elucidating chemical and physical processes that occurred during the formation of the solar system (Clayton, 1993). On Earth, the mean abundances of the three stable isotopes are 16O: 99.76%, 17O: 0.039%, and 18O: 0.202%. It is conventional to express variations in abundances of the isotopes in terms of isotopic ratios, relative to an arbitrary standard, called SMOW (for standard mean ocean water), as follows:The isotopic composition of any sample can then be represented by one point on a "three-isotope plot," a graph of δ17O versus δ18O. It will be seen that such plots are invaluable in interpreting meteoritic data. Figure 1 shows schematically the effect of various processes on an initial composition at the center of the diagram. Almost all terrestrial materials lie along a "fractionation" trend; most meteoritic materials lie near a line of "16O addition" (or subtraction). (4K)Figure 1. Schematic representation of various isotopic processes shown on an oxygen three-isotope plot. Almost all terrestrial materials plot along a line of "fractionation"; most primitive meteoritic materials plot near a line of "16O addition." The three isotopes of oxygen are produced by nucleosynthesis in stars, but by different nuclear processes in different stellar environments. The principal isotope, 16O, is a primary isotope (capable of being produced from hydrogen and helium alone), formed in massive stars (>10 solar masses), and ejected by supernova explosions. The two rare isotopes are secondary nuclei (produced in stars from nuclei formed in an earlier generation of stars), with 17O coming primarily from low- and intermediate-mass stars (<8 solar masses), and 18O coming primarily from high-mass stars (Prantzos et al., 1996). These differences in type of stellar source result in large observable variations in stellar isotopic abundances as functions of age, size, metallicity, and galactic location ( Prantzos

  4. The isotopic distribution conundrum.

    PubMed

    Valkenborg, Dirk; Mertens, Inge; Lemière, Filip; Witters, Erwin; Burzykowski, Tomasz

    2012-01-01

    Although access to high-resolution mass spectrometry (MS), especially in the field of biomolecular MS, is becoming readily available due to recent advances in MS technology, the accompanied information on isotopic distribution in high-resolution spectra is not used at its full potential, mainly because of lack of knowledge and/or awareness. In this review, we give an insight into the practical problems related to calculating the isotopic distribution for large biomolecules, and present an overview of methods for the calculation of the isotopic distribution. We discuss the key events that triggered the development of various algorithms and explain the rationale of how and why the various isotopic-distribution calculations were performed. The review is focused around the developmental stages as briefly outlined below, starting with the first observation of an isotopic distribution. The observations of Beynon in the field of organic MS that chlorine appeared in a mass spectrum as two variants with odds 3:1 lie at the basis of the first wave of algorithms for the calculation of the isotopic distribution, based on the atomic composition of a molecule. From here on, we explain why more complex biomolecules such as peptides exhibit a highly complex isotope pattern when assayed by MS, and we discuss how combinatorial difficulties complicate the calculation of the isotopic distribution on computers. For this purpose, we highlight three methods, which were introduced in the 1980s. These are the stepwise procedure introduced by Kubinyi, the polynomial expansion from Brownawell and Fillippo, and the multinomial expansion from Yergey. The next development was instigated by Rockwood, who suggested to decompose the isotopic distribution in terms of their nucleon count instead of the exact mass. In this respect, we could claim that the term "aggregated" isotopic distribution is more appropriate. Due to the simplification of the isotopic distribution to its aggregated counterpart

  5. Extension of the energy range of the experimental activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium up to 65MeV.

    PubMed

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-04-01

    Activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium were extended up to 65MeV by using stacked foil irradiation and gamma spectrometry experimental methods. Experimental cross-sections data for the formation of the radionuclides (159)Dy, (157)Dy, (155)Dy, (161)Tb, (160)Tb, (156)Tb, (155)Tb, (154m2)Tb, (154m1)Tb, (154g)Tb, (153)Tb, (152)Tb and (151)Tb are reported in the 36-65MeV energy range, and compared with an old dataset from 1964. The experimental data were also compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS nuclear reaction model code as listed in the latest on-line libraries TENDL 2013. PMID:25644082

  6. Physicochemical isotope anomalies

    SciTech Connect

    Esat, T.M.

    1988-06-01

    Isotopic composition of refractory elements can be modified, by physical processes such as distillation and sputtering, in unexpected patterns. Distillation enriches the heavy isotopes in the residue and the light isotopes in the vapor. However, current models appear to be inadequate to describe the detailed mass dependence, in particular for large fractionations. Coarse- and fine-grained inclusions from the Allende meteorite exhibit correlated isotope effects in Mg both as mass-dependent fractionation and residual anomalies. This isotope pattern can be duplicated by high temperature distillation in the laboratory. A ubiquitous property of meteoritic inclusions for Mg as well as for most of the other elements, where measurements exist, is mass-dependent fractionation. In contrast, terrestrial materials such as microtektites, tektite buttons as well as lunar orange and green glass spheres have normal Mg isotopic composition. A subset of interplanetary dust particles labelled as chondritic aggregates exhibit excesses in {sup 26}Mg and deuterium anomalies. Sputtering is expected to be a dominant mechanism in the destruction of grains within interstellar dust clouds. An active proto-sun as well as the present solar-wind and solar-flare flux are of sufficient intensity to sputter significant amounts of material. Laboratory experiments in Mg show widespread isotope effects including residual {sup 26}Mg excesses and mass dependent fractionation. It is possible that the {sup 26}Mg excesses in interplanetary dust is related to sputtering by energetic solar-wind particles. The implication if the laboratory distillation and sputtering effects are discussed and contrasted with the anomalies in meteoritic inclusions the other extraterrestrial materials the authors have access to.

  7. Separation of sulfur isotopes

    DOEpatents

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  8. Isotopic geochemistry and cosmochemistry

    NASA Astrophysics Data System (ADS)

    Shchukoliukov, Iu. A.

    The book includes recent information on isotope geology, geochemistry, and cosmochemistry, discussed at a recent Soviet-Japanese symposium (at Irkutsk, USSR). Attention is given to numerical modeling of geochronometric systems, a classification of noble-gas components in the earth's interior, the feasibility of using ion microprobe for local isotope analysis of zircons for the purpose of deriving the early history of the earth (on the example of the Novopavlovsk complex from the Ukranian shield), a geological and geochronological study of the Ganalski complex of Kamchatka, and strontium isotopes as a criterion of the nature of acid melts (i.e., mantle- or crust-related). Other papers are on the geochronology and geology of Siberian kimberlites, the nature of sulfur from effusive rocks of the Kamchatka-Kuril-Japan island arc, mass-spectrometric studies of volatile components in exocontact rocks of alkaline-basic intrusions, and an analytical method for stable-isotope analysis in ultrasmall amounts of CO2 and its application to studies of the microscale isotopic zoning in calcite and graphite crystals in marble.

  9. Transportation of medical isotopes

    SciTech Connect

    Nielsen, D.L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  10. The magnetocaloric effect in dysprosium

    NASA Technical Reports Server (NTRS)

    Benford, S. M.

    1979-01-01

    The magnetocaloric effect in polycrystalline Dy was measured in the 84-280-K range in measuring fields from 1 to 7 T. These adiabatic temperature changes reflect structural changes in Dy with applied field and temperature, and include the first magnetocaloric data for a helical antiferromagnet. Above the Neel point (179 K) a field increase always caused heating; below the Neel point fields less than about 2 T cause cooling for some values of initial temperature. The largest temperature increase with a 7 T field occurs at the Neel point and at fields below 2 T near the Curie point. For refrigeration purposes the optimal working region for a Dy cooling element is field dependent.

  11. Isotope separation apparatus

    DOEpatents

    Arnush, Donald; MacKenzie, Kenneth R.; Wuerker, Ralph F.

    1980-01-01

    Isotope separation apparatus consisting of a plurality of cells disposed adjacent to each other in an evacuated container. A common magnetic field is established extending through all of the cells. A source of energetic electrons at one end of the container generates electrons which pass through the cells along the magnetic field lines. Each cell includes an array of collector plates arranged in parallel or in tandem within a common magnetic field. Sets of collector plates are disposed adjacent to each other in each cell. Means are provided for differentially energizing ions of a desired isotope by applying energy at the cyclotron resonant frequency of the desired isotope. As a result, the energized desired ions are preferentially collected by the collector plates.

  12. Atomic Weights and Isotopic Compositions

    National Institute of Standards and Technology Data Gateway

    SRD 144 Atomic Weights and Isotopic Compositions (Web, free access)   The atomic weights are available for elements 1 through 111, and isotopic compositions or abundances are given when appropriate.

  13. DEEP WATER ISOTOPIC CURRENT ANALYZER

    DOEpatents

    Johnston, W.H.

    1964-04-21

    A deepwater isotopic current analyzer, which employs radioactive isotopes for measurement of ocean currents at various levels beneath the sea, is described. The apparatus, which can determine the direction and velocity of liquid currents, comprises a shaft having a plurality of radiation detectors extending equidistant radially therefrom, means for releasing radioactive isotopes from the shaft, and means for determining the time required for the isotope to reach a particular detector. (AEC)

  14. Nonbiological fractionation of iron isotopes

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Roe, J. E.; Barling, J.; Nealson, K. H.

    2000-01-01

    Laboratory experiments demonstrate that iron isotopes can be chemically fractionated in the absence of biology. Isotopic variations comparable to those seen during microbially mediated reduction of ferrihydrite are observed. Fractionation may occur in aqueous solution during equilibration between inorganic iron complexes. These findings provide insight into the mechanisms of iron isotope fractionation and suggest that nonbiological processes may contribute to iron isotope variations observed in sediments.

  15. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  16. Uranium Isotopic Analysis with the FRAM Isotopic Analysis Code

    SciTech Connect

    Duc T. Vo; Thomas E. Sampson

    1999-05-01

    FRAM is the acronym for Fixed-energy Response-function Analysis with Multiple efficiency. This software was developed at Los Alamos National Laboratory originally for plutonium isotopic analysis. Later, it was adapted for uranium isotopic analysis in addition to plutonium. It is a code based on a self-calibration using several gamma-ray peaks for determining the isotopic ratios. The versatile-parameter database structure governs all facets of the data analysis. User editing of the parameter sets allows great flexibility in handling data with different isotopic distributions, interfering isotopes, and different acquisition parameters such as energy calibration and detector type.

  17. Carbon Isotope Ratiometer

    SciTech Connect

    Dr. Anthony O'Keefe

    2001-05-07

    This Report details the design of a optical analyzer capable of measuring and recording the carbon 13/12 isotope ratio in atmospheric carbon dioxide. The system can operate in remote modes for long duration and will transmit real-time data via wireless contact.

  18. Sulfur isotopic data

    SciTech Connect

    Rye, R.O.

    1987-01-01

    Preliminary sulfur isotope data have been determined for samples of the Vermillion Creek coal bed and associated rocks in the Vermillion Creek basin and for samples of evaporites collected from Jurassic and Triassic formations that crop out in the nearby Uinta Mountains. The data are inconclusive, but it is likely that the sulfur in the coal was derived from the evaporites.

  19. Forensic Stable Isotope Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  20. Water isotopes in desiccating lichens

    PubMed Central

    Cuntz, Matthias; Máguas, Cristina; Lakatos, Michael

    2009-01-01

    The stable isotopic composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in non-vascular, poikilohydric organisms such as lichens and bryophytes. To understand basic isotope exchange processes of non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrate with the isotopic composition of surrounding water vapour. A model was developed as a proof of concept that accounts for the specific water relations of these poikilohydric organisms. The approach incorporates first their variable thallus water potential and second a compartmentation of the thallus water into two isotopically distinct but connected water pools. Moreover, the results represent first steps towards the development of poikilohydric organisms as a recorder of ambient vapour isotopic composition. PMID:19888598

  1. Water isotopes in desiccating lichens.

    PubMed

    Hartard, Britta; Cuntz, Matthias; Máguas, Cristina; Lakatos, Michael

    2009-12-01

    The stable isotopic composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in non-vascular, poikilohydric organisms such as lichens and bryophytes. To understand basic isotope exchange processes of non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrate with the isotopic composition of surrounding water vapour. A model was developed as a proof of concept that accounts for the specific water relations of these poikilohydric organisms. The approach incorporates first their variable thallus water potential and second a compartmentation of the thallus water into two isotopically distinct but connected water pools. Moreover, the results represent first steps towards the development of poikilohydric organisms as a recorder of ambient vapour isotopic composition. PMID:19888598

  2. Selenium isotope analysis

    SciTech Connect

    Webster, C.L. Jr.; Warren, C.G.

    1981-01-01

    The isotope ratio of selenium-80 to selenium-74 was determined on an isotope ratio mass spectrometer. Samples of 2 to 4 mg of selenium were fluorinated with CoF/sub 3/ in a small disposable copper bomb. The product, SeF/sub 6/, was purified in a vacuum line by distillation. The /sup 80/Se//sup 74/Se ratio was determined on a double-collector mass spectrometer that was modified to collect either /sup 82/Se-/sup 80/Se or /sup 80/Se-/sup 74/Se ion pairs. The standard deviation of the difference between two individually fluorinated samples was about 1 per mil. Because essentially all the error was associated with the fluorination step, comparisons between a standard of SeF/sub 6/ and individually fluorinated samples can be expected to have a standard deviation of about 0.5 per mil.

  3. New Isotope 263Hs

    SciTech Connect

    Dragojevic, I.; Gregorich, K.E.; Dullmann, Ch.E.; Dvorak, J.; Ellison, P.A.; Gates, J.M.; Nelson, S.L.; Stavsetra, L.; Nitsche, H.

    2010-03-16

    A new isotope of Hs was produced in the reaction 208Pb(56Fe, n)263Hs at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. Six genetically correlated nuclear decay chains have been observed and assigned to the new isotope 263Hs. The measured cross section was 21+13-8.4 pb at 276.4 MeV lab-frame center-of-target beam energy. 263Hs decays with a half-life of 0.74 ms by alpha-decay and the measured alpha-particle energies are 10.57 +- 0.06, 10.72 +- 0.06, and 10.89 +- 0.06 MeV. The experimental cross section is compared to a theoretical prediction based on the Fusion by Diffusion model [W. J. Swiatecki et al., Phys. Rev. C 71, 014602 (2005)].

  4. Iron isotope biosignatures

    NASA Technical Reports Server (NTRS)

    Beard, B. L.; Johnson, C. M.; Cox, L.; Sun, H.; Nealson, K. H.; Aguilar, C.

    1999-01-01

    The (56)Fe/(54)Fe of Fe-bearing phases precipitated in sedimentary environments varies by 2.5 per mil (delta(56)Fe values of +0.9 to -1. 6 per mil). In contrast, the (56)Fe/(54)Fe of Fe-bearing phases in igneous rocks from Earth and the moon does not vary measurably (delta(56)Fe = 0.0 +/- 0.3 per mil). Experiments with dissimilatory Fe-reducing bacteria of the genus Shewanella algae grown on a ferrihydrite substrate indicate that the delta(56)Fe of ferrous Fe in solution is isotopically lighter than the ferrihydrite substrate by 1.3 per mil. Therefore, the range in delta(56)Fe values of sedimentary rocks may reflect biogenic fractionation, and the isotopic composition of Fe may be used to trace the distribution of microorganisms in modern and ancient Earth.

  5. Isotope shift in chromium

    NASA Astrophysics Data System (ADS)

    Furmann, B.; Jarosz, A.; Stefańska, D.; Dembczyński, J.; Stachowska, E.

    2005-01-01

    Thirty-three spectral lines of chromium atom in the blue-violet region (425-465 nm) have been investigated with the method of laser-induced resonance fluorescence on an atomic beam. For all the lines, the isotope shifts for every pair of chromium isotopes have been determined. The lines can be divided into six groups, according to the configuration of the upper and lower levels. Electronic factors of the field shift and the specific mass shift ( Fik and MikSMS, respectively) have been evaluated and the values for each pure configuration involved have been determined. Comparison of the values Fik and MikSMS to the ab initio calculations results has been performed. The presence of crossed second order (CSO) effects has been observed.

  6. ISOTOPE SEPARATING APPARATUS CONTROL

    DOEpatents

    Barnes, S.W.

    1959-08-25

    An improved isotope separating apparatus of the electromagnetic type, commonly referred to as a calutron, is described. Improvements in detecting and maintaining optimum position and focus of the ion beam are given. The calutron collector is provided with an additional electrode insulated from and positioned between the collecting pockets. The ion beams are properly positioned and focused until the deionizing current which flows from ground to this additional electrode ts a minimum.

  7. Stable isotope laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Becker, J. F.; Yaldaei, Ramil; Mckay, Christopher P.

    1989-01-01

    Recent advances in semiconductor laser technology have produced a reliable lightweight device ideally suited for a spacecraft high resolution molecular spectrometer. Lead-salt tunable diode lasers (TDL) emit in several spectral modes, each with a very narrow linewidth of -0.0003/cm. This spectral resolution is much narrower than typical Doppler broadened molecular linewidths in the mid-IR range. Thus it is possible to detect individual rotational lines within the vibrational band and measure their intensity, which can be used to determine gas concentration. The narrow spectral lines of any impurity gas tend to lie between the narrow lines of the gas of interest. This represents a major advantage over the accepted gas chromatograph mass spectrometer (GCMS) technique for measuring gas concentrations and isotope ratios. The careful and extensive gas purification procedures required to remove impurities for reliable GCMS measurements will not be required for an IR laser gas analysis. The infrared laser gas analysis technique is being developed to measure stable isotopic ratios of gases such as CO2, CH4, N2O, and NH3. This will eventually lead to development of instruments capable of in situ istopic measurements on planets such as Mars. The carbon (C-12, C-13) isotope ratio is indicative of the type of carbon fixation mechanisms (e.g., photosynthesis, respiration) in operation on a planet, while the nitrogen (N-14, N-15) isotope ratio can probably be used to date nitrogen-bearing Martian samples. The absorbance ratio of two adjacent lines of CO2 in the 2300/cm (4.3 micron) region of the spectrum was measured. The precision of the measurement is presently better than 1 percent and significant improvement is anticipated as rapid sweep-integration techniques and computer controlled data acquistion capabilities are incorporated.

  8. Stable isotope laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Becker, J. F.; Yaldaei, Ramil; McKay, Christopher P.

    1989-03-01

    Recent advances in semiconductor laser technology have produced a reliable lightweight device ideally suited for a spacecraft high resolution molecular spectrometer. Lead-salt tunable diode lasers (TDL) emit in several spectral modes, each with a very narrow linewidth of -0.0003/cm. This spectral resolution is much narrower than typical Doppler broadened molecular linewidths in the mid-IR range. Thus it is possible to detect individual rotational lines within the vibrational band and measure their intensity, which can be used to determine gas concentration. The narrow spectral lines of any impurity gas tend to lie between the narrow lines of the gas of interest. This represents a major advantage over the accepted gas chromatograph mass spectrometer (GCMS) technique for measuring gas concentrations and isotope ratios. The careful and extensive gas purification procedures required to remove impurities for reliable GCMS measurements will not be required for an IR laser gas analysis. The infrared laser gas analysis technique is being developed to measure stable isotopic ratios of gases such as CO2, CH4, N2O, and NH3. This will eventually lead to development of instruments capable of in situ istopic measurements on planets such as Mars. The carbon (C-12, C-13) isotope ratio is indicative of the type of carbon fixation mechanisms (e.g., photosynthesis, respiration) in operation on a planet, while the nitrogen (N-14, N-15) isotope ratio can probably be used to date nitrogen-bearing Martian samples. The absorbance ratio of two adjacent lines of CO2 in the 2300/cm (4.3 micron) region of the spectrum was measured. The precision of the measurement is presently better than 1 percent and significant improvement is anticipated as rapid sweep-integration techniques and computer controlled data acquistion capabilities are incorporated.

  9. ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.

    SciTech Connect

    BULLOCK,R.M.; BENDER,B.R.

    2000-12-01

    The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.

  10. Electrochemically controlled iron isotope fractionation

    NASA Astrophysics Data System (ADS)

    Black, Jay R.; Young, Edward D.; Kavner, Abby

    2010-02-01

    Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.

  11. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, C.A.; Worden, E.F.

    1995-08-22

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of {sup 167}Er. The hyperfine structure of {sup 167}Er was used to find two three-step photoionization pathways having a common upper energy level. 3 figs.

  12. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, Christopher A.; Worden, Earl F.

    1995-01-01

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of .sup.167 Er. The hyperfine structure of .sup.167 Er was used to find two three-step photoionization pathways having a common upper energy level.

  13. Oxygen isotope studies and compilation of isotopic dates from Antarctica

    SciTech Connect

    Grootes, P.M.; Stuiver, M.

    1986-01-01

    The Quaternary Isotope Laboratory, alone or in collaboration with other investigators, is currently involved in a number of oxygen-isotope studies mainly in Antarctica. Studies of a drill core from the South Pole, seasonal oxygen-18 signals preserved in the Dominion Range, isotope dating of the Ross Ice Shelf, oxygen-18 profiles of the Siple Coast, McMurdo Ice Shelf sampling, and a data compilation of radiometric dates from Antarctica are discussed.

  14. Nickel isotopes and methanogens

    NASA Astrophysics Data System (ADS)

    Neubeck, A.; Ivarsson, M.

    2013-12-01

    Methanogens require Ni for their growth and as a consequence the microbial fractionation of Ni isotopes can be used as a biomarker for activity of methanogenic communities1. Anaerobic laboratory experiments was performed using methanogens to investigate methanogenic growth in a modified nutrient media2 with olivine Fo91 (5g/l) added as an additional mineral nutrient source and as the only H2 provider. One of the investigated methanogens showed an increased growth in the experiments with added olivine. There were also a close relationship between the mobilized Ni and the growth of the methanogen. Ni is an element that previously has been neglected in the study of fossilized microorganisms and their interaction with mineral substrates and, thus, there are no records or published data of Ni in association with microfossils. However, we have detected enrichments of Ni in fossilized microorganisms and ichno-fossils, respectively, from three separate locations. Ni is not present in the host rock in any of the samples. Thus, Ni is present in association with fossilized microorganisms from environments and more extensive analysis is required to understand the magnitude, uptake, preservation and fractionation of Ni in microfossils. In order to analyze Ni isotope fractionation from microbe-mineral interaction, we plan to use a high-resolution Laser-Ablation Time-of-Flight Mass Spectrometer (LMS)3. In situ profile ablation will provide detailed and localized data on fractionation patterns between microfossils and their host rock. Also, this technique will allow us to identify the change in Ni isotopic fractionation in rock samples caused by abiotic and biogenic processes in a faster and easier way and with less risk for contamination compared to the wet chemistry analyses of Ni isotopes. 1. Cameron, V., Vance, D., Archer, C. & House, C. H. A biomarker based on the stable isotopes of nickel. Proceedings of the National Academy of Sciences 106, 10944-10948 (2009). 2. Schn

  15. Laser Ablation Molecular Isotopic Spectrometry

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Mao, Xianglei; McKay, Christopher P.; Perry, Dale L.; Sorkhabi, Osman

    2011-02-01

    A new method of performing optical isotopic analysis of condensed samples in ambient air and at ambient pressure has been developed: Laser Ablation Molecular Isotopic Spectrometry (LAMIS). The technique uses radiative transitions from molecular species either directly vaporized from a sample or formed by associative mechanisms of atoms or ions in a laser ablation plume. This method is an advanced modification of a known atomic emission technique called laser-induced breakdown spectroscopy (LIBS). The new method — LAMIS — can determine not only chemical composition but also isotopic ratios of elements in the sample. Isotopic measurements are enabled by significantly larger isotopic shifts found in molecular spectra relative to atomic spectra. Analysis can be performed from a distance and in real time. No sample preparation or pre-treatment is required. Detection of the isotopes of hydrogen, boron, carbon, and oxygen are discussed to illustrate the technique.

  16. Isotopic anomalies in extraterrestrial grains.

    PubMed

    Ireland, T R

    1996-03-01

    Isotopic compositions are referred to as anomalous if the isotopic ratios measured cannot be related to the terrestrial (solar) composition of a given element. While small effects close to the resolution of mass spectrometric techniques can have ambiguous origins, the discovery of large isotopic anomalies in inclusions and grains from primitive meteorites suggests that material from distinct sites of stellar nucleosynthesis has been preserved. Refractory inclusions, which are predominantly composed of the refractory oxides of Al, Ca, Ti, and Mg, in chondritic meteorites commonly have excesses in the heaviest isotopes of Ca, Ti, and Cr which are inferred to have been produced in a supernova. Refractory inclusions also contain excess 26Mg from short lived 26Al decay. However, despite the isotopic anomalies indicating the preservation of distinct nucleosynthetic sites, refractory inclusions have been processed in the solar system and are not interstellar grains. Carbon (graphite and diamond) and silicon carbide grains from the same meteorites also have large isotopic anomalies but these phases are not stable in the oxidized solar nebula which suggests that they are presolar and formed in the circumstellar atmospheres of carbon-rich stars. Diamond has a characteristic signature enriched in the lightest and heaviest isotopes of Xe, and graphite shows a wide range in C isotopic compositions. SiC commonly has C and N isotopic signatures which are characteristic of H-burning in the C-N-O cycle in low-mass stars. Heavier elements such as Si, Ti, Xe, Ba, and Nd, carry an isotopic signature of the s-process. A minor population of SiC (known as Grains X, ca. 1%) are distinct in having decay products of short lived isotopes 26Al (now 26Mg), 44Ti (now 44Ca), and 49V (now 49Ti), as well as 28Si excesses which are characteristic of supernova nucleosynthesis. The preservation of these isotopic anomalies allows the examination of detailed nucleosynthetic pathways in stars. PMID

  17. Tank waste isotope contributions

    SciTech Connect

    VANKEUREN, J.C.

    1999-08-26

    This document presents the results of a calculation to determine the relative contribution of selected isotopes to the inhalation and ingestion doses for a postulated release of Hanford tank waste. The fraction of the dose due to {sup 90}Sr, {sup 90}Y, {sup 137}Cs and the alpha emitters for single shell solids and liquids, double shell solids and liquids, aging waste solids and liquids and all solids and liquids. An effective dose conversion factor was also calculated for the alpha emitters for each composite of the tank waste.

  18. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  19. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  20. ISOTOPE FRACTIONATION PROCESS

    DOEpatents

    Clewett, G.H.; Lee, DeW.A.

    1958-05-20

    A new method is described for isotopic enrichment of uranium. It has been found that when an aqueous acidic solution of ionic tetravalent uraniunn is contacted with chelate complexed tetravalent uranium, the U/sup 238/ preferentially concentrates in the complexed phase while U/sup 235/ concentrates in the ionic phase. The effect is enhanced when the chelate compound is water insoluble and is dissolved in a water-immiscible organic solvent. Cupferron is one of a number of sultable complexing agents, and chloroform is a suitable organic solvent.

  1. Quantitative Determination of Isotope Ratios from Experimental Isotopic Distributions

    PubMed Central

    Kaur, Parminder; O’Connor, Peter B.

    2008-01-01

    Isotope variability due to natural processes provides important information for studying a variety of complex natural phenomena from the origins of a particular sample to the traces of biochemical reaction mechanisms. These measurements require high-precision determination of isotope ratios of a particular element involved. Isotope Ratio Mass Spectrometers (IRMS) are widely employed tools for such a high-precision analysis, which have some limitations. This work aims at overcoming the limitations inherent to IRMS by estimating the elemental isotopic abundance from the experimental isotopic distribution. In particular, a computational method has been derived which allows the calculation of 13C/12C ratios from the whole isotopic distributions, given certain caveats, and these calculations are applied to several cases to demonstrate their utility. The limitations of the method in terms of the required number of ions and S/N ratio are discussed. For high-precision estimates of the isotope ratios, this method requires very precise measurement of the experimental isotopic distribution abundances, free from any artifacts introduced by noise, sample heterogeneity, or other experimental sources. PMID:17263354

  2. Mass-independent isotope effects.

    PubMed

    Buchachenko, Anatoly L

    2013-02-28

    Three fundamental properties of atomic nuclei-mass, spin (and related magnetic moment), and volume-are the source of isotope effects. The mostly deserved and popular, with almost hundred-year history, is the mass-dependent isotope effect. The first mass-independent isotope effect which chemically discriminates isotopes by their nuclear spins and nuclear magnetic moments rather than by their masses was detected in 1976. It was named as the magnetic isotope effect because it is controlled by magnetic interaction, i.e., electron-nuclear hyperfine coupling in the paramagnetic species, the reaction intermediates. The effect follows from the universal physical property of chemical reactions to conserve angular momentum (spin) of electrons and nuclei. It is now detected for oxygen, silicon, sulfur, germanium, tin, mercury, magnesium, calcium, zinc, and uranium in a great variety of chemical and biochemical reactions including those of medical and ecological importance. Another mass-independent isotope effect was detected in 1983 as a deviation of isotopic distribution in reaction products from that which would be expected from the mass-dependent isotope effect. On the physical basis, it is in fact a mass-dependent effect, but it surprisingly results in isotope fractionation which is incompatible with that predicted by traditional mass-dependent effects. It is supposed to be a function of dynamic parameters of reaction and energy relaxation in excited states of products. The third, nuclear volume mass-independent isotope effect is detected in the high-resolution atomic and molecular spectra and in the extraction processes, but there are no unambiguous indications of its importance as an isotope fractionation factor in chemical reactions. PMID:23301791

  3. ENVIRONMENTAL ISOTOPES FOR RESOLUTION OF HYDROLOGY PROBLEMS

    EPA Science Inventory

    The use of environmental isotopes as tracers in the hydrosphere is increasing as analytical instrumentation improves and more applications are discovered. There exists still misconceptions on the role of isotopes in resolving hydrology problems. Naturally occurring isotopes in th...

  4. Si Isotopes of Brownleeite

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Messenger, Scott R.; Ito, M.; Keller, L. P.; Clemett, S. J.; Jones, J. H.; Tatsuoka, H.; Zolensky, M. E.; Tatsuoka, H.

    2010-01-01

    Brownleeite is a manganese silicide, ideally stoichiometric MnSi, not previously observed in nature until its discovery within an interplanetary dust particle (IDP) that likely originated from a comet [1]. Three discrete brownleeite grains in the IDP L2055 I3 (4 microns in size, hereafter IDP I3) were identified with maximum dimensions of 100, 250 and 600 nm and fully analyzed using scanning-transmission electron microscopy (STEM) [1]. One of the grains (100 nm in size) was poikilitically enclosed by low-Fe, Mn-enriched (LIME) olivine. LIME olivine is epitaxial to the brownleeite with the brownleeite (200) parallel to the olivine c* [1]. LIME olivine is an enigmatic phase first reported from chondritic porous IDPs and some unequilibrated ordinary chondrites [ 2], that is commonly observed in chondritic-porous IDPs. Recently, LIME olivine has been also found in comet Wild-2 (Stardust) samples [3], indicating that LIME olivine is a common mineral component of comets. LIME olivine has been proposed to form as a high temperature condensate in the protosolar nebula [2]. Brownleeite grains also likely formed as high-temperature condensates either in the early Solar System or in the outflow of an evolved star or supernova explosion [1]. The isotopic composition of the brownleeite grains may strongly constrain their ultimate source. To test this hypothesis, we performed isotopic analyses of the brownleeite and the associated LIME olivine, using the NASA/JSC NanoSIMS 50L ion microprobe.

  5. Phonon coherence in isotopic silicon superlattices

    SciTech Connect

    Frieling, R.; Radek, M.; Eon, S.; Bracht, H.; Wolf, D. E.

    2014-09-29

    Recent experimental and theoretical investigations have confirmed that a reduction in thermal conductivity of silicon is achieved by isotopic silicon superlattices. In the present study, non-equilibrium molecular dynamics simulations are performed to identify the isotope doping and isotope layer ordering with minimum thermal conductivity. Furthermore, the impact of isotopic intermixing at the superlattice interfaces on phonon transport is investigated. Our results reveal that the coherence of phonons in isotopic Si superlattices is prevented if interfacial mixing of isotopes is considered.

  6. Calcium isotopes in wine

    NASA Astrophysics Data System (ADS)

    Holmden, C. E.

    2011-12-01

    The δ 44/40Ca values of bottled wine vary between -0.76% to -1.55% on the seawater scale and correlate weakly with inverse Ca concentration and Mg/Ca ratio, such that the lowest δ 44/40Ca values have the highest Ca concentrations and lowest Mg/Ca ratios. The correlation is notable in the sense that the measured wines include both whites and reds sampled from different wine growing regions of the world, and cover a wide range of quality. Trends among the data yield clues regarding the cause of the observed isotopic fractionation. White wines, and wines generally perceived to be of lower quality, have lower δ 44/40Ca values compared to red wines and wines of generally perceived higher quality. Quality was assessed qualitatively through sensory evaluation, price, and scores assigned by critics. The relationship between δ 44/40Ca and wine quality was most apparent when comparing wines of one varietal from one producer from the same growing region. In the vineyard, wine quality is related to factors such as the tonnage of the crop and the ripeness of the grapes at the time of harvesting, the thickness of the skins for reds, the age of the vines, as well as the place where the grapes were grown (terroir). Quality is also influenced by winemaking practices such as fermentation temperature, duration of skin contact, and barrel ageing. Accordingly, the relationship between δ 44/40Ca and wine quality may originate during grape ripening in the vineyard or during winemaking in the cellar. We tested the grape ripening hypothesis using Merlot grapes sampled from a vineyard in the Okanagan, British Columbia, using sugar content (degrees Brix) as an indicator of ripeness. The grapes were separated into pulp, skin, and pip fractions and were analyzed separately. Thus far, there is no clear evidence for a systematic change in δ 44/40Ca values associated with progressive ripening of grapes in the vineyard. On the day of harvesting, the δ 44/40Ca value of juice squeezed from

  7. Method of separating boron isotopes

    DOEpatents

    Jensen, R.J.; Thorne, J.M.; Cluff, C.L.

    1981-01-23

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)-dichloroborane as the feed material. The photolysis can readily by achieved with CO/sub 2/ laser radiation and using fluences significantly below those required to dissociate BCl/sub 3/.

  8. Method of separating boron isotopes

    DOEpatents

    Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.

    1984-01-01

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  9. Aleutian terranes from Nd isotopes

    NASA Technical Reports Server (NTRS)

    Kay, R. W.; Kay, S. M.; Rubenstone, J. L.

    1986-01-01

    Nd isotope ratios substantiate the identification of oceanic crustal terranes within the continental crustal basement of the Aleutian island arc. The oceanic terranes are exposed in the westernmost Aleutians, but to the east, they are completely buried by isotopically distinct arc-volcanic rocks. Analogous oceanic terranes may be important components of the terrane collages that comprise the continents.

  10. The straight dope on isotopes

    NASA Astrophysics Data System (ADS)

    Thornton, Brett F.; Burdette, Shawn C.

    2013-12-01

    A century ago this month, Frederick Soddy described and named isotopes in the pages of Nature. Brett F. Thornton and Shawn C. Burdette discuss how chemists have viewed and used isotopes since then -- either as chemically identical or chemically distinct species as the need required and technology allowed.

  11. Isotope separation by laser means

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1982-06-15

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  12. Correlated optical and isotopic nanoscopy

    NASA Astrophysics Data System (ADS)

    Saka, Sinem K.; Vogts, Angela; Kröhnert, Katharina; Hillion, François; Rizzoli, Silvio O.; Wessels, Johannes T.

    2014-04-01

    The isotopic composition of different materials can be imaged by secondary ion mass spectrometry. In biology, this method is mainly used to study cellular metabolism and turnover, by pulsing the cells with marker molecules such as amino acids labelled with stable isotopes (15N, 13C). The incorporation of the markers is then imaged with a lateral resolution that can surpass 100 nm. However, secondary ion mass spectrometry cannot identify specific subcellular structures like organelles, and needs to be correlated with a second technique, such as fluorescence imaging. Here, we present a method based on stimulated emission depletion microscopy that provides correlated optical and isotopic nanoscopy (COIN) images. We use this approach to study the protein turnover in different organelles from cultured hippocampal neurons. Correlated optical and isotopic nanoscopy can be applied to a variety of biological samples, and should therefore enable the investigation of the isotopic composition of many organelles and subcellular structures.

  13. Container for hydrogen isotopes

    DOEpatents

    Solomon, David E.

    1977-01-01

    A container for the storage, shipping and dispensing of hydrogen isotopes such as hydrogen, deuterium, tritium, or mixtures of the same which has compactness, which is safe against fracture or accident, and which is reusable. The container consists of an outer housing with suitable inlet and outlet openings and electrical feed elements, the housing containing an activated sorber material in the form, for example, of titanium sponge or an activated zirconium aluminate cartridge. The gas to be stored is introduced into the chamber under conditions of heat and vacuum and will be retained in the sorber material. Subsequently, it may be released by heating the unit to drive off the stored gas at desired rates.

  14. Cometary Isotopic Measurements

    NASA Astrophysics Data System (ADS)

    Bockelée-Morvan, Dominique; Calmonte, Ursina; Charnley, Steven; Duprat, Jean; Engrand, Cécile; Gicquel, Adeline; Hässig, Myrtha; Jehin, Emmanuël; Kawakita, Hideyo; Marty, Bernard; Milam, Stefanie; Morse, Andrew; Rousselot, Philippe; Sheridan, Simon; Wirström, Eva

    2015-12-01

    Isotopic ratios in comets provide keys for the understanding of the origin of cometary material, and the physical and chemical conditions in the early Solar Nebula. We review here measurements acquired on the D/H, 14N/15N, 16O/18O, 12C/13C, and 32S/34S ratios in cometary grains and gases, and discuss their cosmogonic implications. The review includes analyses of potential cometary material available in collections on Earth, recent measurements achieved with the Herschel Space Observatory, large optical telescopes, and Rosetta, as well as recent results obtained from models of chemical-dynamical deuterium fractionation in the early solar nebula. Prospects for future measurements are presented.

  15. Production of Medical Radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for Cancer Treatment and Arterial Restenosis Therapy after PTCA

    DOE R&D Accomplishments Database

    Knapp, F. F. Jr.; Beets, A. L.; Mirzadeh, S.; Alexander, C. W.; Hobbs, R. L.

    1998-06-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  16. Production of medical radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for cancer treatment and arterial restenosis therapy after PTCA

    SciTech Connect

    Knapp, F.F. Jr.; Beets, A.L.; Mirzadeh, S.; Alexander, C.W.; Hobbs, R.L.

    1998-06-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  17. Microbes: Agents of Isotopic Change

    NASA Astrophysics Data System (ADS)

    Fogel, M. L.

    2012-12-01

    Microbes drive many of the important oxidation and reduction reactions on Earth; digest almost all forms of organic matter; and can serve as both primary and secondary producers. Because of their versatile biochemistry and physiology, they impart unique isotopic signatures to organic and inorganic materials, which have proven to be key measurements for understanding elemental cycling now and throughout Earth's history. Understanding microbial isotope fractionations in laboratory experiments has been important for interpreting isotopic patterns measured in natural settings. In fact, the pairing of simple experiment with natural observation has been the pathway for interpreting the fingerprint of microbial processes in ancient sediments and rocks. Examples of how key experiments have explained stable isotope fractionations by microbes and advanced the field of microbial ecology will be presented. Learning the isotopic signatures of Earth's microbes is a valuable exercise for predicting what isotopic signatures could be displayed by possible extant or extinct extraterrestrial life. Given the potential for discovery on Mars, Enceladus, and other solar system bodies, new methods and techniques for pinpointing what is unique about microbial isotope signatures is particularly relevant.

  18. Isotopic analysis of planetary solids

    NASA Astrophysics Data System (ADS)

    Tulej, M.; Riedo, A.; Neuland, M.; Meyer, S.; Wurz, P.

    2013-09-01

    Isotopic analysis of planetary surfaces is of considerable interest for planetology. Studies of isotope composition can deliver information on radio-isotope chronology of planetary soil/regolith, an insight to processes that altered planetary surface (space weathering) or on possible biogenic processes that occurred or still occur on the planet. Mass spectrometry is a well-suited method that delivers accurate and precise isotope composition. Among other instruments (LAZMA and LAMS), the miniature laser ablation/ionisation mass analyser, LMS developed in Bern for in situ space research can be used to measure the elemental and isotopic composition of planetary solids. LMS support mass spectrometric investigation with a mass resolution of m/Δm≈500-1500, dynamic range of at least 8 decades and detection sensitivity of ~10 ppb. Current studies of various solid materials and standard reference materials show that isotope composition can be conducted with an accuracy and precision at per mill level if the isotope concentration exceeds 10-100 ppm. Implications of the studies for in situ application are discussed.

  19. Nucleon pairing in Sn isotopes

    NASA Astrophysics Data System (ADS)

    Imasheva, L.; Ishkhanov, B.; Stepanov, M.; Tretyakova, T.

    2016-01-01

    The systematics of excited states in Sn isotopes are discussed on basis of pairing interaction in nuclei. Nucleon paring leads to formation of excited states multiplets. The estimation of multiplet splitting based on experimental nuclear masses allows one to calculate the position of excited states with different seniority in δ-approximation. The wide systematics of the spectra of Sn isotopes gives a possibility to check the pairing interaction for different subshells and consider the multiplets of excited states in the neutron-rich isotopes far from stability.

  20. Compelling Research Opportunities using Isotopes

    SciTech Connect

    2009-04-23

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine

  1. Neodymium isotopic variations in seawater

    NASA Technical Reports Server (NTRS)

    Piepgras, D. J.; Wasserburg, G. J.

    1980-01-01

    Direct measurement of the isotopic composition of Nd in the Atlantic agree with the Nd content in ferromanganese sediments and differ from the observed amounts in the Pacific samples. These data indicate the existence of distinctive differences in the isotopic composition of Nd in the waters of major oceans; the average values determined from seawater and ferromanganese sediments are considerably lower than in sources with oceanic mantle affinities showing that the REE in the oceans is dominated by continental sources. The Nd isotopic variations in seawater are applied to relate the residence time of Nd and mixing rates between the oceans.

  2. Carbon isotope geochemistry and geobiology

    NASA Technical Reports Server (NTRS)

    Desmarais, D.

    1985-01-01

    Carbon isotope fractionation values were used to understand the history of the biosphere. For example, plankton analyses confirmed that marine extinctions at the end of the Cretaceous period were indeed severe (see Hsu's article in Sundquist and Broeker, 1984). Variations in the isotopic compositions of carbonates and evaporitic sulfates during the Paleozoic reflect the relative abundances of euxinic (anoxic) marine environments and organic deposits from terrestrial flora. The carbon isotopic composition of Precambrian sediments suggest that the enzyme ribulose bisphosphate carboxylase has existed for perhaps 3.5 billion years.

  3. Magnesium isotopic composition of achondrites

    NASA Astrophysics Data System (ADS)

    Sedaghatpour, Fatemeh; Teng, Fang-Zhen

    2016-02-01

    Magnesium isotopic compositions of 22 well-characterized differentiated meteorites including 7 types of achondrites and pallasite meteorites were measured to estimate the average Mg isotopic composition of their parent bodies and evaluate Mg isotopic heterogeneity of the solar system. The δ26Mg values are -0.236‰ and -0.190‰ for acapulcoite-lodranite and angrite meteorites, respectively and vary from -0.267‰ to -0.222‰ in the winonaite-IAB-iron silicate group, -0.369‰ to -0.292‰ in aubrites, -0.269‰ to -0.158‰ in HEDs, -0.299‰ to -0.209‰ in ureilites, -0.307‰ to -0.237‰ in mesosiderites, and -0.303‰ to -0.238‰ in pallasites. Magnesium isotopic compositions of most achondrites and pallasite meteorites analyzed here are similar and reveal no significant isotopic fractionation. However, Mg isotopic compositions of D‧Orbigny (angrite) and some HEDs are slightly heavier than chondrites and the other achondrites studied here. The slightly heavier Mg isotopic compositions of angrites and some HEDs most likely resulted from either impact-induced evaporation or higher abundance of clinopyroxene with the Mg isotopic composition slightly heavier than olivine and orthopyroxene. The average Mg isotopic composition of achondrites (δ26Mg = -0.246 ± 0.082‰, 2SD, n = 22) estimated here is indistinguishable from those of the Earth (δ26Mg = -0.25 ± 0.07‰; 2SD, n = 139), chondrites (δ26Mg = -0.28 ± 0.06‰; 2SD, n = 38), and the Moon (δ26Mg = -0.26 ± 0.16‰; 2SD, n = 47) reported from the same laboratory. The chondritic Mg isotopic composition of achondrites, the Moon, and the Earth further reflects homogeneity of Mg isotopes in the solar system and the lack of Mg isotope fractionation during the planetary accretion process and impact events.

  4. Method for laser induced isotope enrichment

    DOEpatents

    Pronko, Peter P.; Vanrompay, Paul A.; Zhang, Zhiyu

    2004-09-07

    Methods for separating isotopes or chemical species of an element and causing enrichment of a desired isotope or chemical species of an element utilizing laser ablation plasmas to modify or fabricate a material containing such isotopes or chemical species are provided. This invention may be used for a wide variety of materials which contain elements having different isotopes or chemical species.

  5. Apparatus and process for separating hydrogen isotopes

    DOEpatents

    Heung, Leung K; Sessions, Henry T; Xiao, Xin

    2013-06-25

    The apparatus and process for separating hydrogen isotopes is provided using dual columns, each column having an opposite hydrogen isotopic effect such that when a hydrogen isotope mixture feedstock is cycled between the two respective columns, two different hydrogen isotopes are separated from the feedstock.

  6. Isotope separation using metallic vapor lasers

    NASA Technical Reports Server (NTRS)

    Russell, G. R.; Chen, C. J.; Harstad, K. G. (Inventor)

    1977-01-01

    The isotope U235 is separated from a gasified isotope mixture of U235 and U238 by selectively exciting the former from the ground state utilizing resonant absorption of radiation from precisely tuned lasers. The excited isotope is then selectively ionized by electron bombardment. It then is separated from the remaining isotope mixture by electromagnetic separation.

  7. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    DOEpatents

    Harney, Robert C.; Bloom, Stewart D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances.

  8. Isotope dilution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Heumann, Klaus G.

    1992-09-01

    In the past isotope dilution mass spectrometry (IDMS) has usually been applied using the formation of positive thermal ions of metals. Especially in calibrating other analytical methods and for the certification of standard reference materials this type of IDMS became a routine method. Today, the progress in this field lies in the determination of ultra trace amounts of elements, e.g. of heavy metals in Antarctic ice and in aerosols in remote areas down to the sub-pg g-1 and sub-pg m-3 levels respectively, in the analysis of uranium and thorium at concentrations of a few pg g-1 in sputter targets for the production of micro- electronic devices or in the determination of sub-picogram amounts of230Th in corals for geochemical age determinations and of226Ra in rock samples. During the last few years negative thermal ionization IDMS has become a frequently used method. The determination of very small amounts of selenium and technetium as well as of other transition metals such as vanadium, chromium, molybdenum and tungsten are important examples in this field. Also the measurement of silicon in connection with a re-determination of Avogadro's number and osmium analyses for geological age determinations by the Re/Os method are of special interest. Inductively-coupled plasma mass spectrometry is increasingly being used for multi-element analyses by the isotope dilution technique. Determinations of heavy metals in samples of marine origin are representative examples for this type of multi-element analysis by IDMS. Gas chromatography-mass spectrometry systems have also been successfully applied after chelation of metals (for example Pt determination in clinical samples) or for the determination of volatile element species in the environment, e.g. dimethyl sulfide. However, IDMS--specially at low concentration levels in the environment--seems likely to be one of the most powerful analytical methods for speciation in the future. This has been shown, up to now, for species of

  9. Titanium isotopic anomalies in meteorites

    NASA Technical Reports Server (NTRS)

    Niemeyer, S.; Lugmair, G. W.

    1984-01-01

    Studies of Ti isotopic compositions have shown that virtually every Ca-Al-rich Allende inclusion contains anomalous Ti. The present investigation is concerned with the results of a study of Ti isotopic compositions in meteorites. One objective of the study is to evaluate the possibility of a relation between oxygen and Ti anomalies, while another objective is to explore questions regarding the origin of the Ti anomalies. A summary of the major experimental findings of the study of Ti isotopic compositions is also presented. It is noted that an assessment of the implications of the Ti results favors a chemical memory type of model in which products from various nucleosynthetic sources survive in mineral grains. Isotopic heterogeneities are then preserved due to incomplete mixing and/or equilibriation with the bulk of solar system matter. Strong arguments are found to exist against a pure late supernova injection model.

  10. Selective photoionisation of lutetium isotopes

    SciTech Connect

    D'yachkov, Aleksei B; Kovalevich, S K; Labozin, Valerii P; Mironov, Sergei M; Panchenko, Vladislav Ya; Firsov, Valerii A; Tsvetkov, G O; Shatalova, G G

    2012-10-31

    A three-stage laser photoionisation scheme intended for enriching the {sup 176}Lu isotope from natural lutetium was considered. An investigation was made of the hyperfine structure of the second excited state 5d6s7s {yields} {sup 4}D{sub 3/2} with an energy of 37194 cm{sup -1} and the autoionisation state with an energy of 53375 cm{sup -1} of the {sup 176}Lu and {sup 175}Lu isotopes. The total electron momentum of the autoionisation level and the constant A of hyperfine magnetic interaction were determined. Due to a small value of the isotopic shift between {sup 176}Lu and {sup 175}Lu, appreciable selectivity of their separation may be achieved with individual hyperfine structure components. The first tentative enrichment of the 176Lu isotope was performed to a concentration of 60 % - 70 %. (laser applications and other topics in quantum electronics)

  11. Titanium isotopic anomalies in meteorites

    NASA Astrophysics Data System (ADS)

    Neimeyer, S.; Lugmair, G. W.

    1984-07-01

    Studies of Ti isotopic compositions have shown that virtually every Ca-Al-rich Allende inclusion contains anomalous Ti. The present investigation is concerned with the results of a study of Ti isotopic compositions in meteorites. One objective of the study is to evaluate the possibility of a relation between oxygen and Ti anomalies, while another objective is to explore questions regarding the origin of the Ti anomalies. A summary of the major experimental findings of the study of Ti isotopic compositions is also presented. It is noted that an assessment of the implications of the Ti results favors a chemical memory type of model in which products from various nucleosynthetic sources survive in mineral grains. Isotopic heterogeneities are then preserved due to incomplete mixing and/or equilibriation with the bulk of solar system matter. Strong arguments are found to exist against a pure late supernova injection model.

  12. Isotopic Analysis and Evolved Gases

    NASA Technical Reports Server (NTRS)

    Swindle, Timothy D.; Boynton, William V.; Chutjian, Ara; Hoffman, John H.; Jordan, Jim L.; Kargel, Jeffrey S.; McEntire, Richard W.; Nyquist, Larry

    1996-01-01

    Precise measurements of the chemical, elemental, and isotopic composition of planetary surface material and gases, and observed variations in these compositions, can contribute significantly to our knowledge of the source(s), ages, and evolution of solar system materials. The analyses discussed in this paper are mostly made by mass spectrometers or some other type of mass analyzer, and address three broad areas of interest: (1) atmospheric composition - isotopic, elemental, and molecular, (2) gases evolved from solids, and (3) solids. Current isotopic data on nine elements, mostly from in situ analysis, but also from meteorites and telescopic observations are summarized. Potential instruments for isotopic analysis of lunar, Martian, Venusian, Mercury, and Pluto surfaces, along with asteroid, cometary and icy satellites, surfaces are discussed.

  13. Isotopic Changes During Digestion: Protein

    NASA Astrophysics Data System (ADS)

    Tuross, N.

    2013-12-01

    Nutrient and hydrological inputs traverse a complicated route of pH, enzymatic and cellular processes in digestion in higher animals. The end products of digestion are the starting products for biosynthesis that are often used to interpret past life-ways. Using an artificial gut system, the isotopic changes (dD, d18O, d13C and d15N) of protein are documented. Three separate protein sources are subjected to the conditions, chemical and enzymatic, found in the stomach and upper small intestine with only a small shift in the oxygen isotopic composition of the proteins observed. Middle to lower small intestine parameters produced both greater isotopic effects and significantly lower molecular weight products. The role of the gastric enterocyte and the likely involvement of the internal milieu of this cell in the isotopic composition of amino acids that are transported to the liver are reported.

  14. Physics with isotopically controlled semiconductors

    SciTech Connect

    Haller, E. E.

    2010-07-15

    This paper is based on a tutorial presentation at the International Conference on Defects in Semiconductors (ICDS-25) held in Saint Petersburg, Russia in July 2009. The tutorial focused on a review of recent research involving isotopically controlled semiconductors. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, is the most prominent effect for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples.

  15. Clumped isotope thermometry and catagenesis

    NASA Astrophysics Data System (ADS)

    Eiler, J. M.; Clog, M. D.; Dallas, B.; Douglas, P. M.; Piasecki, A.; Sessions, A. L.; Stolper, D. A.

    2014-12-01

    Clumped- and site-specific isotopic compositions of organic compounds can constrain their formation temperatures, sources, and chemical reaction histories. The large number of isotopologues of organic molecules may allow for the isotopic composition of a single compound to illuminate many processes. For example, it is possible that clumping or site specific effects in different parts of the same molecule will differ in blocking temperature, such that a molecule's full isotopic structure could simultaneously constrain conditions of biosynthesis, catagenic 'cracking', and storage in the crust. Recent innovations in high-resolution mass spectrometry and methods of IR and NMR spectroscopy make it possible to explore these questions. Methane is the first organic molecule to have its clumped isotope geochemistry analyzed in a variety of natural environments and controlled experiments. Methane generated through catagenic cracking of kerogen and other organic matter forms in equilibrium with respect to isotopic clumping, and preserves that state through later storage or migration, up to temperatures of ~250 ˚C. This kinetic behavior permits a variety of useful geological applications. But it is unexpected because the bulk stable isotope composition of thermogenic methane is thought to reflect kinetic isotope effects on irreversible reactions. Our observations imply a new interpretation of the chemical physics of catagenic methane formation. Additional instrument and methods developments are currently extending the measurement of isotopic clumping and position specific effects to larger alkanes, other hydrocarbon compounds, and amino acids. These measurements will ultimately expand our capacity to understand the formational conditions and fates of organic molecules in high- and low-temperature environments through geological time.

  16. Isotope-Identifying neutron reflectometry

    SciTech Connect

    Nikitenko, Yu. V. Petrenko, A. V.; Gundorin, N. A.; Gledenov, Yu. M.; Aksenov, V. L.

    2015-07-15

    The possibilities of an isotope-indentifying study of layered structures in different regimes of a neutron wave field are considered. The detection of specularly reflected neutrons and secondary radiation (caused by neutron capture) in the form of charged particles, γ quanta, and nuclear fission fragments, as well as neutrons spin-flipped in a noncollinear magnetic field and on nuclei of elements with spin, makes it possible to implement isotope-indentifying neutron reflectometry.

  17. Novel hybrid isotope separation scheme and apparatus

    DOEpatents

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means.

  18. Novel hybrid isotope separation scheme and apparatus

    DOEpatents

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means. 3 figures.

  19. Photo-induced isotopic fractionation

    NASA Astrophysics Data System (ADS)

    Miller, Charles E.; Yung, Yuk L.

    2000-12-01

    This paper presents a systematic method for the analysis of photo-induced isotopic fractionation. The physical basis for this fractionation mechanism centers on the fact that isotopic substitution alters the energy levels, molecular symmetries, spin statistical weights and other fundamental molecular properties, producing spectroscopic signatures distinguishable from that of the parent isotopomer. These mass-dependent physical properties are identical to those invoked by Urey to explain stable isotope fractionation in chemical systems subject to thermodynamic equilibrium. Photo-induced isotopic fractionation is a completely general phenomenon and should be observable in virtually all gas phase photochemical systems. Water photo-induced isotopic fractionation has been examined in detail using experimental and theoretical data. These results illustrate the salient features of this fractionation mechanism for molecules possessing continuous UV absorption spectra and unit photodissociation quantum yields. Using the photo-induced isotopic fractionation methodology in conjunction with standard photochemical models, we predict substantial deuterium enrichment of water vapor in the planetary atmospheres of Earth and Mars.

  20. Isotope separation apparatus and method

    DOEpatents

    Feldman, Barry J.

    1985-01-01

    The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  1. Isotopic Compositions of Evaporative Fluxes

    NASA Astrophysics Data System (ADS)

    Feng, X.; Lauder, A. M.; Kopec, B. G.; Dade, W. B.; Virginia, R. A.; Posmentier, E. S.

    2013-12-01

    The isotopic fluxes of evaporation from a water surface are typically computed using a one-dimensional model, originally conceptualized by Craig and Gordon (1965) and further developed and adapted to different natural settings (such as transpiration, open surface evaporation, etc.) by various investigators. These models have two distinguishing characteristics. First, there exists a laminar layer where molecular diffusion away from the water-air interface causes kinetic isotopic fractionation. The magnitude of this fractionation is controlled by the diffusion/transport coefficient of each vapor isotopologue in air and their concentration gradients, the latter being controlled by relative humidity, isotopic ratios of ambient air, and turbulent conditions (such as wind and surface roughness). Second, the horizontal variations are ignored. In particular, the effect of horizontal advection on isotopic variations in the ambient air is not considered. The research reported here addresses the effects of relinquishing the simplifying assumptions in both of these areas. We developed a model, in which the simplification of a purely laminar layer is dropped. Instead, we express the vertical transport coefficient as the sum of the molecular diffusivity, that differs for each water isotopologue, and the turbulent diffusivity that increases linearly with height but does not vary among water isotopologues. With this model, the kinetic isotopic effect reduces with height in the vicinity of the water surface, and the net isotopic fractionation through the boundary layer can be integrated. The advantage of this conceptualization is that the magnitude of kinetic isotopic fractionation can be assessed directly with changing environmental conditions, such as humidity and wind speed, rather than approximated by discontinuous empirical functions of the environmental conditions, as in the conventional models mentioned above. To address the effect of lateral heterogeneity, we expanded the

  2. Photodisintegration of Lithium Isotopes

    NASA Astrophysics Data System (ADS)

    Wurtz, Ward Andrew

    We have performed a measurement of the photodisintegration of the lithium isotopes, 6Li and 7Li, using a monochromatic, polarised photon beam and a segmented neutron detector array which covers approximately ¼ of 4pi srad. Using time-of-flight and scintillator light-output spectra we separate the data into individual reaction channels. This work is motivated by the need to compare with recent theoretical predictions and to provide data for future theoretical work. For the photodisintegration of 6Li we took data at 12 photon energies between 8 and 35 MeV. We describe the data using a model consisting of two-body reaction channels and obtain angular distributions and absolute cross sections for many of these reaction channels. We compare our results with a recent Lorentz integral transform calculation (Bacca et al. Phys. Rev. C 69, 057001 (2004)). Our results are in reasonable agreement with the calculation, in contradiction with previous experimental results. For the photodisintegration of 7Li, we took data at 9 photon energies between 10 and 35 MeV. We obtain cross sections for the reaction channel 7Li + gamma → n + 6 Li(g.s.) at all photon energies with angular distributions at all but the highest energy. We obtain angular distributions and total cross sections for reaction channels involving excited states of the daughter nucleus, 6Li, at select energies. We hope that these measurements will provide incentive for new theoretical calculations. We observe neutrons that can only be described by the reaction channel 7Li + gamma → n + 6Li(10.0) which necessitates an excited state of 6Li with excitation energy Ex = 10.0 +/- 0.5 MeV that is not in the standard tables of excited states. ii

  3. Isotope shifts in francium isotopes Fr-213206 and 221Fr

    NASA Astrophysics Data System (ADS)

    Collister, R.; Gwinner, G.; Tandecki, M.; Behr, J. A.; Pearson, M. R.; Zhang, J.; Orozco, L. A.; Aubin, S.; Gomez, E.; FrPNC Collaboration

    2014-11-01

    We present the isotope shifts of the 7 s1 /2 to 7 p1 /2 transition for francium isotopes 206 -213Fr with reference to 221Fr collected from two experimental periods. The shifts are measured on a sample of atoms prepared within a magneto-optical trap by a fast sweep of radio-frequency sidebands applied to a carrier laser. King plot analysis, which includes literature values for 7 s1 /2 to 7 p3 /2 isotope shifts, provides a field shift constant ratio of 1.0520(10) and a difference between the specific mass shift constants of 170(100) GHz amu between the D1 and D2 transitions, of sufficient precision to differentiate between ab initio calculations.

  4. Isotopic Randomness and Maxwell's Demon

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander A.

    2005-03-01

    Isotopic disorder in crystals can lead to suppression of thermal conductivity, mobility variations and (weak) Anderson localization on isotopic fluctuations. The latter (AAB, J.ChemPhys.1984) is akin to polaron effect (self-localization due polarization). Possibility of isotopic patterning (IP) increases near melting point (thermally activated isotopic hopping swaps). Crystal near melting threshold become “informationally sensitive” as if its IP is operated by some external Maxwell’s Demon, MD (AAB, URAM J, 2002). At this state short range (e.g. electrostatic inverse square) forces evolve into long-range interactions (due to divergence of order parameter) and information sensitivity can be further amplified by (say) a single fast electron (e.g. beta-particle from decay of 14-C or other radioactive isotope) which may result in cascade of impact ionization events and (short time-scale) enhancement of screening by impact-generated non-equilibrium (non-thermal) electrons. In this state informationally driven (MD-controlled) IP (Eccles effect) can result in decrease of positional entropy signifying emergence of physical complexity out of pure information, similar to peculiar “jinni effect” on closed time loops in relativistic cosmology (R.J.Gott, 2001) or Wheeler’s “it from bit” metaphor. By selecting special IP, MD modifies ergodicity principle in favor of info rich states.

  5. Isotope separation apparatus and method

    DOEpatents

    Cotter, Theodore P.

    1982-12-28

    The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises .pi.-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction .pi.-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning .pi.-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of .pi.-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  6. Opportunities for isotope discoveries at FRIB

    NASA Astrophysics Data System (ADS)

    Baumann, T.; Hausmann, M.; Sherrill, B. M.; Tarasov, O. B.

    2016-06-01

    Expected production yields of the Facility for Rare Isotope Beams (FRIB) were calculated for a wide range of rare isotopes using the code LISE++ and planned performance parameters (Tarasov and Bazin, 2008; Bollen et al., 2011 [2]). A comparison between isotope discoveries of the last decade and expected particle yields indicates the range of isotopes that can likely be detected at FRIB. This paper will highlight recent isotope discoveries at NSCL's Coupled Cyclotron Facility and deduce how far the limits could be pushed with the Facility for Rare Isotope Beams.

  7. Photonuclear reactions on titanium isotopes

    SciTech Connect

    Belyshev, S. S.; Dzhilavyan, L. Z.; Ishkhanov, B. S.; Kapitonov, I. M.; Kuznetsov, A. A. Orlin, V. N.; Stopani, K. A.

    2015-03-15

    The photodisintegration of titanium isotopes in the giant-dipole-resonance energy region is studied by the photon-activation method. Bremsstrahlung photons whose spectrum has the endpoint energy of 55 MeV is used. The yields and integrated cross sections are determined for photoproton reactions on the titanium isotopes {sup 47,48,49,50}Ti. The respective experimental results are compared with their counterparts calculated on the basis of the TALYS code and a combined photonucleon-reaction model. The TALYS code disregards the isospin structure of the giant dipole resonance and is therefore unable to describe the yield of photoproton reactions on the heavy titanium isotopes {sup 49,50}Ti.

  8. Isotope specific arbitrary material sorter

    SciTech Connect

    Barty, Christopher P.J.

    2015-12-08

    A laser-based mono-energetic gamma-ray source is used to provide a rapid and unique, isotope specific method for sorting materials. The objects to be sorted are passed on a conveyor in front of a MEGa-ray beam which has been tuned to the nuclear resonance fluorescence transition of the desired material. As the material containing the desired isotope traverses the beam, a reduction in the transmitted MEGa-ray beam occurs. Alternately, the laser-based mono-energetic gamma-ray source is used to provide non-destructive and non-intrusive, quantitative determination of the absolute amount of a specific isotope contained within pipe as part of a moving fluid or quasi-fluid material stream.

  9. The terrestrial uranium isotope cycle

    NASA Astrophysics Data System (ADS)

    Andersen, Morten B.; Elliott, Tim; Freymuth, Heye; Sims, Kenneth W. W.; Niu, Yaoling; Kelley, Katherine A.

    2015-01-01

    Changing conditions on the Earth's surface can have a remarkable influence on the composition of its overwhelmingly more massive interior. The global distribution of uranium is a notable example. In early Earth history, the continental crust was enriched in uranium. Yet after the initial rise in atmospheric oxygen, about 2.4 billion years ago, the aqueous mobility of oxidized uranium resulted in its significant transport to the oceans and, ultimately, by means of subduction, back to the mantle. Here we explore the isotopic characteristics of this global uranium cycle. We show that the subducted flux of uranium is isotopically distinct, with high 238U/235U ratios, as a result of alteration processes at the bottom of an oxic ocean. We also find that mid-ocean-ridge basalts (MORBs) have 238U/235U ratios higher than does the bulk Earth, confirming the widespread pollution of the upper mantle with this recycled uranium. Although many ocean island basalts (OIBs) are argued to contain a recycled component, their uranium isotopic compositions do not differ from those of the bulk Earth. Because subducted uranium was probably isotopically unfractionated before full oceanic oxidation, about 600 million years ago, this observation reflects the greater antiquity of OIB sources. Elemental and isotope systematics of uranium in OIBs are strikingly consistent with previous OIB lead model ages, indicating that these mantle reservoirs formed between 2.4 and 1.8 billion years ago. In contrast, the uranium isotopic composition of MORB requires the convective stirring of recycled uranium throughout the upper mantle within the past 600 million years.

  10. The terrestrial uranium isotope cycle.

    PubMed

    Andersen, Morten B; Elliott, Tim; Freymuth, Heye; Sims, Kenneth W W; Niu, Yaoling; Kelley, Katherine A

    2015-01-15

    Changing conditions on the Earth's surface can have a remarkable influence on the composition of its overwhelmingly more massive interior. The global distribution of uranium is a notable example. In early Earth history, the continental crust was enriched in uranium. Yet after the initial rise in atmospheric oxygen, about 2.4 billion years ago, the aqueous mobility of oxidized uranium resulted in its significant transport to the oceans and, ultimately, by means of subduction, back to the mantle. Here we explore the isotopic characteristics of this global uranium cycle. We show that the subducted flux of uranium is isotopically distinct, with high (238)U/(235)U ratios, as a result of alteration processes at the bottom of an oxic ocean. We also find that mid-ocean-ridge basalts (MORBs) have (238)U/(235)U ratios higher than does the bulk Earth, confirming the widespread pollution of the upper mantle with this recycled uranium. Although many ocean island basalts (OIBs) are argued to contain a recycled component, their uranium isotopic compositions do not differ from those of the bulk Earth. Because subducted uranium was probably isotopically unfractionated before full oceanic oxidation, about 600 million years ago, this observation reflects the greater antiquity of OIB sources. Elemental and isotope systematics of uranium in OIBs are strikingly consistent with previous OIB lead model ages, indicating that these mantle reservoirs formed between 2.4 and 1.8 billion years ago. In contrast, the uranium isotopic composition of MORB requires the convective stirring of recycled uranium throughout the upper mantle within the past 600 million years. PMID:25592542