Science.gov

Sample records for e6 proteins modulate

  1. Papillomavirus E6 proteins

    SciTech Connect

    Howie, Heather L.; Katzenellenbogen, Rachel A.; Galloway, Denise A.

    2009-02-20

    The papillomaviruses are small DNA viruses that encode approximately eight genes, and require the host cell DNA replication machinery for their viral DNA replication. Thus papillomaviruses have evolved strategies to induce host cell DNA synthesis balanced with strategies to protect the cell from unscheduled replication. While the papillomavirus E1 and E2 genes are directly involved in viral replication by binding to and unwinding the origin of replication, the E6 and E7 proteins have auxillary functions that promote proliferation. As a consequence of disrupting the normal checkpoints that regulate cell cycle entry and progression, the E6 and E7 proteins play a key role in the oncogenic properties of human papillomaviruses with a high risk of causing anogenital cancers (HR HPVs). As a consequence, E6 and E7 of HR HPVs are invariably expressed in cervical cancers. This article will focus on the E6 protein and its numerous activities including inactivating p53, blocking apoptosis, activating telomerase, disrupting cell adhesion, polarity and epithelial differentiation, altering transcription and reducing immune recognition.

  2. E6 variants of human papillomavirus 18 differentially modulate the protein kinase B/phosphatidylinositol 3-kinase (akt/PI3K) signaling pathway

    SciTech Connect

    Contreras-Paredes, Adriana

    2009-01-05

    Intra-type genome variations of high risk Human papillomavirus (HPV) have been associated with a differential threat for cervical cancer development. In this work, the effect of HPV18 E6 isolates in Akt/PKB and Mitogen-associated protein kinase (MAPKs) signaling pathways and its implication in cell proliferation were analyzed. E6 from HPV types 16 and 18 are able to bind and promote degradation of Human disc large (hDlg). Our results show that E6 variants differentially modulate hDlg degradation, rebounding in levels of activated PTEN and PKB. HPV18 E6 variants are also able to upregulate phospho-PI3K protein, strongly correlating with activated MAPKs and cell proliferation. Data was supported by the effect of E6 silencing in HPV18-containing HeLa cells, as well as hDlg silencing in the tested cells. Results suggest that HPV18 intra-type variations may derive in differential abilities to activate cell-signaling pathways such as Akt/PKB and MAPKs, directly involved in cell survival and proliferation.

  3. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer

    PubMed Central

    Mishra, Alok; Kumar, Rakesh; Tyagi, Abhishek; Kohaar, Indu; Hedau, Suresh; Bharti, Alok C; Sarker, Subhodeep; Dey, Dipankar; Saluja, Daman; Das, Bhudev

    2015-01-01

    In this study, we investigated the effects of the natural antioxidant curcumin on the HPV16-positive oral carcinoma cell line 93VU147T and demonstrated that curcumin is not only a potent inhibitor for the activity of host nuclear transcription factors AP-1 and NF-kB but it also selectively suppresses transcription of the HPV16/E6 oncogene during the carcinogenic process in oral cancer cells. This study suggests a therapeutic potential of curcumin for high-risk human papilloma virus (HPV)-infected oral cancers. PMID:25932049

  4. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer.

    PubMed

    Mishra, Alok; Kumar, Rakesh; Tyagi, Abhishek; Kohaar, Indu; Hedau, Suresh; Bharti, Alok C; Sarker, Subhodeep; Dey, Dipankar; Saluja, Daman; Das, Bhudev

    2015-01-01

    In this study, we investigated the effects of the natural antioxidant curcumin on the HPV16-positive oral carcinoma cell line 93VU147T and demonstrated that curcumin is not only a potent inhibitor for the activity of host nuclear transcription factors AP-1 and NF-kB but it also selectively suppresses transcription of the HPV16/E6 oncogene during the carcinogenic process in oral cancer cells. This study suggests a therapeutic potential of curcumin for high-risk human papilloma virus (HPV)-infected oral cancers. PMID:25932049

  5. Identification and proteomic analysis of distinct UBE3A/E6AP protein complexes.

    PubMed

    Martínez-Noël, Gustavo; Galligan, Jeffrey T; Sowa, Mathew E; Arndt, Verena; Overton, Thomas M; Harper, J Wade; Howley, Peter M

    2012-08-01

    The E6AP ubiquitin ligase catalyzes the high-risk human papillomaviruses' E6-mediated ubiquitylation of p53, contributing to the neoplastic progression of cells infected by these viruses. Defects in the activity and the dosage of E6AP are linked to Angelman syndrome and to autism spectrum disorders, respectively, highlighting the need for precise control of the enzyme. With the exception of HERC2, which modulates the ubiquitin ligase activity of E6AP, little is known about the regulation or function of E6AP normally. Using a proteomic approach, we have identified and validated several new E6AP-interacting proteins, including HIF1AN, NEURL4, and mitogen-activated protein kinase 6 (MAPK6). E6AP exists as part of several different protein complexes, including the proteasome and an independent high-molecular-weight complex containing HERC2, NEURL4, and MAPK6. In examining the functional consequence of its interaction with the proteasome, we found that UBE3C (another proteasome-associated ubiquitin ligase), but not E6AP, contributes to proteasomal processivity in mammalian cells. We also found that E6 associates with the HERC2-containing high-molecular-weight complex through its binding to E6AP. These proteomic studies reveal a level of complexity for E6AP that has not been previously appreciated and identify a number of new cellular proteins through which E6AP may be regulated or functioning. PMID:22645313

  6. The vaccinia virus E6 protein influences virion protein localization during virus assembly

    SciTech Connect

    Condit, Richard C. Moussatche, Nissin

    2015-08-15

    Vaccinia virus mutants in which expression of the virion core protein gene E6R is repressed are defective in virion morphogenesis. E6 deficient infections fail to properly package viroplasm into viral membranes, resulting in an accumulation of empty immature virions and large aggregates of viroplasm. We have used immunogold electron microscopy and immunofluorescence confocal microscopy to assess the intracellular localization of several virion structural proteins and enzymes during E6R mutant infections. We find that during E6R mutant infections virion membrane proteins and virion transcription enzymes maintain a normal localization within viral factories while several major core and lateral body proteins accumulate in aggregated virosomes. The results support a model in which vaccinia virions are assembled from at least three substructures, the membrane, the viroplasm and a “pre-nucleocapsid”, and that the E6 protein is essential for maintaining proper localization of the seven-protein complex and the viroplasm during assembly. - Highlights: • Mutation of E6 disrupts association of viral membranes with viral core proteins • Mutation of E6 does not perturb viral membrane biosynthesis • Mutation of E6 does not perturb localization of viral transcription enzymes • Mutation of E6 causes mis-localization and aggregation of viral core proteins • Vaccinia assembly uses three subassemblies: membranes, viroplasm, prenucleocapsid.

  7. The vaccinia virus E6 protein influences virion protein localization during virus assembly.

    PubMed

    Condit, Richard C; Moussatche, Nissin

    2015-08-01

    Vaccinia virus mutants in which expression of the virion core protein gene E6R is repressed are defective in virion morphogenesis. E6 deficient infections fail to properly package viroplasm into viral membranes, resulting in an accumulation of empty immature virions and large aggregates of viroplasm. We have used immunogold electron microscopy and immunofluorescence confocal microscopy to assess the intracellular localization of several virion structural proteins and enzymes during E6R mutant infections. We find that during E6R mutant infections virion membrane proteins and virion transcription enzymes maintain a normal localization within viral factories while several major core and lateral body proteins accumulate in aggregated virosomes. The results support a model in which vaccinia virions are assembled from at least three substructures, the membrane, the viroplasm and a "pre-nucleocapsid", and that the E6 protein is essential for maintaining proper localization of the seven-protein complex and the viroplasm during assembly. PMID:25863879

  8. The E6 Oncoproteins of High-Risk Papillomaviruses Bind to a Novel Putative GAP Protein, E6TP1, and Target It for Degradation

    PubMed Central

    Gao, Qingshen; Srinivasan, Seetha; Boyer, Sarah N.; Wazer, David E.; Band, Vimla

    1999-01-01

    The high-risk human papillomaviruses (HPVs) are associated with carcinomas of the cervix and other genital tumors. Previous studies have identified two viral oncoproteins, E6 and E7, which are expressed in the majority of HPV-associated carcinomas. The ability of high-risk HPV E6 protein to immortalize human mammary epithelial cells (MECs) has provided a single-gene model to study the mechanisms of E6-induced oncogenic transformation. In this system, the E6 protein targets the p53 tumor suppressor protein for degradation, and mutational analyses have shown that E6-induced degradation of p53 protein is required for MEC immortalization. However, the inability of most dominant-negative p53 mutants to induce efficient immortalization of MECs suggests the existence of additional targets of the HPV E6 oncoprotein. Using the yeast two-hybrid system, we have isolated a novel E6-binding protein. This polypeptide, designated E6TP1 (E6-targeted protein 1), exhibits high homology to GTPase-activating proteins for Rap, including SPA-1, tuberin, and Rap1GAP. The mRNA for E6TP1 is widely expressed in tissues and in vitro-cultured cell lines. The gene for E6TP1 localizes to chromosome 14q23.2-14q24.3 within a locus that has been shown to undergo loss of heterozygosity in malignant meningiomas. Importantly, E6TP1 is targeted for degradation by the high-risk but not the low-risk HPV E6 proteins both in vitro and in vivo. Furthermore, the immortalization-competent but not the immortalization-incompetent HPV16 E6 mutants target the E6TP1 protein for degradation. Our results identify a novel target for the E6 oncoprotein and provide a potential link between HPV E6 oncogenesis and alteration of a small G protein signaling pathway. PMID:9858596

  9. Molecular Probing of the HPV-16 E6 Protein Alpha Helix Binding Groove with Small Molecule Inhibitors

    PubMed Central

    Rietz, Anne; Petrov, Dino P.; Bartolowits, Matthew; DeSmet, Marsha; Davisson, V. Jo; Androphy, Elliot J.

    2016-01-01

    The human papillomavirus (HPV) HPV E6 protein has emerged as a central oncoprotein in HPV-associated cancers in which sustained expression is required for tumor progression. A majority of the E6 protein interactions within the human proteome use an alpha-helix groove interface for binding. The UBE3A/E6AP HECT domain ubiquitin ligase binds E6 at this helix-groove interface. This enables formation of a trimeric complex with p53, resulting in destruction of this tumor suppressor. While recent x-ray crystal structures are useful, examples of small molecule probes that can modulate protein interactions at this interface are limited. To develop insights useful for potential structure-based design of ligands for HPV E6, a series of 2,6-disubstituted benzopyranones were prepared and tested as competitive antagonists of E6-E6AP helix-groove interactions. These small molecule probes were used in both binding and functional assays to evaluate recognition features of the E6 protein. Evidence for an ionic functional group interaction within the helix groove was implicated by the structure-activity among the highest affinity ligands. The molecular topographies of these protein-ligand interactions were evaluated by comparing the binding and activities of single amino acid E6 mutants with the results of molecular dynamic simulations. A group of arginine residues that form a rim-cap over the E6 helix groove offer compensatory roles in binding and recognition of the small molecule probes. The flexibility and impact on the overall helix-groove shape dictated by these residues offer new insights for structure-based targeting of HPV E6. PMID:26915086

  10. Molecular Probing of the HPV-16 E6 Protein Alpha Helix Binding Groove with Small Molecule Inhibitors.

    PubMed

    Rietz, Anne; Petrov, Dino P; Bartolowits, Matthew; DeSmet, Marsha; Davisson, V Jo; Androphy, Elliot J

    2016-01-01

    The human papillomavirus (HPV) HPV E6 protein has emerged as a central oncoprotein in HPV-associated cancers in which sustained expression is required for tumor progression. A majority of the E6 protein interactions within the human proteome use an alpha-helix groove interface for binding. The UBE3A/E6AP HECT domain ubiquitin ligase binds E6 at this helix-groove interface. This enables formation of a trimeric complex with p53, resulting in destruction of this tumor suppressor. While recent x-ray crystal structures are useful, examples of small molecule probes that can modulate protein interactions at this interface are limited. To develop insights useful for potential structure-based design of ligands for HPV E6, a series of 2,6-disubstituted benzopyranones were prepared and tested as competitive antagonists of E6-E6AP helix-groove interactions. These small molecule probes were used in both binding and functional assays to evaluate recognition features of the E6 protein. Evidence for an ionic functional group interaction within the helix groove was implicated by the structure-activity among the highest affinity ligands. The molecular topographies of these protein-ligand interactions were evaluated by comparing the binding and activities of single amino acid E6 mutants with the results of molecular dynamic simulations. A group of arginine residues that form a rim-cap over the E6 helix groove offer compensatory roles in binding and recognition of the small molecule probes. The flexibility and impact on the overall helix-groove shape dictated by these residues offer new insights for structure-based targeting of HPV E6. PMID:26915086

  11. HPV16 E6 regulates annexin 1 (ANXA1) protein expression in cervical carcinoma cell lines.

    PubMed

    Calmon, Marilia Freitas; Sichero, Laura; Boccardo, Enrique; Villa, Luisa Lina; Rahal, Paula

    2016-09-01

    Annexin 1 (ANXA1) is a substrate for E6AP mediated ubiquitylation. It has been hypothesized that HPV 16 E6 protein redirects E6AP away from ANXA1, increasing its stability and possibly contributing to viral pathogenesis. We analyzed ANXA1 expression in HPV-positive and negative cervical carcinoma-derived cells, in cells expressing HPV-16 oncogenes and in cells transduced with shRNA targeting E6AP. We observed that ANXA1 protein expression increased in HPV-16-positive tumor cells, in keratinocytes expressing HPV-16 E6wt (wild-type) or E6/E7 and C33 cells expressing HPV-16 E6wt. ANXA1 protein expression decreased in cells transfected with E6 Dicer-substrate RNAs (DsiRNA) and C33 cells cotransduced with HPV-16 E6wt and E6AP shRNA. Moreover, colony number and proliferation rate decreased in HPV16-positive cells transduced with ANXA1 shRNA. We observed that in cells infected with HPV16, the E6 binds to E6AP to degrade p53 and upregulate ANXA1. We suggest that ANXA1 may play a role in HPV-mediated carcinogenesis. PMID:27240147

  12. The ubiquitin-specific peptidase USP15 regulates human papillomavirus type 16 E6 protein stability.

    PubMed

    Vos, Robin M; Altreuter, Jennifer; White, Elizabeth A; Howley, Peter M

    2009-09-01

    Proteomic identification of human papillomavirus type 16 (HPV16) E6-interacting proteins revealed several proteins involved in ubiquitin-mediated proteolysis. In addition to the well-characterized E6AP ubiquitin-protein ligase, a second HECT domain protein (HERC2) and a deubiquitylating enzyme (USP15) were identified by tandem affinity purification of HPV16 E6-associated proteins. This study focuses on the functional consequences of the interaction of E6 with USP15. Overexpression of USP15 resulted in increased levels of the E6 protein, and the small interfering RNA-mediated knockdown of USP15 decreased E6 protein levels. These results implicate USP15 directly in the regulation of E6 protein stability and suggest that ubiquitylated E6 could be a substrate for USP15 ubiquitin peptidase activity. It remains possible that E6 could affect the activity of USP15 on specific cellular substrates, a hypothesis that can be tested as more is learned about the substrates and pathways controlled by USP15. PMID:19553310

  13. Modulating Heat Shock Proteins 70 and 90 Expression by Low Power Laser Irradiation (635nm and 780nm) in Jurkat E6.1 T-lymphocyte Leukemia Cell Line

    PubMed Central

    Ad’hiah, Ali Hussein; Al-Ameri, Layla Mohammed Hassan; Maki, Amel Mustfa; Wang, Qiuyu; ALQaisi, Mayada Hameed

    2015-01-01

    Introduction: Heat shock proteins (HSPs) are molecular chaperones involved in protein folding, stability and turnover, and due to their role in cancer progression, the effect of low power laser irradiation (LPLI) on the expression of HSP70 and HSP90 in Jurkat E6.1 T-lymphocyte leukemia (JELT) cell line was investigated in vitro. Methods: JETL cells were irradiated with LPLI at 635nm and 780m wavelengths (energy density 9.174 J/cm2), and assessed for the expression of HSP70 and HSP90 by flow cytometry after 24, 48 and 72 incubation time periods (ITPs). Results: At 24 hours ITP post-irradiation, control cultures showed that 10.7% of cells expressed HSP70, while LPLI cultures at 635nm and 780nm manifested a higher expression (32.1and 21.3%, respectively), and the difference was significant (P ≤ 0.05). However, at 48 hours ITP, the three means were decreased but approximated (5.6, 4.9 and 6.2%, respectively), while at 72 hours ITP, they were markedly increased (45.2, 76.5 and 66.7%, respectively). In contrast, HSP90 responded differently to LPLI. At 24 hours ITP, control cultures and 780nm cultures showed a similar expression (55.9 and 55.9%, respectively), but both means were significantly higher than that of 635nm cultures (24.0%). No such difference was observed at 48 hours ITP, and at 72 hours ITP, control cultures and 635nm cultures shared approximated means (31.7 and 35.6%, respectively); but both means were significantly higher than the observed mean in 780nm cultures (15.2%). Conclusion: The results highlighted that HSP70 and HSP90 expression responded differently to LPLI in JETL cells; an observation that may pave the way for further investigations in malignant cells PMID:25699163

  14. E6^E7, a Novel Splice Isoform Protein of Human Papillomavirus 16, Stabilizes Viral E6 and E7 Oncoproteins via HSP90 and GRP78

    PubMed Central

    Ajiro, Masahiko

    2015-01-01

    ABSTRACT Transcripts of human papillomavirus 16 (HPV16) E6 and E7 oncogenes undergo alternative RNA splicing to produce multiple splice isoforms. However, the importance of these splice isoforms is poorly understood. Here we report a critical role of E6^E7, a novel isoform containing the 41 N-terminal amino acid (aa) residues of E6 and the 38 C-terminal aa residues of E7, in the regulation of E6 and E7 stability. Through mass spectrometric analysis, we identified that HSP90 and GRP78, which are frequently upregulated in cervical cancer tissues, are two E6^E7-interacting proteins responsible for the stability and function of E6^E7, E6, and E7. Although GRP78 and HSP90 do not bind each other, GRP78, but not HSP90, interacts with E6 and E7. E6^E7 protein, in addition to self-binding, interacts with E6 and E7 in the presence of GRP78 and HSP90, leading to the stabilization of E6 and E7 by prolonging the half-life of each protein. Knocking down E6^E7 expression in HPV16-positive CaSki cells by a splice junction-specific small interfering RNA (siRNA) destabilizes E6 and E7 and prevents cell growth. The same is true for the cells with a GRP78 knockdown or in the presence of an HSP90 inhibitor. Moreover, mapping and alignment analyses for splicing elements in 36 alpha-HPVs (α-HPVs) suggest the possible expression of E6^E7 mostly by other oncogenic or possibly oncogenic α-HPVs (HPV18, -30, -31, -39, -42, -45, -56, -59, -70, and -73). HPV18 E6^E7 is detectable in HPV18-positive HeLa cells and HPV18-infected raft tissues. All together, our data indicate that viral E6^E7 and cellular GRP78 or HSP90 might be novel targets for cervical cancer therapy. PMID:25691589

  15. The E6 protein from vaccinia virus is required for the formation of immature virions

    SciTech Connect

    Boyd, Olga; Turner, Peter C.; Moyer, Richard W.; Condit, Richard C.; Moussatche, Nissin

    2010-04-10

    An IPTG-inducible mutant in the E6R gene of vaccinia virus was used to study the role of the E6 virion core protein in viral replication. In the absence of the inducer, the mutant exhibited a normal pattern DNA replication, concatemer resolution and late gene expression, but it showed an inhibition of virion structural protein processing it failed to produce infectious particles. Electron microscopic analysis showed that in the absence of IPTG viral morphogenesis was arrested before IV formation: crescents, aberrant or empty IV-like structures, and large aggregated virosomes were observed throughout the cytoplasm. The addition of IPTG to release a 12-h block showed that virus infectious particles could be formed in the absence of de novo DNA synthesis. Our observations show that in the absence of E6 the association of viroplasm with viral membrane crescents is impaired.

  16. E6-AP promotes misfolded polyglutamine proteins for proteasomal degradation and suppresses polyglutamine protein aggregation and toxicity.

    PubMed

    Mishra, Amit; Dikshit, Priyanka; Purkayastha, Sudarshana; Sharma, Jaiprakash; Nukina, Nobuyuki; Jana, Nihar Ranjan

    2008-03-21

    The accumulation of intracellular protein deposits as inclusion bodies is the common pathological hallmark of most age-related neurodegenerative disorders including polyglutamine diseases. Appearance of aggregates of the misfolded mutant disease proteins suggest that cells are unable to efficiently degrade them, and failure of clearance leads to the severe disturbances of the cellular quality control system. Recently, the quality control ubiquitin ligase CHIP has been shown to suppress the polyglutamine protein aggregation and toxicity. Here we have identified another ubiquitin ligase, called E6-AP, which is able to promote the proteasomal degradation of misfolded polyglutamine proteins and suppress the polyglutamine protein aggregation and polyglutamine protein-induced cell death. E6-AP interacts with the soluble misfolded polyglutamine protein and associates with their aggregates in both cellular and transgenic mouse models. Partial knockdown of E6-AP enhances the rate of aggregate formation and cell death mediated by the polyglutamine protein. Finally, we have demonstrated the up-regulation of E6-AP in the expanded polyglutamine protein-expressing cells as well as cells exposed to proteasomal stress. These findings suggest that E6-AP is a critical mediator of the neuronal response to misfolded polyglutamine proteins and represents a potential therapeutic target in the polyglutamine diseases. PMID:18201976

  17. Expression of the highly conserved vaccinia virus E6 protein is required for virion morphogenesis

    SciTech Connect

    Resch, Wolfgang; Weisberg, Andrea S.; Moss, Bernard

    2009-04-10

    The vaccinia virus E6R gene (VACVWR062) is conserved in all members of the poxvirus family and encodes a protein associated with the mature virion. We confirmed this association and provided evidence for an internal location. An inducible mutant that conditionally expresses E6 was constructed. In the absence of inducer, plaque formation and virus production were severely inhibited in several cell lines, whereas some replication occurred in others. This difference could be due to variation in the stringency of repression, since we could not isolate a stable deletion mutant even in the more 'permissive' cells. Under non-permissive conditions, viral late proteins were synthesized but processing of core proteins was inefficient, indicative of an assembly block. Transmission electron microscopy of sections of cells infected with the mutant in the absence of inducer revealed morphogenetic defects with crescents and empty immature virions adjacent to dense inclusions of viroplasm. Mature virions were infrequent and cores appeared to have lucent centers.

  18. The HPV16 E6 Oncoprotein Causes Prolonged Receptor Protein Tyrosine Kinase Signaling and Enhances Internalization of Phosphorylated Receptor Species

    PubMed Central

    Spangle, Jennifer M.; Munger, Karl

    2013-01-01

    The high-risk human papillomavirus (HPV) E6 proteins are consistently expressed in HPV-associated lesions and cancers. HPV16 E6 sustains the activity of the mTORC1 and mTORC2 signaling cascades under conditions of growth factor deprivation. Here we report that HPV16 E6 activated mTORC1 by enhanced signaling through receptor protein tyrosine kinases, including epidermal growth factor receptor and insulin receptor and insulin-like growth factor receptors. This is evidenced by sustained signaling through these receptors for several hours after growth factor withdrawal. HPV16 E6 increased the internalization of activated receptor species, and the signaling adaptor protein GRB2 was shown to be critical for HPV16 E6 mediated enhanced EGFR internalization and mTORC1 activation. As a consequence of receptor protein kinase mediated mTORC1 activation, HPV16 E6 expression increased cellular migration of primary human epithelial cells. This study identifies a previously unappreciated mechanism by which HPV E6 proteins perturb host-signaling pathways presumably to sustain protein synthesis during the viral life cycle that may also contribute to cellular transforming activities of high-risk HPV E6 proteins. PMID:23516367

  19. HPV oncoprotein E6 is a structure-dependent DNA-binding protein that recognizes four-way junctions.

    PubMed

    Ristriani, T; Masson, M; Nominé, Y; Laurent, C; Lefevre, J F; Weiss, E; Travé, G

    2000-03-10

    E6 is an oncoprotein implicated in cervical cancers, produced by "high-risk" human papillomaviruses. E6 is thought to promote tumorigenesis by stimulating cellular degradation of the tumour suppressor p53, but it might display other activities. Sequence similarity was recently detected between E6 and endonuclease VII, a protein of phage T4 that recognizes and cleaves four-way DNA junctions. Here, we purified recombinant E6 proteins and demonstrated that high-risk E6 s bind selectively to four-way junctions in a structure-dependent manner. Several residues in the C-terminal zinc-binding domain, the region of E6 similar to endonuclease VII, are necessary for the junction-binding activity. E6 binds to the junction as a monomer. Comparative electrophoresis shows that E6-bound junctions migrate in an extended square conformation. Magnesium inhibits the electrophoretic migration of the complexes but does not seem to influence their formation at equilibrium. This work is the first demonstration of specific binding of purified active E6 to a well-characterized DNA ligand, and suggests new modes of action of E6 in oncogenesis. PMID:10698626

  20. Physical and functional interaction of the HECT ubiquitin-protein ligases E6AP and HERC2.

    PubMed

    Kühnle, Simone; Kogel, Ulrike; Glockzin, Sandra; Marquardt, Andreas; Ciechanover, Aaron; Matentzoglu, Konstantin; Scheffner, Martin

    2011-06-01

    Deregulation of the ubiquitin-protein ligase E6AP contributes to the development of the Angelman syndrome and to cervical carcinogenesis suggesting that the activity of E6AP needs to be under tight control. However, how E6AP activity is regulated at the post-translational level under non-pathologic conditions is poorly understood. In this study, we report that the giant protein HERC2, which is like E6AP a member of the HECT family of ubiquitin-protein ligases, binds to E6AP. The interaction is mediated by the RCC1-like domain 2 of HERC2 and a region spanning amino acid residues 150-200 of E6AP. Furthermore, we provide evidence that HERC2 stimulates the ubiquitin-protein ligase activity of E6AP in vitro and within cells and that this stimulatory effect does not depend on the ubiquitin-protein ligase activity of HERC2. Thus, the data obtained indicate that HERC2 acts as a regulator of E6AP. PMID:21493713

  1. PATJ, a Tight Junction-Associated PDZ Protein, Is a Novel Degradation Target of High-Risk Human Papillomavirus E6 and the Alternatively Spliced Isoform 18 E6*▿

    PubMed Central

    Storrs, Carina H.; Silverstein, Saul J.

    2007-01-01

    The E6 protein from high-risk human papillomavirus types interacts with and degrades several PDZ domain-containing proteins that localize to adherens junctions or tight junctions in polarized epithelial cells. We have identified the tight junction-associated multi-PDZ protein PATJ (PALS1-associated TJ protein) as a novel binding partner and degradation target of high-risk types 16 and 18 E6. PATJ functions in the assembly of the evolutionarily conserved CRB-PALS1-PATJ and Par6-aPKC-Par3 complexes and is critical for the formation of tight junctions in polarized cells. The ability of type 18 E6 full-length to bind to, and the subsequent degradation of, PATJ is dependent on its C-terminal PDZ binding motif. We demonstrate that the spliced 18 E6* protein, which lacks a C-terminal PDZ binding motif, associates with and degrades PATJ independently of full-length 18 E6. Thus, PATJ is the first binding partner that is degraded in response to both isoforms of 18 E6. The ability of E6 to utilize a non-E6AP ubiquitin ligase for the degradation of several PDZ binding partners has been suggested. We also demonstrate that 18 E6-mediated degradation of PATJ is not inhibited in cells where E6AP is silenced by shRNA. This suggests that the E6-E6AP complex is not required for the degradation of this protein target. PMID:17287269

  2. Mutagenic Potential ofBos taurus Papillomavirus Type 1 E6 Recombinant Protein: First Description

    PubMed Central

    Araldi, Rodrigo Pinheiro; Mazzuchelli-de-Souza, Jacqueline; Modolo, Diego Grando; de Souza, Edislane Barreiros; de Melo, Thatiana Corrêa; Spadacci-Morena, Diva Denelle; Magnelli, Roberta Fiusa; de Carvalho, Márcio Augusto Caldas Rocha; de Sá Júnior, Paulo Luis; de Carvalho, Rodrigo Franco; Beçak, Willy; Stocco, Rita de Cassia

    2015-01-01

    Bovine papillomavirus (BPV) is considered a useful model to study HPV oncogenic process. BPV interacts with the host chromatin, resulting in DNA damage, which is attributed to E5, E6, and E7 viral oncoproteins activity. However, the oncogenic mechanisms of BPV E6 oncoprotein per se remain unknown. This study aimed to evaluate the mutagenic potential of Bos taurus papillomavirus type 1 (BPV-1) E6 recombinant oncoprotein by the cytokinesis-block micronucleus assay (CBMNA) and comet assay (CA). Peripheral blood samples of five calves were collected. Samples were subjected to molecular diagnosis, which did not reveal presence of BPV sequences. Samples were treated with 1 μg/mL of BPV-1 E6 oncoprotein and 50 μg/mL of cyclophosphamide (positive control). Negative controls were not submitted to any treatment. The samples were submitted to the CBMNA and CA. The results showed that BPV E6 oncoprotein induces clastogenesis per se, which is indicative of genomic instability. These results allowed better understanding the mechanism of cancer promotion associated with the BPV E6 oncoprotein and revealed that this oncoprotein can induce carcinogenesis per se. E6 recombinant oncoprotein has been suggested as a possible vaccine candidate. Results pointed out that BPV E6 recombinant oncoprotein modifications are required to use it as vaccine. PMID:26783529

  3. The HPV16 E6 binding protein Tip-1 interacts with ARHGEF16, which activates Cdc42

    PubMed Central

    Oliver, A W; He, X; Borthwick, K; Donne, A J; Hampson, L; Hampson, I N

    2011-01-01

    Background: Guanidine exchange factor (GEF)-catalysed activation of Rho proteins such as Cdc42 has been shown to have a crucial role in cellular transformation, malignant progression and invasion. We have previously shown that the HPV16 E6 oncoprotein binds to the PDZ domain protein Tax-interacting-protein 1 (Tip-1) and we now report identification and functional analysis of a novel Tip-1 binding GEF. Methods: Yeast two-hybrid, in vitro pull-down, site-directed mutagenesis, semiquantitative PCR, co-immunoprecipitation and western blotting were used to identify/confirm novel Tip-1 binding partners and analyse cellular expression levels. In vitro kinetic analyses of recombinant proteins, siRNA gene silencing and in cell assays were used to measure Rho protein activation. Results: Tax-interacting-protein 1 was shown to interact with ARHGEF16 by its carboxyl PDZ binding motif. Levels of ARHGEF16 were increased in transformed and immortalised cells expressing ectopic HPV16 E6 and Cdc42 was co-immunoprecipitated by ARHGEF16 in the presence of high-risk HPV E6. In vitro kinetic analysis confirmed that recombinant ARHGEF16 activates Cdc42 and this was increased by the addition of recombinant Tip-1 and E6. Cells expressing HPV16 E6 had higher levels of Cdc42 activation, which was decreased by siRNA silencing of either Tip-1 or ARHGEF16. Conclusion: These data suggest that HPV16 E6, Tip-1 and ARHGEF16 may cooperate to activate Cdc42 and support a potential link between the expression of HPV16 E6 and Cdc42 activation. PMID:21139582

  4. Structural and Functional Characterization of the R-modules in Alginate C-5 Epimerases AlgE4 and AlgE6 from Azotobacter vinelandii

    PubMed Central

    Buchinger, Edith; Knudsen, Daniel H.; Behrens, Manja A.; Pedersen, Jan Skov; Aarstad, Olav A.; Tøndervik, Anne; Valla, Svein; Skjåk-Bræk, Gudmund; Wimmer, Reinhard; Aachmann, Finn L.

    2014-01-01

    The bacterium Azotobacter vinelandii produces a family of seven secreted and calcium-dependent mannuronan C-5 epimerases (AlgE1–7). These epimerases are responsible for the epimerization of β-d-mannuronic acid (M) to α-l-guluronic acid (G) in alginate polymers. The epimerases display a modular structure composed of one or two catalytic A-modules and from one to seven R-modules having an activating effect on the A-module. In this study, we have determined the NMR structure of the three individual R-modules from AlgE6 (AR1R2R3) and the overall structure of both AlgE4 (AR) and AlgE6 using small angle x-ray scattering. Furthermore, the alginate binding ability of the R-modules of AlgE4 and AlgE6 has been studied with NMR and isothermal titration calorimetry. The AlgE6 R-modules fold into an elongated parallel β-roll with a shallow, positively charged groove across the module. Small angle x-ray scattering analyses of AlgE4 and AlgE6 show an overall elongated shape with some degree of flexibility between the modules for both enzymes. Titration of the R-modules with defined alginate oligomers shows strong interaction between AlgE4R and both oligo-M and MG, whereas no interaction was detected between these oligomers and the individual R-modules from AlgE6. A combination of all three R-modules from AlgE6 shows weak interaction with long M-oligomers. Exchanging the R-modules between AlgE4 and AlgE6 resulted in a novel epimerase called AlgE64 with increased G-block forming ability compared with AlgE6. PMID:25266718

  5. Comparison of p53 and the PDZ domain containing protein MAGI-3 regulation by the E6 protein from high-risk human papillomaviruses

    PubMed Central

    Ainsworth, Julia; Thomas, Miranda; Banks, Lawrence; Coutlee, Francois; Matlashewski, Greg

    2008-01-01

    Central to cellular transformation caused by human papillomaviruses (HPVs) is the ability of E6 proteins to target cellular p53 and proteins containing PDZ domains, including MAGI-3, for degradation. The aim of this study was to compare E6-mediated degradation of p53 and MAGI-3 under parallel experimental conditions and further with respect to the involvement of proteasomes and ubiquitination. We also compared the degradation of p53 and MAGI-3 by E6 from several HPV types including different variants from HPV-33. All of the E6 genes from different HPV types displayed similar abilities to mediate the degradation of both p53 and MAGI-3 although there may be subtle differences observed with the different 33E6 variants. There were however differences in E6 mediated degradation of p53 and MAGI-3. Proteasome inhibition assays partially protected p53 from E6 mediated degradation, but did not protect MAGI-3. In addition, under conditions where p53 was ubiquitinated by E6 and MDM2 in vivo, ubiquitination of MAGI-3 was not detected. These results imply that although both p53 and MAGI-3 represent effective targets for oncogenic E6, the mechanisms by which E6 mediates p53 and MAGI-3 degradation are distinct with respect to the involvement of ubiquitination prior to proteasomal degradation. PMID:18518978

  6. The Angelman Syndrome Protein Ube3a/E6AP is Required for Golgi Acidification and Surface Protein Sialylation

    PubMed Central

    Condon, Kathryn H.; Ho, Jianghai; Robinson, Camenzind G.; Hanus, Cyril; Ehlers, Michael D.

    2013-01-01

    Angelman syndrome (AS) is a severe disorder of postnatal brain development caused by neuron-specific loss of the HECT (homologous to E6AP carboxy terminus) domain E3 ubiquitin ligase Ube3a/E6AP. The cellular role of Ube3a remains enigmatic despite recent descriptions of synaptic and behavioral deficits in AS mouse models. Although neuron-specific imprinting is thought to limit the disease to the brain, Ube3a is expressed ubiquitously, suggesting a broader role in cellular function. In the current study, we demonstrate a profound structural disruption and cisternal swelling of the Golgi apparatus (GA) in the cortex of AS (UBE3Am−/p+) mice. In Ube3a knockdown cell lines and UBE3Am−/p+ cortical neurons, the GA is severely under-acidified, leading to osmotic swelling. Both in vitro and in vivo, the loss of Ube3a and corresponding elevated pH of the GA is associated with a marked reduction in protein sialylation, a process highly dependent on intralumenal Golgi pH. Altered ion homeostasis of the GA may provide a common cellular pathophysiology underlying the diverse plasticity and neurodevelopmental deficits associated with AS. PMID:23447592

  7. The Angelman syndrome protein Ube3a/E6AP is required for Golgi acidification and surface protein sialylation.

    PubMed

    Condon, Kathryn H; Ho, Jianghai; Robinson, Camenzind G; Hanus, Cyril; Ehlers, Michael D

    2013-02-27

    Angelman syndrome (AS) is a severe disorder of postnatal brain development caused by neuron-specific loss of the HECT (homologous to E6AP carboxy terminus) domain E3 ubiquitin ligase Ube3a/E6AP. The cellular role of Ube3a remains enigmatic despite recent descriptions of synaptic and behavioral deficits in AS mouse models. Although neuron-specific imprinting is thought to limit the disease to the brain, Ube3a is expressed ubiquitously, suggesting a broader role in cellular function. In the current study, we demonstrate a profound structural disruption and cisternal swelling of the Golgi apparatus (GA) in the cortex of AS (UBE3A(m-/p+)) mice. In Ube3a knockdown cell lines and UBE3A(m-/p+) cortical neurons, the GA is severely under-acidified, leading to osmotic swelling. Both in vitro and in vivo, the loss of Ube3a and corresponding elevated pH of the GA is associated with a marked reduction in protein sialylation, a process highly dependent on intralumenal Golgi pH. Altered ion homeostasis of the GA may provide a common cellular pathophysiology underlying the diverse plasticity and neurodevelopmental deficits associated with AS. PMID:23447592

  8. Expression and In Silico Analysis of the Recombinant Bovine Papillomavirus E6 Protein as a Model for Viral Oncoproteins Studies

    PubMed Central

    Mazzuchelli-de-Souza, J.; Carvalho, R. F.; Ruiz, R. M.; Melo, T. C.; Araldi, R. P.; Carvalho, E.; Thompson, C. E.; Sircili, M. P.; Beçak, W.; Stocco, R. C.

    2013-01-01

    Bovine papillomaviruses (BPVs) are recognized as the causal agents of economical relevant diseases in cattle, associated with the development of tumors in skin and mucosa. The oncogenesis process is mainly associated with different viral oncoprotein expressions, which are involved in cell transformation. The expression and characterization of recombinant viral oncoproteins represent an attractive strategy to obtain biotechnological products as antibodies and potential vaccines, Thus, the aim of this work was to clone and express the BPV-1 and BPV-2 E6 recombinant proteins and perform in silico analysis in order to develop a strategy for the systematic study of other papillomaviruses oncoproteins. The results demonstrated that BPV-1 and BPV-2 E6 recombinant proteins were expressed and purified from bacterial system as well as its in silico analysis was performed in order to explore and predict biological characteristics of these proteins. PMID:23878806

  9. Disc large 1 expression is altered by human papillomavirus E6/E7 proteins in organotypic cultures of human keratinocytes.

    PubMed

    Valdano, M Bugnon; Cavatorta, A L; Morale, M G; Marziali, F; de Souza Lino, V; Steenbergen, R D M; Boccardo, E; Gardiol, D

    2016-02-01

    Loss of cell polarity is a fundamental process in cell transformation. Among polarity proteins, we focused on human disc large (DLG1), which is localized mainly at adherens junctions and contributes to the control of cell proliferation. We previously demonstrated that its expression is altered in HPV-associated cervical neoplastic lesions, but the mechanisms beyond this remain unknown. In this study, we analysed the contribution of HPV proteins to the changes in DLG1 expression in the squamous epithelium. We observed tissue and intracellular misdistribution of DLG1 when high-risk HPV-18 E7 or E6/E7 proteins were expressed in organotypic raft cultures. The viral oncoproteins induce the loss of DLG1 from the cell borders and an increase in the level of DLG1 protein, reflecting the pattern observed in cervical lesions. These findings were corroborated in cultures bearing the entire HPV-18 genome. Interestingly, changes in tissue distribution and abundance of DLG1 were also detected in organotypic cultures expressing the low-risk HPV-11 E7 or E6/E7 proteins, suggesting a conserved function among different HPV types. However, for low-risk HPVs, the subcellular localization of DLG1 at cell-to-cell contacts was predominantly maintained. This report offers new evidence, we believe, of the involvement of HPV proteins in DLG1 expression pattern and our data support previous observations regarding DLG1 expression in cervical lesions. PMID:26653181

  10. The E7 protein of the cottontail rabbit papillomavirus immortalizes normal rabbit keratinocytes and reduces pRb levels, while E6 cooperates in immortalization but neither degrades p53 nor binds E6AP

    SciTech Connect

    Ganzenmueller, Tina; Matthaei, Markus; Muench, Peter; Scheible, Michael; Iftner, Angelika; Hiller, Thomas; Leiprecht, Natalie; Probst, Sonja; Stubenrauch, Frank; Iftner, Thomas

    2008-03-15

    Human papillomaviruses (HPVs) cause cervical cancer and are associated with the development of non-melanoma skin cancer. A suitable animal model for papillomavirus-associated skin carcinogenesis is the infection of domestic rabbits with the cottontail rabbit papillomavirus (CRPV). As the immortalizing activity of CRPV genes in the natural target cells remains unknown, we investigated the properties of CRPV E6 and E7 in rabbit keratinocytes (RK) and their influence on the cell cycle. Interestingly, CRPV E7 immortalized RK after a cellular crisis but showed no such activity in human keratinocytes. Co-expressed CRPV E6 prevented cellular crisis. The HPV16 or CRPV E7 protein reduced rabbit pRb levels thereby causing rabbit p19{sup ARF} induction and accumulation of p53 without affecting cellular proliferation. Both CRPV E6 proteins failed to degrade rabbit p53 in vitro or to bind E6AP; however, p53 was still inducible by mitomycin C. In summary, CRPV E7 immortalizes rabbit keratinocytes in a species-specific manner and E6 contributes to immortalization without directly affecting p53.

  11. Hepatitis C virus core protein inhibits E6AP expression via DNA methylation to escape from ubiquitin-dependent proteasomal degradation.

    PubMed

    Kwak, Juri; Shim, Joo Hee; Tiwari, Indira; Jang, Kyung Lib

    2016-09-28

    The E6-associated protein (E6AP) is a ubiquitin ligase that mediates ubiquitination and proteasomal degradation of hepatitis C virus (HCV) core protein. Given the role of HCV core protein as a major component of the viral nucleocapsid, as well as a multifunctional protein involved in viral pathogenesis and hepatocarcinogenesis, HCV has likely evolved a strategy to counteract the host anti-viral defense mechanism of E6AP and maximize its potential to produce infectious virus particles. In the present study, we found that HCV core protein derived from either ectopic expression or HCV infection inhibits E6AP expression via promoter hypermethylation in human hepatocytes. As a result, the potential of E6AP to ubiquitinate and degrade HCV core protein through the ubiquitin-proteasome system was severely impaired, which in turn led to stimulation of virus propagation. The effects of HCV core protein were almost completely abolished when the E6AP level was restored by ectopic expression of E6AP, treatment with a universal DNA methyltransferase (DNMT) inhibitor, 5-Aza-2'dC, or knock-down of DNMT1. In conclusion, HCV core protein inhibits E6AP expression via DNA methylation to protect itself from ubiquitin-dependent proteasomal degradation and stimulate virus propagation, providing a potential target for the development of anti-viral drugs against HCV. PMID:27317649

  12. Human papillomavirus type 16 E2 and E6 are RNA-binding proteins and inhibit in vitro splicing of pre-mRNAs with suboptimal splice sites

    SciTech Connect

    Bodaghi, Sohrab; Jia Rong; Zheng Zhiming

    2009-03-30

    Human papillomavirus type 16 (HPV16) genome expresses six regulatory proteins (E1, E2, E4, E5, E6, and E7) which regulate viral DNA replication, gene expression, and cell function. We expressed HPV16 E2, E4, E6, and E7 from bacteria as GST fusion proteins and examined their possible functions in RNA splicing. Both HPV16 E2, a viral transactivator protein, and E6, a viral oncoprotein, inhibited splicing of pre-mRNAs containing an intron with suboptimal splice sites, whereas HPV5 E2 did not. The N-terminal half and the hinge region of HPV16 E2 as well as the N-terminal and central portions of HPV16 E6 are responsible for the suppression. HPV16 E2 interacts with pre-mRNAs through its C-terminal DNA-binding domain. HPV16 E6 binds pre-mRNAs via nuclear localization signal (NLS3) in its C-terminal half. Low-risk HPV6 E6, a cytoplasmic protein, does not bind RNA. Notably, both HPV16 E2 and E6 selectively bind to the intron region of pre-mRNAs and interact with a subset of cellular SR proteins. Together, these findings suggest that HPV16 E2 and E6 are RNA binding proteins and might play roles in posttranscriptional regulation during virus infection.

  13. The Role of Protein Kinase A Regulation of the E6 PDZ-Binding Domain during the Differentiation-Dependent Life Cycle of Human Papillomavirus Type 18

    PubMed Central

    Delury, Craig P.; Marsh, Elizabeth K.; James, Claire D.; Boon, Siaw Shi; Banks, Lawrence; Knight, Gillian L.

    2013-01-01

    Human papillomavirus (HPV) E6 proteins of high-risk alpha types target a select group of PSD95/DLG1/ZO1 (PDZ) domain-containing proteins by using a C-terminal PDZ-binding motif (PBM), an interaction that can be negatively regulated by phosphorylation of the E6 PBM by protein kinase A (PKA). Here, we have mutated the canonical PKA recognition motif that partially overlaps with the E6 PBM in the HPV18 genome (E6153PKA) and compared the effect of this mutation on the HPVl8 life cycle in primary keratinocytes with the wild-type genome and with a second mutant genome that lacks the E6 PBM (E6ΔPDZ). Loss of PKA recognition of E6 was associated with increased growth of the genome-containing cells relative to cells carrying the wild-type genome, and upon stratification, a more hyperplastic phenotype, with an increase in the number of S-phase competent cells in the upper suprabasal layers, while the opposite was seen with the E6ΔPDZ genome. Moreover, the growth of wild-type genome-containing cells was sensitive to changes in PKA activity, and these changes were associated with increased phosphorylation of the E6 PBM. In marked contrast to E6ΔPDZ genomes, the E6153PKA mutation exhibited no deleterious effects on viral genome amplification or expression of late proteins. Our data suggest that the E6 PBM function is differentially regulated by phosphorylation in the HPV18 life cycle. We speculate that perturbation of protein kinase signaling pathways could lead to changes in E6 PBM function, which in turn could have a bearing on tumor promotion and progression. PMID:23804647

  14. The spike protein of severe acute respiratory syndrome (SARS) is cleaved in virus infected Vero-E6 cells.

    PubMed

    Wu, Xiao Dong; Shang, Bo; Yang, Rui Fu; Yu, Hao; Ma, Zhi Hai; Shen, Xu; Ji, Yong Yong; Lin, Ying; Wu, Ya Di; Lin, Guo Mei; Tian, Lin; Gan, Xiao Qing; Yang, Sheng; Jiang, Wei Hong; Dai, Er Hei; Wang, Xiao Yi; Jiang, Hua Liang; Xie, You Hua; Zhu, Xue Liang; Pei, Gang; Li, Lin; Wu, Jia Rui; Sun, Bing

    2004-10-01

    Spike protein is one of the major structural proteins of severe acute respiratory syndrome-coronavirus. It is essential for the interaction of the virons with host cell receptors and subsequent fusion of the viral envelop with host cell membrane to allow infection. Some spike proteins of coronavirus, such as MHV, HCoV-OC43, AIBV and BcoV, are proteolytically cleaved into two subunits, S1 and S2. In contrast, TGV, FIPV and HCoV-229E are not. Many studies have shown that the cleavage of spike protein seriously affects its function. In order to investigate the maturation and proteolytic processing of the S protein of SARS CoV, we generated S1 and S2 subunit specific antibodies (Abs) as well as N, E and 3CL protein-specific Abs. Our results showed that the antibodies could efficiently and specifically bind to their corresponding proteins from E.coli expressed or lysate of SARS-CoV infected Vero-E6 cells by Western blot analysis. Furthermore, the anti-S1 and S2 Abs were proved to be capable of binding to SARS CoV under electron microscope observation. When S2 Ab was used to perform immune precipitation with lysate of SARS-CoV infected cells, a cleaved S2 fragment was detected with S2-specific mAb by Western blot analysis. The data demonstrated that the cleavage of S protein was observed in the lysate, indicating that proteolytic processing of S protein is present in host cells. PMID:15450134

  15. Pub1 acts as an E6-AP-like protein ubiquitiin ligase in the degradation of cdc25.

    PubMed Central

    Nefsky, B; Beach, D

    1996-01-01

    The level of the mitotic activating tyrosine phosphatase cdc25 is regulated by both transcriptional and post-transcriptional mechanisms in the fission yeast Schizosaccharomyces pombe. We have found that cdc25 is ubiquitinated and have cloned pub1, a gene which regulates this event. Pub1 contains a region highly homologous to the putative catalytic domain of the human protein ubiquitin ligase E6-AP. Disruption of pub1 elevates the level of cdc25 protein in vivo rendering cells relatively resistant to the cdc25-opposing tyrosine kinases wee1 and mik1. In addition, loss of wee1 activity in a pub1-disruption background results in a lethal premature entry into mitosis which can be rescued by loss of cdc25 function. A ubiquitin-thioester adduct of pub1 was isolated from fission yeast and disruption of pub1 dramatically reduced ubiquitination of cdc25 in vivo. These results suggest that pub1 directly ubiquitinates cdc25 in vivo. Images PMID:8635463

  16. Genetic stability of a recombinant adenovirus vaccine vector seed library expressing human papillomavirus type 16 E6 and E7 proteins

    PubMed Central

    WU, JIE; CHEN, KE-DA; GAO, MENG; CHEN, GANG; JIN, SU-FENG; ZHUANG, FANG-CHENG; WU, XIAO-HONG; JIANG, YUN-SHUI; LI, JIAN-BO

    2015-01-01

    The aim of the present study was to understand the genetic stability of a master seed bank (MSB) and a working seed bank (WSB) of an adenovirus vector vaccine expressing the human papillomavirus (HPV) type 16 E6 and E7 fusion proteins (Ad-HPV16E6E7). Microscopic examination and viral infectious efficacy were used to measure the infectious titers of the Ad-HPV16E6E7 MSB and WSB. Polymerase chain reaction was used to analyze the stability of the Ad-HPV16E6E7 target gene insertion, while western blot analysis and immunofluorescence were used to assess the expression levels of the Ad-HPV16E6E7 target protein. A C57BL/6 mouse TC-1 tumor cell growth inhibition model was used to evaluate the biological effect of Ad-HPV16E6E7 administration. The infectious titers of the Ad-HPV16E6E7 MSB and WSB were 6.31×109 IU/ml and 3.0×109 IU/ml, respectively. In addition, the expression levels of the inserted target genes and target proteins were found to be stable. In the mouse TC-1 tumor inhibition analysis, when the virus titers of the Ad-HPV16E6E7 MSB and WSB were 109 IU/ml, the tumor inhibition rate was 100%, which was significantly different when compared with the control group (χ2MSB=20.00 and χ2WSB=20.00; P<0.01). Therefore, the Ad-HPV16E6E7 vaccine seed bank is genetically stable and meets the requirements for vaccine development. PMID:25780403

  17. Adjuvant effect of docetaxel on HPV16 L2E6E7 fusion protein vaccine in a mouse model.

    PubMed

    Su, Xiaoyan; Xu, Wei; Guan, Ran; Wang, Yunhao; Wu, Jie; Zhai, Lijuan; Chen, Gang; Hu, Songhua

    2016-09-01

    We previously demonstrated that the antineoplastic agent docetaxel enhanced the immune response to an influenza vaccine. This study evaluated the adjuvant effect of docetaxel (DOC) on the therapeutic efficacy of HPV16 L2E6E7 fusion protein (HPV-LFP) in mice inoculated with TC-1 cells. The results demonstrated that docetaxel significantly enhanced the therapeutic effect of HPV-LFP on TC-1 cell-induced tumors in mice. The injection of HPV-LFP in combination with docetaxel in TC-1 tumor-bearing mice significantly reduced tumor volume and weight, and a greater percent survival was detected than mice treated with HPV-LFP alone. The inhibition of tumors was associated with significantly increased serum antigen-specific IgG and isotypes, activated CTLs, increased IFN-γ-secreting T cells, and decreased Treg cells and IL-10-secreting cells in spleen. In addition, down-regulation of IL-10, VEGF and STAT3, up-regulation of IFN-γ and decreased Treg cells in the tumor microenvironment may also important contributing factors to the antitumor effect. It may be valuable to use a DOC-containing water to dilute HPV-LFP powder before injection in patients because of its excellent adjuvant effect on HPV-LFP and solubility in water. PMID:27233002

  18. Protein mutagenesis with monodispersity-based quality probing: selective inactivation of p53 degradation and DNA-binding properties of HPV E6 oncoprotein.

    PubMed

    Ristriani, Tutik; Nominé, Yves; Laurent, Cécile; Weiss, Etienne; Travé, Gilles

    2002-12-01

    Interpretation of protein mutagenesis experiments requires the ability to distinguish functionally relevant mutations from mutations affecting the structure. When a protein is expressed soluble in bacteria, properly folded mutants are expected to remain soluble whereas misfolded mutants should form insoluble aggregates. However, this rule may fail for proteins fused to highly soluble carrier proteins. In a previous study, we analysed the biophysical status of HPV oncoprotein E6 fused to the C-terminus of maltose-binding protein (MBP) and found that misfolded E6 moieties fused to MBP formed soluble aggregates of high molecular weight. By contrast, preparations of properly folded E6 fused to MBP were monodisperse. Here, we have used this finding to evaluate the quality of 19 MBP-fused E6 site-directed mutants by using a light scattering assay performed in a fluorimeter. This assay guided us to rule out structurally defective mutants and to obtain functionally relevant E6 mutants selectively altered for two molecular activities: degradation of tumour suppressor p53 and DNA recognition. PMID:12460759

  19. Sterile α Motif Domain Containing 9 Is a Novel Cellular Interacting Partner to Low-Risk Type Human Papillomavirus E6 Proteins

    PubMed Central

    Wang, Jia; Dupuis, Crystal; Tyring, Stephen K.; Underbrink, Michael P.

    2016-01-01

    Low-risk type human papillomavirus (HPV) 6 and 11 infection causes recurrent respiratory papillomatosis (RRP) and genital warts. RRP is the most common benign tumor of the larynx in children with frequent relapses. Repeated surgeries are often needed to improve vocal function and prevent life-threatening respiratory obstruction. Currently, there are no effective treatments available to completely eliminate these diseases, largely due to limited knowledge regarding their viral molecular pathogenesis. HPV E6 proteins contribute to cell immortalization by interacting with a variety of cellular proteins, which have been well studied for the high-risk type HPVs related to cancer progression. However, the functions of low-risk HPV E6 proteins are largely unknown. In this study, we report GST-pulldown coupled mass spectrometry analysis with low-risk HPV E6 proteins that identified sterile alpha motif domain containing 9 (SAMD9) as a novel interacting partner. We then confirmed the interaction between HPV-E6 and SAMD9 using co-immunoprecipitation, proximity ligation assay, and confocal immunofluorescence staining. The SAMD9 gene is down-regulated in a variety of neoplasms and deleteriously mutated in normophosphatemic familial tumoral calcinosis. Interestingly, SAMD9 also has antiviral functions against poxvirus. Our study adds to the limited knowledge of the molecular properties of low-risk HPVs and describes new potential functions for the low-risk HPV E6 protein. PMID:26901061

  20. Sterile α Motif Domain Containing 9 Is a Novel Cellular Interacting Partner to Low-Risk Type Human Papillomavirus E6 Proteins.

    PubMed

    Wang, Jia; Dupuis, Crystal; Tyring, Stephen K; Underbrink, Michael P

    2016-01-01

    Low-risk type human papillomavirus (HPV) 6 and 11 infection causes recurrent respiratory papillomatosis (RRP) and genital warts. RRP is the most common benign tumor of the larynx in children with frequent relapses. Repeated surgeries are often needed to improve vocal function and prevent life-threatening respiratory obstruction. Currently, there are no effective treatments available to completely eliminate these diseases, largely due to limited knowledge regarding their viral molecular pathogenesis. HPV E6 proteins contribute to cell immortalization by interacting with a variety of cellular proteins, which have been well studied for the high-risk type HPVs related to cancer progression. However, the functions of low-risk HPV E6 proteins are largely unknown. In this study, we report GST-pulldown coupled mass spectrometry analysis with low-risk HPV E6 proteins that identified sterile alpha motif domain containing 9 (SAMD9) as a novel interacting partner. We then confirmed the interaction between HPV-E6 and SAMD9 using co-immunoprecipitation, proximity ligation assay, and confocal immunofluorescence staining. The SAMD9 gene is down-regulated in a variety of neoplasms and deleteriously mutated in normophosphatemic familial tumoral calcinosis. Interestingly, SAMD9 also has antiviral functions against poxvirus. Our study adds to the limited knowledge of the molecular properties of low-risk HPVs and describes new potential functions for the low-risk HPV E6 protein. PMID:26901061

  1. Expression of E6, p53 and p21 proteins and physical state of HPV16 in cervical cytologies with and without low grade lesions

    PubMed Central

    Tagle, Diana K Jiménez; Sotelo, Daniel Hernández; Illades-Aguiar, Berenice; Leyva-Vazquez, Marco A; Alfaro, Eugenia Flores; Coronel, Yaneth Castro; Hernández, Oscar del Moral; Romero, Luz del Carmen Alarcón

    2014-01-01

    The aim of this study was to determine the correlation between expression of HPV16 E6, p53 and p21 proteins and the physical state of HPV16 in cervical cytologies without squamous intraepithelial lesions (Non-SIL) and with low grade squamous intraepithelial lesions (LSIL), both with HPV16 infection. 101 liquid-based cytological samples were analyzed. 50 samples were without squamous intraepithelial lesions (Non-IL) and 51 samples of low grade squamous intraepithelial lesions (LSIL), both with HPV16 infection. HPV16 infection was determined by PCR-RFLP, and the physical state of HPV16 by in situ hybridization with tyramide-amplification. The expression of E6, p53 and p21 proteins was evaluated by immunocytochemistry. The expression of HPV16 E6 protein was significantly higher in LSIL that in Non-SIL samples (p=0.006). We found a significant correlation between E6 expression and the physical state of HPV16 in Non-SIL (p=0.049). Our results suggest that high expression of E6 in LSIL is an early event of cervical carcinogenesis and perhaps can be used as an early marker. PMID:24482706

  2. The Asian-American E6 Variant Protein of Human Papillomavirus 16 Alone Is Sufficient To Promote Immortalization, Transformation, and Migration of Primary Human Foreskin Keratinocytes

    PubMed Central

    Niccoli, Sarah; Abraham, Suraj; Richard, Christina

    2012-01-01

    We examined how well the human papillomavirus (HPV) E6 oncogene can function in the absence of the E7 oncogene during the carcinogenic process in human keratinocytes using a common HPV variant strongly associated with cervical cancer: the Asian-American E6 variant (AAE6). This E6 variant is 20 times more frequently detected in cervical cancer than the prototype European E6 variant, as evidenced by independent epidemiological data. Using cell culture and cell-based functional assays, we assessed how this variant can perform crucial carcinogenesis steps compared to the prototype E6 variant. The ability to immortalize and transform primary human foreskin keratinocytes (PHFKs) to acquire resilient phenotypes and the ability to promote cell migration were evaluated. The immortalization capability was assayed based on population doublings, number of passages, surpassing mortality stages 1 and 2, human telomerase reverse transcriptase (hTERT) expression, and the ability to overcome G1 arrest via p53 degradation. Transformation and migration efficiency were analyzed using a combination of functional cell-based assays. We observed that either AAE6 or prototype E6 proteins alone were sufficient to immortalize PHFKs, although AAE6 was more potent in doing so. The AAE6 variant protein alone pushed PHFKs through transformation and significantly increased their migration ability over that of the E6 prototype. Our findings are in line with epidemiological data that the AA variant of HPV16 confers an increased risk over the European prototype for cervical cancer, as evidenced by a superior immortalization, transformation, and metastatic potential. PMID:22951839

  3. Identification of host transcriptional networks showing concentration-dependent regulation by HPV16 E6 and E7 proteins in basal cervical squamous epithelial cells

    PubMed Central

    Smith, Stephen P.; Scarpini, Cinzia G.; Groves, Ian J.; Odle, Richard I.; Coleman, Nicholas

    2016-01-01

    Development of cervical squamous cell carcinoma requires increased expression of the major high-risk human-papillomavirus (HPV) oncogenes E6 and E7 in basal cervical epithelial cells. We used a systems biology approach to identify host transcriptional networks in such cells and study the concentration-dependent changes produced by HPV16-E6 and -E7 oncoproteins. We investigated sample sets derived from the W12 model of cervical neoplastic progression, for which high quality phenotype/genotype data were available. We defined a gene co-expression matrix containing a small number of highly-connected hub nodes that controlled large numbers of downstream genes (regulons), indicating the scale-free nature of host gene co-expression in W12. We identified a small number of ‘master regulators’ for which downstream effector genes were significantly associated with protein levels of HPV16 E6 (n = 7) or HPV16 E7 (n = 5). We validated our data by depleting E6/E7 in relevant cells and by functional analysis of selected genes in vitro. We conclude that the network of transcriptional interactions in HPV16-infected basal-type cervical epithelium is regulated in a concentration-dependent manner by E6/E7, via a limited number of central master-regulators. These effects are likely to be significant in cervical carcinogenesis, where there is competitive selection of cells with elevated expression of virus oncoproteins. PMID:27457222

  4. Identification of host transcriptional networks showing concentration-dependent regulation by HPV16 E6 and E7 proteins in basal cervical squamous epithelial cells.

    PubMed

    Smith, Stephen P; Scarpini, Cinzia G; Groves, Ian J; Odle, Richard I; Coleman, Nicholas

    2016-01-01

    Development of cervical squamous cell carcinoma requires increased expression of the major high-risk human-papillomavirus (HPV) oncogenes E6 and E7 in basal cervical epithelial cells. We used a systems biology approach to identify host transcriptional networks in such cells and study the concentration-dependent changes produced by HPV16-E6 and -E7 oncoproteins. We investigated sample sets derived from the W12 model of cervical neoplastic progression, for which high quality phenotype/genotype data were available. We defined a gene co-expression matrix containing a small number of highly-connected hub nodes that controlled large numbers of downstream genes (regulons), indicating the scale-free nature of host gene co-expression in W12. We identified a small number of 'master regulators' for which downstream effector genes were significantly associated with protein levels of HPV16 E6 (n = 7) or HPV16 E7 (n = 5). We validated our data by depleting E6/E7 in relevant cells and by functional analysis of selected genes in vitro. We conclude that the network of transcriptional interactions in HPV16-infected basal-type cervical epithelium is regulated in a concentration-dependent manner by E6/E7, via a limited number of central master-regulators. These effects are likely to be significant in cervical carcinogenesis, where there is competitive selection of cells with elevated expression of virus oncoproteins. PMID:27457222

  5. Characterization of p16 and E6 HPV-related proteins in uterine cervix high-grade lesions of patients treated by conization with large loop excision

    PubMed Central

    RONCAGLIA, MARIA TERESA; FREGNANI, JOSÉ HUMBERTO T.G.; TACLA, MARICY; DE CAMPOS, SILVANA GISELE PEGORIN; CAIAFFA, HÉLIO HEHL; AB’SABER, ALEXANDRE; DA MOTTA, EDUARDO VIEIRA; ALVES, VENÂNCIO AVANCINI FERREIRA; BARACAT, EDMUND C.; LONGATTO FILHO, ADHEMAR

    2013-01-01

    Cervical cancer and its precursor lesions represent a significant public health problem for developing and less-developed countries. Cervical carcinogenesis is strongly correlated with persistent high-risk human papillomavirus (HPV) infection, which is mostly associated with expression of the p16 and E6 HPV-related proteins. The aim of this present study was to determine the expression of the p16 and E6 proteins in females with high-grade lesions treated with conization, and to discuss the role of these proteins as prognostic markers following treatment. In total, 114 females were treated for high-grade cervical intraepithelial neoplasia (CIN, grades 2/3) by conization with large loop excision of the transformation zone (LLETZ). Following surgery, the patients returned within 30–45 days for post-operative evaluation. A follow-up was conducted every 6 months for 2 years. At each follow-up appointment, a Pap smear, colposcopy and HPV DNA test were performed. E6 and p16 immunohistochemical tests were conducted on the surgical specimens. The positive expression of p16 was correlated with the presence of lesions with increased severity in the surgical specimens (P= 0.0001). The expression of E6 did not demonstrate the same correlation (P=0.131). The HPV DNA hybrid, collected in the first post-operative consultation as a predictor of the cytological abnormalities identified at the 24-month follow-up assessment, presented a sensitivity of 55.6%, a specificity of 84.8%, a positive predictive value of 33.3% and a negative predictive value of 93.3%. The role of p16INK4A as a marker of CIN was also demonstrated; the expression of p16 and E6, however, did not appear to be of any prognostic value in predicting the clearance of high-risk HPV following conization. A negative hybrid capture test was correlated with a disease-free outcome. PMID:23946778

  6. Age-dependent alterations of c-fos and growth regulation in human fibroblasts expressing the HPV16 E6 protein.

    PubMed Central

    Yan, Y; Ouellette, M M; Shay, J W; Wright, W E

    1996-01-01

    Normal human cells in culture become senescent after a limited number of population doublings. Senescent cells display characteristic changes in gene expression, among which is a repression of the ability to induce the c-fos gene. We have proposed a two-stage model for cellular senescence in which the mortality stage 1 (M1) mechanism can be overcome by agents that bind both the product of the retinoblastoma susceptibility gene (pRB)-like pocket proteins and p53. In this study we determined whether the repression of c-fos at M1 was downstream of the p53 or pRB-like "arms" of the M1 mechanism. We examined c-fos expression during the entire lifespan of normal human fibroblasts carrying E6 (which binds p53), E7 (which binds pRB), or both E6 and E7 of human papilloma virus type 16. The results indicate a dramatic change in cellular physiology at M1. Before M1, c-fos inducibility is controlled by an E6-independent mechanism that is blocked by E7. After M1, c-fos inducibility becomes dependent on E6 whereas E7 has no effect. In addition, a novel oscillation of c-fos expression with an approximately 2-h periodicity appears in E6-expressing fibroblasts post-M1. Accompanying this shift at M1 is a dramatic change in the ability to divide in low serum. Before M1, E6-expressing fibroblasts growth arrest in 0.3% serum, although they continue dividing under those conditions post-M1. These results demonstrate the unique physiology of fibroblasts during the extended lifespan between M1 and M2 and suggest that p53 might participate in the process that represses the c-fos gene at the onset of cellular senescence. Images PMID:8817002

  7. E6 Gamma Decay

    SciTech Connect

    Brown, B. Alex; Rae, W. D. M.

    2011-05-06

    Rare electric hexacontatetrapole (E6) transitions are studied in the full (f{sub 7/2},f{sub 5/2},p{sub 3/2},p{sub 1/2}) shell-model basis. Comparison of theory to the results from the gamma decay in {sup 53}Fe and from inelastic electron scattering on {sup 52}Cr provides unique and interesting tests of the valence wavefunctions, the models used for energy density functionals and into the origin of effective charge.

  8. Role of ubiquitin and the HPV E6 oncoprotein in E6AP-mediated ubiquitination

    PubMed Central

    Mortensen, Franziska; Schneider, Daniel; Barbic, Tanja; Sladewska-Marquardt, Anna; Kühnle, Simone; Marx, Andreas; Scheffner, Martin

    2015-01-01

    Deregulation of the ubiquitin ligase E6 associated protein (E6AP) encoded by the UBE3A gene has been associated with three different clinical pictures. Hijacking of E6AP by the E6 oncoprotein of distinct human papillomaviruses (HPV) contributes to the development of cervical cancer, whereas loss of E6AP expression or function is the cause of Angelman syndrome, a neurodevelopmental disorder, and increased expression of E6AP has been involved in autism spectrum disorders. Although these observations indicate that the activity of E6AP has to be tightly controlled, only little is known about how E6AP is regulated at the posttranslational level. Here, we provide evidence that the hydrophobic patch of ubiquitin comprising Leu-8 and Ile-44 is important for E6AP-mediated ubiquitination, whereas it does not affect the catalytic properties of the isolated catalytic HECT domain of E6AP. Furthermore, we show that the HPV E6 oncoprotein rescues the disability of full-length E6AP to use a respective hydrophobic patch mutant of ubiquitin for ubiquitination and that it stimulates E6AP-mediated ubiquitination of Ring1B, a known substrate of E6AP, in vitro and in cells. Based on these data, we propose that E6AP exists in at least two different states, an active and a less active or latent one, and that the activity of E6AP is controlled by noncovalent interactions with ubiquitin and allosteric activators such as the HPV E6 oncoprotein. PMID:26216987

  9. Module organization and variance in protein-protein interaction networks

    PubMed Central

    Lin, Chun-Yu; Lee, Tsai-Ling; Chiu, Yi-Yuan; Lin, Yi-Wei; Lo, Yu-Shu; Lin, Chih-Ta; Yang, Jinn-Moon

    2015-01-01

    A module is a group of closely related proteins that act in concert to perform specific biological functions through protein–protein interactions (PPIs) that occur in time and space. However, the underlying module organization and variance remain unclear. In this study, we collected module templates to infer respective module families, including 58,041 homologous modules in 1,678 species, and PPI families using searches of complete genomic database. We then derived PPI evolution scores and interface evolution scores to describe the module elements, including core and ring components. Functions of core components were highly correlated with those of essential genes. In comparison with ring components, core proteins/PPIs were conserved across multiple species. Subsequently, protein/module variance of PPI networks confirmed that core components form dynamic network hubs and play key roles in various biological functions. Based on the analyses of gene essentiality, module variance, and gene co-expression, we summarize the observations of module organization and variance as follows: 1) a module consists of core and ring components; 2) core components perform major biological functions and collaborate with ring components to execute certain functions in some cases; 3) core components are more conserved and essential during organizational changes in different biological states or conditions. PMID:25797237

  10. Analysis of ROC: The value of HPV16 E6 protein in the diagnosis of early stage cervical carcinoma and precancerous lesions

    PubMed Central

    Sun, Li; Xu, Shubin; Liang, Lei; Zhao, Liang; Zhang, Lei

    2016-01-01

    Cervical carcinoma is a multifactorial malignant tumor and diagnosis is therefore crucial. The aim of the present study was to examine the value of E6 oncoprotein, in human papillomavirus type 16 (HPV16), in the diagnosis of early stage cervical carcinoma and precancerous lesions. Receiver operating characteristic curve was used to analyze accuracy of diagnosis. A total of 124 patients infected with HPV16 were included in the study. The patients had an average age of 46.7±6.9 years and duration of disease of 10.5±3.4 months. To determine the expression level of HPV16 E6 the immunohistochemical Elivision method was performed. Proportion/horizon positive cells were used to count the cells, and pathologic diagnosis was employed for analysis of the results. The average follow-up time was 2.6±0.7 years. Sensitivity and specificity of diagnosing HPV16 E16 at 1 and 2 years, respectively, were calculated. The diagnostic rate of cervical carcinoma increased with time, and the positive expression of HPV16 E6 was also increased with the development of the disease. Differences among groups were statistically significant (P<0.05). Sensitivity, specificity and accuracy (AUC) of HPV16 E6 diagnosis improved with time, and the differences were statistically significant (P<0.05). Thus, HPV16 E6 oncoprotein can be used as an indicator with good sensitivity and specificity to diagnose early cervical carcinoma and precancerous lesions. The results therefore showed that accuracy increased with the development of the disease. PMID:27588123

  11. Protein modules and signalling networks

    NASA Astrophysics Data System (ADS)

    Pawson, Tony

    1995-02-01

    Communication between cells assumes particular importance in multicellular organisms. The growth, migration and differentiation of cells in the embryo, and their organization into specific tissues, depend on signals transmitted from one cell to another. In the adult, cell signalling orchestrates normal cellular behaviour and responses to wounding and infection. The consequences of breakdowns in this signalling underlie cancer, diabetes and disorders of the immune and cardiovascular systems. Conserved protein domains that act as key regulatory participants in many of these different signalling pathways are highlighted.

  12. Positive modulator of bone morphogenic protein-2

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua; Takahashi, Kazuyuki

    2009-01-27

    Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.

  13. E6D25E, HPV16 Asian variant shows specific proteomic pattern correlating in cells transformation and suppressive innate immune response.

    PubMed

    Chopjitt, Peechanika; Pientong, Chamsai; Sunthamala, Nuchsupha; Kongyingyoes, Bunkerd; Haonon, Ornuma; Boonmars, Thidarut; Kikawa, Satomi; Nakahara, Tomomi; Kiyono, Tohru; Ekalaksananan, Tipaya

    2016-09-01

    HPV16 Asian variant (HPV16As) containing E6D25E oncogene, is commonly associated with cervical cancers of Asian populations. To explore a mechanism of E6D25E oncoprotein in carcinogenesis, we compared protein profiles in human keratinocytes expressing E6D25E with E6 of HPV16 prototype (E6Pro). A human cervical keratinocyte cell line, HCK1T, was transduced with retroviruses containing E6D25E or E6Pro genes. Biological properties of E6D25E or E6Pro transduced HCK1T cells were characterized. Protein profiles of the transduced HCK1T cells were analyzed using 2D-PAGE and characterized by mass spectrometry and western blotting. Reactomes of modulated proteins were analyzed by using the Reactome Knowledgebase. The E6D25E and E6Pro oncoproteins were comparable for their abilities to degrade p53 and suppress the induction of p21, and induce cell proliferation. Interestingly, the protein profiles of the HCK1T cells transduced with E6D25E showed specific proteomic patterns different from those with E6Pro. Among altered proteins, more than 1.5-fold up- or down- regulation was observed in E6D25E-expressing cells for gp96 and keratin7 which involved in activation of TLR signaling and transformation of squamocolumnar junction cells, respectively. This report describes new cellular proteins specifically targeted by E6D25E oncoprotein that may contribute to impair immune response against viral infection and cell transformation associated with oncogenic property of HPV16As variant. PMID:27392712

  14. Complex Reconstitution from Individual Protein Modules.

    PubMed

    Basquin, Jérôme; Taschner, Michael; Lorentzen, Esben

    2016-01-01

    Cellular function relies on protein complexes that work as nano-machines. The structure and function of protein complexes is an outcome of the specific combination of protein subunits, or modules, within the complex. A major focus of molecular biology is thus to understand how protein subunits assemble to form complexes with distinct biological function. To this end, in vitro reconstitution of complexes from individual subunits to study their assembly, structure and activity is of central importance. With purified individual subunits and sub-modules at hand one can systematically dissect the hierarchical assembly of larger complexes using direct protein-protein interaction assays. Furthermore, activity assays can be carried out with individual subunits or smaller sub-complexes and compared to those of the fully assembled complex to precisely map functional sites and provide a molecular basis for in vivo observations. In this chapter we review methods for protein complex assembly from individual subunits and provide examples of advantages and potential pitfalls to this approach. PMID:27165333

  15. Foldons, Protein Structural Modules, and Exons

    NASA Astrophysics Data System (ADS)

    Panchenko, Anna R.; Luthey-Schulten, Zaida; Wolynes, Peter G.

    1996-03-01

    Foldons, which are kinetically competent, quasi-independently folding units of a protein, may be defined using energy landscape analysis. Foldons can be identified by maxima in a scan of the ratio of a contiguous segment's energetic stability gap to the energy variance of that segment's molten globule states, reflecting the requirement of minimal frustration. The predicted foldons are compared with the exons and structural modules for 16 of the 30 proteins studied. Statistical analysis indicates a strong correlation between the energetically determined foldons and Go's geometrically defined structural modules, but there are marked sequence-dependent effects. There is only a weak correlation of foldons to exons. For γ II-crystallin, myoglobin, barnase, α -lactalbumin, and cytochrome c the foldons and some noncontiguous clusters of foldons compare well with intermediates observed in experiment.

  16. Human Papillomavirus type 16 E6 and E 7 proteins alter NF-kB in cultured cervical epithelial cells and inhibition of NF-kB promotes cell growth and immortalization

    PubMed Central

    Vandermark, Erik R.; Deluca, Krysta A.; Gardner, Courtney R.; Marker, Daniel F.; Schreiner, Cynthia N.; Strickland, David A.; Wilton, Katelynn M.; Mondal, Sumona; Woodworth, Craig D.

    2012-01-01

    The NF-kB family of transcription factors regulates important biological functions including cell growth, survival and the immune response. We found that Human Papillomavirus type 16 (HPV-16) E7 and E6/E7 proteins inhibited basal and TNF-alpha-inducible NF-kB activity in human epithelial cells cultured from the cervical transformation zone, the anatomic region where most cervical cancers develop. In contrast, HPV-16 E6 regulated NF-kB in a cell type- and cell growth-dependent manner. NF-kB influenced immortalization of cervical cells by HPV16. Inhibition of NF-kB by an IkB alpha repressor mutant increased colony formation and immortalization by HPV-16. In contrast, activation of NF-kB by constitutive expression of p65 inhibited proliferation and immortalization. Our results suggest that inhibition of NF-kB by HPV-16 E6/E7 contributes to immortalization of cells from the cervical transformation zone. PMID:22284893

  17. Human papillomavirus type 16 E6 and E 7 proteins alter NF-kB in cultured cervical epithelial cells and inhibition of NF-kB promotes cell growth and immortalization

    SciTech Connect

    Vandermark, Erik R.; Deluca, Krysta A.; Gardner, Courtney R.; Marker, Daniel F.; Schreiner, Cynthia N.; Strickland, David A.; Wilton, Katelynn M.; Mondal, Sumona; Woodworth, Craig D.

    2012-03-30

    The NF-kB family of transcription factors regulates important biological functions including cell growth, survival and the immune response. We found that Human Papillomavirus type 16 (HPV-16) E7 and E6/E7 proteins inhibited basal and TNF-alpha-inducible NF-kB activity in human epithelial cells cultured from the cervical transformation zone, the anatomic region where most cervical cancers develop. In contrast, HPV-16 E6 regulated NF-kB in a cell type- and cell growth-dependent manner. NF-kB influenced immortalization of cervical cells by HPV16. Inhibition of NF-kB by an IkB alpha repressor mutant increased colony formation and immortalization by HPV-16. In contrast, activation of NF-kB by constitutive expression of p65 inhibited proliferation and immortalization. Our results suggest that inhibition of NF-kB by HPV-16 E6/E7 contributes to immortalization of cells from the cervical transformation zone.

  18. Modulation of opioid receptor function by protein-protein interactions.

    PubMed

    Alfaras-Melainis, Konstantinos; Gomes, Ivone; Rozenfeld, Raphael; Zachariou, Venetia; Devi, Lakshmi

    2009-01-01

    Opioid receptors, MORP, DORP and KORP, belong to the family A of G protein coupled receptors (GPCR), and have been found to modulate a large number of physiological functions, including mood, stress, appetite, nociception and immune responses. Exogenously applied opioid alkaloids produce analgesia, hedonia and addiction. Addiction is linked to alterations in function and responsiveness of all three opioid receptors in the brain. Over the last few years, a large number of studies identified protein-protein interactions that play an essential role in opioid receptor function and responsiveness. Here, we summarize interactions shown to affect receptor biogenesis and trafficking, as well as those affecting signal transduction events following receptor activation. This article also examines protein interactions modulating the rate of receptor endocytosis and degradation, events that play a major role in opiate analgesia. Like several other GPCRs, opioid receptors may form homo or heterodimers. The last part of this review summarizes recent knowledge on proteins known to affect opioid receptor dimerization. PMID:19273296

  19. Type IV Pilin Proteins: Versatile Molecular Modules

    PubMed Central

    Giltner, Carmen L.; Nguyen, Ylan

    2012-01-01

    Summary: Type IV pili (T4P) are multifunctional protein fibers produced on the surfaces of a wide variety of bacteria and archaea. The major subunit of T4P is the type IV pilin, and structurally related proteins are found as components of the type II secretion (T2S) system, where they are called pseudopilins; of DNA uptake/competence systems in both Gram-negative and Gram-positive species; and of flagella, pili, and sugar-binding systems in the archaea. This broad distribution of a single protein family implies both a common evolutionary origin and a highly adaptable functional plan. The type IV pilin is a remarkably versatile architectural module that has been adopted widely for a variety of functions, including motility, attachment to chemically diverse surfaces, electrical conductance, acquisition of DNA, and secretion of a broad range of structurally distinct protein substrates. In this review, we consider recent advances in this research area, from structural revelations to insights into diversity, posttranslational modifications, regulation, and function. PMID:23204365

  20. GABAAergic stimulation modulates intracellular protein arginine methylation.

    PubMed

    Denman, Robert B; Xie, Wen; Merz, George; Sung, Ying-Ju

    2014-06-20

    Changes in cytoplasmic pH are known to regulate diverse cellular processes and influence neuronal activities. In neurons, the intracellular alkalization is shown to occur after stimulating several channels and receptors. For example, it has previously demonstrated in P19 neurons that a sustained intracellular alkalinization can be mediated by the Na(+)/H(+) antiporter. In addition, the benzodiazepine binding subtypes of the γ-amino butyric acid type A (GABAA) receptor mediate a transient intracellular alkalinization when they are stimulated. Because the activities of many enzymes are sensitive to pH shift, here we investigate the effects of intracellular pH modulation resulted from stimulating GABAA receptor on the protein arginine methyltransferases (PRMT) activities. We show that the major benzodiazepine subtype (2α1, 2β2, 1γ2) is constitutively expressed in both undifferentiated P19 cells and retinoic acid (RA) differentiated P19 neurons. Furthermore stimulation with diazepam and, diazepam plus muscimol produce an intracellular alkalinization that can be detected ex vivo with the fluorescence dye. The alkalinization results in significant perturbation in protein arginine methylation activity as measured in methylation assays with specific protein substrates. Altered protein arginine methylation is also observed when cells are treated with the GABAA agonist muscimol but not an antagonist, bicuculline. These data suggest that pH-dependent and pH-independent methylation pathways can be activated by GABAAergic stimulation, which we verified using hippocampal slice preparations from a mouse model of fragile X syndrome. PMID:24793772

  1. The human papillomavirus (HPV) E6 oncoproteins promotes nuclear localization of active caspase 8

    SciTech Connect

    Manzo-Merino, Joaquin; Lizano, Marcela

    2014-02-15

    The HPV-16 E6 and E6{sup ⁎} proteins have been shown previously to be capable of regulating caspase 8 activity. We now show that the capacity of E6 to interact with caspase 8 is common to diverse HPV types, being also seen with HPV-11 E6, HPV-18 E6 and HPV-18 E6{sup ⁎}. Unlike most E6-interacting partners, caspase 8 does not appear to be a major proteasomal target of E6, but instead E6 appears able to stimulate caspase 8 activation, without affecting the overall apoptotic activity. This would appear to be mediated in part by the ability of the HPV E6 oncoproteins to recruit active caspase 8 to the nucleus. - Highlights: • Multiple HPV E6 oncoproteins interact with the caspase 8 DED domain. • HPV E6 stimulates activation of caspase 8. • HPV E6 promotes nuclear accumulation of caspase 8.

  2. Sequential Cisplatin Therapy and Vaccination with HPV16 E6E7L2 Fusion Protein in Saponin Adjuvant GPI-0100 for the Treatment of a Model HPV16+ Cancer

    PubMed Central

    Peng, Shiwen; Wang, Joshua W.; Karanam, Balasubramanyam; Wang, Chenguang; Huh, Warner K.; Alvarez, Ronald D.; Pai, Sara I.; Hung, Chien-fu; Wu, T. -C.; Roden, Richard B. S.

    2015-01-01

    Clinical studies suggest that responses to HPV16 E6E7L2 fusion protein (TA-CIN) vaccination alone are modest, and GPI-0100 is a well-tolerated, potent adjuvant. Here we sought to optimize both the immunogenicity of TA-CIN via formulation with GPI-0100 and treatment of HPV16+ cancer by vaccination after cisplatin chemotherapy. HPV16 neutralizing serum antibody titers, CD4+ T cell proliferative and E6/E7-specific CD8+ T cell responses were significantly enhanced when mice were vaccinated subcutaneously (s.c.) or intramuscularly (i.m.) with TA-CIN formulated with GPI-0100. Vaccination was tested for therapy of mice bearing syngeneic HPV16 E6/E7+ tumors (TC-1) either in the lung or subcutaneously. Mice treated with TA-CIN/GPI-0100 vaccination exhibited robust E7-specific CD8+ T cell responses, which were associated with reduced tumor burden in the lung, whereas mice receiving either component alone were similar to controls. Since vaccination alone was not sufficient for cure, mice bearing s.c. TC-1 tumor were first treated with two doses of cisplatin and then vaccinated. Vaccination with TA-CIN/GPI-0100 i.m. substantially retarded tumor growth and extended survival after cisplatin therapy. Injection of TA-CIN alone, but not GPI-0100, into the tumor (i.t.) was similarly efficacious after cisplatin therapy, but the mice eventually succumbed. However, tumor regression and extended remission was observed in 80% of the mice treated with cisplatin and then intra-tumoral TA-CIN/GPI-0100 vaccination. These mice also exhibited robust E7-specific CD8+ T cell and HPV16 neutralizing antibody responses. Thus formulation of TA-CIN with GPI-0100 and intra-tumoral delivery after cisplatin treatment elicits potent therapeutic responses in a murine model of HPV16+ cancer. PMID:25560237

  3. Analysis of the roles of E6 binding to E6TP1 and nuclear localization in the human papillomavirus type 31 life cycle

    SciTech Connect

    Lee, Choongho; Wooldridge, Tonia R.; Laimins, Laimonis A. . E-mail: l-laimins@northwestern.edu

    2007-02-05

    The E6 oncoproteins of high-risk human papillomaviruses provide important functions not only for malignant transformation but also in the productive viral life cycle. E6 proteins have been shown to bind to a number of cellular factors, but only a limited number of analyses have investigated the effects of these interactions on the viral life cycle. In this study, we investigated the consequences of HPV 31 E6 binding to E6TP1, a putative Rap1 GAP protein. HPV 16 E6 has been shown to bind as well as induce the rapid turnover of E6TP1, and similar effects were observed with HPV 31 E6. Mutation of amino acid 128 in HPV 31 E6 was found to abrogate the ability to bind and degrade E6TP1 but did not alter binding to another {alpha}-helical domain protein, E6AP. When HPV 31 genomes containing mutations at amino acid 128 were transfected into human keratinocytes, the viral DNAs were not stably maintained as episomes indicating the importance of this residue for pathogenesis. Many E6 binding partners including E6TP1 are cytoplasmic proteins, but E6 has been also reported to be localized to the nucleus. We therefore investigated the importance of E6 localization to the nucleus in the viral life cycle. Using a fusion of E6 to Green Fluorescent Protein, we mapped one component of the nuclear localization sequences to residues 121 to 124 of HPV 31 E6. Mutation of these residues in the context of the HPV 31 genome abrogated the ability for episomes to be stably maintained and impaired the ability to extend the life span of cells. These studies identify two activities of HPV 31 E6 that are important for its function in the viral life cycle and for extension of cell life span.

  4. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53

    PubMed Central

    Martinez-Zapien, Denise; Ruiz, Francesc Xavier; Poirson, Juline; Mitschler, André; Ramirez-Ramos, Juan; Forster, Anne; Cousido-Siah, Alexandra; Masson, Murielle; Pol, Scott Vande; Podjarny, Alberto; Travé, Gilles; Zanier, Katia

    2015-01-01

    Summary The p53 pro-apoptotic tumor suppressor is mutated or functionally altered in most cancers. In epithelial tumors induced by “high-risk” mucosal Human Papillomaviruses (hrm-HPVs), including human cervical carcinoma and a growing number of head-and-neck cancers 1, p53 is degraded by the viral oncoprotein E6 2. In this process, E6 binds to a short LxxLL consensus sequence within the cellular ubiquitin ligase E6AP 3. Subsequently, the E6/E6AP heterodimer recruits and degrades p53 4. Neither E6 nor E6AP are separately able to recruit p53 3,5, and the precise mode of assembly of E6, E6AP and p53 is unknown. Here, we solved the crystal structure of a ternary complex comprising full-length HPV16 E6, the LxxLL motif of E6AP and the core domain of p53. The LxxLL motif of E6AP renders the conformation of E6 competent for interaction with p53 by structuring a p53-binding cleft on E6. Mutagenesis of critical positions at the E6-p53 interface disrupts p53 degradation. The E6-binding site of p53 is distal from previously described DNA- and protein-binding surfaces of the core domain. This suggests that, in principle, E6 may avoid competition with cellular factors by targeting both free and bound p53 molecules. The E6/E6AP/p53 complex represents a prototype of viral hijacking of both the ubiquitin-mediated protein degradation pathway and the p53 tumor suppressor pathway. The present structure provides a framework for the design of inhibitory therapeutic strategies against HPV-mediated oncogenesis. PMID:26789255

  5. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53.

    PubMed

    Martinez-Zapien, Denise; Ruiz, Francesc Xavier; Poirson, Juline; Mitschler, André; Ramirez, Juan; Forster, Anne; Cousido-Siah, Alexandra; Masson, Murielle; Vande Pol, Scott; Podjarny, Alberto; Travé, Gilles; Zanier, Katia

    2016-01-28

    The p53 pro-apoptotic tumour suppressor is mutated or functionally altered in most cancers. In epithelial tumours induced by 'high-risk' mucosal human papilloma viruses, including human cervical carcinoma and a growing number of head-and-neck cancers, p53 is degraded by the viral oncoprotein E6 (ref. 2). In this process, E6 binds to a short leucine (L)-rich LxxLL consensus sequence within the cellular ubiquitin ligase E6AP. Subsequently, the E6/E6AP heterodimer recruits and degrades p53 (ref. 4). Neither E6 nor E6AP are separately able to recruit p53 (refs 3, 5), and the precise mode of assembly of E6, E6AP and p53 is unknown. Here we solve the crystal structure of a ternary complex comprising full-length human papilloma virus type 16 (HPV-16) E6, the LxxLL motif of E6AP and the core domain of p53. The LxxLL motif of E6AP renders the conformation of E6 competent for interaction with p53 by structuring a p53-binding cleft on E6. Mutagenesis of critical positions at the E6-p53 interface disrupts p53 degradation. The E6-binding site of p53 is distal from previously described DNA- and protein-binding surfaces of the core domain. This suggests that, in principle, E6 may avoid competition with cellular factors by targeting both free and bound p53 molecules. The E6/E6AP/p53 complex represents a prototype of viral hijacking of both the ubiquitin-mediated protein degradation pathway and the p53 tumour suppressor pathway. The present structure provides a framework for the design of inhibitory therapeutic strategies against oncogenesis mediated by human papilloma virus. PMID:26789255

  6. Specific recognition of four-way DNA junctions by the C-terminal zinc-binding domain of HPV oncoprotein E6.

    PubMed

    Ristriani, T; Nominé, Y; Masson, M; Weiss, E; Travé, G

    2001-01-26

    E6 is an oncoprotein implicated in cervical cancers produced by " high risk " human papillomaviruses. E6 binds specifically to several cellular proteins, including the tumour suppressor p53 and the ubiquitin ligase E6-AP. However, E6 is also a DNA-binding protein which recognizes a structural motive present in four-way junctions. Here, we demonstrate that the C-terminal zinc-binding domain of E6, expressed separately from the rest of the protein, fully retains the selective four-way junction recognition activity. The domain can bind to two identical and independent sites on a single junction, whereas full-length E6 can only bind to one site. The junction bound to either one or two domains adopts an extended square conformation. These results allow us to assign the structure-dependent DNA recognition activity of E6 to its C-terminal domain, which therefore represents a new class of zinc-stabilized DNA-binding module. Comparison with the binding characteristics of other junction-specific proteins enlightens the rules which govern protein-induced deformation of four-way DNA junctions. PMID:11162088

  7. O6-alkylguanine-DNA transferase (SNAP) as capture module for site-specific covalent bioconjugation of targeting protein on nanoparticles

    NASA Astrophysics Data System (ADS)

    Mazzucchelli, Serena; Colombo, Miriam; Galbiati, Elisabetta; Corsi, Fabio; Montenegro, Josè M.; Parak, Wolfgang J.; Prosperi, Davide

    2013-02-01

    A bimodular genetic fusion comprising a delivery module (scFv) and a capture module (SNAP) is proposed as a novel strategy for the biologically mediated site-specific covalent conjugation of targeting proteins to nanoparticles. ScFv800E6, an scFv mutant selective for HER2 antigen overexpressed in breast cancer cells was chosen as targeting ligand. The fusion protein SNAP-scFv was irreversibly immobilized on magnetofluorescent nanoparticles through the recognition between SNAP module and pegylated O6-alkylguanine derivative. The targeting efficiency of the resulting nanoparticle against HER2-positive breast cancer cells was assessed by flow cytometry and immunofluorescence.

  8. HPV16 E6 and E6AP differentially cooperate to stimulate or augment Wnt signaling

    SciTech Connect

    Sominsky, Sophia; Kuslansky, Yael; Shapiro, Beny; Jackman, Anna; Haupt, Ygal; Rosin-Arbesfeld, Rina; Sherman, Levana

    2014-11-15

    The present study investigated the roles of E6 and E6AP in the Wnt pathway. We showed that E6 levels are markedly reduced in cells in which Wnt signaling is activated. Coexpression of wild-type or mutant E6AP (C820A) in Wnt-activated cells stabilized E6 and enhanced Wnt/β-catenin/TCF transcription. Expression of E6AP alone in nonstimulated cells elevated β-catenin level, promoted its nuclear accumulation, and activated β-catenin/TCF transcription. A knockdown of E6AP lowered β-catenin levels. Coexpression with E6 intensified the activities of E6AP. Further experiments proved that E6AP/E6 stabilize β-catenin by protecting it from proteasomal degradation. This function was dependent on the catalytic activity of E6AP, the kinase activity of GSK3β and the susceptibility of β-catenin to GSK3β phosphorylation. Thus, this study identified E6AP as a novel regulator of the Wnt signaling pathway, capable of cooperating with E6 in stimulating or augmenting Wnt/β-catenin signaling, thereby possibly contributing to HPV carcinogenesis. - Highlights: • The roles of E6 and E6AP in the Wnt pathway were investigated. • E6AP stabilizes E6 and enhances E6 activity in augmentation of Wnt signaling. • E6AP cooperates with E6 to stabilize β-catenin and stimulate Wnt/β-catenin signaling. • E6AP and E6 act through different mechanisms to augment or stimulate Wnt signaling.

  9. Discovering Distinct Functional Modules of Specific Cancer Types Using Protein-Protein Interaction Networks

    PubMed Central

    Shen, Ru; Wang, Xiaosheng; Guda, Chittibabu

    2015-01-01

    Background. The molecular profiles exhibited in different cancer types are very different; hence, discovering distinct functional modules associated with specific cancer types is very important to understand the distinct functions associated with them. Protein-protein interaction networks carry vital information about molecular interactions in cellular systems, and identification of functional modules (subgraphs) in these networks is one of the most important applications of biological network analysis. Results. In this study, we developed a new graph theory based method to identify distinct functional modules from nine different cancer protein-protein interaction networks. The method is composed of three major steps: (i) extracting modules from protein-protein interaction networks using network clustering algorithms; (ii) identifying distinct subgraphs from the derived modules; and (iii) identifying distinct subgraph patterns from distinct subgraphs. The subgraph patterns were evaluated using experimentally determined cancer-specific protein-protein interaction data from the Ingenuity knowledgebase, to identify distinct functional modules that are specific to each cancer type. Conclusion. We identified cancer-type specific subgraph patterns that may represent the functional modules involved in the molecular pathogenesis of different cancer types. Our method can serve as an effective tool to discover cancer-type specific functional modules from large protein-protein interaction networks. PMID:26495282

  10. Processing incommensurately modulated protein diffraction data with Eval15

    SciTech Connect

    Porta, Jason; Lovelace, Jeffrey J.; Schreurs, Antoine M. M.; Kroon-Batenburg, Loes M. J.; Borgstahl, Gloria E. O.

    2011-07-01

    Data processing of an incommensurately modulated profilin–actin crystal is described. Recent challenges in biological X-ray crystallography include the processing of modulated diffraction data. A modulated crystal has lost its three-dimensional translational symmetry but retains long-range order that can be restored by refining a periodic modulation function. The presence of a crystal modulation is indicated by an X-ray diffraction pattern with periodic main reflections flanked by off-lattice satellite reflections. While the periodic main reflections can easily be indexed using three reciprocal-lattice vectors a*, b*, c*, the satellite reflections have a non-integral relationship to the main lattice and require a q vector for indexing. While methods for the processing of diffraction intensities from modulated small-molecule crystals are well developed, they have not been applied in protein crystallography. A recipe is presented here for processing incommensurately modulated data from a macromolecular crystal using the Eval program suite. The diffraction data are from an incommensurately modulated crystal of profilin–actin with single-order satellites parallel to b*. The steps taken in this report can be used as a guide for protein crystallographers when encountering crystal modulations. To our knowledge, this is the first report of the processing of data from an incommensurately modulated macromolecular crystal.

  11. Transmitter and receiver modules in bacterial signaling proteins.

    PubMed Central

    Kofoid, E C; Parkinson, J S

    1988-01-01

    Prokaryotes are capable of sophisticated sensory behaviors. We have detected sequence motifs in bacterial signaling proteins that may act as transmitter or receiver modules in mediating protein-protein communication. These modules appear to retain their functional identities in many protein hosts, implying that they are structurally independent elements. We propose that the fundamental activity characterizing these domains is specific recognition and association of matched modules, accompanied by conformational changes in one or both of the interacting elements. Signal propagation is a natural consequence of this behavior. The versatility of this information-processing strategy is evident in the chemotaxis machinery of Escherichia coli, where proteins containing transmitters or receivers are linked in "dyadic relays" to form complex signaling networks. Images PMID:3293046

  12. Functional module identification in protein interaction networks by interaction patterns

    PubMed Central

    Wang, Yijie; Qian, Xiaoning

    2014-01-01

    Motivation: Identifying functional modules in protein–protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential modules. However, based on this simple topological criterion of ‘higher than expected connectivity’, those algorithms may miss biologically meaningful modules of functional significance, in which proteins have similar interaction patterns to other proteins in networks but may not be densely connected to each other. A few blockmodel module identification algorithms have been proposed to address the problem but the lack of global optimum guarantee and the prohibitive computational complexity have been the bottleneck of their applications in real-world large-scale PPI networks. Results: In this article, we propose a novel optimization formulation LCP2 (low two-hop conductance sets) using the concept of Markov random walk on graphs, which enables simultaneous identification of both dense and sparse modules based on protein interaction patterns in given networks through searching for LCP2 by random walk. A spectral approximate algorithm SLCP2 is derived to identify non-overlapping functional modules. Based on a bottom-up greedy strategy, we further extend LCP2 to a new algorithm (greedy algorithm for LCP2) GLCP2 to identify overlapping functional modules. We compare SLCP2 and GLCP2 with a range of state-of-the-art algorithms on synthetic networks and real-world PPI networks. The performance evaluation based on several criteria with respect to protein complex prediction, high level Gene Ontology term prediction and especially sparse module detection, has demonstrated that our algorithms based on searching for LCP2 outperform all other compared algorithms. Availability and implementation: All data and code are available at http://www.cse.usf.edu/∼xqian/fmi/slcp2hop

  13. Total Cellular RNA Modulates Protein Activity.

    PubMed

    Majumder, Subhabrata; DeMott, Christopher M; Reverdatto, Sergey; Burz, David S; Shekhtman, Alexander

    2016-08-16

    RNA constitutes up to 20% of a cell's dry weight, corresponding to ∼20 mg/mL. This high concentration of RNA facilitates low-affinity protein-RNA quinary interactions, which may play an important role in facilitating and regulating biological processes. In the yeast Pichia pastoris, the level of ubiquitin-RNA colocalization increases when cells are grown in the presence of dextrose and methanol instead of methanol as the sole carbon source. Total RNA isolated from cells grown in methanol increases β-galactosidase activity relative to that seen with RNA isolated from cells grown in the presence of dextrose and methanol. Because the total cellular RNA content changes with growth medium, protein-RNA quinary interactions can alter in-cell protein biochemistry and may play an important role in cell adaptation, critical to many physiological and pathological states. PMID:27456029

  14. Engineering and Assembly of Protein Modules into Functional Molecular Systems.

    PubMed

    Hirschi, Stephan; Stauffer, Mirko; Harder, Daniel; Müller, Daniel J; Meier, Wolfgang; Fotiadis, Dimitrios

    2016-01-01

    Synthetic biology approaches range from the introduction of unique features into organisms to the assembly of isolated biomacromolecules or synthetic building blocks into artificial biological systems with biomimetic or completely novel functionalities. Simple molecular systems can be based on containers on the nanoscale that are equipped with tailored functional modules for various applications in healthcare, industry or biological and medical research. The concept, or vision, of assembling native or engineered proteins and/or synthetic components as functional modules into molecular systems is discussed. The main focus is laid on the engineering of energizing modules generating chemical energy, transport modules using this energy to translocate molecules between compartments of a molecular system, and catalytic modules (bio-)chemically processing the molecules. Further key aspects of this discourse are possible approaches for the assembly of simple nanofactories and their applications in biotechnology and medical health. PMID:27363367

  15. E6AP, an E3 ubiquitin ligase negatively regulates granulopoiesis by targeting transcription factor C/EBPα for ubiquitin-mediated proteasome degradation.

    PubMed

    Pal, P; Lochab, S; Kanaujiya, J K; Kapoor, I; Sanyal, S; Behre, G; Trivedi, A K

    2013-01-01

    CCAAT/enhancer-binding protein alpha (C/EBPα) is an important transcription factor involved in granulocytic differentiation. Here, for the first time we demonstrate that E6-associated protein (E6AP), an E3 ubiquitin ligase targets C/EBPα for ubiquitin-mediated proteasome degradation and thereby negatively modulates its functions. Wild-type E6AP promotes ubiquitin dependent proteasome degradation of C/EBPα, while catalytically inactive E6-associated protein having cysteine replaced with alanine at amino-acid position 843 (E6AP-C843A) rather stabilizes it. Further, these two proteins physically associate both in non-myeloid (overexpressed human embryonic kidney epithelium) and myeloid cells. We show that E6AP-mediated degradation of C/EBPα protein expression curtails its transactivation potential on its target genes. Noticeably, E6AP degrades both wild-type 42 kDa CCAAT-enhancer-binding protein alpha (p42C/EBPα) and mutant isoform 30 kDa CCAAT-enhancer-binding protein alpha (p30C/EBPα), this may explain perturbed p42C/EBPα/p30C/EBPα ratio often observed in acute myeloid leukemia (AML). We show that overexpression of catalytically inactive E6AP-C843A in C/EBPα inducible K562- p42C/EBPα-estrogen receptor (ER) cells inhibits β-estradiol (E2)-induced C/EBPα degradation leading to enhanced granulocytic differentiation. This enhanced granulocytic differentiation upon E2-induced activation of C/EBPα in C/EBPα stably transfected cells (β-estradiol inducible K562 cells stably expressing p42C/EBPα-ER (K562-C/EBPα-p42-ER)) was further substantiated by siE6AP-mediated knockdown of E6AP in both K562-C/EBPα-p42-ER and 32dcl3 (32D clone 3, a cell line widely used model for in vitro study of hematopoietic cell proliferation, differentiation, and apoptosis) cells. Taken together, our data suggest that E6AP targeted C/EBPα protein degradation may provide a possible explanation for both loss of expression and/or functional inactivation of C/EBPα often

  16. E6AP, an E3 ubiquitin ligase negatively regulates granulopoiesis by targeting transcription factor C/EBPα for ubiquitin-mediated proteasome degradation

    PubMed Central

    Pal, P; Lochab, S; Kanaujiya, J K; Kapoor, I; Sanyal, S; Behre, G; Trivedi, A K

    2013-01-01

    CCAAT/enhancer-binding protein alpha (C/EBPα) is an important transcription factor involved in granulocytic differentiation. Here, for the first time we demonstrate that E6-associated protein (E6AP), an E3 ubiquitin ligase targets C/EBPα for ubiquitin-mediated proteasome degradation and thereby negatively modulates its functions. Wild-type E6AP promotes ubiquitin dependent proteasome degradation of C/EBPα, while catalytically inactive E6-associated protein having cysteine replaced with alanine at amino-acid position 843 (E6AP-C843A) rather stabilizes it. Further, these two proteins physically associate both in non-myeloid (overexpressed human embryonic kidney epithelium) and myeloid cells. We show that E6AP-mediated degradation of C/EBPα protein expression curtails its transactivation potential on its target genes. Noticeably, E6AP degrades both wild-type 42 kDa CCAAT-enhancer-binding protein alpha (p42C/EBPα) and mutant isoform 30 kDa CCAAT-enhancer-binding protein alpha (p30C/EBPα), this may explain perturbed p42C/EBPα/p30C/EBPα ratio often observed in acute myeloid leukemia (AML). We show that overexpression of catalytically inactive E6AP-C843A in C/EBPα inducible K562- p42C/EBPα-estrogen receptor (ER) cells inhibits β-estradiol (E2)-induced C/EBPα degradation leading to enhanced granulocytic differentiation. This enhanced granulocytic differentiation upon E2-induced activation of C/EBPα in C/EBPα stably transfected cells (β-estradiol inducible K562 cells stably expressing p42C/EBPα-ER (K562-C/EBPα-p42-ER)) was further substantiated by siE6AP-mediated knockdown of E6AP in both K562-C/EBPα-p42-ER and 32dcl3 (32D clone 3, a cell line widely used model for in vitro study of hematopoietic cell proliferation, differentiation, and apoptosis) cells. Taken together, our data suggest that E6AP targeted C/EBPα protein degradation may provide a possible explanation for both loss of expression and/or functional inactivation of C/EBPα often

  17. Modulation of Alloimmunity by Heat Shock Proteins

    PubMed Central

    Borges, Thiago J.; Lang, Benjamin J.; Lopes, Rafael L.; Bonorino, Cristina

    2016-01-01

    The immunological mechanisms that evolved for host defense against pathogens and injury are also responsible for transplant rejection. Host rejection of foreign tissue was originally thought to be mediated mainly by T cell recognition of foreign MHC alleles. Management of solid organ transplant rejection has thus focused mainly on inhibition of T cell function and matching MHC alleles between donor and host. Recently, however, it has been demonstrated that the magnitude of the initial innate immune responses upon transplantation has a decisive impact on rejection. The exact mechanisms underlying this phenomenon have yet to be characterized. Ischemic cell death and inflammation that occur upon transplantation are synonymous with extracellular release of various heat shock proteins (Hsps), many of which have been shown to have immune-modulatory properties. Here, we review the impact of Hsps upon alloimmunity and discuss the potential use of Hsps as accessory agents to improve solid organ transplant outcomes. PMID:27555846

  18. Modulation of apoptosis by V protein mumps virus

    PubMed Central

    2011-01-01

    Background The Urabe AM9 vaccine strain of mumps virus contains two variants of V protein: VWT (of HN-A1081 viral population) and VGly (of HN-G1081). The V protein is a promoting factor of viral replication by blocking the IFN antiviral pathway. Findings We studied the relationship between V protein variants and IFN-α2b-induced apoptosis. V proteins decrease activation of the extrinsic IFN-α2b-induced apoptotic pathway monitored by the caspase 8 activity, being the effect greater with the VWT protein. Both V proteins decrease the activity of caspase 9 of the intrinsic apoptotic pathway. In a system without IFN, the VWT and VGly proteins expression promotes activation of caspases 3 and 7. However, when the cellular system was stimulated with IFN-α, this activity decreased partially. TUNEL assay shows that for treatment with IFN-α and ibuprofen of cervical adenocarcinoma cells there is nuclear DNA fragmentation but the V protein expression reduces this process. Conclusions The reduction in the levels of caspases and DNA fragmentation, suggesting that V protein, particularly VWT protein of Urabe AM9 vaccine strain, modulates apoptosis. In addition, the VWT protein shows a protective role for cell proliferation in the presence of antiproliferative signals. PMID:21569530

  19. Protein complexes and functional modules in molecular networks

    NASA Astrophysics Data System (ADS)

    Spirin, Victor; Mirny, Leonid A.

    2003-10-01

    Proteins, nucleic acids, and small molecules form a dense network of molecular interactions in a cell. Molecules are nodes of this network, and the interactions between them are edges. The architecture of molecular networks can reveal important principles of cellular organization and function, similarly to the way that protein structure tells us about the function and organization of a protein. Computational analysis of molecular networks has been primarily concerned with node degree [Wagner, A. & Fell, D. A. (2001) Proc. R. Soc. London Ser. B 268, 1803-1810; Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. (2000) Nature 407, 651-654] or degree correlation [Maslov, S. & Sneppen, K. (2002) Science 296, 910-913], and hence focused on single/two-body properties of these networks. Here, by analyzing the multibody structure of the network of protein-protein interactions, we discovered molecular modules that are densely connected within themselves but sparsely connected with the rest of the network. Comparison with experimental data and functional annotation of genes showed two types of modules: (i) protein complexes (splicing machinery, transcription factors, etc.) and (ii) dynamic functional units (signaling cascades, cell-cycle regulation, etc.). Discovered modules are highly statistically significant, as is evident from comparison with random graphs, and are robust to noise in the data. Our results provide strong support for the network modularity principle introduced by Hartwell et al. [Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. (1999) Nature 402, C47-C52], suggesting that found modules constitute the "building blocks" of molecular networks.

  20. Alternative modulation of protein–protein interactions by small molecules

    PubMed Central

    Fischer, Gerhard; Rossmann, Maxim; Hyvönen, Marko

    2015-01-01

    Protein–protein interactions (PPI) have become increasingly popular drug targets, with a number of promising compounds currently in clinical trials. Recent research shows, that PPIs can be modulated in more ways than direct inhibition, where novel non-competitive modes of action promise a solution for the difficult nature of PPI drug discovery. Here, we review recently discovered PPI modulators in light of their mode of action and categorise them as disrupting versus stabilising, orthosteric versus allosteric and by their ability to affect the proteins’ dynamics. We also give recent examples of compounds successful in the clinic, analyse their physicochemical properties and discuss how to overcome the hurdles in discovering alternative modes of modulation. PMID:25935873

  1. The variable C-terminus of cysteine string proteins modulates exocytosis and protein-protein interactions.

    PubMed

    Boal, Frédéric; Zhang, Hui; Tessier, Céline; Scotti, Pier; Lang, Jochen

    2004-12-28

    Cysteine string proteins (Csps) are vesicle proteins involved in neurotransmission and hormone exocytosis. They are composed of distinct domains: a variable N-terminus, a J-domain followed by a linker region, a cysteine-rich string, and a C-terminus which diverges among isoforms. Their precise function and interactions are not fully understood. Using insulin exocytosis as a model, we show that the linker region and the C-terminus, but not the variable N-terminus, regulate overall secretion. Moreover, endogenous Csp1 binds in a calcium-dependent manner to monomeric VAMP2, and this interaction requires the C-terminus of Csp. The interaction is isoform specific as recombinant Csp1 binds VAMP1 and VAMP7, but not VAMP3. Cross-linking in permeabilized clonal beta-cells revealed homodimerization of Csp which is stimulated by Ca(2+) and again modulated by the variant C-terminus. Our data suggest that both interactions of Csp occur during exocytosis and may explain the effect of the variant C-terminus of this chaperon protein on peptide hormone secretion. PMID:15610015

  2. Molecular tweezers modulate 14-3-3 protein-protein interactions.

    PubMed

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins--a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)--in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions. PMID:23422566

  3. Modulation of Rab GTPase function by a protein phosphocholine transferase.

    PubMed

    Mukherjee, Shaeri; Liu, Xiaoyun; Arasaki, Kohei; McDonough, Justin; Galán, Jorge E; Roy, Craig R

    2011-09-01

    The intracellular pathogen Legionella pneumophila modulates the activity of host GTPases to direct the transport and assembly of the membrane-bound compartment in which it resides. In vitro studies have indicated that the Legionella protein DrrA post-translationally modifies the GTPase Rab1 by a process called AMPylation. Here we used mass spectrometry to investigate post-translational modifications to Rab1 that occur during infection of host cells by Legionella. Consistent with in vitro studies, DrrA-mediated AMPylation of a conserved tyrosine residue in the switch II region of Rab1 was detected during infection. In addition, a modification to an adjacent serine residue in Rab1 was discovered, which was independent of DrrA. The Legionella effector protein AnkX was required for this modification. Biochemical studies determined that AnkX directly mediates the covalent attachment of a phosphocholine moiety to Rab1. This phosphocholine transferase activity used CDP-choline as a substrate and required a conserved histidine residue located in the FIC domain of the AnkX protein. During infection, AnkX modified both Rab1 and Rab35, which explains how this protein modulates membrane transport through both the endocytic and exocytic pathways of the host cell. Thus, phosphocholination of Rab GTPases represents a mechanism by which bacterial FIC-domain-containing proteins can alter host-cell functions. PMID:21822290

  4. Molecular tweezers modulate 14-3-3 protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins—a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)—in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions.

  5. Protein dynamics modulated electron transfer kinetics in early stage photosynthesis

    NASA Astrophysics Data System (ADS)

    Kundu, Prasanta; Dua, Arti

    2013-01-01

    A recent experiment has probed the electron transfer kinetics in the early stage of photosynthesis in Rhodobacter sphaeroides for the reaction center of wild type and different mutants [Science 316, 747 (2007)]. By monitoring the changes in the transient absorption of the donor-acceptor pair at 280 and 930 nm, both of which show non-exponential temporal decay, the experiment has provided a strong evidence that the initial electron transfer kinetics is modulated by the dynamics of protein backbone. In this work, we present a model where the electron transfer kinetics of the donor-acceptor pair is described along the reaction coordinate associated with the distance fluctuations in a protein backbone. The stochastic evolution of the reaction coordinate is described in terms of a non-Markovian generalized Langevin equation with a memory kernel and Gaussian colored noise, both of which are completely described in terms of the microscopics of the protein normal modes. This model provides excellent fits to the transient absorption signals at 280 and 930 nm associated with protein distance fluctuations and protein dynamics modulated electron transfer reaction, respectively. In contrast to previous models, the present work explains the microscopic origins of the non-exponential decay of the transient absorption curve at 280 nm in terms of multiple time scales of relaxation of the protein normal modes. Dynamic disorder in the reaction pathway due to protein conformational fluctuations which occur on time scales slower than or comparable to the electron transfer kinetics explains the microscopic origin of the non-exponential nature of the transient absorption decay at 930 nm. The theoretical estimates for the relative driving force for five different mutants are in close agreement with the experimental estimates obtained using electrochemical measurements.

  6. Protein dynamics modulated electron transfer kinetics in early stage photosynthesis.

    PubMed

    Kundu, Prasanta; Dua, Arti

    2013-01-28

    A recent experiment has probed the electron transfer kinetics in the early stage of photosynthesis in Rhodobacter sphaeroides for the reaction center of wild type and different mutants [Science 316, 747 (2007)]. By monitoring the changes in the transient absorption of the donor-acceptor pair at 280 and 930 nm, both of which show non-exponential temporal decay, the experiment has provided a strong evidence that the initial electron transfer kinetics is modulated by the dynamics of protein backbone. In this work, we present a model where the electron transfer kinetics of the donor-acceptor pair is described along the reaction coordinate associated with the distance fluctuations in a protein backbone. The stochastic evolution of the reaction coordinate is described in terms of a non-Markovian generalized Langevin equation with a memory kernel and Gaussian colored noise, both of which are completely described in terms of the microscopics of the protein normal modes. This model provides excellent fits to the transient absorption signals at 280 and 930 nm associated with protein distance fluctuations and protein dynamics modulated electron transfer reaction, respectively. In contrast to previous models, the present work explains the microscopic origins of the non-exponential decay of the transient absorption curve at 280 nm in terms of multiple time scales of relaxation of the protein normal modes. Dynamic disorder in the reaction pathway due to protein conformational fluctuations which occur on time scales slower than or comparable to the electron transfer kinetics explains the microscopic origin of the non-exponential nature of the transient absorption decay at 930 nm. The theoretical estimates for the relative driving force for five different mutants are in close agreement with the experimental estimates obtained using electrochemical measurements. PMID:23387626

  7. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module.

    PubMed

    Yim, Nambin; Ryu, Seung-Wook; Choi, Kyungsun; Lee, Kwang Ryeol; Lee, Seunghee; Choi, Hojun; Kim, Jeongjin; Shaker, Mohammed R; Sun, Woong; Park, Ji-Ho; Kim, Daesoo; Heo, Won Do; Choi, Chulhee

    2016-01-01

    Nanoparticle-mediated delivery of functional macromolecules is a promising method for treating a variety of human diseases. Among nanoparticles, cell-derived exosomes have recently been highlighted as a new therapeutic strategy for the in vivo delivery of nucleotides and chemical drugs. Here we describe a new tool for intracellular delivery of target proteins, named 'exosomes for protein loading via optically reversible protein-protein interactions' (EXPLORs). By integrating a reversible protein-protein interaction module controlled by blue light with the endogenous process of exosome biogenesis, we are able to successfully load cargo proteins into newly generated exosomes. Treatment with protein-loaded EXPLORs is shown to significantly increase intracellular levels of cargo proteins and their function in recipient cells in vitro and in vivo. These results clearly indicate the potential of EXPLORs as a mechanism for the efficient intracellular transfer of protein-based therapeutics into recipient cells and tissues. PMID:27447450

  8. Viral and host proteins that modulate filovirus budding

    PubMed Central

    Liu, Yuliang; Harty, Ronald N

    2010-01-01

    The filoviruses, Ebola and Marburg, utilize a multifaceted mechanism for assembly and budding of infectious virions from mammalian cells. Growing evidence not only demonstrates the importance of multiple viral proteins for efficient assembly and budding, but also the exploitation of various host proteins/pathways by the virus during this late stage of filovirus replication, including endocytic compartments, vacuolar protein sorting pathways, ubiquitination machinery, lipid rafts and cytoskeletal components. Continued elucidation of these complex and orchestrated virus-host interactions will provide a fundamental understanding of the molecular mechanisms of filovirus assembly/budding and ultimately lead to the development of novel viral- and/or host-oriented therapeutics to inhibit filovirus egress and spread. This article will focus on the most recent studies on host interactions and modulation of filovirus budding and summarize the key findings from these investigations. PMID:20730024

  9. Cell-specific modulation of surfactant proteins by ambroxol treatment.

    PubMed

    Seifart, Carola; Clostermann, Ursula; Seifart, Ulf; Müller, Bernd; Vogelmeier, Claus; von Wichert, Peter; Fehrenbach, Heinz

    2005-02-15

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression. PMID:15694461

  10. Cell-specific modulation of surfactant proteins by ambroxol treatment

    SciTech Connect

    Seifart, Carola . E-mail: zwiebel@mailer.uni-marburg.de; Clostermann, Ursula; Seifart, Ulf

    2005-02-15

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression.

  11. Enhancer-specific modulation of E protein activity.

    PubMed

    Markus, Maurice; Du, Zhimei; Benezra, Robert

    2002-02-22

    Homodimeric complexes of members of the E protein family of basic helix-loop-helix (bHLH) transcription factors are important for tissue-specific activation of genes in B lymphocytes (Bain, G., Gruenwald, S., and Murre, C. (1993) Mol. Cell Biol. 13, 3522-3529; Shen, C. P., and Kadesch, T. (1995) Mol. Cell Biol. 15, 4518-4524; Jacobs, Y., et al. (1994) Mol. Cell Biol. 14, 4087-4096; Wilson, R. B., et al. (1991) Mol. Cell Biol. 11, 6185-6191). These homodimers, however, have little activity on myogenic enhancers (Weintraub, H., Genetta, T., and Kadesch, T. (1994) Genes Dev. 8, 2203-2211). We report here the identification of a novel cis-acting transcriptional repression domain in the E protein family of bHLH transcription factors. This domain, the Rep domain, is present in each of the known vertebrate E proteins. Extensive mapping analysis demonstrates that this domain is an acidic region of 30 amino acids with a predicted loop structure. Fusion studies indicate that the Rep domain can repress both of the E protein transactivation domains (AD1 and AD2). Physiologically, the Rep domain plays a key role in maintaining E protein homodimers in an inactive state on myogenic enhancers. In addition, we demonstrate that Rep domain mediated repression of AD1 is a necessary for the function of MyoD-E protein heterodimeric complexes. These studies demonstrate that the Rep domain is important for modulating the transcriptional activity of E proteins and provide key insights into both the selectivity and mechanism of action of E protein containing bHLH protein complexes. PMID:11724804

  12. NFX1-123 and Human Papillomavirus 16E6 Increase Notch Expression in Keratinocytes

    PubMed Central

    Vliet-Gregg, Portia A.; Hamilton, Jennifer R.

    2013-01-01

    The high-risk human papillomavirus (HR HPV) E6 oncoprotein binds host cell proteins to dysregulate multiple regulatory pathways, including apoptosis and senescence. HR HPV16 E6 (16E6) interacts with the cellular protein NFX1-123, and together they posttranscriptionally increase hTERT expression, the catalytic subunit of telomerase. NFX1-123 interacts with hTERT mRNA and stabilizes it, leading to greater telomerase activity and the avoidance of cellular senescence. Little is known regarding what other transcripts are dependent on or augmented by the association of NFX1-123 with 16E6. Microarray analysis revealed enhanced expression of Notch1 mRNA in 16E6-expressing keratinocytes when NFX1-123 was overexpressed. A moderate increase in Notch1 mRNA was seen with overexpression of NFX1-123 alone, but with 16E6 coexpression the increase in Notch1 was enhanced. The PAM2 motif and R3H protein domains in NFX1-123, which were important for increased hTERT expression, were also important in the augmentation of Notch1 expression by 16E6. These findings identify a second gene coregulated by 16E6 and NFX1-123 and the protein motifs in NFX1-123 that are important for this effect. PMID:24109236

  13. A novel functional module detection algorithm for protein-protein interaction networks

    PubMed Central

    Hwang, Woochang; Cho, Young-Rae; Zhang, Aidong; Ramanathan, Murali

    2006-01-01

    Background The sparse connectivity of protein-protein interaction data sets makes identification of functional modules challenging. The purpose of this study is to critically evaluate a novel clustering technique for clustering and detecting functional modules in protein-protein interaction networks, termed STM. Results STM selects representative proteins for each cluster and iteratively refines clusters based on a combination of the signal transduced and graph topology. STM is found to be effective at detecting clusters with a diverse range of interaction structures that are significant on measures of biological relevance. The STM approach is compared to six competing approaches including the maximum clique, quasi-clique, minimum cut, betweeness cut and Markov Clustering (MCL) algorithms. The clusters obtained by each technique are compared for enrichment of biological function. STM generates larger clusters and the clusters identified have p-values that are approximately 125-fold better than the other methods on biological function. An important strength of STM is that the percentage of proteins that are discarded to create clusters is much lower than the other approaches. Conclusion STM outperforms competing approaches and is capable of effectively detecting both densely and sparsely connected, biologically relevant functional modules with fewer discards. PMID:17147822

  14. Periodic and stochastic thermal modulation of protein folding kinetics.

    PubMed

    Platkov, Max; Gruebele, Martin

    2014-07-21

    Chemical reactions are usually observed either by relaxation of a bulk sample after applying a sudden external perturbation, or by intrinsic fluctuations of a few molecules. Here we show that the two ideas can be combined to measure protein folding kinetics, either by periodic thermal modulation, or by creating artificial thermal noise that greatly exceeds natural thermal fluctuations. We study the folding reaction of the enzyme phosphoglycerate kinase driven by periodic temperature waveforms. As the temperature waveform unfolds and refolds the protein, its fluorescence color changes due to FRET (Förster resonant Energy Transfer) of two donor/acceptor fluorophores labeling the protein. We adapt a simple model of periodically driven kinetics that nicely fits the data at all temperatures and driving frequencies: The phase shifts of the periodic donor and acceptor fluorescence signals as a function of driving frequency reveal reaction rates. We also drive the reaction with stochastic temperature waveforms that produce thermal fluctuations much greater than natural fluctuations in the bulk. Such artificial thermal noise allows the recovery of weak underlying signals due to protein folding kinetics. This opens up the possibility for future detection of a stochastic resonance for protein folding subject to noise with controllable amplitude. PMID:25053342

  15. Periodic and stochastic thermal modulation of protein folding kinetics

    PubMed Central

    Platkov, Max; Gruebele, Martin

    2014-01-01

    Chemical reactions are usually observed either by relaxation of a bulk sample after applying a sudden external perturbation, or by intrinsic fluctuations of a few molecules. Here we show that the two ideas can be combined to measure protein folding kinetics, either by periodic thermal modulation, or by creating artificial thermal noise that greatly exceeds natural thermal fluctuations. We study the folding reaction of the enzyme phosphoglycerate kinase driven by periodic temperature waveforms. As the temperature waveform unfolds and refolds the protein, its fluorescence color changes due to FRET (Förster resonant Energy Transfer) of two donor/acceptor fluorophores labeling the protein. We adapt a simple model of periodically driven kinetics that nicely fits the data at all temperatures and driving frequencies: The phase shifts of the periodic donor and acceptor fluorescence signals as a function of driving frequency reveal reaction rates. We also drive the reaction with stochastic temperature waveforms that produce thermal fluctuations much greater than natural fluctuations in the bulk. Such artificial thermal noise allows the recovery of weak underlying signals due to protein folding kinetics. This opens up the possibility for future detection of a stochastic resonance for protein folding subject to noise with controllable amplitude. PMID:25053342

  16. Periodic and stochastic thermal modulation of protein folding kinetics

    SciTech Connect

    Platkov, Max; Gruebele, Martin

    2014-07-21

    Chemical reactions are usually observed either by relaxation of a bulk sample after applying a sudden external perturbation, or by intrinsic fluctuations of a few molecules. Here we show that the two ideas can be combined to measure protein folding kinetics, either by periodic thermal modulation, or by creating artificial thermal noise that greatly exceeds natural thermal fluctuations. We study the folding reaction of the enzyme phosphoglycerate kinase driven by periodic temperature waveforms. As the temperature waveform unfolds and refolds the protein, its fluorescence color changes due to FRET (Förster resonant Energy Transfer) of two donor/acceptor fluorophores labeling the protein. We adapt a simple model of periodically driven kinetics that nicely fits the data at all temperatures and driving frequencies: The phase shifts of the periodic donor and acceptor fluorescence signals as a function of driving frequency reveal reaction rates. We also drive the reaction with stochastic temperature waveforms that produce thermal fluctuations much greater than natural fluctuations in the bulk. Such artificial thermal noise allows the recovery of weak underlying signals due to protein folding kinetics. This opens up the possibility for future detection of a stochastic resonance for protein folding subject to noise with controllable amplitude.

  17. Periodic and stochastic thermal modulation of protein folding kinetics

    NASA Astrophysics Data System (ADS)

    Platkov, Max; Gruebele, Martin

    2014-07-01

    Chemical reactions are usually observed either by relaxation of a bulk sample after applying a sudden external perturbation, or by intrinsic fluctuations of a few molecules. Here we show that the two ideas can be combined to measure protein folding kinetics, either by periodic thermal modulation, or by creating artificial thermal noise that greatly exceeds natural thermal fluctuations. We study the folding reaction of the enzyme phosphoglycerate kinase driven by periodic temperature waveforms. As the temperature waveform unfolds and refolds the protein, its fluorescence color changes due to FRET (Förster resonant Energy Transfer) of two donor/acceptor fluorophores labeling the protein. We adapt a simple model of periodically driven kinetics that nicely fits the data at all temperatures and driving frequencies: The phase shifts of the periodic donor and acceptor fluorescence signals as a function of driving frequency reveal reaction rates. We also drive the reaction with stochastic temperature waveforms that produce thermal fluctuations much greater than natural fluctuations in the bulk. Such artificial thermal noise allows the recovery of weak underlying signals due to protein folding kinetics. This opens up the possibility for future detection of a stochastic resonance for protein folding subject to noise with controllable amplitude.

  18. Introns regulate the production of ribosomal proteins by modulating splicing of duplicated ribosomal protein genes.

    PubMed

    Petibon, Cyrielle; Parenteau, Julie; Catala, Mathieu; Elela, Sherif Abou

    2016-05-01

    Most budding yeast introns exist in the many duplicated ribosomal protein genes (RPGs) and it has been posited that they remain there to modulate the expression of RPGs and cell growth in response to stress. However, the mechanism by which introns regulate the expression of RPGs and their impact on the synthesis of ribosomal proteins remain unclear. In this study, we show that introns determine the ratio of ribosomal protein isoforms through asymmetric paralog-specific regulation of splicing. Exchanging the introns and 3' untranslated regions of the duplicated RPS9 genes altered the splicing efficiency and changed the ratio of the ribosomal protein isoforms. Mutational analysis of the RPS9 genes indicated that splicing is regulated by variations in the intron structure and the 3' untranslated region. Together these data suggest that preferential splicing of duplicated RPGs provides a means for adjusting the ratio of different ribosomal protein isoforms, while maintaining the overall expression level of each ribosomal protein. PMID:26945043

  19. Radiosensitization of Oropharyngeal Squamous Cell Carcinoma Cells by Human Papillomavirus 16 Oncoprotein E6*I

    SciTech Connect

    Pang, Ervinna; Delic, Naomi C.; Hong, Angela; Zhang Mei; Rose, Barbara R.; Lyons, J. Guy

    2011-03-01

    Purpose: Patients with oropharyngeal squamous cell carcinoma (OSCC) whose disease is associated with high-risk human papillomavirus (HPV) infection have a significantly better outcome than those with HPV-negative disease, but the reasons for the better outcome are not known. We postulated that they might relate to an ability of HPV proteins to confer a better response to radiotherapy, a commonly used treatment for OSCC. Methods and Materials: We stably expressed the specific splicing-derived isoforms, E6*I and E6*II, or the entire E6 open reading frame (E6total), which gives rise to both full length and E6*I isoforms, in OSCC cell lines. Radiation resistance was measured in clonogenicity assays, p53 activity was measured using transfected reporter genes, and flow cytometry was used to analyze cell cycle and apoptosis. Results: E6*I and E6total sensitized the OSCC cells to irradiation, E6*I giving the greatest degree of radiosensitization (approximately eightfold lower surviving cell fraction at 10 Gy), whereas E6*II had no effect. In contrast to radiosensitivity, E6*I was a weaker inhibitor than E6total of tumor suppressor p53 transactivator activity in the same cells. Flow cytometric analyses showed that irradiated E6*I expressing cells had a much higher G2M:G1 ratio than control cells, indicating that, after G2, cells were diverted from the cell cycle to programmed cell death. Conclusion: This study supports a role for E6*I in the enhanced responsiveness of HPV-positive oropharyngeal carcinomas to p53-independent radiation-induced death.

  20. Novel drug form of chlorin e6

    NASA Astrophysics Data System (ADS)

    Abakumova, O. Y.; Baum, Rudolf P.; Ermakova, Natalia Y.; Gradyushko, A. T.; Guseva-Donskaya, T. N.; Karmenyan, Artashes V.; Koraboyev, U. M.; Laptev, V. P.; Mechkov, V. M.; Mikhailova, L. M.; Panferova, N. G.; Rebeko, Aleksei G.; Reshetnickov, Andrei V.; Ryabov, M. V.; Stranadko, Eugeny P.; Tsvetkova, Tatyana A.; Zhukova, O. S.

    1999-12-01

    A novel stable water-soluble form of well known photosensitizer chlorin e6 named `Photodithazine' has been obtained from Spirulina Platensis cyanobacteria as a noncovalent complex with N-methyl-D-glucosamine, and its biological characteristics evaluate, which proved to be as follows: in vitro photocytotoxicity was 1 (mu) M (EC50) as determined by the extent of DNA synthesis inhibition in CaOv cells after irradiation with 650 - 900 nm light, and 5 (mu) M (EC65) as determined using MTT test on PC12 cells after irradiation with 670 nm laser light at the doses of 15 and 20 J/cm2, respectively, with Al-sulfophthalocyanine `Photosense' (Russia; oligomerized hematoporphyrin-IX mixture `Photogen', Russia) being used as permitted reference drugs.

  1. Discovery, Synthesis and Biological Evaluation of Novel SMN Protein Modulators

    PubMed Central

    Xiao, Jingbo; Marugan, Juan J.; Zheng, Wei; Titus, Steve; Southall, Noel; Cherry, Jonathan J.; Evans, Matthew; Androphy, Elliot J.; Austin, Christopher P.

    2011-01-01

    Spinal Muscular Atrophy (SMA) is an autosomal recessive disorder affecting the expression or function of survival motor neuron protein (SMN) due to the homozygous deletion or rare point mutations in the survival motor neuron gene 1 (SMN1). The human genome includes a second nearly identical gene called SMN2 that is retained in SMA. SMN2 transcripts undergo alternative splicing with reduced levels of SMN. Up-regulation of SMN2 expression, modification of its splicing, or inhibition of proteolysis of the truncated protein derived from SMN2 have been discussed as potential therapeutic strategies for SMA. In this manuscript, we detail the discovery of a series of arylpiperidines as novel modulators of SMN protein. Systematic hit-to-lead efforts significantly improved potency and efficacy of the series in the primary and orthogonal assays. Structure property relationships including microsomal stability, cell permeability and in vivo pharmacokinetics (PK) studies were also investigated. We anticipate that a lead candidate chosen from this series may serve as a useful probe for exploring the therapeutic benefits of SMN protein up-regulation in SMA animal models, and a starting point for clinical development. PMID:21819082

  2. Capacitance-modulated transistor detects odorant binding protein chiral interactions.

    PubMed

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand-protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein-ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters. PMID:25591754

  3. Capacitance-modulated transistor detects odorant binding protein chiral interactions

    NASA Astrophysics Data System (ADS)

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand-protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein-ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters.

  4. An RNA Aptamer Targets the PDZ-Binding Motif of the HPV16 E6 Oncoprotein

    PubMed Central

    Belyaeva, Tamara A.; Nicol, Clare; Cesur, Özlem; Travé, Gilles; Blair, George Eric; Stonehouse, Nicola J.

    2014-01-01

    Human papillomavirus 16 (HPV16) is a high-risk DNA tumour virus which is the primary causative agent of cervical cancer. Cell transformation arises from deregulated expression of the E6 and E7 oncogenes. E6 has been shown to bind a number of cellular proteins, including p53 and proteins containing a PDZ domain. This study reports the first RNA aptamers to E6. These have been employed as molecular tools to further investigate E6-p53 and E6-PDZ interactions. This study is focussed on two aptamers (termed F2 and F4) which induced apoptosis in cells derived from an HPV16-transformed cervical carcinoma. The molecules were able to inhibit the interaction between E6 and PDZ1 from Magi1, with F2 being the most effective inhibitor. Neither of the aptamers inhibited E6-p53 interaction or p53 degradation. This study shows the specificity of this approach and highlights the potential benefits of the E6 aptamers as potential therapeutic or diagnostic agents in the future. PMID:25062098

  5. Transforming activity of a novel mutant of HPV16 E6E7 fusion gene.

    PubMed

    Xie, Qiang; Zhou, Zhi-Xiang; Li, Ze-Lin; Zeng, Yi

    2011-06-01

    An optimized recombinant HPV16 E6E7 fusion gene (HPV16 ofE6E7) was constructed according to codon usage for mammalian cell expression, and a mutant of HPV16 ofE6E7 fusion gene (HPV16 omfE6E7) was generated by site-directed mutagenesis at L57G, C113R for the E6 protein and C24G, E26G for the E7 protein for HPV16 ofE6E7 [patent pending (CN 101100672)]. The HPV16 omfE6E7 gene constructed in this work not only lost the transformation capability to NIH 3T3 cells and tumorigenicity in SCID mice, but also maintained very good stability and antigenicity. These results suggests that the HPV16 omfE6E7 gene should undergo further study for application as a safe antigen-specific therapeutic vaccine for HPV16-associated tumors. PMID:21667341

  6. Capacitance-modulated transistor detects odorant binding protein chiral interactions

    PubMed Central

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand–protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein–ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters. PMID:25591754

  7. Flexible Linker Modulates Glycosaminoglycan Affinity of Decorin Binding Protein A.

    PubMed

    Morgan, Ashli; Sepuru, Krishna Mohan; Feng, Wei; Rajarathnam, Krishna; Wang, Xu

    2015-08-18

    Decorin binding protein A (DBPA) is a glycosaminoglycan (GAG)-binding adhesin found on the surface of the bacterium Borrelia burgdorferi (B. burgdorferi), the causative agent of Lyme disease. DBPA facilitates bacterial adherence to extracellular matrices of human tissues and is crucial during the early stage of the infection process. Interestingly, DBPA from different strains (B31, N40, and PBr) show significant differences in GAG affinities, but the structural basis for the differences is not clear. In this study, we show that GAG affinity of N40 DBPA is modulated in part by flexible segments that control access to the GAG binding site, such that shortening of the linker leads to higher GAG affinity when analyzed using ELISA, gel mobility shift assay, solution NMR, and isothermal titration calorimetry. Our observation that GAG affinity differences among different B. burgdorferi strains can be attributed to a flexible linker domain regulating access to the GAG-binding domain is novel. It also provides a rare example of how neutral amino acids and dynamic segments in GAG binding proteins can have a large influence on GAG affinity and provides insights into why the number of basic amino acids in the GAG-binding site may not be the only factor determining GAG affinity of proteins. PMID:26223367

  8. Intracellular Analysis of the Interaction between the Human Papillomavirus Type 16 E6 Oncoprotein and Inhibitory Peptides.

    PubMed

    Stutz, Christina; Reinz, Eileen; Honegger, Anja; Bulkescher, Julia; Schweizer, Johannes; Zanier, Katia; Travé, Gilles; Lohrey, Claudia; Hoppe-Seyler, Karin; Hoppe-Seyler, Felix

    2015-01-01

    Oncogenic types of human papillomaviruses (HPVs) cause cervical cancer and other malignancies in humans. The HPV E6 oncoprotein is considered to be an attractive therapeutic target since its inhibition can lead to the apoptotic cell death of HPV-positive cancer cells. The HPV type 16 (HPV16) E6-binding peptide pep11, and variants thereof, induce cell death specifically in HPV16-positive cancer cells. Although they do not encompass the LxxLL binding motif found in cellular HPV16 E6 interaction partners, such as E6AP, the pep11 variants strongly bind to HPV16 E6 by contacting the recently identified E6AP binding pocket. Thus, these peptides can serve as prototype E6-inhibitory molecules which target the E6AP pocket. We here analyzed their intracellular interaction with HPV16 E6. By comprehensive intracellular binding studies and GST pull-down assays, we show that E6-binding competent pep11 variants induce the formation of a trimeric complex, consisting of pep11, HPV16 E6 and p53. These findings indicate that peptides, which do not contain the LxxLL motif, can reshape E6 to enable its interaction with p53. The formation of the trimeric HPV16 E6 / peptide / p53 complex was associated with an increase of endogenous HPV16 E6 protein amounts. Yet, total cellular p53 amounts were also increased, indicating that the E6 / E6AP-mediated degradation of p53 is blocked. These findings suggest that inhibition of oncogenic activities by targeting the E6AP pocket on HPV16 E6 could be a strategy for therapeutic intervention. PMID:26151636

  9. The human papilloma virus 16E6 gene sensitizes human mammary epithelial cells to apoptosis induced by DNA damage.

    PubMed Central

    Xu, C; Meikrantz, W; Schlegel, R; Sager, R

    1995-01-01

    Programmed cell death (apoptosis) is a normal physiological process, which could in principle be manipulated to play an important role in cancer therapy. The key importance of p53 expression in the apoptotic response to DNA-damaging agents has been stressed because mutant or deleted p53 is so common in most kinds of cancer. An important strategy, therefore, is to find ways to induce apoptosis in the absence of wild-type p53. In this paper, we compare apoptosis in normal human mammary epithelial cells, in cells immortalized with human papilloma virus (HPV), and in mammary carcinoma cell lines expressing wild-type p53, mutant p53, or no p53 protein. Apoptosis was induced with mitomycin C (MMC), a DNA cross-linking and damaging agent, or with staurosporine (SSP), a protein kinase inhibitor. The normal and HPV-transfected cells responded more strongly to SSP than did the tumor cells. After exposure to MMC, cells expressing wild-type p53 underwent extensive apoptosis, whereas cells carrying mutated p53 responded weakly. Primary breast cancer cell lines null for p53 protein were resistant to MMC. In contrast, two HPV immortalized cell lines in which p53 protein was destroyed by E6-modulated ubiquitinylation were highly sensitive to apoptosis induced by MMC. Neither p53 mRNA nor protein was induced in the HPV immortalized cells after MMC treatment, although p53 protein was elevated by MMC in cells with wild-type p53. Importantly, MMC induced p21 mRNA but not p21 protein expression in the HPV immortalized cells. Thus, HPV 16E6 can sensitize mammary epithelial cells to MMC-induced apoptosis via a p53- and p21-independent pathway. We propose that the HPV 16E6 protein modulates ubiquitin-mediated degradation not only of p53 but also of p21 and perhaps other proteins involved in apoptosis. Images Fig. 1 Fig. 2 Fig. 4 PMID:7644500

  10. Natural Modulators of Amyloid-Beta Precursor Protein Processing

    PubMed Central

    Zhang, Can; Tanzi, Rudolph E.

    2013-01-01

    Alzheimer’s disease (AD) is a devastating neurodegenerative disease and the primary cause of dementia, with no cure currently available. The pathogenesis of AD is believed to be primarily driven by Aβ, the principal component of senile plaques. Aβ is an ~4 kDa peptide generated from the amyloid-β precursor protein (APP) through proteolytic secretases. Natural products, particularly those utilized in traditional Chinese medicine (TCM), have a long history alleviating common clinical disorders, including dementia. However, the cell/molecular pathways mediated by these natural products are largely unknown until recently when the underlying molecular mechanisms of the disorders begin to be elucidated. Here, the mechanisms with which natural products modulate the pathogenesis of AD are discussed, in particular, by focusing on their roles in the processing of APP. PMID:22998566

  11. The E6AP Binding Pocket of the HPV16 E6 Oncoprotein Provides a Docking Site for a Small Inhibitory Peptide Unrelated to E6AP, Indicating Druggability of E6

    PubMed Central

    Kintscher, Susanne; Reinz, Eileen; Sehr, Peter; Bulkescher, Julia; Hoppe-Seyler, Karin; Travé, Gilles; Hoppe-Seyler, Felix

    2014-01-01

    The HPV E6 oncoprotein maintains the malignant phenotype of HPV-positive cancer cells and represents an attractive therapeutic target. E6 forms a complex with the cellular E6AP ubiquitin ligase, ultimately leading to p53 degradation. The recently elucidated x-ray structure of a HPV16 E6/E6AP complex showed that HPV16 E6 forms a distinct binding pocket for E6AP. This discovery raises the question whether the E6AP binding pocket is druggable, i. e. whether it provides a docking site for functional E6 inhibitors. To address these issues, we performed a detailed analysis of the HPV16 E6 interactions with two small peptides: (i) E6APpep, corresponding to the E6 binding domain of E6AP, and (ii) pep11**, a peptide that binds to HPV16 E6 and, in contrast to E6APpep, induces apoptosis, specifically in HPV16-positive cancer cells. Surface plasmon resonance, NMR chemical shift perturbation, and mammalian two-hybrid analyses coupled to mutagenesis indicate that E6APpep contacts HPV16 E6 amino acid residues within the E6AP pocket, both in vitro and intracellularly. Many of these amino acids were also important for binding to pep11**, suggesting that the binding sites for the two peptides on HPV16 E6 overlap. Yet, few E6 amino acids were differentially involved which may contribute to the higher binding affinity of pep11**. Data from the HPV16 E6/pep11** interaction allowed the rational design of single amino acid exchanges in HPV18 and HPV31 E6 that enabled their binding to pep11**. Taken together, these results suggest that E6 molecular surfaces mediating E6APpep binding can also accommodate pro-apoptotic peptides that belong to different sequence families. As proof of concept, this study provides the first experimental evidence that the E6AP binding pocket is druggable, opening new possibilities for rational, structure-based drug design. PMID:25383876

  12. Protein Stability and Dynamics Modulation: The Case of Human Frataxin

    PubMed Central

    Gallo, Mariana; Salvay, Andres G.; Ferreiro, Diego U.; Santos, Javier

    2012-01-01

    Frataxin (FXN) is an α/β protein that plays an essential role in iron homeostasis. Apparently, the function of human FXN (hFXN) depends on the cooperative formation of crucial interactions between helix α1, helix α2, and the C-terminal region (CTR) of the protein. In this work we quantitatively explore these relationships using a purified recombinant fragment hFXN90–195. This variant shows the hydrodynamic behavior expected for a monomeric globular domain. Circular dichroism, fluorescence, and NMR spectroscopies show that hFXN90–195 presents native-like secondary and tertiary structure. However, chemical and temperature induced denaturation show that CTR truncation significantly destabilizes the overall hFXN fold. Accordingly, limited proteolysis experiments suggest that the native-state dynamics of hFXN90–195 and hFXN90–210 are indeed different, being the former form much more sensitive to the protease at specific sites. The overall folding dynamics of hFXN fold was further explored with structure-based protein folding simulations. These suggest that the native ensemble of hFXN can be decomposed in at least two substates, one with consolidation of the CTR and the other without consolidation of the CTR. Explicit-solvent all atom simulations identify some of the proteolytic target sites as flexible regions of the protein. We propose that the local unfolding of CTR may be a critical step for the global unfolding of hFXN, and that modulation of the CTR interactions may strongly affect hFXN physiological function. PMID:23049850

  13. Transcriptional Repression of E-Cadherin by Human Papillomavirus Type 16 E6

    PubMed Central

    D'Costa, Zarina J.; Jolly, Carol; Androphy, Elliot J.; Mercer, Andrew; Matthews, Charles M.; Hibma, Merilyn H.

    2012-01-01

    There is increasing evidence supporting DNA virus regulation of the cell adhesion and tumour suppressor protein, E-cadherin. We previously reported that loss of E-cadherin in human papillomavirus (HPV) type 16-infected epidermis is contributed to by the major viral proto-oncogene E6 and is associated with reduced Langerhans cells density, potentially regulating the immune response. The focus of this study is determining how the HPV16 E6 protein mediates E-cadherin repression. We found that the E-cadherin promoter is repressed in cells expressing E6, resulting in fewer E-cadherin transcripts. On exploring the mechanism for this, repression by increased histone deacetylase activity or by increased binding of trans-repressors to the E-cadherin promoter Epal element was discounted. In contrast, DNA methyltransferase (DNMT) activity was increased in E6 expressing cells. Upon inhibiting DNMT activity using 5-Aza-2′-deoxycytidine, E-cadherin transcription was restored in the presence of HPV16 E6. The E-cadherin promoter was not directly methylated, however a mutational analysis showed general promoter repression and reduced binding of the transactivators Sp1 and AML1 and the repressor Slug. Expression of E7 with E6 resulted in a further reduction in surface E-cadherin levels. This is the first report of HPV16 E6-mediated transcriptional repression of this adhesion molecule and tumour suppressor protein. PMID:23189137

  14. E3 ubiquitin ligase E6AP negatively regulates adipogenesis by downregulating proadipogenic factor C/EBPalpha.

    PubMed

    Pal, Pooja; Lochab, Savita; Kanaujiya, Jitendra Kumar; Kapoor, Isha; Sanyal, Sabyasachi; Behre, Gerhard; Trivedi, Arun Kumar

    2013-01-01

    CCAAT/Enhancer Binding Protein Alpha (C/EBPα) is a key transcription factor involved in the adipocyte differentiation. Here for the first time we demonstrate that E6AP, an E3 ubiquitin ligase inhibits adipocyte differentiation in 3T3-L1 cells as revealed by reduced lipid staining with oil red. Knock down of E6AP in mouse 3T3L1 preadipocytes is sufficient to convert them to adipocytes independent of external hormonal induction. C/EBPα protein level is drastically increased in E6AP deficient 3T3L1 preadipocytes while inverse is observed when wild type E6AP is over expressed. We show that transient transfection of wild type E6AP downregulates C/EBPα protein expression in a dose dependent manner while catalytically inactive E6AP-C843A rather stabilizes it. In addition, wild type E6AP inhibits expression of proadipogenic genes while E6AP-C843A enhances them. More importantly, overexpression of E6AP-C843A in mesenchymal progenitor cells promotes accumulation of lipid droplets while there is drastically reduced lipid droplet formation when E6AP is over expressed. Taken together, our finding suggests that E6AP may negatively control adipogenesis by inhibiting C/EBPα expression by targeting it to ubiquitin-proteasome pathway for degradation. PMID:23762344

  15. E3 Ubiquitin Ligase E6AP Negatively Regulates Adipogenesis by Downregulating Proadipogenic Factor C/EBPalpha

    PubMed Central

    Pal, Pooja; Lochab, Savita; Kanaujiya, Jitendra Kumar; Kapoor, Isha; Sanyal, Sabyasachi; Behre, Gerhard; Trivedi, Arun Kumar

    2013-01-01

    CCAAT/Enhancer Binding Protein Alpha (C/EBPα) is a key transcription factor involved in the adipocyte differentiation. Here for the first time we demonstrate that E6AP, an E3 ubiquitin ligase inhibits adipocyte differentiation in 3T3-L1 cells as revealed by reduced lipid staining with oil red. Knock down of E6AP in mouse 3T3L1 preadipocytes is sufficient to convert them to adipocytes independent of external hormonal induction. C/EBPα protein level is drastically increased in E6AP deficient 3T3L1 preadipocytes while inverse is observed when wild type E6AP is over expressed. We show that transient transfection of wild type E6AP downregulates C/EBPα protein expression in a dose dependent manner while catalytically inactive E6AP-C843A rather stabilizes it. In addition, wild type E6AP inhibits expression of proadipogenic genes while E6AP-C843A enhances them. More importantly, overexpression of E6AP-C843A in mesenchymal progenitor cells promotes accumulation of lipid droplets while there is drastically reduced lipid droplet formation when E6AP is over expressed. Taken together, our finding suggests that E6AP may negatively control adipogenesis by inhibiting C/EBPα expression by targeting it to ubiquitin-proteasome pathway for degradation. PMID:23762344

  16. Detection of Innate Immune Response Modulating Impurities in Therapeutic Proteins

    PubMed Central

    Haile, Lydia Asrat; Puig, Montserrat; Kelley-Baker, Logan; Verthelyi, Daniela

    2015-01-01

    Therapeutic proteins can contain multiple impurities, some of which are variants of the product, while others are derived from the cell substrate and the manufacturing process. Such impurities, even when present at trace levels, have the potential to activate innate immune cells in peripheral blood or embedded in tissues causing expression of cytokines and chemokines, increasing antigen uptake, facilitating processing and presentation by antigen presenting cells, and fostering product immunogenicity. Currently, while products are tested for host cell protein content, assays to control innate immune response modulating impurities (IIRMIs) in products are focused mainly on endotoxin and nucleic acids, however, depending on the cell substrate and the manufacturing process, numerous other IIRMI could be present. In these studies we assess two approaches that allow for the detection of a broader subset of IIRMIs. In the first, we use commercial cell lines transfected with Toll like receptors (TLR) to detect receptor-specific agonists. This method is sensitive to trace levels of IIRMI and provides information of the type of IIRMIs present but is limited by the availability of stably transfected cell lines and requires pre-existing knowledge of the IIRMIs likely to be present in the product. Alternatively, the use of a combination of macrophage cell lines of human and mouse origin allows for the detection of a broader spectrum of impurities, but does not identify the source of the activation. Importantly, for either system the lower limit of detection (LLOD) of impurities was similar to that of PBMC and it was not modified by the therapeutic protein tested, even in settings where the product had inherent immune modulatory properties. Together these data indicate that a cell-based assay approach could be used to screen products for the presence of IIRMIs and inform immunogenicity risk assessments, particularly in the context of comparability exercises. PMID:25901912

  17. Features, processing states, and heterologous protein interactions in the modulation of the retroviral nucleocapsid protein function.

    PubMed

    Mirambeau, Gilles; Lyonnais, Sébastien; Gorelick, Robert J

    2010-01-01

    Retroviral nucleocapsid (NC) is central to viral replication. Nucleic acid chaperoning is a key function for NC through the action of its conserved basic amino acids and zinc-finger structures. NC manipulates genomic RNA from its packaging in the producer cell to reverse transcription into the infected host cell. This chaperone function, in conjunction with NC's aggregating properties, is up-modulated by successive NC processing events, from the Gag precursor to the fully mature protein, resulting in the condensation of the nucleocapsid within the capsid shell. Reverse transcription also depends on NC processing, whereas this process provokes NC dissociation from double-stranded DNA, leading to a preintegration complex (PIC), competent for host chromosomal integration. In addition NC interacts with cellular proteins, some of which are involved in viral budding, and also with several viral proteins. All of these properties are reviewed here, focusing on HIV-1 as a paradigmatic reference and highlighting the plasticity of the nucleocapsid architecture. PMID:21045549

  18. PIPE: a protein-protein interaction passage extraction module for BioCreative challenge.

    PubMed

    Chang, Yung-Chun; Chu, Chun-Han; Su, Yu-Chen; Chen, Chien Chin; Hsu, Wen-Lian

    2016-01-01

    Identifying the interactions between proteins mentioned in biomedical literatures is one of the frequently discussed topics of text mining in the life science field. In this article, we propose PIPE, an interaction pattern generation module used in the Collaborative Biocurator Assistant Task at BioCreative V (http://www.biocreative.org/) to capture frequent protein-protein interaction (PPI) patterns within text. We also present an interaction pattern tree (IPT) kernel method that integrates the PPI patterns with convolution tree kernel (CTK) to extract PPIs. Methods were evaluated on LLL, IEPA, HPRD50, AIMed and BioInfer corpora using cross-validation, cross-learning and cross-corpus evaluation. Empirical evaluations demonstrate that our method is effective and outperforms several well-known PPI extraction methods. DATABASE URL. PMID:27524807

  19. Introns regulate the production of ribosomal proteins by modulating splicing of duplicated ribosomal protein genes

    PubMed Central

    Petibon, Cyrielle; Parenteau, Julie; Catala, Mathieu; Elela, Sherif Abou

    2016-01-01

    Most budding yeast introns exist in the many duplicated ribosomal protein genes (RPGs) and it has been posited that they remain there to modulate the expression of RPGs and cell growth in response to stress. However, the mechanism by which introns regulate the expression of RPGs and their impact on the synthesis of ribosomal proteins remain unclear. In this study, we show that introns determine the ratio of ribosomal protein isoforms through asymmetric paralog-specific regulation of splicing. Exchanging the introns and 3′ untranslated regions of the duplicated RPS9 genes altered the splicing efficiency and changed the ratio of the ribosomal protein isoforms. Mutational analysis of the RPS9 genes indicated that splicing is regulated by variations in the intron structure and the 3′ untranslated region. Together these data suggest that preferential splicing of duplicated RPGs provides a means for adjusting the ratio of different ribosomal protein isoforms, while maintaining the overall expression level of each ribosomal protein. PMID:26945043

  20. Cutaneous HPV23 E6 prevents p53 phosphorylation through interaction with HIPK2.

    PubMed

    Muschik, Dorothea; Braspenning-Wesch, Ilona; Stockfleth, Eggert; Rösl, Frank; Hofmann, Thomas G; Nindl, Ingo

    2011-01-01

    Ultraviolet irradiation (UV) is the major risk factor for the development of skin cancer. Moreover, increasing evidence suggests cutaneotropic human papillomaviruses (HPV) from the beta genus to play a causal role as a co-factor in the development of cutaneous squamous cell carcinoma. Homeodomain-interacting protein kinase 2 (HIPK2) operates as a potential suppressor in skin tumorigenesis and is stabilized by UV-damage. HIPK2 is an important regulator of apoptosis, which forms a complex with the tumor suppressor p53, mediating p53 phosphorylation at Ser 46 and thus promoting pro-apoptotic gene expression. In our study, we demonstrate that cutaneous HPV23 E6 protein directly targets HIPK2 function. Accordingly, HPV23 E6 interacts with HIPK2 both in vitro and in vivo. Furthermore, upon massive UVB-damage HPV23 E6 co-localizes with endogenous HIPK2 at nuclear bodies. Functionally, we demonstrate that HPV23 E6 inhibits HIPK2-mediated p53 Ser 46 phosphorylation through enforcing dissociation of the HIPK2/p53 complex. In addition, HPV23 E6 co-accumulates with endogenous HIPK2 upon UV damage suggesting a mechanism by which HPV23 E6 keeps HIPK2 in check after UV damage. Thus, cutaneous HPV23 E6 prevents HIPK2-mediated p53 Ser 46 phosphorylation, which may favour survival of UV-damaged keratinocytes and skin carcinogenesis by apoptosis evasion. PMID:22110707

  1. Modulation of nociceptive ion channels and receptors via protein-protein interactions: implications for pain relief

    PubMed Central

    Rouwette, Tom; Avenali, Luca; Sondermann, Julia; Narayanan, Pratibha; Gomez-Varela, David; Schmidt, Manuela

    2015-01-01

    In the last 2 decades biomedical research has provided great insights into the molecular signatures underlying painful conditions. However, chronic pain still imposes substantial challenges to researchers, clinicians and patients alike. Under pathological conditions, pain therapeutics often lack efficacy and exhibit only minimal safety profiles, which can be largely attributed to the targeting of molecules with key physiological functions throughout the body. In light of these difficulties, the identification of molecules and associated protein complexes specifically involved in chronic pain states is of paramount importance for designing selective interventions. Ion channels and receptors represent primary targets, as they critically shape nociceptive signaling from the periphery to the brain. Moreover, their function requires tight control, which is usually implemented by protein-protein interactions (PPIs). Indeed, manipulation of such PPIs entails the modulation of ion channel activity with widespread implications for influencing nociceptive signaling in a more specific way. In this review, we highlight recent advances in modulating ion channels and receptors via their PPI networks in the pursuit of relieving chronic pain. Moreover, we critically discuss the potential of targeting PPIs for developing novel pain therapies exhibiting higher efficacy and improved safety profiles. PMID:26039491

  2. Limitations of Gene Duplication Models: Evolution of Modules in Protein Interaction Networks

    PubMed Central

    Emmert-Streib, Frank

    2012-01-01

    It has been generally acknowledged that the module structure of protein interaction networks plays a crucial role with respect to the functional understanding of these networks. In this paper, we study evolutionary aspects of the module structure of protein interaction networks, which forms a mesoscopic level of description with respect to the architectural principles of networks. The purpose of this paper is to investigate limitations of well known gene duplication models by showing that these models are lacking crucial structural features present in protein interaction networks on a mesoscopic scale. This observation reveals our incomplete understanding of the structural evolution of protein networks on the module level. PMID:22530042

  3. Modulation of PML protein expression regulates JCV infection

    SciTech Connect

    Gasparovic, Megan L.; Maginnis, Melissa S.; O'Hara, Bethany A.; Dugan, Aisling S.; Atwood, Walter J.

    2009-08-01

    JC virus (JCV) is a human polyomavirus that infects the majority of the human population worldwide. It is responsible for the fatal demyelinating disease Progressive Multifocal Leukoencephalopathy. JCV binds to cells using the serotonin receptor 5-HT{sub 2A}R and alpha(2-6)- or alpha(2-3)-linked sialic acid. It enters cells using clathrin-dependent endocytosis and traffics to the early endosome and possibly to the endoplasmic reticulum. Viral DNA is then delivered to the nucleus where transcription, replication, and assembly of progeny occur. We found that the early regulatory protein large T antigen accumulates in microdomains in the nucleus adjacent to ND-10 or PML domains. This observation prompted us to explore the role of these domains in JCV infection. We found that a reduction of nuclear PML enhanced virus infection and that an increase in nuclear PML reduced infection. Infection with JCV did not directly modulate nuclear levels of PML but our data indicate that a host response involving interferon beta is likely to restrict virus infection by increasing nuclear PML.

  4. Amyloid precursor protein at node of Ranvier modulates nodal formation.

    PubMed

    Xu, De-En; Zhang, Wen-Min; Yang, Zara Zhuyun; Zhu, Hong-Mei; Yan, Ke; Li, Shao; Bagnard, Dominique; Dawe, Gavin S; Ma, Quan-Hong; Xiao, Zhi-Cheng

    2014-01-01

    Amyloid precursor protein (APP), commonly associated with Alzheimer disease, is upregulated and distributes evenly along the injured axons, and therefore, also known as a marker of demyelinating axonal injury and axonal degeneration. However, the physiological distribution and function of APP along myelinated axons was unknown. We report that APP aggregates at nodes of Ranvier (NOR) in the myelinated central nervous system (CNS) axons but not in the peripheral nervous system (PNS). At CNS NORs, APP expression co-localizes with tenascin-R and is flanked by juxtaparanodal potassium channel expression demonstrating that APP localized to NOR. In APP-knockout (KO) mice, nodal length is significantly increased, while sodium channels are still clustered at NORs. Moreover, APP KO and APP-overexpressing transgenic (APP TG) mice exhibited a decreased and an increased thickness of myelin in spinal cords, respectively, although the changes are limited in comparison to their littermate WT mice. The thickness of myelin in APP KO sciatic nerve also increased in comparison to that in WT mice. Our observations indicate that APP acts as a novel component at CNS NORs, modulating nodal formation and has minor effects in promoting myelination. PMID:25482638

  5. In vitro characterization of monoaspartyl chlorin e6 and diaspartyl chlorin e6 for photodynamic therapy.

    PubMed

    Roberts, W G; Shiau, F Y; Nelson, J S; Smith, K M; Berns, M W

    1988-05-01

    The characteristics of two new chlorin photosensitizers were studied in cell culture by determining phototoxicity, subcellular localization, and photophysical properties. Monoaspartyl chlorin e6 (MACE) and diaspartyl chlorin e6 (DACE) are new photosensitizers that show promise for use in photodynamic therapy. These chlorins are pure, monomeric compounds as determined by high-pressure liquid chromatography. Both compounds absorb substantially at a longer wavelength (664 nm) than does dihematoporphyrin ether-ester (DHE). Tumor diagnosis with the use of fluorescence should be facilitated due to the purity of the compounds and the single fluorescence emission peak. Phototoxicity dose-response curves of the sensitizers were completed using a standard clonogenic assay to determine cell viability. The chlorins showed good sensitizing capabilities with light. In addition, subcellular localization of MACE, DACE, and DHE was studied using fluorescence microscopy. Whereas DHE was located throughout the cytoplasm, the primary site of localization of the chlorins appeared to be in the lysosome. The results demonstrate that MACE and DACE are effective photosensitizing agents in vitro and compare favorably to DHE. PMID:2965763

  6. Simulation of modulated protein crystal structure and diffraction data in a supercell and in superspace

    SciTech Connect

    Lovelace, Jeffrey J.; Simone, Peter D.; Petříček, Václav; Borgstahl, Gloria E. O.

    2013-06-01

    A computer simulation was created for a modulated protein structure along with structure factors in a periodic supercell and in superspace for the purpose of developing and validating software modifications that will be used to solve and refine modulated protein crystals. The toolbox for computational protein crystallography is full of easy-to-use applications for the routine solution and refinement of periodic diffraction data sets and protein structures. There is a gap in the available software when it comes to aperiodic crystallographic data. Current protein crystallography software cannot handle modulated data, and small-molecule software for aperiodic crystallography cannot work with protein structures. To adapt software for modulated protein data requires training data to test and debug the changed software. Thus, a comprehensive training data set consisting of atomic positions with associated modulation functions and the modulated structure factors packaged as both a three-dimensional supercell and as a modulated structure in (3+1)D superspace has been created. The (3+1)D data were imported into Jana2006; this is the first time that this has been performed for protein data.

  7. Searching for the Holy Grail; protein–protein interaction analysis and modulation

    PubMed Central

    Morelli, Xavier; Hupp, Ted

    2012-01-01

    The first EMBO workshop on ‘Protein–Protein Interaction Analysis & Modulation' took place in June 2012 in Roscoff, France. It brought together researchers to discuss the growing field of protein network analysis and the modulation of protein–protein interactions, as well as outstanding related issues including the daunting challenge of integrating interactomes in systems biology and in the modelling of signalling networks. PMID:22986552

  8. A Drosophila Model of HPV E6-Induced Malignancy Reveals Essential Roles for Magi and the Insulin Receptor

    PubMed Central

    Padash Barmchi, Mojgan; Gilbert, Mary; Thomas, Miranda; Banks, Lawrence; Zhang, Bing; Auld, Vanessa J.

    2016-01-01

    Cervical cancer is one of the leading causes of cancer death in women worldwide. The causative agents of cervical cancers, high-risk human papillomaviruses (HPVs), cause cancer through the action of two oncoproteins, E6 and E7. The E6 oncoprotein cooperates with an E3 ubiquitin ligase (UBE3A) to target the p53 tumour suppressor and important polarity and junctional PDZ proteins for proteasomal degradation, activities that are believed to contribute towards malignancy. However, the causative link between degradation of PDZ proteins and E6-mediated malignancy is largely unknown. We have developed an in vivo model of HPV E6-mediated cellular transformation using the genetic model organism, Drosophila melanogaster. Co-expression of E6 and human UBE3A in wing and eye epithelia results in severe morphological abnormalities. Furthermore, E6, via its PDZ-binding motif and in cooperation with UBE3A, targets a suite of PDZ proteins that are conserved in human and Drosophila, including Magi, Dlg and Scribble. Similar to human epithelia, Drosophila Magi is a major degradation target. Magi overexpression rescues the cellular abnormalities caused by E6+UBE3A coexpression and this activity of Magi is PDZ domain-dependent. Drosophila p53 was not targeted by E6+UBE3A, and E6+UBE3A activity alone is not sufficient to induce tumorigenesis, which only occurs when E6+UBE3A are expressed in conjunction with activated/oncogenic forms of Ras or Notch. Finally, through a genetic screen we have identified the insulin receptor signaling pathway as being required for E6+UBE3A induced hyperplasia. Our results suggest a highly conserved mechanism of HPV E6 mediated cellular transformation, and establish a powerful genetic model to identify and understand the cellular mechanisms that underlie HPV E6-induced malignancy. PMID:27537218

  9. A Drosophila Model of HPV E6-Induced Malignancy Reveals Essential Roles for Magi and the Insulin Receptor.

    PubMed

    Padash Barmchi, Mojgan; Gilbert, Mary; Thomas, Miranda; Banks, Lawrence; Zhang, Bing; Auld, Vanessa J

    2016-08-01

    Cervical cancer is one of the leading causes of cancer death in women worldwide. The causative agents of cervical cancers, high-risk human papillomaviruses (HPVs), cause cancer through the action of two oncoproteins, E6 and E7. The E6 oncoprotein cooperates with an E3 ubiquitin ligase (UBE3A) to target the p53 tumour suppressor and important polarity and junctional PDZ proteins for proteasomal degradation, activities that are believed to contribute towards malignancy. However, the causative link between degradation of PDZ proteins and E6-mediated malignancy is largely unknown. We have developed an in vivo model of HPV E6-mediated cellular transformation using the genetic model organism, Drosophila melanogaster. Co-expression of E6 and human UBE3A in wing and eye epithelia results in severe morphological abnormalities. Furthermore, E6, via its PDZ-binding motif and in cooperation with UBE3A, targets a suite of PDZ proteins that are conserved in human and Drosophila, including Magi, Dlg and Scribble. Similar to human epithelia, Drosophila Magi is a major degradation target. Magi overexpression rescues the cellular abnormalities caused by E6+UBE3A coexpression and this activity of Magi is PDZ domain-dependent. Drosophila p53 was not targeted by E6+UBE3A, and E6+UBE3A activity alone is not sufficient to induce tumorigenesis, which only occurs when E6+UBE3A are expressed in conjunction with activated/oncogenic forms of Ras or Notch. Finally, through a genetic screen we have identified the insulin receptor signaling pathway as being required for E6+UBE3A induced hyperplasia. Our results suggest a highly conserved mechanism of HPV E6 mediated cellular transformation, and establish a powerful genetic model to identify and understand the cellular mechanisms that underlie HPV E6-induced malignancy. PMID:27537218

  10. Lipid-mediated Protein-protein Interactions Modulate Respiration-driven ATP Synthesis

    PubMed Central

    Nilsson, Tobias; Lundin, Camilla Rydström; Nordlund, Gustav; Ädelroth, Pia; von Ballmoos, Christoph; Brzezinski, Peter

    2016-01-01

    Energy conversion in biological systems is underpinned by membrane-bound proton transporters that generate and maintain a proton electrochemical gradient across the membrane which used, e.g. for generation of ATP by the ATP synthase. Here, we have co-reconstituted the proton pump cytochrome bo3 (ubiquinol oxidase) together with ATP synthase in liposomes and studied the effect of changing the lipid composition on the ATP synthesis activity driven by proton pumping. We found that for 100 nm liposomes, containing 5 of each proteins, the ATP synthesis rates decreased significantly with increasing fractions of DOPA, DOPE, DOPG or cardiolipin added to liposomes made of DOPC; with e.g. 5% DOPG, we observed an almost 50% decrease in the ATP synthesis rate. However, upon increasing the average distance between the proton pumps and ATP synthases, the ATP synthesis rate dropped and the lipid dependence of this activity vanished. The data indicate that protons are transferred along the membrane, between cytochrome bo3 and the ATP synthase, but only at sufficiently high protein densities. We also argue that the local protein density may be modulated by lipid-dependent changes in interactions between the two proteins complexes, which points to a mechanism by which the cell may regulate the overall activity of the respiratory chain. PMID:27063297

  11. Network analysis reveals common host protein/s modulating pathogenesis of neurotropic viruses.

    PubMed

    Ghosh, Sourish; Mukherjee, Sriparna; Sengupta, Nabonita; Roy, Arunava; Dey, Dhritiman; Chakraborty, Surajit; Chattopadhyay, Dhrubajyoti; Banerjee, Arpan; Basu, Anirban

    2016-01-01

    Network analysis through graph theory provides a quantitative approach to characterize specific proteins and their constituent assemblies that underlie host-pathogen interactions. In the present study, graph theory was used to analyze the interactome designed out of 50 differentially expressing proteins from proteomic analysis of Chandipura Virus (CHPV, Family: Rhabdoviridae) infected mouse brain tissue to identify the primary candidates for intervention. Using the measure of degree centrality, that quantifies the connectedness of a single protein within a milieu of several other interacting proteins, DJ-1 was selected for further molecular validation. To elucidate the generality of DJ-1's role in propagating infection its role was also monitored in another RNA virus, Japanese Encephalitis Virus (JEV, Family: Flaviviridae) infection. Concurrently, DJ-1 got over-expressed in response to reactive oxygen species (ROS) generation following viral infection which in the early phase of infection migrated to mitochondria to remove dysfunctional mitochondria through the process of mitophagy. DJ-1 was also observed to modulate the viral replication and interferon responses along with low-density lipoprotein (LDL) receptor expression in neurons. Collectively these evidences reveal a comprehensive role for DJ-1 in neurotropic virus infection in the brain. PMID:27581498

  12. Network analysis reveals common host protein/s modulating pathogenesis of neurotropic viruses

    PubMed Central

    Ghosh, Sourish; Mukherjee, Sriparna; Sengupta, Nabonita; Roy, Arunava; Dey, Dhritiman; Chakraborty, Surajit; Chattopadhyay, Dhrubajyoti; Banerjee, Arpan; Basu, Anirban

    2016-01-01

    Network analysis through graph theory provides a quantitative approach to characterize specific proteins and their constituent assemblies that underlie host-pathogen interactions. In the present study, graph theory was used to analyze the interactome designed out of 50 differentially expressing proteins from proteomic analysis of Chandipura Virus (CHPV, Family: Rhabdoviridae) infected mouse brain tissue to identify the primary candidates for intervention. Using the measure of degree centrality, that quantifies the connectedness of a single protein within a milieu of several other interacting proteins, DJ-1 was selected for further molecular validation. To elucidate the generality of DJ-1’s role in propagating infection its role was also monitored in another RNA virus, Japanese Encephalitis Virus (JEV, Family: Flaviviridae) infection. Concurrently, DJ-1 got over-expressed in response to reactive oxygen species (ROS) generation following viral infection which in the early phase of infection migrated to mitochondria to remove dysfunctional mitochondria through the process of mitophagy. DJ-1 was also observed to modulate the viral replication and interferon responses along with low-density lipoprotein (LDL) receptor expression in neurons. Collectively these evidences reveal a comprehensive role for DJ-1 in neurotropic virus infection in the brain. PMID:27581498

  13. Hirota equations associated with simply laced affine Lie algebras: The cuspidal class E6 of {{e}}_6^{(1)}

    NASA Astrophysics Data System (ADS)

    Dodd, R. K.

    2014-02-01

    In this paper we derive Hirota equations associated with the simply laced affine Lie algebras {{g}}^{(1)}, where {{g}} is one of the simply laced complex Lie algebras {{a}}_n, {{d}}_n, {{e}}_6, {{e}}_7 or {{e}}_8, defined by finite order automorphisms of {{g}} which we call Lepowsky automorphisms. In particular, we investigate the Hirota equations for Lepowsky automorphisms of {{e}}_6 defined by the cuspidal class E6 of the Weyl group W(E6) of {{e}}_6. We also investigate the relationship between the Lepowsky automorphisms of the simply laced complex Lie algebras {{g}} and the conjugate canonical automorphisms defined by Kac. This analysis is applied to identify the canonical automorphisms for the cuspidal class E6 of {{e}}_6.

  14. Amyloid precursor protein modulates β-catenin degradation

    PubMed Central

    Chen, Yuzhi; Bodles, Angela M

    2007-01-01

    Background The amyloid precursor protein (APP) is genetically associated with Alzheimer's disease (AD). Elucidating the function of APP should help understand AD pathogenesis and provide insights into therapeutic designs against this devastating neurodegenerative disease. Results We demonstrate that APP expression in primary neurons induces β-catenin phosphorylation at Ser33, Ser37, and Thr41 (S33/37/T41) residues, which is a prerequisite for β-catenin ubiquitinylation and proteasomal degradation. APP-induced phosphorylation of β-catenin resulted in the reduction of total β-catenin levels, suggesting that APP expression promotes β-catenin degradation. In contrast, treatment of neurons with APP siRNAs increased total β-catenin levels and decreased β-catenin phosphorylation at residues S33/37/T41. Further, β-catenin was dramatically increased in hippocampal CA1 pyramidal cells from APP knockout animals. Acute expression of wild type APP or of familial AD APP mutants in primary neurons downregulated β-catenin in membrane and cytosolic fractions, and did not appear to affect nuclear β-catenin or β-catenin-dependent transcription. Conversely, in APP knockout CA1 pyramidal cells, accumulation of β-catenin was associated with the upregulation of cyclin D1, a downstream target of β-catenin signaling. Together, these data establish that APP downregulates β-catenin and suggest a role for APP in sustaining neuronal function by preventing cell cycle reactivation and maintaining synaptic integrity. Conclusion We have provided strong evidence that APP modulates β-catenin degradation in vitro and in vivo. Future studies may investigate whether APP processing is necessary for β-catenin downregulation, and determine if excessive APP expression contributes to AD pathogenesis through abnormal β-catenin downregulation. PMID:18070361

  15. All Repeats are Not Equal: A Module-Based Approach to Guide Repeat Protein Design

    PubMed Central

    Regan, Lynne

    2013-01-01

    Repeat proteins composed of tandem arrays of a short structural motif often mediate protein-protein interactions. Past efforts to design repeat protein-based molecular recognition tools have focused on the creation of templates from the consensus of individual repeats, regardless of their natural context. Such an approach assumes that all repeats are essentially equivalent. In this study we present the results of a ‘module-based’ approach, in which modules composed of tandem repeats are aligned to identify repeat-specific features. Using this approach to analyze tetratricopeptide repeat modules that contain 3 tandem repeats (3TPRs), we identify two classes of 3TPR modules with distinct structural signatures that are correlated with different sets of functional residues. Our analyses also reveal a high degree of correlation between positions across the entire ligand-binding surface, indicative of a coordinated, coevolving binding surface. Extension of our analyses to different repeat protein modules reveals more examples of repeat-specific features, especially in armadillio repeat (ARM) modules. In summary, the module-based analyses that we present effectively capture key repeat-specific features that will be important to include in future repeat protein design templates. PMID:23434848

  16. Bovine prion protein as a modulator of protein kinase CK2.

    PubMed

    Meggio, F; Negro, A; Sarno, S; Ruzzene, M; Bertoli, A; Sorgato, M C; Pinna, L A

    2000-11-15

    On the basis of far-Western blot and plasmon resonance (BIAcore) experiments, we show here that recombinant bovine prion protein (bPrP) (25-242) strongly interacts with the catalytic alpha/alpha' subunits of protein kinase CK2 (also termed 'casein kinase 2'). This association leads to increased phosphotransferase activity of CK2alpha, tested on calmodulin or specific peptides as substrate. We also show that bPrP counteracts the inhibition of calmodulin phosphorylation promoted by the regulatory beta subunits of CK2. A truncated form of bPrP encompassing the C-terminal domain (residues 105-242) interacts with CK2 but does not affect its catalytic activity. The opposite is found with the N-terminal fragment of bPrP (residues 25-116), although the stimulation of catalysis is less efficient than with full-size bPrP. These results disclose the potential of the PrP to modulate the activity of CK2, a pleiotropic protein kinase that is particularly abundant in the brain. PMID:11062072

  17. Regulating the ethylene response of a plant by modulation of F-box proteins

    DOEpatents

    Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA

    2014-01-07

    The relationship between F-box proteins and proteins invovled in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylne-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant haing an althered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described. Also described are methods of identifying compounds that modulate the ethylene response in plants by modulating the level of F-box protein expression or activity.

  18. Strategies for Investigating G-Protein Modulation of Voltage-Gated Ca2+ Channels.

    PubMed

    Lu, Van B; Ikeda, Stephen R

    2016-01-01

    G-protein-coupled receptor modulation of voltage-gated ion channels is a common means of fine-tuning the response of channels to changes in membrane potential. Such modulation impacts physiological processes such as synaptic transmission, and hence therapeutic strategies often directly or indirectly target these pathways. As an exemplar of channel modulation, we examine strategies for investigating G-protein modulation of CaV2.2 or N-type voltage-gated Ca(2+) channels. We focus on biochemical and genetic tools for defining the molecular mechanisms underlying the various forms of CaV2.2 channel modulation initiated following ligand binding to G-protein-coupled receptors. PMID:27140924

  19. Activity of a gelsolin-like actin modulator in rat skeletal muscle under protein catabolic conditions.

    PubMed Central

    D'Haese, J; Rutschmann, M; Dahlmann, B; Hinssen, H

    1987-01-01

    A gelsolin-like actin-modulating protein was isolated from rat skeletal muscle and characterized with respect to its interaction with actin. The protein, with a molecular mass of approx. 85 kDa, forms a stoichiometric complex with two actin molecules and is activated by micromolar concentrations of Ca2+. It effectively severs actin filaments and promotes nucleation of actin polymerization. The activity of this protein is detectable already in crude extracts by its capability to reduce the steady state viscosity of actin. Actin-modulating activities were determined in muscle extracts of rats kept under protein catabolic conditions, i.e. as generated by corticosterone treatment and starvation. In both cases we found a marked increase of modulator activity. The possibility is discussed that the increased activity of actin modulator indicates a fragmentation of actin filaments prior to the proteolytic degradation of actin. Images Fig. 2. PMID:3435453

  20. Multiple display of catalytic modules on a protein scaffold: nano-fabrication of enzyme particles.

    PubMed

    Heyman, Arnon; Barak, Yoav; Caspi, Jonathan; Wilson, David B; Altman, Arie; Bayer, Edward A; Shoseyov, Oded

    2007-09-30

    Self assembly is a prerequisite for fabricating nanoscale structures. Here we present a new fusion protein based on the stress-responsive homo-oligomeric protein, SP1. This ring-shaped protein is a highly stable homododecamer, which can be potentially utilized to self-assemble different modules and enzymes in a predicted and oriented manner. For that purpose, a cohesin module (a component of the bacterial cellulosome) was selected, its gene fused in-frame to SP1, and the fusion protein was expressed in Escherichia coli. The cohesin module, specialized to incorporate different enzymes through specific recognition of a dockerin modular counterpart, is used to display new moieties on the SP1 scaffold. The SP1 scaffold displayed 12 active cohesin modules and specific binding to a dockerin-fused cellulase enzyme from Thermobifida fusca. Moreover, we found a significant increase in specific activity of the scaffold-displayed enzymes. PMID:17826857

  1. In silico mechanistic analysis of IRF3 inactivation and high-risk HPV E6 species-dependent drug response

    PubMed Central

    Shah, Masaud; Anwar, Muhammad Ayaz; Park, Seolhee; Jafri, Syyada Samra; Choi, Sangdun

    2015-01-01

    The high-risk human papillomavirus E6 (hrHPV E6) protein has been widely studied due to its implication in cervical cancer. In response to viral threat, activated kinases phosphorylate the IRF3 autoinhibitory domain, inducing type1 interferon production. HPV circumvents the antiviral response through the possible E6 interaction with IRF3 and abrogates p53’s apoptotic activity by recruiting E6-associated protein. However, the molecular mechanism of IRF3 inactivation by hrHPV E6 has not yet been delineated. Therefore, we explored this mechanism through in silico examination of protein-protein and protein-ligand docking, binding energy differences, and computational alanine mutagenesis. Our results suggested that the LxxLL motifs of IRF3 binds within the hydrophobic pocket of E6, precluding Ser-patch phosphorylation, necessary for IRF3 activation and interferon induction. This model was further supported by molecular dynamics simulation. Furthermore, protein-ligand docking and drug resistance modeling revealed that the polar patches in the pocket of E6, which are crucial for complex stability and ligand binding, are inconsistent among hrHPV species. Such variabilities pose a risk of treatment failure owing to point mutations that might render drugs ineffective, and allude to multi-drug therapy. Overall, this study reveals a novel perspective of innate immune suppression in HPV infections and suggests a plausible therapeutic intervention. PMID:26289783

  2. In silico mechanistic analysis of IRF3 inactivation and high-risk HPV E6 species-dependent drug response.

    PubMed

    Shah, Masaud; Anwar, Muhammad Ayaz; Park, Seolhee; Jafri, Syyada Samra; Choi, Sangdun

    2015-01-01

    The high-risk human papillomavirus E6 (hrHPV E6) protein has been widely studied due to its implication in cervical cancer. In response to viral threat, activated kinases phosphorylate the IRF3 autoinhibitory domain, inducing type1 interferon production. HPV circumvents the antiviral response through the possible E6 interaction with IRF3 and abrogates p53's apoptotic activity by recruiting E6-associated protein. However, the molecular mechanism of IRF3 inactivation by hrHPV E6 has not yet been delineated. Therefore, we explored this mechanism through in silico examination of protein-protein and protein-ligand docking, binding energy differences, and computational alanine mutagenesis. Our results suggested that the LxxLL motifs of IRF3 binds within the hydrophobic pocket of E6, precluding Ser-patch phosphorylation, necessary for IRF3 activation and interferon induction. This model was further supported by molecular dynamics simulation. Furthermore, protein-ligand docking and drug resistance modeling revealed that the polar patches in the pocket of E6, which are crucial for complex stability and ligand binding, are inconsistent among hrHPV species. Such variabilities pose a risk of treatment failure owing to point mutations that might render drugs ineffective, and allude to multi-drug therapy. Overall, this study reveals a novel perspective of innate immune suppression in HPV infections and suggests a plausible therapeutic intervention. PMID:26289783

  3. Temperature-Responsive Poly(N-isopropylacrylamide) Modified Gold Nanoparticle-Protein Conjugates for Bioactivity Modulation.

    PubMed

    Liu, Feng; Cui, Yuecheng; Wang, Lei; Wang, Hongwei; Yuan, Yuqi; Pan, Jingjing; Chen, Hong; Yuan, Lin

    2015-06-01

    It is important to effectively maintain and modulate the bioactivity of protein-nanoparticle conjugates for their further and intensive applications. The strategies of controlling protein activity via "tailor-made surfaces" still have some limitations, such as the difficulties in further modulation of the bioactivity and the proteolysis by some proteases. Thus, it is essential to establish a responsive protein-nanoparticle conjugate system to realize not only controllable modulations of protein activity in the conjugates by incorporating sensitivity to environmental cues but also high resistance to proteases. In the work reported here, Escherichia coli (E. coli) inorganic pyrophosphatase (PPase) and poly(N-isopropylacrylamide) (pNIPAM) were both fabricated onto gold nanoparticles (AuNPs), forming AuNP-PPase-pNIPAM conjugates. The bioactivity-modulating capability of the conjugates with changes in temperature was systematically investigated by varying the molecular weight of pNIPAM, the PPase/pNIPAM molar ratio on AuNP, and the orientation of the proteins. Under proper conditions, the activity of the conjugate at 45 °C was approximately 270% of that at 25 °C. In the presence of trypsin digestion, much less conjugate activity than protein activity was lost. These findings indicate that the fabrication of AuNP-protein-pNIPAM conjugates can both modulate protein activity on a large scale and show much higher resistance to protease digestion, exhibiting great potential in targeted delivery, controllable biocatalysis, and molecular/cellular recognition. PMID:25948168

  4. Human papillomavirus 16E6 and NFX1-123 potentiate notch signaling and differentiation without activating cellular arrest

    SciTech Connect

    Vliet-Gregg, Portia A.; Hamilton, Jennifer R.; Katzenellenbogen, Rachel A.

    2015-04-15

    High-risk human papillomavirus (HR HPV) oncoproteins bind host cell proteins to dysregulate and uncouple apoptosis, senescence, differentiation, and growth. These pathways are important for both the viral life cycle and cancer development. HR HPV16 E6 (16E6) interacts with the cellular protein NFX1-123, and they collaboratively increase the growth and differentiation master regulator, Notch1. In 16E6 expressing keratinocytes (16E6 HFKs), the Notch canonical pathway genes Hes1 and Hes5 were increased with overexpression of NFX1-123, and their expression was directly linked to the activation or blockade of the Notch1 receptor. Keratinocyte differentiation genes Keratin 1 and Keratin 10 were also increased, but in contrast their upregulation was only indirectly associated with Notch1 receptor stimulation and was fully unlinked to growth arrest, increased p21{sup Waf1/CIP1}, or decreased proliferative factor Ki67. This leads to a model of 16E6, NFX1-123, and Notch1 differently regulating canonical and differentiation pathways and entirely uncoupling cellular arrest from increased differentiation. - Highlights: • 16E6 and NFX1-123 increased the Notch canonical pathway through Notch1. • 16E6 and NFX1-123 increased the differentiation pathway indirectly through Notch1. • 16E6 and NFX1-123 increased differentiation gene expression without growth arrest. • Increased NFX1-123 with 16E6 may create an ideal cellular phenotype for HPV.

  5. Identification and characterization of small molecule human papillomavirus E6 inhibitors.

    PubMed

    Malecka, Kimberly A; Fera, Daniela; Schultz, David C; Hodawadekar, Santosh; Reichman, Melvin; Donover, Preston S; Murphy, Maureen E; Marmorstein, Ronen

    2014-07-18

    Cervical cancer is the sixth most common cancer in women worldwide and the leading cause of women's death in developing countries. Nearly all cervical cancers are associated with infection of the human papillomavirus (HPV). This sexually transmitted pathogen disrupts the cell cycle via two oncoproteins: E6 and E7. Cells respond to E7-mediated degradation of pRB by upregulating the p53 tumor suppressor pathway. However, E6 thwarts this response by binding to the cellular E6-Associating Protein (E6AP) and targeting p53 for degradation. These two virus-facilitated processes pave the way for cellular transformation. Prophylactic HPV vaccines are available, but individuals already infected with HPV lack drug-based therapeutic options. To fill this void, we sought to identify small molecule inhibitors of the E6-E6AP interaction. We designed an ELISA-based high throughput assay to rapidly screen compound libraries, and hits were confirmed in several orthogonal biochemical and cell-based assays. Over 88,000 compounds were screened; 30 had in vitro potencies in the mid-nanomolar to mid-micromolar range and were classified as validated hits. Seven of these hits inhibited p53 degradation in cell lines with HPV-integrated genomes. Two compounds of similar scaffold successfully blocked p53 degradation and inhibited cell proliferation in cells stably transfected with E6. Together, these studies suggest that small molecules can successfully block E6-dependent p53 degradation and restore p53 activity. The compounds identified here constitute attractive starting points for further medicinal chemistry efforts and development into beneficial therapeutics. PMID:24854633

  6. 2P2Idb v2: update of a structural database dedicated to orthosteric modulation of protein-protein interactions.

    PubMed

    Basse, Marie-Jeanne; Betzi, Stéphane; Morelli, Xavier; Roche, Philippe

    2016-01-01

    2P2Idb is a hand-curated structural database dedicated to protein-protein interactions with known small molecule orthosteric modulators. It compiles the structural information related to orthosteric inhibitors and their target [i.e. related 3D structures available in the RCSB Protein Data Bank (PDB)] and provides links to other useful databases. 2P2Idb includes all interactions for which both the protein-protein and protein-inhibitor complexes have been structurally characterized. Since its first release in 2010, the database has grown constantly and the current version contains 27 protein-protein complexes and 274 protein-inhibitor complexes corresponding to 242 unique small molecule inhibitors which represent almost a 5-fold increase compared to the previous version. A number of new data have been added, including new protein-protein complexes, binding affinities, molecular descriptors, precalculated interface parameters and links to other webservers. A new query tool has been implemented to search for inhibitors within the database using standard molecular descriptors. A novel version of the 2P2I-inspector tool has been implemented to calculate a series of physical and chemical parameters of the protein interfaces. Several geometrical parameters including planarity, eccentricity and circularity have been added as well as customizable distance cutoffs. This tool has also been extended to protein-ligand interfaces. The 2P2I database thus represents a wealth of structural source of information for scientists interested in the properties of protein-protein interactions and the design of protein-protein interaction modulators. Database URL: http://2p2idb.cnrs-mrs.fr. PMID:26980515

  7. Electrodynamic pressure modulation of protein stability in cosolvents.

    PubMed

    Damodaran, Srinivasan

    2013-11-19

    Cosolvents affect structural stability of proteins in aqueous solutions. A clear understanding of the mechanism by which cosolvents impact protein stability is critical to understanding protein folding in a biological milieu. In this study, we investigated the Lifshitz-van der Waals dispersion interaction of seven different solutes with nine globular proteins and report that in an aqueous medium the structure-stabilizing solutes exert a positive electrodynamic pressure, whereas the structure-destabilizing solutes exert a negative electrodynamic pressure on the proteins. The net increase in the thermal denaturation temperature (ΔTd) of a protein in 1 M solution of various solutes was linearly related to the electrodynamic pressure (PvdW) between the solutes and the protein. The slope of the PvdW versus ΔTd plots was protein-dependent. However, we find a positive linear relationship (r(2) = 0.79) between the slope (i.e., d(ΔTd)/dPvdW) and the adiabatic compressibility (βs) of the proteins. Together, these results clearly indicate that the Lifshitz's dispersion forces are inextricably involved in solute-induced stabilization/destabilization of globular proteins. The positive and/or negative electrodynamic pressure generated by the solute-protein interaction across the water medium seems to be the fundamental mechanism by which solutes affect protein stability. This is at variance with the existing preferential hydration concept. The implication of these results is significant in the sense that, in addition to the hydrophobic effect that drives protein folding, the electrodynamic forces between the proteins and solutes in the biological milieu also might play a role in the folding process as well as in the stability of the folded state. PMID:24156352

  8. Surface proteins of Bordetella pertussis: comparison of virulent and avirulent strains and effects of phenotypic modulation.

    PubMed Central

    Armstrong, S K; Parker, C D

    1986-01-01

    The surface proteins of several Bordetella strains and their modulated derivatives were examined by surface radioiodination, cell fractionation, and Western blotting. A surface protein with a high Mr, missing in a mutant lacking the filamentous hemagglutinin, was identified in virulent Bordetella pertussis and Bordetella parapertussis cells and was absent in avirulent B. pertussis strains. The electrophoretic profiles of lipopolysaccharide and the 40,000-Mr anion-selective porin were not determinants which correlated with phase variation or phenotypic modulation. At least three envelope proteins (91,000, 32,000, and 30,000 molecular weight) were found only in virulent B. pertussis strains and were absent or diminished in the avirulent phase and most phenotypically modulated strains. Two transposon-induced mutants unable to produce hemolysin, dermonecrotic toxin, pertussis toxin, and filamentous hemagglutinin also lacked these three envelope proteins, confirming that virulence-associated envelope proteins were genetically regulated with other virulence-associated traits. Images PMID:2876957

  9. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein–protein interaction module

    PubMed Central

    Yim, Nambin; Ryu, Seung-Wook; Choi, Kyungsun; Lee, Kwang Ryeol; Lee, Seunghee; Choi, Hojun; Kim, Jeongjin; Shaker, Mohammed R.; Sun, Woong; Park, Ji-Ho; Kim, Daesoo; Do Heo, Won; Choi, Chulhee

    2016-01-01

    Nanoparticle-mediated delivery of functional macromolecules is a promising method for treating a variety of human diseases. Among nanoparticles, cell-derived exosomes have recently been highlighted as a new therapeutic strategy for the in vivo delivery of nucleotides and chemical drugs. Here we describe a new tool for intracellular delivery of target proteins, named ‘exosomes for protein loading via optically reversible protein–protein interactions' (EXPLORs). By integrating a reversible protein–protein interaction module controlled by blue light with the endogenous process of exosome biogenesis, we are able to successfully load cargo proteins into newly generated exosomes. Treatment with protein-loaded EXPLORs is shown to significantly increase intracellular levels of cargo proteins and their function in recipient cells in vitro and in vivo. These results clearly indicate the potential of EXPLORs as a mechanism for the efficient intracellular transfer of protein-based therapeutics into recipient cells and tissues. PMID:27447450

  10. Modulation by estrogen of synthesis of specific uterine proteins.

    PubMed

    Skipper, J K; Eakle, S D; Hamilton, T H

    1980-11-01

    The contemporary procedure for high resolution two dimensional gel electrophoresis was extended to include an initial nondenaturing dimension of electrophoresis. Use of the resulting three dimensional procedure revealed that the previously described single peak of estrogen-induced protein in the uterus of the rat contains at least three distinct proteins whose rates of synthesis are regulated by estrogen. These proteins were localized within partial protein maps, thereby providing definitive operational definitions for the detection and identification of each. It was unambiguously demonstrated that each of the three proteins is continuously synthesized in control uteri. These findings cast doubt on the simplistic hypothesis that estrogen induces a single key protein that triggers a "cascade" of sequential transcriptional events in the uterus. Our finding that the major uterine protein induced by estrogen is also synthesized in liver and muscle cells is significant in that it points to a more general cellular function for the protein, rather than a unique role within uterine cells. Finally, our procedure for three dimensional gel electrophoresis opens new avenues for the detection of minor proteins in heterogeneous protein mixtures, such as those from the tissues of higher animals. PMID:7428041

  11. Presynaptic protein synthesis required for NT-3-induced long-term synaptic modulation

    PubMed Central

    2011-01-01

    Background Neurotrophins elicit both acute and long-term modulation of synaptic transmission and plasticity. Previously, we demonstrated that the long-term synaptic modulation requires the endocytosis of neurotrophin-receptor complex, the activation of PI3K and Akt, and mTOR mediated protein synthesis. However, it is unclear whether the long-term synaptic modulation by neurotrophins depends on protein synthesis in pre- or post-synaptic cells. Results Here we have developed an inducible protein translation blocker, in which the kinase domain of protein kinase R (PKR) is fused with bacterial gyrase B domain (GyrB-PKR), which could be dimerized upon treatment with a cell permeable drug, coumermycin. By genetically targeting GyrB-PKR to specific cell types, we show that NT-3 induced long-term synaptic modulation requires presynaptic, but not postsynaptic protein synthesis. Conclusions Our results provide mechanistic insights into the cell-specific requirement for protein synthesis in the long-term synaptic modulation by neurotrophins. The GyrB-PKR system may be useful tool to study protein synthesis in a cell-specific manner. PMID:21211057

  12. Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex.

    PubMed

    Tunc-Ozdemir, Meral; Urano, Daisuke; Jaiswal, Dinesh Kumar; Clouse, Steven D; Jones, Alan M

    2016-07-01

    Plants and some protists have heterotrimeric G protein complexes that activate spontaneously without canonical G protein-coupled receptors (GPCRs). In Arabidopsis, the sole 7-transmembrane regulator of G protein signaling 1 (AtRGS1) modulates the G protein complex by keeping it in the resting state (GDP-bound). However, it remains unknown how a myriad of biological responses is achieved with a single G protein modulator. We propose that in complete contrast to G protein activation in animals, plant leucine-rich repeat receptor-like kinases (LRR RLKs), not GPCRs, provide this discrimination through phosphorylation of AtRGS1 in a ligand-dependent manner. G protein signaling is directly activated by the pathogen-associated molecular pattern flagellin peptide 22 through its LRR RLK, FLS2, and co-receptor BAK1. PMID:27235398

  13. Protein-Induced Modulation of Chloroplast Membrane Morphology

    PubMed Central

    Machettira, Anu B.; Groß, Lucia E.; Tillmann, Bodo; Weis, Benjamin L.; Englich, Gisela; Sommer, Maik S.; Königer, Martina; Schleiff, Enrico

    2012-01-01

    Organelles are surrounded by membranes with a distinct lipid and protein composition. While it is well established that lipids affect protein functioning and vice versa, it has been only recently suggested that elevated membrane protein concentrations may affect the shape and organization of membranes. We therefore analyzed the effects of high chloroplast envelope protein concentrations on membrane structures using an in vivo approach with protoplasts. Transient expression of outer envelope proteins or protein domains such as CHUP1-TM–GFP, outer envelope protein of 7 kDa–GFP, or outer envelope protein of 24 kDa–GFP at high levels led to the formation of punctate, circular, and tubular membrane protrusions. Expression of inner membrane proteins such as translocase of inner chloroplast membrane 20, isoform II (Tic20-II)–GFP led to membrane protrusions including invaginations. Using increasing amounts of DNA for transfection, we could show that the frequency, size, and intensity of these protrusions increased with protein concentration. The membrane deformations were absent after cycloheximide treatment. Co-expression of CHUP1-TM–Cherry and Tic20-II–GFP led to membrane protrusions of various shapes and sizes including some stromule-like structures, for which several functions have been proposed. Interestingly, some structures seemed to contain both proteins, while others seem to contain one protein exclusively, indicating that outer and inner envelope dynamics might be regulated independently. While it was more difficult to investigate the effects of high expression levels of membrane proteins on mitochondrial membrane shapes using confocal imaging, it was striking that the expression of the outer membrane protein Tom20 led to more elongate mitochondria. We discuss that the effect of protein concentrations on membrane structure is possibly caused by an imbalance in the lipid to protein ratio and may be involved in a signaling pathway regulating membrane

  14. HMGA proteins as modulators of chromatin structure during transcriptional activation

    PubMed Central

    Ozturk, Nihan; Singh, Indrabahadur; Mehta, Aditi; Braun, Thomas; Barreto, Guillermo

    2013-01-01

    High mobility group (HMG) proteins are the most abundant non-histone chromatin associated proteins. HMG proteins bind to DNA and nucleosome and alter the structure of chromatin locally and globally. Accessibility to DNA within chromatin is a central factor that affects DNA-dependent nuclear processes, such as transcription, replication, recombination, and repair. HMG proteins associate with different multi-protein complexes to regulate these processes by mediating accessibility to DNA. HMG proteins can be subdivided into three families: HMGA, HMGB, and HMGN. In this review, we will focus on recent advances in understanding the function of HMGA family members, specifically their role in gene transcription regulation during development and cancer. PMID:25364713

  15. Modulating non-native aggregation and electrostatic protein-protein interactions with computationally designed single-point mutations.

    PubMed

    O'Brien, C J; Blanco, M A; Costanzo, J A; Enterline, M; Fernandez, E J; Robinson, A S; Roberts, C J

    2016-06-01

    Non-native protein aggregation is a ubiquitous challenge in the production, storage and administration of protein-based biotherapeutics. This study focuses on altering electrostatic protein-protein interactions as a strategy to modulate aggregation propensity in terms of temperature-dependent aggregation rates, using single-charge variants of human γ-D crystallin. Molecular models were combined to predict amino acid substitutions that would modulate protein-protein interactions with minimal effects on conformational stability. Experimental protein-protein interactions were quantified by the Kirkwood-Buff integrals (G22) from laser scattering, and G22 showed semi-quantitative agreement with model predictions. Experimental initial-rates for aggregation showed that increased (decreased) repulsive interactions led to significantly increased (decreased) aggregation resistance, even based solely on single-point mutations. However, in the case of a particular amino acid (E17), the aggregation mechanism was altered by substitution with R or K, and this greatly mitigated improvements in aggregation resistance. The results illustrate that predictions based on native protein-protein interactions can provide a useful design target for engineering aggregation resistance; however, this approach needs to be balanced with consideration of how mutations can impact aggregation mechanisms. PMID:27160179

  16. Allosteric modulation of protein oligomerization: an emerging approach to drug design

    PubMed Central

    Gabizon, Ronen; Friedler, Assaf

    2014-01-01

    Many disease-related proteins are in equilibrium between different oligomeric forms. The regulation of this equilibrium plays a central role in maintaining the activity of these proteins in vitro and in vivo. Modulation of the oligomerization equilibrium of proteins by molecules that bind preferentially to a specific oligomeric state is emerging as a potential therapeutic strategy that can be applied to many biological systems such as cancer and viral infections. The target proteins for such compounds are diverse in structure and sequence, and may require different approaches for shifting their oligomerization equilibrium. The discovery of such oligomerization-modulating compounds is thus achieved based on existing structural knowledge about the specific target proteins, as well as on their interactions with partner proteins or with ligands. In silico design and combinatorial tools such as peptide arrays and phage display are also used for discovering compounds that modulate protein oligomerization. The current review highlights some of the recent developments in the design of compounds aimed at modulating the oligomerization equilibrium of proteins, including the “shiftides” approach developed in our lab. PMID:24790978

  17. Engineered Carbohydrate-Binding Module (CBM) Protein-Suspended Single-Walled Carbon Nanotubes in Water

    SciTech Connect

    Xu,Q.; Song, Q.; Ai, X.; McDonald, T. J.; Long, H.; Ding. S. Y.; Himmel, M. E.; Rumbles, G.

    2009-01-01

    Engineered protein, CtCBM4, the first carbohydrate-binding module (CBM) protein is successfully used to debundle and suspend single-walled carbon nanotubes (SWNTs) effectively in aqueous solution, which opens up a new avenue in further functionalizing and potential selectively fractionating SWNTs for diverse biology- and/or energy-related applications.

  18. Allosteric Modulation of protein oligomerization: an emerging approach to drug design

    NASA Astrophysics Data System (ADS)

    Gabizon, Ronen; Friedler, Assaf

    2014-03-01

    Many disease-related proteins are in equilibrium between different oligomeric forms. The regulation of this equilibrium plays a central role in maintaining the activity of these proteins in vitro and in vivo. Modulation of the oligomerization equilibrium of proteins by molecules that bind preferentially to a specific oligomeric state is emerging as a potential therapeutic strategy that can be applied to many biological systems such as cancer and viral infections. The target proteins for such compounds are diverse in structure and sequence, and may require different approaches for shifting their oligomerization equilibrium. The discovery of such oligomerization-modulating compounds is thus achieved based on existing structural knowledge about the specific target proteins, as well as on their interactions with partner proteins or with ligands. In silico design and combinatorial tools such as peptide arrays and phage display are also used for discovering compounds that modulate protein oligomerization. The current review highlights some of the recent developments in the design of compounds aimed at modulating the oligomerization equilibrium of proteins, including the "shiftides" approach developed in our lab.

  19. Protein-based integrated optical switching and modulation

    NASA Astrophysics Data System (ADS)

    Ormos, Pál; Fábián, László; Oroszi, László; Wolff, Elmar K.; Ramsden, Jeremy J.; Dér, András

    2002-05-01

    The static and dynamic response of optical waveguides coated with a thin protein film of bacteriorhodopsin was investigated. The size and kinetics of the light-induced refractive index changes of the adlayer were determined under different conditions of illumination. The results demonstrate the applicability of this protein as an active, programmable nonlinear optical material in all-optical integrated circuits.

  20. WAP domain proteins as modulators of mucosal immunity.

    PubMed

    Wilkinson, Thomas S; Roghanian, Ali; Simpson, Alexander John; Sallenave, Jean-Michel

    2011-10-01

    WAP (whey acidic protein) is an important whey protein present in milk of mammals. This protein has characteristic domains, rich in cysteine residues, called 4-DSC (four-disulfide core domain). Other proteins, mainly present at mucosal surfaces, have been shown to also possess these characteristic WAP-4-DSC domains. The present review will focus on two WAP-4-DSC containing proteins, namely SLPI (secretory leucocyte protease inhibitor) and trappin-2/elafin. Although first described as antiproteases able to inhibit in particular host neutrophil proteases [NE (neutrophil elastase), cathepsin-G and proteinase-3] and as such, able to limit maladaptive tissue damage during inflammation, it has become apparent that these molecules have a variety of other functions (direct antimicrobial activity, bacterial opsonization, induction of adaptive immune responses, promotion of tissue repair, etc.). After providing information about the 'classical' antiproteasic role of these molecules, we will discuss the evidence pertaining to their pleiotropic functions in inflammation and immunity. PMID:21936824

  1. Protein conservation and variation suggest mechanisms of cell type-specific modulation of signaling pathways.

    PubMed

    Schaefer, Martin H; Yang, Jae-Seong; Serrano, Luis; Kiel, Christina

    2014-06-01

    Many proteins and signaling pathways are present in most cell types and tissues and yet perform specialized functions. To elucidate mechanisms by which these ubiquitous pathways are modulated, we overlaid information about cross-cell line protein abundance and variability, and evolutionary conservation onto functional pathway components and topological layers in the pathway hierarchy. We found that the input (receptors) and the output (transcription factors) layers evolve more rapidly than proteins in the intermediary transmission layer. In contrast, protein expression variability decreases from the input to the output layer. We observed that the differences in protein variability between the input and transmission layer can be attributed to both the network position and the tendency of variable proteins to physically interact with constitutively expressed proteins. Differences in protein expression variability and conservation are also accompanied by the tendency of conserved and constitutively expressed proteins to acquire somatic mutations, while germline mutations tend to occur in cell type-specific proteins. Thus, conserved core proteins in the transmission layer could perform a fundamental role in most cell types and are therefore less tolerant to germline mutations. In summary, we propose that the core signal transmission machinery is largely modulated by a variable input layer through physical protein interactions. We hypothesize that the bow-tie organization of cellular signaling on the level of protein abundance variability contributes to the specificity of the signal response in different cell types. PMID:24922536

  2. Leishmania amazonensis: PKC-like protein kinase modulates the (Na++K+)ATPase activity.

    PubMed

    Almeida-Amaral, Elmo Eduardo de; Caruso-Neves, Celso; Lara, Lucienne Silva; Pinheiro, Carla Mônica; Meyer-Fernandes, José Roberto

    2007-08-01

    The present study aimed to identify the presence of protein kinase C-like (PKC-like) in Leishmania amazonensis and to elucidate its possible role in the modulation of the (Na(+)+K(+))ATPase activity. Immunoblotting experiments using antibody against a consensus sequence (Ac 543-549) of rabbit protein kinase C (PKC) revealed the presence of a protein kinase of 80 kDa in L. amazonensis. Measurements of protein kinase activity showed the presence of both (Ca(2+)-dependent) and (Ca(2+)-independent) protein kinase activity in plasma membrane and cytosol. Phorbol ester (PMA) activation of the Ca(2+)-dependent protein kinase stimulated the (Na(+)+K(+))ATPase activity, while activation of the Ca(2+)-independent protein kinase was inhibitory. Both effects of protein kinase on the (Na(+)+K(+))ATPase of the plasma membrane were lower than that observed in intact cells. PMA induced the translocation of protein kinase from cytosol to plasma membrane, indicating that the maximal effect of protein kinase on the (Na(+)+K(+))ATPase activity depends on the synergistic action of protein kinases from both plasma membrane and cytosol. This is the first demonstration of a protein kinase activated by PMA in L. amazonensis and the first evidence for a possible role in the regulation of the (Na(+)+K(+))ATPase activity in this trypanosomatid. Modulation of the (Na(+)+K(+))ATPase by protein kinase in a trypanosomatid opens up new possibilities to understand the regulation of ion homeostasis in this parasite. PMID:17475255

  3. Rubella virus capsid protein modulation of viral genomic and subgenomic RNA synthesis

    SciTech Connect

    Tzeng, W.-P.; Frey, Teryl K. . E-mail: tfrey@gsu.edu

    2005-07-05

    The ratio of the subgenomic (SG) to genome RNA synthesized by rubella virus (RUB) replicons expressing the green fluorescent protein reporter gene (RUBrep/GFP) is substantially higher than the ratio of these species synthesized by RUB (4.3 for RUBrep/GFP vs. 1.3-1.4 for RUB). It was hypothesized that this modulation of the viral RNA synthesis was by one of the virus structural protein genes and it was found that introduction of the capsid (C) protein gene into the replicons as an in-frame fusion with GFP resulted in an increase of genomic RNA production (reducing the SG/genome RNA ratio), confirming the hypothesis and showing that the C gene was the moiety responsible for the modulation effect. The N-terminal one-third of the C gene was required for the effect of be exhibited. A similar phenomenon was not observed with the replicons of Sindbis virus, a related Alphavirus. Interestingly, modulation was not observed when RUBrep/GFP was co-transfected with either other RUBrep or plasmid constructs expressing the C gene, demonstrating that modulation could occur only when the C gene was provided in cis. Mutations that prevented translation of the C protein failed to modulate RNA synthesis, indicating that the C protein was the moiety responsible for modulation; consistent with this conclusion, modulation of RNA synthesis was maintained when synonymous codon mutations were introduced at the 5' end of the C gene that changed the C gene sequence without altering the amino acid sequence of the C protein. These results indicate that C protein translated in proximity of viral replication complexes, possibly from newly synthesized SG RNA, participate in regulating the replication of viral RNA.

  4. Determination of human papillomavirus 16 physical status through E1/E6 and E2/E6 ratio analysis.

    PubMed

    Tsakogiannis, Dimitris; Kyriakopoulou, Zaharoula; Ruether, Irina Georgia Anna; Amoutzias, Grigoris D; Dimitriou, Tilemachos G; Diamantidou, Valentina; Kotsovassilis, Constantin; Markoulatos, Panayotis

    2014-12-01

    Human papillomavirus (HPV) 16 genome integration into the host chromosome is a crucial event during the life cycle of the virus and a major step towards carcinogenesis. The integration of HPV16 DNA promotes a constitutive high expression level of E6 and E7 oncoproteins, resulting in the extensive proliferation of the infected epithelial cells. In the present report the physical status of the HPV16 genome was studied, through determination of E1/E6 and E2/E6 DNA copy number ratios in 61 cervical samples of low- and high-grade malignancy and 8 cervical cancer samples, all of them associated with HPV16 infection. The selection of E1, E2 and E6 amplification target regions was performed according to the most prevalent deleted/disrupted sites of E1 and E2 genes. For this target selection we also considered the most conserved regions of E1, E2 and E6 genes among the same HPV16 isolates that were recently reported by our group. The analysis of HPV16 DNA form revealed a significant association among the mixed DNA forms in low-grade and high-grade malignancies, (χ(2), P<0.01). The comparative analysis of E1/E6 and E2/E6 in the same cervical samples provides an accurate picture of HPV16 DNA form and may reveal whether different HPV16 DNA integrants coexist in the same cervical sample or not. This study proposes that E1/E6 and E2/E6 ratios determine with accuracy the HPV16 DNA integration pattern and may predict multiple integration events in the examined sample, thus providing significant information about the progression of cervical dysplasia. PMID:25212758

  5. Intracellular scFvs against the viral E6 oncoprotein provoke apoptosis in human papillomavirus-positive cancer cells

    SciTech Connect

    Lagrange, Magali; Boulade-Ladame, Charlotte; Mailly, Laurent; Weiss, Etienne; Orfanoudakis, Georges; Deryckere, Francois . E-mail: francois.deryckere@esbs.u-strasbg.fr

    2007-09-21

    The E6 protein of human papillomavirus type 16 (16E6) is involved in the tumorigenesis of human cervical cells by targeting numerous cellular proteins. We have designed a strategy for neutralizing 16E6 based on the intracellular expression of single-chain Fv antibodies (scFvs) specific to 16E6. Recombinant adenovirus vectors were constructed to allow expression of two 16E6-binding scFvs and one 16E6-non-binding scFv in HPV16-positive and -negative cells. Expression of the scFvs provoked two types of effects: (i) inhibition of proliferation of all cell lines tested, this aspecific toxicity being likely due to the aggregation of unfolded scFvs; and (ii) apoptosis observed only in HPV16-positive cervical cancer cell lines after expression of 16E6-binding scFvs, this specific effect being proportional to the intracellular solubility of the scFvs. These data demonstrate the feasibility of intracellular immunization with anti-16E6 scFvs and highlight the importance of the solubility of the intracellular antibodies.

  6. Toxicity, pharmacokinetics, and photodynamic properties of chlorin e6

    NASA Astrophysics Data System (ADS)

    Kostenich, Gennady; Zhuravkin, Ivan N.; Gurinovich, G. P.; Zhavrid, Edvard A.

    1993-03-01

    Toxicity, pharmacokinetics, and the tumor damage effect of chlorin e6 after light irradiation were studied. The results show that chlorin e6 LD50 value in C57Bl mice was 189 +/- 10 mg/kg, in non-inbred white rats it was 99 +/- 14 mg/kg 14 days after the agent iv injection. The concentration of chlorin e6 in blood, liver, kidney, spleen, and tumors (sarcoma M-1 and sarcoma 45) of the rats was determined by the fluorescence method 3, 6, 12, 18, 24, 48, and 72 hours after the agent iv injection at the dose of 10 mg/kg. For this purpose chlorin e6 was extracted from tissues by detergent triton X-100. The depth of necrosis spreading in tumor tissue was evaluated after chlorin e6 injection at the doses of 1 - 10 mg/kg and subsequent irradiation by a krypton laser with light energy density of 90 J/cm2, using the method of vital staining with Evans blue. It was found that depending on the agent dose and time interval between chlorin e6 injection and photoradiation, the depth of tumor necrosis varied from 4.0 to 16.6 mm in sarcoma M-1 and from 5.0 to 15.0 in sarcoma 45.

  7. Carboranyl-Chlorin e6 as a Potent Antimicrobial Photosensitizer

    PubMed Central

    Omarova, Elena O.; Nazarov, Pavel A.; Firsov, Alexander M.; Strakhovskaya, Marina G.; Arkhipova, Anastasia Yu.; Moisenovich, Mikhail M.; Agapov, Igor I.; Ol’shevskaya, Valentina A.; Zaitsev, Andrey V.; Kalinin, Valery N.; Kotova, Elena A.; Antonenko, Yuri N.

    2015-01-01

    Antimicrobial photodynamic inactivation is currently being widely considered as alternative to antibiotic chemotherapy of infective diseases, attracting much attention to design of novel effective photosensitizers. Carboranyl-chlorin-e6 (the conjugate of chlorin e6 with carborane), applied here for the first time for antimicrobial photodynamic inactivation, appeared to be much stronger than chlorin e6 against Gram-positive bacteria, such as Bacillus subtilis, Staphyllococcus aureus and Mycobacterium sp. Confocal fluorescence spectroscopy and membrane leakage experiments indicated that bacteria cell death upon photodynamic treatment with carboranyl-chlorin-e6 is caused by loss of cell membrane integrity. The enhanced photobactericidal activity was attributed to the increased accumulation of the conjugate by bacterial cells, as evaluated both by centrifugation and fluorescence correlation spectroscopy. Gram-negative bacteria were rather resistant to antimicrobial photodynamic inactivation mediated by carboranyl-chlorin-e6. Unlike chlorin e6, the conjugate showed higher (compared to the wild-type strain) dark toxicity with Escherichia coli ΔtolC mutant, deficient in TolC-requiring multidrug efflux transporters. PMID:26535905

  8. Carboranyl-Chlorin e6 as a Potent Antimicrobial Photosensitizer.

    PubMed

    Omarova, Elena O; Nazarov, Pavel A; Firsov, Alexander M; Strakhovskaya, Marina G; Arkhipova, Anastasia Yu; Moisenovich, Mikhail M; Agapov, Igor I; Ol'shevskaya, Valentina A; Zaitsev, Andrey V; Kalinin, Valery N; Kotova, Elena A; Antonenko, Yuri N

    2015-01-01

    Antimicrobial photodynamic inactivation is currently being widely considered as alternative to antibiotic chemotherapy of infective diseases, attracting much attention to design of novel effective photosensitizers. Carboranyl-chlorin-e6 (the conjugate of chlorin e6 with carborane), applied here for the first time for antimicrobial photodynamic inactivation, appeared to be much stronger than chlorin e6 against Gram-positive bacteria, such as Bacillus subtilis, Staphyllococcus aureus and Mycobacterium sp. Confocal fluorescence spectroscopy and membrane leakage experiments indicated that bacteria cell death upon photodynamic treatment with carboranyl-chlorin-e6 is caused by loss of cell membrane integrity. The enhanced photobactericidal activity was attributed to the increased accumulation of the conjugate by bacterial cells, as evaluated both by centrifugation and fluorescence correlation spectroscopy. Gram-negative bacteria were rather resistant to antimicrobial photodynamic inactivation mediated by carboranyl-chlorin-e6. Unlike chlorin e6, the conjugate showed higher (compared to the wild-type strain) dark toxicity with Escherichia coli ΔtolC mutant, deficient in TolC-requiring multidrug efflux transporters. PMID:26535905

  9. Allosteric Modulators of Class B G-Protein-Coupled Receptors

    PubMed Central

    Hoare, Sam R.J

    2007-01-01

    Class B GPCR’s are activated by peptide ligands, typically 30-40 amino acid residues, that are involved in major physiological functions such as glucose homeostasis (glucagon and glucagon-like peptide 1), calcium homeostasis and bone turnover (parathyroid hormone and calcitonin), and control of the stress axis (corticotropin-releasing factor). Peptide therapeutics have been developed targeting these receptors but development of nonpeptide ligands, enabling oral administration, has proved challenging. Allosteric modulation of these receptors provides a potential route to developing nonpeptide ligands that inhibit, activate, or potentiate activation of these receptors. Here the known mechanisms of allosteric modulators targeting Class B GPCR’s are reviewed, particularly nonpeptide antagonists of the corticotropin-releasing factor 1 receptor and allosteric enhancers of the glucagon-like peptide-1 receptor. Also discussed is the potential for antagonist ligands to operate by competitive inhibition of one of the peptide binding sites, analogous to the Charniere mechanism. These mechanisms are then used to discuss potential strategies and management of pharmacological complexity in the future development of allosteric modulators for Class B GPCR’s. PMID:19305799

  10. Protein-directed modulation of high-LET hyperthermic radiosensitization

    SciTech Connect

    Chang, P.Y.

    1991-01-01

    A pair of Chinese Hamster Ovary cell lines, the wild-type CHO-SC1, and its temperature-sensitive mutant (CHO-tsH1) was used to examine the importance of protein synthesis in the development of thermotolerance. The classical biphasic thermotolerant survival response to hyperthermia was observed in the SC1 cells after continuous heating at 41.5C to 42.5C, while tsH1 showed no thermotolerance. In separate experiments, each cell line was triggered and challenged at 45C. The heat doses were separated with graded incubaton periods at 35C or 40C for thermotolerance development. SC1 cells expressed thermoresistance, with the synthesis of heat shock proteins, under both incubation conditions. tsH1 cells expressed thermotolerance similar to that seen in the SC1 cells when incubated at 35C, but the survival response with the non-permissive 40C incubation was much reduced in the absence of protein synthesis. The combined effects of heavy-ion radiation and hyperthermia were examined using the same cell system. A mild heat dose of 41.5C was used in conjunction with Neon particle radiation of various high LET values. The cell killing effects were highly dependent on the sequence of application of heat and Neon radiation. Heat applied immediately after Neon irradiation was more cytotoxic to SC1 cells than when heat was applied prior to the irradiation. The ability of cells to synthesize new proteins plays a key role in this sequence-dependent thermal radiosensitization. In the absence of protein synthesis in the tsH1 cells, the high-LET thermal enhancement for cell-killing was unchanged regardless of the sequence. In the presence of protein synthetic activity in the SC1 cells, the thermal enhancement of radiation-induced cell killing was LET-dependent.

  11. Amyloid Precursor Protein Expression Modulates Intestine Immune Phenotype

    PubMed Central

    Puig, Kendra L.; Swigost, Adam J.; Zhou, Xudong; Sens, MaryAnn; Combs, Colin K.

    2014-01-01

    Amyloid precursor protein (APP) is widely expressed across many tissue and cell types. Proteolytic processing of the protein gives rise to a plethora of protein fragments with varied biological activities. Although a large amount of data has been generated describing the metabolism of the protein in neurons, its role in regulating the phenotype of other cells remains unclear. Based upon prior work demonstrating that APP regulates the activation phenotype of monocytic lineage cells, we hypothesized that APP can regulate macrophage activation phenotype in tissues other than brain. Ileums of the small intestines from C57BL6/J wild type and APP−/− mice were compared as a representative tissue normally associated with abundant macrophage infiltration. APP−/− intestines demonstrated diminished CD68 immunoreactivity compared to wild type mice. This correlated with significantly less cycloxygenase-2 (cox-2), CD68, CD40, CD11c, and βIII-tubulin protein levels. Peritoneal macrophage from APP−/− mice demonstrated decreased in vitro migratory ability compared to wild type cells and diminished basal KC cytokine secretion. Whereas, APP−/− intestinal macrophage had an increase in basal KC cytokine secretion compared to wild type cells. Conversely, there was a significant decrease in multiple cytokine levels in APP−/− compared to wild type ileums. Finally, APP−/− mice demonstrated impaired absorption and increased motility compared to wild type mice. These data demonstrate the APP expression regulates immune cell secretions and phenotype and intestinal function. This data set describes a novel function for this protein or its metabolites that may be relevant not only for Alzheimer’s disease but a range of immune-related disorders. PMID:22124967

  12. Chemosensitization of Prostate Cancer by Modulating Bcl-2 Family Proteins

    PubMed Central

    Karnak, David; Xu, Liang

    2010-01-01

    A major challenge in oncology is the development of chemoresistance. This often occurs as cancer progresses and malignant cells acquire mechanisms to resist insults that would normally induce apoptosis. The onset of androgen independence in advanced prostate cancer is a prime example of this phenomenon. Overexpression of the pro-survival/anti-apoptotic proteins Bcl-2, Bcl-xL, and Mcl-1 are hallmarks of this transition. Here we outline the evolution of therapeutics designed to either limit the source or disrupt the interactions of these pro-survival proteins. By either lessening the stoichiometric abundance of Bcl-2/xL/Mcl-1 in reference to their pro-apoptotic foils or freeing these pro-apoptotic proteins from their grip, these treatments aim to sensitize cells to chemotherapy by priming cells for death. DNA anti-sense and RNA interference have been effectively employed to decrease Bcl-2 family mRNA and protein levels in cell culture models of advanced prostate cancer. However, clinical studies are lagging due to in vivo delivery challenges. The burgeoning field of nanoparticle delivery holds great promise in helping to overcome the challenge of administering highly labile nucleic acid based therapeutics. On another front, small molecule inhibitors that block the hetero-dimerization of pro-survival with pro-apoptotic proteins have significant clinical advantages and have advanced farther in clinical trials with promising early results. Most recently, a peptide has been discovered that can convert Bcl-2 from a pro-survival to a pro-apoptotic protein. The future may lie in targeting multiple steps of the apoptotic pathway, including Bcl-2/xL/Mcl-1, to debilitate the survival capacity of cancer cells and make chemotherapy induced death their only option. PMID:20298153

  13. Use of hydrostatic pressure for modulation of protein chemical modification and enzymatic selectivity.

    PubMed

    Makarov, Alexey A; Helmy, Roy; Joyce, Leo; Reibarkh, Mikhail; Maust, Mathew; Ren, Sumei; Mergelsberg, Ingrid; Welch, Christopher J

    2016-05-11

    Using hydrostatic pressure to induce protein conformational changes can be a powerful tool for altering the availability of protein reactive sites and for changing the selectivity of enzymatic reactions. Using a pressure apparatus, it has been demonstrated that hydrostatic pressure can be used to modulate the reactivity of lysine residues of the protein ubiquitin with a water-soluble amine-specific homobifunctional coupling agent. Fewer reactive lysine residues were observed when the reaction was carried out under elevated pressure of 3 kbar, consistent with a pressure-induced conformational change of ubiquitin that results in fewer exposed lysine residues. Additionally, modulation of the stereoselectivity of an enzymatic transamination reaction was observed at elevated hydrostatic pressure. In one case, the minor diasteromeric product formed at atmospheric pressure became the major product at elevated pressure. Such pressure-induced alterations of protein reactivity may provide an important new tool for enzymatic reactions and the chemical modification of proteins. PMID:27088756

  14. Atorvastatin modulates the profile of proteins released by human atherosclerotic plaques.

    PubMed

    Durán, M Carmen; Martín-Ventura, Jose L; Mohammed, Shabaz; Barderas, María G; Blanco-Colio, Luis M; Mas, Sebastián; Moral, Verónica; Ortega, Luis; Tuñón, Jose; Jensen, Ole N; Vivanco, Fernando; Egido, Jesús

    2007-05-01

    The mechanisms by which hydroxymethylglutaryl CoenzymeA reductase inhibitors (statins) reduce atherosclerotic cardiovascular morbidity and mortality remain poorly understood. Statins have been shown to modulate the levels of different inflammatory proteins both in carotid atherosclerotic plaques and in the blood of patients with atherosclerosis. In this work, we hypothesize that statins could also modulate the levels of the proteins secreted by cultured atherosclerotic plaques. Thus, the secretomes obtained from complicated atherosclerotic plaques incubated in the presence/absence of atorvastatin (10 micromol/l, 24 h) were analysed and compared by two-dimensional electrophoresis, considering the fibrous adjacent areas as controls. In total, 54 proteins (83 protein isoforms) were identified by Mass Spectrometry (MS): 24 proteins were increased and 20 proteins decreased in atheroma plaque supernatants compared to controls. Some of these proteins, like Cathepsin D, could play a significant role in plaque instability, becoming a potential target for therapeutical treatment. Interestingly, 66% of the proteins differentially released by atherosclerotic plaques reverted to control values after administration of atorvastatin, among them, Cathepsin D. Moreover, plaques obtained from patients who received atorvastatin treatment prior to carotid endarterectomy showed decreased Cathepsin D expression relative to plaques from non-treated patients. In conclusion, this proteomic approach has shown that statins are able to modulate the secretome of atherosclerotic plaques, and new therapeutical targets for statins have been characterised. PMID:17336287

  15. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs

    NASA Astrophysics Data System (ADS)

    Dror, Ron O.; Green, Hillary F.; Valant, Celine; Borhani, David W.; Valcourt, James R.; Pan, Albert C.; Arlow, Daniel H.; Canals, Meritxell; Lane, J. Robert; Rahmani, Raphaël; Baell, Jonathan B.; Sexton, Patrick M.; Christopoulos, Arthur; Shaw, David E.

    2013-11-01

    The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug-receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation-π interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15Å from the classical, `orthosteric' ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator's allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.

  16. Estrogen Modulates Expression of Tight Junction Proteins in Rat Vagina

    PubMed Central

    Oh, Kyung-Jin; Ahn, Kyuyoun

    2016-01-01

    Background. The objectives of this study were to investigate the localization of tight junctions and the modulation of zonula occludens- (ZO-) 1, occludin and claudin-1 expression by estrogen in castrated female rat vagina. Female Sprague-Dawley rats (230–240 g, n = 45) were divided into three groups and subjected to a sham operation (control group, n = 15), bilateral ovariectomy (Ovx group, n = 15), or bilateral ovariectomy followed by daily subcutaneous injection of 17β-estradiol (50 μg/kg/day, Ovx + Est group, n = 15). The cellular localization and expression of ZO-1, occludin, and claudin-1 were determined in each group by immunohistochemistry and western blot. Results. Expression of ZO-1 was diffuse in all groups, with the highest intensity in the superficial epithelium in the control group. Occludin was localized in the intermediate and basal epithelium. Claudin-1 was most intense in the superficial layer of the vaginal epithelium in the control group. Expression of ZO-1, occludin, and claudin-1 was significantly decreased after ovariectomy and was restored to the level of the control after estrogen replacement. Conclusions. Tight junctions are distinctly localized in rat vagina, and estrogen modulates the expression of tight junctions. Further researches are needed to clarify the functional role of tight junctions in vaginal lubrication. PMID:27127786

  17. High Throughput Screening for Drugs that Modulate Intermediate Filament Proteins

    PubMed Central

    Sun, Jingyuan; Groppi, Vincent E.; Gui, Honglian; Chen, Lu; Xie, Qing; Liu, Li

    2016-01-01

    Intermediate filament (IF) proteins have unique and complex cell and tissue distribution. Importantly, IF gene mutations cause or predispose to more than 80 human tissue-specific diseases (IF-pathies), with the most severe disease phenotypes being due to mutations at conserved residues that result in a disrupted IF network. A critical need for the entire IF-pathy field is the identification of drugs that can ameliorate or cure these diseases, particularly since all current therapies target the IF-pathy complication, such as diabetes or cardiovascular disease, rather than the mutant IF protein or gene. We describe a high throughput approach to identify drugs that can normalize disrupted IF proteins. This approach utilizes transduction of lentivirus that expresses green-fluorescent-protein-tagged keratin 18 (K18) R90C in A549 cells. The readout is drug ‘hits’ that convert the dot-like keratin filament distribution, due to the R90C mutation, to a wildtype-like filamentous array. A similar strategy can be used to screen thousands of compounds and can be utilized for practically any IF protein with a filament-disrupting mutation, and could therefore potentially target many IF-pathies. ‘Hits’ of interest require validation in cell culture then using in vivo experimental models. Approaches to study the mechanism of mutant-IF normalization by potential drugs of interest are also described. The ultimate goal of this drug screening approach is to identify effective and safe compounds that can potentially be tested for clinical efficacy in patients. PMID:26795471

  18. ADAMTS proteins as modulators of microfibril formation and function

    PubMed Central

    Hubmacher, Dirk; Apte, Suneel S.

    2016-01-01

    The ADAMTS (a disintegrin-like and metalloproteinase domain with thrombospondin-type 1 motifs) protein superfamily includes 19 secreted metalloproteases and 7 secreted ADAMTS-like (ADAMTSL) glycoproteins. The possibility of functional linkage between ADAMTS proteins and fibrillin microfibrils was first revealed by a human genetic consilience, in which mutations in ADAMTS10, ADAMTS17, ADAMTSL2 and ADAMTSL4 were found to phenocopy rare genetic disorders caused by mutations affecting fibrillin-1 (FBN1), the major microfibril component in adults. The manifestations of these ADAMTS gene disorders in humans and animals suggested that they participated in the structural and regulatory roles of microfibrils. Whereas two such disorders, Weill–Marchesani syndrome 1 and Weill–Marchesani-like syndrome involve proteases (ADAMTS10 and ADAMTS17, respectively), geleophysic dysplasia and isolated ectopia lentis in humans involve ADAMTSL2 and ADAMTSL4, respectively, which are not proteases. In addition to broadly similar dysmorphology, individuals affected by Weill–Marchesani syndrome 1, Weill–Marchesani-like syndrome or geleophysic dysplasia each show characteristic anomalies suggesting molecule-, tissue-, or context-specific functions for the respective ADAMTS proteins. Ectopia lentis occurs in each of these conditions except geleophysic dysplasia, and is due to a defect in the ciliary zonule, which is predominantly composed of FBN1 microfibrils. Together, this strongly suggests that ADAMTS proteins are involved either in microfibril assembly, stability, and anchorage, or the formation of function-specific supramolecular networks having microfibrils as their foundation. Here, the genetics and molecular biology of this subset of ADAMTS proteins is discussed from the perspective of how they might contribute to fully functional or function-specific microfibrils. PMID:25957949

  19. Peanut protein structure, polyphenol content and immune response to peanut proteins in vivo are modulated by laccase.

    PubMed

    Mihajlovic, L; Radosavljevic, J; Nordlund, E; Krstic, M; Bohn, T; Smit, J; Buchert, J; Cirkovic Velickovic, T

    2016-05-18

    Food texture can be improved by enzyme-mediated covalent cross-linking of different food components, such as proteins and carbohydrates. Cross-linking changes the biological and immunological properties of proteins and may change the sensitizing potential of food allergens. In this study we applied a microbial polyphenol oxidase, laccase, to cross-link peanut proteins. The size and morphology of the obtained cross-linked proteins were analyzed by electrophoresis and electron microscopy. Structural changes in proteins were analyzed by CD spectroscopy and by using specific antibodies to major peanut allergens. The bioavailability of peanut proteins was analyzed using a Caco-2 epithelial cell model. The in vivo sensitizing potential of laccase-treated peanut proteins was analyzed using a mouse model of food allergy. Finally, peanut polyphenols were analyzed by UHPLC-MS/MS, before and after the enzymatic reaction with laccase. Laccase treatment of peanut proteins yielded a covalently cross-linked material, with the modified tertiary structure of peanut proteins, improved bioavailability of Ara h 2 (by 70 fold, p < 0.05) and modulated allergic immune response in vivo. The modulation of the immune response was related to the increased production of IgG2a antibodies 11 fold (p < 0.05) and reduced IL-13 secretion in in vitro cultured splenocytes 7 fold (p < 0.05). Analysis of the peanut polyphenol content and profile by HPLC-MS/MS revealed that laccase treatment depleted the peanut extract of polyphenol compounds leaving mostly isorhamnetin derivatives and procyanidin dimer B-type in detectable amounts. Treatment of complex food extracts rich in polyphenols with laccase results in both protein cross-linking and modification of polyphenol compounds. These extensively cross-linked proteins have unchanged potency to induce allergic sensitization in vivo, but certain immunomodulatory changes were observed. PMID:27138276

  20. HPV16 E6 upregulates Aurora A expression

    PubMed Central

    Guo, Yi; Ma, Jiaming; Zheng, Yahong; Li, Lu; Gui, Xiaowei; Wang, Qian; Meng, Xiangkai; Shang, Hong

    2016-01-01

    Overexpression of Aurora A kinase occurs in certain types of cancer, and therefore results in chromosome instability and phosphorylation-mediated ubiquitylation and degradation of p53 for tumorigenesis. The high-risk subtype human papillomavirus (HPV)16 early oncoprotein E6 is a major contributor inducing host cell immortalization and transformation through interaction with a number of cellular factors. In the present study, co-immunoprecipitation, glutathione S-transferase pull-down and immunostaining were used to show that HPV16 E6 and Aurora A bind to each other in vivo and in vitro. Western blotting and reverse transcription-polymerase chain reaction were used to reveal that HPV16 E6 inhibited cell apoptosis by stabilizing Aurora A expression. The present study may report a new mechanism for the involvement of HPV16 E6 in carcinogenesis, as HPV16 E6 elevates Aurora A expression and the latter may be a common target for oncogenic viruses that result in cell carcinogenesis. PMID:27446442

  1. Inferring modules of functionally interacting proteins using the Bond Energy Algorithm

    PubMed Central

    Watanabe, Ryosuke LA; Morett, Enrique; Vallejo, Edgar E

    2008-01-01

    Background Non-homology based methods such as phylogenetic profiles are effective for predicting functional relationships between proteins with no considerable sequence or structure similarity. Those methods rely heavily on traditional similarity metrics defined on pairs of phylogenetic patterns. Proteins do not exclusively interact in pairs as the final biological function of a protein in the cellular context is often hold by a group of proteins. In order to accurately infer modules of functionally interacting proteins, the consideration of not only direct but also indirect relationships is required. In this paper, we used the Bond Energy Algorithm (BEA) to predict functionally related groups of proteins. With BEA we create clusters of phylogenetic profiles based on the associations of the surrounding elements of the analyzed data using a metric that considers linked relationships among elements in the data set. Results Using phylogenetic profiles obtained from the Cluster of Orthologous Groups of Proteins (COG) database, we conducted a series of clustering experiments using BEA to predict (upper level) relationships between profiles. We evaluated our results by comparing with COG's functional categories, And even more, with the experimentally determined functional relationships between proteins provided by the DIP and ECOCYC databases. Our results demonstrate that BEA is capable of predicting meaningful modules of functionally related proteins. BEA outperforms traditionally used clustering methods, such as k-means and hierarchical clustering by predicting functional relationships between proteins with higher accuracy. Conclusion This study shows that the linked relationships of phylogenetic profiles obtained by BEA is useful for detecting functional associations between profiles and extending functional modules not found by traditional methods. BEA is capable of detecting relationship among phylogenetic patterns by linking them through a common element shared in

  2. Ion-specific modulation of protein interactions: Anion-induced, reversible oligomerization of a fusion protein

    PubMed Central

    Gokarn, Yatin R; Fesinmeyer, R Matthew; Saluja, Atul; Cao, Shawn; Dankberg, Jane; Goetze, Andrew; Remmele, Richard L; Narhi, Linda O; Brems, David N

    2009-01-01

    Ions can significantly modulate the solution interactions of proteins. We aim to demonstrate that the salt-dependent reversible heptamerization of a fusion protein called peptibody A or PbA is governed by anion-specific interactions with key arginyl and lysyl residues on its peptide arms. Peptibody A, an E. coli expressed, basic (pI = 8.8), homodimer (65.2 kDa), consisted of an IgG1-Fc with two, C-terminal peptide arms linked via penta-glycine linkers. Each peptide arm was composed of two, tandem, active sequences (SEYQGLPPQGWK) separated by a spacer (GSGSATGGSGGGASSGSGSATG). PbA was monomeric in 10 mM acetate, pH 5.0 but exhibited reversible self-association upon salt addition. The sedimentation coefficient (sw) and hydrodynamic diameter (DH) versus PbA concentration isotherms in the presence of 140 mM NaCl (A5N) displayed sharp increases in sw and DH, reaching plateau values of 9 s and 16 nm by 10 mg/mL PbA. The DH and sedimentation equilibrium data in the plateau region (>12 mg/mL) indicated the oligomeric ensemble to be monodisperse (PdI = 0.05) with a z-average molecular weight (Mz) of 433 kDa (stoichiometry = 7). There was no evidence of reversible self-association for an IgG1-Fc molecule in A5N by itself or in a mixture containing fluorescently labeled IgG1-Fc and PbA, indicative of PbA self-assembly being mediated through its peptide arms. Self-association increased with pH, NaCl concentration, and anion size (I− > Br− > Cl− > F−) but could be inhibited using soluble Trp-, Phe-, and Leu-amide salts (Trp > Phe > Leu). We propose that in the presence of salt (i) anion binding renders PbA self-association competent by neutralizing the peptidyl arginyl and lysyl amines, (ii) self-association occurs via aromatic and hydrophobic interactions between the..xx..xxx..xx.. motifs, and (iii) at >10 mg/mL, PbA predominantly exists as heptameric clusters. PMID:19177361

  3. Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module.

    PubMed

    Zeytuni, Natalie; Zarivach, Raz

    2012-03-01

    Tetra-trico-peptide repeat (TPR) domains are found in numerous proteins, where they serve as interaction modules and multiprotein complex mediators. TPRs can be found in all kingdoms of life and regulate diverse biological processes, such as organelle targeting and protein import, vesicle fusion, and biomineralization. This review considers the structural features of TPR domains that permit the great ligand-binding diversity of this motif, given that TPR-interacting partners display variations in both sequence and secondary structure. In addition, tools for predicting TPR-interacting partners are discussed, as are the abilities of TPR domains to serve as protein-protein interaction scaffolds in biotechnology and therapeutics. PMID:22404999

  4. NFκB is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation

    PubMed Central

    Nivon, Mathieu; Fort, Loïc; Muller, Pascale; Richet, Emma; Simon, Stéphanie; Guey, Baptiste; Fournier, Maëlenn; Arrigo, André-Patrick; Hetz, Claudio; Atkin, Julie D.; Kretz-Remy, Carole

    2016-01-01

    During cell life, proteins often misfold, depending on particular mutations or environmental changes, which may lead to protein aggregates that are toxic for the cell. Such protein aggregates are the root cause of numerous diseases called “protein conformational diseases,” such as myofibrillar myopathy and familial amyotrophic lateral sclerosis. To fight against aggregates, cells are equipped with protein quality control mechanisms. Here we report that NFκB transcription factor is activated by misincorporation of amino acid analogues into proteins, inhibition of proteasomal activity, expression of the R120G mutated form of HspB5 (associated with myofibrillar myopathy), or expression of the G985R and G93A mutated forms of superoxide dismutase 1 (linked to familial amyotrophic lateral sclerosis). This noncanonical stimulation of NFκB triggers the up-regulation of BAG3 and HspB8 expression, two activators of selective autophagy, which relocalize to protein aggregates. Then NFκB-dependent autophagy allows the clearance of protein aggregates. Thus NFκB appears as a central and major regulator of protein aggregate clearance by modulating autophagic activity. In this context, the pharmacological stimulation of this quality control pathway might represent a valuable strategy for therapies against protein conformational diseases. PMID:27075172

  5. NFκB is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation.

    PubMed

    Nivon, Mathieu; Fort, Loïc; Muller, Pascale; Richet, Emma; Simon, Stéphanie; Guey, Baptiste; Fournier, Maëlenn; Arrigo, André-Patrick; Hetz, Claudio; Atkin, Julie D; Kretz-Remy, Carole

    2016-06-01

    During cell life, proteins often misfold, depending on particular mutations or environmental changes, which may lead to protein aggregates that are toxic for the cell. Such protein aggregates are the root cause of numerous diseases called "protein conformational diseases," such as myofibrillar myopathy and familial amyotrophic lateral sclerosis. To fight against aggregates, cells are equipped with protein quality control mechanisms. Here we report that NFκB transcription factor is activated by misincorporation of amino acid analogues into proteins, inhibition of proteasomal activity, expression of the R120G mutated form of HspB5 (associated with myofibrillar myopathy), or expression of the G985R and G93A mutated forms of superoxide dismutase 1 (linked to familial amyotrophic lateral sclerosis). This noncanonical stimulation of NFκB triggers the up-regulation of BAG3 and HspB8 expression, two activators of selective autophagy, which relocalize to protein aggregates. Then NFκB-dependent autophagy allows the clearance of protein aggregates. Thus NFκB appears as a central and major regulator of protein aggregate clearance by modulating autophagic activity. In this context, the pharmacological stimulation of this quality control pathway might represent a valuable strategy for therapies against protein conformational diseases. PMID:27075172

  6. Modulation of Membrane Protein Lateral Mobility by Polyphosphates and Polyamines

    NASA Astrophysics Data System (ADS)

    Schindler, Melvin; Koppel, Dennis E.; Sheetz, Michael P.

    1980-03-01

    The lateral mobility of fluorescein-labeled membrane glycoproteins was measured in whole unlysed erythrocytes and erythrocyte ghosts by the technique of ``fluorescence redistribution after fusion.'' Measurements were made on polyethylene glycol-fused cell pairs in which only one member of the couplet was initially fluorescently labeled. Diffusion coefficients were estimated from the rate of fluorescence redistribution determined from successive scans with a focused laser beam across individual fused pairs. This technique allows for the analysis of diffusion within cell membranes without the possible damaging photochemical events caused by photobleaching. It was found that lateral mobility of erythrocyte proteins can be increased by the addition of polyphosphates (i.e., ATP and 2,3-diphosphoglycerate) and decreased by the addition of organic polyamines (i.e., neomycin and spermine). This control is exerted by these molecules only when they contact the cytoplasmic side of the membrane and is not dependent upon high-energy phosphates. Microviscosity experiments employing diphenylhexatriene demonstrated no changes in membrane lipid state as a function of these reagents. Our results, in conjunction with data on the physical interactions of cytoskeletal proteins, suggest that the diffusion effector molecules alter the lateral mobility of erythrocyte membrane proteins through modifications of interactions in the shell, which is composed of spectrin, actin, and component 4.1.

  7. A DEK Domain-Containing Protein Modulates Chromatin Structure and Function in Arabidopsis[W][OPEN

    PubMed Central

    Waidmann, Sascha; Kusenda, Branislav; Mayerhofer, Juliane; Mechtler, Karl; Jonak, Claudia

    2014-01-01

    Chromatin is a major determinant in the regulation of virtually all DNA-dependent processes. Chromatin architectural proteins interact with nucleosomes to modulate chromatin accessibility and higher-order chromatin structure. The evolutionarily conserved DEK domain-containing protein is implicated in important chromatin-related processes in animals, but little is known about its DNA targets and protein interaction partners. In plants, the role of DEK has remained elusive. In this work, we identified DEK3 as a chromatin-associated protein in Arabidopsis thaliana. DEK3 specifically binds histones H3 and H4. Purification of other proteins associated with nuclear DEK3 also established DNA topoisomerase 1α and proteins of the cohesion complex as in vivo interaction partners. Genome-wide mapping of DEK3 binding sites by chromatin immunoprecipitation followed by deep sequencing revealed enrichment of DEK3 at protein-coding genes throughout the genome. Using DEK3 knockout and overexpressor lines, we show that DEK3 affects nucleosome occupancy and chromatin accessibility and modulates the expression of DEK3 target genes. Furthermore, functional levels of DEK3 are crucial for stress tolerance. Overall, data indicate that DEK3 contributes to modulation of Arabidopsis chromatin structure and function. PMID:25387881

  8. Novel Functions of the Human Papillomavirus E6 Oncoproteins.

    PubMed

    Wallace, Nicholas A; Galloway, Denise A

    2015-11-01

    Human papillomaviruses (HPVs) infect the epidermis as well as mucous membranes of humans. They are the causative agents of anogenital tract and some oropharyngeal cancers. Infections begin in the basal epithelia, where the viral genome replicates slowly along with its host cell. As infected cells begin to differentiate and progress toward the periphery, the virus drives proliferation in cells that would otherwise be quiescent. To uncouple differentiation from continued cellular propagation, HPVs express two oncoproteins, HPV E6 and E7. This review focuses on high-risk α-HPV E6, which in addition to supporting viral replication has transforming properties. HPV E6 promotes p53 degradation and activates telomerase, but the multifaceted oncoprotein has numerous other functions that are highlighted here. PMID:26958922

  9. Positive Lysosomal Modulation As a Unique Strategy to Treat Age-Related Protein Accumulation Diseases

    PubMed Central

    Wisniewski, Meagan L.; Butler, David

    2012-01-01

    Abstract Lysosomes are involved in degrading and recycling cellular ingredients, and their disruption with age may contribute to amyloidogenesis, paired helical filaments (PHFs), and α-synuclein and mutant huntingtin aggregation. Lysosomal cathepsins are upregulated by accumulating proteins and more so by the modulator Z-Phe-Ala-diazomethylketone (PADK). Such positive modulators of the lysosomal system have been studied in the well-characterized hippocampal slice model of protein accumulation that exhibits the pathogenic cascade of tau aggregation, tubulin breakdown, microtubule destabilization, transport failure, and synaptic decline. Active cathepsins were upregulated by PADK; Rab proteins were modified as well, indicating enhanced trafficking, whereas lysosome-associated membrane protein and proteasome markers were unchanged. Lysosomal modulation reduced the pre-existing PHF deposits, restored tubulin structure and transport, and recovered synaptic components. Further proof-of-principle studies used Alzheimer disease mouse models. It was recently reported that systemic PADK administration caused dramatic increases in cathepsin B protein and activity levels, whereas neprilysin, insulin-degrading enzyme, α-secretase, and β-secretase were unaffected by PADK. In the transgenic models, PADK treatment resulted in clearance of intracellular amyloid beta (Aβ) peptide and concomitant reduction of extracellular deposits. Production of the less pathogenic Aβ1–38 peptide corresponded with decreased levels of Aβ1–42, supporting the lysosome's antiamyloidogenic role through intracellular truncation. Amelioration of synaptic and behavioral deficits also indicates a neuroprotective function of the lysosomal system, identifying lysosomal modulation as an avenue for disease-modifying therapies. From the in vitro and in vivo findings, unique lysosomal modulators represent a minimally invasive, pharmacologically controlled strategy against protein accumulation disorders

  10. Modulating protein activity using tethered ligands with mutually exclusive binding sites

    PubMed Central

    Schena, Alberto; Griss, Rudolf; Johnsson, Kai

    2015-01-01

    The possibility to design proteins whose activities can be switched on and off by unrelated effector molecules would enable applications in various research areas, ranging from biosensing to synthetic biology. We describe here a general method to modulate the activity of a protein in response to the concentration of a specific effector. The approach is based on synthetic ligands that possess two mutually exclusive binding sites, one for the protein of interest and one for the effector. Tethering such a ligand to the protein of interest results in an intramolecular ligand–protein interaction that can be disrupted through the presence of the effector. Specifically, we introduce a luciferase controlled by another protein, a human carbonic anhydrase whose activity can be controlled by proteins or small molecules in vitro and on living cells, and novel fluorescent and bioluminescent biosensors. PMID:26198003

  11. The Human Papillomavirus Type 16 E6 Oncoprotein Can Down-Regulate p53 Activity by Targeting the Transcriptional Coactivator CBP/p300

    PubMed Central

    Zimmermann, Holger; Degenkolbe, Roland; Bernard, Hans-Ulrich; O’Connor, Mark J.

    1999-01-01

    The transforming proteins of the small DNA tumor viruses, simian virus 40 (SV40), adenovirus, and human papillomavirus (HPV) target a number of identical cellular regulators whose functional abrogation is required for transformation. However, while both adenovirus E1A and SV40 large T transforming properties also depend on the targeting of the transcriptional coactivator CBP/p300, no such interaction has been described for the HPV oncoprotein E6 or E7. Here, we demonstrate that the HPV-16 E6 protein, previously shown to facilitate the degradation of p53 in a complex with E6-associated protein (E6AP), also targets CBP/p300 in an interaction involving the C-terminal zinc finger of E6 and CBP residues 1808 to 1826. Furthermore, this interaction is limited to E6 proteins of high-risk HPVs associated with cervical cancer that have the capacity to repress p53-dependent transcription. An HPV-16 E6 mutant (L50G) that binds CBP/p300, but not E6AP, is still capable of down-regulating p53 transcriptional activity. Thus, HPV E6 proteins possess two distinct mechanisms by which to abrogate p53 function: the repression of p53 transcriptional activity by targeting the p53 coactivator CBP/p300, and the removal of cellular p53 protein through the proteosome degradation pathway. PMID:10400710

  12. A broken E6 solution to the solar neutrino problem

    NASA Astrophysics Data System (ADS)

    Ross, G. G.; Segrè, G. C.

    1987-10-01

    Broken E6 models, as suggested by superstrings, may have stable massive neutrinos in matter multiplets. These can be candidates for the dark matter of the universe. If we choose an additional Z' in the E6 gauge multiplet to couple to these neutrinos, but not ordinary leptons, we may also solve the solar neutrino problem, without violating known experimental bounds. The Z' must have a mass comparable to the ordinary Z mass. On sabbatical leave from Department of Physics, University of Pennsylvania, Philadelphia, PA 19104, USA.

  13. Interactions between two fission yeast serine/arginine-rich proteins and their modulation by phosphorylation.

    PubMed Central

    Tang, Zhaohua; Käufer, Norbert F; Lin, Ren-Jang

    2002-01-01

    The unexpected low number of genes in the human genome has triggered increasing attention to alternative pre-mRNA splicing, and serine/arginine-rich (SR) proteins have been correlated with the complex alternative splicing that is a characteristic of metazoans. SR proteins interact with RNA and splicing protein factors, and they also undergo reversible phosphorylation, thereby regulating constitutive and alternative splicing in mammals and Drosophila. However, it is not clear whether the features of SR proteins and alternative splicing are present in simple and genetically tractable organisms, such as yeasts. In the present study, we show that the SR-like proteins Srp1 and Srp2, found in the fission yeast Schizosaccharomyces pombe, interact with each other and the interaction is modulated by protein phosphorylation. By using Srp1 as bait in a yeast two-hybrid analysis, we specifically isolated Srp2 from a random screen. This Srp interaction was confirmed by a glutathione-S-transferase pull-down assay. We also found that the Srp1-Srp2 complex was phosphorylated at a reduced efficiency by a fission yeast SR-specific kinase, Dis1-suppression kinase (Dsk1). Conversely, Dsk1-mediated phosphorylation inhibited the formation of the Srp complex. These findings offer the first example in fission yeast for interactions between SR-related proteins and the modulation of the interactions by specific protein phosphorylation, suggesting that a mammalian-like SR protein function may exist in fission yeast. PMID:12186627

  14. Modulation of the protein kinase activity of mTOR.

    PubMed

    Lawrence, J C; Lin, T A; McMahon, L P; Choi, K M

    2004-01-01

    mTOR is a founding member of a family of protein kinases having catalytic domains homologous to those in phosphatidylinositol 3-OH kinase. mTOR participates in the control by insulin of the phosphorylation of lipin, which is required for adipocyte differentiation, and the two translational regulators, p70S6K and PHAS-I. The phosphorylation of mTOR, itself, is stimulated by insulin in Ser2448, a site that is also phosphorylated by protein kinase B (PKB) in vitro and in response to activation of PKB activity in vivo. Ser2448 is located in a short stretch of amino acids not found in the two TOR proteins in yeast. A mutant mTOR lacking this stretch exhibited increased activity, and binding of the antibody, mTAb-1, to this region markedly increased mTOR activity. In contrast, rapamycin-FKBP12 inhibited mTOR activity towards both PHAS-I and p70S6K, although this complex inhibited the phosphorylation of some sites more than that of others. Mutating Ser2035 to Ile in the FKBP12-rapamycin binding domain rendered mTOR resistant to inhibition by rapamycin. Unexpectedly, this mutation markedly decreased the ability of mTOR to phosphorylate certain sites in both PHAS-I and p70S6K. The results support the hypotheses that rapamycin disrupts substrate recognition instead of directly inhibiting phosphotransferase activity and that mTOR activity in cells is controlled by the phosphorylation of an inhibitory regulatory domain containing the mTAb-1 epitope. PMID:14560959

  15. Cooperative DNA Recognition Modulated by an Interplay between Protein-Protein Interactions and DNA-Mediated Allostery

    PubMed Central

    Merino, Felipe; Bouvier, Benjamin; Cojocaru, Vlad

    2015-01-01

    Highly specific transcriptional regulation depends on the cooperative association of transcription factors into enhanceosomes. Usually, their DNA-binding cooperativity originates from either direct interactions or DNA-mediated allostery. Here, we performed unbiased molecular simulations followed by simulations of protein-DNA unbinding and free energy profiling to study the cooperative DNA recognition by OCT4 and SOX2, key components of enhanceosomes in pluripotent cells. We found that SOX2 influences the orientation and dynamics of the DNA-bound configuration of OCT4. In addition SOX2 modifies the unbinding free energy profiles of both DNA-binding domains of OCT4, the POU specific and POU homeodomain, despite interacting directly only with the first. Thus, we demonstrate that the OCT4-SOX2 cooperativity is modulated by an interplay between protein-protein interactions and DNA-mediated allostery. Further, we estimated the change in OCT4-DNA binding free energy due to the cooperativity with SOX2, observed a good agreement with experimental measurements, and found that SOX2 affects the relative DNA-binding strength of the two OCT4 domains. Based on these findings, we propose that available interaction partners in different biological contexts modulate the DNA exploration routes of multi-domain transcription factors such as OCT4. We consider the OCT4-SOX2 cooperativity as a paradigm of how specificity of transcriptional regulation is achieved through concerted modulation of protein-DNA recognition by different types of interactions. PMID:26067358

  16. Cellular factors modulating the mechanism of tau protein aggregation.

    PubMed

    Fontaine, Sarah N; Sabbagh, Jonathan J; Baker, Jeremy; Martinez-Licha, Carlos R; Darling, April; Dickey, Chad A

    2015-05-01

    Pathological accumulation of the microtubule-associated protein tau, in the form of neurofibrillary tangles, is a major hallmark of Alzheimer's disease, the most prevalent neurodegenerative condition worldwide. In addition to Alzheimer's disease, a number of neurodegenerative diseases, called tauopathies, are characterized by the accumulation of aggregated tau in a variety of brain regions. While tau normally plays an important role in stabilizing the microtubule network of the cytoskeleton, its dissociation from microtubules and eventual aggregation into pathological deposits is an area of intense focus for therapeutic development. Here we discuss the known cellular factors that affect tau aggregation, from post-translational modifications to molecular chaperones. PMID:25666877

  17. Cellular factors modulating the mechanism of tau protein aggregation

    PubMed Central

    Fontaine, Sarah N.; Sabbagh, Jonathan J.; Baker, Jeremy; Martinez-Licha, Carlos R.; Darling, April

    2015-01-01

    Pathological accumulation of the microtubule-associated protein tau, in the form of neurofibrillary tangles, is a major hallmark of Alzheimer’s disease, the most prevalent neurodegenerative condition worldwide. In addition to Alzheimer’s disease, a number of neurodegenerative diseases, called tauopathies, are characterized by the accumulation of aggregated tau in a variety of brain regions. While tau normally plays an important role in stabilizing the microtubule network of the cytoskeleton, its dissociation from microtubules and eventual aggregation into pathological deposits is an area of intense focus for therapeutic development. Here we discuss the known cellular factors that affect tau aggregation, from post-translational modifications to molecular chaperones. PMID:25666877

  18. Transitive closure and metric inequality of weighted graphs:detecting protein interaction modules using cliques

    SciTech Connect

    Ding, Chris; He, Xiaofeng; Xiong, Hui; Peng, Hanchuan; Holbrook,Stephen R.

    2006-06-02

    We study transitivity properties of edge weights in complex networks. We show that enforcing transitivity leads to a transitivity inequality which is equivalent to ultra-metric inequality. This can be used to define transitive closure on weighted undirected graphs, which can be computed using a modified Floyd-Warshall algorithm. We outline several applications and present results of detecting protein functional modules in a protein interaction network.

  19. Phosphoinositides Regulate Ciliary Protein Trafficking to Modulate Hedgehog Signaling

    PubMed Central

    Roberson, Elle C.; Garcia, Galo; Abedin, Monika; Schurmans, Stéphane; Inoue, Takanari; Reiter, Jeremy F.

    2015-01-01

    SUMMARY Primary cilia interpret vertebrate Hedgehog (Hh) signals. Why cilia are essential for signaling is unclear. One possibility is that some forms of signaling require a distinct membrane lipid composition, found at cilia. We found that the ciliary membrane contains a particular phosphoinositide, PI(4)P, whereas a different phosphoinositide, PI(4,5)P2, is restricted to the membrane of the ciliary base. This distribution is created by Inpp5e, a ciliary phosphoinositide 5-phosphatase. Without Inpp5e, ciliary PI(4,5)P2 levels are elevated and Hh signaling is disrupted. Inpp5e limits the ciliary levels of inhibitors of Hh signaling, including Gpr161 and the PI(4,5)P2-binding protein Tulp3. Increasing ciliary PI(4,5)P2 levels or conferring the ability to bind PI(4)P on Tulp3 increases the ciliary localization of Tulp3. Lowering Tulp3 in cells lacking Inpp5e reduces ciliary Gpr161 levels and restores Hh signaling. Therefore, Inpp5e regulates ciliary membrane phosphoinositide composition, and Tulp3 reads out ciliary phosphoinositides to control ciliary protein localization, enabling Hh signaling. PMID:26305592

  20. Bio::Homology::InterologWalk - A Perl module to build putative protein-protein interaction networks through interolog mapping

    PubMed Central

    2011-01-01

    Background Protein-protein interaction (PPI) data are widely used to generate network models that aim to describe the relationships between proteins in biological systems. The fidelity and completeness of such networks is primarily limited by the paucity of protein interaction information and by the restriction of most of these data to just a few widely studied experimental organisms. In order to extend the utility of existing PPIs, computational methods can be used that exploit functional conservation between orthologous proteins across taxa to predict putative PPIs or 'interologs'. To date most interolog prediction efforts have been restricted to specific biological domains with fixed underlying data sources and there are no software tools available that provide a generalised framework for 'on-the-fly' interolog prediction. Results We introduce Bio::Homology::InterologWalk, a Perl module to retrieve, prioritise and visualise putative protein-protein interactions through an orthology-walk method. The module uses orthology and experimental interaction data to generate putative PPIs and optionally collates meta-data into an Interaction Prioritisation Index that can be used to help prioritise interologs for further analysis. We show the application of our interolog prediction method to the genomic interactome of the fruit fly, Drosophila melanogaster. We analyse the resulting interaction networks and show that the method proposes new interactome members and interactions that are candidates for future experimental investigation. Conclusions Our interolog prediction tool employs the Ensembl Perl API and PSICQUIC enabled protein interaction data sources to generate up to date interologs 'on-the-fly'. This represents a significant advance on previous methods for interolog prediction as it allows the use of the latest orthology and protein interaction data for all of the genomes in Ensembl. The module outputs simple text files, making it easy to customise the results by

  1. TNF Superfamily Protein–Protein Interactions: Feasibility of Small-Molecule Modulation

    PubMed Central

    Song, Yun; Buchwald, Peter

    2015-01-01

    The tumor necrosis factor (TNF) superfamily (TNFSF) contains about thirty structurally related receptors (TNFSFRs) and about twenty protein ligands that bind to one or more of these receptors. Almost all of these cell surface protein-protein interactions (PPIs) represent high-value therapeutic targets for inflammatory or immune modulation in autoimmune diseases, transplant recipients, or cancers, and there are several biologics including antibodies and fusion proteins targeting them that are in various phases of clinical development. Small-molecule inhibitors or activators could represent possible alternatives if the difficulties related to the targeting of protein-protein interactions by small molecules can be addressed. Compounds proving the feasibility of such approaches have been identified through different drug discovery approaches for a number of these TNFSFR-TNFSF type PPIs including CD40-CD40L, BAFFR-BAFF, TRAIL-DR5, and OX40-OX40L. Corresponding structural, signaling, and medicinal chemistry aspects are briefly reviewed here. While none of these small-molecule modulators identified so far seems promising enough to be pursued for clinical development, they provide proof-of-principle evidence that these interactions are susceptible to small-molecule modulation and can serve as starting points toward the identification of more potent and selective candidates. PMID:25706111

  2. 42 CFR 52e.6 - How will NIH evaluate applications?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the applicable cost principles prescribed in subpart Q of 45 CFR part 74. ... HEART, LUNG, AND BLOOD INSTITUTE GRANTS FOR PREVENTION AND CONTROL PROJECTS § 52e.6 How will NIH... the prevention, diagnosis, or treatment of heart, blood vessel, lung, or blood diseases of...

  3. 42 CFR 52e.6 - How will NIH evaluate applications?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the applicable cost principles prescribed in subpart Q of 45 CFR part 74. ... HEART, LUNG, AND BLOOD INSTITUTE GRANTS FOR PREVENTION AND CONTROL PROJECTS § 52e.6 How will NIH... the prevention, diagnosis, or treatment of heart, blood vessel, lung, or blood diseases of...

  4. 42 CFR 52e.6 - How will NIH evaluate applications?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the applicable cost principles prescribed in subpart Q of 45 CFR part 74. ... HEART, LUNG, AND BLOOD INSTITUTE GRANTS FOR PREVENTION AND CONTROL PROJECTS § 52e.6 How will NIH... the prevention, diagnosis, or treatment of heart, blood vessel, lung, or blood diseases of...

  5. 42 CFR 52e.6 - How will NIH evaluate applications?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the applicable cost principles prescribed in subpart Q of 45 CFR part 74. ... HEART, LUNG, AND BLOOD INSTITUTE GRANTS FOR PREVENTION AND CONTROL PROJECTS § 52e.6 How will NIH... the prevention, diagnosis, or treatment of heart, blood vessel, lung, or blood diseases of...

  6. 42 CFR 52e.6 - How will NIH evaluate applications?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the applicable cost principles prescribed in subpart Q of 45 CFR part 74. ... HEART, LUNG, AND BLOOD INSTITUTE GRANTS FOR PREVENTION AND CONTROL PROJECTS § 52e.6 How will NIH... the prevention, diagnosis, or treatment of heart, blood vessel, lung, or blood diseases of...

  7. Modulation of membrane fusion by calcium-binding proteins.

    PubMed Central

    Hong, K; Düzgüneş, N; Papahadjopoulos, D

    1982-01-01

    The effects of several Ca2+-binding proteins (calmodulin, prothrombin, and synexin) on the kinetics of Ca2+-induced membrane fusion were examined. Membrane fusion was assayed by following the mixing of aqueous contents of phospholipid vesicles. Calmodulin inhibited slightly the fusion of phospholipid vesicles. Bovine prothrombin and its proteolytic fragment 1 had a strong inhibitory effect on fusion. Depending on the phospholipid composition, synexin could either facilitate or inhibit Ca2+-induced fusion of vesicles. The effects of synexin were Ca2+ specific. 10 microM Ca2+ was sufficient to induce fusion of vesicles composed of phosphatidic acid/phosphatidylethanolamine (1:3) in the presence of synexin and 1 mM Mg2+. We propose that synexin may be involved in intracellular membrane fusion events mediated by Ca2+, such as exocytosis, and discuss possible mechanisms facilitating fusion. PMID:6459804

  8. Copper–zinc cross-modulation in prion protein binding

    PubMed Central

    Stellato, Francesco; Minicozzi, Velia; Millhauser, Glenn L.; Pascucci, Marco; Proux, Olivier; Rossi, Giancarlo C.; Spevacek, Ann

    2016-01-01

    In this paper we report a systematic XAS study of a set of samples in which Cu(II) was progressively added to complexes in which Zn(II) was bound to the tetra-octarepeat portion of the prion protein. This work extends previous EPR and XAS analysis in which, in contrast, the effect of adding Zn(II) to Cu(II)–tetra-octarepeat complexes was investigated. Detailed structural analysis of the XAS spectra taken at both the Cu and Zn K-edge when the two metals are present at different relative concentrations revealed that Zn(II) and Cu(II) ions compete for binding to the tetra-octarepeat peptide by cross-regulating their relative binding modes. We show that the specific metal–peptide coordination mode depends not only, as expected, on the relative metal concentrations, but also on whether Zn(II) or Cu(II) was first bound to the peptide. In particular, it seems that the Zn(II) binding mode in the absence of Cu(II) is able to promote the formation of small peptide clusters in which triplets of tetra-octarepeats are bridged by pairs of Zn ions. When Cu(II) is added, it starts competing with Zn(II) for binding, disrupting the existing peptide cluster arrangement, despite the fact that Cu(II) is unable to completely displace Zn(II). These results may have a bearing on our understanding of peptide-aggregation processes and, with the delicate cross-regulation balancing we have revealed, seem to suggest the existence of an interesting, finely tuned interplay among metal ions affecting protein binding, capable of providing a mechanism for regulation of metal concentration in cells. PMID:25395329

  9. Directed evolution of a synthetic RNA-protein module to create a new translational switch.

    PubMed

    Hara, Tomoaki; Saito, Hirohide; Inoue, Tan

    2013-05-10

    A synthetic RNP-binding module was developed to produce an alternative translational switch: an in vitro selection experiment targeting a derivative of L7Ae protein (L7KK) identified a new H23 RNA aptamer that binds tightly to both L7KK and L7Ae. The switch serves as a translational OFF switch for constructing a NOR gate. PMID:23381780

  10. MODULATION OF EASTERN OYSTER HEMOCYTE ACTIVITIES BY PERKINSUS MARINUS EXTRACELLULAR PROTEINS

    EPA Science Inventory

    The oyster pathogen Perkinsus marinusproduces many extracellular proteins (ECP) in vitro. Analysis of this ECP revealed a battery of hydrolytic enzymes. Some of these enzymes are known to modulate the activity of host defense cells. Although information on the effects of P. marin...

  11. Modulation of apoptosis and immune signaling pathways by the Hantaan virus nucleocapsid protein

    SciTech Connect

    Ontiveros, Steven J.; Li Qianjun; Jonsson, Colleen B.

    2010-06-05

    Herein, we show a direct relationship between the Hantaan virus (HTNV) nucleocapsid (N) protein and the modulation of apoptosis. We observed an increase in caspase-7 and -8, but not -9 in cells expressing HTNV N protein mutants lacking amino acids 270-330. Similar results were observed for the New World hantavirus, Andes virus. Nuclear factor kappa B (NF-kappaB) was sequestered in the cytoplasm after tumor necrosis factor receptor (TNFR) stimulation in cells expressing HTNV N protein. Further, TNFR stimulated cells expressing HTNV N protein inhibited caspase activation. In contrast, cells expressing N protein truncations lacking the region from amino acids 270-330 were unable to inhibit nuclear import of NF-kappaB and the mutants also triggered caspase activity. These results suggest that the HTNV circumvents host antiviral signaling and apoptotic response mediated by the TNFR pathway through host interactions with the N protein.

  12. Design, Immune Responses and Anti-Tumor Potential of an HPV16 E6E7 Multi-Epitope Vaccine

    PubMed Central

    Chaves, Agatha A. Muniz; Cavalher, Aline Marques; Lopes, Aline Soriano; Diniz, Mariana de Oliveira; Schanoski, Alessandra Soares; de Melo, Robson Lopes; Ferreira, Luís Carlos de Souza; de Oliveira, Maria Leonor S.; Demasi, Marilene; Ho, Paulo Lee

    2015-01-01

    Cervical cancer is a common type of cancer among women worldwide and infection with high-risk human papillomavirus (HPVs) types represents the major risk factor for the etiopathogenesis of the disease. HPV-16 is the most frequently identified HPV type in cervical lesions and expression of E6 and E7 oncoproteins is required for the uncontrolled cellular proliferation. In the present study we report the design and experimental testing of a recombinant multi-epitope protein containing immunogenic epitopes of HPV-16 E6 and E7. Tumor preventive assays, based on the engraftment of TC-1 cells in mice, showed that the E6E7 multi-epitope protein induced a full preventive anti-tumor protection in wild-type mice, as well as in mice deficient in expression of CD4+ T cells and TLR4 receptor. Nonetheless, no anti-tumor protection was observed in mice deficient in CD8+ T cells. Also, the vaccine promoted high activation of E6/E7-specific T cells and in a therapeutic-approach, E6E7 protein conferred full anti-tumor protection in mice. These results show a potential use of this E6E7 multi-epitope antigen as a new and promising antigen for the development of a therapeutic vaccine against tumors induced by HPV. PMID:26390407

  13. Analysis of all-optical light modulation in proteorhodopsin protein molecules

    NASA Astrophysics Data System (ADS)

    Roy, Sukhdev; Sharma, Parag

    2008-03-01

    We present a detailed steady-state and time-dependent theoretical analysis of all-optical light modulation in the recently discovered, wild-type proteorhodopsin (WTpR) protein molecules based on excited-state absorption. Amplitude modulation of cw probe laser beam transmissions at 520, 405, 555 and 560 nm, corresponding to the peak absorption of pR, pRM, pRK and pRN intermediate states of pR photocycle, respectively, by cw and pulsed modulating pump laser beam at 520 nm have been analyzed. The effect of various spectral and kinetic parameters on modulation characteristics has been studied. There is an optimum value of concentration for a given pump intensity value for which maximum modulation of the probe beam can be achieved. The switching characteristics of probe beam at 405 and 520 nm exhibit dip and peak, respectively, which can be removed by decreasing the absorption of pRM state at 520 nm. The modulation in WTpR is at lower pump powers with smaller contrast in comparison to WT bacteriorhodopsin (bR) and WT pharaonis phoborhodopsin (ppR). The modulation characteristics exhibit unique features compared to bR and ppR.

  14. Tumor prevention in HPV8 transgenic mice by HPV8-E6 DNA vaccination.

    PubMed

    Marcuzzi, Gian Paolo; Awerkiew, Sabine; Hufbauer, Martin; Schädlich, Lysann; Gissmann, Lutz; Eming, Sabine; Pfister, Herbert

    2014-06-01

    The genus beta human papillomavirus 8 (HPV8) is involved in the development of cutaneous squamous cell carcinomas (SCCs) in individuals with epidermodysplasia verruciformis. Immunosuppressed transplant recipients are prone to harbor particularly high betapapillomavirus DNA loads, which may contribute to their highly increased risk of SCC. Tumor induction in HPV8 transgenic mice correlates with increased expression of viral oncogenes E6 and E2. In an attempt to prevent skin tumor development, we evaluated an HPV8-E6-DNA vaccine, which was able to stimulate a detectable HPV8-E6-specific cell-mediated immune response in 8/15 immunized mice. When skin of HPV8 transgenic mice was grafted onto non-transgenic littermates, the grafted HPV8 transgenic tissue was not rejected and papillomas started to grow within 14 days all over the transplant of 9/9 non-vaccinated and 7/15 not successfully vaccinated mice. In contrast, no papillomas developed in 6/8 successfully vaccinated mice. In the other two of these eight mice, a large ulcerative lesion developed within the initial papilloma growth or papilloma development was highly delayed. As the vaccine completely or partially prevented papilloma development without rejecting the transplanted HPV8 positive skin, the immune system appears to attack only keratinocytes with increased levels of E6 protein, which would give rise to papillomas. PMID:24446083

  15. Positive modulation of RNA polymerase III transcription by ribosomal proteins

    SciTech Connect

    Dieci, Giorgio; Carpentieri, Andrea; Amoresano, Angela; Ottonello, Simone

    2009-02-06

    A yeast nuclear fraction of unknown composition, named TFIIIE, was reported previously to enhance transcription of tRNA and 5S rRNA genes in vitro. We show that TFIIIE activity co-purifies with a specific subset of ribosomal proteins (RPs) which, as revealed by chromatin immunoprecipitation analysis, generally interact with tRNA and 5S rRNA genes, but not with a Pol II-specific promoter. Only Rpl6Ap and Rpl6Bp, among the tested RPs, were found associated to a TATA-containing tRNA{sup Ile}(TAT) gene. The RPL6A gene also emerged as a strong multicopy suppressor of a conditional mutation in the basal transcription factor TFIIIC, while RPL26A and RPL14A behaved as weak suppressors. The data delineate a novel extra-ribosomal role for one or a few RPs which, by influencing 5S rRNA and tRNA synthesis, could play a key role in the coordinate regulation of the different sub-pathways required for ribosome biogenesis and functionality.

  16. Regulating the ethylene response of a plant by modulation of F-box proteins

    DOEpatents

    Guo, Hongwei; Ecker, Joseph R.

    2011-03-08

    The invention relates to transgenic plants having reduced sensitivity to ethylene as a result of having a recombinant nucleic acid encoding an F-box protein that interacts with a EIN3 involved in an ethylene response of plants, and a method of producing a transgenic plant with reduced ethylene sensitivity by transforming the plant with a nucleic acid sequence encoding an F-box protein. The inventions also relates to methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein.

  17. Tough coating proteins: subtle sequence variation modulates cohesion.

    PubMed

    Das, Saurabh; Miller, Dusty R; Kaufman, Yair; Martinez Rodriguez, Nadine R; Pallaoro, Alessia; Harrington, Matthew J; Gylys, Maryte; Israelachvili, Jacob N; Waite, J Herbert

    2015-03-01

    Mussel foot protein-1 (mfp-1) is an essential constituent of the protective cuticle covering all exposed portions of the byssus (plaque and the thread) that marine mussels use to attach to intertidal rocks. The reversible complexation of Fe(3+) by the 3,4-dihydroxyphenylalanine (Dopa) side chains in mfp-1 in Mytilus californianus cuticle is responsible for its high extensibility (120%) as well as its stiffness (2 GPa) due to the formation of sacrificial bonds that help to dissipate energy and avoid accumulation of stresses in the material. We have investigated the interactions between Fe(3+) and mfp-1 from two mussel species, M. californianus (Mc) and M. edulis (Me), using both surface sensitive and solution phase techniques. Our results show that although mfp-1 homologues from both species bind Fe(3+), mfp-1 (Mc) contains Dopa with two distinct Fe(3+)-binding tendencies and prefers to form intramolecular complexes with Fe(3+). In contrast, mfp-1 (Me) is better adapted to intermolecular Fe(3+) binding by Dopa. Addition of Fe(3+) did not significantly increase the cohesion energy between the mfp-1 (Mc) films at pH 5.5. However, iron appears to stabilize the cohesive bridging of mfp-1 (Mc) films at the physiologically relevant pH of 7.5, where most other mfps lose their ability to adhere reversibly. Understanding the molecular mechanisms underpinning the capacity of M. californianus cuticle to withstand twice the strain of M. edulis cuticle is important for engineering of tunable strain tolerant composite coatings for biomedical applications. PMID:25692318

  18. Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data

    PubMed Central

    2012-01-01

    Background Identification of protein complexes and functional modules from protein-protein interaction (PPI) networks is crucial to understanding the principles of cellular organization and predicting protein functions. In the past few years, many computational methods have been proposed. However, most of them considered the PPI networks as static graphs and overlooked the dynamics inherent within these networks. Moreover, few of them can distinguish between protein complexes and functional modules. Results In this paper, a new framework is proposed to distinguish between protein complexes and functional modules by integrating gene expression data into protein-protein interaction (PPI) data. A series of time-sequenced subnetworks (TSNs) is constructed according to the time that the interactions were activated. The algorithm TSN-PCD was then developed to identify protein complexes from these TSNs. As protein complexes are significantly related to functional modules, a new algorithm DFM-CIN is proposed to discover functional modules based on the identified complexes. The experimental results show that the combination of temporal gene expression data with PPI data contributes to identifying protein complexes more precisely. A quantitative comparison based on f-measure reveals that our algorithm TSN-PCD outperforms the other previous protein complex discovery algorithms. Furthermore, we evaluate the identified functional modules by using “Biological Process” annotated in GO (Gene Ontology). The validation shows that the identified functional modules are statistically significant in terms of “Biological Process”. More importantly, the relationship between protein complexes and functional modules are studied. Conclusions The proposed framework based on the integration of PPI data and gene expression data makes it possible to identify protein complexes and functional modules more effectively. Moveover, the proposed new framework and algorithms can distinguish

  19. Community Structure Detection for Overlapping Modules through Mathematical Programming in Protein Interaction Networks

    PubMed Central

    Bennett, Laura; Kittas, Aristotelis; Liu, Songsong; Papageorgiou, Lazaros G.; Tsoka, Sophia

    2014-01-01

    Community structure detection has proven to be important in revealing the underlying properties of complex networks. The standard problem, where a partition of disjoint communities is sought, has been continually adapted to offer more realistic models of interactions in these systems. Here, a two-step procedure is outlined for exploring the concept of overlapping communities. First, a hard partition is detected by employing existing methodologies. We then propose a novel mixed integer non linear programming (MINLP) model, known as OverMod, which transforms disjoint communities to overlapping. The procedure is evaluated through its application to protein-protein interaction (PPI) networks of the rat, E. coli, yeast and human organisms. Connector nodes of hard partitions exhibit topological and functional properties indicative of their suitability as candidates for multiple module membership. OverMod identifies two types of connector nodes, inter and intra-connector, each with their own particular characteristics pertaining to their topological and functional role in the organisation of the network. Inter-connector proteins are shown to be highly conserved proteins participating in pathways that control essential cellular processes, such as proliferation, differentiation and apoptosis and their differences with intra-connectors is highlighted. Many of these proteins are shown to possess multiple roles of distinct nature through their participation in different network modules, setting them apart from proteins that are simply ‘hubs’, i.e. proteins with many interaction partners but with a more specific biochemical role. PMID:25412367

  20. Community structure detection for overlapping modules through mathematical programming in protein interaction networks.

    PubMed

    Bennett, Laura; Kittas, Aristotelis; Liu, Songsong; Papageorgiou, Lazaros G; Tsoka, Sophia

    2014-01-01

    Community structure detection has proven to be important in revealing the underlying properties of complex networks. The standard problem, where a partition of disjoint communities is sought, has been continually adapted to offer more realistic models of interactions in these systems. Here, a two-step procedure is outlined for exploring the concept of overlapping communities. First, a hard partition is detected by employing existing methodologies. We then propose a novel mixed integer non linear programming (MINLP) model, known as OverMod, which transforms disjoint communities to overlapping. The procedure is evaluated through its application to protein-protein interaction (PPI) networks of the rat, E. coli, yeast and human organisms. Connector nodes of hard partitions exhibit topological and functional properties indicative of their suitability as candidates for multiple module membership. OverMod identifies two types of connector nodes, inter and intra-connector, each with their own particular characteristics pertaining to their topological and functional role in the organisation of the network. Inter-connector proteins are shown to be highly conserved proteins participating in pathways that control essential cellular processes, such as proliferation, differentiation and apoptosis and their differences with intra-connectors is highlighted. Many of these proteins are shown to possess multiple roles of distinct nature through their participation in different network modules, setting them apart from proteins that are simply 'hubs', i.e. proteins with many interaction partners but with a more specific biochemical role. PMID:25412367

  1. Analysis of Multiple HPV E6 PDZ Interactions Defines Type-Specific PDZ Fingerprints That Predict Oncogenic Potential

    PubMed Central

    Thomas, Miranda; Myers, Michael P.; Guarnaccia, Corrado; Banks, Lawrence

    2016-01-01

    The high-risk Human Papillomavirus (HPV) E6 oncoproteins are characterised by the presence of a class I PDZ-binding motif (PBM) on their extreme carboxy termini. The PBM is present on the E6 proteins derived from all cancer-causing HPV types, but can also be found on some related non-cancer-causing E6 proteins. We have therefore been interested in investigating the potential functional differences between these different E6 PBMs. Using an unbiased proteomic approach in keratinocytes, we have directly compared the interaction profiles of these different PBMs. This has allowed us to identify the potential PDZ target fingerprints of the E6 PBMs from 7 different cancer-causing HPV types, from 3 HPV types with weak cancer association, and from one benign HPV type that possesses an ancestral PBM. We demonstrate a striking increase in the number of potential PDZ targets bound by each E6 PBM as cancer-causing potential increases, and show that the HPV-16 and HPV-18 PBMs have the most flexibility in their PDZ target selection. Furthermore, the specific interaction with hScrib correlates directly with increased oncogenic potential. In contrast, hDlg is bound equally well by all the HPV E6 PBMs analysed, indicating that this is an evolutionarily conserved interaction, and was most likely one of the original E6 PBM target proteins that was important for the occupation of a potential new niche. Finally, we present evidence that the cell junction components ZO-2 and β-2 syntrophin are novel PDZ domain–containing targets of a subset of high-risk HPV types. PMID:27483446

  2. Protein profiles associated with context fear conditioning and their modulation by memantine.

    PubMed

    Ahmed, Md Mahiuddin; Dhanasekaran, A Ranjitha; Block, Aaron; Tong, Suhong; Costa, Alberto C S; Gardiner, Katheleen J

    2014-04-01

    Analysis of the molecular basis of learning and memory has revealed details of the roles played by many genes and the proteins they encode. Because most individual studies focus on a small number of proteins, many complexities of the relationships among proteins and their dynamic responses to stimulation are not known. We have used the technique of reverse phase protein arrays (RPPA) to assess the levels of more than 80 proteins/protein modifications in subcellular fractions from hippocampus and cortex of mice trained in Context Fear Conditioning (CFC). Proteins include components of signaling pathways, several encoded by immediate early genes or involved in apoptosis and inflammation, and subunits of glutamate receptors. At one hour after training, levels of more than half the proteins had changed in one or more fractions, among them multiple components of the Mitogen-activated protein kinase, MAPK, and Mechanistic Target of Rapamycin, MTOR, pathways, subunits of glutamate receptors, and the NOTCH pathway modulator, NUMB homolog (Drosophila). Levels of 37 proteins changed in the nuclear fraction of hippocampus alone. Abnormalities in levels of thirteen proteins analyzed have been reported in brains of patients with Alzheimer's Disease. We therefore further investigated the protein profiles of mice treated with memantine, a drug approved for treatment of AD. In hippocampus, memantine alone induced many changes similar to those seen after CFC and altered the levels of seven proteins associated with Alzheimer's Disease abnormalities. Lastly, to further explore the relevance of these datasets, we superimposed responses to CFC and memantine onto components of the long term potentiation pathway, a process subserving learning and memory formation. Fourteen components of the long term potentiation pathway and 26 proteins interacting with components responded to CFC and/or memantine. Together, these datasets provide a novel view of the diversity and complexity in protein

  3. Protein Profiles Associated With Context Fear Conditioning and Their Modulation by Memantine*

    PubMed Central

    Ahmed, Md. Mahiuddin; Dhanasekaran, A. Ranjitha; Block, Aaron; Tong, Suhong; Costa, Alberto C. S.; Gardiner, Katheleen J.

    2014-01-01

    Analysis of the molecular basis of learning and memory has revealed details of the roles played by many genes and the proteins they encode. Because most individual studies focus on a small number of proteins, many complexities of the relationships among proteins and their dynamic responses to stimulation are not known. We have used the technique of reverse phase protein arrays (RPPA) to assess the levels of more than 80 proteins/protein modifications in subcellular fractions from hippocampus and cortex of mice trained in Context Fear Conditioning (CFC). Proteins include components of signaling pathways, several encoded by immediate early genes or involved in apoptosis and inflammation, and subunits of glutamate receptors. At one hour after training, levels of more than half the proteins had changed in one or more fractions, among them multiple components of the Mitogen-activated protein kinase, MAPK, and Mechanistic Target of Rapamycin, MTOR, pathways, subunits of glutamate receptors, and the NOTCH pathway modulator, NUMB homolog (Drosophila). Levels of 37 proteins changed in the nuclear fraction of hippocampus alone. Abnormalities in levels of thirteen proteins analyzed have been reported in brains of patients with Alzheimer's Disease. We therefore further investigated the protein profiles of mice treated with memantine, a drug approved for treatment of AD. In hippocampus, memantine alone induced many changes similar to those seen after CFC and altered the levels of seven proteins associated with Alzheimer's Disease abnormalities. Lastly, to further explore the relevance of these datasets, we superimposed responses to CFC and memantine onto components of the long term potentiation pathway, a process subserving learning and memory formation. Fourteen components of the long term potentiation pathway and 26 proteins interacting with components responded to CFC and/or memantine. Together, these datasets provide a novel view of the diversity and complexity in protein

  4. Functional Module Search in Protein Networks based on Semantic Similarity Improves the Analysis of Proteomics Data*

    PubMed Central

    Boyanova, Desislava; Nilla, Santosh; Klau, Gunnar W.; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus

    2014-01-01

    The continuously evolving field of proteomics produces increasing amounts of data while improving the quality of protein identifications. Albeit quantitative measurements are becoming more popular, many proteomic studies are still based on non-quantitative methods for protein identification. These studies result in potentially large sets of identified proteins, where the biological interpretation of proteins can be challenging. Systems biology develops innovative network-based methods, which allow an integrated analysis of these data. Here we present a novel approach, which combines prior knowledge of protein-protein interactions (PPI) with proteomics data using functional similarity measurements of interacting proteins. This integrated network analysis exactly identifies network modules with a maximal consistent functional similarity reflecting biological processes of the investigated cells. We validated our approach on small (H9N2 virus-infected gastric cells) and large (blood constituents) proteomic data sets. Using this novel algorithm, we identified characteristic functional modules in virus-infected cells, comprising key signaling proteins (e.g. the stress-related kinase RAF1) and demonstrate that this method allows a module-based functional characterization of cell types. Analysis of a large proteome data set of blood constituents resulted in clear separation of blood cells according to their developmental origin. A detailed investigation of the T-cell proteome further illustrates how the algorithm partitions large networks into functional subnetworks each representing specific cellular functions. These results demonstrate that the integrated network approach not only allows a detailed analysis of proteome networks but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper insights into the underlying cellular processes of the investigated system. PMID:24807868

  5. Proteomic discovery of MNT as a novel interacting partner of E3 ubiquitin ligase E6AP and a key mediator of myeloid differentiation

    PubMed Central

    Kapoor, Isha; Kanaujiya, Jitendra; Kumar, Yogesh; Thota, Jagadeshwar Reddy; Bhatt, Madan L.B.; Chattopadhyay, Naibedya; Sanyal, Sabyasachi; Trivedi, Arun Kumar

    2016-01-01

    Perturbed stability of regulatory proteins is a major cause of transformations leading to cancer, including several leukemia subtypes. Here, for the first time we demonstrate that E6-associated protein (E6AP), an E3 ubiquitin ligase negatively targets MAX binding protein MNT for ubiquitin-mediated proteasome degradation and impedes ATRA mediated myeloid cell differentiation. MNT is a member of the Myc/Max/Mad network of transcription factor that regulates cell proliferation, differentiation, cellular transformation and tumorigenesis. Wild-type E6AP promoted proteasome dependent degradation of MNT, while catalytically inactive E6AP having cysteine replaced with alanine at amino-acid 843 position (E6APC843A) rather stabilized it. Further, these proteins physically associated with each other both in non-myeloid (HEK293T) and myeloid cells. MNT overexpression induced G0-G1 growth arrest and promoted myeloid differentiation while its knockdown mitigated even ATRA induced differentiation suggesting MNT to be crucial for myeloid differentiation. We further showed that ATRA inhibited E6AP and stabilized MNT expression by protecting it from E6AP mediated ubiquitin-proteasome degradation. Notably, E6AP knockdown in HL60 cells restored MNT expression and promoted myeloid differentiation. Taken together, our data demonstrated that E6AP negatively regulates granulocytic differentiation by targeting MNT for degradation which is required for growth arrest and subsequent myeloid differentiation by various differentiation inducing agents. PMID:26506232

  6. In Vitro Calcite Crystal Morphology Is Modulated by Otoconial Proteins Otolin-1 and Otoconin-90

    PubMed Central

    Moreland, K. Trent; Hong, Mina; Lu, Wenfu; Rowley, Christopher W.; Ornitz, David M.; De Yoreo, James J.; Thalmann, Ruediger

    2014-01-01

    Otoconia are formed embryonically and are instrumental in detecting linear acceleration and gravity. Degeneration and fragmentation of otoconia in elderly patients leads to imbalance resulting in higher frequency of falls that are positively correlated with the incidence of bone fractures and death. In this work we investigate the roles otoconial proteins Otolin-1 and Otoconin 90 (OC90) perform in the formation of otoconia. We demonstrate by rotary shadowing and atomic force microscopy (AFM) experiments that Otolin-1 forms homomeric protein complexes and self-assembled networks supporting the hypothesis that Otolin-1 serves as a scaffold protein of otoconia. Our calcium carbonate crystal growth data demonstrate that Otolin-1 and OC90 modulate in vitro calcite crystal morphology but neither protein is sufficient to produce the shape of otoconia. Coadministration of these proteins produces synergistic effects on crystal morphology that contribute to morphology resembling otoconia. PMID:24748133

  7. New integrative modules for multicolor-protein labeling and live-cell imaging in Saccharomyces cerevisiae.

    PubMed

    Malcova, Ivana; Farkasovsky, Marian; Senohrabkova, Lenka; Vasicova, Pavla; Hasek, Jiri

    2016-05-01

    Live-imaging analysis is performed in many laboratories all over the world. Various tools have been developed to enable protein labeling either in plasmid or genomic context in live yeast cells. Here, we introduce a set of nine integrative modules for the C-terminal gene tagging that combines three fluorescent proteins (FPs)-ymTagBFP, mCherry and yTagRFP-T with three dominant selection markers: geneticin, nourseothricin and hygromycin. In addition, the construction of two episomal modules for Saccharomyces cerevisiae with photostable yTagRFP-T is also referred to. Our cassettes with orange, red and blue FPs can be combined with other fluorescent probes like green fluorescent protein to prepare double- or triple-labeled strains for multicolor live-cell imaging. Primers for PCR amplification of the cassettes were designed in such a way as to be fully compatible with the existing PCR toolbox representing over 50 various integrative modules and also with deletion cassettes either for single or repeated usage to enable a cost-effective and an easy exchange of tags. New modules can also be used for biochemical analysis since antibodies are available for all three fluorescent probes. PMID:26994102

  8. A hybrid graph-theoretic method for mining overlapping functional modules in large sparse protein interaction networks.

    PubMed

    Zhang, Shihua; Liu, Hong-Wei; Ning, Xue-Mei; Zhang, Xiang-Sun

    2009-01-01

    Modular architecture, which encompasses groups of genes/proteins involved in elementary biological functional units, is a basic form of the organisation of interacting proteins. Here, we propose a method that combines the Line Graph Transformation (LGT) and clique percolation-clustering algorithm to detect network modules, which may overlap each other in large sparse PPI networks. The resulting modules by the present method show a high coverage among yeast, fly, and worm PPI networks, respectively. Our analysis of the yeast PPI network suggests that most of these modules have well-biological significance in context of protein localisation, function annotation, and protein complexes. PMID:19432377

  9. Selective Modulation of Protein Kinase C α over Protein Kinase C ε by Curcumin and Its Derivatives in CHO-K1 Cells.

    PubMed

    Pany, Satyabrata; Majhi, Anjoy; Das, Joydip

    2016-04-12

    Members of the protein kinase C (PKC) family of serine/threonine kinases regulate various cellular functions, including cell growth, differentiation, metabolism, and apoptosis. Modulation of isoform-selective activity of PKC by curcumin (1), the active constituent of Curcuma L., is poorly understood, and the literature data are inconsistent and obscure. The effect of curcumin (1) and its analogues, 4-[(2Z,6E)-3-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-2,6-dien-1-yl]-2-methoxyphenyl oleate (2), (9Z,12Z)-4-[(2Z,6E)-3-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-2,6-dien-1-yl]-2-methoxyphenyl octadeca-9,12-dienoate (3), (9Z,12Z,15Z)-4-[(2Z,6E)-3-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-2,6-dien-1-yl]-2-methoxyphenyl octadeca-9,12,15-trienoate (4), and (1E,6E)-1-[4-(hexadecyloxy)-3-methoxyphenyl]-7-(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione (5), and didemethylcurcumin (6) on the membrane translocation of PKCα, a conventional PKC, and PKCε, a novel PKC, has been studied in CHO-K1 cells, in which these PKC isoforms are endogenously expressed. Translocation of PKC from the cytosol to the membrane was measured using immunoblotting and confocal microscopy. 1 and 6 inhibited the TPA-induced membrane translocation of PKCα but not of PKCε. Modification of the hydroxyl group of curcumin with a long aliphatic chain containing unsaturated double bonds in 2-4 completely abolished this inhibition property. Instead, 2-4 showed significant translocation of PKCα but not of PKCε to the membrane. No membrane translocation was observed with 1, 6, or the analogue 5 having a saturated long chain for either PKCα or PKCε. 1 and 6 inhibited TPA-induced activation of ERK1/2, and 2-4 activated it. ERK1/2 is the downstream readout of PKC. These results show that the hydroxyl group of curcumin is important for PKC activity and the curcumin template can be useful in developing isoform specific PKC modulators for regulating a particular disease state. PMID

  10. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    PubMed

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins. PMID:27080133

  11. An Artificial Reaction Promoter Modulates Mitochondrial Functions via Chemically Promoting Protein Acetylation

    PubMed Central

    Shindo, Yutaka; Komatsu, Hirokazu; Hotta, Kohji; Ariga, Katsuhiko; Oka, Kotaro

    2016-01-01

    Acetylation, which modulates protein function, is an important process in intracellular signalling. In mitochondria, protein acetylation regulates a number of enzymatic activities and, therefore, modulates mitochondrial functions. Our previous report showed that tributylphosphine (PBu3), an artificial reaction promoter that promotes acetylransfer reactions in vitro, also promotes the reaction between acetyl-CoA and an exogenously introduced fluorescent probe in mitochondria. In this study, we demonstrate that PBu3 induces the acetylation of mitochondrial proteins and a decrease in acetyl-CoA concentration in PBu3-treated HeLa cells. This indicates that PBu3 can promote the acetyltransfer reaction between acetyl-CoA and mitochondrial proteins in living cells. PBu3-induced acetylation gradually reduced mitochondrial ATP concentrations in HeLa cells without changing the cytoplasmic ATP concentration, suggesting that PBu3 mainly affects mitochondrial functions. In addition, pyruvate, which is converted into acetyl-CoA in mitochondria and transiently increases ATP concentrations in the absence of PBu3, elicited a further decrease in mitochondrial ATP concentrations in the presence of PBu3. Moreover, the application and removal of PBu3 reversibly alternated mitochondrial fragmentation and elongation. These results indicate that PBu3 enhances acetyltransfer reactions in mitochondria and modulates mitochondrial functions in living cells. PMID:27374857

  12. An Artificial Reaction Promoter Modulates Mitochondrial Functions via Chemically Promoting Protein Acetylation.

    PubMed

    Shindo, Yutaka; Komatsu, Hirokazu; Hotta, Kohji; Ariga, Katsuhiko; Oka, Kotaro

    2016-01-01

    Acetylation, which modulates protein function, is an important process in intracellular signalling. In mitochondria, protein acetylation regulates a number of enzymatic activities and, therefore, modulates mitochondrial functions. Our previous report showed that tributylphosphine (PBu3), an artificial reaction promoter that promotes acetylransfer reactions in vitro, also promotes the reaction between acetyl-CoA and an exogenously introduced fluorescent probe in mitochondria. In this study, we demonstrate that PBu3 induces the acetylation of mitochondrial proteins and a decrease in acetyl-CoA concentration in PBu3-treated HeLa cells. This indicates that PBu3 can promote the acetyltransfer reaction between acetyl-CoA and mitochondrial proteins in living cells. PBu3-induced acetylation gradually reduced mitochondrial ATP concentrations in HeLa cells without changing the cytoplasmic ATP concentration, suggesting that PBu3 mainly affects mitochondrial functions. In addition, pyruvate, which is converted into acetyl-CoA in mitochondria and transiently increases ATP concentrations in the absence of PBu3, elicited a further decrease in mitochondrial ATP concentrations in the presence of PBu3. Moreover, the application and removal of PBu3 reversibly alternated mitochondrial fragmentation and elongation. These results indicate that PBu3 enhances acetyltransfer reactions in mitochondria and modulates mitochondrial functions in living cells. PMID:27374857

  13. Biophysical Insights into How Surfaces, Including Lipid Membranes, Modulate Protein Aggregation Related to Neurodegeneration

    PubMed Central

    Burke, Kathleen A.; Yates, Elizabeth A.; Legleiter, Justin

    2013-01-01

    There are a vast number of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD), associated with the rearrangement of specific proteins to non-native conformations that promotes aggregation and deposition within tissues and/or cellular compartments. These diseases are commonly classified as protein-misfolding or amyloid diseases. The interaction of these proteins with liquid/surface interfaces is a fundamental phenomenon with potential implications for protein-misfolding diseases. Kinetic and thermodynamic studies indicate that significant conformational changes can be induced in proteins encountering surfaces, which can play a critical role in nucleating aggregate formation or stabilizing specific aggregation states. Surfaces of particular interest in neurodegenerative diseases are cellular and subcellular membranes that are predominately comprised of lipid components. The two-dimensional liquid environments provided by lipid bilayers can profoundly alter protein structure and dynamics by both specific and non-specific interactions. Importantly for misfolding diseases, these bilayer properties can not only modulate protein conformation, but also exert influence on aggregation state. A detailed understanding of the influence of (sub)cellular surfaces in driving protein aggregation and/or stabilizing specific aggregate forms could provide new insights into toxic mechanisms associated with these diseases. Here, we review the influence of surfaces in driving and stabilizing protein aggregation with a specific emphasis on lipid membranes. PMID:23459674

  14. Modulating protein behaviors on responsive surface by external electric fields: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Xie, Yun; Pan, Yufang; Zhang, Rong; Liang, Ying; Li, Zhanchao

    2015-01-01

    Molecular dynamics simulations were employed to investigate the modulation of protein behaviors on the electrically responsive zwitterionic phosphorylcholine self-assembled monolayers (PC-SAMs). Results show that PC-SAMs could sensitively respond to the applied electric fields and exhibit three states with different charge distributions, namely both the negatively charged phosphate groups and the positively charged choline groups are exposed to the solution in the absence of electric fields (state 1), phosphate groups exposed in the presence of positive electric fields (state 2), and choline groups exposed in the presence of negative electric fields (state 3). Under state 1, the adsorption of Cyt c on the PC-SAM is reversible and the orientations of Cyt c are randomly distributed. Under state 2, the adsorption of Cyt c is enhanced due to the electrostatic attractions between the exposed phosphate groups and the positively charged protein; when adsorbed on the PC-SAMs, Cyt c tends to adopt the orientation with the heme plane perpendicular to the surface plane, and the percentage of this orientation increases as the field strength rises up. Under state 3, the adsorption of Cyt c is retarded because of the electrostatic repulsions between the exposed choline groups and the protein; however, if the gaps between PC chains are large enough, Cyt c could insert into the PC-SAM and access the phosphate groups after overcoming a slight energy barrier. Under three states, the basic backbone structures of Cyt c are well kept within the simulation time since the conformation of Cyt c is mainly affected by the surface-generated electric fields, whose strengths are modulated by the external electric fields and are not strong enough to deform protein. The results indicate the possibility of regulating protein behaviors, including promoting or retarding protein adsorption and regulating protein orientations, on responsive surfaces by applying electric fields on the surfaces without

  15. Surface density of the Hendra G protein modulates Hendra F protein-promoted membrane fusion: Role for Hendra G protein trafficking and degradation

    SciTech Connect

    Whitman, Shannon D.; Dutch, Rebecca Ellis . E-mail: rdutc2@uky.edu

    2007-07-05

    Hendra virus, like most paramyxoviruses, requires both a fusion (F) and attachment (G) protein for promotion of cell-cell fusion. Recent studies determined that Hendra F is proteolytically processed by the cellular protease cathepsin L after endocytosis. This unique cathepsin L processing results in a small percentage of Hendra F on the cell surface. To determine how the surface densities of the two Hendra glycoproteins affect fusion promotion, we performed experiments that varied the levels of glycoproteins expressed in transfected cells. Using two different fusion assays, we found a marked increase in fusion when expression of the Hendra G protein was increased, with a 1:1 molar ratio of Hendra F:G on the cell surface resulting in optimal membrane fusion. Our results also showed that Hendra G protein levels are modulated by both more rapid protein turnover and slower protein trafficking than is seen for Hendra F.

  16. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial

    PubMed Central

    Trimble, Cornelia L; Morrow, Matthew P; Kraynyak, Kimberly A; Shen, Xuefei; Dallas, Michael; Yan, Jian; Edwards, Lance; Parker, R Lamar; Denny, Lynette; Giffear, Mary; Brown, Ami Shah; Marcozzi-Pierce, Kathleen; Shah, Divya; Slager, Anna M; Sylvester, Albert J; Khan, Amir; Broderick, Kate E; Juba, Robert J; Herring, Timothy A; Boyer, Jean; Lee, Jessica; Sardesai, Niranjan Y; Weiner, David B; Bagarazzi, Mark L

    2016-01-01

    Summary Background Despite preventive vaccines for oncogenic human papillomaviruses (HPVs), cervical intraepithelial neoplasia (CIN) is common, and current treatments are ablative and can lead to long-term reproductive morbidity. We assessed whether VGX-3100, synthetic plasmids targeting HPV-16 and HPV-18 E6 and E7 proteins, delivered by electroporation, would cause histopathological regression in women with CIN2/3. Methods Efficacy, safety, and immunogenicity of VGX-3100 were assessed in CIN2/3 associated with HPV-16 and HPV-18, in a randomised, double-blind, placebo-controlled phase 2b study. Patients from 36 academic and private gynaecology practices in seven countries were randomised (3:1) to receive 6 mg VGX-3100 or placebo (1 mL), given intramuscularly at 0, 4, and 12 weeks. Randomisation was stratified by age (<25 vs ≥25 years) and CIN2 versus CIN3 by computer-generated allocation sequence (block size 4). Funder and site personnel, participants, and pathologists were masked to treatment. The primary efficacy endpoint was regression to CIN1 or normal pathology 36 weeks after the first dose. Per-protocol and modified intention-to-treat analyses were based on patients receiving three doses without protocol violations, and on patients receiving at least one dose, respectively. The safety population included all patients who received at least one dose. The trial is registered at ClinicalTrials.gov (number NCT01304524) and EudraCT (number 2012-001334-33). Findings Between Oct 19, 2011, and July 30, 2013, 167 patients received either VGX-3100 (n=125) or placebo (n=42). In the per-protocol analysis 53 (49.5%) of 107 VGX-3100 recipients and 11 (30.6%) of 36 placebo recipients had histopathological regression (percentage point difference 19.0 [95% CI 1.4–36.6]; p=0.034). In the modified intention-to-treat analysis 55 (48.2%) of 114 VGX-3100 recipients and 12 (30.0%) of 40 placebo recipients had histopathological regression (percentage point difference 18.2 [95% CI

  17. O-linked GlcNAcylation elevated by HPV E6 mediates viral oncogenesis.

    PubMed

    Zeng, Qinghua; Zhao, Rui-Xun; Chen, Jianfeng; Li, Yining; Li, Xiang-Dong; Liu, Xiao-Long; Zhang, Wei-Ming; Quan, Cheng-Shi; Wang, Yi-Shu; Zhai, Ying-Xian; Wang, Jian-Wei; Youssef, Mariam; Cui, Rutao; Liang, Jiyong; Genovese, Nicholas; Chow, Louise T; Li, Yu-Lin; Xu, Zhi-Xiang

    2016-08-16

    High-risk human papillomaviruses (HPVs) are causative agents of anogenital cancers and a fraction of head and neck cancers. The mechanisms involved in the progression of HPV neoplasias to cancers remain largely unknown. Here, we report that O-linked GlcNAcylation (O-GlcNAc) and O-GlcNAc transferase (OGT) were markedly increased in HPV-caused cervical neoplasms relative to normal cervix, whereas O-GlcNAcase (OGA) levels were not altered. Transduction of HPV16 oncogene E6 or E6/E7 into mouse embryonic fibroblasts (MEFs) up-regulated OGT mRNA and protein, elevated the level of O-GlcNAc, and promoted cell proliferation while reducing cellular senescence. Conversely, in HPV-18-transformed HeLa cervical carcinoma cells, inhibition of O-GlcNAc with a low concentration of a chemical inhibitor impaired the transformed phenotypes in vitro. We showed that E6 elevated c-MYC via increased protein stability attributable to O-GlcNAcylation on Thr58. Reduction of HPV-mediated cell viability by a high concentration of O-GlcNAc inhibitor was partially rescued by elevated c-MYC. Finally, knockdown of OGT or O-GlcNAc inhibition in HeLa cells or in TC-1 cells, a mouse cell line transformed by HPV16 E6/E7 and activated K-RAS, reduced c-MYC and suppressed tumorigenesis and metastasis. Thus, we have uncovered a mechanism for HPV oncoprotein-mediated transformation. These findings may eventually aid in the development of effective therapeutics for HPV-associated malignancies by targeting aberrant O-GlcNAc. PMID:27482104

  18. Architectures of Whole-Module and Bimodular Proteins from the 6-Deoxyerythronolide B Synthase

    PubMed Central

    Edwards, Andrea L.; Matsui, Tsutomu; Weiss, Thomas M.; Khosla, Chaitan

    2014-01-01

    The 6-deoxyerythronolide B synthase (DEBS) is a prototypical assembly line polyketide synthase (PKS) produced by the actinomycete Saccharopolyspora erythraea that synthesizes the macrocyclic core of the antibiotic erythromycin, 6-deoxyerythronolide B (6-dEB). The megasynthase is a 2 MDa trimeric complex comprised of three unique homodimers assembled from the gene products DEBS1, DEBS2, and DEBS3, which are housed within the erythromycin biosynthetic gene cluster. Each homodimer contains two clusters of catalytically independent enzymatic domains, each referred to as a module, which catalyzes one round of polyketide chain extension and modification. Modules are named sequentially to indicate the order in which they are utilized during synthesis of 6-dEB. We report small angle X-ray scattering (SAXS) analyses of a whole module and bimodule from DEBS as well as a set of domains for which high-resolution structures are available. In all cases, the solution state was probed under previously established conditions that ensure each protein is catalytically active. SAXS data are consistent with atomic-resolution structures of DEBS fragments. Therefore, we used the available high-resolution structures of DEBS domains to model the architectures of the larger protein assemblies using rigid body refinement. Our data supports a model in which, the third module of DEBS forms a disc-shaped structure capable of caging the acyl carrier protein domain proximal to each active site. The molecular envelope of DEBS3 is a thin, elongated ellipsoid, and the results of rigid body modeling suggest that modules 5 and 6 stack colinearly along the 2-fold axis of symmetry. PMID:24704088

  19. G protein signaling modulator-3: a leukocyte regulator of inflammation in health and disease

    PubMed Central

    Billard, Matthew J; Gall, Bryan J; Richards, Kristy L; Siderovski, David P; Tarrant, Teresa K

    2014-01-01

    G protein signaling modulator-3 (GPSM3), also known as G18 or AGS4, is a member of a family of proteins containing one or more copies of a small regulatory motif known as the GoLoco (or GPR) motif. GPSM3 interacts directly with Gα and Gβ subunits of heterotrimeric G proteins to regulate downstream intracellular signals initiated by G protein coupled receptors (GPCRs) that are activated via binding to their cognate ligands. GPSM3 has a selective tissue distribution and is highly expressed in immune system cells; genome-wide association studies (GWAS) have recently revealed that single nucleotide polymorphisms (SNPs) in GPSM3 are associated with chronic inflammatory diseases. This review highlights the current knowledge of GPSM3 function in normal and pathologic immune-mediated conditions. PMID:25143870

  20. Mycoplasma pulmonis Vsa proteins and polysaccharide modulate adherence to pulmonary epithelial cells.

    PubMed

    Bolland, Jeffrey R; Dybvig, Kevin

    2012-06-01

    The Mycoplasma pulmonis Vsa proteins are a family of size- and phase-variable lipoproteins that shield the mycoplasmas from complement and modulate attachment to abiotic surfaces. Mycoplasmas producing a long Vsa protein hemadsorb poorly and yet are proficient at colonizing rats and mice. The effect of the length of the Vsa protein on the attachment of mycoplasmas to epithelial cells has not been previously explored. We find that independent of Vsa isotype, mycoplasmas producing a long Vsa protein with many tandem repeats adhere poorly to murine MLE-12 cells compared with mycoplasmas producing a short Vsa. We also find that mutants lacking the EPS-I polysaccharide of M. pulmonis exhibited decreased adherence to MLE-12 cells, even though it has been shown previously that such mutants have an enhanced ability to form a biofilm. PMID:22428866

  1. Modulation of skeletal muscle sodium channels by human myotonin protein kinase.

    PubMed Central

    Mounsey, J P; Xu, P; John, J E; Horne, L T; Gilbert, J; Roses, A D; Moorman, J R

    1995-01-01

    In myotonic muscular dystrophy, abnormal muscle Na currents underlie myotonic discharges. Since the myotonic muscular dystrophy gene encodes a product, human myotonin protein kinase, with structural similarity to protein kinases, we tested the idea that human myotonin protein kinase modulates skeletal muscle Na channels. Coexpression of human myotonin protein kinase with rat skeletal muscle Na channels in Xenopus oocytes reduced the amplitude of Na currents and accelerated current decay. The effect required the presence of a potential phosphorylation site in the inactivation mechanism of the channel. The mutation responsible for human disease, trinucleotide repeats in the 3' untranslated region, did not prevent the effect. The consequence of an abnormal amount of the kinase would be altered muscle cell excitability, consistent with the clinical finding of myotonia in myotonic dystrophy. Images PMID:7738201

  2. Conformational modulation mediated by polyglutamine expansion in CAG repeat expansion disease-associated proteins.

    PubMed

    Verani, Margherita; Bustamante, Maria; Martufi, Paola; Daldin, Manuel; Cariulo, Cristina; Azzollini, Lucia; Fodale, Valentina; Puglisi, Francesca; Weiss, Andreas; Macdonald, Douglas; Petricca, Lara; Caricasole, Andrea

    2016-09-16

    We have previously reported TR-FRET based immunoassays to detect a conformational change imparted on huntingtin protein by the polyglutamine expansion, which we confirmed using biophysical methodologies. Using these immunoassays, we now report that polyglutamine expansion influences the conformational properties of other polyglutamine disease proteins, exemplified by the androgen receptor (associated with spinal bulbar muscular atrophy) and TATA binding protein (associated with spinocerebellar ataxia 17). Using artificial constructs bearing short or long polyglutamine expansions or a multimerized, unrelated epitope (mimicking the increase in anti-polyglutamine antibody epitopes present in polyglutamine repeats of increasing length) we confirmed that the conformational TR-FRET based immunoassay detects an intrinsic conformational property of polyglutamine repeats. The TR-FRET based conformational immunoassay may represent a rapid, scalable tool to identify modulators of polyglutamine-mediated conformational change in different proteins associated with CAG triplet repeat disorders. PMID:27520369

  3. Modulator of Apoptosis 1 (MOAP-1) Is a Tumor Suppressor Protein Linked to the RASSF1A Protein*

    PubMed Central

    Law, Jennifer; Salla, Mohamed; Zare, Alaa; Wong, Yoke; Luong, Le; Volodko, Natalia; Svystun, Orysya; Flood, Kayla; Lim, Jonathan; Sung, Miranda; Dyck, Jason R. B.; Tan, Chong Teik; Su, Yu-Chin; Yu, Victor C.; Mackey, John; Baksh, Shairaz

    2015-01-01

    Modulator of apoptosis 1 (MOAP-1) is a BH3-like protein that plays key roles in cell death or apoptosis. It is an integral partner to the tumor suppressor protein, Ras association domain family 1A (RASSF1A), and functions to activate the Bcl-2 family pro-apoptotic protein Bax. Although RASSF1A is now considered a bona fide tumor suppressor protein, the role of MOAP-1 as a tumor suppressor protein has yet to be determined. In this study, we present several lines of evidence from cancer databases, immunoblotting of cancer cells, proliferation, and xenograft assays as well as DNA microarray analysis to demonstrate the role of MOAP-1 as a tumor suppressor protein. Frequent loss of MOAP-1 expression, in at least some cancers, appears to be attributed to mRNA down-regulation and the rapid proteasomal degradation of MOAP-1 that could be reversed utilizing the proteasome inhibitor MG132. Overexpression of MOAP-1 in several cancer cell lines resulted in reduced tumorigenesis and up-regulation of genes involved in cancer regulatory pathways that include apoptosis (p53, Fas, and MST1), DNA damage control (poly(ADP)-ribose polymerase and ataxia telangiectasia mutated), those within the cell metabolism (IR-α, IR-β, and AMP-activated protein kinase), and a stabilizing effect on microtubules. The loss of RASSF1A (an upstream regulator of MOAP-1) is one of the earliest detectable epigenetically silenced tumor suppressor proteins in cancer, and we speculate that the additional loss of function of MOAP-1 may be a second hit to functionally compromise the RASSF1A/MOAP-1 death receptor-dependent pathway and drive tumorigenesis. PMID:26269600

  4. Transitive closure and metric inequality of weighted graphs: detecting protein interaction modules using cliques.

    PubMed

    Ding, Chris; He, Xiaofeng; Xiong, Hui; Peng, Hanchuan; Holbrook, Stephen R

    2006-01-01

    We study transitivity properties of edge weights in complex networks. We show that enforcing transitivity leads to a transitivity inequality which is equivalent to ultra-metric inequality. This can be used to define transitive closure on weighted undirected graphs, which can be computed using a modified Floyd-Warshall algorithm. These new concepts are extended to dissimilarity graphs and triangle inequalities. From this, we extend the clique concept from unweighted graph to weighted graph. We outline several applications and present results of detecting protein functional modules in a protein interaction network. PMID:18399069

  5. Deciphering and modulating G protein signalling in C. elegans using the DREADD technology

    PubMed Central

    Prömel, Simone; Fiedler, Franziska; Binder, Claudia; Winkler, Jana; Schöneberg, Torsten; Thor, Doreen

    2016-01-01

    G-protein signalling is an evolutionary conserved concept highlighting its fundamental impact on developmental and functional processes. Studies on the effects of G protein signals on tissues as well as an entire organism are often conducted in Caenorhabditis elegans. To understand and control dynamics and kinetics of the processes involved, pharmacological modulation of specific G protein pathways would be advantageous, but is difficult due to a lack in accessibility and regulation. To provide this option, we designed G protein-coupled receptor-based designer receptors (DREADDs) for C. elegans. Initially described in mammalian systems, these modified muscarinic acetylcholine receptors are activated by the inert drug clozapine-N-oxide, but not by their endogenous agonists. We report a novel C. elegans-specific DREADD, functionally expressed and specifically activating Gq-protein signalling in vitro and in vivo which we used for modulating mating behaviour. Therefore, this novel designer receptor demonstrates the possibility to pharmacologically control physiological functions in C. elegans. PMID:27461895

  6. Encapsulated Cellular Implants for Recombinant Protein Delivery and Therapeutic Modulation of the Immune System

    PubMed Central

    Lathuilière, Aurélien; Mach, Nicolas; Schneider, Bernard L.

    2015-01-01

    Ex vivo gene therapy using retrievable encapsulated cellular implants is an effective strategy for the local and/or chronic delivery of therapeutic proteins. In particular, it is considered an innovative approach to modulate the activity of the immune system. Two recently proposed therapeutic schemes using genetically engineered encapsulated cells are discussed here: the chronic administration of monoclonal antibodies for passive immunization against neurodegenerative diseases and the local delivery of a cytokine as an adjuvant for anti-cancer vaccines. PMID:26006227

  7. Hepatitis C virus proteins modulate microRNA expression and chemosensitivity in malignant hepatocytes

    PubMed Central

    Braconi, Chiara; Valeri, Nicola; Gasparini, Pierluigi; Huang, Nianyuan; Taccioli, Cristian; Nuovo, Gerard; Suzuki, Tetsuro; Croce, Carlo Maria; Patel, Tushar

    2009-01-01

    Purpose Hepatocellular cancer (HCC) is highly resistant to chemotherapy and is associated with a poor prognosis. Chronic hepatitis C (HCV) infection is a major cause of HCC. However, the effect of viral proteins in mediating chemosensitivity in tumor cells is unknown. We postulated that HCV viral proteins could modulate therapeutic responses by altering host cell microRNA (miRNA) expression. Experimental design HepG2 malignant hepatocytes were stably transfected with full length HCV genome (Hep-394) or an empty vector (Hep-SWX). miRNA profiling was performed by using a custom microarray, and the expression of selected miRNAs was validated by real time PCR. Protein expression was assessed by western blotting, while caspase activation by a luminometric assay. Results The IC50 to sorafenib was lower in Hep-394 compared to Hep-SWX control cells. Alterations in miRNA expression occurred with 10 miRNAs > 2-fold down-regulated and 23 miRNAs > 2-fold up-regulated in Hep-394 cells compared to controls. Of these, miR-193b was over-expressed by 5-fold in Hep-394 cells. miR-193b was predicted to target Mcl-1, an anti-apoptotic protein that can modulate the response to sorafenib. The expression of Mcl-1 expression was decreased and basal caspase-3/7 activity and PARP cleavage were increased in Hep-394 cells compared to controls. Moreover, transfection with precursors to miR-193b decreased both Mcl-1 expression and the IC50 to sorafenib. Conclusions Cellular expression of full length HCV increases sensitivity to sorafenib by miRNA-dependent modulation of Mcl-1 and apoptosis. Modulation of miRNA responses may be a useful strategy to enhance response to chemotherapy in HCC. PMID:20103677

  8. Membrane Curvature Sensing by Amphipathic Helices Is Modulated by the Surrounding Protein Backbone

    PubMed Central

    Doucet, Christine M.; Esmery, Nina; de Saint-Jean, Maud; Antonny, Bruno

    2015-01-01

    Membrane curvature is involved in numerous biological pathways like vesicle trafficking, endocytosis or nuclear pore complex assembly. In addition to its topological role, membrane curvature is sensed by specific proteins, enabling the coordination of biological processes in space and time. Amongst membrane curvature sensors are the ALPS (Amphipathic Lipid Packing Sensors). ALPS motifs are short peptides with peculiar amphipathic properties. They are found in proteins targeted to distinct curved membranes, mostly in the early secretory pathway. For instance, the ALPS motif of the golgin GMAP210 binds trafficking vesicles, while the ALPS motif of Nup133 targets nuclear pores. It is not clear if, besides curvature sensitivity, ALPS motifs also provide target specificity, or if other domains in the surrounding protein backbone are involved. To elucidate this aspect, we studied the subcellular localization of ALPS motifs outside their natural protein context. The ALPS motifs of GMAP210 or Nup133 were grafted on artificial fluorescent probes. Importantly, ALPS motifs are held in different positions and these contrasting architectures were mimicked by the fluorescent probes. The resulting chimeras recapitulated the original proteins localization, indicating that ALPS motifs are sufficient to specifically localize proteins. Modulating the electrostatic or hydrophobic content of Nup133 ALPS motif modified its avidity for cellular membranes but did not change its organelle targeting properties. In contrast, the structure of the backbone surrounding the helix strongly influenced targeting. In particular, introducing an artificial coiled-coil between ALPS and the fluorescent protein increased membrane curvature sensitivity. This coiled-coil domain also provided membrane curvature sensitivity to the amphipathic helix of Sar1. The degree of curvature sensitivity within the coiled-coil context remains correlated to the natural curvature sensitivity of the helices. This suggests

  9. Targeting the Two Oncogenic Functional Sites of the HPV E6 Oncoprotein with a High-Affinity Bivalent Ligand**

    PubMed Central

    Ramirez, Juan; Poirson, Juline; Foltz, Clémence; Chebaro, Yassmine; Schrapp, Maxime; Meyer, Amandine; Bonetta, Anaëlle; Forster, Anne; Jacob, Yves; Masson, Murielle; Deryckère, François; Travé, Gilles

    2015-01-01

    The E6 oncoproteins of high-risk mucosal (hrm) human papillomaviruses (HPVs) contain a pocket that captures LxxLL motifs and a C-terminal motif that recruits PDZ domains, with both functions being crucial for HPV-induced oncogenesis. A chimeric protein was built by fusing a PDZ domain and an LxxLL motif, both known to bind E6. NMR spectroscopy, calorimetry and a mammalian protein complementation assay converged to show that the resulting PDZ-LxxLL chimera is a bivalent nanomolar ligand of E6, while its separated PDZ and LxxLL components are only micromolar binders. The chimera binds to all of the hrm-HPV E6 proteins tested but not to low-risk mucosal or cutaneous HPV E6. Adenovirus-mediated expression of the chimera specifically induces the death of HPV-positive cells, concomitant with increased levels of the tumour suppressor P53, its transcriptional target p21, and the apoptosis marker cleaved caspase 3. The bifunctional PDZ-LxxLL chimera opens new perspectives for the diagnosis and treatment of HPV-induced cancers. PMID:26014966

  10. Exopolysaccharide assay in Escherichia coli microcolonies using a cleavable fusion protein of GFP-labeled carbohydrate-binding module.

    PubMed

    Ojima, Yoshihiro; Suparman, Asep; Nguyen, Minh Hong; Sakka, Makiko; Sakka, Kazuo; Taya, Masahito

    2015-07-01

    A fused protein composed of a carbohydrate-binding module and green fluorescence protein (GFP) was developed to measure the exopolysaccharides (EPShs) present in Escherichia coli microcolonies. The cleavage of the GFP part of this protein using a site-specific protease allowed for the non-invasive and quantitative evaluation of the EPShs. PMID:25978970

  11. NTTMUNSW BioC modules for recognizing and normalizing species and gene/protein mentions

    PubMed Central

    Dai, Hong-Jie; Singh, Onkar; Jonnagaddala, Jitendra; Su, Emily Chia-Yu

    2016-01-01

    In recent years, the number of published biomedical articles has increased as researchers have focused on biological domains to investigate the functions of biological objects, such as genes and proteins. However, the ambiguous nature of genes and their products have rendered the literature more complex for readers and curators of molecular interaction databases. To address this challenge, a normalization technique that can link variants of biological objects to a single, standardized form was applied. In this work, we developed a species normalization module, which recognizes species names and normalizes them to NCBI Taxonomy IDs. Unlike most previous work, which ignored the prefix of a gene name that represents an abbreviation of the species name to which the gene belongs, the recognition results of our module include the prefixed species. The developed species normalization module achieved an overall F-score of 0.954 on an instance-level species normalization corpus. For gene normalization, two separate modules were respectively employed to recognize gene mentions and normalize those mentions to their Entrez Gene IDs by utilizing a multistage normalization algorithm developed for processing full-text articles. All of the developed modules are BioC-compatible .NET framework libraries and are publicly available from the NuGet gallery. Database URL: https://sites.google.com/site/hjdairesearch/Projects/isn-corpus PMID:27465130

  12. NTTMUNSW BioC modules for recognizing and normalizing species and gene/protein mentions.

    PubMed

    Dai, Hong-Jie; Singh, Onkar; Jonnagaddala, Jitendra; Su, Emily Chia-Yu

    2016-01-01

    In recent years, the number of published biomedical articles has increased as researchers have focused on biological domains to investigate the functions of biological objects, such as genes and proteins. However, the ambiguous nature of genes and their products have rendered the literature more complex for readers and curators of molecular interaction databases. To address this challenge, a normalization technique that can link variants of biological objects to a single, standardized form was applied. In this work, we developed a species normalization module, which recognizes species names and normalizes them to NCBI Taxonomy IDs. Unlike most previous work, which ignored the prefix of a gene name that represents an abbreviation of the species name to which the gene belongs, the recognition results of our module include the prefixed species. The developed species normalization module achieved an overall F-score of 0.954 on an instance-level species normalization corpus. For gene normalization, two separate modules were respectively employed to recognize gene mentions and normalize those mentions to their Entrez Gene IDs by utilizing a multistage normalization algorithm developed for processing full-text articles. All of the developed modules are BioC-compatible .NET framework libraries and are publicly available from the NuGet gallery.Database URL: https://sites.google.com/site/hjdairesearch/Projects/isn-corpus. PMID:27465130

  13. DENSE: efficient and prior knowledge-driven discovery of phenotype-associated protein functional modules

    PubMed Central

    2011-01-01

    Background Identifying cellular subsystems that are involved in the expression of a target phenotype has been a very active research area for the past several years. In this paper, cellular subsystem refers to a group of genes (or proteins) that interact and carry out a common function in the cell. Most studies identify genes associated with a phenotype on the basis of some statistical bias, others have extended these statistical methods to analyze functional modules and biological pathways for phenotype-relatedness. However, a biologist might often have a specific question in mind while performing such analysis and most of the resulting subsystems obtained by the existing methods might be largely irrelevant to the question in hand. Arguably, it would be valuable to incorporate biologist's knowledge about the phenotype into the algorithm. This way, it is anticipated that the resulting subsytems would not only be related to the target phenotype but also contain information that the biologist is likely to be interested in. Results In this paper we introduce a fast and theoretically guranteed method called DENSE (Dense and ENriched Subgraph Enumeration) that can take in as input a biologist's prior knowledge as a set of query proteins and identify all the dense functional modules in a biological network that contain some part of the query vertices. The density (in terms of the number of network egdes) and the enrichment (the number of query proteins in the resulting functional module) can be manipulated via two parameters γ and μ, respectively. Conclusion This algorithm has been applied to the protein functional association network of Clostridium acetobutylicum ATCC 824, a hydrogen producing, acid-tolerant organism. The algorithm was able to verify relationships known to exist in literature and also some previously unknown relationships including those with regulatory and signaling functions. Additionally, we were also able to hypothesize that some uncharacterized

  14. Epstein - Barr virus latent membrane protein 1 suppresses reporter activity through modulation of promyelocytic leukemia protein-nuclear bodies

    PubMed Central

    2011-01-01

    The Epstein-Barr virus (EBV) encoded Latent Membrane Protein 1 (LMP1) has been shown to increase the expression of promyelocytic leukemia protein (PML) and the immunofluorescent intensity of promyelocytic leukemia nuclear bodies (PML NBs). PML NBs have been implicated in the modulation of transcription and the association of reporter plasmids with PML NBs has been implicated in repression of reporter activity. Additionally, repression of various reporters in the presence of LMP1 has been noted. This study demonstrates that LMP1 suppresses expression of reporter activity in a dose responsive manner and corresponds with the LMP1 induced increase in PML NB intensity. Disruption of PML NBs with arsenic trioxide or a PML siRNA restores reporter activity. These data offer an explanation for previously conflicting data on LMP1 signaling and calls attention to the possibility of false-positives and false-negatives when using reporter assays as a research tool in cells expressing LMP1. PMID:21975125

  15. Modulation of Kaposi's Sarcoma-Associated Herpesvirus Interleukin-6 Function by Hypoxia-Upregulated Protein 1

    PubMed Central

    Giffin, Louise; Yan, Feng; Major, M. Ben

    2014-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV, also called human herpesvirus 8) is linked to the development of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD). KSHV expresses several proteins that modulate host cell signaling pathways. One of these proteins is viral interleukin-6 (vIL-6), which is a homolog of human IL-6 (hIL-6). vIL-6 is able to prevent apoptosis and promote proinflammatory signaling, angiogenesis, and cell proliferation. Although it can be secreted, vIL-6 is mainly an intracellular protein that is retained in the endoplasmic reticulum (ER). We performed affinity purification and mass spectrometry to identify novel vIL-6 binding partners and found that a cellular ER chaperone, hypoxia-upregulated protein 1 (HYOU1), interacts with vIL-6. Immunohistochemical staining reveals that both PEL and KS tumor tissues express significant amounts of HYOU1. We also show that HYOU1 increases endogenous vIL-6 protein levels and that HYOU1 facilitates vIL-6-induced JAK/STAT signaling, migration, and survival in endothelial cells. Furthermore, our data suggest that HYOU1 also modulates vIL-6's ability to induce CCL2, a chemokine involved in cell migration. Finally, we investigated the impact of HYOU1 on cellular hIL-6 signaling. Collectively, our data indicate that HYOU1 is important for vIL-6 function and may play a role in the pathogenesis of KSHV-associated cancers. IMPORTANCE KSHV vIL-6 is detectable in all KSHV-associated malignancies and promotes tumorigenesis and inflammation. We identified a cellular protein, called hypoxia-upregulated protein 1 (HYOU1), that interacts with KSHV vIL-6 and is present in KSHV-infected tumors. Our data suggest that HYOU1 facilitates the vIL-6-induced signaling, migration, and survival of endothelial cells. PMID:24920810

  16. p97 Disease Mutations Modulate Nucleotide-Induced Conformation to Alter Protein-Protein Interactions.

    PubMed

    Bulfer, Stacie L; Chou, Tsui-Fen; Arkin, Michelle R

    2016-08-19

    The AAA+ ATPase p97/VCP adopts at least three conformations that depend on the binding of ADP and ATP and alter the orientation of the N-terminal protein-protein interaction (PPI) domain into "up" and "down" conformations. Point mutations that cause multisystem proteinopathy 1 (MSP1) are found at the interface of the N domain and D1-ATPase domain and potentially alter the conformational preferences of p97. Additionally, binding of "adaptor" proteins to the N-domain regulates p97's catalytic activity. We propose that p97/adaptor PPIs are coupled to p97 conformational states. We evaluated the binding of nucleotides and the adaptor proteins p37 and p47 to wild-type p97 and MSP1 mutants. Notably, p47 and p37 bind 8-fold more weakly to the ADP-bound conformation of wild-type p97 compared to the ATP-bound conformation. However, MSP1 mutants lose this nucleotide-induced conformational coupling because they destabilize the ADP-bound, "down" conformation of the N-domain. Loss in conformation coupling to PPIs could contribute to the mechanism of MSP1. PMID:27267671

  17. Determinants of photosensitization by mono-L-aspartyl chlorin e6.

    PubMed

    Kessel, D

    1989-04-01

    The mono-N-aspartyl derivative of chlorin e6 (MACE) is a new photosensitizer being examined for use in anti-neoplastic photodynamic therapy. Studies were carried out to identify unique aspects of MACE localization by murine leukemia L1210 cells in vitro. Octanol/water partitioning studies were used to quantitate the hydrophobicity of MACE and two analogs, chlorin e6 and mesochlorin. Sites of cellular localization of these dyes were probed by fluorescence studies, and by examining loci of photodamage. These studies indicate that MACE, a hydrophilic dye, partitions to cytoplasmic loci. Data obtained with chlorin e6, a more hydrophobic dye, are consistent with binding at both membrane and cytoplasmic sites. A substantially more hydrophobic product, meso-chlorin, binds primarily to the cell membrane. While the tumor-localizing porphyrin product HPD binds to plasma LDL less than HDL, MACE and CE are predominantly bound to plasma protein and HDL. Patterns of distribution and localization of MACE differ substantially from those observed with HPD and other hydrophobic sensitizers. Phototoxic effects of MACE could not be specifically attributed to membrane or mitochondrial damage. PMID:2727084

  18. Protein thermal denaturation is modulated by central residues in the protein structure network.

    PubMed

    Souza, Valquiria P; Ikegami, Cecília M; Arantes, Guilherme M; Marana, Sandro R

    2016-03-01

    Network structural analysis, known as residue interaction networks or graphs (RIN or RIG, respectively) or protein structural networks or graphs (PSN or PSG, respectively), comprises a useful tool for detecting important residues for protein function, stability, folding and allostery. In RIN, the tertiary structure is represented by a network in which residues (nodes) are connected by interactions (edges). Such structural networks have consistently presented a few central residues that are important for shortening the pathways linking any two residues in a protein structure. To experimentally demonstrate that central residues effectively participate in protein properties, mutations were directed to seven central residues of the β-glucosidase Sfβgly (β-d-glucoside glucohydrolase; EC 3.2.1.21). These mutations reduced the thermal stability of the enzyme, as evaluated by changes in transition temperature (Tm ) and the denaturation rate at 45 °C. Moreover, mutations directed to the vicinity of a central residue also caused significant decreases in the Tm of Sfβgly and clearly increased the unfolding rate constant at 45 °C. However, mutations at noncentral residues or at surrounding residues did not affect the thermal stability of Sfβgly. Therefore, the data reported in the present study suggest that the perturbation of the central residues reduced the stability of the native structure of Sfβgly. These results are in agreement with previous findings showing that networks are robust, whereas attacks on central nodes cause network failure. Finally, the present study demonstrates that central residues underlie the functional properties of proteins. PMID:26785700

  19. KCNQ1 channel modulation by KCNE proteins via the voltage-sensing domain

    PubMed Central

    Nakajo, Koichi; Kubo, Yoshihiro

    2015-01-01

    The gating of the KCNQ1 potassium channel is drastically regulated by auxiliary subunit KCNE proteins. KCNE1, for example, slows the activation kinetics of KCNQ1 by two orders of magnitude. Like other voltage-gated ion channels, the opening of KCNQ1 is regulated by the voltage-sensing domain (VSD; S1–S4 segments). Although it has been known that KCNE proteins interact with KCNQ1 via the pore domain, some recent reports suggest that the VSD movement may be altered by KCNE. The altered VSD movement of KCNQ1 by KCNE proteins has been examined by site-directed mutagenesis, the scanning cysteine accessibility method (SCAM), voltage clamp fluorometry (VCF) and gating charge measurements. These accumulated data support the idea that KCNE proteins interact with the VSDs of KCNQ1 and modulate the gating of the KCNQ1 channel. In this review, we will summarize recent findings and current views of the KCNQ1 modulation by KCNE via the VSD. In this context, we discuss our recent findings that KCNE1 may alter physical interactions between the S4 segment (VSD) and the S5 segment (pore domain) of KCNQ1. Based on these findings from ourselves and others, we propose a hypothetical mechanism for how KCNE1 binding alters the VSD movement and the gating of the channel. PMID:25603957

  20. KCNQ1 channel modulation by KCNE proteins via the voltage-sensing domain.

    PubMed

    Nakajo, Koichi; Kubo, Yoshihiro

    2015-06-15

    The gating of the KCNQ1 potassium channel is drastically regulated by auxiliary subunit KCNE proteins. KCNE1, for example, slows the activation kinetics of KCNQ1 by two orders of magnitude. Like other voltage-gated ion channels, the opening of KCNQ1 is regulated by the voltage-sensing domain (VSD; S1-S4 segments). Although it has been known that KCNE proteins interact with KCNQ1 via the pore domain, some recent reports suggest that the VSD movement may be altered by KCNE. The altered VSD movement of KCNQ1 by KCNE proteins has been examined by site-directed mutagenesis, the scanning cysteine accessibility method (SCAM), voltage clamp fluorometry (VCF) and gating charge measurements. These accumulated data support the idea that KCNE proteins interact with the VSDs of KCNQ1 and modulate the gating of the KCNQ1 channel. In this review, we will summarize recent findings and current views of the KCNQ1 modulation by KCNE via the VSD. In this context, we discuss our recent findings that KCNE1 may alter physical interactions between the S4 segment (VSD) and the S5 segment (pore domain) of KCNQ1. Based on these findings from ourselves and others, we propose a hypothetical mechanism for how KCNE1 binding alters the VSD movement and the gating of the channel. PMID:25603957

  1. Identification of Brucella abortus virulence proteins that modulate the host immune response.

    PubMed

    Wang, Yufei; Chen, Zeliang; Qiu, Yefeng; Ke, Yuehua; Xu, Jie; Yuan, Xitong; Li, Xianbo; Fu, Simei; Cui, Mingquan; Xie, Yongfei; Du, Xinying; Wang, Zhoujia; Huang, Liuyu

    2012-01-01

    Brucellosis is an important zoonotic disease of almost worldwide distribution. One significant immune phenomenon of this disease is the ability of the pathogen to hide and survive in the host, establishing long lasting chronic infections. Brucella was found to have the ability to actively modulate the host immune response in order to establish chronic infections, but the mechanism by which the pathogen achieves this remains largely unknown. In our screening for protective antigens of Brucella abortus, 3 proteins (BAB1_0597, BAB1_0917, and BAB2_0431) were found to induce significantly higher levels of gamma interferon (IFNγ) in splenocytes of PBS immunized mice than those immunized with S19. This finding strongly implied that these three proteins inhibit the production of IFNγ. Previous studies have shown that LPS, PrpA, and Btp1/TcpB are three important immunomodulatory molecules with the capacity to interfere with host immune response. They have been shown to have the ability to inhibit the secretion of IFNγ, or to increase the production of IL-10. Due to the role of these proteins in virulence and immunomodulation, they likely offer significant potential as live, attenuated Brucella vaccine candidates. Understanding the mechanisms by which these proteins modulate the host immune responses will deepen our knowledge of Brucella virulence and provide important information on the development of new vaccines against Brucellosis. PMID:22743689

  2. Recapitulating the α-helix: nonpeptidic, low-molecular-weight ligands for the modulation of helix-mediated protein-protein interactions.

    PubMed

    Lanning, Maryanna; Fletcher, Steven

    2013-12-01

    Protein-protein interactions play critical roles in a wide variety of biological processes, and their dysregulations contribute to the pathogenesis of several diseases, including cancer. Chemical entities that can abrogate aberrant protein-protein interactions may provide novel therapeutic agents. A large number of protein-protein interactions are mediated by protein secondary structure, the most commonly encountered form of which is the α-helix. Accordingly, over the last decade, there has been a flood of nonpeptidic small molecules that recapitulate the projection and chemical nature of key side chains of the canonical α-helix as a strategy to disrupt helix-mediated protein-protein interactions. In this review, we discuss recent advances (post 2006) in the design of synthetic α-helix mimetics, which include single-faced and two-faced/amphipathic structures, for the modulation of protein-protein interactions. PMID:24261892

  3. The UvrD helicase and its modulation by the mismatch repair protein MutL.

    PubMed

    Matson, Steven W; Robertson, Adam B

    2006-01-01

    UvrD is a superfamily I DNA helicase with well documented roles in excision repair and methyl-directed mismatch repair (MMR) in addition to poorly understood roles in replication and recombination. The MutL protein is a homodimeric DNA-stimulated ATPase that plays a central role in MMR in Escherichia coli. This protein has been characterized as the master regulator of mismatch repair since it interacts with and modulates the activity of several other proteins involved in the mismatch repair pathway including MutS, MutH and UvrD. Here we present a brief summary of recent studies directed toward arriving at a better understanding of the interaction between MutL and UvrD, and the impact of this interaction on the activity of UvrD and its role in mismatch repair. PMID:16935885

  4. Secretory protein profiling reveals TNFα inactivation by selective and promiscuous Sec61 modulators

    PubMed Central

    Maifeld, Sarah V.; MacKinnon, Andrew L.; Garrison, Jennifer L.; Sharma, Ajay; Kunkel, Eric J.; Hegde, Ramanujan S.; Taunton, Jack

    2013-01-01

    Summary Cotransins are cyclic heptadepsipeptides that bind the Sec61 translocon to inhibit cotranslational translocation of a subset of secreted and type I transmembrane proteins. The few known cotransin-sensitive substrates are all targeted to the translocon by a cleavable signal sequence, previously shown to be a critical determinant of cotransin sensitivity. By profiling two cotransin variants against a panel of secreted and transmembrane proteins, we demonstrate that cotransin side-chain differences profoundly affect substrate selectivity. Among the most sensitive substrates we identified is the pro-inflammatory cytokine, tumor necrosis factor alpha (TNFα). Like all type II transmembrane proteins, TNFα is targeted to the translocon by its membrane-spanning domain, indicating that a cleavable signal sequence is not strictly required for cotransin sensitivity. Our results thus reveal an unanticipated breadth of translocon substrates whose expression is inhibited by Sec61 modulators. PMID:21944747

  5. Rho-associated protein kinase modulates neurite extension by regulating microtubule remodeling and vinculin distribution

    PubMed Central

    Chen, Ke’en; Zhang, Wenbin; Chen, Jing; Li, Sumei; Guo, Guoqing

    2013-01-01

    Rho-associated protein kinase is an essential regulator of cytoskeletal dynamics during the process of neurite extension. However, whether Rho kinase regulates microtubule remodeling or the distribution of adhesive proteins to mediate neurite outgrowth remains unclear. By specifically modulating Rho kinase activity with pharmacological agents, we studied the morpho-dynamics of neurite outgrowth. We found that lysophosphatidic acid, an activator of Rho kinase, inhibited neurite outgrowth, which could be reversed by Y-27632, an inhibitor of Rho kinase. Meanwhile, reorganization of microtubules was noticed during these processes, as indicated by their significant changes in the soma and growth cone. In addition, exposure to lysophosphatidic acid led to a decreased membrane distribution of vinculin, a focal adhesion protein in neurons, whereas Y-27632 recruited vinculin to the membrane. Taken together, our data suggest that Rho kinase regulates rat hippocampal neurite growth and microtubule formation via a mechanism associated with the redistribution of vinculin. PMID:25206623

  6. A functional NMR for membrane proteins: dynamics, ligand binding, and allosteric modulation.

    PubMed

    Oxenoid, Kirill; Chou, James J

    2016-05-01

    By nature of conducting ions, transporting substrates and transducing signals, membrane channels, transporters and receptors are expected to exhibit intrinsic conformational dynamics. It is therefore of great interest and importance to understand the various properties of conformational dynamics acquired by these proteins, for example, the relative population of states, exchange rate, conformations of multiple states, and how small molecule ligands modulate the conformational exchange. Because small molecule binding to membrane proteins can be weak and/or dynamic, structural characterization of these effects is very challenging. This review describes several NMR studies of membrane protein dynamics, ligand-induced conformational rearrangements, and the effect of ligand binding on the equilibrium of conformational exchange. The functional significance of the observed phenomena is discussed. PMID:26928605

  7. PIPE: a protein–protein interaction passage extraction module for BioCreative challenge

    PubMed Central

    Chu, Chun-Han; Su, Yu-Chen; Chen, Chien Chin; Hsu, Wen-Lian

    2016-01-01

    Identifying the interactions between proteins mentioned in biomedical literatures is one of the frequently discussed topics of text mining in the life science field. In this article, we propose PIPE, an interaction pattern generation module used in the Collaborative Biocurator Assistant Task at BioCreative V (http://www.biocreative.org/) to capture frequent protein-protein interaction (PPI) patterns within text. We also present an interaction pattern tree (IPT) kernel method that integrates the PPI patterns with convolution tree kernel (CTK) to extract PPIs. Methods were evaluated on LLL, IEPA, HPRD50, AIMed and BioInfer corpora using cross-validation, cross-learning and cross-corpus evaluation. Empirical evaluations demonstrate that our method is effective and outperforms several well-known PPI extraction methods. Database URL: PMID:27524807

  8. Modulation of neurosteroid potentiation by protein kinases at synaptic- and extrasynaptic-type GABAA receptors

    PubMed Central

    Adams, Joanna M.; Thomas, Philip; Smart, Trevor G.

    2015-01-01

    GABAA receptors are important for inhibition in the CNS where neurosteroids and protein kinases are potent endogenous modulators. Acting individually, these can either enhance or depress receptor function, dependent upon the type of neurosteroid or kinase and the receptor subunit combination. However, in vivo, these modulators probably act in concert to fine-tune GABAA receptor activity and thus inhibition, although how this is achieved remains unclear. Therefore, we investigated the relationship between these modulators at synaptic-type α1β3γ2L and extrasynaptic-type α4β3δ GABAA receptors using electrophysiology. For α1β3γ2L, potentiation of GABA responses by tetrahydro-deoxycorticosterone was reduced after inhibiting protein kinase C, and enhanced following its activation, suggesting this kinase regulates neurosteroid modulation. In comparison, neurosteroid potentiation was reduced at α1β3S408A,S409Aγ2L receptors, and unaltered by PKC inhibitors or activators, indicating that phosphorylation of β3 subunits is important for regulating neurosteroid activity. To determine whether extrasynaptic-type GABAA receptors were similarly modulated, α4β3δ and α4β3S408A,S409Aδ receptors were investigated. Neurosteroid potentiation was reduced at both receptors by the kinase inhibitor staurosporine. By contrast, neurosteroid-mediated potentiation at α4S443Aβ3S408A,S409Aδ receptors was unaffected by protein kinase inhibition, strongly suggesting that phosphorylation of α4 and β3 subunits is required for regulating neurosteroid activity at extrasynaptic receptors. Western blot analyses revealed that neurosteroids increased phosphorylation of β3S408,S409 implying that a reciprocal pathway exists for neurosteroids to modulate phosphorylation of GABAA receptors. Overall, these findings provide important insight into the regulation of GABAA receptors in vivo, and into the mechanisms by which GABAergic inhibitory transmission may be simultaneously tuned by

  9. Modulation of cysteine-rich protein 2 expression in vascular injury and atherosclerosis.

    PubMed

    Chen, Chung-Huang; Ho, Hua-Hui; Wu, Meng-Ling; Layne, Matthew D; Yet, Shaw-Fang

    2014-11-01

    Vascular smooth muscle cells (VSMCs) of the arterial wall normally display a differentiated and contractile phenotype. In response to arterial injury, VSMCs switch to a synthetic phenotype, contributing to vascular remodeling. Cysteine-rich protein 2 (CRP2) is a cytoskeletal protein expressed in VSMCs and blunts VSMC migration in part by sequestering the scaffolding protein p130Cas at focal adhesions. CRP2 deficiency in mice increases neointima formation following arterial injury. The goal of this study was to use Csrp2 promoter-lacZ transgenic mice to analyze CRP2 expression during VSMC phenotypic modulation. In a neointima formation model after carotid artery cessation of blood flow, lacZ reporter activity and smooth muscle (SM) α-actin expression in the media were rapidly downregulated 4 days after carotid ligation. Fourteen days after ligation, there was a high level expression of both Csrp2 promoter activity and SM α-actin protein expression in neointimal cells. In atherosclerosis prone mice fed an atherogenic diet, Csrp2 promoter activity was detected within complex atherosclerotic lesions. Interestingly, Csrp2 promoter activity was also present in the fibrous caps of complicated atherosclerotic lesions, indicating that CRP2 might contribute to plaque stability. These findings support the concept that CRP2 contributes to the phenotypic modulation of VSMCs during vascular disease. Modulating transcription to increase CRP2 expression during vascular injury might attenuate vascular remodeling. In addition, increased CRP2 expression at the fibrous caps of advanced lesions might also serve to protect atherosclerotic plaques from rupture. PMID:25034893

  10. Transcriptional profiling of Vero E6 cells over-expressing SARS-CoV S2 subunit: Insights on viral regulation of apoptosis and proliferation

    SciTech Connect

    Yeung, Y.-S. Yip, C.-W. Hon, C.-C. Chow, Ken Y.C. Ma, Iris C.M. Zeng Fanya Leung, Frederick C.C.

    2008-02-05

    We have previously demonstrated that over-expression of spike protein (S) of severe acute respiratory syndrome coronavirus (SARS-CoV) or its C-terminal subunit (S2) is sufficient to induce apoptosis in vitro. To further investigate the possible roles of S2 in SARS-CoV-induced apoptosis and pathogenesis of SARS, we characterized the host expression profiles induced upon S2 over-expression in Vero E6 cells by oligonucleotide microarray analysis. Possible activation of mitochondrial apoptotic pathway in S2 expressing cells was suggested, as evidenced by the up-regulation of cytochrome c and down-regulation of the Bcl-2 family anti-apoptotic members. Inhibition of Bcl-2-related anti-apoptotic pathway was further supported by the diminution of S2-induced apoptosis in Vero E6 cells over-expressing Bcl-xL. In addition, modulation of CCN E2 and CDKN 1A implied the possible control of cell cycle arrest at G1/S phase. This study is expected to extend our understanding on the pathogenesis of SARS at a molecular level.

  11. Identification of Proteins Whose Synthesis Is Modulated During the Cell Cycle of Saccharomyces cerevisiae

    PubMed Central

    Lörincz, Attila T.; Miller, Mark J.; Xuong, Nguyen-Huu; Geiduschek, E. Peter

    1982-01-01

    We examined the synthesis and turnover of individual proteins in the Saccharomyces cerevisiae cell cycle. Proteins were pulse-labeled with radioactive isotope (35S or 14C) in cells at discrete cycle stages and then resolved on two-dimensional gels and analyzed by a semiautomatic procedure for quantitating gel electropherogram-autoradiographs. The cells were obtained by one of three methods: (i) isolation of synchronous subpopulations of growing cells by zonal centrifugation; (ii) fractionation of pulse-labeled steady-state cultures according to cell age; and (iii) synchronization of cells with the mating pheromone, α-factor. In confirmation of previous studies, we found that the histones H4, H2A, and H2B were synthesized almost exclusively in the late G1 and early S phases. In addition, we identified eight proteins whose rates of synthesis were modulated in the cell cycle, and nine proteins (of which five, which may well be related, were unstable, with half-lives of 10 to 15 min) that might be regulated in the cell cycle by periodic synthesis, modification, or degradation. Based on the time of maximal labeling in the cell cycle and on experiments with α-factor and hydroxyurea, we assigned the cell cycle proteins to two classes: proteins in class I were labeled principally in early G1 phase and at a late stage of the cycle, whereas those in class II were primarily synthesized at times ranging from late G1 to mid S phase. At least one major control point for the cell cycle proteins occurred between “start” and early S phase. A set of stress-responsive proteins was also identified and analyzed. The rates of synthesis of these proteins were affected by certain perturbations that resulted during selection of synchronous cell populations and by heat shock. Images PMID:14582195

  12. Perturbative unification of gauge couplings in supersymmetric E6 models

    NASA Astrophysics Data System (ADS)

    Cho, Gi-Chol; Maru, Nobuhito; Yotsutani, Kaho

    2016-07-01

    We study gauge coupling unification in supersymmetric (SUSY) E6 models where an additional U(1)‧ gauge symmetry is broken near the TeV scale and a number of exotic matter fields from the 27 representations have O(TeV) mass. Solving the two-loop renormalization group equations (RGE) of gauge couplings and a kinetic mixing coupling between the U(1)‧ and U(1)Y gauge fields, we find that the gauge couplings fall into the non-perturbative regime below the grand unified theories (GUT) scale. We examine threshold corrections on the running of gauge couplings from both light and heavy ( ˜ GUT scale) particles and show constraints on the size of corrections to achieve the perturbative unification of gauge couplings.

  13. Neutralinos in E 6 inspired supersymmetric U(1)' models

    NASA Astrophysics Data System (ADS)

    Hesselbach, S.; Franke, F.; Fraas, H.

    2002-03-01

    The neutralino sector in E_6 inspired supersymmetric models with extra neutral gauge bosons and singlet Higgs fields contains additional gaugino and singlino states compared to the MSSM. We discuss the neutralino mixing in rank-5 and rank-6 models and analyze the supersymmetric parameter space where the light neutralinos have mainly singlino or MSSM character. The neutralino character, resonance effects of the new gauge bosons and, assuming mSUGRA-type RGEs, different selectron masses lead to significant differences between the MSSM and the extended models in neutralino production at an e^+e^- linear collider. Beam polarization may improve the signatures to distinguish between the models. In an appendix, we present the mass terms of the gauge bosons, charginos and sfermions which show a significant different mass spectrum than in the MSSM and give all relevant neutralino couplings.

  14. Functional modulation of G-protein coupled receptors during Parkinson disease-like neurodegeneration.

    PubMed

    Jenkins, Bruce G; Zhu, Aijun; Poutiainen, Pekka; Choi, Ji-Kyung; Kil, Kun-Eek; Zhang, Zhaoda; Kuruppu, Darshini; Aytan, Nurgul; Dedeoglu, Alpaslan; Brownell, Anna-Liisa

    2016-09-01

    G-protein coupled dopamine and metabotropic glutamate receptors (mGlu) can modulate neurotransmission during Parkinson's disease (PD)-like neurodegeneration. PET imaging studies in a unilateral dopamine denervation model (6-OHDA) showed a significant inverse correlation of presynaptic mGlu4 and postsynaptic mGlu5 expression in the striatum and rapidly declining mGlu4 and enhanced mGlu5 expression in the hippocampus during progressive degeneration over time. Immunohistochemical studies verified the decreased mGlu4 expression in the hippocampus on the lesion side but did not show difference in mGlu5 expression between lesion and control side. Pharmacological MRI studies showed enhanced hemodynamic response in several brain areas on the lesion side compared to the control side after challenge with mGlu4 positive allosteric modulator or mGlu5 negative allosteric modulator. However, mGlu4 response was biphasic having short enhancement followed by negative response on both sides of brain. Studies in mGlu4 expressing cells demonstrated that glutamate induces cooperative increase in binding of mGlu4 ligands - especially at high glutamate levels consistent with in vivo concentration. This suggests that mGlu allosteric modulators as drug candidates will be highly sensitive to changes in glutamate concentration and hence metabolic state. These experiments demonstrate the importance of the longitudinal imaging studies to investigate temporal changes in receptor functions to obtain individual response for experimental drugs. PMID:26581500

  15. Membrane proteins bind lipids selectively to modulate their structure and function

    PubMed Central

    Allison, Timothy M.; Ulmschneider, Martin B.; Degiacomi, Matteo T.; Baldwin, Andrew J.; Robinson, Carol V.

    2014-01-01

    Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments1-7 and that lipids can bind to specific sites, for example in potassium channels8. Fundamental questions remain however regarding the extent of membrane protein selectivity toward lipids. Here we report a mass spectrometry (MS) approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL), aquaporin Z (AqpZ), and the ammonia channel (AmtB) using ion mobility MS (IM-MS), which reports gas-phase collision cross sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas-phase. By resolving lipid-bound states we then rank bound lipids based on their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Results show that lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability, the highest-ranking lipid however is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation9. AqpZ is also stabilized by many lipids with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays, we discover that cardiolipin modulates AqpZ function. Analogous experiments identify AmtB as being highly selective for phosphatidylglycerol prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that reposition AmtB residues to interact with the lipid bilayer. Overall our results demonstrate that resistance to unfolding correlates with specific lipid-binding events enabling distinction of lipids that merely bind from those that modulate membrane protein structure and/or function. We anticipate that these

  16. Coxiella burnetii Nine Mile II proteins modulate gene expression of monocytic host cells during infection

    PubMed Central

    2010-01-01

    Background Coxiella burnetii is an intracellular bacterial pathogen that causes acute and chronic disease in humans. Bacterial replication occurs within enlarged parasitophorous vacuoles (PV) of eukaryotic cells, the biogenesis and maintenance of which is dependent on C. burnetii protein synthesis. These observations suggest that C. burnetii actively subverts host cell processes, however little is known about the cellular biology mechanisms manipulated by the pathogen during infection. Here, we examined host cell gene expression changes specifically induced by C. burnetii proteins during infection. Results We have identified 36 host cell genes that are specifically regulated when de novo C. burnetii protein synthesis occurs during infection using comparative microarray analysis. Two parallel sets of infected and uninfected THP-1 cells were grown for 48 h followed by the addition of chloramphenicol (CAM) to 10 μg/ml in one set. Total RNA was harvested at 72 hpi from all conditions, and microarrays performed using Phalanx Human OneArray™ slides. A total of 784 (mock treated) and 901 (CAM treated) THP-1 genes were up or down regulated ≥2 fold in the C. burnetii infected vs. uninfected cell sets, respectively. Comparisons between the complementary data sets (using >0 fold), eliminated the common gene expression changes. A stringent comparison (≥2 fold) between the separate microarrays revealed 36 host cell genes modulated by C. burnetii protein synthesis. Ontological analysis of these genes identified the innate immune response, cell death and proliferation, vesicle trafficking and development, lipid homeostasis, and cytoskeletal organization as predominant cellular functions modulated by C. burnetii protein synthesis. Conclusions Collectively, these data indicate that C. burnetii proteins actively regulate the expression of specific host cell genes and pathways. This is in addition to host cell genes that respond to the presence of the pathogen whether or not

  17. Canine distemper virus envelope protein interactions modulated by hydrophobic residues in the fusion protein globular head.

    PubMed

    Avila, Mislay; Khosravi, Mojtaba; Alves, Lisa; Ader-Ebert, Nadine; Bringolf, Fanny; Zurbriggen, Andreas; Plemper, Richard K; Plattet, Philippe

    2015-01-15

    Membrane fusion for morbillivirus cell entry relies on critical interactions between the viral fusion (F) and attachment (H) envelope glycoproteins. Through extensive mutagenesis of an F cavity recently proposed to contribute to F's interaction with the H protein, we identified two neighboring hydrophobic residues responsible for severe F-to-H binding and fusion-triggering deficiencies when they were mutated in combination. Since both residues reside on one side of the F cavity, the data suggest that H binds the F globular head domain sideways. PMID:25355896

  18. A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells.

    PubMed

    Tichon, Ailone; Gil, Noa; Lubelsky, Yoav; Havkin Solomon, Tal; Lemze, Doron; Itzkovitz, Shalev; Stern-Ginossar, Noam; Ulitsky, Igor

    2016-01-01

    Thousands of long noncoding RNA (lncRNA) genes are encoded in the human genome, and hundreds of them are evolutionarily conserved, but their functions and modes of action remain largely obscure. Particularly enigmatic lncRNAs are those that are exported to the cytoplasm, including NORAD-an abundant and highly conserved cytoplasmic lncRNA. Here we show that most of the sequence of NORAD is comprised of repetitive units that together contain at least 17 functional binding sites for the two mammalian Pumilio homologues. Through binding to PUM1 and PUM2, NORAD modulates the mRNA levels of their targets, which are enriched for genes involved in chromosome segregation during cell division. Our results suggest that some cytoplasmic lncRNAs function by modulating the activities of RNA-binding proteins, an activity which positions them at key junctions of cellular signalling pathways. PMID:27406171

  19. One Protein to Rule them All: Modulation of Cell Surface Receptors and Molecules by HIV Nef

    PubMed Central

    Landi, Alessia; Iannucci, Veronica; Nuffel, Anouk Van; Meuwissen, Pieter; Verhasselt, Bruno

    2011-01-01

    The HIV-1, HIV-2 and SIV Nef protein are known to modulate the expression of several cell surface receptors and molecules to escape the immune system, to alter T cell activation, to enhance viral replication, infectivity and transmission and overall to ensure the optimal environment for infection outcome. Consistent and continuous efforts have been made over the years to characterize the modulation of expression of each of these molecules, in the hope that a better understanding of these processes essential for HIV infection and/or pathogenesis will eventually highlight new therapeutic targets. In this article we provide an extensive review of the knowledge gained so far on this important and evolving topic. PMID:22103833

  20. A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells

    PubMed Central

    Tichon, Ailone; Gil, Noa; Lubelsky, Yoav; Havkin Solomon, Tal; Lemze, Doron; Itzkovitz, Shalev; Stern-Ginossar, Noam; Ulitsky, Igor

    2016-01-01

    Thousands of long noncoding RNA (lncRNA) genes are encoded in the human genome, and hundreds of them are evolutionarily conserved, but their functions and modes of action remain largely obscure. Particularly enigmatic lncRNAs are those that are exported to the cytoplasm, including NORAD—an abundant and highly conserved cytoplasmic lncRNA. Here we show that most of the sequence of NORAD is comprised of repetitive units that together contain at least 17 functional binding sites for the two mammalian Pumilio homologues. Through binding to PUM1 and PUM2, NORAD modulates the mRNA levels of their targets, which are enriched for genes involved in chromosome segregation during cell division. Our results suggest that some cytoplasmic lncRNAs function by modulating the activities of RNA-binding proteins, an activity which positions them at key junctions of cellular signalling pathways. PMID:27406171

  1. Retinoblastoma Binding Protein 4 Modulates Temozolomide Sensitivity in Glioblastoma by Regulating DNA Repair Proteins

    PubMed Central

    Kitange, Gaspar J.; Mladek, Ann C.; Schroeder, Mark A.; Pokorny, Jenny C.; Carlson, Brett L.; Zhang, Yuji; Nair, Asha A.; Lee, Jeong-Heon; Yan, Huihuang; Decker, Paul A.; Zhang, Zhiguo; Sarkaria, Jann N.

    2016-01-01

    Summary Here we provide evidence that RBBP4 modulates temozolomide (TMZ) sensitivity through coordinate regulation of 2 key DNA repair genes critical for recovery from TMZ-induced DNA damage: methylguanine-DNA-methyltransferase (MGMT) and RAD51. Disruption of RBBP4 enhanced TMZ sensitivity, induced synthetic lethality to PARP inhibition and increased DNA damage signaling in response to TMZ. Moreover, RBBP4 silencing enhanced TMZ-induced H2AX phosphorylation and apoptosis in GBM cells. Intriguingly, RBBP4 knockdown suppressed the expression of MGMT, RAD51 and other genes in association with decreased promoter H3K9 acetylation (H3K9Ac) and increased H3K9 tri-methylation (H3K9me3). Consistent with these data, RBBP4 interacts with CBP/p300 to form a chromatin modifying complex that binds within the promoter of MGMT, RAD51 and perhaps other genes. Globally, RBBP4 positively and negatively regulates genes involved in critical cellular functions including tumorigenesis. RBBP4/CBP/p300 complex may provide an interesting target for developing therapy sensitizing strategies for GBM and other tumors. PMID:26972001

  2. The CW domain, a new histone recognition module in chromatin proteins.

    PubMed

    Hoppmann, Verena; Thorstensen, Tage; Kristiansen, Per Eugen; Veiseth, Silje Veie; Rahman, Mohummad Aminur; Finne, Kenneth; Aalen, Reidunn B; Aasland, Rein

    2011-05-18

    Post-translational modifications of the N-terminal histone tails, including lysine methylation, have key roles in regulation of chromatin and gene expression. A number of protein modules have been identified that recognize differentially modified histone tails and provide their proteins with the capacity to sense such modifications. Here, we identify the CW domain of plant and animal chromatin-related proteins as a novel module that recognizes different methylated states of lysine 4 on histone H3 (H3K4me). The solution structure of the CW domain of the Arabidopsis ASH1 HOMOLOG2 (ASHH2) histone methyltransferase provides insight into how different CW domains can distinguish different methylated histone tails. We provide evidence that ASHH2 is acting on H3K4me-marked genes, allowing for ASHH2-dependent H3K36 tri-methylation, which contributes to sustained expression of tissue-specific and developmentally regulated genes. This suggests that ASHH2 is a combined 'reader' and 'writer' of the histone code. We propose that different CW domains, dependent on their specificity for different H3K4 methylations, are important for epigenetic memory or participate in switching between permissive and repressive chromatin states. PMID:21522130

  3. Osmolytes modulate conformational exchange in solvent-exposed regions of membrane proteins

    PubMed Central

    Flores Jiménez, Ricardo H; Do Cao, Marie-Ange; Kim, Miyeon; Cafiso, David S

    2010-01-01

    Site-directed spin labeling (SDSL) was used to investigate local structure and conformational exchange in two bacterial outer-membrane TonB-dependent transporters, BtuB and FecA. Protecting osmolytes, such as polyethylene glycols (PEGs) are known to modulate a substrate-dependent conformational equilibrium in the energy coupling motif (Ton box) of BtuB. Here, we demonstrate that a segment that is N-terminal to the Ton box in BtuB, is in conformational exchange between ordered and disordered states with or without substrate. Protecting osmolytes shift this equilibrium to favor the more ordered, folded state. However, a segment of BtuB that is C-terminal to the Ton box that is not solvent exposed is insensitive to PEGs. Protecting osmolytes also modulate a conformational equilibrium in the Ton box of FecA, with larger molecular weight PEGs producing the largest shifts in the conformational free energy. These data indicate that solvent-exposed regions of these transporters undergo conformational exchange and that regions of these transporters that are involved in protein–protein interactions sample multiple conformational substates. The sensitivity to solute provides an explanation for differences seen between two high-resolution structures of BtuB, which each likely represent one conformation from a subset of states that are normally sampled by the protein. This work also illustrates how SDSL and osmolytes may be used to characterize and quantitate conformational equilibria in membrane proteins. PMID:20014029

  4. Endocellular polyamine availability modulates epithelial-to-mesenchymal transition and unfolded protein response in MDCK cells.

    PubMed

    Prunotto, Marco; Compagnone, Alessandra; Bruschi, Maurizio; Candiano, Giovanni; Colombatto, Sebastiano; Bandino, Andrea; Petretto, Andrea; Moll, Solange; Bochaton-Piallat, Marie Luce; Gabbiani, Giulio; Dimuccio, Veronica; Parola, Maurizio; Citti, Lorenzo; Ghiggeri, Gianmarco

    2010-06-01

    Epithelial-to-mesenchymal transition (EMT) is involved in embryonic development as well as in several pathological conditions. Literature indicates that polyamine availability may affect transcription of c-myc, matrix metalloproteinase (MMP)1, MMP2, TGFbeta(1), and collagen type I mRNA. The aim of this study was to elucidate polyamines role in EMT in vitro. Madin-Darby canine kidney (MDCK) cells were subjected to experimental manipulation of intracellular levels of polyamines. Acquisition of mesenchymal phenotype was evaluated by means of immunofluorescence, western blots, and zymograms. MDCK cells were then subjected to 2D gel proteomic study and incorporation of a biotinilated polyamine (BPA). Polyamine endocellular availability modulated EMT process. Polyamine-depleted cells treated with TGFbeta(1) showed enhanced EMT with a marked decrease of E-cadherin expression at plasma membrane level and an increased expression of mesenchymal markers such as fibronectin and alpha-smooth muscle actin. Polyamine-depleted cells showed a twofold increased expression of the rough endoplasmic reticulum (ER)-stress proteins GRP78, GRP94, and HSP90 alpha/beta in 2D gels. The latter data were confirmed by western blot analysis. Administration of BPA showed that polyamines are covalently linked, within the cell, to ER-stress proteins. Intracellular polyamine availability affects EMT in MDCK cells possibly through the modulation of ER-stress protein homeostasis. PMID:20212449

  5. Protein kinase C modulates transcriptional activation by the juvenile hormone receptor methoprene-tolerant.

    PubMed

    Ojani, Reyhaneh; Liu, Pengcheng; Fu, Xiaonan; Zhu, Jinsong

    2016-03-01

    Juvenile hormone (JH) controls many biological events in insects by triggering dramatic changes in gene expression in target cells. The Methoprene-tolerant (MET) protein, an intracellular JH receptor, acts as a transcriptional regulator and binds to the promoters of tissue- and stage-specific JH target genes when JH is present. Our recent study has demonstrated that the transcriptional activation by MET is modulated by a membrane-initiated JH signaling pathway, involving phospholipase C (PLC) and calcium/calmodulin-dependent protein kinase II (CaMKII). Here we report that protein kinase C (PKC) is another essential intermediate of this pathway. PKC was activated by JH and this action was PLC-dependent. Inhibition of the PKC activity substantially weakened the JH-induced gene expression in mosquito cells. RNAi experiments indicated that several PKC isoforms were involved in the JH action during the post-emergence development of adult female mosquitoes. JH treatment considerably increased the binding of MET to the promoters of JH response genes in cultured mosquito abdomens that were collected from newly emerged female adults. The JH-induced DNA binding of MET was hindered when the abdomens were treated with a PKC inhibitor and JH. Therefore, the results suggest that PKC modulates the transactivation activity of MET by enhancing the binding of MET to JH response elements in the JH target genes. This mechanism may allow for variable and stage- and tissue-specific genomic responses to JH. PMID:26689644

  6. Ribosomal protein S6 phosphorylation is controlled by TOR and modulated by PKA in Candida albicans

    PubMed Central

    Chowdhury, Tahmeena; Köhler, Julia R.

    2015-01-01

    Summary TOR and PKA signaling pathways control eukaryotic cell growth and proliferation. TOR activity in model fungi, such as Saccharomyces cerevisiae, responds principally to nutrients, e.g., nitrogen and phosphate sources, which are incorporated into the growing cell mass; PKA signaling responds to the availability of the cells' major energy source, glucose. In the fungal commensal and pathogen, Candida albicans, little is known of how these pathways interact. Here, the signal from phosphorylated ribosomal protein S6 (P-S6) was defined as a surrogate marker for TOR-dependent anabolic activity in C. albicans. Nutritional, pharmacologic, and genetic modulation of TOR activity elicited corresponding changes in P-S6 levels. The P-S6 signal corresponded to translational activity of a GFP reporter protein. Contributions of four PKA pathway components to anabolic activation were then examined. In high glucose concentrations, only Tpk2 was required to upregulate P-S6 to physiologic levels, whereas all four tested components were required to downregulate P-S6 in low glucose. TOR was epistatic to PKA components with respect to P-S6. In many host niches inhabited by C. albicans, glucose is scarce, with protein being available as a nitrogen source. We speculate that PKA may modulate TOR-dependent cell growth to a rate sustainable by available energy sources, when monomers of anabolic processes, such as amino acids, are abundant. PMID:26173379

  7. The Parkinson's Disease-Associated Protein Kinase LRRK2 Modulates Notch Signaling through the Endosomal Pathway.

    PubMed

    Imai, Yuzuru; Kobayashi, Yoshito; Inoshita, Tsuyoshi; Meng, Hongrui; Arano, Taku; Uemura, Kengo; Asano, Takeshi; Yoshimi, Kenji; Zhang, Chang-Liang; Matsumoto, Gen; Ohtsuka, Toshiyuki; Kageyama, Ryoichiro; Kiyonari, Hiroshi; Shioi, Go; Nukina, Nobuyuki; Hattori, Nobutaka; Takahashi, Ryosuke

    2015-09-01

    Leucine-rich repeat kinase 2 (LRRK2) is a key molecule in the pathogenesis of familial and idiopathic Parkinson's disease (PD). We have identified two novel LRRK2-associated proteins, a HECT-type ubiquitin ligase, HERC2, and an adaptor-like protein with six repeated Neuralized domains, NEURL4. LRRK2 binds to NEURL4 and HERC2 via the LRRK2 Ras of complex proteins (ROC) domain and NEURL4, respectively. HERC2 and NEURL4 link LRRK2 to the cellular vesicle transport pathway and Notch signaling, through which the LRRK2 complex promotes the recycling of the Notch ligand Delta-like 1 (Dll1)/Delta (Dl) through the modulation of endosomal trafficking. This process negatively regulates Notch signaling through cis-inhibition by stabilizing Dll1/Dl, which accelerates neural stem cell differentiation and modulates the function and survival of differentiated dopaminergic neurons. These effects are strengthened by the R1441G ROC domain-mutant of LRRK2. These findings suggest that the alteration of Notch signaling in mature neurons is a component of PD etiology linked to LRRK2. PMID:26355680

  8. Modulation of interferon expression by hepatitis C virus NS5A protein and human homeodomain protein PTX1.

    PubMed

    Ghosh, Asish K; Majumder, Mainak; Steele, Robert; Ray, Ranjit; Ray, Ratna B

    2003-02-01

    Hepatitis C virus (HCV) NS5A protein transcriptionally modulates a number of cellular genes. Since there is no evidence of binding of NS5A protein to DNA, it is likely to exert its activity in concert with cellular factor(s). In this study, we have identified a specific interaction of HCV NS5A with homeodomain protein PTX1 of human origin by a yeast two-hybrid interacting cloning system. The authenticity of this interaction was verified by mammalian two-hybrid assay, in vivo co-immunoprecipitation analysis, and from a colocalization study. Recently, murine PTX1 (mPTX1) has been shown to repress virus-induced murine interferonA4 promoter activity. Interferon-à alone or together with ribavirin is the only available therapy for HCV-infected patients. Therefore, we examined whether coexpression of NS5A and human PTX1 (hPTX1) proteins modulate human IFN-à promoter activity. An in vitro reporter assay by transfection of HepG2 cells with NS5A suggested an activation of IFN-à promoter to approximately 20-fold upon Newcastle disease virus (NDV) infection. Under similar experimental conditions, hPTX1-activated IFN-à prompter to approximately sevenfold, unlike mPTX1. However, cotransfection of NS5A and hPTX1 displayed a lower interferon promoter activity, probably for physical association between these two proteins. Subsequent study demonstrated that activation of IFN promoter by NS5A is associated with an increased expression of IRF-3. Further analysis revealed that ectopic expression of NS5A in HepG2 cells enhances endogenous IFN-à secretion and MxA expression upon induction with NDV. However, exogenous expression of hPTX1 did not significantly alter NS5A-mediated function in the stable transfectants. Taken together, these results suggested that the level of endogenous hPTX1 is not sufficient to block the function of NS5A for augmentation of virus-mediated IFN activity in HepG2 cells. PMID:12620797

  9. Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata

    SciTech Connect

    Lee, E.Y.H.; Parry, G.; Bissell, M.J.

    1984-01-01

    It has been shown previously that cultures of mouse mammary epithelial cells retain their characteristic morphology and their ability to produce ..gamma..-casein, a member of the casein gene family, only if they are maintained on floating collagen gels. In this paper we show: (a) Cells on floating collagen gels secrete not only ..gamma..-casein but also ..cap alpha../sub 1/-, ..cap alpha../sub 2/-, and ..beta..-caseins. These are not secreted by cells on plastic and are secreted to only a very limited extent by cells on attached collagen gels. (b) The floating collagen gel regulates at the level of synthesis and/or stabilization of the caseins rather than at the level of secretion alone. Contraction of the floating gel is important in that cells cultured on floating glutaraldehyde cross-linked gels do not secrete any of the caseins. (c) The secretion of an 80,000-mol-wt protein, most probably transferrin, and a 67,000-mol-wt protein, probably butyrophilin, a major protein of the milk fat globule membrane, are partially modulated by substrata. However, in contrast to the caseins, these are always detectable in media from cells cultured on plastic and attached gels. (d) Whey acidic protein, a major whey protein, is actively secreted by freshly isolated cells but is secreted in extremely limited quantities in cultured cells regardless of the nature of the substratum used. Lactalbumin secretion is also decreased significantly in cultured cells. (e) A previously unreported set of proteins, which may be minor milk proteins, are prominently secreted by the mammary cells on all substrata tested. We conclude that while the substratum profoundly influences the secretion of the caseins, it does not regulate the expression of every milk-specific protein in the same way. The mechanistic implications of these findings are discussed.

  10. High pressure modulated transport and signaling functions of membrane proteins in models and in vivo

    NASA Astrophysics Data System (ADS)

    Vogel, R. F.; Linke, K.; Teichert, H.; Ehrmann, M. A.

    2008-07-01

    Cellular membranes serve in the separation of compartments, recognition of the environment, selective transport and signal transduction. Membrane lipids and membrane proteins play distinct roles in these processes, which are affected by environmental chemical (e. g. pH) or physical (e. g. pressure and temperature) changes. High hydrostatic pressure (HHP) affects fluidity and integrity of bacterial membranes instantly during the ramp, resulting in a loss of membrane potential and vital membrane protein functions. We have used the multiple drug transporter LmrA from Lactococcus lactis and ToxR, a membrane protein sensor from Photobacterium profundum, a deep-sea bacterium, and Vibrio cholerae to study membrane protein interaction and functionality in proteolioposomes and by the use of in vivo reporter systems, respectively. Both proteins require dimerization in the phospholipid bilayer for their functionality, which was favoured in the liquid crystalline lipid phase with ToxR and LmrA. Whereas LmrA, which resides in liposomes consisting of DMPC, DMPC/cholesterol or natural lipids, lost its ATPase activity above 20 or 40 MPa, it maintained its active dimeric structure in DOPC/DPPC/cholesterol liposomes up to 120 MPa. By using a specific indicator strain in which the dimerisation of ToxR initiates the transcription of lacZ it was demonstrated, that the amino acid sequence of the transmembrane domain influences HHP stability of ToxR dimerization in vivo. Thus, both the lipid structure and the nature of the protein affect membrane protein interaction. It is suggested that the protein structure determines basic functionality, e.g. principle ability or kinetics to dimerize to a functional complex, while the lipid environment modulates this property.

  11. A genome-wide RNAi screen identifies proteins modulating aberrant FLT3-ITD signaling

    PubMed Central

    Caldarelli, A; Müller, J P; Paskowski-Rogacz, M; Herrmann, K; Bauer, R; Koch, S; Heninger, A K; Krastev, D; Ding, L; Kasper, S; Fischer, T; Brodhun, M; Böhmer, F-D; Buchholz, F

    2013-01-01

    Fms-like tyrosine kinase-3 is a commonly mutated gene in acute myeloid leukemia, with about one-third of patients carrying an internal-tandem duplication of the juxtamembrane domain in the receptor (FLT3-ITD). FLT3-ITD exhibits altered signaling quality, including aberrant activation of STAT5. To identify genes affecting FLT3-ITD-mediated STAT5 signaling, we performed an esiRNA-based RNAi screen utilizing a STAT5-driven reporter assay. Knockdowns that caused reduced FLT3-ITD-mediated STAT5 signaling were enriched for genes encoding proteins involved in protein secretion and intracellular protein transport, indicating that modulation of protein transport processes could potentially be used to reduce constitutive STAT5 signaling in FLT3-ITD-positive cells. The relevance of KDELR1, a component involved in the Golgi-ER retrograde transport, was further analyzed. In FLT3-ITD-expressing leukemic MV4-11 cells, downregulation of KDELR1 resulted in reduced STAT5 activation, proliferation and colony-forming capacity. Stable shRNA-mediated depletion of KDELR1 in FLT3-ITD-expressing 32D cells likewise resulted in reduced STAT5 signaling and cell proliferation. Importantly, these cells also showed a reduced capacity to generate a leukemia-like disease in syngeneic C3H/HeJ mice. Together our data suggest intracellular protein transport as a potential target for FLT3-ITD driven leukemias, with KDELR1 emerging as a positive modulator of oncogenic FLT3-ITD activity. PMID:23508117

  12. Cannabinoid receptor-interacting protein Crip1a modulates CB1 receptor signaling in mouse hippocampus.

    PubMed

    Guggenhuber, Stephan; Alpar, Alan; Chen, Rongqing; Schmitz, Nina; Wickert, Melanie; Mattheus, Tobias; Harasta, Anne E; Purrio, Martin; Kaiser, Nadine; Elphick, Maurice R; Monory, Krisztina; Kilb, Werner; Luhmann, Heiko J; Harkany, Tibor; Lutz, Beat; Klugmann, Matthias

    2016-05-01

    The cannabinoid type 1 receptor (Cnr1, CB1R) mediates a plethora of physiological functions in the central nervous system as a presynaptic modulator of neurotransmitter release. The recently identified cannabinoid receptor-interacting protein 1a (Cnrip1a, CRIP1a) binds to the C-terminal domain of CB1R, a region known to be important for receptor desensitization and internalization. Evidence that CRIP1a and CB1R interact in vivo has been reported, but the neuroanatomical distribution of CRIP1a is unknown. Moreover, while alterations of hippocampal CRIP1a levels following limbic seizures indicate a role in controlling excessive neuronal activity, the physiological function of CRIP1a in vivo has not been investigated. In this study, we analyzed the spatial distribution of CRIP1a in the hippocampus and examined CRIP1a as a potential modulator of CB1R signaling. We found that Cnrip1a mRNA is co-expressed with Cnr1 mRNA in pyramidal neurons and interneurons of the hippocampal formation. CRIP1a protein profiles were largely segregated from CB1R profiles in mossy cell terminals but not in hippocampal CA1 region. CB1R activation induced relocalization to close proximity with CRIP1a. Adeno-associated virus-mediated overexpression of CRIP1a specifically in the hippocampus revealed that CRIP1a modulates CB1R activity by enhancing cannabinoid-induced G protein activation. CRIP1a overexpression extended the depression of excitatory currents by cannabinoids in pyramidal neurons of the hippocampus and diminished the severity of chemically induced acute epileptiform seizures. Collectively, our data indicate that CRIP1a enhances hippocampal CB1R signaling in vivo. PMID:25772509

  13. Expression of Yes Associated Protein, YAP, Modulates Survivin Expression in Primary Liver Malignancies

    PubMed Central

    Bai, Haibo; Gayyed, Mariana F.; Lam-Himlin, Dora M.; Klein, Alison P.; Nayar, Suresh K.; Xu, Yang; Khan, Mehtab; Argani, Pedram; Pan, Duojia; Anders, Robert A.

    2012-01-01

    Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) account for 95% of primary liver cancer. For each of these malignancies the outcome is dismal; incidence is rapidly increasing and mechanistic understanding is limited. We observed abnormal proliferation of both biliary epithelium and hepatocytes in mice following genetic manipulation of Yes associated protein (YAP), a transcription co-activator. Here we comprehensively documented YAP protein expression in the human liver and primary liver cancers. We showed that nuclear YAP expression is significantly increased in human ICC and HCC. We found that increased YAP protein levels in HCC are due to multiple mechanisms including gene amplification, transcriptional and posttranscriptional regulation. Survivin, a member of the inhibitors-of-apoptosis protein (IAPs) family, has been reported as an independent prognostic factor for poor survival in both HCC and ICC. We found nuclear YAP expression correlates significantly with nuclear Survivin expression for both ICC and HCC. Furthermore, using mice engineered to conditionally overexpress YAP in the liver, we found Survivin mRNA expression depends upon YAP protein levels. Our findings suggested that YAP contributes to primary liver tumorigenesis and likely mediates its oncogenic effects through modulating Survivin expression. PMID:22436626

  14. G Protein Signaling Modulator-3 Inhibits the Inflammasome Activity of NLRP3*

    PubMed Central

    Giguère, Patrick M.; Gall, Bryan J.; Ezekwe, Ejiofor A. D.; Laroche, Geneviève; Buckley, Brian K.; Kebaier, Chahnaz; Wilson, Justin E.; Ting, Jenny P.; Siderovski, David P.; Duncan, Joseph A.

    2014-01-01

    Inflammasomes are multi-protein complexes that regulate maturation of the interleukin 1β-related cytokines IL-1β and IL-18 through activation of the cysteine proteinase caspase-1. NOD-like receptor family, pyrin domain containing 3 (NLRP3) protein is a key component of inflammasomes that assemble in response to a wide variety of endogenous and pathogen-derived danger signals. Activation of the NLRP3-inflammasome and subsequent secretion of IL-1β is highly regulated by at least three processes: transcriptional activation of both NLRP3 and pro-IL-1β genes, non-transcriptional priming of NLRP3, and final activation of NLRP3. NLRP3 is predominantly expressed in cells of the hematopoietic lineage. Using a yeast two-hybrid screen, we identified the hematopoietic-restricted protein, G protein signaling modulator-3 (GPSM3), as a NLRP3-interacting protein and a negative regulator of IL-1β production triggered by NLRP3-dependent inflammasome activators. In monocytes, GPSM3 associates with the C-terminal leucine-rich repeat domain of NLRP3. Bone marrow-derived macrophages lacking GPSM3 expression exhibit an increase in NLRP3-dependent IL-1β, but not TNF-α, secretion. Furthermore, GPSM3-null mice have enhanced serum and peritoneal IL-1β production following Alum-induced peritonitis. Our findings suggest that GPSM3 acts as a direct negative regulator of NLRP3 function. PMID:25271165

  15. Isoflurane-Induced Changes in Righting Response and Breathing are Modulated by RGS Proteins

    PubMed Central

    Icaza, Eduardo E.; Huang, Xinyan; Fu, Ying; Neubig, Richard R.; Baghdoyan, Helen A.; Lydic, Ralph

    2011-01-01

    Background Recent evidence suggests that G protein coupled receptors, especially those linked to Gαi, contribute to the mechanisms of anesthetic action. Regulator of G protein signaling (RGS) proteins bind to activated Gαi and inhibit its signal transduction. Genomic knock-in mice with an RGS-insensitive Gαi2 G184S (Gαi2 GS) allele exhibit enhanced Gαi2 signaling and provide a novel approach for investigating the role of Gαi2 signaling and RGS proteins in general anesthesia. Methods Homozygous Gαi2 GS/GS and wild type (WT) mice were anesthetized with isoflurane and time (s) to loss and resumption of righting response was quantified. During recovery from isoflurane anesthesia breathing was quantified in a plethysmography chamber for both lines of mice. Results Gαi2 GS/GS mice required significantly less time for loss of righting and significantly more time for resumption of righting than WT mice. During recovery from isoflurane anesthesia, Gαi2 GS/GS mice exhibited significantly greater respiratory depression. Poincaré analyses show that GS/GS mice have diminished respiratory variability compared to WT mice. Conclusion Modulation of Gαi2 signaling by RGS proteins alters loss and resumption of wakefulness, and state-dependent changes in breathing. PMID:19843788

  16. Photocontrolled Exposure of Pro-apoptotic Peptide Sequences in LOV Proteins Modulates Bcl-2 Family Interactions.

    PubMed

    Mart, Robert J; Meah, Dilruba; Allemann, Rudolf K

    2016-04-15

    LOV domains act as biomolecular sensors for light, oxygen or the environment's redox potential. Conformational changes upon the formation of a covalent cysteinyl flavin adduct are propagated through hydrogen-bonding networks in the core of designed hybrid phototropin LOV2 domains that incorporate the Bcl homology region 3 (BH3) of the key pro-apoptotic protein BH3-interacting-domain death agonist (BID). The resulting change in conformation of a flanking amphiphilic α-helix creates a light-dependent optogenetic tool for the modulation of interactions with the anti-apoptotic B-cell leukaemia-2 (Bcl-2) family member Bcl-xL . PMID:26493687

  17. NFX1 Plays a Role in Human Papillomavirus Type 16 E6 Activation of NFκB Activity▿

    PubMed Central

    Xu, Mei; Katzenellenbogen, Rachel A.; Grandori, Carla; Galloway, Denise A.

    2010-01-01

    High-risk human papillomavirus (HR HPV) requires differentiating epithelial cells to continue to divide in order to replicate the viral DNA. To achieve this, HPV perturbs several regulatory pathways, including cellular apoptosis and senescence signals. HPV E6 has been identified as a regulator of the NFκB signaling pathway, a pathway important in many cellular processes, as well as regulation of virus-host cell interactions. We report here that NFX1-91, an endogenously expressed transcriptional regulator of human telomerase reverse transcriptase (hTERT) that is targeted by HPV type 16 (HPV16) E6/E6-associated protein (E6AP) for degradation, is also critical for regulation of the NFκB pathway by HPV16 E6. Microarray analysis revealed induction of NFκB-responsive genes and reduction of NFκB inhibitors with knockdown of NFX1-91. Knockdown of NFX1-91 induced downregulation of p105, an NFκB inhibitor in both primary human foreskin keratinocytes (HFKs) and HCT116 cells. Chromatin immunoprecipitation assays further confirmed that NFX1-91 bound to the p105 promoter and upregulated its expression. Similarly, in HPV16 E6-positive cells, reduction of p105 expression was observed, paralleling knockdown of NFX1-91 expression. Overall, our data suggest a mechanism for HPV16 E6 activation of the NFκB pathway through NFX1-91. Also, it provides evidence that NFX1-91 can function as a dual regulator, not only a transcriptional repressor, but also a transcriptional activator, when bound to DNA. PMID:20739528

  18. Coronavirus Infection Modulates the Unfolded Protein Response and Mediates Sustained Translational Repression▿

    PubMed Central

    Bechill, John; Chen, Zhongbin; Brewer, Joseph W.; Baker, Susan C.

    2008-01-01

    During coronavirus replication, viral proteins induce the formation of endoplasmic reticulum (ER)-derived double-membrane vesicles for RNA synthesis, and viral structural proteins assemble virions at the ER-Golgi intermediate compartment. We hypothesized that the association and intense utilization of the ER during viral replication would induce the cellular unfolded protein response (UPR), a signal transduction cascade that acts to modulate translation, membrane biosynthesis, and the levels of ER chaperones. Here, we report that infection by the murine coronavirus mouse hepatitis virus (MHV) triggers the proximal UPR transducers, as revealed by monitoring the IRE1-mediated splicing of XBP-1 mRNA and the cleavage of ATF6α. However, we detected minimal downstream induction of UPR target genes, including ERdj4, ER degradation-enhancing α-mannosidase-like protein, and p58IPK, or expression of UPR reporter constructs. Translation initiation factor eIF2α is highly phosphorylated during MHV infection, and translation of cellular mRNAs is attenuated. Furthermore, we found that the critical homeostasis regulator GADD34, which recruits protein phosphatase 1 to dephosphorylate eIF2α during the recovery phase of the UPR, is not expressed during MHV infection. These results suggest that MHV modifies the UPR by impeding the induction of UPR-responsive genes, thereby favoring a sustained shutdown of the synthesis of host cell proteins while the translation of viral proteins escalates. The role of this modified response and its potential relevance to viral mechanisms for the evasion of innate defense signaling pathways during coronavirus replication are discussed. PMID:18305036

  19. Modulation of energy and protein supplies in sequential feeding in laying hens.

    PubMed

    Traineau, M; Bouvarel, I; Mulsant, C; Roffidal, L; Launay, C; Lescoat, P

    2015-01-01

    Sequential feeding (SF) consists of splitting energy (E) and protein/calcium (P) fractions temporally, improving the feed conversion ratio (FCR) of hens compared with a continuous distribution during the day. In a previous study, the E fraction (with a low level of protein) was provided in the morning, whereas the P fraction (with low level of energy) was given in the afternoon. However, there is no clear evidence that a requirement in energy or proteins is connected to these distribution sequences, whereas the requirement for calcium is known to be required in the afternoon. To evaluate the effects on performances of the modulation of energy and protein supplies in SF, five different sequential treatments were offered: E0P0/E0P0; E+P+/E-P-; E+P-/E-P+; E0P+/E0P- and E+P0/E-P0 where E+ represents a high energy level, E0 a moderate one and E- a low one (with the same meaning for P regarding protein supply). Afternoon fractions were provided with particulate calcium. A total of 168 Hendrix hens were housed in individual cages from 20 to 39 weeks of age in two environmentally contrasted rooms. Feed intake in the morning and afternoon fractions, egg production, egg weight, BW and weight of digestive organs were recorded. No diet effect was observed concerning feed intake, egg production and BW. These results suggested that hens are not able to fit their feed intake on energy or protein level of fractions within half-day duration, whereas at the day scale same protein and energy intakes were observed. Moreover, the time of nutrient distribution in feeding did not seem to have an impact on birds' performances. These studies have also demonstrated that, despite strong environmental pressure, the hens with SF had attenuated performance but continue to produce eggs. PMID:25192221

  20. De novo designed library of linear helical peptides: an exploratory tool in the discovery of protein-protein interaction modulators.

    PubMed

    Bonache, M Ángeles; Balsera, Beatriz; López-Méndez, Blanca; Millet, Oscar; Brancaccio, Diego; Gómez-Monterrey, Isabel; Carotenuto, Alfonso; Pavone, Luigi M; Reille-Seroussi, Marie; Gagey-Eilstein, Nathalie; Vidal, Michel; de la Torre-Martinez, Roberto; Fernández-Carvajal, Asia; Ferrer-Montiel, Antonio; García-López, M Teresa; Martín-Martínez, Mercedes; de Vega, M Jesús Pérez; González-Muñiz, Rosario

    2014-05-12

    Protein-protein interactions (PPIs) have emerged as important targets for pharmaceutical intervention because of their essential role in numerous physiological and pathological processes, but screening efforts using small-molecules have led to very low hit rates. Linear peptides could represent a quick and effective approach to discover initial PPI hits, particularly if they have inherent ability to adopt specific peptide secondary structures. Here, we address this hypothesis through a linear helical peptide library, composed of four sublibraries, which was designed by theoretical predictions of helicity (Agadir software). The 13-mer peptides of this collection fixes either a combination of three aromatic or two aromatic and one aliphatic residues on one face of the helix (Ac-SSEEX(5)ARNX(9)AAX(12)N-NH2), since these are structural features quite common at PPIs interfaces. The 81 designed peptides were conveniently synthesized by parallel solid-phase methodologies, and the tendency of some representative library components to adopt the intended secondary structure was corroborated through CD and NMR experiments. As proof of concept in the search for PPI modulators, the usefulness of this library was verified on the widely studied p53-MDM2 interaction and on the communication between VEGF and its receptor Flt-1, two PPIs for which a hydrophobic α-helix is essential for the interaction. We have demonstrated here that, in both cases, selected peptides from the library, containing the right hydrophobic sequence of the hot-spot in one of the protein partners, are able to interact with the complementary protein. Moreover, we have discover some new, quite potent inhibitors of the VEGF-Flt-1 interaction, just by replacing one of the aromatic residues of the initial F(5)Y(9)Y(12) peptide by W, in agreement with previous results on related antiangiogenic peptides. Finally, the HTS evaluation of the full collection on thermoTRPs has led to a few antagonists of TRPV1 and TRPA

  1. Using transgenic modulation of protein synthesis and accumulation to probe protein signaling networks in Arabidopsis thaliana

    PubMed Central

    Warnasooriya, Sankalpi N

    2011-01-01

    Deployment of new model species in the plant biology community requires the development and/or improvement of numerous genetic tools. Sequencing of the Arabidopsis thaliana genome opened up a new challenge of assigning biological function to each gene. As many genes exhibit spatiotemporal or other conditional regulation of biological processes, probing for gene function necessitates applications that can be geared toward temporal, spatial and quantitative functional analysis in vivo. The continuing quest to establish new platforms to examine plant gene function has resulted in the availability of numerous genomic and proteomic tools. Classical and more recent genome-wide experimental approaches include conventional mutagenesis, tagged DNA insertional mutagenesis, ectopic expression of transgenes, activation tagging, RNA interference and two-component transactivation systems. The utilization of these molecular tools has resulted in conclusive evidence for the existence of many genes, and expanded knowledge on gene structure and function. This review covers several molecular tools that have become increasingly useful in basic plant research. We discuss their advantages and limitations for probing cellular protein function while emphasizing the contributions made to lay the fundamental groundwork for genetic manipulation of crops using plant biotechnology. PMID:21862868

  2. Local conformational fluctuations can modulate the coupling between proton binding and global structural transitions in proteins

    PubMed Central

    Whitten, Steven T.; García-Moreno E., Bertrand; Hilser, Vincent J.

    2005-01-01

    Local conformational fluctuations in proteins can affect the coupling between ligand binding and global structural transitions. This finding was established by monitoring quantitatively how the population distribution in the ensemble of microstates of staphylococcal nuclease was affected by proton binding. Analysis of acid unfolding and proton-binding data with an ensemble-based model suggests that local fluctuations: (i) can be effective modulators of ligand-binding affinities, (ii) are important determinants of the cooperativity of ligand-driven global structural transitions, and (iii) are well represented thermodynamically as local unfolding processes. These studies illustrate how an ensemble-based description of proteins can be used to describe quantitatively the interdependence of local conformational fluctuations, ligand-binding processes, and global structural transitions. This level of understanding of the relationship between conformation, energy, and dynamics is required for a detailed mechanistic understanding of allostery, cooperativity, and other complex functional and regulatory properties of macromolecules. PMID:15767576

  3. Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors

    PubMed Central

    de Munnik, Sabrina M.; Smit, Martine J.; Leurs, Rob; Vischer, Henry F.

    2015-01-01

    Human herpesviruses (HHVs) are widespread infectious pathogens that have been associated with proliferative and inflammatory diseases. During viral evolution, HHVs have pirated genes encoding viral G protein-coupled receptors (vGPCRs), which are expressed on infected host cells. These vGPCRs show highest homology to human chemokine receptors, which play a key role in the immune system. Importantly, vGPCRs have acquired unique properties such as constitutive activity and the ability to bind a broad range of human chemokines. This allows vGPCRs to hijack human proteins and modulate cellular signaling for the benefit of the virus, ultimately resulting in immune evasion and viral dissemination to establish a widespread and lifelong infection. Knowledge on the mechanisms by which herpesviruses reprogram cellular signaling might provide insight in the contribution of vGPCRs to viral survival and herpesvirus-associated pathologies. PMID:25805993

  4. The Ubiquitin E3 Ligase NOSIP Modulates Protein Phosphatase 2A Activity in Craniofacial Development

    PubMed Central

    Hoffmeister, Meike; Prelle, Carola; Küchler, Philipp; Kovacevic, Igor; Moser, Markus; Müller-Esterl, Werner; Oess, Stefanie

    2014-01-01

    Holoprosencephaly is a common developmental disorder in humans characterised by incomplete brain hemisphere separation and midface anomalies. The etiology of holoprosencephaly is heterogeneous with environmental and genetic causes, but for a majority of holoprosencephaly cases the genes associated with the pathogenesis could not be identified so far. Here we report the generation of knockout mice for the ubiquitin E3 ligase NOSIP. The loss of NOSIP in mice causes holoprosencephaly and facial anomalies including cleft lip/palate, cyclopia and facial midline clefting. By a mass spectrometry based protein interaction screen we identified NOSIP as a novel interaction partner of protein phosphatase PP2A. NOSIP mediates the monoubiquitination of the PP2A catalytic subunit and the loss of NOSIP results in an increase in PP2A activity in craniofacial tissue in NOSIP knockout mice. We conclude, that NOSIP is a critical modulator of brain and craniofacial development in mice and a candidate gene for holoprosencephaly in humans. PMID:25546391

  5. The influence of the amyloid ß-protein and its precursor in modulating cerebral hemostasis.

    PubMed

    Van Nostrand, William E

    2016-05-01

    Ischemic and hemorrhagic strokes are a significant cause of brain injury leading to vascular cognitive impairment and dementia (VCID). These deleterious events largely result from disruption of cerebral hemostasis, a well-controlled and delicate balance between thrombotic and fibrinolytic pathways in cerebral blood vessels and surrounding brain tissue. Ischemia and hemorrhage are both commonly associated with cerebrovascular deposition of amyloid ß-protein (Aß). In this regard, Aß directly and indirectly modulates cerebral thrombosis and fibrinolysis. Further, major isoforms of the Aß precursor protein (AßPP) function as a potent inhibitor of pro-thrombotic proteinases. The purpose of this review article is to summarize recent research on how cerebral vascular Aß and AßPP influence cerebral hemostasis. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia, edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock. PMID:26519139

  6. Interactions between Starch, Lipids, and Proteins in Foods: Microstructure Control for Glycemic Response Modulation.

    PubMed

    Parada, Javier; Santos, Jose L

    2016-10-25

    In real food, starch is usually forming part of a matrix with lipids and proteins. However, research on this ternary system and interactions between such food components has been scarce so far. The control of food microstructure is crucial to determine the product properties, including sensorial and nutritionals ones. This paper reviews the microstructural principles of interactions between starch, lipids, and proteins in foods as well as their effect on postprandial glycemic response, considering human intrinsic differences on postprandial glycemic responses. Several lines of research support the hypothesis that foods without rapidly digestible starch will not mandatorily generate the lowest postprandial glycemic response, highlighting that the full understanding of food microstructure, which modulates starch digestion, plays a key role on food design from a nutritional viewpoint. PMID:25831145

  7. Interaction between protein kinase C and protein kinase A can modulate transmitter release at the rat neuromuscular synapse.

    PubMed

    Santafé, M M; Garcia, N; Lanuza, M A; Tomàs, M; Tomàs, J

    2009-02-15

    We used intracellular recording to investigate the functional interaction between protein kinase C (PKC) and protein kinase A (PKA) signal transduction cascades in the control of transmitter release in the neuromuscular synapses from adult rats. Our results indicate that: 1) PKA and PKC are independently involved in asynchronous release. 2) Evoked acetylcholine (ACh) release is enhanced with the PKA agonist Sp-8-BrcAMP and the PKC agonist phorbol ester (PMA). 3) PKA has a constitutive role in promoting a component of normal evoked transmitter release because, when the kinase is inhibited with H-89, the release diminishes. However, the PKC inhibitor calphostin C (CaC) does not affect ACh release. 4) PKA regulates neurotransmission without PKC involvement because, after PMA or CaC modulation of the PKC activity, coupling to the ACh release of PKA can normally be stimulated with Sp-8-BrcAMP or inhibited with H-89. 5) After PKA inhibition with H-89, PKC stimulation with PMA (or inhibition with CaC) does not lead to any change in evoked ACh release. However, in PKA-stimulated preparations with Sp-8-BrcAMP, PKC becomes tonically active, thus potentiating a component of release that can now be blocked with CaC. In normal conditions, therefore, PKA was able to modulate ACh release independently of PKC activity, whereas PKA stimulation caused the PKC coupling to evoked release. In contrast, PKA inhibition prevent PKC stimulation (with the phorbol ester) and coupling to ACh output. There was therefore some dependence of PKC on PKA activity in the fine control of the neuromuscular synaptic functionalism and ACh release. PMID:18816790

  8. Acceleration of crossbridge kinetics by protein kinase A phosphorylation of cardiac myosin binding protein C modulates cardiac function.

    PubMed

    Tong, Carl W; Stelzer, Julian E; Greaser, Marion L; Powers, Patricia A; Moss, Richard L

    2008-10-24

    Normal cardiac function requires dynamic modulation of contraction. beta1-adrenergic-induced protein kinase (PK)A phosphorylation of cardiac myosin binding protein (cMyBP)-C may regulate crossbridge kinetics to modulate contraction. We tested this idea with mechanical measurements and echocardiography in a mouse model lacking 3 PKA sites on cMyBP-C, ie, cMyBP-C(t3SA). We developed the model by transgenic expression of mutant cMyBP-C with Ser-to-Ala mutations on the cMyBP-C knockout background. Western blots, immunofluorescence, and in vitro phosphorylation combined to show that non-PKA-phosphorylatable cMyBP-C expressed at 74% compared to normal wild-type (WT) and was correctly positioned in the sarcomeres. Similar expression of WT cMyBP-C at 72% served as control, ie, cMyBP-C(tWT). Skinned myocardium responded to stretch with an immediate increase in force, followed by a transient relaxation of force and finally a delayed development of force, ie, stretch activation. The rate constants of relaxation, k(rel) (s-1), and delayed force development, k(df) (s-1), in the stretch activation response are indicators of crossbridge cycling kinetics. cMyBP-C(t3SA) myocardium had baseline k(rel) and k(df) similar to WT myocardium, but, unlike WT, k(rel) and k(df) were not accelerated by PKA treatment. Reduced dobutamine augmentation of systolic function in cMyBP-C(t3SA) hearts during echocardiography corroborated the stretch activation findings. Furthermore, cMyBP-C(t3SA) hearts exhibited basal echocardiographic findings of systolic dysfunction, diastolic dysfunction, and hypertrophy. Conversely, cMyBP-C(tWT) hearts performed similar to WT. Thus, PKA phosphorylation of cMyBP-C accelerates crossbridge kinetics and loss of this regulation leads to cardiac dysfunction. PMID:18802026

  9. IP-FCM Measures Physiologic Protein-Protein Interactions Modulated by Signal Transduction and Small-Molecule Drug Inhibition

    PubMed Central

    Smith, Stephen E. P.; Bida, Anya T.; Davis, Tessa R.; Sicotte, Hugues; Patterson, Steven E.; Gil, Diana; Schrum, Adam G.

    2012-01-01

    Protein-protein interactions (PPI) mediate the formation of intermolecular networks that control biological signaling. For this reason, PPIs are of outstanding interest in pharmacology, as they display high specificity and may represent a vast pool of potentially druggable targets. However, the study of physiologic PPIs can be limited by conventional assays that often have large sample requirements and relatively low sensitivity. Here, we build on a novel method, immunoprecipitation detected by flow cytometry (IP-FCM), to assess PPI modulation during either signal transduction or pharmacologic inhibition by two different classes of small-molecule compounds. First, we showed that IP-FCM can detect statistically significant differences in samples possessing a defined PPI change as low as 10%. This sensitivity allowed IP-FCM to detect a PPI that increases transiently during T cell signaling, the antigen-inducible interaction between ZAP70 and the T cell antigen receptor (TCR)/CD3 complex. In contrast, IP-FCM detected no ZAP70 recruitment when T cells were stimulated with antigen in the presence of the src-family kinase inhibitor, PP2. Further, we tested whether IP-FCM possessed sufficient sensitivity to detect the effect of a second, rare class of compounds called SMIPPI (small-molecule inhibitor of PPI). We found that the first-generation non-optimized SMIPPI, Ro-26-4550, inhibited the IL-2:CD25 interaction detected by IP-FCM. This inhibition was detectable using either a recombinant CD25-Fc chimera or physiologic full-length CD25 captured from T cell lysates. Thus, we demonstrate that IP-FCM is a sensitive tool for measuring physiologic PPIs that are modulated by signal transduction and pharmacologic inhibition. PMID:23029201

  10. Striatal-enriched protein tyrosine phosphatase modulates nociception: evidence from genetic deletion and pharmacological inhibition.

    PubMed

    Azkona, Garikoitz; Saavedra, Ana; Aira, Zigor; Aluja, David; Xifró, Xavier; Baguley, Tyler; Alberch, Jordi; Ellman, Jonathan A; Lombroso, Paul J; Azkue, Jon J; Pérez-Navarro, Esther

    2016-02-01

    The information from nociceptors is processed in the dorsal horn of the spinal cord by complex circuits involving excitatory and inhibitory interneurons. It is well documented that GluN2B and ERK1/2 phosphorylation contributes to central sensitization. Striatal-enriched protein tyrosine phosphatase (STEP) dephosphorylates GluN2B and ERK1/2, promoting internalization of GluN2B and inactivation of ERK1/2. The activity of STEP was modulated by genetic (STEP knockout mice) and pharmacological (recently synthesized STEP inhibitor, TC-2153) approaches. STEP(61) protein levels in the lumbar spinal cord were determined in male and female mice of different ages. Inflammatory pain was induced by complete Freund's adjuvant injection. Behavioral tests, immunoblotting, and electrophysiology were used to analyze the effect of STEP on nociception. Our results show that both genetic deletion and pharmacological inhibition of STEP induced thermal hyperalgesia and mechanical allodynia, which were accompanied by increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Striatal-enriched protein tyrosine phosphatase heterozygous and knockout mice presented a similar phenotype. Furthermore, electrophysiological experiments showed that TC-2153 increased C fiber-evoked spinal field potentials. Interestingly, we found that STEP(61) protein levels in the lumbar spinal cord inversely correlated with thermal hyperalgesia associated with age and female gender in mice. Consistently, STEP knockout mice failed to show age-related thermal hyperalgesia, although gender-related differences were preserved. Moreover, in a model of inflammatory pain, hyperalgesia was associated with increased phosphorylation-mediated STEP(61) inactivation and increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Collectively, the present results underscore an important role of spinal STEP activity in the modulation of nociception. PMID:26270590

  11. Repression of the integrated papillomavirus E6/E7 promoter is required for growth suppression of cervical cancer cells.

    PubMed

    Francis, D A; Schmid, S I; Howley, P M

    2000-03-01

    The human papillomavirus (HPV) E2 protein is an important regulator of viral E6 and E7 gene expression. E2 can repress the viral promoter for E6 and E7 expression as well as block progression of the cell cycle in cancer cells harboring the DNA of "high-risk" HPV types. Although the phenomenon of E2-mediated growth arrest of HeLa cells and other HPV-positive cancer cells has been well documented, the specific mechanism by which E2 affects cellular proliferation has not yet been elucidated. Here, we show that bovine papillomavirus (BPV) E2-induced growth arrest of HeLa cells requires the repression of the E6 and E7 promoter. This repression is specific for E2TA and not E2TR, a BPV E2 variant that lacks the N-terminal transactivation domain. We demonstrate that expression of HPV16 E6 and E7 from a heterologous promoter that is not regulated by E2 rescues HeLa cells from E2-mediated growth arrest. Our data indicate that the pathway of E2-mediated growth arrest of HeLa cells requires repression of E6 and E7 expression through an activity specified by the transactivation domain of E2TA. PMID:10684283

  12. Phylogenetic and functional analysis of sequence variation of human papillomavirus type 31 E6 and E7 oncoproteins.

    PubMed

    Ferenczi, Annamária; Gyöngyösi, Eszter; Szalmás, Anita; László, Brigitta; Kónya, József; Veress, György

    2016-09-01

    High-risk human papillomaviruses (HPV) are the causative agents of cervical and other anogenital cancers as well as a subset of head and neck cancers. The E6 and E7 oncoproteins of HPV contribute to oncogenesis by associating with the tumour suppressor protein p53 and pRb, respectively. For HPV types 16 and 18, intratypic sequence variation was shown to have biological and clinical significance. The functional significance of sequence variation among HPV 31 variants was studied less intensively. HPV 31 variants belonging to different variant lineages were found to have differences in persistence and in the ability to cause high grade cervical intraepithelial neoplasia. In the present study, we started to explore the functional effects of natural sequence variation of HPV 31 E6 and E7 oncoproteins. The E6 variants were tested for their effects on p53 protein stability and transcriptional activity, while the E7 variants were tested for their effects on pRb protein level and also on the transcriptional activity of E2F transcription factors. HPV 31 E7 variants displayed uniform effects on pRb stability and also on the activity of E2F transcription factors. HPV 31 E6 variants had remarkable differences in the ability to inhibit the trans-activation function of p53 but not in the ability to induce the in vivo degradation of p53. Our results indicate that natural sequence variation of the HPV 31 E6 protein may be involved in the observed differences in the oncogenic potential between HPV 31 variants. PMID:27197052

  13. Endogenous heparan sulfate and heparin modulate bone morphogenetic protein-4 signaling and activity.

    PubMed

    Khan, Shaukat A; Nelson, Matthew S; Pan, Chendong; Gaffney, Patrick M; Gupta, Pankaj

    2008-06-01

    Bone morphogenetic proteins (BMPs) and their endogenous antagonists are important for brain and bone development and tumor initiation and progression. Heparan sulfate (HS) proteoglycans (HSPG) modulate the activities of BMPs and their antagonists. How glycosaminoglycans (GAGs) influence BMP activity in various malignancies and in inherited abnormalities of GAG metabolism, and the structural features of GAGs essential for modulation of BMP signaling, remain incompletely defined. We examined whether chemically modified soluble heparins, the endogenous HS in malignant cells and the HS accumulated in Hurler syndrome cells influence BMP-4 signaling and activity. We show that both exogenous (soluble) and endogenous GAGs modulate BMP-4 signaling and activity, and that this effect is dependent on specific sulfate residues of GAGs. Our studies suggest that endogenous sulfated GAGs promote the proliferation and impair differentiation of malignant human cells, providing the rationale for investigating whether pharmacological agents that inhibit GAG synthesis or function might reverse this effect. Our demonstration of impairment of BMP-4 signaling by GAGs in multipotent stem cells in human Hurler syndrome identifies a mechanism that might contribute to the progressive neurological and skeletal abnormalities in Hurler syndrome and related mucopolysaccharidoses. PMID:18385288

  14. G-Protein Modulation of Voltage-Gated Ca2+ Channels from Isolated Adult Rat Superior Cervical Ganglion Neurons.

    PubMed

    Lu, Van B; Ikeda, Stephen R

    2016-01-01

    Sympathetic neurons isolated from adult rat superior cervical ganglia (SCG) are a well-established model to study G-protein modulation of voltage-gated Ca(2+) channels (VGCCs). SCG neurons can be easily dissociated and are amendable to heterologous expression of genes, including genetic tools to study G-protein signaling pathways, within a time frame to maintain good spatial voltage-clamp control of membrane potential during electrophysiological recordings (8-36 h postdissociation). This protocol focuses on examining G-protein modulation of VGCCs; however, the procedures and experimental setup for acute application of agonists can be applied to study modulation of other ion channels (e.g., M-current, G-protein-coupled inwardly rectifying K(+) channels). We also discuss some common sources of artifacts that can arise during acute drug application onto dissociated neurons, which can mislead interpretation of results. PMID:27140920

  15. The Protein Oxidation Repair Enzyme Methionine Sulfoxide Reductase A Modulates Aβ Aggregation and Toxicity In Vivo

    PubMed Central

    Minniti, Alicia N.; Arrazola, Macarena S.; Bravo-Zehnder, Marcela; Ramos, Francisca; Inestrosa, Nibaldo C.

    2015-01-01

    Abstract Aims: To examine the role of the enzyme methionine sulfoxide reductase A-1 (MSRA-1) in amyloid-β peptide (Aβ)-peptide aggregation and toxicity in vivo, using a Caenorhabditis elegans model of the human amyloidogenic disease inclusion body myositis. Results: MSRA-1 specifically reduces oxidized methionines in proteins. Therefore, a deletion of the msra-1 gene was introduced into transgenic C. elegans worms that express the Aβ-peptide in muscle cells to prevent the reduction of oxidized methionines in proteins. In a constitutive transgenic Aβ strain that lacks MSRA-1, the number of amyloid aggregates decreases while the number of oligomeric Aβ species increases. These results correlate with enhanced synaptic dysfunction and mislocalization of the nicotinic acetylcholine receptor ACR-16 at the neuromuscular junction (NMJ). Innovation: This approach aims at modulating the oxidation of Aβ in vivo indirectly by dismantling the methionine sulfoxide repair system. The evidence presented here shows that the absence of MSRA-1 influences Aβ aggregation and aggravates locomotor behavior and NMJ dysfunction. The results suggest that therapies which boost the activity of the Msr system could have a beneficial effect in managing amyloidogenic pathologies. Conclusion: The absence of MSRA-1 modulates Aβ-peptide aggregation and increments its deleterious effects in vivo. Antioxid. Redox Signal. 22, 48–62. PMID:24988428

  16. SLAM family receptors and the SLAM-associated protein (SAP) modulate T cell functions

    PubMed Central

    Keszei, Marton; Romero, Xavier; Tsokos, George C.

    2010-01-01

    One or more of the signaling lymphocytic activation molecule (SLAM) family (SLAMF) of cell surface receptors, which consists of nine transmembrane proteins, i.e., SLAMF1-9, are expressed on most hematopoietic cells. While most SLAMF receptors serve as self-ligands, SLAMF2 and SLAMF4 use each other as counter structures. Six of the receptors carry one or more copies of a unique intracellular tyrosine-based switch motif, which has high affinity for the single SH2-domain signaling molecules SLAM-associated protein and EAT-2. Whereas SLAMF receptors are costimulatory molecules on the surface of CD4+, CD8+, and natural killer (NK) T cells, they also involved in early phases of lineage commitment during hematopoiesis. SLAMF receptors regulate T lymphocyte development and function and modulate lytic activity, cytokine production, and major histocompatibility complex-independent cell inhibition of NK cells. Furthermore, they modulate B cell activation and memory generation, neutrophil, dendritic cell, macrophage and eosinophil function, and platelet aggregation. In this review, we will discuss the role of SLAM receptors and their adapters in Tcell function, and we will examine the role of these receptors and their adapters in X-linked lymphoproliferative disease and their contribution to disease susceptibility in systemic lupus erythematosus. PMID:20146065

  17. Prion protein binding to HOP modulates the migration and invasion of colorectal cancer cells.

    PubMed

    de Lacerda, Tonielli Cristina Sousa; Costa-Silva, Bruno; Giudice, Fernanda Salgueiredo; Dias, Marcos Vinicios Salles; de Oliveira, Gabriela Pintar; Teixeira, Bianca Luise; Dos Santos, Tiago Goss; Martins, Vilma Regina

    2016-06-01

    Colorectal cancer (CRC) is one of the most frequently diagnosed malignancies. The generation of conventional treatments has improved, but approximately 50 % of patients with CRC who undergo potentially curative surgery ultimately relapse and die, usually as a consequence of metastatic disease. Our previous findings showed that engagement of the cellular prion protein (PrP(C)) to its ligand HSP70/90 heat shock organizing protein (HOP) induces proliferation of glioblastomas. In addition, PrP(C) has been described as an important modulator of colorectal tumor growth. Here, we investigated the biological relevance of the PrP(C)-HOP interaction in CRC cells. We demonstrate that HOP induced the migration and invasion of CRC cell lines in a PrP(C)-dependent manner and that phosphorylation of the ERK1/2 pathway is a downstream mediator of these effects. Additionally, we show that a HOP peptide with the ability to bind PrP(C) and abolish the PrP(C)-HOP interaction inhibited the migration and invasion of CRC cells. Together, these data indicate that the disruption of the PrP(C)-HOP complex could be a potential therapeutic target for modulating the migratory and invasive cellular properties that lead to metastatic CRC. PMID:27112151

  18. Myeloid Cell 5-Lipoxygenase Activating Protein Modulates the Response to Vascular Injury

    PubMed Central

    Yu, Zhou; Ricciotti, Emanuela; Miwa, Takashi; Liu, Shulin; Ihida-Stansbury, Kaori; Landersberg, Gavin; Jones, Peter L.; Scalia, Rosario; Song, Wenchao; Assoian, Richard K.; FitzGerald, Garret A.

    2013-01-01

    Rationale Human genetics have implicated the 5- lipoxygenase (5-LO) enzyme in the pathogenesis of cardiovascular disease and an inhibitor of the 5-LO activating protein (FLAP) is in clinical development for asthma. Objective Here we determined whether FLAP deletion modifies the response to vascular injury. Methods and Results Vascular remodeling was characterized 4 weeks after femoral arterial injury in FLAP knockout (FLAP KO) mice and wild type (WT) controls. Both neointimal hyperplasia and the intima/media ratio of the injured artery were significantly reduced in the FLAP KOs while endothelial integrity was preserved. Lesional myeloid cells were depleted and vascular smooth muscle cell (VSMC) proliferation, as reflected by bromodeoxyuridine (BrdU) incorporation, was markedly attenuated by FLAP deletion. Inflammatory cytokine release from FLAP KO macrophages was depressed and their restricted ability to induce VSMC migration ex vivo was rescued with leukotriene B4 (LTB4). FLAP deletion restrained injury and attenuated upregulation of the extracellular matrix protein, tenascin C (TNC), which affords a scaffold for VSMC migration. Correspondingly, the phenotypic modulation of VSMC to a more synthetic phenotype, reflected by morphological change, loss of α-smooth muscle cell actin and upregulation of vascular cell adhesion molecule (VCAM) -1 was also suppressed in FLAP KO mice. Transplantation of FLAP replete myeloid cells rescued the proliferative response to vascular injury. Conclusion Expression of lesional FLAP in myeloid cells promotes LTB4 dependent VSMC phenotypic modulation, intimal migration and proliferation. PMID:23250985

  19. The Effect of Nanotopography on Modulating Protein Adsorption and the Fibrotic Response

    PubMed Central

    Kam, Kimberly R.; Walsh, Laura A.; Bock, Suzanne M.; Ollerenshaw, Jeremy D.; Ross, Russell F.

    2014-01-01

    Understanding and modulating the cellular response to implanted biomaterials is crucial for the field of tissue engineering and regenerative medicine. Since cells typically reside in an extracellular matrix containing nanoscale architecture, identifying synthetic nanostructures that induce desirable cellular behaviors could greatly impact the field. Using nanoimprint lithography, nanostructured patterns were generated on thin film polymeric materials. The ability of these surfaces to influence protein adsorption, fibroblast proliferation and morphology, and fibrotic markers was investigated. Nanostructured features with aspect ratios greater than five allowed for less protein adsorption, resulting in decreased fibroblast proliferation and rounded cellular morphology. These nanofeatures also induced significantly lower gene expression of collagen 1α2, collagen 3α1, and growth factors such as connective tissue growth factor, integrin linked kinase, transforming growth factor β1 (TGF-β1), and epidermal growth factor, key factors associated with a fibrotic response. The results demonstrate that select nanostructured surfaces could be used to modulate the fibrotic behavior in cells and have the potential to be used as antifibrotic architecture for medical implants or tissue engineering scaffolds. PMID:23914986

  20. Insulin Stimulates S100B Secretion and These Proteins Antagonistically Modulate Brain Glucose Metabolism.

    PubMed

    Wartchow, Krista Minéia; Tramontina, Ana Carolina; de Souza, Daniela F; Biasibetti, Regina; Bobermin, Larissa D; Gonçalves, Carlos-Alberto

    2016-06-01

    Brain metabolism is highly dependent on glucose, which is derived from the blood circulation and metabolized by the astrocytes and other neural cells via several pathways. Glucose uptake in the brain does not involve insulin-dependent glucose transporters; however, this hormone affects the glucose influx to the brain. Changes in cerebrospinal fluid levels of S100B (an astrocyte-derived protein) have been associated with alterations in glucose metabolism; however, there is no evidence whether insulin modulates glucose metabolism and S100B secretion. Herein, we investigated the effect of S100B on glucose metabolism, measuring D-(3)H-glucose incorporation in two preparations, C6 glioma cells and acute hippocampal slices, and we also investigated the effect of insulin on S100B secretion. Our results showed that: (a) S100B at physiological levels decreases glucose uptake, through the multiligand receptor RAGE and mitogen-activated protein kinase/ERK signaling, and (b) insulin stimulated S100B secretion via PI3K signaling. Our findings indicate the existence of insulin-S100B modulation of glucose utilization in the brain tissue, and may improve our understanding of glucose metabolism in several conditions such as ketosis, streptozotocin-induced dementia and pharmacological exposure to antipsychotics, situations that lead to changes in insulin signaling and extracellular levels of S100B. PMID:26875731

  1. Protein kinase A-dependent phosphorylation modulates DNA-binding activity of hepatocyte nuclear factor 4.

    PubMed

    Viollet, B; Kahn, A; Raymondjean, M

    1997-08-01

    Hepatocyte nuclear factor 4 (HNF4), a liver-enriched transcription factor of the nuclear receptor superfamily, is critical for development and liver-specific gene expression. Here, we demonstrate that its DNA-binding activity is modulated posttranslationally by phosphorylation in vivo, ex vivo, and in vitro. In vivo, HNF4 DNA-binding activity is reduced by fasting and by inducers of intracellular cyclic AMP (cAMP) accumulation. A consensus protein kinase A (PKA) phosphorylation site located within the A box of its DNA-binding domain has been identified, and its role in phosphorylation-dependent inhibition of HNF4 DNA-binding activity has been investigated. Mutants of HNF4 in which two potentially phosphorylatable serines have been replaced by either neutral or charged amino acids were able to bind DNA in vitro with affinity similar to that of the wild-type protein. However, phosphorylation by PKA strongly repressed the binding affinity of the wild-type factor but not that of HNF4 mutants. Accordingly, in transfection assays, expression vectors for the mutated HNF4 proteins activated transcription more efficiently than that for the wild-type protein-when cotransfected with the PKA catalytic subunit expression vector. Therefore, HNF4 is a direct target of PKA which might be involved in the transcriptional inhibition of liver genes by cAMP inducers. PMID:9234678

  2. Protein kinase A-dependent phosphorylation modulates DNA-binding activity of hepatocyte nuclear factor 4.

    PubMed Central

    Viollet, B; Kahn, A; Raymondjean, M

    1997-01-01

    Hepatocyte nuclear factor 4 (HNF4), a liver-enriched transcription factor of the nuclear receptor superfamily, is critical for development and liver-specific gene expression. Here, we demonstrate that its DNA-binding activity is modulated posttranslationally by phosphorylation in vivo, ex vivo, and in vitro. In vivo, HNF4 DNA-binding activity is reduced by fasting and by inducers of intracellular cyclic AMP (cAMP) accumulation. A consensus protein kinase A (PKA) phosphorylation site located within the A box of its DNA-binding domain has been identified, and its role in phosphorylation-dependent inhibition of HNF4 DNA-binding activity has been investigated. Mutants of HNF4 in which two potentially phosphorylatable serines have been replaced by either neutral or charged amino acids were able to bind DNA in vitro with affinity similar to that of the wild-type protein. However, phosphorylation by PKA strongly repressed the binding affinity of the wild-type factor but not that of HNF4 mutants. Accordingly, in transfection assays, expression vectors for the mutated HNF4 proteins activated transcription more efficiently than that for the wild-type protein-when cotransfected with the PKA catalytic subunit expression vector. Therefore, HNF4 is a direct target of PKA which might be involved in the transcriptional inhibition of liver genes by cAMP inducers. PMID:9234678

  3. A subset of RAB proteins modulates PP2A phosphatase activity.

    PubMed

    Sacco, Francesca; Mattioni, Anna; Boldt, Karsten; Panni, Simona; Santonico, Elena; Castagnoli, Luisa; Ueffing, Marius; Cesareni, Gianni

    2016-01-01

    Protein phosphatase 2A (PP2A) is one of the most abundant serine-threonine phosphatases in mammalian cells. PP2A is a hetero-trimeric holoenzyme participating in a variety of physiological processes whose deregulation is often associated to cancer. The specificity and activity of this phosphatase is tightly modulated by a family of regulatory B subunits that dock the catalytic subunit to the substrates. Here we characterize a novel and unconventional molecular mechanism controlling the activity of the tumor suppressor PP2A. By applying a mass spectrometry-based interactomics approach, we identified novel PP2A interacting proteins. Unexpectedly we found that a significant number of RAB proteins associate with the PP2A scaffold subunit (PPP2R1A), but not with the catalytic subunit (PPP2CA). Such interactions occur in vitro and in vivo in specific subcellular compartments. Notably we demonstrated that one of these RAB proteins, RAB9, competes with the catalytic subunit PPP2CA in binding to PPP2R1A. This competitive association has an important role in controlling the PP2A catalytic activity, which is compromised in several solid tumors and leukemias. PMID:27611305

  4. A subset of RAB proteins modulates PP2A phosphatase activity

    PubMed Central

    Sacco, Francesca; Mattioni, Anna; Boldt, Karsten; Panni, Simona; Santonico, Elena; Castagnoli, Luisa; Ueffing, Marius; Cesareni, Gianni

    2016-01-01

    Protein phosphatase 2A (PP2A) is one of the most abundant serine–threonine phosphatases in mammalian cells. PP2A is a hetero-trimeric holoenzyme participating in a variety of physiological processes whose deregulation is often associated to cancer. The specificity and activity of this phosphatase is tightly modulated by a family of regulatory B subunits that dock the catalytic subunit to the substrates. Here we characterize a novel and unconventional molecular mechanism controlling the activity of the tumor suppressor PP2A. By applying a mass spectrometry-based interactomics approach, we identified novel PP2A interacting proteins. Unexpectedly we found that a significant number of RAB proteins associate with the PP2A scaffold subunit (PPP2R1A), but not with the catalytic subunit (PPP2CA). Such interactions occur in vitro and in vivo in specific subcellular compartments. Notably we demonstrated that one of these RAB proteins, RAB9, competes with the catalytic subunit PPP2CA in binding to PPP2R1A. This competitive association has an important role in controlling the PP2A catalytic activity, which is compromised in several solid tumors and leukemias. PMID:27611305

  5. The Bladder Tumor Suppressor Protein TERE1 (UBIAD1)Modulates Cell Cholesterol: Implications for Tumor Progression

    PubMed Central

    McGarvey, Terry; Wang, Huiyi; Lal, Priti; Puthiyaveettil, Raghunath; Tomaszewski, John; Sepulveda, Jorge; Labelle, Ed; Weiss, Jayne S.; Nickerson, Michael L.; Kruth, Howard S.; Brandt, Wolfgang; Wessjohann, Ludger A.; Malkowicz, S. Bruce

    2011-01-01

    Convergent evidence implicates the TERE1 protein in human bladder tumor progression and lipid metabolism. Previously, reduced TERE1 expression was found in invasive urologic cancers and inhibited cell growth upon re-expression. A role in lipid metabolism was suggested by TERE1 binding to APOE, a cholesterol carrier, and to TBL2, a candidate protein in triglyceride disorders. Natural TERE1 mutations associate with Schnyder's corneal dystrophy, characterized by lipid accumulation. TERE1 catalyzes menaquinone synthesis, known to affect cholesterol homeostasis. To explore this relationship, we altered TERE1 and TBL2 dosage via ectopic expression and interfering RNA and measured cholesterol by Amplex red. Protein interactions of wild-type and mutant TERE1 with GST-APOE were evaluated by binding assays and molecular modeling. We conducted a bladder tumor microarray TERE1 expression analysis and assayed tumorigenicity of J82 cells ectopically expressing TERE1. TERE1 expression was reduced in a third of invasive specimens. Ectopic TERE1 expression in J82 bladder cancer cells dramatically inhibited nude mouse tumorigenesis. TERE1 and TBL2 proteins inversely modulated cellular cholesterol in HEK293 and bladder cancer cells from 20% to 50%. TERE1 point mutations affected APOE interactions, and resulted in cholesterol levels that differed from wild type. Elevated tumor cell cholesterol is known to affect apoptosis and growth signaling; thus, loss of TERE1 in invasive bladder cancer may represent a defect in menaquinone-mediated cholesterol homeostasis that contributes to progression. PMID:21740188

  6. Alteration of cardiac glycoside positive inotropic action by modulators of protein synthesis and degradation

    SciTech Connect

    Nosek, T.M.; Adams, R.J.

    1986-03-05

    Numerous membrane bound and cytoplasmic proteins participate in the cardiac expression of the positive inotropic action (PIA) of digitalis glycosides including the Na,K-ATPase (NKA). Exposure of the myocardium to an inhibitor of protein synthesis (cycloheximide, CYC) or of protein degradation (leupeptin, LEU) alters the PIA of ouabain in isolated, paced guinea pig papillary muscles (PM) in opposite ways. In vivo exposure to CYC for 3 hr resulted in a 30% depression of the in vitro PIA of ouabain at 1.7..mu..M compared to control. In vivo exposure to LEU for 1 hr resulted in a 47% enhancement of the in vitro PIA of 1.7..mu..M ouabain. Neither drug had an apparent effect on the ouabain PIA ED50. Neither CYC nor LEU exposure to PM in vitro affect resting or developed tension or the response of skinned PM to calcium. The mechanisms of the PIA alterations by CYC or LEU do not involve a direct effect on the digitalis receptor. Exposure of isolated cardiac sarcolemma enriched in NKA to 10-100..mu..M CYC or LEU did not affect NKA activity or /sup 3/H-ouabain binding. Although direct physicochemical effects of CYC or LEU may be involved in the alterations of the ouabain PIA, it is possible that modulation of the cellular levels or turnover rate of short-lived proteins may affect cardiac regulation of the digitalis PIA.

  7. The Novel Nuclear Envelope Protein KAKU4 Modulates Nuclear Morphology in Arabidopsis[W

    PubMed Central

    Goto, Chieko; Tamura, Kentaro; Fukao, Yoichiro; Shimada, Tomoo; Hara-Nishimura, Ikuko

    2014-01-01

    In animals, the nuclear lamina is a fibrillar meshwork on the inner surface of the nuclear envelope, composed of coiled-coil lamin proteins and lamin binding membrane proteins. Plants also have a meshwork on the inner surface of the nuclear envelope, but little is known about its composition other than the presence of members of the CROWDED NUCLEI (CRWN) protein family, possible plant lamin analogs. Here, we describe a candidate lamina component, based on two Arabidopsis thaliana mutants (kaku2 and kaku4) with aberrant nuclear morphology. The responsible gene in kaku2 encodes CRWN1, and the responsible gene in kaku4 encodes a plant-specific protein of unknown function (KAKU4) that physically interacts with CRWN1 and its homolog CRWN4. Immunogold labeling revealed that KAKU4 localizes at the inner nuclear membrane. KAKU4 deforms the nuclear envelope in a dose-dependent manner, in association with nuclear membrane invagination and stack formation. The KAKU4-dependent nuclear envelope deformation was enhanced by overaccumulation of CRWN1, although KAKU4 can deform the nuclear envelope even in the absence of CRWN1 and/or CRWN4. Together, these results suggest that plants have evolved a unique lamina-like structure to modulate nuclear shape and size. PMID:24824484

  8. Melatonin decreases breast cancer metastasis by modulating Rho-associated kinase protein-1 expression

    PubMed Central

    Borin, Thaiz Ferraz; Arbab, Ali Syed; Gelaleti, Gabriela Bottaro; Ferreira, Lívia Carvalho; Moschetta, Marina Gobbe; Jardim-Perassi, Bruna Victorasso; Iskander, ASM; Varma, Nadimpalli Ravi S.; Shankar, Adarsh; Coimbra, Verena Benedick; Fabri, Vanessa Alves; de Oliveira, Juliana Garcia; de Campos Zuccari, Debora Aparecida Pires

    2016-01-01

    The occurrence of metastasis, an important breast cancer prognostic factor, depends on cell migration/invasion mechanisms, which can be controlled by regulatory and effector molecules such as Rho-associated kinase protein (ROCK-1). Increased expression of this protein promotes tumor growth and metastasis, which can be restricted by ROCK-1 inhibitors. Melatonin has shown oncostatic, antimetastatic, and anti-angiogenic effects and can modulate ROCK-1 expression. Metastatic and nonmetastatic breast cancer cell lines were treated with melatonin as well as with specific ROCK-1 inhibitor (Y27632). Cell viability, cell migration/invasion, and ROCK-1 gene expression and protein expression were determined in vitro. In vivo lung metastasis study was performed using female athymic nude mice treated with either melatonin or Y27832 for 2 and 5 wk. The metastases were evaluated by X-ray computed tomography and single photon emission computed tomography (SPECT) and by immunohistochemistry for ROCK-1 and cytokeratin proteins. Melatonin and Y27632 treatments reduced cell viability and invasion/migration of both cell lines and decreased ROCK-1 gene expression in metastatic cells and protein expression in nonmetastatic cell line. The numbers of ‘hot’ spots (lung metastasis) identified by SPECT images were significantly lower in treated groups. ROCK-1 protein expression also was decreased in metastatic foci of treated groups. Melatonin has shown to be effective in controlling metastatic breast cancer in vitro and in vivo, not only via inhibition of the proliferation of tumor cells but also through direct antagonism of metastatic mechanism of cells rendered by ROCK-1 inhibition. When Y27632 was used, the effects were similar to those found with melatonin treatment. PMID:26292662

  9. Microbiota Modulates Behavior and Protein Kinase C mediated cAMP response element-binding protein Signaling

    PubMed Central

    Zeng, Li; Zeng, Benhua; Wang, Haiyang; Li, Bo; Huo, Ran; Zheng, Peng; Zhang, Xiaotong; Du, Xiangyu; Liu, Meiling; Fang, Zheng; Xu, Xuejiao; Zhou, Chanjuan; Chen, Jianjun; Li, Wenxia; Guo, Jing; Wei, Hong; Xie, Peng

    2016-01-01

    Evolutionary pressure drives gut microbiota–host coevolution and results in complex interactions between gut microbiota and neural development; however, the molecular mechanisms by which the microbiota governs host behavior remain obscure. Here, we report that colonization early in life is crucial for the microbiota to modulate brain development and behavior; later colonization or deletion of microbiota cannot completely reverse the behaviors. Microarray analysis revealed an association between absence of gut microbiota and expression in cAMP responding element-binding protein (CREB) regulated genes in the hippocampus. The absence of gut microbiota from birth was shown to be associated with decreased CREB expression, followed by decreases of protein kinase C beta (PRKCB) and AMPA receptors expression, and an increase of phosphorylation CREB (pCREB) expression. Microbiota colonization in adolescence restored CREB and pCREB expression, but did not alter PRKCB and AMPARs expression. The removal of the gut microbiota from SPF mice using antibiotics only reduced pCREB expression. These findings suggest that (i) colonization of the gut microbiota early in life might facilitate neurodevelopment via PKC–CREB signaling and (ii) although GF mice and ABX mice display reduced anxiety-related behaviors, the molecular mechanisms behind this might differ. PMID:27444685

  10. Microbiota Modulates Behavior and Protein Kinase C mediated cAMP response element-binding protein Signaling.

    PubMed

    Zeng, Li; Zeng, Benhua; Wang, Haiyang; Li, Bo; Huo, Ran; Zheng, Peng; Zhang, Xiaotong; Du, Xiangyu; Liu, Meiling; Fang, Zheng; Xu, Xuejiao; Zhou, Chanjuan; Chen, Jianjun; Li, Wenxia; Guo, Jing; Wei, Hong; Xie, Peng

    2016-01-01

    Evolutionary pressure drives gut microbiota-host coevolution and results in complex interactions between gut microbiota and neural development; however, the molecular mechanisms by which the microbiota governs host behavior remain obscure. Here, we report that colonization early in life is crucial for the microbiota to modulate brain development and behavior; later colonization or deletion of microbiota cannot completely reverse the behaviors. Microarray analysis revealed an association between absence of gut microbiota and expression in cAMP responding element-binding protein (CREB) regulated genes in the hippocampus. The absence of gut microbiota from birth was shown to be associated with decreased CREB expression, followed by decreases of protein kinase C beta (PRKCB) and AMPA receptors expression, and an increase of phosphorylation CREB (pCREB) expression. Microbiota colonization in adolescence restored CREB and pCREB expression, but did not alter PRKCB and AMPARs expression. The removal of the gut microbiota from SPF mice using antibiotics only reduced pCREB expression. These findings suggest that (i) colonization of the gut microbiota early in life might facilitate neurodevelopment via PKC-CREB signaling and (ii) although GF mice and ABX mice display reduced anxiety-related behaviors, the molecular mechanisms behind this might differ. PMID:27444685

  11. Protein interaction module-assisted function X (PIMAX) approach to producing challenging proteins including hyperphosphorylated tau and active CDK5/p25 kinase complex.

    PubMed

    Sui, Dexin; Xu, Xinjing; Ye, Xuemei; Liu, Mengyu; Mianecki, Maxwell; Rattanasinchai, Chotirat; Buehl, Christopher; Deng, Xiexiong; Kuo, Min-Hao

    2015-01-01

    Many biomedically critical proteins are underrepresented in proteomics and biochemical studies because of the difficulty of their production in Escherichia coli. These proteins might possess posttranslational modifications vital to their functions, tend to misfold and be partitioned into bacterial inclusion bodies, or act only in a stoichiometric dimeric complex. Successful production of these proteins requires efficient interaction between these proteins and a specific "facilitator," such as a protein-modifying enzyme, a molecular chaperone, or a natural physical partner within the dimeric complex. Here we report the design and application of a protein interaction module-assisted function X (PIMAX) system that effectively overcomes these hurdles. By fusing two proteins of interest to a pair of well-studied protein-protein interaction modules, we were able to potentiate the association of these two proteins, resulting in successful production of an enzymatically active cyclin-dependent kinase complex and hyperphosphorylated tau protein, which is intimately linked to Alzheimer disease. Furthermore, using tau isoforms quantitatively phosphorylated by GSK-3β and CDK5 kinases via PIMAX, we demonstrated the hyperphosphorylation-stimulated tau oligomerization in vitro, paving the way for new Alzheimer disease drug discoveries. Vectors for PIMAX can be easily modified to meet the needs of different applications. This approach thus provides a convenient and modular suite with broad implications for proteomics and biomedical research. PMID:25385071

  12. Cell-Specific Fine-Tuning of Neuronal Excitability by Differential Expression of Modulator Protein Isoforms

    PubMed Central

    Jepson, James; Sheldon, Amanda; Shahidullah, Mohammad; Fei, Hong; Koh, Kyunghee

    2013-01-01

    SLOB (SLOWPOKE-binding protein) modulates the Drosophila SLOWPOKE calcium-activated potassium channel. We have shown previously that SLOB deletion or RNAi knockdown decreases excitability of neurosecretory pars intercerebralis (PI) neurons in the adult Drosophila brain. In contrast, we found that SLOB deletion/knockdown enhances neurotransmitter release from motor neurons at the fly larval neuromuscular junction, suggesting an increase in excitability. Because two prominent SLOB isoforms, SLOB57 and SLOB71, modulate SLOWPOKE channels in opposite directions in vitro, we investigated whether divergent expression patterns of these two isoforms might underlie the differential modulation of excitability in PI and motor neurons. By performing detailed in vitro and in vivo analysis, we found strikingly different modes of regulatory control by the slob57 and slob71 promoters. The slob71, but not slob57, promoter contains binding sites for the Hunchback and Mirror transcriptional repressors. Furthermore, several core promoter elements that are absent in the slob57 promoter coordinately drive robust expression of a luciferase vector by the slob71 promoter in vitro. In addition, we visualized the expression patterns of the slob57 and slob71 promoters in vivo and found clear spatiotemporal differences in promoter activity. SLOB57 is expressed prominently in adult PI neurons, whereas larval motor neurons exclusively express SLOB71. In contrast, at the larval neuromuscular junction, SLOB57 expression appears to be restricted mainly to a subset of glial cells. Our results illustrate how the use of alternative transcriptional start sites within an ion channel modulator locus coupled with functionally relevant alternative splicing can be used to fine-tune neuronal excitability in a cell-specific manner. PMID:24133277

  13. Protein kinase C modulates aryl hydrocarbon receptor nuclear translocator protein-mediated transactivation potential in a dimer context.

    PubMed

    Long, W P; Chen, X; Perdew, G H

    1999-04-30

    Protein kinase C (PKC)- and protein kinase A (PKA)-mediated modulation of the transactivation potential of human aryl hydrocarbon receptor nuclear translocator (hARNT), a basic helix-loop-helix (bHLH)-PAS transcription factor, and the bHLH-ZIP transcription factors USF-1 (for upstream regulatory factor 1) and c-Myc were examined. An 81 nM dose of the PKC activator phorbol-12-myristate-13-acetate (PMA), shown here to specifically activate PKC in COS-1 cells, or a 1 nM dose of the PKA activator 8-bromoadenosine-3',5'-cyclic monophosphate (8-Br-cAMP) results in 2. 6- and 1.9-fold enhancements, respectively, in hARNT-mediated transactivation of the class B, E-box-driven reporter pMyc3E1bLuc relative to identically transfected, carrier solvent-treated COS-1 cells. In contrast, 81 nM PMA and 1 nM 8-Br-cAMP did not enhance transactivation of pMyc3E1bLuc-driven by USF-1 and c-Myc expression relative to identically transfected, carrier-treated COS-1 cells. Co-transfection of pcDNA3/ARNT-474-Flag, expressing a hARNT carboxyl-terminal transactivation domain deletion, and pMyc3E1bLuc does not result in induction of reporter activity, suggesting PMA's effects do not involve formation of unknown hARNT-protein heterodimers. Additionally, PMA had no effect on hARNT expression relative to Me2SO-treated cells. Metabolic 32P labeling of hARNT in cells treated with carrier solvent or 81 nM PMA demonstrates that PMA does not increase the overall phosphorylation level of hARNT. These results demonstrate, for the first time, that the transactivation potential of ARNT in a dimer context can be specifically modulated by PKC or PKA stimulation and that the bHLH-PAS and bHLH-ZIP transcription factors are differentially regulated by these pathways in COS-1 cells. PMID:10212212

  14. Protein kinase A and protein kinase C modulators have reciprocal effects on mesenchymal condensation during skin appendage morphogenesis.

    PubMed

    Noveen, A; Jiang, T X; Chuong, C M

    1995-10-01

    The molecular signaling of secondary induction is a fundamental process in organogenesis during embryonic development. To study the signal transduction pathways involved, we used developing chicken skin as a model and focused on the roles of intracellular signaling during feather morphogenesis. Protein kinase C (PKC) immunoreactivity increases in the whole layer of forming dermis around H and H stage 30. This is followed by a gradual and highly localized decrease of PKC expression immediately beneath each forming feather germ. In contrast, cAMP response element binding protein (CREB) is ubiquitously expressed in both epithelium and mesenchyme. From stage 29 on, phosphorylated CREB (P-CREB), reflecting the activity of protein kinase A (PKA), begins to be seen in placode but not in interplacode epithelia. P-CREB is also expressed in bud mesenchyme transiently between stages 33 and 36, but not in the interbud mesenchyme. The presence and activity of PKC, PKA, and P-CREB in developing chicken skin are further characterized by immunoblot, kinase activity, and gel shift assays. To explore their physiological significance, embryonic chicken dorsal skin explants were treated with different modulators in medium or in beads for localized effects. The results showed that PKA activators and PKC inhibitors can expand a feather bud domain by enhancing dermal condensation, while PKC activators and PKA inhibitors can expand interbud domains. Neural cell adhesion molecule (N-CAM) is involved in dermal condensation. We observed that activation of PKA causes diffused expression of N-CAM in mesenchyme while activation of PKC causes the disappearance of N-CAM in precondensed mesenchymal regions. A model of how the well-concerted PKA and PKC signaling may be involved in the formation and size regulation of dermal condensation is presented. PMID:7556946

  15. Suppression of HPV E6 and E7 expression by BAF53 depletion in cervical cancer cells

    SciTech Connect

    Lee, Kiwon; Lee, Ah-Young; Kwon, Yunhee Kim; Kwon, Hyockman

    2011-08-26

    Highlights: {yields} Integration of HPV into host genome critical for activation of E6 and E7 oncogenes. {yields} BAF53 is essential for higher-order chromatin structure. {yields} BAF53 knockdown suppresses E6 and E7 from HPV integrants, but not from episomal HPVs. {yields} BAF53 knockdown decreases H3K9Ac and H4K12Ac on P105 promoter of integrated HPV 18. {yields} BAF53 knockdown restores the p53-dependent signaling pathway in HeLa and SiHa cells. -- Abstract: Deregulation of the expression of human papillomavirus (HPV) oncogenes E6 and E7 plays a pivotal role in cervical carcinogenesis because the E6 and E7 proteins neutralize p53 and Rb tumor suppressor pathways, respectively. In approximately 90% of all cervical carcinomas, HPVs are found to be integrated into the host genome. Following integration, the core-enhancer element and P105 promoter that control expression of E6 and E7 adopt a chromatin structure that is different from that of episomal HPV, and this has been proposed to contribute to activation of E6 and E7 expression. However, the molecular basis underlying this chromatin structural change remains unknown. Previously, BAF53 has been shown to be essential for the integrity of higher-order chromatin structure and interchromosomal interactions. Here, we examined whether BAF53 is required for activated expression of E6 and E7 genes. We found that BAF53 knockdown led to suppression of expression of E6 and E7 genes from HPV integrants in cervical carcinoma cell lines HeLa and SiHa. Conversely, expression of transiently transfected HPV18-LCR-Luciferase was not suppressed by BAF53 knockdown. The level of the active histone marks H3K9Ac and H4K12Ac on the P105 promoter of integrated HPV 18 was decreased in BAF53 knockdown cells. BAF53 knockdown restored the p53-dependent signaling pathway in HeLa and SiHa cells. These results suggest that activated expression of the E6 and E7 genes of integrated HPV is dependent on BAF53-dependent higher-order chromatin

  16. Human papilloma virus 16 E6 RNA interference enhances cisplatin and death receptor-mediated apoptosis in human cervical carcinoma cells.

    PubMed

    Tan, Shinta; Hougardy, Brigitte M T; Meersma, Gert J; Schaap, Bessel; de Vries, Elisabeth G E; van der Zee, Ate G J; de Jong, Steven

    2012-05-01

    In cervical cancer, the p53 and retinoblastoma (pRb) tumor suppressor pathways are disrupted by the human papilloma virus (HPV) E6 and E7 oncoproteins, because E6 targets p53 and E7 targets pRb for rapid proteasome-mediated degradation. We have investigated whether E6 suppression with small interfering RNA (siRNA) restores p53 functionality and sensitizes the HPV16-positive cervical cancer cell line SiHa to apoptosis by cisplatin, irradiation, recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL), or agonistic anti-Fas antibody. E6 siRNA resulted in decreased E6 mRNA levels and enhanced p53 and p21 expression, demonstrating the restoration of p53 functionality in SiHa cells, without inducing high levels of apoptosis (<10%). Cell surface expression of the proapoptotic death receptors (DRs) DR4, DR5, and Fas was not affected by E6 suppression. E6 suppression conferred susceptibility to cisplatin-induced apoptosis but not to irradiation-, rhTRAIL-, or anti-Fas antibody-induced apoptosis. Combining cisplatin with rhTRAIL or anti-Fas antibody induced even higher apoptosis levels in E6-suppressed cells. At the molecular level, cisplatin treatment resulted in elevated p53 levels, enhanced caspase-3 activation, and reduced p21 levels in E6-suppressed cells. Cisplatin in combination with death receptor ligands enhanced caspase-8 and caspase-3 activation and reduced X-linked inhibitor-of-apoptosis protein (XIAP) levels in these cells. We showed using siRNA that the enhanced apoptosis in E6-supressed cells was related to reduced XIAP levels and not due to reduced p21 levels. In conclusion, targeting E6 or XIAP in combination with cisplatin can efficiently potentiate rhTRAIL-induced apoptosis in HPV-positive cervical cancer cells. PMID:22328720

  17. Systemic delivery of siRNA by actively targeted polyion complex micelles for silencing the E6 and E7 human papillomavirus oncogenes.

    PubMed

    Nishida, Haruka; Matsumoto, Yoko; Kawana, Kei; Christie, R James; Naito, Mitsuru; Kim, Beob Soo; Toh, Kazuko; Min, Hyun Su; Yi, Yu; Matsumoto, Yu; Kim, Hyun Jin; Miyata, Kanjiro; Taguchi, Ayumi; Tomio, Kensuke; Yamashita, Aki; Inoue, Tomoko; Nakamura, Hiroe; Fujimoto, Asaha; Sato, Masakazu; Yoshida, Mitsuyo; Adachi, Katsuyuki; Arimoto, Takahide; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Nishiyama, Nobuhiro; Kataoka, Kazunori; Osuga, Yutaka; Fujii, Tomoyuki

    2016-06-10

    Human papillomavirus (HPV) E6 and E7 oncogenes are essential for the immortalization and maintenance of HPV-associated cancer and are ubiquitously expressed in cervical cancer lesions. Small interfering RNA (siRNA) coding for E6 and E7 oncogenes is a promising approach for precise treatment of cervical cancer, yet a delivery system is required for systemic delivery to solid tumors. Here, an actively targeted polyion complex (PIC) micelle was applied to deliver siRNAs coding for HPV E6/E7 to HPV cervical cancer cell tumors in immune-incompetent tumor-bearing mice. A cell viability assay revealed that both HPV type 16 and 18 E6/E7 siRNAs (si16E6/E7 and si18E6/E7, respectively) interfered with proliferation of cervical cancer cell lines in an HPV type-specific manner. A fluorescence imaging biodistribution analysis further revealed that fluorescence dye-labeled siRNA-loaded PIC micelles efficiently accumulated within the tumor mass after systemic administration. Ultimately, intravenous injection of si16E6/E7 and si18E6/E7-loaded PIC micelles was found to significantly suppress the growth of subcutaneous SiHa and HeLa tumors, respectively. The specific activity of siRNA treatment was confirmed by the observation that p53 protein expression was restored in the tumors excised from the mice treated with si16E6/E7- and si18E6/E7-loaded PIC micelles for SiHa and HeLa tumors, respectively. Therefore, the actively targeted PIC micelle incorporating HPV E6/E7-coding siRNAs demonstrated its therapeutic potential against HPV-associated cancer. PMID:26979870

  18. Protein-Protein Interactions Modulate the Docking-Dependent E3-Ubiquitin Ligase Activity of Carboxy-Terminus of Hsc70-Interacting Protein (CHIP).

    PubMed

    Narayan, Vikram; Landré, Vivien; Ning, Jia; Hernychova, Lenka; Muller, Petr; Verma, Chandra; Walkinshaw, Malcolm D; Blackburn, Elizabeth A; Ball, Kathryn L

    2015-11-01

    CHIP is a tetratricopeptide repeat (TPR) domain protein that functions as an E3-ubiquitin ligase. As well as linking the molecular chaperones to the ubiquitin proteasome system, CHIP also has a docking-dependent mode where it ubiquitinates native substrates, thereby regulating their steady state levels and/or function. Here we explore the effect of Hsp70 on the docking-dependent E3-ligase activity of CHIP. The TPR-domain is revealed as a binding site for allosteric modulators involved in determining CHIP's dynamic conformation and activity. Biochemical, biophysical and modeling evidence demonstrate that Hsp70-binding to the TPR, or Hsp70-mimetic mutations, regulate CHIP-mediated ubiquitination of p53 and IRF-1 through effects on U-box activity and substrate binding. HDX-MS was used to establish that conformational-inhibition-signals extended from the TPR-domain to the U-box. This underscores inter-domain allosteric regulation of CHIP by the core molecular chaperones. Defining the chaperone-associated TPR-domain of CHIP as a manager of inter-domain communication highlights the potential for scaffolding modules to regulate, as well as assemble, complexes that are fundamental to protein homeostatic control. PMID:26330542

  19. Modulation of the interaction between neurotensin receptor NTS1 and Gq protein by lipid

    PubMed Central

    Inagaki, Sayaka; Ghirlando, Rodolfo; White, Jim F.; Gvozdenovic-Jeremic, Jelena; Northup, John K.; Grisshammer, Reinhard

    2012-01-01

    Membrane lipids have been implicated to influence the activity of G protein-coupled receptors (GPCRs). Almost all of our knowledge on the role of lipids on GPCR and G protein function comes from work on the visual pigment rhodopsin and its G protein transducin, which reside in a highly specialized membrane environment. Thus insight gained from rhodopsin signaling may not be simply translated to other non-visual GPCRs. Here, we investigated the effect of lipid head group charges on the signal transduction properties of the class A GPCR neurotensin receptor 1 (NTS1) under defined experimental conditions, using self-assembled phospholipid nanodiscs prepared with the zwitter-ionic lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), the negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (POPG), or a POPC/POPG mixture. A combination of dynamic light scattering and sedimentation velocity showed that NTS1 was monomeric in POPC-, POPC/POPG- and POPG-nanodiscs. Binding of the agonist neurotensin to NTS1 occurred with similar affinities and was essentially unaffected by the phospholipid composition. In contrast, Gq protein coupling to NTS1 in various lipid nanodiscs was significantly different and the apparent affinity of Gαq and Gβ1γ1 to activated NTS1 increased with increasing POPG content. NTS1-catalyzed GDP/GTPγS nucleotide exchange at Gαq in the presence of Gβ1γ1 and neurotensin was crucially affected by the lipid type, with exchange rates higher by one or two orders of magnitude in POPC/POPG- and POPG-nanodiscs, respectively, compared to POPC-nanodiscs. Our data demonstrate that negatively charged lipids in the immediate vicinity of a non-visual GPCR modulate the G protein-coupling step. PMID:22306739

  20. Protein kinase CK2 phosphorylates Hsp105 alpha at Ser509 and modulates its function.

    PubMed Central

    Ishihara, Keiichi; Yamagishi, Nobuyuki; Hatayama, Takumi

    2003-01-01

    The 105 kDa heat-shock protein (Hsp) Hsp105 alpha is a mammalian stress protein that belongs to the HSP105/HSP110 family. We have shown previously that Hsp105 alpha exists as non-phosphorylated and phosphorylated forms in vivo, and is phosphorylated by protein kinase CK2 (CK2) in vitro. In this study, to elucidate the role of phosphorylation of Hsp105 alpha, we first analysed the site of phosphorylation of Hsp105 alpha by CK2. Peptide mapping analysis of Hsp105 alpha phosphorylated by CK2 and in vitro phosphorylation experiments using various deletion and substitution mutants of Hsp105 alpha revealed that Hsp105 alpha is phosphorylated at Ser(509) in the beta-sheet domain. Furthermore, Ser(509) in Hsp105 alpha was also phosphorylated in mammalian COS-7 cells, although other sites were phosphorylated as well. Next, we examined the effects of phosphorylation of Hsp105 alpha on its functions using CK2-phosphorylated Hsp105 alpha. Interestingly, Hsp105 alpha suppressed 70 kDa heat-shock cognate protein (Hsc70)-mediated protein folding, whereas the phosphorylation of Hsp105 alpha at Ser(509) abolished the inhibitory activity of Hsp105 alpha in vitro. In accordance with these findings, wild-type Hsp105 alpha, which was thought to be phosphorylated in vivo, had no effect on Hsp70-mediated refolding of heat-denatured luciferase, whereas a non-phosphorylatable mutant of Hsp105 alpha suppressed the Hsp70-mediated refolding of heat-denatured luciferase in mammalian cells. Thus it was suggested that CK2 phosphorylates Hsp105 alpha at Ser(509) and modulates the function of Hsp105 alpha. The regulation of Hsp105 alpha function by phosphorylation may play an important role in a variety of cellular events. PMID:12558502

  1. Interaction of dengue virus nonstructural protein 5 with Daxx modulates RANTES production

    SciTech Connect

    Khunchai, Sasiprapa; Junking, Mutita; Suttitheptumrong, Aroonroong; Yasamut, Umpa; Sawasdee, Nunghathai; Netsawang, Janjuree; Morchang, Atthapan; Chaowalit, Prapaipit; Noisakran, Sansanee; Yenchitsomanus, Pa-thai; and others

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer For the first time how DENV NS5 increases RANTES production. Black-Right-Pointing-Pointer DENV NS5 physically interacts with human Daxx. Black-Right-Pointing-Pointer Nuclear localization of NS5 is required for Daxx interaction and RANTES production. -- Abstract: Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), caused by dengue virus (DENV) infection, are important public health problems in the tropical and subtropical regions. Abnormal hemostasis and plasma leakage are the main patho-physiological changes in DHF/DSS. A remarkably increased production of cytokines, the so called 'cytokine storm', is observed in the patients with DHF/DSS. A complex interaction between DENV proteins and the host immune response contributes to cytokine production. However, the molecular mechanism(s) by which DENV nonstructural protein 5 (NS5) mediates these responses has not been fully elucidated. In the present study, yeast two-hybrid assay was performed to identify host proteins interacting with DENV NS5 and a death-domain-associate protein (Daxx) was identified. The in vivo relevance of this interaction was suggested by co-immunoprecipitation and nuclear co-localization of these two proteins in HEK293 cells expressing DENV NS5. HEK293 cells expressing DENV NS5-K/A, which were mutated at the nuclear localization sequences (NLS), were created to assess its functional roles in nuclear translocation, Daxx interaction, and cytokine production. In the absence of NLS, DENV NS5 could neither translocate into the nucleus nor interact with Daxx to increase the DHF-associated cytokine, RANTES (CCL5) production. This work demonstrates the interaction between DENV NS5 and Daxx and the role of the interaction on the modulation of RANTES production.

  2. Purification of murine suppressive factor of allergy into distinct CD23-modulating and IgE-suppressive proteins.

    PubMed Central

    Matsushita, S; Marcelletti, J F; Katz, L R; Katz, D H

    1991-01-01

    The murine suppressive factor of allergy (SFA) has been purified from a T-cell hybridoma and found to consist of two functionally and biochemically distinct protein molecules. One protein (17 kDa) modulates the low-affinity Fc receptor for IgE on lymphocytes (i.e., CD23); it decreases the binding avidity of IgE to CD23-bearing B cells without affecting quantitative expression of CD23 and is thus designated epsilon-receptor-modulating protein. The second protein (30 kDa) suppresses IgE biosynthesis (i.e., SFA). This purified SFA suppresses interleukin 4-induced IgE and IgG1 synthesis by lipopolysaccharide-activated spleen cells but has no effect on other antibody isotypes; since the activity of SFA is not blocked by anti-interferon gamma monoclonal antibody, it is thus distinct from interferon gamma. The data presented indicate that epsilon-receptor-modulating protein and SFA are protein molecules that are involved in modulating the CD23 molecule and IgE antibody synthesis, respectively. Images PMID:1828884

  3. Increased immunity to cottontail rabbit papillomavirus infection in EIII/JC inbred rabbits after vaccination with a mutant E6 that correlates with spontaneous regression.

    PubMed

    Hu, Jiafen; Cladel, Nancy M; Christensen, Neil D

    2007-01-01

    Our previous studies showed that a progressive cottontail rabbit papillomavirus (CRPV) strain containing a single amino acid change in E6 (E6G252E) induced papilloma regression in EIII/JC inbred rabbits. This finding implied that the point mutation might cause an increase in the antigenicity of the mutant versus the wild-type E6. To test this hypothesis, groups of four EIII/JC inbred rabbits were immunized with wild-type CRPVE6, CRPVE6G252E, CRPV E5, or with vector alone. A gene gun delivery system was used to deliver the DNA vaccines. Two of four rabbits from both E6G252E- and wild-type E6-vaccinated groups were free of papillomas at week 12 after viral challenge. Significantly smaller papillomas were found on E6G252E-vaccinated rabbits than on E6-, E5-, and control vector-vaccinated rabbits (p = 0.01, unpaired Student t test) and these small papillomas regressed at week 20 after viral challenge. E5 vaccination failed to provide protection against viral challenge, and the mean papilloma size was also comparable to that of the control vector-vaccinated rabbits (p > 0.05, unpaired Student t test). We conclude that a single amino acid change in the CRPV E6 protein (G252E) increased protection against wild-type infectious CRPV. PMID:17603848

  4. The Mother Centriole Appendage Protein Cenexin Modulates Lumen Formation through Spindle Orientation.

    PubMed

    Hung, Hui-Fang; Hehnly, Heidi; Doxsey, Stephen

    2016-03-21

    Establishing apical-basal polarity is instrumental in the functional shaping of a solitary lumen within an acinus. By exploiting micropatterned slides, wound healing assays, and three-dimensional culture systems, we identified a mother centriole subdistal appendage protein, cenexin, as a critical player in symmetric lumen expansion through the control of microtubule organization. In this regard, cenexin was required for both centrosome positioning in interphase cells and proper spindle orientation during mitosis. In contrast, the essential mother centriole distal appendage protein CEP164 did not play a role in either process, demonstrating the specificity of subdistal appendages for these events. Importantly, upon closer examination we found that cenexin depletion decreased astral microtubule length, disrupted astral microtubule minus-end organization, and increased levels of the polarity protein NuMA at the cell cortex. Interestingly, spindle misorientation and NuMA mislocalization were reversed by treatment with a low dose of the microtubule-stabilizing agent paclitaxel. Taken together, these results suggest that cenexin modulates microtubule organization and stability to mediate spindle orientation. PMID:26948879

  5. Solution structure of an EGF module pair from the Plasmodium falciparum merozoite surface protein 1.

    PubMed

    Morgan, W D; Birdsall, B; Frenkiel, T A; Gradwell, M G; Burghaus, P A; Syed, S E; Uthaipibull, C; Holder, A A; Feeney, J

    1999-05-28

    The solution structure of the 96-residue C-terminal fragment of the merozoite surface protein 1 (MSP-1) from Plasmodium falciparum has been determined using nuclear magnetic resonance (NMR) spectroscopic measurements on uniformly13C/15N-labelled protein, efficiently expressed in the methylotrophic yeast Komagataella (Pichia) pastoris. The structure has two domains with epidermal growth factor (EGF)-like folds with a novel domain interface for the EGF domain pair interactions, formed from a cluster of hydrophobic residues. This gives the protein a U-shaped overall structure with the N-terminal proteolytic processing site close to the C-terminal glycosyl phosphatidyl inositol (GPI) membrane anchor site, which is consistent with the involvement of a membrane-bound proteinase in the processing of MSP-1 during erythrocyte invasion. This structure, which is the first protozoan EGF example to be determined, contrasts with the elongated structures seen for EGF-module pairs having shared Ca2+-ligation sites at their interface, as found, for example, in fibrillin-1. Recognition surfaces for antibodies that inhibit processing and invasion, and antibodies that block the binding of these inhibitory antibodies, have been mapped on the three-dimensional structure by considering specific MSP-1 mutants. PMID:10339410

  6. Popeye domain containing proteins are essential for stress-mediated modulation of cardiac pacemaking in mice

    PubMed Central

    Froese, Alexander; Breher, Stephanie S.; Waldeyer, Christoph; Schindler, Roland F.R.; Nikolaev, Viacheslav O.; Rinné, Susanne; Wischmeyer, Erhard; Schlueter, Jan; Becher, Jan; Simrick, Subreena; Vauti, Franz; Kuhtz, Juliane; Meister, Patrick; Kreissl, Sonja; Torlopp, Angela; Liebig, Sonja K.; Laakmann, Sandra; Müller, Thomas D.; Neumann, Joachim; Stieber, Juliane; Ludwig, Andreas; Maier, Sebastian K.; Decher, Niels; Arnold, Hans-Henning; Kirchhof, Paulus; Fabritz, Larissa; Brand, Thomas

    2012-01-01

    Cardiac pacemaker cells create rhythmic pulses that control heart rate; pacemaker dysfunction is a prevalent disorder in the elderly, but little is known about the underlying molecular causes. Popeye domain containing (Popdc) genes encode membrane proteins with high expression levels in cardiac myocytes and specifically in the cardiac pacemaking and conduction system. Here, we report the phenotypic analysis of mice deficient in Popdc1 or Popdc2. ECG analysis revealed severe sinus node dysfunction when freely roaming mutant animals were subjected to physical or mental stress. In both mutants, bradyarrhythmia developed in an age-dependent manner. Furthermore, we found that the conserved Popeye domain functioned as a high-affinity cAMP-binding site. Popdc proteins interacted with the potassium channel TREK-1, which led to increased cell surface expression and enhanced current density, both of which were negatively modulated by cAMP. These data indicate that Popdc proteins have an important regulatory function in heart rate dynamics that is mediated, at least in part, through cAMP binding. Mice with mutant Popdc1 and Popdc2 alleles are therefore useful models for the dissection of the mechanisms causing pacemaker dysfunction and could aid in the development of strategies for therapeutic intervention. PMID:22354168

  7. Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins.

    PubMed

    Zhang, Rui; Alushin, Gregory M; Brown, Alan; Nogales, Eva

    2015-08-13

    Microtubule (MT) dynamic instability is driven by GTP hydrolysis and regulated by microtubule-associated proteins, including the plus-end tracking end-binding protein (EB) family. We report six cryo-electron microscopy (cryo-EM) structures of MTs, at 3.5 Å or better resolution, bound to GMPCPP, GTPγS, or GDP, either decorated with kinesin motor domain after polymerization or copolymerized with EB3. Subtle changes around the E-site nucleotide during hydrolysis trigger conformational changes in α-tubulin around an "anchor point," leading to global lattice rearrangements and strain generation. Unlike the extended lattice of the GMPCPP-MT, the EB3-bound GTPγS-MT has a compacted lattice that differs in lattice twist from that of the also compacted GDP-MT. These results and the observation that EB3 promotes rapid hydrolysis of GMPCPP suggest that EB proteins modulate structural transitions at growing MT ends by recognizing and promoting an intermediate state generated during GTP hydrolysis. Our findings explain both EBs end-tracking behavior and their effect on microtubule dynamics. PMID:26234155

  8. Modulation of protein behavior through light responses of TiO2 nanodots films

    NASA Astrophysics Data System (ADS)

    Cheng, Kui; Hong, Yi; Yu, Mengfei; Lin, Jun; Weng, Wenjian; Wang, Huiming

    2015-08-01

    In this work, the behavior of protein molecules adsorbed on TiO2 nanodots films are modulated through the light responses of the nanodots. TiO2 nanodots films are first prepared through phase separation induced self assembly. Then, bovine serum albumin (BSA) is adsorbed on TiO2 nanodots films and exposed to ultraviolet (365 nm) illumination. It is found the conformation of surface-bound BSA molecules changes with ultraviolet illumination. Moreover, the BSA molecules conjugate to the surface-bound molecules, which are in the overlayer, are released. The reason is ascribed to that TiO2 nanodots absorb ultraviolet and result in the increase of surface hydroxyl groups on nanodots. Such increase further leads to intensified attraction of -NH3 groups in the surface-bound BSA molecules. That not only changes the conformation of the surface-bound BSA molecules, but also weaken the conjugation between surface-bound molecules and other BSA molecules in the overlayer. Eventually, the overlayer of BSA molecules is released. It is believed that such protein conformation variation and release behavior induced through light responses of TiO2 nanodots are crucial in understanding the biomedical performance of TiO2 nanostructures. Also, it could be widely utilized in tailoring of the materials-protein interactions.

  9. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    SciTech Connect

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih; Zhao, Bo; Kieff, Elliott; Peng, Chih-Wen

    2013-01-18

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection.

  10. Human Papillomavirus Type 18 E6 and E7 Genes Integrate into Human Hepatoma Derived Cell Line Hep G2

    PubMed Central

    Ma, Tianzhong; Su, Zhongjing; Chen, Ling; Liu, Shuyan; Zhu, Ningxia; Wen, Lifeng; Yuan, Yan; Lv, Leili; Chen, Xiancai; Huang, Jianmin; Chen, Haibin

    2012-01-01

    Background and Objectives Human papillomaviruses have been linked causally to some human cancers such as cervical carcinoma, but there is very little research addressing the effect of HPV infection on human liver cells. We chose the human hepatoma derived cell line Hep G2 to investigate whether HPV gene integration took place in liver cells as well. Methods We applied PCR to detect the possible integration of HPV genes in Hep G2 cells. We also investigated the expression of the integrated E6 and E7 genes by using RT-PCR and Western blotting. Then, we silenced E6 and E7 expression and checked the cell proliferation and apoptosis in Hep G2 cells. Furthermore, we analyzed the potential genes involved in cell cycle and apoptosis regulatory pathways. Finally, we used in situ hybridization to detect HPV 16/18 in hepatocellular carcinoma samples. Results Hep G2 cell line contains integrated HPV 18 DNA, leading to the expression of the E6 and E7 oncogenic proteins. Knockdown of the E7 and E6 genes expression reduced cell proliferation, caused the cell cycle arrest at the S phase, and increased apoptosis. The human cell cycle and apoptosis real-time PCR arrays analysis demonstrated E6 and E7-mediated regulation of some genes such as Cyclin H, UBA1, E2F4, p53, p107, FASLG, NOL3 and CASP14. HPV16/18 was found in only 9% (9/100) of patients with hepatocellular carcinoma. Conclusion Our investigations showed that HPV 18 E6 and E7 genes can be integrated into the Hep G2, and we observed a low prevalence of HPV 16/18 in hepatocellular carcinoma samples. However, the precise risk of HPV as causative agent of hepatocellular carcinoma needs further study. PMID:22655088

  11. Opioid modulation of Fos protein expression and olfactory circuitry plays a pivotal role in what neonates remember

    PubMed Central

    Roth, Tania L.; Moriceau, Stephanie; Sullivan, Regina M.

    2006-01-01

    Paradoxically, fear conditioning (odor–0.5 mA shock) yields a learned odor preference in the neonate, presumably due to a unique learning and memory circuit that does not include apparent amygdala participation. Post-training opioid antagonism with naltrexone (NTX) blocks consolidation of this odor preference and instead yields memory of a learned odor aversion. Here we characterize the neural circuitry underlying this switch during memory consolidation. Experiment 1 assessed post-training opioid modulation of Fos protein expression within olfactory circuitry (olfactory bulb, piriform cortex, amygdala). Odor–shock conditioning with no post-training treatment (odor preference) induced significant changes in Fos protein expression in the granule cell layer of the olfactory bulb and anterior piriform cortex. Post-training opioid receptor antagonism (odor aversion) prevented the learning-induced changes in the anterior piriform cortex and also induced significant changes in Fos protein expression in the central nucleus of the amygdala. Experiment 2 assessed intra-amygdala opioid modulation of neonate memory consolidation. Post-training infusion of NTX within the amygdala permitted consolidation of an odor aversion, while vehicle-infused pups continued to demonstrate an odor preference. Overall, results demonstrate that opioids modulate memory consolidation in the neonate via modulating Fos protein expression in olfactory circuitry. Furthermore, these results suggest that opioids are instrumental in suppressing neonate fear behavior via modulating the amygdala. PMID:17015856

  12. Modulation of expression and activity of intestinal multidrug resistance-associated protein 2 by xenobiotics.

    PubMed

    Tocchetti, Guillermo Nicolás; Rigalli, Juan Pablo; Arana, Maite Rocío; Villanueva, Silvina Stella Maris; Mottino, Aldo Domingo

    2016-07-15

    The multidrug resistance-associated protein 2 (MRP2/ABCC2) is a transporter that belongs to the ATP-binding cassette (ABC) superfamily. In the intestine, it is localized to the apical membrane of the enterocyte and plays a key role in limiting the absorption of xenobiotics incorporated orally. MRP2 may also play a role in systemic clearance of xenobiotics available from the serosal side of the intestine. MRP2 transports a wide range of substrates, mainly organic anions conjugated with glucuronic acid, glutathione and sulfate and its expression can be modulated by xenobiotics at transcriptional- and post-transcriptional levels. Transcriptional regulation is usually mediated by a group of nuclear receptors. The pregnane X receptor (PXR) is a major member of this group. Relevant drugs described to up-regulate intestinal MRP2 via PXR are rifampicin, spironolactone and carbamazepine, among others. The constitutive androstane receptor (CAR, NR1I3) was also reported to modulate MRP2 expression, phenobarbital being a typical activator. Dietary compounds, including micronutrients and other natural products, are also capable of regulating intestinal MRP2 expression transcriptionally. We have given them particular attention since the composition of the food ingested daily is not necessarily supervised and may result in interactions with therapeutic drugs. Post-transcriptional regulation of MRP2 activity by xenobiotics, e.g. as a consequence of inhibitory actions, is also described in this review. Unfortunately, only few studies report on drug-drug or nutrient-drug interactions as a consequence of modulation of intestinal MRP2 activity by xenobiotics. Future clinical studies are expected to identify additional interactions resulting in changes in efficacy or safety of therapeutic drugs. PMID:27155371

  13. Modulation of Glucose Transporter Protein by Dietary Flavonoids in Type 2 Diabetes Mellitus

    PubMed Central

    Hajiaghaalipour, Fatemeh; Khalilpourfarshbafi, Manizheh; Arya, Aditya

    2015-01-01

    Diabetes mellitus (DM) is a metabolic diseases characterized by hyperglycemia due to insufficient or inefficient insulin secretory response. This chronic disease is a global problem and there is a need for greater emphasis on therapeutic strategies in the health system. Phytochemicals such as flavonoids have recently attracted attention as source materials for the development of new antidiabetic drugs or alternative therapy for the management of diabetes and its related complications. The antidiabetic potential of flavonoids are mainly through their modulatory effects on glucose transporter by enhancing GLUT-2 expression in pancreatic β cells and increasing expression and promoting translocation of GLUT-4 via PI3K/AKT, CAP/Cb1/TC10 and AMPK pathways. This review highlights the recent findings on beneficial effects of flavonoids in the management of diabetes with particular emphasis on the investigations that explore the role of these compounds in modulating glucose transporter proteins at cellular and molecular level. PMID:25892959

  14. A NEW ROLE FOR HIV NUCLEOCAPSID PROTEIN IN MODULATING THE SPECIFICITY OF PLUS STRAND PRIMING

    PubMed Central

    Jacob, Deena T.; DeStefano, Jeffrey J.

    2008-01-01

    The current study indicates a new role for HIV nucleocapsid protein (NC) in modulating the specificity of plus strand priming. RNase H cleavage by reverse transcriptase (RT) during minus strand synthesis gives rise to RNA fragments that could potentially be used as primers for synthesis of the plus strand, leading to the initiation of priming from multiple points as has been observed for other retroviruses. For HIV, the central and 3′ polypurine tracts (PPTs) are the major sites of plus strand initiation. Using reconstituted in vitro assays, results showed that NC greatly reduced the efficiency of extension of non-PPT RNA primers, but not PPT. Experiments mimicking HIV replication showed that RT generated and used both PPT and non-PPT RNAs to initiate “plus strand” synthesis, but non-PPT usage was strongly inhibited by NC. The results support a role for NC in specifying primer usage during plus strand synthesis. PMID:18632127

  15. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression

    PubMed Central

    Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.

    2016-01-01

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795

  16. Allosteric Modulation of G Protein Coupled Receptors by Cytoplasmic, Transmembrane and Extracellular Ligands

    PubMed Central

    Yanamala, Naveena; Klein-Seetharaman, Judith

    2010-01-01

    G protein coupled receptors (GPCRs) bind diverse classes of ligands, and depending on the receptor, these may bind in their transmembrane or the extracellular domains, demonstrating the principal ability of GPCRs to bind ligand in either domains. Most recently, it was also observed that small molecule ligands can bind in the cytoplasmic domain, and modulate binding and response to extracellular or transmembrane ligands. Thus, all three domains in GPCRs are potential sites for allosteric ligands, and whether a ligand is allosteric or orthosteric depends on the receptor. Here, we will review the evidence supporting the presence of putative binding pockets in all three domains of GPCRs and discuss possible pathways of communication between these pockets. PMID:24009470

  17. A KNOTTED1-LIKE HOMEOBOX protein regulates abscission in tomato by modulating the auxin pathway.

    PubMed

    Ma, Chao; Meir, Shimon; Xiao, Langtao; Tong, Jianhua; Liu, Qing; Reid, Michael S; Jiang, Cai-Zhong

    2015-03-01

    A gene encoding a KNOTTED1-LIKE HOMEOBOX PROTEIN1 (KD1) is highly expressed in both leaf and flower abscission zones. Reducing the abundance of transcripts of this gene in tomato (Solanum lycopersicum) by both virus-induced gene silencing and stable transformation with a silencing construct driven by an abscission-specific promoter resulted in a striking retardation of pedicel and petiole abscission. In contrast, Petroselinum, a semidominant KD1 mutant, showed accelerated pedicel and petiole abscission. Complementary DNA microarray and quantitative reverse transcription-polymerase chain reaction analysis indicated that regulation of abscission by KD1 was associated with changed abundance of genes related to auxin transporters and signaling components. Measurement of auxin content and activity of a DR5::β-glucuronidase auxin reporter assay showed that changes in KD1 expression modulated the auxin concentration and response gradient in the abscission zone. PMID:25560879

  18. Modulation of Protein–Protein Interactions for the Development of Novel Therapeutics

    PubMed Central

    Petta, Ioanna; Lievens, Sam; Libert, Claude; Tavernier, Jan; De Bosscher, Karolien

    2016-01-01

    Protein–protein interactions (PPIs) underlie most biological processes. An increasing interest to investigate the unexplored potential of PPIs in drug discovery is driven by the need to find novel therapeutic targets for a whole range of diseases with a high unmet medical need. To date, PPI inhibition with small molecules is the mechanism that has most often been explored, resulting in significant progress towards drug development. However, also PPI stabilization is gradually gaining ground. In this review, we provide a focused overview of a number of PPIs that control critical regulatory pathways and constitute targets for the design of novel therapeutics. We discuss PPI-modulating small molecules that are already pursued in clinical trials. In addition, we review a number of PPIs that are still under preclinical investigation but for which preliminary data support their use as therapeutic targets. PMID:26675501

  19. A Survey of Strategies to Modulate the Bone Morphogenetic Protein Signaling Pathway: Current and Future Perspectives

    PubMed Central

    2016-01-01

    Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the TGF-β family of ligands and are unequivocally involved in regulating stem cell behavior. Appropriate regulation of canonical BMP signaling is critical for the development and homeostasis of numerous human organ systems, as aberrations in the BMP pathway or its regulation are increasingly associated with diverse human pathologies. In this review, we provide a wide-perspective on strategies that increase or decrease BMP signaling. We briefly outline the current FDA-approved approaches, highlight emerging next-generation technologies, and postulate prospective avenues for future investigation. We also detail how activating other pathways may indirectly modulate BMP signaling, with a particular emphasis on the relationship between the BMP and Activin/TGF-β pathways. PMID:27433166

  20. Past Strategies and Future Directions for Identifying AMP-Activated Protein Kinase (AMPK) Modulators

    PubMed Central

    Sinnett, Sarah E.; Brenman, Jay E.

    2014-01-01

    AMP-activated protein kinase (AMPK) is a promising therapeutic target for cancer, type II diabetes, and other illnesses characterized by abnormal energy utilization. During the last decade, numerous labs have published a range of methods for identifying novel AMPK modulators. The current understanding of AMPK structure and regulation, however, has propelled a paradigm shift in which many researchers now consider ADP to be an additional regulatory nucleotide of AMPK. How can the AMPK community apply this new understanding of AMPK signaling to translational research? Recent insights into AMPK structure, regulation, and holoenzyme-sensitive signaling may provide the hindsight needed to clearly evaluate the strengths and weaknesses of past AMPK drug discovery efforts. Improving future strategies for AMPK drug discovery will require pairing the current understanding of AMPK signaling with improved experimental designs. PMID:24583089

  1. Differential modulation of transcriptional activity of oestrogen receptors by direct protein-protein interactions with retinoid receptors.

    PubMed Central

    Song, M R; Lee, S K; Seo, Y W; Choi, H S; Lee, J W; Lee, M O

    1998-01-01

    Control of oestradiol-responsive gene regulation by oestrogen receptors (ERs) may involve complex cross-talk with retinoic acid receptors (RARs) and retinoid X receptors (RXRs). Recently, we have shown that ERalpha directly interacts with RARalpha and RXRalpha through their ligand binding domains (LBDs). In the present work, we extend these results by showing that ERbeta binds similarly to RARalpha and RXRalpha but not to the glucocorticoid receptor, as demonstrated by the yeast two-hybrid tests and glutathione S-transferase pull-down assays. These direct interactions were also demonstrated in gel-shift assays, in which the oestrogen response element (ERE) binding by ERalpha was enhanced by the RXRalpha LBD but was abolished by the RARalpha LBD. In addition, we showed that RARalpha and RXRalpha bound the ERE as efficiently as ERalpha, suggesting that competition for DNA binding may affect the transactivation function of the ER. In transient transfection experiments, co-expression of RARalpha or RXRalpha, along with ERalpha or ERbeta, revealed differential modulation of the ERE-dependent transactivation, which was distinct from the results when each receptor alone was co-transfected. Importantly, when the LBD of RARalpha was co-expressed with ERalpha, transactivation of ERalpha on the ERE was repressed as efficiently as when wild-type RARalpha was co-expressed. Furthermore, liganded RARalpha or unliganded RXRalpha enhanced the ERalpha transactivation, suggesting the formation of transcriptionally active heterodimer complexes between the ER and retinoid receptors. Taken together, these results suggest that direct protein-protein interactions may play major roles in the determination of the biological consequences of cross-talk between ERs and RARalpha or RXRalpha. PMID:9841885

  2. Modulation of Feeding Behavior by Odorant-Binding Proteins in Drosophila melanogaster

    PubMed Central

    Swarup, Shilpa; Morozova, Tatiana V.

    2014-01-01

    Nutrient intake and avoidance of toxins are essential for survival and controlled by attractive and aversive feeding responses. Drosophila melanogaster presents one of the best characterized systems for studies on chemosensation, which is mediated by multigene families of chemoreceptors, including olfactory receptors, gustatory receptors, and odorant-binding proteins (OBPs). Although the response profiles of gustatory receptors have been well studied, the contribution of OBPs to food intake is largely unknown. As most aversive (“bitter”) tastants are hydrophobic, we hypothesized that OBPs may fulfill an essential function in transporting bitter tastants to gustatory receptors to modulate feeding behavior. Here, we used 16 RNAi lines that inhibit expression of individual target Obp genes and show that OBPs modulate sucrose intake in response to a panel of nine bitter compounds. Similar to their function in olfaction, OBPs appear to interact with bitter compounds in a combinatorial and sex-dependent manner. RNAi-mediated reduction in expression of individual Obp genes resulted either in enhanced or reduced intake of sucrose in the presence of bitter compounds, consistent with roles for OBPs in transporting tastants to bitter taste receptors, sequestering them to limit their access to these receptors, or interacting directly with gustatory neurons that respond to sucrose. PMID:24302688

  3. Protein kinase A modulation of CaV1.4 calcium channels

    NASA Astrophysics Data System (ADS)

    Sang, Lingjie; Dick, Ivy E.; Yue, David T.

    2016-07-01

    The regulation of L-type Ca2+ channels by protein kinase A (PKA) represents a crucial element within cardiac, skeletal muscle and neurological systems. Although much work has been done to understand this regulation in cardiac CaV1.2 Ca2+ channels, relatively little is known about the closely related CaV1.4 L-type Ca2+ channels, which feature prominently in the visual system. Here we find that CaV1.4 channels are indeed modulated by PKA phosphorylation within the inhibitor of Ca2+-dependent inactivation (ICDI) motif. Phosphorylation of this region promotes the occupancy of calmodulin on the channel, thus increasing channel open probability (PO) and Ca2+-dependent inactivation. Although this interaction seems specific to CaV1.4 channels, introduction of ICDI1.4 to CaV1.3 or CaV1.2 channels endows these channels with a form of PKA modulation, previously unobserved in heterologous systems. Thus, this mechanism may not only play an important role in the visual system but may be generalizable across the L-type channel family.

  4. Structure and Function of the SWIRM Domain, a Conserved Protein Module Found in Chromatin Regulatory Complexes

    SciTech Connect

    Da,G.; Lenkart, J.; Zhao, K.; Shiekhattar, R.; Cairns, B.; Marmorstein, R.

    2006-01-01

    The SWIRM domain is a module found in the Swi3 and Rsc8 subunits of SWI/SNF-family chromatin remodeling complexes, and the Ada2 and BHC110/LSD1 subunits of chromatin modification complexes. Here we report the high-resolution crystal structure of the SWIRM domain from Swi3 and characterize the in vitro and in vivo function of the SWIRM domains from Saccharomyces cerevisiae Swi3 and Rsc8. The Swi3 SWIRM forms a four-helix bundle containing a pseudo 2-fold axis and a helix-turn-helix motif commonly found in DNA-binding proteins. We show that the Swi3 SWIRM binds free DNA and mononucleosomes with high and comparable affinity and that a subset of Swi3 substitution mutants that display growth defects in vivo also show impaired DNA-binding activity in vitro, consistent with a nucleosome targeting function of this domain. Genetic and biochemical studies also reveal that the Rsc8 and Swi3 SWIRM domains are essential for the proper assembly and in vivo functions of their respective complexes. Together, these studies identify the SWIRM domain as an essential multifunctional module for the regulation of gene expression.

  5. Protein kinase A modulation of CaV1.4 calcium channels

    PubMed Central

    Sang, Lingjie; Dick, Ivy E.; Yue, David T.

    2016-01-01

    The regulation of L-type Ca2+ channels by protein kinase A (PKA) represents a crucial element within cardiac, skeletal muscle and neurological systems. Although much work has been done to understand this regulation in cardiac CaV1.2 Ca2+ channels, relatively little is known about the closely related CaV1.4 L-type Ca2+ channels, which feature prominently in the visual system. Here we find that CaV1.4 channels are indeed modulated by PKA phosphorylation within the inhibitor of Ca2+-dependent inactivation (ICDI) motif. Phosphorylation of this region promotes the occupancy of calmodulin on the channel, thus increasing channel open probability (PO) and Ca2+-dependent inactivation. Although this interaction seems specific to CaV1.4 channels, introduction of ICDI1.4 to CaV1.3 or CaV1.2 channels endows these channels with a form of PKA modulation, previously unobserved in heterologous systems. Thus, this mechanism may not only play an important role in the visual system but may be generalizable across the L-type channel family. PMID:27456671

  6. Protein kinase A modulation of CaV1.4 calcium channels.

    PubMed

    Sang, Lingjie; Dick, Ivy E; Yue, David T

    2016-01-01

    The regulation of L-type Ca(2+) channels by protein kinase A (PKA) represents a crucial element within cardiac, skeletal muscle and neurological systems. Although much work has been done to understand this regulation in cardiac CaV1.2 Ca(2+) channels, relatively little is known about the closely related CaV1.4 L-type Ca(2+) channels, which feature prominently in the visual system. Here we find that CaV1.4 channels are indeed modulated by PKA phosphorylation within the inhibitor of Ca(2+)-dependent inactivation (ICDI) motif. Phosphorylation of this region promotes the occupancy of calmodulin on the channel, thus increasing channel open probability (PO) and Ca(2+)-dependent inactivation. Although this interaction seems specific to CaV1.4 channels, introduction of ICDI1.4 to CaV1.3 or CaV1.2 channels endows these channels with a form of PKA modulation, previously unobserved in heterologous systems. Thus, this mechanism may not only play an important role in the visual system but may be generalizable across the L-type channel family. PMID:27456671

  7. Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro.

    PubMed Central

    Fasano, A; Fiorentini, C; Donelli, G; Uzzau, S; Kaper, J B; Margaretten, K; Ding, X; Guandalini, S; Comstock, L; Goldblum, S E

    1995-01-01

    The intracellular signaling involved in the mechanism of action of zonula occludens toxin (ZOT) was studied using several in vitro and ex vivo models. ZOT showed a selective effect among various cell lines tested, suggesting that it may interact with a specific receptor, whose surface expression on various cells differs. When tested in IEC6 cell monolayers, ZOT-containing supernatants induced a redistribution of the F-actin cytoskeleton. Similar results were obtained with rabbit ileal mucosa, where the reorganization of F-actin paralleled the increase in tissue permeability. In endothelial cells, the cytoskeletal rearrangement involved a decrease of the soluble G-actin pool (-27%) and a reciprocal increase in the filamentous F-actin pool (+22%). This actin polymerization was time- and dose-dependent, and was reversible. Pretreatment with a specific protein kinase C inhibitor, CGP41251, completely abolished the ZOT effects on both tissue permeability and actin polymerization. In IEC6 cells ZOT induced a peak increment of the PKC-alpha isoform after 3 min incubation. Taken together, these results suggest that ZOT activates a complex intracellular cascade of events that regulate tight junction permeability, probably mimicking the effect of physiologic modulator(s) of epithelial barrier function. Images PMID:7635964

  8. The G protein-coupled estrogen receptor as a modulator of neoplastic transformation.

    PubMed

    Jacenik, Damian; Cygankiewicz, Adam I; Krajewska, Wanda M

    2016-07-01

    Estrogens play a crucial role in the regulation of physiological and pathophysiological processes. These hormones act through specific receptors, most notably the canonical estrogen receptors α and β (ERα and ERβ) and their truncated forms as well as the G protein-coupled estrogen receptor (GPER). Several studies have shown that GPER is expressed in many normal and cancer cells, including those of the breast, endometrium, ovary, testis and lung. Hormonal imbalance is one possible cause of cancer development. An accumulating body of evidence indicates that GPER is involved in the regulation of cancer cell proliferation, migration and invasion, it may act as a mediator of microRNA, and is believed to modulate the inflammation associated with neoplastic transformation. Furthermore, used in various treatment regimens anti-estrogens such as tamoxifen, raloxifen and fulvestrant (ICI 182.780), antagonists/modulators of canonical estrogen receptors, were found to be GPER agonists. This review presents the current knowledge about the potential role of GPER in neoplastic transformation. PMID:27107933

  9. Module-based functional pathway enrichment analysis of a protein-protein interaction network to study the effects of intestinal microbiota depletion in mice

    PubMed Central

    JIA, ZHEN-YI; XIA, YANG; TONG, DANIAN; YAO, JING; CHEN, HONG-QI; YANG, JUN

    2014-01-01

    Complex communities of microorganisms play important roles in human health, and alterations in the intestinal microbiota may induce intestinal inflammation and numerous diseases. The purpose of this study was to identify the key genes and processes affected by depletion of the intestinal microbiota in a murine model. The Affymetrix microarray dataset GSE22648 was downloaded from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) were identified using the limma package in R. A protein-protein interaction (PPI) network was constructed for the DEGs using the Cytoscape software, and the network was divided into several modules using the MCODE plugin. Furthermore, the modules were functionally annotated using the PiNGO plugin, and DEG-related pathways were retrieved and analyzed using the GenMAPP software. A total of 53 DEGs were identified, of which 26 were upregulated and 27 were downregulated. The PPI network of these DEGs comprised 3 modules. The most significant module-related DEGs were the cytochrome P450 (CYP) 4B1 isozyme gene (CYP4B1) in module 1, CYP4F14 in module 2 and the tachykinin precursor 1 gene (TAC1) in module 3. The majority of enriched pathways of module 1 and 2 were oxidation reduction pathways (metabolism of xenobiotics by CYPs) and lipid metabolism-related pathways, including linoleic acid and arachidonic acid metabolism. The neuropeptide signaling pathway was the most significantly enriched functional pathway of module 3. In conclusion, our findings strongly suggest that intestinal microbiota depletion affects cellular metabolism and oxidation reduction pathways. In addition, this is the first time, to the best of our knowledge, that the neuropeptide signaling pathway is reported to be affected by intestinal microbiota depletion in mice. The present study provides a list of candidate genes and processes related to the interaction of microbiota with the intestinal tract. PMID:24718810

  10. Module-based functional pathway enrichment analysis of a protein-protein interaction network to study the effects of intestinal microbiota depletion in mice.

    PubMed

    Jia, Zhen-Yi; Xia, Yang; Tong, Danian; Yao, Jing; Chen, Hong-Qi; Yang, Jun

    2014-06-01

    Complex communities of microorganisms play important roles in human health, and alterations in the intestinal microbiota may induce intestinal inflammation and numerous diseases. The purpose of this study was to identify the key genes and processes affected by depletion of the intestinal microbiota in a murine model. The Affymetrix microarray dataset GSE22648 was downloaded from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) were identified using the limma package in R. A protein-protein interaction (PPI) network was constructed for the DEGs using the Cytoscape software, and the network was divided into several modules using the MCODE plugin. Furthermore, the modules were functionally annotated using the PiNGO plugin, and DEG-related pathways were retrieved and analyzed using the GenMAPP software. A total of 53 DEGs were identified, of which 26 were upregulated and 27 were downregulated. The PPI network of these DEGs comprised 3 modules. The most significant module-related DEGs were the cytochrome P450 (CYP) 4B1 isozyme gene (CYP4B1) in module 1, CYP4F14 in module 2 and the tachykinin precursor 1 gene (TAC1) in module 3. The majority of enriched pathways of module 1 and 2 were oxidation reduction pathways (metabolism of xenobiotics by CYPs) and lipid metabolism-related pathways, including linoleic acid and arachidonic acid metabolism. The neuropeptide signaling pathway was the most significantly enriched functional pathway of module 3. In conclusion, our findings strongly suggest that intestinal microbiota depletion affects cellular metabolism and oxidation reduction pathways. In addition, this is the first time, to the best of our knowledge, that the neuropeptide signaling pathway is reported to be affected by intestinal microbiota depletion in mice. The present study provides a list of candidate genes and processes related to the interaction of microbiota with the intestinal tract. PMID:24718810

  11. Modulation of Leishmania major aquaglyceroporin activity by a mitogen-activated protein kinase

    PubMed Central

    Mandal, Goutam; Sharma, Mansi; Kruse, Martin; Sander-Juelch, Claudia; Munro, Laura Anne; Wang, Yong; Vilg, Jenny Veide; Tamás, Markus J; Bhattacharjee, Hiranmoy; Wiese, Martin; Mukhopadhyay, Rita

    2012-01-01

    Summary Leishmania major aquaglyceroporin (LmjAQP1) adventitiously facilitates the uptake of antimonite [Sb(III)], an active form of Pentostam® or Glucantime®, which are the first line of defense against all forms of leishmaniasis. The present paper shows that LmjAQP1 activity is modulated by the mitogen-activated protein kinase, LmjMPK2. Leishmania parasites co-expressing LmjAQP1 and LmjMPK2 show increased Sb(III) uptake and increased Sb(III) sensitivity. When subjected to a hypo-osmotic stress, these cells show faster volume recovery than cells expressing LmjAQP1 alone. LmjAQP1 is phosphorylated in vivo at Thr197 and this phosphorylation requires LmjMPK2 activity. Lys42 of LmjMPK2 is critical for its kinase activity. Cells expressing altered T197A LmjAQP1 or K42A LmjMPK2 showed decreased Sb(III) influx and a slower volume recovery than cells expressing wild type proteins. Phosphorylation of LmjAQP1 led to a decrease in its turnover rate affecting LmjAQP1 activity. Although LmjAQP1 is localized to the flagellum of promastigotes, upon phosphorylation, it is relocalized to the entire surface of the parasite. L. mexicana promastigotes with an MPK2 deletion showed reduced Sb(III) uptake and slower volume recovery than wild type cells. This is the first report where a parasite aquaglyceroporin activity is post-translationally modulated by a MAP kinase. PMID:22779703

  12. Synthetic FXR agonist GW4064 is a modulator of multiple G protein-coupled receptors.

    PubMed

    Singh, Nidhi; Yadav, Manisha; Singh, Abhishek Kumar; Kumar, Harish; Dwivedi, Shailendra Kumar Dhar; Mishra, Jay Sharan; Gurjar, Anagha; Manhas, Amit; Chandra, Sharat; Yadav, Prem Narayan; Jagavelu, Kumaravelu; Siddiqi, Mohammad Imran; Trivedi, Arun Kumar; Chattopadhyay, Naibedya; Sanyal, Sabyasachi

    2014-05-01

    The synthetic nuclear bile acid receptor (farnesoid X receptor [FXR]) agonist GW4064 is extensively used as a specific pharmacological tool to illustrate FXR functions. We noticed that GW4064 activated empty luciferase reporters in FXR-deficient HEK-293T cells. We postulated that this activity of GW4064 might be routed through as yet unknown cellular targets and undertook an unbiased exploratory approach to identify these targets. Investigations revealed that GW4064 activated cAMP and nuclear factor for activated T-cell response elements (CRE and NFAT-RE, respectively) present on these empty reporters. Whereas GW4064-induced NFAT-RE activation involved rapid intracellular Ca(2+) accumulation and NFAT nuclear translocation, CRE activation involved soluble adenylyl cyclase-dependent cAMP accumulation and Ca(2+)-calcineurin-dependent nuclear translocation of transducers of regulated CRE-binding protein 2. Use of dominant negative heterotrimeric G-protein minigenes revealed that GW4064 caused activation of Gαi/o and Gq/11 G proteins. Sequential pharmacological inhibitor-based screening and radioligand-binding studies revealed that GW4064 interacted with multiple G protein-coupled receptors. Functional studies demonstrated that GW4064 robustly activated H1 and H4 and inhibited H2 histamine receptor signaling events. We also found that MCF-7 breast cancer cells, reported to undergo GW4064-induced apoptosis in an FXR-dependent manner, did not express FXR, and the GW4064-mediated apoptosis, also apparent in HEK-293T cells, could be blocked by selective histamine receptor regulators. Taken together, our results demonstrate identification of histamine receptors as alternate targets for GW4064, which not only necessitates cautious interpretation of the biological functions attributed to FXR using GW4064 as a pharmacological tool but also provides a basis for the rational designing of new pharmacophores for histamine receptor modulation. PMID:24597548

  13. Different Regions of the Newcastle Disease Virus Fusion Protein Modulate Pathogenicity

    PubMed Central

    Heiden, Sandra; Grund, Christian; Röder, Anja; Granzow, Harald; Kühnel, Denis; Mettenleiter, Thomas C.; Römer-Oberdörfer, Angela

    2014-01-01

    Newcastle disease virus (NDV), also designated as Avian paramyxovirus type 1 (APMV-1), is the causative agent of a notifiable disease of poultry but it exhibits different pathogenicity dependent on the virus strain. The molecular basis for this variability is not fully understood. The efficiency of activation of the fusion protein (F) is determined by presence or absence of a polybasic amino acid sequence at an internal proteolytic cleavage site which is a major determinant of NDV virulence. However, other determinants of pathogenicity must exist since APMV-1 of high (velogenic), intermediate (mesogenic) and low (lentogenic) virulence specify a polybasic F cleavage site. We aimed at elucidation of additional virulence determinants by constructing a recombinant virus that consists of a lentogenic NDV Clone 30 backbone and the F protein gene from a mesogenic pigeon paramyxovirus-1 (PPMV-1) isolate with an intracerebral pathogenicity index (ICPI) of 1.1 specifying the polybasic sequence R-R-K-K-R*F motif at the cleavage site. The resulting virus was characterized by an ICPI of 0.6, indicating a lentogenic pathotype. In contrast, alteration of the cleavage site G-R-Q-G-R*L of the lentogenic Clone 30 to R-R-K-K-R*F resulted in a recombinant virus with an ICPI of 1.36 which was higher than that of parental PPMV-1. Substitution of different regions of the F protein of Clone 30 by those of PPMV-1, while maintaining the polybasic amino acid sequence at the F cleavage site, resulted in recombinant viruses with ICPIs ranging from 0.59 to 1.36 suggesting that virulence is modulated by regions of the F protein other than the polybasic cleavage site. PMID:25437176

  14. DELLA proteins modulate Arabidopsis defences induced in response to caterpillar herbivory

    PubMed Central

    Bede, Jacqueline C.

    2014-01-01

    Upon insect herbivory, many plant species change the direction of metabolic flux from growth into defence. Two key pathways modulating these processes are the gibberellin (GA)/DELLA pathway and the jasmonate pathway. In this study, the effect of caterpillar herbivory on plant-induced responses was compared between wild-type Arabidopsis thaliana (L.) Heynh. and quad-della mutants that have constitutively elevated GA responses. The labial saliva (LS) of caterpillars of the beet armyworm, Spodoptera exigua, is known to influence induced plant defence responses. To determine the role of this herbivore cue in determining metabolic shifts, plants were subject to herbivory by caterpillars with intact or impaired LS secretions. In both wild-type and quad-della plants, a jasmonate burst is an early response to caterpillar herbivory. Negative growth regulator DELLA proteins are required for the LS-mediated suppression of hormone levels. Jasmonate-dependent marker genes are induced in response to herbivory independently of LS, with the exception of AtPDF1.2 that showed LS-dependent expression in the quad-della mutant. Early expression of the salicylic acid (SA)-marker gene, AtPR1, was not affected by herbivory which also reflected SA hormone levels; however, this gene showed LS-dependent expression in the quad-della mutant. DELLA proteins may positively regulate glucosinolate levels and suppress laccase-like multicopper oxidase activity in response to herbivory. The present results show a link between DELLA proteins and early, induced plant defences in response to insect herbivory; in particular, these proteins are necessary for caterpillar LS-associated attenuation of defence hormones. PMID:24399173

  15. Flavonol and imidazole derivatives block HPV16 E6 activities and reactivate apoptotic pathways in HPV⁺ cells.

    PubMed

    Yuan, C-H; Filippova, M; Krstenansky, J L; Duerksen-Hughes, P J

    2016-01-01

    High-risk human papillomaviruses (HR-HPVs) cause nearly all cases of cervical cancer, as well as approximately 30% of head and neck cancers. HPV 16 E6, one of two major viral oncogenes, protects cells from apoptosis by binding to and accelerating the degradation of several proteins important in apoptotic signaling, including caspase 8 and p53. We proposed that blocking the interactions between HPV E6 and its partners using small molecules had the potential to re-sensitize HPV(+) cells to apoptosis. To test this idea, we screened libraries of small molecules for candidates that could block E6/caspase 8 binding and identified several candidates from different chemical classes. We tested hits for dose-dependency and specificity in vitro and for toxicity in a cell-based assay and then used this information to select the two best candidates for further testing: myricetin, a flavonol, and spinacine, an imidazole amino-acid derivative of histidine. Both compounds clearly inhibited the ability of E6 to bind in vitro to both caspase 8 and E6AP, the protein that mediates p53 degradation. In addition, both compounds were able to increase the level of caspase 8 and p53 in SiHa cervical cancer cells, resulting in an increase of caspase 3/7 activity. Finally, both myricetin and spinacine sensitized HPV(+) cervical and oral cancer cells, but not HPV(-) cervical and oral cancer cells, to apoptosis induced by the cancer-specific ligand TRAIL, as well as the chemotherapeutic agents doxorubicin and cisplatin. New therapies based on this work may improve treatment for HPV(+) cancer patients. PMID:26794656

  16. Modulation of Hepatitis C Virus Genome Replication by Glycosphingolipids and Four-Phosphate Adaptor Protein 2

    PubMed Central

    Khan, Irfan; Katikaneni, Divya S.; Han, Qingxia; Sanchez-Felipe, Lorena; Hanada, Kentaro; Ambrose, Rebecca L.; Mackenzie, Jason M.

    2014-01-01

    ABSTRACT Hepatitis C virus (HCV) assembles its replication complex on cytosolic membrane vesicles often clustered in a membranous web (MW). During infection, HCV NS5A protein activates PI4KIIIα enzyme, causing massive production and redistribution of phosphatidylinositol 4-phosphate (PI4P) lipid to the replication complex. However, the role of PI4P in the HCV life cycle is not well understood. We postulated that PI4P recruits host effectors to modulate HCV genome replication or virus particle production. To test this hypothesis, we generated cell lines for doxycycline-inducible expression of short hairpin RNAs (shRNAs) targeting the PI4P effector, four-phosphate adaptor protein 2 (FAPP2). FAPP2 depletion attenuated HCV infectivity and impeded HCV RNA synthesis. Indeed, FAPP2 has two functional lipid-binding domains specific for PI4P and glycosphingolipids. While expression of the PI4P-binding mutant protein was expected to inhibit HCV replication, a marked drop in replication efficiency was observed unexpectedly with the glycosphingolipid-binding mutant protein. These data suggest that both domains are crucial for the role of FAPP2 in HCV genome replication. We also found that HCV significantly increases the level of some glycosphingolipids, whereas adding these lipids to FAPP2-depleted cells partially rescued replication, further arguing for the importance of glycosphingolipids in HCV RNA synthesis. Interestingly, FAPP2 is redistributed to the replication complex (RC) characterized by HCV NS5A, NS4B, or double-stranded RNA (dsRNA) foci. Additionally, FAPP2 depletion disrupts the RC and alters the colocalization of HCV replicase proteins. Altogether, our study implies that HCV coopts FAPP2 for virus genome replication via PI4P binding and glycosphingolipid transport to the HCV RC. IMPORTANCE Like most viruses with a positive-sense RNA genome, HCV replicates its RNA on remodeled host membranes composed of lipids hijacked from various internal membrane compartments

  17. Protein Folding Modulates the Swapped Dimerization Mechanism of Methyl-Accepting Chemotaxis Heme Sensors

    PubMed Central

    Silva, Marta A.; Lucas, Tânia G.; Salgueiro, Carlos A.; Gomes, Cláudio M.

    2012-01-01

    The periplasmic sensor domains GSU0582 and GSU0935 are part of methyl accepting chemotaxis proteins in the bacterium Geobacter sulfurreducens. Both contain one c-type heme group and their crystal structures revealed that these domains form swapped dimers with a PAS fold formed from the two protein chains. The swapped dimerization of these sensors is related to the mechanism of signal transduction and the formation of the swapped dimer involves significant folding changes and conformational rearrangements within each monomeric component. However, the structural changes occurring during this process are poorly understood and lack a mechanistic framework. To address this issue, we have studied the folding and stability properties of two distinct heme-sensor PAS domains, using biophysical spectroscopies. We observed substantial differences in the thermodynamic stability (ΔG = 14.6 kJ.mol−1 for GSU0935 and ΔG = 26.3 kJ.mol−1 for GSU0582), and demonstrated that the heme moiety undergoes conformational changes that match those occurring at the global protein structure. This indicates that sensing by the heme cofactor induces conformational changes that rapidly propagate to the protein structure, an effect which is directly linked to the signal transduction mechanism. Interestingly, the two analyzed proteins have distinct levels of intrinsic disorder (25% for GSU0935 and 13% for GSU0582), which correlate with conformational stability differences. This provides evidence that the sensing threshold and intensity of the propagated allosteric effect is linked to the stability of the PAS-fold, as this property modulates domain swapping and dimerization. Analysis of the PAS-domain shows that disorder segments are found either at the hinge region that controls helix motions or in connecting segments of the β-sheet interface. The latter is known to be widely involved in both intra- and intermolecular interactions, supporting the view that it's folding and stability

  18. Transsynaptic Modulation of Kainate Receptor Functions by C1q-like Proteins.

    PubMed

    Matsuda, Keiko; Budisantoso, Timotheus; Mitakidis, Nikolaos; Sugaya, Yuki; Miura, Eriko; Kakegawa, Wataru; Yamasaki, Miwako; Konno, Kohtarou; Uchigashima, Motokazu; Abe, Manabu; Watanabe, Izumi; Kano, Masanobu; Watanabe, Masahiko; Sakimura, Kenji; Aricescu, A Radu; Yuzaki, Michisuke

    2016-05-18

    Postsynaptic kainate-type glutamate receptors (KARs) regulate synaptic network activity through their slow channel kinetics, most prominently at mossy fiber (MF)-CA3 synapses in the hippocampus. Nevertheless, how KARs cluster and function at these synapses has been unclear. Here, we show that C1q-like proteins C1ql2 and C1ql3, produced by MFs, serve as extracellular organizers to recruit functional postsynaptic KAR complexes to the CA3 pyramidal neurons. C1ql2 and C1ql3 specifically bound the amino-terminal domains of postsynaptic GluK2 and GluK4 KAR subunits and the presynaptic neurexin 3 containing a specific sequence in vitro. In C1ql2/3 double-null mice, CA3 synaptic responses lost the slow, KAR-mediated components. Furthermore, despite induction of MF sprouting in a temporal lobe epilepsy model, KARs were not recruited to postsynaptic sites in C1ql2/3 double-null mice, leading to reduced recurrent circuit activities. C1q family proteins, broadly expressed, are likely to modulate KAR function throughout the brain and represent promising antiepileptic targets. PMID:27133466

  19. iPPI-DB: an online database of modulators of protein–protein interactions

    PubMed Central

    Labbé, Céline M.; Kuenemann, Mélaine A.; Zarzycka, Barbara; Vriend, Gert; Nicolaes, Gerry A.F.; Lagorce, David; Miteva, Maria A.; Villoutreix, Bruno O.; Sperandio, Olivier

    2016-01-01

    In order to boost the identification of low-molecular-weight drugs on protein–protein interactions (PPI), it is essential to properly collect and annotate experimental data about successful examples. This provides the scientific community with the necessary information to derive trends about privileged physicochemical properties and chemotypes that maximize the likelihood of promoting a given chemical probe to the most advanced stages of development. To this end we have developed iPPI-DB (freely accessible at http://www.ippidb.cdithem.fr), a database that contains the structure, some physicochemical characteristics, the pharmacological data and the profile of the PPI targets of several hundreds modulators of protein–protein interactions. iPPI-DB is accessible through a web application and can be queried according to two general approaches: using physicochemical/pharmacological criteria; or by chemical similarity to a user-defined structure input. In both cases the results are displayed as a sortable and exportable datasheet with links to external databases such as Uniprot, PubMed. Furthermore each compound in the table has a link to an individual ID card that contains its physicochemical and pharmacological profile derived from iPPI-DB data. This includes information about its binding data, ligand and lipophilic efficiencies, location in the PPI chemical space, and importantly similarity with known drugs, and links to external databases like PubChem, and ChEMBL. PMID:26432833

  20. The Dengue Virus NS5 Protein Intrudes in the Cellular Spliceosome and Modulates Splicing.

    PubMed

    De Maio, Federico A; Risso, Guillermo; Iglesias, Nestor G; Shah, Priya; Pozzi, Berta; Gebhard, Leopoldo G; Mammi, Pablo; Mancini, Estefania; Yanovsky, Marcelo J; Andino, Raul; Krogan, Nevan; Srebrow, Anabella; Gamarnik, Andrea V

    2016-08-01

    Dengue virus NS5 protein plays multiple functions in the cytoplasm of infected cells, enabling viral RNA replication and counteracting host antiviral responses. Here, we demonstrate a novel function of NS5 in the nucleus where it interferes with cellular splicing. Using global proteomic analysis of infected cells together with functional studies, we found that NS5 binds spliceosome complexes and modulates endogenous splicing as well as minigene-derived alternative splicing patterns. In particular, we show that NS5 alone, or in the context of viral infection, interacts with core components of the U5 snRNP particle, CD2BP2 and DDX23, alters the inclusion/exclusion ratio of alternative splicing events, and changes mRNA isoform abundance of known antiviral factors. Interestingly, a genome wide transcriptome analysis, using recently developed bioinformatics tools, revealed an increase of intron retention upon dengue virus infection, and viral replication was improved by silencing specific U5 components. Different mechanistic studies indicate that binding of NS5 to the spliceosome reduces the efficiency of pre-mRNA processing, independently of NS5 enzymatic activities. We propose that NS5 binding to U5 snRNP proteins hijacks the splicing machinery resulting in a less restrictive environment for viral replication. PMID:27575636

  1. The Dengue Virus NS5 Protein Intrudes in the Cellular Spliceosome and Modulates Splicing

    PubMed Central

    Shah, Priya; Pozzi, Berta; Gebhard, Leopoldo G.; Mammi, Pablo; Yanovsky, Marcelo J.; Andino, Raul; Krogan, Nevan; Srebrow, Anabella; Gamarnik, Andrea V.

    2016-01-01

    Dengue virus NS5 protein plays multiple functions in the cytoplasm of infected cells, enabling viral RNA replication and counteracting host antiviral responses. Here, we demonstrate a novel function of NS5 in the nucleus where it interferes with cellular splicing. Using global proteomic analysis of infected cells together with functional studies, we found that NS5 binds spliceosome complexes and modulates endogenous splicing as well as minigene-derived alternative splicing patterns. In particular, we show that NS5 alone, or in the context of viral infection, interacts with core components of the U5 snRNP particle, CD2BP2 and DDX23, alters the inclusion/exclusion ratio of alternative splicing events, and changes mRNA isoform abundance of known antiviral factors. Interestingly, a genome wide transcriptome analysis, using recently developed bioinformatics tools, revealed an increase of intron retention upon dengue virus infection, and viral replication was improved by silencing specific U5 components. Different mechanistic studies indicate that binding of NS5 to the spliceosome reduces the efficiency of pre-mRNA processing, independently of NS5 enzymatic activities. We propose that NS5 binding to U5 snRNP proteins hijacks the splicing machinery resulting in a less restrictive environment for viral replication. PMID:27575636

  2. A curated census of autophagy-modulating proteins and small molecules: candidate targets for cancer therapy.

    PubMed

    Lorenzi, Philip L; Claerhout, Sofie; Mills, Gordon B; Weinstein, John N

    2014-07-01

    Autophagy, a programmed process in which cell contents are delivered to lysosomes for degradation, appears to have both tumor-suppressive and tumor-promoting functions; both stimulation and inhibition of autophagy have been reported to induce cancer cell death, and particular genes and proteins have been associated both positively and negatively with autophagy. To provide a basis for incisive analysis of those complexities and ambiguities and to guide development of new autophagy-targeted treatments for cancer, we have compiled a comprehensive, curated inventory of autophagy modulators by integrating information from published siRNA screens, multiple pathway analysis algorithms, and extensive, manually curated text-mining of the literature. The resulting inventory includes 739 proteins and 385 chemicals (including drugs, small molecules, and metabolites). Because autophagy is still at an early stage of investigation, we provide extensive analysis of our sources of information and their complex relationships with each other. We conclude with a discussion of novel strategies that could potentially be used to target autophagy for cancer therapy. PMID:24906121

  3. Lithium blocks ethanol-induced modulation of protein kinases in the developing brain

    SciTech Connect

    Chakraborty, Goutam; Saito, Mitsuo; Mao, Rui-Fen; Wang, Ray; Vadasz, Csaba; Saito, Mariko

    2008-03-14

    Lithium has been shown to be neuroprotective against various insults including ethanol exposure. We previously reported that ethanol-induced apoptotic neurodegeneration in the postnatal day 7 (P7) mice is associated with decreases in phosphorylation levels of Akt, glycogen synthase kinase-3{beta} (GSK-3{beta}), and AMP-activated protein kinase (AMPK), and alteration in lipid profiles in the brain. Here, P7 mice were injected with ethanol and lithium, and the effects of lithium on ethanol-induced alterations in phosphorylation levels of protein kinases and lipid profiles in the brain were examined. Immunoblot and immunohistochemical analyses showed that lithium significantly blocked ethanol-induced caspase-3 activation and reduction in phosphorylation levels of Akt, GSK-3{beta}, and AMPK. Further, lithium inhibited accumulation of cholesterol ester (ChE) and N-acylphosphatidylethanolamine (NAPE) triggered by ethanol in the brain. These results suggest that Akt, GSK-3{beta}, and AMPK are involved in ethanol-induced neurodegeneration and the neuroprotective effects of lithium by modulating both apoptotic and survival pathways.

  4. Formulations for modulation of protein release from large-size PLGA microparticles for tissue engineering.

    PubMed

    Qodratnama, Roozbeh; Serino, Lorenzo Pio; Cox, Helen C; Qutachi, Omar; White, Lisa J

    2015-02-01

    In this study we present an approach to pre-program lysozyme release from large size (100-300 μm) poly(DL-lactic acid-co-glycolic acid) (PLGA) microparticles. This approach involved blending in-house synthesized triblock copolymers with a PLGA 85:15. In this work it is demonstrated that the lysozyme release rate and the total release are related to the mass of triblock copolymer present in polymer formulation. Two triblock copolymers (PLGA-PEG1500-PLGA and PLGA-PEG1000-PLGA) were synthesized and used in this study. In a like-for-like comparison, these two triblock copolymers appeared to have similar effects on the release of lysozyme. It was shown that blending resulted in the increase of the total lysozyme release and shortened the release period (70% release within 30 days). These results demonstrated that blending PLGA-PEG-PLGA triblock copolymer with PLGA 85:15 can be used as a method to pre-program protein release from microparticles. These microparticles with modulated protein release properties may be used to create microparticle-based tissue engineering constructs with pre-programmed release properties. PMID:25492193

  5. HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation

    SciTech Connect

    Okumura, Atsushi; Alce, Tim; Lubyova, Barbora; Ezelle, Heather; Strebel, Klaus; Pitha, Paula M.

    2008-03-30

    The activation of IRF-3 during the early stages of viral infection is critical for the initiation of the antiviral response; however the activation of IRF-3 in HIV-1 infected cells has not yet been characterized. We demonstrate that the early steps of HIV-1 infection do not lead to the activation and nuclear translocation of IRF-3; instead, the relative levels of IRF-3 protein are decreased due to the ubiquitin-associated proteosome degradation. Addressing the molecular mechanism of this effect we show that the degradation is independent of HIV-1 replication and that virion-associated accessory proteins Vif and Vpr can independently degrade IRF-3. The null mutation of these two genes reduced the capacity of the HIV-1 virus to down modulate IRF-3 levels. The degradation was associated with Vif- and Vpr-mediated ubiquitination of IRF-3 and was independent of the activation of IRF-3. N-terminal lysine residues were shown to play a critical role in the Vif- and Vpr-mediated degradation of IRF-3. These data implicate Vif and Vpr in the disruption of the initial antiviral response and point to the need of HIV-1 to circumvent the antiviral response during the very early phase of replication.

  6. Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity

    PubMed Central

    Allonso, Diego; Andrade, Iamara S.; Conde, Jonas N.; Coelho, Diego R.; Rocha, Daniele C. P.; da Silva, Manuela L.; Ventura, Gustavo T.

    2015-01-01

    ABSTRACT Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. IMPORTANCE Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the

  7. Peripheral myelin protein-22 (PMP22) modulates alpha 6 integrin expression in the human endometrium

    PubMed Central

    2011-01-01

    Background PMP22, a member of the GAS3 family of tetraspan proteins, is associated with a variety of neurological diseases. Previous studies have shown that PMP22 is expressed in proliferative endometrium, but its function within this tissue is poorly understood. In this study, we first characterized the expression of PMP22 in the human menstrual cycle and began to characterize its function in the endometrium. Methods Using a combination of immunohistochemistry and quantitative PCR, we characterized the expression of PMP22 in both proliferative and secretory endometrium. Differences in PMP22 expression between proliferative and secretory endometrium were determined using a Mann-Whitney U test. In order to investigate the influence of PMP22 on α6 integrin expression, cells were created that ectopically overexpressed PMP22 or expressed a siRNA to inhibit its expression. These cells were analyzed for changes in integrins and binding to extracellular matrices. Results In this study, we show that PMP22 expression is higher in proliferative phase than secretory phase. Functionally, we have begun to characterize the functional significance of this expression. Previous studies have suggested a link between PMP22 and α6 integrin, and therefore we asked whether PMP22 could associate or potentially modulate the expression of α6 integrin. Expression of both PMP22 and α6 integrin were detectable in endometrial epithelial and stromal cells, and we show that both proteins can associate and colocalize with each other. To understand if PMP22 directly altered the expression of a6 integrin, we examined cell lines with modulated levels of the protein. Overexpression of PMP22 was sufficient to increase α6 integrin surface expression with a concominant increase in binding to the extracellular matrix laminin, while a reduction in PMP22 suppressed α6 integrin surface expression. Conclusion These findings suggest a physiologic role for PMP22 on the expression of α6 integrin. We

  8. Modulation of Protein S-Nitrosylation by Isoprene Emission in Poplar.

    PubMed

    Vanzo, Elisa; Merl-Pham, Juliane; Velikova, Violeta; Ghirardo, Andrea; Lindermayr, Christian; Hauck, Stefanie M; Bernhardt, Jörg; Riedel, Katharina; Durner, Jörg; Schnitzler, Jörg-Peter

    2016-04-01

    Researchers have been examining the biological function(s) of isoprene in isoprene-emitting (IE) species for two decades. There is overwhelming evidence that leaf-internal isoprene increases the thermotolerance of plants and protects them against oxidative stress, thus mitigating a wide range of abiotic stresses. However, the mechanisms of abiotic stress mitigation by isoprene are still under debate. Here, we assessed the impact of isoprene on the emission of nitric oxide (NO) and the S-nitroso-proteome of IE and non-isoprene-emitting (NE) gray poplar (Populus × canescens) after acute ozone fumigation. The short-term oxidative stress induced a rapid and strong emission of NO in NE compared with IE genotypes. Whereas IE and NE plants exhibited under nonstressful conditions only slight differences in their S-nitrosylation pattern, the in vivo S-nitroso-proteome of the NE genotype was more susceptible to ozone-induced changes compared with the IE plants. The results suggest that the nitrosative pressure (NO burst) is higher in NE plants, underlining the proposed molecular dialogue between isoprene and the free radical NO Proteins belonging to the photosynthetic light and dark reactions, the tricarboxylic acid cycle, protein metabolism, and redox regulation exhibited increased S-nitrosylation in NE samples compared with IE plants upon oxidative stress. Because the posttranslational modification of proteins via S-nitrosylation often impacts enzymatic activities, our data suggest that isoprene indirectly regulates the production of reactive oxygen species (ROS) via the control of the S-nitrosylation level of ROS-metabolizing enzymes, thus modulating the extent and velocity at which the ROS and NO signaling molecules are generated within a plant cell. PMID:26850277

  9. Tight junction proteins expression and modulation in immune cells and multiple sclerosis

    PubMed Central

    Mandel, Ilana; Paperna, Tamar; Glass-Marmor, Lea; Volkowich, Anat; Badarny, Samih; Schwartz, Ilya; Vardi, Pnina; Koren, Ilana; Miller, Ariel

    2012-01-01

    Abstract The tight junction proteins (TJPs) are major determinants of endothelial cells comprising physiological vascular barriers such as the blood–brain barrier, but little is known about their expression and role in immune cells. In this study we assessed TJP expression in human leukocyte subsets, their induction by immune activation and modulation associated with autoimmune disease states and therapies. A consistent expression of TJP complexes was detected in peripheral blood leukocytes (PBLs), predominantly in B and T lymphocytes and monocytes, whereas the in vitro application of various immune cell activators led to an increase of claudin 1 levels, yet not of claudin 5. Claudins 1 and 5 levels were elevated in PBLs of multiple sclerosis (MS) patients in relapse, relative to patients in remission, healthy controls and patients with other neurological disorders. Interestingly, claudin 1 protein levels were elevated also in PBLs of patients with type 1 diabetes (T1D). Following glucocorticoid treatment of MS patients in relapse, RNA levels of JAM3 and CLDN5 and claudin 5 protein levels in PBLs decreased. Furthermore, a correlation between CLDN5 pre-treatment levels and clinical response phenotype to interferon-β therapy was detected. Our findings indicate that higher levels of leukocyte claudins are associated with immune activation and specifically, increased levels of claudin 5 are associated with MS disease activity. This study highlights a potential role of leukocyte TJPs in physiological states, and autoimmunity and suggests they should be further evaluated as biomarkers for aberrant immune activity and response to therapy in immune-mediated diseases such as MS. PMID:21762372

  10. Asn47 and Phe114 modulate the inner sphere reorganization energies of type zero copper proteins.

    PubMed

    Sadhu, Biswajit; Sundararajan, Mahesh

    2016-06-22

    The geometric structures and electron transfer properties of type 1 Cu proteins are reasonably understood at the molecular level (E. I. Solomon and R. G. Hadt, Coord. Chem. Rev., 2011, 255, 774-789, J. J. Warren, K. M. Lancaster, J. H. Richards and H. B. Gray, J. Inorg. Biochem., 2012, 115, 119-126). Much understanding of type 1 copper electron transfer reactivity has come from site directed mutagenesis studies. For example, artificial "type zero" Cu-centres constructed in cupredoxin-azurin have showcased the capacity of outer-sphere hydrogen bonding networks to enhance Cu II/I electron transfer reactivity. In this paper, we have elaborated on earlier kinetics and electronic structural studies of type zero Cu by calculating the inner sphere reorganization energies of type 1, type 2, and type zero Cu proteins using density functional theory (DFT). Although the choice of density functionals for copper systems is not straightforward, we have benchmarked the density functionals against the recently reported ESI-PES data for two synthetic copper models (S. Niu, D.-L. Huang, P. D. Dau, H.-T. Liu, L.-S. Wang and T. J. Ichiye, Chem. Theory Comput., 2014, 10, 1283). For the Cu proteins, our calculations predict that changes in the coordination number upon metal reduction lead to large inner sphere reorganization energies for type 2 Cu sites, whereas retention in the coordination number is observed for type zero Cu sites. These variations in the coordination number are modulated by the outer-sphere coordinating residues Asn47 and Phe114, which are involved in hydrogen bonding with the Asp112 side chain. PMID:27271560

  11. Phosphorylation Modulates the Mechanical Stability of the Cardiac Myosin-Binding Protein C Motif

    PubMed Central

    Michalek, Arthur J.; Howarth, Jack W.; Gulick, James; Previs, Michael J.; Robbins, Jeffrey; Rosevear, Paul R.; Warshaw, David M.

    2013-01-01

    Cardiac myosin-binding protein C (cMyBP-C) is a thick-filament-associated protein that modulates cardiac contractility through interactions of its N-terminal immunoglobulin (Ig)-like C0-C2 domains with actin and/or myosin. These interactions are modified by the phosphorylation of at least four serines located within the motif linker between domains C1 and C2. We investigated whether motif phosphorylation alters its mechanical properties by characterizing force-extension relations using atomic force spectroscopy of expressed mouse N-terminal cMyBP-C fragments (i.e., C0-C3). Protein kinase A phosphorylation or serine replacement with aspartic acids did not affect persistence length (0.43 ± 0.04 nm), individual Ig-like domain unfolding forces (118 ± 3 pN), or Ig extension due to unfolding (30 ± 0.38 nm). However, phosphorylation did significantly decrease the C0-C3 mean contour length by 24 ± 2 nm. These results suggest that upon phosphorylation, the motif, which is freely extensible in the nonphosphorylated state, adopts a more stable and/or different structure. Circular dichroism and dynamic light scattering data for shorter expressed C1-C2 fragments with all four serines replaced by aspartic acids confirmed that the motif did adopt a more stable structure that was not apparent in the nonphosphorylated motif. These biophysical data provide both a mechanical and structural basis for cMyBP-C regulation by motif phosphorylation. PMID:23442866

  12. Coronin 1 Regulates Cognition and Behavior through Modulation of cAMP/Protein Kinase A Signaling

    PubMed Central

    Zhang, Chun-Lei; Moshous, Despina; Studer, Vera; Schneider, Jacques; Genoud, Christel; Fossoud, Catherine; Gambino, Frédéric; Khelfaoui, Malik; Müller, Christian; Bartholdi, Deborah; Rossez, Helene; Stiess, Michael; Houbaert, Xander; Jaussi, Rolf; Frey, Daniel; Kammerer, Richard A.; Deupi, Xavier; de Villartay, Jean-Pierre; Lüthi, Andreas; Humeau, Yann; Pieters, Jean

    2014-01-01

    Cognitive and behavioral disorders are thought to be a result of neuronal dysfunction, but the underlying molecular defects remain largely unknown. An important signaling pathway involved in the regulation of neuronal function is the cyclic AMP/Protein kinase A pathway. We here show an essential role for coronin 1, which is encoded in a genomic region associated with neurobehavioral dysfunction, in the modulation of cyclic AMP/PKA signaling. We found that coronin 1 is specifically expressed in excitatory but not inhibitory neurons and that coronin 1 deficiency results in loss of excitatory synapses and severe neurobehavioral disabilities, including reduced anxiety, social deficits, increased aggression, and learning defects. Electrophysiological analysis of excitatory synaptic transmission in amygdala revealed that coronin 1 was essential for cyclic–AMP–protein kinase A–dependent presynaptic plasticity. We further show that upon cell surface stimulation, coronin 1 interacted with the G protein subtype Gαs to stimulate the cAMP/PKA pathway. The absence of coronin 1 or expression of coronin 1 mutants unable to interact with Gαs resulted in a marked reduction in cAMP signaling. Strikingly, synaptic plasticity and behavioral defects of coronin 1–deficient mice were restored by in vivo infusion of a membrane-permeable cAMP analogue. Together these results identify coronin 1 as being important for cognition and behavior through its activity in promoting cAMP/PKA-dependent synaptic plasticity and may open novel avenues for the dissection of signal transduction pathways involved in neurobehavioral processes. PMID:24667537

  13. Interaction with Caveolin-1 Modulates G Protein Coupling of Mouse β3-Adrenoceptor*

    PubMed Central

    Sato, Masaaki; Hutchinson, Dana S.; Halls, Michelle L.; Furness, Sebastian G. B.; Bengtsson, Tore; Evans, Bronwyn A.; Summers, Roger J.

    2012-01-01

    Caveolins act as scaffold proteins in multiprotein complexes and have been implicated in signaling by G protein-coupled receptors. Studies using knock-out mice suggest that β3-adrenoceptor (β3-AR) signaling is dependent on caveolin-1; however, it is not known whether caveolin-1 is associated with the β3-AR or solely with downstream signaling proteins. We have addressed this question by examining the impact of membrane rafts and caveolin-1 on the differential signaling of mouse β3a- and β3b-AR isoforms that diverge at the distal C terminus. Only the β3b-AR promotes pertussis toxin (PTX)-sensitive cAMP accumulation. When cells expressing the β3a-AR were treated with filipin III to disrupt membrane rafts or transfected with caveolin-1 siRNA, the cyclic AMP response to the β3-AR agonist CL316243 became PTX-sensitive, suggesting Gαi/o coupling. The β3a-AR C terminus, SP384PLNRF389DGY392EGARPF398PT, resembles a caveolin interaction motif. Mutant β3a-ARs (F389A/Y392A/F398A or P384S/F389A) promoted PTX-sensitive cAMP responses, and in situ proximity assays demonstrated an association between caveolin-1 and the wild type β3a-AR but not the mutant receptors. In membrane preparations, the β3b-AR activated Gαo and mediated PTX-sensitive cAMP responses, whereas the β3a-AR did not activate Gαi/o proteins. The endogenous β3a-AR displayed Gαi/o coupling in brown adipocytes from caveolin-1 knock-out mice or in wild type adipocytes treated with filipin III. Our studies indicate that interaction of the β3a-AR with caveolin inhibits coupling to Gαi/o proteins and suggest that signaling is modulated by a raft-enriched complex containing the β3a-AR, caveolin-1, Gαs, and adenylyl cyclase. PMID:22535965

  14. Aerobic fitness level does not modulate changes in whole-body protein turnover produced by unaccustomed increases in energy expenditure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of a sudden increase in energy expenditure (EE) on whole-body protein turnover vary between studies, and the possibility that fitness level modulates those responses has not been fully investigated. We hypothesized that aerobically trained individuals may exhibit adaptations that protec...

  15. A pp32-retinoblastoma protein complex modulates androgen receptor-mediated transcription and associates with components of the splicing machinery

    SciTech Connect

    Adegbola, Onikepe; Pasternack, Gary R. . E-mail: gpastern@jhmi.edu

    2005-08-26

    We have previously shown pp32 and the retinoblastoma protein interact. pp32 and the retinoblastoma protein are nuclear receptor transcriptional coregulators: the retinoblastoma protein is a coactivator for androgen receptor, the major regulator of prostate cancer growth, while pp32, which is highly expressed in prostate cancer, is a corepressor of the estrogen receptor. We now show pp32 increases androgen receptor-mediated transcription and the retinoblastoma protein modulates this activity. Using affinity purification and mass spectrometry, we identify members of the pp32-retinoblastoma protein complex as PSF and nonO/p54nrb, proteins implicated in coordinate regulation of nuclear receptor-mediated transcription and splicing. We show that the pp32-retinoblastoma protein complex is modulated during TPA-induced K562 differentiation. Present evidence suggests that nuclear receptors assemble multiprotein complexes to coordinately regulate transcription and mRNA processing. Our results suggest that pp32 and the retinoblastoma protein may be part of a multiprotein complex that coordinately regulates nuclear receptor-mediated transcription and mRNA processing.

  16. Surfactant protein A integrates activation signal strength to differentially modulate T cell proliferation.

    PubMed

    Mukherjee, Sambuddho; Giamberardino, Charles; Thomas, Joseph; Evans, Kathy; Goto, Hisatsugu; Ledford, Julie G; Hsia, Bethany; Pastva, Amy M; Wright, Jo Rae

    2012-02-01

    Pulmonary surfactant lipoproteins lower the surface tension at the alveolar-airway interface of the lung and participate in host defense. Previous studies reported that surfactant protein A (SP-A) inhibits lymphocyte proliferation. We hypothesized that SP-A-mediated modulation of T cell activation depends upon the strength, duration, and type of lymphocyte activating signals. Modulation of T cell signal strength imparted by different activating agents ex vivo and in vivo in different mouse models and in vitro with human T cells shows a strong correlation between strength of signal (SoS) and functional effects of SP-A interactions. T cell proliferation is enhanced in the presence of SP-A at low SoS imparted by exogenous mitogens, specific Abs, APCs, or in homeostatic proliferation. Proliferation is inhibited at higher SoS imparted by different doses of the same T cell mitogens or indirect stimuli such as LPS. Importantly, reconstitution with exogenous SP-A into the lungs of SP-A(-/-) mice stimulated with a strong signal also resulted in suppression of T cell proliferation while elevating baseline proliferation in unstimulated T cells. These signal strength and SP-A-dependent effects are mediated by changes in intracellular Ca(2+) levels over time, involving extrinsic Ca(2+)-activated channels late during activation. These effects are intrinsic to the global T cell population and are manifested in vivo in naive as well as memory phenotype T cells. Thus, SP-A appears to integrate signal thresholds to control T cell proliferation. PMID:22219327

  17. Modulation of ozone-sensitive genes in alpha-tocopherol transfer protein null mice

    PubMed Central

    Vasu, Vihas T.; Oommen, Saji; Lim, Yunsook; Valacchi, Giuseppe; Hobson, Brad; Eiserich, Jason P.; Leonard, Scott W.; Traber, Maret G.; Cross, Carroll E.; Gohil, Kishorchandra

    2009-01-01

    Alpha-tocopherol transfer protein (ATTP) null mice (ATTP−/−) have a systemic alpha-tocopherol (AT) deficiency, with their lung AT levels being < 10% of those in AT-replete ATTP+/+ mice when fed a standard rodent chow diet. ATTP+/+ and ATTP−/− mice (4 wk old male mice, n = 16 per group) were fed a standard diet (35 IU AT/kg diet) for 8–12 wk, exposed 6 h/day for 3 days to either to O3 (0.5 ppm) or filtered air, then sacrificed. No significant differences in plasma or lung AT concentrations were observed in response to this level of O3 exposure. Lung genomic responses of the lungs to O3 were determined using Affymetrix 430A 2.0 arrays containing over 22,600 probe sets representing 14,000 well-characterized mouse genes. As compared with filtered air exposure, O3 exposure resulted in 99 genes being differentially expressed in ATTP−/− mice, as compared to 52 differentially expressed genes in ATTP+/+ mice. The data revealed an O3-induced upregulation of genes related to cell proliferation/DNA repair and inflammatory-immune responses in both ATTP+/+ and ATTP−/− mice, with the expression of 22 genes being common to both, whereas 30 and 77 genes were unique to ATTP+/+ and ATTP−/− mice, respectively. The expressions of O3 sensitive genes—Timp1, Areg, Birc5 and Tnc—were seen to be further modulated by AT status. The present study reveals AT modulation of adaptive response of lung genome to O3 exposure. PMID:19555225

  18. D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons.

    PubMed

    Wani, Khursheed A; Catanese, Mary; Normantowicz, Robyn; Herd, Muriel; Maher, Kathryn N; Chase, Daniel L

    2012-01-01

    Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1) required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior. PMID:22629462

  19. A LONGITUDINAL STUDY OF HPV16 L1, E6 AND E7 SEROPOSITIVITY AND ORAL HPV16 INFECTION

    PubMed Central

    Beachler, Daniel C.; Viscidi, Raphael; Sugar, Elizabeth A.; Minkoff, Howard; Strickler, Howard D.; Cranston, Ross D.; Wiley, Dorothy J.; Jacobson, Lisa P.; Weber, Kathleen M.; Margolick, Joseph B.; Reddy, Susheel; Gillison, Maura L.; D’Souza, Gypsyamber

    2014-01-01

    Background Individuals with HPV infections can develop IgG antibodies to HPV proteins including the L1 capsid and E6 and E7 oncoproteins. Evidence on whether L1 antibodies reduce the risk of cervical HPV infection is mixed, but this has not been explored for oral HPV infections. Antibodies to HPV16’s E6 oncoprotein have been detected in some oropharyngeal cancer cases years prior to cancer diagnosis, but it is unknown if these antibodies are associated with oral HPV16 DNA. Methods Enzyme linked immunosorbent assays tested for serum antibodies to HPV16’s L1 capsid in 463 HIV-infected and 293 HIV-uninfected adults, and for antibodies to recombinantly expressed E6 and E7 oncoproteins to HPV16 in 195 HIV-infected and 69 HIV-uninfected cancer-free participants at baseline. Oral rinse samples were collected semi-annually for up to three years and tested for HPV DNA using PGMY 09/11 primers. Adjusted Poisson, logistic, and Wei-Lin-Weissfeld regression models were utilized. Results HPV16 L1 seroreactivity did not reduce the subsequent risk of incident oral HPV16 infection in unadjusted (HR=1.4, 95%CI=0.59–3.3) or adjusted (aHR=1.1, 95%CI=0.41–3.0) analysis. Antibodies to HPV16 E6 and E7 oncoproteins were detected in 7.6% and 3.4% of participants respectively, but they were not associated with baseline oral HPV16 DNA prevalence or oral HPV16 persistence (each p-value>0.40). Conclusions Naturally acquired HPV16 L1 antibodies did not reduce the risk of subsequent oral HPV16 infection. HPV16 E6 and E7 seropositivity was not a marker for oral HPV16 infection in this population without HPV-related cancer. PMID:25585068

  20. Protein binding modulates the cellular uptake of silver nanoparticles into human cells: Implications for in vitro to in vivo extrapolations?

    PubMed Central

    Monteiro-Riviere, Nancy A.; Samberg, Meghan E.; Oldenburg, Steven J.; Riviere, Jim E.

    2013-01-01

    Nanoparticles (NP) absorbed in the body will come in contact with blood proteins and form NP/protein complexes termed protein coronas, which may modulate NP cellular uptake. This study quantitated human epidermal keratinocyte (HEK) uptake of silver (Ag) NP complexed to different human serum proteins. Prior to HEK dosing, AgNP (20 nm and 110 nm citrate BioPure™; 40 nm and 120 nm silica-coated) were preincubated for 2 h at 37 °C without (control) or with physiological levels of albumin (44 mg/ml), IgG (14.5 mg/ml) or transferrin (3 mg/ml) to form protein-complexed NP. HEK were exposed to the protein incubated AgNP for 3 h, rinsed and incubated for 24 h, rinsed in buffer and lysed. Ag was assayed by inductively-coupled plasma optical emission spectrometry. Uptake of Ag in HEK was <4.1% of applied dose with proteins suppressing citrate, but not silica coated Ag uptake. IgG exposure dramatically reduced 110 nm citrate AgNP uptake. In contrast, greatest uptake of 20 nm silica AgNP was seen with IgG, while 110 nm silica AgNP showed minimal protein effects. Electron microscopy confirmed cellular uptake of all NP but showed differences in the appearance and agglomeration state of the NP within HEK vacuoles. This work suggests that NP association with different serum proteins, purportedly forming different protein coronas, significantly modulates Ag uptake into HEK compared to native NP uptake, suggesting caution in extrapolating in vitro uptake data to predict behavior in vivo where the nature of the protein corona may determine patterns of cellular uptake, and thus biodistribution, biological activity and toxicity. PMID:23660336

  1. NMR studies reveal the role of biomembranes in modulating ligand binding and release by intracellular bile acid binding proteins.

    PubMed

    Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette

    2009-12-18

    Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted. PMID:19836400

  2. Hypoxic Tumor Cell Modulates Its Microenvironment to Enhance Angiogenic and Metastatic Potential by Secretion of Proteins and Exosomes*

    PubMed Central

    Park, Jung Eun; Tan, Hon Sen; Datta, Arnab; Lai, Ruenn Chai; Zhang, Huoming; Meng, Wei; Lim, Sai Kiang; Sze, Siu Kwan

    2010-01-01

    Under hypoxia, tumor cells produce a secretion that modulates their microenvironment to facilitate tumor angiogenesis and metastasis. Here, we observed that hypoxic or reoxygenated A431 carcinoma cells exhibited enhanced angiogenic and metastatic potential such as reduced cell-cell and cell-extracellular matrix adhesion, increased invasiveness, and production of a secretion with increased chorioallantoic membrane angiogenic activity. Consistent with these observations, quantitative proteomics revealed that under hypoxia the tumor cells secreted proteins involved in angiogenesis, focal adhesion, extracellular matrix-receptor interaction, and immune cell recruitment. Unexpectedly, the secreted proteins were predominantly cytoplasmic and membrane proteins. Ultracentrifugation at 100,000 × g precipitated 54% of the secreted proteins and enriched for many exosome-associated proteins such as the tetraspanins and Alix and also proteins with the potential to facilitate angiogenesis and metastasis. Two tetraspanins, CD9 and CD81, co-immunoprecipitated. Together, these data suggested that tumor cells secrete proteins and exosomes with the potential to modulate their microenvironment and facilitate angiogenesis and metastasis. PMID:20124223

  3. Primary human cervical carcinoma cells require human papillomavirus E6 and E7 expression for ongoing proliferation

    SciTech Connect

    Magaldi, Thomas G.; Almstead, Laura L.; Bellone, Stefania; Prevatt, Edward G.; Santin, Alessandro D.; DiMaio, Daniel

    2012-01-05

    Repression of human papillomavirus (HPV) E6 and E7 oncogenes in established cervical carcinoma cell lines causes senescence due to reactivation of cellular tumor suppressor pathways. Here, we determined whether ongoing expression of HPV16 or HPV18 oncogenes is required for the proliferation of primary human cervical carcinoma cells in serum-free conditions at low passage number after isolation from patients. We used an SV40 viral vector expressing the bovine papillomavirus E2 protein to repress E6 and E7 in these cells. To enable efficient SV40 infection and E2 gene delivery, we first incubated the primary cervical cancer cells with the ganglioside GM1, a cell-surface receptor for SV40 that is limiting in these cells. Repression of HPV in primary cervical carcinoma cells caused them to undergo senescence, but the E2 protein had little effect on HPV-negative primary cells. These data suggest that E6 and E7 dependence is an inherent property of human cervical cancer cells.

  4. The relative vertex clustering value - a new criterion for the fast discovery of functional modules in protein interaction networks

    PubMed Central

    2015-01-01

    Background Cellular processes are known to be modular and are realized by groups of proteins implicated in common biological functions. Such groups of proteins are called functional modules, and many community detection methods have been devised for their discovery from protein interaction networks (PINs) data. In current agglomerative clustering approaches, vertices with just a very few neighbors are often classified as separate clusters, which does not make sense biologically. Also, a major limitation of agglomerative techniques is that their computational efficiency do not scale well to large PINs. Finally, PIN data obtained from large scale experiments generally contain many false positives, and this makes it hard for agglomerative clustering methods to find the correct clusters, since they are known to be sensitive to noisy data. Results We propose a local similarity premetric, the relative vertex clustering value, as a new criterion allowing to decide when a node can be added to a given node's cluster and which addresses the above three issues. Based on this criterion, we introduce a novel and very fast agglomerative clustering technique, FAC-PIN, for discovering functional modules and protein complexes from a PIN data. Conclusions Our proposed FAC-PIN algorithm is applied to nine PIN data from eight different species including the yeast PIN, and the identified functional modules are validated using Gene Ontology (GO) annotations from DAVID Bioinformatics Resources. Identified protein complexes are also validated using experimentally verified complexes. Computational results show that FAC-PIN can discover functional modules or protein complexes from PINs more accurately and more efficiently than HC-PIN and CNM, the current state-of-the-art approaches for clustering PINs in an agglomerative manner. PMID:25734691

  5. PRO40 Is a Scaffold Protein of the Cell Wall Integrity Pathway, Linking the MAP Kinase Module to the Upstream Activator Protein Kinase C

    PubMed Central

    Teichert, Ines; Steffens, Eva Katharina; Schnaß, Nicole; Fränzel, Benjamin; Krisp, Christoph; Wolters, Dirk A.; Kück, Ulrich

    2014-01-01

    Mitogen-activated protein kinase (MAPK) pathways are crucial signaling instruments in eukaryotes. Most ascomycetes possess three MAPK modules that are involved in key developmental processes like sexual propagation or pathogenesis. However, the regulation of these modules by adapters or scaffolds is largely unknown. Here, we studied the function of the cell wall integrity (CWI) MAPK module in the model fungus Sordaria macrospora. Using a forward genetic approach, we found that sterile mutant pro30 has a mutated mik1 gene that encodes the MAPK kinase kinase (MAPKKK) of the proposed CWI pathway. We generated single deletion mutants lacking MAPKKK MIK1, MAPK kinase (MAPKK) MEK1, or MAPK MAK1 and found them all to be sterile, cell fusion-deficient and highly impaired in vegetative growth and cell wall stress response. By searching for MEK1 interaction partners via tandem affinity purification and mass spectrometry, we identified previously characterized developmental protein PRO40 as a MEK1 interaction partner. Although fungal PRO40 homologs have been implicated in diverse developmental processes, their molecular function is currently unknown. Extensive affinity purification, mass spectrometry, and yeast two-hybrid experiments showed that PRO40 is able to bind MIK1, MEK1, and the upstream activator protein kinase C (PKC1). We further found that the PRO40 N-terminal disordered region and the central region encompassing a WW interaction domain are sufficient to govern interaction with MEK1. Most importantly, time- and stress-dependent phosphorylation studies showed that PRO40 is required for MAK1 activity. The sum of our results implies that PRO40 is a scaffold protein for the CWI pathway, linking the MAPK module to the upstream activator PKC1. Our data provide important insights into the mechanistic role of a protein that has been implicated in sexual and asexual development, cell fusion, symbiosis, and pathogenicity in different fungal systems. PMID:25188365

  6. Nuclear envelope proteins modulate proliferation of vascular smooth muscle cells during cyclic stretch application

    PubMed Central

    Qi, Ying-Xin; Yao, Qing-Ping; Huang, Kai; Shi, Qian; Zhang, Ping; Wang, Guo-Liang; Han, Yue; Bao, Han; Wang, Lu; Li, Hai-Peng; Shen, Bao-Rong; Wang, Yingxiao; Chien, Shu; Jiang, Zong-Lai

    2016-01-01

    Cyclic stretch is an important inducer of vascular smooth muscle cell (VSMC) proliferation, which is crucial in vascular remodeling during hypertension. However, the molecular mechanism remains unclear. We studied the effects of emerin and lamin A/C, two important nuclear envelope proteins, on VSMC proliferation in hypertension and the underlying mechano-mechanisms. In common carotid artery of hypertensive rats in vivo and in cultured cells subjected to high (15%) cyclic stretch in vitro, VSMC proliferation was increased significantly, and the expression of emerin and lamin A/C was repressed compared with normotensive or normal (5%) cyclic stretch controls. Using targeted siRNA to mimic the repressed expression of emerin or lamin A/C induced by 15% stretch, we found that VSMC proliferation was enhanced under static and 5%-stretch conditions. Overexpression of emerin or lamin A/C reversed VSMC proliferation induced by 15% stretch. Hence, emerin and lamin A/C play critical roles in suppressing VSMC hyperproliferation induced by hyperstretch. ChIP-on-chip and MOTIF analyses showed that the DNAs binding with emerin contain three transcription factor motifs: CCNGGA, CCMGCC, and ABTTCCG; DNAs binding with lamin A/C contain the motifs CVGGAA, GCCGCYGC, and DAAGAAA. Protein/DNA array proved that altered emerin or lamin A/C expression modulated the activation of various transcription factors. Furthermore, accelerating local expression of emerin or lamin A/C reversed cell proliferation in the carotid artery of hypertensive rats in vivo. Our findings establish the pathogenetic role of emerin and lamin A/C repression in stretch-induced VSMC proliferation and suggest mechanobiological mechanism underlying this process that involves the sequence-specific binding of emerin and lamin A/C to specific transcription factor motifs. PMID:27114541

  7. Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation[OPEN

    PubMed Central

    2015-01-01

    The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. In contrast with the single SEIPIN genes in humans and yeast, there are three SEIPIN homologs in Arabidopsis thaliana, designated SEIPIN1, SEIPIN2, and SEIPIN3. Essentially nothing is known about the functions of SEIPIN homologs in plants. Here, a yeast (Saccharomyces cerevisiae) SEIPIN deletion mutant strain and a plant (Nicotiana benthamiana) transient expression system were used to test the ability of Arabidopsis SEIPINs to influence LD morphology. In both species, expression of SEIPIN1 promoted accumulation of large-sized lipid droplets, while expression of SEIPIN2 and especially SEIPIN3 promoted small LDs. Arabidopsis SEIPINs increased triacylglycerol levels and altered composition. In tobacco, endoplasmic reticulum (ER)-localized SEIPINs reorganized the normal, reticulated ER structure into discrete ER domains that colocalized with LDs. N-terminal deletions and swapping experiments of SEIPIN1 and 3 revealed that this region of SEIPIN determines LD size. Ectopic overexpression of SEIPIN1 in Arabidopsis resulted in increased numbers of large LDs in leaves, as well as in seeds, and increased seed oil content by up to 10% over wild-type seeds. By contrast, RNAi suppression of SEIPIN1 resulted in smaller seeds and, as a consequence, a reduction in the amount of oil per seed compared with the wild type. Overall, our results indicate that Arabidopsis SEIPINs are part of a conserved LD biogenesis machinery in eukaryotes and that in plants these proteins may have evolved specialized roles in the storage of neutral lipids by differentially modulating the number and sizes of lipid droplets. PMID:26362606

  8. Maternal treatment with glucocorticoids modulates gap junction protein expression in the ovine fetal brain.

    PubMed

    Sadowska, G B; Stonestreet, B S

    2014-09-01

    Gap junctions facilitate intercellular communication and are important in brain development. Connexins (Cx) comprise a transmembrane protein family that forms gap junctions. Cx-32 is expressed in oligodendrocytes and neurons, Cx-36 in neurons, and Cx-43 in astrocytes. Although single antenatal steroid courses are recommended for fetal lung maturation, multiple courses can be given to women at recurrent risk for premature delivery. We examined the effects of single and multiple glucocorticoid courses on Cx-32, Cx-36, and Cx-43 protein expressions in the fetal cerebral cortex, cerebellum, and spinal cord, and differences in Cx expression among brain regions under basal conditions. In the single-course groups, the ewes received dexamethasone (6 mg) or placebo as four intramuscular injections every 12h over 48 h. In the multiple-course groups, the ewes received the same treatment, once a week for 5 weeks starting at 76-78 days of gestation. Cx were measured by Western immunoblot on brain samples from 105 to 108-day gestation fetuses. A single dexamethasone course was associated with increases (P<0.05) in cerebral cortical and spinal cord Cx-36 and Cx-43 and multiple courses with increases in cerebellar and spinal cord Cx-36, and cerebral cortical and cerebellar Cx-43. Cx-32 did not change. Cx-32 was higher in the cerebellum than cerebral cortex and spinal cord, Cx-36 higher in the spinal cord than cerebellum, and Cx-43 higher in the cerebellum and spinal cord than cerebral cortex during basal conditions. In conclusion, maternal glucocorticoid therapy increases specific Cx, responses to different maternal courses vary among Cx and brain regions, and Cx expression differs among brain regions under basal conditions. Maternal treatment with glucocorticoids differentially modulates Cx in the fetal brain. PMID:24929069

  9. γ-Secretase Modulators and APH1 Isoforms Modulate γ-Secretase Cleavage but Not Position of ε-Cleavage of the Amyloid Precursor Protein (APP)

    PubMed Central

    Lessard, Christian B.; Cottrell, Barbara A.; Maruyama, Hiroko; Suresh, Suraj; Golde, Todd E.; Koo, Edward H.

    2015-01-01

    The relative increase in Aβ42 peptides from familial Alzheimer disease (FAD) linked APP and PSEN mutations can be related to changes in both ε-cleavage site utilization and subsequent step-wise cleavage. Cleavage at the ε-site releases the amyloid precursor protein (APP) intracellular domain (AICD), and perturbations in the position of ε-cleavage are closely associated with changes in the profile of amyloid β-protein (Aβ) species that are produced and secreted. The mechanisms by which γ-secretase modulators (GSMs) or FAD mutations affect the various γ-secretase cleavages to alter the generation of Aβ peptides have not been fully elucidated. Recent studies suggested that GSMs do not modulate ε-cleavage of APP, but the data were derived principally from recombinant truncated epitope tagged APP substrate. Here, using full length APP from transfected cells, we investigated whether GSMs modify the ε-cleavage of APP under more native conditions. Our results confirmed the previous findings that ε-cleavage is insensitive to GSMs. In addition, fenofibrate, an inverse GSM (iGSM), did not alter the position or kinetics of ε-cleavage position in vitro. APH1A and APH1B, a subunit of the γ-secretase complex, also modulated Aβ42/Aβ40 ratio without any alterations in ε-cleavage, a result in contrast to what has been observed with PS1 and APP FAD mutations. Consequently, GSMs and APH1 appear to modulate γ-secretase activity and Aβ42 generation by altering processivity but not ε-cleavage site utilization. PMID:26678856

  10. Sonoporation of Cervical Carcinoma Cells Affected with E6-Oncoprotein for the Treatment of Uterine Cancer

    NASA Astrophysics Data System (ADS)

    Curiel, Laura; Lee, Kyle; Pichardo, Samuel; Zehbe, Ingeborg

    2010-03-01

    Cervical cancer has been identified as the third leading cause of average years of life lost per person dying of cancer. Since essentially all cervical cancers contain copies of human papillomavirus (HPV) DNA, we propose a treatment that targets HPV-infected cells using strategies that re-introduce normal functions into the infected cells while sparing healthy cells. We propose the use of focused ultrasound in combination with microbubbles as means to deliver antibodies against the E6 protein present only in HPV positive cells. We conducted in vitro studies with cell cultures of SiHa cervical carcinoma cells seeded into Opticell™ chambers. An in-house ultrasound excitation apparatus was used to control and explore the optimal acoustic parameters in order to maximize delivery. We first validated the possibility of delivering the EX-EGFP-M02 vector (Genecopoeia) into the cells; 1.2 μL of activated microbubbles (Definity®) and 50 μg of the vector were mixed in media and then injected into the Opticell™ chamber. We used 32 μs pulses at a central frequency of 930 KHz with a repetition frequency of 1.5 kHz and total exposure duration of 30 s; six pressure values were tested (0 to 1 MPa). Fluorescence imaging was used to determine the levels of intracellular proteins and assess delivery. The delivery of an anti-α-Tubulin antibody was next tested and confirmed that the delivery into HPV16 positive cells was successful.

  11. Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement.

    PubMed Central

    Gherardi, E; Gray, J; Stoker, M; Perryman, M; Furlong, R

    1989-01-01

    Scatter factor is a fibroblast-derived protein that causes separation of contiguous epithelial cells and increased local mobility of unanchored cells. Highly purified scatter factor has been obtained by a combination of ion-exchange and reverse-phase chromatography from serum-free medium conditioned by a ras-transformed clone (D4) of mouse NIH 3T3 fibroblasts. Under nonreducing conditions scatter factor has a pI of approximately 9.5 and migrates in SDS/polyacrylamide gels as a single band at approximately 62 kDa from which epithelial scatter activity can be recovered. Treatment with reducing agents destroys biological activity and is associated with the appearance of two major bands at approximately 57 and approximately 30 kDa. Whether both the 57-kDa and 30-kDa polypeptides are required for biological activity remains to be established. All the activities observed in crude medium conditioned by cells producing scatter factor are retained by highly purified preparations of scatter factor. These include (i) increased local movement, modulation of morphology, and inhibition of junction formation by single epithelial cells and (ii) disruption of epithelial interactions and cell scattering from preformed epithelial sheets. These changes occur with picomolar concentrations of purified scatter factor and without an effect on cell growth. Images PMID:2527367

  12. DIRECT MODULATION OF THE PROTEIN KINASE A CATALYTIC SUBUNIT α BY GROWTH FACTOR RECEPTOR TYROSINE KINASES

    PubMed Central

    Caldwell, George B.; Howe, Alan K.; Nickl, Christian K.; Dostmann, Wolfgang R.; Ballif, Bryan A.; Deming, Paula B.

    2011-01-01

    The cyclic-AMP-dependent protein kinase A (PKA) regulates processes such as cell proliferation and migration following activation of growth factor receptor tyrosine kinases (RTKs), yet the signaling mechanisms that link PKA with growth factor receptors remain largely undefined. Here we report that RTKs can directly modulate the function of the catalytic subunit of PKA (PKA-C) through post-translational modification. In vitro kinase assays revealed that both the epidermal growth factor and platelet derived growth factor receptors (EGFR and PDGFR, respectively) tyrosine phosphorylate PKA-C. Mass spectrometry identified tyrosine 330 (Y330) as a receptor-mediated phosphorylation site and mutation of Y330 to phenylalanine (Y330F) all but abolished the RTK-mediated phosphorylation of PKA-C in vitro. Y330 resides within a conserved region at the C-terminal tail of PKA-C that allosterically regulates enzymatic activity. Therefore, the effect of phosphorylation at Y330 on the activity of PKA-C was investigated. The Km for a peptide substrate was markedly decreased when PKA-C subunits were tyrosine phosphorylated by the receptors as compared to un-phosphorylated controls. Importantly, tyrosine-phosphorylated PKA-C subunits were detected in cells stimulated with EGF, PDGF and FGF2 and in fibroblasts undergoing PDGF-mediated chemotaxis. These results demonstrate a direct, functional interaction between RTKs and PKA-C and identify tyrosine phosphorylation as a novel mechansim for regulating PKA activity. PMID:21866565

  13. Gut epithelial inducible heat-shock proteins and their modulation by diet and the microbiota.

    PubMed

    Arnal, Marie-Edith; Lallès, Jean-Paul

    2016-03-01

    The epidemic of metabolic diseases has raised questions about the interplay between the human diet and the gut and its microbiota. The gut has two vital roles: nutrient absorption and intestinal barrier function. Gut barrier defects are involved in many diseases. Excess energy intake disturbs the gut microbiota and favors body entry of microbial compounds that stimulate chronic metabolic inflammation. In this context, the natural defense mechanisms of gut epithelial cells and the potential to boost them nutritionally warrant further study. One such important defense system is the activation of inducible heat-shock proteins (iHSPs) which protect the gut epithelium against oxidative stress and inflammation. Importantly, various microbial components can induce the expression of iHSPs. This review examines gut epithelial iHSPs as the main targets of microbial signals and nutrients and presents data on diseases involving disturbances of gut epithelial iHSPs. In addition, a broad literature analysis of dietary modulation of gut epithelial iHSPs is provided. Future research aims should include the identification of gut microbes that can optimize gut-protective iHSPs and the evaluation of iHSP-mediated health benefits of nutrients and food components. PMID:26883882

  14. Prion Protein Modulates Monoaminergic Systems and Depressive-like Behavior in Mice.

    PubMed

    Beckman, Danielle; Santos, Luis E; Americo, Tatiana A; Ledo, Jose H; de Mello, Fernando G; Linden, Rafael

    2015-08-14

    We sought to examine interactions of the prion protein (PrP(C)) with monoaminergic systems due to: the role of PrP(C) in both Prion and Alzheimer diseases, which include clinical depression among their symptoms, the implication of monoamines in depression, and the hypothesis that PrP(C) serves as a scaffold for signaling systems. To that effect we compared both behavior and monoaminergic markers in wild type (WT) and PrP(C)-null (PrP(-/-)) mice. PrP(-/-) mice performed poorly when compared with WT in forced swimming, tail suspension, and novelty suppressed feeding tests, typical of depressive-like behavior, but not in the control open field nor rotarod motor tests; cyclic AMP responses to stimulation of D1 receptors by dopamine was selectively impaired in PrP(-/-) mice, and responses to serotonin, but not to norepinephrine, also differed between genotypes. Contents of dopamine, tyrosine hydroxylase, and the 5-HT5A serotonin receptor were increased in the cerebral cortex of PrP(-/-), as compared with WT mice. Microscopic colocalization, as well as binding in overlay assays were found of PrP(C) with both the 5HT5A and D1, but not D4 receptors. The data are consistent with the scaffolding of monoaminergic signaling modules by PrP(C), and may help understand the pathogenesis of clinical depression and neurodegenerative disorders. PMID:26152722

  15. Transmembrane protein 64 reciprocally regulates osteoblast and adipocyte differentiation by modulating Wnt/β-catenin signaling.

    PubMed

    Jeong, Byung-Chul; Kim, Tae Soo; Kim, Hyun Soo; Lee, Seoung-Hoon; Choi, Yongwon

    2015-09-01

    Age-related osteoporosis is associated with a reciprocal decrease in bone formation and an increase in adiposity in the bone marrow niche. We previously reported Transmembrane protein 64 (Tmem64) to be an important regulator of osteoclast function; however, its precise role in osteoblasts has not yet been established. Here, we showed that ablation of the Tmem64 gene in mice resulted in markedly increased osteoblast and reduced adipocyte differentiation from bone marrow-derived stromal cells (BMSCs). Conversely, Tmem64 overexpression inhibited osteogenesis and accelerated adipogenesis. Furthermore, BMSCs isolated from Tmem64 knockout mice formed a greater number of colony-forming unit-osteoblasts and a lower number of colony-forming unit-adipocytes than the wild type controls. Mechanistically, the expression level of β-catenin, the key Wnt signaling molecule, increased significantly, and its nuclear translocation was enhanced in Tmem64-deficient cells. Introduction of Tmem64 significantly suppressed β-catenin-mediated transcriptional activity in an in vitro co-transfection experiment as well as during an in vivo experiment involving BAT-Gal reporter mice. These results demonstrate that Tmem64 plays an important role in the regulation of mesenchymal lineage allocation by modulating Wnt/β-catenin signaling. PMID:25979161

  16. Ribosome Modulation Factor, an Important Protein for Cell Viability Encoded by the Polyamine Modulon*

    PubMed Central

    Terui, Yusuke; Tabei, Yuzuru; Akiyama, Mariko; Higashi, Kyohei; Tomitori, Hideyuki; Yamamoto, Kaneyoshi; Ishihama, Akira; Igarashi, Kazuei; Kashiwagi, Keiko

    2010-01-01

    We searched for proteins whose synthesis is enhanced by polyamines at the stationary phase of cell growth using an Escherichia coli polyamine-requiring mutant in which cell viability is greatly decreased by polyamine deficiency. The synthesis of ribosome modulation factor (RMF) was strongly enhanced by polyamines at the level of translation at the stationary phase of cell growth. In rmf mRNA, a Shine-Dalgarno (SD) sequence is located 11 nucleotides upstream of the initiation codon AUG. When the SD sequence was moved to the more common position 8 nucleotides upstream of the initiation codon, the degree of polyamine stimulation was reduced, although the level of RMF synthesis was markedly increased. Polyamine stimulation of RMF synthesis was found to be caused by a selective structural change of the bulged-out region of the initiation site of rmf mRNA. The decrease in cell viability caused by polyamine deficiency was prevented by the addition of a modified rmf gene whose synthesis is not influenced by polyamines. The results indicate that polyamines enhance cell viability of E. coli at least in part by enhancing RMF synthesis. PMID:20628056

  17. Modulation of function of multidrug resistance associated-proteins by Kaempferia parviflora extracts and their components.

    PubMed

    Patanasethanont, Denpong; Nagai, Junya; Matsuura, Chie; Fukui, Kyoko; Sutthanut, Khaetthareeya; Sripanidkulchai, Bung-orn; Yumoto, Ryoko; Takano, Mikihisa

    2007-07-01

    In this study, the effects of extracts and flavone derivatives from the rhizome of Kaempferia parviflora on multidrug resistance associated-proteins (MRP)-mediated transport in A549 cells were examined. The cells employed express MRP1 and MRP2, but not P-glycoprotein. The cellular accumulation of calcein, an MRP substrate, was significantly increased by various MRP inhibitors without being affected by verapamil, a typical P-glycoprotein inhibitor. Ethanol and aqueous extracts from K. parviflora rhizome increased the accumulation of calcein and doxorubicin in A549 cells in a concentration-dependent manner. The inhibitory potency of the ethanol extract for MRP function was greater than that of the aqueous extract. Among six flavone derivatives isolated from K. parviflora rhizome, 5,7-dimethoxyflavone exhibited a maximal stimulatory effect on the accumulation of doxorubicin in A549 cells. The accumulation of doxorubicin was increased by four flavone derivatives without 5-hydroxy group, but not by the other two flavone derivatives with 5-hydroxy group. In addition, 5,7-dimethoxyflavone and 3,5,7,3',4'-pentamethoxyflavone decreased resistance to doxorubicin in A549 cells. These findings indicate that extracts and flavone derivatives from the rhizome of K. parviflora suppress MRP function, and therefore may be useful as modulators of multidrug resistance in cancer cells. PMID:17481606

  18. Soluble amyloid precursor protein alpha inhibits tau phosphorylation through modulation of GSK3β signaling pathway.

    PubMed

    Deng, Juan; Habib, Ahsan; Obregon, Demian F; Barger, Steven W; Giunta, Brian; Wang, Yan-Jiang; Hou, Huayan; Sawmiller, Darrell; Tan, Jun

    2015-11-01

    We recently found that sAPPα decreases amyloid-beta generation by directly associating with β-site amyloid precursor protein (APP)-converting enzyme 1 (BACE1), thereby modulating APP processing. Because inhibition of BACE1 decreases glycogen synthase kinase 3 beta (GSK3β)-mediated Alzheimer's disease (AD)-like tau phosphorylation in AD patient-derived neurons, we determined whether sAPPα also reduces GSK3β-mediated tau phosphorylation. We initially found increased levels of inhibitory phosphorylation of GSK3β (Ser9) in primary neurons from sAPPα over-expressing mice. Further, recombinant human sAPPα evoked the same phenomenon in SH-SY5Y cells. Further, in SH-SY5Y cells over-expressing BACE1, and HeLa cells over-expressing human tau, sAPPα reduced GSK3β activity and tau phosphorylation. Importantly, the reductions in GSK3β activity and tau phosphorylation elicited by sAPPα were prevented by BACE1 but not γ-secretase inhibition. In accord, AD mice over-expressing human sAPPα had less GSK3β activity and tau phosphorylation compared with controls. These results implicate a direct relationship between APP β-processing and GSK3β-mediated tau phosphorylation and further define the central role of sAPPα in APP autoregulation and AD pathogenesis. PMID:26342176

  19. HPV16 E2 protein promotes innate immunity by modulating immunosuppressive status.

    PubMed

    Sunthamala, Nuchsupha; Pientong, Chamsai; Ohno, Tatsukuni; Zhang, Chenyang; Bhingare, Arundhati; Kondo, Yuta; Azuma, Miyuki; Ekalaksananan, Tipaya

    2014-04-18

    The balance between active immune responses against human papillomavirus (HPV) and HPV-induced immune escape regulates viral clearance and carcinogenesis. To understand the role of the early viral protein HPV16 E2 in host innate immune responses, the HPV16 E2-transfected murine squamous cell carcinoma cell line SCCVII (SCC/E2) was generated and anti-tumor responses in T-cell-depleted mice were evaluated. Tumor growth of SCC/E2 was markedly reduced. Cytotoxicity against the NK-sensitive targets YAC-1 and SCCVII was clearly enhanced in SCC/E2-inoculated mice. Despite the comparable ratio of NK cells, the proportion of CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs) was significantly decreased in SCC/E2-inoculated mice. The transcription of MDSC-related mediators such as inducible nitric oxide synthase, indoleamine 2,3-dioxygenase, and heme oxygenase-1 was significantly impaired in the SCC/E2-inoculated tumor tissues on day 3. Our results suggest that HPV16 E2 promotes anti-tumor innate effector function by modulating immunoregulatory events mediated by MDSCs and their mediators. This report describes a new role for HPV16 E2 as a local immunomodulator at infected sites. PMID:24657154

  20. Modulation of protein release from biodegradable core-shell structured fibers prepared by coaxial electrospinning.

    PubMed

    Jiang, Hongliang; Hu, Yingqian; Zhao, Pengcheng; Li, Yan; Zhu, Kangjie

    2006-10-01

    Biodegradable core-shell structured fibers with poly(epsilon-caprolactone) as shell and bovine serum albumin (BSA)-containing dextran as core were prepared by coaxial electrospinning for incorporation and controlled release of proteins. BSA loading percent in the fibers and its release rate could be conveniently varied by the feed rate of the inner dope during electrospinning. With the increase in the feed rate of the inner dope, there was an associated increase in the loading percent and accelerated release of BSA. Poly(ethylene glycol) (PEG) was added to the shell section of the fibers to further finely modulate the release behavior of BSA. It was revealed that the release rate of BSA increased with the PEG percent in the shell section. By varying the feed rate of the inner dope and PEG content, most of BSA could be released from the core-shell structured fibers within the period of time ranging from 1 week to more than 1 month. The effect of the feed rate of the inner dope and addition of PEG into the shell section on the fiber morphology was also examined by scanning electron microscope. PMID:16544305

  1. topPTM: a new module of dbPTM for identifying functional post-translational modifications in transmembrane proteins.

    PubMed

    Su, Min-Gang; Huang, Kai-Yao; Lu, Cheng-Tsung; Kao, Hui-Ju; Chang, Ya-Han; Lee, Tzong-Yi

    2014-01-01

    Transmembrane (TM) proteins have crucial roles in various cellular processes. The location of post-translational modifications (PTMs) on TM proteins is associated with their functional roles in various cellular processes. Given the importance of PTMs in the functioning of TM proteins, this study developed topPTM (available online at http://topPTM.cse.yzu.edu.tw), a new dbPTM module that provides a public resource for identifying the functional PTM sites on TM proteins with structural topology. Experimentally verified TM topology data were integrated from TMPad, TOPDB, PDBTM and OPM. In addition to the PTMs obtained from dbPTM, experimentally verified PTM sites were manually extracted from research articles by text mining. In an attempt to provide a full investigation of PTM sites on TM proteins, all UniProtKB protein entries containing annotations related to membrane localization and TM topology were considered potential TM proteins. Two effective tools were then used to annotate the structural topology of the potential TM proteins. The TM topology of TM proteins is represented by graphical visualization, as well as by the PTM sites. To delineate the structural correlation between the PTM sites and TM topologies, the tertiary structure of PTM sites on TM proteins was visualized by Jmol program. Given the support of research articles by manual curation and the investigation of domain-domain interactions in Protein Data Bank, 1347 PTM substrate sites are associated with protein-protein interactions for 773 TM proteins. The database content is regularly updated on publication of new data by continuous surveys of research articles and available resources. PMID:24302577

  2. Hypoxia-induced mitogenic factor modulates surfactant protein B and C expression in mouse lung.

    PubMed

    Tong, Qiangsong; Zheng, Liduan; Dodd-o, Jeffrey; Langer, John; Wang, Danming; Li, Dechun

    2006-01-01

    Previous studies have demonstrated a robust pulmonary expression of hypoxia-induced mitogenic factor (HIMF) during the perinatal period, when surfactant protein (SP) synthesis begins. We hypothesized that HIMF modulates SP expression and participates in lung development and maturation. The temporal-spatial expression of HIMF, SP-B, and SP-C in developing mouse lungs was examined by immunohistochemical staining, Western blot, and RT-PCR. The expression and localization of SP-B and SP-C were investigated in mouse lungs after intratracheal instillation of HIMF in adult mice. The effects of HIMF on SP-B and SP-C transcription activity, and on mRNA degradation, were investigated in mouse lung epithelial (MLE)-12 and C10 cells using the promoter-luciferase reporter assay and actinomycin D incubation. The activation of Akt, extracellular signal-regulated kinase (ERK)1/2, and p38 mitogen-activated protein kinase was explored by Western blot. Intratracheal instillation of HIMF resulted in significant increases of SP-B and SP-C production, predominantly localized to alveolar type II cells. In MLE-12 and C10 cells, HIMF enhanced SP-B and SP-C mRNA levels in a dose-dependent manner. Meanwhile, HIMF increased transcription activity and prevented actinomycin D-facilitated SP-B and SP-C mRNA degradation in MLE-12 cells. Incubation of cells with LY294002, PD098059, or U0126 abolished HIMF-induced Akt and ERK1/2 phosphorylation and suppressed HIMF-induced SP-B and SP-C production, whereas SB203580 had no effect. These results indicate that HIMF induces SP-B and SP-C production in mouse lungs and alveolar type II-like cell lines via activations of phosphatidylinositol 3-kinase/Akt and ERK1/2 mitogen-activated protein kinase, suggesting that HIMF plays critical roles in lung development and maturation. PMID:16166744

  3. Changes in gravity affect gene expression, protein modulation and metabolite pools of arabidopsis

    NASA Astrophysics Data System (ADS)

    Hampp, R.; Martzivanou, M.; Maier, R. M.; Magel, E.

    ), we investigated samples from sounding rocket experiments (5 min μ g) and show increased transcript levels for signalling proteins. By means of 2-dimensional SDS polyacrylamide gelelectrophoresis, coupled to spot identification after tryptic digest (MALDI-TOF), we further show that metabolic short-term responses can be adjusted by protein phosphorylation/dephosphorylation. Changes in gene expression / protein modulation are mirrored by respective alterations in metabolite pools. (Supported by a grant from the Deutsches Zentrum für Luft- und Raumfahrt (DLR, 50WB0143)).

  4. A DNA vaccine encoding mutated HPV58 mE6E7-Fc-GPI fusion antigen and GM-CSF and B7.1

    PubMed Central

    Wang, He; Yu, Jiyun; Li, Li

    2015-01-01

    Background Persistent infection with high-risk human papillomavirus (HPV) is a predominant cause of cervical cancer, and HPV58 is the third most common virus detected in the patients with cervical cancer in Asia. E6 and E7 are the viral oncogenes which are constitutively expressed in HPV-associated tumor cells and can be used as target antigens for related immunotherapy. In this study, we modified the HPV58 E6 and E7 oncogenes to eliminate their oncogenic potential and constructed a recombinant DNA vaccine that coexpresses the sig-HPV58 mE6E7-Fc-GPI fusion antigen in addition to granulocyte-macrophage colony-stimulating factor (GM-CSF) and B7.1 as molecular adjuvants (PVAX1-HPV58 mE6E7FcGB) for the treatment of HPV58 (+) cancer. Methods PVAX1-HPV58 mE6E7FcGB recombinant DNA vaccine was constructed to express a fusion protein containing a signal peptide, a modified HPV58 mE6E7 gene, and human IgG Fc and glycosylphosphatidylinositol (GPI)-anchoring sequences using the modified DNA vaccine vector PVAX1-IRES-GM/B7.1 that coexpresses GM-CSF, and B7.1. C57BL/6 mice were challenged by HPV58 E6E7-expressing B16-HPV58 E6E7 cells, followed by immunization by PVAX1-HPV58 mE6E7FcGB vaccine on days 7, 14, 21 after tumor challenge. The cellular immune responses in immunized mice were assessed by measuring IFN-γ production in splenocytes upon stimulation by HPV58 E6E7-GST protein and the lysis of B16-HPV58 E6E7 target cells by splenocytes after restimulation with HPV58 E6E7-GST protein. The antitumor efficacy was evaluated by monitoring the growth of the tumor. Results PVAX1-HPV58 mE6E7FcGB elicited varying levels of IFN-lsgdB58onn T-cell immune responses and lysis of target cell in mice in response to the recombinant antigen HPV58 E6E7-GST. Furthermore, the vaccine also induced antitumor responses in the HPV58 (+) B16-HPV58 E6E7 tumor challenge model as evidenced by delayed tumor development. Conclusion The recombinant DNA vaccine PVAX1-HPV58 mE6E7FcGB efficiently generates

  5. Dynamic Evolution of Nitric Oxide Detoxifying Flavohemoglobins, a Family of Single-Protein Metabolic Modules in Bacteria and Eukaryotes.

    PubMed

    Wisecaver, Jennifer H; Alexander, William G; King, Sean B; Hittinger, Chris Todd; Rokas, Antonis

    2016-08-01

    Due to their functional independence, proteins that comprise standalone metabolic units, which we name single-protein metabolic modules, may be particularly prone to gene duplication (GD) and horizontal gene transfer (HGT). Flavohemoglobins (flavoHbs) are prime examples of single-protein metabolic modules, detoxifying nitric oxide (NO), a ubiquitous toxin whose antimicrobial properties many life forms exploit, to nitrate, a common source of nitrogen for organisms. FlavoHbs appear widespread in bacteria and have been identified in a handful of microbial eukaryotes, but how the distribution of this ecologically and biomedically important protein family evolved remains unknown. Reconstruction of the evolutionary history of 3,318 flavoHb protein sequences covering the family's known diversity showed evidence of recurrent HGT at multiple evolutionary scales including intrabacterial HGT, as well as HGT from bacteria to eukaryotes. One of the most striking examples of HGT is the acquisition of a flavoHb by the dandruff- and eczema-causing fungus Malassezia from Corynebacterium Actinobacteria, a transfer that growth experiments show is capable of mediating NO resistance in fungi. Other flavoHbs arose via GD; for example, many filamentous fungi possess two flavoHbs that are differentially targeted to the cytosol and mitochondria, likely conferring protection against external and internal sources of NO, respectively. Because single-protein metabolic modules such as flavoHb function independently, readily undergo GD and HGT, and are frequently involved in organismal defense and competition, we suggest that they represent "plug-and-play" proteins for ecological arms races. PMID:27189567

  6. Fine-tuning synaptic plasticity by modulation of Ca(V)2.1 channels with Ca2+ sensor proteins.

    PubMed

    Leal, Karina; Mochida, Sumiko; Scheuer, Todd; Catterall, William A

    2012-10-16

    Modulation of P/Q-type Ca(2+) currents through presynaptic voltage-gated calcium channels (Ca(V)2.1) by binding of Ca(2+)/calmodulin contributes to short-term synaptic plasticity. Ca(2+)-binding protein-1 (CaBP1) and Visinin-like protein-2 (VILIP-2) are neurospecific calmodulin-like Ca(2+) sensor proteins that differentially modulate Ca(V)2.1 channels, but how they contribute to short-term synaptic plasticity is unknown. Here, we show that activity-dependent modulation of presynaptic Ca(V)2.1 channels by CaBP1 and VILIP-2 has opposing effects on short-term synaptic plasticity in superior cervical ganglion neurons. Expression of CaBP1, which blocks Ca(2+)-dependent facilitation of P/Q-type Ca(2+) current, markedly reduced facilitation of synaptic transmission. VILIP-2, which blocks Ca(2+)-dependent inactivation of P/Q-type Ca(2+) current, reduced synaptic depression and increased facilitation under conditions of high release probability. These results demonstrate that activity-dependent regulation of presynaptic Ca(V)2.1 channels by differentially expressed Ca(2+) sensor proteins can fine-tune synaptic responses to trains of action potentials and thereby contribute to the diversity of short-term synaptic plasticity. PMID:23027954

  7. A calcium sensor – protein kinase signaling module diversified in plants and is retained in all lineages of Bikonta species

    PubMed Central

    Beckmann, Linda; Edel, Kai H.; Batistič, Oliver; Kudla, Jörg

    2016-01-01

    Calcium (Ca2+) signaling is a universal mechanism of signal transduction and involves Ca2+ signal formation and decoding of information by Ca2+ binding proteins. Calcineurin B-like proteins (CBLs), which upon Ca2+ binding activate CBL-interacting protein kinases (CIPKs) regulate a multitude of physiological processes in plants. Here, we combine phylogenomics and functional analyses to investigate the occurrence and structural conservation of CBL and CIPK proteins in 26 species representing all major clades of eukaryotes. We demonstrate the presence of at least singular CBL-CIPK pairs in representatives of Archaeplastida, Chromalveolates and Excavates and their general absence in Opisthokonta and Amoebozoa. This denotes CBL-CIPK complexes as evolutionary ancient Ca2+ signaling modules that likely evolved in the ancestor of all Bikonta. Furthermore, we functionally characterize the CBLs and CIPK from the parabasalid human pathogen Trichomonas vaginalis. Our results reveal strict evolutionary conservation of functionally important structural features, preservation of biochemical properties and a remarkable cross-kingdom protein-protein interaction potential between CBLs and CIPKs from Arabidopsis thaliana and T. vaginalis. Together our findings suggest an ancient evolutionary origin of a functional CBL-CIPK signaling module close to the root of eukaryotic evolution and provide insights into the initial evolution of signaling networks and Ca2+ signaling specificity. PMID:27538881

  8. A calcium sensor - protein kinase signaling module diversified in plants and is retained in all lineages of Bikonta species.

    PubMed

    Beckmann, Linda; Edel, Kai H; Batistič, Oliver; Kudla, Jörg

    2016-01-01

    Calcium (Ca(2+)) signaling is a universal mechanism of signal transduction and involves Ca(2+) signal formation and decoding of information by Ca(2+) binding proteins. Calcineurin B-like proteins (CBLs), which upon Ca(2+) binding activate CBL-interacting protein kinases (CIPKs) regulate a multitude of physiological processes in plants. Here, we combine phylogenomics and functional analyses to investigate the occurrence and structural conservation of CBL and CIPK proteins in 26 species representing all major clades of eukaryotes. We demonstrate the presence of at least singular CBL-CIPK pairs in representatives of Archaeplastida, Chromalveolates and Excavates and their general absence in Opisthokonta and Amoebozoa. This denotes CBL-CIPK complexes as evolutionary ancient Ca(2+) signaling modules that likely evolved in the ancestor of all Bikonta. Furthermore, we functionally characterize the CBLs and CIPK from the parabasalid human pathogen Trichomonas vaginalis. Our results reveal strict evolutionary conservation of functionally important structural features, preservation of biochemical properties and a remarkable cross-kingdom protein-protein interaction potential between CBLs and CIPKs from Arabidopsis thaliana and T. vaginalis. Together our findings suggest an ancient evolutionary origin of a functional CBL-CIPK signaling module close to the root of eukaryotic evolution and provide insights into the initial evolution of signaling networks and Ca(2+) signaling specificity. PMID:27538881

  9. Microfabricated modules for sample handling, sample concentration and flow mixing: application to protein analysis by tandem mass spectrometry.

    PubMed

    Figeys, D; Aebersold, R

    1999-02-01

    The comprehensive analysis of biological systems requires a combination of genomic and proteomic efforts. The large-scale application of current genomic technologies provides complete genomic DNA sequences, sequence tags for expressed genes (EST's), and quantitative profiles of expressed genes at the mRNA level. In contrast, protein analytical technology lacks the sensitivity and the sample throughput for the systematic analysis of all the proteins expressed by a tissue or cell. The sensitivity of protein analysis technology is primarily limited by the loss of analytes, due to adsorption to surfaces, and sample contamination during handling. Here we summarize our work on the development and use of microfabricated fluidic systems for the manipulation of minute amounts of peptides and delivery to an electrospray ionization tandem mass spectrometer. New data are also presented that further demonstrate the potential of these novel approaches. Specifically, we describe the use of microfabricated devices as modules to deliver femtomole amounts of protein digests to the mass spectrometer for protein identification. We also describe the use of a microfabricated module for the generation of solvent gradients at nl/min flow rates for gradient chromatography-tandem mass spectrometry. The use of microfabricated fluidic systems reduces the risk of sample contamination and sample loss due to adsorption to wetted surfaces. The ability to assemble dedicated modular systems and to operate them automatically makes the use of microfabricated systems attractive for the sensitive and large-scale analysis of proteins. PMID:10080083

  10. 17beta-hydroxysteroid dehydrogenase type 1 modulates breast cancer protein profile and impacts cell migration

    PubMed Central

    2012-01-01

    Introduction Human 17beta-hydroxysteroid dehydrogenase type 1 (17β-HSD1) is a steroid-converting enzyme that has long been known to play critical roles in estradiol synthesis and more recently in dihydrotestosterone (DHT) inactivation, showing a dual function that promotes breast cancer cell proliferation. Previously, we reported the first observation of the influence of the enzyme on endogenous estrogen-responsive gene expression. Here, we demonstrate the impact of 17β-HSD1 expression on the breast cancer cell proteome and investigate its role in cell migration. Methods 17β-HSD1 was stably transfected in MCF7 cells and the proteome of the generated cells overexpressing 17β-HSD1 (MCF7-17βHSD1 cells) was compared to that of the wild type MCF7 cells. Proteomics study was performed using two-dimensional gel electrophoresis followed by mass spectrometry analysis of differentially expressed protein spots. Reverse transcription quantitative real-time PCR (RT-qPCR) was used to investigate the transcription of individual gene. The effect of 17β-HSD1 on MCF7 cell migration was verified by a wound-healing assay. Results Proteomic data demonstrate that the expression of more than 59 proteins is modulated following 17β-HSD1 overexpression. 17β-HSD1 regulates the expression of important genes and proteins that are relevant to cell growth control, such as BRCA2 and CDKN1A interacting protein (BCCIP) and proliferating cell nuclear antigen (PCNA) which are down- and upregulated in MCF7-17βHSD1 cells, respectively. RT-qPCR data reveal that 17β-HSD1 increases the mRNA levels of estrogen receptors (ER) alpha and beta by 171 and 120%, respectively, while decreasing that of the androgen receptor by 64%. Interestingly, 17β-HSD1 increases the mRNA transcript (by 3.6 times) and the protein expression of the metastasis suppressor gene nm23-H1 and the expression of the two enzymes are closely correlated. We have further shown that 17β-HSD1 expression is associated with an

  11. Prolonged Adaptation to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates – A Substudy

    PubMed Central

    Hursel, Rick; Martens, Eveline A. P.; Gonnissen, Hanne K. J.; Hamer, Henrike M.; Senden, Joan M. G.; van Loon, Luc J. C.; Westerterp-Plantenga, Margriet S.

    2015-01-01

    Background Based on controlled 36 h experiments a higher dietary protein intake causes a positive protein balance and a negative fat balance. A positive net protein balance may support fat free mass accrual. However, few data are available on the impact of more prolonged changes in habitual protein intake on whole-body protein metabolism and basal muscle protein synthesis rates. Objective To assess changes in whole-body protein turnover and basal muscle protein synthesis rates following 12 weeks of adaptation to a low versus high dietary protein intake. Methods A randomized parallel study was performed in 40 subjects who followed either a high protein (2.4 g protein/kg/d) or low protein (0.4 g protein/kg/d) energy-balanced diet (30/35/35% or 5/60/35% energy from protein/carbohydrate/fat) for a period of 12 weeks. A subgroup of 7 men and 8 women (body mass index: 22.8±2.3 kg/m2, age: 24.3±4.9 y) were selected to evaluate the impact of prolonged adaptation to either a high or low protein intake on whole body protein metabolism and basal muscle protein synthesis rates. After the diet, subjects received continuous infusions with L-[ring-2H5]phenylalanine and L-[ring-2H2]tyrosine in an overnight fasted state, with blood samples and muscle biopsies being collected to assess post-absorptive whole-body protein turnover and muscle protein synthesis rates in vivo in humans. Results After 12 weeks of intervention, whole-body protein balance in the fasted state was more negative in the high protein treatment when compared with the low protein treatment (-4.1±0.5 vs -2.7±0.6 μmol phenylalanine/kg/h;P<0.001). Whole-body protein breakdown (43.0±4.4 vs 37.8±3.8 μmol phenylalanine/kg/h;P<0.03), synthesis (38.9±4.2 vs 35.1±3.6 μmol phenylalanine/kg/h;P<0.01) and phenylalanine hydroxylation rates (4.1±0.6 vs 2.7±0.6 μmol phenylalanine/kg/h;P<0.001) were significantly higher in the high vs low protein group. Basal muscle protein synthesis rates were maintained on a low

  12. Induction of robust cellular immunity against HPV6 and HPV11 in mice by DNA vaccine encoding for E6/E7 antigen

    PubMed Central

    Shin, Thomas; Pankhong, Panyupa; Yan, Jian; Khan, Amir S.; Sardesai, Niranjan Y.; Weiner, David B.

    2012-01-01

    Due to the strong relationship between the Human Papillomavirus (HPV) “high-risk” subtypes and cervical cancers, most HPV-related studies have been focusing on the “high-risk” HPV subtypes 16 and 18. However, it has been suggested that the “low-risk” subtypes of HPV, HPV6 and HPV11, are the major cause of recurrent respiratory papillomatosis and genital warts. In addition, HPV 6 and 11 are also associated with otolaryngologic malignancies, carcinoma of the lung, tonsil, larynx and low-grade cervical lesions. Therefore, development of HPV therapeutic vaccines targeting on subtypes 6 and 11 E6 or E7 are in great need. In this report, we describe two novel engineered DNA vaccines that encode HPV 6 and 11 consensus E6/E7 fusion proteins (p6E6E7 and p11E6E7) by utilizing a multi-phase strategy. Briefly, after generating consensus sequences, several modifications were performed to increase the expression of both constructs, including codon/RNA optimization, addition of a Kozak sequence and a highly efficient leader sequence. An endoproteolytic cleavage site was also introduced between E6 and E7 protein for proper protein folding and for better CTL processing. The expressions of both constructs were confirmed by western blot analysis and immunofluorescence assay. Vaccination with these DNA vaccines could elicit robust cellular immune responses. The epitope mapping assay was performed to further characterize the cellular immune responses induced by p6E6E7 and p11E6E7. The HPV 6 and 11 E6 or E7-specific immunodominant and subdominant epitopes were verified, respectively. The intracellular cytokine staining revealed that the magnitude of IFN-γ and TNF-α secretion in antigen-specific CD8+ cells was significantly enhanced, indicating that the immune responses elicited by p6E6E7 and p11E6E7 was heavily skewed toward driving CD8+ T cells. Such DNA immunogens are interesting candidates for further studies on HPV 6 and 11-associated diseases. PMID:22336879

  13. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels.

    PubMed

    Maejima, Takashi; Masseck, Olivia A; Mark, Melanie D; Herlitze, Stefan

    2013-01-01

    Serotonergic neurons project to virtually all regions of the central nervous system and are consequently involved in many critical physiological functions such as mood, sexual behavior, feeding, sleep/wake cycle, memory, cognition, blood pressure regulation, breathing, and reproductive success. Therefore, serotonin release and serotonergic neuronal activity have to be precisely controlled and modulated by interacting brain circuits to adapt to specific emotional and environmental states. We will review the current knowledge about G protein-coupled receptors and ion channels involved in the regulation of serotonergic system, how their regulation is modulating the intrinsic activity of serotonergic neurons and its transmitter release and will discuss the latest methods for controlling the modulation of serotonin release and intracellular signaling in serotonergic neurons in vitro and in vivo. PMID:23734105

  14. Cyclophilin C-associated protein: A normal secreted glycoprotein that down-modulates endotoxin and proinflammatory responses in vivo

    PubMed Central

    Trahey, Meg; Weissman, Irving L.

    1999-01-01

    Mouse cyclophilin C-associated protein (CyCAP) is a member of the scavenger-receptor cysteine-rich domain superfamily and is 69% identical to the human Mac-2 binding protein. Here, we show that CyCAP is a widely expressed secreted glycoprotein that modulates the host response to endotoxin. Gene-targeted CyCAP-deficient mice are more sensitive to the lethal effects of endotoxin. In response to endotoxin, CyCAP-deficient mice overproduced interleukin 12 and interferon-γ systemically and tumor necrosis factor α locally; these are proinflammatory molecules that also promote T helper 1 responses. Furthermore, macrophages stimulated in vitro with endotoxin in serum deficient in CyCAP secreted more tumor necrosis factor α, supporting the proposal that CyCAP specifically down-modulates endotoxin signaling. PMID:10077627

  15. The macromolecular assembly of pathogen-recognition receptors is impelled by serine proteases, via their complement control protein modules.

    PubMed

    Le Saux, Agnès; Ng, Patricia Miang Lon; Koh, Joanne Jing Yun; Low, Diana Hooi Ping; Leong, Geraldine E-Ling; Ho, Bow; Ding, Jeak Ling

    2008-03-28

    Although the innate immune response is triggered by the formation of a stable assembly of pathogen-recognition receptors (PRRs) onto the pathogens, the driving force that enables this PRR-PRR interaction is unknown. Here, we show that serine proteases, which are activated during infection, participate in associating with the PRRs. Inhibition of serine proteases gravely impairs the PRR assembly. Using yeast two-hybrid and pull-down methods, we found that two serine proteases in the horseshoe crab Carcinoscorpius rotundicauda are able to bind to the following three core members of PRRs: galactose-binding protein, Carcinolectin-5 and C-reactive protein. These two serine proteases are (1) Factor C, which activates the coagulation pathway, and (2) C2/Bf, a protein from the complement pathway. By systematic molecular dissection, we show that these serine proteases interact with the core "pathogen-recognition complex" via their complement control protein modules. PMID:18279891

  16. DELETION OF THE PDZ MOTIF OF HPV16 E6 PREVENTING IMMORTALIZATION AND ANCHORAGE-INDEPENDENT GROWTH IN HUMAN TONSIL EPITHELIAL CELLS

    PubMed Central

    Spanos, William C.; Geiger, Jeremy; Anderson, Mary E.; Harris, George F.; Bossler, Aaron D.; Smith, Russell B.; Klingelhutz, Aloysius J.; Lee, John H.

    2008-01-01

    Background Human papillomavirus 16 (HPV16) has been associated with head and neck squamous cell carcinoma (HNSCC) in up to 60%of sampled specimens. Methods To understand better the viral genes required to transform human tonsil epithelial cells (HTEC), we isolated HTECs and transduced them with retroviral vectors containing HPV16 E6 and E7. Results Immortalization and anchorage-independent growth of HTECs only occurred with expression of E6 and E7 with resultant degradation of p53. However, cells expressing E6 lacking the PSD-95/disc-large/Zo-1 (PDZ) motif did not immortalize or grow anchorage independent. Telomerase activity and degradation of p53 were similar for wild-type and mutant E6. Conclusion The mechanism of oncogenic transformation by E6 in HTECs is dependent on the PDZ binding motif. Identification of pathways affected by the interaction of E6 and PDZ domain containing proteins will further our understanding of how HPV causes HNSCC and will provide potential therapeutic targets. PMID:17657785

  17. PI3K/AKT signaling modulates transcriptional expression of EWS/FLI1 through specificity protein 1

    PubMed Central

    Giorgi, Chiara; Boro, Aleksandar; Rechfeld, Florian; Lopez-Garcia, Laura A.; Gierisch, Maria E.; Schäfer, Beat W.; Niggli, Felix K.

    2015-01-01

    Ewing sarcoma (ES) is the second most frequent bone cancer in childhood and is characterized by the presence of the balanced translocation t(11;22)(q24;q12) in more than 85% of cases, generating a dysregulated transcription factor EWS/FLI1. This fusion protein is an essential oncogenic component of ES development which is necessary for tumor cell maintenance and represents an attractive therapeutic target. To search for modulators of EWS/FLI1 activity we screened a library of 153 targeted compounds and identified inhibitors of the PI3K pathway to directly modulate EWS/FLI1 transcription. Surprisingly, treatment of four different ES cell lines with BEZ235 resulted in down regulation of EWS/FLI1 mRNA and protein by ∼50% with subsequent modulation of target gene expression. Analysis of the EWS/FLI1 promoter region (−2239/+67) using various deletion constructs identified two 14bp minimal elements as being important for EWS/FLI1 transcription. We identified SP1 as modulator of EWS/FLI1 gene expression and demonstrated direct binding to one of these regions in the EWS/FLI1 promoter by EMSA and ChIP experiments. These results provide the first insights on the transcriptional regulation of EWS/FLI1, an area that has not been investigated so far, and offer an additional molecular explanation for the known sensitivity of ES cell lines to PI3K inhibition. PMID:26336820

  18. Short and long-term memory are modulated by multiple isoforms of the fragile X mental retardation protein

    PubMed Central

    Banerjee, Paromita; Schoenfeld, Brian P.; Bell, Aaron J.; Choi, Catherine H.; Bradley, Michael P.; Hinchey, Paul; Kollaros, Maria; Park, Jae H.; McBride, Sean M.J.; Dockendorff, Thomas C.

    2010-01-01

    The diversity of protein isoforms arising from alternative splicing is thought to modulate fine-tuning of synaptic plasticity. Fragile X mental retardation protein (FMRP), a neuronal RNA binding protein, exists in isoforms as a result of alternative splicing, but the contribution of these isoforms to neural plasticity are not well understood. We show that two isoforms of D. melanogaster FMRP (dFMR1) have differential roles in mediating neural development and behavior functions conferred by the dfmr1 gene. These isoforms differ in the presence of a protein interaction module that is related to prion domains and is functionally conserved between FMRPs. Expression of both isoforms is necessary for optimal performance in tests of short and long-term memory of courtship training. The presence or absence of the protein interaction domain may govern the types of ribonucleoprotein (RNP) complexes dFMR1 assembles into, with different RNPs regulating gene expression in a manner necessary for establishing distinct phases of memory formation. PMID:20463240

  19. Plasma protein corona modulates the vascular wall interaction of drug carriers in a material and donor specific manner.

    PubMed

    Sobczynski, Daniel J; Charoenphol, Phapanin; Heslinga, Michael J; Onyskiw, Peter J; Namdee, Katawut; Thompson, Alex J; Eniola-Adefeso, Omolola

    2014-01-01

    The nanoscale plasma protein interaction with intravenously injected particulate carrier systems is known to modulate their organ distribution and clearance from the bloodstream. However, the role of this plasma protein interaction in prescribing the adhesion of carriers to the vascular wall remains relatively unknown. Here, we show that the adhesion of vascular-targeted poly(lactide-co-glycolic-acid) (PLGA) spheres to endothelial cells is significantly inhibited in human blood flow, with up to 90% reduction in adhesion observed relative to adhesion in simple buffer flow, depending on the particle size and the magnitude and pattern of blood flow. This reduced PLGA adhesion in blood flow is linked to the adsorption of certain high molecular weight plasma proteins on PLGA and is donor specific, where large reductions in particle adhesion in blood flow (>80% relative to buffer) is seen with ∼60% of unique donor bloods while others exhibit moderate to no reductions. The depletion of high molecular weight immunoglobulins from plasma is shown to successfully restore PLGA vascular wall adhesion. The observed plasma protein effect on PLGA is likely due to material characteristics since the effect is not replicated with polystyrene or silica spheres. These particles effectively adhere to the endothelium at a higher level in blood over buffer flow. Overall, understanding how distinct plasma proteins modulate the vascular wall interaction of vascular-targeted carriers of different material characteristics would allow for the design of highly functional delivery vehicles for the treatment of many serious human diseases. PMID:25229244

  20. How and when should interactome-derived clusters be used to predict functional modules and protein function?

    PubMed Central

    Song, Jimin; Singh, Mona

    2009-01-01

    Motivation: Clustering of protein–protein interaction networks is one of the most common approaches for predicting functional modules, protein complexes and protein functions. But, how well does clustering perform at these tasks? Results: We develop a general framework to assess how well computationally derived clusters in physical interactomes overlap functional modules derived via the Gene Ontology (GO). Using this framework, we evaluate six diverse network clustering algorithms using Saccharomyces cerevisiae and show that (i) the performances of these algorithms can differ substantially when run on the same network and (ii) their relative performances change depending upon the topological characteristics of the network under consideration. For the specific task of function prediction in S.cerevisiae, we demonstrate that, surprisingly, a simple non-clustering guilt-by-association approach outperforms widely used clustering-based approaches that annotate a protein with the overrepresented biological process and cellular component terms in its cluster; this is true over the range of clustering algorithms considered. Further analysis parameterizes performance based on the number of annotated proteins, and suggests when clustering approaches should be used for interactome functional analyses. Overall our results suggest a re-examination of when and how clustering approaches should be applied to physical interactomes, and establishes guidelines by which novel clustering approaches for biological networks should be justified and evaluated with respect to functional analysis. Contact: msingh@cs.princeton.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19770263

  1. Pitavastatin Differentially Modulates MicroRNA-Associated Cholesterol Transport Proteins in Macrophages

    PubMed Central

    Moran, George; Sun, Tao; Gotto, Antonio M.; Hajjar, David P.

    2016-01-01

    There is emerging evidence identifying microRNAs (miRNAs) as mediators of statin-induced cholesterol efflux, notably through the ATP-binding cassette transporter A1 (ABCA1) in macrophages. The objective of this study was to assess the impact of an HMG-CoA reductase inhibitor, pitavastatin, on macrophage miRNAs in the presence and absence of oxidized-LDL, a hallmark of a pro-atherogenic milieu. Treatment of human THP-1 cells with pitavastatin prevented the oxLDL-mediated suppression of miR-33a, -33b and -758 mRNA in these cells, an effect which was not uniquely attributable to induction of SREBP2. Induction of ABCA1 mRNA and protein by oxLDL was inhibited (30%) by pitavastatin, while oxLDL or pitavastatin alone significantly induced and repressed ABCA1 expression, respectively. These findings are consistent with previous reports in macrophages. miRNA profiling was also performed using a miRNA array. We identified specific miRNAs which were up-regulated (122) and down-regulated (107) in THP-1 cells treated with oxLDL plus pitavastatin versus oxLDL alone, indicating distinct regulatory networks in these cells. Moreover, several of the differentially expressed miRNAs identified are functionally associated with cholesterol trafficking (six miRNAs in cells treated with oxLDL versus oxLDL plus pitavastatin). Our findings indicate that pitavastatin can differentially modulate miRNA in the presence of oxLDL; and, our results provide evidence that the net effect on cholesterol homeostasis is mediated by a network of miRNAs. PMID:27415822

  2. Probing the Functions of Carbohydrate Binding Modules in the CBEL Protein from the Oomycete Phytophthora parasitica

    PubMed Central

    Martinez, Thomas; Texier, Hélène; Nahoum, Virginie; Lafitte, Claude; Cioci, Gianluca; Heux, Laurent; Dumas, Bernard; O’Donohue, Michael

    2015-01-01

    Oomycetes are microorganisms that are distantly related to true fungi and many members of this phylum are major plant pathogens. Oomycetes express proteins that are able to interact with plant cell wall polysaccharides, such as cellulose. This interaction is thought to be mediated by carbohydrate-binding modules that are classified into CBM family 1 in the CAZy database. In this study, the two CBMs (1–1 and 1–2) that form part of the cell wall glycoprotein, CBEL, from Phytophthora parasitica have been submitted to detailed characterization, first to better quantify their interaction with cellulose and second to determine whether these CBMs can be useful for biotechnological applications, such as biomass hydrolysis. A variety of biophysical techniques were used to study the interaction of the CBMs with various substrates and the data obtained indicate that CBEL’s CBM1-1 exhibits much greater cellulose binding ability than CBM1-2. Engineering of the family 11 xylanase from Talaromyces versatilis (TvXynB), an enzyme that naturally bears a fungal family 1 CBM, has produced two variants. The first one lacks its native CBM, whereas the second contains the CBEL CBM1-1. The study of these enzymes has revealed that wild type TvXynB binds to cellulose, via its CBM1, and that the substitution of its CBM by oomycetal CBM1-1 does not affect its activity on wheat straw. However, intriguingly the addition of CBEL during the hydrolysis of wheat straw actually potentiates the action of TvXynB variant lacking a CBM1. This suggests that the potentiating effect of CBM1-1 might not require the formation of a covalent linkage to TvXynB. PMID:26390127

  3. Immunological synapse arrays: Patterned protein surfaces that modulate immunological synapse structure formation in T cells

    PubMed Central

    Doh, Junsang; Irvine, Darrell J.

    2006-01-01

    T cells are activated by recognition of foreign peptides displayed on the surface of antigen presenting cells (APCs), an event that triggers assembly of a complex microscale structure at the T cell–APC interface known as the immunological synapse (IS). It remains unresolved whether the unique physical structure of the synapse itself impacts the functional response of T cells, independent of the quantity and quality of ligands encountered by the T cell. As a first step toward addressing this question, we created multicomponent protein surfaces presenting lithographically defined patterns of tethered T cell receptor (TCR) ligands (anti-CD3 “activation sites”) surrounded by a field of tethered intercellular adhesion molecule-1 (ICAM-1), as a model substrate on which T cells could be seeded to mimic T cell–APC interactions. CD4+ T cells seeded on these surfaces polarized and migrated; on contact with activation sites, T cells assembled an IS with a structure modulated by the physical pattern of ligand encountered. On surfaces patterned with focal spots of TCR ligand, T cells stably interacted with activation sites, proliferated, and secreted cytokines. In contrast, T cells interacting with activation sites patterned to preclude centralized clustering of TCR ligand failed to form stable contacts with activation sites, exhibited aberrant PKC-θ clustering in a fraction of cells, and had significantly reduced production of IFN-γ. These results suggest that focal clustering of TCR ligand characteristic of the “mature” IS may be required under some conditions for full T cell activation. PMID:16585528

  4. Probing the Functions of Carbohydrate Binding Modules in the CBEL Protein from the Oomycete Phytophthora parasitica.

    PubMed

    Martinez, Thomas; Texier, Hélène; Nahoum, Virginie; Lafitte, Claude; Cioci, Gianluca; Heux, Laurent; Dumas, Bernard; O'Donohue, Michael; Gaulin, Elodie; Dumon, Claire

    2015-01-01

    Oomycetes are microorganisms that are distantly related to true fungi and many members of this phylum are major plant pathogens. Oomycetes express proteins that are able to interact with plant cell wall polysaccharides, such as cellulose. This interaction is thought to be mediated by carbohydrate-binding modules that are classified into CBM family 1 in the CAZy database. In this study, the two CBMs (1-1 and 1-2) that form part of the cell wall glycoprotein, CBEL, from Phytophthora parasitica have been submitted to detailed characterization, first to better quantify their interaction with cellulose and second to determine whether these CBMs can be useful for biotechnological applications, such as biomass hydrolysis. A variety of biophysical techniques were used to study the interaction of the CBMs with various substrates and the data obtained indicate that CBEL's CBM1-1 exhibits much greater cellulose binding ability than CBM1-2. Engineering of the family 11 xylanase from Talaromyces versatilis (TvXynB), an enzyme that naturally bears a fungal family 1 CBM, has produced two variants. The first one lacks its native CBM, whereas the second contains the CBEL CBM1-1. The study of these enzymes has revealed that wild type TvXynB binds to cellulose, via its CBM1, and that the substitution of its CBM by oomycetal CBM1-1 does not affect its activity on wheat straw. However, intriguingly the addition of CBEL during the hydrolysis of wheat straw actually potentiates the action of TvXynB variant lacking a CBM1. This suggests that the potentiating effect of CBM1-1 might not require the formation of a covalent linkage to TvXynB. PMID:26390127

  5. Vorinostat modulates cell cycle regulatory proteins in glioma cells and human glioma slice cultures.

    PubMed

    Xu, Jihong; Sampath, Deepa; Lang, Frederick F; Prabhu, Sujit; Rao, Ganesh; Fuller, Gregory N; Liu, Yuanfang; Puduvalli, Vinay K

    2011-11-01

    Chromatin modification through histone deacetylase inhibition has shown evidence of activity against malignancies. The mechanism of action of such agents are pleiotropic and potentially tumor specific. In this study, we studied the mechanisms of vorinostat-induced cellular effects in gliomas. The effects of vorinostat on proliferation, induction of apoptosis and cell cycle effects were studied in vitro (D54, U87 and U373 glioma cell lines). To gain additional insights into its effects on human gliomas, vorinostat-induced changes were examined ex vivo using a novel organotypic human glioma slice model. Vorinostat treatment resulted in increased p21 levels in all glioma cells tested in a p53 independent manner. In addition, cyclin B1 levels were transcriptionally downregulated and resulted in reduced kinase activity of the cyclin B1/cdk1 complex causing a G2 arrest. These effects were associated with a dose- and time-dependent inhibition of cellular proliferation and anchorage-independent growth in association with hyperacetylation of core histones and induction of apoptosis. Of particular significance, we demonstrate histone hyperacetylation and increased p21 levels in freshly resected human glioma specimens maintained as organotypic slice cultures and exposed to vorinostat similar to cell lines suggesting that human glioma can be targeted by this agent. Our data suggest that the effects of vorinostat are associated with modulation of cell cycle related proteins and activation of a G2 checkpoint along with induction of apoptosis. These effects are mediated by both transcriptional and post-translational mechanisms which provide potential options that can be exploited to develop new therapeutic approaches against gliomas. PMID:21598070

  6. Vorinostat modulates cell cycle regulatory proteins in glioma cells and human glioma slice cultures

    PubMed Central

    Xu, Jihong; Sampath, Deepa; Lang, Frederick F.; Prabhu, Sujit; Rao, Ganesh; Fuller, Gregory N.; Liu, Yuanfang

    2013-01-01

    Chromatin modification through histone deacetylase inhibition has shown evidence of activity against malignancies. The mechanism of action of such agents are pleiotropic and potentially tumor specific. In this study, we studied the mechanisms of vorinostat-induced cellular effects in gliomas. The effects of vorinostat on proliferation, induction of apoptosis and cell cycle effects were studied in vitro (D